Fonts & Encodings

Yannis Haralambous

Translated by P. Scott Horne

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Fonts & Encodings
by Yannis Haralambous

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Printing History:
September 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Fonts & Encodings, the image of an axis deer, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN-10: 0-596-10242-9
ISBN-13: 978-0-596-10242-5
M]

Ubi sunt qui ante nos
in mundo fuere?

To the memory of my beloved father,
Athanassios-Diomidis Haralambous

This book would never have seen the light of day without the help of a number of people, to whom
the author would like to express his thanks:

e His wife, Tereza, and his elder daughter, Ernestine (“Daddy, when are you going to finish your
book?”), who lived through hell for a whole year.

e The management of ENST Bretagne, Annie Gravey (chair of his department), and his col-
leagues, for encouraging him in this undertaking and tolerating the inconveniences caused
by his prolonged absence.

e His editor, Xavier Cazin, for his professionalism, his enthusiasm, and his friendship.

e Jacques André, for supplying tons of books, articles, leads, addresses, ideas, advice, suggestions,
memories, crazy thoughts, etc.

e His proofreaders: Jacques André once again, but also Patrick Andries, Oscarine Bosquet,
Michel Cacouros, Luc Devroye, Pierre Dumesnil, Tereza Haralambous, John Plaice, Pascal Ru-
bini, and Frangois Yergeau, for reviewing and correcting all or part of the book in record time.

e The indefatigable George Williams, for never failing to add new features to his FontForge soft-
ware at the author’s request.

e All those who supported him by providing information or resources: Ben Bauermeister, Ga-
bor Bella, Tom Bishop, Thierry Bouche, John Collins, Richard Cook, Simon Daniels, Mark
Davis, Lisa Devlin, Bon Hallissy, Ken’ichi Handa, Alan Hoenig, Bogustaw Jackowski, Michael
Jansson, Ronan Keryell, Alain LaBonté, David Lemon, Ken Lunde, Jim Lyles, Sergey Malkin,
Sabine Millecamps (Harrie Potter), Lisa Moore, Tomohiko Morioka, Eric Muller, Paul Nel-
son, David Opstad, Christian Paput, Thomas Phinney, Just van Rossum, Emmanuél Souchier,
Naoto Takahashi, Bob Thomas, Adam Twardoch, Jiirgen Willrodt, and Candy Lee Yiu.

e The foundries that supplied fonts or specimens for use in his examples: Justin Howes, P22,
Thierry Gouttenegre, Klemens Burkhardt, Hoefler Type Foundry, Typofonderie Porchez, and
Fountain Type.

e Emma Colby and Hanna Dyer of O’Reilly, for selecting that magnificent buck as the animal
on the cover, doubtless because its coat is reminiscent of encoding tables and its antlers suggest
the Bézier curves of fonts.

e Last but not least, Scott Horne, the heroic translator of this book of more than a thousand
pages, who mustered all his energy and know-how to translate the technical terms correctly,
adapt the book’s style to the culture of the English-speaking countries, correct countless errors
(even in the Chinese passages)—in short, he prepared this translation with the utmost care.
Just to cite one example, he translated the third stanza of Gaudeamus Igitur from Latin to ar-
chaic English—in verse, no less—for use in the dedication. The author will be forever grateful
to him for all these contributions.

Contents

Introduction 1
Explorations i e e e 3
The Letterand ItsParts, 3
Letterpress Typesetting o v v v v vt vt it 7
Digital Typesetting o e 11
FontFormats e 14
Between Characters and Glyphs: the Problems
of the Electronic Document 15
The Structure of the Book and WaystoUse It 17
HowtoRead ThisBook 23
HowtoContact Us. oottt 25
Before Unicode 27
FIELDATA e e e e e e e e e e e e e e e e 29
ASCIT . o o o e e e e e e 29
EBCDIC . . . i it et e e e e e e e e e e e e e e e e e 31
ISO 2022 . . it e e e e e e e 33
ISO 8859 . . . e e e e e e e e e e e 35
ISO 8859-1 (Latin-1) and ISO 8859-15 (Latin-9) 36
ISO 8859-2 (Latin-2) and ISO 8859-16 (Latin-10) 38
ISO 8859-3 (Latin-3) and ISO 88599 (Latin-5) 39
ISO 8859-4 (Latin-4), ISO 8859-10 (Latin-6),
and ISO 8859-13 (Latin-7) v v v v v v e e e e e e 40
ISO 8859-5,6,7,8, 11 . . . v v i it e e e e e 41
ISO 8859-14 (Latin-8) v v v v v v et e et e e e et 42

Vil

viil Contents

The Far East o o i i e e e e e e e
Microsoft’s code Pages . . .« « v v v i e e e e e e e e
Apple’sencodingso
Electronicmail L
TheWeb e

2 Characters, glyphs, bytes: An introduction to Unicode
Philosophical issues: charactersand glyphs
Firstprinciples L
Technical issues: charactersand bytes
Character encodingforms
General organization of Unicode: planes and blocks
The BMP (Basic Multilingual Plane)
Higherplanes
Scripts proposed for addition oL

3 Properties of Unicode characters
Basic properties

2
Generalcategory L
Other general properties e

Alphabetic characters
Noncharacterso i it it e e e e e
Ignorable characters L oL,
Deprecated characters e
Logical-order exceptions v v vt i e e
Soft-dotted letters e
Mathematical characters
Quotationmarks e e e
Dashes e e e e

42
45
47
48
51

53
54
58
62
64
70
70
83
89

95
96
96
96
97

Contents ix

Terminal punctuation L L L L 109
Diacritics o 109
Extenders e 110
Joincontrol 110

The Unicode 1 name and ISO’s comments 110
Properties that pertaintocase, 111
Uppercase letters o o e e e 111
Lowercaseletterso e 112
Simple lowercase/uppercase/titlecase mappings 112
Special lowercase/uppercase/titlecase mappings 112
Casefolding 113
Rendering properties e 114
The Arabic and Syriacscriptso o o 114
Managing grapheme clusters 116
Numeric properties o v v vt e e e 118
Identifiers e 119
Reading a Unicode block 120
4 Normalization, bidirectionality, and East Asian characters 127
Decompositions and Normalizations 127
Combining Characters. v i 127
Composition and Decomposition 130
NormalizationForms 131

The Bidirectional Algorithm 133
Typography in both directions 134
Unicode and Bidirectionality 138

The Algorithm, Stepby Step o L. 142

East Asian Scripts L 146
Ideographs of Chinese Origin 147

The Syllabic Korean Hangul Script 155

X Contents

5 Using Unicode 159
Interactive Tools for Entering Unicode Characters 160
Under MacOSX ot it 160
Under Windows XP i it ittt e et e e e 161
Under XWindow 163
Virtual Keyboards i e 164
Useful Concepts Related to Virtual Keyboards 167
Under MacOSX oot e 168
Under Windows ittt it et e 175
UnderXWindow 181
Conversion of Text from One Encoding to Another 183
Therecode Utility L 184

6 Font Management on the Macintosh 187
The Situation under MacOS9o i e 188
The situation under MacOSX it 191
Font-Management Tools 194
Tools for Verification and Maintenance 194
ATM: the “Smoother” of Fonts 196
ATR: classification of fonts by family 199

Font Managers 200
FontServers 204
Tools for Font Conversion. oo v ittt 205
TransType Pro o o i i e e e 205
dfontifier e e e e e e e 206
FontFlasher, the “Kobayashi Maru” of Fonts 207

7 Font Management under Windows 209
Tools for ManagingFonts, 212
The Extension of Font Properties 212
Tools for Verification and Maintenance 213
ATM: the “Smoother” of Fonts 215
Font Managers 216
FontServers e 218

Tools for FOnt CONVErSION . . . v v v v v v v o e e e e e e e e e e e e e e e e e 219

Contents xi
8 Font Management under X Window 221
Special Characteristicsof X Window 221
Logical Descriptionofa FontunderX 222
Installingfontsunder X 226
Installing BitmapFonts 228
Installing PostScript Type 1 or TrueType Fonts 229

Tools for Managing FontsunderX 231
Tools for Converting Fontsunder X 232
TheGNUFontTools 232

George Williams’sToolso ittt 233
Variousothertools 233
Converting Bitmap Fontsunder Unix 233

9 Fonts in TgX and £, their installation and use 235
UsingFonts inTEX o o oot i i e 235
Introduction to TRX« . o v ot il 236

The High Level: Basic KTgX Commandsand NFSS 240

The Low Level: TgX and DVI 259
“Apres-TgX™ Confronting the Real World 263
Installing Fonts for TRX« o 0 vt it i e 274
The Toolafm2tfim 275

Basic Use of the Tool fontinst 277
Multiple Masterfonts 0oL, 283
Customizing TgX Fonts for the User’'s Needs 285
How to Configure a Virtual Font 285
Conclusions and Glimpses at the Future 312
10 Fonts and Web Pages 315
(X)HTML,CSS,and Fonts o i i it i et e e e et e e 318
The Standard HTML Tagso v it i 318
CSS(VETSION 3) « & & v v v i e 319

Tools for Downloading Fonts fromtheWeb 332
TrueDoc, by Bitstream L oo 333

Font Embedding, by Microsoft 336

pull Contents

GlyphGate, by em2 Solutions 340

TheSVGFormat oo it e e 345

Fundamental Conceptsof XML 345

And whataboutSVG? 350

Font Selection under SVG, 351

Alternate Glyphs 353

SVGFonts e 355

Conclusiono i e 365

11 The History and Classifications of Latin Typefaces 367
The Typographical Big Bang of the Fifteenth Century,

and the Fabulous Destiny of the Carolingian Script 367

From Venice to Paris, by Wayof Rome 371

New Scripts EmergeinGermanyot ... 381

The Wild Adventure of Texturain England 382

The SunKingMakesWaves 384

England Takes the Lead in Typographic Innovation 386

Didot and Bodoni Revolutionize Typefaces 390

The German “Sturm und Drang” 393

The Nineteenth Century, Era of Industrialization 394

The Pre-war Period: Experimentation and a Return to Roots 397

The Post-war Period 403

SuggestedReading 407

The Vox/ATypl Classification of Typefaces 408

La classification Alessandrini des caracteres: le Codex80 411

IBM’s Classificationof Fonts 416

Class 0: No Classification 416

Class 1: Old-Style Serifs 416

Class 2: Transitional Serifs. 418

Class3: Modern Serifs o i i e 418

Class 4: Clarendon Serifs 419

Class5:SlabSerifs i e 420

Class 7: Free-Form Serifs 420

Class 8:Sans Serif i i it e 421

Contents xiil
Class9:Ornamentals 422
Class 10: Scripts . . . o v o v v o e 422
Class 12: Symbolic L 423

The Panose-1 Classification, 424
Parameter 1: FamilyKind 425
Parameter 2: Serif Style L L oL, 425
Parameter 3: Weight oL 427
Parameter 4: Proportion ittt e e 428
Parameter 5:Contrast 430
Parameter 6: Stroke Variation 431
Parameter 7: Arm Style and Termination

of Open CUTVES v v v et e e e e e e e e e e e 433
Parameter 8: Slant and Shape of the Letter 435
Parameter 9: Midlinesand Apexes, 436
Parameter 10: X-height and Behavior of Uppercase Letters

Relativeto Accents i 438

12 Editing and Creating Fonts 441
Software for Editing/Creating Fonts 442
General Principles L o 444

FontLab e 446
The FontWindow, 446
Openingand SavingaFont 452
The General-Information Window 454
The Glyph Window 459
The Metrics Window 465
Multiple Master Fonts oo 468
Driving FontLab with Python Scripts 472

FontForge e e 488
The Font-Table Window 489
Opening/SavingaFont 490
The General-Information Window 491
TheGlyphWindow 492
The Metrics Window 495

Xiv Contents

What About Vertical Typesetting? 497
CIDFONtS. . . . v v i it et e e e e e e e e e e e e 498
Autotracing Lo e 499
POLTACE . . . o v v o i i e e e e e e e e e e e 500
ScanFont o e 501
13 Optimizing a rasterization 505
PostScript Hints 507
Global PostScript Hints 507
Individual PostScriptHints 512
TrueType Instructions i i e 518
Managing InstructionsinFontLab 520
Managing Instructionsunder VIT 529
Managing Instructions under FontForge 546

14 Enriching Fonts: Advanced Typography 549
Introduction e 549
Managing OpenType Tablesin FontLab 555
Feature Definition Language 556
FontLab’s User Interface 565
Managing OpenType Tablesin VOLT 569
Managing OpenType Tablesin FontForge 576
Anchors L 577
Noncontextual Substitutions 579
Noncontextual Positionings 580
Contextual Substitutions and Positionings 582
Managing AAT Tablesin FontForge 586
Featuresandselectors 588

Managing AAT’s Finite Automata in FontForge 589

Contents xv
A Bitmap Font Formats 599
A.1 The MacintoshWorld 599
A1 TheFONTFormat ennnenn.. 599
A.1.2 The NENTFormat oo v v i v it 601
A3 Color . .o v it e e e e 601

A2 TheDOSWorld 601
A21 TheCPIFormat, 601

A3 TheWindowsWorld, 602
A3.1 TheFNTFormatouueeeneneno.. 602
A32 TheFONFormat eeenen... 604

A4 TheUnixWorld 604
A4.1 ThePSFFormatofLLinux 604
A4.2 TheBDFFormatuuuiuueenenenio.. 606
A4.3 TheHBFFormat00 uuin... 609
A.44 TheSNEPCEand ABFFormats 610
A4.5 TheRAWandCPFormats, 611

A5 TheTgXWorldo o e 611
A.5.1 The PXLand CHR Formats 612
A5.2 TheGFFormatuuiteenenen... 613
A.5.3 ThePKFormat uuun... 617
AS5.4 FontsorImages?Both! 620

A.6 Other Less Common Bitmap Formats 621
A.7 Whoever Can Do More Can AlsoDoLess 621
B TgX and Q Font Formats 623
Bl TEM e e e e e e e e e e e e e e e e e 623
B.1.1 Global Declarations 625
B.1.2 FontParameterso 625
B.1.3 Kerning Pairs and Ligatures 626
B.1.4 The Metric Propertiesof Glyphs 631

B2 OFM . . ot e e e e e e e 632
B.3 VE . o e e e 633
B4 OVFE . . . e e e e e 634

xvi Contents
C PostScript Font Formats 635
C.1 Introduction to the PostScript Language 635
C11 Syntax e 636
C.1.2 The System of Coordinates 637
C.1.3 The current transformation matrix 637
Cl4 Paths e 639
C15 Shapes i e 641
C.1.6 BitmapImages. 642
C.1.7 Managing the Stack, Tables, and Dictionaries 643
C.1.8 Font Management and Typesetting 645
C.1.9 The Image Model and the GraphicsState 646
C.1.10 Structured Comments (DSCs)o v v v 647

C2 Type3Fonts e 650
C3 TypelFonts, 655
C.3.1 Before We Begin: the Format of the File that Contains the Font 656
C.3.2 The Public Dictionary 657
C.3.3 EncodingsforTypelFonts 659
C.3.4 The Private Dictionary 661
C.3.5 GlyphDescriptions, 665
C.3.6 IndividualHints 666
C3.7 AFMFiles i e 672

C4 Multiple MasterFonts L 677
C.4.1 Using Multiple Master Fonts in the PostScript Language 681
C42 The AMFMfile 681

C5 Typed2Fonts. i i e 682
C.6 Type0,orOCEFonts, 684
C.6.1 CharacterMapping, 684
C.6.2 TheACFMFile 686

C.7 CIDFonts (Types 9-11,32) o v i i i ittt e et e e 687
C71 CIDFont.ttt 688
C72 CMap i e 692
C.7.3 RearrangementofaCIDfont 694

C.7.4 The AFM FilefortheCIDFont 696

Contents xvii
C.75 UsingaCIDFont 696

C.8 Type2/CFEFONtS ¢ ot i it ittt ittt 697
C.8.1 The Compact FontFormat 697
C.8.2 Thecharstringsof Type2 o v v it i i, 700

D The TrueType, OpenType, and AAT Font Formats 705
D.1 TTX: TrueType Fonts Represented in XML 706
D.2 TrueType Collections, 709
D.3 General Overview of TrueType Tables 709
D.4 The Kernel of the TrueType Tables 713
D.4.1 TheGlyphOrderTable. 713
D4.2 ThecmapTable. 714
D.4.3 TheheadTable. 716
D.4.4 The Tableshheaandhmtx 717
D.4.5 ThemaxpTable. 719
D.4.6 ThenameTable. 720
D.4.7 TheOS/2Table. 722
D.4.8 ThepostTable. 726

D.5 The Tables That Pertain to TrueType-Style Glyph Descriptions 728
D.5.1 ThelocaTable. 728
D.5.2 TheglyfTable. 728
D.5.3 The Tables fpgm, prep,andcvt 730

D.6 The TrueType Tables That Affect PostScript-Style Glyph Descriptions . 731
D.6.1 TheTableCFF i it 731
D.6.2 TheTable VORG. it i it 731

D.7 Bitmap Management 732
D.7.1 The Tables EBLC and EBDT (Alias blocand bdat) 732
D.72 TheEBSCTable. 739
D.7.3 ThebhedTable. 740

D.8 Some Other Optional Tables 740
D.8.1 TheDSIGTable. 740
D.82 ThegaspTable. 741
D.8.3 The Tableshdmxand LTSH. 741

xviii Contents
D.8.4 ThekernTable. 743
D.85 TheVDMXTable. i ittt ittt ittt 748
D.8.6 The Tablesvheaandwvmtx 749
D.8.7 ThePCLTTable. ittt it 750

D.9 The OpenType Advanced Typographic Tables 751
D.9.1 Importantconcepts 751
D9.2 TheBASETable. ittt it ittt i 754
D93 TheGPOSTable. i i ittt i ittt e e 758
D94 TheGSUBTable., 781
D95 ThelSTFTable. o i i i ittt ittt et e et e et 796
D9.6 TheGDEFTable. ittt i i 803

D.10 Predefined Features, Languages, and Scripts 806
D.10.1 Predefined Languages and Scripts 806
D.10.2 Predefined Features 815

D.11 General AAT Tables ittt 822
D.11.1 TheacntTable. 823
D.11.2 ThebslnTable. 823
D113 ThefdscTable. 826
D.114 ThefmtxTable i .. 826
D.11.5 ThefeatTable. 827
D.11.6 ThelcarTable. 838
D.11.7 TheopbdTable i il 840
D.11.8 ThepropTable 841
D.119 ThetrakTable 842
D.11.10The ZapfTable o 844

D.12 The AAT Tables for Font Variation 848
D.12.1 ThefvarTable. 848
D.12.2 TheavarTable. i 850
D.123 ThegvarTable.o oo i i 851
D.12.4 ThecvarTable. 855

D.13 AAT Tables with Finite Automata 856
D.13.1 Finite Automatao v vt e e e 856
D.13.2 The morx Table (Formerlymort) 862

D.133 ThejustTable. 872

Contents xix
E TrueType Instructions 879
E1l BasicConceptso ot i ittt ittt 881
E.1.1 Interpreter’s Stack, Instruction Stream 881
E.1.2 ReferencePoints. 881
E.1.3 Freedom and Projection Vectors 881
E.1.4 Table of Control Vectors and Storage Area 882
E.1.5 Touched and Untouched Points 882
E.1.6 Minimum DistanceandCut-In 882
E.1.7 Twilight Zone and Zone Pointers 882

E2 INnstructions. o o it v ittt et e e e e 883
E.2.1 Instructions for Managing the Stack and Storage Area 883
E.2.2 Managing Vectors, Zones, and Reference Points 884
E23 MovingPoints o oo 885
E2.4 dlInstructions, 889
E.2.5 Tests and Logical and Arithmetic Functions 890
E.2.6 Definitions of Subroutines and New Instructions 891

E3 SomeExamples 892
E.3.1 The ‘T inthe Font Courier 892
E.3.2 The ‘O’ from the Font Verdana 899

F METAFONT and Its Derivatives 905
E1 The METAFONT Programming Language 906
E1.1 BasicConcepts v v v v v it et et e e e e 906

FE1.2 The Basics: Drawingand Filling 908

E1.3 More Advanced Concepts: Pen Strokes and Parameterization 917

FE1.4 Optimizing the Rasterization. 930

E2 The Computer Modern Family of Fonts 935
E2.1 General Structure Lo 935

F22 EXtensions v vt iit i, 944

E3 MetaFog o o o i e e 945
F4 METATYPE1 and Antykwa Péftawskiego 947
F4.1 Installingand Using METATYPET o v oot v vt 947

FE4.2 Syntactic Differences from METAFONT 948

E4.3 Antykwa Poftawskiego e 956

Contents

G Bézier Curves

G.1 History i

G.2 BézierCurves. v v v i i e e e e e e

G.2.1 Definition and Interesting Properties

G.2.2 de Casteljau’s Algorithm

G.2.3 Subdivision of BézierCurves

General Index

Index of Persons

961

Introduction

Homo sapiens is a species that writes. And among the large number of tools used for
writing, the most recent and the most complex is the computer—a tool for reading and
writing, a medium for storage, and a means of exchanging data, all rolled into one. It has
become a veritable space in which the text resides, a space that, as MacLuhan and others
correctly predicted, has come to transcend geographic barriers and encompass the entire
planet.

Within this digital space for writing, fonts and encodings serve fundamentally different
needs. Rather, they form an inseparable duo, like yin and yang, Heaven and Earth, theory
and practice. An encoding emerges from the tendency to conceptualize information; it
is the result of an abstraction, a construction of the mind. A font is a means of visually
representing writing, the result of concrete expression, a graphical construct.

An encoding is a table of characters—a character being an abstract, intangible entity. A
font is a container for glyphs, which are images, drawings, physical marks of black ink on a
white background. When the reader enters the digital space for writing, he participates in
the unending ballet between characters and glyphs: the keys on the keyboard are marked
with glyphs; when a key is pressed, a character is transmitted to the system, which, unless
the user is entering a password, in turn displays glyphs on the screen. To send an email
message is to send characters, but these are displayed to the recipient in the form of glyphs.
When we run a search on a text file, we search for a string of characters, but the results
are shown to us as a sequence of glyphs. And so on.

For the Western reader, this perpetual metamorphosis between characters and glyphs re-
mains on the philosophical level. That is hardly surprising, as European writing systems
have divided their fundamental constituents (graphemes) so that there is a one-to-one
correspondence between character and glyph. Typophiles have given us some exceptions
that prove the rule: in the word “film” there are four letters (and therefore four char-
acters) but only three glyphs (because the letters ‘t” and 1’ combine to form only one
glyph). This phenomenon, which is called a ligature, can be orthographically significant
(as is the case for the ligature ‘ce’, in French) or purely aesthetic (as with the fligatures
‘fi) “ff, “ff) etc.).

In any case, these phenomena are marginal in our very cut-and-dried Western world.
In the writing systems of the East, however, the conflict between characters and glyphs
becomes an integral part of daily life. In Arabic, the letters are connected and assume

2 Introduction

different forms according to their position in the word. In the languages of India and
Southeast Asia, they combine to form more and more complex graphical amalgama-
tions. In the Far East, the ideographs live in a sort of parallel universe, where they are
born and die, change language and country, clone themselves, mutate genetically, and
carry a multitude of meanings.

Despite the trend towards globalization, the charm of the East has in no way died out; its
writing systems still fire our dreams. But every dream is a potential nightmare. Eastern
writing systems present a challenge to computer science—a challenge that goes beyond
mere technical problems. Since writing—just like images, speech, and music—is one of
the fundamental concerns of humanity, computer science cannot approach it haphaz-
ardly: Eastern writing systems must be handled just as efficiently as the script that is part
of our Latin cultural heritage. Otherwise, some of those writing systems may not survive
computerization.

But more is at stake than the imperatives of cultural ecology. The French say that “travel
educates the young”. The same goes for writing: through thinking about the writing sys-
tems of other cultures and getting to know their problems and concerns, we come to
know more about our own.

Then there is also the historical perspective: in the digital space for writing that we are
exploring in this book, the concepts and techniques of many centuries dwell together.
Terminology, or rather the confusion that reigns in this field, clearly shows that com-
puter science, despite its newness, lies on a historical continuum of techniques and prac-
tices. For example, when we set type in Times Ten at 8 points, we say that we are using a
“body size of 8 points” and an “optical size of 10 points”. Can the same characters have
two different sizes? To understand the meaning of these terms, it is necessary to trace the
development of the concept of “type size” from the fifteenth century to the PostScript
and TrueType fonts of our modern machines.

So far we have briefly surveyed the three axes on which this book is based: the systemic
approach (abstraction/concrete expression, encoding/font, character/glyph), geographicity
(East/West), historicity (ancient/modern, mechanical/computerized processes). These
three aspects make up the complexity and the scope of our subject, namely the exploration
of the digital space for writing.

Finally, there is a fourth axis, less important than the previous three but still well
grounded in our day-to-day reality, which is industrial competition. A phenomenon that
leads to an explosion in technologies, to gratuitous technicality, to a deliberate lack of
clarity in documentation, and to all sorts of other foolish things that give the world of
business its supposed charm. If we didn’t have PostScript fonts and TrueType fonts and
OpenType fonts and Apple Advanced Typography (AAT) fonts, the world might be a
slightly better place and this book would be several hundred pages shorter.

In this regard, the reader should be aware of the fact that everything pertaining to encod-
ings, and to fonts in particular, is considered to be industrial knowledge and therefore
cannot be disseminated, at least not completely. It is hard to imagine how badly the
“specifications” of certain technologies are written, whether because of negligence or

Explorations 3

out of a conscious desire to prevent the full use of the technologies. Some of the appen-
dices of this book were written for the very purpose of describing certain technologies
with a reputation for inaccessibility, such as AAT tables and TrueType instructions, as
clearly and exhaustively as possible.

In the remainder of this introduction, we shall outline, first of all, the jargon used in the
rest of the book, so as to clarify the historical development of certain terms. This will
also enable us to give an overview of the transition from mechanical to computerized
processes.

Next, we will give the reader a synthetic view of the book by outlining several possible
ways to approach it. Each profile of a typical reader that we present is focused on a specific
area of interest, a particular way to use this book. We hope that this part of the introduc-
tion will allow the reader to find her own path through the forest of 2.5 million letters
that she is holding in her hands.

Explorations

When one walks around a new city for the first time, one discovers places, acquires a
better understanding of the reasons behind certain historical events, and puts together
the pieces of the puzzle that make up the city’s environment. Here we shall do the same.
Our first stroll through the digital space for writing that we plan to explore will allow
us to take inventory of concepts and techniques, establish our terminology, and briefly
outline the conflict between the mechanical and the electronic.

Let us set aside for the moment the geographical axis and begin with a very specific case
of a glyph that comprises the molecular level of our space: the (Latin) letter.

The Letter and Its Parts

The terminology for describing the letter as a design varies greatly from one writer to
the next—a phenomenon, incidentally, that affects all terminology in the entire field of
typography. In Figure 0-1, we have listed in roman type the terms that are used in this
book and in italics some other terms that exist for the same parts of letters. Thus a stem
is also called a stroke or a downstroke.

These terms come from a variety of sources: the calligrapher’s technique (stroke, termi-
nal), the engraver’s art (counter), geometry (apex, vertex), analogy or anatomy (arm, eye,
ear, tail, shoulder), mechanics or architecture (finial), etc.

The most important among them are:

e The stem, or stroke: a thick vertical or diagonal line found in such letters as ‘H’, ‘I’, ‘N,
and ‘v’. If the letter is lower-case, or small, two possibilities may occur:

- the stem extends upward to the same height as the capitals or even higher, as in
the letters ‘b, ‘d’, ‘h’, etc. This upper part of the stem is called an ascender.

4 Introduction

Dlagonal APeX ‘\\ /

Bar, Serif’
cmssbar <— Stem,—>
stroke, Dlagonal
downstroke
< Vertex
s f Ascender
ert Serlf
Bulb, Bowl
pearsshaped
terminal Head serif, ‘\Dlagonal Counter
Bar, crossbar; wedge serif leg
cross stroke
<——Foot, finial
. Aperture, inner space .
Serif Foot, termmal spur Arch, shoulder Tail —»
A
P Counter \ Link

Stim \)\) \

Ear,
spur

\

Bowl/
<— Descender T //
<<

Serif Loop

Figure 0-1: The parts of a letter. The terms used in this book are in roman; alternative terms are
shown in italics.

— the stem passes beneath the baseline, as in the letters ‘p’ and ‘q’. This lower part
of the stem is called a descender.

e The bowl, which is a full circle, as in ‘O’, or the greater part of a circle, as in ‘q’.

e The counter, which is the inner part of a letter; for example, the space inside an ‘0,
an ‘O, a ‘D), etc. The counter of an ‘e’ is commonly called an eye. When the letter is
open at one end, as is the case with ‘n’, we speak instead of an aperture.

e The arm, a thin horizontal stroke that is open at one end, as the two arms atop a ‘T’
and the upper and lower arms of an ‘E’.

Explorations 5

e The crossbar (or bar), which is a thin horizontal connecting stroke, as in ‘A’ and ‘H’.
A horizontal stroke that crosses a vertical one, as in ‘f” and ‘t), is also called a cross
stroke.

e The serif, which is the “pedestal” at the bottom and top of the vertical strokes and
at the ends of some horizontal strokes. Thus the letter ‘T’ has two serifs, while the
letter ‘H’ has four. The left part of an upper serif that appears on some letters, a
remnant of the short lead-in made by the pen where it touches the paper before
a downstroke, is called a head serif. It is the head serif that distinguishes ‘I’ from T,
for example. In humanist and garalde typefaces (see Chapter 11), the head serif is
slanted, whereas it is perfectly horizontal in didones.

e The terminal, which is the opposite of the head serif: it is the movement of the pen
that finishes the letter. Again, it is a half-serif, this time the right side of the serif, and
it occurs primarily at the baseline.

If these terms apply just as well to traditional as to digital typography, that is because
they refer to abstract graphical characteristics.

Now that we have named the components of letters, we can explore ways to de-
scribe them precisely. How do we describe the proportions of letters, their graphical
characteristics—in short, everything that distinguishes one typographic character from
another?

There are two answers to that question: that of the professional, which is to say that of the
craftsman (engraver of characters, typographer) or other typographic specialist (historian),
and that of the mathematician.

In the first case, we study the letterforms according to their history, the cultural context
behind their creation and their use, and their development over time relative to the
development of Western culture. To this approach we have devoted Chapter 11, which
presents the history of typographic characters and one classification of them from a point
of view that is more historical and cultural than formal and geometric.

The second case, that of the mathematician, involves the study of letters as geometric
shapes. This approach is hardly new.! In Figure 0-2 we see four studies of the Latin al-
phabet, corresponding to two eras and three countries: the first was made by an Italian
humanist, Friar Luca de Pacioli, from his work Divine Proportion {273}, published in
Venice in 1509. The second comes to us from the hands of the great German engraver Al-
brecht Diirer and is dated 1535. It presents different models of alphabets in a work whose
title is less ambitious than that of Pacioli: Instructions on Measurement {124]. The third
dates from 1524 and is from France: it is the manual of Geofroy Tory, a great Parisian
humanist to whom we also owe the use of the accents and the cedilla in the French lan-
guage. His descriptions appear in his finest work, the Champ fleury, au quel eft contenu Lart
& Science de la deue ¢ vraye Proportio des Lettres Attiques (“The Floured Feelde, wherein be

1 Readers who wish to know more about the history of the mathematical description of letterforms are
encouraged to consult Donald Knuth {221, p. 48] and Jacques André {35].

6 Introduction

a B

Figure 0-2: Six mathematical descriptions of the letter ‘E’: Luca de Pacioli (1509), Albrecht
Diirer (1535), Geofroy Tory (1524), the Jaugeon Commission (1716), and two screenshots from
the software package FontLab (today).

Explorations 7

contayned the Arte & Scyence of the iulte and true Proporcion of Atticke Letters”)[332].
Finally, in 1716, as a result of an undertaking by Louis XIV, the Jaugeon Commission
drafted the design for a royal script, entirely geometrical in nature, called the Romain du
Roi [276] (“the King’s roman”).

Many things strike us from an examination of these four examples. First of all, we notice
that, in all four instances, the artists wished to place their letters within perfect squares,
in the same way as the characters of the Far East. We also notice that they use finer and
finer Cartesian grids in order to obtain more precise mathematical descriptions. While
Tory uses a grid of 10 x 10 squares, the Jaugeon Commission resorts to 6 x 6 small squares
within 8 x 8 large ones, for a total of 48 x 48—2,304 squares in all, which was an enor-
mous degree of precision for the time.

While the challenge was originally of a humanist nature (in the fifteenth century, when
perspective was invented, Europeans began to wonder about the relationship between
beauty and mathematics), it became one of power (Louis XIV took control of everything
in his kingdom, right down to the microscopic level) and, finally, in the twentieth cen-
tury, one of technology.

Why? Because these mathematical descriptions of letters are the precursors of the digital
fonts of today, defined on a grid of 1,024 x 1,024 (PostScript) or 4,096 x 4,096 (TrueType)
squares, or even more. There is only a difference of mathematical scale: whereas the let-
ters in the first four examples are described by circles and lines in the manner of Euclid
(“with straightedge and compass”), today’s fonts use curves defined by third-degree poly-
nomials that were introduced by the French engineer Pierre Bézier (see Appendix G). In
the last two examples in Figure 0-2, we see two contemporary approaches to the design
of glyphs: they are screenshots from the software system FontLab.

What is the situation today? Have Bézier curves extinguished the little flame that is the
genius of the master engraver? Quite the opposite. We use Bézier curves today because
we have interactive tools that allow modern designers to create fonts worthy of their
predecessors. We have devoted Chapters 12 to 14 and Appendix F to the description of
the best available tools for creating fonts.

Letterpress Typesetting

In the previous section, we discussed the individuals that populate the digital space for
writing: letters. But this space would be quite sad if each letter lived all by itself in its
own little bubble. Far from being so isolated, letters, and more generally glyphs of all
kinds, are highly social creatures. They love to form little groups (words), which in turn
form larger and larger groups (lines, paragraphs, pages, books). We call this process type-
setting. And the human who weaves the fates of the letters together to form structures
on a higher level is a typesetter.

Having come to this point, we can no longer content ourselves with the abstraction in
which the previous section indulged. The way in which we put letters together depends
on the technology that we use. It is therefore time to abandon the realm of the abstract

8 Introduction

Goutdier el Benard Fecit

Im /m‘zﬂ/n@/ e, Casse

Figure 0-3: An eighteenth-century type case (from the Encyclopédie of Diderot and
d’Alembert).

Explorations 9

beauty of letters and to come down to earth to describe the mechanical process of type-
setting. For computerized typesetting is based on mechanical typesetting, and the terms
that we use today were invented by those people whose hands were indelibly blackened,
not with oil (the liquid that pollutes our ecosystem), but with printer’s ink (the liquid
that bears wisdom).

Let us therefore quickly review the manual setting of type for the letterpress, which was
used from the fifteenth century until the end of the nineteenth, when the Linotype and
Monotype typesetting machines made their appearance.

Letterpress printing is based on movable type, little metal blocks (sorts) made from an
amalgam of lead, zinc, and antimony that have on one side a mirror image of a letter,
carved in relief. In Figure 0-3, taken from the Encyclopédie of Diderot and d’Alembert,
we see at the top a type case containing type and, below it, the table that supports the
different cases from which type is taken for composition. The top half of the case, the “up-
per case”, contains the capital letters, the small capitals, and certain punctuation marks;
the bottom half, the “lower case”, contains the small letters (called “lowercase” for this
very reason), the numerals, and various “spaces” (blocks of lead with no letter carved
into them that serve to separate words). We can see how type is arranged in the case. Of
course, the arrangement varies from country to country according to the frequency of
!

letters in the dominant language.
Figure 0-4: A composing stick (from the Encyclopédie of Diderot and d’Alembert).

i

Ao

The typesetter takes type sorts out of the case and places them on a composing stick, which
is illustrated in Figure 0-4. A whole line at a time is prepared on a composing stick. The
width of the composing stick is that of the measure of the page; thus the typesetter knows
when he has reached the end of the line and can take appropriate action. He can decide
to divide the word or to fill out the line with thin strips of extra spacing between the
words to extend it to the full measure.

When the line is ready, the typesetter adds it to the other lines of the page, eventually
inserting horizontal strips of lead, called leading, between the lines. At the bottom of
Figure 0-5, there are three lines that are set in this fashion:

GLOIRE A DIEU.
Honneur au ROL
Salut aux ARMES.

In this example, we can notice several tricks that enable us to overlap the faces of letters.
First, the face of the italic ‘H’ in the second line extends beyond the body of the type sort

10 Introduction

Figure 0-5: Three typeset lines (from the Encyclopédie of Diderot and d’Alembert).

and reaches over the ‘0’ that follows. This overlapping, called kerning, is indispensable,
since italic letters are not slanted but occupy upright parallelepipeds. The italic ‘T’ also
kerns with the following letter.

Another trick: the lower parts of the faces of the letters are cut on an angle. The benefit
of this device is that it permits the vertical kerning of certain letters in the following line
that are slightly taller than the others. For example, the apex of the ‘A’ extends above the
rectangular body of the type sort and fits underneath the italic ‘R’ in the line above. This
projection is called overshoot at the tops of the letters and overhang at the baseline; in both
cases, it can be round or pointed. Overshoot exists to correct the optical illusion by which
a triangle (or a circle) seems smaller than a square of the same height.

What, then, are the units by which metal type is measured? There are
two basic ones: the height of the type, called the body size, and the width
of the metal type sort for each character, called its set-width.

The ‘G’ of the word “GLOIRE” in Figure 0-5 is set in a larger font, which

is why the typesetter has added a row of spaces above the remainder

of the first line of text. It is important to understand that the concept

of “body size” is distinct from that of the size of the letters themselves.
Thus, in the same figure, the letters ‘L, ‘O’ ... ‘E’ of “GLOIRE” are smaller than those
of “DIEU”, but their body size is the same, as the metal type sorts that bear them are
of equal height. In this particular case, we have capital letters (in the word “DIEU”) and
small capitals (for “LOIRE”) of the same body size.

We use the term x-height for the height of the faces (and, therefore, the area actually
printed) of lowercase letters such as ‘x’. We say that a character has a “large x-height”
or a “small x-height” when the ratio of the height of its face to the body size is large or
small.

Explorations 11

Likewise, the set-width is theoretically independent of the width of the face of the letter,
since the latter may be smaller than the former. In that case, we say that the there are
right and/or left bearings between the face and the edge of the type sort. Conversely, the
face may extend beyond the type sort, if it has a kern.

Digital Typesetting

Since the 1950s, phototypesetting has gradually conquered the world of printing. It is
based on removing the typesetting process from its material roots. This departure from
the physical grew more acute with the move towards computerization in the 1970s and
1980s. Now that we have no metal type sorts to measure, what should we make of the
terms “body size”, “set-width” and “x-height”?

Have they lost their relevance? Far from it. They are more useful than ever because they
ensure continuity between the results of traditional typesetting and those of phototype-
setting or digital typesetting. This continuity is essential, since the quality of the final
product, the book, must not be adversely affected because of a change in technology. In
order to produce books of quality equal to, or better than, that of traditional printing,
we must preserve its points of reference, its conventions, and its visual approaches.

Therefore, we have to redefine these terms to adapt them to the reality of digital typeset-
ting, which is divorced from physical references. To understand how that has been done,
let us investigate the model of digital typesetting:

A DCAC

Glyphs (i.e., the visual forms of typographic symbols) are placed in abstract rectangles
whose heights are initially undetermined and whose width is equal to the set-width.

We need to introduce another new concept, that of the baseline, which is the imaginary
line on which all the glyphs with a flat base, such as ‘f’, rest. Those with a round base,
such as ‘¢, dip slightly below the baseline as a result of overhang. The intersection of the
baseline and the leftmost edge of the glyph’s box is called the origin of the glyph. We
describe a glyph mathematically on a system of coordinates with this point as its origin.

The set-width can be thought of as a vector connecting the origin of one glyph to that of
the following glyph. This vector is called the advance vector (or escapement vector). Digital
typesetting consists of nothing more than drawing a glyph, moving as indicated by the
advance vector, and preparing to draw the glyph that follows.

A glyph “floats” in its imaginary box. The width of the space that will eventually fall
between the glyph and the edge of the box is known as the bearing (right or left, as the
case may be). In certain cases, the glyph may be located partly or completely outside its
box—proof of the relative independence of container and contents, or box and glyph.

12 Introduction

While it was relatively easy to adapt the concept of set-width to the digital realm, the
same is not true of the body size. Indeed, we mentioned above that the box containing
the glyph is of “undetermined” height. Of all the various typesetting systems, only TgX
concerns itself with the height and depth of these boxes, and that is why we have shown
the boxes’ upper and lower boundaries, albeit with dotted lines, in the figure.

The other systems employ set-width almost exclusively, and PostScript and TrueType
fonts contain no information about the height or depth of the box other than the di-
mensions of the glyph itself.

There are also scripts that are written vertically (such as ideographic scripts and Mongo-
lian), in which the advance vector points downward. We say in such cases that there is
a vertical set-width. The heights of the spaces that will appear between the glyph and the
horizontal edges of the box are thus called upper and lower bearings, as the case may be.

But let us return to the concept of “body size”. We continue to speak of setting type “with
a body size of 10 points” (or, more professionally, at “10/12”, where the first figure is the
type size and the second is the body, which includes leading). But what is a point, and
how is this information managed in software?

The point is a typographic unit invented by Father Sébastien Truchet in 1699 to describe
the arithmetic progression of type sizes {276]. This unit, related to the Paris foot (pied
du roi, the actual length of the king’s foot), was redefined by Pierre-Simon Fournier
in 1664 and later by Francois-Ambroise Didot in 1783. Since the end of the nineteenth
century, the Anglo-Saxons have used the pica point {87]. The PostScript language sought
to simplify calculations by defining the point to be exactly 7l2 of an inch. Today we have
points of three different sizes: the pica point (approximately 0.351 mm), the Didot point>
(approximately 0.376 mm), and the PostScript point (approx. 0.353 mm).

As for body size, its precise definition depends on the system being used (PostScript, True-
Type, TgX), but in general the idea is as follows: glyphs are described with a system of
Cartesian coordinates based on an abstract unit of length. There is a relationship be-
tween these units and the “body size” of the font. Thus a PostScript font uses a grid
of 1,024 units, which means, for example, that an ‘a’ designed with a height of exactly
512 units, when typeset at a font size of 10 points, will appear on paper with a real height
of half of the body size, namely 5 points.

The user is still free to magnify or reduce the letter as much as he likes. In this book, we
use the term actual size for the size of the letter as it appears on paper, after any magni-
fication or reduction performed according to the principle explained below.

In the days of the letterpress, there was no way to magnify or reduce a shape arbitrarily.
The different body sizes of a given typographic character were engraved separately. And
typesetters took advantage of this necessity to improve the legibility of each size: the
small sizes had letters that were relatively wider and more spacious than those of the
large ones, which were drawn with more details, more contrast between thick and thin
strokes, and so on.

2 The Didot point is still used in Greece, where letterpress typesetters complain that text set with the pica
point “comes out too small”.

Explorations 13

By way of illustration, here are a 72-point font and a 6-point font, scaled to the same

 Laurel & Hardy

The actual size of this sequence of glyphs is 24 points. The 72-point letters (“Laurel &”)
seem too narrow, with horizontal strokes that are too thin, whereas the 6-point letters
(“Hardy”) seem too wide, bordering on awkwardness.

We use the term optical size for the size at which the glyph in question was designed.
Digital fonts usually have only one optical size for all actual sizes—a fact that Ladislas
Mandel calls the “original sin” of phototypesetting. Usually we do not even know the
optical size of a digital font. In a few exceptional cases, the name of the font reveals its
optical size, as is the case with Times Ten (10 points), Times Seven (7 points), etc. There are
also a few rare families of digital fonts designed in several optical sizes: Computer Modern,
by Donald Knuth (see pages 937 and 938); the splendid HW Caslon, by the late Justin
Howes (page 388); HTF Didot, by Jonathan Hoefler (page 392); and ITC Bodoni (page 393),
by Holly Goldsmith, Jim Parkinson, and Sumner Stone. We can only hope that there will
be more such font families in the years to come.

Disregard for optical size can lead to very poor results. Anne Cuneo’s book Le maitre de
Garamond (“Garamond’s Master”) {105} was composed in 1530 Garamond, a very beauti-
ful Garamond replica designed by Ross Mills—but at an actual size of 11, while the optical
size of the font is around 48. The print is hard to read, and all the beauty of this wonderful
Garamond is lost.

What about the x-height? According to Peter Karow [206] and Jacques André {34, pp.
24-26}, one good approximation to the concept of x-height (in the absence of a phys-
ical leaden type sort to serve as a reference) is the relationship between the height of
the lowercase letters and the height of the uppercase letters (for example, the heights of
%’ and X’). The closer the lowercase letters come to the height of the uppercase letters,
the greater the x-height is. Fonts such as Courier and Clarendon have a large x-height; fonts
such as Centaur and Nicolas Cochin have a small one:

Courier Clarendon Centaur Nicolas Cochin

The term kerning also takes on a different meaning. In digital typesetting, kerning is a
second advance vector that is added to the first. Thus, to set the word “AVATAR”:

AVATAR

-
—) O O O

14 Introduction

the system first draws the ‘A’ then moves ahead by an amount equal to the set-width of
an ‘A, then moves back slightly before drawing the ‘V’, and so on.

Because kerning refers to pairs of letters, this information is stored in the fonts as kerning
pairs. These values are negative when letters are drawn closer together (for example,
‘A and ‘V’) and positive when they are pushed farther apart (for example, a ‘D’ and
an ‘O’). Kerning may be good or bad, according to the skills of the font designer, but
one thing is certain: fonts that have no kerning pairs should not be trusted, and unfor-
tunately there are more of these than there should be.

Font Formats

We have mentioned PostScript and TrueType fonts several times. What are they, exactly?

A font is a container for glyphs. To set a sequence of glyphs, the software calls up a font
through the operating system and asks for the glyphs that it needs. The way in which
the glyphs are described depends on the font format: PostScript, TrueType, or any of a
number of others, all of them quite different.

The earliest fonts were bitmaps: the glyphs were described by white and black pixels (see
Appendix A). Although we can easily describe a bitmap font for use on a screen, in which
each glyph contains at most a few dozen pixels, it would be cumbersome to do the same
for high-resolution printers, for which a single glyph may require thousands of pixels.

Two solutions emerged: compress the bitmapped glyphs or switch to a different type of
font. Donald Knuth adopted the first solution to the TgX system in 1978: he designed
a program with the pretty name of METAFONT that generated compressed bitmap
fonts from a description in a very powerful programming language (Appendix A). The
method of compression (§A.5.3) was designed so that the size of the glyphs would only
slightly affect the size of the files produced.

The second solution was notably adopted by John Warnock, founder of Adobe, in 1985.
He developed a programming language named PostScript (§C.1) that describes the entire
printed page with mathematical constructs. In particular, the PostScript language pos-
sesses a font format that even today is one of the most common in the world: Type 1 fonts
(§C.3). These fonts, which describe glyphs with mathematical constructs, are called vector
fonts.

The companies Bitstream and Hewlett-Packard also proposed their own vector font for-
mats, Speedo {188} and Intellifont {101}, which did not last long, despite the originality of
their ideas.

Adobe began to grow thanks to PostScript and the Type 1 fonts, and certain other com-
panies (Apple and Microsoft, without mentioning any names) decided that it was time
to break Adobe’s monopoly. Therefore they jointly and hastily developed a competitor
to Type 1 fonts, called TrueType (Appendix D). TrueType fonts are not necessarily better
or worse than Type 1 fonts, but they present considerable technical differences, which
are described in this book.

Explorations 15

The first outgrowth from Type 1 were the Multiple Master fonts, the shapes of whose
glyphs could vary under the user’s control. Multiple Master fonts were never a screaming
success, no doubt because of the difficulty of developing them.

At the same time, the countries of the Far East were struggling to find a way to typeset
their ideographic and syllabic writing systems. Adobe offered them another offshoot of
Type 1, the CID fonts (§C.1). The fact that the TrueType format was already compatible
with ideographic writing systems gave it a head start in this area.

Apple and Microsoft separately began to work on improving the TrueType fonts. Apple
invested in an extension of TrueType called TrueType GX and later rechristened AAT (“Ap-
ple Advanced Typography”, §D.11). Microsoft sought help from its former adversary,
Adobe, and together they brought out a competitor to TrueType GX: OpenType (§D.9).

OpenType is both an extension to TrueType and an outgrowth of Type 1. In addition,
there are two varieties of OpenType fonts: OpenType-TTF (which are TrueType with a few
extra features) and OpenType-CFF (which are Type 1 fonts extended and integrated into
TrueType structures).

Both AAT and OpenType attempt to solve two kinds of problems: those of high-quality
Latin typography (with ligatures, old-style [not ranging] figures, correctly spaced punctu-
ation, etc.) and those of the Asian languages (Arabic, Hebrew, Indian languages, South-
east Asian languages, etc.). A large part of Appendix D is devoted to the exploration of
these two font formats, which still have surprises in store for us.

Between Characters and Glyphs: the Problems
of the Electronic Document

We have outlined the digital model of typesetting and also the font formats that exist. To
continue our exploration of digital writing, we must address another important concept,
that of the electronic document.

That is the name that we give to a digital entity containing text (and often images, sound,
animation, and fonts as well). We find electronic documents everywhere: on hard disks,
on CD-ROMs, on the Web. They can be freely accessible or protected. At the heart of our
digital space for writing, electronic documents have problems of their own.

At the beginning of this introduction, we spoke of the “unending ballet between charac-
ters and glyphs”. But the previous two sections did not even speak of characters. On the
contrary, the reader may have been left with the impression that the computer trans-
forms characters into glyphs and typesets documents with the use of fonts, leaving the
user with nothing to do but display the output on a screen or print it out.

That was true some 15 years ago, before the advent of the Web, CD-ROMs, and other
means for distributing information in the form of electronic documents. An electronic
document takes the appearance of a paper document when it is displayed or printed out,
but it has a number of features that hardcopy lacks.

It is a file that can be used directly—i.e., without any particular processing or modifica-
tion—on most computer platforms. But what is involved in using a file of this sort?

16 Introduction

An electronic document is read or consulted. When reading, we need features that facili-
tate our task: a table of contents with hypertext links to structural units, the display of a
two-page spread, enlargement or reduction of characters according to the quality of the
screen and the visual acuity of the reader, etc. When consulting a document, we need
the ability to perform rapid searches with multiple criteria and to have rapid access to
the information found.

A search may be performed not only on a single document but on a whole virtual li-
brary or even on the entire Web. The electronic document must therefore be indexable.
And if we want the indexing to be “intelligent”, which is to say enriched by structural or
semantic metadata, it is in our interest to prepare the document in a structured form, in
the style of XML.

When we perform searches within a document, they are searches for strings of characters.
Few software systems support searching for strings with specific typographic attributes,
such as specifications of font, point size, or font style. Indeed, to return to the example
of the word “film” given on page 1, we could hardly tell the reader of an electronic doc-
ument that he would have to enter his search with the glyph for the ‘fi’ ligature or else
the word would not be found.

And since strings are what we search for in a document, strings are also what must be
indexed if our searches are to be rapid. Conclusion: an electronic document must contain
characters if it is to be indexed and become a full-fledged part of the World Wide Web.

But we also expect an electronic document to have the appearance of a paper document
or to yield an equivalent appearance when printed out. It must therefore be typeset; that
is, it must contain glyphs arranged very precisely on lines, with due regard for kerning.
These lines must form paragraphs and pages according to the typographic conventions
developed through the ages. Conclusion: an electronic document must contain glyphs ar-
ranged with a great deal of precision in order to be a worthy successor of the paper document.

Corollary: an electronic document must contain both characters and glyphs. The char-
acters must be readily accessible to the outside world and, if possible, structured and
annotated with metadata. The glyphs must be arranged precisely, according to the rules
of the typographic art.

Fulfilling these two often contradictory objectives is in itself a challenge for computer
science. But the problems of the electronic document do not end there. Characters and
glyphs are related like the two sides of a coin, like yin and yang, like signifier and signi-
fied. When we interact with an electronic document, we select glyphs with the mouse
and expect that the corresponding characters will be copied onto the system’s clipboard.
Therefore, the document must contain a link between each glyph and the character cor-
responding to it, even in cases in which one glyph is associated with multiple characters
or multiple glyphs with one character, or, to cite the most complex possibility, when
multiple glyphs are associated with multiple characters in a different order.

Another major problem: the copyright on the various constituents of an electronic doc-
ument. While we have the right to make our own text and images freely available, the
same is not necessarily true of the fonts that we use. When one “buys” a font, what one

The Structure of the Book and Ways to Use It 17

actually buys is a license to use it. According to the foundry, this license may or may not
specify the number of machines and/or printers on which the font may be installed and
used. But no foundry will allow someone who has bought a license for one of its fonts
to distribute that font publicly. How, then, can one display the glyphs of a document in
a particular font if one does not have the right to distribute it?

Electronic documents are caught between the past (typography, glyphs and their ar-
rangement, fonts) and the future (the Web, characters, information that can be indexed
at will and made available to everyone). In saying that, we have taken only two axes of
our digital space for writing into account: the system approach (characters/glyphs) and
historicity. There remain the geographic axis (East/West, with all the surprises that the
writing systems of other cultures have in store for us) and the industrial axis (problems
of file format, platform, etc.).

In this book, we aim to offer the reader a certain number of tools to confront these prob-
lems. We do not concern ourselves with all aspects of the electronic document, just those
pertaining to characters and glyphs, aspects that directly and inevitably affect encodings
and fonts.

The Structure of the Book and Ways to Use It

This book contains 14 chapters grouped into 4 units and 7 appendices. We have repeat-
edly said that fonts and encodings interact like yin and yang. Here we use this metaphor
to give a graphical illustration of the book’s structure with the yin—-yang symbol (Fig-
ure 0-6) in the background. On the left, in the gray-shaded area: encodings. On the right,
in the white part: fonts.

At the top of the circle is the introduction that the reader is currently reading.

The first box, the one on the left, contains the five chapters on encodings, in particular
Unicode.

In the first chapter, entitled “Before Unicode”, we present a history of codes and encod-
ings, starting in antiquity. After a few words on systems of encoding used in telecom-
munication before the advent of the computer, we proceed immediately to the most
well-known encoding of all, ASCII, and its staunch competitor, EBCDIC. Then follows
the ISO 8859 series of encodings, the most recent of which was released in 2001. At the
same time, we discuss the problems of the countries of the Far East and the different
solutions offered by ISO, Microsoft, and the UNIX world. Finally, we end with a few
words on electronic mail and the Web.

The second chapter, “Characters, Glyphs, Bytes”, is an introduction to Unicode. In it,
we develop the underlying concepts of Unicode, the principles on which it is based, its
philosophy, and the technical choices that it has made. We finish the chapter with a quick
look at the different tables of Unicode, including a preview of the tables that are still at
the stage of consideration that precedes inclusion in the encoding.

Next comes the chapter “Unicode Character Properties”, which leads us into the morass
of the data that accompanies the characters. Often this data indicates that the character

Introduction

Introductio

fonts s 9 /J/%

: 6. Font management
; gifaorlfcggl’mde on the Macintosh 11. History and
glyphs, bytes 7. Font management classifications
3 Unicode character under Windows 12. Editing and creating
properties 8. Font management fonts '
4. Normalizations, under X Window 13. Optimizing the rend;rlng
bidirectionality, 14. Advanced typographical
CJK characters features
5. Using Unicode 9. Fonts under E M ETQFQNT and
TeX and Q its derivatives
10. Fonts and the Web

vV o)
;J

Bibliographic Appendices
references A. Bitmap fonts
General index B.TEX et Q fonts
C. PostScript fonts
Index of names B TrasType Openype

and AAT fonts
E. TrueType instructions
G. Bézier curves

Figure 0-6: Structure of the chapters of this book.

The Structure of the Book and Ways to Use It 19

in question plays a certain role. We explain this role by showing the reader some of the
internal workings of the encoding.

On the subject of internal workings, we have assembled three of the most complex in
Chapter 4. This chapter’s title is merely a list of these three mechanisms: normalization,
the bidirectional algorithm, and the handling of East Asian characters. Normalization
is a set of ways to make a text encoded in Unicode more efficient by removing certain
ambiguities; in particular, one of the normalization forms that we describe is required
for the use of Unicode on the Web. Bidirectionality concerns the mixture of left-to-right
and right-to-left scripts. Unicode gives us an algorithm to define the typesetting of a text
containing a mixture of this sort. Finally, by “East Asian scripts” we mean both Chinese
ideographs and hangul syllables. For the former, we present a handful of techniques to
obtain characters not supplied in Unicode; for the latter, we describe the method for
forming syllables from hangul letters.

Finally, the last chapter in this unit is less theoretical than the others. We address a
specific problem: how to produce a text encoded in Unicode? We offer three possible
answers: by entering characters with a mouse, by creating virtual keyboards, and by
converting texts written in other encodings. In each of these three cases, we describe
appropriate tools for use under Mac OS, Windows, or UNIX.

This unit lies entirely within the gray section (“encodings”), as we discuss only encodings,
not fonts, in its chapters.

The second unit (Chapters 6 to 8) lies within the white section (“fonts”), but we have
placed it in the center of the circle because it discusses not fonts themselves but their
management. Thus it takes up the installation of fonts, tools for activation/deactivation,
font choices—in short, the management of a large number of fonts, which is of con-
cern to graphic designers and other large consumers of fonts. The unit is divided into
three chapters so that we can discuss the two most popular operating systems—Mac OS
(9 or X) and Windows, as well as the X Window windowing system from the UNIX world.
We discover that the Macintosh is privileged (it has the greatest number of tools for
font management), that the same tools exist for Windows but that their quality is often
poorer, and that X Window is a world unto itself, with its own advantages and drawbacks.
These three chapters will thrill neither the computer scientist nor the typophile, but
they may be of great practical value to those whose lives are plagued by system crashes,
unexplainable slow-downs, poor quality of output (who has never been surprised to see
his beautiful Bembo replaced by a hideous Courier?), corrupted documents, and all sorts
of other such mishaps, often caused by fonts. They will also delight those who love order
and who dream of being able to find and use almost instantaneously any font among the
thousands of similar ones that they have collected on multiple CD-ROMs. On the other
hand, if the reader uses only the fonts that come standard on his operating system, he
has no need to read these chapters.

The third unit (Chapters 9 and 10) gets more technical. It deals with the use of fonts in
two specific cases: the TgX typesetting system (and its successor, Q, of which the author is

20 Introduction

co-developer) and Web pages. TgX is a software system and a programming language de-
voted to typesetting. It is also used today to produce electronic documents. Its approach
to managing fonts is unique and totally independent of the operating system being used.
In this chapter, we have tried to cover as thoroughly as possible all the many aspects of
the use of fonts under TgX. Technical descriptions of the font formats used in Chapter 9
appear in Appendix B (“The Font Formats of TgX and Q7).

The situation is different in the case of the Web, which presents both technical problems
(How to supply a font to the browser? How to make the browser use it automatically?)
and legal ones (What about the font’s copyright?). We describe the different solutions
that Microsoft and Bitstream have offered for this problem and also another spectacular
solution: the GlyphGate font server. This approach can be called conventional: we use
the HTML markup system and supply the fonts in addition. The Web Consortium has
proposed another, cleaner, solution: describe the font in XML, just like the rest of the
document. This solution is part of the SVG standard for the description of vector graph-
ics, which we describe in detail.

These two chapters are also placed in the middle of the circle because they deal with
subjects that lie in between encodings and fonts: TgX and HTML can both be considered
as vehicles for passing from characters to glyphs; they are bridges between the two worlds.

The fourth unit (Chapters 11 to 14 and Appendix F) is devoted completely to fonts. The
first chapter, “History and Classifications”, is a unique chapter in this book, as it discusses
computers very little but deals mainly with the history of printing, especially the history
of Latin typographic characters. We have seen that for designing high-quality fonts it
is not enough to have good tools: a certain knowledge of the history of the fonts that
surround us is also essential. Even in the history presented here, however, the point of
view is that of the user of digital fonts. Thus most of the examples provided were pro-
duced with digital fonts rather than from reproductions of specimens of printing from an
earlier era. We also frequently compare the original specimens with digital fonts created
by a variety of designers.

Chapter 11 goes beyond history. It continues with a description of three methods for
classifying fonts. The first two (Vox and Alessandrini) finish off the history, in a way,
and recapitulate it. The Vox classification gives us a jargon for describing fonts (garalde,
didone, etc.) that every professional in the fields of graphic design and publishing must
know. The scheme of Alessandrini should be considered a critique (with a heaping help-
ing of humor) of Vox’s; we couldn’t resist the pleasure of presenting it here.

The third classification scheme is quite different and serves as a link between this chapter
and the rest of the book. It is Panose-1, a mathematical description of the properties
of glyphs. Each font is characterized by a sequence of 10 numbers, which correspond
to 10 practically independent properties. Both Windows and the Cascading Style Sheets
standard make use of this classification system to select substitute fonts by choosing the
available font whose Panose-1 distance from the missing font is the smallest. Despite the
fame of the Panose-1 system, a precise description of it is very difficult to find. This book
provides one, thanks to the generosity of Benjamin Bauermeister, the creator of Panose-
1, who was kind enough to supply us with the necessary information.

The Structure of the Book and Ways to Use It 21

Chapters 12 to 14 describe the existing tools for creating (or modifying) fonts. We have
chosen two basic tools, FontLab and FontForge (formerly PfaEdit), and we describe their
most important capabilities in this chapter. There are three chapters instead of only
one because we have broken the font-creation process into three steps: drawing glyphs,
optimizing the rendering, and supplementing the font with “advanced typographic”
properties. Optimization of the rendering involves adding the PostScript hints or True-
Type instructions needed to make the rendering optimal at all body sizes. In this chapter,
we also describe a third tool that is used specifically for instructing fonts: Microsoft’s
Visual TrueType. Since the hinting and instructing of fonts are reputed to be arcane
and poorly documented techniques, we have tried to compensate by devoting an entire
chapter to them, complete with many real-world examples. In addition, Appendix E is
devoted to the description of the TrueType assembly language for instructing fonts; it
is the ideal companion to Chapter 13, which is concerned more with the tools used for
instructing than with the instructions themselves.

Chapter 14 discusses the big new development of recent years, OpenType properties.
Adobe and Microsoft, the companies that have supported this technology, had two pur-
poses in mind: Latin fonts “of typographic quality” (i.e., replete with such gadgets as
ligatures, variant glyphs, glyphs for the languages of Central Europe, etc.) and specific
non-Latin fonts (with contextual analysis, ligature processing, etc.). High-quality Latin
fonts make use of the “advanced typographic features”. Right now several foundries are
converting their arsenals of PostScript or TrueType fonts into OpenType fonts with ad-
vanced properties, and the tools FontLab and FontForge lend themselves admirably to
the task, to which we have devoted the first part of the chapter. Along the way, we also
describe a third tool dedicated to this task: VOLT, by Microsoft.

The second part of the chapter is devoted to OpenType’s competitor, the AAT fonts (for-
merly called TrueType GX). These fonts are considered by some to be more powerful
than OpenType fonts, but they suffer from a lack of tools, poor documentation, and,
what is worse, a boycott by the major desktop publishing systems (Adobe Creative Suite,
Quark XPress, etc.). But these problems may prove to be only temporary, and we felt that
AAT deserved to be mentioned here along with OpenType. In this chapter, the reader
will learn how to equip TrueType fonts with AAT tables by using the only tool that is
able to do the job: FontForge.

Finally, we include in this unit Appendix F “METAFONT and Its Derivatives”. META-
FONT is a programming language dedicated to font creation, the work of the same person
who created TgX, the famous computer scientist Donald Knuth of Stanford University.
METAFONT is a very powerful tool full of good ideas. The reason that we have not
included it in the main part of the book is that it has become obsolete, in a way, by
virtue of its incompatibility with the notion of the electronic document. Specifically,
METAFONT creates bitmap fonts without a trace of the characters to which the glyphs
correspond; thus they cannot be used in electronic documents, as the link between glyph
and character is broken. Furthermore, these bitmap fonts depend on the characteristics
of a given printer; thus there can be no “universal” METAFONT font that is compatible
with every printer—whereas PostScript and TrueType fonts are based on that principle of
universality. Nonetheless, we have described METAFONT in this book for three reasons:

22 Introduction

for nostalgia and out of respect for Donald Knuth, for METAFONT’s intrinsic value as a
tool for designing fonts, and, finally, because some recent software attempts to make up
for the shortcomings of METAFONT by generating PostScript or TrueType fonts from the
same source code used for METAFONT or from a similar type of source. We describe two
attempts of this kind: METATYPE1 and MetaFog.

Without a doubt, this book distinguishes itself by the uncommonly large size of its ap-
pendices. We have aimed to compile and present the main font formats in our own
way—an undertaking that has consumed a great deal of time and energy, not to mention

pages.
Appendix A can be considered a sort of history of font formats, as it discusses a type of
fonts—bitmap fonts—that has virtually disappeared.

Appendix B discusses the “real” and virtual fonts of TgX.

Appendix C aims to discuss all of the PostScript font formats, from Type 1 (released
in 1985) to CFFE which is a part of the OpenType standard, with a brief mention of the
obsolete formats (Type 3 and Multiple Masters) and the special formats for Far Eastern
scripts. So that we can understand the PostScript code for these fonts, we have also pro-
vided an introduction to this very specialized programming language.

In Appendix D, we take on the challenge of describing in detail all the TrueType, Open-
Type, and AAT tables. So as not to bore the reader with low-level technical details on the
numbers of bytes in each field, the pointers between the tables, the number of bytes of
padding—in short, the horror of editing raw binary data—we describe these tables in an
XML syntax used by the tool TTX. This tool, developed in Python by Just van Rossum,
the brother of Guido van Rossum (who invented Python), makes it possible to convert
TrueType, OpenType, and AAT binary data into XML and vice versa. Thus we can con-
sider the TTX representation of these fonts to be equivalent to their binary form, and
we shall take advantage of this convenience to describe the tables as XML structures.
That approach will not make their complexity disappear as if by waving a magic wand,
but it will at least spare the reader needless complexity that pertains only to aspects of
the binary format of the files themselves. Thus we shall be able to focus on the essence
of each table. We shall systematically illustrate the definition of the tables by means of
practical examples.

This appendix will be of interest to more people than just computer scientists. Large
consumers of OpenType fonts will also find it valuable for the simple reason that current
software products that are compatible with the OpenType font format use only a tiny
percentage of'its possibilities. Readers eager to know what OpenType has under the hood
will find out in this appendix.

Appendix E is the logical continuation of Appendix D and the ideal complement to
Chapter 13 on optimizing the rendering of fonts. In it, we describe the instructions of the
TrueType assembly language. TrueType instructions have a reputation for being arcane
and incomprehensible—a reputation due as much to their representation (in assembly
language) as to their purpose (modifying the outline of a glyph to obtain a better render-
ing) and to some implied concepts (notably the concepts of projection vector, freedom

The Structure of the Book and Ways to Use It 23

vector, twilight zones, etc.). And it is due most of all to the poor quality of the documen-
tation supplied by Microsoft, which is enough to discourage even the most motivated
programmer. We hope that this appendix will be easier to understand than the docu-
ment that it cites and that it will be a helpful adjunct to Chapter 13.

We close with a brief introduction to Bézier curves, which are used again and again in
the text (in discussions of font creation, the description of the PostScript and METAFONT
languages, etc.). We have mentioned that most books on these languages give very little
information on Bézier curves, often no more than the formula for the Bézier polynomial
and a few properties. To compensate for the deficiency, we offer a genuine mathematical
presentation of these objects, which today are indispensable for the description of fonts.
The reader will find in this section the most important theorems and lemmas concerning
these mathematical objects, with proofs to follow in due course.

The book ends with a bibliography that includes as many URLs as possible so that the
reader can read the original documents or order copies of them. It also includes two
indexes: the general index, for terms, and an index of names, which includes creators
of software, font designers, and all other people mentioned for one reason or another.

How to Read This Book

This book contains introductions to certain technologies, “user’s manuals” for software,
technical specifications, and even histories of fonts and encodings. It plays the dual role
of textbook and reference manual. To help the reader derive the greatest benefit from it,
we offer the following profiles of potential readers and, for each of these, a correspond-
ing sequence of readings that we deem appropriate. Of course, these sequences are only
recommendations, and the best approach to the book is always the one that the reader
discovers on his own.

For the well-versed user of Unicode

The most interesting chapters will, of course, be Chapters 1 to 5. In order to use Unicode,
a user needs suitable fonts. Once she has tracked them down on the Web, she will want to
install them; thus reading Chapter 6, 7, or 8 (according to her operating system) may be
of great benefit. And if she needs glyphs to represent characters not found in the fonts,
she may wish to add them herself. Then she becomes a font designer/editor. (See “For
the novice font designer”, below.)

For the devoted TgXist

Chapter 9 will be ideal. While reading it, he may wish to try his hand at input or output.
For the former, he will want to prepare documents in Unicode and typeset them with
Q; therefore, we advise him to read the chapters on Unicode as well. For the latter, he
may want to create fonts for use with TgX; thus he may benefit from Chapters 12 and 14,
which discuss the creation of PostScript and TrueType fonts, or perhaps Appendix E, on
the use of METAFONT.

24 Introduction

For the reader who simply wants to produce beautiful documents

A beautiful document is, first and foremost, a well-coded document; it is useful, there-
fore, to know the workings of Unicode in order to use it to greatest advantage. Reading
Chapters 2, 3, and 5 (and perhaps skimming over Chapter 4) is recommended. Next,
a beautiful document must employ beautiful fonts. After reading the history of fonts
(Chapter 11), the reader will be more capable of choosing fonts appropriate to a given
document. Once she has found them, she will need to install them; to that end, she
should read Chapter 6, 7, or 8, according to the operating system. Finally, to create
a beautiful document, one needs high-quality typesetting software. If, by chance, the
reader has chosen TgX (or Q) to produce her document, reading Chapter 9 is a must.

For the reader who wishes to create beautiful Web pages

The sequence given in the preceding profile is recommended, with the difference that
the last chapter should instead be Chapter 10, which discusses the Web.

For the typophile or collector of fonts

Chapter 11 will delight the reader with its wealth of examples, including some rather
uncommon ones. But the true collector does not merely buy treasures and put them
on a shelf. He spends his time living with them, adoring them, studying them, keeping
them in good condition. The same goes for fonts, and font design/editing software is also
excellent for getting to know a font better, studying it in all of its detail, and perhaps im-
proving it, supplementing it, correcting its kerning pairs, etc. The reader will thus do well
to read Chapter 12 carefully, and Chapters 13 and 14 as well. If technical problems arise,
Appendices C and D will enable him to find a solution. Finally, to share his collection
of fonts with his fellow connoisseurs, there is nothing like a beautiful Web page under
GlyphGate to show the cherished glyphs to every visitor, without compromising security.
Chapter 10 provides the necessary details.

For the novice font designer

Reading Chapter 11 may encourage her further and help her to find her place on the his-
toric continuum of font design. This book does not give lessons in the graphical design of
fonts, but it does describe the needed tools in great detail. Read Chapter 12 very carefully
and then, before distributing the fonts you have created, read Chapters 13 and 14 to learn
how to improve them even more.

For the experienced font designer

Chapters 11 and 12 will not be very instructive. In Chapters 13 and 14, however, he
will find useful techniques for getting the most out of his beautiful font designs. He
may also enjoy sampling the delights of METAFONT and creating PostScript fonts with
METATYPE1 that would be very difficult or impossible to produce with a manual tool
such as FontLab or FontForge. If he is a user of FontLab, he may also try his hand at the
Python language and learn in Chapter 11 how to control the FontLab software through
programming. If he already knows font design, instruction, and advanced typographical
features, Appendices C and D will show him some of OpenType’s possibilities that will

How to Contact Us 25

surprise him because, for the time being, they are not exploited by OpenType-compatible
software. Finally, reading the description of the Panose standard in Chapter 11 will en-
able him to classify his fonts correctly and thus facilitate their use.

For the developer of applications

Chapters 2 to 4 will teach her what she needs to know to make her applications com-
patible with Unicode. Next, Appendices C, D, and E will show her how to make them
compatible with PostScript or OpenType fonts. Appendix G may prove useful in the
writing of algorithms that make calculations from the Bézier curves that describe the
outlines of glyphs.

For the reader who doesn’t match any of the preceding profiles

The outline presented in this introduction, together with the table of contents, may sug-
gest a path to the information that interests him. If this information is very specific, the
index may also come in handy. If necessary, the reader may also contact us at the address
given below.

How to Contact Us

We have done our best to reread and verify all the information in this book, but we
may nonetheless have failed to catch some errors in the course of production.? Please
point out any errors that you notice and share with us your suggestions for future edi-
tions of this book by writing to:

O’Reilly Media Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

You may also send us email. To join our mailing list or request a catalog, send a message
to:

info@oreilly.com
To ask a technical question or send us your comments on the book, write to:
somebody@oreilly.com

This book has its own web site, where you will find all the code fragments that appear in
the book, a list of errata, and plans for future editions. Please visit the following URL:

http://www.oreilly.com/somewhere/fonts-and-encodings.html
For more information on this book and its author, visit O’Reilly’s web site:

http://www.oreilly.com

3 On this subject, we recommend a hilarious book: An Embarrassment of Misprints: Comical and Disastrous
Typos of the Centuries, by Max Hall (1995) {154].

Before Unicode

When we need precise definitions of computer-related concepts that seem a little fuzzy
to us, nothing is more refreshing and beneficial than consulting old documents. For ex-
ample, in C.E. MacKenzie’s Coded Character Sets, History and Development (1980) [242], we
find the following definitions (slightly condensed here):

e a bit is a binary digit, either 0 or 1;
e a bit pattern is an ordered set of bits, usually of fixed length;

e a byte is a bit pattern of fixed length; thus we speak of 8-bit bytes, 6-bit bytes, and so
on;

e agraphic is a particular shape, printed, typed, or displayed, that represents an alpha-
betic, numeric or special symbol;

e acharacter is a specific bit pattern and a meaning assigned to it: a graphic character has
an assigned graphic meaning, and a control character has an assigned control mean-
ing;

e a bit code is a specific set of bit patterns to which either graphic or control meanings
have been asigned;

e a code table is a compact matrix form of rows and columns for exhibiting the bit
patterns and assigned meanings of a code;

e ashifted code is a code in which the meaning of a bit pattern depends not only on the
bit pattern itself, but also on the fact that it has been preceded in the data stream by
some other particular bit pattern, which is called a shift character.

27

28 Chapter 1 : Before Unicode

All this makes sense; only the terminology has slightly changed. Nowadays a byte is al-
ways considered to be of fixed length 8; what MacKenzie calls a “graphic” is now called a
glyph; a “bit code” is called an encoding; and a “code table” is simply a way of graphically
representing the encoding. In the old days, the position of a character in the encoding
was given by a double number: “x/4”, where x is the column number and y the row num-
ber. Nowadays we simply give its number in decimal or hexadecimal form. “Shifted”
encodings tend to become extinct because they are incompatible with human-user in-
teraction such as copying and pasting, but at that time GUTIs were still well-protected
experiments in the Palo Alto Xerox Lab.

Let us go even further back in time. It seems that the first people to invent a code-based
system for long-distance transmission of information were the Greeks: around 350 Bc,
as related by the historian Polybius {183}, the general Aeneas employed a two-by-five
system of torches placed on two walls to encode the Greek alphabet, an alphabet of
24 letters that could be adequately encoded by the 2° = 32 combinations of five lighted or
extinguished torches. At the end of the 18t century, the French engineer Claude Chappe
established the first telegraphic link between Paris and Lille by using semaphores visible
at distances of 10 to 15 kilometers. In 1837, Samuel Morse invented “Morse code” for
the electric telegraph, a code that was more complex because it used a variable number
of long and short pulses (dahs and dits) for each letter, with the letters being obligatorily
separated by pauses. Thus there were two basic units: dahs and dits. It was the first inter-
nationally recognized system of encoding.

In 1874, Emile Baudot took up a code invented by Sir Francis Bacon in 1605 and adapted
it to the telegraph. Unlike Morse’s code, the Baudot code used codes of five symbols that
were typed on a device bearing five keys like those of a piano. Each key was connected
to a cable that transmitted signals. The reader will find a detailed description of Baudot’s
code and keyboard in {201].

The first important encoding of the twentieth century was CCITT #2, a 58-character
shifted 5-bit code, standardized as an international telegraph code in 1931 by CCITT
(“Comité Consultatif International Télégraphique et Téléphonique”). Being shifted, it
used two “modes”, also called “cases”. The first is the letter case:

T || O |se | H| N| M| L R G 1 P C \Y%

00 01 02 03 04 05 06 07 08 09 0A 0B 0C () OF OF

E Z | D | B S Y| F /XA W | J, s, | U]Q,/ K,/ 1

10 11 12 13 14 15 16 17 18 19 1B 1C 1D 1E 1F

Here “LE” is the carriage return, “sp” is the blank space, “LF” is the line feed, and “Ls”
(letter shift) and “Fs” (figure shift) are two escape codes. “Fs” shifts to figure case:

5 | ek | 9 sp | ¥Rk . LF) 4 | *xx |8 0 : ;
00 01 02 03 04 05 06 07 08 09 0A 0B oC oD OF

3 + | aB | ? ’ 6 | *x |/ - 2 | BEL | Fs | 7 1 (LS

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

OF

Here “***” is intended for national use (#, $, and & in the US; A O U in Germany, Sweden
and Finland; Z£ @ A in Denmark and Norway), “AB” is used for answering back, and
“BEL” rings a bell. With “Ls” we return to the first version of the encoding. This use of two

FIELDATA 29

states seems awkward to us today; after all, why not just use a sixth bit? One consequence
of this approach is that the interpretation of a position within the encoding depends on
context—whether we are in “letter” or “figure” case.

In the prehistoric era of computers (the 1930s to the 1960s), only a few brilliant vision-
aries, such as Alan Turing and Vannevar Bush, imagined that the computer would one
day come to use letters. To everyone else, it was just a calculating machine and therefore
was good only for processing numbers.

FIELDATA

FIELDATA was a 7-bit encoding developed by the US Army for use on military data
communication lines. It became a US military standard in 1960:

Ms | vc | c | e |ce|se | A| B | C|D]|E F | G| H I J
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
K LI M| N|O P Q| R S T Ul V |W|X Y Z
50 51 52 53 54 55 56 57 58 59 5A 58 5C 5D S5E 5F
- + <l =1>1_1S°% * (" : ? ! , | stop
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
0 1 2 3 4 5 6 7 8 9 ’ ; / . _| sPEC | IDLE
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

», «

“ms” stands for “master space”; “uc/Lc” are shift codes for uppercase and lowercase let-
ters; “sToP”, “sPEC”, and “IDLE” stand for “stop”, “special”, and “idle”. In this encoding we
already find most of the characters used a few years later in ASCII. FIELDATA survives

even today as the internal encoding of certain COBOL software.

ASCII

Towards the end of the 1950s, the telecommunications industry redoubled its efforts to
develop a standard encoding. IBM and AT&T were among the large corporations that
drove the ASA (American Standards Association) to define an encoding. Thus ASCII-
1963, a preliminary version of ASCII with no lower-case letters, was born on June 17,
1963, a few months after the assassination of President Kennedy.

ASCII was updated in 1967. From that time on, it would include lower-case letters. Here
is ASCII-1967:

NUL | SOH | STX ETX | EOT ENQ3 ACK | BEL BS HT LF vT FF CR SO SI
00 01 02 03 04 5 06 07 08 09 0A 0B oC oD OF OF

DLE | DCI | DC2 | DC3 [DC4 | NAK | SYN ETB | CAN EM SUB ESC FS GS RS us
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

SP ! 21 ! 22 # 23 $ 2 %25 &za ' 27 (28 29 * 2A + B 2l w "o / oF
0 1 2 3 4 6 7 8 9 : ; < = > ?

30 31 32 33 34 35 36 37 38 39 3A 38 3C 30 3E 3F
@ 40 A 41 B 2 C 23 D 44 E 45 F 46 G 47 H 48 I 49 J 4A K 48 L ac M4D 4 O 4F
P R S T UV |IW]| X Y Z { \ 1 A

50 51 52 53 54 55 56 57 58 59 SA 5B 5C

30 Chapter 1 : Before Unicode

a|b|c|d]e f | g |h | i j k{1l |m|n]|o
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

p 70 q 71 r 72 S 73 t 74 u 75 v 76 W77 X 78 y 79 Z 7A {

| 7C } 7D 7E DEL7F

The first thirty-two positions in this encoding are occupied by control codes:

e formatting control codes: CR (carriage return), LF (line feed), Bs (backspace), HT (hor-
izontal tab), vt (vertical tab), sp (blank space), FF (form feed);

e extension codes: ESC (escape is a shift but modifies only the following character), so
(shift out), s1 (shift in);

e controls for communications: soH (start of heading), sTx (start of text), ETX (end of
text), EOT (end of transmission), ETB (end of transmission block), Ack (acknowledge),
NAK (negative acknowledge), syn (synchronous idle), NuL (null), pLE (data link es-
cape);

e device control functions DcCI, ..., DC4;

e functions for error management: CAN (cancel), suB (substitute), DEL (delete), BEL
(bell).

Of the characters that do not represent controls, a few call for some explanation:

o The backslash Y\, used by DOS as a delimiter for directory paths and by TgX as the
escape character for commands, was introduced into encodings in September 1961
and subsequently accepted into ASCII-1963 at the suggestion of Bob Bemer {72]. A
great fan of the ALGOL language, Bemer wanted to obtain the logical operators AND
(A) and OR (V). Since the forward slash was already present in the encoding, he was
able to obtain these two operators by simply concatenating a forward slash and a
backslash (‘A”) and vice versa (/).

o [$3

e The apostrophe is represented by a vertical stroke, ‘", not by a raised comma, , as
printers have represented it for centuries. Today we call this type of apostrophe a
“non-oriented apostrophe”. Although it has a peculiar shape, it is perfectly suitable
for those programming languages that use it as the opening and closing delimiter for
strings.

e The same goes for the “double quote” or “non-oriented quotation marks”, “'": they
served as the opening and closing American-style quotation marks, and even as the
dizresis; thus this symbol, too, had to be symmetrical.

e The grave accent ‘"’ also serves as an American-style opening quotation mark.

e The vertical bar ‘|’ was introduced to represent the ORr operator in the language PL/I
[226].

EBCDIC 31

It may seem unbelievable today, but a not insignificant number of ASCII characters
could vary according to local needs: the number sign ‘#, the dollar sign ‘$’, the at sign
‘@’, the square brackets ‘[’ and ‘T, the backslash) the caret ‘), the grave accent **’, the
curly braces ‘{’ and ‘}, the vertical bar ‘|’ and the tilde .

Thus, at one time, France used the NF Z62010 standard and the United Kingdom used
the BS 4730 standard, both of which replaced the number sign by the symbol for pounds
sterling ‘£’; Japan used the JIS C-6220 standard, which employed a yen sign ‘¥’ in the place
of the backslash; the Soviet Union used the GOST 13052 standard, which substituted a
universal currency sign % for the dollar sign, etc. The reader will find a complete list of
these “localized ASCII encodings” in [248, p. 243]. To distinguish it from the localized
versions, the original version of ASCII was called IRV (International Reference Version).

Another problem with the ASCII encoding is that it offered a rather naive and astheti-
cally unacceptable method for placing accents on letters: to obtain an ‘¢, one was asked to
type the sequence ‘e Bs ", that is: ‘letter €, ‘backspace’, ‘apostrophe’. That is why the grave
and circumflex accents and the tilde, represented as spacing characters, are found in the
encoding. To obtain a dizresis, one used the backspace followed by a double quote; and

underscoring words was accomplished with backspaces followed by underscores.

The ASCII-1967 encoding became the ISO 646 standard in 1983. Its latest revision, pub-
lished by ECMA {192}, dates to 1991.

EBCDIC

While the computer giant IBM had taken part in the development of ASCII-1963, it re-
leased in 1964 a new and highly appreciated line of computers, IBM System/360, whose
low-end model came equipped with 24 kb (!) of memory. The development of these
machines was the second most expensive industrial project of the 1960s, after NASA’s
Apollo program....

The System/360 computers use the EBCDIC encoding (Extended Binary Coded Decimal
Interchange Code, pronounced “eb-cee-dic”), an 8-bit encoding in which many positions
are left empty and in which the letters of the alphabet are not always contiguous:

NUL | SOH STX ETX PF HT LC DEL GE RLF | SMM vT FF CR SO SI
00 01 02 03 04 05 06 07 08 09 0A 0B 0C () OF OF

DLE | DCI | DC2 ™ RES NL BS IL CAN EM CC CUI IES IGS IRS 1US
10 11 12 13 14 15 16 17 18 19 1A 18 1c 1D 1E 1F

DS SOS ES BYP LF ETB ESC SM Ccu2 EN(% ACK BEL
20 21 22 23 24 25 26 27 28 29 2A 2B 2C D 2E 2F
SYN PN RS ucC EOT CU3, DC4 | NAK SUB
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
sP ¢ . < (+
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
& Pl Sl *o Dul 54l
50 51 52 53 54 55 56 57 58 59 S5A 5B 5C 5D SE S5F
- / : , | % > | 7

60 61 62 63 64 65 66 67 68 69 6A 68 6C — 6D 6E 6F

70 71 72 73 74 75 76 77 78 79) 78 7C 7D 7E 7F

32 Chapter 1 : Before Unicode

a c | d | e f | g |h | i
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90] 91 92 93 m94 n 95 0 96 p 97 q 98 r 99 9A 9B 9C 9D 9E 9F
B s tlu | v | @ w/|x|y]|z
Ao Al A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
{|A|B|C|D|E|F|G|H]|I I i
co 1 2 (&} C4 C5 c6 7 C8 c9 CA B cc (@) CE CF
} J K L M| N| O P Q| R
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
\ S| T|U|V|IW|X|Y/|Z h
E0 E1 E2 E3 E4 ES E6 E7 E8 E9 EA EB EC ED EE EF
0 1 2 3 4 5 6 7 8 9 | EO
Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

We may well ask: why are the letters of the alphabet distributed in so bizarre a manner
in this encoding? Why did IBM insist so firmly on its EBCDIC encoding? To understand
what happened, we need a bit of historical background.

In 1801 the Parisian weaver Joseph-Marie Jacquard used strings of punched cards to op-
erate his looms, thus perfecting an invention by Basile Bouchon that dated to 1725.
Seventy-nine years later, on the other side of the Atlantic, a census conducted in the
United States was ruined. The failure resulted from the fact that it took 7 years (!) to
process the data on the country’s 31.8 million residents—so much time that the data were
no longer up to date. Faced with this situation, the Census Bureau organized a contest
to find an invention that could solve the problem. A certain Herman Hollerith won the
contest with a system inspired by that of Jacquard: the census-takers would carry cards
that they would punch according to the profile of the person being surveyed. Later a
machine, the ancestor of the computer, would read the cards and compile the results.

In 1890 a new census was taken. While the previous census collected only six pieces of
information for each person, this time plans were made for 245! The Bureau sent 50,000
employees all over America to conduct the census. And, as had been expected, the results
were spectacular: the data were completely processed in less than six weeks. Hollerith had
thus succeeded in processing 40 times as much information in 1/56 of the time....

Encouraged by this astounding success, Hollerith founded a company named TMC (Tab-
ulating Machine Company). In 1924 it became International Business Machines, or IBM.

But what relationship is there between Hollerith and EBCDIC? In Figure 1-1, the reader
can see a remnant of the past: an ISO 1681 card punched by the author at the Univer-
sity of Lille (France) in September 1983, a few months before this medium disappeared
from that university. Punch cards were the user’s means of interacting with the computer
before the advent of terminals with screens and keyboards. Note that punch cards have
twelve rows, of which two are “unlabeled” (we call them “X” and “Y”) and the remaining
ten bear the digits from “0” to “9”. Since there are twelve potential holes, can we there-
fore encode numbers with 22 = 4,096 bits in a single column on the card? Alas, no.

In fact, Hollerith quickly noticed that punch cards could not be punched excessively,
lest they be torn. Therefore he invented a system by which one could encode letters and
numbers without ever using more than two holes per column. The system is called the
Hollerith code:

ISO 2022 33

| (S
boo |oOOOODODOODOOODOOOOOOOO0OO0CODO |O |OOOOO0O0O00O000OCO0 (00 (000000000000

HERU RN RS RSB AN B I DU E MY EN QA QU N GE VGO R AN U U B ST EH RO QRUBEVEENN AN AL AT ARE
11111 1L IR i it ittt e B P Tii i i 111111 1111111111

- =

22 1222222222 |22 0222220020022 2221122222022V 2ALXNILRNNY 2222222222222
33303133 /13933333 (33 |33333333333333333 (3 |/33333333 [333333333333233333333333333213

Imgrimé en Frence

A T R R R R T
55555 |5555555555555555555555555555555555 |55 [55555555555555555555655555555555555

18000 AUSSEDAT REY

GESEEGEG66 666 666666 666666666666 666

TIIIT 000000 iay (a0 3000000070000 0000777000100 70770000 07700000 0°07117977171117
BBBBB888BHBEABANEN (6880B0RBABE8ARBABEBEBRORBAB0RE BOBERBABRAEOBBRERE (900000 0B8E088

el R B L R S e R DR L T
Figure 1-1: A punch card (ISO 1681 standard).
Holes lol1]2]3]als]e]7]8]9]
with X punched A|B|C|D|E|F|G|H|I
with Y punched JIK|IL I M|N|O|P|Q|R
with 0 punched S|IT|U|V|W|X]|Y|Z
neither X nor Y punched || 0 | 1 31456 |7]|8]|9

In other words, to obtain an ‘A, one punches row “X” and row “17; to obtain a ‘Z’, one
punches row “0” and row “9”; to obtain a digit, one punches only one hole—the one
corresponding to that digit.

The reader will readily recognize the last four lines of the EBCDIC encoding. How could
IBM have ever abandoned the code created by its legendary founder?

Despite the awkwardness of this encoding, IBM spread it to the four corners of the earth.
The company created 57 national versions of EBCDIC. All of them suffer from the same
problem: they lack certain ASCII characters, such as the square brackets, that are indis-
pensable for computer programming.

Extremely rare today, the EBCDIC encoding is nonetheless very much alive. As recently
as 1997, an article appeared in Perl Journal on the use of Perl 5 in an EBCDIC environ-
ment under IBM System/390 {298].

ISO 2022

In the early 1970s, the industry was well aware of the fact that the “localized” versions of
ASCII were an impediment. People had to use multiple encodings that were really quite
different, and sooner or later they had to switch from one encoding to another in the
middle of a document or a transmission. But how to indicate this change of encoding?

34 Chapter 1 : Before Unicode

X0 X1 X2 X3 x4 x5 x6 X7 x8 x9 xA xB xC xD xE xF

o[I R I
b || [
2x N I))) D O))
3| I [O [])
4| I [)) O I
5| N [)) O

‘0 o a1 @R
7x M) ()

s KBk | R
o | [() T I
A [I) ()
e[S B [) O) T T I
O [N I)
x| I [)))
ex [N N [O) T T I
Fx T) S T R A

Figure 1-2: The manner in which ISO 2022 subdivides the 8-bit table.

It was for this reason that the ISO 2022 standard emerged, in 1973. Its latest revision
dates to 1994 [193]. It is not an encoding but a definition of a certain number of escape
sequences that make it possible to use as many as four distinct encodings within the same
set of data.

ISO 2022 starts from the principle that the 256 squares in a table of 8 bits are distributed
among four zones, which can be seen in Figure 1-2. Zones C0 and C1 are reserved for
control characters, and zones GL (“L” for “left”) and GR (“R” for “right”) are reserved
for what today are known as alphanumeric characters (and what at the time bore the
oxymoronic name “graphic characters”, whence the ‘G’).

Thus we have up to four distinct encodings at our disposal. Let us call them GO, G1,
G2, G3. These encodings may be of any of four types:

e Encodings with 94 positions: 6 columns with 16 positions each, minus the two ex-
cluded positions, namely the first and the last.

e Encodings with 96 positions: 6 columns with 16 positions each.

e Encodings with 94" positions, if we use n bytes to encode a single character. Thus for
ideographic languages we will take n = 2, and we will therefore have encodings of
94? = 8,836 positions.

e Encodings with 96" positions, if we use n bytes to encode a single character. By taking

n = 2, we will obtain encodings with 96> = 9,216 positions.

There is only one small constraint: encoding GO must necessarily be of type 94 or 94”.

A first series of escape sequences allows us to specify encodings G0, G1, G2, G3. These se-
quences depend on the type of the encoding. Thus, for example, the sequences ‘ESC 0x2D

ISO 8859 35

F’, ‘Esc 0x2E F’, ‘Esc 0x2F F, in which ‘F’ is an identifier for an encoding with 96 positions,
declares that the encoding designated by ‘F’ is assigned to G1, G2, or G3, respectively.

To identify the encoding, we use identifiers defined by the “competent authority”, which
today is the Information Processing Society of Japan {196]. The IPSJ’s Web site provides
a list of encodings.! There we can discover, for example, that the ISO 8859-1 encoding
that we shall discuss below is registered under the number 100 and has the identifier
“4/1”, an old-fashioned way to represent the hexademical number 0x41. It is an encoding
with 96 positions; therefore, it cannot be assigned to GO. The escape sequences ‘ESC 0x2D
0x41’, ‘Esc 0x2E 0x41’, and ‘Esc 0x2F 0x41’ will therefore serve to declare ISO 8859-1 as
encoding G1, G2, or G3.

Once the Gn have been defined, we can use them. There are escape sequences that switch
the active encoding until further notice. To do so, they must implement a finite au-
tomaton. These sequences consist either of ASCII control characters (so and sI assign
GO0 and G1 to zone GL) or of pairs of bytes beginning with Esc: thus ‘Esc 0x7E’ will select
G1 for zone GR, ‘Esc 0x6F’ will select G3 for zone GL, etc.

There are also control characters for zone C1 that affect only the following character:
ss2 (0x8E) and ss3 (0x8F) specify that only the following character should be interpreted
as being in encoding G2 or G3, respectively. The idea is that G2 and G3 may be rare
encodings from which we draw only isolated characters now and then; it therefore makes
more sense to “flag” them individually.

ISO 2022 is based on the principle of total freedom to define new encodings. Indeed,
all that it takes to make an encoding an integral part of ISO 2022 is to register it with
the competent authority. And there are so many registered encodings today that it is
practically impossible for a computer developer to support all of them. The only vi-
able alternative is to limit oneself to a small number of recognized and widely used
encodings—the I1SO 2022-* instances that Ken Lunde has described {240, p. 147].

Thus we have, for example, ISO 2022-JP (defined in RFC 1468), which is a combination
of ASCII, JIS-Roman (JIS X 0201-1976), JIS X 0208-1978, and JIS X 0208-1983 (taken,
respectively, as encodings GO, G1, G2, G3). This is how we resolve the problem of rare
ideographic characters: we put ASCII and the most common ideographic characters in
GO0 and G1, and we reserve G2 and G3 for the rare cases, in which we select the required
characters individually.

ISO 8859

As soon as the ISO 2022 standard allowed multiple encodings to be combined in a single
data flow, ISO started to define encodings with 96 positions that would supplement
ASCII. This became the ISO 8859 family of encodings, a family characterized by its
longevity—and its awkwardness.

1 This Web site is a gold mine for historians of computer science, as it offers a PDF version of the descrip-
tion of each registered encoding!

36

Chapter 1 : Before Unicode

ISO 8859-1 (Latin-1) and 1SO 8859-15 (Latin-9)

The new standard’s flagship, ISO 8859-1, was launched in 1987. By 1990, Bernard Marti
had written {248, p. 257}: “Unfortunately, the haste with which this standard was estab-
lished {... } and its penetration into stand-alone systems have led to incoherence in the
definition of character sets.”

This flagship is dedicated to the languages of Western Europe. Here is part GR of the
standard (parts CO and GL are identical to those of ASCII, and part C1 was not included
in the new standard):

NBSP |] ¢ | £ | = | ¥ I S Tl O || « | o |say | ® | 7
Ao Al A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
el 2] | ||l @] - tlo s I | %o
BO B1 B2 B3 B4 BS B6 B7 2> B8 B9 BA BB BC BD BE BF
= po - N 7 = " S =
A|A|A|A|A|A|Z|C|E|E|JE|E| T |1 |1]Ti
co 1 c2 (&} C4 C5 6 > [« c9 CA CB cc (@) CE CF
— \ Z = p .. S ~ ~ - p
b N O (0] O O (0] X (%) U U U U Y p i
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
a a a a a a |« C IS é é é 1 i 1 i
EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
~ N Je A ~ . . iy 7 A 7
6F0 nFl OFZ 0F3 0F4 OFS 0F6 TF7 gFB uF9 uFA uFB uFC yFD bFE yFF

Certain symbols deserve a few words of explanation:

NBSP is the non-breaking space.

‘7 and ¢’ are the Spanish exclamation point and question mark used at the begin-
ning of a sentence. Thanks to these characters, we avoid in Spanish the rather an-
noying experience of coming to the end of a sentence only to discover that it was a
question or an exclamation—and that we shall have to read the whole sentence over
again in order to give it the proper intonation.

‘¢, ‘£’ and ‘¥ are currency symbols: the cent sign, the British pound, and the Japanese
yen.

o is the “universal currency sign”. The Italians were the ones to propose this symbol
as a replacement for the dollar sign in certain localized and “politically correct” ver-
sions of ASCII. The author has never seen this symbol used in text and cannot even
imagine any use for it.

@ and © are used in Spanish, Italian, and Portuguese for numerals (the first being
feminine and the second masculine): ‘12, 2°’, etc.

SHY, the “soft hyphen”, may be the least coherent character in the encoding. In
ISO 8859-11itis described as a “hyphen resulting from a line break”, while in Unicode,
which ordinarily follows ISO 8859-1 to the letter, it is described as “an invisible
character whose purpose is to indicate potential line breaks”. The reader will find a
full discussion in {225}

ISO 8859 37

e Unless we use a font such as Futura in which the letter ‘0’ is a perfect circle, we
must not confuse the “degree sign °” (position 0xB0) with the “superscript o °” (po-
sition 0xBA). The first is a perfect circle, whereas the latter is a letter ‘0’ written small.
Thus we write “n°®” but “37,2°C".

» ¢

e The “midpoint” ‘-’ is used to form the Catalan ligature ‘1-1’ {135}

e the German eszett ‘3’ must not be mistaken for a beta. Historically, it comes from the
ligature “long s-round s”. Its upper-case version is ordinarily ‘SS’ but can also be ‘SZ’
to distinguish certain words. Thus, in German, MASSE is the uppercase version of
Masse (= mass), whereas MASZE is the one of MafSe (= measures);

e the “y with dieresis” is used in Welsh and in Old French. We find it in Modern
French in place names such as “I’Haye-les-Roses”, surnames such as “de Croy” and
“Louy”, or expressions such as “kir a I’ay” {36]. This letter is extremely rare, and its
inclusion in ISO 8859-1 is peculiar at best.

But the biggest deficiency in ISO 8859-1 is the lack of certain characters:

e While § is extremely rare in French, the ligature ‘ce’ is not. It appears in many very
common French words (“coeur” ‘heart), “ceil” ‘eye’, etc.); in some other words—Iess
common ones, to be sure, but that is neither here nor there—it is not used: “moelle”
‘marrow’, “coefficient”, “coexistence”, “foehn”, etc. According to an urban legend, the
French delegate was out sick the day when the standard came up for a vote and had to
have his Belgian counterpart act as his proxy. In fact {36}, the French delegate was an
engineer who was convinced that this ligature was useless, and the Swiss and German
representatives pressed hard to have the mathematical symbols ‘x” and ‘+’ included

at the positions where (E and ce would logically appear.

e French is not the only language neglected by ISO 8859-1. Dutch has another ligature,
4j’ (which, in italics, looks dangerously close to a ¥’ a fact that has led to numerous
misunderstandings {161, note 4}]). This ligature is just as important as the French
‘oe’—perhaps even more important, as it has acquired the status of a letter in certain
situations. Thus, in some Dutch encyclopadias, the entries are sorted according to
an order in which ‘ij” appears between ‘w’ and ‘y’. The upper-case version of ‘ij’ is ‘IJ,
as in the name of the city “IJmegen”.

e Finally, if only for reasons of consistency, there should also be a Y’, the upper-case
version of ‘y’.

ISO 8859-1 is a very important encoding because:
e it has become the standard encoding for Unix;

e Unicode is an extension of it;

e at least in Western Europe, most Web browsers and electronic-mail software have
long used it as the default encoding when no encoding was specified.

38 Chapter 1 : Before Unicode

The languages covered by ISO 8859-1 are Afrikaans, Albanian, Basque, Catalan (using the
midpoint to form the ligature ‘1-1’), Dutch (without the ligature ‘ij’), English, Faeroese,
Finnish, French (without the ligature ‘ce’ and without Y’), German, Icelandic, Italian,
Norwegian, Portuguese, Rhaeto-Romance, Scottish Gaelic, Spanish, and Swedish.

In March 1999, when the euro sign was added, ISO took advantage of the opportunity to
correct two other strategic errors: first, the free-standing accent marks were eliminated;
second, the ligatures ‘(B> and ‘ce’ and the letter ‘Y’, needed for French but missing from
the encoding, were finally introduced; third, the letters «7 7S ¥ which are used in most
Central European languages and which can be useful in personal and place names, were
also added. After the fall of the Soviet Union, the euro sign took the place of the universal

monetary symbol.

The new standard was called ISO 8859-15 (or “Latin-9”). It differs from ISO 8859-1 in only
eight positions (shown in black in the following diagram):

€ S §

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

7 7 E || Y

BO B1 B2 B3 B4 BS B6 B7 B3 B9 BA BB BC BD BE BF

ISO 8859-2 (Latin-2) and 1SO 8859-16 (Latin-10)

After ISO 8859-1, which is also known as ISO Latin-1, three other encodings for the Latin
alphabet came out: one each for the countries of Eastern Europe (ISO 8859-2), Southern
Europe (ISO 8859-3), and Northern Europe (ISO 8859-4).

Thus ISO 8859-2 (or “Latin-2”) includes the characters needed for certain languages of
Central Europe: Bosnian, Croatian, Czech, Hungarian, Polish, Romanian (but with a
cedilla instead of a comma under the letters ‘s’ and ‘¢’), Slovak, Slovenian, and Sorbian.
It also contains the characters needed for German (commercial influence at work) and
some of the characters needed for French (some accented capitals are missing):

. , " < < 7 <
NBSP | A L o | ¢ N S S S T | Z |sav | Z Z
Ao AL A2 A3 A4 A5 A6 A7 A8 A9 > AA AB AC AD AE AF
° a 1 ! r $ v $ S t z |7 |z zZ
Bo B1 ¢ B2 B3 B4 B5 B6 B7 > B8 B9 > BA BB BC BD BE BF
. . = - = ; 7 Y 7 " < ; = <
R|A|]A]A]A L C C C E E E E I I D
co 1 2 [&] C4 C5 C6 (o) C8 9 CA B cc ()] CE CF
g < y Py p < I " 7
b NI N|O|O]|]O]|O X R | U | U UlyY T iy
DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD > DE DF
7z z A ~ { z v z e A >
f a a a a 1 ¢ o ¢ é e é ¢ i i|d
E0 E1 E2 E3 E4 E5 E6 > E7 E8 E9 EA EB EC ED EE EF
. < . N < | = . < N . PR ,
d/a|n|o6 6|6 |06 |+ | T |G |a|d| iG]y t
Fo F1 F2 F3 F4 Fs F6 F7 F8 F9 FA FB FC | 7 FE FF

A few characters may need some explanation:

e Do not confuse the breve ‘™ and the hdcek “*’: the former is round, the latter pointed.

e Do not confuse the cedilla ! (which opens to the left) and the ogonek .’ especially
because the cedilla was often written like an ogonek in Old French, where we find
the letter ‘¢’.

ISO 8859 39

o Turkish uses the letter ‘s’ with a cedilla, but in Romanian the same letter, as well as
letter ‘t) are written with a diacritical mark shaped like a comma: ‘s, ‘t’. The ISO 8859-
2 standard was not intended to cover Turkish, yet we can see in the description of
the characters that these letters are anomalously written with a cedilla rather than a
comma.

In 2001, after the release of ISO 8859-15, which added the euro sign to ISO 8859-1 and
corrected a number of other deficiencies in that encoding, ISO did the same for ISO 8859-
2: 1SO 8859-16 (or “Latin-10”), the latest encoding in the 8859 saga, covers the languages
of Central Europe (Polish, Czech, Slovenian, Slovak, Hungarian, Albanian, Romanian),
but also French (with the ‘ce’ ligature!), German, and Italian. The coverage of this en-
coding stopped at the French border and did not extend to Spanish (‘Q’ is missing) or
Portuguese (there are no vowels with a tilde). It has the distinction of being the first
(better late than never!) to include the Romanian letters s’ and ‘¢’.

Here is the ISO 8859-16 encoding:

< ; ~ :
nese| A | a | B | €|, S 1S S 1 © | S| « | Z |suy| z | Z
Ao Al A2 A3 A4 A5 A6 A7 A8 A9 > AA AB AC AD AE AF
< ”
° + | C 1 Z ? Q . Z ¢ S » | B | e | Y Z
BO B1 B2 B3 B4 B5 B6 B7 B8 B9 > BA BB BC BD BE BF
N = c p N , = S =
A|lA|A|A|A|C|&EZ|C|E|E|E|JE | T | T[T
co 1 2 3 Ca C5 c6 > [« 9 CA CB cc ()] CE CF
b N O O O O (@) S U U U U U E T
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD > DE DF
a a a a a ¢ | & C IS é é é i i 1 i
EO E1 E2 E3 E4 E5 E6 > E7 E8 E9 EA EB EC ED EE EF
, N . N ~ | , N
d | A | o | 6| o 0 | § u |l a0 fa e |t |V
Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD > FE FF

ISO 8859-3 (Latin-3) and 1SO 8859-9 (Latin-5)

The third (ISO 8859-3, or ‘Latin-3’) in the series is dedicated to the languages of “the
South™ Turkish, Maltese, and Esperanto (the last of these not being particularly South-
ern). In it we find certain characters from ISO 8859-1 and ISO 8859-2 and also—
surprise!—a few empty blocks:

- A - A
nese | H £ o H | § S| G J | suy Z
A0 Al A2 A3 A4 A5 A6 A7 A8 A9 > AA AB AC AD AE AF
a ~
° | h | 2 3 “1lw | h - 1 s 1 glj.|% z
BO B1 B2 B3 B4 B5 B6 B7 > B8 B9 > BA BB BC BD BE BF
N R = " = N , = " N Py
Al A | A AjlCc|C|C|E|E]|E]|E | I |
Co 1 2 [«] C4 C5 C6 > (7 8 9 CA (B CC (D CE CF
- S p = = S P = : < A
NIO|lO|O|G|]O|x |G |U|JU|JU|U]|U/S
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
N P A . N N [N - P A
a d d a C C c € (& € € 1 1 1 1
E0 E1 E2 E3 E4 E5 E6 > E7 E8 E9 EA EB EC ED EE EF
~ . p « . A N . « o «
nlo |66 | g|o || g lulda|a i a] s
Fo F1 F2 F3 F4 Fs F6 F7 F8 Fg FA 8 FC FD FE FF

In 1989 the Turks, dissatisfied with ISO 8859-3, asked for a slightly modified version of
ISO 8859-1 with the Turkish characters in place of the Icelandic ones. The result was

40 Chapter 1 : Before Unicode

ISO 8859-9 (or “Latin-5"), which differs from ISO 8859-1 in only six positions (shown
in black below):

Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD S DE DF

1 S

Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD > FE FF

ISO 8859-4 (Latin-4), ISO 8859-10 (Latin-6),
and 1SO 8859-13 (Latin-7)

Encoding number 4 in the series (ISO 8859-4, or “Latin-4”) is dedicated to the languages
of “the North”. Since Danish, Swedish, Norwegian, Finnish, and Icelandic are already
covered by ISO 8859-1, “languages of the North” here refers to those of the Baltic coun-
tries: Lithuanian, Latvian, Estonian, and Lapp. Here is the encoding:

nese| A | K | R | & I L | S N S | E T |say | Z B
A0 A1 A2 > A3 A4 A5 > A6 A7 A8 A9 AA > AB AC AD AE AF
° , ~ v v ~ 1 v
Bo % B1 ¢ B2 1: B3 B4 1 B5 1 B6 B7 > B8 § B9 ¢ BA g BB t BC NBD 4 BE r] BF
A|lA|A|A|A|A|l&|1|C|E|E|E|E|T |1]I
co 1 2 [&] C4 C5 c6 7 8 9 CA B cc ()] CE CF
bPINIO|K|O|lO|O|x|O®|U|U|U|U|U|U/|S®R
Do > D1 D2 > D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
a | 4| 4a|ajalale]|i C | é | e | & | e i i i
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
d | n| o 6 |0 |0 |+~ |@ |u|d |G]dlnq Q
Fol 7 F1 21 ! F4 Fs F6 F7 F8 F9 FA F8 FC FD FE FF

In 1992, a new encoding (ISO 8859-10, or “Latin-6"), much more rational than the pre-
vious one, was created for the Nordic languages. It also includes all of the characters
required to write Icelandic. One special feature: certain “customs” of the ISO 8859 en-
codings were abandoned; for example, the universal currency symbol, the free-standing
accent marks, and the mathematical signs are not included.

nese| A | E |G| T | T | K|S |L|ID|S|T|Z|sax|U/|N
Ao A1 A2 > A3 A4 A5 > A6 A7 2 A8 A9 AA AB AC AD AE AF
o — ¢ - ~ M ¥ -
BO % B1 ¢ B2 g B3 1 B4 1 B5 l’(B6 B7 1 B8 d B9 § BA t BB Z BC BD u BE I) BF
A|A|A|A|A|A|ZAZ| 1 |C|E|E|E|E|T|T]Ti
co 1 2 (o5 C4 C5 c6 (o) c8 c9 A B cc (@) CE CF
bIN|O|O|O|O|O|U|O®|U|U|lU|U|Y/|P|R
Do 2 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
a | 4| 4| alia|a|e]|i ¢ é e | & e i) i
E0 E1 E2 E3 E4 ES E6 E7 E8 E9 EA EB EC ED EE EF
6 Fo 1;1 F1 o F2 0 F3 0 F4 o F5 o F6 u F7 Q’ F8 lzl F9 u FA u FB u FC y FD b FE K FF

A few comments:

e Clearly this ISO 8859 encoding is much more mature than the previous ones. Not
only have all the useless characters been done away with, but also there is a compan-
ion to the isolated ‘R’: the Greenlandic letter ‘k’, whose upper-case version is identical
to K.

ISO 8859 41

e The glyph ‘D’ appears twice: in position 0xA9 it represents the Croatian dje, whose
lower-case form is ‘d’; in position 0xD0, on the other hand, it represents the Icelandic
eth, whose lower-case form is ‘0’.

In 1998 a third encoding dedicated to the Baltic languages came out: ISO 8859-13 (or
“Latin-7”), which has the peculiarity of combining these languages with Polish and in-
cluding the appropriate types of quotation marks.

ISO 8859-5, 6, 7, 8, 11

ISO 8859-5, or “ISO Cyrillic”, stems from a Soviet standard of 1987, GOST 19768/87,
and is meant for the languages that use the Cyrillic alphabet. As there are many such
languages, all of them rich in characters, the encoding is limited to Russian as spelled
after the revolution (without the characters “fita o, yat &, izhitsa v, i dessyatirichnoye 1”
that Lenin eliminated) and to the languages spoken in European countries: Ukrainian
(without the character ‘r’, which the Soviet government did not recognize), Byelorus-
sian, Moldavian, Bulgarian, Serbian, and Macedonian. This encoding also includes the
‘Ne’ ligature, a number sign (like the North American English ‘#’), which appears in prac-
tically every Russian font. The ‘N’ in this character is a foreign letter; it does not appear
in the Cyrillic alphabet.

ISO 8859-6, or “ISO Arabic”, covers the Arabic alphabet. We are astonished by the min-
imalist appearance of this encoding: there are numerous empty blocks, yet many lan-
guages that use the Arabic script have extra characters that are not provided. ISO 8859-6
includes only the basic letters required to write Arabic and also the short vowels and
some of the diacritical marks (the wasla and the vertical fatha are missing). The punctu-
ation marks that differ in appearance from their Latin counterparts (the comma, semi-
colon, question mark) are also included.

Describing the I1SO 8859-7, or “ISO Greek”, encoding is a very painful experience for the
author, for he still bears the scars of that massacre of the Greek language that is known as
the “monotonic reform”. This reform of 1981 cut the Greek language off from its accents
and breathing marks for the sake of facilitating the work of the daily press and the com-
puterization of the language. Which other country in the world could bear to perpetrate
so grave an injury on a 2,000-year-old language in order to accommodate it better to the
limitations of the computer? (See {169, 166].) The survivors of the massacre are collected
in this encoding: letters without accents and vowels with an acute accent. There are also
the vowels iota and upsilon with a dieresis, as well as with both an accent and a diaeresis,
but their upper-case versions with the dizresis are absent.

The ISO 8859-8, or “ISO Hebrew”, encoding covers Modern Hebrew (or Ivrit). Once
again, a minimalist approach was taken: the Hebrew consonants and long vowels are all
there, but not the short vowels or any other diacritical marks. Yiddish is not provided for.

Finally, ISO 8859-11, or “ISO Thai”, which stems from Thai standard TIS 620 of 1986,
covers Thai, a Southeast Asian script that is a simplified version of the Khmer script. The
encoding is rather thorough: it contains practically all of the consonants, initial vowels,
diacritical marks, and special punctuation marks, as well as the numerals.

42 Chapter 1 : Before Unicode

ISO 8859-14 (Latin-8)

ISO 8859-14 (or “Latin-8”) is dedicated to the Celtic languages: Irish Gaelic (which is or-
dinarily written in its own alphabet), Scottish, and Welsh. Only Breton, with its famous
‘’h’ ligature, is absent. It is a variant of ISO 8859-1 with 31 modified characters that we
have shown here in black:

. Ay Ve . \ o
B | b ¢|lelD W Wl d|Y ¥
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
F| f| G| g |M|m Plw | p|w/| S|y |W]|w]s
BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
Y Y
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
W £ 9
Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

The Far East

The first telegraph systems in the Far East were imported from the West and therefore
used the Latin alphabet. How could the thousands, even tens of thousands, of ideo-
graphic characters of the Chinese writing system have been encoded, with either Morse
code or anything similar? Transliteration into the Latin alphabet was not an option
either, as the phonetics of the Chinese language are very ill suited to that approach.
Japanese is simpler phonetically, but another problem impeded transliteration: the enor-
mous number of homophones that are distinguished only in writing.

Only computer science could enable the countries of the Far East to communicate con-
veniently over large distances. The country the best equipped for this task was, of course,
Japan. In 1976, three years after the release of ISO 2022, the Japanese prepared the first
GR-type encoding—that is, a 94-character supplement to ASCII: JIS C 6220 (which was
rechristened as JIS X 0201-1976 in 1987). The ASCII used in Japan was already localized:
a yen sign ‘¥ replaced the backslash? and the tilde was replaced by an overbar (for writ-
ing the Japanese long vowels in Latin script). JIS C 6220, based on the JISCII released
in 1969, contains only katakana and a few ideographic punctuation marks (the period,
the quotation marks, the comma, the raised dot), all in halfwidth characters:

[. y
NBSIZO ° A1l A2 J A3 N A4 A5 7 A6 7 A7 /f A8 A9 * AA j AB '\1 AC + AD g AE / AF
- |7 |1 /2 I S T /I I a | ¥y |y At Y

Bo B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
v F VJ 7 b X s N t 7 A h 7

co 1 2 [} Cc4 Cs5 c6 7 [« c9 CcA B cc ()] CE CF
3 A . T Y| =2 3 7) v % n 7 v

Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

The phonetic modifiers were supplied as independent characters even though there was
enough space to encode all of their combinations with letters. The syllable ‘=’ was thus
obtained from the character ‘“~’ followed by a modifier character “*’.

2 Asaresult of which right up to this day, thirty years later, TgX commands in Japanese handbooks always
start with a yen sign rather than a backslash.. ..

The Far East 43

On January 1, 1978, after nine years of hard effort, the first true Japanese encoding,
JIS C 6226-1978, known today as “old JIS”, officially came into effect. It contains 6,694
characters: the Latin, Greek, and Cyrillic alphabets, the kana, and 6,349 kanji ideographic
characters, distributed over two levels. It was revised three times, finally to become
JIS X 0208-1997 in January 1997. This last encoding is perhaps the most important
Japanese encoding of all. Its structure complies with ISO 2022: there are 94 GR tables of
94 characters each.

In 1990 a second Japanese encoding was released: JIS X 0212-1990. It supplements the
first with 5,801 ideographic characters and 266 other characters. A third encoding,
JIS X 0213-2000, was released in January 2000. It adds another two levels of kanji to
those of JIS X 0208-1997: the third level contains 1,249 kanji; the fourth, 2,436.

China did not lag far behind Japan: in 1981, on the symbolic date of May 1, it issued the
first Chinese encoding, GB 2312-80. This encoding, which contains 7,445 characters, is
compatible with the ISO 2022 standard. It is suspiciously similar to the Japanese encod-
ings, at least in its choice of non-ideographic characters: it includes the Latin, Greek, and
Cyrillic letters, and even the Japanese kana.

Over time there were numerous extensions to GB 2312-80. By 1992, the number of char-
acters totaled 8,443. After Mao’s Cultural Revolution, the People’s Republic of China
adopted a simplified writing system of ideographic characters, and the encodings respect
it. But, contrary to what one might have expected, China also issued encodings in tradi-
tional characters. Thus in 1990 the GB/T 12345-90 encoding was released. The letter ‘T’ in
its name comes from the character # and means “optional”—after all, in a country that
has simplified its writing system, the traditional form could only be regarded as optional.

An encoding was also released in Taiwan on a May 1, but this time in 1984 (three years
after the People’s Republic of China released its own encoding). It is called, in English,
“Big Five”, and its name refers to the five big Taiwanese corporations that collaborated on
its development. It seems that Taiwan went all out to surpass its bigger cousin: Big Five
contains no fewer than 13,494 characters, 13,053 of which are ideographic, arranged on
two levels. Finally, 1992 saw the release of the CNS 11643-1992 encoding, which broke
all the records for number of characters: a total of 48,711, including 48,027 ideographic
characters, organized into seven planes with approximately 6 to 8 thousand characters
each. The first two planes correspond roughly to the two levels of Big Five.

As for the other Chinese-speaking countries, Singapore uses mainly the GB encodings of
mainland China, and Hong Kong, despite its recent annexation into China, uses mainly
Big Five.

The encoding frenzy began in South Korea in 1992 with the KS X 1001-1992 encod-
ing, which contains 4,888 ideographic characters, 2,350 hangul phonetic characters, and
986 other characters, once again including Latin, Greek, Cyrillic, and the Japanese kana,
strictly in imitation of the Japanese encoding JIS X 0208-1997.

North Korea is said to have abolished the ideographic characters, yet the first North
Korean encoding, KPS 9566-97 of 1997, contained 4,653 ideographic characters as well
as 2,679 hangul characters and 927 other characters. This encoding was inspired by

44 Chapter 1 : Before Unicode

the South Korean one but presents certain incompatibilities. In addition, positions
0x0448 to 0x044D fulfill an important state purpose: they contain the names of honorable
party president Kim Il-sung and his son and successor Kim Jong-il ... a funny way to
achieve immortality.

Using ISO 2022 to gain access to the characters in these encodings is not always very
practical because at any given time one must be aware of the current mode, that is, which
of GO, G1, G2, and G3 is the active encoding. In Japan there have been two attempts
to overcome this problem and make use of the characters of the JIS encodings without
employing escape sequences:

1. Shift-JIS is an initiative of Microsoft. The idea is very simple: the JIS encodings are
made up of tables of 94x94 characters, and, if we count in ranges of 16 characters,
that makes 6 x 6 = 36 ranges. But 36 can also be written as 3 x 12; thus we can obtain
any character by using two bytes, of which the first covers three different ranges and
the second covers twelve different ranges. We select the ranges 0x81-0x9F and OxEO0-
OXEF for the first byte and 0x40-0x7E and 0x80-0xFC for the second. Why have we
chosen those particular ranges for the first byte? Because they leave section 0x20-
0x7F free for ASCII and section 0xA0-0xDF free for the katakana. Thus, upon reading a
byte, the computer knows if it is a single-byte character or if a second byte will follow,
and a simple calculation is sufficient to find the table and the position of the desired
character.

Shift-JIS was widely used under Windows and MacOS. Its flagrant drawback is that
the technique of 3 x 12 severely limits the number of characters accessible through
this method. Thus there is no hope at all of adding any extra characters. And we can-
not automatically change encodings because we do not have access to the ISO 2022
escape sequences.

2. EUC (Extended Unix Coding) is a variant of ISO 2022 without escape sequences.
There is not just one EUC but an assortment of localized versions: EUC-JB, EUC-CN,
etc. In each of them, one chooses from one to four encodings. The first two are ob-
tained from suitable choices of ranges of characters. The third and fourth encodings
are ultimately formed through the use of two control characters: ss2 (0x8E) and ss3
(0x8F), followed by one or two other characters.

Thus, for example, EUC-JP includes ASCII, JIS X 0208-1997, the katakana, and
JIS X 0212-1990. Among these four, ASCII is obtained directly, JIS X 0208-1997
is obtained from the characters 0xA1-0xFE x 0xA1-0xFE, the katakana are obtained
with ss2 followed by 0xA1-0xDF, and JIS X 0212-1990 is obtained with ss3 followed
by 0xA1-0xFE x0xA1-0xFE.

While Shift-JIS is peculiar to Japan, EUC has also been used in other countries: there are
the encodings EUC-CN (mainland China), EUC-TW (Taiwan), EUC-KR (South Korea).

The interested reader will find a very detailed description of these encodings and a host
of other information in Ken Lunde’s book CJKV Information Processing [240}.

Microsoft’s code pages 45

Microsoft’s code pages

The term codepage for “encoding” was oined by Microsoft. As the DOS system, for exam-
ple, was console-based, we find in the DOS code pages a set of graphical symbols used
to draw user interfaces through the simple arrangement of straight segments, corners,
crosses, etc. There are even lattices of pixels that simulate various shades of gray.

In the US, the most commonly used DOS code pages were 437 (“United States”) and 850
(“Multilingual”). In both cases, 128-position extensions to ASCII were made (the entire
upper half of the table). Here is the part of the table beyond ASCII for code page 437,
entitled “MS-DOS Latin US™

c|la | é |a|a|alja|c¢ & | & le | T [T |]1[A]A
> 80 81 82 83 84 85 86 > 87 88 89 8A 88 8C 8D 8E 8F

Elae |ZAZ|O0 |0 |0 |G |U |V |]O|U]|C¢ | £]| ¥ |Pts| f
90 91 92 93 94 95 96 97 98 99 9A 98 9C 90 9E 9F

C. ‘ « »
As A6 A7 A8 A9 AA AB AC AD AE AF

BS -" B6 TI B7 =| B3 Jll B9 || BA 1 BB J BC JJ BD J BE -I BF

N
— L 4 | = L | = | 4 | L
a + cs |= 6 "- a @ e | Mea| IMec o Me cF
L d |
os] Fos| Mo -H- b7 + 08 | [on .a . I o I DE OF
2| o v T | DO Q|5 || o € N
E4 ES E6 E7 E8 E9 EA EB EC ED EE EF
[| = |~ ° . . Vel " 2 m | NBsP
F4 Fs F6 F7 F8 F9 FA B FC D FE FF

This code page is a real mixed bag: a few accented letters (there is an ‘E’ but no ‘E’...),
a handful of currency symbols, some punctuation marks, three rows of building blocks
for drawing user interfaces, and a number of mathematical symbols, including a small
range of Greek letters. One startling fact: the author does not know whether the charac-
ter in position xE1 is a Greek beta ‘B’ or a German eszett ‘R’. Its location between alpha
and gamma suggests that it is a beta, but at the same time the presence of the German
letters ‘@’ ‘0%, and ‘W’ implies that this encoding should logically include an ‘®’. Could it
be that the same character was supposed to serve for both? If so, depending on the font,
we would have had aberrations such as “BuAiov” or “Giepgefap”...

Code page 850 (MS-DOS Latin 1) is a variant of the preceding. It contains fewer graphical
characters and more characters for the languages of Western Europe. Note that the Ger-
man eszett ‘R’ appears in the same position as the ‘B/#’ of code page 437:

C | u é a a a a C é é e I 1 i A | A
> 80 81 82 83 84 85 86 > 87 88 89 8A 8B 8C 8D 8E 8F

Elae | £A| 0| 0 0 u |y |0 | U|lg | £ || x| f
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

i 6 | 4 no| N | 2 ° el ® | 7l Y i « | »
Al A5 A6 A7 A8 A9 AA AB AC AD AE AF

- = N] i

A BS B6 A B7 © B8 -Il B9 || BA ﬂ BB BC ¢ BD ¥ BE —I BF

46 Chapter 1 : Before Unicode

L] L Fl— |4]a|a|tn Ll ktl=]4]|x
Co C1 T 2 [&] C4 c5 a C6 A 7 8 W 9 CA L CB r CC D L CE CF
o/b | E|E|E v [T T T /4 /IR om @, 1,/ ™
DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA B C DD DE DF
8 10|06 |0 p|Db|P|U|U|lU|Y|Y

EO E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
suy | + | = | % | @ N =+ ° . 1 3 2 m | NBsP
Fo F1 F2 F3 Fa Fs F6| > F7 F8 F9 FA FB FC FD FE FF

There were numerous other MS-DOS code pages [204]}: 708-710, 720, and 864 (Ara-
bic); 737 and 869 (“monotonic” Greek); 775 (Baltic countries); 852 (countries of Central
Europe); 855 and 866 (Cyrillic, with 866 being for Russian only); 857 (Turkish); 860
(Portuguese); 861 (Icelandic); 862 (Hebrew, without the short vowels); 863 (“Canadian
French”, a pastiche of 437 and 850); 865 (Nordic countries); 874 (Thai); 932 (Japanese);
936 (simplified Chinese); 949 (Korean); 950 (traditional Chinese).

When Windows came out, there was no longer any need for “graphical characters”, and
a change of encodings was called for (even though it caused big problems for users who
were porting their documents from MS-DOS to Windows). In the meantime, the first
ISO 8859 encodings were released, and Microsoft decided to adopt them—but avoided
their major shortcoming: the characters 0x80-0x9F were not control characters in Mi-
crosoft’s implementation.

Thus code page 1252 Windows Latin 1, also known as “ANSI”, is an ISO 8859-1 encoding
to which the following two lines have been added:

2
€ A I I ATl E S % | S| o< | E 7
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

< b « ”» ~ v v o
o | - | — ™5 > | e z |'Y
90 91 92 93 94 95 96 97 98 99 9A 98 9C 90 9E 9F

We can only rejoice at the fact that the letters ‘(E’, ‘ce’, and ‘Y’ are found in this encoding.
There are also the single guillemets ‘< > and the two most common Central European
letters, ‘S § and ‘Z 7. A few details: ¢ and *,” are the German single and double opening
quotation marks, also called Gansefiifschen (= ‘{little] goose feet’).

Code page 1250 Windows Latin 2 both extends and modifies ISO 8859-2. Positions 0x80-
OxBF are the ones that have undergone modification:

< Z Y > ,
€ R » T o %o | S < S T | 7
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
< b « » _ ™ b4 4 b > s
° — S > S t Z z
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
NBSP | N L o | A | N h © S « - |say | ® | Z
Ao Al A2 A3 A4 © A5 A6 A7 A8 A9 > AA AB AC AD AE AF
° & 1 ! po| @ | - al|ls | » | L |71 |z
Bo B1 ¢ B2 B3 B4 B5 B6 B7 > B8 B9 > BA BB BC BD BE BF

There has never been a Windows Latin 3 or a Windows Latin 4, but there is a 1254 Windows
Latin 5 for Turkish, which differs from 1252 Windows Latin 1 in only six positions:

G I |5

DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD > DE DF

1 S
FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD > FE FF

Apple’s encodings 47

These are the same differences that we find between ISO 8859-1 and ISO 8859-9.

Other Windows code pages are 1251 Windows Cyrillic, 1253 Windows Greek (“monotonic
Greek” is implied?), 1255 Windows Hebrew, 1256 Windows Arabic, and 1257 Windows
Baltic.

Apple’s encodings

From the beginning, the Macintosh used its own encoding, an extension of ASCII
that was still incomplete on the first Macintosh (released in 1984) but was gradually
fleshed out. The unusual aspect of the Macintosh encodings is that they, like the MS-
DOS code pages, include mathematical symbols. Since most fonts do not contain these
symbols, MacOS had a special substitution procedure. Whichever font one used, the
mathematical symbols almost always came from the same system fonts. Other special
features of the Macintosh encodings: they include the ‘i’ and “fI’ ligatures as well as the
famous bitten apple ‘®’ that Apple uses as its logo.

Here is the encoding used on the Macintoshes sold in the US and in Western Europe,
which is called Standard Roman {53} (a rather poorly chosen name, since the term “ro-
man” refers to a font style rather than to a writing system):

o

" p ~ - - =
A|lA|/C|EIN|O|U|4ad | ala|alal|al]c| é]/|¢e
80 81 > 82 83 84 85 86 87 88 89 8A 8B 8C > 8D 8E 8F
A . P N N - ~ p < A - ~ P < « -
€ (S 1 1 1 1 n (o) (6] (6] (6] (6] u u u u
90 91 92 93 94 95 96 97 98 99 9A 98 9C 90 9E 9F
+ ° ¢ £ N . | B ® | © | ™| 7 < | £ | O
Ao A1l A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
%) < > f a o
BO :‘: B1 — B2 — B3 ¥ B4 l’l’ B5 a B6 2 B7 H B8 T B9 BA BB BC Q BD & BE Q BF
)] i oV fl=1A] « | » Ansse| A | A E | ce
co 1 2 [&] C4 C5 c6 7 («] 9 CA B cc (@) CE CF
_ _ « » < b % <> y Y / m < > ﬁ ﬂ
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
= ~ . - < y P " S y A
¥ . R s | %0 | A | E | A | E E I | | I O | O
E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
\ 7 A \ N ~ - - . o ” v
« O | U |U|U 1
Fo F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB > FC FD ¢ FE FF

A few details: we have already seen the German quotation marks ;) and “,,” in the 1252
Windows Latin 1 encoding. The character 0xDA ¢/’ is a fraction bar. Do not mistake the
characters Y and ‘[T’ for the Greek letters ‘¥’ and ‘IT’: the former, the mathematical
symbols for sum and product, are larger than the ordinary Greek letters, which are of
regular size. In addition, both may appear in one formula: 32, X; = M7 11;. The two
glyphs look very much alike, but in position xA1 we have the degree sign (a perfect circle)
while in position xBC there is a superscript letter ‘0’ used in Spanish, French, and other
languages. The letter ‘1’ in position F5 is not intended for Turkish but to be combined
with accents.

3 This encoding long irritated the Greeks because it differs only slightly from ISO 8859-7: the accented
capital letter alpha occurs in position 0xA2 on the Windows code page and in position 0xB6 in the ISO encoding;
thus the letter tends to disappear when a document is transferred from Windows to Unix or the opposite....

48 Chapter 1 : Before Unicode

There is an Icelandic version of this encoding that differs from Standard Roman in six po-
sitions: Y’ (0xA0), ‘D’ (0xDC), ‘@’ (0xDD), ‘P’ (0xDE), ‘p’ (0xDF), y’ (OXEO).

There is a Turkish version as well, that differs from Standard Roman in six consecutive
positions: ‘G’ (0xDA), ‘g’ (0xDB), ‘T’ (0xDC), 1’ (0xDD), ‘S’ (0xDE), ‘s’ (OxDF). Position 0xF5
of this encoding has been left empty so that the letter 1’ would not appear twice.

In addition, there is a Romanian version of the encoding, Romanian, that again differs
from Standard Roman in six positions: ‘A’ (OXAE), ‘§’ (OXAF), ‘a (OxBE), ‘s’ (0xBF), “T” (0xDE),
‘t’ (OXDF).

For the languages of Central Europe and the Baltic countries, Apple offers the Central
European encoding, shown below:

- - - " - < - p 7
Al A a E|A|O| U/ 4 a | C a ¢ C ¢ é Z
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
< - - : ; . <
Zz | D i |d|E| e | E]|O e 6 | 6|0 | ul| E]| €& | u
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
° ™ S
[]
T A0 A1 E A2 £ A3 § A4 A5 .[A6 ﬁ A7 ® A8 © A9 AA @ AB AC # AD g AE I AF
. ¥ - V4 7
1 I < > 1 K d 2 1 L | r r L | N
BO B1 B2 B3 B4 2 Bs B6 B7 B8 > B9 > BA BB BC BD BE > BF
, S . = p ~ -
n N = Vol 1 N A « » ..INBsP| T O] 0O 0 (@]
> o 1 2 a 4 C5 6 7 8 9 CA B cc ()] CE CF
- - <
- | =1 ¢ ? ¢ ’ =19 0 | R f R < > I R
Do D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE > DF
g ” p . - v ; 7 ” ” - Z p
T R » S S $ AT t I V4 Z ujo]| o
> E0 E1 E2 E3 E4 ES E6 E7 E8 E9 EA EB EC ED EE EF
- o 7 o 77 ” 7z ’ .
a|lU|Uja|U|d|U|luwu]|Y | Y |k|Z|L]|z |G|~
Fo F1 F2 F3 Fa F5 F6 F7 F8 F9 > FA FB FC FD > FE FF

Notice that, for an unknown reason, the ‘~” has resumed its customary size and that there
is no ‘IT. This encoding covers Polish, Czech, Slovak, Slovenian, Hungarian, Lithuanian,
Latvian, and Estonian. It does not cover Croatian because it lacks the letter ‘D d’. For this
reason, Apple issued a special encoding (Croatian) for the Croatian language.

Other Apple encodings: Arabic (Arabic, Persian, Urdu, still without wasla but with ver-
tical fatha), Chinese Traditional, Cyrillic (for the European languages that use the Cyril-
lic alphabet, with the exception of Ukrainian, for which the letter ‘v’ is missing), Greek
(“monotonic” Greek), Hebrew (Hebrew with vowels, semivowels, and schwa), Japanese,
Korean, Devanagari, Gujarati, Gurmukhi, and Thai.

Electronic mail

The protocol for electronic mail that is still in use today was published in 1982: it is
RFC 822 (in which RFC stands for “Request for Comments”, a way to demonstrate the
democratic nature of the Web’s standards). This RFC stipulates that electronic messages
are to be encoded in ASCII.

To mitigate that drawback, a new RFC published in 1996 (RFC 2045) introduced a tech-
nique that has since become an integral part of electronic mail: the MIME protocol
(= “Multipurpose Internet Mail Extensions”). MIME allows for the attachment of files to
e-mail messages and for dividing a message into multiple segments, each one potentially

Electronic mail 49

of a different type, or, if it is of type text, potentially in a different encoding. To specify
the encoding of a message or a part of a message, we use two operators:

e charset is the encoding of the content. Its value must appear on a list {186] estab-
lished and regularly updated by IANA (= “Internet Assigned Numbers Authority”).
In February 2004 there were 250 registered encodings, such as US-ASCII, IS0-2022-
JP, EBCDIC-INT, IS0-8859-1, IBM437 (code page 437), windows-1252 (Windows code
page 1252), etc.

The encoding affects only those segments of MIME type text (the subtype being
plain, which indicates that the text is not enriched). The syntax is as follows:

Content-Type: text/plain; charset=US-ASCII

e Content-Transfer-Encoding specifies how to translate the coming binary (be-
yond 0x7f) bytes into ASCII data. This is necessary because MIME did not change
the nature of electronic mail—which remains based on ASCII just as much as it
was twenty years ago. In fact, MIME offers only makeshift methods for converting
binary bytes to ASCII and vice versa. Two methods are available: “quoted-printable”
text and text in “base 64”.

Quoted-printable involves using the equals sign as an escape character. Three possi-
bilities exist:

1. The character to convert is a “printable” ASCII character—that is, in the
range of 0x20 to Ox7e—other than the equals sign (ASCII 0x3d). In this case
it passes through unchanged.

2. The character is a control character (0x00-0x1), a binary character (0x80-0xff),
or an equals sign. In this case we write the equals sign followed by the position of
the character in the table, in the form of a two-digit hexadecimal number. Thus,
if we have specified that we are using ISO 8859-1, the word “voila” is written
voil=Eo.

3. Since the length of the lines in the message is limited, we will divide any exces-
sively long line by adding an equals sign followed by a newline. A line break
of this kind will ordinarily be disregarded by the application that decodes the
“quoted-printable” text.

A message encoded in “quoted-printable” format must include the following line in
its header:

Content-Transfer-Encoding: quoted-printable

The other method, “base 64” involves taking three consecutive bytes of text and
regarding them as four groups of six bits (3 x 8 = 4 x 6). Each group of six bits is
represented by one ASCII character, as follows:

— the letters A to Z represent the numbers between 0 and 25;

— the letters a to z represent the numbers between 26 and 51;

50 Chapter 1 : Before Unicode

— the digits 0 to 9 represent the numbers between 52 and 61;
- +and / represent respectively the numbers 62 and 63.

The remaining possibility is that one or two bytes will be left over after translation of
all of the three-byte sequences. Suppose that one byte, notated xxxxxxxx, is left over.
Then we will use the two six-bit groups xxxxxx and xx0000, and we will append two
equals signs to the converted string. If two bytes, xxxxxxxx and yyyyyyyy, are left
over, we will use the three six-bit groups xxxxxx, xxyyyy, and yyyy00, and we will
append a single equals sign to the converted string.

\

Example: to encode the word “voila” (01110110 01101111 01101001 01101100
11100000), we start by taking the first four letters and dividing them into groups
of six bits (011101 100110 111101 101001 011011 000000), namely the num-
bers 29, 38, 61,41, 27, and 0, which give us the alphanumerics dm9pbA. The remaining
letter ‘2’ (11100000) gives us two groups of six bits (111000 000000), namely the num-
bers 56 and 0, and therefore the codes 4A. We will append an equal signs to indicate
that one letter is missing to complete the triplet. Thus the result is dmgpbA4A=.

A message encoded in “base 64” must include the following line in its header:

Content-Transfer-Encoding: base64

What are the advantages and disadvantages of the conversions to “quoted-printable” or
“base 64”? When the encoding and decoding are performed transparently by the e-mail
software, the difference is of little importance, apart from the fact that a message in ASCII
with few binary characters will take up less space in “quoted-printable” than in “base 64,
while for a message entirely in binary characters the opposite is true. Nevertheless, if
the message could be read with software that is not compatible with MIME, “quoted-
printable” text will be legible in languages such as French or German that do not use
accented or special lettetrs with great frequency, whereas text in “base 64” will have to
be processed by computer.

While RFC 2045 specified the encoding of text segments, no provision was made for the
subject line of the message or the other lines in the header that would contain text. The
solution was provided by RFC 2047, which defined a way to change encodings at any
time, either within a string in the header or within the body of the message. It is nothing
revolutionary: we once again use the equals sign (which plays a special role in both forms
of conversion to ASCII) as an escape character:

=?name?*?converted string?=

where name is the IANA name of the encoding, * is either Q (= quoted-printable) or B

(= base 64), and converted string is the converted string. Thus the word “voila” en-
coded in ISO 8859-1 can be written in the following two ways:

=?is0--?Q?voil=E0?=
=?150--?B?dm9pbA4A=?=

Alas, neither of them is really legible. ..

The Web 51

The Web

The Web is the exchange of HTML data under the protocol HTTP (“Hypertext Transfer
Protocol”). Version 1.1 of this protocol is described in RFC 2616 of 1999. Browsers and
servers communicate through this protocol by sending each other messages that may or
may not contain HTML data. Thus, when one types a URL followed by a carriage return
in the appropriate area in the browser, the browser sends an HTTP request to the server
in question. The server replies by sending the HTML data corresponding to the URL,
or with an error message. In all three cases (request, transmission of HTML data, error
message), the parties to the communication send each other messages through HTTP.

HTTP is based on three concepts: the encoding (called charset), which by default is
ISO 8859-1 (and not ASCII); the type of compression to be applied (called content-
coding, whose values may be gzip, compress, z1ib, or identity); and the “transfer cod-
ing” to be used. The transfer coding corresponds to the “quoted-printable” and “base 64”
of MIME, except that here data transfer is binary and thus does not require conversion
to ASCII. The “transfer coding” that we use is chunk, which means that the data will be
divided into blocks of a fixed length.

Here is an example of an HTTP header for a message in ISO 8859-1 with gzip compres-
sion:

Content-Type: text/html; charset=iso--
Content-Encoding: gzip
Transfer-coding: chunked

where the first line specifies that the MIME type of the following document is text, with
html as its subtype.

HTTP headers can also be included in the value of the content attribute of the meta
element of HTML and XHTML. Each occurrence of this element contains a line of the
HTTP header.

The first two parameters (encoding and compression) can also be used in the HTTP re-
quest sent to the server, to express the browser’s possibilities. In this way the browser can
request a certain encoding that it knows how to use or even multiple encodings arranged
in order of preference, one or more types of compression, etc. By writing

Accept-Charset: iso--, iso--;9=0.8

the client specifies that it can read, in order of preference, text in ISO 8859-15 and
ISO 8859-1. The parameter q=0.8 (‘q’ as in “quality” and a number between 0 and 1)
that follows the second encoding applies to it alone and indicates that the use of this
encoding will give a result with 80% quality. Using this list of requested encodings and
their weights with respect to quality, the server will decide which encoding to use to
send data. If none of the requested encodings is available, the server will reply with an
error message: “406: not acceptable”.

The same is true for compression:

52 Chapter 1 : Before Unicode

Accept-Encoding: gzip;q=1.0, identity;q=0.5, *;qg=0

where the asterisk is the “wildcard”. The line shown above should be interpreted as fol-
lows: the document may be compressed with gzip (top quality) or not compressed at all
(50% quality), and every other type of compression is of “0% quality”, which means un-
acceptable.

One details that may lend itself to confusion: here “charset” is used to designate the char-
acter encoding and “coding”, or even “encoding” in the “accept” commands, is used for
compression.

Characters, glyphs, bytes:
An introduction to Unicode

In the previous chapter, we saw the long journey that encodings took on their way to
covering as many languages and writing systems as possible. In Orwell’s year, 1984, an
ISO committee was formed with the goal of developing a universal multi-byte encoding.
In its first (experimental) version, this encoding, known as ISO 10646 (to show that it was
an extension of ISO 646, i.e., ASCII), sought to remain compatible with the ISO 2022
standard and offered room for approximately 644 million characters (!), divided into
94 groups (GO0) of 190 planes (GO + G1) of 190 rows (GO + G1) of 190 cells (GO + G1).
The ideographic characters were distributed over four planes: traditional Chinese, sim-
plified Chinese, Japanese, and Korean. When this encoding came up for a vote, it was not
adopted.

At the same time, engineers from Apple and Xerox were working on the development
of Unicode, starting with an encoding called XCCS that Xerox had developed. The Uni-
code Consortium was established, and discussions between the ISO 10646 committee
and Unicode began. Unicode’s fundamental idea was to break free of the methods of
ISO 2022, with its mixture of one- and two-byte encodings, by systematically using two
bytes throughout. To that end, it was necessary to save space by unifying the ideographic
characters.

Instead of becoming fierce competitors, Unicode and ISO 10646 influenced each other,
to the point that ISO 10646 systematically aligned itself with Unicode after 1993.

Unicode was released in 1993 and has not stopped growing and evolving since. Its latest
version, as of the writing of the book, bears the number 5 and was released in 2006.
Most operating systems (Windows XP, MacOS X, Linux) are currently based on Unicode,
although not all software is yet compatible with it. The Web is also moving more and

53

54 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

more towards adopting Unicode, especially in regard to East Asian languages and writing
systems.

But there is a price to pay for being open to the writing systems, and therefore also
the cultures, of other peoples: computers and their operating systems must be more
powerful, software must be more advanced, fonts must be much larger (and necessarily
more cumbersome). And we have not even spoken of the different rendering techniques
needed to display East Asian languages correctly—techniques employed in part by the
operating system and in part by OpenType or AAT fonts.

In this chapter, which aims to be an introduction to Unicode, we shall discuss its overall
structure and a number of technical and philosophical questions: what is the difference
between characters and glyphs? how do we move from abstract characters to the very
concrete bytes used in the computer?

In the following chapters, we shall examine the individuals that populate Unicode: char-
acters and their properties. We shall discuss a few special situations that call for advanced
techniques (normalization, bidirectionality, East Asian characters). Finally, we shall see
how Unicode is used in operating systems and, more specifically, how we can enter Uni-
code characters into a document, whether by using special software or by designing
virtual keyboards ad hoc.

What we shall not do in this book—so as not to double its already considerable size—
is describe one by one the different writing systems covered by Unicode. Our approach
will be to describe only those cases that present problems and that are worth discussing
in detail. We shall refer the reader to other works that discuss the world’s writing systems
very thoroughly, from either the linguistic ({106, 309, 345, 136, 96}) or the typographic
({133, 89, 148, 163}]) point of view.

Philosophical issues: characters and glyphs

Unicode is an encoding of characters, and it is the first encoding that really takes the
trouble of defining what a character is.

Let’s be frank: computer specialists are not in the habit of worrying about philosophical
issues (“who am I?”, “what comes after death?”, “what is a character?”). But that issue
arose quite naturally in Unicode when the Asian languages were touched upon. Unicode
purports to be an encoding based on principles, and one of these principles is precisely
the fact that it contains characters exclusively. This fact forces us to give serious consider-
ation to the question of what constitutes a character and what does not.

We can compare the relationship between characters and glyphs to the relationship be-
tween signifier and signified in linguistics. After all, Ferdinand de Saussure, the founder
of linguistics, said himself: “Whether I write in black or white, in incised characters or
in relief, with a pen or a chisel—none of that is of any importance for the meaning”
{310, p. 118]. What he called “meaning” corresponds very well to what we intend to call
“character”, namely, the meaning that the author of the document wished to impart by
means of the glyph that he used.

Philosophical issues: characters and glyphs 55

But things are a bit more complicated than that: there are characters with no glyphs,
glyphs that can correspond to a number of different characters according to context,
glyphs that correspond to multiple characters at the same time (with weightings assigned
to each), and even more possibilities.

The problem of glyphs and characters is so complex that it has gone beyond the realm of
computer specialists and has come to be of interest even to philosophers. For example,
the Japanese philosopher Shigeki Moro, who has worked with ideographic characters in
Buddhist documents, goes so far in his article Surface or Essence: Beyond Character Model
Set {274} as to say that Unicode’s approach is Aristotelian essentialist and to recommend
supplanting it by an approach inspired by Jacques Derrida’s theory of writing {114, 115}.
The reader interested in the philosophical aspects of the issue is invited to consult {165,
156}, in addition to the works cited above.

Let’s be pragmatic! In this book we shall adopt a practical definition of the character,
starting with the definition of the glyph as a point of departure:

e A glyph is the image of a symbol used in a writing system (in an alphabet, a syllabary,
a set of ideographs, etc.) or in a notational system (like music, mathematics, cartog-
raphy, etc.).

o A character is the simple description, primarily linguistic or logical, of an equivalence
class of glyphs.

Let us take a concrete illustration by way of example: the letter ‘W’. It is clear that there
are thousands of ways to write this letter—to convince oneself of that fact, one need only
thumb through Chapter 11, on the history of typographic characters. We could describe
it as “the capital Latin letter double-you”. All the various ways to write the letter (‘W’,
W, ‘W, ‘W, “W’.....) have in common the fact that they match this description. The de-
scription is simple because it does not contain any unnecessary or irrelevant terms. It is
linguistic because it falls within the realm of English grammar. We can therefore say, if
the fact of corresponding to a description of this type is an equivalence relation, that the
equivalence class in question is the character “capital Latin letter double-you”

Let us take another example: the symbol “x’. We could give it the description “the math-
ematical multiplication sign”. This description is simple—we could even omit the word
“mathematical”, as Unicode has indeed done. But it is not linguistic at all. It is a logical
description because it falls within the realm of a well-defined, universally accepted sys-
tem of notation, that used by mathematics. Thus the glyphs that could be described in
this manner form an equivalence class that is the character in question.

But are the names of characters always as clear and precise as these?

Unfortunately not. For example, we have a character that is described as the “double
high-reversed-9 quotation mark”. The “high-reversed-9” part of the description is neither
linguistic nor logical but rather crudely graphical, even awkward. To describe this charac-
ter, whose glyph is “”, it would have been easier to call it the “second-level Greek opening
quotation mark”, because that is its most common use.

56 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

Fortunately the Unicode book and the PDF files that can be found at the Consortium’s
Website (http://www.unicode.org/charts/)always supply with the description of each
character a glyph that is called the representative glyph. It is not prescriptive, but its pres-
ence is extremely useful because it enables non-speakers of a language to identify the
symbols described by their names. In the absence of representative glyphs, one would
have to speak Tibetan in order to know that dzud rtags bzhi mig can is a cross made of
four dots, and one would have to be a specialist in runes to know that the letter ingwaz
is shaped like a diamond.

The representative glyph is not always sufficient when one is not familiar with a given
writing system. Indeed, the glyphs that correspond to a given character may sometimes
assume forms far removed from one another. That variation may be due to stylistic ef-
fects or historical reasons (the difference between ‘W3’ and ‘W’ is considerable), or even
to reasons of grammar. The latter is true in the case of Arabic, whose grammar provides
that the letters assume different forms according to context and, more specifically, ac-
cording to their position in the word. Thus the representative glyph for the character
ARABIC LETTER KAF is ‘&Y, but within a word the same letter is rendered by a glyph similar

to ‘S, a shape that is not a priori trivial for the reader unfamiliar with the Arabic script
to recognize.

The representative glyph is the only way to find an ideographic character, as those char-
acters have no description. We might have imagined, for example, that the character P

> »,

could be described as “character meaning ‘gate’”; but since it also means “entrance”,
“section”, “field”, “disciple”, “school”, and “clan”—and all that in Japanese alone—, we
can see that an attempt to represent the encoding’s 70,027 ideographic characters in that
manner would be a task as monumental as it would be futile. We shall see in Chapter 4

the specific problems that ideographs present.

Other characters do not have a glyph at all. That should come as no surprise to the reader,
since even before ASCII there were encodings with control characters that had very precise
semantics but did not need to be visually represented. Unicode goes even further: it is
no longer restricted to sending messages to the central processing unit (such as “bell”)
or to peripheral devices (such as “carriage return”) but extends even to the rendering of
characters. Thus we have combining characters that affect the rendering of the preceding
character(s). Often this modification involves adding an accent or a diacritical mark. In
some cases, it involves graphically combining the preceding characters. There are many
other applications of this possibility.

A string of Unicode characters can thus sometimes be more than a mere concatenation
of symbols. It may be a sort of miniature program that tells the rendering engine how
to proceed.

Another factor that distinguishes Unicode from other encodings is that its characters
are more than mere descriptions and positions in a table. They have a certain number
of properties thanks to which Unicode-compatible software is better equipped to render
strings of characters visually or to process them. Let us take an example: in a document
written in French and Khmer, the year 2006 may appear as “2006” or “lJ009”. To keep
us from having to search for two different strings, an intelligent text editor would only

Philosophical issues: characters and glyphs 57

Figure 2-1: When scripts are mixed.. .. [Photo taken in Athens by the author.]

have to look up the properties of the characters ‘I, ‘0’ and ‘®’ to learn that they are
digits whose numeric values are precisely 2, 0, and 6—and voila!

Of course, that does not work for numeration systems such as those of the Romans (in
which 2006 is written “MMVTI”), the Greeks (“ x¢™), and the Chinese (“ —~OO75”), but
it hardly matters: using Unicode properties, software can process Unicode data in an
intelligent way without having to reinvent the wheel. Chapter 3 is dedicated to Unicode
character properties.

Another characteristic of the relationships between characters and glyphs: for reasons
that are usually historical, the same glyph can represent multiple characters. Only con-
text enables one to identify the character visually. Thus when we write ‘H’ in an English-
language context such as this book, it is clear that we are using the eighth letter of the
Latin alphabet. But the same glyph in the word “I'TANNHZY” (which is the author’s
first name) or in the word ““Hpepia” (Eremia = ‘tranquillity’) represents the Greek letter
eta. Yet mixtures of writing systems are not always impossible, as shown by the photo
taken in Athens that appears in Fig. 2-1. In it we see the word “PARKING” that starts off
in Greek letters and ends with Latin ones, passing through the letters ‘K’, ‘I, and ‘N,
which are common, both graphically and phonetically, to the two scripts. Finally, the
same glyph in a word such as “PECTOPAH?” (= ‘restaurant’) or “Harawa” (= ‘Natasha’) is
ordinarily recognized right away as the Cyrillic letter ‘N’ (except by the various Western
tourists who believe that restaurants in Russian are called pektopah. ..). In the case of
the glyph ‘H’, the lower-case versions enable us to identify the character unambiguously:
‘), ‘n’, ‘e’. There are also Unicode characters that have the same glyph yet belong to the
same writing system: ‘D’ can be the Icelandic letter eth (lower-case ‘0’) or the Croatian
letter djé (lower-case ‘d’). The glyph ‘@’ may represent either GREEK SMALL LETTER ALPHA
WITH TONOS Or GREEK SMALL LETTER ALPHA WITH ACUTE: in the first instance, the acute
accent is regarded as the single accent of the “monotonic” system; in the second instance,
it is an ordinary acute accent. Even worse, there are Unicode characters belonging to the

58 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

same writing system that have the same glyphs and the same semantics: the ideographic
characters in the “CJK compatibility” block. These are characters that the Koreans en-
coded twice because those characters have two distinct pronunciations in their language.
If the Japanese had done the same, we would have twenty or even thirty identical copies
of certain ideographic characters. ..

Which brings us to a fact that justifies to a large degree the inconsistency of certain parts
of Unicode: among the principles of Unicode, there is one that often comes into con-
flict with the others, the principle of convertibility. This principle stipulates that all data
encoded in an official or industrial encoding that is in sufficiently wide use must be con-
vertible to Unicode without loss of information. In other words, and with a little less tact:
every wacky, exotic, vaguely defined, arcane, and often completely useless character that
exists today in any of the designated encodings is elevated to the rank of Unicode character.
Let’s just consider a few examples that arose in Chapter 1: the “universal currency sign”?
Itis in Unicode. The graphical symbols in the DOS code pages that were used to draw user
interfaces? They are in Unicode. The self-standing accent marks that we used to add to
letters by backspacing? They are present as well. The Koreans encode certain ideographs
twice? Unicode follows their lead.

What is to be gained by having certain characters appear in the encoding twice? Nothing.
Only the principle of convertibility has forced us to spurn all the other noble principles
and accept as characters certain symbols that are not. When a Korean document contain-
ing two characters with the same glyph but with different pronunciations is converted
to Unicode, those two characters are mapped to different code points in Unicode, which
makes it possible to convert back to the original Korean encoding.

First principles

When we launch a project of Unicode’s size, it is essential to define a certain number
of first principles on which we can subsequently fall back when decisions, often delicate
ones, must be made. Even if leaning on our principles too much causes them to bend, in
the words of Italian author Leo Longanesi. Unicode is based on ten principles—a highly
symbolic number—which we shall describe in this section. The Unicode book, however,
warns us that the ten principles cannot be satisfied simultaneously: there will always be
trade-offs and compromises to be made. Our task is to figure out which compromises
those are.

Here, then, are the ten principles.

Principle #1: universality

Unicode concerns itself with all living writing systems and with most historic ones. That
aim, expressed in those terms, sounds inordinately ambitious; but if we weight writing
systems by the number of documents actually available in electronic format, then Uni-
code is not far from achieving its goal.

Philosophical issues: characters and glyphs 59

Principle #2: efficiency

It sounds like a slogan out of an advertisement from the 1950s. But it contains a kernel of
truth. From the technical point of view, Unicode has enabled us to rid ourselves of escape
characters, the states of ISO 2022, and so on. And it is undeniable that the documentation
that comes with Unicode (the book, the Web site, the technical reports, the proceed-
ings of the Unicode conferences) is more efficient than the dry, sterile commentary of
the ISO standards, when that commentary exists at all. Functions, special characters,
algorithms—all are described in minute detail, annotated, explained, and made acces-
sible and ready for implementation.

Principle #3: the difference between characters and glyphs

As we have just discussed in the previous section, characters and glyphs are two totally
different concepts, and Unicode is concerned only with the former. Even though it has
not yet managed to provide a satisfactory definition of what a character is, Unicode at
least deserves credit for having raised the issue and for having led people to understand
the confusion that used to reign in this regard.

Principle #4: the well-defined semantics of characters

This principle harks back to what we were said about principle #2: Unicode has under-
taken the formidable task of investigating writing systems and documenting its stan-
dard. As much as possible, characters are well defined, and their definitions clearly show
what they are and what they are not. Knowing the meaning of each of the characters
in our documents is important, for this knowledge is the very basis for the storage of
textual data.

Principle #5: plain text

Who has never said to a colleague or a friend: “Send me that document in ASCII”? Yet a
document in French, Swedish, or Spanish! can hardly be encoded in ASCII, since it will
necessarily contain accented characters. What we mean by this expression is that we want
adocument in “plain text” format, which means a file containing nothing but miles and
miles of text without the slightest bit of markup and without a single binary character
that would turn it into a word-processing file. Unicode encodes nothing but text; it has
no need for markup or—within practical limits—formatting characters. All information
is borne by the characters themselves.

In fact, there is a rather ambiguous relationship between Unicode and, for example,
XML. They complement each other perfectly and desperately need each other:

e The basic units of an XML document are, by definition, Unicode characters; there-
fore, without Unicode, there would be no XML.

1 We have not added German to this list because, theoretically, the German umlauts ‘4’ ‘6’ and i’ can
be written as the digraphs ‘ae’, ‘o€’ ‘ue’, and the eszet ‘R’ can be written as ‘ss’. Nevertheless, these rules have
exceptions: no one will ever write ‘Goethe’ as ‘Gothe’, and the words ‘Mafie’ and ‘Masse’ are not the same....

60 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

e On the other hand, a certain type of information, such as the direction in which a
paragraph is laid out, is best expressed by a high-level protocol such as XML rather
than by examining the first letter of the paragraph to check whether it reads from
left to right or from right to left (see Chapter 4). In addition, the language of a para-
graph can be better indicated with XML’s markup attribute xml:1lang than by the
completely artificial linguistic labels of Unicode (see p. 88).

Nonetheless, Unicode continues to disregard XML. Under the pretext that all of Uni-
code’s functionality must be accessible even under the most restrictive protocol (such
as URLs, for example), Unicode attempts to mark up a certain number of things itself,
without relying on any other markup system. That is without a doubt the true meaning
of principle #5.

Principle #6: logical order

How should the bytes be stored inside the computer: from right to left or from left to
right? This question is meaningless because bits have no material substance. But we can-
not keep from thinking of bytes as little boxes or rectangles that are arranged in a certain
direction. This false notion stems, no doubt, from the fact that we confuse the interface
of the low-level editor that we use with the actual functioning of the computer. This
same false notion leads us to suppose that the natural order of our language is the order
used by the computer and that languages written from right to left should be encoded
backwards.

Unicode sets things straight. The reading of a document is an action situated in time
that, like any other such action, has a certain inherent logical order. Unicode data are
encoded in that order, and there is nothing material about the arrangement; therefore,
there is no indication of direction. The issue of the direction in which text reads does
not arise until the very moment when we begin to present the data visually. The way
to render a document containing scripts that run in different directions may be very
complex, even if the order in which the text is encoded is strictly logical. To convince
ourselves of this fact, we need only read a text of this sort aloud: we will see that we follow
the arrangement of Unicode-encoded data very precisely.

Principle #7: unification

To save space and to accommodate all the ideographic characters within fewer than
65,536 code points, Unicode decided to identify the ideographs of Chinese origin that
are used in mainland China (the simplified Chinese script), in Taiwan and Hong Kong
(traditional Chinese), in Japan, and in Korea. This unification was praised by some,
criticized by others. We shall explain its ins and outs in Chapter 4, starting on page 148.

Principle #8: dynamic composition

Some Unicode characters possess special powers: when placed after another character,
they modify its glyph. This modification usually involves placing an accent or a diacrit-
ical mark somewhere around the glyph of the base character. We call these characters

Philosophical issues: characters and glyphs 61

combining characters. The most interesting feature of these characters is that they can
combine with each other and form glyphs with multiple accents, with no limit to the
number or the position of the accents and diacritical marks. Their drawback is that they
have no respect for the principle of efficiency: if, within a Unicode string, we select a
substring that begins with a combining character, this new string will not be a valid string
in Unicode. Such an outcome never occurs in a string in ASCII or ISO 8859, and that
fact gives Unicode a bit of a bad reputation. It is the price to pay in order to enjoy the
power of dynamic composition. We shall describe the combining characters in detail in
Chapter 4.

Principle #9: equivalent sequences

For reasons that arise from the tenth principle, Unicode contains a large number of
“precomposed” characters—characters whose glyphs are already constructed from a base
character and one or more diacritical marks. Principle #9 guarantees that every precom-
posed character can be decomposed, which means that it can be expressed as a string in
which the first character is a base character and the following characters are all combin-
ing characters. We shall discuss this matter in detail in Chapter 4.

Principle #10: convertibility

This is the principle that has done the greatest harm to Unicode. It was nonetheless nec-
essary so that the encoding would be accepted by the computer industry. The principle
stipulates that conversion of data to Unicode from any recognized official or industrial
encoding that existed before May 1993 could be done with no loss of information. This
decision is fraught with consequences, as it implies that Unicode must inherit all the
errors, imperfections, weaknesses, inconsistencies, and incompatibilities of the existing
encodings. We have the almost Messianic image of a Unicode that “taketh away the sin
of the world” for our redemption. Perhaps we are getting a bit carried away here, but the
fact remains that 99.9% of Unicode’s inconsistencies are due to principle #10 alone. We
are told in the documentation that this or that thing exists “for historical reasons”.

But there is a good side as well: there is no risk of losing the slightest bit of information
when converting our data to Unicode. That is reassuring, especially for those of us who
in the past have had to contend with the results of incorrect conversions.

Unwritten principle #11: permanent stability

We have taken the liberty of adding an eleventh principle to the list of official Unicode
principles, one that is important and laden with consequences: as soon as a character has
been added to the encoding, that character cannot be removed or altered. The idea is that a
document encoded in Unicode today should not become unusable a few years hence,
as is often the case with word-processing software documents (such as those produced
with MS Word, not to name any names). Unlike the ten official principles, this one is
so scrupulously respected that Unicode has come to contain a large number of charac-
ters whose use is deprecated by Unicode itself. Even more shocking is that the name of
character 0x1D0C5 contains an obvious typo (FHTORA instead of FTHORA = ¢80p@); rather

62 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

than correcting it, the Consortium has decided to let it stand and to insert a little note
along the lines of “yes, we know that there’s an error here; don’t bother to tell us” We
can only hope that the Consortium will allow for minor corrections in the future when
they would have little effect on data encoded in Unicode.

Technical issues: characters and bytes

Even the philosophers say it: philosophy is not the only thing in life. And in the life of
a Unicode user there are also issues of a strictly technical nature, such as the following:
how are Unicode characters represented internally in memory? how are they stored on
disk? how are they transmitted over the Internet? These are very important questions,
for without memory, storage, and transmission there would be no information....

Those who have dealt with networks know that the transmission of information can be
described by several layers of protocols, ranging from the lowest layer (the physical layer)
to the highest (the application layer: HTTP, FTP, etc.). The same is true of Unicode: offi-
cially {347} five levels of representation of characters are distinguished. Here they are:

1. An abstract character repertoire (or “ACR”) is a set of characters—that is, a set of “de-
scriptions of characters” in the sense used in the previous section—with no explicit
indication of the position of each character in the Unicode table.

2. A coded character set (or “CCS”) is an abstract character repertoire to which we have
added the “positions” or “code points” of the characters in the table. These are whole
numbers between 0 and 0x10FFFF (= 1,114,111). We have not yet raised the issue of
representing these code points in computers.

3. A character encoding form (or “CEF”) is a possible way to represent the code points of
characters on computers. For example, to encode characters on Unicode we usually
need 21 bits; but the manner in which operating systems use internal memory makes
it more efficient to encode these 21 bits over 32 bits (by leaving the first 11 bits unset)
or as a series of wydes (16 bits) or of bytes. An encoding form may be of fixed length
(like UTF-32) or variable length (like UTF-16 or UTE-8).

4. A character encoding scheme?® for “CES”) is a representation of characters in bytes. Al-
low us to explain: when we say, for example, that we encode Unicode characters with
21 bits within 32-bit numbers, that occurs at the level of internal memory, precisely
because the internal memory of many computers today uses 32-bit units. But when
we store these same data on disk, we write not 32-bit (or 16-bit) numbers but series
of four (or two) bytes. And according to the type of processor (Intel or RISC), the
most significant byte will be written either first (the “little-endian” system) or last
(the “big-endian” system). Therefore, we have both a UTF-32BE and a UTF-32LE, a
UTF-16BE and a UTF16LE. Only the encoding form UTF-8 avoids this problem: since
it represents the characters in byte format from the outset, there is no need to encode

2 We beg the reader’s forbearance for the proliferation of jargon in this section. The terms used here are
official terms taken directly from a Unicode technical report.

Technical issues: characters and bytes 63

the data as a sequence of bytes. Also note that steps (1) to (4) taken collectively are
called a “character map”. The names of character maps are registered with IJANA
{186] so that they can be used within protocols such as MIME and HTTP. There are
the following registered character maps for Unicode:

e UTF-8, a very efficient encoding form in which Unicode characters are repre-
sented over 1 to 4 bytes (see page 65).

e UTF-7, an unofficial encoding scheme that is quite similar to “base 64”, described
in RFC 2152;

e UTF-32, the encoding form in which we use the lowest 21 bits of a 32-bit number.

e UTF-32LE, the encoding scheme for UTF-32 in which a 32-bit number is encoded
over four bytes in little-endian order, which means that the least significant byte
comes first. This counterintuitive order is used by the Intel processors.

e UTF-32BE is similar to UTF-32LE but uses the big-endian order of the PowerPC,
Sparc, and other processors.

e UTF-16, an encoding form in which Unicode characters are represented over one
or two wydes (see page 64).

e UTF-16LE, the encoding scheme for UTF-16 in which a 16-bit number is encoded
over two bytes in little-endian order.

e UTF-16BE, which is similar to UTF-16LE but uses big-endian order.

e UNICODE-1-1, version 1.1 of Unicode (described in RFC 1641).

e UNICODE-1-1-UTE-7, the former version of UTF-7 (described in RFC 1642).
e CESU-8 is a variant of UTF-8 that handles surrogates differently (see page 65).

e SCSU is a transfer encoding syntax and also a compression method for Unicode
(see page 66).

e BOCU-1 is another compression method for Unicode, one that is more efficient
than SCSU (see page 66).

The reader will certainly have noticed that UTF-16 and UTF-32, with no indication
of endianness, cannot be encoded character maps. The idea is as follows: if we specify
one of these, either we are in memory, in which case the issue of representation as a
sequence of bytes does not arise, or we are using a method that enables us to detect
the endianness of the document. We shall discuss the latter on page 64.

5. Finally, a transfer encoding syntax (or “TES”) is a “transcription” that can occur at the
very end to adapt data to certain transmission environments. We can imagine a con-
version of the bytes from the encoding scheme into hexadecimal, “quoted-printable”
(page 49), or “base 64” (page 49) so that they can be transmitted through a medium
that does not accept binary-coded data, such as electronic mail.

In a conventional 8-bit encoding, steps (2) and (3) do not arise: there is no need to fill out
our units of storage or to worry about big-endian or little-endian systems because we are

64 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

already at the byte level. Things are not so trivial for the East Asian encodings that we
have seen on page 48. In the case of Japanese, JIS X 0201-1976 is both an abstract character
repertoire and a coded character set. It becomes an encoding form when we use 16 bits
to represent its 94 x 94 tables. Finally, ISO 2022-JP, Shift-JIS, and EUC-JP are encoding
schemes. And when we use them for electronic mail, we employ a transfer encoding
syntax such as “quoted-printable” or “base 64”.

Character encoding forms

Now a bit of history. In the beginning, Unicode was encoded with 16 bits, with little con-
cern about endianness. At an early date, UTF-8 was put forward (under different names)
to resolve a certain number of problems, such as the issue of endianness. At the same
time, Unicode’s bigger cousin, ISO 10646, proposed two encoding forms: UCS-4, which
used 31 bits of a 32-bit number (thus avoiding the issue of how to know whether the
number was signed or not), and UCS-2, which took the first wyde of this number and
ignored the rest.

UTF-16 and surrogates

When the Consortium realized that 16 bits were insufficient, a trick was suggested: in-
stead of extending Unicode by adding bits, we could reserve two areas for surrogates: the
high and low surrogate areas. We would then take a surrogate pair consisting of two
wydes: the first from the high area, the second from the low area. This approach would
enable us to encode far more characters.

These areas are 0xD800-0xDBFF (the high surrogate area) and 0xDC00-0xDFFF (the low
surrogate area). They give us 1,024 = 1,048,576 supplementary characters encoded with
two wydes. Thanks to surrogate pairs, we can obtain any character between 0x10000 and
Ox10FFFF (Unicode’s current limits). This is how we proceed: Let A be the code point of
a character. We subtract 0x10000 from A to obtain a number between 0x00 and OxFFFFF,
which is therefore a 20-bit number. We divide these 20 bits into two groups:

XXXXXXXXXXYYYYYYYYYY

and we use these groups to form the first and the second wydes of the surrogate pair, as
follows:

110110XXXXXXXXXX 110111yyyyyyyyyy

Detection of endianness

Consider a 16-bit number whose numerical value is 1. If this number is encoded in big-
endian order, we will write to the disk 0x00 0x01, which corresponds to our intuition. On
the other hand, if it is encoded in little-endian order, we will write 0x01 0x00. Unicode
devised a very clever way to indicate the endianness of a block of text. The approach uses
a character called the byte order mark, or “BOM”. This character is OXxFEFF. This method
works because the “inverse” of this character, namely OXFFFE, is an invalid character. If at

Technical issues: characters and bytes 65

the beginning of a document the software encounters 0xFFFE, it will know that it must
be reading the bytes in the wrong order.

We may well ask what happens to these parasitic BOMs. After all, if we cut and paste Uni-
code strings that contain BOMs, we may end up with a flurry of BOMs throughout our
document. Not to worry: this character is completely harmless and should be ignored?
by the rendering engine as well as by routines for searching, sorting, etc.

In the case of UTF-32, the BOM is the character 0Ox0000FEFF. There as well, its inverse,
OxFFFE0000, is not a character, as it greatly exceeds the limit of 0x10FFFF.

UTF-8 and CESU-8

UTEF-8 is the most commonly used encoding form because it is the default character set
for XML. It incorporates both an encoding form and an encoding scheme, as it consists of
bytes. The idea is very simple: the 21 bits of a Unicode code point are distributed over 1, 2,
3, or 4 bytes that have characteristic high bits. From these bits, we can recognize whether
a byte is the beginning of a sequence of 1, 2, 3, or 4 bytes or whether it occurs in the
middle of one such sequence.

Here is how the bits are distributed:

Code point Byte 1 Byte 2 Byte 3 Byte 4
00000 00000000 OXXXXXXX | OXXXXXXX

00000 00000yyy YyXXXxxX | 110yyyyy | L1OXXXXXX

00000 zzzzyyyy YyxXxXXxX | 1110zzzz | 10yyyyyy | 1OXXXXXX

UuuuU ZZzzyyyy YYXXxxxx | 11110uuu | 10uuzzzz | 10yyyyyy | LOXXXXXX

We can see that the first byte of a sequence begins with two, three, or four set bits, ac-
cording to the length of the sequence. If a byte begins with a single set bit, then it occurs
in the middle of a sequence. Finally, if a byte begins with a cleared bit, it is an ASCII
character, and such characters are not affected by UTF-8. Thus we can see the key to the
success of this encoding form: all documents written in ASCII—which means the great
majority of documents in the English language—are already encoded in UTF-8.

The drawback of UTF-8 is that it is necessary to divide a string of bytes at the right place
in order to obtain a string of characters. If we break a string of UTF-8 bytes just before an
intermediate byte, we obtain an invalid string; therefore, the software may either reject it
or ignore the intermediate bytes and start from the first byte that begins a sequence. It is
therefore recommended, when manipulating strings of UTF-8 bytes, always to examine
the three preceding bytes to find the byte that begins the nearest sequence.

3 That has not always been the case. Indeed, the name of this character is ZERO-WIDTH NO-BREAK SPACE.
The problem with this name is the “no-break” property. Before Unicode 3.2, this name was taken literally, and
if BOM happened to fall between two syllables of a word, the word could not be broken at that point. But later
another character was defined for that purpose, character 0x2060 WORD JOINER; and now the BOM is used only
to detect byte order.

66 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

CESU-8 (Compatibility Encoding Scheme for UTF-16: 8-bit,{292]) is a curious blend of UTF-
16 and UTF-8. In CESU-8, we start by converting our document into UTF-16, using
surrogate pairs; then we convert each wyde into UTF-8. A document encoded in CESU-8
may take up more space than one encoded in UTF-8. Each wyde may thus need as many
as three bytes for its representation; each pair of wydes, as many as six.

SCSU and BOCU

SCSU (Standard Compression Scheme for Unicode [353]) is a compression scheme for text
encoded in Unicode. It was defined in a technical report by the Unicode Consortium.
The principle is simple: we have a sort of “window” onto the Unicode table, a window
128 characters wide, whose exact location can therefore vary. Eight such “dynamically
positioned” windows are available, which we can redefine at any time, and also eight
“static” windows, whose locations are fixed.

In the initial state, we are in window 0. When we specify a shift to window n, the charac-
ters in the window become accessible through numerical values of only one byte each.
More precisely, if the active window is window r, then a byte B between 0x00 and 0x7F is
interpreted as being within the static window at an offset of B from the window’s origin;
and if B is a byte between 0x80 and 0xFF, then we go to dynamic window » and select
the character located at an offset of B — 128 from that window’s origin.

SCSU operates in two modes: the “compression” mode, in which bytes are interpreted as
Unicode characters within a static or dynamically positioned window, and the “Unicode”
mode, in which wydes are interpreted as UTF-16 sequences.

When we begin to (de)compress data, we are in the initial mode: “compression” mode,
window 0 as the active window, all dynamically positioned windows in their default po-
sitions. Here are the fixed positions of the static windows and the default positions for
the dynamically positioned windows:

| static window dynamically positioned window, by default
0 | 0x0000 (ASCII) 0x0080 (Latin 1)

1 | 0x0080 (Latin 1) 0x00C0 (Latin 1++)

2 | 0x0100 (Latin Extended-A) 0x0400 (Cyrillic)

3 | 0x0300 (Diacritical marks) 0x0600 (Arabic)

4 | 0x2000 (General punctuation) 0x0900 (Devanagari)

5 | 0x2080 (Currency symbols) 0x3040 (Hiragana)

6 | 0x2100 (Letterlike symbols) 0x30A0 (Katakana)

7 | 0x3000 (CJK symbols and punctuation) | 0xFF00 (full-width ASCII)

There are six escape characters:

e SQU 0xOE (Quote Unicode), followed by a big-endian wyde: directly select the Unicode
character specified by the wyde, irrespective of the windows. This is a temporary
change of mode.

Technical issues: characters and bytes 67

e SCU 0xOF (Change to Unicode): change to UTF-16 mode, irrespective of the windows.
This is a permanent change of mode, in effect until another change is made.

e SQn 0x01-0x08 (Quote from Window n, followed by byte B: if B is in the interval
0x00-0x7F, we use static window n; otherwise, we use dynamic window n. This is a
temporary change of mode.

e SCn 0x10-0x17 (Change to Window n), followed by byte B: use dynamically positioned
window # for all of the following characters in the range 0x80-0xFF and window 0
(ASCI) for the characters 0x09, 0x0A, 0x0D, and those in the range 0x20-0x7F. This
is a permanent change of mode, in effect until another change is made.

e SDn 0x18-0x1F (Define Window n), followed by byte B: redefine dynamically posi-
tioned window n as the window whose index is B. How do we specify windows using
an index? The reader who is expecting an elegant and universally applicable calcu-
lation will be disappointed. In fact, we use the following table:

Index B Origin of the window | Comments

0x00 value reserved
0x01-0x67 B x 80 the half-blocks from 0x0080 to 0x3380
0x68-0xA7 B x 80+ 0xAC00 the half-blocks from 0xE000 to 0xFF80
0xA8-0xF8 values reserved

0xF9 0x00C0 Latin letters

OXFA 0x0250 Phonetic alphabet

OxFB 0x0370 Mutilated (“monotonic”) Greek

0xFC 0x0530 Armenian

OxFD 0x3040 Hiragana

OXFE 0x30A0 Katakana

OXFF OxFF60 Half-width katakana

e SDX 0x0B (Define Extended) followed by wyde W. Let W' be the first three bits of W
and W” the remaining bits (W = 2!3. W’ + W"). We redefine the dynamically posi-
tioned window whose index is W’ as being at origin 0x10000 + 80 - W”.

We can notice a certain asymmetry between SQn and SCn: the first allows us to use static
windows 0 to 7, the second can only use static window 0. Only one question remains:
when we are in Unicode mode, how do we switch back to “windows” mode?

The problem is that in Unicode mode the decompression algorithm is reading wydes.
The solution is to provide it with wydes that it does not expect to see: those whose first
byte is in the range 0xE0-0xF1. These wydes are in Unicode’s private use area; to use them
in Unicode mode, we have the escape character UQU (see below). When the decompres-
sion algorithm encounters such a wyde, it immediately switches to “windows” mode and
interprets the wyde as a pair of bytes whose first character is an escape character from the
following list:

68 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

e UQU 0xF0 (Quote Unicode), followed by a big-endian wyde: directly select the Uni-
code character specified by the wyde, without interpreting it as an escape character.
This is a temporary change of mode.

e UCn 0xE0-0xE7 (Change to Window n), followed by byte B: same behavior as SCn.
e UDn 0xE8-0xEF (Define Window n), followed by byte B: same behavior as SDn.

e UDX 0xF1 (Define Extended), followed by wyde W: same behavior as UDn.

We can see that, as with most self-respecting compression schemes, there are more ways
than one to compress data and the rates of compression obtained depend upon the skill
of the compression algorithm: the judicious selection of dynamically positioned win-
dows, switching to locking shift or the use of temporary escape sequences, etc. Thus we
can use more or less sophisticated tools for compression by making several passes and
compiling statistics and the like. But there is only a single approach to decompression,
and it is quite simple to implement.

BOCU-1 (Binary Ordered Compression for Unicode, {313]) is another compression scheme;
its performance is equal to that of SCSU, but it has some benefits of its own: it is MIME-
compatible, and code point order is preserved. This final property implies that if we take
a set of Unicode strings compressed in BOCU-1 and sort them, they will be arranged in
the same order as the original strings. That could be convenient for a database: the fields
would be compressed, yet they could still be sorted without first undergoing decompres-
sion.

Another major benefit of BOCU-1: it is “deterministic”, in the sense that there is only
one way to compress a string. That fact implies that we can compare compressed files: if
they are different, then the decompressed originals will be different as well.

We shall not describe BOCU’s compression algorithm in detail. The reader will find
the description and some accompanying C code in {110}, a document that starts with
a fine French quotation from Montesquieu: “il faut avoir beaucoup étudié pour savoir
peu” (you have to study a great deal to know a little). The idea behind this compression
scheme is to encode the difference between two consecutive characters. Thus as long
as we remain within the same script, we can encode our document with single bytes—
provided that the script be “small”. Writers will notice that this idea is not very efficient,
as we often make “leaps” within the encoding to insert spaces or punctuation marks
(which are shared by a large number of writing systems). Accordingly, the difference is
determined not from the last character, but from the last three characters—an approach
that reduces the differences.

The technique of using differences, which is also employed in compression algorithms
such as MPEG, is of great interest because it starts from the notion that a document writ-
ten in Unicode will reflect a certain consistency with regard to writing systems. A user
may know N languages, which use M writing systems altogether (often M < N). There
is a good chance that the user’s documents are distributed across these writing systems,

General organization of Unicode: planes and blocks

Allocated Codepoints

- Surrogate pairs
- Private zone

0x100000

0xF0000

0x£0000

IR
A 1d. A

0x10000

(SNT

Pl
ranc1-

MP) |

{
\bvlr’)

oo
1x-
1)

-2
o

OXFFpFD

|0x1F D

OxFFFD

O0x2FpFD

Figure 2-2: The six currently “populated” planes of Unicode (version 4).

which greatly reduces the range of characters used and ensures the success of a means of

compression that is based on the proximity of characters.

We hope to see BOCU-1 compression used more and more in the years to come.

Xx10F

70 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

General organization of Unicode: planes and blocks

Code points may range from 0 to 0x10FFFF (= 1114 111). We divide this range into 17
planes, which we number from 0 to 16. Of these 17 planes, only 6 are currently “pop-
ulated” (see Fig. 2-2):

e Plane 0, or the BMP (Basic Multilingual Plane), corresponds to the first 16 bits of
Unicode. It covers most modern writing systems.

e Plane 1, or the SMP (Supplementary Multilingual Plane), covers certain historic
writing systems as well as various systems of notation, such as Western and Byzantine
musical notation, mathematical symbols, etc.

e Plane 2, or the SIP (Supplementary Ideographic Plane), is the catchall for the new
ideographs that are added every year. We can predict that when this plane is filled up
we will proceed to Plane 3 and beyond. We shall discuss the special characteristics of
ideographic writing systems in Chapter 4.

e Plane 14, or the SSP (Supplementary Special-Purpose Plane), is in some senses a
quarantine area. In it are placed all the questionable characters that are meant to be
isolated as much as possible from the “sound” characters in the hope that users will
not notice them. Among those are the “language tag” characters, a Unicode device
for indicating the current language that has come under heavy criticism by those,
the author among them, who believe that markup is the province of higher-level
languages such as XML.

e Planes 15 and 16 are Unicode’s gift to the industry: they are private use areas, and
everyone is free to use their codepoints in applications, with any desired meaning.

The BMP (Basic Multilingual Plane)

This plane—which for many years made up all of Unicode—is organized as follows:

[abcdefghij] The first block of 8 columns (0x0000-0x007F) is identical to ASCII
(ISO 646).

{ éééaaéae(;éé] The second block of 8 columns (0x0080-0x00FF) is identical to
ISO 8859-1. The character 0x00AD SOFT HYPHEN represents a potential place to
divide a word and therefore should not have a glyph (unless the word is divided
at that point, in which case its glyph depends on the language and writing system).
Do not confuse it with 0x2027 HYPHENATION POINT, which is the midpoint used in
dictionaries to show where word division is permitted.

[ééap’éééd’dé] Still in the Latin alphabet, the Latin Extended-A block (0x0100-
0x017F) which contains the characters of Central Europe, the Baltic countries,
Maltese, Esperanto, etc.

General organization of Unicode: planes and blocks 71

X0 X1 X2 X3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

ox|@/['@ [8/06| © 26|®| @ | Indic scripts [0 @
|8 ®| e 8 © esse e o
«|[ela "o ese|e 88| e
S UL

Figure 2-3: The roadmap of Unicode’s Basic Multilingual Plane (BMP): ® ASCII and Latin 1, @ Latin Extended-A
and -B, ® phonetic alphabet and modifiers, ® diacritical marks, ® Greek (crippled by the monotonic reform) and Coptic,
® Cyrillic, @ Armenian, ® Hebrew, ® Arabic, © Syriac, Thaana and N’ko, ® Thai and Lao, ®@ Tibetan, ® Myanmar and
Georgian, @ elements_for forming hangul syllables, ® Amharic, ® Cherokee, @ Canadian aboriginal scripts, ® runes,
® scripts of the Philippines, @ Khmer, @ Mongolian, @ Limbu, Tai Le, etc., @ Balinese, @ phonetic extensions, ® Latin
Extended Additional, ® Greek with accents and breathings (as it should be), @ general punctuation, superscripts and
subscripts, currency symbols, diacritical marks for symbols, @ letterlike symbols, Roman numerals @ arrows, mathemat-
ical and technical symbols, ® graphic pictures for control codes, OCR, @ enclosed alphanumerics, @ geometric shapes, ®
miscellaneous symbols, @ “Zapf dingbats’, ® braille, ® supplemental arrows and mathematical symbols, @ Glagolitic
and Latin Extended-C, ® Coptic disunified from Greek, ® Khutsuri, Tifinagh and Ethiopic Extended, ® Supplemental
Punctuation, @ ideographic radicals, ® ideographic description characters, ® ideographic punctuation, @ kana, ®
bopomofo, hangul supplement, kanbun and CJK strokes, @ enclosed ideographs and abbreviations used in ideographic
writing systems, @ Yijing hexagrams, ® modified tone letters and Latin Extended-D, @ Syloti Nagri, ® Phags-pa, & high-
half zone for surrogates, @ low zone, @ compatibility ideographs, ® presentation forms A (Latin, Armenian, Hebrew,
Arabic), ® variation selectors and other oddities, ® presentation forms B (Arabic), @ full-width Latin letters and half-
width katakana, specials.

72 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

{ bbbocd 6939] Wrapping up the series of Latin characters, the Latin Extended-
B block (0x0180-0x024F), home to numerous rare and strange characters as well as
some that Western linguists cobbled together for the African languages. Also in this
block are the Romanian characters ‘s’ and ‘t, which previously were conflated with
the characters ‘s’ and ‘t’ (which have a cedilla instead of the comma). Finally, there
are three digraphs—‘dz’, ‘lj, and ‘nj’—which are the Latin versions of the Cyrillic
letters ‘i1, ‘»), and ‘w’. The original idea behind these was to establish a one-to-one
correspondence between the Serbian alphabet and the Croatian alphabet. But there
is a problem: the upper-case version of the digraph will differ according to whether
it appears as the first letter of a capitalized word (‘DZ), ‘Lj’, ‘Nj’) or as a letter in a
word written in full capitals (‘DZ’, ‘LJ, ‘NJ’). It was therefore necessary to include
both forms in Unicode.

{ aoned ﬁ'bbbbﬁ] There are 6 columns (0x0250-0x02AF) for the special letters of
the International Phonetic Alphabet. This alphabet is typically unicameral (i.e., written
only in lower case), except for those letters within it that are also used as ordinary
letters in African languages. The upper-case versions of those letters appear in the
“Latin Extended-B” block.

{ hfjriEwyy] Five columns (0x02B0-0x02FF) are allocated to the phonetic modifiers.
These are small spacing characters that are used to indicate or modify the pronunci-
ation of the preceding or following letter. For example, the five tones of transcribed
Chinese are found in this block.

] The block for diacritical marks (7 columns, 0x0300-0x036F),
which contains the accents and other diacritical marks of most languages. This block
also contains 0x034F COMBINING GRAPHEME JOINER, whose function is to allow a
combining character to be applied to more than one glyph at once (see page 116).

{ (IB’YS eln 01K | Now we come to the block shared by Greek and Coptic (9 columns,
0x0374-0x03FC). Greek is only partly covered because the letters with breathings,
accents, and iota subscripts are found in the “Greek Extended” block, which we shall
see later. This block suffers from the dual use of the Greek alphabet for text in the
Greek language and for mathematical formulae. Thus we find in it the two contex-
tual forms of beta, ‘B’ and ‘6’ (the former being used—in Greece and France—at the
beginning of a word and the latter in the middle or at the end of a word), listed
as separate characters. In addition, we find two versions each of theta, phi, rho, and
kappa, which ordinarily are nothing but glyphs from different fonts, included here
simply because they are used as distinct symbols in mathematics. Finally, there are
some characters used as numerals (sampi, koppa, stigma) and some that are archaic
or used in transcriptions.

{ aOBTIeX3UH] Next comes the block for the Cyrillic alphabet (17 columns,
0x0400-0x0513), which covers three categories of symbols: the letters used for Rus-
sian and the other European languages written in the Cyrillic alphabet (Serbian,
Macedonian, Bulgarian, Byelorussian, Ukrainian, etc.); the letters, diacritical marks,

General organization of Unicode: planes and blocks 73

and numeric symbols of Old Cyrillic (an ancient script still used for liturgical docu-
ments); and finally the letters of the Asian languages written in the Cyrillic alphabet
(Abkhaz, Azerbaijani, Bashkir, Uzbek, Tajik, etc.). The special Asian letters are no
less contrived or strange than those of Latin Extended-B; once again, it was necessary
to devise new letters on the basis of an existing alphabet to represent sounds in these
languages that do not occur in Russian, and the results are sometimes startling.

{ "’F'Z"Z‘l"ltﬂﬁ‘}] Between East and West, the Armenian alphabet (6 columns,

0x0530-0x058A), in which the ‘/’ ligature is considered a character because it is used
almost exclusively to represent the word “and” in Armenian.

{ TWANMATIAN] And now for the Semitic languages. First, Hebrew (7 columns,
0x0591-0x05F4), in which there are four types of symbols: the Masoretic cantillation
signs (musical notation for the chanting of the Bible), the short vowels and semivow-
els, the Hebrew letters (with the final forms of the letters separately encoded), and
finally the three ligatures used in Yiddish. Of these four categories, the first two are
almost completely made up of combining characters.

<

{ SAE &)] Next comes Arabic (16 columns, 0x0600-0x06FF, and a supplement of
3 columns 0x0750-0x076D), where we find the letters, short vowels, and diacritical
marks of Standard Arabic, the letters used by other languages written in the Arabic
script (Persian, Urdu, Pashtu, Sindhi, etc.), and a certain number of signs used to
guide recitation of the Koran and indicate its structure. Unlike those of Hebrew, the
contextual forms of Arabic are not encoded as separate characters. Nevertheless, con-
textual forms and even ligatures of an asthetic nature are encoded in the section for
“presentation forms”, near the end of the BMP. There is nothing inherently Arabic
about the character ‘> 0x066D ARABIC FIVE POINTED STAR; it was provided only to
ensure that a five-pointed asterisk would be available, as the ordinary asterisk “*,
with its six lobes, might be mistaken for a Star of David in print of poor quality.
Finally, there are two series of digits (0x0660-0x0669 and 0x06F0-0x06F9): the first
matches the glyphs used in Arabic; the second, those used in the languages of Iran,
Pakistan, and India.

{ ..l,clql‘lﬂ.&._‘lr{] Syriac (5 columns, 0x0700-0x074F) is the writing system of the
Christian Arabs. Not being the national script of any country, it took a long time to
be standardized and added to Unicode. The alphabet bears a vague resemblance to
Arabic. There is a profusion of short vowels because two systems of vowel pointing
are in use: a set of dots and a set of signs derived from the Greek vowels.

{ DOV S OFIY)2/ } The last writing system of this group is Thaana (4 columns,
0x0780-0x07B1). This script, inspired by Arabic, is used to write the Dhivehi lan-
guage, spoken in the Maldives. A distinctive feature of Thaana is that the vowels must
be written.

{ OLFddHLKE?] Between the Semitic and the Indic languages, Unicode v. 5 has
managed to squeeze the very exotic script N’Ko (4 columns, 0x07C0-0x07FA). This

74 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

is another artificial script, created by an African leader, Sulemana Kante, in 1948. It
is used in Guinea, Cote d’Ivoire, and southern Mali.

[TR TISTSAA | Now we come to the long list of writing systems of India.
These have all been encoded according to a single phonetic principle. Accordingly,
characters of the same pronunciation appear in the same location in the tables for
the respective scripts. In addition, the writing systems are encoded in geographic
order, from north to south. Thus the first script is Devanagari (8 columns, 0x0901-
0x097F), which is still used for Hindi but also for Sanskrit. Since Sanskrit has a rich
variety of phonemes, it comes as no surprise that the table for Devanagari is almost
full whereas those for the languages of southern India become sparser as we go. We
can also see that the letters’ strokes are pointed in the north but rounder and rounder
as we move southward, where most writing was done on palm leaves.

{ KRR R] Second is Bengali (8 columns, 0x0981-0x09FA), used principally
in Bangladesh.

{ HMIYHJqWadadS] Next comes Gurmukhi (8 columns, 0x0A01-0x0A74), which is
used to write the Punjabi language, spoken in northern India.

[AWMU ULISH D | Gujarati (8 columns, 0x0A81-0x0AF1), which looks like De-
vanagari without the characteristic horizontal bar.

{8@%1%1‘&]@9@@%3] Oriya (8 columns, 0x0B01-0x0B71), a script noticeably

rounder than the previous ones.

[QJHSFBJB:%@I_GMI'@‘[B] Tamil (8 columns, 0x0B82-0x0BFA), without a doubt
the best-known script in southern India. It is simpler than the scripts of the north,
as can be seen at a glance from the Unicode table for Tamil, which contains only 69
characters, whereas the table for Devanagari contains 105.

{ @gwﬁ&ﬁ) 23?5(53‘3633] Telugu (8 columns, 0x0C01-0x0C6F), a script rounder
than that of Tamil that is used in the state of Andhra Pradesh.

{ @5&)ﬁ§3’8€8&’€§8‘5d})] Kannada, or Kanarese (8 columns, 0x0C82-0x0CF2),

a script very similar to the previous one, used in the state of Karnataka.

[BLHGULIUNEL mmaﬂ%@ } Malayalam (8 columns, 0x0D02-

0x0D6F), a script used in the state of Kerala.

{ @@@@&@@@&@ | Finally, because south of the island of Sri Lanka
there is nothing but the Indian Ocean, we have Sinhala, or Sin(g)halese (8 columns,
0x0D82-0x0DF4), a script composed almost entirely of curves, with a strong contrast
between downstrokes and upstrokes.

General organization of Unicode: planes and blocks 75

[NUDAANIANTG | Having finished the languages of India, we continue to those
of Southeast Asia. We shall begin with the Thai script (8 columns, 0XOE01-0x0E5B),
which was doubtless encoded first because of its flourishing computer market. Thai
has diacritics for vowels and tone marks.

{ N2E))3DO0N } Geographically and graphically close to Thai is Lao (8 col-
umns, 0xOE81-0x0EDD). This script is simpler and rounder than Thai and also con-
tains fewer characters.

{ MRARSHEG TR } We might have expected to find Khmer here, but that is
not the case. We shall take a geographic leap and move from the tropical heat of
the Mekong River to the cold peaks of the Himalaya, where Tibetan (16 columns,
0x0F00-0x0FD1) is spoken and written. This angular script operates according to the
same principle as Khmer: when a consonant with no vowel is followed by a second
consonant, the latter is written beneath the former. Unlike Khmer, Tibetan has
codes for the subjoined consonants in its block.

c

{ 80&)6@) ODSO@Q]&@] Next comes Burmese (or Myanmar) (10 columns,
0x1000-0x1059), the script of Burma, similar to the scripts of India as well as those
of Southeast Asia.

{ b?)g)Q 8 3%0)06] Another geographic leap: we head off to the Caucasus to encode

the Georgian script (6 columns, 0x10A0-0x10FC), which ordinarily should have been
placed near Armenian. There have been several misunderstandings with regard to
Georgian. The Unicode table speaks of “capital” Georgian letters (for example, GEOR-
GIAN CAPITAL LETTER AN) and of caseless letters (GEORGIAN LETTER AN). In fact, the
modern Georgian script is unicameral. Two issues gave rise to the confusion. First,
the fact that there are two types of Georgian fonts: those for running text and those
for titles. The former have glyphs with ascenders and descenders (see the sample
above), whereas in the latter the glyphs are all of the same height and no depth:
088203%004. Second, in the ancient Georgian script, khutsuri, there were indeed two
cases. Thus we find in the Unicode table the capitals of khutsuri (€S LE T E5 P 14)
and the caseless letters of modern Georgian.

{ T2 T HHBA] After Georgian comes a block of 16 columns
(0x1100-0x11F9) containing the basic elements of the Korean syllabic script hangul.
As we shall see later (page 155), these elements combine graphically within an
ideographic square to form hangul syllables. Unicode also has a rather large area
for precomposed hangul syllables.

{ Uﬁ(h””w&ﬂﬁ‘l’a;] We continue to leap about. From Korea we leave for
Ethiopia, since the following block is dedicated to the Amharic (or Ethiopic) script.
This block is rather large (24 columns, 0x1200-0x137C with a supplement of another
2 columns 0x1380-0x1399) because the script is syllabic and all of the possible
syllables (combinations of a consonant and a vowel) have been encoded. The block

76 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

also contains punctuation, digits, and some signs used in numeration. Ambharic is
the only Semitic script written from left to right.

[DRTHOASOPY | Next is a rather picturesque script, that of the Cherokee Indi-
ans, which is still used today by some 20,000 people. When this language had no
writing system, a tribal chief devised one for it that was later adapted to printing. To
facilitate the adaptation, capital Latin letters were selected—but in a way not com-
patible with their original phonetics—and sometimes slightly modified for use in
writing Cherokee. An example: the Cherokee phonemes ‘a, ‘e, and i’ are respec-
tively written with the letters ‘D’, ‘R’ and ‘T’. The Cherokee block occupies 6 columns
(0x13A0-0x13F4).

[B>:CboiC%4>>B | The Native Canadians also have a syllabary that was in-
vented from scratch in 1830. This time, all sorts of geometric shapes were employed.
Unicode has collected symbols for some of Canada’s indigenous languages in a 40-
column block (0x1401-0x1676).

[T AA#HX-<O=== | The next script is Ogham (2 columns, 0x1680-0x169C),

a very ancient Irish script (5™ century CE). It is made up of strokes written above or
below a baseline. Note that the “blank space” (i.e., the word separator) of this script
is not a blank but a horizontal stroke.

{ BWY’I*N’]PI}R] Similar is the runic script (6 columns, 0x16A0-0x16F0), used by
the Germanic, Anglo-Saxon, and Scandinavian peoples (the Vikings in particular)
before the spread of the Latin script.

[er =3B Nowg eRMmro | Next come four blocks (2 columns each, 0x1700-
0x1714, etc.) that cover four writing systems of the Philippines: Tagalog (see the
sample above), Hanundo (V%ﬂM%V//VI/M), Buhid (Vv 3157w/ 7T 1), and Tag-
banwa (' V'3X Tt T14). These scripts have the same structure, and their glyphs
are so similar that they sometimes look like glyphs from the same script in different
fonts.

[AeRWAGEN PN | Only now do we come to the block for Khmer (8 columns,
0x1780-0x17F9), the main script used in Cambodia. The script appears at this late
point because it took a long time to be standardized.*

{ ':@ﬁn'\-ﬁﬂ)—v' } After Khmer comes Mongolian (11 columns, 0x1800-0x18A9). This
script is derived from Syriac (as it was taken to Mongolia by Syriac missionaries)

4 Worse yet, its standardization provoked a major diplomatic incident. The method used to encode this
language is the same as for Thai; yet the Cambodians, including the Cambodian government, feel that their
writing system should have been encoded according to the Tibetan model, i.e., by setting aside Unicode code
points for the subscript consonants. Not even the presence of a Cambodian government minister at a Uni-
code conference succeeded in getting the Khmer block in Unicode modified—a lamentable situation for an
encoding that exists to serve the speakers of a language, not the blind pride of a consortium. Let us hope that
this incident will be resolved by the next version of Unicode, before the Cambodian government turns to the
United Nations or the International Court of Justice in The Hague....

General organization of Unicode: planes and blocks 77

but, unlike Syriac, it is written from top to bottom. Contextuality in Mongolian is
so complex that Unicode has provided four characters whose purpose is to modify
glyphs: three variation selectors (0x180B-0x180D) and a vowel separator (0x180E).

{ LAZTEUS2IESIE] Limbu (5 columns, 0x1900-0x194F) is a minority language
in Nepal and northern India that is spoken by approximately 200,000 people.

{ manutu H ﬂ ["]J N] Tai Le (3 columns, 0x1950-0x1974) is another Southeast Asian writ-
ing system.

{ N 193 M3AR0O 6 930] The so called New Tai Le or Xishuang Banna Dai script
(6 columns, 0x1980-0x19DF) which is also used by minorities in Southeast Asia.

{ %215? [’]1] (‘:1{5{161)&@6‘1{] The two columns 0x19E0-0x19FF contain combinations of Cambo-
dian letters and numbers that are used in lunar dates.

{ GIIINRIRKNNANY] Next comes Buginese (2 columns, 0x1A00-0x1A1F), a
writing system used on the Indonesian island of Sulawesi (Celebes).

{ @3‘6‘“’0@”@’2@1?9“@&] Balinese (8 columns, 0x1B00-0x1B7C), the script of Bali, a
province of Indonesia, used by nearly 3 million people. (Actually, the Balinese
language is also written in the Latin script.)

{ AZEXBCDDE3I] Then there is a block of phonetic letters (8 columns, 0x1D00-0x1D7F,
followed by a supplement of an additional 4 columns 0x1D80-0x1DBF) that extends
the block of the International Phonetic Alphabet. It consists of Latin letters turned
in various ways, some ligatures that are not very kosher, some small capitals, some
Greek and Cyrillic letters, etc.

—— A small supplement to the block of diacritical marks (4 columns, 0x1DCO-0x1DFF).

[abbb¢ddddd } The Latin Extended Additional block (16 columns, 0x1E00-0X1EF9)

contains characters that are useful for the transcription of Indian languages as well
as for Vietnamese and Welsh.

e\ srer

[G ERNTESVONEP } After this tour of the world of characters, and in last place be-
fore the non-alphabetic characters, finally comes regular Greek (16 columns, 0x1F00-
O0x1FFE), which Unicode calls “Greek Extended”. This block contains the Greek letters
with accents, breathings, and the iota subscript, which uneducated Greek engineers
had the nerve to separate from the unaccented Greek letters. The acute accent, sole
survivor of the massacre known as the “monotonic” reform (see {169, 166}), appears
over letters in the first block and the second block alike: in the first block, Unicode
calls it ToNOS (= ‘accent’); in the second block, OxIA.

[—“,(“”,,«] We have reached a turning point in the BMP: the block for general

punctuation (7 columns, 0x2000-0x206F). This table contains punctuation marks that
were not included in ASCII and ISO 8859-1 (the true apostrophe “’’, the English

78 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

CWU» bl

double quotation marks ‘ “”’, the German quotation marks ‘,, the dagger and dou-
ble dagger ‘1’ ‘¢, the en dash ‘-, the em dash ‘— etc.), some proofreading symbols,
and other similar characters. There is also a set of typographic spaces: the em quad,
en quad, three-per-em space, four-per-em space, six-per-em space, thin space, hair
space, zero-width space (a space that ordinarily has no width but may result in in-
creased spacing during justification). There are also a certain number of control char-
acters: zero-width joiners and non-joiners, together with indicators of the direction
of the text, which we shall see on page 142. Finally, for use in entering mathemat-
ical formulae, an invisible character placed between a function and its argument,
another that indicates multiplication, and a third that acts as a comma in a list of
symbols.

[01456789+-] The digits and parentheses as superscripts and subscripts (3 columns,
0x2070-0x2094.

{ (E(Z(EFilm%%PWL] The currency symbols (3 columns, 0x20A0-0x20B5), where we
find the euro sign and also a number of symbols that have never been used, such as
those for the ecu ‘€, the drachma ‘2, and even the French franc ‘F’.

{ H] Diacritical marks for symbols (3 columns, 0x20D0-
0x20EF). These include various ways to modify a symbol: striking through it,
encircling it, enclosing it in a triangle in the manner of European road signs, etc.

[%%C°CLBAEDF] The letterlike symbols (5 columns, 0x2100-0x214E). These
are letters of the alphabet, sometimes rendered in a specific font, alone or in groups,
that acquire a special meaning in a given context. Thus we have the signs for degrees
Celsius °C’, the rational numbers ‘Q’, the real part of a complex number ‘R, the first
transfinite cardinal number ‘X’ and many other symbols of this kind, which become
more exotic and eccentric as one proceeds down the chart.

{ BAYBHEBITMIVV] Fractions and Roman numerals (4 columns, 0x2153-
0x2184). A slight Eurocentric faux pas in Unicode: of all the numeration systems
based on letters (the Greek, the Hebrew, the Arabic, etc.), only Roman numerals are
provided in Unicode.

{ <—T—>¢<—>$\/\/] All kinds of arrows (7 columns, 0x2190-0x21FF), point-
ing in every direction.

{ V[BHE@AV €] Mathematical symbols (16 columns, 0x2200-0x22FF).

{ H m O/ o=t } Technical symbols (16 columns, 0x2300-0x23E7), which
is a catchall for the symbols of numerous disciplines: drafting, industrial design, keys
on the keyboard, chemistry, the APL programming language, electrical engineering,
dentistry, etc.

General organization of Unicode: planes and blocks 79

N 8 S_E_E E A B . .
{ U O Tx Tx O Mg O B %] Some graphic pictures for control codes, the space, the car-

riage return, etc. (4 columns, 0x2400-0x2426).

{ A aHHE HTLLL] Characters specially designed for the optical recognition of
check numbers, etc. (2 columns, 0x2440-0x244A).

{ @@@(1)(2)(3)@@@] Letters and numbers in circles, in parentheses, fol-

lowed by a period, etc. (10 columns, 0x2460-0x24FF).

| “'-___] The graphical elements inherited from the DOS code

pages (10 columns, 0x2500-0x259F).

[.DDAA‘.OO@] All kinds of geometric shapes: squares, circles, triangles,

diamonds, etc. (6 columns, 0x25A0-0x25FF).

{ ':éi'? eg@f%? ADIE] A hodgepodge of miscellanous symbols (16 columns,

0x2600-0x26B2): weather symbols, astrological symbols, telephones, cups of coffee,
fleurons, the skull and crossbones, the sign for radioactive material, various religious
symbols, symbols for various political ideologies, the peace sign and the yin-yang
sign, the trigrams of the Yijing, some smilies, the planets, the constellations, chess
symbols, playing-card symbols, some musical notes, the symbols for different types
of recyclable materials, the faces of dice, the sign for high voltage, etc.

(

[O@ F = x ¥ Ko] In honor of a great typeface designer who shall re-
main nameless, this block contains the glyphs from the font Zapf Dingbats, made into
Unicode characters (12 columns, 0x2701-0x27BE).

—— Some more mathematical and technical symbols (4 columns, 0x27C0-0x27FF).
{ 85 83 38 35 83 85 33 88 83 S8] The 256 braille patterns (16 columns, 0x2800-0x28FF).
—— More arrows (8 columns, 0x2900-0x297F).

—— And still more mathematical symbols, each rarer and more eccentric than the one
before it (25 columns, 0x2980-0x2B23).

{ TV DdbIN6 TGP] Before moving to the Far East, a bit of history: Glagolitic
(6 columns, 0x2C00-0x2C5E), was used in Russia and probably invented by Saint
Cyril in AD 862 for the translation of the Scriptures into Old Church Slavonic. It was
later replaced by the Cyrillic script, but the order and the names of the letters were
retained.

—— And, as if weird versions of Latin letters never end, another small supplement
called Latin Extended-C (2 columns, 0x2C60-0x2C77).

{&BS’AG?" ZHoI] Coptic, which is finally completely disunified from Greek
(8 columns, 0x2C80-0x2CFF).

80 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

{'HB‘BX'q*rpvhﬁmﬂ] Followed by Nuskhuri (3 columns, 0x2D00-0x2D25), the

lower-case version of the Georgian liturgical khutshuri letters, the upper-case ones
being included in the Georgian block. This block corrects Unicode’s mistake of
mixing the modern Georgian alphabet with the ancient liturgical alphabet.

{ OCAIX=E4TXKEF] Tifinagh (5 columns, 0x2D30-0x2D6F), the writing system
of the Berbers, still widely used in Algeria in the province of Tizi-Ouzou and also
taught in the public schools of Morocco.

—— A supplement to the Amharic script: 6 columns, 0x2D80-0x2DDE.

—— And, to prove the fact that any block can be supplemented, a supplement to...
punctuation: 8 columns, 0x2E00-0x2E1D.

{ ; r - L B ’T J1 7 'J] Now we have reached another turning point in
the BMP: this is where the scripts of the Far East begin. The ideographs can be de-
scribed by their radicals, which are encoded here in the first two blocks. But there are
two ways to represent the radicals: in isolation, or in the form that they assume when
they are combined with other radicals. The first block (8 columns, 0x2E80-0x2EF3)
contains radicals represented according to the latter approach.

{ — I N J L J :#/\J L] The next block (14 columns, 0x2F00-0x2FD5) con-
tains all of the ideographic radicals as they are represented in isolation.

—— The ideographic description characters (1 column, 0x2FF0-0x2FFB) are characters
whose purpose is to suggest ways to form new ideographs from existing Unicode
ideographic characters. It is as if we were to take the glyphs of two or three of the
characters in the preceding blocks and combine them to form the glyph of a charac-
ter not available in Unicode. This is one way to obtain millions of new ideographs,
but its direct implementation in software would likely yield rather poor results, as
ideographs are seldom just simple graphical combinations of other ideographs. We
shall discuss the creation of new ideographs on page 153.

{ N @ z 70 < << [] Now we have come to ideographic punctuation and
ideographic symbols (4 columns, 0x3000-0x303F). We also find here the ideographic
space, quotation marks, different types of brackets, the Japanese postal symbol, etc.
A rather special character is 0x303E IDEOGRAPHIC VARIATION INDICATOR, which indi-
cates that the following ideograph is not exactly what is intended and that it should
be construed as one of its variant forms (cf. p. 150).

{ 75‘% < U' Z é L'@‘A“H_—%] Hiragana (6 columns, 0x3041-0x309F), a Japanese

syllabary. Two hiragana used before World War II are also listed here.

[4 /7 = 'H‘ VAtV] Katakana (6 columns, 0x30A0-0x30FF), another
Japanese syllabary, used for foreign words. Two katakana used before World War 11
and a number of dialectal signs also appear in this block.

General organization of Unicode: planes and blocks 81

{ HRMNMCAEIHUT] Bopomofo (3 columns, 0x3105-0x312C) is an at-
tempt at an alphabetic script for Chinese that is used to represent ideographs
phonetically. The influence of the Japanese kana is obvious.

—— Next is a “compatibility” block, i.e., a table of useless characters added only for the
sake of compatibility with an existing encoding. This particular block contains the
basic elements Korean syllabic hangul script (6 columns, 0x3131-0x318E). Whereas the
basic elements of block 0x1100-0x11F9 combine to form syllables, those in this block
do not (see p. 155 for more explanation).

{ —=HWEFTHIA] A small block of ideographs written as superscripts, the
kanbun (1 column, 0x3190-0x319F). These characters are very interesting because
they show how the cultures of East Asia are connected through the ideographic writ-
ing system. A Chinese poem is automatically a poem in Japanese as well, with one
difference: the order of the ideographs may not be correct. The kanbun serve to indi-
cate a reading order appropriate to the Japanese reader to understand the poem.

—— A supplementary set of phonetic bopomofo, CJK strokes and katakana (4 columns,
0x31A0-0x31FF).

{ (7|<) (@ (j:) @ @ 1H2H 3R @] Next comes a block of encircled ideographs, of

katakana and hangul in circles or parentheses, of numbers (either Chinese or Arabic)
in circles or parentheses, and of symbols for months (16 columns, 0x3200-0x32FE).

{ 1H2H 3H @j’?nz\ﬁ/{ ;ﬁ 22}&23@ 2‘%] And a block of ideographic abbreviations (16 col-
umns, 0x3300-0x33FF). These are groups of 4 to 6 katakana within an ideographic

square or Latin abbreviations for such things as units of measure, also within that
type of square.

—— After the abbreviations, we step right into the vast pool of ideographic characters.
Before starting on the basic characters, we have the CJK Unified Ideographs Extension A:
432 columns, 0x3400-0x4DB5 (6,582 ideographs).

—
1]f
LU
LU
Ll
il
Il

= 2= =] A short interlude before the big section of ideo-
graphlc characters the hexagrams from the Yijing (4 columns, 0x4DCO-0x4DFF), a
Chinese book of divination.

{ _Tt',‘t _L@k%*%@ﬁ] Then come the unified ideographs: 1306 col-

umns, 0x4E00-0x9FBB (20,924 ideographs).

[Y00l] After the ideographs and before the hangul syllables come the
syllables of Yi, a writing system from southern China. Yi, a rather young writing
system (only five centuries old), is in fact ideographic. There are between 8 and 10
thousand Yi ideographs, but they are not yet encoded in Unicode. On the other hand,
a syllabary was invented in the 1970s to facilitate the learning of this language, and
it is this syllabary that Unicode includes (84 columns, 0xA000-0xA4C6).

82 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

—— A block with modifier tone marks for Chinese: 2 columns, 0xA700-0xA71A.

—— Did you think that there were enough Latin letters in this encoding? Well, the Uni-
code Consortium did not agree with you. Here comes another supplemental block
for Latin letters, called “Latin Extended-D”. For the moment it contains only two
characters (0xA720 and 0xA721), but there is room for many more, since 14 columns
have been reserved for this block.

{ A AR Wy] Another previously forgotten script: Syloti Nagri (3 columns,
0xA800-0xA82B), the alphabet of the Sylheti language, spoken by ten million Indians
in Bangladesh. The script, which closely resembles that of Bengali, dates from the
fourteenth century, and works written in it were still being printed up to the 1970s.

[MEE23aEEMMTE | Another relic of history: Phags-pa (4 columns,
0xA840-0xA877), invented by a Tibetan lama in 1269 under commission from
Mongolian leader Khubilai Khan to serve as the new Mongolian alphabet. The
most recent text in this script is from 1352.

{ /]’7—]1_ Z_]_' 71':1' 7EL %Jl_ %1} Z:]l— Z:}_ %}\L] Next comes the list of the most common hangul
syllables: 698 columns, 0xAC00-0xD7A3 (11,172 syllabes).

—— Zones 0xD800-0xDBFF and 0xDC00-0xDFFF are used to encode the characters be-
yond the BMP in UTF-16. These two zones are called the high-half and low-half surro-
gate zones.

—— Between 0xE000 and OxF8FF is the private use area, where we are free to place any
characters that we wish.

—— Then follows a block of compatibility ideographs (included twice in a Korean encod-
ing, in Big-5, in an IBM encoding, and in JIS X 0213) (32 columns, 0xF900-0xFAD9).

—— From 0xFB00 to 0xFDFD and from OxFE70 to OXFEFF are characters called presentation
forms. These are glyphs that have, for one or another reason, been given the status
of characters. More precisely, these characters include a handful of Latin ligatures
(including the “fligatures”), five Armenian ligatures, some widened Hebrew letters
(to facilitate justification), some Hebrew letters with vowel points and Yiddish letters
with vowels, one Hebrew ligature, the contextual forms of the Arabic letters, and a
large number of @sthetic Arabic ligatures. There is even a single character ‘=il
for the phrase “In the name of Allah, the Beneficent, the Merciful” (actually made
of ** characters), which appears at the beginning of every sura in the Koran. The
Unicode Consortium discourages the use of these presentation forms.

—— A small block (1 column, 0xFE00-0xFEOF) contains control characters that indicate
a glyphic variant of the preceding character. There are 16 characters of this kind; thus
16 different variants of the same glyph can be used in a single document. Another
240 characters of the same kind are found in Plane 14.

General organization of Unicode: planes and blocks 83

—— A one-column block with variants of Latin and CJK punctuation for vertical type-
setting: OXFE10-0xFE19.

—— The two halves of a horizontal parenthesis and a horizontal tilde (1 column,
0XFE20-0xFE23).

—— Various ideographic punctuation marks whose glyphs are adapted for vertical type-
setting (2 columns, OxFE30-0xFE4F).

—— Smaller glyphs for certain ideographic punctuation marks (1 column, 0xFE50-
OXFE6B).

—— Code point OxFEFF is the byte order mark (BOM), a character that we are free to
place at the beginning of a document. It makes it possible to determine whether the
file was saved in little-endian or big-endian format. The system works because the
inverse of this character (code point OxFFFE) is not a Unicode character.

[abcdefghi]j y Y EVUEVISY)] To wrap up the BMP with a
flourish, this block contains full-width ASCII characters (the size of ideographs) as
well as half-width katakana and hangul elements (15 columns, OxFFO1-0xFFEE).

—— Finally, in the last block of the BMP, we have special characters: first, three char-
acters for interlinear annotations, a means of presentation of which one possible
interpretation involves adding small characters above the characters of the main text,
which could be used for a translation into another language or to indicate the pro-
nunciation of the main text. They are very frequently used in Japan, where the kanji
ideographs are annotated with kana so that they can be read by schoolchildren and
teenagers who do not yet have a sufficient command of the ideographs. If A is the
annotation of 7', then Unicode offers a character 0OxFFF9 to place before T, a character
OXFFFA to place between T and A, and a character OxFFFB to place after A.

Another special character, OXFFFC OBJECT REPLACEMENT CHARACTER, is used as a
placeholder for an unspecified object.

Last of all, the final character of the BMP, OxFFFD REPLACEMENT CHARACTER, is the
recommended character for representing a character that does not exist in Unicode
during conversion from an encoding not recognized by the Consortium.

Code points OxFFFE and OxFFFF do not contain Unicode characters.

Higher planes

Now that we have finished the BMP, which is worthy of Jules Verne’s Around the World
in Eighty Days, let us continue with Unicode’s other planes, which are not yet heavily
populated, at least for the time being.

Plane 1 is called the SMP (Supplementary Multilingual Plane). It consists of historic or
unusual scripts:

84 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

X0 X1 X2 X3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

100x | @ (@ @ @®GED ® © |©
11x
12x @) ®
N P N B W N Py
) \//\\/I/\ T N T~ T T
wx[@|® 8 @0 |
1Ex //\\//\J/\L/I/\\//\\//\\//\\//

Figure 2-4: The roadmap of Unicode’s Supplementary Multilingual Plane: © Linear B,
@ Aegean and ancient Greek numbers, ® Old Italic and Gothic, ® Ugaritic and Persian
cuneiform, ® Deseret, ® Shavian, @ Osmanya, ® the Cypriot syllabary, ® Pheenician,
Kharoshthi, ® cuneiform, @ cuneiform numbers and punctuation, ® Byzantine musical nota-
tion, ® Western musical notation, ® ancient Greek musical notation, ® monograms, digrams,
and tetragrams of the Yijing, @ counting rod numerals, ® Latin, Fraktur, and Greek letters used
in mathematical formulae.

X0 X1 X2 X3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

21X CJK Unified Ideographs Extension B

2AX
2Bx ///J//”4\»/J//\J\//J///d\//,/»\\\v////,\
N

//\\/ PN \//\\/ \/r\
@

20X

2Fx

Figure 2-5: The roadmap of Unicode’s Supplementary Ideographic Plane (SIP): ® supplemen-
tary compatibility ideographs.

X0 X1 X2 X3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
Eox (@

Eix | @

E2x | \//\\//\\//\\//\\//\\//\\//

Figure 2-6: The roadmap of Unicode’s Supplementary Special-Purpose Plane (SSP): @ language
tags, @ supplementary variation selectors.

General organization of Unicode: planes and blocks 85

{ TAYLFEETIT] Linear B (16 columns, 0x10000-0x100FA), a Cretan writing sys-
tem from the time of King Minos and his labyrinth for containing the Minotaur
(2000 BC), which was deciphered by architect and amateur archaologist Michael
Ventris in 1952. Tt is called “B” because there is a script known as “Linear A” that has
not yet been deciphered. Linear A is not yet encoded in Unicode, doubtless because
the Consortium is waiting for its decipherment so that sensible descriptions can be
given to the signs.

{ I gg g0 58 g § # ATE] The Aegean numbers (4 columns, 0x10100-0x1013F) are sym-
bols derived from Linear A and identified as being numbers or units of measure.

{ OFMAFPRMMA] They are followed by the Greek numbers (5 columns, 0x10140-
0x1018A), which have been used over the centuries in quite a few systems of numer-
ation. The numbers in the first two columns are called acrophonic because they are
the first letters (akron = ‘tip’) of the names of the numbers. For example, ‘[= pi is
the first letter of névte = ‘five’.

{ MR CDRRIERI] The Old Italic block (3 columns, 0x10300-0x10323) contains the let-
ters used by a certain number of ancient languages of the Italian peninsula, such as
Etruscan, Oscan, Umbrian, etc. We can clearly discern the influence of Greek, but
the nascent Latin alphabet is also recognizable.

{ ABI‘&GUZh(bl } Gothic> (2 columns, 0x10330-0x1034A) is the writing system of
the Goths, Vandals, Burgundians, and Lombards used by the archbishop Wulfila in
his Bible in AD 350. It greatly resembles the uncial script but also contains a number
of Greek letters: psi, lambda, pi, theta, etc.

[A WXIE - ¥ ¥ 25—] Ugaritic (2 columns, 0x10380-0x1039F) is one of the lan-
guages written in cuneiform. The cuneiform characters that it uses are letters of an
alphabet. Incidentally, their names seem familiar to us: alpa, beta, gamla, delta, etc.

[?Y_TDTDT'G_Y Te= (T TG T K] They are followed directly by another cuneiform
writing system, Old Persian (4 columns, 0x103A0-0x103D5). The cuneiform scripts of
Akkadian and Elamite have yet to be encoded in Unicode.

{ OEOOO0D AN] The following two blocks are controversial: they contain two
artificial alphabets from the nineteenth century and the beginning of the twenti-
eth century. The first is Deseret (5 columns, 0x10400-0x1044F), or the “Mormon al-
phabet”, which was used for English-language texts (altogether four books and one
tombstone!) between 1847 and 1869 and can be regarded as an attempt to isolate

5> There seem to be multiple uses of the term “Gothic” in various languages. In US English it is used for
the script of Wulfila, but also, more commonly, for sans-serif fonts. In French, Wulfila’s script is called “go-
tique” (without the ‘h’), and “gothique” is used for German broken scripts. Germans call the latter “German
scripts” (“Deutsche Schrift”). The result of this linguistic imbroglio is that in the well-known comics “Asterix
and the Goths”, the words spoken by the Goths are written in a ... broken script, which allows the author, Réné
Goscinny, to compare the Goths with the pre-WWI Germans.

86 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

the Mormons culturally from the rest of the United States. Let us hope that other
religions will not create their own new scripts, lest Unicode end up full of useless,
unwanted alphabets.

[11¢JOSCT\Q] The next alphabet, the Shavian alphabet (3 columns, 0x10450-
0x1047F), contains an element of humor that is certainly due to the person respon-
sible for its development, the great British humorist George Bernard Shaw (whence
“Shavian”, the adjectival form of “Shaw”). In his will, he provided for a contest to be
held for the design of a new alphabet adapted to the phonetics of English. He died
in 1950, the contest was held in 1958, and the alphabet encoded in Unicode was the
winner. The letters have funny names: ha-ha, church, thigh, gag, peep, etc.

{ SYULINROT32] Osmanya (3 columns, 0x10480-0x104A9) was invented in 1922
by a certain Cismaan Yuusuf Keenadiid, a high-ranking figure in Somalia. It was
destined to become the country’s official script, but in 1969 a coup d’état decided
otherwise. Although letters look nothing like those of Arabic, their names (alif, ba,
ta, dja, ...) betray Arabian cultural influence.

{)K)KX&’Y\OWTi 'Y\] We return to ancient times with the Cypriot syllabary
(4 columns, 0x10800-0x1083F), a script influenced by Linear B and used on the
native island of the goddess Venus between 800 and 200 Bc.

[{4/] 4 a YIE @:I.] Pheenician (2 columns, 0x10900-0x1091F) is the ancestor of
the Greek alphabet and those of the Semitic languages. It was used between the 20"
and the 2"! centuries BCE.

[ACPIYRBPI95® | Let us now leave the Mediterranean and take a trip to the Far
East with Kharoshthi (6 columns, 0x10A00-0x10A58), a historical writing system of
northeastern India. Just like the Brahmi script, it has been used to write the Sanskrit
language.

{W C@W%&(ﬁﬁm% @3%%]One of

the big novelties of Unicode v. 5 is the beautiful cuneiform script. It occupies no fewer
than 64 columns (positions 0x12000-0x1236E), and another 8 columns (0x12400-
0x12473) for numbers and punctuation. Some of the glyphs are quite complex.

{ =San s gadonds] After the big cuneiform block, we find two blocks
devoted to music. We begin with the notational system used for Byzantine music®

¢ This block demonstrates that Unicode’s inviolable principle of not changing a character’s description
once the character has been adopted leads to the most ridiculous results. The English description of the char-
acter 0x1D0C5 contains the word FHTORA, which is obviously a typo (the correct term, FTHORA from the Greek
@Bopd, appears in the names of many of the neighboring characters). [Fortunately, the French translation
corrected this error. Thanks, Patrick!] Rather than correcting this innocent typo, Unicode decided to add the
following hilarious comment after the character’s description: “misspelling of ‘FHTORA’ in character name is a
known defect”.... The author knows of one other case of this sort of behavior: errors in the Hebrew Bible are
also preserved, to the point that today there is a list of broken letters, upside-down letters, etc., that have been
“institutionalized” to prevent the copyist from “correcting” the sacred text. Will Unicode be the new Bible?

General organization of Unicode: planes and blocks 87

(16 columns, 0x1D000-0x1DOF5), a system still widely used in Greece and in other
Eastern Orthodox countries.

{ élglg%*ﬁﬁtr%] The next block is for the Western system of musical notation
(16 columns, 0x1D100-0x1D1DD, which includes both the modern notation (written
on the five-line staff) and the notation used for Gregorian chant (written on the
four-line staff). Everything is present: notes, clefs, measure lines, dynamics, ties and
slurs, crescendo and decrescendo hairpins, glissandi, fermatas, etc. All that we need is
the creativity of Stockhausen, Berio, Crumb, and Boulez of the twenty-first century
to make this block explode with a profusion of new symbols.

[©3>X0<—3bU®? } Andsince we are right in the midst of all this musical nota-
tion, why not encode the symbols used to notate music in antiquity? No sooner said
than done: here is the block for ancient Greek musical notation (6 columns, 0x1D200-
0x1D245).

{ emmnannnEEES] We have already mentioned the block of Yijing hexa-
grams, which is located on the BMP, squeezed between two blocks of ideographs.
Here we have monograms, digrams, and tetragrams from this book (6 columns,
0x1D300-0x1D356).

[—===

1LE=|] Next comes a small block for counting rods (2
columns, 0x1D360-0x1D371). “Counting rods” are small sticks, several centimeters
long, used in East Asia for counting. These characters contain the basic patterns of
this numbering system.

{ abcdef a f)IS] Finally, a block that was also controversial but that is more likely
to be useful to the reader than many other Unicode blocks: the mathematical al-
phanumeric symbols (48 columns, 0x1D400-0x0x1D7FF). The idea behind these is very
simple. It is well known that “mathematicians are like Frenchmen: whenever you
say something to them, they translate it into their own language, and at once it is
something entirely different” (in the words of Goethe). Well, in this case it is the
notion of a Unicode character that has been “translated”: the bold, italic, and bold
italic forms of a letter are regarded here as distinct Unicode characters because they
take on different meanings in mathematical formulae. Thus this block contains the
styles mentioned above and also script, blackletter, blackboard-bold, sans-serif, and
typewriter type—all of it for both Latin and Greek.

Plane 2 is called the “Supplementary Ideographic Plane” (SIP). Its structure is extremely
simple. Between 0x20000 and 0x2A6D6 there is a contiguous block of 42,711 ideographs
called “Ideographs Extension B”. The ideographic character with the greatest number of
strokes is found there: it is 0x2A6A5 &, which is written with 64 (1) strokes. Its structure is
quite simple: it contains four copies of the radical #E ‘dragon’. As for the meaning of §i,
the reader will have guessed it: ‘four dragons’ (or ‘several dragons’). Perhaps the ease
with which today’s font-design software can be used will soon give rise to characters with
n? dragons, for a total of 2*n? strokes.. ..

88 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

At the end of the plane, there is a relatively small block (34 columns, 0x2F800-0x2FA1D)
of compatibility ideographs, all of them from the encoding CNS 11643-1992.

Unicode’s last “inhabited” plane is Plane 14. Here we find two blocks, the first of which
was highly controversial. It is a set of language tags. The idea is as follows: to indicate the
language of a block of text, we ordinarily use “high-level protocols” (otherwise known as
markup systems) such as XML, which provides the attribute xml:1ang for this purpose.
But suppose that we absolutely insist on doing it at the level of Unicode. It would be
both naive and futile to try to define control characters corresponding to the various lan-
guages of the world: there would be far too many, and we would need a sub-Consortium
to manage them all. Unicode’s idea, therefore, was as follows: on the basis of XML’s syn-
tax, we will write the value of the xm1: 1ang attribute using special characters that cannot
possibly be mistaken for characters in running text. Thus Plane 14 contains a carbon copy
of ASCII (8 columns, 0xE0001-0xE007F) whose characters fulfill this rdle.

According to the XML standard, the value of xml:lang is a combination of abbrevia-
tions of the name of a language (ISO 639 standard {191]) and the name of a country
(ISO 3166 standard {190}), the latter being unnecessary if the name of the language is
precise enough. The code for English is en, and this is what we would write in a document
to indicate that it is in English: 0XE0001 LANGUAGE TAG, 0XE0065 TAG LATIN SMALL LET-
TER E, OXEOO6E TAG LATIN SMALL LETTER N. If we use letters in boxes for the tags (and i3}
for 0xE0001, which marks the beginning of a sequence), the immortal verses of Goethe
and their translations into various languages would look somewhat like this:

i2i{d1isiUber allen Gipfeln ist Ruh. In allen Wipfeln spiirest Du kaum einen
Hauch. i3} 8} i1PEni navtov 1dv dpémv fiovyia Buciiedet. 'Eni 1dV kladickov
mhéov obte POAAOV 8&v culebet. i3l i i Au dessus de tous les sommets est le
repos. Ecoute dans toutes les cimes, 3 peine si tu surprends un souffle. 3} i
Hush’d on the hill is the breeze. Scarce by the zephyr the trees softly are press’d.

The purpose of i3} is to indicate the version of markup. It is quite possible to envision a
different use of the same tags, with a character other than 0xE0001 to mark the beginning
of the sequence.

As we shall see when we discuss the bidirectional algorithm, it is important to make a
logical distinction between sequential and embedded blocks of text when marking up a
multilingual document. Ordinarily the sentences that we write are sequential, but when
we write “I am telling you: ‘It is time to do this’”, we embed one sentence in another.
The distinction is crucial when the sentences that we embed are written in scripts that
read in opposite directions. Markup must therefore express this property of text, and
XML lends itself admirably to this task because sequential blocks are “sibling nodes”,
whereas embedded blocks are new branches of the tree. Unlike XML’s markup, Unicode’s
language tags are unable to “structure” a document.

The Unicode Consortium admits that it committed a blunder by adopting these char-
acters. It now strongly encourages users not to use these characters, at least when another
means of indicating the language is available....

General organization of Unicode: planes and blocks 89

The last block of the last inhabited plane is for variation selectors. In the BMP there are
already 16 selectors of this type that enable us to indicate as many variants of a single
character. In the event that more than 16 variants occur, have no fear: Plane 14 contains
240 more (15 columns, 0xE0100-0xE01EF), bringing the total to 256.

Scripts proposed for addition

When going from the BMP to the higher planes, we have the impression of moving
from the overpopulated Gangetic Plain to the empty steppes of Siberia. The vast ma-
jority of these planes’ code points are still unassigned, and, unless in the near future
we come upon an extraterrestrial civilization with a writing system that uses a million
characters, that situation is likely to persist for some time.

Which scripts are planned for addition to Unicode in the near future?

There are at least three stages for a script to be included in Unicode. In the following we
describe the pipeline of scripts submitted for inclusion, as of August 2006.

Approved proposals in balloting

These scripts have been approved by the Unicode Technical Committee and the WG2.
They are in the process of being approved by ISO for inclusion in 10646.

[O2VarlrHhJdrLu] Kayah Li, used to write Eastern and Western Kayah Li lan-
guages, spoken by about half a million people in Myanmar and Thailand.

[€506 YOXTF | Lepcha is the script of Sikkim, a formerly independent

country that since 1975 has been a state of India, located between Nepal and Bhutan.

[MAMRISPAMA] Ol Chiki, invented by Pandit Raghunath Murmu in the first half
of the 20" century to write the southern dialect of Santali, a language of India, as
spoken in the Orissan Mayurbhani district.

{ °I°%ti¥1°$oogo(1({|.—|_1] Vai, an African script used in Liberia and Sierra Leone.

{ APV ARV /WA] Rejang, the script of the language by the same name, spoken by
about 200,000 people in Indonesia, on the island of Sumatra.

{ 8886@@8@3@@] Sauvashtra, the script of an Indian language related to Gu-
jarati and spoken by about 300,000 people in southern India (actually a Indo-
European language in the midst of several Dravidian languages).

[3Lz2> HhSSTTIMZ } Sundanese, one of the scripts of the language Sundanese,
spoken by about 27 million people on the island of Java in Indonesia.

{ ABCAEFIB®I] Carian, as well as
[PXTEBOMDPY O | Lycian, and

90 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

[A880 JNEAMI | Lydian: the three ancient Greek “Anatolian” scripts, used in Asia
Minor until the 3™ century BCE.

Proposals in early committee review

These scripts have complete formal proposals and are waiting for approval or rejection
by the UTC.

{ “6’0)@(”015_9}‘:3"0] Avestan is a pre-Islamic Persian script invented to

record Zoroastrian texts in the 39 century ck.

[Anr” 277 700 — —] Batak.

—— Manipuri, a recently extinct script for writing the Meithei language of Manipur
State in India.

{ mﬁ i @?%ﬂ@&]Hieroglyphic Egyptian, whose (future) Unicode

block is based on the font of the Centre for Computer-Aided Egyptological Research
in Utrecht, in the Netherlands. The proposal distributes the hieroglyphs over two
blocks: the basic block (761 characters) and the extended block (4,548 characters that
come primarily from the inscriptions in the temple of Edfu). To place hieroglyphs
inside cartouches, one uses the control characters EGYPTIAN HIEROGLYPHIC BEGIN
CARTOUCHE, etc.

{ +AAD 054 Y] Brahmi, the ancient pan-Indian script, ancestral to the scripts of
India and Southeast Asia.

{ mmla&&; o woede] Manichaean, the script of the texts of Manichaeism, a re-

ligion founded by Mani (216-274 cg). The Manichaean script was inspired by the
Syriac Estrangelo.

{ p)l‘}\ngch:‘DQ@] Tengwar, a script invented by Tolkien for The Lord of the
Rings.

Proposals in the initial and exploratory stages

[e Qamgva@ﬂ? } Chakma is the script of Chakmas, the largest eth-

nic group in Bangladesh. Nowadays the Chakma language is mostly written in the
Bengali script.

{ DMV VX NNSY Q” m] Cham, a Southeast Asian script used by minorities

in Cambodia and Vietnam, which bears a vague resemblance to Khmer.

{ qn;aﬂ&&% ga:&rﬂ@%u&%wgﬂ } Javanese, another Southeast Asian script, an In-

donesian derivative of Brahmi.

General organization of Unicode: planes and blocks 91

—— Lanna.

[warx8m,=d | Mandaic is another Semitic alphabet, derived from the Aramaic script.
It is used for Mandaic, the liturgical language of the Mandaean religion.

{ ‘mﬂliﬂiiﬂilﬁé‘la] Newari.

{ AIXTUR+R9%8] Old Hungarian, a runic script used in Hungary before the Latin al-
phabet was adopted. In Hungarian it is called rovdsirds.

[V3LBAOUINIH | Pahawh Hmong, a script revealed in 1959 to a messianic figure
among the Hmong people of Laos, Shong Lue Yang, by two supernatural messengers
who appeared to him over a period of months.

[mlEMeIMX 3 ?] Samaritan is the script of the Samaritans, a Mesopotamian
people that migrated and settled down in Palestine circa 500 BCE. It is also known as
Old Hebrew, in contrast with the script we nowadays call Hebrew, which is of Aramaic
origin.

[# B2 BRIY | Siddham: this very beautiful script, a descendent of Brahmi,
is used by Shingon Buddhists in Japan to write mantras and sutras in Sanskrit. It was
introduced to Japan by Kukai in 806 cE after he studied Sanskrit and Mantrayana
Buddhism in China. In Japan it is known as %5 (bonji).

{ /Ya&?‘,‘_%&\gf Eja] Sorang Sompeng, the script used to write the Sora language, spoken by
populations living between the Oriya- and Telugu-speaking peoples in India. It was
devised by Mangei Gomango, son of the charismatic leader Malia Gomango.

—— Tai Lii, a script for writing various Tai dialects in northern Thailand, Yunnan, and
parts of Myanmar.

{ 13 HEIAM N] Varang Kshiti, the script used to write the Ho language of In-
dia, devised by another charismatic leader, Lako Bodra.

[naQU303qq viie] Viet Thai is a script for the Thai languages used by Thai people
in Vietnam.

{ MPONPBEWWIHW] Ahom is the script of an extinct Tai language spoken by the Ahom
people, who ruled the Brahmaputra Valley in the Indian state of Assam between the
13t and the 18™ centuries.

—— Early Aramaic, an alphabet descending from Phoenician. It is an ancestor of Syriac,
Arabic, and other scripts.

—— Balti, the script of the language of Baltistan, in northern Kashmir. This script was
apparently introduced around the 15™ century ck, when the people converted to
Islam. It is related to Arabic.

92 Chapter 2 : Characters, glyphs, bytes: An introduction to Unicode

{ INZ—G0 SaH—] Bassa Vah is a script used by the Bassa people on the central
coast of Liberia and Sierra Leone. In the 1900s, a chemist, Flo Darvin Lewis, discov-
ered that descendants of slaves in Brazil and the West Indies were still using it. He
then tried to revive this alphabet in Liberia.

{ Ay RE 5ol] Blissymbolics is an ideographic writing system used primarily by
people with physical and cognitive handicaps. It was developed by Charles Bliss in
the 1950s as a “universal language” that could cut across national boundaries and
facilitate international communication and peace. It contains 2384 characters in
149 columns.

{ MAMRIOPMA] Cirth, another script invented by Tolkien for The Lord of the Rings.
[B sais)28 I nk | Hittite is the language of the Hitties, a people living

in north-central Anatolia. It was spoken between 1600 and 1100 Bc. It was written
in cuneiform characters with syllabic and logographic meanings.

{ Rt (RS & ¥ &5 LY] The Indus Valley script is still undeciphered. It
was used between 2500 and 1700 BCE. The proposal includes 386 characters.

—— Kaithi, a script used widely throughout northern India, primarily in the former
North-West Provinces (present-day Uttar Pradesh) and Bihar. It was used to write
legal, administrative, and private records.

{ CONOLCVONC000] Khamti, or Lik-Tai, used to write the Khamti language in
India and Myanmar.

—— The Kirat, or Limbu, script, used among the Limbu of Sikkim and Darjeeling (the
place with the delicious tea).

—— Linear-A, an undeciphered script—unlike Linear B, which was deciphered by
Michael Ventris—used in ancient Crete around 1400 BCE.

{ dI0R BsrasNiLL } Meroitic is a very interesting case of the alternative use of
a writing system. The Meroites lived in the Sudan during the time of the pharaohs.
To write their language, they used 23 Egyptian hieroglyphs (or demotic characters),
each with a very precise phonetic value.

[% R £ = yye4k | Naxi-Geba: Geba is one of the three scripts of the Naxi
language (together with Dongba and the Latin alphabet). The language is spoken
by about 300,000 people in Yunnan, Sichuan, Tibet, and Myanmar.

[BITZAVP@DMAD | 0ld Permic is the script invented by the missionary Etienne
de Perme in the 14t century to write the Komi and Permyak languages, which are
spoken in the Ural Mountains in Russia.

—— Palmyrene.

General organization of Unicode: planes and blocks 93

{ YLITH LTS3] The Pollard script. Samuel Pollard was a British missionary who
lived in China at the beginning of the 20t century. He invented a writing system
for the A-Hmao language of the Miao minority. His system is structurally related to
hangul in that he defined basic elements that are combined to form syllables. The
language is much more complex phonetically than Chinese.

{ @%ﬁﬁ&}* %W%}] Rongorongo, the yet undeciphered symbols of Easter Is-

land, carved on wooden boards. It is written in reverse boustrophedon style (from
bottom to top). There are two other scripts to write the Rapa Nui language: Ta'u
and Mama.

{ mlBMeIdMX 8 ?] South Arabian is an ancient Semitic script, the ancestor of
Ambaric. It was used from the 5™ century BcE to the 7" century ck.

{ |§| ﬁ ccﬁ 3§| H “bﬁ m ﬂ §| Q] Soyombo is another writing system for the Mongolian lan-
guage that was created in 1686 by the illustrious Mongolian monk Zanabazar. It can

be used to write Mongolian as well as Tibetan and Sanskrit. One of the Soyombo
letters became the national symbol of the Mongolian state in 1992; its proportions
are even defined in the country’s constitution.

The Web site http://www.ethnologue.com gives a list of 6,800 languages of the world,
but it is estimated that only about 100 scripts have existed. Unicode already includes
about 60 scripts, and another 50 are waiting in the pipeline for inclusion. Does this mean
that Unicode has managed to encompass most of the world’s scripts? One thing is certain:
both the Consortium and the designers of “Unicode-compatible” fonts will have their
hands full for some decades to come.

Properties of
Unicode characters

Our concern in this chapter is the information that Unicode provides for each character.
According to our definition, a character is a description of a certain class of glyphs. One
of these glyphs, which we have called the representative glyph, is shown in the Unicode
charts, both in their hard-copy version {335} and in the PDF files available on the Web
([334)).

Unicode defines the identity of a character as the combination of its description and its
representative glyph. On the other hand, the semantics of a character are given by its
character identity and its normative properties.

This brings us to character properties. These are data on characters that have been col-
lected over time and that can help us to make better use of Unicode. For example, one
normative property of characters is their category. One possible category is “punctua-
tion”. A developer can thus know which characters of a given script are punctuation
marks—information that will enable him to disregard those characters when sorting
text, for example—without knowing anything at all about the script itself. Another prop-
erty (not a normative one in this instance, and therefore more ambiguous) is the up-
percase/lowercase correspondence. Unicode provides a table of these correspondences,
which software can apply directly to convert a string from one case to the other (when the
concept of case even applies to the writing system in question). Of course, none of these
operations (sorting, case conversion, etc.) can be 100 percent automatic. As in all types of
language processing, there is always a degree of uncertainty connected to the ambiguity
inherent in languages and their grammars. But character properties can nevertheless be
used to automate a large part of text processing; the developer should only take care to

95

96 Chapter 3 : Properties of Unicode characters

allow the user to correct errors that may arise from the generalized application of char-
acter properties.

What are these properties, and where are they found? We shall answer both questions
in the remainder of this chapter.

Basic properties

Name

The name of a character is what we have called its description. The official list of the En-
glish names of characters according to their positions within the encoding appears in the
following file:

http://www.unicode.org/Public/UNIDATA/UnicodeData. txt

This file contains a large amount of data in a format that is hard for humans to read but
easy for computers: fifteen text fields separated by semicolons. Here are a few lines from
this file:

0021 ; EXCLAMATION MARK;Po;0;0N;;;;5:5N;55555
0022;QUOTATION MARK;P0o;0;0N;;;;;5N;5555;
0023 ;NUMBER SIGN;Po;0;ET;;;;55N;55555
0024 ;DOLLAR SIGN;Sc;0;ET;;;;5;5N;55555

The first two fields are the character’s position (also called its “code point”) and name
(which we called its “description” in the previous chapter). These are fields number 0
and 1. (Counting begins at 0.) We shall see the other fields later.

Character names are not there solely for the benefit of humans; programming languages
also understand them. In Perl, for example, to obtain the character that represents the
letter ‘D’ of the Cherokee script, we can write \N{CHEROKEE LETTER A}, which is strictly
equivalent to \x{13a0}, a reference to the character’s code point.

Block and script

These properties refer to the distribution of the full set of characters according to the
script to which they belong or to their functional similarity. Thus we have a block of
Armenian characters (Armenian), but also a block of pictograms (Dingbats), a block of
special codes (Specials), etc.

The names of the blocks, in the form of running heads, can be found in the Unicode
book but also in the file Blocks.txt (in the same directory as UnicodeData.txt). Here
is a snippet of this file:

0000..007F; Basic Latin
0080..00FF; Latin- Supplement

Basic properties 97

0100..017F; Latin Extended-A
0180..024F; Latin Extended-B
0250..02AF; IPA Extensions

Block names are used by Unicode-compatible programming languages in the syntax for
testing whether a character belongs to a specified block. In Perl, for example, we can
determine whether a character is in the Shavian block by writing:

/\p{InShavian}/

The problem with the blocks is the fact that they are not always contiguous: Latin is
spread over five blocks separated by 7,553 code points; Greek is split into two blocks sep-
arated by 6,913 code points; the Chinese ideographs are in four blocks on two planes....
To know whether a character is a Latin letter, therefore, we have to perform five separate
tests.

One piece of data, the script, attempts to solve this problem. The file Scripts.txt
presents a breakdown of Unicode into 60 scripts: Latin, Greek, Cyrillic, Armenian, He-
brew, Arabic, Syriac, Thaana, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil,
Telugu, Kannara, Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar, Georgian, Hangul,
Ethiopic, Cherokee, Canadian_aboriginal, Ogham, Runic, Khmer, Mongolian, Hiragana,
Katakana, Bopomofo, Han, Yi, Old_italic, Gothic, Deseret, Inherited, Tagalog, Ha-
nunoo, Buhid, Tagbanwa, Limbu, Tai le, Linear b, Ugaritic, Shavian, Osmanya, Cypriot,
Braille, Buginese, Coptic,New Tai Lue,Glagolitic,Tifinagh,Syloti Nagri,0ld Per-
sian, Kharoshthi. And a 61%, which is the default value: Common.

Among these values, there is one that should be handled with care: inherited. This value
applies to diacritical marks and other symbols that take on the value of the script of the
surrounding characters.

It is very interesting to observe that the author of the report that describes this prop-
erty [108] emphasized its usefulness for detecting spoofing, or the confusion of characters
whose glyphs are identical or similar. The reader who has worked with Greek or Russian
documents will certainly have had the experience of seeing words that print poorly or
that cannot be found during a search simply because an ‘O, a ‘T, an ‘A, a ‘P, etc., has
been entered in the wrong script. Experience shows that a user who types the two words
“DEAROJIBI'A” will often change scripts not just before the word “OJIbI'A” but after
the letter ‘O’ because of the need to type the ‘JT’; consequently, the word will contain
both Latin and Cyrillic letters. We also refer the reader back to the photo on page 57,
where we see glorious spoofing between the words “ITAPKINI'’K” and “PARKING”.

Age

This is nothing but the number of the Unicode version in which the character first ap-
peared in the encoding. Let us take this opportunity to observe that Unicode characters
have one thing in common with our academics: they are immortal, in the sense that a
Unicode character, once defined, can never be removed from the encoding. The worst

98 Chapter 3 : Properties of Unicode characters

thing that can happen to a character is to be “deprecated”, which in Unicode leads to
hilarious situations a la “the character is here, but act as if it were not, and for heaven’s
sake don’t use it!”

The age of characters is indicated in the file DerivedAge. txt.

General category

This is perhaps a character’s most important property, the one that will determine its
behavior in most text-processing systems (both linguistic and typographic). As it should
be, the category is structured in a hierarchical fashion, with the concepts of primary cat-
egory (letters, diacritical marks, numbers, punctuation, symbols, separators, other) and
subcategories, which specify the classification more precisely.

These give us 30 possibilities in all, each of them represented by a two-letter code.

Letters

o Lu (letter; uppercase). The name of the primary category of “letter” should be con-
strued in a very broad sense, as it can apply equally to a letter of an alphabet, a sign
belonging to a syllabary, or an ideograph.

This particular subcategory refers to an “uppercase” letter; therefore, we can tell that
the category applies to scripts that distinguish uppercase from lowercase letters. Very
few scripts have this property: Latin, Greek, Coptic, Cyrillic, Armenian, liturgical
Georgian, and Deseret.

o L1 (letter, lowercase). This category is the mirror image of the previous one. Here we
are dealing with a letter from one of the multicameral alphabets (i.e., those that have
more than one case) listed above, and that letter will be lowercase.

o Lt (letter; titlecase). There are two very different types of characters that have been
classified Lt: the Croatian digraphs ‘Dz’ ‘Lj’ ‘Nj’ and the capital Greek vowels with
iota adscript.

In the first instance, we see a compromise that was made to facilitate transcription
between the Cyrillic and Latin alphabets: it was necessary to transcribe the Cyrillic
letters ‘b, “») and ‘&), and no better solution was found than the use of digraphs. But
unlike ligatures such as ‘oe’, ij} and ‘@’, whose two elements both change case (‘E’,
IJ, ‘&), here we may just as easily have ‘DZ’ (in a word in which all the letters are
uppercase) as ‘DZ’ (in a word in which only the first letter is supposed to be upper-
case). This is so for all digraphs: the Spanish and German ‘ch’, the Breton ‘c’h, etc.
Unicode is not in the habit of encoding digraphs, but in this instance compatibility
with old encodings forced Unicode to turn these digraphs into characters. Thus we
consider ‘d?’ to be the lowercase version, ‘DZ’ the uppercase version, and ‘D?’ the
“titlecase” version of the character.

The second instance is the result of a typographical misunderstanding. In Greek
there is a diacritical mark, “iota subscript”, that is written beneath the vowels alpha,
eta, and omega: “q, 1, ®”. Typographers have found various ways to represent these

Basic properties 99

characters in uppercase. The most common practice, in Greece, is to place the same
diacritical mark underneath the uppercase letter: “A, H, Q”. In the English-speaking
countries another solution is used, which involves placing a capital or small-capital
iota after the letter. The latter is called iota adscript. Unicode incorrectly considers
adscript the only possibly way to write this mark and thus has applied the category Lt
to uppercase letters with iota adscript.

o Lm (letter; modifier). This is a rather small category for letters that are never used alone
and that serve only to modify the sound of the letter that comes before them. Most
of these characters appear in the block of “modifier letters” (0x02B0-0x02FF). There
are a few rare examples of characters in other blocks: the iota subscript that we just
mentioned is one; the stroke kashida that joins Arabic letters is another. Intuitively
we could say that a modifier letter is something that plays the same role as a diacriti-
cal mark but that does not have the same graphical behavior, since its glyph will not
combine with the one of the previous character but will rather follow it.

e Lo (letter; other). There is no denying it: Unicode is Eurocentric. Proof: Usually,
when we create a classification, we begin with the most important cases and add
a “catchall” case at the very end to cover any exceptions and omissions. Here the
subcategory named letter; other covers all the scripts in the world that have no notion
of case, which is to say practically the entire world! The Semitic, Indian, Southeast
Asian, and ideographic scripts—all are lumped together indiscriminately as Lo....

Diacritical marks

e Mn (mark, non-spacing). These are diacritical marks: accents, cedillas, and other signs
that are independent Unicode characters but that do not have the right to show
themselves in isolation. Fate inexorably binds this sort of Unicode character to the
one that comes before it, and their glyphs merge to form only a single glyph. The
term “non-spacing” is a bit awkward, for an accent can, in some cases, change the
width of its base letter: imagine a wide circumflex accent over a narrow sans-serif 7.

e Mc (mark, spacing combining). If the “modifier letters” are letters that behave some-
what like diacritical marks, the “spacing combining marks” are diacritical marks that
behave somewhat like letters. For example, the languages of India and Southeast
Asia have vowels, markers of nasalization, glottal stops, etc., which graphically re-
semble letters but which, by their very nature, are always logically attached to letters.
By way of illustration, in Cambodian the letter ‘a1’ is pronounced nyo. To turn it into
nye, we add a modifying symbol, the one for the vowel e, whose glyph comes before
the consonant: ‘t’. We never see this glyph standing alone, just as we never see a
cedilla standing alone—and that is what led Unicode to classify this vowel 0x17C1
KHMER VOWEL SIGN E among the diacritical marks.

e Me (mark, enclosing). These are diacritical marks whose glyphs completely enclose the
glyph of the character that precedes them. There are very few of them in Unicode:
the Cyrillic signs for hundreds of thousands and millions that encircle a letter taken

100 Chapter 3 : Properties of Unicode characters

to be a number; the rub el-hizb, which appears in the Koran at the beginnings of the
subdivisions; a few technical signs, such as the triangle on European road signs that
indicates danger; etc.

Numbers

e Nd (number, decimal digit). After the letters and the diacritical marks come the num-
bers. Various writing systems have their own systems of decimal digits: we in the West
have our “Arabic numberals”; the Arab countries of the Mashreq have their “Indian
numerals”; each of the languages of India and Southeast Asia has its own set of digits
between 0 and 9; etc. These are the digits that we find in category Nd. But beware: if
one of these scripts should have the poor taste to continue the series of numerals
by introducing, for example, a symbol for the number 10 (as is the case in Tamil
and Ambharic) or a sign for one half (as in Tibetan), these new characters would not
be admissible to the Nd category; they would be too far removed from our Western
practices! They would instead go into the catchall No, which we shall see in just a
moment.

o N1 (number, letter). An especially nasty problem: in many writing systems, letters are
used to count (in which case we call them “numerals”). In Greek, for instance, 2006
is written k¢’. But if the letters employed are also used in running text, they cannot
belong to two categories at the same time. And Unicode cannot double the size of
the blocks for these scripts simply because someone might wish to use their letters as
numerals. What, then, is a “number-letter”, if not a letter that appears in text? There
are very few such characters: the Roman numerals that were encoded separately in
Unicode, the “Suzhou numerals” that are special characters used by Chinese mer-
chants, a Gothic letter here, a runic letter there. Note that the Greek letters koppa ‘5’
and ‘sampi >, which represent the numbers 90 and 900, do not count as “number-
letters” although they should, since their only use is to represent numbers....

e No (number, other). The catchall into which we place the various characters inher-
ited from other encodings: superscript and subscript numerals, fractions, encircled
numbers. Also in this category are the numbers from various systems of numeration
whose numerical value is not an integer between 0 and 9: the 10, 100, and 1,000
of Tamil; the numbers between 10 and 10,000 of Amharic; etc. Note: although we
cannot classify the ideographs — ‘one’, . ‘two’, = ‘three’, I ‘four’, etc., as “letters”
and “numbers” at the same time, we can so classify ideographs in parentheses: (-,
(%), (&), (), etc., are Unicode characters in their own right and are classified as No.

Punctuation

e Pc (punctuation, connector). A very little-used category for punctuation marks—those
that connect two parts of a word to form a single word. The hyphen plays this role
in English (“merry-go-round”, “two-year-old”), but the character 0x002D HYPHEN-
MINUS belongs to a separate category, the “dashes”. The most commonly used char-
acter in category Pc is the midpoint of the katakana block. Katakana is used mainly to

Basic properties 101

represent foreign words. When these are connected or contain a hyphen in the orig-
inal language, it is not possible to do the same in Japanese because there is already a
symbol shaped like a hyphen, whose purpose is to prolong the vowel that precedes
it. An example that shows both characters: by combining 7 =+ — % — (wdtd) and 7~
2 (poro), we obtain #— ¥ — - 7R & (= “water polo”), in which the midpoint is
character 0x30FB KATAKANA MIDDLE DOT, which is of category Pc. Another example
of a character in category Pc: the “underscore”, which programmers use to write vari-
able names that consist of more than one word, such as “$who_am_i”.

e Pd (punctuation, dash). All sorts of dashes: figure, en, em, the hyphen, the minus sign,
the Armenian hyphen, the Mongolian hyphen, etc.

e Ps (punctuation, open). Some of the punctuation marks come in pairs: the parenthe-
ses, the brackets, the braces, etc. Here we include the “opening” symbol of each of
these pairs. Recall that Unicode encodes characters in their logical order. When we
write a word in parentheses, we begin with the opening parenthesis, then we write
the word, and finally we finish with the closing parenthesis. What we have just said is
blindingly obvious, except for the fact that the glyph for the character that we call the
“opening parenthesis” may, according to the direction of the script, be ‘(’ (in English)
or)’ (in Hebrew or Arabic) or even ‘“~’ (in Chinese or Japanese). We have the same
Unicode character in all three cases; only the glyph differs. Later we shall see another
property, mirroring, which affects characters such as these. Note that the quotation
marks are not categorized as Ps, since they have a category to themselves.

e Pe (punctuation, close). The closing counterpart of Ps.

o Pi (punctuation, initial quote). A special case of binary punctuation marks, as quota-
tion marks generally come in pairs. Thus the American double opening quotation
mark ¢, the French opening quotation mark «, the second-level Greek opening quo-
tation mark “, etc., are all of category Pi. But take note: these quotation marks can
be used in peculiar ways that defy any attempt to establish universal rules. For ex-
ample, « and “ are closing quotation marks in German, ” is an opening and a closing
quotation mark in Dutch, etc. Saying that « and “ are “initial” quotation marks is no
more accurate than saying that the men wear trousers and the women wear skirts in
every country in the world.

[S2EINY

e Pf (punctuation, final quote) for “, “»’, etc. As mentioned in the previous paragraph,
these are no more “final” than Pi is “initial”.

e Po (punctuation, other). The catchall that turns out to contain the most important
punctuation marks: the period, the comma, the colon, the semicolon, the exclama-
tion point, the question mark, etc.

Symbols

e Sm (symbol, math). This category is for signs that are used only in mathematics. Thus
in “sin(m) = 0”, only the equals sign is in category Sm, for all the other signs are either
letters, numbers, or punctuation marks.

102 Chapter 3 : Properties of Unicode characters

e Sc (symbol, currency). Example: the dollar sign ‘$’, whose glyph is sometimes also used
for the character s, as in “Micro$oft” or “U$A”.

e Sk (symbol, modifier). These are phonetic symbols that modify the letters around
them but that never appear by themselves—much like the modifier letters, except
that here we have not letters but punctuation marks or symbols. For example, there
are the phonetic symbols “114 4 I, which denote the five tones of certain Chinese
dialects. A tone mark necessarily goes with a letter, which it modifies; yet it is a graph-
ical symbol, not a letter, so it is a good example of a “modifier symbol”.

Unfortunately, some symbols that do not modify anything have been included in
this category. These are the unnatural characters known as the spacing diacritical
marks, i.e., the non-combining diacritical marks that have been included in the en-
coding for reasons of compatibility with earlier standards.

e S0 (symbol, other). The catchall category for symbols that are not mathematical sym-
bols, currency signs, or modifiers. In a set containing @, ®, and &, there is something
for every taste—within the limits of political correctness, of course, and a certain
technocratic ethical standard. Unicode has not yet created a category for ostentatious
religious symbols, but one should not be long in the coming....

Separators

e Zs (separator; space). These are spaces: zero-width, thin, medium, wide, 1-em, 1-en,
3-to-an-em, 4-to-an-em, and many more. Some of them allow a line break and some
do not. And there is one typographical curiosity: in the ogham script, there is a space
that is not a space! This script is written along a baseline; but unlike the line in De-
vanagari, this line is not broken between words. Accordingly, the space (in the sense
of “word separator”) is a segment of baseline with no letter on it.

o 71 (separator, line) and Zp (separator, paragraph). These categories contain only one
character each: 0x2028 LINE SEPARATOR and 0x2029 PARAGRAPH SEPARATOR. These
characters attempt to solve the problem of breaking text into lines and paragraphs
in an unambiguous way. Recall that, when a document is read by a word processor
such as Word, the lines are automatically divided without any changes to the un-
derlying text, and a newline character in the document will visually mark the start
of a new paragraph. The conventions are different in TgX: a newline in the source
document is equivalent to a blank space in the output. It takes two consecutive new-
lines in the source to produce a new paragraph in the output. XHTML follows yet
another convention: any number of newlines in the source will yield a single blank
when rendered; to start a new line or a new paragraph in the output, one must use
the appropriate tags (
 and <p> or <div>). In this paragraph we have used the
term “newline”. The character corresponding to this operation varies from system to
system: under MacOS, the character is CrR; under Unix, it is NL; and under Windows,
it is a pair of bytes, CR NL. To avoid having to adopt one of these conventions, Uni-
code decided to punt: there are two new characters to indicate a change of line (if
necessary) and a change of paragraph. Now all that remains is to persuade people to
use them....

Basic properties 103

The remaining categories

e Cc (other, control). This category covers code points 0x0000-0x001F and 0x0080-
OX009F, i.e., tables CO and C1 in ISO 2022—-compatible encodings. Unicode does
not assign any semantic value to these characters; their names are invariably “<con-
TROL>". No other Unicode character is in this category.

o Cf (other, format). These characters are all used to insert metadata into a document.
They are important enough to be listed here:

— Ox00AD sOFT HYPHEN marks a potential spot for dividing a word across lines.
We can imagine a human or a program that inserted such characters at every
permitted break-point; the rendering software would then not have to apply the
hyphenation algorithm.!

— 0x0600 ARABIC NUMBER SIGN and the three characters that follow behave in a
very unusual way: they occur at the beginning of a number, and their effect lasts
as long as digits are added. Thus they are combining characters, in a sense, the
only differences being that they precede the base character and that they act on an
unlimited number of following characters. This character indicates that a num-
ber is being written. Its graphical shape is that of a letter ayn with a stroke that
extends for the length of the number. This practice occurs in languages such as
Urdu and Baluchi.

— 0x0601 ARABIC SIGN SANAH: In Arabic sanah means ‘year’. This character is the
word sanah written beneath a number for its entire width to indicate that the
number represents a date.

— 0x0602 ARABIC FOOTNOTE MARKER is written beneath the index of a footnote.
— 0x0603 ARABIC SIGN SAFHA is likewise written beneath a page number.

— 0x06DD ARABIC END OF AYAH is a very different symbol: it is a circle, often highly
embellished, that is used in the Koran to enclose the number of the ayah that
has just ended. This character is in category Cf because it behaves like those
that we have just described: it encircles the number before which it appears,
irrespective—at least in theory—of the number’s size.

— 0X070F SYRIAC ABBREVIATION MARK is a means of drawing a horizontal line above
a string of Syriac glyphs to indicate that they form an abbreviation. This charac-
ter is placed at the beginning of the abbreviation, which continues until the end

of the string, namely, until the first character of type “punctuation”, “symbol”,
or “separator”.

— 0x17B4 KHMER VOWEL INHERENT AQ and 0x17B5 KHMER VOWEL INHERENT AA are
mistakes {335, p. 390}, and their use is discouraged by the Consortium.

! In certain languages we may be able to make good use of multiple characters of this kind, correspond-
ing to different degrees of precedence. In German, for instance, we distinguish four levels of precedence for
the hyphenation of a word such as Wahr,scheinglichskeits;theosrie, depending on whether the breaks occur in
front of the last component, between the other components, between syllables of the last component, between
syllables of other components.

104

Chapter 3 : Properties of Unicode characters

— 0x200C ZERO WIDTH NON-JOINER, or “ZWNJ”, is a character that prevents the

formation of a link or a ligature between the glyphs of the two surrounding
characters. We can use it in scripts such as Arabic when two consecutive letters
should not be connected, or in those cases in which we want to avoid a ligature
at all costs, as in the German word Auflage, in which the letters ‘t” and ‘I’ belong
to different components of the compound word.

0x200D ZERO WIDTH JOINER, or “ZWJ”, is the opposite of ZWNJ. It is very useful
when we need to obtain a specific contextual form. For example, the abbrevia-
tion “a” is found in Arabic dictionaries. It is the initial form of the letter hah.
Since this letter is preceded and followed by non-letters, the rendering engine
will automatically select the glyph ¢ for the isolated form. To obtain the initial
form, we follow the letter with the character ZWJ, which leads the rendering
engine to think that the letter is followed by another Arabic letter, to which it
must be connected.

0X200E LEFT-TO-RIGHT MARK, 0X200F RIGHT-TO-LEFT MARK, 0X202A LEFT-TO-RIGHT
EMBEDDING, 0X202B RIGHT-TO-LEFT EMBEDDING, 0X202C POP DIRECTIONAL FOR-
MATTING, 0x202D LEFT-TO-RIGHT OVERRIDE, and 0x202E RIGHT-TO-LEFT OVERRIDE
are used by the bidirectional algorithm, which we shall describe in detail in
Chapter 4.

0x2060 WORD JOINER can be inserted between two words to prevent a line break
at that location. Software systems have their own line-breaking algorithms, of
course, but these algorithms take only letters into account. Often the author has
typed an em dash followed by a comma only to shudder in horror when he saw
the comma moved down to the next line. Of course, we can always develop more
refined software that will avoid this sort of typographical error, but until then
it will not be a bad idea to insert a character that will effectively prevent the
separation of two glyphs.

0x2061 FUNCTION APPLICATION is a character that does not affect rendering at all.
Its rdle is strictly semantic. It indicates that two mathematical symbols stand
in relation to each other as a function and its argument. When we write f(x),
it is clear that we are referring to the function f of x; likewise, when we write
a(b + ¢), it is clear that we are referring to the product of the variable a¢ and
the sum of the variables b+ ¢. But what is f(g+h4)? Isit f: g+h— f(g+h) or
f-g+ f-h? To eliminate the ambiguity, we have an invisible “function” character
that indicates, when placed between f and (g + k), that the notation refers to
the application of a function. This invisible character can also be used for other
purposes than mathematical notation: symbolic calculation, voice synthesis, or
simply the transmission or storage of a formula with its contents represented
unambiguously.

0x2062 INVISIBLE TIMES is the other option for interpreting the expression f(g+
h): the product of f and g + h. In algebra we have the habit of not explicitly
writing a symbol for multiplication and, more generally, the laws of algebraic
structures. Unicode speaks of multiplication, but all indications suggest that this
operator may be used for any law of an algebraic structure.

Other general properties 105

0x2063 INVISIBLE SEPARATOR handles a third case in which ambiguity may arise,
that of indices. When we write a;; within a matrix, it is clear from context that
we are referring to the i row and the j™ column of that matrix. Thus we are
speaking of two indices, not the product of i and j. To make our intention clear,
we may insert the invisible separator between the two indices.

0X206A INHIBIT SYMMETRIC SWAPPING and 0x206B ACTIVATE SYMMETRIC SWAP-
PING are deprecated {335, p. 543].

0x206C INHIBIT ARABIC FORM SHAPING and 0x206D ACTIVATE ARABIC FORM SHAP-
ING are also deprecated.

0X206E NATIONAL DIGIT SHAPES and 0x206F NOMINAL DIGIT SHAPES are depre-
cated as well.

OXFEFF ZERO WIDTH NON-BREAKING SPACE, or “BOM”, is the character that en-
ables us to determine whether a Unicode document in UTF-16 is encoded in
little-endian or big-endian order. This technique works because the character’s
alter ego, OXFFFE, is not a Unicode character. Therefore, if we find an OXFFFE in
a file, there is only one possible conclusion: it is an OxFEFF that we are reading
backwards, in the wrong mode. This character has no other role than indicating
endianness.

OXFFF9 INTERLINEAR ANNOTATION ANCHOR, OXFFFA INTERLINEAR ANNOTATION
SEPARATOR, and OxFFFB INTERLINEAR ANNOTATION TERMINATOR are used to en-
code interlinear annotations, which are pieces of information that are presented
in a special way, such as by placing them between two lines of text. They may
be used for a word-for-word translation or, in the case of the ideographic lan-
guages, to indicate an ideograph’s pronunciation by making reference to a pho-
netic writing system such as the Japanese kana, the Korean hangul, or the Chinese
bopomofo.

There are also characters in category Cf for encoding the basic units of musical
notation.

And all the language tags in Plane 14 that are used as markup for languages are
also in category Cf.

o Cs (other, surrogate). The characters in the high and low surrogate zones (0xD800-
OxDBFF and 0xDC00-0xDFFF); see page 64.

o Co (other, private use). The characters of the private use areas.

o Cn (other, not assigned). By extending the notion of category to all of the code pointsin
the Unicode chart, we can say that a code point that is not assigned to any character
is of category Cn. Corollary: No character in the file UnicodeData.txt can ever be of
category Cn.

Other general properties

By scanning over the categories and subcategories described in the previous section, we
can quickly notice that many properties are omitted from the categorization. Another

106 Chapter 3 : Properties of Unicode characters

file at the Unicode site, by the name of ProplList.txt, makes up for this deficiency by
introducing a certain number of properties that are orthogonal to the notion of category.

Here is a snippet of the file, showing the characters that have the property of being
“spaces”™

0009. .000D ; White Space # Cc [5] <control->..<control-D>
0020 ; White Space # Zs SPACE

0085 ; White Space # Cc <control->

00A0 ; White Space # Zs NO-BREAK SPACE

1680 ; White Space # Zs OGHAM SPACE MARK

180E ; White Space # Zs MONGOLIAN VOWEL SEPARATOR
2000. .200A ; White Space # Zs [11] EN QUAD..HAIR SPACE

2028 ; White Space # 71 LINE SEPARATOR

2029 ; White Space # Zp PARAGRAPH SEPARATOR

202F ; White Space # Zs NARROW NO-BREAK SPACE
205F ; White Space # Zs MEDIUM MATHEMATICAL SPACE
3000 ; White Space # Zs IDEOGRAPHIC SPACE

At the start of each line, we see the code points or ranges concerned. The name of the
property appears after the semicolon. Everything after the pound sign is a comment;
this section contains the character’s category and its name or, when there are multiple
characters, the names of the endpoints of the range.

Of these properties, which number 28 in all, here are the general-purpose ones. We shall
see the others later when we discuss case, the bidirectional algorithm, etc.

Spaces

This property applies to 26 Unicode characters, of which some are genuine spaces (cat-
egory Zs) and others are control characters (category Cc). The line separator and the
paragraph separator, which are respectively in categories Z1 and Zp, also have this prop-
erty.

Alphabetic characters

These are characters of category “letter” (Lu, L1, Lt, Lm, Lo) or “ alphabetic numbers” (N1).
There are 90,989 of them in all. Note that characters have the alphabetic property sim-
ply by virtue of belonging to one of these categories; thus extracting the corresponding
characters from the file UnicodeData. txt yields a complete list of alphabetic characters.
For that reason, this property is called a “derived” property, and its characters are listed
not in Proplist.txt but in DerivedCoreProperties.txt.

Noncharacters

These characters are the forbidden fruit of Unicode: their code points may not be used.
The Consortium even created a special term for them: noncharacters (written solid). They

Other general properties 107

cover 32 code points in the block of Arabic presentation forms 0xFDDO-0xFDEF and the
last two positions in each plane, 0x? ?FFE and 0x? ?FFF. This is why: Code point OxFFFE
must be ruled out as a character so that the pair of bytes 0xFF 0xFE, when read by soft-
ware, can be interpreted as the character BOM 0xFEFF read in the wrong direction. Only
if one code point (0xFFFE) is sacrificed can the test for endiannism work. The non-use
of the character OxFFFF is intended to simplify the programmer’s life. It happens that
some programming languages use a special character to terminate a string; we call that
character a sentinel (in C, for example, it is the character 0x00). This approach has the
drawback that the sentinel cannot be used within a string. If OXFFFF is selected as the
sentinel, this problem will never arise, as 0xFFFF is not a character and therefore cannot
appear within a string.

Why was this decision extended to the other planes? Out of compassion, or perhaps be-
cause it was expected that programmers would take algorithms intended for the BMP
and apply them to the other planes by simply adding an offset. Since these restrictions
were applied to all the planes, the algorithms remain valid.

Ignorable characters

The full name is default ignorable code points. If we take this property’s name at face value
and examine the list of its members, which is a veritable country club of exotic characters
(the combining grapheme joiner, the Korean syllable fillers, the variation selectors, the
zero-width space, the various control characters. ..), we may scratch our heads for a long
time before understanding what it means. Yet it is very simple: when software does not
have a glyph to represent a character, it is supposed to display a symbol for “missing
glyph”. But in certain cases we would prefer not to display anything. A character is ig-
norable if it should not be represented by a generic glyph when the software is unable to
carry out the behavior that it implies. For example, the combining grapheme joiner is
a character that calls for very special behavior: that of construing two glyphs as one and
applying a diacritical mark to the combination. If the software is not equipped for this
functionality, it is expected not to display anything in this character’s place.

To obtain a complete list of the ignorable characters, take the “other, control” characters
Cc, the “other, format” characters Cf, and the “other, surrogate” characters, blend in cer-
tain characters listed under property Other Default Ignorable Code Point in the file
ProplList.txt, shake well, and serve immediately.

Deprecated characters

Old lawyers never die; they just lose their appeal. The same goes for characters: the worst
thing that can happen to them is to be deprecated. There are ten such characters (as of this
writing), and they are listed in PropList.txt.

Logical-order exceptions

These are characters that are not rendered in their logical order. They represent a blemish
in Unicode that is due, once again, to the principle of backward compatibility with ex-

108 Chapter 3 : Properties of Unicode characters

isting encodings. This property applies to 10 Thai and Lao characters, all of them vowels
placed to the left of the consonant. One example is the consonant J) 0XOE99 LAO LET-
TER NO. To obtain the sound “né”, we add the vowel ¢ 0OXOECO LAO VOWEL SIGN E after the
consonant. But graphically this vowel appears before the consonant: ¢L. Its graphical
order is therefore the opposite of its logical order; thus it is a “logical-order exception”.

The reader with an inquisitive bent will easily discover that this phenomenon of vowels
placed before consonants occurs in Khmer, Sinhala, Malayalam, Tamil, Oriya, Gujarati,
Gurmukhi, Bengali, Devanagari, and doubtless other writing systems as well. Why are
the characters in question “logical” in these scripts but “illogical” in Thai and Lao? For
no better reason than a difference of status. In all of the scripts mentioned, the vowels in
question are combining characters; therefore, their graphical position is managed by the
class of combining characters, which we shall discuss below. In particular, this position,
whatever it be, is in no way illogical. In the case of Thai and Lao, however, the same vow-
els were encoded as ordinary characters; thus it was necessary to make some adjustments
by adding this property.

Soft-dotted letters

These are characters whose glyphs have a dot: ‘1, §) and all their derivatives. In exchange
for the privilege of bearing an accent, these letters must forfeit their dot: thus we have

#, not ’2. The only exception: Lithuanian, which preserves the dot beneath the accent.
By way of contrast, we can say that the dot on the Lithuanian i’ is a “hard dot”.

How to “harden” the dot on an ‘i’? The method recommended by Unicode is to add a
dot, i.e., to put the character 0x0307 COMBINING DOT ABOVE after the ‘i’. The glyph will
remain the same—because the original dot on the ‘i’ is soft—but its behavior will differ:
a subsequent diacritical mark added to this glyph will not suppress the dot. Thus, if for
some reason we should wish to obtain T, we would have to write three characters in a
row: “i, combining dot above, circumflex accent”.

Mathematical characters

Or, to be more precise, the Unicode characters with the property “other math”. These
are the characters in the category Sm (“symbol, math”) plus 1,069 characters listed in
the file PropList.txt under the property Other Math. All the punctuation marks that
can appear in a mathematical formula (parentheses, brackets, braces, the vertical bar,
etc.) and all the letters in the various styles that appear in the block of mathematical
alphanumeric symbols 0x1D400-0x0x1D7FF are assembled under this heading.

If assignment to category Sm guarantees that a character is a mathematical symbol, then
“mathematical character” can assist software in identifying the extent of a formula. But
note that—alas!—the ordinary Latin and Greek letters are neither in category Sm nor
of property “mathematical characters”, even though they are essential to mathematical
formulae.

2 For many years a classic mistake of the user who was new to KIEX was to write \"1i instead of \"{\1i}.
The advent of the T1 fonts, whose macros provide for the “soft dot”, eliminated this error.

Other general properties 109

Quotation marks

This property covers all the characters that can be used as quotation marks. They are of
categories Po, Pi, Pf, Ps, and Pe. There are 29 of them, and they are listed in PropList.txt
under the property Quotation Mark.

Dashes

Everything that looks more or less like a dash and is used as such. There are 20 characters
that have this property; they are of categories Pd (punctuation, dash) and Sm (mathemat-
ical symbol). They are listed in PropList.txt under the property Dash.

Hyphens

The existence of this property shows that the Consortium wished to distinguish clearly
between “hyphens” and “dashes™ the former are placed within words and play a mor-
phological rdle (“merry-go-round”, “two-year-old”); the latter are placed between words
and play a syntactic role (“I'm leaving—do I have to repeat myself?”). Usage varies
widely among the typographic conventions of the different countries; for that reason,
some characters have both properties: “dash” and “hyphen”.

There are 10 characters that have the “hyphen” property; they are in categories Pd
(punctuation, dash), Pc (punctuation, connector; for the midpoint used in katakana,
see page 101), and Cf (character, format; for a potential line break). They are listed in
ProplList.txt under the property Hyphen.

Terminal punctuation

Folk wisdom says that “birds of a feather flock together”. Well, the characters with this
property have flocked together from various and sundry blocks, yet they are of quite
different feathers indeed. What they have in common is that they play the rdle of “ter-
minal” punctuation. This term is rather ill chosen, as these characters also include the
slash, which does not necessarily end a sentence. For want of a better definition, we can
say intuitively that these are characters that play the same rdle as our various stops (the
period, exclamation point, semicolon, colon), and also the slash.

There are 78 characters with the “hyphen” property; they are all of category Po (punctua-
tion, other). They are listed in PropList.txt under the property Terminal Punctuation.

Diacritics

When we described the category of “marks”, we called them “diacritical marks”. That
might sow confusion, as Unicode also defines a property called diacritics. It covers both
the “real” (non-spacing) diacritical marks and the “inert” (spacing) diacritical marks of
ASCII, as well as a host of other signs. For example, the katakana prolonged sound mark,

graphically speaking, is not a diacritical mark at all but nonetheless effectively plays
this role.

110 Chapter 3 : Properties of Unicode characters

There are 482 characters with the “diacritic” property. They are listed in ProplList.txt
under the property Diacritic.

Extenders

These are characters whose role is to extend or repeat the preceding character. Thus,
for example, we have * >’ 0x309D HIRAGANA ITERATION MARK, which works as follows:
Suppose that we have two identical hiragana syllables in a row, such as “ & & ” (kiki). It is
faster to write the iteration mark: “ & > ; the result is the same. In addition, if the second
syllable is voiced, as in “ X X (kigi), we can use the iteration mark with a phonetic mod-
ifier: “& ¥ We find this most often in vertical text, especially in Japanese calligraphy.
There is the same type of iteration mark for katakana and for ideographs.

There are 19 characters with the “extender” property. They are listed in PropList.txt
under the property Extender.

Join control

There are two characters that manage joining and non-joining between glyphs: ZERO
WIDTH JOINER 0x200D, or ZWJ, and its opposite: ZERO WIDTH NON-JOINER 0x200C, or
ZWN]J. We have discussed these on page 104.

These are the only two characters with the Join_Control property. They are listed in the
file ProplList.txt.

The Unicode 1 name and ISO’s comments

Recall that Unicode 1 dates from the antediluvian era before it was merged with
ISO 10646, i.e., the era when each of them did pretty much what it pleased (whereas
today Unicode and ISO do what they please together). In UnicodeData.txt there is a
vestige of that era: the name of the character as it was in Unicode 1.

Glancing over these names, we notice that some of them were better than the current
ones. For example, the pseudo-accents of ASCII had the word SPACING in their names:
SPACING GRAVE, SPACING DIAERESIS, etc. The parentheses were called OPENING PARENTHE-
SIS and CLOSING PARENTHESIS, Not LEFT PARENTHESIS and RIGHT PARENTHESIS, as they
are called today, when we know perfectly well that their glyphs can be reversed or even
turned 90 degrees for vertical typesetting.

Finally, there are also monstrous errors. The Coptic letters, for instance, were called
“Greek™ we have unbelievable names such as GREEK CAPITAL LETTER SHEI and GREEK
CAPITAL LETTER FEI The other monumental error of Unicode 1 was to refer to the
modern Georgian letters as “small” letters (GEORGIAN SMALL LETTER AN, etc.), when
there is no case in Georgian. But all of that belongs to the past, and we are not going
to dig into these almost 15-year-old documents if the information does not appear in
UnicodeData.txt.

In this file we also find a piece of potentially useful information: the comment, associ-
ated with certain characters, that appears in ISO 10646. We have already mentioned the

Properties that pertain to case 111

fact that ISO 10646-1 and Unicode bring themselves into alignment on a regular basis.
This alignment involves the names and the code points of characters, but nothing pre-
vents ISO 10646 from adding comments to the characters, and Unicode is not obligated
to adopt those comments. These are the comments that we find in this file.

Properties that pertain to case

Case is a typographical phenomenon that, fortunately, affects only a few scripts, the so-
called bicameral ones: Latin, Greek, Coptic, Cyrillic, Armenian, liturgical Georgian, and
Deseret. We say “fortunately” because there is a complex problem that makes the pro-
cessing of textual data more difficult.

Unicode distinguishes three cases: lower case (the “small letters”), upper case (the “cap-
ital letters”), and title case (the case of characters that are capitals at the beginning of a
word). The name “title case” is very ill chosen, as this concept has nothing to do with
titles, at least as they are typeset in most languages. This name comes from the English-
speaking countries’ custom of capitalizing all the important words (including the first
and the last) in titles: what is “La vie est un long fleuve tranquille” in French becomes
“Life Is a Long and Quiet River” in English.

Before describing the properties that pertain to case, let us note, by way of information, that four
cases still are not handled by Unicode:

e Obligatory lower case. These are letters that remain in the lower case irrespective of the context.
Example: German has the abbreviation GmbH (Gesellschaft mit beschrankter Haftung = ‘limited
liability company’). In this abbreviation, the letters ‘m’ and ‘b’ must always be written as low-
ercase letters, even in the context of full capitals. Another example: if “mV” stands for millivolt
and “MV” for megavolt, we had better treat the ‘m’ of “milli” as an obligatory lowercase letter;
else we will run the risk of seriously damaging our electrical equipment.

e Obligatory capitals. In the name of the country Turkey, the ‘T’ is an obligatory capital: we can
write the word as “Turkey” or “TURKEY” but never “turkey” (which refers instead to the bird).

e Alternating capitals. These are another German invention. To designate students of both sexes
in a politically correct fashion, we can write StudentInnen: Studentinnen means ‘female stu-
dents’, but by using a capital ‘I’ we show that it refers to male students (Studenten) as well.
We call this ‘I’ an alternating capital because it assumes the case opposite to that of the sur-
rounding characters. It is the equivalent of our politically correct “steward(ess)” or “s/he”.

o Alternating lowercase letters. This occurs when we write STUDENTINNEN in capitals. The 7’
must be written as a lowercase letter under the circumstances.

Here are the properties of Unicode characters that apply to the concept of case.

Uppercase letters

These are the “uppercase letters” (category Lu) as well as the uppercase Roman nu-
merals (category “number, letter” N1) and the encircled uppercase letters (“symbol,
other” So). The characters other than Lu are listed in PropList.txt under the property
Other Uppercase.

112 Chapter 3 : Properties of Unicode characters

Lowercase letters

Again, these are the “lowercase letters” (category L1) as well as a certain number of
characters listed in PropList.txt under the property Other Lowercase: certain modi-
fier letters, the Greek iota subscript, the lowercase Roman numerals, and the encircled
lowercase letters. Note that the iota subscript is available in two flavors: combining and
non-combining. Both of them have the property “lowercase”

Simple lowercase/uppercase/titlecase mappings

These mappings are said to be “simple” when the result is a single character whose map-
ping is independent of the language. This information appears in UnicodeData.txt in
fields 12 (uppercase), 13 (lowercase), and 14 (titlecase). When the mapping maps the
character to itself, the field is left empty. Thus uppercase letters will typically have no
value in fields 12 and 14, and lowercase letters will have no value in field 13.

When a character calls for special treatment, the value that appears in UnicodeData. txt
represents its default behavior (thus the uppercase form of i’ is specified as ‘I’ in this
file); if there is no default behavior, the field is left blank (all three fields for the German
letter ‘B’ are empty!).

Special lowercase/uppercase/titlecase mappings

Eight sets of characters pose problems for case assignment. They are described in the file
SpecialCasing.txt, whose structure resembles that of UnicodeData. txt. Its lines are of
a fixed format: five fields, of which the first four contain the initial code point and, in
order, the lowercase, titlecase, and uppercase mappings. The fifth field (which can be re-
peated if necessary) describes the context of the rule. This description is either the name
of one or more languages or a keyword for the context. Here are the special cases:

e The German €4’ 0XOODF LATIN SMALL LETTER SHARP S, whose uppercase version is said
by Unicode to be ‘SS’. Unicode even gives a titlecase version ‘Ss’ that is purely ficti-
tious, since no German word begins with ‘€’ or with a double ‘s’. Note that Unicode
has omitted an important possibility: in some instances {123, p. 75}, ‘B’ is capital-
ized as ‘SZ’, as in the word MASZE (MafSe = ‘measures’), to distinguish it from MASSE
(Masse = ‘mass’).

e The Turkish and Azeri i, whose uppercase form is ‘I’. These languages also have an 7,
whose uppercase form is T.

e The Latin ligatures ‘ff’, ‘fi’, fI’, “ffi’, “fil, ‘it and ‘§t’ (but not the ‘&’ ligature, which is
just as important as ‘st’) from the block of presentation forms. Their uppercase forms
are ‘FF’, ‘FI’, ‘FL, ‘FFL, ‘FFL, ‘ST, and again ‘ST’. Their titlecase forms are ‘Ff’, ‘Fi’, ‘Fl;,
‘Ffi’, “Ffl’, ‘St and ‘St’.

e The grammatical Armenian ligature ‘4’ and the presentation forms ‘i, ‘i/L’, “dJs,
‘it and /28 Their respective uppercase forms are ‘GI, ‘U, ‘UL, ‘UP, ‘G,
and ‘UJly, and in title case they appear as ‘G, ‘U'w, ‘UK, ‘U}, ‘G, and ‘U

Properties that pertain to case 113

e Various letters for which no uppercase form has been provided: the Afrikaans ‘’n,

whose uppercase form is ’N’; the Greek 1),), and ‘¥, which all become ‘I’ (or ‘I’ in
some fonts); 0, ‘¥, and ‘0’ which become €Y, etc.

e The Greek letters with iota subscript. Unicode claims that ‘¢’ is written ‘A’ in title
case and ‘AI” in upper case. The author considers the form ‘A’ more natural under
all circumstances, but at the end of the day this is merely a question of taste.

e The Greek sigma. (The Greek language does indeed present lots of problems!) There
are two characters: ‘c’ 03C3 GREEK SMALL LETTER SIGMA, which is used at the begin-
ning and in the middle of words, and ‘G’ 03C2 GREEK SMALL LETTER FINAL SIGMA,
which appears at the end of words. When converting from uppercase to lowercase let-
ters, one must take into account the position of the letter within the word and select
the appropriate character. Unfortunately, reality is more complex: in an abbreviated
word, sigma retains its form even when it is the last letter of the abbreviation. The
sentence “O ®IAOX. IQANNHX EINAI ®IAOL.” (= ‘The philos(opher) Ioannis
is a friend’) becomes “6 @iAoc. Todvvng eival ¢ilog.” in lower case because the
first “OIAOX.” is the abbreviation for “OIAOXODOX”, while the second one is the
word “@IAOY” followed by a period to end the sentence. The computer cannot dis-
tinguish the two instances without advanced linguistic processing. Not to mention
the use of medial sigma as a number (6" = 200) and the similar use of a letter that is
not a final sigma but that looks like one: stigma ‘¢, whose numeric value is 6.

e Although everyone likes to “dot his ‘I’s”, the Lithuanians do so even when the ©’
also bears other accents. Thus the lowercase versions of ‘T, ‘I’ and ‘I’ in Lithuanian

are not 9, ¥, and ¥’ as in most other languages but ¥, ‘; and . We say that the
Lithuanian dot is “hard”, as opposed to the soft dot that is replaced by accents.

Case folding

By case folding we mean a standard transformation of all letters into a single case so as to
facilitate alphabetical sorting. This information is given in the file CaseFolding.txt, a
sample of which appears here:

00DB; C; OOFB; # LATIN CAPITAL LETTER U WITH CIRCUMFLEX
00DC; C; OOFC; # LATIN CAPITAL LETTER U WITH DIAERESIS
00DD; C; OOFD; # LATIN CAPITAL LETTER Y WITH ACUTE
O0DE; C; OOFE; # LATIN CAPITAL LETTER THORN

O00DF; F; 0073 0073; # LATIN SMALL LETTER SHARP S

The three fields contain the original character, a description of its case, and the characters
that result from case folding. Four possibilities exist:

e C, or “common case folding™ the usual instance, in which we have only a single char-
acter in the output, which is not dependent on the active language.

114 Chapter 3 : Properties of Unicode characters

o F, or “full case folding™ the special eventuality in which the output has more char-
acters than the input, as is the case for the German ‘&%, the ‘f’-ligatures, etc.

e S, or “simple case folding” is like C, but it is used when the same original character
has another folding instruction of type F. Example: ‘Q’ becomes ‘@’ under full case
folding and ‘@’ under simple case folding.

e T, or “Turkic case folding™? ‘I’ becomes i’ under simple case folding and ‘" under
Turkic case folding; ‘I’ becomes ” under Turkic case folding and 4’ under ordinary
case folding (in fact, this glyph is the pair of characters ‘i’ and ‘combining dot above’).
Take note of this subtlety: the latter glyph has a “hard” dot, a dot that will not be
removed by any following accents. By adding a circumflex accent after this i), we
obtain T, and by adding a second dot accent we can even obtain ‘i’....

Rendering properties
The Arabic and Syriac scripts

The characters of these scripts have two additional properties: joining type and joining
group. To understand what these terms mean, let us recall the properties of these two
scripts.

The scripts include three types of letters:

e those that have four contextual forms: initial, medial, final, and isolated, the isolated
form being both initial and final;

o those that have two contextual forms: final and isolated;

e those that have only one contextual form.

Let B be a letter with four forms and R a letter with two forms. Let us use 0, 1, 2, and 3 to
represent the isolated, initial, medial, and final forms, respectively. Thus we have at our
disposal the forms By, B1, Bz, B3, and also Ry and Rs.

Contrary to what one might expect, contextual forms do not refer to words but to con-
tiguous strings of letters. An initial letter may very well appear in the middle of a word;
that will occur if the preceding letter is a final form. Thus we shall concern ourselves here
with strings of letters.

Here are the three rules to follow in order to build up strings:

1. start the string with an initial letter;

2. within the string, continue with a medial letter, or, if the required letter has no me-
dial form, use its final form, which will end the string;

3 “Turkic” rather than “Turkish” because the phenomenon occurs in Azeri as well as in Turkish.

Rendering properties 115

3. the last letter of the string must necessarily be a final form.

Let us take a few typical examples of words of three letters: BBB, BBR, BRB, RBB, BRR,
RBR, RRB, RRR.

In the first of these words, the first letter is initial (rule 1), the second is medial (rule 2),
and the third begins as a medial letter (rule 2) but becomes final because we are at the
end of the word, and therefore also at the end of the string (rule 3). Thus we have B; B, Bs.

The second word is similar, but the third letter immediately becomes final, as it does not
have a medial form: BB, R3.

The third word is more interesting. We begin with an initial letter (rule 1). Next we
should have a medial letter in the second position; but since R does not have a medial
form, we have a final form in the second position instead. Our string is now complete,
and we begin a new string with an initial form of B. But since this letter is the last one in
the word, it is also final. Being both initial and final, it assumes its isolated form. Thus
we have BlR3Bo.

In the fourth word, we begin with an initial form (rule 1), but the letter R does not have
one, unless we take its isolated form (which is both initial and final at the same time).
Thus we take an isolated R, which means that our first string is already finished. The B
that follows thus appears at the beginning of a new string and is therefore in its initial
form. Finally, the second B is medial and becomes final because we are at the end of the
word. Thus we have RyBB3.

The reader may work out the remaining words in the same manner: B;R3Ry, RoB1R3,
RoRoBy, RoRoRy. To illustrate this mechanism, let us take two genuine Arabic letters: beh
in its four forms, “s » & and reh in its two forms, “, y”. Here are our eight hypothetical
words in the Arabic alphabet: BBB «, BBR ,v, BRB &y, RBB vy, BRR y 0, RBR 5,

RRB 5.4)), RRR))).

Letters with only a single form have the same behavior as letters that are not Arabic or
Syriac: they form a string in themselves and therefore cause the preceding string to end
and a new string to begin.

Let us now return to Unicode properties. The joining type is one that precisely describes
the behavior of a letter with respect to its context. There are five kinds:

Letters with four forms are of type D;

Those with two forms are of type R;

Letters with one form, including the character ZWN]J (zero-width non-joiner), and
all non-Arabic and non-Syriac letters are of type U;

The “marks”—namely, the diacritical marks and other characters of this type—do
not affect joining; they are therefore “transparent” to contextual analysis, and there-
fore we shall say that they are of type T;

116 Chapter 3 : Properties of Unicode characters

e One type remains: there are two artificial characters that are not letters but that be-
have like letters with four forms. These are the character ZW]J (zero-width joiner) and
the character 0x0640 ARABIC TATWEEL, which is an extended connecting stroke, also
called kashida. We shall say that these two characters are of type C.

In the file ArabicShaping.txt, the types of all of the affected characters (those that are
not listed are automatically of type T if they are of category Mn or Cf; otherwise, they are
of type U) are provided. Here is an extract of this file:

0627; ALEF; R; ALEF

0628; BEH; D; BEH

0629; TEH MARBUTA; R; TEH MARBUTA
062A; TEH; D; BEH

062B; THEH; D; BEH

The first field contains the character’s code point; the second, a part of the name (the
ever-present ARABIC LETTER OT SYRIAC LETTER is omitted); the third, the type of the letter.

By respecting the above-listed rules and the types of letters, software can perform basic
contextual analysis for Arabic and Syriac—provided, of course, that an adequate font is
available.

The sample of code shown above contains a fourth field, the joining group.® It is a visual
classification of the letters. To understand how it works, we need to review the role of
dots in the Arabic script.

In its earliest form, the Arabic script suffered from acute polysemy of its glyphs. The
sounds b, t, th (as in the word think), n, and y (the last of these in its initial and me-
dial forms only) were written with the same symbol. How, then, to distinguish «u bayt
(house) and « tayb (well)? To alleviate this difficulty, a system of dots was invented:
one dot below beh, two dots below yeh, one dot above noon, two dots above teh, three dots
above theh. Thus the words ‘house’ and ‘well’ can finally be distinguished: G and .

Systems of dots used to disambiguate words were further developed by the other lan-
guages that use the Arabic script, other signs were added, and today we find ourselves
with several hundred signs, all derived from the same few undotted Arabic letters. Thus
we can classify letters according to their ancestry: if they are derived from the same an-
cestor (free of dots and diacritical marks), we shall say that they are in the same joining
group. The complete list of joining groups for Arabic appears in {335, p. 279].

Managing grapheme clusters

The idea is that a script or a system of notation is sometimes too finely divided into
characters. And when we have cut constructs up into characters, there is no way to put

4 A very poor choice of name, as this information has absolutely nothing to do with the way that this
letter will be joined to other letters.

Rendering properties 117

them back together again to rebuild larger characters. For example, Catalan has the lig-
ature ‘I-I’. This ligature is encoded as two Unicode characters: an ‘I’ 0x0140 LATIN SMALL
LETTER L WITH MIDDLE DOT and an ordinary ‘I’. But this division may not always be what
we want. Suppose that we wish to place a circumflex accent over this ligature, as we might
well wish to do with the ligatures ‘ce’ and ‘a@’. How can this be done in Unicode?

To allow users to build up characters in constructs that play the role of new characters,
Unicode introduced three new properties (grapheme base, grapheme extension, grapheme
link) and one new character: 0x034F COMBINING GRAPHEME JOINER.

First, a bit of jargon: a grapheme cluster is a generalization of the notion of combining
characters. A character is in itself a grapheme cluster. When we apply non-spacing
or enclosing combining characters to it, we extend the cluster. In certain cases, a
grapheme cluster can also be extended with spacing combining characters. There are
16 instances of this type, and they are listed in the file PropList.txt under the property
Other_ Grapheme Extend.

To obtain all the grapheme extenders, we take the characters of Other Grapheme Extend
type together with all the Unicode characters of category Mn (mark, non-spacing) or Me
(mark, enclosing).

Up till now there has been nothing especially spectacular. The 16 spacing characters in
Other Grapheme Extend have very special behavior because they merge with the orig-
inal consonant and produce only one image with it. Take the Bengali letter & and the

character Y 0x09D7 BENGALI AU LENGTH MARK, which is a member of the very exclusive
club of spacing grapheme extenders. Together, these characters form the new grapheme

cluster §%

Spectacular things start to happen when we add two other concepts: grapheme links and
the grapheme joiner. To understand grapheme links, we will need to review some proper-
ties of the languages of India and Southeast Asia. The consonants in these languages have
an inherent vowel, most often a short ‘a’. Thus, whereas in the West the sequence “kt”
is actually pronounced “kt” (as in the word “act”), in Bengali the concatenation of these
two letters of the alphabet, <9, yields “kata”. To get rid of the inherent vowel of <, we use
a special sign, called virama. The sequence €9 is pronounced “kta”. Here the opposite of
Mies van der Rohe’s principle “less is more” applies: we write more to represent fewer
sounds.

But have we not forgotten the Kama Sutra and the erotic sculptures of Khajuraho? Indian
scripts would have no charm at all if things stopped at that point. In fact, under the effect
of the virama, the two letters intertwine themselves to form the pretty ligature % which
is—obviously—just a single grapheme. And since it is the virama that played the role of
go-between and brought these letters together, we assign it a special Unicode property,
that of grapheme joiner. There are only 14 characters of this type; they are listed in Prop-
List.txt under the property Grapheme Link.

All Unicode characters that are not grapheme extenders or grapheme joiners and that
are not in any of the categories Cc, Cf, Cs, Co, Cn, Z1, and Zp have the property of
grapheme base.

118 Chapter 3 : Properties of Unicode characters

The reader must be wondering: if all the grapheme joiners are from the Indian and
Southeast Asian scripts, is there nothing left for the West? Did we carry out sexual lib-
eration for naught? Of course not. Unicode provides us with a special character, 0x034F
COMBINING GRAPHEME JOINER, or CGJ. By placing this character between any two Uni-
code characters, the latter merge into a single grapheme. Of course this union is rather
platonic: there will be neither intermingling nor necessarily the formation of a ligature.
There are two reasons: first, glyphs can form a ligature on their own, quite without the
assistance of a CGJ; second, a ligature such as ‘fi’ may well be a single glyph, butitisstill a
string of two characters. If a ligature incidentally happens to form, the essence of joining
graphemes is not present; it appears at an abstract, institutional level.

We use the grapheme joiner, for example, to apply a combining character to two glyphs
at once. Thus, if the digit ‘5’ followed by 0x20DD COMBINING ENCLOSING CIRCLE yields ®,
then to obtain ® we can use the following string of characters: “five” CGJ “zero” “enclos-
ing circle”. Our digits “five” and “zero” in ® are quite puritanical: even when enclosed in
this cocoon they do not touch each other!

What will happen if we apply the CGJ to the letters ‘t” and 1’? We will still have an ‘fi’
ligature. The difference will become visible when we apply a combining character: ‘f” 7’
followed by the combining circumflex accent will yield ‘fi’; however, ‘f” CG]J ‘i’ followed
by the same accent will yield ‘fi’, which illustrates that “f CGJ i” is henceforth considered
to be connected by grapheme links in the eyes of Unicode.

Numeric properties

Some characters may be used as digits, a trivial example being ‘3’ 0X0033 DIGIT THREE,
which is part of the curriculum about halfway through nursery school. For a young
reader of Tamil, this digit is written ‘.’ 0XOBE9 TAMIL DIGIT THREE, but the semantics
are the same. The fact that we all have ten fingers must certainly have favored base-ten
arithmetic, without regard for language, religion, or skin color.

It is interesting to know that Ik is the number three, even if we are not readers of Tamil.
For that reason, Unicode set aside three fields in UnicodeData.txt: value of decimal digit
(field 6), value of digit or value of numeral (field 7), and numeric value or value of alphanu-
meric numeral (field 8). Once again we are baffled by the subtleties of the jargon being
used: what exactly distinguishes these three fields?

Value of decimal digit is the strictest of the fields. The only characters that are “decimal
digits” are those that act as—decimal digits. Thus ‘1’ is a decimal digit, ‘¥ is a decimal
digit (in Arabic), ‘i is a decimal digit (in Ambharic), etc. These characters combine with
their associates to form numbers in a system of decimal numeration.

By contrast, ‘® is not a “decimal digit” (the teacher would be rather unhappy if we wrote
D+®=®), ¥ isnota “decimal digit” (it is a superscript), ‘II is not a “decimal digit” (the
Roman numeral system is not decimal, in the sense that a;aya3 cannot be interpreted as
“a; hundreds plus a, tens plus a; units”), etc.

The difference between “digit” and “number” is clearer: if the numeric value of the sym-
bol is in the set {0,1,2,3,4,5,6,7,8,9}, then the symbol is a “digit”; otherwise, it is a

Identifiers 119

»

“number”. There are many examples of “numbers” in the various writing systems: “Jz
is the number 1,000 in Tamil, ‘A’ is 1,000 in Roman numerals, PP i 10,000 in Ambharic.
There are also Unicode characters that represent fractions: “%, %” are also “numbers”,
and their numeric values appear in field 8 of UnicodeData.txt.

Programmers might well wish that they had sixteen fingers, not so that they could type
more quickly but because their system of numeration is hexadecimal, whose digits are 0—
9 and A-E Unicode provides a property called “hexadecimal digit” for characters that
can be used in this system of numeration. There are 44 of them, and they are listed in
ProplList.txt under the property Hex Digit. And for purists who live on a strict diet of
pure, organic, fat-free ASCII, there is a subset of these: the “ASCII hexadecimal digits”
There are 22 (0-9, A-F, a—f), and they are listed under the property ASCII Hex Digit.

Identifiers

In Chapter 10, which discusses fonts and the Web, we shall give a quick introduction
to XML (pages 345-349), and we shall discuss tags for elements and entities. The reader
will notice that we have carefully refrained from defining the way in which this markup
is constructed—a subject that is not necessarily of interest to the XML novice.

A priori, we can regard XML tags as being written with ASCII letters and digits; at least
that is what we shall see in all the examples. That is true for good old SGML but not for
young, dynamic XML, which proudly proclaims itself “Unicode compatible”. We are free
to use <kHuUra>, <Pipriov>, <gl:§>, <y fipp>, <EA>, and other exotic tags!

But does that really mean that we can use just any Unicode character in the names of
our tags? No. By this point, the reader will certainly be aware that the various scripts of
the world have largely the same structures as ours: letters (or similar), diacritical marks,
punctuation marks, etc. Therefore we shall do in other scripts as we do in our own: letters
will be allowed in tag names; diacritical marks will also be allowed but may not come
first; punctuation marks will not be allowed (with a few exceptions).

But XML is not the only markup system in the world—to say nothing of all the various
programming languages, which have not tags but identifiers. Should every markup sys-
tem and every programming language be allowed to choose the Unicode characters that
it prefers for its tags/identifiers? We would have no end of confusion.

Fortunately, the Unicode Consortium took control of the situation and defined two char-
acter properties: identifier start (property ID_Start) and identifier continue (ID_Continue).
That means that we can begin an identifier with any character that has the former prop-
erty and continue the identifier with any character having the latter property. Of course,
the latter set of characters is a superset of the former.

There are 90,604 ID Start characters and 91,815 ID_Continue characters in Unicode.
They are listed in DerivedCoreProperties.txt.

We shall see in the section on normalization that there are two other properties:
XID_Start and XID Continue, which correspond to sets identical to those just men-
tioned, with the exception of about thirty characters. The advantage of these two

120 Chapter 3 : Properties of Unicode characters

properties is that they are compatible with Unicode’s various normalization formats.
Thus we will not be in danger of ending up with non-compliant tags after normalization
of an XML document.

Reading a Unicode block

On pages 121 and 122, we have reproduced (with the kind permission of the Unicode
Consortium given to us by Lisa Moore) two pages of the Unicode book {335]. They are
for the “Latin Extended-A” block, which contains Latin characters too exotic to be in-
cluded in ISO 8859-1 but not bizarre enough to be in “Latin Extended-B”.

The page that illustrates the block’s layout needs no explanation: under each representa-
tive glyph, there is the hexadecimal code for the corresponding Unicode character. The
representative glyphs are set in the same Times-style font as the body text. In this table,
we find four characters that are familiar to us for having been omitted from ISO 8859-1:
‘(E and ‘ce’ (0x0152 and 0x0153), Y’ (0x0178), and ‘[’ (0x017F) (the long “s”).

Let us now examine the list of character descriptions, page 122. The title “European
Latin” in bold Helvetica is a subdivision of the table according to the characters’ purpose;
in this case, it is the only subdivision.

For each character, we have information listed in three columns: the first column con-
tains the character’s code point in hexadecimal, the second shows the representative
glyph, and the third contains the name and a certain number of other details.

The character name is written in capitals: “LATIN CAPITAL LETTER A WITH MAC-
RON”. This name is definitive and may not be changed for all of eternity. If it contains
errors, they will remain in place to plague future generations for as long as Unicode
is used.

On the other hand, the Consortium retains the right to annotate character names. An
annotation begins with a bullet e and is considered an informative note, with no pre-
scriptive significance, intended to assist with the use of the character. In the illustration,
we see annotations to the effect that ‘a’ is a letter in Latvian and Latin, that ‘¢ is a letter in
Polish and Croatian, that ‘d’” with an apostrophe is the preferred form of “d with hacek”
(we are not told which other forms exist), that we must not confuse the Croatian ‘d’ with
the ‘d’ (not shown in the text) of Americanist orthographies, etc.

Besides the annotations, we also have alternative names. An alternative name is an addi-
tional name given to a character, with no prescriptive significance. It always begins with
the equals sign. There are no alternative names in the example presented here, but two
pages later in the Unicode book we find:

setlength
extrarowheight0dd
0153 (03 LATIN SMALL LIGATURE OE
= ethel (from Old English edel)
e French, IPA, Old Icelandic, Old English, ...
— O0OE6 @ latin small letter ae

— 0276 & latin letter small capital oe

0100

Latin Extended-A

010 011 012 013 014 015 016 017
— . . s v 4
oA DG T IO S U
0100 0110 0120 0130 0140 0150 0160 0170
— . 27 v 4
la/d g 1 L]0 S 0
0101 0111 0121 0131 0141 0151 0161 0171
e | =
A E G It E T U
y
0102 0112 0122 0132 0142 0152 0162 0172
v —_ [/
sfaje gl N e ¢
0103 0113 0123 0133 0143 0153 0163 0173
N/ A A , /7 v A
JAE/H] n R|TW
[4
0104 0114 0124 0134 0144 0154 0164 0174
w L A / L) A
slg € h jJ Nt t|w
0105 0115 0125 0135 0145 0155 0165 0175
/ . A
] C EHK n R T Y
b B B4
0106 0116 0126 0136 0146 0156 0166 0176
/ . - A
/¢ e h k Nir ¢ §
0107 0117 0127 0137 0147 0157 0167 0177
A ~ v A4 ~ oo
sf]C E/I x n R|U Y
0108 0118 0128 0138 0148 0158 0168 0178
A ~ 7 b A ~ 5
sfCle T|L n 1t 0 Z
0109 0119 0129 0139 0149 0159 0169 0179
. \4 —_ pd / - .
AJCIEIT| 1T N SU) z
010A 011A 012A 013A 014A 015A 016A 017A
o v —_ / —_— >
sl C €| 1 |L s u Z
010B 011B 012B 013B 014B 015B 016B 017B
Y A ~ — A /. .
cfC G I 1/O0/S U z
010C 011C 012C 013C 014C 015C 016C 017C
v A v 9 —_ A [~
p|C &/ 1T L 0SS u|Z
010D 011D 012D 013D 014D 015D 016D 017D
A4 o N o [0 v
efD G 1T " O S U z
010E 011E 012E 013E 014E 015E 016E 017E
b o 4]
fld g 1 Lojs | a|f
010F 011F 012F 013F 014F 015F 016F 017F

The Unicode Standard 5.0, Copyright © 1991-2006 Unicode, Inc. All rights reserved.

017F

11

0100

Latin Extended-A

European Latin

0100
0101

0102

0103

0104

0105

0106

0107

0108

0109

010A

010B

010C

010D

010E

010F

0110

0111

0112

0113

0114

12

A

a

>

@3

O~

(@3

o>

(@}

(w8

&

esll

(ell

s

LATIN CAPITAL LETTER A WITH MACRON

=0041 A 0304

LATIN SMALL LETTER A WITH MACRON

e Latvian, Latin, ...

=0061a 03047

LATIN CAPITAL LETTER A WITH BREVE

=0041 A 0306

LATIN SMALL LETTER A WITH BREVE

¢ Romanian, Vietnamese, Latin, ...

=0061 a 0306

LATIN CAPITAL LETTER A WITH OGONEK

=0041 A 0328 ¢

LATIN SMALL LETTER A WITH OGONEK

¢ Polish, Lithuanian, ...

=0061a 0328 ¢

LATIN CAPITAL LETTER C WITH ACUTE

=0043 C 0301 ¢

LATIN SMALL LETTER C WITH ACUTE

¢ Polish, Croatian, ...

—045B h cyrillic small letter tshe

=0063 ¢ 0301

LATIN CAPITAL LETTER C WITH CIRCUMFLEX

=0043 C 03022

LATIN SMALL LETTER C WITH CIRCUMFLEX

* Esperanto

=0063 ¢ 03025

LATIN CAPITAL LETTER C WITH DOT ABOVE

=0043 C 0307 <

LATIN SMALL LETTER C WITH DOT ABOVE

* Maltese, Irish Gaelic (old orthography)

=0063 ¢ 0307 <

LATIN CAPITAL LETTER C WITH CARON

=0043 C 030C

LATIN SMALL LETTER C WITH CARON

* Czech, Slovak, Slovenian, and many other
languages

=0063 ¢ 030C &

LATIN CAPITAL LETTER D WITH CARON

« the form using caron/hacek is preferred in all
contexts

=0044 D 030C &

LATIN SMALL LETTER D WITH CARON

¢ Czech, Slovak

« the form using apostrophe is preferred in
typesetting

=0064 d 030C

LATIN CAPITAL LETTER D WITH STROKE

—00D0 D latin capital letter eth

— 0111 d latin small letter d with stroke

— 0189 D latin capital letter african d

LATIN SMALL LETTER D WITH STROKE

¢ Croatian, Vietnamese, Sami

« an alternate glyph with the stroke through the
bowl is used in Americanist orthographies

— 0110 D latin capital letter d with stroke

— 0452 1) cyrillic small letter dje

LATIN CAPITAL LETTER E WITH MACRON

=0045E 0304 =

LATIN SMALL LETTER E WITH MACRON

¢ Latvian, Latin, ...

=0065¢e 0304 =

LATIN CAPITAL LETTER E WITH BREVE

=0045 E 0306

0115

0116

0117

0118

0119

011A

011B

011C

011D

01ME

011F

0120

0121

0122

0123

0124

0125

0126
0127

0128

0129

012A

012B

012C

012D

¢

Qx 0 O ac mk

ac

g~

|=E e

[Sifaiy

—

—c

—C

012D

LATIN SMALL LETTER E WITH BREVE

* Malay, Latin, ...

=0065e 0306

LATIN CAPITAL LETTER E WITH DOT ABOVE
=0045E 0307 ¢

LATIN SMALL LETTER E WITH DOT ABOVE
e Lithuanian

=0065¢€ 0307 <

LATIN CAPITAL LETTER E WITH OGONEK
=0045E 0328 ¢

LATIN SMALL LETTER E WITH OGONEK

e Polish, Lithuanian, ...

=0065¢ 0328 ¢

LATIN CAPITAL LETTER E WITH CARON
=0045 E 030C

LATIN SMALL LETTER E WITH CARON

e Czech, ...

=0065¢ 030C

LATIN CAPITAL LETTER G WITH CIRCUMFLEX
=0047 G 0302 &

LATIN SMALL LETTER G WITH CIRCUMFLEX
* Esperanto

=0067 g 0302 &

LATIN CAPITAL LETTER G WITH BREVE
=0047 G 0306

LATIN SMALL LETTER G WITH BREVE

e Turkish, Azerbaijani

—01E7 & latin small letter g with caron
=0067 g 0306 %

LATIN CAPITAL LETTER G WITH DOT ABOVE
=0047 G 0307 ©

LATIN SMALL LETTER G WITH DOT ABOVE
* Maltese, Irish Gaelic (old orthography)
=0067 g 0307 <

LATIN CAPITAL LETTER G WITH CEDILLA
=0047 G 0327 5

LATIN SMALL LETTER G WITH CEDILLA

* Latvian

« there are three major glyph variants
=0067 g 0327 ¢

LATIN CAPITAL LETTER H WITH CIRCUMFLEX
=0048 H 0302 5

LATIN SMALL LETTER H WITH CIRCUMFLEX
* Esperanto

=0068 h 0302 5

LATIN CAPITAL LETTER H WITH STROKE
LATIN SMALL LETTER H WITH STROKE

* Maltese, IPA, ...

—045B h cyrillic small letter tshe

—210F A planck constant over two pi
LATIN CAPITAL LETTER I WITH TILDE
=00491 0303 ©

LATIN SMALL LETTER I WITH TILDE

* Greenlandic (old orthography)

=00691 0303 &

LATIN CAPITAL LETTER I WITH MACRON
=00491 0304 ©

LATIN SMALL LETTER I WITH MACRON

e Latvian, Latin, ...

=00691 0304 5

LATIN CAPITAL LETTER I WITH BREVE
=00491 0306 =

LATIN SMALL LETTER I WITH BREVE

e Latin, ...

=00691 0306

The Unicode Standard 5.0, Copyright © 1991-2006 Unicode, Inc. All rights reserved.

Reading a Unicode block 123

in which we learn that the ‘ce’ ligature is used not only in French but also in Old English,
where it had the pretty name edel, and in Old Icelandic.

But let us return to our example, which still has plenty of things to teach us.

The lines that begin with an arrow — are either “explicit inequalities” (which indicate
likely sources of confusion with other characters whose glyphs are similar) or “linguistic
relationships” (transliterations or phonetic similarities). In reality, these lines have to be
understood as comments that show how the character is related to other characters in
Unicode. Thus we can find the following under the name of the character 0x0110 LATIN
CAPITAL LETTER D WITH STROKE:

— 00D0 D latin capital letter edh
— 0111 d latin small letter d with stroke
— 0189 D latin capital letter african d

Of'these three lines, the first and the third are “inequalities™ they warn us not to mistake
this character for the Icelandic eth or the African “barred D” used in the Ewe language.
The second line simply refers us to the corresponding lowercase letter, which incidentally
is the next one in the table.

And this is what we find under 0x0111 LATIN SMALL LETTER D WITH STROKE:

— 0110 D latin capital letter d with stroke
— 0452 D cyrillic small letter dje

The first line is a cross-reference back to the uppercase version. The second line is a
“linguistic relationship™ we learn that this letter, as used in Croatian, has a Serbian coun-
terpart, the letter ‘b’. This information can be useful when transliterating between the
two alphabets.

When a line begins with an “identical to” sign =, the character can be decomposed into
others, and this line shows its canonical decomposition. This decomposition is, by defini-
tion, unique and always consists of either one or two characters. When there are two
characters, the first is a base character and the second is a combining character.

Thus we see that the canonical decomposition of ‘A’ is the letter ‘A’ followed by the
macron. We shall discuss compositions and decompositions in the next chapter.

Another type of decomposition, which is not illustrated on this page, is the compatibility
decomposition. This represents a compromise that can be made when the software’s con-
figuration does not allow us to use the original character. Thus, two pages later, we see
the description of the character 0x0149, which, as shown by its representative glyph, is
an apostrophe followed by an ‘n’. This letter is used in Afrikaans, the language of the
colonists of Dutch origin in South Africa. Here is the full description of this letter:

124 Chapter 3 : Properties of Unicode characters

0149 n LATIN SMALL LETTER N PRECEDED BY
APOSTROPHE
= LATIN SMALL LETTER APOSTROPHE N
e Afrikaans
e this is not actually a single letter
~ 02BC’ 006E n

The line that begins with ~ is a compatibility decomposition. Visually, the result is
the same.

When we make a compatibility decomposition, we always lose information. If the author
of a document has used an Afrikaans ’n’, he must have had a good reason to do so. On
the other hand, if our Stone Age software cannot correctly display, sort, and search for
this character, it is better for it to use an apostrophe followed by an ‘n’ than nothing at all.
As always, there is a trade-off between rigor and efficiency.

And since we are talking about “display”, why not also add display attributes to the
compatibility decomposition? After all, in some cases a little assistance in the area of
rendering may lead to a better simulation of the missing character. Unicode provides
16 formatting “tags”> which we can find in the descriptions of compatibility decompo-
sitions:

e : a judicious choice of font will make the greatest improvement to the little
trick that we are perpetrating. This tag is used no fewer than 1,038 times in Unicode.
For example, the character ‘%’ 0x211C BLACK-LETTER CAPITAL R, used in mathemat-
ics for the real part of a complex number, has the compatibility decomposition “a
 0052 R latin capital letter . In other words, if the software does not know
how to display the symbol for the real part of a complex number, take a {Fraktur}]
font and set the ‘R’ in that font, and the representation will be adequate. Unicode
does not go so far as to specify which font to use, but reading Chapter 11 of the
present book will certainly help the reader to make a good choice.

e <noBreak>: the non-breaking version of what follows. Example: the character -’
0x2011 NON-BREAKING HYPHEN is a hyphen at a point where a line break may not
occur. Its compatibility decomposition is “~ <noBreak> 2010 - hyphen”. Here we
go further to ensure correct rendering: we tell the software how the character in
question behaves.

e <initial>: an initial form of a letter in a contextual script. Used in presentation
forms.

e <medial>:amedial form of a letter in a contextual script. Used in presentation forms.
e <final>: a final form of a letter in a contextual script. Used in presentation forms.

5 Note that these are not XML tags. They have no closing counterpart, and their effect is limited to the
single character immediately following.

Reading a Unicode block 125

e <isolated>: an isolated form of a letter in a contextual script. Used in presentation
forms.

e <circle>: an encircled symbol, such as ‘®’, ‘©’, etc.

e <super>: a superscript, such as ‘I, @ etc.

e <sub>: a subscript, such as ‘1), 5 etc.

e <vertical>:avertical version of the glyph. That may mean “act as if we were setting
type vertically” or “this character is used only in vertical mode”. Thus the charac-
ter ‘“~’ OXFE35 PRESENTATION FORM FOR VERTICAL LEFT PARENTHESIS has as its com-
patibility decomposition “~ <vertical> 0028 (. We know that the parenthesis
ordinarily assumes the appropriate form for the direction of the current script. Here
we have a presentation form; thus we secure the glyph’s vertical orientation.

e <wide>: the full-width versions of certain ASCII characters (1 i ke this).

e <narrow>: the half-width katakana syllables and ideographic punctuation marks 2
v,

e <small>:small forms. Used only in the mysterious CNS-compatibility block 0xFE50-
OXFEG6B.

e <square>: placed within an ideographic square. Thus the compatibility decomposi-
tion of ‘kii’ is “~ <square> 006B k 006D m 0083 3”.

e <fraction>: fractions. For example, the compatibility decomposition of V5’ is “~
<fraction> 0031 1 2044 /0032 2” in which the character 0x2044 is the “fraction
slash”, not to be confused with the ASCII slash.

e <compat>: all other cases. We use this tag in UnicodeData. txt to distinguish compati-
bility decompositions from canonical decompositions.

Normalization, Bidirectionality,
and East Asian Characters

In this chapter we shall examine three aspects of Unicode that have nothing in common
other than requiring a certain amount of technical background and being of interest
more to the specialist than to the average Unicode user. They are the procedures for
decomposition and normalization (of interest to those who develop Unicode applica-
tions for the Web), the bidirectional algorithm (of interest to users of the Arabic, Syriac,
and Hebrew scripts), and the handling of ideographs and hangul syllables (of interest to
readers of Chinese, Japanese, or Korean).

Decompositions and Normalizations

Combining Characters

We have already discussed the block of combining characters, as well as the category of
“marks” and, in particular, the nonspacing marks. But how do these characters work?

The glyph of a combining character interacts with the glyph of a base character. This in-
teraction may take a variety of forms: an acute accent goes over a letter, the cedilla goes
underneath, the Hebrew dagesh goes inside the letter, etc.

Some of these diacritical marks are independent of each other: placing a cedilla under-
neath a letter in no way prevents a circumflex accent from being added as well. Other
marks are placed in the same location and thus must appear in a specific order. For ex-
ample, the Vietnamese language has an ‘4’ with a circumflex accent and a tilde, in that
order; it would be incorrect to place them the other way around.

127

128 Chapter 4 : Normalization, bidirectionality, and East Asian characters

All of that suggests two things: first, diacritical marks can be classified in “orthogonal”
categories; second, the order of application within a single category is important. Uni-
code has formalized this approach by defining combining classes.

There are 352 combining characters in Unicode, and they are distributed among 53 com-
bining classes. Among these classes are, first of all, those for signs that are specific to a
single writing system (an Arabic vowel over a Thai consonant would have little chance
of being recognized as such):

e Class 7: the sign nukta, used in Indian languages. It is a dot centered below the letter,
and it is used to create new letters.

e Class 8: the kana phonetic modifiers dakuten and handakuten.

e Class 9: the sign virama, used in Indian languages. It is a small slanted stroke that
indicates the absence of the inherent vowel.

e Classes 10-26: the Hebrew vowels, semivowels, sign for the absence of a vowel, pho-
netic modifier dagesh, and other diacritical marks.

e Classes 27-35: the Arabic vowels with and without nunation, the sign for gemination
of a consonant, the sign for the absence of a vowel, and the superscript alif.

e Classes 36: The superscript alif of Syriac.

e Classes 84 and 91: the two Telugu length marks.

e Class 103: the two subscript vowels of Thai.

e Class 107: the four Thai tone marks, placed above the letter and right-aligned.
e Class 118: the two subscript vowels of Lao.

e Class 122: the four Lao tone marks, placed above the letter and right-aligned.
e Class 129: the Tibetan subscript vowel ‘a’.

e Class 130: the six Tibetan superscript vowels.

e Class 132: the Tibetan subscript vowel ‘u’.

e Class 240: the Greek iota subscript, Unicode’s enfant terrible.

We shall see that Unicode did not exactly put itself out when classifying the signs of He-
brew and Arabic. Rather than determining precisely which of these signs can combine
with which others, it assigns each of them to a distinct class; thus, in theory, they can
be combined without regard for their order and with no typographical interplay among
them. This approach is obviously incorrect: when we combine a shadda (sign of conso-

v

nant gemination) and the vowel damma over a letter, as in :.g, the latter must appear

over the former. But let us move on.

In addition to these specific classes, there are also 12 general combining classes, whose
members can be used in more than one writing system:

Decompositions and Normalizations 129

e Class 202: attached beneath a letter, as is the case with the cedilla (¢) and the
ogonek ()

e Class 216: attached above and to the right of a letter, as with the Vietnamese horn ()

o Class 218: attached beneath and to the left of a letter, as with a small circle that indi-
cates the first tone of a Chinese ideograph

e Class 220: centered beneath a letter and detached from it, as with the underdot (),
the underbar (h), and 79 other signs of this type

e Class 222: to the right of a letter, beneath it, and detached from it, as with two Ma-
soretic signs, yetiv (3) and dehi (3), among other signs

e Class 224: centered vertically and to the left, as with the Korean tone marks
e Class 226: centered vertically and to the right, as with dotted notes in music (J.)

e Class 228: above and to the left of the letter, and detached from it, as with one Ma-
soretic sign, zinor (3), among others

e Class 230, the largest class: centered above the letter, as with 147 characters ranging
from the grave accent (a) to the musical pizzicato sign

e Class 232: above and to the right of the letter, and detached from it, as with the hdéek
shaped like an apostrophe that appears with the Czech and Slovak letters ‘d’’, ‘€’ 17,
etc.

o Class 233: an accent extending beneath two letters, such as (00)

e Class 234: an accent extending above two letters, such as (60)

To encode diacritical marks, we proceed in any order for those that are not in the same
[Z$)

combining class and from the inside outward" for those that are. Thus, to obtain), we can
use the sequence “a, circumflex, tilde, underdot, under-haé¢ek” or “a, underdot, under-
hdcek, circumflex, tilde”. Unicode defines a canonical approach: diacritical marks of dif-
ferent classes are handled in the increasing order of their class numbers. In our example,
the accents that appear above the letter are of class 230 and those beneath the letter are
of class 220; therefore, we first write the accents beneath the letter, then the ones above.

X,

We thus obtain a unique string yielding ‘a

1 Unicode’s approach is almost perfect, but one case raises some doubts: how to handle combinations of
a breathing mark and an accent in Greek? As we can see in the letter ‘@, there can be a breathing (rough, in
this case) and an accent (grave) on the same letter. Since these two diacritical marks are of the same combining
class, number 230, arranging them in canonical order requires that one be the inner and the other the outer
mark. But since they appear at the same height, we find it hard to make a decision. The solution to this problem
appears in the Unicode book. We have seen that it contains the first canonical decomposition for every decom-
posable character. In the present example, the breathing comes first; this choice is in any case natural, because
the script itself reads from left to right. Another problem of the same type: iota with a diaeresis and an acute
accent (1). Here Unicode stipulates that the diaeresis comes first, doubtless because there is also a diaeresis/tilde
combination ‘T, in which the tilde clearly lies outside the diaeresis. But perhaps we are nitpicking here?

130 Chapter 4 : Normalization, bidirectionality, and East Asian characters

0x0061 LATIN SMALL LETTER A

0x0323 COMBINING DOT BELOW

0x032C COMBINING CARON BELOW
0x0302 COMBINING CIRCUMFLEX ACCENT
0x0303 COMBINING TILDE

Composition and Decomposition

We have seen that there is a canonical way to represent a base character followed by one
or more combining characters. But for historical reasons, or merely so as not to overtax
our software, Unicode contains a large number of decomposable characters—those whose
glyph consists of a base glyph and a certain number of diacritical marks. In order for a
glyph to be decomposable, its constituents must also be Unicode characters. Example: we
could say that ¢ ‘_,.'3’ is the precomposed form of a character ‘_w’ and a trio of Arabic dots,
but that would be of no validity, as Unicode does not separate the Arabic characters from
their dots, much as we do not say that ‘W’ is made up of two instances of the letter V’.
Thus these two characters are not decomposable.

Practically all Unicode characters with diacritical marks are decomposable. Their canon-
ical decomposition is given in the Unicode book by lines beginning with the equivalence
sign (=), and also in the following file:

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

We are concerned with the fifth field, counting from zero, of each line of this file. This
field may contain, as appropriate, either the canonical decomposition or the compatibil-
ity decomposition. In the latter case, it always begins with a tag (see page 124).

A canonical decomposition is, by definition, unique and always consists of one or two
characters. Canonical decompositions containing only one character usually represent
characters created for reasons of compatibility with other encodings, for which we in-
dicate the canonical equivalence to other characters. For example, the Greek question
mark (;), which is the spitting image of the Latin semicolon, is canonically equivalent
to it.

When a canonical decomposition consists of two characters, the first is a base character
and the second is a combining character.

There is a reason for calling this decomposition “canonical”, as in the previous section
we also identified as “canonical” the standard way to combine base characters with com-
bining characters. By applying canonical decomposition recursively to a character, we
obtain a base character and a canonical sequence of combining characters.

Example: The Vietnamese character ‘€’ is decomposed into “é, acute accent”. If we de-
compose the new base character, we obtain “e, circumflex accent, acute accent”, which is
indeed the canonical order, because it arranges the diacritical marks from the inside out.

The other type of decomposition is compatibility decomposition. Its purpose may be to
help software to generate a glyph for a character that it does not recognize or to facilitate

Decompositions and Normalizations 131

searches in a document. The typical example of compatibility decomposition is that of
the Japanese character ki, which is decomposed into a ‘k’,an ‘m’, and a ‘*’. This ® in turn
has a compatibility decomposition into a regular ‘3’ with the <sup> tag, which indicates
that it is an exponent. By carrying out all the decompositions, a program can know that
‘kii” corresponds approximately to the string km3; thus the user can search for this string
without bothering to enter the original Unicode character.

Compatibility decomposition also entails loss of information: we lose, at a minimum,
the precise semantics of the original character, and we may also lose precision with re-
spect to the glyph. Thus the decomposition of the character ‘3’ 0x03D1 GREEK THETA
SYMBOL is ‘0’ 0X03B8 GREEK SMALL LETTER THETA, whose glyph is not the same. That loss
may be relatively unimportant (in a Greek document, for example), but it may be critical
in a mathematical document in which both forms of theta have been used as different
symbols. Be careful!

The compatibility decomposition of a character is found in the character’s description
in the Unicode book and also in the file UnicodeData. txt, where it occupies the fifth
field. This is the same field used for the canonical decomposition, but there is no con-
flict because the two may not occur with the same character. We use tags to indicate
that the decomposition is one of compatibility. These tags may also serve to provide a
better description of the desired glyph. In this way, we can indicate that a special font
is recommended, that the glyph is superscript or subscript, that it is full-width or half-
width, etc. We described these tags in detail in the previous chapter on page 124.

Normalization Forms

We have seen that the canonical decomposition, when applied recursively for a finite and
even relatively small number of steps, will yield a base character followed by a canonical
sequence of combining characters. Why not carry out this operation systematically? That
strategy would have the advantage of encoding each character in a unique manner: there
would be no more precomposed characters, no more noncanonical ways to decompose
a character—just a canonical method, nothing else.

This operation is called Normalization Form D (‘D’ as in “decomposition”), or NFD. This
normalization form requires each decomposable character, including the hangul sylla-
bles (see page 4), to be decomposed canonically.

Since we are going to that extent, why not carry out all compatibility decompositions
as well? That strategy is called Normalization Form KD (‘K’ to suggest “compatibility”),
or NFKD. In the previous section, we urged the reader to be careful with compatibility
decomposition, and here we are suggesting that it be applied blindly to an entire docu-
ment! That is a risky approach. But it may also facilitate the task of software that wishes
to perform searches or sorting and that relegates the precise semantics of characters to
secondary importance.

When we decompose all characters, the size of the document goes up. A Vietnamese
document, for example, will almost double in size. Decomposition is also a burden to

132 Chapter 4 : Normalization, bidirectionality, and East Asian characters

software because it must not only look up a glyph corresponding to a character but ac-
tually place an accent over a glyph or look up in a table the information that shows that
a given sequence of characters corresponds to a certain precomposed glyph. Thus it is
quite natural to go in the other direction and perform massive compositions.

It is interesting to take the data in Unicode, produce their NFD (normalization based on
canonical decomposition), and then recompose the composite characters. By so doing,
we obtain a document encoded in a way that is unique (because NFD makes it unique)
and efficient (because the number of characters is minimized). We call that Normalization
Form C (‘C’ as in “composition”), or NFC.

One may well ask how to go about composing characters. If, for example, I have a canon-
ical string “X accent; accent,”, in which the two accents are not in the same combining
class, and if no precomposed character “X accent;” exists, may I try to combine ‘X’ with
“accent,”? And what happens if the accents are in the same combining class?

Fortunately, NFC’s rules have been clearly stated in a technical report by the consortium
{109]. A few definitions: if B is a base character and C a combining character, we say that
C is isolated from B if there is another combining character C’ of the same class as C that
appears between B and C. We say that a character is a primary precomposed character if
it has a canonical decomposition in the file UnicodeData.txt and if it is not listed in
CompositionExclusions.txt.

What is the meaning of the latter condition? Some precomposed characters should be
ruled out. In other words, when we systematically compose everything that can be com-
posed, there are certain characters that we are better off not obtaining by composition.
These characters are of four types:

e 67 characters specific to single scripts, most of them characters that are in Unicode for
reasons of compatibility with other encodings. Very important in this list are the He-
brew presentation characters, i.e., the precomposed Hebrew letters with the dagesh or
vowels. Since they are only presentation forms, they should not have had canonical
decompositions; after all, the Arabic ligatures that are presentation forms have only
compatibility decompositions, and so this problem does not arise. The consortium
attempted to correct the error by placing the Hebrew presentation forms on this
blacklist of precomposed characters that are excluded from canonical composition.

e 14 characters that were added to Unicode after the report was published.
e 924 characters that are canonically decomposed to a single character.

e 4 crazy characters that are both precomposed and combining. The typical example is
the Greek diaeresis with accent (). It is a precomposed character because it combines
a diaeresis with an acute accent, but it is also a combining character.

The third definition: a character B can be primary combined with a character C if there is
a primary precomposed character whose canonical decomposition is BC.

This is how we shall carry out NFC on the basis of these three definitions. We start with a
string S and apply NFD to it. Next, we take each character C in the document in the order

The Bidirectional Algorithm 133

in which it appears. If C is a combining character and B is the last base character before C,
then: (a) if C is not isolated from B and (b) if B can be primary combined with C, we
replace B by the composition of B and C and we delete C. Once we have carried out this
process for all the characters, we will obtain a new string S’, which is the NFC-normalized
version of S.

Example: take the string “a« i.e., an ‘@’ followed by a cedilla (class 202), an underdot
accent (class 220), and a ring accent (class 230). The glyph obtained in the end is ‘d’. The
NED of this string will be the same because the string is already canonical (the classes
are in increasing order). On the other hand, the NFC is “4 ¢ ¢”, i.e., ‘a’ followed by the
cedilla and the underdot. The rules of NFC enabled us to incorporate the ring accent,
despite its distance from the base character.

A

>

NFC has become very popular because it is part of a recommendation by the W3C.
Specifically, the W3C considers that all data on the network—be it in XML or XHTML
documents, URLs, or anything else—should be normalized according to NFC. There
is only one little detail: this conversion must be performed at the source, as early as
possible. The W3C’s report [126] calls that early uniform normalization (EUN). Text must
therefore be normalized as soon as possible. Why? Because the creator of the text is in the
best position to normalize it, and furthermore because she will perform the normaliza-
tion only once. By assuming that text is already NFC-normalized when it is published on
the Web, browsers and other software that receives web data do not have to check that the
text has been normalized and can efficiently conduct their searches, string comparisons,
indexing, and so on.

We can also perform a “compatibility composition”, i.e., a compatibility decomposition
followed by a canonical composition, as we did for NFC. This procedure is known as
Normalization Form KC (NFKC). It can also be useful for facilitating certain tasks, such as
searches for strings.

Before finishing this section on normalization, let us note that the consortium makes
available a “torture test” that can be used to evaluate the quality of a normalization
performed by software. It is the file NormalizationTest.txt. This 2 MB file enables us
to test the four normalization forms: NFD, NFKD, NFC, and NFKC.

The Bidirectional Algorithm

Nowadays we often speak of “culture shock”. This shock has been troubling typographers
for centuries because one of its most trivial aspects (and, alas, one of the easiest to resolve)
is the difference in the direction in which scripts read. Suppose that we are writing a line
of text in English and suddenly decide to switch to Arabic when we reach the middle of
the line. Arabic is written from right to left; thus we cannot simply stay where we are and
start writing in the opposite direction, since the space is already occupied. Thus we have
to move, but where should we go? The less daring among us will change paragraphs at
this point: that is a way to start from scratch. In the new paragraph, we start at the right,
with the usual indention, and everything is perfect.

134 Chapter 4 : Normalization, bidirectionality, and East Asian characters

But suppose that the nature of the text does not permit a change of paragraph. Ideally
we would set aside the space needed to write the few words of Arabic and begin at that
point. But what happens if the Arabic text runs for several lines? And how can we go
back to writing in English?

Fortunately, we are not the first to raise these questions; they have been tormenting ty-
pographers, and subsequently computer scientists, for some time now. In this chapter,
we shall discuss the solution that Unicode offers for these problems, which are as old as
the hills (or, at a minimum, as old as our cultures).

So as not to favor one of the scripts that are written from right to left (Arabic, Hebrew,
Syriac, Thaana, and sometimes Tifinagh, Egyptian hieroglyphs, epigraphic Greek, etc.),
we shall illustrate our points with examples in English, but by using a special font, 51
91vil shroM. The reader will have to put forth a little extra effort to get used to read-
ing backwards, but we consider this effort minuscule compared with the learning of a
new alphabet. Besides, in an era when mirrors were not so common as they are now,
Leonardo da Vinci used this sort of writing for his notes, so there is a precedent for it!

And that is not the only precedent. Another great man, Donald Knuth, used this trick in
his famous article Mixing Right-to-Left Texts with Left-to-Right Texts of 1987 [222] to demon-
strate bidirectionality in digital typography.

Before taking up the technical details of Unicode’s bidirectional algorithm, we shall de-
scribe the situation from the point of view of the typesetter, which will help us to under-
stand the Consortium’s approach.

Typography in both directions

We shall define two concepts that are crucial for describing the typographical behavior
of a document that uses scripts that read in opposite directions.

The first concept is that of embedding. When we quote a sentence, we increase the level of
embedding. For example, in the sentence “ABC said that ‘CBS said that “NBC said that

‘PBS said that “So-and-so is going to step down , we have embedding to level 3 (or 4
if we consider the entire sentence to be embedded, as it is in this book).

Conversely, if we wrote “So-and-so is going to step down. That was announced by PBS.
NBC picked up the story. CBS got it from NBC. ABC quoted NBC.”, we would remain at
embedding level 0. In this case, we would say that the sentences are sequential.

Language is not a mathematical structure; therefore there will inevitably be situations in
which we cannot tell whether there is embedding or not. In any event, we must decide
whether to interpret a given passage as being embedded or not; the formatting of the
passage will be radically different in the two cases.

The second important concept is that of the global or local aspect of a script. The global
aspect pertains to the occupation of space, irrespective of the order in which the words
are arranged. Thus a passage in an English book might look like this:

The Bidirectional Algorithm 135

There will be (perhaps) an indention, and the last line does not run to the full measure.
We read the lines in the order indicated, but we disregard the contents of each line. We
say that we are in a (global) left-to-right context.

In a Hebrew or Arabic book, the situation will be reversed:

The indention is at the right; the club line ends at the left. We say that we are in a right-
to-left context. Once again, as long as we remain at the global level, we see nothing but
“gray”.

The local aspect concerns the order of the words within a line. Since English is written
from left to right, the local aspect will be:

And in a language written from right to left, it is:

Up to now, what we have been discussing has been perfectly obvious. Things get more
interesting when we put the two aspects together.

FUNDAMENTAL PRINCIPLE OF BIDIRECTIONAL TYPESETTING: When a passage in one
script is embedded within a passage in a different script, the context remains the same.
Conversely, when the passages are sequential, the context changes according to the di-
rection of the script.

Example: Suppose that within our left-to-right text we have a passage written from right
to left. The principle that we have just stated tells us that, when embedding occurs, ev-
erything remains the same on the global level, as if we remained in the initial context,
namely, the left-to-right context:

136 Chapter 4 : Normalization, bidirectionality, and East Asian characters

What is astonishing about the figure shown above is that nothing shows that blocks
@ and ® are set in a different direction. The figure would have been exactly the same
for a passage set entirely from left to right.

The situation is quite different when the passages are sequential. For, once @ has been
typeset, the context has changed, and so ® will begin not at the left but at the right
(as required by the right-to-left global aspect). Likewise, when we have finished @, the
context is no longer the same, and therefore ® will begin at the left. Here is the result:

R O R @
Ol ®
e

We can also reason in terms of mode. We change modes when the passages are sequential.
When we write @, we are in the (global) right-to-left mode; therefore, the following line
will behave like a line in a left-to-right work. In particular, it will begin at the right. When
we write @, we have changed modes again, and the next line will begin at the left because
it is in left-to-right mode. If, however, the passage is embeddded, we remain in the same
(global) mode. If this mode is left-to-right, then right-to-left blocks of text will always
begin where left-to-right blocks begin, which is to say at the left.

What, then, happens at the local level? Well, the words had better watch out. The global
level imposes its will on the local. Indeed, the local level is not even concerned with the
arrangement of the blocks. It has only one task to complete: arranging the words within
the available blocks in the required order, according to the space available. Here is how
the text looks to the eye of the reader:

A fine exercise for eye movements! It is a bit easier in the case of sequential passages
because at least the paths traced by the eyes do not cross:

Let us exercise our eyes, then. Here is a paragraph containing just the ordinal numbers
from 1 to 17, with those from 5 to 13 set from right to left:

The Bidirectional Algorithm 137

First second third fourth didgis dinsovse dixie diint
dinesitids ditlows dinsvsls dinsi dinin fourteenth
fifteenth sixteenth seventeenth.

We can see that embedding has occurred, since the end of the right-to-left passage in the
third line appears at the left.

Let us take the same example with sequential (not embedded) text:

First second third fourth didgio dimovee dixie diiit
fourteenth dinssrtids ditlowi dirsvsls dinsi diain
fifteenth sixteenth seventeenth.

And here, by way of illustration, are the same examples in Arabic script. First, the em-
bedded passage:

First second third fourth _wslw sl
s gileﬁL& g3 ale c.ob“ b GL»
il &I fourteenth fifteenth sixteenth
seventeenth.

And then the sequential passages:

First second third fourth _wslw sl
ols g’lﬁ,&\; g3l e @U b @Lo
fourteenth fifteenth sixteenth ,dl& SJG
seventeenth.

Another problem compounds the difficulties of mixing scripts: the use of numbers. In
Arabic, Hebrew, Syriac, and Thaana alike, numbers are written from left to right.

Thus the author’s birthday is written 1e9< 10 y1su1dsd ysbitl, which in Arabic looks
like this: 1962ﬁ|},§ 16 dnazd! o5 (or WA\ Olzsy VY, meaning 11 Ramadan 1381 AH
{337]). That means that each number is treated as an embedded “left-to-right” block.
And we must not forget the characters that appear within numbers: the decimal point,
for example, which is a period in the United States but a comma in France and a small
damma in the Arab countries of the Mashreq.

Now that we have seen the methods that typography uses to solve the problems of bidi-
rectionality, let us move on to the heart of this section: the description of the algorithm
that the Consortium recommends for implementing these methods.

138 Chapter 4 : Normalization, bidirectionality, and East Asian characters

Unicode and Bidirectionality

Here is the problem: we have a string of Unicode characters of which some belong to left-
to-right scripts, others to right-to-left scripts, and still others to all scripts (the space, the
period, etc.). This string will eventually be displayed or printed. And if it is long enough,
it will be broken into lines when it is rendered. Thus we face the same problem that ty-
pographers face: how to distribute the glyphs among lines so as to represent the structure
of the document as faithfully as possible while respecting the typographic conventions?

The reader may be surprised: why is Unicode suddenly concerned with the presentation
of the text? We are told over and over again that characters are superior to glyphs and
that Unicode, being interested only in abstract concepts, would never dirty its hands with
printer’s ink, even if that ink is virtual.

There is a kernel of truth to that. But at the same time, Unicode always strives to give
as much information as possible about its characters. We have seen, for example, that it
describes the contextual behavior of the Arabic characters so that software can perform a
contextual analysis on the sole basis of the information that Unicode has supplied. Thus
Unicode aims to provide software with the necessary information, even though it is not
going to talk typography or serve as a handbook for multilingual typesetting.

But there is an important reason for which Unicode concerns itself with presentation in
this way. In the previous section, we saw that presentation depends on the structure of the
document. But as long as there is no direct connection (wireless or otherwise) between
the computer and the human brain, no software will be able to detect the structure of
a document automatically and without error. We need a way to indicate this structure.
And that is why Unicode’s involvement is necessary: to give the user a way to specify
whether the text contains embedding or sequential blocks.

Unicode could have included one or two special characters to indicate embedding (with
sequential as the default choice) and leave it at that. But it preferred to address the prob-
lem fully—and that is a good thing, because otherwise what guarantee would there be
that a text rendered by this or that commercial or public-domain software package would
have the same structure?

Let us therefore explore this algorithm, which consists of six steps, each of them with
substeps:

1. Determine the default direction of the paragraph.

2. Process the Unicode characters that explicitly mark direction.
3. Process numbers and the surrounding characters.

4. Process neutral characters (spaces, quotation marks, etc.).

5. Make use of the inherent directionality of characters.

6. Reverse substrings as necessary.

The Bidirectional Algorithm 139

Before attacking the first step, we should see how Unicode categorizes characters accord-
ing to their bidirectional behavior.

Each Unicode character has a property called the bidirectional character type. This infor-
mation is found in the fourth field (starting the count from zero) of the lines of the
file UnicodeData.txt. There are 19 character types of this kind, which fall into three
large groups: “strong”, “weak”, and “neutral”. “Strong” characters are those whose di-
rectionality is obvious and independent of context; “weak” characters are the numbers
and characters with similar behavior; “neutral” characters are those with no inherent
directionality, such as spaces and certain punctuation marks that are shared by many

scripts (e.g., the exclamation point).

Here are the 19 categories:

e Category L (“left-to-right”, strong): characters of the “strong” left-to-right type.
“Strength” refers to their determination: these characters are always set from left
to right, irrespective of context. They make up the absolute majority: 9,712 charac-
ters in the file UnicodeData.txt have this property, and the ideographs of planes
BMP and SIP are not taken into account.

e Category R (“right-to-left”, strong): the opposite of L, this category contains the char-
acters of the “strong” right-to-left type, except for the Arabic, Syriac, and Thaana
letters. Numbering 135, these characters are the Hebrew letters and the Cypriot sym-
bols.

e Category AL (“Arabic letter”, strong): the continuation of Category R; namely, the
Arabic, Syriac, and Thaana characters of the “strong” right-to-left type. There are 981
of them—a large number, because all the Arabic presentation ligatures are included.

e Category EN (“European number”, weak): the digits and “European-style” numerals.
A surprising fact is that the “Eastern Arabic-Indic digits” + Y Y¥F VAR, used in
Iran and India, are also included in this category. There are 161 numerals of this type.

e Category AN (“Arabic number”, weak): the “Arabic-style” numerals. There are
12 characters of this type: the 10 “Hindu-Arabic” digits * Y Y¥£ 81VAS&, the decimal
separator (}), and the thousands separator ().

e Category ES (“European number separator”, weak): number separators—or, more
precisely, a separator, the slash. There are two characters in this category: the second
is again the slash, but its full-width version.

e Category ET (“European number terminator”, weak): a selection of characters that
are in no way extraterrestrial. These characters may follow a number and may be
considered to be part of it. Among them are the dollar sign, the percent sign, the
currency signs, the prime and its repeated forms, the plus and minus signs, etc. On
the other hand, neither the units of measure nor the numeric constants are in this
category. There are 63 ET characters.

140 Chapter 4 : Normalization, bidirectionality, and East Asian characters

e Category CS (“common number separator”, weak): the period, the comma, the
colon, and the no-break space, together with all their variants; that makes 11 char-
acters in all.

e Category BN (“boundary-neutral”, weak): the ASCII and ISO 1022 control charac-
ters, ZWJ and ZWN]J, the interlinear annotation marks, the language tags, etc. These
characters number 178.

e Category NSM (“nonspacing mark”, weak): the combining characters and the varia-
tion selectors, for a total of 803 characters.

e Category ON (“other neutral”, neutral): the universal punctuation marks, the proof-
reading symbols, the mathematical symbols, the pictograms, the box-drawing ele-
ments, the braille cells, the ideographic radicals—every character that has no inher-
ent directionality (although that is debatable for certain symbols). These are alto-
gether 3,007 characters.

e Category B (“paragraph separator”, neutral): every character that can separate para-
graphs, namely, the ASCII control characters 0X000A (line feed), 0x000D (carriage re-
turn), 0x001C, 0x001D, 0x001E, 0x0085, and the paragraph separator.

e Category S (“segment separator”, neutral): the tab characters (0x0009, 0x000B,
0X001F);

e Category WS (“whitespace”, neutral): the whitespace. Every character that is consid-
ered a space of nonzero width. There are 19 characters of this type.

The five remaining categories are actually five Unicode control characters that appear in
the block of general punctuation:

e 0X202A LEFT-TO-RIGHT EMBEDDING (LRE), marks the beginning of the embedding of
left-to-right text.

e 0Xx202B RIGHT-TO-LEFT EMBEDDING (RLE), marks the beginning of the embedding of
right-to-left text.

e 0x202C POP DIRECTIONAL FORMATTING, or “PDF” (not to be confused with the PDF
file format of Adobe’s Acrobat software). States form a stack, and each of the charac-
ters LRE, RLE, LRO, and RLO adds to the stack a new state, whether for embedding
or for explicit direction. The character PDF pops the top state off the stack.

e 0x202D LEFT-TO-RIGHT OVERRIDE (LRO), forces the direction to be left-to-right.

e 0x202E RIGHT-TO-LEFT OVERRIDE (RLO), forces the direction to be right-to-left.

The bidirectional algorithm automatically manages embedding, but the characters LRE
and RLE allow us to switch to “manual control” when errors occur. Manual control en-
ables us to do even more, since with the characters LRO and RLO we enjoy low-level

The Bidirectional Algorithm 141

control over the behavior of the glyphs representing the characters with respect to the
direction of the script. Thus we can torture Unicode characters at will by forcing a Latin
text to run from right to left or an Arabic text to run from left to right. But these charac-
ters should be used only when absolutely necessary. Let us not forget that the interactive
use of software and the transmission of data are ill suited to “modes”, and modes are
indeed what these characters represent. Suppose that we have placed the character LRE
at the beginning of a paragraph and that we copy a few words to another document. The
effect of the LRE will disappear, since the character will not be copied with our string.
Use your judgment, and be careful!

Let us also point out that the scope of all these characters is limited to a single paragraph
(a paragraph being a block of data that ends at the end of the file or at a character of
category B). At the end of the paragraph, however many states may have accumulated
on the stack, they are all swallowed up by the dreaded cyber-sinkhole that lies within
every computer (the place where files that we have accidentally deleted without keeping
a backup end up).

The characters that we have just described are also listed in the file PropList.txt under
the property Bidi Control.

This file also mentions characters that we have not yet discussed, the implicit directional
marks:

e 0X200E LEFT-TO-RIGHT MARK (LRM): an invisible character of zero width whose only
raison d’étre is its category, L.

e 0X200F RIGHT-TO-LEFT MARK (RLM): as above, but of category R.

What good are these invisible, zero-width characters? They can be used, for example,
to lead the rendering engine to believe that the text begins with a character of a given
direction—in other words, to cheat!

Finally, one other important property of characters is the possibility of mirroring. The
ninth field (counting from zero) in the lines of the file UnicodeData.txt contains a Y’
when the glyph should be mirrored in a right-to-left context. Thus an “opening” paren-
thesis will remain an opening parenthesis in a left-to-right context; it will be a “right”
parenthesis in absolute terms, but we do “open” a right-to-left passage at the right.

Mirroring is ordinarily managed by the rendering engine. But Unicode, through its in-
finite mercy, has also given us a list of characters whose glyphs can serve as mirrored
glyphs. These data are included in the file BidiMirroring. txt, asample of which appears
below:

0028; 0029 # LEFT PARENTHESIS
0029; 0028 # RIGHT PARENTHESIS
003C; 003E # LESS-THAN SIGN

003E; 003C # GREATER-THAN SIGN
005B; 005D # LEFT SQUARE BRACKET
005D; 005B # RIGHT SQUARE BRACKET

142 Chapter 4 : Normalization, bidirectionality, and East Asian characters

As we can see, for each original character at the left, Unicode provides a character whose
glyph is the mirror image of the original. There are 320 pairs of characters of this kind in
the file, some of which are marked [BEST FIT], which means that merely flipping them
horizontally does not yield the best result. Most of these characters are mathematical
symbols, and we can indeed wonder what the ideal mirrored version of ‘¢’, for example,
would be. Should it be ‘3’ or ‘§’? The former is exactly what we would write in a left-
to-right document. In Western mathematics, the negating stroke is always slanted to the
right.

Is ‘Y’ then, the ideal form for right-to-left mathematics? Azzeddine Lazrek {229, 230]
seems to prefer ‘3’ which we could accuse of left-to-right bias. Arabian mathematics uses
an unusual system of notation that yields formulae such as the following:

[e%¢] 00 1
il =211= w‘(dp\,
0= 1=_° 0

The Algorithm, Step by Step

We start with a string C = c¢j¢ . ..c,, and the object of the game is to obtain, for each
character ¢;, the value ; of its “embedding level”, a value that we shall use at the end to
rearrange the glyphs.

1. Determine the implicit direction of the paragraph

We shall first break the document into paragraphs. Each paragraph will have an implicit
direction. If this direction is not given by any higher-level protocol (XML, XSL-FO, etc.),
the algorithm will look for the first character of category L, AL, or R. If this character is
of category L, the implicit direction of the paragraph is from left to right; otherwise, the
implicit direction is from right to left.

Now suppose that we are in a left-to-right document (such as this book) and that, un-
fortunately, a paragraph begins with a word in Hebrew. According to the algorithm, this
paragraph will begin at the right, and the last line will run short at the left. How can we
avoid that situation? That is where the implicit directional marks come in. All that we
have to do is to place the character LRM at the beginning of the paragraph. This character
will lead the algorithm to believe that the first letter of the paragraph is of category L,
and the formatting will be correct.

To calculate the values of ., we need an initial value. This will be the “paragraph em-
bedding level”, &. If the paragraph’s direction is from right to left, then & = 1; otherwise,
&=0.

2. Process the control characters for bidirectionality

In this step, we shall collect and use the data provided by the various characters LRE, RLE,
LRO, RLO, and PDF that may be found in the document. We shall examine characters
one by one and calculate for each character the embedding-level value # and the explicit
direction.

The Bidirectional Algorithm 143

We begin with the first character by taking #; = & as the initial value and not specify-
ing any explicit direction. If we come upon the character RLE, then the value for the
following characters will be increased by one or two units so as to yield an odd number.
Likewise, if we come upon LRE, the value .# for the following characters will be increased
by one or two so as to yield an even number.

If we find RLO or LRO, our behavior is similar, but in addition the explicit direction of
the following characters will be right-to-left or left-to-right, respectively. In other words,
the characters affected by RLO are considered to be of category R, and those affected by
LRO are of category L.

LRE, RLE, LRO, and RLO are placed onto a stack. Each new operator of this type will
push the previous one further down the stack, where it waits to be popped off. When
we come upon a PDE, we pop the most recent LRE, RLE, LRO, or RLO. Note that this
stack has a height of 61: when the 629 successive operator is reached, the algorithm stops
keeping track of the oldest characters.

At the start of this procedure, we have a value .# for each character in the string. Thus we
can restrict the remaining operations to substrings of characters having the same value
of .#. We call that type of substring a run. A run is thus a substring of characters with the
same value of 4.

For each run S, we shall define two variables, S5 and S., which correspond to the condi-
tions at its endpoints. These variables can assume the values ‘L for left-to-right and ‘R’
for right-to-left; these are also the names of the categories L and R.

Here is how we define these variables. Let §’,S,S” be three consecutive runs and
I, F" their embedding levels. Then S has the value R if max(.#’,.#) is odd and
the value L otherwise. Similarly, S, is R if max(.#,.#") is odd, otherwise L.

If S appears at the beginning or the end of the paragraph—and thus there is no §'
(or §")—we take & instead of &' (or).

The final operation: delete all occurrences of RLE, LRE, RLO, LRO, and PDE

Let us review the process. We break our paragraph into runs S, the elements of a run all
having the same value #. For each run, we have the variables S5 and S., whose values
may be L or R.

3. Process the numbers and the surrounding characters

Steps 3, 4, and 5 are, in a sense, intermediate steps. We process three special types of
characters and change their categories, and possibly their .# values, according to context.

In this section, we shall process numbers. There are two categories of numbers: EN (“Eu-
ropean numbers”) and AN (“Arabic numbers”). The names of these categories should
not be taken literally, as the categories serve only to indicate a certain type of behavior.

Suppose we find ourselves in a run S with embedding level .#. We shall begin a ballet of
changing categories.

144 Chapter 4 : Normalization, bidirectionality, and East Asian characters

First of all, every NSM character (combining character) assumes the category of its base
character; ifthere is none (so that the character is necessarily at the beginning of the run),
it assumes the value of S; as its category.

Next, we shall consider the EN characters (European numbers) in the run. For each of
them, we shall check whether the first strong character as we read leftward is of type AL.
If it is, the EN becomes an AN.

Now the distinction between right-to-left Arabic characters (AL) and Hebrew characters
(R) is no longer needed; therefore, we convert the AL characters to type R.

Now we shall address the characters of type ET (final punctuation), ES (slash), or CS
(period, comma, etc.). An ES between two ENs becomes an EN. A CS between two ENs
becomes an EN. A CS between two ANs becomes an AN. A series of ETs before or after
an EN becomes a series of ENs.

After these transformations, if any ETs, ESs, or CSs remain, we convert them all to ONs
(harmless neutral characters).

Finally, in the last transformation of this step, we search backwards from each EN for the
first strong character. If it is an L, we convert the EN to an L.

By the end of this step, we have separated the EN and AN numbers, and we have elimi-
nated the categories ET, ES, and CS.

4. Process the neutral characters

And, in particular, process the spaces. This step is necessary because Unicode decided not
to “directionalize” its spaces, as Apple did in its Arabic system, in which one copy of the
ASCII table worked from right to left. Thus Mac OS had a left-to-right space and a right-
to-left space.

Here it is the algorithm that determines the direction of the spaces. The goal of this sec-
tion is therefore to assign a category, either L or R, to each neutral character. Two very
simple rules suffice.

1. If the neutral character is surrounded by strong characters of a single category, it also
is of that category; if it appears at the beginning or at the end of run S, we treat it as if
there were a strong character of category S; at its left or a strong character of category S,
at its right, respectively.

2. All other neutral characters are of category é&.

5. Make use of the inherent directionality of the characters

Up to now, we have dealt only with specific cases (numbers, neutral characters) and some
special characters (RLE and company). But the reader must certainly have noticed that
we have not yet raised the issue of the category of each character ¢,. Yet we shall have to
use this category (L or R) as the basis of our decision to set the text from right to left or
from left to right. Now is the time to take the category of the characters into account.

But nor should we forget what has been done in the preceding procedures, even if they
are less common and deal primarily with exceptional cases. Here is where we see the

The Bidirectional Algorithm 145

strength of the algorithm: all that we have to do is increment .# in a certain way, and we
obtain values that take both the preceding calculations and the inherent directionality
of the characters into account.

Here are the procedures to carry out:

e For each character of category L: if its .7 is odd, increment it by 1;
e For each R: if its . is even, increment it by 1;
e For each AN: if its .# is odd, increment it by 2; else increment it by 1;

e For each EN: if its .# is even, increment it by 2; else increment it by 1.

At the end of this step, we have a definitive value of .# for each character in the string.

6. Reverse substrings

This section is the most fun. We have weighted the characters in our string with whole
numbers (the values of .#). Beginning with the largest number, we shall reverse all the
runs that have this value of .#. Then we shall do the same for the number immediately
below, until we reach an embedding level of 0. If the largest level % is n, then some
substrings (those for which is equal to n) will be reversed.

Here are a few examples to shed light on the procedure. Let us take three speakers:
9 and N’ are speakers of right-to-left languages, and L is a speaker of a left-to-right lan-
guage.

S — . .
FIRST EXAMPLE: £ says that “Yes means yes.” (“Yes means Vd.”). We have a single right-
to-left word in a left-to-right context.

After running the string through the bidirectional algorithm, we obtain the following
embedding levels .#:

[oYes means [1yes];.]o

The inherent directionality of the letters is enough to yield the desired result. We have
only one reversal to perform, that of level 1:

[oYes means {129v]-o

-
SECOND EXAMPLE: R says “ye$ means yes”.

. . . S .
Then & quotes him by saying “R said that ‘ye§ means yes’.” (“He said that ‘(..o.u, o -y

N

yes’”). Thus we have right-to-left embedding in a left-to-right passage.

But if we leave the algorithm to do its work unassisted, it will yield undesired results. By
merely reading “He said that ‘yes ... ”, the algorithm cannot know that the word “yes”
is part of a right-to-left quotation. Thus we shall use a pair of characters, [and i, to
indicate the quotation’s boundaries:

146 Chapter 4 : Normalization, bidirectionality, and East Asian characters

[oHe said that “[R{;[,yes], means yes} "}y
The first reversal to carry out is at level 2:

{oHe said that “BH{;[>e9v]> means yes}; @]y
The second reversal will be at level 1 (thus we remove [H and 0f):

[oHe said that “[e9y eassm [>yesh ™o

THIRD EXAMPLE: R’ hears & quote R and asks him:

. . S . .
“Did you say that ‘R said that “ye$s means yes”’?” (“$“He said that ‘(..u, o -y yes’” o8y,
We have surrounded the entire previous sentence with the question “Did you say that”

and a question mark ‘?’. And since i’ is right-to-left, we are in that context from the very
beginning; i.e., the embedding level «# of the first character already has the value of 1.

Once again the algorithm cannot know that “He said ... ” is embedded; therefore, we
shall mark the fact with the pair B, [il. Here is the situation:

[1Did you say that “l[,He said that ‘@{3[4yes]s means yes 3@’ L 0”7}
Thus we have reached embedding level 4! Let us carry out the reversal at level 4:

[1Did you say that “Ed{,He said that ‘[B{3{429y]4 means yes s @i’ 0”1
Next, we shall reverse level 3:

[1Did you say that “I8{,He said that {329y 2rsom [4yesls 13 L E” 7}

And level 2:

{1Did you say that “[;{ae9v]s {3smeans yes}s’ 36d1 bise sH},” 7}

Finally, we reverse level 1, the global level:

[1$“[,He said that [3e9v ensam [svesls]’ L 36d3 vse voy bidd}h

East Asian Scripts

The three great nations of East Asia (China, Japan, Korea) have writing systems that pose
challenges to computer science. In this section, we shall discuss two of these writing sys-
tems: the ideographs of Chinese origin that were also adopted by the Japanese and the
Koreans, and the Korean syllabic hangul script.

East Asian Scripts 147

Ideographs of Chinese Origin

Westerners must put forth an enormous effort to learn Chinese ideographs: there are
thousands of them, and they all look similar—at least that is the impression that we have
at first. We can easily be discouraged by the thought that even if we managed to learn
3,000, 4,000, or 5,000 ideographs there would still be more than 60,000 others that we
had not even touched upon, and life is so short. But do we know all the words in our own
language? Certainly not! Are we discouraged by that fact? The author is not ashamed of
his ignorance of the words “gallimaufry”, “jecorary”, “frondescent”?, and many others.
The same goes for the East Asian who comes across an ideograph that he does not recog-
nize. The only difference is that we can usually pronounce words that we do not know,
whereas the East Asian cannot do so with an unknown character. On the other hand, he is
better equipped to understand its meaning. We require a solid knowledge of etymology
in order to interpret a word; he, however, has a better chance of correctly interpreting
an ideograph if he can recognize the radicals from which it is constructed.

Etymology for us, radicals for the East Asians. Two ways of investigating the possible
meaning of a word/ideograph. They are similar, from a human perspective. But what
is a computer to make of them?

When we operate on a phonetic basis, we lose the pictorial representation of mean-
ing, but we gain the possibility of segmenting: sounds can be separated, and all that we
have to do is invent signs to represent them. That is what the alphabetic and syllabic
writing systems do. Gutenberg used segmenting into symbols to good advantage in his
invention, and computer science inherited it from him. Result: a few dozen symbols are
enough to write the hundreds of thousands of English words. Most important of all,
these symbols will suffice for all future words as well: neologisms, loan words, etc.

That is not the case for the ideographs. Generating them from radicals in real time is not
a solution: sometimes we do not know which radicals are needed, or else they transform
themselves to yield new shapes. This is not a process that lends itself to automation; at
least no one has yet succeeded at automating it.

There have been attempts to “rationalize” the ideographs: graphical syntaxes by them-
selves [125] or accompanied by tools for generating ideographs [356], or highly parame-
terized METAFONT code [178]. One of these attempts is Character Description Language,
an approach based on XML that we shall describe on page 151.

In the absence of “intelligent” systems that offer a functional solution for all data ex-
changed in China, Japan, and Korea, the Chinese ideographs have been “hardcoded”;
i.e., one code point is assigned to each ideograph. We have discussed various East Asian
encodings (pages 1 and following) that reached the record number of 48,027 ideographs.

These encodings were adequate as long as data remained within each country. But when
we began to exchange information across borders, if only by creating web pages, a new
sort of problem arose: compatibility among Chinese, Japanese, and Korean ideographs.

” » «

2 In order: “a hotchpotch”, “relating to the liver”, “covered with leaves”.

148 Chapter 4 : Normalization, bidirectionality, and East Asian characters

The Greeks borrowed the writing system of the Phoenicians; then the Romans borrowed
theirs from the Greeks. The writing system changed each time, although the similar-
ities are astonishing. The same phenomenon appeared among the Chinese, Japanese,
and Koreans—in the third century C.E. for the Japanese, in the fifth century C.E. for
the Koreans. The Chinese script was exported and adapted to the needs of each nation.
New ideographs were created, others changed their meaning; some even changed their
forms slightly. Often the differences are minimal, even imperceptible to the Western eye,
which may recognize that a text is in Japanese or Korean solely by the presence of kana
or hangul.

Indeed, these scripts (kana in Japan, hangul in Korea) were attempts to rationalize the
Chinese writing system. But the goal was never to replace it, only to supplement it with
a phonetic adjunct. Which means that these countries have two scripts (as well as the
Latin script) in parallel.

Unicode and ideographs

While ISO 10646 originally intended to use separate planes for the ideographs of these
three languages, Unicode took up the challenge of unifying the ideographs.

Three principles were adopted as a basis of this unification:

1. The principle of source separation: if two ideographs occupy distinct positions in a
single encoding, they are not unified within Unicode.

2. The noncognate rule: if two ideographs are etymologically different—i.e., if they are
historically derived from different ideographs, they are not unified within Unicode.

3. If two ideographs that do not satisfy the two previous conditions have the same ab-
stract shape, they are unified.

The first of these principles was highly controversial, but it is consistent with Unicode’s
general principle of convertibility (see page 61), which provides that all data encoded
in a recognized encoding can be converted to Unicode without loss of information. The
typical example of ideographs that have not been unified for this reason is the series of six
ideographs # @I EUERHNEY, all of which mean “sword” and are clearly graphical variants
of one another. Since they are distinct in JIS X 0208, they are distinct in Unicode as well.

The second principle leaves the door wide open to polemics among historians of the
ideographs; nonetheless, it is indispensable. The most commonly cited example is doubt-
less that of the radicals ‘1" and ‘1’: the former means “ground, earth, soil”; the latter
means “samurai, gentleman, scholar”. There are even characters that contain both of
these radicals, such as #& (“pick up, raise”).

The third principle is where things really go wrong. The concept of an abstract shape is,
unfortunately, not clear in the slightest and depends primarily on the individual’s intu-
ition.

The Unicode book gives a certain number of examples of unified and nonunified
ideographs. In these examples, the pairs of nonunified ideographs clearly consist of

East Asian Scripts 149

two different characters, but the pairs of unified ideographs are very interesting because
they show us how much tolerance unification exhibits towards differences that may seem
significant at first glance.

The examples range from the almost identical to the discernibly different. The difference
between [& and [& is the order in which the strokes are written; in the bottom part of
% (vs. %), the middle stroke protrudes slightly; likewise, in the bottom part of 4, the
stroke in the middle extends for the whole width of the rectangle, which is not the case
in f4; the contents of the rectangle in 85 and % are quite different; the vertical stroke
in 2% and 2 has a different ending; the stroke at the left of A has a lead-in element,
unlike that of %; the right-hand stroke is smooth in /\ and angularin /\;the upper
right-hand parts of § and i} are quite different. Yet all these pairs of ideographs were
unified and yield only a single character each.

Be that as it may, the ideographs of 38 national or industrial encodings were collected,
compared, analyzed, and sorted according to four large dictionaries (two of them Chi-
nese, one Japanese, and one Korean)—a large-scale project. And that was only the be-
ginning, as other blocks of ideographic characters were added in the following versions
of Unicode. Today there are 71,233 unified characters.

The Unihan database

As always, Unicode does not stop with the already abundant information found in the
Unicode book. The consortium also provides a database of the ideographs, which is con-
tained in the following file:

ftp://ftp.unicode.org/Public/UNIDATA/Unihan.zip

as well as a web interface for searches (in which we may enter a character’s hexadecimal
code point, or even the character itself in UTF-8):

http://www.unicode.org/charts/unihan.html

Nine types of data are provided:

e numeric value: if the character is used as a number, including the special use of cer-
tain characters for accounting purposes.

e variants: whether there are other characters that are semantic variants (characters
with more or less the same meaning that can be used in the place of the character in
question); whether there is a simplified Chinese version of the character; whether
there are semantic variants in specialized contexts; whether there is a traditional
Chinese version; whether there are presentation variants (for example, two of the
“swords” shown above, namely /| and %, are presentation variants).

e the number of strokes, calculated according to six different methods: Unicode’s
method, the traditional Japanese method, the method of Morohashi’s dictionary,
the method of the prestigious Kangxi dictionary of the Chinese language, the Korean
method, and the total number of strokes, including those of the radical.

150 Chapter 4 : Normalization, bidirectionality, and East Asian characters

e pronunciations: in Cantonese Chinese, in Mandarin Chinese, in the ancient Chinese
of the Tang dynasty, in Japanese (both kun pronunciations, of Japanese origin, and
on pronunciations, borrowed from Chinese together with the character), in Korean,
in Vietnamese.

o the definition.

o the frequency of use in Chinese discussion groups.

e the level of difficulty, according to the school system in Hong Kong.
e indexes in 22 different dictionaries.

e code points in 32 different encodings.

Web access to this database is connected to searches in the Japanese EDICT dictionaries
{90]. In this way, we also obtain for character its meanings in Japanese as well as a list
of all the compound words (indivisible groups of ideographs) that contain it, with their
pronunciations.

This enormous mass of data is collected in a 25 MB file that is available for downloading
as a ZIP archive.

What shall we do when 71,233 ideographs are not enough?

Unlike our fine old Latin letters, which have not changed much since Julius Caesar, the
Chinese ideographs display an almost biological behavior: they live and die, merge, re-
produce, form societies—societies similar to human societies, as an ideograph is often
created for use in a child’s name, and the popularity of the ideograph will thus be related
to that of its human bearer. Be that as it may, one thing is certain: they present problems
for computer science. How to manage a writing system that changes every day?

First of all, let us mention two methods that do not really offer a solution to the problem
of missing characters. The first is the method of throwing up our hands: the glyph—or
even the character—that we need is not available, so we decide to replace it with a symbol
provided for this purpose, the character 0x3013 GETA MARK =. It has the special quality
of having a glyph that stands out in text. In traditional printing, the geta mark was a sort
of substitute, used in first and second proofs, that was not supposed to appear in the final
printing. It was used until the punch-cutter had the time to design and cut the missing
glyph. Its glyph was made deliberately conspicuous so that it would be easy to find and
correct—and, most of all, so that it would not be overlooked during proofreading.

following character is an approximation of the character that was intended. Thus, if we
find a character that resembles the missing one, we can substitute that character without
running the risk of being a laughing stock. The ideographic variation indicator bears all
the following meanings at the same time: “don’t be surprised if what you are reading

» o«

doesn’t make any sense”, “I know that this is not the right character, but I haven’t found

East Asian Scripts 151

»

anything better”, “this is what the missing character looks like; unless you are extremely
stupid, context should enable you to figure it out”.

These two solutions are not solutions at all. If we have enough time and energy, we can
design the missing glyphs. Chapter 12 of this book is devoted to that very subject. But
designing the glyph is not enough: we also have to insert it into fonts, install those fonts
on the computer, make sure that they are displayed and printed correctly, send them to
all our associates, or even distribute them on the Internet with instructions for installa-
tion. It is a fiery ordeal that we might not wish to endure just for one or two characters.

Below, we shall see two solutions that fall between these extremes. They are attempts to
describe the ideographs by combining other ideographs or elemental strokes—attempts
whose aim is to provide the user with a rapid and efficient way to obtain and use the new
ideographs that are being created just as the reader is reading these lines, or, conversely,
old ideographs that the most ancient of the ancient sages forgot many centuries ago.

Ideographic description characters

The first attempt is simplistic but nonetheless powerful. And it lies at the very heart of
Unicode. It is a set of a dozen characters (0x2FF0-0x2FFB) called ideographic description
characters.

The goal is to describe ideographic characters without actually displaying them. That is
one of the many paradoxes of Unicode: all the combinations of ideographs that we shall
see in this section are in fact created in the mind of the reader, just as the reader who sees
the characters :-) in an email message immediately recognizes them as the smiley (©).
Let us also note that these characters “operate” on the two or three characters that follow
them (whereas combining characters operate on the preceding characters).

Here are the graphical representations of these control characters. In themselves, they
give a good idea of the possibilities for combining characters that are available to us:

When we begin to combine the operators themselves,® we acquire an impressive power
to describe characters. Thus we can write several operators in a row: each of them will
wait until the following ones have performed their tasks before beginning to perform
its own.

A few simple examples:

| ﬁ‘ ?'C (woman + ninth month) yields ﬁ% (pregnancy)

o
’_L'ﬁ‘ (roof + woman) yields z (tranquillity)

3 There is only one restriction: the entire string of ideographs and description characters must not exceed
16 Unicode characters and must not contain more than six consecutive ideographs.

152 Chapter 4 : Normalization, bidirectionality, and East Asian characters

ﬁ‘ﬁ‘ (woman + woman + woman) yields fft (noise)
7k7k % (cliff + large + large + hand) yields Fé (polish)

But one must be very careful, as a radical can change its shape in combination. For exam-
ple, the radical for “water” (7K) assumes the shape ¥ when it is combined horizontally
with other radicals. We can thus have combinations of this kind:

i 7k EFI (sea + center) yields z EI:I (in the open sea)

%k (old bird + fire) yields :%\ (impatience)

In fact, we can freely combine ideographs, radicals (0x2F00-0x2FD5), and characters from
the block of supplementary radicals (0x2E80-0x2EF3). The supplementary radicals are
characters that represent the different shapes that a radical can assume when it is com-
bined with other ideographs. Normally neither the radicals nor the supplementary rad-
icals should be used as ordinary characters in a document; they should be reserved for
cases in which we are referring specifically to the ideographic radical, not to the character.

Example: 0x706B ‘X is an ideographic character that means “fire” but also “Tuesday”,
“March”, “flame” “heat”; 0x2F55 KANGXI RADICAL FIRE ‘K (same glyph) is radical num-
ber 86, “fire”; 0x2EA3 CJK RADICAL FIRE - is the shape that this radical assumes when
it is combined with other ideographs. We would use the first of these characters in a
document that mentioned fire; the second, in a dictionary that listed the radicals or in
a document that referred to the radical for fire (to explain another ideograph, for exam-
ple); the third, in a textbook on writing in which it is explained that the radical for fire
assumes a special shape under certain conditions.

Before concluding this section, let us note that, although Unicode’s method of ideo-
graphic description seems fine on paper, the challenge that software faces to combine the
glyphs correctly is not negligible. That is why Unicode decided not to require Unicode-
compatible software to combine the glyphs in reality, which is a great shame.

If we wish to avoid the ideographic description characters and produce glyphs of high
quality, we may as well put a shoulder to the grindstone and combine the glyphs of a
specific font by using font-design software such as FontLab or FontForge, which we shall
describe in Chapter 12—provided, of course, that our license to use the font allows us to
do so.

But let us move on to the second attempt to describe ideographs, the CDL markup
system.

East Asian Scripts 153

CDL, or how to describe ideographs in XML

In the 1980s, Tom Bishop, a Chinese-speaking American, developed some software for
learning the Chinese language that had a very interesting property: a window that
showed how a Chinese character was written, stroke by stroke, in slow motion. To
describe the characters, Tom developed an internal language. Later, in view of the
astounding success of XML, he took up the principles of this language again and created
an XML-based method for describing ideographs.

It is Character Description Language (CDL) {79, 80}, which has been submitted to the
Unicode Technical Committee and the Ideographic Rapporteur Group (IRG) for ratifi-
cation.

The approach is twofold: we can build up an ideograph from other ideographs. For that
purpose, we need only the ideographs’ Unicode code points and the coordinates of their
graphical frames. For example, to obtain 7 (which is a radical, but that fact is of no
consequence here), it is sufficient to combine 4 and T, both of which are in Unicode.

Thus we write:
<cdl char="47">
<comp char=" %" points="0,0 40,128"/>
<comp char="T" points="60,12 128,128"/>
</cdl>

The values of the arguments to char are Unicode characters in UTF-8.

A

We can also construct an ideograph from strokes. Here is how to obtain the ideograph #:

<cdl char="#%">
<stroke type="p" points="107,0 10,46"/>
<stroke type="p" points="128,38 0,83"/>
<stroke type="s" points="86,70 86,128"/>
</cdl>

Finally, we can combine the two methods. To obtain X, we can write:

<cdl char="Xx">
<comp char="XK" points="0,0 40,128"/>
<stroke type="d" points="45,104 66,128"/>
</cdl>

The possibility of directly using the glyphs of Unicode characters is nothing but a facade:
in fact, 56,000 characters have already been described in this way, and the value of a char
attribute refers the rendering engine to this sort of description, which in turn may refer
it to other descriptions, and so on, until nothing but basic strokes remain.

The basic strokes number 39. Here is the full list. (The abbreviations are the codes used
as values of the type attribute of element stroke.)

154 Chapter 4 : Normalization, bidirectionality, and East Asian characters

Glyph Name Abreviation Example
1 — héng h =
2 ~ t t

3 I shit s =
4 J shu-gou sg UN
5 J pié p J\
6) wan-pié wp N
7 J shu-pié sp I
8 N dian d ES
9 \ na n A
10 \ dian-na dn oy
11 _ pingna pn i
12 L tina tn %
13 Ao tipingna tpn i
14 _I héng-zhé hz ml
15 7 héng-pié hp X
16 ~ 7 hénggou hg 5
17 L shi-zhé sz i
18 L shi-wan Sw
19 [, shu-tt st R
20 L_ pié-zhé pz n
21 (pié-ditin pd K
22 / pié-gou pg X
23) wan-gou wg X
24 k, xié-gou Xg X
25 —L héng-zhé-zhé hzz [
26 _L héng-zhé-wan hzw Z
27 -[, héng-zhé-ti hzt jil:S
28 _J héng-zhé-gou hzg
29 _\, héng-xié-gou hxg Jel

East Asian Scripts 155

30 l_| shirzhé-zhé szz Gl
31 é shu-zhé-pié szp

32 L shi-wan-gou swg Ju
33 _LI héng-zhé-zhé-zhé hzzz L
34 3 héng-zhé-zhé-pié hzzp)54
35 Z‘ héng-zhé-wan-gou hzwg .73
36 3 héng-pié-wan-gou hpwg B
37 lj shui-zhé-zhé-gou szzg 5]
38 —’J héng-zhé-zhé-zhé-gou hzzzg T
39 O quan o 3

The reader will notice that certain words are repeated in the Chinese names of these
strokes. They are basic strokes in Chinese calligraphy: héng (% horizontal stroke), t/ (#&
rising stroke), shit ("% vertical stroke), gou (£ hook), pié (4 diagonal stroke descending
from right to left), wan (5, curved stroke), diin (& dot or very short segment), na (%
diagonal stroke descending from left to right), ping (% flat stroke), zhé (# bent stroke).
The other strokes are combinations of these basic strokes that can be found in calligraphy
textbooks; for example, number 35, héng-zhé-wan-gou, is a ##rZ544 “curved hook with
a bend” {44, p. 53].

It is clear that the coordinates of the frames of the basic strokes play a fundamental
role in the description of ideographs. The software system Wenlin allows users to create
ideographs in an interactive manner and to obtain optimal frames for their components
by pulling on handles.

We hope that Unicode will adopt this method, which could eventually be the solution
for encoding new or rare ideographs that are not explicitly encoded in Unicode. The
reader who would like to learn more about CDL and Wenlin is invited to consult the
web site http://www.wenlin.org/cdl/.

The Syllabic Korean Hangul Script

King Sejong of Korea was born practically at the same time as Gutenberg. He gave an
enormous boost to the sciences and the humanities, making his country one of the most
advanced in Asia. The Koreans were already making use of printing. In 1434, Sejong
had 200,000 characters of 14mm x 16 mm cast—not out of lead, as Gutenberg did, but
from an alloy composed primarily of copper and tin. But the main reason for which
Sejong lives on in history is that he initiated the invention of hangul. He appointed a
commission of eight scholars and asked them to create a new writing system that would
be both simple and precise.

156 Chapter 4 : Normalization, bidirectionality, and East Asian characters

After four years of work, the commission presented to the king a writing system made up
of 11 vowels and 17 consonants that was perfectly suited to the needs of the Korean lan-
guage. It was officially ratified in 1446. In the beginning, it was called “vulgar script”,
“the script that can be learned in one morning”, and “women’s writing”. Only in the
nineteenth century did it receive the name hangul (“large script”). In other words, the
upper classes in Korean society looked down upon this script for centuries.

While Gutenberg was getting ready to print his Bibles, the first book in hangul appeared:
Songs of the Dragons Flying to Heaven, by Jeong Inji (1447), typeset on wooden boards. It
was followed by Songs of the Moon Shining on a Thousand Rivers, which was written by the
king himself, and then by a Buddhist sutra in 1449. Thus begins the story of the script
that many linguists consider to be the most perfectly conceived script in the history of
the world.*

The shapes of the hangul consonants were established according to the positions of the
vocal organs. They are distributed among five phonetic categories built up by adding one
or more strokes to indicate phonetic features:

l g v n A s o o) (ng)
=t =] H b
= k 1= = A p 5 h
Togg |t dd | A ss | W bb
Mmoo
= r

Among the consonants, ‘ ©’ plays the role of a placeholder for an independent vowel, or
produces an ‘ng’ sound at the end of a syllable.

The vowels are based on the four elements of East Asian philosophy: heaven (a short
stroke), earth (a horizontal stroke), man (a vertical line), and the yin-yang circle (in
evidence from the cyclical pattern that the forms of the vowels follow):

— eu |l o yl| 1 i1 e | 3 yeo
(—) - u | yu|(]) b a | b ya

The reader will note that we have chosen to entitle this section “The Syllabic Korean
Hangul Script”, whereas here we can see nothing but letters (consonants and vowels). In-
deed, the signs that we have just described, which are called jamo, are merely the building
blocks of the hangul system. By combining jamo within an ideographic square, we obtain
the hangul syllables.

A hangul syllable consists of one or more initial consonants (choseong), one or more
vowels (jungseong), and possibly one or more final consonants (jongseong). There are
19 possible initial consonants, 21 possible vowels or combinations of vowels, and 26 pos-
sible final consonants or combinations of final consonants.

4 For more information on its history, please consult [287].

East Asian Scripts 157

If we use I for initial consonants, V for vowels, and F for final consonants, we have as the
general form of a hangul syllable the expression IV F* (in which we employ the nota-
tion for regular expressions: T for “one or more times” and * for “zero or more times”).
To encode a syllable of this kind, Unicode offers us two possibilities: we can look up the
corresponding character in the block of precomposed hangul syllables (0xAC00-0xD7A3),
or we can enter the corresponding jamo, which the rendering engine will combine into
a hangul syllable.

These two methods are equivalent, and the choice of one or the other is analogous to
the choice in the Latin script between precomposed accented letters and those obtained
using combining characters. The jamo of Unicode (0x1100-0x11F9) do not have the status
of combining characters, for the simple reason that their logic is different: rather than
combining with a base character, they combine with one another.

But let us return to the general expression of a hangul syllable, H = IVt F* and suppose
that we have two hangul syllables H and H’, the latter coming immediately after the
former. Their decomposition is therefore HH' = IV F*I'V'T F"*. The sharp reader is
bound to ask one burning question: F and 7 being both consonants, how do we distin-
guish the final consonants of H from the initial ones of H'?

Sophisticated linguistic processing could certainly do the job, but here we need to enter
characters in real time and see them transformed into syllables. Therefore a cumbersome
or ambiguous approach is out of the question.

What, then, shall we do? There is only one solution, which may seem awkward at first
because it entails redundant code points in Unicode: we double the Unicode consonants
and thus create an artificial distinction between initial and final forms. It is as if we had
two copies of each of the consonants of English and wrote “affirmation” (with the “final”
consonants in bold) to show that the word breaks down into syllables as “af-fir-ma-tion”.

In addition, this is the technique that the encoding Johab (which allows only one letter
from each category) already used: five bits for the initial consonant, five for the vowel,
five for the final consonant, plus one disabled bit, which gives 16 bits in all and is a very
practical approach.

Thus the table of jamo contains first the initial consonants 0x1100-1159, then the vowels
0x1160-0x11A2, and at last the final consonants 0x11A8-0x11F9, whose glyphs are identi-
cal to those of the initial consonants. The character 0x115F HANGUL CHOSEONG FILLER is a
control character that marks the absence of an initial consonant, which may be needed in
irregularly constructed syllables; likewise, there is a 0x1160 HANGUL JUNGSEONG FILLER,
used when the vowel is missing.

There are six ways to combine jamo in order to form hangul syllables. To describe them,
we shall distinguish the horizontal vowels (Z,,) from the vertical ones (Z,):

Here is an example: the jamo sequence & } v is of the shape IV, F; therefore, we take

the combination ¥ and get F. Similarly, the sequence 7 __ & is of the shape IV, F;

158 Chapter 4 : Normalization, bidirectionality, and East Asian characters

therefore, we take the combination ¥ and get . We have here the form of the word
“hangul™ g2

Syllables are constructed with unprecedented mathematical rigor. The same is true of
their encoding. To obtain ¥, we used the Unicode jamo characters 0x1112, 0x1161,
0x11AB. Where, then, does the syllable g} appear in the encoding? The computer can
answer the question in a few microseconds, as it has only to carry out the following
computation:

[((1—0x1100) x 21) + (V —0x1161)] x 28 + (F — 0x11A7) + OXAC00

(where 1, V, F are the Unicode code points of the jamo).

When a syllable has no final consonant F, the formula is simpler:
[((I—0x1100) x 21) 4 (V — 0x1161)] x 28 4 0XAC00

Unlike the ideographs, the Unicode characters for syllables that are constructed in this
manner do have names. These names are formed from the letters associated with the
Jjamo in the tables on page 156. The letters associated with $+= are “han” and “geur”;
thus the names of the Unicode characters are 0xD55C HANGUL SYLLABLE HAN and OXAE00
HANGUL SYLLABLE GEUR. The names of the jamo can be found in the file Jamo. txt.

Another interesting file is HangulSyllableType. txt: it gives the type of each hangul syl-
lable (IV or IVF).

When the initial consonant or the vowel is missing, or when we have more than one
initial consonant and/or more than two vowels and/or more than one final consonant,
no precomposed syllable is available, and we must resort to the automatic combination
of jamo. Here is an example of a historical hangul syllable {267} dating from that heroic
era when people were still capable of pronouncing “bstwyaermh!” without choking: we
take three initial consonants B A €, two vowels .. | , and three final consonants & =

& . And here is the result of their composition: %%

What shall we do if we simply wish to combine jamo without forcing them to form sylla-
bles? There are two methods, only one of which is recommended by Unicode. The better
method involves using the character ZWN]J between the jamo. The inferior method uses
“compatibility jamo”. These have the same glyphs as the regular jamo, but their libido
is nonexistent: they have no desire whatsoever to mate with their neighbors. As always,
characters flagged as “compatibility” are the skeletons in Unicode’s closet: we are discour-
aged from using them, and Unicode goes to great lengths to lead us to forget that they
even exist.

Using Unicode

Unicode is found everywhere that text occurs. It would be pointless to describe here all
the software that processes text in one or another of Unicode’s forms. Let us consider
instead the chain of data transmission: the author enters his data, which pass through
his CPU and through the network to reach the CPU of his reader/interlocutor. This com-
puter displays the information or prints it out in a way that enables the person who
received the information to read it.

Let us take these steps one by one. First, there is data entry: how do we go about entering
Unicode data? Data can also be converted from other encodings. How do we convert data
to Unicode? Next, once the data is in the computer, we must display it. For that purpose
we use fonts that must themselves be Unicode-compatible. (We shall discuss fonts in the
entire second half of this book, Chapters 6 through 14 and Appendices A through F).
Once the data has been revised and corrected, it is transmitted over the network. We have
already mentioned MIME and the various encoding forms of Unicode in Chapter 2. At
this level, it matters not to HTTP, TCP/IP, and other protocols that the data is encoded
in Unicode rather than in some other encoding. Finally, the data reach the recipient.
There it must be displayed, and so adequate fonts must be available. The recipient of the
message replies, and the entire process begins all over again, in the opposite direction.

What we shall examine in this chapter are the three ways to obtain text in Unicode:

o Interactively, by selecting characters from a table.
e Through the use of a virtual keyboard.

e By converting data that exist in other encodings.

159

160 Chapter 5 : Using Unicode

8886 Character Palette (=]

View :| Code Tables H

{::||=un1= | Other Encodings | Favorites |

e [ctegory
00002900 | Supplemental Arrows-B Supplemental Mathematical Symbols-8 r
00002980 | Miscellaneous Math Symbaols-8 Mathematical Symbols m
00002A00 | Supplemental Math Operators Supplemental Mathamatical Symbols
00002B00 | Misc. Symbols and Arrows Miscellaneows Symbals and Miscellaneous Symbaols and Dim_‘;
00002E30 | CJK Radicals Supplement Han L

(1] 2 2 4 5 9 A B i D

2800 || —= l ™~) Z1J :_L‘A}L/KAI_J'_' 7 }—Lﬁl
wo [[JIAELCCH FITAXOOE
w4 & R KT~ ~F AP i L

W Character Info
s~ Related Characters

FRB]ELK

Name : KANGXI RADICAL WOMAN
Unicode : 2F25 UTFB : E2 BC AS

P Font Variation

| %~ (@, Description & code | Insert

Figure 5-1: The Character Palette of Mac OS X.

Interactive Tools for Entering Unicode Characters

Under Mac OS X
Character Palette

On the menu of keyboards, denoted by a little flag corresponding to the system’s active
language, we find the entry Show Character Palette. This entry will open a separate
window, independent of all other software, that will remain in the foreground. In Fig-
ure 5-1 we have a screenshot of the Character Palette. When we select Code Tables in the
little menu on the top, the middle section of the window is divided into two parts. On the
top is a list of all the blocks in Unicode v.4. When a block is selected, the corresponding
characters are displayed underneath.

When the user selects a character, its glyph is displayed in the area which opens through
the little triangle next to Character Info. Clicking on the button Insert will insert it
into the current document in the active application (which is why the Character Palette
does not affect the operation of the other windows in any way).

Once we have selected a Unicode character, we can read its number and its description.
In certain cases, the Character Palette gives us “related characters”, which are the var-
ious canonical equivalents and compatibility equivalents that may exist. The result is
astounding: out of love for the fair sex, we have selected the character for the ideographic

Interactive Tools for Entering Unicode Characters 161

radical “woman” 0x2F25 #¢. This radical has a compatibility equivalent with the actual
ideographic character 0x5973 %z, which, in turn, has its own compatibility equivalent
with the characters “compatibility ideographs 0xF981” and “circled female” 0x329B &
. Thus the Palette has followed this chain of compatibility equivalents to the very end
in order to produce a complete list for us. In addition, it also shows us the character
0X2640 FEMALE SIGN, which is the symbol for femininity, even though Unicode does not
provide any metadata connecting this character to the others.

By opening the Font Variation area one can see the glyphs of the selected character in
all fonts that contain it—a feature that is very useful for finding out which fonts contain
a specified character or block.

The Character Palette has been part of the Mac OS X operating system since version 10.2,
the version we show is from system 10.4.7.

UniDict

Here is a clever little program of the same type that is designed especially for Japanese
ideographic characters: UniDict [104], which unfortunately was released for Mac OS 8
but has never been upgraded for Mac OS X. It is a multipurpose dictionary, but what is
of interest to us here is the possibility of selecting an ideograph through a combination
of radicals. In Figure 5-2 we see UniDict’s Kanji Constructor window, with a series of but-
tons at the left that represent the radicals and the shapes that the radicals assume when
they are used in characters. When a button is pressed, all the characters that use it are
displayed at the right. When a second button is pressed, only the characters that contain
both radicals are displayed, and so forth. Double-clicking an ideograph opens another
window (Figure 5-2), which supplies a broad range of supplementary information. The
data that UniDict employs come primarily from the academic project for the Japanese—
English dictionary EDICT [90}; thus they are updated regularly.

Under Windows XP

Character Map

The Windows operating system offers an analogue to the Character Palette of Mac OS X.
It is the Character Map (Figure 5-3), and it can be run from the Start menu: All Programs>
Accessories>System Tools. This tool allows us to select a Unicode character from a table
(by scrolling with the scroll bar), copy it onto the clipboard, and then copy it from the
clipboard into a document.

BabelMap

BabelMap, by Andrew West {3461, is a very sophisticated free software package for enter-
ing Unicode text with a mouse. The user chooses the Unicode block that contains the
characters that he wants, the buttons in the middle area of BabelMap display the charac-
ters in that block, and the user may click characters to enter them into the Edit Buffer
at the bottom of the window. While text is being composed in the Edit Buffer, Babe[Map
applies the relevant contextual rules appropriately. Thus, as shown in Figure 5-4, Arabic

162 Chapter 5 : Using Unicode

| Kanji Constructor ——0————==BIH
| mIIEEE : SRR 3 =
A 5 IEI_I?] e R o s M A ﬁﬁ:ﬁﬁgﬁf&ﬁﬁ
DI P e s - o] e e e i = A
T AR e B e B B B BB R
b o =0 s e [2 [e 2 R =
fLuKﬁ%iﬁﬁcl‘I#ﬁﬁiﬁﬁﬁﬁE
I 2 i e g 2 53 e el e
8 P A e i
i = 1 = o) o e E e B 1
=1 i B ol O i
5| || H EEEE
B IIE_[L] i 7 hEE
e e S kR
[: BB i £E £ S]
22| HE =
i d HE Kanjitedisplay: BJais1 [aisz2
13k | Copy I | Clear I | Lookup I
0 ="—""r————="Vanji Search"—"—"—"—"—"——=MH

l [

[Fuzzy Mateh

o | Kanji/Reading/Meaning VI @

JIg : EbS2 SIS o671 gorvny - [Stvokes <]

— ELC : ebd2 KUTEN : 7550 E
Unicode : Saad -

— Strokes : 14 m =

A Radical : 143 (2 &6) ﬁ

Readings(KUN) : £ .35

Readings(DN] :

Meaning : instruct

Helson index number : 4353

Hew Helson index number : 5616

SKEP pattern code : 1-7-7

Four corner code : 03657

Korean readings : hos

Fin Yin : huid, hoiZ

Halpern index number - 1544

Morohashi index number - 35353

Morohashi volume page : 10.4330

Spahn & Hadamitsky index : 7a7.13 | = |

FMatches 1

4]

%

Figure 5-2: The UniDict software under the Classic environment

is displayed correctly, the Indian ligatures (included in the font specified for display) are
correctly produced, the jamo are combined into hangul syllables, and so on.

We can search for a character by its name or by its code point. We can select a font for
display in a very sophisticated manner: a special window shows the Unicode blocks cov-
ered by the font and, conversely, the fonts that cover a specified block.

Like UniDict, BabelMap also provides a window for selecting ideographs. Its advantage:
it applies not only to Japanese ideographs but to the entire range of Unicode characters
(provided, as always, that a font containing the required glyphs is available). Its disad-
vantage: the method is not so elegant as that of UniDict. In fact, as shown in Figure 5-5,
we select a radical from a complete list (only their standard forms are displayed; a cer-

1 The reader will find at http://www.alanwood.net/unicode/fontsbyrange.html a list of freely dis-
tributed Unicode-compatible fonts.

Interactive Tools for Entering Unicode Characters 163

B Table des caractéres

Palice 0 Palating Linulype ¥

tish)
(eay
o

é

3|

=

(3
W | O | e

=N e s
o
o| Cwe| b
|
[=lge
=t
Cr|
o

T ce| TF| x| (7] ¢
TRE MAJUSCLULE LATINE CORNEI TILDEP
E|E|¥E|E|E|E[E[E|f|¥
"HIHIHPHFH| | L

=
=

i

fall s

(o]

&

" e | e

R =

| | =

ElER|L|i|o|a|b|D
AL AL A B BB |

o
o
.
Lok §=
| | 2] l—i mxﬁi.c o
o

|] 2e| 2

e | 2| o
o o ._é o

BREEE

Caractéres & copier : Sélectionner

[&ffichage avancé
U+TEED: LETTRE MAJUSCULE LATIME O CORMU TILDE

Figure 5-3: The Character Map of Windows XP.

tain amount of training is required to recognize a radical in a nonstandard form), then
we select the number of strokes needed to write the character, omitting the strokes in the
radical. The corresponding characters are displayed at the lower left. This method is close
to what one does to look up a character in an ideographic dictionary.

There is also a way to search for an ideograph by its pinyin representation (a Latin tran-
scription of the ideographs used in the Chinese language). Finally, BabelMap also offers
a means of searching for Yi ideographs according to the radicals of this writing system;
see Figure 5-6.

Under X Window
gucharmap

gucharmap {237] is a program in the spirit of the Character Palette under Mac OS X
and BabelMap under Windows. It is a SourceForge project whose administrator is Noah
Levitt. It runs under X Window with GTK+ 2 or a later version. The project’s web site
bears the subtitle “RESISTING THE WORLDWIDE HEGEMONY OF ENGLISH!”, but the site it-
self is in English only. The software, however, is localizable, and translations into several
other languages exist.

As shown in Figure 5-7, the main window of gucharmap presents a list of the Unicode
blocks on the left and the contents of each block in tabular form on the right. When we
click on a glyph in the table, it is inserted into the Edit Buffer at the lower left. A second
tab provides information on the selected character that is drawn directly from the online
files of the Unicode Consortium.

164 Chapter 5 : Using Unicode

[BabelMap
File Edit Find Tools Options Yiew Help
i~ Basic Multiingual Plane - Letterlike Spmbols [2100.214F] (79 characters)
o1 2 2 4 5 E 7 B 9 A B C D E F
2 [3e][3s]][c| &][s6]ou] €] 3] F[¢ [#][] 1] 2] & j
ano |9 3] £ 2 |p] N[N @] @] P| Q||®|R| R B[R 553
220 [SM(el ™M X | Z || 2| Q|| O 3|[2 [[K|[A] 8][Cl el e <
230 | & || A||@ o |[R||][2] T i|[S el a|y|T|TT »
ao[Z][o [1][A[o] e[l === _:
o ([|24 A A A 2 A A A R A S
2ieo | 1 || |00 | o] | o o | |]| | X3 | || € | o o
270 | || i ||HiL|[v v [[vi]{vii] fii”ix x || xi|xiil| 1|jefd|m = =
|U+2100ACCDUNT oF 2
—Select Unicode Block ——————————————— |~ Search far Character by Mame—————————————— [~ Goto Code Point
Letterlike Symbols _VJ | Search I iUDDD Go
" Composite Font Corfigure * Single Font ICDdeZDDD[Hegular] L! iZD ﬁ
i~ Edit Buffer
~p 2 2] L
Ded! LS Sosl olh ewTEe (6 >l
& Chaacter " NCR[hex] ¢ NCR [decimal (" UCN Hide | Save | Clar | Cop |

Figure 5-4: The main window of the program BabelMap.

Virtual Keyboards

The interactive tools of the previous section enable us to enter a handful of Unicode
characters, but we would hardly want to input a long document in this manner. People
were using keyboards to type up documents even before the advent of computer science,
and the keyboard will remain—until a direct connection between brain and computer
becomes a reality—the most natural means of carrying out this operation.

But keyboards are physical, or hard, objects. If we often write in English, Arabic, Hindi,
and Japanese, must we buy a keyboard for each of these languages and play a game
of musical keyboards every time we switch languages? Absolutely not. We can simply
change the virtual keyboard, which is the table of correspondences between (physical)
keys and the (virtual) characters that they generate.

Operating systems have offered such virtual keyboards from the beginning; they have
been part of the process of localization for each language. Thus a user of the English ver-
sion of Mac OS X or Windows XP can switch to the Greek, Arabic, or Chinese keyboard
at any time.

But there are at least two problems. First, these virtual keyboards do not necessarily cover
all writing systems (although Windows provides a rich set of virtual keyboards); in par-

Virtual Keyboards 165

CJK Radical Lookup Utility

- Kangsi Radicals

=L I =z =AU A P ul BBl sl e+
o P e] | e T D (T
(] s A e B N L T [e S = T e L B s | | e e =
Bl al=x]xI[L Z|[= & w2l sl =]z 2 = E &= E
= B2 E R R B R E B S B | e e B
2 |||)| 2|3l 2 ml| sl = 2] | == | || = e | = | 2 e o e 2 |
e E RN E BB B EEEE E N E R E E EEEEE
Al x| 2] &lle | =kl s 2] elm] =l e m 2] 2 E | 1 5] =)= R
HEREEEEEEEEEER EEEE R EREEEES
= BB E G ER R ERE B EEEE EE A B

r— Search \Within —a&dditional Strokes———————————— [~ Edit Buffer

¥ CIK ¥ ClEA ¥ CIEB H I~ £1 [&llStokes ;u

- Search Results (30 characters)

i e) e e T Y B S B S

< 2 Clexr | Copy | Cose | st |

Figure 5-5: The BabelMap for selecting a Chinese ideograph through the use of radicals.

ticular, they do not cover ancient languages. To be sure, we can always find a supplier
of rare virtual keyboards. But there is a second problem, of a more subtle nature: we
would like for the virtual keyboard to be adapted to our habits, with its keys arranged in
a certain way.

One example: suppose that an American user, who therefore isa QWERTY typist, wishes
to type a document in Russian. He has a basic idea of Russian phonetics; after all, it is not
necessary to study this language for years in order to learn that the Russian ‘A’ is like an
English ‘A’ (as in “father”), that the Russian ‘3’ is like the English ‘Z’, that the Russian ‘O’
is like the English ‘O’, and so on. Accordingly, he selects the Russian keyboard on his
Macintosh or Windows/Linux PC and expects to find the letters in the same locations.
But they are not there: the layout of the Russian keyboard is completely different. Instead
of an ‘A’ key, he will find a ‘®’; instead of a ‘Z’ key, a ‘d’; and instead of an ‘O’ a ‘III’. That
is to be expected, since the keyboard layouts derive from typewriter keyboards; but we
might have preferred for the common letters, at a minimum, to be in the same locations.
Thus we have to learn everything from the beginning, with the constant risk of expecting
to find the Russian ‘A’ where the English ‘A’ would be and vice versa.

It can be even worse: for almost 20 years, the author has been using “Greeklish,” an
ASCII transliteration of Greek that is very useful for writing in Greek where the protocol
does not support the script (email on a non-Unicode machine, filenames, etc.). There

166 Chapter 5 : Using Unicode

¥i Radical Lookup Utility

—ri Radical
IR NENNNRNNE
HEEHEEE AR ===
ollaloll o] <[~][][I d][E]| Feeeictes
e H E I EEE RS
XIS [X[XA T] | o a
HEHEOOEEEEEERE
Al ol
—Edit Buffer
YWHIFITHIIK =
Clear I

Figure 5-6: The BabelMap window for selecting an Yi ideograph through the use of radicals.

is nothing unusual about that: transliteration is a habit for everyone who works in an
environment with a non-Latin script. In this Greek transliteration, which happens to be
that of TgX, alpha is ‘@, beta is ‘b’, and so forth. Using this transliteration has become so
habitual for the author that he is thoroughly at a loss when faced with a “real” Greek
keyboard, i.e., a keyboard used in Greece. Moreover, aside from the layout of the letters,
the Greek keyboard is, like most other keyboards in the world, based on the QWERTY
layout; thus the digits appear on the lowercase position of the keys, the ‘A’ is on the home
row, etc. But the author, living in France, is an AZERTY? typist. Can the reader imagine
the double difficulty of using a Greek virtual keyboard with the Greek letters arranged
as in QWERTY although the physical keyboard is AZERTY?

In all these cases, there is only one solution: generating one’s own virtual keyboards. In
this section, we shall discuss a handful of tools that enable us to do so in a simple and
efficient manner.

2 AZERTY is a keyboard layout used in France, Belgium, and certain francophone African countries (but
not in French-speaking Canada or Switzerland) that differs slightly from the keyboards of most other countries
in its arrangement of the basic letters of the Latin alphabet and also the 10 Arabic numerals. The top row of
keys contains some punctuation marks and a few accented letters; the digits have to be typed with the shift key.
Furthermore, the second row begins with ‘A’ and ‘Z’ rather than with ‘Q’” and ‘W’, which explains the name
“AZERTY” (the QWERTY, QWERTZ, and AZERTY keyboards have only 20 keys in common). Many other
small differences conspire to irritate those who travel and find themselves using various types of keyboards:
the letter ‘M’ is at the end of the home row; the brackets and braces—punctuation marks that programmers
frequently use—require combinations of keystrokes that can only be typed with both hands at a time (unless
one has the hands of Sergey Rachmaninoft or Clara Haskil); etc.

Virtual Keyboards 167

a Unicode Character Map —-Oox
File View Search Go ‘
‘Bitst{eam Vera Sans L‘ Bold | Italic i;: @ Back | & Forward

Basic Latin “| Character Table |Character Datails |

Latin-1 Supplement =]
i £2 60| |af) aBoall @ 80|67 db |6) |a) 68 21|20 @ L6 S
Latin Extended-B oMeem @ W B W M allaol B|AQ @ O O & 8|9
IPA Extensions) A q

Spacing Modifier Letters Ql| G ||V ol Q| o “ s e 8206
Combining Diacritical Marks 023823057 o o]

Greek and Coptic

Cyrillic . 2| oo md@me o |
Cyrillic Supplementary & q; q:) e | &,
Armenian =

Hebrew 9 &g men oo d|d e @ Y » ol
rane |2/ @0/ & isgeg SO 0D B

yriac 1 S
Thaana ‘|E:‘E.‘3£3&)CO@®03(5 G c ™
Devanagari T = e 3

Bengali Y|t o @ ee @
Gurmukhi el @ 9

Guijarati

Orlya ad | D [@ A
Toiil 1|9 ¥ ow oo g LA URTRRT
Telugu

Karinaga Wil w Niu u|s|g|a n| 2| |Freesans a9 =
Malayalam " = - - .]B L n T ‘ ‘1 --l ,]
L]

Thai q ' M ®@ o alla m|d & bla &|& W
Lao G

Tibetan

Myanmar el n| o o e:
Text to copy: immmnu E{'chpy

:lH-DDQB SINHALA LETTER MAHAAPRAANA KAYANNA = sinhala letter kha

Figure 5-7: The main window of gucharmap under Linux

Useful Concepts Related to Virtual Keyboards

A keyboard contains four types of keys:

e Ordinary keys, for typing text and symbols (‘A’, ‘B’, etc.).

e Dead keys. For example, on a French keyboard, the circumflex accent and grave ac-

cent are dead keys. These keys are said to be dead because nothing happens at the very
moment when they are pressed. The key’s effect does not appear until another key, a
“live” one, is pressed. We can compare dead keys to Unicode’s combining characters,
except that a dead key comes before the base key and a combining character comes
after the base character.

A few scripts require multiple dead keys: for example, to obtain an ‘@’, we could use
the sequence of dead keys “smooth breathing”, “circumflex accent” “iota subscript”,
followed by the ordinary key ‘@’. Unfortunately, few systems for generating virtual

keyboards allow multiple dead keys.

168 Chapter 5 : Using Unicode

e Function keys (F1, F2, etc.) and all other keys that do not lead to the insertion of a
character when pressed. (The space bar is not a function key, as it inserts a space,
although this character is invisible.)

e And modifier keys, which are keys pressed together with ordinary or dead keys and
that modify the mapping of those keys’ characters. On the Macintosh, the follow-
ing modifier keys exist: shift, control, 38 or command or apple, alt, function. On
a PC, there are also the shift, control, alt, and function keys, but there is no command
key. On the other hand, there are two keys that do not appear on the Macintosh: right
alt, or AltGr (at the right side of the keyboard), and the &, or windows, key.

The role of the virtual keyboard is, therefore, to map characters to combinations of keys
and modifiers, or perhaps to assign dead keys for them.

Under Mac OS X

Under Mac OS 9 we used ResEdit to create virtual keyboards, and those keyboards can
still be used under Mac OS X; we simply place them in:

e ~/Library/Keyboard Layouts to make them available to the current user only
e /Library/Keyboard Layouts to make them available to all local users

o /Network/Library/Keyboard Layouts to make them available to all users on the
network

But these virtual keyboards are based on the old WorldScript system, not on Unicode.
To obtain Unicode keyboards, we have to create them in a different way.

XML description of virtual keyboard

To produce Unicode keyboards, Mac OS X adopted a system that is simply brilliant: one
merely creates an XML file according to a certain Document Type Definition and places
it in the area in which the binary resources for virtual keyboards are stored (see below).
The system will compile this XML file into a binary resource the first time it is loaded.
But the most brilliant aspect is the fact that we use finite automata to define multiple
dead keys. Apple has already surprised us by using finite automata in the advanced ty-
pographic features of the AAT fonts (see Chapter 14, page 589 and following, and also
Appendix §D.13.1, where we give an introduction to the concept of finite automaton);
now this method is also applied to virtual keyboards.

But let us first describe the structure of a virtual-keyboard file, according to specifica-
tion {57].

This file must have the extension . keylayout and must be placed in with the keyboard re-
sources. It may have an icon, whose file must be present in the same directory, must be of
Macintosh format icns, and must have the same filename but with the extension .icns.

Like every self-respecting XML document, our virtual-keyboard file must begin with an
XML declaration and a reference to a DTD:

Virtual Keyboards 169

<?xml version="1.0" encoding="UTF-"?>
<IDOCTYPE keyboard SYSTEM
"file://localhost/System/Library/DTDs/KeyboardLayout.dtd">

The top-level element in the document is called keyboard. It takes four attributes:

e group is the number of the script, according to Apple’s earlier system. For Unicode
keyboards, it is always 126.

e id is the identification number of the virtual keyboard. It must be unique, but the
system takes care of that. There is only one constraint: we initially assign it a negative
value to indicate that we are defining a Unicode keyboard.

o name is the keyboard’s name as it will appear on the menu of keyboards. It is a UTF-8
string (if we have declared that the document is prepared in this natural form).

e maxout is the maximum number of Unicode characters that can be generated by a
single keystroke. For an ordinary keyboard it is 1, but sometimes a key will produce
multiple characters, as, for example, with the accented characters produced through
the use of combining characters, in which two characters are produced: the base char-
acter and the combining character.

Next come two mandatory elements: layouts and modifierMap. The contents of these
elements are very technical (the former is a code for the physical keyboard; the latter
identifies the various kinds of modifiers that we may use), and they are practically the
same for all virtual keyboards. We can therefore copy them from one file to another
without many qualms.

Here are the first two elements of a typical virtual keyboard, in their entirety:

<keyboard group="126" id="-" name="Find the keycodes" maxout="4">
<layouts>
<layout first="0" last="17"
modifiers="commonModifiers" mapSet="ANSI"/>
</layouts>
<modifierMap id="commonModifiers" defaultIndex="7">
<keyMapSelect mapIndex="0">
<modifier keys=""/>
<modifier keys="command anyShift? caps?"/>
</keyMapSelect>
<keyMapSelect mapIndex="1">
<modifier keys="anyShift caps?"/>
</keyMapSelect>
<keyMapSelect mapIndex="2">
<modifier keys="caps"/>
</keyMapSelect>
<keyMapSelect mapIndex="3">

170 Chapter 5 : Using Unicode

<modifier keys="anyOption"/>
</keyMapSelect>
<keyMapSelect mapIndex="4">
<modifier keys="anyShift anyOption command? caps?"/>
</keyMapSelect>
<keyMapSelect mapIndex="5">
<modifier keys="anyOption caps"/>
</keyMapSelect>
<keyMapSelect mapIndex="6">
<modifier keys="command anyOption caps?"/>
</keyMapSelect>
<keyMapSelect mapIndex="7">
<modifier keys="control command? shift? caps? option?"/>
<modifier keys="control command? shift? caps?
option? rightShift"/>
<modifier keys="control command? shift? caps?
option? rightOption"/>
</keyMapSelect>
</modifierMap>

A few words of explanation are in order. In layouts we define physical keyboards. Here
there is only one: ANSI.? For each physical keyboard, we define virtual tables: keyMap
elements.

When no modifier key is used, the active table will be keyMap with index 0. The other
tables will be activated when we press one or more modifier keys.

The keyMapSelect elements describe the relationship between modifiers and activated
tables (because the same table can be activated by multiple combinations of different
modifiers). The keywords used are:

e shift: the left shift key

o rightShift: the right shift key

e anyshift: either of the shift keys

e option: the left option key

e rightOption: the right option key

e anyOption: either of the option keys

e control: the left control key

3 Just one little detail: in addition to ANSI, there are also the Japanese JIS keyboards. In any event,

there is at least one noncompiled keylayout file in each installation of Mac OS X, that of the Unicode hex in-

put keyboard: /System/Library/KeyboardLayouts/Unicode.bundle/Contents/Resources/UnicodeHexInput.
keylayout. We can always start with the first two elements of this file.

Virtual Keyboards 171

e rightControl: the right control key
e anyControl: either of the control keys
e command: the 38 key

e caps: the caps-lock key

The presence of any of these keywords in the value of the keys attribute indicates that
the corresponding key is pressed. The question mark indicates that it does not matter
whether the key is pressed or not.

Thus, according to the code shown above, virtual table 0 is activated in two cases: when
no modifier is being used, and (command anyShift? caps?)when the 8 key is depressed.
In the latter case, the shift or caps-lock keys may also be depressed; they make no dif-
ference. Table 1 is activated when the shift key is depressed. (Pressing the caps-lock key
makes no difference.) Table 2 is activated when the caps-lock key is depressed and caps
lock is active. And so on. Thus we can describe in great detail the exact moment when
one or another table will be active.

Here is the remainder of the file, up to the end:

<keyMapSet id="ANSI">

<keyMap index="0"> <!-- No modifiers -->
<key code="12" output="q" />
<key code="13" output="w" />
<key code="14" output="e" />
</keyMap>
<keyMap index="1"> <!-- anyShift -->
</keyMap>

</keyMapSet>

<actions>

</action>
<terminators>

</terminator>
</keyboard>

There is a keyMapSet for each physical keyboard. In the example, there is only one. Next,
there is a keyMap for each virtual table; the index attribute furnishes its number.

Within the keyMap are key definitions. These are key elements, with three possible at-
tributes:

172 Chapter 5 : Using Unicode

e code takes the number of a key as its value. How can we know which number cor-
responds to a given key? That is a very good question that the specification carefully
avoids. Searching through Apple’s technical documentation also yields nothing, and
in any event there would be no guarantee that any tables that we did find would be
valid for a given machine and a given version of the operating system. The author,
however, has discovered a foolproof trick for finding the numbers of keys. All that
we have to do is to create a keyboard that generates as its output the number N for
key number N. The code is extremely simple:

<keyboard group="126" id="-" name="Find the keycodes" maxout="4">
<layouts>
. as usual ...
</modifierMap>

<keyMapSet id="ANSI">
<keyMap index="0"> <!-- No modifiers -->
<key code="0" output="0 " />
<key code="1" output="1 " />
<key code="2" output="2 " />

<key code="256" output="256 " />
</keyMap>
</keyMapSet>
</keyboard>

That keyboard may also serve as a test of installation. We place this file in one of
the directories mentioned above and then close out the session. Later, we choose
Open International... on the keyboard menu, we click on Input Menu and then we
select this keyboard from the list that appears (it should be at the bottom of the list).
If the keyboard is not present, compilation must have failed. In that case, we open
the Console (a utility found in Applications> Utilities); it will certainly contain an
error message from the XML compilation.

Do not forget the spaces in the values of the output attribute, or the numbers pro-
duced will all be run together.

Using this keyboard, we can discover that, for example, the ‘@’ key has the number 14,
the carriage-return key is number 36, and the escape key is number 53, at least on the
author’s computer (a PowerBook G4 running the French version of Mac OS X 10.4.7,
with an AZERTY keyboard).

e output takes as its value the string of characters to be generated. As in every XML
document, we can write the code in UTF-8 or by using character entities of the type
ሴ. Be careful not to write more characters than the value of the maxout at-
tribute of keyboard allows.

e Instead of writing a string of characters, we can specify an action by writing the action
attribute (instead of output), whose value is the name of an action.

Virtual Keyboards 173

The actions are described in the element actions. This element contains action subele-
ments whose names (id attribute) are those used in the key elements.

What is an action? It is simply a series of when elements that will do different things ac-
cording to context. The context is defined by a global variable, the “current state”, which
by default has the value none. According to the value of the current state, a different
when will be executed. The state can be changed by a when. Similarly, a when can produce
characters of output.

This element thus takes the following attributes:

e state: the state under which the when is executed. The value of this attribute may be
a string of characters or a whole number.

e next: the new current state following execution of the when.

e output: any Unicode characters to be produced.

There are two other attributes that we shall not describe: they are useful primarily for
hangul. They allow a when to be applied to more than one state and to calculate the value
of a character in the output according to the number of the state and the position of the
character entered.

Let us take a concrete example. We wish to make a dead key for the “circumflex accent”
and produce an ‘¢’ when this key is followed by an ‘e’. The numbers of these two keys
are 33 and 14, respectively. Thus we shall write the following in keyMapSet:

<key code="33" action="circumflex" />

<key code="14" action="e" />
and we shall define two new actions in actions:

<action id="circumflex">

<when state="none" next="circumflex"/>
</action>
<action id="e">

<when state="none" output="e"/>

<when state="circumflex" output="&"/>
</action>

Thus, when we press the “circumflex” key, no character is produced, but we move into
the circumflex state. Next, when we press ‘e, the when tests the value of the state and

A

produces an ‘€.

The default value of next is none, which means that we automatically return to the initial
state when no state is explicitly specified.

But what will happen if we change our minds after pressing the circumflex key and press
a key other than ‘e’? Nothing. The new character is produced, and no trace of the circum-
flex accent remains. That is one solution, but it is not the best. Ordinarily the system

174 Chapter 5 : Using Unicode

produces the circumflex accent (as an isolated character) and then the new character. To
achieve this sort of behavior, we have another subelement of keyboard, the terminators
element.

This element also contains when entries. But this time they cannot invoke new actions;
they can only generate strings of characters. These when are executed when the last key
pressed had no provision for the current state. In our example, we shall write:

<terminators>
<when state="circumflex" output="""/>
</terminators>

Thus if we followed the circumflex accent with something other than an ‘¢, we would
obtain the ASCII character for the circumflex accent.

We have covered the syntax of this method of describing a keyboard.

Here is one other example, this time with a triple dead key: the Vietnamese letter ‘¢’.
To obtain it, we shall use the following characters in the order specified: the circumflex
accent, the acute accent, the dot. We shall take advantage of this approach to produce

the intermediate characters ‘6’ ‘6), ‘0’, ‘@), ‘0, and ‘6’ as well. Here are the definitions of
the keys:

<keyMap index="0"> <!-- no modifiers -->
<key code="33" action="circumflex"/>
<key code="21" action="acute"/>
<key code="31" action="0"/>
</keyMap>
<keyMap index="1"> <!-- shift -->
<key code="43" action="dot"/>
</keyMap>

in which we have separated the “dot” from the other keys because, at least on an AZERTY
keyboard, it is typed with the shift key depressed.

Now we must define the following four actions:

<action id="circumflex">
<when state="none" next="c"/>
</action>
<action id="acute">
<when state="none" next="a"/>
<when state="c" next="ca"/>
</action>
<action id="dot">
<when state="none" next="d"/>
<when state="c" next="cd"/>

Virtual Keyboards 175

<when state="ca" next="cad"/>
<when state="a" next="ad"/>
</action>
<action id="o0"»>
<when state="none" output="0"/>

<when state="a" output="6"/>
<when state="c" output="05"/>
<when state="d" output="0"/>
<when state="ad" output="0¢"/>
<when state="ca" output="6"/>
<when state="cd" output="3"/>
<when state="cad" output="¢"/>

</action>

We name states according to the keys already pressed: c (circumflex), a (acute), d (dot),
ad, ca, cd, cad. We accept sequences of keystrokes in only one fixed order: first a possible
circumflex, then a possible acute accent, and finally a possible dot. Thus the circumflex
action necessarily occurs in the initial state, whereas the acute action may occur in the
initial state or in state ¢, and so on.

Now all that remains is to add the terminators. There will be as many of them as there
are possible states (the initial state being excluded):

<terminators>
<when state="a" output=""'"/>
<when state="c" output="""/>
<when state="d" output="."/>
<when state="ad" output=""'."/>
<when state="ca" output=""'"/>
<when state="cd" output=""."/>
<when state="cad" output=""'."/>

</terminators>

Thus, if we have typed the circumflex, the acute, and the dot and then change our minds
and press something other than ‘0, we will obtain the characters for all three keys.

Note that the example is realistic in all but one aspect: converting the apostrophe and
the period into dead keys may be disturbing to the user. And the period is often the last
character in a file. If it is on a dead key, it will not be entered into the file unless we type
another character after it—and we are not accustomed to “typing one extra character
so that the period will appear”. Thus we are well advised to choose other keys for the
“combining dot” and the “combining acute accent”

Under Windows

Microsoft recently released a program for creating virtual keyboards, the Microsoft Key-
board Layout Creator (MSKLC). This software is certainly robust and easy to use, but

176 Chapter 5 : Using Unicode

] Keyboard Layout Creator - 'Grec polytonigue (Custom)’

File Edit View Project Help

1|2|3]4|5]|6|7|8]9]o0 e

i s{efplx|v]o[v]o[n[E]]

—" AR
| (el]

Show the
Caps Lock

shift states:
[~ shift

Alt+Ctrl
"™ (altan)
™ ctrl

v

»

|
----- }L

base char combining char: Es B Alt Control
LU+03c3 (w) U-+1f7d (@) 5

U+002e () U+Iffd ()
U+03b1{a) U+1f71(d)

40307 () U+1F75 (1) Decimal Separator (numeric keypad) 5

Control

Legend U+03b5 () U+1f73 ()
U+03b9 () U+1F77 ()

U+03c5 () U+1f7h (0)
Current wol\, 4 a3bf (o) U+1F79 (3)
U+0329 () U+1f (@)
[IE=sets .| BuiltkeyboU+0391(A) U+1fbb (A)

U+0397 (H) U+1fch (H)
U+0395(E) U+1fc8 (B)
U+0393 (1) U+1fdb (1)
Ready 40325 (1) U+1feb (1)
U+035F(0) U+1ff3 [0)
U+0020 () U+003b ;)

Figure 5-8: The main window of the Microsoft Keyboard Layout Creator. The keyboard dis-
played is the one for “polytonic Greek”.

certain functionality, such as multiple dead keys, is missing. We shall describe it all the
same because it is free of charge and because some users may not need advanced func-
tionality.

Microsoft Keyboard Layout Creator

MSKLC is a Microsoft product issued in 2002 that today is up to version 1.3. It is freely
distributed {268}, but it works only on Win32 systems, namely Windows NT4, 2000, and
XP4. It allows the user to open existing keyboards or to create new ones from scratch, to
test the operation of a keyboard without installing it, and even to create a Windows in-
stallation package for distribution. This package allows other users who are not Windows
experts to install the new keyboard in a user-friendly fashion.

The easiest way to obtain a new virtual keyboard is often to open an existing keyboard
and modify it. In Figure 5-8 we see the main window of MSKLC. Dead keys are shown
in light gray; modifiers, in dark gray. Using the checkboxes at the left, we can activate or
deactivate the modifiers and see their different keyboard tables.

To associate a key with a Unicode character, we click on the key. A little dialog box opens,
with an area for entering text. We can type a Unicode character directly or use the hex-
adecimal notation \xXXXX or U+XXXX (or U+XXXXXX for characters outside the BMP). This
dialog box contains a button All that expands the dialog box to show the mappings of
the key when combined with modifiers (Shift, Control+Alt, Shift+Control+Alt). That is

4 Please be aware of the fact that this software needs .Net framework 1.1 to be installed (it will not work
with .Net version 2).

Virtual Keyboards

177

% Tike Professional

File Edit View Keyboard Debug Project Tools Window Help
D|w|e| 4 [5|@] o|=|[ors =]
e Y yannis-test_kmn UH206E | LIs206F | LI+20TF
1 VERSION 6.0 c This keyboard is for use vith Keyman E £ Pts
2 | HAME "Yannis test™
5 Us20A% | Us2048 Us2047
4 | begin Unicode : use(Hain) m d €
5
& | group{ Mzin) using keys Ue2aA | Us20AE | Lb20AC
7 |+ '$' » U+204C S £ Ne
[+] =
B et e AR RS,
a2 L2105 | U3 | Leafis
IS0 | e
5 = | Status Systemn keyboard
Single StEPJ I J EI[I] B | Focsed for input | &nglais [Etats-Uris) bbb Lol B
| | | Jon 2| 1 2 1
_Debug input Debug state Ya ¥a Va
15€ dégénéré'e Elemerts]Call stack | Deadkeys] Regiessiontedl .ams | iz Ueoss
Ve | ¥ | e | =
U250 | UN21SD Ue2i5E
— | 1T -
Us2130 | Lh2131 | Ls2tsz
B Messages l AT $
yannis—test_kmn: Compiling C:\Program Files\Tavultesoft\FKeymsn Developer\Samples\M | ..is: | w.zed | Usztas a
yannis—test kmn- C-\Program Files\Tavultesofi\Eeyman Developer\Samples\Zxzamples' (o =
2] L | 3
Débugger Active Insert U+0027
s

Figure 5-9: The main window of Tavultesoft Keyman Developer, with the debugger and the
character map.

also how we convert a key into a dead key. A third little window provides us with a list
of the results of combinations of the current dead key with other characters.”

When we have finished defining a keyboard, we can test it in a miniature text editor
supplied under Project>Test Keyboard Layout. Then we can try to validate it (Project>
Validate Layout); the program will search for any errors and all the minor imperfections
of the keyboard. Finally, when we are happy with our work, we give the keyboard a
name, associate it with a language in the system (which will also determine the little
icon that will appear on the task bar), and create a Windows installer (of type MSI) using
Project>Build DLL and Setup Package. This installer can be distributed freely.

Tavultesoft Keyman Developer

Tavultesoft Keyman Developer dates from 1993. It was developed by Marc Durdin, whose
company, Tavulte, is based in Tasmania. This program adopts an approach totally differ-
ent from that of MSKLC, with its own advantages and disadvantages.

5> Here we are indeed speaking of Unicode characters, not of keys. But before we can enter Unicode char-
acters, we have to have defined keys that generate the characters in question; otherwise, the software would be
unable to make the (reverse) connection between characters and keys.

178 Chapter 5 : Using Unicode

The virtual keyboard is created not through a user interface (that possibility does exist,
but the result is simplistic) but by a little program written by the programmer in an
ad hoc language. Once compiled, this program produces the virtual keyboard.

A keyboard produced with Keyman Developer cannot be used directly by Windows. It is
necessary first to install a runtime program called Keyman (nothing more). This program
is free for personal use and relatively inexpensive for professional use. With the runtime
program, we can manually select Keyman virtual keyboards or use them instead of Win-
dows keyboards; all these possibilities can be configured in great detail.

In terms of architecture, Keyman comes after the Windows keyboard; we can also asso-
ciate Keyman with a specific Windows keyboard. That approach keeps us from having to
start from scratch when we define a Keyman keyboard and also ensures that the Keyman
keyboard will be compatible with all hardware: the Keyman keyboard receives not key
numbers but Unicode characters as its input.

Owing to its relative independence from Windows, Keyman is capable of going much
further. To explore its functionality, we shall begin by describing the syntax of the source
code from which Keyman Developer compiles the virtual keyboard.

A Keyman code file is a text file with the extension .kmn. It has two parts: a header and
a body. The body of the file contains rules.

Here is the header of a typical KMN file:

c Some comments

C

VERSION 6.0 ¢ The version of Keyman that is needed
¢ in order to use this file

NAME "Crolandese ***** keyboard"

BITMAP "groland.bmp"

store(8MnemoniclLayout) "1"

begin Unicode > use(Main)

group(Main) using keys

A few words of explanation:

e The field BITMAP refers to the BMP file for the keyboard’s icon on the taskbar.

e Theline store(8MnemoniclLayout) "1"indicates that the code that follows should be
executed in “mnemonic” mode. That means that the keys are interpreted as charac-
ters and then processed by Keyman. If we omit this line, we proceed in “positional”
mode, as in other systems.

e The body of the document begins after begin Unicode. The instruction > use(Main)
indicates that the first “group” of rules is the one named Main.

e And the group Main begins with group(Main). The keywords using keys specify that
we shall use the current character. The absence of these keywords would mean that
this group of rules performed contextual analysis only. Later we shall see an example.

Virtual Keyboards 179

As with Apple’s XML files, this header will usually remain the same; we can therefore
copy it from one file to another.

Now let us move on to the rules. We shall write one rule on each line. A rule consists
of a left-hand part (the input) and a right-hand part (the output), separated by a ‘>’. The
left-hand part consists of a context and a current character, separated by a ‘+’. The context
may be empty, in which case the line begins with the plus sign.

A rule with no context could be used to produce a euro sign every time we typed a dollar
sign:

+ '$" > U+20AC

The character at the beginning of this rule indicates that there is no context and that
the rule will therefore always be applied. There are two ways to describe a character:
writing it in UTF-8 between single or double quotation marks, and writing its Unicode
code point.

A rule to cause the apostrophe followed by an ‘€’ to produce an ‘¢’:

nin + [||é||

e >

Before delving more deeply into the syntax, let us see how to use Keyman’s interface to
write the program, compile it, and debug it. By opening Keyman and selecting File>New,
we are given the main window, which can be seen in Figure 5-9. We can write the header
by hand or let Keyman do it (Keyboard>Insert standard header).

We write our two rules under the line group(Main). .., and we save the file under some
name. To enter the euro sign, we can make use of the character map (View=>Character
map). If it does not contain the characters that we need, the reason is doubtless that the
required font is not available. We can change the font by right-clicking on the character
map and selecting Other font on the contextual menu that appears. On this same con-
textual menu, there is also a function Goto for rapidly searching for a character whose
name or Unicode code point we know.

Then we will compile the program (Keyboard>Compile keyboard). If errors occur dur-
ing compilation, they will be reported at the bottom of the window, which shows mes-
sages from Keyman. Once we have compiled the program successfully, we can debug it
(Debug>Show debugger). The debugger’s window opens, and Keyman is ready to accept
our keystrokes.

We can select rapid mode (all instructions are executed immediately) or step-by-step
mode (in which we can follow the flow of the program after every keystroke). By typing
in the Debug input area, we can see the dollar sign change to a euro sign (a fine European

[¥¢)

dream) and the apostrophe followed by an ‘@’ turn into an ‘¢’.

We can experiment a little to gain a better understanding of how Keyman works. For
example, if we type xxx 'xxx and then insert an ‘e’ after the apostrophe, it will indeed be
replaced by an ‘¢’. On the other hand, if we type an apostrophe followed by a space and
an ‘¢, then delete the space, the replacement will not occur.

180 Chapter 5 : Using Unicode

Let us return now to KMN’s syntax. We may use any number of characters in the rules,
both for the context and for the result. Thus we can imagine three Unicode characters
(the context) followed by a fourth (the current character) that yield seven other charac-
ters (the result).

Now suppose that we wish to write a rule that will change the case of the 20 consonants of
the Latin alphabet. Must we write 20 rules? Not at all. Three keywords—store, any, and
index—allow us to define lists of characters and perform iterative operations on them.

Thus we begin by defining two lists of characters, called uppercase and lowercase:

store(uppercase) "BCDFGHIKLMNPQRSTVWXZ"
store(lowercase) "bcdfghjklmnpqrstvwxz"

Next we write a rule in which we consider the 20 elements of the uppercase list one by
one and convert them to elements of the lowercase list in the same position:

+ any(uppercase) > index(lowercase, 1)

The 1 indicates that the any to which we have referred is character number 1 of the ex-
pression at the left. We can imagine another rule that would reverse the order of two
letters:

any(lowercase) + any(lowercase) > index(lowercase, 2)
index(lowercase, 1)

(all on one line).

Up to now we have not used any dead keys, yet we have modified an ‘e’ preceded by an
apostrophe. We have less need for dead keys, since combinations can easily be built up
without them. But in case we should like to use them, here is how to do so. A rule can
produce an invisible “character” written in the form deadkey(foo), in which foo is a
keyword.

Nothing will be displayed for the time being. Next, we shall write other rules that will
serve as a context or a portion of a context for deadkey(foo).

Other interesting keywords: context, nul, and beep. The first of these, context, is used
as a right-hand component. It will be replaced by the context of the left-hand part. It can
be followed by the index of the character that we wish to produce:

"raou" + "1" > context(4)

will produce a ‘w’. The keyword nul is also used on the right-hand side. It indicates that
there will be no output. Finally, with the keyword beep, the machine generates a beep.
This device can be used to punish the typist for trying to enter a bad combination of
characters.

Virtual Keyboards 181

All the code that we have written has been “mnemonic” because we have used Unicode
characters, not the identifiers of keys. To use the latter, we can write [NAME], in which
NAME is the name of a key. To obtain the name of a given key, we can use the feature
Tools>Virtual Key Identifier. The window that appears will display the name of any key
that we press.

Finally, the best aspect of KMN’s syntax: groups. These play the role of states in finite
automata: a rule can invoke a group (i.e., activate a state), and each group contains rules
that are specific to it.

Let us take an example. Suppose that we want a keyboard that will prevent a Cyrillic
letter from immediately following a Latin letter (to prevent the problems that result
from mixing scripts):

begin Unicode > use(prelim)

store(latin) "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
store(cyrillic) "ABLJJIE®TXUHKJIMHOIISIPCTYKBbbI3IIAIYbBIO"

group(prelim)
any(latin) > context use(latinstate)
nomatch > use(nostate)

group(latinstate) using keys
+ any(cyrillic) > beep
nomatch > use(nostate)

group(nostate) using keys

Explanation: At the beginning (as soon as we have typed a character), we ask Keyman to
go into the prelim group. There we ask: is the letter that has just been entered a Latin
letter? If so, we store this letter as a context for the following rule and switch to the group
latinstate. In this group there is only one rule: if the following character is Cyrillic, we
sound a beep and stop the process. In both groups, if the letter that is entered does not
comply with the rule, we switch to the group nostate, which does not have any rules.®

Under X Window

Under X Window, we have two fundamental concepts [299, p. 401}: the keycode (which
is the number of each physical key) and the keysym (the symbolic name associated with
each key). To configure a virtual keyboard is to write a table of mappings between
the two.

¢ A word of warning to the reader who may be trying to play around with the code above under his copy
of Keyman Developer: there is a bug in the debugger’s input area that requires the user to release the shift key
and press it again for each capital letter. There is also a separate testing window (validate it first with Tools>
Options>Debugger, then press F9 to open it), which does not suffer from this flaw.

182 Chapter 5 : Using Unicode

xmodmap

The basic tool for manipulating virtual keyboards is xmodmap, a utility as old as X itself.
By entering xmodmap -pke, we obtain a list of mappings between keycode and keysym that
looks like this:

keycode 8 = q Q doubledagger

keycode 9 = s S Ograve

keycode 10 = d D

keycode 11 = f F NoSymbol periodcentered

keycode 12 = h H Igrave Icircumflex

keycode 13 = g G

keycode 14 = w W leftanglebracket rightanglebracket

The four different entries indicate the keysym when there is no modifier; when the Shift
key is pressed; when a key called Mode_switch, which is therefore a modifier, is pressed;
when Mode switch and Shift are pressed together. What is this Mode switch key? That
is also specified in the code, along with the identity of the modifier key for Shift and all
the other modifiers:

keycode 63 = Meta L
keycode 64 = Shift L
keycode 65 = Caps_Lock
keycode 66 = Mode switch
keycode 67 = Control L
keycode 68 = Shift R
keycode 69 = Alt R
keycode 70 = Control R

If we save the output of xmodmap -pke, we obtain a configuration file for a virtual key-
board. Then we have only to run

xmodmap ./mykeyboard

(in which mykeyboard is a file using the same syntax as the code above), and the new
keyboard is loaded.

To test both the keycode associated with each key and the keysym that is associated with
the current configuration, we can launch xev, a very special application that opens a little
window and captures every event that occurs while the cursor is positioned over that
window. Thus when we press the ‘a’ key under these conditions, we see:

KeyPress event, serial 24, synthetic NO, window 0x1000001,
root 0x38, subw 0x0, time 1568428051, (129,44), root:(244,364),
state 0x0, keycode 20 (keysym 0x61, a), same_screen YES,

XLookupString gives 1 bytes: "a

Conversion of Text from One Encoding to Another 183

KeyRelease event, serial 24, synthetic NO, window 0x1000001,
root 0x38, subw 0x0, time 1568428130, (129,44), root:(244,364),
state 0x0, keycode 20 (keysym 0x61, a), same screen YES,

XLookupString gives 1 bytes: "a

Thus there are two events: the pressing of the key and its release. The keycode of this key
is 20, and the keysym is a. If we press ‘¢’ on a French keyboard, we obtain:

KeyPress event, serial 24, synthetic NO, window 0x1000001,
root 0x38, subw 0x0, time 1568533302, (110,40), root:(225,360),
state 0x0, keycode 27 (keysym Oxe9, eacute), same screen YES,

XLookupString gives 1 bytes: "é

KeyRelease event, serial 24, synthetic NO, window 0x1000001,
root 0x38, subw 0x0, time 1568533382, (110,40), root:(225,360),
state 0x0, keycode 27 (keysym Oxe9, eacute), same_screen YES,

XLookupString gives 1 bytes: "é

in which we see the keycode (27), the keysym (eacute), and even an interpretation of the
keysym as a Unicode character: ‘¢’.

Another interesting feature of xmodmap: instead of defining the behavior of the keys, we
can reallocate the characters. Thus, if we write:

keysym bracketleft = 0x005b 0x007b 0272 0260
keysym bracketright = 0x005d 0x007d 0305 comma
keysym a = a A 0277 0304

keysym s = s S 0313 0246

keysym d = d D 0241 0257

it is the keysym values that will change, according to the modifiers that are activated. This
style of writing is independent of the physical keyboard.

There is also XKeyCaps (see Figure 5-10), a graphical interface for xmodmap that was de-
veloped by Jamie Zawinski. This interface allows us to select the keysym for each keycode
from a list of available keysym values. Unfortunately, the development of this program
was halted in 1999.

Conversion of Text from One Encoding to Another

There are few tools for converting text, no doubt because text editors (such as BBEdit
and Ultra-Edit) and word-processing packages (such as MS Word and Corel WordPerfect)
handle this process internally. There is a free library of subroutines devoted to converting
between encodings: libiconv, developed by Bruno Haible. The GNU software provided
with this library that performs conversions is called iconv.

184 Chapter 5 : Using Unicode

©
(]
(]

KeyCode: F10 =4 76 0114

Select Keyboard L

ASCIL:
Type ALWindow) podifiers:

Restore Default Map) AuloRepeat: yes

HieyCaps 2 46; @ 1891, 1992, 1993, 1994, 1995, 1896, 1997, 1998, 1999 Jamie Zawinski <jwz@iwz org>

F9
45

Ve
a@)1 e
i 14 16
Tab Entrée uppr Fin Suiv 7 & s [+
Début Hmt Préc
53 &7 9 51
Ve Maj a 4 6
Gauchi Droite
42 24 3
Maj > 1 2
& < rm B
32 SE
Ctrd

25

F1
43

F2
44

F3
45

F4
45

F5
47

F6 F7

48

i Fio |[F11 |[F12 Anét
défil
42

Pause

48 48| 4c 5F &0 EE

B 1 2 3
& B
31 0a

Retour Dnhlll Préc
€ " =

@

3
o
B
=4

Alt Gr Ctrl Gaucheg Bas Droite

41 71) 64 68 B¢

Figure 5-10: The main window of XKeyCaps

The recode Utility

In this section we shall describe a program with a long history (its origins, under a differ-
ent name, go back to the 1970s) that today is based on libiconv: recode, by the Québécois
Francois Pinard [293].

To convert a file foo.txt, all that we need is to find the source encoding A and the target
encoding B on the list of encodings supported by recode and write:

recode A..B foo.txt
The file foo.txt will be overwritten. We can also write:
recode A..B < foo.txt > foo-converted.txt
In fact, we can go through multiple steps:
recode A..B..C..D..E foo.txt
What is even more interesting is that recode refers to surface, which is roughly the equiv-
alent of Unicode’s serialization mechanisms (see page 62)—a technique for transmitting
data without changing the encoding. If S is a serialization mechanism, we can write:
recode A..B/S foo.txt
and, in addition to the conversion, this mechanism will also be applied. For example, we

can convert data to hexadecimal, or base 64, or quoted-printable (page 48). Here are the
serialization mechanisms provided by recode:

Conversion of Text from One Encoding to Another 185

e b64:7 base 64.

e di, d2, d4: write the characters as decimal numbers, byte by byte, wyde by wyde, or
tetrabyte by tetrabyte.

e h1, x2, x4: write the characters as hexadecimal numbers, byte by byte, wyde by wyde,
or tetrabyte by tetrabyte.

e 01, x2, x4: write the characters as hexadecimal numbers, byte by byte, wyde by wyde,
or tetrabyte by tetrabyte.

e QP: quoted-printable.

e (R and CR-LF: convert Unix’s line feeds to carriage returns or carriage returns fol-
lowed by line feeds.

What concerns us here is the conversion of data to Unicode. Here are the Unicode en-
coding forms that are recognized by recode:

e u7: UTF-7, which has the advantage of being expressible in ASCII and of being gen-
erally legible, at least for the European languages

e u8: our beloved UTF-8
e u6: generic UTF-16, either big-endian or little-endian, according to the platform be-
ing used
e UTF-16BE and UTF-16LE: big-endian or little-endian UTF-16, respectively
And those of ISO 10646:

e UCS-2-INTERNAL: the 16-bit encoding, with the endianness of the local platform.

e UCS-2-SWAPPED: the 16-bit encoding, with endianness opposite to that of the local
platform.

e UCS-2LE: the 16-bit encoding in little-endian mode. Recall that UCS-2 is like UTF-16,
with the exception that the code points beyond 0x10FFFF, while not disallowed, are
simply not allocated.

e UCS-4-INTERNAL, UCS-4-SWAPPED, UCS-4BE, UCS-4LE: the 32-bit encoding, with the
endianness of the platform, with the opposite endianness, in big-endian mode, and
in little-endian mode, respectively.

Sometimes recode refuses to convert a document, no doubt because there is a character
that cannot be converted. In this case, we can force it to complete the conversion by using
the -f option. The results, of course, must be used with care.

Among the encodings supported by recode (there are 277 in all, as of version 3.6), these
are the most important:

7 There are many aliases for each name. We have provided only one, typically the shortest.

186 Chapter 5 : Using Unicode

e us, which is simply the version of ASCII localized for the United States, which was
to become ISO 646.1991-IRV. Accented letters are decomposed into an accent and a
letter: voil~ a.

e The Mac’s encodings: MacArabic, MacCentralEurope, MacCroatian, MacCyrillic,
MacGreek, MacHebrew, MacIceland, MacRoman, MacRomania, MacThai, MacTurkish,
MacUkraine.

e The Chinese encodings: BIG5, cn (le codage GB 1988), CHINESE (le codage GB 2312),
IS0-2022-CN, IS0-2022-CN-EXT, EUC-CN, EUC-TW.

e The Japanese encodings: JIS (6220-1969, JIS _(6229-1984, JIS_X0201, JIS_X0208,
JIS_X0212, SIIS, 150-2022-3P, I150-2022-IP-1, IS0-2022-P-2, EUC-JP.

e The Korean encodings: KSC5636, KSC_5601, KS_C_5601, JOHAB, IS0-2022-KR, EUC-KR.

e The ISO 8859 family of encodings: 11, 12, ... 19 (ISO Latin-1 to -9), cyrillic (ISO
8859-5), arabic (ISO 8859-6), greek (ISO 8859-7), hebrew (ISO 8859-8).

e The Microsoft code pages: CP866, CP874, CP932, CP949, CP950, CP1133, CP1258, ms-ee
(Windows 1250), ms-cyr1 (Windows Cyrillic), ms-ansi (Windows Latin 1), ms-greek,
ms-turk, ms-hebr, ms-arab, WinBaltRim.

e EBCDIC and all of its localized forms: EBCDIC, EBCDIC-FR, etc.
e Some pseudo-encodings:

- TeX: the accents in \'{e}, \"{a}, etc.

- h1, ..., h4: HTML entities é, ç, etc., in which the digit denotes
the HTML version.

— flat: all accented letters lose their accents.

— dump-with-names gives us a list of all the characters in the document, one char-
acter per line, containing for each character its numeric value, its representation,
and its Unicode description.

— Texte {in French!}, a decomposition of the accented letters into “letter + accent”,
created specially for French (e'le'ment, apre’s, de'ja).

The reader may consult the list of all the encodings that recode supports by typing
recode -1.

Font Management on the
Macintosh

Our concern in this chapter will be the installation and management of fonts under
Mac OS 9 and Mac OS X. The Mac OS 9 operating system is the fruit of a long devel-
opment process that began in 1984 with System 1.0, which came with the very first
Macintosh. It is not astonishing that practically all extant types of fonts are found under
Mac OS 9. We shall begin by describing these types of fonts and giving a little glimpse at
font management a la Macintosh.

But Mac OS 9 will soon be nothing but a fleeting memory, since Mac OS X, the new
Unix-based operating system, now comes standard on Macintoshes. At the beginning of
the twenty-first century, Mac OS X aimed to simplify font management while also adding
new functionality. We shall discuss the new features in the second part of this chapter.

Nevertheless, one thing has remained unchanged throughout the long course of devel-
opment that led to Mac OS X: the ease of installing fonts. All that was necessary, dixit
Apple, was to place them in the system folder (under Mac OS 9 and earlier systems) or in one
of the designated folders (under Mac OS X). What more, then, need we say about installing
fonts on the Macintosh?

In fact, a number of factors combine to make font management on the Macintosh more
complex than Apple claims. First of all, fonts placed in the system folder are loaded into
memory; thus they take up RAM and slow down both booting and the launching of
applications (which systematically analyze the fonts contained in the system folder). Sec-
ond, fonts are files that remain permanently open and that can be corrupted upon the
slightest system crash. A corrupted font loaded by the system will cause a fatal system
crash. Such crashes are often fraught with consequences, and this type of corrupt file is
also difficult to detect.

187

188 Chapter 6 : Font Management on the Macintosh

For all of these reasons, therefore, we are wise to use tools to manage our fonts, install
and uninstall them on the fly, check their integrity and correct any problems that may
arise, and so forth. The third part of this chapter will be devoted to describing these tools.

The Situation under Mac OS 9

Before discussing fonts, one quick word on managing files on the Macintosh. One of the
Mac’s idiosyncrasies is the dual nature of its files: every Macintosh file may have a part
containing data and a part containing resources {49, p. I-103]. A resource is a set of data
associated with a type (a string of four characters), a number, and possibly a name. As its
name suggests, the data part usually contains data, whereas the resource part contains
executable code, components of a user interface (menus, dialog windows, etc.), and all
sorts of other “resources”.

The two parts, data and resources, are connected in a transparent manner, and the Mac-
intosh windowing manager, called the Finder, displays only one object, represented by
an icon. A Macintosh file may lack a data part (as do some executable files, for example)
or a resource part. In the latter case, it is often represented by a “generic” icon in the
Finder.

This phenomenon occurs because the icons used to represent files are selected by the
Finder from two pieces of information contained not in the file itself but in the directory
of files on the disk’s partition: this information is also stored as strings of four characters
called the creator and the type of the file. Thanks to the “creator”, the Finder can launch
the correct application when we double-click on a file’s icon, wherever the application
may be stored on the disk(s). Thanks to the “type”, the application in question knows
what type of data we are providing. Owing to this approach, the Macintosh has never
needed to make recourse to filename extensions, which, however, are indispensable under
Windows and quite helpful under Unix.

Let us now move on to the special family of files that is of particular concern to us:
font files. In Figure 6-1 we see a certain number of Mac OS 9 icons that represent fonts.
Monaco and Optima are icons for “font suitcases” These “suitcases” contain bitmap or
TrueType fonts. When we double-click on a suitcase (see Monaco in the figure), it opens
like any other file and displays a list of the fonts that it contains, which we can move at
will. Monaco-1SO-8859-1 9 and Charcoal are icons of bitmap and TrueType fonts
extracted from font suitcases. Conversely, TTOO03C_.TTF is a Windows TrueType font
that is recognized as a TrueType font even though it comes from the Windows world
and is used as it is by Mac OS 9. Zapfino.dfont is a font of type dfont, which is specific to
Mac OS X: it is not recognized by Mac OS 9, which explains the lack of an icon particular
to it. FREESans.otf is an OpenType font.

The other files in the figure are all for PostScript Type 1 fonts. The first three (DidotL-
Hlta, TotoRom, FreeSan) were produced by three major font-design software packages:
Macromedia Fontographer, Letraset FontStudio, and FontLab. All the others come from
different founderies: Adobe, Monotype, P22, Bitstream, ITC, Hoefler, Paratype, Font-

The Situation under Mac OS 9 189

| Polices

Z6 élements, 2,80 Go disponi bles

D EQNMWBEE
[:l 4 élements, 2,80 Go disponibles Fonte dfont
i = Non reconnue
Type Taille =
- I I sous Mac0S 9
police 98 Ko
police 5 Ko
police 5 Ko =
police 6 Ko =
[T
Zapfino.dfont
by b,
=
= | % =
TTOOOZC\TTF FREESANG otf DidotLHIta TotoRom FreeSan
&\ M\ M =
[ParaTsze|
#lleqBTReq DfProConl TC HistoGrePrilln: ElizalR BeowoSerR21
........ i
1 \T ‘
Renaulgt QuillFla BrgePIa ClassScrMN Arguslig

\
\

1

|

«Valises» de fonte Fonte Bitmap Fonte TrueType Mac Fonte TrueType Win Fonte OpenType Fontes PostScript de type 1
Type FFIL Type ffil Type tfil Type sfnt Type sfnt Type LWFN
Créateur DMOV Créateur movr Créateur movr Créateur movr Créateur ATMC Créateur variable

Figure 6-1: A Mac OS 9 screenshot showing a certain number of Macintosh font files.

Font, Agfa (before its merger with Monotype), URW, Font Bureau, Font Company, ATF
Kingsley, Esselte Letraset, Mecanorma, and Red Rooster.

Let us now take a closer look at these different file types. First of all, note that we can
classify them into two categories from the point of view of their file structure: those—
the more recent ones—whose resource part is empty (the OpenType, dfont, and Windows
TrueType files), and those for which all the data is stored in the resources (all other files).
What about these resources?

The most interesting of them is the resource FOND {49, p. I-215], which is common to all
the Mac OS 9 font formats. It contains general information on bitmap, TrueType, and
PostScript Type 1 fonts. It never contains glyphs as such but merely pointers to resources
or files that do contain them. It has a name, and this name is, from the point of view of
the Macintosh system and its applications, the only name by which the font is recognized
and can be used. Beyond the name, it contains the following information:

o A font identification number (which is in fact the number of the resource itself).
e Some technical information of no great importance.

e Some tables for width and kerning.

190 Chapter 6 : Font Management on the Macintosh

e Pointers to bitmap (FONT or NFNT) or TrueType (sfnt) resources, contained in the
same file. These resources are categorized according to point size (the resource for
TrueType fonts having a pseudo-value of 0 points) and the style (0 =regular, 1=bold,
2 =italic, 3 = bold italic).

e The names of the PostScript fonts that correspond to these various styles.
We can now make three observations:

1. The importance of the identification number

A font is identified under Mac OS 9 by its identification number. This practice was
very effective in 1985, when only a handful of Macintoshes were available; but it is
completely out of date today, when we may have tens of thousands of fonts at our
disposal. It opens the door to conflicting identification numbers.

In older versions of Mac OS, a special utility was available for loading fonts onto
the system: Font/DA Mover (which gave us the “creator” DMOV and movr fields of the
“suitcase”, bitmap, and TrueType files). This utility resolved conflicts between identi-
fication numbers and checked the integrity of the internal links to resources in each
font file before copying it onto the system. In more recent versions of Mac OS, these
procedures are automatically performed when we install fonts by placing them in
the subfolder Fonts of the system folder, which is provided for this purpose.

The fact that the system changes the identification number is obviously an improve-
ment, but it also implies that font files are modified by the system so that they can
be added to the existing repertoire of fonts—and this modification occurs as soon
as the fonts are copied into the Fonts folder. That folder is thus very special, and its
contents must be handled with care. The font managers that we shall see below will
keep us from having to handle this folder directly.

2. A simplistic classification of fonts

As we have seen, there are only four styles in a Macintosh “font family”, called “reg-
ular”, “bold”, “italic”, and “bold italic”. We therefore see only one name (the name of
the resource FOND) within applications, and we select among the four variants with
a “style” menu.

There is no way to have a single family with more style variants; if we need more, we
must resort to creating multiple families. Each of them will, accordingly, be consid-
ered a separate font by the system’s user interface and by applications.

This special characteristic of the Macintosh is at the heart of a number of night-
mares that plague the users of DTP software. For example, to set type in oblique
Optima, we may use either the “italic” style of the font Optima or a separate font
called Optima Obligue. Both of them may be associated with the same PostScript
font Optima-0blique and may yield the same result. But that outcome depends com-
pletely on the configuration of the font family in question. We have no a priori way
to know whether the foundry has supplied distinct Macintosh styles or distinct FOND

The situation under Mac OS X 191

resources. And what happens if we inadvertently select the “italic” style of the font
Optima Oblique? Some software will go as far as to give the oblique version of Optima
an artificial slant, yielding a font that has been slanted twice!

Tools such as Adobe Type Reunion (ATR), which we shall describe below, attempt to
ameliorate this inconsistency by bringing the style variants of the same font together
on the user interface. Nevertheless, the problem is far from being resolved, and a
great deal of prudence is called for during the installation, modification, or creation
of fonts.

3. Disparities in the data

FOND is, in a sense, the most important resource, as without it the Macintosh usually
cannot gain access to the data in a font. Nonetheless, we shall note that this resource
never appears in isolation. It is always accompanied by other resources, either in
the same file (as with the resources FONT and NFNT for bitmap fonts and sfnt for
TrueType fonts) or in other files (as with PostScript fonts, whose filenames have to
be computed from the names of the fonts! contained in the resource FOND). Merely
breaking the link between these resources or files will render the font unusable.

A final problem, of a different sort, affects PostScript fonts. For business reasons, no ver-
sion of Mac OS (before Mac OS X) wished to allow the possibility of using PostScript
fonts for display on the screen. A separate program (Adobe Type Manager, or ATM) as-
sumed that task. Mac OS itself uses only the bitmap fonts contained in the “font suitcase™
thus, at a large point size, the system will have no choice but to magnify the pixels
of the bitmap fonts, and the result is a set of shapes that look like “staircases”. Using
PostScript fonts, in which the shapes are described by mathematical formulae, ATM pro-
duces bitmaps on the fly, and the visual result is the smoothing of the glyphs. But its task is
quite complex: without being integrated into the system, it must intercept all requests by
different programs to display a font, find the correct bitmap fonts, track down the links
to the corresponding PostScript files, read the files, extract the descriptions of the glyphs,
and generate bitmaps on the fly. All that has to happen in real time.

The more types of fonts we have, the more tools as well. It comes as no surprise that
font management on the Macintosh is a minefield. Before examining the different tools
that allow users (including intense users) to survive unscathed, we shall make one quick
comment on developments since the move to Mac OS X.

The situation under Mac OS X

Several years ago, before Steve Jobs returned to Apple, no one would have believed that
we could have a Unix operating system that was also a version of Mac OS. The feat was
to bring users the benefits of Unix without losing the wealth of features acquired by the
various releases of Mac OS since 1984. Fonts were also affected: we saw in the previous

' The rule is as follows: Assume that the PostScript name is made of words in lowercase letters beginning
with a capital. We retain the first five letters of the first word and the first three letters of each of the following
words. Thus, for example, Miracle-BoldItalic becomes MiracBolIta.

192 Chapter 6 : Font Management on the Macintosh

80ce [Polices =)

Précédent Suivant Présentation Ordinateur Départ Favoris Applications Trouver

26 élément(s), 2,63 Go disponibles

A A
Manaca Zapfino.dfont
By
- - - - - a T2 &
A A = =3 ,
=== A e]
Optima Maonaco-1S0-8859-1 9 Charceal TTODO3IC_.TTF FREESANS.otf DidatLHita TataRom FreeSan
A @,
LS =i, [FaraTsre|
Optim FournMT P22GarReg AllegBTReg DfPreConiTC HistoGrePriUne ElizaOR BeowaSerR21
— s ran . oL
T F !
i
ATOxF CuillFlo AgendLig Renaulgt FuturTMed BergePla ClassSerMN Arguslig

Figure 6-2: The same file that is shown in Figure 6-1, as seen under Mac OS X.

section the variety of file types in use (“font suitcases”, bitmaps, TrueType, PostScript,
OpenType, etc.). Obviously Mac OS X had to accept all these file formats, for reasons of
compatibility. But Mac OS X also aimed to simplify the existing order.

And simplify it did! In Figure 6-2 we see the same window shown in Figure 6-1, as it
appears under Mac OS X. What a surprise to see that all of the files described in the
preceding section, even though they are of very different natures, are represented by the
same icon (a letter ‘A’ on a white background)! Even the file Zapfino.dfont uses this
icon, as it will henceforth be recognized by the operating system.?

Thus the system is capable of transparently recognizing and using all types of fonts (or
at least all those that were recognized® by Mac OS 9) and furnishes a replacement for
“font suitcases”—a replacement that is essential so that Unix applications can make use
of the data.

2 Now is the time to remove the mystery that enshrouds this “new format”, which is not really a format
at all, as it is merely a “font suitcase” in which all the information that had been in the resource section has
been transferred unchanged to the data section. Thus it is a file that can be used by Unix applications but that
is functionally equivalent to the “font suitcases” that we have known since the release of the first Mac in 1984.

3 With only one exception: the FONT resources still are not recognized by Mac OS X, which considers
them too old for its taste. Tools (such as FONT—NFENT {203] or fondu {351}, for example) exist to replace
resources with NFNTs systematically. Another important detail: while “carbonized” applications continue to
work as before and to use bitmap fonts if they please, applications using the new Quartz graphical library will
be incompatible with bitmap fonts from now on. Those of us who have painstakingly created bitmap fonts to
resolve various practical problems now find ourselves forced to vectorize them.

The situation under Mac OS X 193

Now let us move on to the installation of fonts. Where should we place font files so that
they can be used by the system? Since Unix is a multiuser system, we need to manage
the permissions of users, and the same goes for fonts as well. At the same time, we must
not forget that Mac OS 9 is still with us, through the Classic environment. It is therefore
desirable to make the same fonts accessible on both Mac OS X and Mac OS 9 under
Classic. Apple has provided five different locations to place (or not to place) font files
{202, 60}

1. In ~/Library/Fonts, where ~ is the home directory of the active user. These fonts
are available to that user only.

2. In/Library/Fonts. These fonts are available to all local users. Only an administrator
may place fonts here.

3. In /Network/Library/Fonts. These fonts are available to all users on the local net-
work. Only a network administrator may place fonts here.

4. In /System/Library/Fonts. This is the location for system fonts. Apple encourages
us to leave this directory alone.

5. In the Mac OS 9 system folder. These fonts are available to all local users and also to
applications that run under Classic.

Thus everything depends on how we use our fonts. If we are in a modern environment in
which all the software is carbonized, or better yet in Cocoa, then there is no need to place
fonts into the Mac OS 9 system folder. This is especially true if we belong to a workgroup
that uses shared resources and we would also like to share private fonts without violating
the law, by making them accessible only to members of a certain group. In this case, all
that we have to do is to sort our fonts into private fonts, fonts that are locally public, and
fonts that are public at the network level, and place them in the appropriate location.

If, on the other hand, we still have to go through Classic in order to use our favorite appli-
cations, the issue of permissions does not arise; we simply place our fonts into the good
old system folder of Mac OS 9, and they will be accessible by both Mac OS 9 applications
and Mac OS X applications.

PostScript fonts are easier to use under Mac OS X. We no longer need ATM, the program
that used PostScript fonts associated with FOND to display smoothed glyphs on the screen.
Mac OS X itself interprets the PostScript code and smooths the glyphs.

Despite the large number of folders in which fonts may be found, Mac OS X has thus
managed to simplify the use of fonts: no longer do we have to worry about differences
in font type, as everything is processed in the same manner, and we no longer need a tool
external to the system in order to display PostScript fonts. But have the problems men-
tioned in the previous section—namely, the importance of the identification number,
the simplistic classification into styles, and the disparity of data files—been resolved?

Not at all. The identification number is still with us, the styles are all the same (because
the new dfont are only ordinary “font suitcases” stored in a different way on the disk),

194 Chapter 6 : Font Management on the Macintosh

and the disparity among files is the same (we still need two files for a single PostScript
font). The problems are all the same; they have just been hidden from the view of the end
user. The tools that help us to get around these problems are therefore as indispensable
as they ever were, and we shall now describe them, in the following section.

Font-Management Tools

In this section, we shall describe a handful of tools that are useful, or even indispens-
able in certain cases, for the effective management of fonts under Mac OS. We shall
describe only those tools that run under Mac OS X (while noting their compatibility with
Mac 0S9), except, of course, in the case of important tools that have not yet been ported
to OS X (such as ATM).

Tools for Verification and Maintenance

We have already mentioned the dangers that fonts face under Mac OS—dangers stem-
ming primarily from the fact that the files that contain them are permanently left open,
since the system needs to have regular access to them in order to load the information
necessary for displaying text. A font file is in direct contact with the system; when the
system crashes, the file can also be affected. This fact explains why fonts are the most
fragile files on the Macintosh. And a corrupted font is often the cause of new system
crashes.

If we have no cure for this situation, we can at least limit the damage by regularly check-
ing the status of our fonts and replacing with fresh copies those files that have been
corrupted. One popular tool for performing this sort of maintenance on the font reper-
toire is Font Doctor, by Morrison SoftDesign [275].

This tool allows us to verify and repair all the fonts contained in the folders specified by
the user. When repairs are impossible, the font is set aside in a special folder. Font Doctor
also plays a preventive role; thus it will warn the user if it finds duplicates of a font or
identical fonts in different formats (for example, PostScript Type 1 and TrueType). Here
is the list of the operations carried out in the course of a “diagnostic” check on the fonts:

e Resolving conflicts in identification numbers (the numbers of the resource FOND).

e Detecting duplicates (= fonts of the same format and of the same version that contain
the same glyphs).

e Deleting unwanted bitmap files in order to keep only one point size per font. Indeed,
since Mac OS X handles display at all sizes, bitmap fonts are in theory no longer
necessary. I say “in theory” because manually edited bitmap fonts will always be
better than those generated by the computer; thus we are wise to retain them. For
this reason, the automatic deletion of bitmap fonts is not always desirable.

e Detecting fonts that are available in several different formats. We can specify that
priority should go to PostScript and OpenType fonts or to TrueType fonts.

Font-Management Tools

195

FontDoctor for Macintosh

[

L Diagnose/Repair Fonts |

Organize Fonts

| -Archive Fonts 1

Diagnosis:

Examine Fonts - Start: samedi 2 septembre 2006 - 20h37h36

Diagnosis Options

E Diagnose Missing PostScript Fonts
D Styles (Bold, Italic, etc.) Require PostScript Font
B Diagnose Multiple Master Font Instances
D Move Orphaned Bitmap Fonts To Trash Can

E Diagnose Missing Bitmap Fonts
E Diagnose Type 1 PostScript Fonts
E Diagnose Type 3 PostScript Fonts
D Move Orphaned PostScript Fonts to Trash Can

Font File Structure Options

[Emma3 /Users ivannis /L ihrarviEnnts
,-.J Emma3 ||
(¥ Emma3
,'_'-.5 Emma3 E Diagnose Duplicate Fonts
» 1 Diagnos {®) Compare All Fonts
777 Fonts fa (") Compare Only Fonts In Different Folders
E Always Keep Newest Version
Lj Move Duplicate Fonts To Trash Can
3 -
= D Diagnose Extra Font Sizes
Start Diagn
a *) Keep The Smallest Point Size
{ '*_J) Keep The Largest Point Size
—y) Keep Closest Font Size: |12
&= Generate
— D Move Extra Font Sizes To Trash Can
Diagnose Og
D Diagnose Mixed Font Types
—

E Prefer PostScript & OpenType Over TrueType
: Prefer TrueType Owver PostScript & OpenType

D Move non-preferred Font Types to Trash Can

¥ Diagnose Font ID Conflicts

E Diagnose Missing Style Resources
E Diagnose Empty Suitcase Files

E Diagnose Bitmap Table Data

E Diagnose Finder File Flags

E Diagnose Unsupported Font Types

E Diagnose PostScript Font File Names

E Create "Mowved Fonts” Folder On Desktop

D Diagnosis Only (do not repair or move fonts)

(Reset Settings :l(Cancel)M

Figure 6-3: Font Doctor’s configuration interface.

e Detecting “orphaned bitmaps”. The term is ill chosen, as it applies not necessarily to
bitmaps but rather to FOND resources containing links to PostScript fonts that are not
available.

e Detecting “orphaned PostScript fonts”. Here we have the opposite situation: we have
a PostScript font but no FOND resource that would enable the system to recognize the
font in question. Note that when Font Doctor finds “orphaned bitmap fonts” and
“orphaned PostScript fonts” that correspond to them, it performs a “family reunion”
by re-creating the missing links.

e Verifying the integrity of the files. FOND and NFNT are checked for compliance with
Apple’s specifications. Font Doctor takes advantage of the procedure to replace old
FONT resources (which are no longer recognized by Mac OS X) with NFNT resources.

196 Chapter 6 : Font Management on the Macintosh

Note that Font Doctor will not usually correct a defective font when a major problem
arises but will rather warn you that a problem has been found. Thus you must use more
powerful font-editing tools to set the situation straight. For example, in the case of an
“orphaned PostScript font” for which no corresponding FOND can be found, only font-
design software such as FontLab can create the missing resource. We shall discuss this
sort of software in Chapter 12.

Other tools for verifying and maintaining fonts exist, but they are less efficient and less
stable than Font Doctor. We may mention, by way of example, FontAgent, by Insider Soft-
ware [189], which has the benefit of having a Windows version that is identical in every
detail to the Mac OS version.

ATM: the “Smoother” of Fonts

We have already mentioned ATM {18}, a tool that is indispensable when we work with
PostScript fonts under Mac OS 9 or earlier. Its role is to read PostScript fonts pointed to
by FOND resources and to use the contours described therein to display glyphs at all sizes.
This operation, which seems trivial for TrueType fonts because Mac OS handles the dis-
play of TrueType glyphs at all sizes (using the contours contained in the resource sfnt), is
a little more difficult for ATM, which has to find the files containing PostScript data with
no other clue than the PostScript name of the font being sought (which rarely coincides
with the name of the file containing that font).

To facilitate the task of detecting files, Adobe also equipped ATM with features for man-
aging font files. Finally, ATM was released in two versions: ATM Light, the free version,
which only “smooths” glyphs, and the commercial version ATM Deluxe {17], which also
serves as a font manager and a tool for checking the integrity of fonts. Before delving
into font managers, we should say a few words about the “smoother”.

O=""———AM=—————"—8H

Adobe Type Manager°4.6
@ oui a () Non H_ L'interpréteur ATHM est actif,

Taille de la mémoire des caractéres * Conserver *

1,0 Ma Conseillée @) I'interlignage

2,0 Ma Actuelle () la forme des caractéres

version 4.6.2

Lissage des polices & I"écran

D Oui I'_1 Désactiver le lizsage selon le corps des polices affichées

| [Précision de la position du caractére

| |:I Activer la substitution des polices

+ Les maodificzations ne seront effectives qu'aprés le redémarrage.

Créer déclinaisons MM...

Figure 6-4: The configuration interface of ATM.

The configuration interface of this program (Figure 6-4) is quite simple:

Font-Management Tools 197

d d

Figure 6-5: The letters ‘Aa’ in Agfa’s splendid font Throhand, at 128 points. From the left: dis-
play without ATM; display with ATM but without glyph smoothing; and display with ATM and
with glyph smoothing.

e Enabling/disabling of the program.

e The amount of memory that we wish to dedicate to cache for glyphs. (This option
was important in the days when RAM on the Macintosh was on the order of a few
megabytes, which is no longer the case today.)

e A choice between giving priority to glyphs and giving priority to line spacing, when
ATM has to choose between preserving the shapes of glyphs and maintaining even
line spacing.

e Enabling of glyph smoothing. When smoothing is disabled, ATM uses only black
and white pixels; when smoothing is enabled, ATM also uses pixels along a grayscale
(an operation called anti-aliasing). It is important to remember to enable this option,
which makes a spectacular difference in the quality of the output (Figure 6-5).

e Anoption to enable smoothing through gray levels only for type at or above a certain
point size (which is not specified). As it happens, smoothing at small sizes is hardly
noticeable and only slows down the displaying of glyphs.

e An option for “precise positioning of the character”, which lets us increase the pre-
cision with which the positions of glyphs are calculated below the threshold of the
pixel. This feature will work only if it is supported by the software that displays

glyphs.

e Enabling font substitution. The same method used by Adobe Acrobat is also used
in ATM. When we know the widths of the glyphs in a font but do not have the font
itself; the corresponding glyphs in the Multiple Master fonts Adobe Serif MM or Adobe
Sans MM are displayed. This feature works quite well in Acrobat because the widths
of the glyphs must be supplied. ATM, however, cannot carry out the substitution un-
less it has access to these data. It therefore needs access to at least one FOND resource in
order to implement this method. The substitution affects only “orphaned bitmaps”,

198 Chapter 6 : Font Management on the Macintosh

and no provision is made for documents that use fonts that are entirely unknown to
the system.

But automatic substitution poses another very serious problem, both to Acrobat and
to ATM: the fonts Adobe Serif MM and Adobe Sans MM contain only the glyphs needed
for a few Western European languages. Substitution fails when the missing glyphs
are symbols or letters in a non-Latin alphabet, or in the Latin alphabet but in a lan-
guage other than the favored ones of Western Europe. More specifically, either the
software is aware of the type of glyphs needed but fails to perform the substitution,
knowing that it is unable to carry it out, or it substitutes incorrect glyphs, thereby
mangling the document into illegible gibberish. Unfortunately, the latter seems to
happen most of the time, for the simple reason that most software identifies glyphs
by their indexes in the font table and completely disregards their semantics and the
Unicode characters that correspond thereto.

Since ATM’s font substitution leaves much to be desired, we are still waiting for font
substitution worthy of Unicode.

Create MM instances: here we are dealing with the creation of Multiple Master
instances. ATM examines the active fonts and selects those that are Multiple Masters.
For each of them, it displays (see Figure 6-6, left) the available axes of variation and
a sample (the word “Sample”). The user selects the desired values of the parameters
and requests the creation of an instance.* ATM will then produce a FOND resource
and an NFNT resource, which it will add to the “font suitcase”. From that point on,
the instance is available to every application; it is identified by the values of its pa-
rameters on a submenu of the font-selection menu (see Figure 6-6, right).

Création ou suppression de police: 34
ot Ccrker)
45 0 ¢ ¢ oEz0 | Supprimer |
width @@
4500 ¢ 0 e00 7
| Imprimer |
Dptics! @@@ = Mezz MM »
"Sive w9k g Minion MM »
= Minion MM Expert »
= 0K Minion MM Italic }| 345Weight 450 Width 12 op
— Minion MM Italic Expert M 367 Regular 463 Cond 11 OpSize
[_MinioMMIt v |[_ 345wt 450wd 120p 7| Minion MM Italic Small Caps » 367 Regular 585Norm 11 OpSize
G Echantillon Minion MM Ornaments M 367 Regular 585 Norm 72 OpSize
! 1 h ll EI Minion kM Small Caps M 485 SemBld 465 Cond 11 OpSize
Minion MM Swash M 485 SemBld 585 Norm 11 OpSize
C a n tz O Monaco Standard 578 Bold 465 Cond 11 OpSize
Monaco Cyrillic Mac Standard 578 Bold 583 Norm 11 OpSize
Monaco Greek IS0 Standard |

Figure 6-6: The interface for creating and selecting Multiple Master font instances.

In conclusion, let us note that even though ATM is no longer necessary under Mac OS X
and Adobe has announced that it has halted development of this product, the latest ver-

4 Note that certain applications, such as Adobe Illustrator and Quark XPress, have their own internal

interface for creating Multiple Master instances. In this case, we can modify the font’s parameters in real time
to adapt it to the graphical context. ATM’s built-in interface will suffice for applications that have no interface
of their own.

Font-Management Tools 199

sion of ATM Light (version 4.6.2) was developed with the intention that it be used under
Classic.

ATR: classification of fonts by family

We have already mentioned the crude nature of the Macintosh’s classification of fonts
by style. According to this classification, only four possible style variants, called “regu-
lar”, “bold”, “italic”, and “bold italic”, are possible in a FOND resource. To associate other
variants with the same font, one must create a new FOND resource that is also supplied
with these same four predefined styles.

Let us take an example. Suppose that we have at our disposal the Optima PostScript
fonts (by the great font designer Hermann Zapf) in the following styles: light, semi-bold,
bold, and extra-bold, each of them in vertical and oblique versions. To arrange them on
the Macintosh, one possibility would be to create two FOND resources called Optima and
Optima bold, respectively, and to create links to the PostScript fonts according to the
following correspondences:

Name of FOND resource | Macintosh style | PostScript font
Optima “regular” Optima
“bold” Optima semi-bold
“italic” Optima oblique
“bold italic” Optima semi-bold oblique
Optima gras “regular” Optima bold
“bold” Optima extra-bold
“italic” Optima bold oblique
“bold italic” Optima extra-bold oblique

When using a font, we would have to know that the choice of “Optima” in the “bold”
style is lighter than “Optima bold” in the “regular” style, which in turn is lighter than
“Optima bold” in the “bold” style. Another possibility (the more common choice) is to
create one family of Macintosh fonts with the light and (true) bold weights, and a second
family with semi-bold and extra-bold. This combination is less logical but corresponds
more closely to commercial needs: specifically, the foundry can produce two separate
products, of which the second is a sort of extension of the first. Indeed, this is the ap-
proach followed by Linotype, which sells the font Optima in two sets of style variants,
with two overlapping pairs of bold weights.

The program Adobe Type Reunion (ATR) {19} frees us from these restrictions and affords
us the possibility of choosing style variants in a more natural manner, using submenus.
But its most important benefit is the possibility of specifying that a given PostScript font
belongs to a certain Macintosh font family, and even giving the name under which the
font will be displayed by the various applications. In Figure 6-7, we see the interface for
classifying font families and personalizing the names of the fonts. The same tool also

200 Chapter 6 : Font Management on the Macintosh

Adobe Type Reunion Deluxe 26
Général j Groupes :l Homs de polices \]\ Cornpatibilité

B Afficher les noms souhaités dans les menus de polices

[afficher les palices cochées aves leurs caractéres réels

' | Mo de palices Morn souhaité
v Ornega Serif Ormeqa Serif
v Optima Optima

'

Elack tréiz gras

Black Italic trés gras oblique
Bold gras

Bold Oblique gras oblique

LR SN
1 |

]

Drerni Bold demni-qras

Figure 6-7: The interface for classifying font families and personalizing font names in Adobe
Type Reunion.

allows us to define groups of font families by adding a third level of classification to the
font-selection menus.

Font Managers

What do we need in order to manage fonts efficiently? Imagine that we have thousands
of fonts—not an unrealistic proposition, if we work in a graphic-design studio. The fol-
lowing are the most frequent operations that we will have to perform:

1. Choosing the correct font for our project. At this time, software is not yet able to rec-
ommend a font according to the characteristics of the project that we have in mind,
but it can help us to create catalogues of type specimens from which our professional
experience will allow us to make the right choice.

2. Finding the font among the thousands in our possession. This operation may be
quite delicate because, as we have seen, we often have multiple copies of the same
font (or fonts with the same name), in different formats, coming from different
foundries, etc. Later in this book, we shall see the differences among font formats
and learn which are the most appropriate for each project. For now, what we can
expect of a font manager is to present the available choices in a convenient fashion
and to give us all the information that we need in order to make the decision.

3. Enabling the font, and thus allowing our software to make use of it, preferably with-
out having to restart the software or the computer.

4. Disabling the font once our work is finished and re-enabling it automatically when
we open a file in which it is used.

Font-Management Tools 201

5. Rapidly assembling all of the fonts used in a file and copying them into a folder near
the file, if the file is to be sent to a colleague.

These are precisely the tasks performed by the four most popular font managers: Ap-
ple’s Font Book (which is part of Mac OS X 10.3+), FontAgent Pro by Insider Software, Font
Reserve (formerly by DiamondSoft {119}, currently by Extensis), and Suitcase [132], also
by Extensis. Font Reserve was discontinued when DiamondSoft was bought by Extensis,
and its functionality was added to the latest version of Suitcase: Suitcase Fusion. A fifth
competitor, ATM Deluxe {17}, has unfortunately withdrawn from the race because it is not
compatible with Mac OS X. Adobe has announced that it has no intention to continue
its development. The abandonment of the “glyph smoother”, ATM, on the grounds that
it was no longer needed on Mac OS X also sounded the death knell for the font-manager
component of ATM Deluxe, which was nevertheless greatly appreciated by its users.

'8.135 Font Book 5]

Q- Name 3
| B = Gollection ||| Font - Fre
@ Al Fonts e ~ size: [Fic 1) 8 -
| L User | » Skia :

 Hr R [| ABCDEFGHIJKLM

| pS5TFangsong
B STHeiti

e [> NOPQRSTUVWXYZ

C|[1] Largeur fixe

Fli moderne i b symbol -l B dl
| PDF || pTahoma . - |
| Sk | [abcdcfglnjklm ;
= || b Techno I
z | p Textile

g B Thonburi nopqrstu \V U" }(.yZ

= ¥ ThrohandRegular m

Italic

m— 1234567890 ‘lf

|_m Times CF

: @ 238 Fonts ThrohandRegular-Roman, 41 pt. = V?/:

Figure 6-8: Font Book v.1.0 (which comes standard with Mac OS X 10.3+).

Font Book (see Figure 6-8), not to be confused with FontBook (by Lehmke Software), is
a relatively recent piece of software: its first version came out only in System 10.3 (Pan-
ther). It is quite easy to use: it presents a list of fonts that can be enabled or disabled by
double-clicking. Single-clicking on a font gives us a specimen of its glyphs in the window
to the right. We can group fonts into “collections” (list at left), which allows us to enable
or disable all the fonts in a collection at the same time. These features stop here: there is
no cataloging, printing, or automatic enabling. Those features will doubtless be added
in future versions.

But there is one thing that Font Book does indirectly: when we use the Character Palette,
a utility for selecting Unicode characters that is launched through the entry with this
name on the keyboard menu (the keyboard menu is the one represented by a little flag
corresponding to the active keyboard), an extra section at the bottom of the Character
Palette shows us all of the glyphs representing the selected character:

202 Chapter 6 : Font Management on the Macintosh

W Font Variation

Collections : | Containing selected character]

t ¢ e e e e & e €

wendome Vendome Verdana Verdana Verdana Verdana ¥T100 WT100 Wide Latin

T Reg...nsed T Reg..talic Regular Bod Italic Boid lalic FRoman Bold Regular
Zapl Zapfino Ziggurat Ziggurat re
Dingb...Piain Regular | HTF-Black HTF-Bl.1alc v |
Clyph Variants in Selected Font : Zapfino {
[Q Insert with Font

, This is 2 glyph variant; it may not be displayed correctly in ather applications or on the Internet A

It is quite impressive. We even see the variants of glyphs, and we can select them by
clicking on them.

Let us move on to the leading software competitors: Suitcase Fusion (Figure 6-9) and
FontAgent Pro (Figure 6-10).

In both cases, we select individual fonts or entire directories to be analyzed by the pro-
gram, which will display them in the bottom part of the interface. In both programs,
we can create “sets” of fonts in the top part of the window and add fonts to those sets
by dragging them up from the bottom part of the window or directly from a disk. We
can thus enable or disable individual fonts or families or sets of fonts by clicking on
the button in the leftmost column. There are three possible states: disabled, temporarily
enabled (until the computer is rebooted or another font with the same name is enabled),
and permanently enabled.

Note that both programs allow fonts to be enabled automatically, with plug-ins for three
very popular pieces of software: Adobe Illustrator (since version 8), Adobe Photoshop (for
FontAgent Pro), Adobe InDesign (since version 2), and Quark XPress (since version 3.3).
These plug-ins analyze each open document and automatically enable every font con-
tained in the document and all the EPS files included in the document. If the exact font
cannot be found, they use a close substitute (for example, if a font of the same name but
of a different format is available, they will use it instead).

As for displaying font specimens, Suitcase Fusion has a vertical area and FontAgent Pro a
horizontal one; both are permanently left open and can be customized. Both programs
can show a “waterfall” (different sizes of the same text), a paragraph of text, or just a few
glyphs. Suitcase Fusion can show all styles of the same family simultaneously; that is why
the area is vertical. Both programs can display a certain amount of information about a
font upon request.

Finally, a very interesting feature: the ability to create catalogs of type specimens. Suitcase
Fusion has a utility called FontBook (not to be confused with Font Book, the program
built into Mac OS X 10.3+) that does an admirable job of generating type specimens,
but only for enabled fonts—a limitation that hampers the creation of a catalog for a
very large collection. In Figure 6-11 we see two examples of specimens created by Font
Book. There is a multitude of other “catalogers” of fonts, all with more or less similar
functionality.

Font-Management Tools

203

‘@00

Suitcase Fusion

=

S06 LV 9 a

@

New Set Add Remove Activate Deactivate Attributes QuickFind
Sets 7Sitem(s) [ABC123 |3 PO [1s =)
Name & Num Items/ Type Foundry = NebioloGaraldus
® v {5 0Relly Book L p ABCDEFGHIJKLMNOP
| ® ¢ LeMondelivre-Bolc PostScript Fontographe ABSAEGTHIOKAMNO
| @ 4 LeMondeLivre-Bolc PostScript Fontographer, 1234567890! § & ()
(-] £ LeMondeLivre-Bolc PostScript Fontographer, |
| ® & LeMondelLivre-Bolc PostScript Fontographer|
: : Ee:an:eﬂwe—::c Eos:cr!pt :zon:ograp:e{f_e ABCDEFGHIKLMNOPQ
=] oniedzintit ABEAESTHIOKAMNOIL
- . 1234567890"H$&()
[Suitcase Fusion Fonts) 4 of 35 items selected
Name & Type Foundry |l KLMNO |
® > {FLeMondelLivre PostScript Fontographe |~ ﬁgggg’?gémo
@ b {FLeMondeSans PostScript Fontographe 1234567890I'H § &
® b £FLlucida Fake TrueType — i 0
@ p §FMusic PostScript Monotype Ty

+ NebioloGaraldu
] + NebioloGaraldu
+ NebioloGaraldu

5 PostScrip
sElght PostScript
sSix Po:

stScript
e

‘@00

ABCDEFGHIJKLMNOP... |

ahedefehifkimnopgrstuveyz
1234567801@ 4§ %ker" ()

Figure 6-9: Suitcase Fusion.

FontAgent Pro

(o W o
LY I

E ¥ P @ § Q

Activate Deactivate Share Unshare New Library Import Fonts New Set New Subset Delete Help
*| Libraries = Sets Libraries | Sets | Sharing
Q- 2 Sets with 74 Fonts) By Family [WYSIWYG @
= = =
Filter by: | All @ 3 Name & Foundry ftems Library
74 Fonts (] By Family] wysiwyG %) Last Import 74
(7] 8y Family (] 8| B Lt i 0
© O iName 2 Fou ¥ O'Rellly Baok 74
] LeMondeLivre-ItalicSC Unj=~] LeMondeLivre-Bold Unknown My Fonts
LeMondeLivre-Normal Un LeMondeLivre-BoldExpert Unknown My Fonts
eMondeLivre-NormalClassic Ba: LeMondeLivre-Bolditalic Unknown My Fonts | ®
7| LeMondeLivre-NormalExpert 71 LeMondeLivre-BoldtalicO: Unknown My Fonts s

| LeMondeLivre-NormalSC
eMondeLivre-SemiBold
| LeMondeLivre-SemiBoldExpe
eMondeLivre-SemiBolditalic
LeMondeLivre-SemiBolditalic

M E

LeMondeLivre-SemiBoldOsF
| LeMondeLivre-SemiBoldSC
eMondeSans-Black

. - iy

LeMondeLivre-SemiBolditalicOs Un
LeMondeLivre-SemiBolditalicSC Un|

Un Player | Font Compare
" 12 (3] (v 19 CRE®EG
Ex Un LeMondeLivre-NormalOsF —— —

un The quick brown fox jumped over the lazy dog
“".1 The quick brown fox jumped over the lazy
o Tha anicl hroum fav inmnad®

The quick brown fox jumped over the lazy dog
The quick brown fox jumped over the lazy dog

Figure 6-10: FontAgent Pro.

204

Chapter 6 : Font Management on the Macintosh

T —
Il Font

X T—

Il #ort

Pristesd with “TimiBeo V4.4 &

Pristesd with “TimiBosk V1.4 &

Historical—FellTypeRoma. .

Historical-EnglishTextur...

, mnrwuuuu\ PRIV YTkt o' s--::: <sakatn AHLDEFSH T THUIOPOAE
Ty | A8CRERGUT TRUMOBAAS

it ceogiidg ab Hi Y%

nBCDFFGHI]kI MNOPQRSTUVWXYZabedefighijkimnopqr ab rM; %-ﬂﬂ ngmpodm YOI

.. ABCDEFGHIJKLMNOPQRSTUVWXYZabc a b DEFSHT THINMOPAAHT LI
abcde FEHYT IHUMMORLADTLLIDE 1
LIFPES LITTLE INSTRUCTIONS LIFES LITTLE INSTRUCTIONS abcoe fGh ;ntmmp&n DTOVIDE I =
Singin e dhom. Tk ey o met e e 1k b, Trest veone e abeoef ghY JHUMOPQADTOVIDE i =
Db B reied Wotch i abroefghy IHPOPQADTOVILE)=
yowrbinbday © vt dewer refise homenade abcoe fghi THUMOPOADTODOILE p=
hmm—:‘::.\:_ eperiiia. bromreics. Plant & tree on your birthdsy. abeoefght j HWHMOPQADTOIDE p=
T e L e Corpn abcdefghi)h HNOBRADTOVIDE =
e ydxy Newwnienn abeoefghit)h INOPAADTIOVILE P
;.-‘..'.‘:."uﬂm ,:IL.... Pty e o &'E"ﬁ:’é'"'?-ﬁ"ﬁ:"ﬁ& a : t : e g gz i ; : tmfbopnaﬂ :ggg: %:‘_:.
e when o ol v el i found i Recp s mgle. Thiakbigl 5 abrocfghi mnOPaGH
:;:-f;r'm ;-":;#:_,'-* ifree and enthusiastic persan yos knw. abcocfghi)hlmnoPOaDTOOIEPZ
e ﬁfhv:mw" P e “";'r.'("""""‘"‘""" abeoef g bi ; k Imn n?ﬁﬂ- HTOVIDE P=
’Tm e e G b, P Oresti bk Wi ey abroefghtjh Ilmnop qADTOVIDEPZ
i TV ""‘F_‘ m"" £ By o, ool abroefght)himnopqgrHTONOE
il e Lack ppie D cand bl hei eyl Wt brocfghijhimnopqr s TODOIOE
ﬁ“:.t"““’:‘:&‘:;i"ﬁ";,’.".’.‘:.‘,’,‘: E:"m.,..c"‘.,'.;.’!"a'l';.,.mlurm;'umm’ Icde ? a :1 i) : :nm opqrs rlaglnl.;g
e T R T T T DcfGhi)himnapqrstnoIDE
e et ounve. thinks you'rs emific.” Look people n the cfghtihimnopqretuowg

SEEe e g e e : ey Be thefiest tosay, “Hello.” Use the good ‘ al Bl 3
s AN — o ghijhlmnopgre ruvwy
Tpeus axs ghirjhlmnopgrertuvwe
3 e i s 111kl

i Bt R A A1

Figure 6-11: Two specimens created by FontBook v.4.4. The fonts shown here are among the
most admirable reconstructions of historic fonts, with a simulated effect of the bleeding of ink:
Historical Fell Type and Historical English Textura, by Jonathan Hoefler.

Font Servers

The two major font managers FontAgent and Suitcase Fusion are also available in a
client-server version. The aim to is centralize font management at the level of a local
network by using one machine as the server and installing clients (which are simply the
regular versions of the two programs) on each machine.

Suitcase Server runs on Mac OS X and Windows NT, 2000, or XP, while FontAgent Pro Server
runs only under Mac OS X. Both manage users (by arranging them into workgroups and
assigning individual permissions to them) as well as fonts (by classifying them into sets
in the style of their clients). Authorized users may place fonts on the server from their
client station by simply dragging and dropping icons. In fact, servers can be administered
from any client station; the administrator’s password is all that is required. That approach
allows us to place the server’s machine where it ought to be—i.e., in a locked cabinet—
and to manage the software from any station, an ideal solution for small workgroups in
which users take turns serving as the administrator.

A feature of Suitcase Server that is very attractive to foundries is control over licenses.
Simply specify to Suitcase Server the type of rights that have been purchased for each

Tools for Font Conversion 205

font’(e.g., the number of simultaneous user stations), and the software will alert the
administrator if the maximum number of users is exceeded. The documentation does
not state whether Suitcase Server sends a message at the same time to the foundry and
the nearest police station. Joking aside, this feature allows professionals in printing and
the graphic arts to obey the law without much worry.

Note that when a client connects to a server in order to use a font, the font is copied onto
the client’s hard disk. That approach is not really consistent with the general principles
of client-server architecture: why not directly use the copy of the font that resides on
the server? There are two possible answers to that question. First, as we have already
observed several times, fonts are fragile objects that are threatened by system crashes
(although crashes are not supposed to occur under Mac OS X!). By maintaining a clean,
fresh copy, we can always rapidly clean up the mess left by a crash, without risk of mistak-
ing the font for another one with the same name. The second reason (drawn from the
commercial literature of both servers) is that the network could also go down; in that
case, if no copy of the font were available locally on the disk, the user would find himself
out of service, even for the documents on which he was currently working. Is that really
a valid argument in favor of copying the files onto the client’s machine, or just a feeble
excuse? Let the reader decide.

Tools for Font Conversion

Today we are more and more in the habit of using multiple operating systems: Mac OS 9,
Mac OS X, Windows, Linux, PalmOS, Symbian, etc. These systems do not always use
the same font formats; therefore, we must be able to convert our fonts so that we can
use them on more than one system. Conversion can be trivial or complicated. Moving
from the Macintosh PostScript format to PFB is trivial: practically nothing is involved
other than reading the PostScript code in the POST resource and writing it out to a file.
Converting a TrueType font to PostScript or vice versa is much less trivial: the types of
contours change between cubic and quadratic Bézier curves; the techniques for optimiz-
ing the rendering are fundamentally different; the means of encoding the glyphs are not
the same.

Thus it is hardly surprising that there is a dearth of tools for converting fonts on the
market; after all, it is a very thorny task.

TransType Pro

The company FontLab offers the only really solid tool: TransType Pro {139]. What could
be more natural than to take a part of FontLab’s code and transform it into a powerful,
easy-to-use conversion utility?

TransType Pro can perform all possible and imaginable conversions among TrueType,
PostScript Type 1, Multiple Master and OpenType/CFF fonts—from Mac to Mac, or from

5> Unfortunately, this is not handled automatically for PostScript fonts because there is no standard way
to provide the information within each font. The problem has, however, been corrected in TrueType fonts, in
which the table 05/2 contains these data (§D.4.7).

206 Chapter 6 : Font Management on the Macintosh

"Dee TransType Pro 3.0.2 i
‘Source fonts Destination fonts:
& Hist.. Historical-Fell. ¢ =37 @ HIS.. Historical-Cre .. [r
1@ Hist.. Historical-Fell . b =} @ HIS.. Historical-Fell.. b [}
\@ Hist... Historical-Fell .. ':)m (@ HIS... Historical-Fell... ¢ =)
w4 DS-Nor... DS Y [+@ Ds DS s Iy
[_DS—Normal—Fr A [_ DS-MNermal-Fr B

¥ Preview

The cFuid)f broton fojdy jumpj over the lazft dog

¥ Legend

File ‘DSMorFra' is a Macintosh Type 1 font This s a Windows Type 1 font 'DS' (Flain)
DS-Normal-Fraktur® Cfont family ‘DS This font will be conver ted with FontLab comversion engine.
The style is Plain

Current encoding is specified by Adobe Standard names.

+ = 'x '@ '

Figure 6-12: The main window of TransType Pro.

Mac to PC, or from PC to Mac, or from PC to PC. When the target is a Macintosh font
suitcase, the program automatically assembles the fonts of the same family. When it
converts a Multiple Master font to an ordinary font, it can create any desired instance.
When it converts an OpenType or an AAT font between the Macintosh and Windows, it
preserves the advanced typographic tables.

The most interesting feature of TransType Pro is indisputably its batch processing of
fonts. You have a CD-ROM full of fonts in PFB format that you would like to use under
Mac OS X? All that you need to do is drag the disk’s image and drop it onto the left-hand
zone of TransType Pro’s window. The fonts will then appear, and, at the same time, on the
right-hand side of the window, we shall see the list of Macintosh font suitcases that the
software is planning to create. We can modify our font-conversion preferences separately
for each font or for several, even all of them, at a time. The names of Macintosh families
can be manually edited. When we click on the button with the spiral-shaped icon, all
of the fonts will be converted, with no other action on our part than the choice of the
target folder. A real godsend when we have thousands of fonts to convert.

dfontifier

This little utility {121} fulfills a role that TransType overlooked: converting a Macintosh
font suitcase to a dfont file and vice versa. We drag and drop fonts onto the window in
order to convert from one format to the other: it is simple, useful, and, moreover, free.

Tools for Font Conversion 207

FontFlasher, the “Kobayashi Maru” of Fonts

According to the company FontLab, the purpose of this software, which in fact is a plug-
in for FontLab, is to produce bitmap fonts that can be displayed under Macromedia Flash
without anti-aliasing. The intention is praiseworthy: it is true that bitmap fonts at small
sizes are more legible when they are displayed with simple black-and-white pixels rather
than with levels of gray.

But how can we control the display on a given machine? How can we be sure that anti-
aliasing will not be performed? It is, a priori, impossible to be sure. The computer always
has the last word.

The reader must surely be wondering why we have called this software a “kobayashi
maru”. The story [128] has it that Captain James Kirk had to take a final test in a flight
simulator in order to obtain his diploma. On this test, the Enterprise received a call for
help from a vessel called Kobayashi Maru (the word “maru”, in fact, is used after ship
names in Japanese) in the Klingon territories. The captain was morally obliged to go to
the aid of the vessel. But the request was a trap. The Klingons attacked the Enterprise and
destroyed it. End of test. And an inevitable outcome, because refusing to assist a vessel
in distress would have been an equally bad solution.

That is why “kobayashi maru” has come to denote, in hacker jargon, a no-win situation.

What, then, did our Captain Kirk do? The night before the test, he broke into the com-
puter room and modified the program. The Kobayashi Maru was not a trap any longer. In
a word, he cheated. But one has the right to cheat when a vessel and its crew are at risk.

What does that have to do with FontFlasher? Well, here we find ourselves in a kobayashi
maru: how on earth can we force the operating system not to anti-alias a font?

By cheating. If the operating system anti-aliases all fonts, let us give it a font that it will
not have to anti-alias. And the only font that it will not anti-alias is a font that already
has the precise shape of the pixels. If the pixels on the screen correspond with absolute
precision to the font’s vector contours, there will be nothing to anti-alias.

This is precisely what FontFlasher does. It generates a vector contour that is identical to
the pixels. At the given size, this contour yields a perfect “bitmap” font—which, at any
other size, is a catastrophe.

Given so many ways to obtain bitmap fonts once again, as in the good old days of Mac-
intosh System 4.3, we may well ask the question:

What is more readible, this vector font with anfi-aliasing
of this simulation of bitmeg kont with pisels given by cutine 58

The image above is a screenshot of text in 11-point Futura and in Futura processed by
FontFlasher. Here is what we get at high resolution:

208 Chapter 6 : Font Management on the Macintosh

What is more readible, this vector font with anti-aliasing

ar this simuktion of bitmap font with pizels given by outlines2

(Note that we have not manually retouched the glyphs of the processed font; we have
shown the raw rendering.) And here, under FontLab, is the raw output of FontFlasher,
in which each pixel is a vector-drawn square; at right, the same glyph after retouching
and merger of the squares:

In the background, we can see the vector contour of the glyph in the original font.

Font Management

under Windows

Our concern in this chapter will be the installation and management of fonts under
Windows 2000 and XP. These procedures are similar in many ways to their Macintosh
counterparts, for several reasons: most of the most common software packages, be they
for office automation or artistic design, have been ported from one platform to the other
(from Windows to the Macintosh, in the case of office automation; from the Macintosh
to Windows, in the case of desktop publishing and the graphic arts). Why should the
same not apply to ancillary resources—in particular, fonts?

Fichier ~ Edition Affichage Faworis Outils ?
Précédente 7
Adresse || 2 C:\WINDOWS|Fants

a a

1530Garamond 1530Garamond aharoni Bold

Iealic Raoman
»
A & 5§
Angsana New

Angsana New Angsana Mew
Ikalic

Bold Bold Italic
& & A
Arabic

AngsanalPC Arabic
Italic Transparent Transpar...

? Py) Rechercher

o)

Blgerian

]

AngsanalPC

0|

Arahic
Typesetti,.,

& Fonts E\EEI

Dassiers El El El

B kS
= ~
il :

Angsana Mew
s
)

AngsanallPC
Bold Ikalic

ol

Arial Black

)

Andalus

)

AngsanallPC
ol

0|

Arial

Figure 7-1: The Fonts directory in Windows XP

Installing fonts under Windows is as easy as installing them under Mac OS: one need
only go into the Control Panel and open the shortcut to the Fonts directory, which,

209

210 Chapter 7 : Font Management under Windows

in fact, points to the directory c:\winnt\fonts, where all the fonts are stored. In Figure 7-1,
we see a screenshot of this directory under Windows XP. It is a very special type of di-
rectory, as the names of the icons are not filenames but rather the names of fonts in
Windows.

Among the icons seen in that window, several are marked with a red uppercase letter ‘A’.
These are bitmap fonts (with the extension .fon). In some cases (such as the Modern,
Roman, and Script fonts), they may be vector fonts in an arcane format called vector fonts
that is as old as the hills. It is a format that versions 1 and 2 of Windows used, much
like that of CAD systems such as AutoCAD, in which glyphs are built up of strokes, not
of filled-in shapes. These fonts are vestiges of the distant past that are condemned to
extinction.

The fonts whose icon bears a double ‘T’ are TrueType fonts, whose extension is .ttf.
Those whose icon contains an ‘O’ are usually OpenType fonts, but they may also be
simple TrueType fonts. Indeed, Microsoft meant for the extension .ttf to be used for
OpenType-TTF fonts and .otf for OpenType-CFF fonts; since one extension is clearly
insufficient for distinguishing TrueType fonts from OpenType-TTE, we may get the im-
pression that the system assigns the icons at random.

The icons that contain a lowercase ‘a’ correspond to Type 1 PostScript fonts. Just as on
the Macintosh, here two files are required for each PostScript font: a file of font metrics,
whose extension is . pfm (= PostScript font metrics), and a file containing PostScript code,
whose extension is . ptb (= PostScript font binary, as opposed to . pfa = PostScript font ASCII,
which is most commonly found on Unix). The font-metrics file contains the information
needed by Windows, such as the Windows name, the widths of the characters, and the
kerning pairs, but also the font’s PostScript name.

As on the Macintosh, a PostScript or TrueType font may exist in as many as four styles:
“regular”, “bold”, “italic”, and “bold italic”.! But unlike the Macintosh, here styles are not
assembled in a single file: each style is contained in a file of its own. To avoid creating an
excessively large number of icons for fonts, the Fonts window allows us to display only
one icon per “font family”, i.e., those that differ only in style: go to the View menu and
click on Hide Variations (Bold, Italic, etc.).

To install fonts, we can select Install New Font... under the File menu in the Fonts
window. The dialog box that appears displays a list of all the fonts contained in a given
directory. Once again, these are names of fonts that are displayed, not filenames—a very
practical outcome, because the filenames of Windows fonts, thanks to the former restric-
tion of filenames to eight letters, are often quite cryptic, as, for example, bm Atf
for the splendid font Bembo. Next to the filename is the type of the file. At the lower right
part of the window is the checkbox Copy fonts to Fonts folder. This checkbox allows
us to choose between copying fonts into the c:\winnt\fonts folder and simply making
a reference to the existing files. In the latter case, only a link to the font in question is

1 In addition, this “style” of the font is stored in a variable in the table head that is called macStyle. But
in the table 05/2 there is another variable: fsSelection, which may also take the values “underscored”, “nega-

tive” (white on black), “contour”, “strikethrough”, and all their combinations. The specification gives rules for
compatibility between macStyle and fsSelection.

211

B Ajout de polices X

X

I

Lizte des polices : :
5 oramordiC [ype] '
130G aramondSC (Type 1) AR
1530GaramondTT [Type 1]

|

Diossiers

c:h.N1530 garamond Lecteurs
B e i ‘ Hco Vl [Fiéseau...

[£= Documents and Set
[Al Users
(= Documents

= 1530 Garamond

Copier les polices dans le dossier des polices

Figure 7-2: Dialog box for installing fonts.

created; these are the icons that have a little arrow at the lower left. Note that this link
is not an ordinary file: if we run dir at the Windows command prompt, these “links” do
not appear among the files.

Fichier ~ Edition Affichage Faworis Outils ? o
A i
w5 < Y) s

@ Précédente <) ? / Rechercher Dossiers El ‘ E El

Acresse |2 CHWINDOWSIFonts | @ ox
Lister les palices selon lew ressemblance & :

Hom Ressemblance avec Palating Linatype e
Q] Eiook Antiqua Trés similaire § -

@ Geargia Trés similaire

|@ High Tower Text Trés similaire

;9] Lucida Bright Tres similaire

.Q] Palating Linotype Trés similaire

;ﬂ Angsana New Assez similaire

|_‘lj Angsana Mew Bold Assez similgire

.}‘] AngsanalPC Assez similsire

,ﬂ AngsanalPC Bold Assez similaire

0| Easkerville Old Face Assez similaire bs
— S

Figure 7-3: List of fonts “by similarity”.

Also note that the View menu in this window has one very special entry: List Fonts By
Similarity. In this case, the Panose-1 classification of the fonts is used to categorize them
according to their similarity to a given font. We shall examine the Panose-1 classification
in Chapter 11 of this book. For the moment, let us simply say that Panose-1 allows us to
classify fonts according to their design in a 10-dimensional space; “similarity” is nothing
but the distance between two points in this space, points that represent two fonts. In
Figure 7-3, we can see the classification of fonts by their similarity to the font Linotype
Palatino; we discover that there are two fonts that are “very similar” to it, namely Georgia
and the font itself. Conversely, Times New Roman is merely “fairly similar” to Linotype
Palatino, and Arial is “not similar”. Nonetheless, the Panose-1 classification may be very
useful on the Web, as we shall see in the chapter dedicated to this subject (page 327). The
CSS specification incorporates the Panose description; thus the developer of a Web site

212 Chapter 7 : Font Management under Windows

can add Panose characteristics to the explicit names of the fonts. The client’s system will
then be able to display the text in the font that is the most similar to the one requested.

Active fonts on Windows are exposed just as much to the risk of system crashes as they
are on the Macintosh, since they are files that are permanently kept open. Therefore we
are wise to verify our font files on a regular basis, to optimize their use by opening them
only when they are needed, and to take other protective measures. Next we shall present
a few tools for managing fonts under Windows.

Tools for Managing Fonts
The Extension of Font Properties

Let us begin with a tool that should ideally be part of the operating system. It is a little
utility called ttfext {257] that Microsoft provides free of charge. It is launched every time
we ask to see the properties of a TrueType or OpenType font. Its interface takes the form
of a window with tabs. It includes the classic General tab (which is also the only way to
determine the name of a given font) and adds nine others:

S i S i
Propriétes de pala. TTF gl Propriétes de pala. TTF gl
Général | Embedding || CharSet/Unicode | Yersion | Hinting/Font Smoathing Général | Embedding || CharSet/Unicode | Yersion | Hinting/Font Smoathing
Mames Features Liks Description Licerse Résumé Mames Features Liks Descripticr Licerse Résumé

Standard Features Description
Palating Linotype contains 1328 ghyphs and 148 A Palatino Linokype is the definitive new version of Hermann
standard kern pairs, see below For OpenType kern pair Zapf's Palating, which since its designin 1950 has become
infarmation, This Font does not include embedded one of the world's most widely used bypefaces, For this
bitmaps. There is a glyph mapped to Unicode® position new digital version, Professor Zapf has drawin numerous
204, suggesting that this Font contains & euro B additional characters toinclude an extensive range of
- ligatures, numerals, fractions and support: For Cyrillic and
both monotonic and polytonic Greek. Special care has
been taken to enhance the quality of the letterfarms
OpenType Features when displayed on the computer screen, ensuring that
Palating Linokype is highly legible whether displayed on
AT] the screen ar in print. This kypeface is ideal For use in
St extended text settings such as books, periodicals and
- Cyrillic {cyrl) Script catalogs.
- Greek fgrek) Script
=1 Lakin {latr) Script
=1 Default Language System Font Designer
Alternative Fractions (afrc) Feature - Hermann Zapf
L N
Above shows supported Scripts, Language Systems and
Features in GSUB andfor GPOS OpenType Layout tables,

Figure 7-4: Two tabs of the Properties window of the font Linotype Palatino. Left: OpenType
properties. Right: a general description of the font.

e Embedding: can the font in question be embedded in a document? There are four
possibilities: Installable embedding allowed (the font can be embedded in a document
and can even be installed on the client’s system), Editable embedding allowed (the font

Tools for Managing Fonts 213

can be embedded in a document and can be used to edit text, but it can be only tem-
porarily installed on the client’s machine), Print ¢> Preview embedding allowed (the
font can be embedded in a document but can be used only for display and printing,
and it may be only temporarily installed), and Restricted license embedding (the font
may not be embedded in a document).

o CharSet/Unicode: what is the font’s default encoding? Which Unicode zones does the
font cover? Which other encodings are compatible with the font?

e Version, which also includes the date when the file was created and the date when it
was last modified.

e Hinting/Font Smoothing: does the font contain hinting, and at which point size should
the system begin to smooth the font through the use of pixels at different levels of
gray? A setting of the type O+ means “starting from 0 points”, i.e., at all sizes.

e Names: what are the names of the font, its font family, and its vendor? What are its
copyright and trademark?

e Features: a description of the font’s OpenType properties—for example, how many
glyphs it contains, whether it contains bitmaps, whether it contains a glyph for the
euro sign, whether it is a TTF or a CFF font—and a list of the scripts, languages, and
GSUB and GPOS tables covered by the font.

e Links: hypertext links pertaining to the foundry, the font’s designer, and the web site
of Microsoft’s typography department.

e Description: a document describing the font and its history and also providing the
name of its designer.

e License: a tab devoted to royalties, with a hypertext link to the full document that
describes them.

This tool provides easy access to the information that otherwise would have necessitated
converting the font into data readable by TTX or opening it with font-editing software
such as FontLab or FontForge. In both cases, we would need a good knowledge of the
tools and of the OpenType format in order to recover the information. The only negative
point about this tool: it abandons us altogether when the font is of PostScript Type 1.

Tools for Verification and Maintenance

The fact that operating systems crash is a law of Mother Nature. Since we cannot prevent
crashes, we should try to limit the extent of the damage by detecting corrupted fonts as
quickly as possible, before they cause new crashes themselves. On the other hand, when
we collect fonts from a wide variety of places, it may well happen that several fonts with
the same name will be open at the same time. That may also cause problems, especially if
the fonts are in differents formats. This situation frequently arises, since most foundries

214 Chapter 7 : Font Management under Windows

4 FontAgent
File Help

— FontAgent Optimization Results
Settings | Optimize fonts and keep

Exceptions

Find fonts in:

= File errors [D) ~

ﬂ CAWINDOWS Fonts Al tests passed successtullyl
= Corupt fonts (1]
ﬂ SimHei [TrueType]

- Duplicate fonts [0]
Al tests passed successhull!
= Unmatched fonts [0)

el il e Al tests passed successfully!

W Orly keep one file format: - Good fonts [217)
Drag to change order Aharoni Bold [TrusType]
Keep the Type 1 fort [Algetian (TrueTvpe)
Keep the TiueT ype font ¥ &ndalus [TueT pps)
F.eep the DpenType font [¥&ngsana Mew (TrueType]

EAngsana Mew Bold [TrueType]

v Rename files with font's nam [¥Angsana Mew Bold ltalic [TrueT ype]

e Plickiforaddiional [¥£ngsana Mew [talic [TiueT ppe) v
Q o
¥ Details Cancel | Repair & Organize

&haroni Bold was verified in C:3WINDOWSSFONT S ahonbd. .

I Help

Figure 7-5: Interface for configuring FontAgent, v.8.8.

simultaneously release their fonts in both traditional formats: PostScript Type 1 and
TrueType.

Fortunately, there are tools for detecting both corrupted fonts and duplicates. One such
tool is FontAgent, by Insider Software [189]. This program can do all of the following:

e Detecting and eliminating duplicates. We can specify whether we prefer the True-
Type version or the PostScript Type 1 version. We can also retain fonts with the same
name if they come from different foundries.

e Detecting “orphaned” PostScript fonts (a . pfb without a . pfm or vice versa). Unlike
Font Doctor (under Mac OS), this program does not perform a “family reunion™
when it finds a . pfb and its corresponding . pfmin different folders, it does not place
them in the same directory.

e Gathering fonts into a folder or a tree structure of folders organized by the first letter
of the font—or even a separate folder for each font (and these folders can bear a suffix
for the font format: “tt” or “t1”, for TrueType fonts and Type 1 fonts, respectively;
OpenType is not supported). We can also ask that only the strict minimum be left
in the Fonts system folder.

e Renaming font files. We can give them the name of the font itself (instead of a hor-
rible abbreviation, as often occurs because of the restrictions on the length of file-
names under MS-DOS). Of course, that assumes that the files are very well organized,
because we have even more chances to end up with duplicates.

e Removing corrupted files or duplicates by placing them in a special folder.

Tools for Managing Fonts 215

It is strongly recommended that the user save backups of all fonts before using Font-
Agent, since improper handling cannot be ruled out.

ATM: the “Smoother” of Fonts

Since Windows 2000, the smoothing of PostScript Type 1 glyphs has been performed
by the operating system, and Adobe Type Manager (ATM, whose Macintosh version we
described on page 196) is, in principle, no longer necessary. Indeed, when we install it un-
der Windows 2000 or XP, its configuration interface offers the choice of only two folders
containing PostScript font files: one folder for .pfb and .otf files containing PostScript
code for Type 1 fonts and OpenType-CFF fonts, and one folder for .pfmand . mmm files con-
taining Windows font metrics for Type 1 and Multiple Master fonts. (It should be noted
that Vista is not compatible with Adobe Type Manager.)

Adobe Type Manager |:“§||ZJ
File Help

Fonts] Settings

LDestination
Tt Fepletit)
¢ KepleMb, lalic Multiple Maszter Base Font:

[Kepleh [PFB]

Souree: [Create Muliple Masters

L

If you can dream it, you can do it

B — = |4

I~ Bold W ltalic
Weight |
e
Wwidth |
OpticalSize J{

(€2 KeplehM_248 ot 350 wd 34 0p, lalic

Add |

Bemave] Add All Styles I Primaries...

Figure 7-6: The interface for creating instances of Multiple Master fonts.

There is, however, a valid reason to install ATM under Windows 2000 or XP: it allows us
to create Multiple Master instances. The procedure is as follows (see Figure 7-6). When
we select a Multiple Master font, the different axes of variation are displayed in the form
of sliders. We can thus choose one value for each axis with the use of a little sample of text
that is transformed on the fly. Once we have chosen the values that we desire, we click
on Add, and a .pfm file representing this instance of the Multiple Master font is created
in the folder c:\psfonts\pfm, which is used by ATM only. At the same time, a link to this
file is created in the Fonts system folder.

Once the new instances have been created under ATM, they are available for use by all
applications. We can recognize them by the underscore character that separates the name
of the file from the values of the parameters. Thus in Figure 7-7 we are using the instance

216 Chapter 7 : Font Management under Windows

Document - WordPad

Fichier Edition Affichage Insertion Format ?

D SR # L =B B '

-iKepIeMM_ddﬁwt?.EDde}d v|.i?2 v|‘|DccwdantaI v|. e 7 8 2 |

enf| |

Ain't that a nice font?

Figure 7-7: Using Multiple Master font instances under WordPad.

bold 435, width 350, optical size 68 of the font Kepler MM Swash in the application
WordPad.

Note that we can also use Multiple Master fonts like ordinary Type 1 fonts under Win-
dows 2000/XP, without going through the step of creating an instance; but in that case
we have access only to the default instance of each font.

Font Managers

We have seen how to solve the problem of corrupted and duplicate fonts and also how to
create Multiple Master font instances. The remaining question is how to manage active
fonts: how to find a practical method for enabling and disabling fonts without going
through the Fonts system folder—automatically, if possible, when we open a document
that requires a certain number of fonts that are available on the system but not neces-
sarily enabled. And if we have a large number of fonts, we also need a practical system
for selecting the correct font (which implies creating catalogs of type specimens) and for
finding the corresponding files (which implies a database containing references to all the
fonts in our possession).

All these tasks are performed by font managers. Just as under Mac OS, there are two very
highly developed font managers and a number of tools that, while less sophisticated, may
be shareware or even freeware. The two “big” font managers are Font Reserve (Figure 7-8)
{119} and Suitcase (Figure 7-9) [132]}—Dboth from Extensis, now that Extensis has acquired
DiamondSoft, the company that produced Font Reserve.

In both cases, we select individual fonts or entire directories to be analyzed by the pro-
gram, which will display them in the bottom part of the interface. Font Reserve enables
us to personalize the information displayed for each font; Suitcase, however, displays
only the name, the type, and the foundry. In both programs, we can create “sets” of fonts
in the top part of the window and add fonts to those sets by dragging them up from
the bottom part of the window or directly from a disk. We can thus enable or disable
individual fonts or families or sets of fonts by clicking on the button in the leftmost col-
umn. There are three possible states: disabled, temporarily enabled (until the computer
is rebooted or another font with the same name is enabled), and permanently enabled.

Tools for Managing Fonts 217

‘s Font Reserve B@@

Filz Edit Wiew MyFonts.com Help
® 6 f X 8 2 $ Fo
Perm Temp Deact New Set Delete Print Find MyFonts Purchase R l.rt4
Fonts & Sets | Explore] S
) Sets
®] Activated by Others
® &1 System Fants
Fonts |alForts >
€| Name | Kind | Foundiy [Class | Family Al
@ ¥ 15306 aramond PostScript Type 1 Tiro Typewarks - 1530G aramand
© (Z 1530Garamand, Italic PostScript Type 1 Tiro Typewnrks : 1530G aramond
O (Z 1530GaramandsC FostScript Type 1 Tira Typevorks - 1530G aramondSC
O (¥ 1530GaramondT T PostScript Type 1 Tiro Typewarks - 1530G aramondTT
® 47 &haroni, Bold TrueType Monatype - Aharoni
® I7 dlgerian TrueType Type Solutions Omamental Algenan
® &7 Andalus TrueTupe Monotype - Lindalus
® 4T sngsana New TrueType Monatype - Angsana Mew
® J7 éngsana New, Bold TrueType Monotype = Afingsana Mew
® 4T &ngsana New, Bold ltalic TrueType Monotupe - Angsana Mew
& 4T sngsana New, Italic TrueType Monatype & Angsana Mew
® I7 sngsanallPC TrueType Monotype - AngsanallPC
® &7 éngsanallPC, Bold TrueTupe Monotype - ALngsanslIPC v
£ >
271 font(s]

Figure 7-8: Font Reserve v.2.6.5.

For displaying font specimens, Suitcase has a vertical area that is permanently left open
and that can be customized; Font Reserve, on the other hand, displays a few glyphs when
one clicks on a font’s icon in the list of fonts and keeps the mouse button held down.
Both programs can display a certain amount of general information about a font. Font
Reserve also offers a rather powerful interface for searching for fonts (see Figure 7-10),
which can be quite useful when one needs to find one font among thousands.

The reader must surely have noticed that the Windows versions of these two programs
are, despite a handful of similarities, recognizably inferior to their Mac OS counterparts.
In particular, neither Suitcase nor Font Reserve supports the generation of catalogs of
font specimens.

Thus we have good reason to examine some tools other than these two font managers
inherited from the Macintosh. In fact, there is a profusion of such font managers (share-
ware or freeware), the most interesting of which is certainly Typograf (Figure 7-11) {278],
written by two Germans, the Neuber brothers.

Typograf supports, of course, the fundamental operations: viewing in various ways the in-
stalled fonts and fonts contained in various directories, as well as enabling and disabling
these fonts. It has a database that we can build up by searching through directories or
even entire CD-ROMs.

For each font, it presents an impressive range of information. We can read a very de-
tailed description of the TrueType tables (Figure 7-11), view all the kerning pairs in the
font (using the font’s own glyphs), compare a certain number of fonts by viewing their

218 Chapter 7 : Font Management under Windows

Fichier Edition Affichage Outils Serveur Aide
- =
=06 .9
Ensembles Zensembles, 0 ééments sélectionnés |ABE 123 ﬂ | 14 poits ﬂl

‘ Enzemble dz polices A ‘ Mombred/Type | e ok A~

Gﬁaramund 0 polices e m
. B0 e e ABCDEFGHIJKLMNOPQRS...

p . . abcdefghijkimnopqrstuvw...
= " 123456 7890MaHS % & ()
Palices 196 polices, B sélectionnées Arial Narrow. .- : J : :

Ber i £zl ez 2 | ABCDEFGHIJKLMNOPQRSTUVWXYZ
w | Arabic Transparent TrueType = e
w T Arabic Transparent, Bold TrueTupe athefghuklmnoquStuW
w O Arial Black, Narmal OpenType 1234557390|@#$%n&*0
w O iial Narow, Gras OpenType Ari: " Graz Ital A
W O Aial Namow, Gras ltalique OpenType 2 e
w O Avial Narrow, Italique OpenType ABCDEFGHUKLMNOPQRSTUW
W O aial Namow, Nomal OpenType abedefghijidmnopgrstuvwxyz
W O sl Nomal OpenTupe 1234557390!@5%11&*0
w () Baskervile 0ld Face, Nomal OpenType S
w €} Bauhaus 33, Momal OpenType (EVTIALIS DR
W O BellMT, Gras OpenType ABCDEFGHIKLMNOPQRSTUVIXYZ
w £ DAl RIT Dholimin M T imn A o
< i 5 abcdefghikimnopgrsturwxyz @

Figure 7-9: Suitcase v.9.2.2.

Custom Find

Select Font Athibutes:

Kind:

Class: [Chasses) =l
Foundry: I (&0 Foundries) j
Activation Status: |[A\I Aclivation Statuses) ;i

Font Mame Text:

Containing: | j

Figure 7-10: The font-search interface in Font Reserve v.2.6.5.

properties side by side, and print out specimens of one or more fonts by using any of a
dozen different models, whose text can be customized. It also supports classification of
fonts and searching for fonts according to their Panose data or their “IBM class”.

Font Servers

Suitcase Server, described in the section on Mac OS (page 204), also runs under Win-
dows NT, 2000, and XP. Font servers can be very useful for fonts in the case of; for ex-
ample, a team that has a large collection of fonts. They provide rapid searching through
the collection, immediate access to the selected font, and verification of compliance with
the law, if the number of licenses purchased for each font is specified. Their only disad-
vantage is that their prices are often prohibitive.

Tools for Font Conversion 219

< Lucida Bright: © 1991 Bigelow & Holmes Inc. Pat. Des. 289,421. All Rights Reserved...

EEX

File Fonts Typography View Help

\zl' 'c “progran filesitypograft, | @~

i Properties of Lucida Bright

‘ B LiyUPC Sample Text ABC abc 012 6or=al | Metie | Kerig | Chare

File data | &
chwindows\fonts\LBRITE TTF
‘ T LilyUPC Bold Sample Text ABC a Date: mercredi 27 octohre 1998
Time 10:26:36
T LiiyUPC Boid itailc Sample Text 4|57 Rl e

Windows metric data

IBM font class: Transitional Serifs
I LayUPC italic Sample Text ABC abc 4 Font sunciass: No Classiication

vendor Mame: Bigelow & Holmes
Lucida Brigh |17§¢

Lucida Eright

& Lucida Bright Demib

Licence: The fontis licensed. Licensed fonts may not be
maodified or exchanged

Panose classification

" A N Farnily Type : Text and display
Tt Lucida Bright Demibd seirstie: Syuare cove
‘igight hedium
> I 3; Proportion : Old Style
T Lucida Bright Italic Sal| censs: Wedium jow
Stroke Wariation: Gradualihorizantal
& Arm Style Straight armsisingle-serit
Letter form : Marmalicontact
Midline Style : Standardipointed

H-Height : Constantlarge

Figure 7-11: The main interface and window for the properties of the font Arial, in Typograf
v.4.8f.

Tools for Font Conversion

We have already described several tools for font conversion in the chapter on Mac OS.
Among them, TransType Pro and FontFlasher also exist in Windows versions that are iden-
tical to their Macintosh versions in every detail. The reader is therefore referred back to
their descriptions under Mac OS X on pages 205 through 208 of this book.

There is, however, a competitor to TransType Pro: CrossFont, by the American company
Acute Systems, whose specialty is the conversion of data between the PC and the Mac-
intosh.

CrossFont (Figure 7-13) offers almost the same features as TransType Pro for a fraction of
the price. It even goes further than TransType Pro, as it can also manage the dfont format
of the Macintosh and can generate missing files, such as the PFM file, when a font comes
from a Unix environment, or the AFM file, when we need kerning pairs for TgX, etc. One
very interesting property: it collects the kerning pairs from any available AFM files and
integrates them into the fonts generated during conversion.

But it also has its drawbacks: we cannot view the glyphs in a font to confirm that no glyph
was overlooked or incorrectly encoded, and Multiple Master fonts are not supported.

Both programs (TransType and CrossFont) are available in a demo version that is re-
stricted only in the number of days for which it can be used. Thus one can test out their
full functionality before deciding which one to buy.

220

Chapter 7 : Font Management under Windows

Kepler MM Roman

o| Keplrr, PFE

eaje]

Destination Filefresou...

H (4

Family font name

M

= Preview

The quick brown fox jumps over the lazy dog

+ Legend

PC MM Type 1 font stored as a set of files with the "PFE" File: "C:
\PSFOMTS\KeplMMIE PFE"

The style is Ikalic,

TransType will use character names ko detect encoding

Font's Farnily is Kepler MM and its Full name is 'Kepler MM Tkalic',

This Mac Suitcase will be saved as MacBinary File: "Kepler M
The Font will be converted ko MacOs Roman encoding.

The Font's script is Roman

Farily is 'Kepler MM

B Macio [Python is nat inctalled)

File Edit

Help

5| L@ | 9

Corwert fram:

Corwvert to:

@J DFOMT.FFILHil - Mac TrueType Fort
@ LwFN - Mac PS Type 1 Font

@ FFE -PCPS Type 1 Font

E| AFM - ASCI Font Metic

=] PFA-A5CH PS Type 1 Font

ﬂ TTF - PC TrueT ype Font

Select font files to corwert:

@ tfil - Mac TiueType Individual Font
O @ FFIL - Mac TrueType Fort Suitcase

Output Folder:

Font M ame | Fant File | ol
Agency FB AGENCYR.TTF T
Agency FB Bold AGENCYB.TTF
Aharoni Bold ahronbd it
Algerian ALGER.TTF
! El
AngzanalJPC Bald ANGSAUB.TTF
AngsanalPC Bold ltalic AMGSAUZTTF

Figure 7-13: The interface of CrossFont v.4.1 under Windows XP.

Font Management
under X Window

Now that we have examined Mac OS and Windows (which are strikingly similar in the
area of fonts), let us move on to Unix, an operating system that used to be largely re-
stricted to industry and universities but that is now becoming more and more popular,
thanks in particular to its free incarnations, such as Linux. While Mac OS 9 and Windows
do not separate the operating system from the windowing system, these two systems are
distinct in Mac OS X and Unix. The windowing system manages the operating system’s
graphical interface: windows, menus, dialog boxes, the mouse, etc. The windowing sys-
tem of Mac OS X is called Quartz; that of Unix, X Window (“Window” is singular, without
an ‘s’) or, among intimates, X11 or even simply X.

Special Characteristics of X Window

First, we must point out that the overall ergonomic approach of Unix is based on the
use of a terminal. This may seem to be a disadvantage to those who are accustomed to a
completely graphical interface, such as that of Mac OS 9; however, to those who like to
“retain control” over their machine, it is rather an advantage. In any event, with regard to
fonts, the terminal is clearly less demanding than a graphical application. In particular,
since we tend to use only one font size at a time on a terminal, it is not surprising that
our good old-fashioned bitmap fonts (in the formats PSE, BDF, and PCE, etc.; see §A.4)
are quite adequate for the terminal’s needs and that font management under X is based
almost entirely on bitmap fonts—at least until recent times, when vector fonts finally
made their debut under X.

221

222 Chapter 8 : Font Management under X Window

But let us be clear on one point: while Mac OS and Windows had only two or three
bitmap fonts—relics from their infancy—in only two or three point sizes and with no
attempt at grandeur, X provides a sophisticated system for font classification, with a sub-
stitution mechanism that keeps us from ever running short of fonts. This system is called
XLFD (an unpronounceable acronym that stands for X Logical Font Description), and we
shall describe it below.

As for the notorious fragility of fonts under Mac OS and Windows, it stemmed primarily
from the fact that the files in question were left continuously open by the operating
system. Under X we use a font server named xfs (X Font Server). This server is also a font
manager, as it is capable of invoking fonts from a multitude of directories, even on other
machines. Applications thus send requests to the server, indicating the specifications of
the font desired, and the server replies by sending the requested font if it is available
or else, thanks to the substitution mechanism, the font that is most similar to the one
requested. Alternatively, applications can request a list of available fonts from the server
by specifying the characteristics requested by the user, who may then make his choice
from the list returned and obtain a single font.

Logical Description of a Font under X

Here is the problem that X developers posed to themselves. A given application needs
a certain amount of information to select a font. This information may be commercial
(foundry name), graphical (family name, weight, style, set width, point size, resolution
{in the case of a bitmap font]), or technical (the encoding). Usually we expect to find this
information in the font, or in a file accompanying the font, for every font that we have.
If we have thousands of fonts on our system,! how can we avoid having to open them all
in order to collect this information?

The solution to these problems is to use a database containing the filenames and all this
other data, and that is what X does.

Next, these same developers set out to solve another problem, that of the classification
of fonts and interaction with the human user. It was necessary to create a syntax for de-
scribing fonts that would be both comprehensive (to cover all the information contained
in the database) and readable by a human (because a human, after all, had to select the
font). The solution that they devised is XLFD. It makes a number of compromises: XLFD
is not 100 percent comprehensive (and cannot be, since fonts exist in as much variety as
humans, if not even more) and also cannot be said to be staggeringly easy to use. But for
comprehensiveness we can always find a way to make do, and ease of use depends, at the
end of the day, on applications: after all, it is always possible to go through an ergonomic
and user-friendly user interface to interact with the font server and select a font.

1 Having merely installed Fedora (a rather popular Linux distribution) version 5, the author found him-
self with 2,464 (!) font files on his computer. But take note: under Unix, a font file contains only one point size
and in a single encoding. Conversely, under Mac OS and Windows, there are far fewer files, for two reasons:
first, the different point sizes of bitmaps are stored in the same file (and there is no need for them when the font
is a vector font); second, we often use not just one encoding but two: the standard encoding for the language
of the operating system and, if necessary, Unicode.

Logical Description of a Font under X 223

But let us first see how XLFD goes about classifying fonts {299, 138]. A font name, as de-
fined by XLFD, is a series of 14 strings encoded in ISO 8859-1 and separated by hyphens.
These strings may not contain hyphens, asterisks, question marks, commas, or double
quotation marks. Here is an example of one such font name:

-misc-fixed-medium-r-normal------ Cc--15010646-

We shall see below that we can replace individual values, or even groups of values, in this
syntax with wildcards. But first let us describe the 14 fields that make up a font name. Of
these fields, some are “textual” (abbreviated ‘T’), in the sense that their value, as part
of the traditional name of the font, is not standardized, and others are “standardized”
(abbreviated ‘S’), taking predefined values.

1. The foundry name (T, which must be registered with the X Consortium), or a key-
word such as misc, when the foundry is unknown or not registered, or when the
font is in the public domain. Unfortunately, this rule is not always observed, and
we come across fonts whose first field is arabic (the name of a script) or jis (the
name of an encoding).

2. The family name (T). Here we find the usual name of the font (times, helvetica,
courier, palatino, etc.). We also find, under Unix, a very special set of fonts, the
character-cell fonts.> These are bitmap fonts in which all the glyphs are drawn on a
cell of pixels whose size is fixed. So simple are the shapes of the glyphs that these
fonts, the poorest of the poor, make no claim to belong to a classic font family: they
are rather named according to the dimensions of the cell, and we are quite content
if they are legible; their classification is not a significant issue. For example, we have
fonts called 5x7, 5x8, 6x9, 6x10, etc., up to 12x24 pixels. Most of these “anonymous”
fonts are lumped under the name fixed.

3. The weight (T), expressed with the usual English terms: light, regular, book, demi
bold, bold, black, etc.

4. The slant (S): r (roman), i (italic), o (oblique), ri (reverse italic, or letters that lean
to the left in a left-to-right script and to the right in a right-to-left script), ro (reverse
oblique), ot (other).

5. The set width (T), expressed with the usual English terms: normal, condensed, narrow,
double wide, etc.

6. The style (T), expressed with the usual English terms: serif, sans serif, informal,
decorated, etc.

7. The pixel size (S). In the case of the character-cell fonts, this number corresponds to
the height of the cell.

2 Yet another example of terminological confusion between character and glyph.

224 Chapter 8 : Font Management under X Window

8. The point size (S), in tenths of an American printer’s point (the American printer’s
point being 1/72.27 of an inch). It is the “optical size”, i.e., the size that the font’s
creator had in mind when he designed the font.

9. The horizontal resolution (S) of the screen or the printer for which the font is intended.

10. The vertical resolution (S) of the screen or the printer. Unlike the screens of Mac OS or
Windows, those of Unix may have pixels that are not square. It is therefore necessary
to provide appropriately adapted fonts in order to avoid the “Cinemascope” effect.

11. The type of spacing (S): p (“proportional”) for variable-width fonts, m for monospaced
fonts, ¢ for character-cell fonts. The difference between a monospaced font and a
character-cell font is significant. In monospaced fonts, the offset between the glyph’s
point of origin and that of the following glyph remains unchanged; the glyph it-
self may lie partly or entirely outside the abstract box whose width corresponds to
this offset. In character-cell fonts, there is one additional property: the pixels of the
glyph, which are entirely contained within this abstract box. A character cell font is
monospaced a fortiori; the converse may not be true. Nonetheless, most monospaced
fonts (such as Courier or Computer Modern Typewriter) can be regarded as character-
cell fonts, since they simulate the output of the typewriter, which was a source of
inspiration for the character-cell fonts.

12. The average width (S), in tenths of a pixel. This is the arithmetic mean of the widths
of all the glyphs in the font. In the cases of monospaced and character-cell fonts, it is
the actual width of the glyphs.

13. The primary indicator of the encoding (S). Here, unfortunately, confusion reigns be-
tween encodings for characters and encodings for glyphs. We have, for example,
1508859 and 15010646 (encodings for characters) alongside adobe and dec (encod-
ings of glyphs). We specify fontspecific for a font with an arbitrary encoding (as,
for example, with fonts of symbols).

14. The secondary indicator of the encoding (S). In the case of the ISO 8859 family of en-
codings, this is the number of the encoding: 1, ..., 15. In the case of the encoding
ISO 10646 (Unicode’s twin sibling), this is 1 (we hope that no 2 will ever arise). In
all other cases, the value depends greatly on the primary indicator of the encoding
so that we can obtain, for example, adobe-standard, dec-dectech, koi8-ru, and so
forth.

Here are a few examples of XLFD font names and the corresponding samples:

1. -misc-fixed-medium-r-normal--20-140-100-100-c-100-1508859-1

ABCDEF GHIJKLMNOPQRSTUYKXYZ
abcdefghi jklmnopgrstuvuxyz
0123456789

Az cETBROUGARCETDROUY

Logical Description of a Font under X 225

This font is unnamed (because it is marked misc) and is a character-cell font (spacing
type c), with a cell size of 10x20, designed at an optical size of 14 points and for a
screen of 100 points per inch. Its encoding is ISO 8859-1.

2. -urw-palatino-medium-r-normal--12-120-75-75-p-0-is08859-2
ABCDERCHIFIMMNOPORSTUVWRYE
abedelg hijllmno pgrslsrangz

0123456780
régerdns A RCCEIBNOUY

The font Palatino from the foundry URW, designed at an optical size of 12 points
and for a screen of 75 points per inch. Since it is a vector font, its average width is 0.
Encoding: ISO 8859-2.

3. -b&h-lucidatypewriter-medium-r-normal-sans-25-180-100-100-n-150-15010646-1
ABCDEFGHIJKLMNOPQRSTUVWXYZ /0123456789
abcdefghijkl mnopq rst uvwxyz £©uM0 IJ[Seoy
—— e MeSYRE | i

(e COCCE 14y

The monospaced version of the font Lucida Sans from the foundry Bigelow &

Holmes, designed at an optical size of 18 points and for a screen of 100 points per

inch. It is encoded in Unicode, but in reality it covers only a few Unicode tables (no
Greek, no Cyrillic, no Hebrew, no Armenian, no mathematical symbols).

i Bs___Wes__s

4. -jis-fixed-medium-r-normal--24-170-100-100-c-240-jisx0208.1983-0

HV) 2 BPE TS LIEE
e
?ﬁ =% li{ﬂ({ﬁf%%‘%{r %

A Japanese font in the Mincho B#)] tradition. It is unnamed (jis in the field for
the foundry’s name) and is a character-cell font (spacing type c¢) with a cell size of
24x24 pixels. It was designed at an optical size of 17 points and a screen resolution of
100 pixels. Its encoding is JIS-X 208, which dates to 1983. In this example, we see two
rows of kana syllables and two rows of some of the most common kanji ideographs.

Note that this is only the first part of XLFD, the part that concerns font names. A sec-
ond part, for font properties, goes further in defining a number of keyword—value pairs
that describe the font in greater detail. These “properties” are stored in the font but are
not used by most software during font selection. They are all optional, and we may add
“private” properties.

226 Chapter 8 : Font Management under X Window

XLFD also provides a syntax for “polymorphic” fonts, i.e., fonts in which certain param-
eters can vary, a typical example being the Multiple Master fonts.

For more details on font properties and polymorphic fonts, the reader is referred to
{138].

In addition, the XLFD specification also includes two wildcard characters: * (representing
0, 1, or more characters of any kind) and ? (representing any single character), which we
can use as substitutes for any part of an XLFD font name.

Finally, let us have a quick foretaste of the tool xisfonts, which will display a complete
list of all the available fonts. To filter this tool’s output, we can simply follow it with an
XLFD name containing wildcards. Here is an example:

xlsfonts "*palatino*"

In this syntax, it is important not to forget to enclose in quotation marks the string
containing wildcards; otherwise, the Unix shell will interpret the wildcards as parts of
a filename and will accordingly look for corresponding files before executing the com-
mand.

Installing fonts under X

Upon startup, the xfs font server {299, 233} reads a configuration file, which is:
/usr/X11R6/1ib/X11/fs/config

by default. In this file we specify certain default values, such as the screen resolution and
the default set width. But most important of all: the file contains the list of directories
where fonts are stored. Here is an example:

/usr/X11R6/1ib/X11/fonts/misc,
/usr/X11R6/1ib/X11/fonts/Speedo,
/usr/X11R6/1ib/X11/fonts/Typel,
/usr/X11R6/1ib/X11/fonts/CID,
/usr/X11R6/1ib/X11/fonts/75dpi,
/usr/X11R6/1ib/X11/fonts/100dpi,
/usr/share/fonts/default/Type1,
/usr/share/fonts/default/TrueType,
/home/yannis/texmf/fonts/pfb

Each of these directories must contain a file named fonts.dir. This is a very simple text
file. It begins with the number of lines to follow, written on a line by itself. Then there
is a single line for each font file. These lines are divided into two columns: the filename
and the font’s XLFD name. Example:

Installing fonts under X 227

360

6x12.pcf.gz -misc-fixed-medium-r-semicondensed------ C--15010646-
6x13.pcf.gz -misc-fixed-medium-r-semicondensed------ C--15010646-
6x10.pcf.gz -misc-fixed-medium-r-normal------ C--15010646-

... (356 lines) ...

9x15-KOI8-R.pcf.gz -misc-fixed-medium-r-normal------ c--koi8-r

or, in the case of PostScript Type 1 fonts:

89

UTRG___ .pfa -adobe-utopia-medium-r-normal------ p--1508859-

uTI .pfa -adobe-utopia-medium-i-normal------ p--1508859-

uTB .pfa -adobe-utopia-bold-r-normal------ p--1508859-

... (85 lines) ...

1049036t.pfa -b&h-Luxi Serif-bold-i-normal------ p--adobe-standard

To install fonts, therefore, we must place them into one of these directories and then
create or update the corresponding fonts.dir file. The fonts.dir files can be generated
by a certain number of tools, according to their format. We shall see the details below.

Aside from the XLFD font names, which by their nature are difficult to remember and
to write, we also have font-name aliases. These are defined in fonts.alias files, which are
also placed in the same directories. Once again, these are ASCII files with two columns,
the first column being the alias, the second being the XLFD font name. Here is an exam-
ple:

utopia -adobe-utopia-medium-r-normal------ p--1s08859-
utopial -adobe-utopia-medium-i-normal------ p--1508859-
utopiaB -adobe-utopia-bold-r-normal------ p--1508859-

Finally, there is a third series of files that must be available to the server: encodings. These
are ASCII files of the following type:

STARTENCODING iso08859-

ALIAS tis620-

ALIAS tis620.2529-

ALIAS tis620.2533-

ALIAS tis620.2533-

STARTMAPPING unicode

UNDEFINE 0x7F OxAO

OxA1 OxOE01 # THAI CHARACTER KO KAI
O0xA2 OxOE02 # THAI CHARACTER KHO KHAI
OxA3 OxOE03 # THAI CHARACTER KHO KHUAT
O0xA4 OxOE04 # THAI CHARACTER KHO KHWAI
... (85 lines) ...

ENDMAPPING

ENDENCODING

228 Chapter 8 : Font Management under X Window

We see in this illustration a line STARTENCODING (which also gives the name of the encod-
ing), a number of aliases for the name of the encoding, and finally a table of mappings
to Unicode (STARTMAPPING ... ENDMAPPING), in which each line contains two columns:
the position in the font and the corresponding Unicode character. (What follows the
character # is nothing but a comment.)

The encodings are stored in the same way as the fonts: in encodings.dir files that con-
tain one line per encoding, with the name of the encoding in the first column and the
corresponding file (which may be gzip-compressed) in the second column:

47

dec-special /usr/X11R6/1ib/X11/fonts/encodings/dec-special.enc
ksxjohab- /usr/X11R6/1ib/X11/fonts/encodings/large/ksc5601.1992-.enc.gz
... (43 lines) ...

1508859- /usr/X11R6/1ib/X11/fonts/encodings/is08859-.enc

adobe-dingbats /usr/X11R6/1ib/X11/fonts/encodings/adobe-dingbats.enc.gz

Note that the names of encodings must correspond to the last fields of the XLFD font
names.

Installing Bitmap Fonts

The bitmap format used by X is called “Bitmap Distribution Format” (BDF; see §A.4.2).
Bitmap fonts under X are files with the extension .bdf (the ASCII version of the BDF
format) or .pcf (the binary version of the same format; see §A.4.4). We can also find
files compressed by gzip: .pcf.gz. These are automatically decompressed by the server.

To install bitmap fonts, we can simply launch the utility mkfontdir within the directory
in question. It will create the required fonts.dir file. This procedure is quite simple
because usually BDF fonts already contain the XLFD font name; thus there is no need
to construct this name from various information contained within the font.

Once the current directory is equipped with its fonts.dir file, we can add it to the list
of directories in the configuration file by using the utility chkfontpath as follows:

chkfontpath -a /home/yannis/fonts/bitmap

Next, we can confirm that the directory in question has indeed been added to the con-
figuration file, by executing

chkfontpath -1

We obtain a list of all the directories in the configuration file.

Finally, we need to load our new fonts into this directory in order to use them. To do so,
we can type:

xset +fp /home/yannis/fonts/bitmap
xset fp rehash

Installing fonts under X 229

Here xset is a general-purpose application for configuration in X {299, 312}. The first ar-
gument, fp, on the command line indicates that we are concerned with fonts (fp = font
path). The + that precedes it on the first line indicates that the path in question should
go before all the other paths. This feature is useful because the server will use the first
instance of a specified font that it comes across. If the new fonts that we have just installed
have the same names as some old ones, this is their only chance to be read first and to
be chosen by the server.

The line xset fp rehash allows us to rebuild the tables in the database of the font server.
Only after this final operation do the fonts become available to all X clients.

Installing PostScript Type 1 or TrueType Fonts

Here things become more complicated, as the PostScript Type 1 fonts and the TrueType
fonts do not contain all of the information needed to create the XLFD font name, at least
not in a manner as direct as that of the BDF fonts. The method that we shall use, there-
fore, is the following:

First of all, using specialized tools (mentioned below), we shall create an intermediate
file called fonts.scale. Here is an extract of one such file:

89

UTRG___ .pfa -adobe-utopia-medium-r-normal------ p--1508859-
uTI .pfa -adobe-utopia-medium-i-normal------ p--1508859-
uTB .pfa -adobe-utopia-bold-r-normal------ p--1s08859-
UTBI___ .pfa -adobe-utopia-bold-i-normal------ p--1508859-
cour.pfa -adobe-courier-medium-r-normal------ m--1s08859-
cour.pfa -adobe-courier-medium-r-normal------ m--1s08859-
cour.pfa -adobe-courier-medium-r-normal------ m--1508859-
cour.pfa -adobe-courier-medium-r-normal------ m--1s08859-

. 77 lines of similar code ...
1049036t.pfa -b&h-Luxi Serif-bold-i-normal------ p--1508859-
1049036t.pfa -b&h-Luxi Serif-bold-i-normal------ p--1508859-
1049036t.pfa -b&h-Luxi Serif-bold-i-normal------ p--1508859-
1049036t.pfa -b&h-Luxi Serif-bold-i-normal------ p--adobe-standard

Notice in the syntax shown above that the same PFA fonts can be used to cover multiple
character encodings, giving a separate XLFD entry for each.

Tools that create font.scale files include, for example, typelinst {243} for PostScript
Type 1 fonts and ttmkfdir [294] for TrueType fonts.

In view of some idiosyncrasies of these tools, certain precautions are in order. First, the
TrueType fonts should be separated from the PostScript Type 1 fonts, for two reasons:
each of these tools overwrites the fonts.scale generated by the other; also, typelinst
also attempts to analyze TrueType fonts but gives results inferior to those of ttmkfdir, and
confusion may ensue.

In the directory into which we have placed our PostScript Type 1 fonts, we will run:

230 Chapter 8 : Font Management under X Window

typelinst

possibly with the option -nogs to avoid creating a Fontmap file (which is a font catalog
for ghostscript). typelinst is a Perl script written by an Australian volunteer; it was last
updated in 1998, and it contains a number of gaps, notably with respect to encodings.
Specifically, of all the encodings that fonts may have, it recognizes only one: Adobe Stan-
dard, which it calls 15s08859-1 (even though it has nothing to do with that encoding). In
all other cases, it writes adobe-fontspecific.

Thus it is absolutely necessary to edit the fonts.scale file a posteriori and to correct the
encodings (at least) in the XLFD font names before continuing.

In the directory containing the TrueType files, we run:
ttmkfdir > fonts.scale

possibly with the option --panose, if we are certain that the font contains a correct
Panose-1 classification. Unlike typelinst, this tool functions as a freetype library and man-
ages to analyze fonts with much greater precision. Nevertheless, we are always wise to
inspect the fonts.scale file before continuing.

Also note the existence of mkfontscale {95}, another relatively recent tool that can be
found on certain Unix distributions, which examines both PostScript Type 1 fonts and
TrueType fonts at the same time. Contrariwise, mkfontscale seems not to be suitable for
bitmap fonts.

Having generated the fonts.scale file, we launch (still in the same directory) mkfontdir,
specifying the directory containing the encodings.dir file:

mkfontdir -e /usr/X11R6/1ib/X11/fonts/encodings

If several of these files are present on the system, we can use this option multiple times,
but it is more sensible to have a central encodings . dir file that contains all the encodings
used on the machine.

Afterwards, the remaining procedures are the same as for bitmap fonts. For instance, if
/home/yannis/fonts/ttf is the current directory, we type

chkfontpath -a /home/yannis/fonts/ttf
to add it to the configuration file on the server and

xset +fp /home/yannis/fonts/ttf
xset fp rehash

to fill it in and rebuild the internal tables in the file server’s database.

Tools for Managing Fonts under X 231

“ 2 nanes natc‘h .

—fndry-fnly-ught-slant-sHdth-adstyl-pxlsz-ptSz-resx-resy-spc-avgHdth-rgstry-encdng

—hisc—fixed-nediun-r-normnal--20-200-75-75-c-100-is0l10646-1

ABCDEFGHIJKLMNOPQRSTUYMWXYZ /0123456789
abcdefghi jklmnopgrstuvuxyz £8uAflbResy
— = te i"eS¥z€ ABMANaPydw ABBI labera
YaeRau=e 1AL8L ({rlirog KM, ABiHe: dxlls

L

Figure 8-1: The interface of the application xfontsel.

Tools for Managing Fonts under X

The application xfontsel {324} allows us to choose a font name from the components of
its XLFD font name. For example, we have a line of text (Figure 8-2)

-fndry-fmly-wght-slant-aWdth-adstyl-...
...pxlsz-ptSz-resx-resy-spc-avghdth-rgstry-encdng

that is nothing but a list of abbreviations of the names of XLFD’s fields. By clicking on
one of these abbreviated names, we obtain a contextual menu that shows all the possi-
ble choices for this XLFD field among all the available fonts. In the area in which this
line appears, the XLFD name is displayed. In the beginning, this name is nothing but a
sequence of * wildcards and thus represents all fonts.

When we select a value for an XLFD field, it is displayed in the XLFD font name in the
second line, and the possible choices for the other fields are reduced to those that are
compatible with the choices already made. Often there is only one choice, other than
the wildcard, on the contextual menu. We can thus fill in all the fields in the XLFD font
name and obtain the name of the unique font that matches our needs. Note that in the
upper right part of the window the phrase ... names match shows us how many fonts
that match our current choices exist. There must always be at least one, since xfontsel does
not allow us to specify values for the parameters that would not match any font. If we
click on the Select button, the selected font name is copied onto the clipboard and can
then be pasted into another window by a click on the mouse’s middle button.

Another tool, which lets us preview the installed fonts, is xfd {146]. It displays all the
glyphs in a given font, in units of 256 glyphs. Thus, if we write

xfd -fn "-misc-fixed-medium-r-normal------ C--15010646-" &

we can view the table of this font’s glyphs. In Figure 8-2 we see the first two of these tables:
0x00-0xff and 0x100-0x1ff. By clicking on a glyph, we obtain its position in the table
as well as its font-metric properties.

232 Chapter 8 : Font Management under X Window

[~Hisc—Fined-Hediun-R-Nornal-—-20-200-75-75-C-100-TS010646-1 || || -Hise-Fixed-Hediun-R—Hornal—20—200—75-75-C—100-TS010646-1 |

Select a character Select a character

range: 0x0000 0,03 thru 0x30ff {48,255} range: Ox0000 (0,0} thru 0x30ff (48,255)

upper left: 0x0000 {0,0) upper left: 0x0100 {1,0)

Ala|A|a|Alag|C|é|E|e|C|le|C|e|D|d
aE: B || e |5 8 D|d|E|e|E|&|E|e|E|e|E|&8|G|g|6|E
! ®IG || &| |]=]+]. |- |7 Glg|G|g|A|A|AK|T|T|T|T|F|1|T|4
0(1|2(3|4|5|6(7|8[9]|:]:|<|=|>|% (|0 |g|d|5|Klk|e|L{I|L]|2|L]|I|L
elalslclolelr|aulz|a[klL|n]n]o el nlalwloli]|aln|y]nlo]|e|d]s
QIR|S|(T|U[V W X|Y|Z|L{v|]|"]|_ 0|s|C|le|R|F|R|(r|R|IF|S|5|8|8|5|s
alblc|d|e|T|g|h|i|[j|k|[l|m|n]|o §|5|T|4|T|T|F|e|0|a|0|a|0|a|d|a
plalr|{s|tiu|v|u|x|ylz| L[|} " Ula(Y|y|A|a|F|g|¥|Z2|z|2|2(Z2|3|T
il R nn AR ERE Rl b ’B 5 5 b b :] C o B ’D a a Q 3 a
0 i i i EIF|FIG|¥(h|VL|T|K|k|2X|[A|WU|N|n|B
i|e|£]|m|¥|t|8 ® «|~|-|e|” Olo|0|q|P|p|R|2 (|| T|E[T|W0
cle 23 p|9) -, A YEAERE AR wv|U|0|Y|y|2|2]3 =|z|2|/5(5(%|p
AlA|A|A|A|A|/|CIEIE|EIE|T|T|T|T PN | (020 |[dz| (L |5 (0| n|A[a|T
D|f|[0|6|0|6|0|x|6B|O(0|0|0|¥|bp|8 ilo(s|0|a|0|G|0|G|0|G|0|G|=|A|F
alala|a|a|lale|c|e|e|le|ali|i|1|x Alalft|z|G|le|Gla|R|E|D Dlel3 |z
Lzsnoaoaa+mc.auug|>g L'mnzdzégmpmﬁé. fle|d| g

Figure 8-2: Two tables of glyphs from the Unicode-encoded character-cell font 10x20, displayed
by xfd.

Tools for Converting Fonts under X

It is quite natural that a plethora of tools for converting one format to another has arisen
over time to contend with the multiplicity of font formats used under Unix. Of these we
shall mention some that are the most solid, the best documented, and the best supported
by their programmers. The reader will find vastly more through a simple Google search:
if ‘A’ and ‘B’ are names of font formats, search for A2B or AtoB. For example, a search for
“bdf2pcf” yielded 249 results, one for “bdftopcf” yielded 72,300.

The GNU Font Tools

This is a panoply of tools developed in 1992 by Karl Berry and Kathryn Hargreaves [77].
The goal is to perform auto-tracing on bitmap images to obtain their vector contours.
Today there are more powerful systems for this task (ScanFont, by FontLab; mftrace, by
Han-Wen Nienhuys; FontForge, by George Williams; etc.). But the individual GNU tools
may be of interest in their own right.

Karl Berry defined his own vector format, named BZR. It is a pivot format from which
the utility bzrto can generate METAFONT or PostScript Type 1 (in GSF format, a variant
of PFA that ghostscript uses) or PostScript Type 3. There is also a human-readable BZR

Tools for Converting Fonts under X 233

format called BPL (in the fashion of TFM/PL, VF/VPL, etc.). We can convert BZR to BPL
and vice versa wit the help of the tools bzrtobpl and bpltobzr.

George Williams’s Tools

George Williams, author of FontForge, which we shall describe at length in Chapters 12—
14, is a truly tireless person. He produced, alongside FontForge, a floppy disk of tools that
handle practically all the situations that can arise when we share data between Unix and
Mac OS X or Windows.

For example, fondu [351] reads a set of Macintosh files and extracts all the fonts, be they
PostScript (POST resource), TrueType (sfnt), bitmap (NFNT or FONT), or font-family re-
sources (FOND). To manipulate Macintosh files containing resources under Unix, one
must convert them to one of three formats: Macbinary (which “flattens” the data and
resource parts), Binhex (which also converts everything to hexadecimal), or dfont (the
equivalent of the Macintosh’s font suitcases under Mac OS X).

There is also ufond, which performs the opposite operation: from a given Unix font, it
generates a file that can be used under Mac OS 9 or Mac OS X, provided once again that
it be converted to Macbinary or Binhex.

Another series of tools {348] converts PFA fonts to PFB (pfa2pfb) and vice versa (pfb2pfa),
generates BDF bitmaps from a PFA file (pfa2bdf), generates an AFM file from the de-
scriptions of glyphs in a PFA file (pfa2afim), and decrypts the PostScript code in a PFA

file (pfadecrypt).

Next, he attacked the TTF fonts: showttf clearly displays the contents of all the TrueType
or OpenType tables, and ttf2eps converts a glyph from a TTF font into an encapsulated
PostScript file.

Various other tools

The t1utils were written by Lee Hetherington and revised by Eddie Kohler {175]. They
support conversion from PFB to PFA (t1ascii) or vice versa (t1binary) and even complete
decryption of the PostScript Type 1 binary code (t1disasm).

Eddie Kohler {223} also added a handful of tools for the Multiple Master and OpenType
fonts: mmafin and mmpfb produce Multiple Master font instances, and cffiot] converts a
CFF (Type 2) font to Type 1.

Dieter Barron wrote tiftot42 {64}, the only tool currently available for converting True-
Type fonts to PostScript Type 42, which is essentially the same thing inside a PostScript
Wrapper.

Converting Bitmap Fonts under Unix

One very popular editor for bitmap fonts is XmBDFEd {232]. The unpronounceable
acronym for this software comes from X Motif BDF Editor. It was developed by Mark
Leisher. We shall not describe here its user interface for designing bitmap fonts. The

234 Chapter 8 : Font Management under X Window

reason that we have mentioned it here is that it is also a very powerful tool for font
conversion. Indeed, it can read the PK and GF formats of TgX (§A.5.2, A.5.3); HBF
(ideographic bitmap fonts), PSF (§A.4.1), and CP (§A.4.5), of Linux; FON and FNT, of
Windows (§A.3); and TrueType and TTC. It can only write PSF files.

Another tool for converting bitmap fonts under Unix is fontconv {357], by the Bulgarian
Dimitar Zharkov. This program reads and writes fonts in the RAW, PSE, and FNT formats
as well as in two more exotic ones: GRX (the native font format of the GRX graphical
library) and FNA (its human-readable version).

Fonts under TgX and Q2

TgX and its successor Q are the most sophisticated digital typography systems in the
world. Thus it is understandable that font management on these systems is a little bit
complex. In this chapter, we shall approach fonts from three points of view:

1. Their use in TgX and Q: how we go about using fonts (already installed on the system)
in TgX documents.

2. Their basic installation, i.e., with no special adaptation: how can the user who has
just bought a beautiful font or downloaded one from the network install it on a TgX
system for immediate use?

3. Their adaptation to the user’s needs: we quickly notice that the fonts that we buy or
find on the network are merely raw material for us to adapt, mold, shape to fit our
needs. For the well-versed typophile only!

These three points of view correspond to this chapter’s three sections, each of which is
more difficult and more technical than the one before it.

Using Fonts in TgX

Up to now we have examined operating systems: Mac OS, Windows, Unix. Is TgX also an
operating system? No. But what is TgX, then? Born in 1978 at the prestigious Stanford
University, brainchild of Donald Knuth, one of the greatest computer scientists of the
twentieth century, TgX is, all in all, several things at once: a free software system for type-
setting, a programming language, a syntax for writing mathematical formulae, a state of
mind that often approaches religion... !

1 A religion with, among other things, initiation rites, first and foremost being the correct pronunciation
of “TgX”, which varies from language to language. In fact, the TgX logo is deceiving: it actually consists of

235

236 Chapter 9 : Fonts in TgX and £, their installation and use

There is no shortage of word processors or desktop publishing software. How does TgX
differ from the pack, to the point of deserving two whole chapters in this book?

Well, TgX is an outsider among word-processing systems and desktop publishing soft-
ware, as it existed before all the others (neither Mac OS nor Windows existed in 1978, and
Unix was still in its infancy) and, thanks to the idealism, perspicacity, and industriousness
of Knuth and the hundreds of programmers who have contributed to TgX over the past
25 years, TgX has invested much more than the others in fine typography.> Thus it is
natural that font management in TgX is different from, and more sophisticated than, font
management for other software.

Moreover, as free software, TgX and Q—its successor, as of 1994, developed by John Plaice
and the author—have unlimited potential: any features that one might need can be
added to them, provided that a programmer with the time and energy to do the work
can be found. Q in particular is fertile ground for experimentation and application of
new techniques of digital typography to “explore strange new worlds, to seek out new
life and new civilizations, to boldly go where no one has gone before”...

This chapter is intended primarily for users of TgX or Q who wish to understand font
management on these systems and improve the appearance of their documents by mak-
ing as much use as possible of the fonts available to them. To those who do not yet know
TgX but wish to discover it, we recommend the following introductory section, in which
we shall also define a number of terms and acronyms that we shall use throughout the
chapter.

Introduction to TgX

When we prepare a document on a word processor such as Microsoft Word or desktop
publishing tools like Quark XPress, we sometimes have two conflicting requirements of
the software that we use. On the one hand, we expect the software to give us complete
control over layout, like an automobile that gives us complete control over the road;
after all, the software belongs to us and must “obey” us. On the other hand, we expect it
to “do its job”; that is, it should produce precise and perfect layout worthy of the great
typographers.

Why do these two requirements come into conflict? Because we cannot be very accurate
when we use a mouse to lay out the blocks of text that we see on the screen, since the
mouse, the screen, our hands, and our eyes are themselves not very accurate. And if we
take the trouble to be accurate by using magnifying glasses and sophisticated tools for
measurement, alignment, and uniformity, along with any other devices supplied by the
software, the effort required is completely out of proportion to the result obtained—a

the Greek letters tau, epsilon, chi, the first letters of the word téyvn, which means “art” and “technique” in
classical Greek. For this reason, the pronunciation of TgX depends on the pronunciation of classical Greek in
the language being used, which differs dramatically among speakers of English, French, German, Japanese,
and, yes, modern Greek. In English, TgX rhymes with “blecchhh”, as explained by Knuth in {217].

2 So much so that the software package considered the créme de la créme of mass-market typesetting
software, Adobe InDesign, adopted TgX’s techniques for setting paragraphs—techniques that Adobe advertises
as being revolutionary...

Using Fonts in TgX 237

result that is nothing more than the most natural thing in the world: typography worthy
of the name.

To reach this conclusion, we shall begin with the assumption that the user of the software
at least knows what she must do to obtain a good typographic result, even if she cannot
produce one. But even this assumption is false, since, as we know, most users of word-
processing software do not know much about the typographer’s trade. They could not
be expected to have knowledge obtained only through several years of specialized study
(at the Ecole Estienne or the University of Reading, for example) or considerable time
and effort to learn them on one’s own. Let’s face it: a person who assumes the typogra-
pher’s role without having any background in typography will produce bad documents.
Indeed, our era will certainly be characterized by historians as the era of the decline of the

typographic art. ..

Which bring us to TgX. For the moment, let us forget about the intrusion of computer sci-
ence into the process of book production and return to the traditional model of “author—
editor—printer”: the author writes a manuscript, the editor corrects and improves it, the
printer typesets it. Next, the printer prepares proofs and sends them to the editor, who
passes them along to the author, who reviews them and corrects them. And the process
starts all over again, and continues until the day when no more corrections are made and
the author and the editor give the long-awaited “pass for press”, and the printer can then
begin the print run. This age-old model distributes both the tasks and the responsibilities
among “author”, “editor”, and “printer”.

But, to return to the twenty-first century, how can one implement this model when he
is sitting alone in front of his computer? Well, he alternately plays the roles of “author”
and “editor”, and TgX assumes the role of “printer”.

That established, we can start with Step 1: we prepare a “manuscript” (see Figure 9-1),
i.e., a “TgX” file containing our document marked up with various tags for structure or
formatting. We call these tags “commands”, since, after all, a TgX document is a program.
In addition, there is a library of subroutines written in the TgX programming language:
it is called KIEX, and it offers a set of commands that are very practical and easy to use.

Step 2: the “manuscript” is sent to the “printer” (in computer jargon, the document is
compiled by TgX), and “first proofs” are produced. The author/editor examines these
“first proofs” and corrects his “manuscript”, then hands it off once again to TgX, which
produces another set of proofs. The process is repeated until the production of the “pass
for press”, which leads directly to printing (in our case, the output of the printer or the
films from which printing plates will be made).

What is special about TgX is the physical separation between the TgX document (what
we have called the “manuscript”; in computer jargon, the “source”) and the typeset doc-
ument (the “proofs”; in computer jargon, the “compiled file”). The latter, for historical
reasons, is a file with a format particular to TgX that is known as DVI (acronym of device-
independent). This file format, compared with formats such as PDF, PostScript, and DOC
(the file format of MS Word), is an extremely simple and abstract page description.

238 Chapter 9 : Fonts in TgX and £, their installation and use

VETFM, OVF
Stylesheets TFM, OFM fonts and OFM fonts Type 1 fonts
article.cls Tifcaslontwmn.tfm Tifcaslontwmn.vf EPS files FCasTweITCRom.pfb

lettrine.sty Tifcaslontwmsc.tfm FCasTweITCRom.tfm figl.eps FCasTweITCRomSC. pfb

Exemple de i

L—

dVipS or
odvips

example. tex example. dvx example.ps

“manuscript” intermediate step “proof”

Figure 9-1: The process of producing documents with TgX.

Why are simplicity and abstraction so important? Because when TgX was created (in the
1970s), each screen and each printer had its own computer codes. Rather than making
as many versions of TgX as there were models of screens and printers, Knuth decided to
create a sort of “pivot” format, the DVI format. Users had only to write their own screen
and printer “drivers” customized for their systems.

The same goes for fonts. So as not to make life complicated, TgX uses stand-ins called
TgX Font Metrics. Unlike all other fonts, these are empty, in the sense that they do not
contain any glyphs. Instead, they contain font-metric data for each glyph: its height, its
set-width, its depth, etc. Instead of setting glyphs themselves, TgX sets type using imagi-
nary boxes whose dimensions are taken from the TFM files. Once again, the DVI drivers
mentioned above have to “dirty their hands” and replace these imaginary boxes with
glyphs. The logic is the same as for the DVI format: since each printer and each screen
has its own font formats, we may as well use a simple, generic font format and convert
it to the format used by the peripheral. Thus TgX would produce a document with an
abstract, unreal beauty, and its obedient servants, the device drivers, would bring this
masterpiece down to earth by replacing the imaginary boxes with genuine glyphs and
working its magic to render the data comprehensible to all the various output devices.

Since this situation was quite tedious, we awaited, as if for a messiah, the arrival of a
universal language that would work on all screens and all printers. And it came in 1982:
it is the PostScript programming language.

From that time on, we would need only one driver—a driver to convert DVI files into
PostScript code. Several attempts were made to write that driver—attempts that ran into

Using Fonts in TgX 239

major technical problems. Finally, Tom Rokicki, one of Knuth’s doctoral students, wrote
dvips, which is the most successful and the most widely used DVI-to-PostScript driver
today.

By now the reader will certainly understand why it is only dvips, not TgX itself, that comes
into contact with modern font technology: PostScript Type 1 or Type 3, TrueType, Open-
Type, etc. As can be seen in Figure 9-1, TgX uses TFM fonts to produce a DVI file. Then
dvips takes over and produces PostScript code, including, if necessary, PostScript Type 1
fonts.

But we are already starting to go behind the scenes of TgX. The average user never has
anything to do with TFM fonts and rarely deals with DVI files. Instead, she focuses on
the high-level programming interface: the basic KIgX commands, the various packages
of commands customized for different typesetting contexts, etc. Being above all an “au-
thor” and possibly also an “editor”, the IKIgX user does not usually worry about the tasks
generally performed by the “printer”.

Below we shall examine the use of fonts under TgX on three levels:

e The “high level”: the point of view of the end user, who plays the role of “author”.

e The “intermediate level”: that of the more informed user, who desires better control
over the fonts in his document, or the “editor”, in the sense of the person who speci-
fies in great detail how the document will appear—in particular, the fonts to be used.

e The “low level™ the internal workings of the software, where a certain number of ba-
sic questions shall occupy our attention: What is the relationship between TgX com-
mands and TFM files? How are fonts used in the DVI format? When do PostScript
or other “real-world” fonts come into play? What is the relationship between these
fonts and TFM fonts?

In the list above, we discuss nothing but the use of fonts. With the exceptions of the fonts
that come with TgX or Q and are already installed on the system, however, we must first
install any other fonts that we wish to use. And it goes without saying that all three levels
are involved, and with equal importance, in the installation of PostScript fonts under
TEX. That is what we shall see below.

One other item adds to the complexity of font management in TgX as we have described
it: METAFONT fonts. Even though PostScript did not yet exist in 1978, TgX did not come
into the world deprived of fonts. On the contrary, after developing TgX, Knuth said: It is
not good that TgX should be alone; I will make him a help meet for him and therefore created
a companion for it. This lawful companion of the TgX language is a programming lan-

240 Chapter 9 : Fonts in TgX and £, their installation and use

The Computer Modern fonts, shown here, are among
the most commonly used fonts in the world and
are the most distinctive feature of the vast major-
ity of IATEX documents. They come in a rich vari-
ety, from roman to sans-serif, and typewriter type.
All of the glyphs in this sample come from the
same METAFONT code. Just as DNA characterizes
a human being, 62 parameters are enough to char-
acterize a font in the Computer Modern family.

Figure 9-2: A sample of various fonts of the Computer Modern _family.

guage herself;? but one dedicated to creating fonts. We shall discuss her in great depth in
Appendix F of this book.

Thus we have one more font format to take into consideration when we prepare to man-
age fonts in the TX or Q system: the fonts generated by METAFONT. And this font format
is quite important indeed, as many of the older installations of TgX have nothing by
default but METAFONT fonts.

Now that we have finished outlining these general and historical considerations, let us
move on to the realm of the concrete, beginning with the three levels of font manage-
ment in TgX: high, intermediate, and low.

The High Level: Basic BIgX Commands and NFSS

In this section, we shall presume that the reader is somewhat familiar with ETgX. (If
not, there are excellent introductions to the subject, such as {282], [224], and {317].) The
question that we shall discuss first is how to use fonts in ETgX. More specifically, what
does one do to specify the active font?

One can very well prepare a BTgX document without specifying a single font; after all,
when one uses commands such as \emph{. ..} (emphasized text), \section{...} (asec-
tion title), \footnote{...} (the text of a footnote), BIEX itself chooses the appropriate
font for each case. Which fonts are these? We might be inclined to say a priori that
the default fonts for ETgX are always the same: those of the Computer Modern family

3 The decision to feminize METAFONT is not the author’s personal initiative. TgX, in the illustrations that
accompany it, is represented by a lion.> In the same illustrations, METAFONT is personified as a lioness. And
this leonine couple is traditionally accompanied not by a humdrum lion cub but by a new species of animal:
the computer, which not only has hands and feet but even drinks coffee. ..

4 Not for nothing is TgX represented by a lion. Donald Knuth has told us that lions are to him the
guardians of libraries in the United States because there is a statue of a lion in front of the entrance of each
large library there. Guardian of libraries, guardian of the Book—is that not indeed what TgX ultimately aspires
to be?

Using Fonts in TgX 241

(see Figure 9-2), designed by Knuth on the model of Monotype Modern 8A {219]. But
in fact everything depends on the ETEX stylesheet that we are using. A stylesheet is a ISTEX
file that specifies the details of the document’s appearance. These specifications can be
more or less general: BIEX comes with some generic stylesheets of its own, and there are
stylesheets on the Web for all the scientific journals, collections of works, dissertations
at each university, and many other purposes. The text font, the font for mathematical
formulae, the font for computer code, etc., are part of each stylesheet’s specifications.

To specify the active font, the user can operate at any of a number of levels, according to
the nature of the choice and his own technical expertise. Let us begin with the simplest
case and proceed deeper and deeper into the workings of ITEX.

Choosing fonts in BIgX: basic commands

Owing to its origins in the computer, IKTEX considers that there are three big categories
of fonts that can coexist in a document: “serif”, “sans serif”, and “typewriter”, the last
of these being used to set computer code. The following three commands set the text
provided in the argument in one of these three types of fonts:

\textrm{...} serif
\textsf{...} sans serif
\texttt{...} typewriter

In the absence of any other indication, text is set by default in a light upright font that
has a lower case. We can change the weight (one other possibility) and the style:

\textbf{...} Dbold
\textit{...} italic
\textsl{...} slanted
\textsc{...} small capitals

where “slanted” is an invention of Knuth that involves artificially slanting the letters. It
is tolerable for sans serif fonts, but it quickly becomes annoying in serif fonts, so please
avoid it! In the list above, bold can be combined with the three styles “italic”, “slanted”,
and “small capitals”, but those three styles cannot be combined with one another (a re-
grettable fact, since it leaves us with no way to obtain italic small capitals). To return to

the normal state (light, upright, with a lower case), we have the following commands:

\textmd{...} light (in fact medium)
\textup{...} upright, with a lower case
\textnormal{...} light and upright, with a lower case

The second command cancels the effect of italics, slanted type, and small capitals. The
third is the most powerful: it restores the default font of the document, with no orna-
mentation.

242 Chapter 9 : Fonts in TgX and £, their installation and use

All of the commands described above affect the text that is given to them as an argument.
As a safety measure, this text cannot be very long; more specifically, it cannot contain
more than one paragraph. (Recall that the change of paragraphs in TgX is made with a
blank line.) To apply these same changes to a larger block of text, we must place that
block in a group (that is, within braces) and place inside that group one of the following
commands:

\rmfamily serif
\sffamily sans serif
\ttfamily typewriter
\bfseries bold

\itshape italic

\slshape slanted

\scshape small capitals

\mdseries medium weight and set-width

\upshape upright
\normalfont light and upright

But beware! \textit{...}isa better choice than {\itshape ...}, asthe former also ap-
plies the italic correction, which is a slight space that is added after letters with an ascender
to keep them from touching the following glyph if it is, for example, a right closing paren-
thesis. Thus (\textit{need}) will yield “(need)”, while ({\itshape need}) will yield the
unfortunate “(need)”.

A number of commands for changing the current type size are also available. These
commands are of the same kind as the previous ones; i.e., they apply to everything that
follows, and their effect should be limited through the use of grouping:

\tiny tiny
\scriptsize the size of superscripts and subscripts
\footnotesize the size of footnotes

\small small

\normalsize the usual size of running text
\large slightly bigger

\Large bigger

\LARGE much bigger

\huge barely tolerable

\Huge enormous

The exact sizes depend on the stylesheet. For example, in the case of the most common
stylesheet (book class, 10 points), they are 5/6, 7/8, 8/9.5, 9/11, 10/12, 12/14, 14/18, 17/22,
20/25, 25/30 (in American printer’s points).

Using Fonts in TgX 243

We must mention here that the system covers most of the cases that the author of a KTgX
document is likely to need, but at the same time it may not always satisfy those of us
who place a little more importance on the font used in our document. For example, one
cannot choose the font’s family; nor can one specify the body size exactly or the desired
leading. No provision is made for font families that offer a broader range of weights or
styles. Last but not least, the system is profoundly Latin-centric, as serifs, italics, and small
capitals do not even exist in most of the world’s scripts.

To achieve what we desire, let us descend to another level in the KTgX machinery.

Using NFSS

In this section we shall dissect ITEX’s system for choosing fonts. This system is called the
“New Font Selection Scheme” (NFESS). [272} (Here the word “new” seems a bit out of
place today because NFSS was introduced in 1992.) The principle is very simple. Each
font is described by five independent parameters. The user requests the font by specify-
ing the values of these parameters, and, if the system cannot supply the desired font, it
supplies an approximation based on a substitution mechanism.

These five parameters are:

e \fontfamily{...}: the name of the font’s family. This is not the true name of the
font family, in the manner of PostScript or TrueType, but rather a keyword specific
to NFSS, made up of lowercase letters and digits. For example, this keyword might
be “timesten” for Adobe Times Ten. This keyword appears in the name of the FD
(“font descriptor”) file that describes the correspondence between “logical” fonts (at
the level of NFSS) and “physical” fonts (the TFM files). Thus for a keyword timesten
there must exist on the disk a file named titimesten.fd (or otitimesten.fd,
t2atimesten.fd, etc.; everything depends on the encoding, as we shall see below).

How can we know which fonts are available on our system? Or, when we know that
we have a certain FD file, how can we tell which font family matches it? No simple
means are available at this time; one must prepare a list of all the FD files on the
system and try to guess the name of the font family from the filename.> But this

5 It is quite likely that the file t1timesten.fd corresponds to the font family Adobe Times Ten; but would
tigaramond.fd go with Monotype Garamond, Adobe Garamond, or (a hideous font, in the opinion of many ty-
pographers) ITC Garamond? Let us get a bit ahead of ourselves and say right now that the only way to know is to
find, inside the FD file, the names of the TFM files that are used. If they are virtual font-metric files, one must
open them (see §B.3) and find the underlying real fonts. Finally, one must go into the configuration file(s) for
dvips and find out to which PostScript fonts they correspond. These configuration files will necessarily contain
the desired information.

Is there a way to avoid having to play “font detective”? Karl Berry {75] has finished his Font Naming Scheme,
which provides a two-letter or three-letter abbreviation for each font family.

Unfortunately, there is no shortage of drawbacks. First of all, these abbrevations neither reveal their mean-
ing nor have much mnemonic value. While ptm, phv, pcr for Adobe Times, Adobe Helvetica, Adobe Courier do
retain a certain logic, how can one remember that ma1 is Monotype Arial and that mii is Monotype Imprint, the
favorite font of Oxford University Press? Furthermore, Berry’s list will most likely never be complete: there are
hundreds of large and small foundries throughout the world, which means that new fonts come out every day;
thus there will always be some that are not on the list. Conversely, is it necessary to change the abbreviation

244 Chapter 9 : Fonts in TgX and £, their installation and use

problem may occur less often if we install our fonts ourselves and thus choose the
NFSS keyword that represents the font family.

e \fontseries{...}: the weight and the set-width. The system used by NFSS to de-
scribe these characteristics is as follows:

ul ultra-light uc ultra-condensed

el extra-light ec extra-condensed
1 light ¢ condensed

sl semi-light sc semi-condensed

m regular weight | m regular width

sb semi-bold sx semi-extended
b bold x extended

eb extra-bold ex extra-extended

ul ultra-bold ux ultra-extended

Here are the rules: (a) the two expressions are combined in the order specified
(weight, then set-width); (b) the letter m is omitted when either the width or the
weight is regular; (c) m is written when both the width and the weight are regular.

Thus we write elc for an extra-light condensed font but simply el for an extra-light
font of regular width and m for a font of regular width and regular weight.

e \fontshape{...}: the “style”. This category includes italics, slanted type, small capi-
tals, and a few other exotic styles:

n upright
it italic
ui upright italic
sl slanted
sc small capitals
ol outline

“Upright italic” is another of Knuth’s inventions. It involves applying a negative slant to
italic letters so that they appear vertical. The result is quite disconcerting.

Note that there is, unfortunately, no way to combine several styles. For example,
in NFSS we cannot specify italic small capitals, which could be very useful—as, for
example, when an acronym occurs inside a quotation: “Some people confuse Ionesco
and UNESCO”.

if a foundry releases a new version of a font? And what should a user do who has modified a font herself by
changing a glyph or reencoding the font?

In any event, no better means of identifying fonts has been discovered up to now. The solution to the problem
may come from the migration of OpenType fonts that is being carried out by the Q system and that will open
new horizons for font management.

Using Fonts in TgX 245

x| T |A|O|A|E Y| |v | Q| ff|fi|fl|ffi|f
x| g | ST T LBl | BE|IE|OD
| - | L7 #| S % (& [(| *|+], - /
B |01 213]4 56789 :|51il=1|4d¢17
x| @A|B|C|D|E|F|G|H|T|J|K|L|M|N|O
s | P{Q|R|S|T|U|V W|X|Y|Z|[]|“|]]"]1"
x| ‘“la|blc|d e|f]g|h|i]|]j|lk|]]l | m|n]|o
= plgq|r|s|t u|lv| i w|x|yl|lz|—-—|—|"]"

ol 1| 2| 3|a| 56| 7|89 "a|l"B|C|D| E|F

Figure 9-3: The 0T1 glyph encoding (TgX’s default encoding). Accented letters are built up from
letters and accents.

e \fontencoding{...}: the encoding used by the font.

Since the introduction of NFSS, many TgX-specific encodings have emerged. The
most important of these are:

— 0T1, Knuth’s original encoding; see Figure 9-3 {217, p. 427}

- T1, an encoding inspired by ISO Latin-1 that also incorporates glyphs for the lan-
guages of Central Europe and the Baltic countries; see Figure 9-4 {211}

— TS1, the catchall companion to T1; see Figure 9-4 {211}

— T2A,T2B, and T2(, a trio of encodings for European and Asian languages that use
the Cyrillic alphabet; and T2D, a font encoding for Old Cyrillic; see Figure 9-5 and
Figure 9-6 {73]

— T3, an encoding for the glyphs of the International Phonetic Alphabet; see Fig-
ure 9-7 {302}

— T4, an encoding for Maltese and the African languages that use the Latin script;
see Figure 9-7 [211]

The name of the encoding also appears in the name of the FD file; thus, if there is
a file t1palatino.fd on our system and the system has been configured correctly,
we should be able to use the Palatino font family, in the T1 encoding, in our EIgX
documents.

Note that the encoding, unlike the weight and the style, is not taken into account by
the substitution mechanism. In other words, a font in a given encoding that is not
available will never be replaced by the same font in a different encoding.

e \fontsize{...}{...}:the body size and leading. When we write \fontsize{10pt}{
12pt}, we specify a font of body size 10 set on 12 points (American printer’s points)
of leading. Some other units are also available: Didot points, dd (still in use in some
European countries, such as Greece); PostScript points, bp (‘b’ for big, since they are

<=

|

\

ft f|fl|ffilfd

[

JIK|L M N|O

I

b

&

Chapter 9 : Fonts in TgX and £, their installation and use

#1%8|%

r

@Q|A|B|C|D|E|F| G H
PIQ|R|S|T|U|VIW[X|Y Z

Pld

"0x
"2x
"3x
"4x
"5x
"6x
"Tx
"Bx

246

SM

5

f1C | W | N
e

/A

¢
Ne

named for the city of Cork, Ireland,

where it was defined in 1990 (for the European languages that use the Latin script), and its

“catchall” companion, named TS1 [211].

B

1B

‘C|$

%00

§

Joo

d

i
i

¢ | LT ¥

t

G| P|lL£R|?

31456

2
* [Oo| T

1

J

"0x
“1x
"2x
"3x
"4x
"bx
"6x
“7x
"8x
"9x
"Ax
"Bx
"Dx
"Ex
“Fx

Figure 9-4: Glyph encodings: T1, or the “Cork encoding

247

Using Fonts in TgX

ANE O] o] | w|w|la|HR B! AE [~ O] o] ' [I|w @l a|HIR B x|
~E| Az [mh RidlE| v|OR ol ~E| - IAlZl a2l B Ol v|OR 0 2!
=S| BT &] B o =S gl e "] 2 e
sl | A VR | — | B 8| SR =) sl@| A VR | e | S S| e
At | 4| el o | R 2| A BB R S Al | i || || w0 | w || R B
=% | BN || N D M| oD %] =% | RN N D E| oML &8
o | o o | o | | o= [s ~ o = o | R | B S = T
oo [|pd || o o | T = | 5| S E R B S v el —joo x|l e BT A = E =] B
~ =0z ol B B F A R O|T o) 5! > -~ =0 = |0 B | T s o [T o |
| |3 |m|> || o | o 2 o = | 56 | % = S | |30 |m|> || > o | el | | B (| 6| & ¢
IR o@D || 2 | K| Wm0 x| o@D || | W | X[m0 x|
vl | AT+ |G | e]S =B Vol | QT e S K| x| S| H
H Ol | oo || b= ig | = 2|]| > ? H O | o| @ L] = |] b= ~ || | > ¢
ClE gl = B e A R <o lE M || = e | s M E| S
R ||| ®| T = | O | O o |0 2= || | O R | T | Qe o
2 | Vo@D o<ty S| S 2 | V1o @ M| | | O | o <A B S

Figure 9-5: The T2A and T2B glyph encodings (for European and Asian languages that use the

Cyrillic alphabet) [73].

Chapter 9 : Fonts in TgX and £, their installation and use

248

AT~ || o] |T|w| | a | 2R B R A~ O o]t n|w|;o|a| DRI E|R|!
~E| Azl Zlalz|lv|oRQ] o]l ~l | Az (Al @ 8| v |02 o8¢
—E| S| gl & = s || e e [IHE|— BB & 8] s|Em|E|e
| Vgl —em | sl [Sla s el Cle | AV — IO el | S|l B2
At | | nlad | — | [mlad | aplad [ol = R 2| B ¢ |t || 8w 8w | F | Bz
% o N | D o Ak el o L R LN SN R U RO Y Rl o) NaR R+ LR
o = o | | e | e | s] s | ~ o= s = O | v = EH =] E]
ol —loo|Z [|| » = 0| 5|7 | = 52| =B o [~foo | bt || ¢ vee | O o | 6|12 | B
N G R PR R=A ol ioal N o B- i ¢ fm == | e0| B o[BG | K0 |T | o | 5
| 3|0 |m > [| o o | T | = | BE | | | [0 |m > = | > | N B | B | %=
IR Do Blar o || 0| x| ! R o@D |o|= |32 2=k o] <!
vl | AT e D e |] vl A H T e e | D e | | S| B
Felon [Oloa|o| @ (4] |sa | [|~ 3 ¢ e [Olm|o| | Fla|Ea| ||
¢l lamlgle ~|H| Qe e o e ClE Pl = G R| €| RE 8| E
il il Sl S R S b | ol o] o B Ul E|v|mlole|v
2 | Io|@a | AR OB 0| <] S| e : | Do@nl |as|Pe|o| < 8] e

Figure 9-6: The T2C (Asian languages that use the Cyrillic script) and T2D (Old Cyrillic) glyph

encodings.

Using Fonts in TgX 249

slightly larger than American printer’s points); millimeters, mm; etc. Note that lead-
ing, like the encoding, is ignored by the substitution mechanism.

One small detail of some importance: in TgX, a change of leading has effect only if there is at
least one change of paragraph within the group. Thus—and it is a very common error among
beginners—in the example below, the text will be set in 9-point type, but the change of leading
to 10 points will not take effect:

{\fontsize{9pt}{10pt}\selectfont This is the section of the contract
that is printed in small type so that you will not read it. It commits
you to donating your soul in due form to the undersigned Mephistopheles,
immediately after your physical death.}

To obtain the desired effect, adding a blank line before the closing brace would suffice:

you to donating your soul in due form to the undersigned Mephistopheles,
immediately after your physical death.

}

A few examples of the use of NFSS commands. To obtain Five words in Centaur italic...:

\fontfamily{centaur}\fontsize{11}{13}\fontshape{it}\selectfont
Five words in Centaur italic...

To obtain italics, bold italics, bold italics in Univers...:

\fontshape{it}\selectfont italics,
\fontseries{bx}\selectfont bold italics,
\fontfamily{unive}\selectfont bold italics in Univers...

Finally, to obtain 11/13 type in American printer’s points, in PostScript points, in
Didot points:

\fontsize{11}{13}\selectfont 11/13 type in American printer's points,
\fontsize{11bp}{13bp}\selectfont in PostScript points,
\fontsize{11dd}{13dd}\selectfont in Didot points.

The example above shows the tiny but nonetheless perceptible differences among the
three kinds of typographic points: American printer’s points, PostScript points, and Di-
dot points.

As we can see from the first example above, in order to avoid triggering the substitution
process too soon, the commands \fontfamily, \fontseries, \fontshape, \fontencod-
ing, and \fontsize have no effect until the command \selectfont is issued. It is in-
teresting to note that NFSS always attempts to combine the active font with the new
properties that the user specifies. For example, \fontseries{bx}\selectfont will yield
extended bold in an upright context and extended bold italic in an italic context; the
family, the body size, the leading, and the encoding of the font remain unchanged in
both cases.

Chapter 9 : Fonts in TgX and £, their installation and use

250

1

b

]

Al

\

J1D U |Y

B

AlBln|n |

R

ft fi|fl | i

[

N

1

£

J

JIK/IL|M N O

~

bl

I

-

WX

bl

TIE|E|T|T 4|54

v

7N

x

&

¥ H| K|N|O

7

E

S| %

o

T

bl d

"

¢l (| &|a

6| d|d|d| e

Pp|lg

b|d|d

k| o
B

"0x

"1y

“2x

"3x%

"4x

"Bx

"6x

“Tx

"8x

"9x

“hx

“Bx

"Cx

“Dx

"Ex

“Fx

@|A/B|C/ D|E|F|G|H

PIQ|R|S|T|U|VIWI[X]|Y]|Z

B|D| &€ H|F

b | d

"0x

"2x

"3x

"4x

“bx

"6x

“Tx

"8x

"Ax

"Bx

Figure 9-7: The T3 (IPA) [302] and T4 glyph encodings (for African languages that use the Latin

script) [211].

Using Fonts in TgX 251

Configuring NFSS

But how does NFSS know which font to use in order to match the choices made by the
user? And what happens if the user’s wishes cannot be fulfilled? The system’s magic is all
found in its configuration.

Here it is, in broad strokes: to each font family (“family” in the NFSS sense, described
above) and each font encoding (of the encodings used with NFSS: T1, 0T1, T2, etc.), there
corresponds a font description file. The file name reflects these two kinds of data—the
encoding and the family. Its extension is .fd (= font descriptor). For example, the file for
the Palatino family and the T1 encoding will be named t1palatino.fd.

Within each file, there are two new IKTgX macros: \DeclareFontFamily and \Declare-
FontShape. Although only two macros are provided, one can do a great deal with them.
In fact, the designers of NFSS developed an entire font-configuration syntax, which is
what we shall examine in the remainder of this section.

First of all, let us present the problem. We have a set of constraints (typesetting specifi-
cations: roman or italic, light or bold, lowercase or small capitals, body size) and a set
of possible solutions (“physical” fonts, which is to say the TFM files that are found on
our system). On the one hand, there is order: the rational, logical classification of font
properties and the clear and precise expression of the user’s wishes. On the other hand,
there is chaos: files with names that are often incomprehensible, containing fonts with
properties that often cannot be obtained other than by visual inspection of the glyphs.

The method adopted is as follows:

e As we have already mentioned, the encoding and the font family (again, in the NFSS
sense) are parts of the filename and thus remain unchanged in the file.

o There is only one \DeclareFontFamily command in the file, and it includes the in-
formation stated in the previous item (the encoding and the font family).

e There are multiple \DeclareFontShape commands, each of them corresponding to
a combination of weight and style.

e A special syntax is used in an argument to the \DeclareFontShape command to spec-
ify the fifth and last NFSS parameter, the body size.

Note that leading does not appear anywhere in this configuration; it is considered a
global property of the document, independent of the active font. Also note that there is a
fundamental difference between body size and the other NFSS parameters: the encoding,
the family, the style, and the weight take well-determined and unique values from a set
of predefined ones. The body size follows a different logic. On the one hand, it employs
numbers with a decimal part and, therefore, there may be very many possible values,
according to the precision desired. On the other hand, we often think not in terms of
specific sizes but rather in terms of intervals; for example, we may use one “physical”
font for sizes between 9 (inclusive) and 10 (noninclusive), another font for the interval

252 Chapter 9 : Fonts in TgX and £, their installation and use

between 10 (inclusive) and 11.754 (noninclusive), and so on. It is clear that the descrip-
tion of constraints on body size calls for a syntax more complex than the simple list of
keywords that is used for the other NFSS parameters.

Along with that problem comes another question, an almost metaphysical one. Namely,
“What is meant by the size of a font?” In the era of lead type, this question had a simple
answer: the “size” was the height of the leaden type sort. Thus, when rows of characters
were placed one above another, the result was copy set with a distance between baselines
that was equal to the body size. (Typographers often spoke of this procedure as setting
type “solid”, in the sense that nothing was placed between the lines of type.) For a 10/12
setting, one used 10-point type and added a strip of lead 2 points thick between the rows
of characters.

The transition of typography from the material realm to the computer entailed the loss
of physical items that could serve as points of reference for a new definition of “size”.
In the heyday of bitmap fonts, one last point of reference remained: glyphs had a given
size, measured not in points but in pixels. The advent of vector fonts wiped out this last
point of reference. A vector font can be used at any size, from the microscopic sizes used
on electronic components to the often inordinate sizes used in signage. What does body
size mean for a font that is so “micromegalous”?

Well, there are two ways to define it, each of them useful—but it is important to keep
them separate. There is the actual size, a furtive, localized value that depends the graphics
software or word processor. For instance, if we set type in “10-point Optima”, the shapes of
the glyphs in the Optima font do not depend on the actual size. We can change the size
but not the shapes themselves. When Hermann Zapf designed this font {228, p. 329],
in 1958, he had no specific size in mind; as a result, Optima is the same at all sizes, all
actual sizes.

There is also the optical size. It is a parameter that the designer specifies for her font.
Take the example of “Linotype Times Ten”. As its name suggests, it was designed for use
at 10 points; thus its optical size is 10. In other words, it will yield the best results at an
actual size of 10. That is not to say that we are not allowed to use it at other actual sizes.
But it will give the best results at 10 points.

For more information on the differences between actual size and body size, we refer the
reader to page 12. The reason that we have raised this issue again here is that this duality
of concepts is responsible for the complexity of the syntax of NFSS.

It is time for some concrete illustrations. Here is an extract of code from a .fd file:

\DeclareFontFamily{T1}{palatino}{}
\DeclareFontShape{T1}{palatino}{m}{n}{<-> palatino}{}
\DeclareFontShape{T1}{palatino}{m}{it}{<-> palatinoi}{}
\DeclareFontShape{T1}{palatino}{bx}{n}{<-> palatinob}{}
\DeclareFontShape{T1}{palatino}{bx}{it}{<-> palatinobi}{}

The first command states that in this file we are describing the family Palatino in
the T1 font encoding. It follows that this code necessarily appears in a file named

Using Fonts in TgX 253

tipalatino.fd. The four commands that follow specify that there are four combinations
of weight (m for medium, bx for bold extended) and style (n for neutral, it for italic).
The fifth argument to each of these commands shows the correspondence between the
actual size and a TFM file (whose name is given without the extension .tfm).

Here we have a simple case: there is only one design for the Palatino font; therefore, we
consider this design to be optimal at all sizes. The symbol <-> indicates that the TFM
font that follows is to be used at “all actual sizes”.

More precisely, the syntax is as follows: we write <m-n>, where m and n are rational num-
bers, to indicate “all sizes from m (inclusive) to n (non-inclusive)”. Omitting one or both
of this numbers indicates that there is no limit; for example, <-8> means “used for all
sizes strictly lower than 8” and <12.5-> means “used for all sizes greater than or equal
to 125 points”.

Let us take an example. The excellent font ITC Bodoni {323} is sold at three optical sizes:
6, 12, and 72. Assuming that the TFM files for light upright type in these three versions
are named itcbodoni6.tfm, itcbodoni12.tfm, and itcbodoni72.tfm, we can imagine a
font descriptor containing the following code:

\DeclareFontFamily{T1}{itcbodoni}{}
\DeclareFontShape{T1}{itcbodoni}{m}{n}{
<-> itcbodoni6

<9-> itcbodoni12

<18-> itcbodoni72

H}

That means: font “6” when setting type smaller than 9 points, font “12” when setting
type between 9 and 18 points, and font “72” when setting type larger than 18 points.®
Thus, when we call for ITC Bodoni at an actual size of 10 points, KIgX will set it at the
optical size of 12, reduced by 16.67 percent. At an actual size of 9, the optical size of 12
will still be used, but this time the type will be reduced by 25 percent. At an actual size
of 8.5, we will use the optical size of 6 magnified 41.67 percent. And if we request an
actual size of 12, we will have a perfect result, since the actual size and the optical size
will be identical!

Now suppose that we have a font on hand that has the different optical sizes of 6,7,8,9,
...,24 points. Few fonts have so many optical sizes designed by hand; but these optical
sizes can also result from a “mechanical” interpolation made from a Multiple Master
font (see §C.4). We have an example in Figure 9-8: the Adobe font Kepler MM, which we
have instantiated 20 times to obtain the optical sizes between 5 and 24 points, one point
apart. Suppose that the corresponding TFM files are named keplers, ..., kepler24. Then
we can imagine an FD file like the preceding one, with intervals for the actual sizes:

¢ Obviously these choices are arbitrary, but it must be admitted that 6-point or 72-point text seldom
appears in a document; thus, if we took the font names literally, fonts “6” and “72” would practically never
be used. We have “cheated” slightly in order to improve these three fonts’ chances of being used together in a
document.

254 Chapter 9 : Fonts in TgX and £, their installation and use

Beneath the quiet unearthly presence of nervous hil
Beneath the quiet unearthly presence of nervous hill «
Beneath the quiet unearthly presence of nervous hill d
Beneath the quiet unearthly presence of nervous hill dv
Beneath the quiet unearthly presence of nervous hill dw
Beneath the quiet unearthly presence of nervous hill dw«
Beneath the quiet unearthly presence of nervous hill dwe
Beneath the quiet unearthly presence of nervous hill dwe
Beneath the quiet unearthly presence of nervous hill dwe
Beneath the quiet unearthly presence of nervous hill dwel
Beneath the quiet unearthly presence of nervous hill dwell
Beneath the quiet unearthly presence of nervous hill dwelle
Beneath the quiet unearthly presence of nervous hill dweller
Beneath the quiet unearthly presence of nervous hill dweller:
Beneath the quiet unearthly presence of nervous hill dweller:
Beneath the quiet unearthly presence of nervous hill dweller:
Beneath the quiet unearthly presence of nervous hill dweller:
Beneath the quiet unearthly presence of nervous hill dweller
Beneath the quiet unearthly presence of nervous hill dwellers
Beneath the quiet unearthly presence of nervous hill dwellers
Beneath the quiet unearthly presence of nervous hill dwellers
Beneath the quiet unearthly presence of nervous hill dwellers
Beneath the quiet unearthly presence of nervous hill dwellers
Beneath the quiet unearthly presence of nervous hill dwellers
Beneath the quiet unearthly presence of nervous hill dwellers
Beneath the quiet unearthly presence of nervous hill dwellers

Figure 9-8: Some specimens of the font Adobe Kepler MM at optical sizes between 5 and
24 points.

Using Fonts in TgX 255

\DeclareFontFamily{T1}{kepler}{}
\DeclareFontShape{T1}{kepler}{m}{n}{
<-.5> keplers

<5.5-.5> kepler6

<6.5-.5> kepler7

<22.5-.5> kepler23
<23.5-> kepler24
H}

That means that any difference, however small, between two actual sizes of these fonts
will always be valid (requesting 5 points or 5.1 points gives two different fonts, the second
one a tenth of a point larger) and that the difference between optical sizes and actual sizes
will never be greater than 1 point.

All very well. But is this attitude really sound? If we are already fortunate enough to
have different optical sizes spaced one point apart (a luxury indeed), do we really need to
indulge in the perverse, unhealthy pleasures of half-points or even tenths or hundredths
of a point? Would it not be more elegant to use the pristine optical sizes themselves, as
their designer intended, at their true dimensions?

That can be done. Simply specify exact actual sizes:

\DeclareFontFamily{T1}{kepler}{}
\DeclareFontShape{T1}{kepler}{m}{n}{
<5> keplers

<6> kepler6

<7> kepler7

<23> kepler23
<24> <25> <26> <27> <28> <29> <30> kepler24

H}

With the configuration shown above, NFSS will only set type at actual sizes that are
whole numbers between 5 and 30. If these sizes are less than or equal to 24, the opti-
cal size will coincide with the actual size. Beyond that level, the optical size of 24 will
be magnified, but only so as to form the integer-valued actual sizes of 25,26,...,30. If
BIEX—for whatever reason, be it an explicit request from the user or the calculations
made by the stylesheet—calls for an actual size other than those explicitly indicated, the
nearest size on the list will be substituted. Thus whether one calls for 9.33,9.25, or 9.17,
the result will be the same: the size of 9 points.

To simplify the task of writing a font descriptor, IKIgX provides the keyword gen *:
\DeclareFontFamily{T1}{kepler}{}

\DeclareFontShape{T1}{kepler}{m}{n}{
<5> <6> 7> <8> <9> <10> <11> <12> <13> <14>

256 Chapter 9 : Fonts in TgX and £, their installation and use

<15> <16> <17> <18> <19> <20> <21> <22> <23>
<24> gen * kepler
<25> <26> <27> <28> <29> <30> kepler24

H}

In this case, NFSS will generate the name of the TFM font by concatenating the actual
size (taken from the list) onto the string that follows gen *, which is kepler.”

Now let us discuss the other parameters in the FD file: style and weight (which, as we
saw above, is in fact the combination of weight and set-width). What happens when a
combination of the values of these parameters is unavailable? NFSS allows us to plan
for such cases by making substitutions. For example, the keyword sub * enables us to
redirect the request for a font to another combination of values of parameters, which
can in turn be redirected, and so on.

Thus, in the following example, we ask NFSS to redirect all requests for “slanted” fonts
to the italic font:3

\DeclareFontFamily{T1}{mtgara}{}
\DeclareFontShape{T1}{mtgara}{m}{n}{ <-> mtgaramond }{}
\DeclareFontShape{T1}{mtgara}{m}{it}{ <-> mtgaramondit }{}
\DeclareFontShape{T1}{mtgara}{m}{s1}{ <-> sub * mtgara/m/it }{}

Warning: what follows the keyword sub * must be an “NESS specification”, i.e., a triplet
of “NFSS family name”, “weight”, and “style”, separated by slashes. Also note that that
allows us to invoke a font belonging to a different font family (which will therefore be

described in another FD file), provided that the font encoding remains the same.

Now let us examine another very interesting feature of NFSS: explicit scaling. Suppose
that in a single document we wish to combine two fonts whose letters are of noticeably
different sizes at the same actual size. We must therefore make their sizes consistent. To
that end, we need only specify the desired magnification or shrinking factor in brackets
just before the name of the TFM font:

\DeclareFontShape{T1}{laurel}{m}{n}{ <-> [1.2] hardy }{}

In this example, the font hardy will be magnified 20 percent to scale it up to the size of
laurel.

7 We can also use this feature with intervals of sizes, by writing, for example, <5-24> gen * kepler; butin
that case we really have to cross our fingers in the hope that KTgX will never call for nonintegral sizes, for then it
might generate the name of a file that does not exist. Thus if for any reason IIgX asks NFSS for an actual size of
9% points, NFSS will try to use the TFM font kepler9.25 and will fail if that font is not available on our system
(unless there is an external mechanism for automatically generating fonts, as in the case of METAFONT fonts—
something possible in theory for Multiple Master fonts, but no one has taken the trouble of implementing it).

8 Of course, and as we shall see below, we can always slant a PostScript font by including a little PostScript
command in the configuration file for dvips. But is that aesthetically acceptable? It might work for sans serif
fonts in some instances, but for serif fonts—especially those based on classical models, such as Monotype Gara-
mond in the example shown above—that borders on sacrilege!

Using Fonts in TgX 257

But beware! As is the case for most “miracle solutions”, there is a catch. A font contains
different types of glyphs, and when we attempt to regularize the sizes of some glyphs, we
may make things worse for others. Often the ratio of the height of the lowercase letters
to the point size is not the same for two fonts. In the past {142, p. 7], we spoke of “regular
x-height”, “large x-height”, or “small x-height”. Today the “x-height” refers to the ratio of
the height of the lowercase letters to the point size.” When we calibrate the heights of
the lowercase letters in two fonts, we produce uppercase letters of noticeably different
heights—a very unpleasant effect. And there are still other elements in a font that must
be regularized: the parentheses, the heights of the hyphen and the dashes, the height
of the apostrophe, etc. If we wish to regularize two fonts correctly, we should take them
apart and handle separately the different types of glyphs found within them.

A less risky, and in fact more common, case of regularizing the heights of glyphs is that
of combining different scripts. Thus when we combine the Latin and Arabic scripts, or
Japanese and Hindi, we must take care to use suitable relative sizes.

We have seen the most important features of NFSS. Now let us enter the gray zone where we
describe the rare, more technical, and, finally, more dubious cases. The reader will certainly have
wondered what the purpose is of the last argument to the \DeclareFontFamily and \Declare-
FontShape commands, which has consistently been empty in all our examples. This argument
contains TgX macros or primitives that will be executed when we load a TFM font. Since loading is
performed only once, the first time the font is used in the document, the selection of commands
that can be executed is rather limited.

You are free to experiment with this argument, but please be aware that we have reached the limits
of TgX here and that it behooves us to restrict ourselves to the few commands recommended by
the developers of IKIgX, with the appropriate warnings. What are these commands?

The most useful of them is \hyphenchar. This command, which is in fact a TgX primitive, changes
the value of the glyph used as the end-of-line hyphen. The command

\DeclareFontFamily{T1}{bizarre}{\hyphenchar\font=127}

specifies that glyph 127 will henceforth be used as the end-of-line hyphen instead of the regular
hyphen, whose glyph ordinarily appears in code point 45 (which corresponds to the Unicode char-
acter 0x002D HYPHEN-MINUS). But does the end-of-line hyphen have a different shape from that of
the regular hyphen? Not at all: the two glyphs are identical. The reasons for making this substi-
tution are obscure and technical. There is a rule in TgX that says that a word cannot be further
divided if it already has a potential breakpoint. This rule is useful: if you write thera\-pist, it is
precisely to avoid hyphenation after “the”; thus it makes sense that the presence of \- in a word
gives you complete control over the word’s division and that TgX cannot break the word elsewhere.
The weakness of TgX is that division is handled at the glyph level. Consequently, when one writes
“s0-s0”, if the glyph for the hyphen used in this word is the same as that used for word division,
TEX regards the word as already containing a potential word break and refuses to divide it further.
That may seem harmless enough for “so-so”, but it becomes downright annoying for words as long
as “Marxism-Leninism” or “physico-mathematical”. By using another glyph for the end-of-line hy-
phen, we can deceive TgX, which will no longer see any reason not to divide words containing a
hyphen.

9 Some people define x-height as the ration of the height of the lowercase letters to the height of the
uppercase letters [34, 206]. We shall employ the first definition.

258 Chapter 9 : Fonts in TgX and £, their installation and use

Another possibility: by writing \hyphenchar=-1, we can completely disable hyphenation. That
may be useful when we write computer code or when we write in a language that does not have
the concept of word division, such as Arabic, for example. But—and there is always a “but”—when
writing computer code, which will be set in typewriter type, we may wish to have better control
over the situation, since the “typewriter” font could also be used for commercial correspondence.
In the latter case, of course, we would want the words to be hyphenated. Thus inhibiting hyphen-
ation must be done not at the level of the font’s configuration but at the level of the IATgX com-
mands used in the document. In those languages that do not employ hyphenation, it is inhibited
in the linguistic configuration (for example, we obtain the same result by writing \language=99)
and is independent of the font being used.

Finally, for those with a flair for surgical procedures, we can use the last argument of the \Declare-
FontFamily and \DeclareFontShape commands to modify some of the font’s internal parameters.
By writing \fontdimen5\font=2pt, we designate that parameter number 5 of the font (or of all the
fonts in the family) assume the value of 2 points. We can have up to 50 global parameters in an
ordinary TgX font, but in most cases we use only the first seven. Here is what they represent:

e \fontdimen1 specifies the slant, expressed by the tangent of the angle; in other words, the
horizontal displacement at a height of 1 point. This value is used when TgX places accents
over letters, so that the accents will be centered over the letters’ axes—axes that, in this case,
are oblique.

e \fontdimen2 specifies the ideal interword space, i.e., the interword space used in the font in
question when justification does not impose any constraints.

e \fontdimen3 specifies the maximum stretch allowed for the interword space.
e \fontdimen4 specifies the maximum shrink allowed for the interword space.

e \fontdimens5 specifies the height of the short letters (lowercase letters with no ascenders or
descenders). This information is used by TgX to place accents on letters. Suppose, for exam-
ple, that the \fontdimens5 of a font is x and that we wish to place an accent over a letter of
height ' > x. We shall thus have to move the accent upward by x’ — x. We have direct and
elegant access to this parameter through the unit of measure ex.

e \fontdimen6 specifies the size of the font’s em. We have access to it through the unit em.

e \fontdimen7 applies primarily to the English and German typographic traditions. In these
traditions, it consists of increasing the space that follows a sentence-final punctuation mark.
When more space is left after the final punctuation mark, the reader’s eye can more easily see
where each sentence begins and can more easily distinguish periods used in abbreviations,
which are not followed by extra whitespace. Since this practice is not observed in France, TgX
uses the name \frenchspacing for the command that disables it.

«

Thus by writing \fontdimen2=2.5pt, we set the font’s “natural” interword space to 2.5 points. Note
that we can also use \fontdimen on the right-hand side of an expression. For example, by writing

\DeclareFontShape{T1}{timesten}{m}{n}{ <-> timesten }{
\fontdimen2\font=.8\fontdimen2\font
\fontdimen3\font=.8\fontdimen3\font
\fontdimeng\font=.8\fontdimen4\font

Using Fonts in TgX 259

we will set our type in Times Ten 20 percent more tightly than usual with regard to the regular
interword space and to the stretching and shrinking thereof.

Once again, we advise the reader who is thinking of modifying these parameters, which are of vital
importance to the font, to do so within the font itself (see §B.1) or by creating a virtual font (see
§B.3). Here is an example of the trap that awaits sorcerers’ apprentices: TgX loads a TFM font only
once. If you write

\DeclareFontShape{T1}{timesten}{m}{n}{ <-> timesten }{}

\DeclareFontShape{T1}{timesten}{c}{n}{ <-> timesten }{
\fontdimen2\font=.8\fontdimen2\font
\fontdimen3\font=.8\fontdimen3\font
\fontdimen4\font=.8\fontdimen4\font

}

and then try to use the “weight/set-width” settings m and c defined above in a single document, the
c one will come out exactly as the m one—for the simple reason that the underlying TFM font is
the same, and thus TgX loads it only once. The values of the parameters can be modified only at the
very moment when the font is loaded; it is not possible to change them afterwards.

It is time to leave this gray zone and continue our tour of the use of fonts in TgX by
descending one level lower than ETEX and NFSS—to the level of the \font primitive,
which is responsible for loading TFM fonts in TgX.

The Low Level: TgX and DVI
The primitives for selecting fonts

By now we have already spoken of the TFM files many times. Here is the font-metric
information contained in a TFM file:

e Each glyph’s width.
e Each glyph’s height.

e Each glyph’s depth, which is the vertical dimension of the part located below the
glyph’s baseline.

e Each glyph’s italic correction, which is the amount of space to add when the glyph is
followed, for example, by a right closing parenthesis. This correction actually applies
only to certain italic letters with ascenders, such as f: for /)’ looks better than)’, and
the latter would inevitably result in the absence of the correction because the glyphs
are set in two different fonts and therefore no automatic kerning can be performed
to move them apart.

e A certain amount of global information, including the \fontdimen settings that we
saw in the previous section.

e The kerning pairs.

260 Chapter 9 : Fonts in TgX and £, their installation and use

e The automatic ligatures, such as ‘fi’, I}, etc.

Note that these data, including the “width”, the “height”, the “depth”, and the “italic
correction”, are not connected in any way to actual glyphs (i.e., images of characters,
made up of contours or pixels). The object that TgX manipulates is merely a box whose
sides have the stated dimensions. The actual image of the character, which is unavailable
to TgX but will be placed within this box when the DVI file is converted to PostScript
(or another format), may lie within this box, extend beyond it, or even be outside it
altogether. In reality, all of these cases occur: glyphs neatly contained within their boxes,
glyphs whose boxes are reduced to a single point (the point of origin of the glyphs), boxes
with nonzero dimensions that nonetheless do not contain a glyph, boxes reduced to a
point that contain no glyph...

The NESS specification
\DeclareFontShape{T1}{timesten}{m}{n}{ <-> timesten }{}

assumes the existence of a TFM file named timesten.tfm somewhere on the disk where
TgX can find it.!° In the case of METAFONT fonts, when the TFM file with the specified
name is missing, TgX is capable of launching METAFONT to generate the font and, in the
same stroke, the missing TFM file.

The TgX primitive that loads a TFM file is \font. It can be used in three different ways:

\font\myfontA=timesten
\font\myfontB=timesten at 12pt
\font\myfontC=timesten scaled 1200

To understand the differences among these three approaches, we need some extra infor-
mation. In every TFM file, the optical size of the font is specified. In the first line of our
example, we are using the font at an actual size equal to the optical size. Thus, if the font
was designed to be used at an actual size of 10 points (as the name Times Ten suggests),
TgX will use it at that size. All that we have to do is write

{\myfontA Hello}

so that this font will be used at its default size, which corresponds to the the optical size.

In the second line, we have explicitly requested a specific actual size. TgX will divide the
requested actual size by the optical size and will use their quotient as a stretching or
shrinking factor.

In the third line, we have expliticly specified a stretching or shrinking factor. TgX will
therefore apply this factor to the optical size to obtain the actual size.

10 On most current TgX systems, the paths to the directories that may contain TEM files are found in a file
named texmf.cnf. This file contains the definitions of the environment variables TFMFONTS (the directories
containing TFM files) and OFMFONTS (the directories containing OFM files, which are extended TFM files used
by Q), as well as VFFONTS and OVFFONTS, which dvips and odvips use to find virtual fonts.

Using Fonts in TgX 261

The DVI file

After the blizzard of KIEX and TgX commands that we have just seen, now we shall ob-
serve the total calm that reigns in a DVI file. Only the essentials are found there: the
locations of glyphs, black boxes (for drawing lines, for example), “specials” (i.e., pockets
of code in other languages, such as the PostScript language or the HTML markup sys-
tem). How is the data on fonts stored in a DVI file? Through the use of two commands:

e FONTDEF, followed by five parameters:

- the internal number for the font, which will be used to select it as the active font;
— a checksum, which must match the one found in the TEM file (see §B.1);

— the actual size, expressed in sp units, which are integer multiples of 1/2!¢ of an
American printer’s point. Not for nothing did Knuth decide to use this very small
unit of length: he wished to ensure that all the measurements in a DVI file would
be performed in integer arithmetic, with no rounding at all;'!

— the optical size, also expressed in sp units;
— the name of the TFM file, without the .tfm extension.

The FONTDEF defines a font and associates it with a number. A font must be defined
before it is first used. All of the font definitions are repeated in the DVI file’s postam-
ble (the part between the last typeset page and the end of the file).

e FONT, followed by the font’s internal number. This command selects as the active font
the one that bears this number. The font so selected will be used for all glyphs to
follow, until the active font is changed again.

By way of example, here is the DVI code for the definition and choice of the font in which
“the text that you are currently reading” is set:

<fontdef id="14" checksum="20786036" size="655360"
designsize="655360" name="T1lemondemn"/>

<set>the</set>

11 And that, incidentally, was one of the greatest difficulties in converting DVI files to PostScript. When
we “draw” the vertical bars in a table such as the following:

A | B
C|D

the alignment of these bars, one for each line, does not pose a problem in a DVI file, since its extreme precision
makes an error of 1 sp invisible to the naked eye. But when we convert the file to PostScript, the basic unit
becomes the PostScript point; thus we are working with numbers containing three or four decimal places,
and rounding is unavoidable. But how, then, can we be sure that the vertical bar for each line will be joined
correctly with the one in the line above it? To ensure correct alignment, dvips analyzes the file and tracks down
alignments of this type (an approach much like that of hinting fonts), then adjusts the rounding for consistency.

262 Chapter 9 : Fonts in TgX and £, their installation and use

<right dim="167112"/>
<set>te</set>

<right dim="-"/>
<set>xt</set>

<right dim="167112"/>
<set>tha</set>

<right dim="-"/>
<set>t¢/set>

<right dim="167112"/>
<set>y</set>

<right dim="-"/>
<set>ou</set>

<right dim="167112"/>
<set>ar</set>

<right dim="-"/>
<setre</set>

<right dim="167112"/>
<set>curr</set>
<right dim="-"/>
<set>ently</set>
<right dim="167112"/>
<set>r¢/set>

<right dim="-"/>
<set>eading</set>

Since DVI is a binary format, we have decided to present the preceding block of text
in an XML representation. This format, known as DVX, can be obtained by tools called
dvi2dvx and dvx2dvi {157]. In the example, we are using a font whose TFM file is named
T11lemondemn.tfm (explanation: T1 is the encoding; lemonde {= Le Monde Livre}, the name
of the font; m, the weight; n, the style), at an actual size of 10 (655,360 being 10 times 2'6)
and also at an optical size of 10. To make sure that the TFM file has not been corrupted,
we also include this file’s checksum: 20,786,036. This font has the internal number 18,
and we shall use it right away by making it the active font. The set commands that follow
set the strings “the”, “te”, “xt”, “tha”, “t”, “y”, “ou”, “ar”, “e”, “curr”, “ently”, “r”, “eading”
Between each pair of strings, there is a right command, which causes a move to the right
(or to the left, if negative), also expressed in sp units. Some of these offsets are for word
spaces; others are for kerning. For example, between “te” and “xt” there is an offset of
—19,657 sp, or 0.3 American printer’s points, to the left. We can also see that the word
spaces are all exactly 167,112 sp, or 2.55 points, which shows the extreme rigor with which
TEX sets type.

What can we conclude from this section? That the DVI file contains, all in all, very little
information on the fonts that it uses: a TFM filename, an actual size, and an optical size.
And the software that will process the DVI file is not even required to consult the TFM

Using Fonts in TgX 263

file, because even the kerning pairs have already been explicitly applied in the DVI file.!?
All that remains is to replace the <set> commands with actual glyphs.

“Apres-TgX”: Confronting the Real World

It is often said that TgX lives in an ivory tower: the DVTI file contains only one slight refer-
ence to the name of a file in TFM, a format used by TgX alone. We are far removed from
the jungle of fonts in PostScript, TrueType, OpenType, Speedo, Intellifont, and other
formats. Yet to come to the end of the process of document production, we do have to
pass through this jungle. The bold spirit that will lead the way is none other than dvips
(and its near cousin odvips, which is part of the Q distribution).

Accordingly, the role of dvips is to read the DVI file, find for each TFM file (after check-
ing one or more configuration files) the bitmap font generated by METAFONT or the
PostScript font that corresponds to it, and finally write out a PostScript file that contains
all the required fonts or, if they reside on the printer, references to them.

We shall first consider how dvips processes METAFONT fonts and then consider how it
handles PostScript fonts.

Automatic generation of bitmap fonts from METAFONT source code

We have already mentioned METAFONT, the companion to TgX. It is a programming
language devoted to font creation that we shall describe more precisely in Appendix F.
The most important application of METAFONT has been the Computer Modern family of
fonts, which Knuth developed together with TgX and which remains TgX’s default font
family. These fonts’ filenames follow strict rules: they consist of an abbreviation of the
name of the family, the style, the weight, and an optical size. For example, cmr10 is the
font Computer Modern Roman at 10 points, cmitt12 is the 12-point italic typewriter font,
cmbxs117 is 17-point bold slanted, etc.

To change from one font to another, one need only change the values of some 62 param-
eters, which are very clearly explained in [219], a very special book: in its 588 pages, it
presents the entire source code, with comments, for the Computer Modern fonts, together
with images of their glyphs. While the possible combinations are practically unlimited,
Knuth decided to include only 75 basic fonts in the original distribution of TgX. Users,
however, are perfectly free to create their own new fonts by modifying the values of the
parameters.

But even the modification of these parameters to create new combinations of style,
weight, set-width, and size requires a certain basic knowledge of METAFONT, and not
everyone is willing to delve into it. Enter John Sauter {311}, who rewrote the code in
which the METAFONT parameters are defined so that now one can tell METAFONT that
one wishes to generate one or another font not supplied by Knuth, simply by stating
that font’s name.

12 Nevertheless, in the case of sophisticated DVI drivers access to TFEM files is necessary, not because of
kerning pairs, but to obtain the dimensions of glyph boxes (which are not included in the DVI file).

264 Chapter 9 : Fonts in TgX and £, their installation and use

In addition to Sauter’s system, most TgX and Q distributions are equipped with a man-
ager of searches and file generation that is called kpathsea (= Karl {Berry]’s Path Search
{781]). This system is said to speed up searches for files done by all of the tools of the TgX
world (including TgX, Q, and dvips) and to generate files on demand. To generate files,
kpathsea has three utilities at its disposal:

o mktextfin, which generates a missing TFM file. This utility is called by TgX and Q when
they cannot find a TFM file for a font used in the document.

e mktexmf, which generates the METAFONT source file corresponding to the META-
FONT used in the document if this font does not already exist.

e mktexpk, which generates a bitmap font from the corresponding METAFONT source
files.

A few words of explanation: PK (for “packaged”) is TeX’s bitmap font format!3 (§A.5.3).
These tools combine in the following manner. When TgX encounters a declaration for
the font foo and cannot find a corresponding TFM file, it launches mktextfm. This pro-
gram searches the disk for a file named foo.mf, whose extension, .mf, is used for META-
FONT files. If it finds this file, it launches METAFONT and generates the missing TFM
file. If it cannot find the file, it launches mktexmfin an attempt to generate foo.mf from
generic METAFONT files, and then it launches METAFONT with foo.mf to generate the
missing TFM file. If all these steps fail, TgX uses a default font (Computer Modern Roman).

The same goes for dvips: if a PK font is missing, dvips launches mktexpk in order to gener-
ate it, and mktexpk may in turn launch mktexmf to generate the METAFONT source code
for the missing font.!4

The three mktex* tools are shell scripts. Only mktexpk has a handful of command-line
options, which are listed below:

--dpi followed by an integer: the font’s “resolution”

--bdpi followed by an integer: the font’s “base resolution”

--mag followed by a rational number: the magnification factor, by default 1.0

e --mfmode followed by a keyword: the “METAFONT mode”

--destdir followed by a pathname: the directory into which the PK files will be
placed

13 In fact, and for historical reasons, to obtain a PK font one must first go through another bitmap font
format, called GF (for “generic font”, §A.5.2). Converting from GF to PK involves nothing but compressing
the data. The tool that converts GF files to PK is called gftopk. A tool to do the opposite, pktogf, exists for use
in debugging.

14 Note that mktexpk will even try to convert PostScript Type 1 fonts and TrueType fonts to bitmap format,
if it has been properly configured. But this solution is really less than optimal, as the bitmap format is com-
patible with file formats such as PDF only to a very limited extent.

Using Fonts in TgX 265

To understand what the first four of these parameters mean, one must enter into the
logic of METAFONT. First of all, let us recall that unlike vector fonts (PostScript Type 1,
TrueType, OpenType), which are rasterized by the printer, bitmap fonts are “ready for
use”. Thus they have to be adapted to the needs of the printer; in other words, there must
be as many versions of the same PK font as there are models of printers.

METAFONT makes use of the notion of “mode”—a certain number of parameters that
describe the characteristics of a given printer. There are, for example, a mode 1jfour that
corresponds to the Hewlett Packard LaserJet 4 printer and a mode cx that corresponds to
the Canon PostScript printers equipped with a drum that operate at 300 dots per inch.
The keywords for the METAFONT modes are classified according to types of compatible
printers and are stored in a file named modes.mf ({76} and {69, 70, 173]), which is regu-
larly updated by Karl Berry.

The “base resolution” of the font is in fact the resolution of the printer. This information
is also part of the printer’s METAFONT mode; thus there is no need to specify it if one
uses the --mode option. On the other hand, if one does not know the mode, mktexpk will
attempt to use a generic mode based on the specified resolution.

The font’s magnification factor is the quotient of the actual size and the optical size. Thus
if one wishes to use Computer Modern Roman at 15 points (a size not supplied by Knuth
and therefore not among the sizes available in the original TgX distribution), one can
request the 12-point font magnified by 25 percent, simply by writing:

mktexpk --mag 1.25 cmri2

Note that this manipulation is not needed for the Computer Modern fonts because Sauter’s
“generic files” allow one to request cmr15 directly.

Finally, the “resolution” is the base resolution multiplied by the magnification factor.
Thus the specifications “--bdpi 300 --mag 1.2” and “--dpi 360” are equivalent.

Let us review. If one finds a printer that is represented on the list of METAFONT modes,
one can use --mode and --mag to obtain a bitmap font adapted to the printer and magni-
fied appropriately. If the printer is not on the list, or if one cannot be bothered to look for
it, one can merely state the printer’s resolution by using --bdpi and --mag or even just
-bdpi, which is the product of the two numbers.

Since Knuth, many other people have created METAFONT fonts, which can be found in
TeX distributions and on the Web.

But let us return to the tool mktexpk. It attempts to generate missing fonts automatically.
We have seen that when running this tool manually one needs a certain amount of infor-
mation, in particular the printer’s METAFONT mode or, at a minimum, its resolution. In
its infinite discretion, mktexpk would not dream of asking us for this information; like a
big boy, it looks up these values by itself in a configuration file. It is our responsibility to
supply the correct values in the configuration file; else our hard copy will never come out
right. This file is called mktex.opt and is usually kept in the configuration directory of
the TgX distribution (/<somewhere>/TeX/texmf/web2c under Unix). Here are the lines
of this file that concern us:

266 Chapter 9 : Fonts in TgX and £, their installation and use

: ${MODE=1jfour}
: ${BDPI=600}

All that we have to do is to replace the values 1jfour and 600 by those for our system
(the METAFONT mode and the printer’s resolution).

We close this section by stating that, despite the extreme beauty and elegance of the
METAFONT language, we discourage the use of bitmap fonts in documents, unless,
of course, the document in question is meant to be printed—and only to be printed. To
those who wish to continue to use the Computer Modern fonts, we recommend switching
to their PostScript Type 1 versions, in particular the CM-Super collection of Vladimir
Volovich {341}, which is a veritable tour de force, as it covers the TgX glyph encodings
T4, TS1, T2A, T2B, and T2C, as well as the Adobe Standard encoding. We can only hope that
METAFONT will be recast, in the near future, into a tool for creating PostScript Type 1
or TrueType fonts (see Appendix F).

The processing of PostScript fonts by dvips

Now that we have finished our tour of the world of bitmap fonts, let us return to the
twenty-first century and see how to use dvips to produce PostScript code using PostScript
fonts.

At first blush, we are living in the best of worlds, and we have only two tasks to complete
in order to achieve our goal: (a) configure dvips to be aware of the correspondences be-
tween TFM fonts and these three types of fonts; (b) ensure that all of the required files
are in the right places, i.e., in directories accessible to dvips.

In fact, reality is a trifle more complex.

A number of problems arise when these two worlds (TgX, on the one hand, and the
PostScript fonts, on the other) come together. A typical problem is conflicting encodings.
For acceptable typesetting in Western European languages, IKIgX recommends the T1
font encoding. This encoding is specific to TgX; we have presented a diagram of it in Fig-
ure 9-4, on page 246. Since most PostScript Type 1 fonts are encoded in Adobe Standard
(see Figure C-5, page 660), one of the two sides (TgX or the font) must be adapted so thata
collaboration can occur. Another problem that can arise is the absence of certain glyphs.
The Adobe Standard encoding does not contain any accented letters, a fact that makes
it useless for typesetting in the French language. Accented glyphs usually do exist in a
given font, but the encoding hides them. In other cases, the accented glyphs do not exist.
What shall we do then?

We shall see two techniques that enable us to solve problems of this kind: re-encoding and
virtual fonts.

When re-encoding is employed, the PostScript font will be used with an encoding other
than its original one. Thus any accented glyphs that exist in the font will appear in the
encoding, and in the positions in which TgX expects to find them (so as to simulate, for
example, the T1 font encoding).

Using Fonts in TgX 267

The technique of virtual fonts goes further than that. It involves saying to dvips: “If you
find a glyph from this font in a DVI file, replace it with the handful of DVI commands
that I have provided.” The simplest case is replacing one glyph with another, either in
the same font or in a different one. But in fact everything is possible: we can replace a
glyph with thousands of commands, even with the contents of an entire page. Virtual
fonts can also call one another: among the commands that will replace a glyph, there
may be some that call for glyphs in other virtual fonts. Moreover, nothing at the level of
DVI code distinguishes a glyph in a virtual font from a glyph in a “real” font. It is dvips
that concludes that a font for which no TFM file is named in the configuration files for
dvips is not a PostScript font. In that instance, two possibilities exist: either the font is a
virtual font or it is a METAFONT that will be generated at the correct size, as we saw in
the previous section.

The two approaches (conversion of encodings and virtual fonts) are complementary: a
virtual font can do many things, but it cannot operate at the level of a PostScript font
in order to make hidden glyphs appear, for example, or slant or stretch a font. Con-
versely, conversion of encodings can make hidden glyphs appear, but it can never, for
example, combine accents with letters to yield accented letters.

In this section, we shall see how the configuration file for dvips is arranged and how to
use virtual fonts. In the next section, we shall concern ourselves with the installation of
PostScript fonts in a TgX (or Q) system.

Configuring dvips

Configuring dvips thus involves informing it of the correspondence between TFM fonts
(recognized by TgX and used in DVI files) and PostScript fonts. These data are stored in
text files whose extension is .map (from the word mapping), the most widespread of which
is psfonts.map. In these files, there is one line of text for each TFM file. This line contains
the name of the TFM file, the PostScript name of the font,'> possibly some PostScript
code that will modify the font, and, finally, possible paths to the files containing the
PostScript font, and any new encoding for the font.

Here is an example:
Bookman-Demi Bookman-Demi

This example illustrates the simplest case: a font recognized by TgX under the name
Bookman-Demi (which presupposes the existence of the file Bookman-Demi.tfm), whose
PostScript name is exactly the same. Since no path is specified to the PostScript font file
or any other, it is implied that the font is “resident™; that is, a copy of the font exists on
the printer’s ROM, RAM or hard disk. If the printer already recognizes this font, there
is no need to incorporate it again into the PostScript file generated by dvips.

Another example:

15 Warning: do not mistake the PostScript name, which is an internal name for the PostScript font, and the
PostScript filename, which is the name of the file containing the PostScript font (cf. §C.3.2).

268 Chapter 9 : Fonts in TgX and £, their installation and use

TimesTenRomSC TimesTen-RomanSC <TimesTenRomSC.pfa
TimesTenItaSC TimesTen-RomanSC " .167 SlantFont " <TimesTenRomSC.pfa

The first line of this example illustrates the most typical case: TgX recognizes this font
under the name of TimesTenRomSC (which, by the way, is a PostScript name abbreviated
according to Adobe’s rules). Its PostScript name is slightly longer (and more descriptive):
“TimesTen-RomanSC”, where “SC” means “small capitals”. Thus it contains the small
capitals for the font Times Ten. Our font is stored on disk in the file TimesTenRomSC. pfa,
whose contents will be embedded in the PostScript file generated by dvips. We have not
given an explicit path to this file; dvips will search for it in the default directories for
PostScript fonts.'®

The line below is there to fill a gap in the Adobe Times Ten family of PostScript fonts: italic
small capitals do not exist in this font. Two things have been changed: the name of the
TFM file (on the one hand, this font is slanted; on the other hand, most of the glyphs
require an italic correction), and the part that precedes the name of the PostScript font.
This extra part consists of the PostScript code needed to give all the glyphs in the font a
slant 0of 0.167 (i.e., an angle of ¢ = 9.48 degrees, whose tangent is 0.167). We can see that
the same PostScript file is employed; only when this font is used by the printer will the
glyphs be artificially slanted.

In addition to SlantFont, two other keywords are available to us: ExtendFont, which
stretches or compresses all the glyphs in a font horizontally, and ReEncodeFont, which
re-encodes the font. Thus, by writing

TimesTenRomNarrow TimesTen-Roman " 0.87 ExtendFont " <TimesTenRom.pfa

we obtain a font whose set-width is compressed by 13 percent. Now let us see an example
of conversion of the encoding:

uver8r VendomeT-Regu " TeXBaselEncoding ReEncodeFont " <[8r.enc <uver8a.pfb

Here we are using a font known to TgX under the cryptic name uver8r. Its PostScript
name is VendomeT-Regu; behind this technical name is hidden the splendid font Vendome,
designed in 1952 by Franc¢ois Ganeau for Fonderie Olive in Marseille {39} and widely
used in France in the 1950s and 1960s. Here we have decided to convert the font to use
the T1 encoding. We request this conversion with the command ReEncodeFont, which
takes the parameter TeXBase1Encoding. (PostScript is a programming language that uses
reverse Polish notation: parameters are written before the commands that use them.)
Since this encoding is certainly not recognized by the PostScript printer, we include the
file 81.enc, which contains its definition.!” Finally, we include the file uver8a. pfb, which

16 These directories are indicated in the global configuration file of the TgX distribution (texmf.cnf), in
the environment variable T1FONTS.

17 The bracket in <[8r.enc indicates to dvips that the file that it has encountered is not yet the font file
but rather an auxiliary file, in this case a file containing an encoding. This bracket is not required, but it can
be useful in some cases for removing ambiguities.

Using Fonts in TgX 269

contains the font’s PostScript data. This time we have a PFB file, thus a binary file. It will
be converted by dvips to PFA format so that it can be embedded in the PostScript code
that is generated.

The reader will no doubt be surprised that we have not given any example of an encoding
file other than 8r.enc. For instance, why is there no encoding file for obtaining the T2A
or T2B or T3 or T4 glyph encoding? The answer is that we do not live in an ideal world.
Fonts containing glyphs of these kinds usually do not follow any standard for naming
glyphs. If the names of the glyphs are not the same from one PostScript Type 1 font to
another, a given encoding file will in practice be useful for only a single font. Thus it
is better to write an encoding file specifically for that font, on a case-by-case basis. Or,
better yet, one can regularize the names of the glyphs, which requires changing the fonts
themselves. We shall discuss this latter possibility in Chapter 12.

Here, then, are the contents of the .map file. But how does dvips know which .map files
it is to read? The names of these files are found in the configuration files for dvips. But
which configuration files are these? The approach to this question taken by dvips is quite
original: instead of preserving the same extension and changing the filename, it does just
the opposite. Thus we have a number of files,'8 all of them named “config”, but with
different extensions: config.cm, config.cm-super, config.belleek, etc. Among them,
the file config.ps is the default configuration file for dvips. The others are read at the
user’s request, which is made through the command-line option -P of dvips. One writes:

dvips -P foo .

to instruct dvips to read the configuration file config.foo.

Within these configuration files, we can use the following syntax to indicate the names
of the .map files to be examined:

p /usr/TeX/texmf/dvips/config/psfonts.map
p +/home/yannis/texmf/config/yhpsfonts.map

Here the + indicates that the file in question will be read after the preceding file, and
in addition to it. Note that if several lines of the .map file refer to the same TFM font,
only the last of them will be retained. Thus the order of the files in the config.* file is
important, as it allows us to install new fonts even if there is a risk that they may already
be defined in the existing configuration files; indeed, by simply adding another configu-
ration file after those that appear by default, we can force our new definitions to replace
any existing ones.

In this section we have examined the possibilities for configuring dvips for use with
PostScript fonts. While the procedure that dvips uses to find fonts may appear very
complex, there is no reason for us to feel discouraged: configuring dvips is itself quite

18 The location of these files is governed by the environment variable TEXCONFIG of the global configura-
tion file of the TgX distribution, texmf.cnf.

270 Chapter 9 : Fonts in TgX and £, their installation and use

simple. In broad strokes, it involves inserting into a configuration file as many lines as
there are fonts, each line being built up from the name of a TFM file, the internal name
of the target font, and that font’s filename.

Next, we shall head off in a different direction, still with the goal of making TFM fonts
and “real-world” fonts work together. Instead of modifying the latter, we shall create a
new type of font that will function as an intermediary between the two formats. It will
be called a virtual font.

Virtual fonts

The concept of virtual fonts [220, 180] is quite simple: where TgX sees nothing but a
single glyph, the virtual font will generate a certain number of DVI commands, which
may in turn contain glyphs from virtual fonts and may therefore lead to the production
of new DVI commands, and so forth. Most of the time we use virtual fonts to convert
fonts to a new encoding or to combine letters and accents in order to generate accented
letters.

In a DVI file, the process for replacing glyphs from virtual fonts with the corresponding
DVI commands in an iterative manner, until no more virtual fonts are in use, is called
devirtualization. Devirtualization is carried out internally by dvips, but we can also per-
form it with an external tool, named dvicopy (or odvicopy, in the Q distribution).

The format for virtual fonts is called Virtual Font (VF). In Appendix §B.3, the reader will
find a more rigorous description of this font format. For every virtual font, there must
also exist a corresponding TFM file; this is the file that makes it visible to TgX.

But let us return to the VF file. A VF file contains some data beyond those found in TFM
files, specifically two types of data: global data (definitions of the base fonts being used)
and the DVI commands that make up each virtual glyph:

e The choices of active font.

e Push and pop operations applied to coordinates. In a DVI file, we can keep track of the
current position so that we can easily return to it. An example: when setting lines,
we can record the coordinates of the beginning of the line by pushing them onto a
stack; later, when we wish to move to the next line, we can go back to the same place
(by popping the coordinates off the stack), and then all that we have to do is move
downward.

e Horizontal and vertical movement.
e Black boxes, which are used for drawing lines.

e Specials, which are pockets of code in a format other than DVI (such as PostScript or
HTML code).

By comparing these operations to the commands of the DVI file format, we observe that
the two are practically identical: anything that can be described in a DVI file (other than

Using Fonts in TgX 271

the change of pages) can also be found in the description of a glyph in a virtual font and
vice versa.

Virtual fonts can be used in a large number of situations:

e The PostScript font that we wish to use is not in the correct encoding: we will create
a virtual font with the desired encoding whose glyphs will be references to the posi-
tions of the glyphs in the PostScript font.

o A handful of accented letters, be they letters from the languages of Western Europe
(which are found in almost all fonts) or from those of Eastern Europe (which are
much less commonly found, typically in fonts labeled “CE”, such as Monotype Book-
man OldStyle CE, for example), are missing from the font that we wish to use. The
glyphs in the virtual font will be combinations of letters and accents placed in the
correct locations.

o In ETEX, when we call for small capitals, TgX expects to find the small capitals, the full
capitals, and the punctuation marks all in the same font. But PostScript fonts are not
always so arranged. For instance, the “Expert” fonts contain the small capitals and a
few other special glyphs, but no full capitals or punctuation marks. The virtual font
will be a merger of small capitals from the “Expert” font and other glyphs drawn
from the regular font.

e We wish to use old-style figures (of varying height) rather than the modern forms (of
uniform height). Often the glyphs for these figures are found in an “Expert” font.
Once again, the virtual font will be a copy of the normal font in which the figures
will be replaced with those from the “Expert” font.

e We wish to adjust the balance between the uppercase and lowercase letters by en-
larging the latter. The virtual font will be made by merging one copy of the original
font (containing everything but the lowercase letters) and another copy of the same
font with a different magnification factor (for the lowercase letters).

e We wish to obtain letterspaced fonts, i.e., those with more space between the letters—
but only between letters, not between letters and punctuation marks, etc. In addi-
tion, this space must take into account the kerning that the letters in question would
have if they were not letterspaced. The virtual font will be a copy of the regular font
with a large number of additional kerning pairs for the various combinations of let-
ters.

e We would like to apply PostScript transformations and special effects to the glyphs,
such as by coloring them or subjecting them to rotations, translations, or scaling. The

virtual font will contain PostScript code for each glyph.

e And many other situations can be imagined.

272 Chapter 9 : Fonts in TgX and £, their installation and use

The astute reader may make the following observation: everything described above can
also be done at the level of TgX through the use of commands; after all, TgX is a pro-
gramming language, thus we can do anything with it. Why, then, should we resort to a
construct as peculiar as a virtual font?

The justification for the utility of virtual fonts is based on a special characteristic of the
way that TgX operates. Specifically, there are three operations that TgX can carry out
only when it is setting type with just one font. These operations are kerning, the forma-
tion of ligatures, and hyphenation. In order to be able to kern characters, form ligatures,
or hyphenate words between two glyphs, those glyphs must belong to the same font;
furthermore, no TgX command may come between them.

Thus, in TgX, we can always form any combination of a letter and an accent mark,
whether or not that combination actually occurs in any of the world’s languages. To do
so, we use a primitive by the name of \accent, which takes two arguments: the accent
and the letter to which the accent is to be applied. But if we use this primitive in a word,
there is no longer any way to perform kerning, form ligatures, or hyphenate words. This
situation in TgX is unacceptable.

We can deceive TgX by using a virtual font. We give TgX glyphs that look perfectly normal
from its point of view, and it will set them as usual, with all the required kerning, liga-
tures, and word divisions. Then dvips comes along and sees that the glyphs in question
must be replaced in the DVI file by combinations of glyphs that will produce the desired
effect. The complexity of the virtual fonts is irrelevant: TgX has already finished setting
the type, the words are attractively kerned, and the lines are beautifully divided. And
TeX did all that without even knowing that the glyphs that it was manipulating would
generate far more DVI code than TgX itself!

Virtual fonts and Acrobat

In the previous section, we presented a fairy-tale description of virtual fonts. We are not
going to debate the existence of Santa Claus, but one thing is certain: the uses of virtual
fonts have their limits as well. The problem is that everything in TgX was designed from
the perspective of hard copy, or of noninteractive output to a screen. That makes sense,
since in 1990, when Knuth published his virtual fonts, neither Acrobat nor the Web yet
existed.

Thus when, using a virtual font, we write an accented letter by placing an accent over the
letter, what is important is the visual result, and it is indeed impeccable. But when DVI
is converted to PostScript, dvips devirtualizes the code; thus the accented letter ceases to
exist. In its place we find separate PostScript glyphs for the letter and for the accent. That
does not pose a problem to the PostScript printer, or even to Acrobat Distiller or ps2pdf
when they convert the PostScript code to PDE

The problems begin when Acrobat is used. For Acrobat offers a number of interesting
features: the ability to select blocks of text and copy them onto the clipboard, the ability
to search for strings in a PDF document, full-text indexing of PDF documents, Unicode
support. But how can we identify an accented letter if in reality it consists of nothing but
an “accent” character placed over the glyph for a “letter” character?

Using Fonts in TgX 273

Recall that the method (cf. C.3.3) used by Acrobat Distiller to associate Unicode charac-
ters with the glyphs that it finds in PostScript files is as follows: it examines the PostScript
name for the glyph; if this name is of the form uniHHHH, where HHHH is a hexadecimal
number, it matches the glyph to Unicode character 0xHHHH; otherwise, it checks a table
of correspondences between glyph names and Unicode characters that was developed by
Adobe. If it cannot find the glyph’s name in this table, the process fails.

If we are to obtain a good result, there must be only one glyph per Unicode character,
and this glyph must bear its correct name in the PostScript font. For example, to obtain
an ‘@’ in a PDF file, which corresponds to the Unicode character 0OxO0E1 LATIN SMALL LET-
TER A ACUTE, we must use a single glyph, named “aacute”. But when this glyph is not one
but two, therefore a composite of the glyph ‘a’ and a glyph often called “acute”, there is
no way for Acrobat Distiller or ps2pdfto associate it with the correct Unicode character. If
we use the mouse in Acrobat to copy a word containing this letter, we will obtain, at best,
an ‘@’ followed by an acute accent; at worst, we will obtain some haphazard characters.

Among the examples of the use of virtual fonts that we presented in the previous section,
some of them present problems of this type. Let us review them, one by one, and check
their compatibility with conversion to PDF:

e The PostScript Type 1 font that we wish to use is not in the correct encoding, and we plan
to remap its glyphs. No problem arises, but we must nonetheless make sure that the
PostScript glyphs obtained have the correct names.

o A handful of accented letters are missing from the font that we wish to use... ; the glyphs
in the virtual font will be combinations of letters and accents correctly placed. Avoid this
approach! The composite glyphs will under no circumstances be recognized by Ac-
robat as Unicode characters. Use this approach only when no decomposable Unicode
character corresponds to this combination of a letter and an accent. And even in
this case, be careful (a) to place the accent after the letter in the virtual font, since
that is the convention in Unicode (combining characters occur after base characters)
and (b) to make sure that the name of the glyph for the accent corresponds to the
Unicode character in the table of combining characters (see page 127).

e The “Expert” fonts (in the Adobe Expert encoding; see Figure C-6, page 660) contain the
small capitals and a few other special glyphs, but not the full capitals or the punctuation
marks. Yes, but handle with care, for the glyphs for the small capitals in the “Expert”
font have different names. For instance, ‘A’ has the glyph name Asmall. Because of
this particularity, the correspondence between glyph names and Unicode characters
is very bad.

o We wish to use old-style figures (of varying height) rather than the modern forms (of uniform
height). Same problem as above, since the old-style figures have glyph names such as
oneoldstyle.

o We wish to adjust the balance between the uppercase and lowercase letters by enlarging the
latter. No problem.

274 Chapter 9 : Fonts in TgX and £, their installation and use

e We wish to obtain letterspaced fonts, i.e., fonts with more space between the letters. Han-
dle with care, as no distinction between offsets corresponding to interword spaces
and offsets resulting from kerning is made in a DVI file. Acrobat uses a threshold
beyond which an offset is considered to be a space (and thus corresponds to the Uni-
code character sPAcg) and beneath which an offset is regarded as a kern (no Unicode
character). That works very well under ordinary conditions, but we may exceed the
threshold if we add too much letterspacing, and Acrobat will then insert spaces be-
tween the Unicode characters of the string when it is copied.

o We would like to apply PostScript transformations and special effects to the glyphs. In prin-
ciple that should not create any difficulties, since Acrobat Distiller should correctly
digest the PostScript code. All the same, you had better test it first.

We shall return to this subject when we discuss the editing and modifying of virtual fonts
(page 285).

Installing Fonts for TpX

In the previous section, we described font management under TgX at every level: the user
level; the level of TgX and DVI; and the level of PostScript. At this point, we shall assume
that we have purchased, or downloaded from the network, some fonts that we would
like to use with TgX. If they are METAFONT fonts, we need only place them in a location
where METAFONT can find them, launch mktexisr so that the TgX system knows they are
there, and the mktexpf and mktexmf scripts will do everything else; there is nothing more
to say on this subject. Therefore, we shall assume that we are dealing with PostScript
fonts.

To adapt them for use with TgX, we have to work at the three levels that we just men-
tioned:

o At the KIEX level, we have to provide one (or more) NFSS font family name(s) to the
new fonts and prepare one (or more) FD file(s).

e At the TgX/DVI level, we have to prepare TFM files for the new fonts, in both their
original encoding and an encoding that TgX can use, such as T1.

o At the PostScript level, we have to prepare virtual fonts that will make the connec-
tion between the TFM files in the TgX encoding and the TFM files in the original
encoding. We must also update the configuration file for dvips, possibly with com-
mands for converting between encodings.

Let us be a little more practical. We are starting from the assumption that we have at our
disposal some PFB/PFA files (PostScript Type 1) and AFM files (PostScript Type 1 font
metrics) files, that we would like to adapt for use with TgX or Q. Thus we must produce
FD, TFM, and VF files and update the configuration file for dvips.

Installing Fonts for TgX 275

We shall consider two tools that will enable us to carry out these operations. The first of
them, afin2tfm, is a simple and rapid executable tool suitable for use in ordinary cases. Its
benefits are its speed and ease of use. It generates TEFM and VF files directly, along with
the line of code to include in the dvips configuration file.

The second tool, fontinst, is the Rolls-Royce of tools for installing PostScript fonts. It
generates PL and VPL files (i.e., human-readable versions of TFM and VF files; see Ap-
pendix B) and even FD files. It is written in TgX and can therefore be used on any plat-
form on which TgX runs. It offers a large number of TgX commands that make it possible
to configure the adaptation of fonts for use with TgX in a very precise manner.

In the examples that illustrate the use of these two tools in the following sections, we
shall use Monotype Centaur, a font designed in 1915 by Bruce Rogers {228, p. 62} and con-
sidered by many people to be one of the most beautiful fonts of the twentieth century.
We shall assume that we have just bought this font family and that we have the following
AFM files:

CentaurMT.afm
CentaurMT-Italic.afm
CentaurMT-Bold.afm
CentaurMT-BoldItalic.afm
CentaurExpertMT.afm
CentaurExpertMT-Italic.afm
CentaurExpertMT-Bold.afm
CentaurExpertMT-BoldItalic.afm

and the following PFB files:

CentaMT.pfb
CentaMTIta.pfb
CentaMTBol.pfb
CentaMTBolIta.pfb
CentaExpMT.pfb
CentaExpMTIta.pfb
CentaExpMTBol.pfb
CentaExpMTBolIta.pfb

The “Expert” roman font CentabExpMT.pfb contains—among the glyphs of interest to
us—the small capitals and the ligatures “ff, ‘i, etc. The other “Expert” fonts contain
nothing but ligatures.

The Tool afm2tfim

The program afin2tfim comes with the dvips distribution. Its purpose is to read an AFM
file and possibly one or two font encoding files, and then to generate a TFM file and
possibly a VPL file (the human-readable version of a VF file; see Appendix B).

276 Chapter 9 : Fonts in TgX and £, their installation and use

Suppose that we have the AFM file CentaurMT.afm and wish to produce from it a virtual
font named ticentaurmn.vpl, in the T1 encoding. To do so, we need only write:

afm2tfm CentaurMT.afm -v ticentaurmn.vpl -T EC.enc

In the code shown above, EC.enc is a file, provided in the dvips distribution, that de-
scribes the T1 font encoding. The -T option indicates that we will need a virtual font in
addition to a reencoded version of the PostScript font in order to obtain the desired re-
sult. Once the application is launched, afin2tfin writes the following lines to the console:

CentaurMT CentaurMT " ECEncoding ReEncodeFont " <EC.enc

where the second entry is the PostScript name of the font. This is the line that will have to
be added to the dvips configuration file by appending, if necessary, an instruction to em-
bed the PFB file in the PostScript code produced by dvips:

CentaurMT CentaurMT " ECEncoding ReEncodeFont " <[EC.enc <CentaMT.pfb

What are the actual steps needed to adapt a PostScript font family for use with TX?
Suppose that we begin with the following AFM files (which correspond to the Monotype
Centaur family; the “Expert” fonts are omitted in this example):

CentaurMT.afm
CentaurMT-Italic.afm
CentaurMT-Bold.afm
CentaurMT-BoldItalic.afm

We must select an encoding and an NFSS family name. For this example, let us take the
T1 encoding, which is the encoding most suited to the Western European languages, and
use centaur as the family name. It will be sensible to name the virtual fonts that we shall
produce T1centaur*.vpl, in which we will replace the asterisk with mn, mit, bxn, or bxit,
thus using the NFSS codes for weight and style. Thus we must run afin2tfm four times,
as shown below:

afm2tfm CentaurMT.afm -v Ticentaurmn.vpl -T EC.enc

afm2tfm CentaurMT-Italic.afm -v Ticentaurmit.vpl -T EC.enc
afm2tfm CentaurMT-Bold.afm -v Ticentaurbxn.vpl -T EC.enc
afm2tfm CentaurMT-BoldItalic.afm -v Ticentaurbxit.vpl -T EC.enc

It will generate the following four lines:

CentaurMT CentaurMT " ECEncoding ReEncodeFont " <EC.enc

CentaurMT-Italic CentaurMT-Italic " ECEncoding ReEncodeFont " <EC.enc

CentaurMT-Bold CentaurMT-Bold " ECEncoding ReEncodeFont " <EC.enc

CentaurMT-BoldItalic CentaurMT-BoldItalic " ECEncoding ReEncodeFont "
<EC.enc

Installing Fonts for TgX 277

to which we will add instructions to include the PFB files, as follows:

CentaurMT CentaurMT " ECEncoding ReEncodeFont " <[EC.enc
<CentaMT.pfb

CentaurMT-Italic CentaurMT-Italic " ECEncoding ReEncodeFont " <[EC.enc
<CentaMTIta.pfb

CentaurMT-Bold CentaurMT-Bold " ECEncoding ReEncodeFont " <[EC.enc
<CentaMTBol.pfb

CentaurMT-BoldItalic CentaurMT-BoldItalic " ECEncoding ReEncodeFont "
<[EC.enc <CentaMTBolIta.pfb

Then we will add these lines at the end of psfonts.map or any other configuration file
that dvips may use.

Next, we must convert the VPL files to VF format:

vptovf Ticentaurmn

vptovf Ticentaurmit
vptovf Ticentaurbxn
vptovf Ticentaurbxit

and copy the TFM and VF files to locations where TgX will be able to find them. Finally,
we must prepare the FD file Ticentaur. fd:

\DeclareFontFamily{T1}{centaur}{}
\DeclareFontShape{T1}{centaur}{m}{n}{ <-> Ticentaurmn }{}
\DeclareFontShape{T1}{centaur}{m}{it}{ <-> Ticentaurmit }{}
\DeclareFontShape{T1}{centaur}{bx}{n}{ <-> Ticentaurbxn }{}
\DeclareFontShape{T1}{centaur}{bx}{it}{ <-> Ticentaurbxit }{}

which we shall also place in a location where TgX can find it.

Basic Use of the Tool fontinst

In the previous section, we examined practically all the features of afin2tfim. We saw that it
is a tool for adapting PostScript fonts for use with TgX that also supports re-encoding. The
tool fontinst, by Alan Jeffrey {199}, goes much further: it allows us to generate arbitrarily
configurable VPL files from one or more AFM files.

For example, if among the fonts that we wish to adapt there are some that use the “Ex-
pert” encoding, we have no choice but to use fontinst, since afm2tfin is unable to read
multiple AFM at the same time and merge the compiled data into a single VPL font.

fontinst is written in TgX, which means that it comes with a TgX file that “drives” the
procedure and that TgX, when it reads this file, will begin to read the required AFM files
and some auxiliary files of fontinst so that it can eventually write out the required PL,
VPL, and FD files.

278 Chapter 9 : Fonts in TgX and £, their installation and use

In this section, we shall consider only the basic commands of fontinst, since our aim is
merely to install PostScript fonts directly for use with TgX. We shall return to fontinst later
in this book (page 518), when we discuss ways to adapt fonts to meet the user’s needs.
Then we shall examine in detail the commands that make it possible to define virtual
glyphs one by one.

Assume that we are in the same situation as in the previous section; that is, we have the
following AFM files:

CentaurMT.afm
CentaurMT-Italic.afm
CentaurMT-Bold.afm
CentaurMT-BoldItalic.afm

But this time let us assume that we also have a few other Monotype Centaur fonts—the
“Expert” fonts, shown here:

CentaurExpertMT.afm
CentaurExpertMT-Italic.afm
CentaurExpertMT-Bold.afm
CentaurExpertMT-BoldItalic.afm

To produce fonts in the T1 encoding, we will need to collect the glyphs from all the AFM
files, and that will entail reencoding the PostScript fonts (since some glyphs may not
appear in the encoding). The approach of fontinst is as follows:

e During the first pass, it will convert a number of AFM files. This conversion may be
done for reasons of scaling, slanting the glyphs, or changing the encoding.

e Next, it will read the AFM files generated, in an order specified by the user.

e When it finds a glyph that it needs to process, it makes a note of the glyph and does
not look for that glyph again.

e When it has processed all the AFM files, it generates a VPL file in the requested en-
coding, using all the glyphs that it has found.

The file that drives fontinst must have the following structure: first,a command to include
the fontinst macros and a command to start the process:

\input fontinst.sty
\installfonts

At the end of the file, the corresponding closing commands are used:

\endinstallfonts
\end

Installing Fonts for TgX 279

According to the principles of NFSS, we need an FD file for each family of fonts that we
are to create. Here is the command that creates this file; it is written in the file that drives
fontinst:

\installfamily{T1}{centaur}{}

Now let us convert the fonts to the T1 encoding (which is not necessary for the “Expert”
fonts, since these use a special encoding of their own and generally do not contain any
hidden glyphs). We need new names for the AFM files to be generated; we shall simply
append “T1” to the names that we have, yielding CentaMTT1, CentaMTItaT1, etc.

Here is the code that will convert our four fonts to the T1 encoding so that any glyphs
that may be hidden by these fonts’ encodings will be revealed:

\transformfont{CentaurMTT1}{\reencodefont{T1}{
\fromafm{CentaurMT}}}
\transformfont{CentaurMT-ItalicT1}{\reencodefont{T1}{
\fromafm{CentaurMT-Italic}}}
\transformfont{CentaurMT-BoldT1}{\reencodefont{T1}{
\fromafm{CentaurMT-Bold}}}
\transformfont{CentaurMT-BoldItalicT1}{\reencodefont{T1}{
\fromafm{CentaurMT-BoldItalic}}}

The other transformations that can be performed with fontinst are general scaling
(\scalefont), scaling on the horizontal or vertical axis only (\xscalefont, \yscale-
font), and slanting (\slantfont). In the example above, we read AFM files (\fromafm{
...}), but we could also read PL files (\frompl{...})or MTX files (\frommtx{...}).

But let us return to our example. Of course, we must notify dvips that a conversion of
encodings has occurred, and that is the only task that fontinst does not perform—perhaps
because dvips is not the only DVI driver and fontinst decided that if it could not produce
code for every DVI driver it might as well not produce code for any of them. Thus the
lines to append to the configuration file for dvips are the following:

CentaurMTT1 CentaurMT " ECEncoding ReEncodeFont "
<EC.enc <CentaMT.pfb
CentaurMT-ItalicT1 TimesNewItalic " ECEncoding ReEncodeFont "
<EC.enc <CentaMTIta.pfb
CentaurMT-BoldT1 TimesNewBold " ECEncoding ReEncodeFont "
<EC.enc <CentaMTBol.pfb
CentaurMT-BoldItalicT1 TimesNewBoldItalic " ECEncoding ReEncodeFont "
<EC.enc <CentaMTBolIta.pfb

Having obtained fonts in the desired encoding, we can now move on to the heart of the
matter and install the NFSS fonts. To do so, we shall use the command \installfont,
which takes the following arguments:

280 Chapter 9 : Fonts in TgX and £, their installation and use

e The name of the VPL file generated

e A list of AFM, MTX, or PL files, to be read in this order (possibly followed by the
keyword scaled and a magnification factor a la TgX, which is to say that it is multi-
plied by 1,000

e The fontinst encoding to use

e The NESS attributes of the generated font: its NFSS encoding, family, weight, style,
and size

Observations:

1. We have already mentioned the “MTX?” file format on two occasions. Do not worry,
dear reader: MTX is not a new font format. It is merely a form in which fontinst rewrites
an AFM file in a syntax that TgX finds easier to digest. Thus, the first time a font family
is processed by fontinst, the current directory is filled with MTX files. That eliminates the
need to reread the same AFM files.! Also note that when we say that fontinst “reencodes”
a font, that actually means that it creates an MTX file and a PL file in the new encoding
when it reads an AFM file. Thus do not expect to find new AFM files; fontinst writes out
only MTX and PL!

2. We have here two “encodings”, which we shall call the “fontinst encoding” and the
“NFSS encoding” These result simply from the fact that the NFSS encodings 0T1, T1,
etc., are closer to character encodings than to font encodings, while the fontinst encodings
are genuine font encodings. Let us explain! We have not mentioned it up to now, but
whether a font contains lowercase letters or small capitals, modern or old-style figures, we
shall always say that it is of (NFSS) encoding T1. In TgX/NFESS, the change from a normal
font to a font containing small capitals is a change of font, not one of encoding. Neverthe-
less, fontinst provides four different encodings (in the sense of “fontinst encodings”), all
of them derived from the encoding (in the sense of “NFSS encoding”) T1:

NESS encoding | fontinst encoding | Small capitals | Old-style figures
T1 T1 no no
T1 Tic yes no
T1 T19 no yes
T1 T19c yes yes

Here, then, is the code to write for our eight AFM fonts, which will produce five NFSS
fonts (the four combinations of roman/italic, light/bold, and the light upright small cap-
itals):

19 Important corollary: if you modify your AFM files, delete all the MTX files so that they will be generated
afresh. Unfortunately, fontinst is not make and thus is not able to check the date of the last modification of your
MTX files relative to that of the AFM files from which they were generated. ..

Installing Fonts for TgX 281

\installfont{Ticentaurmn}{CentaurMTT1,CentaurExpertMT,
latin}{Ta}{T1}{centaur}{m}{n}{}
\installfont{T1icentaurmit}{CentaurMT-ItalicT1,CentaurExpertMT-Italic,
latin}{Ta}{T1}{centaur}{m}{it}{}
\installfont{Ticentaurbxn}{CentaurMT-BoldT1,CentaurExpertMT-Bold,
latin}{T1}{T1}{centaur}{bx}{n}{}
\installfont{Ticentaurbxit}{CentaurMT-BoldItalicT1,
CentaurExpertMT-BoldItalic,latin}{T1}{T1}{centaur }{bx}{it}{}
\installfont{T1centaurmsc}{CentaurMTT1,CentaurExpertMT,
latinsc}{T1c}{T1}{centaur}{m}{sc}{}

Two more comments:

1. We can see that the keywords latin and latinsc appear at the end of the list of AFM
files. These are MTX files that come with fontinst and whose role is to consolidate the gen-
erated VPL files generated through a salvage operation. Let us explain. For every glyph
that is not found in any AFM file on the list, a replacement, or a compromise solution,
will be inserted into these files. Those glyphs that can be generated by their companions
(for example, the Dutch ligature ‘ij’ can be produced by concatenating the glyph 9’ and
the glyph °) will be so generated. Those that cannot be generated or simulated (such as
the Scandinavian glyph thorn ‘p’) will be replaced by a black box and will generate a
PostScript error message. The fact that these files appear at the end of the list ensures us
that we have already searched through all the AFM files by the time that we reach that
point, and thus that it is really a “solution of last resort”. It is, in fact, essential to leave
latin and latinsc at the end of the list of AFM files.

2. fontinst will also create PL files for the “Expert” fonts. Thus be careful not to forget
to add the following lines (with no instructions about reencoding) to the configuration
file for dvips:

CentaurExpertMT CentaurExpertMT <CentaExpMT.pfb
CentaurExpertMT-Italic CentaurExpertMT-Italic <CentaExpMTIta.pfb
CentaurExpertMT-Bold CentaurExpertMT-Bold <CentaExpMTBol.pfb

CentaurExpertMT-BoldItalic CentaurExpertMT-BoldItalic <CentaExpMTBolIta.pfb

Let us now compile the driver file in TgX (the plain format is sufficient; there is no need
to use KIEX). It will then generate a number of files:

e MTX files: these may be deleted when we are finished;

o PL files: these must be converted to TFM with pltotf and placed in a location where
TEX can find themy;

o VPL files: these must be converted to VF with vptovf and placed in a location where
dvips can find them;

e An FD file, which must be placed in a location where TgX can find it.

282 Chapter 9 : Fonts in TgX and £, their installation and use
" ox ~ 1 v R
x| X T« | oy | = | — T O O TR S I P < A S O ¢
o | L P HIS % & D)+ -
Bx | O | T | 21314 (5|6 |7 (89|], |<|=]>]2
‘ax | @|A|B|C|D|E|F|G|H|T|J|K|L|IM|N|O
x| P|QIR|[S|T|U|V W |X|Y|Z|[|\N|]]|"]_
6x| " |a|blc|d|e| f|g|h|i|j|k|]l|m|n]o
x| plqlr|s|t]ulv|w/|x]|y|z]|{ [
s« | A|A|C|C|ID|E|E|G|L|L|E|N|IN m|O|R
ox | R|US|IS|S|T|T|UO|U|Y|Z2|Z2|Zz|y|1]|d]|g§
x| 3| aele|d el e g ||| t]|ala|m|&]|F
"Bx | T | § | S| s | |l¢| G| z |z |z |4y || ¢]|£E
o | A|A|A|A|A|A|ZEZ|C|E|E|E|E|T | T |T]T1
x| D N/O[O|O|O|O|E|Q|U|U|U|U|Y PSS
"Ex | a a | A |ida|4d|a| = ¢ e | é | e | é |1 1 1 i
Fx| O | A |0 |6|6]|6| 06 | @|oe|ulalalaly|p|B
0| 1| 2| "3| 4| | 6| 7|8|"9|"a|"B|C|D|E|"F

Figure 9-9: The layout of the font t1centaurmn, produced by fontinst. Compare it with the table
of the T1 glyph encoding (Figure 9-4). The font does not contain glyphs for ‘o; 9, ‘N; or ‘n’; these
glyphs have been replaced by black boxes.

Note that TgX reported a number of error messages during compilation, such as these:

Warning:
Warning:
Warning:
Warning:
Warning:
Warning:

missing glyph
missing glyph
missing glyph
missing glyph
missing glyph
missing glyph

“endash’.
“emdash’.
“perthousandzero'.
“dotlessj'.

“Ng'.

‘ng'.

These mean that the glyphs for endash (the en dash, ‘-’), emdash (the em dash, ‘—’),
perthousandzero (the little zero ‘o’ that we write after the percent sign ‘%’ to produce
the per-mille sign, the per-ten-thousand sign, and so on: “%o, %00, %o000,... "), dotlessj
(the 9’ with no dot, which is needed when accents are placed over a j’), Ng and ng (the
Sdmi letter eng ‘N, n’) could not be simulated by their companions and thus were re-
placed by black boxes, as can be seen in Figure 9-9. In the same figure, the reader will see
several glyphs for the languages of Central Europe. They were generated by combining
a letter with an accent. The result is rather poor in some cases, such as, for example, the

Installing Fonts for TgX 283

letters ‘C), ‘', and ‘S, whose accents are set peculiarly far to the left, or the Polish barred L
‘L, whose bar should be symmetrical relative to the downstroke. Later (page 520) we
shall see how to correct these small errors by modifying the configuration file for fontinst
or by directly editing the virtual fonts themselves.

For the sake of completeness, here are a few substitutions that are generally added to FD
files in order to ensure that the substitution mechanism works correctly:

\substitutesilent{b}{bx}

\substitutesilent{sb}{bx}
\substitutesilent{db}{bx}
\substitutesilent{sl}{it}

With these instructions, we replace bold, semi-bold, and demi-bold with bold extended
and also replace “slanted” type with italic. There is a variant of \substitutesilent,
called \substitutenoisy, which exhibits the same behavior but also displays an error
message.

In this section, we have seen the basic ways to use fontinst to install a family of PostScript
fonts. fontinst manages to get the most out of PostScript fonts; we get the best results
when we combine fontinst with a reencoding of the fonts, as done in our example, and
when we thus cause all the interesting glyphs to become visible. A few problems remain:

e Missing glyphs. There will always be some, especially with font encodings other than
T1. In this case, there is only one solution: one must design them oneself with font-
editing software such as FontStudio, Fontographer, FontLab, or FontForge. We shall
see how to do so in Chapter 12.

e Accents placed incorrectly. This problem can be solved with an ad hoc configuration
of fontinst; we shall see the procedure on page 520. But first we must figure out where
the problem originates, and that involves delving into the VPL and AFM files in
search of anything that could have caused the improper alignment.

e Some incompatibilities between virtual fonts and Acrobat. To solve this problem,
one must, once again, open the font with font-editing software—this time not to
design new glyphs but (a) to correct the names of the glyphs, if necessary; and (b) to
combine letters and glyphs in order to form “precomposed” glyphs. Then all of the
problems of virtual fonts at the Acrobat level will disappear.

Before finishing this chapter on basic font management in TgX and €, let us present one
more little section on a type of fonts on the road to extinction: the Multiple Master fonts.

Multiple Master fonts

Neither TgX nor Q can directly process Multiple Master fonts (see Appendix C.4), in the
sense of being able to take advantage of these fonts’ inherent transformation capabilities
to produce special effects or perform much more powerful NFSS commands.

284 Chapter 9 : Fonts in TgX and £, their installation and use

For example, one might have envisioned NFSS commands with numerical values for
weight and set-width that, when combined with optical size, could produce Multiple
Master fonts by supplying triplets of the values of these parameters. One might also have
envisioned a TgX or an Q that could calculate actual sizes and optical sizes in a way that
would make books run to an exact multiple of 16 pages, which would greatly simplify
the printers’ jobs. Other possibilities could also be imagined.

But these possibilities do not exist, and the fact that the Multiple Master fonts have been
officially abandoned by Adobe does not help matters. Only one solution exists for using
Multiple Master fonts in TgX or Q: extracting the desired instance and using it like an
ordinary Type 1 font.

To this end, there are the tools mmafin and mmpfb [223}:

mmatm --weight=380 --width=460 --optical-size=6 MinionMM.amfm \
> minion_380_460 6.afm

mmpfb --weight=380 --width=460 --optical-size=6 MinionMM.pfb \
> minion_380_460 6.pfb

Here we generate the instance 380 460 6 of a font for which we have an AMFM file (the
Multiple Master version of the AFM format, cf. §C.4.2), all the AFM files for the masters
(a list of these masters appears in the AMFM file;?° there can be as many as eight), and a
PFB file. These files must all be in the current directory.

In the preceding lines of code, we used three axes. There is also a fourth, called --style
(not used by the Adobe Minion MM font in our example). Two other useful options:

e --precision, which gives the number of decimal digits to use when performing di-
visions (in mmafim and mmpfb). The default value is 3 digits of precision; but if we
wish to adapt the font subsequently for use with TgX by running fontinst, we should
instead select the value 0, because fontinst is not good at digesting numbers with a
decimal part. In this case, take care to apply the same precision to both the AFM
files and the PFB files so as not to create discrepancies between the two.

e --kern-precision (only in mmafin), the threshold below which kerning pairs are ig-
nored (2 by default). Since kerning pairs are calculated through linear interpolation
(asis the contour of each glyph as well), these kerning values may become very small.
Below a certain threshold, the kerning pairs will have no visual effect; thus we can
use this option to disregard them.

After performing these operations, we proceed, as usual, to obtain the TFM, VE and FD
files and add a line to the configuration file for dvips. The only precaution that must
be taken is to inspect the AFM file generated by mmafin to obtain the PostScript name
assigned to the newly generated font. Ordinarily this name is produced from the name

20 Warning: the AFM files must have the PostScript names of the fonts that they represent. For example,
the AFM file for the font whose FontName is MinionMM-SixIt must also have this name (and not MinioMMSixIt,
which is the abbreviated version of the name).

Customizing TgX Fonts for the User’s Needs 285

of the “parent” font followed by the values of the parameters, separated by underscores:
MinionMM 380 460 6 (here there is one extra underscore because the fourth axis hasno
value), but it is prudent to check. In our case, the line for the dvips configuration file will
therefore be:

minion 380 460 6 Minion M 380 460 6 " ECEncoding ReEncodeFont " \
<EC.enc <minion_380_460_6.pfb

Customizing TgX Fonts for the User’s Needs

In this section, we shall learn how we can reconfigure fontinst to obtain fonts customized
for our typographic needs: with accented letters, slanted letters, colored letters, special
ligatures, letterspacing, special behavior, etc. First, however, we must study the mecha-
nism by which fontinst describes a virtual font and then apply it to a number of interest-
ing examples.

How to Configure a Virtual Font
Here is the philosophy of fontinst:

e To produce a virtual font, we need a font encoding and a set of glyphs. The encoding
is describen in an ETX file (extension .etx); the glyphs are described in a set of MTX
files (extension .mtx).

e Each \setslot entry in an encoding file is associated with a number (the position of
the glyph in the encoding) and contains a glyph’s name. In an entry in an encoding
file, we can also provide other information:

- Any ligatures (\ligature) whose sequences begin with the glyph in question

— The fact that the glyph is part of a sequence of substitutions, as in mathematical
fonts, or a set of large mathematical delimiters (see Appendix B.1.4, where we
describe these gadgets)

e A glyph must be defined by a \setglyph instruction. It may later be redefined
(\resetglyph).

e The behavior of a glyph with respect to kerning may be similar to that of another
glyph; for instance, ‘¢’ kerns in the same way as ‘@’. This fact is established through
the instructions \setleftrightkerning, \setleftkerning, and \setrightkerning,
depending on whether the kerning is similar on both sides, only on the left side, or
only on the right side.

o The definition of a glyph may include different types of commands. Thus we can be
very precise about the construction of a glyph from several others, possibly drawn
from different fonts at different sizes.

286 Chapter 9 : Fonts in TgX and £, their installation and use

e The set-width of the resulting glyph may be calculated automatically from its com-
ponents, or it may be modified after the fact, possibly by starting with the set-widths
of other glyphs and making appropriate calculations.

e More generally, all of the richness of the TgX programming language can be put to
use to allow arbitrarily complex calculations and constructs.

Let us take these points one at a time. We have mentioned the ETX and MTX files. Why
do we need these two types of files? The answer is connected to the nature of virtual fonts:

¢ Since a virtual font may collect glyphs from multiple fonts, often the same glyph exists
in several fonts. We shall take the first instance that we find, in the order in which the
fonts are read. Thus we do indeed need multiple MTX files that contain descriptions
of the glyph.

e On the other hand, a virtual font may use only one encoding. Thus we shall read
only one ETX file, which we must choose with care.

The difference between MTX and ETX is reflected in the fontinst syntax for installing
fonts, as we have already seen on page 280:

\installfont{T1centaurmsc}{CentaurMTT1,CentaurExpertMT,
latinsc}{T1c}{T1}{centaur}{m}{sc}{}

The names CentaurMTT1, CentaurExpertMT, and latinsc correspond to MTX files that
will be read in that order. The first contains the most important glyphs; the second con-
tains the glyphs for the small capitals; the third is there for any salvage operations: if
a glyph is hopelessly absent, latinsc.mtx will suggest a substitute. Using the third ar-
gument of this command, fontinst will read the ETX file T1c.ext, which designates the
unique encoding of the virtual font that we are going to produce. Its name, “T1c”, gives
a hint about its nature: it contains the T1 (Cork) TgX encoding, for small capitals.

The ETX file
The ETX file has a structure of the following type:

\relax
...documentation...
\encoding

...encoding commands...
\endencoding

The “encoding commands” will be in this form:

\setslot{foo}
\comment{This is the glyph foo}
\endsetslot

Customizing TgX Fonts for the User’s Needs 287

This command associates the glyph foo with the current position. The current position
is 0 by default and increases by 1 every time \setslot appears. We can also be explicit
and assign the glyph bar, for example, to position 10,564:

\nextslot{10564}
\setslot{bar}

\comment{This is the glyph bar}
\endsetslot

There is also the command \skipslots{i}, which allows us to skip i positions in the
table. The \comment command allows us to insert a comment into the code.

TeX fonts offer the possibility of defining ligatures, which TgX will automatically employ.
For instance, we can specify that whenever an ‘f” is followed by an ‘i) these two glyphs
will be automatically replaced by the glyph ‘fi’. This approach is compatible with both
hyphenation (the ‘fi’ ligature will be changed back to the glyphs f” and 7’ if we should
have to divide the word between those two letters) and kerning (we can create kerning
pairs with ‘fi” and any other glyph whatsoever).

There are eight types of ligatures in TgX. Simple ligatures (which we shall call LIG) simply
replace a pair of glyphs with another glyph. The other seven types of ligatures (/LIG,
/LIG>, etc.), known as smart ligatures, will leave one or both of the glyphs in place while
adding a new glyph, etc. We shall describe the eight types of ligatures in detail in §B.1.3.

To obtain a ligature from a glyph whose position we are defining, we use the \ligature
command. For example, here is a possible \setslot instruction for the letter ‘f’, includ-
ing all the ligatures that exist in the font:

\setslot{f}

\ligature{LIGHi}{f i}

\ligature{LIG}Hf}{f f}

\ligature{LIG}{1}{f 1}

\ligature{LIG}{t}{f t}

\ligature{LIG}HjHF j}

\comment{The letter 'f', a descendant of the Greek digamma F}
\endsetslot}

Note that the \ligature command does not repeat the letter ‘f’, since it is already known:
it is, after all, the current glyph. Thus \ligature{LIG}{i}{f i} indicates that we wish
to obtain a ligature of LIG type between the current glyph (f) and the glyph i: the glyph
that will replace these two is ¥ i (according to the rules for naming glyphs that were
formulated by Adobe, page 659).

Finally, two “gadgets” from TgX’s mathematical fonts: the sequence of extensible glyphs
and composition (see Appendix B.1.4). Here is how to tell TgX which is the glyph larger
than the current glyph that must be used when a mathematical expression requests a
delimiter of a larger size:

288 Chapter 9 : Fonts in TgX and £, their installation and use

\setslot{foo}
\nextlarger{foo2}
\endsetslot

where 002 is the larger glyph that immediately follows foo in the sequence of extensible
glyphs arranged in order of increasing size.

Likewise, to specify that an extended brace is formed from an upper part called top, a
lower part called bottom, a middle section called middle, and a repeating segment called
repeating, we write:

\setslot{repeating}
\varchar
\vartop{top}
\varbot{bottom}
\varmid{middle}
\varrep{repeating}
\endvarchar
\endsetslot

The MTX file

This is where things become interesting. In the previous section, we described the ETX
file, which contains the font’s encoding. Here we shall describe the glyphs, by all possible
and conceivable means. If these glyphs appear in the encoding, very well: they will also
appear in the font. If they do not appear in the encoding, they will be ignored. Thus we
can use the same MTX files with multiple ETX files.

An MTX file must have a structure of the following kind:

\relax

...documentation...
\metrics

...definitions of glyphs...
\endmetrics

In order to understand why this file is useful, let us take a typical line from a fontinst
installation file:

\installfont{T1centaurmsc}{CentaurMTT1,CentaurExpertMT,
latinsc}H{T1c}H{T1}{centaur}{m}{sc}{}

There is a fundamental difference between the two files CentaurMTT1.mtx and Centaur-
ExpertMT.mtx and the file latinsc.mtx: the former are generated on the fly from AFM
files of the same name; the latter is painstakingly prepared by the developer. Thus the
former contain, in the ideal case, nothing but the information contained in the AFM

Customizing TgX Fonts for the User’s Needs 289

files. It is latinsc.mtx that will take advantage of the information to do more interesting
things. We also have the option of redefining glyphs. This option would not make sense if
we humans were the only ones to define them, but it assumes capital importance when
the glyphs are defined in a way that may not seem optimal at the first glance at the AFM
files.

The MTX file that we prepare, and that we ultimately instruct fontinst to read, is thus the
file of last resort: in it, we correct poorly defined glyphs and add those that could not be
defined.

To define a new glyph, we use the command

\setglyph{foo}
...glyph commands...
\endsetglyph

where foo is the name of the glyph, a name that must be strictly identical (same case, no
whitespace) to the one used in the ETX file.

If the glyph has already been defined, we instead use the following variant:

\resetglyph{foo}
...glyph commands...
\endresetglyph

To avoid error messages if we are not sure whether the glyph in question has been de-
fined, we may use the command \unsetglyph{foo}, which will cause fontinst to “forget”
the glyph.

What are these celebrated “glyph commands” that we can insert in a glyph’s definition?
Well, this should come as no surprise to the reader who has read this book carefully and
has understood the principles behind virtual fonts: a virtual font is a font that replaces
references to glyphs in a DVI file with some DVTI instructions. Thus we have glyph com-
mands associated with various types of DVI instructions:

e The command \glyph{bar}{1000} will insert the (real or virtual) glyph bar. Warn-
ing: bar must have been defined beforehand. The number 1000, divided by a thou-
sand, indicates the glyph’s scaling factor. The displacement vector for this glyph will
start at the current point of displacement.

e The command \glyphrule{123}{456} will draw a black box of width 123 and height
456 thousandths of an em.

e The commands \movert{500} and \moveup{500} will move the current point right-
wards or upwards by 500 thousandths of an em.

e The commands \push and \pop will, respectively, push the current point onto the
stack and pop it off the stack.

290 Chapter 9 : Fonts in TgX and £, their installation and use

e Finally, \glyphspecial{code} will insert the code code at this point, much like the
\specials of TgX.

In addition to these five commands, there is a sixth that generates a PostScript error mes-
sage: \glyphwarning{Warning: missing glyph!} will warn us when dvips is attempting
to insert the missing glyph into the PostScript code.

The commands above enable us to combine glyphs and calculate the global displacement
vector by using the vectors of the combined constituents—but we may often wish to
change the metrics of the new glyph directly. To do so, we have the following commands
at our disposal:

e \resetwidth{1234}, to redefine the glyph’s set-width
e \resetheight{1234}, for its height

e \resetdepth{1234}, for its depth

e \resetitalic{1234}, for its italic correction

o \resetglyphbb{a}{b}{c}{d}, to redefine its bounding box

The bounding box is the rectangle that contains the glyph. It thus depends entirely on the
glyph and is independent of the set-width.

It is interesting to observe that when we redefine a glyph, we can refer to its previous
definition in the new definition. For example:

\resetglyph{A}
\movert{30}
\glyph{A}{1000}
\movert{30}

\endresetglyph

will increase the spacing on each side of the glyph A, without causing an infinite loop, as
we might have expected it to do.

We have used whole numbers in the various definitions that we have presented above.
But fontinst would be of very little interest if we were required to give explicit numbers
systematically. All of the system’s power comes from the fact that we can use the dimen-
sions of glyphs that are already defined:

o \width{foo}, \height{foo}, \depth{foo}, and \italic{foo} yield the set-width,
height, depth, and italic correction of the glyph foo, which must have been defined
previously.

e \bbleft{foo}, \bbbottom{foo}, \bbright{foo}, and \bbtop{foo} yield the four co-
ordinates of the glyph’s bounding box.

Customizing TgX Fonts for the User’s Needs

291

e \kerning{foo}{bar} yields the kerning, if any, between foo and bar.

We can perform arbitrarily complex calculations by using the fundamental arithmetical
operations:

\neg{a}, the negation of g
\add{a}{b}, the suma+b
\sub{a}{b}, the difference a — b
\mul{a}{b}, the product ab
\div{a}{b}, the quotient §
\scale{a}{b}, the product 4
\max{a}{b}, the value max(a,b)
\min{a}{b}, the value min(a,b)
\half{a}, half of a, rounded down
\otherhalf{a}, half of @, rounded up

We can also define numeric variables corresponding to the relevant dimensions of the
font. For example:

\setint{italicslant}{0} %
\setint{xheight}{\height{x}} %
\setint{capheight}{\height{A}} %
\setint{ascender}{\height{d}} %
\setint{descender}{\depth{g}} %
\setint{underlinethickness}{40} %
\setint{smallcapsscale}{800} %
\setint{smallcapskerning}{900} 7%

slant

height of the lowercase letters
height of the capitals

height of the ascenders

depth of the descenders

thickness of the underscore
scaling factor for small capitals
kerning factor for small capitals

The values of these variables can be used in calculations by means of the \int{variable}
command. They can also be modified at any time.

We shall have the opportunity to see some typical examples of several of these calcula-
tions.

But let us return to the contents of the MTX file. Aside from defining glyphs, we can also
define kerning behavior equivalences. For example, it is quite natural to suppose that the
ligature ‘CE’ will behave, with respect to other glyphs, like an ‘O’ on the left and like an ‘E’
on the right. That fact can be expressed with the following commands:

292 Chapter 9 : Fonts in TgX and £, their installation and use

\setleftkerning{OE}{0}{1000}
\setrightkerning{OE}{E}{1000}

where, once again, 1000 represents a scaling factor multiplied by 1,000. There is also a
command, \setleftrightkerning, that combines the previous two:

\setleftrightkerning{Eacute}{E}{1000}

means that Eacute kerns like E on both sides.

For a complete and detailed list of the available commands, the reader is invited to con-
sult the documentation for fontinst {200}.

ETX and MTX files for a simple virtual font

In the simple case, where we use only the information contained in the AFM files, there
is an ETX file for the T1 encoding, an MTX file for each AFM file, and an MTX file “of
last resort”. What do these files contain?

The file t1.etx contains definitions of code points in the encoding’s table, of the follow-
ing type:

\setslot{comma}
\ligature{LIG}{comma}{quotedblbase}
\comment{The comma ~,"'.}

\endsetslot

Here we have defined a code point for the glyph comma and a ligature of two consecutive
commas that produces a glyph called quotedblbase, i.e., the German opening quotation
mark (,,).

There is a trick in this file (and in all the files of the fontinst distribution) that may seem a
bit obscure at first blush: the uppercase letters are defined not by a simple \setslot{A}
command but by \setslot{\uc{A}{a}}. Likewise, the lowercase letters are defined by
\setslot{\1c{A}{a}}. What is the point of this complexity?

To understand it, consider the file t1c.etx, which describes the font encoding for the
small capitals. In this file, we read:

\setcommand\1lc#1#2{#1small}
\setcommand\uc#t1#2{#1}

In other words, the glyph names of the lowercase letters are formed by the first argument
of the command \1c{A}{a}, followed by the string small. Thus, instead of a, we find
Asmall. Thus we can reuse the code in the t1.etx file by simply adapting this convention
of Adobe for naming glyphs, which affects the names of the small capitals.

Other tricks of this kind are used for ligatures, old-style figures, etc.

Customizing TgX Fonts for the User’s Needs 293

What do we find right now in the MTX file latin.mtx? Since it consists of programming,
the authors of this file (Alan Jeffrey and Ulrik Vieth) first define a number of commands
that will be useful to them later in the file. For example, they define \unfakable, in the
following manner:

\setcommand\unfakable#1{
\setglyph{#1}
\glyphrule{500}{500}
\glyphwarning{missing glyph “#1'}
\endsetglyph
}

The idea is that the glyph in question cannot be simulated or replaced by any other
glyph.?! Thus we shall later encounter

\unfakable{A}

which means that if the font does not contain the letter ‘A’, the glyph in question will be
replaced by a square 500 units long on each side (the units here are the units of PostScript
fonts, thus thousandths of an em). Moreover, a PostScript error message will be issued
when the PostScript code is displayed or printed.

What else is there in the file latin.mtx? Well, we find, for example, the description of
the glyph ‘E’:

\setglyph{Eacute}
\topaccent{E}{acute}{500}
\endsetglyph

The \topaccent command is defined in the same file. The number 500 indicates that
the accent must be centered relative to the middle of the base glyph’s set-width. Thus it
is an ad hoc command written specially for the needs of this glyph encoding. Here is its
definition:

\setcommand\topaccent#1#2#3{
\push

21 Let us note here, by way of an anecdote, that unfakability is an entirely relative concept. For instance,
in some fonts sold in France by a company that shall go unnamed, the Icelandic glyph thorn (p) was replaced
by ‘b’ i.e.,, a ‘p’ and a ‘b’ superimposed! If it were not for the legendary sangfroid of the Scandinavian peoples,
this construction could have driven Icelandic readers to the point of suicide. ..

294

Chapter 9 : Fonts in TgX and £, their installation and use

\moveup{\max{0}{\sub{\height{#1}}{\int{xheight}}}}
\movert{\add{\sub{\scale{\width{#1}}{#3}}{\scale{\width{#2}}{500}}}
{\scale{\sub{\height{#1}}{\int{xheight}}}{\int{italicslant}}}}
\glyph{#2}{1000}
\pop
\glyph{#1}{1000}

Here is an explanation of the code:

We store the current point by means of a \push operation.

We move the accent upward. This is necessary because in TgX the glyphs for the accents have
a height that is ideal for the lowercase letters. For the uppercase letters, therefore, the accent
must be moved upward a distance equal to the difference in height between the uppercase
and lowercase letters: \sub{\int{capheight}}{\int{xheight}}. Here the authors wanted to
write an all-purpose \topaccent macro that will work with all glyphs. Accordingly, they chose
a different approach (not necessarily an optimal one): they used not the standard height of the
capitals but the height of the current glyph: \sub{\height{#1}}{\int{xheight}}. This means
that the acute accent of the ‘O’ will be slightly higher than that of the ‘E’, since the ‘O’ is larger
than the ‘E’. That is the price to pay for a macro that will work in all situations.

One last detail: it may happen that, for one reason or another, the height of the current letter
will be less than that of the lowercase letters—for example, if the user decided to place a cir-
cumflex accent over a comma (3). In this case, the accent must not descend below the level of
the lowercase letters; in other words, its displacement may not be negative. Thus we choose
maximum of the calculated quantity and 0.

We move the accent rightward. If G is the base glyph’s set-width and A is the set-width of the
accent, we move the accent by % — %‘, which causes us to center it relative to the middle of
the glyph’s set-width. Next, if s is the slope (in the TgX sense) of the font, we multiply s by
the difference between the height of the glyph and the height of the lowercase letters. That is
necessary because the accent in the slanted font is designed in such a way as to take the slant
into account, but only for the lowercase letters. By multiplying s by the difference in height, we
obtain the amount of extra slant required, which will cause the accent to be centered correctly
over the letter’s (slanted) central axis. Finally, we take the sum of the two, which gives us the
horizontal displacement of the accent.

We insert the glyph for the accent.
We pop the position at which we were before this insertion.
We insert the base glyph.

Despite its sophistication, the code above is not optimal. It uses the principle that the set-
widths of the glyphs are all the information that we need to make effective combinations
of glyphs. That is true if the glyphs have symmetric side spacing, i.e., if their contours are
centered in the abstract boxes that contain them; in that case, we can use their widths.
But it is not true if the glyph has more spacing on one side than on the other.

In the latter case, it is much more effective to use the glyphs’ bounding boxes. At the end
of the day, when we know the exact dimensions of a glyph’s contour, no matter how it
may be placed in its abstract box, we can always center it with respect to another glyph.

Customizing TgX Fonts for the User’s Needs 295

Why, then, is fontinst based on set-widths rather than on bounding boxes? Because
the concept of bounding box is peculiar to TgX. The TgX font-metric files, be they real
(TFM/OFM) or virtual (VF/OVF), do not contain bounding boxes. There is no way to
know where the glyph is positioned in the abstract boxes given in these files. The fonts
created by METAFONT do not contain this information. Thus fontinst cannot guarantee
that the information will exist; it prefers to use values, such as set-width, that will be
found in all font files.

Although fontinst has been around for more than 10 years, only in a recent version (1.926,
the current one being 1.928) supports making calculations on the basis of bounding
boxes—by loading the file bbox.sty. One must insert the following commands:

\needsfontinstversion{1.926}
\input{bbox.sty}

at the beginning of the font’s installation file in order to ensure that the macros in ques-
tion will be available.

Later in this book, we shall come back to the different types of combinations of glyphs
that are possible.

One last word on the latin.mtx file. It contains macros of the following type:
\setleftkerning{IJ}{I}{1000}

\setleftrightkerning{Iacute}{I}{1000}
\setleftrightkerning{Icircumflex}{I}{1000}
\setleftrightkerning{Idieresis}{I}{1000}
\setleftrightkerning{Idotaccent}{I}{1000}
\setleftrightkerning{Igrave}{I}{1000}

\setrightkerning{IJ}{J}{1000}

to create kerning between “nonstandard” glyphs. Thus the number of kerning pairs in
a font is often multiplied by six: for each pair ‘AT’, there will also be the pairs ‘AT, ‘AT,
‘AT’, and so forth.

In the text to follow, we shall examine different scenarios for building up particular
glyphs from components. These scenarios will allow us to illustrate both the variety of
typographical needs of the different scripts with regard to combining glyphs and the ad-
vanced techniques offered by fontinst.

Adding ligatures to a font
A “mademoiselle” for the font Zapfino

Suppose that we wish to adapt the delightful font Zapfino (a creation of a great master
who shall go nameless here) for use with TgX—or rather with €, since the latter supports

296 Chapter 9 : Fonts in TgX and £, their installation and use

far more than 256 glyphs. One step in the process of adaptation will be to write the code
for the ligatures. Thanks to this code, some strings in the input will automatically pro-
duce ligatures. Being a great patriot and defender of la francophonie, I have chosen, from
the multitude of ligatures provided in Zapfino, one that is as French as can be: “/(*’ (for
“mademoiselle”, the French equivalent of the title “Miss”), from which I have removed
the period that Zapf unfortunately added. How can we obtain a ligature automatically
from the string M11e?

The reason that we chose this example (rather than the bland ‘i’ ligature) is that there
is a catch. Specifically, in TgX, unlike in OpenType or AAT, we cannot define ligatures of
more than two glyphs at a time. Thus, to produce the four-glyph ligature “/(*’, we will
have to have positions in the font’s table for each of the intermediate ligatures: /17, 11/
and ‘114 . Thus we shall have the following in the ETX file:

\setslot{M}
\ligature{LIG}{1}{M 1}
\comment{Letter M}

\endsetslot

\setslot{M 1}
\ligature{LIG}{1}{M 1 1}
\comment{(False) ligature M1}

\endsetslot

\setslot{M 1 1}
\ligature{LIG}{1}{M 1 1 e}
\comment{(False) ligature M11}

\endsetslot

\setslot{M 1 1 e}

\comment{Original ligature Mlle}
\endsetslot

We are therefore taking up four positions in the font’s table, while only two of them will
actually be used. Moreover, these two positions (/17 and “/(*’) are the only ones that will
actually appear in the font. The other two are really nothing but jury-rigging.

What will appear in the MTX file? For the “real” glyphs, we will have the customary code:

\setglyph{M}
\glyph{M}{1000}
\endsetglyph

\setglyph{M 1 1 e}
\glyph{M_1 1 e}{1000}
\endsetglyph

Customizing TgX Fonts for the User’s Needs 297

\setleftkerning{M 1 1 e}{M}{1000}
\setrightkerning{M 1 1 e}{e}{1000}

We shall obtain the others by simply concatenating glyphs (taking their possible kerning
into account):

\setglyph{M_1}
\glyph{M}{1000}
\movert{\kerning{M}{1}}
\glyph{1}{1000}

\endsetglyph

\setleftkerning{M 1}{M}{1000}
\setrightkerning{M 1}{1}{1000}

\setglyph{M 1 1}
\glyph{M}{1000}
\movert{\kerning{M}{1 1}}
\glyph{1 1}{1000}

\endsetglyph

\setleftkerning{M 1 1}{M}{1000}
\setrightkerning{M 1 1}{1 1}{1000}

In the second case above, we are using not a string of three glyphs but a glyph ‘M’ and
a ligature ‘I, since the ligature does exist in Zapfino and it would be a shame not to use
it. Thus when we type an ‘M’ followed by an ‘I’, we shall obtain the ligature ‘MI’, which
we shall never see, as the glyph for this ligature is identical in every way to the glyphs
‘M’ and I’ in sequence. The same is true of ‘MII’. Only when the ‘e the fourth character
of ‘Mlle’, is read will the combined ligature become visible.

What will happen when the DVI file produced by TgX (or Q) is converted to PostScript
and then to PDF? Will the intermediate “false ligatures” of our approach create any
problems? Not at all. Do not forget that dvips will first “devirtualize” the DVI code be-
fore converting it to PostScript. For the positions in the virtual font that represent true
ligatures, a PostScript glyph will be inserted. This glyph, in the Zapfino font, will have a
name formed from Adobe’s rules for naming glyphs (Appendix C.3.3). Acrobat will thus
recognize this glyph as being equivalent (with respect to indexing, selection, searching,
etc.) to the corresponding string: the glyph M 1 1 e corresponds to the string M11e.

As for the false ligatures, they will be replaced by the corresponding DVI code during
devirtualization. For example, M_1 will be replaced by the glyphsMand 1,andM 1 1 will
be replaced by the pair of glyphs M and 1_1, the second of these being a true ligature,
equivalent to the string 11. Thus all is well, in the best of worlds.

298 Chapter 9 : Fonts in TgX and £, their installation and use

Contextual analysis in Arabic

Another example of the use of ligatures: the contextual analysis of the Arabic script. For
simplicity’s sake, we shall assume that there are only two letters: one with two forms,
and one with four forms. To assist the reader who does not read Arabic, we shall take
two letters whose forms are quite different from one another: ghayn (isolated, & initial,

$; medial, &; final, c) and dal (isolated, 3; final, &\). Thus the four two-letter words that
we can write are '&: and 33 (letters not connected), & and 8 (letters connected). The
three-letter words with all the letters joined up are e& and J&$. And so forth.

Ordinarily the glyphs that we are going to discuss are called afii57434 for ghayn and
afii57423; but since these names will not necessarily help the reader to understand the
example, we shall instead use the names ghayn and dal. The glyphs at our disposal are
therefore ghayn.isol, ghayn.init, ghayn.medi, ghayn.fina, dal.isol, and dal.fina.

Unlike the representative glyph in Unicode, which is in the isolated form, the default
glyph in TgX that will represent an Arabic character in our font is in the medial form,
if it has four forms, or the final form, if it has only two. Therefore, by default, when we
ask TgX to set aghayn or adal, it will set a & (ghayn.medi) ora & (dal.fina). Now we must
write the ligatures that will produce the other contextual forms.

First, let us deal with the beginning of the word. We want & and o to become £ and
3, respectively, in that position. But what is the beginning of a word? That question is
anything but trivial. In fact, we must enumerate all the glyphs that may appear before
either ghayn or dal. The opening parenthesis (parenright) is one such glyph. Therefore
we shall write, in the definition of this glyph, in the ETX file:

\setslot{parenright}
\ligature{/LIG}{ghayn.medi}{ghayn.init}
\ligature{/LIG}{dal.fina}{dal.isol}

\endsetslot

The slash before the keyword LIG means that we are keeping the preceding glyph and
that the new glyph obtained will replace the second glyph; thus we keep the parenthesis
and replace one Arabic letter with another. That solves the problem of ‘&)’ and ‘)", which
become ‘€)’ and ‘3)’, respectively.

Nonetheless, most of the time it is a space that will appear at the beginning of a word.
And we find ourselves once again faced with the peculiarity of TgX that the “space” is
not a glyph but merely an offset. How can we specify the behavior of a glyph when it is
preceded by an offset, be it horizontal (within a line) or vertical (at the beginning of a
line)? TgX uses the following trick: A position in the table is declared to be the “left-hand
delimiter” of words. At the beginning of a word (preceded by a space), TgX will act as if
this special glyph were present. Thus we can assign it to ligatures or to kerning pairs. In
fontinst, we use a special command, \setleftboundary, in the following manner:

\setleftboundary{percent}
\ligature{/LIG}{ghayn.medi}{ghayn.init}

Customizing TgX Fonts for the User’s Needs 299

\ligature{/LIG}{dal.fina}{dal.isol}
\endsetslot

Above we have used the glyph ‘%’ as the left-hand delimiter. That does not affect the
actual glyph ‘%’ at all. All kerning pairs, however, with the percent sign as their first letter
will also be applied at the beginnings of words, as if an invisible ‘%’ were present at those
locations. We should choose as the left-hand delimiter a glyph that does not have any
kerning pairs, so as not to confuse the kerning pairs of the “real glyph” with those of its
alter ego, the pseudoglyph for the left-hand delimiter.

There is one other case in which we would like to change from a medial form to an initial
form: this is when the glyph is preceded by a dal. Indeed, this letter has only two forms:
isolated and initial. When it is followed by another Arabic letter, the latter behaves as if
it were at the beginning of a word. Thus we must also supply the ligatures engendered
by dal.isol or dal.fina:

\setslot{dal.fina}
\ligature{/LIG}{ghayn.medi}{ghayn.init}
\ligature{/LIG}{dal.fina}{dal.isol}

\endsetslot

\setslot{dal.isol}
\ligature{/LIG}{ghayn.medi}{ghayn.init}
\ligature{/LIG}{dal.fina}{dal.isol}

\endsetslot

Now let us take care of the end of the word. When a word ends with dal, we already have
a final (or isolated) form; thus the contextual analysis is already finished. But when a
word ends with a medial ghayn, that letter must change to its final form. When it is in
the initial form, it must assume its isolated form instead.

Once again we shall start by writing all the explicit ligatures with punctuation marks
and other glyphs that may follow a word, and then we shall declare that one glyph will
play the role of an “end-of-word space™ this will be the right-hand delimiter. We define
the right-hand delimiter with the \setrightboundary command, which has no ending
command \endsetrightboundary, since the pseudoglyph in question is not supposed to
form ligatures with other glyphs that follow it; it exists only to serve as the second term
in ligatures with real glyphs.

Thus we write:
\setrightboundary{percent}

The percent sign thus serves two purposes: it is the left-hand and the right-hand delimiter.

The entry for medial ghayn might thus be:

300 Chapter 9 : Fonts in TgX and £, their installation and use

\setslot{ghayn.medi}
\ligature{LIG/}{percent}{ghayn.fina}
\ligature{LIG/}{period}{ghayn.fina}
\ligature{LIG/}{comma}{ghayn.fina}
\ligature{LIG/}{parenleft}{ghayn.fina}

. and so on for all the punctuation marks ...

\endsetslot

The slash that follows the keyword LIG indicates that the second term in the ligature
will remain unchanged. Thus if medial ghayn is followed by a period, the first term, the
medial ghayn, is replaced by a final ghayn, while the period remains where it is. In the
absence of this mechanism, we would be required to have positions in the font table
containing final ghayn followed by different punctuation marks. That would cause the
number of glyphs in the font to explode.

Note that in the code above, by writing percent, we obtain a final glyph both before a
space at the end of a word or the end of a line (since percent is the right-hand delimiter)
and before an actual ‘%’ sign. For TgX, it is impossible to distinguish the two. Thus we
should choose as our delimiter a glyph that we use rarely, or even never.

To conclude, here is the declaration for initial ghayn:

\setslot{ghayn.init}
\ligature{LIG/}{percent}{ghayn.isol}
\ligature{LIG/}{period}{ghayn.isol}
\ligature{LIG/}{comma}{ghayn.isol}
\ligature{LIG/}{parenleft}{ghayn.isol}

. and so on for all the punctuation marks ...

\endsetslot

» «

Thus, for example, when we write the string “space”, “ghayn”, “space”, we obtain a me-
dial ghayn, which becomes an initial ghayn under the action of the left-hand delimiter;
then the initial ghayn will form an isolated ghayn with the right-hand delimiter, and we
are done.

In this section, we have described a simplified version of the contextual analysis of the
Arabic script. There are advantages and disadvantages to this method:

e ADVANTAGES. Contextual analysis is done automatically. Provided that she can set
type from right to left (for which she needs either Q or eTgX), the user has nothing to
do but to enter the codes for the Arabic characters, and the rest will be done by the
font. Analysis does not involve any macros, so it can be performed in any context: in
a table, within a mathematical formula, in verbatim mode, etc. This independence
from the context of the font’s behavior corresponds closely to the fundamentally nat-
ural character of contextual analysis in the Arabic script. This approach is completely
compatible with conversion to PDF; the glyph ghayn.isol, for example, will be rep-
resented by a PostScript glyph of the same name, and Acrobat will able to determine
very easily which Unicode character it represents.

Customizing TgX Fonts for the User’s Needs 301

e DISADVANTAGES. Contextual analysis is very fragile: even the empty group {} can
break it. It would be very difficult to insert vowel points or other diacritical marks
between the letters. We must explicitly list glyphs that are not Arabic letters and that
will cause a medial glyph to become initial or final (and will cause an initial glyph
to become isolated); theoretically, all non-Arabic Unicode characters fall into this
case, which means that we have thousands of glyphs, thus hundreds of thousands,
even millions, of ligatures. Of course, we shall only write the relevant ligatures (the
case of an ideograph immediately followed by an Arabic letter, for example, can be
easily excluded...), but that entails a degree of uncertainty in the analysis; the day
when that rare case does occur, the user will have to be able to notice it rapidly and to
correct the problem by using glyphs representing the Unicode characters ZWJ and
ZWNJ.*

Keeping ‘f’ from running into ‘e’

Last but not least, an example drawn from the French version of this book. The reader
may have noticed that the letter ‘f” becomes ‘f” when it appears before an ‘¢’ a ‘i, or any
other letter that bears an accent that inconveniently gets in the way. A humble interven-
tion on our part has prevented the ‘¢’ effect that would ordinarily be obtained with this

font, in a word like Italian “caffe”.

All that we had to do was to design a new glyph ‘> whose upper portion is narrower,
place it into an auxiliary font (the license for our installation does not allow us to mod-
ify the original font), and create a number of ligatures of LIG/ type: ‘f” + ‘@ — ‘f¢), etc.
When we use an “intelligent” ligature, the ‘f” is replaced with an ‘f, and the second letter
remains unchanged. Suppose that the new letter is named f.narrow. Then the fontinst
code could be:

\setslot{f}
\ligature{LIG/}{egrave}{f.narrow}
\ligature{LIG/}{ecircumflex}{f.narrow}
\ligature{LIG/}{edieresis}{f.narrow}

. and similarly for all other accented
letters that cause a problem ...

\endsetslot

That approach saves us the trouble of defining new positions in the font’s table for each
pair ‘¢ ‘f&’, f¢’, etc. The same procedure was needed for the “ff” ligature, which be-
came ‘ff’.

The problem of the pair of letters ‘f¢’ is not new. It unfortunately occurs in a great many
fonts of high quality. Yet it can be resolved in a trice, with nothing more than a narrower
head on the f” and a line of fontinst code.

22 These are empty zero-width glyphs that play either the role of an Arabic letter with four forms or the
role of a non-Arabic letter. Since they have zero width, these glyphs allow us to force Arabic letters to assume
a certain form.

302 Chapter 9 : Fonts in TgX and £, their installation and use

Placing a diacritical mark

In the section “ETX and MTX Files for a Simple Virtual Font” (page 292), we considered
the case of placing a single diacritical mark—an accent centered over a letter. For this
purpose, we used the set-widths of the accent and the letter, in the hope that these glyphs
were indeed centered in their abstract boxes so that the centering of the set-widths would
be equivalent to the centering of the contours.

Now we shall write the same code?? by using the bounding boxes of the glyphs:

\setglyph{Eacute}
\topbbaccent{E}{acute}
\endsetglyph

\def\bbcenter#1{\add{\half{\sub{\bbright{#1}}{\bbleft{#1}}}}{%
\bbleft{#1}}}

\setcommand\topbbaccent#1#2{

\push
\moveup{\max{0}{\sub{\bbtop{#1}}{\int{xheight}}}}
\movert{\add{\sub{\bbcenter{#1}}{\bbcenter{#2}}}

{\scale{\sub{\bbtop{#1}}{\int{xheight}}}{\int{italicslant}}}}

\glyph{#2}{1000}

\pop

\glyph{#1}{1000}

E

The \bbcenter command yields the horizontal center of the bounding box: it is
computed as half of (\bbright minus \bbleft) plus the spacing on the left (which is
\bbleft). Next, in the code for \topbbaccent, we merely replace \scale{\width{#1}}{
500} with \bbcenter{#1} and replace \height with \bbtop (which is, strictly speaking,
the same thing, since the only information about height that we find in an AFM file is
the height of the bounding box).

Making an ‘W’ believe that it is an ‘T

N

Kaj nun, ankorau pli interesa ekzemplo: la litero ‘h’ uzata en Esperanto, lingvo tiel idea-
lisma kaj arma en sia strangeco. (Now for a more interesting example: the letter ‘h’ used

23 For simplicity’s sake, we shall assume that the accent is centered; thus it lacks the third parameter of
\topaccent, which we shall assume to have the value of 500.

Customizing TgX Fonts for the User’s Needs 303

in Esperanto,?* a language so idealistic and charming in its awkwardness.) It is obvious
that centering the accent (like this: ‘h’) would yield a horribly ugly result. Therefore, we
need a way to center the accent above the downstroke of the ‘h’. In the absence of an
OpenType accent indicator or a shape-recognition system to detect the downstroke, we
must resort to a trick to achieve our goal.

Here it is: in the overwhelming majority of fonts, the downstroke of the ‘h’ is a perfect
copy of the letter ‘I’ and the amount of spacing on the left of these two letters is the same.
Thus we have only to place the accent over the ‘h’ as if it were an T

\setglyph{hcircumflex}
\topbbaccentlikeif{h}{circumflex}{1}
\endsetglyph

\def\bbcenter#1{\add{\half{\sub{\bbright{#1}}{%
\bbleft{#1}}}}{\bbleft{#1}}}

\setcommand\topbbaccentlikeif#1#2#3{

\push
\moveup{\max{0}{\sub{\bbtop{#1}}{\int{xheight}}}}
\movert{\add{\sub{\bbcenter{#3}}{\bbcenter{#2}}}

{\scale{\sub{\bbtop{#1}}{\int{xheight}}}{\int{italicslant}}}}

\glyph{#2}{1000}

\pop

\glyph{#1}{1000}

The code has hardly changed. We have defined a command \topbbaccentlikeif (or
“accent appearing above a letter, calculated on the basis of bounding boxes and placed
as if the letter were a different letter”), which takes three arguments: the base letter (‘h’),
the accent (the circumflex), and the letter that will serve as a reference for placing the
accent (‘).

A AN

I h

To go a step further, we shall now leave the Latin alphabet and dive into the mysterious
Old Cyrillic (or “Slavonic”) script, used for liturgical documents in the countries that

The same thing, but on the other side

24 Invented by Ludwig Lazare Zamenhof, a nineteenth-century idealist, Esperanto purports to be a uni-
versal language, but in reality it is completely Eurocentric, as it merely mixes elements of the various Romance
and Germanic languages. Its main use was as a pivot language during the Cold War: since the West was hesitant
to learn Russian or Chinese and the Eastern Bloc was equally hesitant to learn English or French, Esperanto
served as a common language for communication between people from the two rival blocs.

304 Chapter 9 : Fonts in TgX and £, their installation and use

use the Cyrillic script. This alphabet includes a letter named yus: ‘A’ (Unicode 0x0467
CYRILLIC SMALL LETTER LITTLE YUS). Like all the vowels in this alphabet, yus can bear
accents (the accents of the Greek language, carry-overs from the Greek cultural heritage).
Here it bears an acute accent: ‘A’. Up to now, there has been nothing out of the ordinary,
typographically speaking.

A phonetic variant of yus is written with a preceding small capital i’: ‘T’ (0X0469 CYRILLIC
SMALL LETTER IOTIFIED LITTLE YUS). This letter can also bear an accent, and in this case
the accent is not centered but rather placed over the yus: ‘th’. Once again, therefore, we
must place an accent by making reference to another letter, but in this case the other
letter appears on the right-hand side of the construct. Here is the code that will position
the accent correctly for us:

\setglyph{unio469 acute}
% unio467 is the yus
% uni0469 is the yus preceded by an i
\topbbaccentlikeifreverse{unio469}{acute}{unio467}
\endsetglyph

\def\bbcenter#1{\add{\half{\sub{\bbright{#1}}{%
\bbleft{#1}}}}{\bbleft{#1}}}

\setcommand\topbbaccentlikeifreverse#1#2#3{

\push
\moveup{\max{0}{\sub{\bbtop{#1}}{\int{xheight}}}}
\movert{\bbright{#1}}
\movert{\add{\neg{\sub{\bbcenter{#3}}{\bbcenter{#2}}}}

{\scale{\sub{\bbtop{#1}}{\int{xheight}}}{\int{italicslant}}}}

\glyph{#2}{1000}

\pop

\glyph{#1}{1000}

The code is hardly more complex than the preceding example; there are only a few differ-
ences. First, the name of the macro is perfectly hideous (\topbbaccentlikeifreverse).
Second, we have added the line \movert{\bbright{#1}}, which moves to the rightmost
extremity of the glyph. Finally, the alignment of the base glyph and the accent is per-
formed from right to left; thus we have inserted a \neg into the code, to force movement
towards the left.

Customizing TgX Fonts for the User’s Needs 305

Making a letter forget that it has a horn

But letters are not the only characters that are replaced with (more respectable) letters.
The same phenomenon occurs with accents, and sometimes with a letter and an accent at
the same time. Let us return to the Latin alphabet, but not just any Latin alphabet! This
example will delight those who love accent marks, the ne plus ultra of the ravages of colo-
nialism: the Vietnamese alphabet. In this alphabet, there is—among other things—a
combination of the circumflex and acute accents ‘6’ and also the letter ‘0’ with a horn: ‘¢”’.
To place the double accent over a letter, we shall center not the entire glyph, but only
the part that constitutes the circumflex accent, over the letter. In the same vein, to place
an accent over the letter ‘o”, we shall center it not with respect to the set-width of the
entire glyph but only with respect to the part corresponding to an unadorned ‘o’. Here
is this special letter with the special double accent: ‘6. To obtain it, we shall write a TgX
command that will center an accent A over a letter L by acting as if it were a different
accent, A”:

\setglyph{oxxx_circumflex acute}
\topbbaccentlikeiflikeif{oxxx}{o}{circumflex acute}{circumflex}
\endsetglyph

\def\bbcenter#f1{\add{\half{\sub{\bbright{#1}}{%
\bbleft{#1}}}}{\bbleft{#1}}}

\setcommand\topbbaccentlikeiflikeif#1#2#3#4{
\push
\moveup{\max{0}{\sub{\bbtop{#2}}{\int{xheight}}}}
\movert{\add{\sub{\bbcenter{#4}}{\bbcenter{#2}}}
{\scale{\sub{\bbtop{#2}}{\int{xheight}}}{\int{italicslant}}}}
\glyph{#3}{1000}
\pop
\glyph{#1}{1000}
}

A XK

VOO’

Putting breathing marks in the margin

Finally, one more interesting example that is nonetheless too often spurned by incom-
petent Greek typesetters: when an uppercase Greek vowel appears at the beginning of a
paragraph or a line of verse, the breathing mark and any accent that it bears are set in
the margin:

306 Chapter 9 : Fonts in TgX and £, their installation and use

‘O xovbvoe Aéel éTL ’Omwe elmope

No un Eeyaoetg
Aol 60D Aéw
[ade e !
"Etol u’ dpéoer

Zrouyetofetolue AéEeig mod
"Apytouv dmd peviey
Me mepacia 610 Yoo xol

"Oyr 6716 TTvebpo.

Note that in the case of the letters alpha and omicron, we are also required to kern the
breathing mark and the letter.

Two ways to achieve this behavior come to mind:

e Either we create a zero-width glyph containing nothing but the breathing mark (or
the breathing mark together with the accent) and write a kerning pair for this breath-
ing mark and the letter.

e Or we create glyphs that are combinations of breathing marks and letters, with the
breathing mark appearing outside the glyph’s abstract box.

We shall give examples of code for these two cases and show why the first case ultimately
cannot be made to work.

First, let us assume that we have a glyph named rough (the rough breathing, or spiritus
asper) and that we wish to obtain a rough. zerowidth (zero-width rough breathing). Here
is a fragment of code for this purpose:

\setglyph{rough.zerowidth}

\push
\movert{\neg{\width{rough}}}
\glyph{rough}{1000}

\pop

\endsetglyph

Thanks to \push and \pop, we can achieve a zero width. By first moving towards the left
a distance equal to the set-width of the “normal” rough breathing, we obtain a glyph
placed entirely outside and to the left of its abstract box.

Everything is fine up to this point: we place the glyph in front of a capital epsilon, and it
is indeed set in the margin. Now we have only to solve the problem of kerning between
the breathing mark and the uppercase letter alpha or epsilon that follows. And there we
discover the snag in our approach: if we kern the breathing and the letter, the distance be-
tween the two glyphs becomes aesthetically acceptable, but the letter is no longer where
it should be.

The very purpose of this maneuver is to align the uppercase vowels. Thus we should
move the breathing mark closer to the letter not by moving the letter to the left but
rather by moving the breathing mark to the right and leaving the letter right where it

Customizing TgX Fonts for the User’s Needs 307

is. Unfortunately, TgX has made no provision for this procedure: in a kerning pair, it is
always the second term that is moved, never the first.

Thus this is the reason for which our first attempt has failed: it is impossible to perform
kerning without moving the letter, and that is just what we wished to avoid.

Now let us attempt to define a glyph Alpha rough.bp (“bp” for “beginning of para-
graph”), which will incorporate a rough breathing and a capital alpha, with the breathing
moved out into the margin but at the proper distance from the letter:

\setglyph{Alpha rough.bp}
\push
\movert{\neg{\width{rough}}}
\movert{\neg{\kerning{rough}{Alpha}}}
\glyph{rough}{1000}

\pop
E%

\glyph{Alpha}{1000}
\endsetglyph

This time we have succeeded: we set up a \push and \pop pair, we move the breathing to
the left so that it will be to the left of the box, and then we move it to the right a distance
equal to the kerning between the breathing and the letter. Since this kerning ordinarily
operates to the left (backward motion), we use the \neg command to achieve motion to
the right. After making all these moves, we set the glyph for the breathing. We restore
the current point to what it was before the \push/\pop (i.e., the original coordinates), we
set the letter alpha, and voila!

Keeping accented capitals from taking up too much vertical space

To conclude this series of examples of the placement of diacritical marks, here are two
more that may prove to be singularly important for the typesetting of the several Euro-
pean languages, especially when fonts designed outside Europe are used.

Let us start with a very simple case. We know that the capital letters in most European-
languages should be written with their accents. But when the heights of the letters are
uneven, the accents over the letters can often modify the leading. That problem results
from the fact that TgX adds extra space to lines that contain slightly taller glyphs, which
may occur if we write accents over our capitals. To prevent this problem, we can use the
\smash macro, which “smashes” a glyph’s abstract box and treats the glyph as if it were
of zero height. But this solution is neither elegant nor compatible with the very delicate
properties of kerning and hyphenation. A more elegant solution is therefore needed,
and here it is: we can force the abstract boxes of the accented capitals to have the same
dimensions as those of the letters without accents. Here is an example:

308 Chapter 9 : Fonts in TgX and £, their installation and use

\setglyph{Eacute}
\topaccent{E}{acute}{500}
\resetheight{\height{E}}

\endsetglyph
@E

Building Europe while showing respect for cultural differences

Our last example illustrates a problem that has always poisoned Franco-German rela-
tions. No, we are not referring to Alsace-Lorraine, nor to the deportation of Daniel Cohn-
Bendit in May 1968, but to the difference in the height of the diaeresis. Germans, in fact,
place their umlaut quite low, so that it is almost attached to the letter that bears it, and
in any event lower than the dot on the ‘i’. For example, the font Transitional 521, by
Bitstream, is very well adapted to German, as the dot on its i’ is at the height of 609 units
whereas the umlaut is at 529. A difference of 80 units is a fifth of the height of the low-
ercase letters, hardly a negligible amount.

1uu

The German way The French way

The French, on the other hand, tend to place the diaeresis at the same height as the dot
on the ‘’. Here is how to rectify the situation. Instead of writing:

\setglyph{udieresis}
\topaccent{u}{dieresis}{500}
\endsetglyph

we shall write:

\setglyph{udieresis}
\frenchdieresis{u}
\endsetglyph

with \frenchdieresis defined in the following manner:

\setcommand\frenchdieresis#1{
\push
\moveup{\neg{\height{dieresis}}}
\moveup{\height{i}}

Customizing TgX Fonts for the User’s Needs

309

O

BodoniBleifrei, Totally Leaded

|Bodoni Bleifrei

| Quidtn [s81.0488 | @ size 258 pt |

Fegular Eluzish Ink _
FRegular on Lead S LS)
Fegular on Slug Cold Metal
Lead on S lu Copper
]
Glowing Red ESpot Colars
Go ldplated
I ntertype
—1 | Magres ium
= == Mossy gresn
¥ = | | Fretty Clem Tupe
Fami ly Style Color Swatch

Figure 9-10: The utility LTR Bleifrei LayerPlayer of Letterror.

\movert{\add{\sub{\scale{\width{#1}}{500}}{%
\scale{\width{dieresis}}{500}}}
{\scale{\sub{\height{#1}}{\int{xheight}}}{\int{italicslant}}}}
\glyph{dieresis}{1000}
\pop
\glyph{#1}{1000}

The only difference between that command and the usual \topaccent command is that
we first move down by a depth equal to the height of the font’s diaeresis; next, we move
up to a height equal to that of the ‘I’. When we set the diaeresis, therefore, it has exactly
the same height as the dot on the i’. Note that this procedure is not necessary for the font
in which this book has been typeset, for the very simple reason that that font comes from
France, having been designed by our dear beloved Jean Francois Porchez and being used
in the “newspaper of reference” known as Le Monde.

Setting lead type with TgX

To conclude this chapter on TgX and fonts with a flourish, let us see a simple example that
is as dramatic as it is instructive. In 2001 the Dutch foundry Letterror of Just van Rossum
and Erik van Blokland issued a font named Bodoni Bleifrei {338]. The adjective bleifrei
means “lead-free” in German. The font is a reproduction of a 48-point roman by Bodoni
that manages to give the appearance of a series of type sorts arranged on a composing
stick.

A utility by the name of LTR Bleifrei LayerPlayer (for Mac OS 9 only), which is shown
in Figure 9-10, allows one to enter text in this font and select colors to produce special
effects. We enter a few words in this utility’s window and save the result in EPS format;
then it can be used in any vector-based image software.

310 Chapter 9 : Fonts in TgX and £, their installation and use

But how does it work? In fact, there are three superimposed fonts. These three fonts
can be of different colors, for producing special effects. The first font, Bodoni Bleifrei-
Imprint, reproduces the impressions of the type—i.e., the glyphs as they are usually seen.
In the example shown in Figure 9-10, we have selected the Chrome configuration; in it,
the Bleifrei-Imprint font appears in white.

Let us take another example and separate the layers. Here is the first layer (in which we
have made the background gray in order to make the white text visible):

The second layer, called Bodoni Bleifrei-Leaded, is used in black. It represents the printable
surface of the type, the edges of which have been blackened to give the impression of
depth:

]'
i R g l | | T W a
‘ ¢ ' ~_ @
— _ PR ... ATV —_ AR \ A

Finally, the third layer, called Bodoni Bleifrei-Slugs, consists of boxes that establish the
background color:

In the example, this color is a very pretty purple, its CMYK parameters being 42, 42,
19, 10. And here are the three layers put together:

S &

It is entirely possible to obtain the same result in TgX. Virtual fonts will allow us to use
a single font that will produce the three layers, with any colors that we wish.

Let BodonBleImp.afm,BodonBlelLea.afm,and BodonBleSlu.afmbe the names of the AFM
files associated with the three base fonts. A glyph in our virtual font will combine the
corresponding glyphs from these three fonts. For example, the F of the virtual font will
superimpose the F of BodonBleImp.afmwith the F of BodonBlelLea.afmand that of Bodon-
BleSlu.afm.

The first hurdle: if we wish to refer to these three letters F in a single fontinst glyph defi-
nition, they must have different names.

Customizing TgX Fonts for the User’s Needs 311

Thus we must rename the glyphs in at least two of these fonts. Does that mean that we
have to open the PostScript code for the font and edit it? Not at all; in any event, our
user’s license for the font forbids us to do so. We shall simply create new AFM files, since
fontinst can read only AFM.

A little Perl script something like

open IN, "BodonBlelea.afm";

open OUT, ">nouveaux/BodonBlelea.afm";

while (<IN>) {

s/;[\t]*N ([A-Za-z0-]+)[\t]*;/; \1.lead ;/;
print OUT;

}
close OUT; close IN;

will append the suffix .lead to all the glyphs in BodonBlelea.afm. We do likewise for
BodonBleSlu (with the suffix . slug). Now we have three fonts whose glyphs have distinct
names.

The second hurdle: we wish to change the color of a glyph, and we know that we can use
the fontinst command \glyphspecial, but what is the corresponding PostScript code??°

There is no need to reinvent the wheel. It is sufficient to create a little TgX in which we
change the color of a word and then read the DVI file to see which blocks of PostScript
code are inserted. We can use the specifications of the color purple that we wish to obtain.
Thus, by writing

\textcolor[cmyk]{.42,.42,.19,.10}{blabla}

we obtain a DVI file in which we find the following lines. (We have converted the DVI
code to DVR so as to make it readable to a human.)

XXX "color push cmyk .42 .42 .19 .10"
SET blabla
XXX "color pop"

Conclusion: We need only add the PostScript code color push cmyk .42 .42 .19 .10
before the glyph and color pop after the glyph. As the names “push” and “pop” suggest,
we are pushing the color onto the stack of PostScript’s graphics state.

Here, then, is the fontinst code to obtain the letter ‘F’ in our virtual font:
\setglyph{F}

\push
\glyphspecial{color push cmyk .42 .42 .19 .10}

25 The reader who feels ill at ease with the PostScript language may consult our introduction to this lan-
guage in Appendix C.1 on page 635 of this book.

312 Chapter 9 : Fonts in TgX and £, their installation and use

\glyph{F.slug}
\glyphspecial{color pop}
\pop
\push
\glyph{F.lead}
\pop
\glyph{F}
\endsetglyph

We start with the lowest layer so that we can superimpose the other two upon it. What
is incredible is that this font is perfectly ordinary to TgX, which will perform kerning,
hyphenation, etc., as usual without being aware that the font exists under several layers
with different colors.

Conclusions and Glimpses at the Future

In this chapter we have seen, without going too deeply into the details, various aspects of
font management in TgX and Q. Its apparent complexity is related to the clash of cultures
that occurred between the initial philosophy of TgX (TEM metrics, on the one hand, and
GF or PK bitmaps on the other) and the chaotic real world of the fonts of the past two
decades. How can we get the most benefits from TgX font metrics—and from virtual
fonts in particular? At the same time, how can we adapt fonts (PostScript, TrueType,
OpenType, etc.) for use with TgX when they are a priori foreign to it?

We have seen that most of the problems stem from the incompatibility between these
two philosophies and from the fact that we cannot provide more information to TgX than
what exists within the concept of a virtual font. For instance, PostScript and TrueType
fonts contain the notion of a bounding box, whereas virtual fonts know nothing about
it. We are therefore obliged to perform all the operations involving a bounding box (e.g.,
precise placement of diacritical marks) while we still have access to this information—
namely, at the time that the virtual font is created by fontinst, when it has just read the
AFM files and accumulated the data for the bounding boxes. After that, it will be too
late: TgX will never again have access to the information.

Another example, going in the opposite direction: ligatures. We have seen that when
ligatures appear in PostScript fonts adapted for use with TgX, it is certainly not because
they were already indicated in the AFM files. In reality, AFM usually disregard ligatures
altogether. If we have ligatures at our disposal, it is because they were systematically in-
serted, thanks to the file latin.mtx. But what about OpenType or AAT files, which spec-
ify with great precision which ligatures should be made and under which conditions?
Furthermore, it must be admitted that the mechanisms for using ligatures provided by
OpenType and AAT are more powerful than those of TgX or Q. By what convoluted
means can we convert an AAT finite automaton for ligatures into a series of ligatures in
a virtual font? The idea of writing a generic algorithm to convert AAT finite automata
into ligatures in a virtual font could be the inspiration for a horror movie by Stephen
King...

Conclusions and Glimpses at the Future 313

Thus only one possible solution can be imagined: opening the doors to the perspective of
TgX, or rather Q (since TgX is enjoying eternal rest in the heavenly kingdom of deceased
software), for those who come into direct contact with OpenType, AAT, and all the other
kinds of fonts that the future holds in store for us. It is time, then, to toll the knell of
TFM, VE OFM, OVFE, and other font-metric file formats that are not up to the standard
of today’s fonts.

The author’s research team at ENST Bretagne is working on version 2 of Q, based on
textemes {167, 168, 71]. A texteme is a data structure containing, all in one: a character,
one or more glyphs, and, potentially, a set of key-value pairs called properties (Arabic
form, color, hyphenation, font, Semitic root, Chinese ideographic radical and/or decom-
position, language, horizontal and vertical offset of the glyph, and whatever else the user
may need). The goal of textemes is to replace characters by becoming the atomic units of
text, so that information which is missing from characters in the current Unicode-based
model of text, can be injected at a level other than mark up. Using textemes in the Q
input document, the typesetting process becomes an accumulation of texteme properties
so that Q output contains essentially the same textemes as the input document, but with
many more properties.

How does Q v2 deal with OpenType fonts? During processing by €, texteme string are fil-
tered by external engines. One of these engines corresponds roughly to Uniscribe/ravif
and will segment text, apply contextual analysis for Arabic, re-order Indic glyphs, etc.
Two other external engines correspond to the two basic OpenType tables GSUB and GPOS.
These engines will read the font data and will apply OpenType transformations to the
flow of textemes (in fact: to the glyphs contained in the textemes). This approach has
the advantage that one keeps absolute control on the way the text is transformed, since
one can act on the texteme flow at any moment, even after the GPOS engine or between
engines. Q v2 is still an experimental project, a heavy-duty approach to the problem of
marrying the TgX principles of versatile high-level typography and the OpenType way of
processing international text.

10

Fonts and Web Pages

When Tim Berners-Lee defined the HTTP protocol and the HTML markup system, he
could hardly have expected that the whole world would be talking “.com” 20 years later.
The explosion of the Web is without a doubt one of the highlights of the end of the
twentieth century.

HTML is a markup system—a set of rules for the structure and the semantics of tags.

It is based on SGML, the Standard Generalized Markup Language—“generalized” in the
sense that it has no semantics, only rules for writing. An SGML document is composed
of elements. An element is represented by a pair of tags: the opening tag (written <name>)
and the closing tag (written </name>). Between these tags is the element’s “content”,
which can contain other tags and/or textual content. An element can have any number
of metadata called attributes. Attributes take the form of “key—value” pairs written within

the opening tag. Their number and their order are arbitrary.

An SGML document may be accompanied by a Document Type Definition (DTD), in-
cluded in the file or stored in an external file. This DTD is a set of data of two types: first,
a list of all the elements allowed in the SGML document, together with their attributes
and the types of data that may have these attributes; second, a list of rules for the behavior
of the elements with one another. We can specify, for example, that a given element may
contain another given element a certain number of times, or that it must be empty, or
that it may contain anything, and so on.

HTML is an SGML DTD, and, at the same time, a markup syntax. That means that the
tags that may be used in an HTML document are well defined once and for all, that their
interaction with one another is also defined, and that we have a sort of “user’s manual”
that shows us the meaning and applicability of each tag.

315

316 Chapter 10 : Fonts and Web Pages

But unlike KTEX, in which the meaning of each tag is as clear as can be,'HTML assigns
only an approximate meaning, and each browser may interpret that meaning as it
chooses.

HTML has suffered greatly from the artistic fuzziness that surrounds its tags. For exam-
ple, each browser has felt itself obliged to add its own tags to the basic system, which has
led to frequent updates of HTML, many of them based on the initiatives of some of the
browsers with the largest market share. Despite that fact, however, it must be understood
that during the era when the Macintosh, the Windows PC, and Unix stations had a ter-
rible time communicating with each other, HTML was (together with TgX and, a little
later, Acrobat) the first “document format” common to all operating systems.

To solve a number of problems without completely tearing the HTML standard apart,
two new layers of information were added: JavaScript, a programming language de-
veloped by Netscape (and later to become an ECMA standard under the name of
ECMAScript), whose purpose is to manage the interactivity of HTML pages, and Cas-
cading Style Sheets (CSS, a W3C standard), a language for describing the appearance of
HTML pages. These three layers of information (HTML, JavaScript, CSS) live together
in harmony within a single document. Furthermore, JavaScript has access to the infor-
mation in all three levels, thanks to a syntax called Document Object Model (DOM, also a
W3C standard).

But let us leave history aside and move on to the situation that exists today. Several
years ago, a successor to SGML arrived on the scene and literally conquered the mar-
ket: XML (Extensible Markup Language, a W3C standard). XML, which we shall discuss
in greater detail on page 345, is a stricter version of SGML—and “stricter (for the hu-
man)” means “easier to manage (by machine)”. Indeed, whereas there were only one or
two very specialized tools for processing SGML that were quite inaccessible to the ordi-
nary mortal, today we have an enormous number of tools—industrial, mass-market, or
free—for working with XML. By slightly constraining the freedom of markup that SGML
affords (the differences between SGML and XML can be summed up with five simple
rules), XML has succeeded in wiping out the unfavorable impression that the public had
of SGML (“labyrinth”, “juggernaut”, etc.) and in establishing a genuine format for data
exchange that can be used in all areas of computer science.

Between the fantastically expanding XML and the aging HTML, we eventually find our-
selves faced with a sharp contradiction. The World Wide Web Consortium (W3C) has
suggested a solution: an XML-ized version of HTML, known as XHTML. In addition,
XML inherits technologies from the HTML era: JavaScript, CSS, and a technique spe-
cific to XML that is called namespaces. Namespaces are a means of combining several
DTDs, i.e., of creating documents with tags coming from various and sundry sources,
with predefined semantics in different contexts. Since XHTML has been defined and cod-
ified, we know that it does not have any tags that support the creation of mathematical
formulae. But a standard exists that does make it possible to create them: MathML. By

1 This is true because ITEX is a programming language and we can follow the execution of a KTgX com-
mand right down into the bowels of TgX. A BIgX command is therefore a “tag” whose semantics are defined
a posteriori by its effects when we compile a document using that tag with TgX or Q.

317

using a namespace for “XHTML” and another for “MathML”, we can simultaneously use
tags belonging to both standards without causing any conflicts. In this way, every new
standard can be used immediately within XHTML documents, provided, of course, that
tools for processing it are available.

In this chapter, our concern shall be font management as performed using the technolo-
gies of the Web.

We can see that fonts are one of the Web’s major problems, for the very simple reason
that fonts, unlike text and illustrations, are the only resources in a document that do not
belong to the document’s author. If they do not belong to the document’s author, that is
because they are under license, and he does not have the right to distribute them freely.
To display a web page, one can limit oneself to using only the fonts that are available
on the client’s system; but then one needs either to know their names or to use generic
names. If one absolutely insists on using a specific font (for example, if one must display
text in a script that is not supported by all operating systems), it is necessary to commu-
nicate with the client, and that is where the technical problems and questions of rights
begin.

We can observe that the subject of fonts has been approached from three different angles,
which will form the three main divisions of this chapter:

e HTML offers a certain number of tags for font selection; for its part, CSS offers a
certain number of instructions for describing the fonts used in (X)HTML pages, be
they local fonts (present on the client’s sytem) or fonts downloaded from the Web
(provided that the browser is capable of downloading fonts from the Web).

e Two companies have developed plug-ins that enable browsers to obtain through the
network the fonts that are needed to display an HTML page. These are Bitstream
(TrueDoc technology) and Microsoft (Font Embedding technology). Bitstream has ap-
parently had only limited success with the browsers that are compatible with its
technology: Netscape 4.x (but not version 6 or 7), Explorer under Windows only,
and iCab. Microsoft’s technology for incorporating fonts is compatible only with its
own browser (Explorer) and only under Windows; its benefit is that one can freely
create downloadable fonts.

On the other hand, a Swedish company by the name of em2 Solutions markets the ne
plus ultra for fonts on the Web: a server plug-in named GlyphGate. This software uses
many different techniques for displaying a document with precisely defined fonts
by adapting itself to the technical capabilities of the client browser. According to the
browser being used, GlyphGate may send totally different information to different
clients, either by taking advantage of downloadable file formats for some browsers
or, in the worst case, by generating GIF images for the words in the document. Glyph-
Gate is Unicode-compatible and is able to display any script on any browser. There
is even a software development kit (SDK) for adapting GlyphGate to special fonts or
scripts.

e A new standard, by the name of SVG, was developed by the W3C. It is based on XML,
and its purpose is to describe a page’s geography, through the use of glyphs, bitmap or

318 Chapter 10 : Fonts and Web Pages

vector images, and interactive or dynamic elements. Naysayers will maintain that it
is an XMLization of the PostScript language, which is not altogether wrong, as Adobe
was the originator of this standard. In any event, font management under SVG is
very rich, to the point that there is even an ad hoc font format, which makes it possi-
ble to include within a document the vector description of the glyphs to be displayed
while at the same time treating them as characters (selection with the mouse, copy-
ing and pasting, searching for strings, etc.). SVG is a very promising technology, and
it deserves a detailed study, even though, to date, not all browsers natively support
it.2

(X)HTML, CSS, and Fonts
The Standard HTML Tags

Since the beginning, HTML has offered a number of tags for enhancing text: <address>
(the “address” mode, which both Netscape and Explorer have chosen to represent with
italics), (bold), <cite> (the “citation” mode, represented with italics), (the em-
phasized mode a la BTgX, represented with italics), <i> (italics), <code>, <kbd>, <pre>,
<samp>, <tt>, (typewriter type), (the “strong” mode, represented with italics
or bold type), <var> (the “variable” mode, in the sense of variables in a programming
language).

Versions 1 to 3.2 of HTML include an element called for specifying the active
font. This element was dropped from version 4 of HTML in favor of CSS and, of course,
is also absent from XHTML. Here are the different attributes that this element could take,
during its short life:

Name Netscape | Explorer | Example of usage

color >2 >3 color="#660099"

face >3 >3 face="Helvetica, Arial, sans-serif"
point-size 4 - point-size="12"

size all all size="-2"

weight 4 - weight="300"

In the case of the face attribute, one can use any number of “font family names”, sepa-
rated by commas. These names are the names by which fonts are identified by the system;
in other words, Quickdraw names on the Macintosh, Windows names under that op-
erating system, and part of the XLFD name under Unix.? Since these names are quite
variable, it follows that the approach used here is far from infallible. To compensate for

2 See http://www.svgi.org on SVG compatibility with browsers. This URL also provides a comprehen-
sive list of resources, tools and documentation.

3 In Mozilla’s dialog box for selecting the default fonts, for example, one may choose fonts whose names
are made up from the foundry’s name, the family name, and the primary and secondary indicators of the encoding
(in the sense of XLFD; see page 222):

(X)HTML, CSS, and Fonts 319

these problems, the standard provides five “generic” font-family names, to be added to
the end of the list: serif, sans-serif, cursive, fantasy, monospace. Each browser is free
to choose a font for each of these generic names, and all recent browsers allow the user
to select a representative font for each of these “categories”.

The size attribute is perhaps the HTML attribute that is the most poorly understood by
users. This is how it works: one may choose an absolute value (between 1 and 7, the
default value being 3) or a relative value (between +1 and +7 or between -1 and -7).
Contrary to the mathematical notation that we all learned in school, here +3 and 3 do
not have the same meaning: the former increases the active size by three units; the latter
calls for the size named “3”, thus a medium size.

There is a variant of by the name of <basefont>. It takes the attributes color,
face, and size. It was also abandoned in version 4 of HTML. The difference between
<basefont> and is not clear.

CSS (version 3)

CSS is a W3C standard that manages the display of elements in an (X)HTML document.
The idea is as follows: one writes rules for display, with each rule containing a selector,
which determines the elements that will be displayed in a certain manner, and a set
of declarations, which determine the way in which elements selected in advance will be
displayed. The word “cascading” refers to the method for managing selectors and decla-
rations. Take the following CSS code as an example:

<style type="text/css">

em { color:pink; text-decoration: underline; }
.important { color:green; text-transform: uppercase; }
p em { color:blue; font-family: "Helvetica"; }

p > em { color:red; font-size: 24pt; }

</style>

Here we have four CSS rules. The first deals with em elements and requests that these
elements be typeset in underlined pink type (thus there are two declarations: one for
the color pink and one for underlining). The second applies to any element with a class
attribute whose value is “important”, and it requests that these elements be set in green
type and in full capitals. The third applies once again to em elements, but this time only to
those that “have a p ancestor”, i.e, those that are contained with a p element, at any depth
whatsoever: it requests that they be set in blue and in Helvetica. Finally, the fourth again
applies to em elements, but this time only to those that are direct children of a p element;
they must be set in red and at 24 points.

e I
We can see here that Mozilla chooses to omit all the other fields of the XLFD name so as to make the choice
easier and to retain better control over the properties of the selected fonts.

320 Chapter 10 : Fonts and Web Pages

This example may seem absurd at first glance, but what it is intended to illustrate is that
when an element appears in all these categories, the rules of the CSS standard specify
the priority of one or another property, while preserving all properties that do not cause
a conflict. In the example, we always have two declarations: the color, different in each
case, and another property, which is unique. Let us consider the following HTML code:

<em class="important">A few words;
how will they be displayed?

The em element that we see here is “selected” by all the rules in the style sheet. How will it
be displayed? Well, it is clear that it will be displayed in capitals, in Helvetica, underlined,
and at 24 points, because these properties do not come into conflict. On the other hand,
what will its color be? CSS clearly defines the rules of the game: in this example, the
class="important” constraint is the most important; thus the block of text will be set
in green. And that will be true in every CSS-compatible browser. This last point is very
important, as it guarantees that a page will be displayed in the same way everywhere.
Note that CSS allows us to short-circuit the hierarchy of priorities by adding among the
declarations for one rule the keyword “!important™.

In the following material, we shall not go into the details of the syntax and features of
CSS. For those subjects, there is a plethora of books, as instructive as they are compre-
hensive, that the reader may consult; for example, {151} (O’Reilly), {254}, and, last but
not least, the CSS specification, published by the Web consortium [88]. For our part, we
shall instead make a detailed study of the use of fonts under CSS (version 3).

CSS declarations for specifying the active font

Recall that a CSS rule consists of a selector (one or more (X)HTML tag names, or the name
of a class, or an identifier, or a combination of the three), which indicates the parts of the
document that are affected by this presentation rule, and a set of declarations (name-value
pairs), which indicate the visual properties of the material to be displayed. The general
syntax is as follows:

selector { name: value; name: value; name: value; etc. }

What are the declarations that manage fonts? They are of two kinds: there are seven for
selecting the active font and five others that manage “decorations”. Here are the seven
most important declarations:*

e font-family (NN4, IE4), which takes as its value a number of font names (Quick-
draw names on the Macintosh, Windows names under that operating system, a part
of the XLFD name under Unix {see note 3}) placed within single or double quota-
tion marks and separated by commas. The order of these font names is the order of

4 To indicate the compatibility of these declarations with the Netscape Navigator and Internet Explorer
browsers, we shall use the following abbreviations: ‘NN’ followed by a number indicates the version of
Netscape since which the declaration has been supported; ‘IE’ indicates the version of Explorer; ‘W’ indicates
Windows; ‘M’ indicates Macintosh.

(X)HTML, CSS, and Fonts 321

precedence for font selection, provided that the font exists on the client’s system. For
example, we may write:

body { font-family: "PMN Caecilia", "Helvetica", "Arial MS",
sans-serif; }

where PMN Caecilia is the name of a very specific font that perhaps does not exist
on all platforms (unless it is downloaded together with the page, which we shall see
later), Helvetica is the name of a Macintosh font that is one of the default fonts, Arial
is the name of the same font but under Windows, and sans-serif is a generic key-
word (the same keywords as those used with the attribute are available here:
serif, sans-serif, cursive, fantasy, monospace, or none [when we wish to disable
font substitution}). Thus we move from the specific to the general, hoping that the
browser will find the corresponding font as soon as possible.

But the Web is an international facility, and the specificity of the font also entails
the specificity of the script, and more specifically the Unicode zones covered by each
font, i.e., the set of Unicode characters that can be represented by the font. The font-
family declaration allows us to take glyphs from multiple fonts, according to what
they have available. Thus, by writing:

body { font-family: "PMN Caecilia", "Heisei Gothic W3",
"Arial Unicode MS", sans-serif; }

we take the glyphs for the Latin characters from PMN Caecilia, the glyphs for the ideo-
graphic characters (more specifically, the Japanese characters) from Heisei Gothic W3,
the glyphs for Cyrillic or Greek characters from Arial Unicode MS, and everything else
from sans-serif, provided, of course, that the font selected by the client’s browser
is sufficiently rich.

In other words, the browser will check not only the existence of a given font but also
the existence of each glyph in each font, one by one, and will choose for each glyph
the first font that contains it.

Finally, note that among the among the CSS selectors we also find the language of
the block of text. We can thus connect the selection of a font to that of the active
language. That possibility is particularly attractive when several languages share the
same Unicode characters but are written with different glyphs. Here is an example
in which we use the selector :1ang(), which indicates the language of the XML or
XHTML element, specified through the xml:lang attribute:

:lang(de) { font-family: "DS-Normal-Fraktur", serif; }
:lang(fr) { font-family: "Fournier MT", serif; }
:lang(ja) { font-family: "Heisei Mincho W3", serif; }
:lang(zh) { font-family: "Li Sung", serif; }

* ¥ ¥ X

In this example, we have decided to write German in the Gothic script (using the
“standardized Gothic” of Delbanco Schriften), as it was still written just a bit more
than 60 years ago. For French we are using a typically French font (the magnificent

322 Chapter 10 : Fonts and Web Pages

Fournier, by Monotype); for Japanese, we use a Japanese font, and we use a Chinese
font for Chinese.’

e font-style (NN4, IE4), which can take three values: normal, italic, oblique. Note
that CSS does not provide for switching to upright type in the event of “double ital-
ics”, i.e., a fragment in italics that appears in a block that is already in italics. But we
can simulate this behavior by writing, for example:

em { font-style: italic; }
em em { font-style: normal; }
em em em { font-style: italic; }

which means: the contents of are to be set in italics unless this appears
within another , at any depth whatsoever. And if this second is itself con-
tained within another , we shift back to upright type. But be forewarned: there
are other elements that are also set in italics; thus one must handle them all, one
by one, through the use of selectors.

Note that the value italic will result in oblique if no italic font is available but a
slanted font is available.

e font-variant (NN, IE4), which takes only two values—normal and small-caps—
and thus is used only for small capitals. Note that since capital letters are being used
(since small capitals are in fact capitals, even though they are of smaller size), in order
to complete this operation successfully the browser must both have access to Uni-
code’s case-mapping tables (page 112) and be able to recognize the active language,
as capitalization often depends on the language: for example, the same word “liter” is
written “LITER” in capitals within an English context and “LITER” within a Turkish
context.

e font-weight (NN4, IE4), which indicates the weight of the font. To this end, three
types of values are available: numerical values, absolute keywords, and relative key-
words. The numerical values must be even hundreds between 100 and 900.° The
possible absolute keywords are normal (which is equal to 400) and bold (700). The
relative keywords are bolder and lighter. Each of these raises or lowers the weight
by 100 units.

5> A word of explanation, to help the reader to understand these examples better. (a) Just over 60 years
ago, German was written in the Gothic script—which was not a choice of font, as it is today, but another script
altogether, with a full spectrum of quite varied fonts, comparable to the range of roman fonts that we enjoy
today. (b) Japanese, Chinese, and Korean are all written with ideographs and use the same Unicode characters,
but the fact remains that they often need slightly different glyphs for the same characters. We must therefore
use separate fonts, which, incidentally, creates big problems for printers in the corresponding countries: what
should be done when a Chinese word using a character specific to Chinese pops up right in the middle of a
Japanese document? or a character that is common to the two languages but that has slightly different glyphs
in each? Some will substitute a similar glyph; others will change fonts by using a makeshift font, which runs
the risk of destroying the visual unity of the text.

¢ Why hundreds rather than simply integer values between 1 and 97 In the hope, no doubt, that the
browsers of the future will also be able to accept intermediate numeric values, somewhat like the Multiple
Master fonts.

(X)HTML, CSS, and Fonts 323

e font-stretch (no browser), which indicates the font’s set-width. Once again we have
absolute and relative keywords. The absolute keywords are ultra-condensed, extra-
condensed, condensed, semi-condensed, normal, semi-expanded, expanded, extra-
expanded, ultra-expanded. As one might expect, the relative keywords are wider and
narrower; they enable us to move up or down one level in the series.

e font-size (NN4, IE4), which indicates the font’s actual size. To represent this size,
we may choose:

— A dimension, expressed in em (the em of the current font, i.e., its actual size), ex
(the height of the lowercase letter ‘x’), px (pixels), pt (American printer’s points),
mm, cm, or in (inches).

— A percentage of the actual size of the active font.

— Absolute keywords (inspired by the sizes of T-shirts): xx-small, x-small, small,
medium, large, x-large, xx-large. The CSS specification recommends the
following correspondences between keywords, scaling/shrinking factors, and
XHTML heading levels:

Keyword | xx-small x-small small medium large x-large xx-large
Factor 60% 75% 89% 100% 120% 150% 200%
Heading hé hs h4 h3 h2 h1

— Relative keywords: larger and smaller, which enable us to move up or down
one level in the series of absolute keywords. If, however, the size is defined by a
dimension, the browser is free to apply a scaling factor based on that size or to
round it off first so that its value will match that of an absolute keyword.

e font-size-adjust (no browser), followed by a rational number between 0 and 1.
To understand the usefulness of this declaration, which applies only to those scripts
that distinguish uppercase and lowercase letters, i.e., the Latin, Gothic, Gaelic, Greek,
Cyrillic, Armenian, and liturgical Georgian scripts and, by extension, the modern
Georgian’ and Arabic® scripts (see Figure 10-1), let us conduct a little experiment.
The text that the reader is currently reading is set in Le Monde Livre, which has a rather
large x-height: the ratio between the height of the letter ‘x” and the body size of the
font is 0.482. Now let us switch to Centaur, a font designed in 1915 by Bruce Rogers [228, p-
62] that many people consider to be one of the most beautiful fonts of the previous century.
Does the reader not have the impression that the text has suddenly become less legible? That
change results from the signiﬁcant difference between the X—heights of the two fonts: that of
Centaur is only 0.366, or 25 percent less than that of Le Monde Livre. Here we are again in

7 Modern Georgian has no notion of uppercase and lowercase letters, but the Georgian letters do have
ascenders and descenders in certain styles. We can consider the x-height of this script to be the ratio between
the short letters and those with an ascender.

8 In Arabic, if one disregards the dots above and below the letters, there are two basic heights for glyphs:
the “tall” glyphs (alef, lam, etc.) and the “short” glyphs (beh, seen, sad, etc.). Here again, we can consider the
x-height to be the ratio between the tall letters and the short letters.

324

Chapter 10 : Fonts and Web Pages

Sempiternalité Comoirmoceac
©) ®

@

@

: Austaufchbartett
COBP@MBHH%LZ fp[lumnilfull[wil
; "AAdniemidpaoy

e L}??“M\
: crlsog@&b%éggb

Figure 10-1: The x-heights (ratios of the height of the short letters to the body size) of several typi-
cal fonts for different scripts: (1) the Latin script, Linotype Didot font, 0.42; (2) the Gaelic script,
Morley Bunclo font, 0.50; (3) the Gothic script, Delbanco Normal-Fraktur font, 0.52; (4) the
Cyrillic script, Monotype Garamond Cyrillic font, 0.45; (5) the Armenian script, MacCampus
Mesrop font, 0.30; (6) the Greek script, Monotype Greek 91 font, 0.41; and (7) the Georgian litur-
gical script, MacCampus Parnavaz font, 0.38. Next, two scripts with no uppercase/lowercase
letters: (8) the Arabic script, Monotype Naskh font, 0.22; and (9) the modern Georgian script,
ParaGraph Deda Ena font, 0.40.

Le Monde Livre, to continue our experiment. And what if we increase the actual size
of Centaur so that its lowercase letters have the same size as those of Le Monde Livre?
Here is the result! The text is certainly more legible now. We can see that
the uppercase letters are a little larger, but that is the price to pay if we
wish to keep the font intact. Later %page 441) we shall see the tools that
enable us to modify the font by changing only the size of the lowercase
letters, but let us not forget that that constitutes a major departure from
the font’s design.

As the reader will have guessed, the role of font-size-adjust is to effect this correc-
tion of the actual size of a font that is substituted for another. How does it work? The
information, known as the x-height, that is specified in this declaration is the ratio
between the height of the short letters (those that have neither an ascender nor a
descender: ‘@) ‘c’, ‘) etc.) and the body size of the selected font. To return to CSS, if

(X)HTML, CSS, and Fonts 325

we wish to request Centaur in the stylesheet as the font to use for some text, we can
write:

body { font-family: "Centaur", serif; font-size: 16pt;
font-size-adjust: .366; }

In this case, if Centaur is not available and cannot be downloaded, and will thus be
replaced by the default font—for example, Times, which has an x-height of 0.46—
the actual size of this Times font will be not 16 points, as specified, but 14 x (0.366 /
0.46) = 12.73 points, which is more acceptable, as Times quickly becomes intolerable
at large sizes.

e baseline, centerline, mathline, topline: the height, expressed in the font’s inter-
nal units, of four “baselines™ the baseline of running text; the “central line” (without
going into too much detail, this line can be halfway between the height of the ascen-
ders and the depth of the descenders); the horizontal axis for centering mathematical
symbols such as +, —, x, etc.; and, finally, the top line (which can be useful for scripts
whose baseline is at the top, such as Devanagari).

Note that a “synthetic” declaration is available: font, which can take all the values of the
preceding declarations at once, along with a few ancillary values. Thus:

body { font: 500 italic 12pt/14.4pt "Palatino Linotype", serif; }
is the same as:

body { font-style: italic; font-weight: 500;
font-size: 12pt; line-height: 14.4pt;
font-family: "Palatino Linotype", serif;
font-stretch: normal; font-variant: normal; }

We can notice two things in this example: first, the fact that the declarations that are not
given an explicit value in font are initialized to their default values; second, that a new
declaration appears here: line-height, which determines the leading. Let us note that
font-size-adjust is not covered by font.

One last bit of information on the font declaration: it can also take as values the follow-
ing keywords, but in that case there can be no other indication of size, weight, etc.:

caption: the font used by the system for buttons

icon: the font used by the system for the legends of icons

o menu: the font used for menus

message-box: the font used in dialog boxes

small-caption: the font used for “small buttons”

326 Chapter 10 : Fonts and Web Pages

e status-bar: the font used for the status bar

Thus by writing font: menu;, we obtain the font that the operating system uses for
menus, whatever that operating system may be. That is not possible with the separate
declarations font-size, font-stretch, etc.

And now here are the four declarations that manage “decorations” applied to fonts:

e font-effect (no browser), which takes the following values: emboss (set in relief),
engrave, outline, none. For lovers of effects meant for the screen rather than for
good old-fashioned paper.

e font-smooth (no browser), which specifies the smoothing, if any, to be applied to the
font: auto (use the browser’s rules), never (never smooth the font), always (always
apply smoothing). Or a keyword or a dimension chosen from those of font-size:
large, 14pt, 20px, etc. This possibility allows us to smooth text from a certain size
and up, as it is widely recognized that the smoothing of small glyphs tends to hamper
the legibility of text.

e font-emphasize-style (no browser), which applies to the ideographic languages
(Japanese, Chinese, Korean). In these languages, there is ordinarily no italic style,
and bold is not used within text in the way that we use italics in Western typography.
To “emphasize” a fragment of text, through the use of the tag, one uses various
devices, the most common being small symbols (dots, commas, etc.) written above
or below the glyphs. This declaration specifies the type of emphasis mark to place
above (or below) the ideographs: accent (a brush stroke shaped like a droplet, which
is nothing but the ideographic comma), dot (a dot), disc (a heavier dot), circle (a
small circle), none (no symbol).

e font-emphasize-position (no browser), in the same vein as the previous declara-
tion, specifies the position of the ideographic emphasis mark. The possible values
of this declaration may initially come as a surprise: before or after. It must not be
forgotten that the ideographic languages can be written both horizontally (from left
to right) and vertically (the lines are arranged from right to left). In the first case, the
values of this declaration must be interpreted as “above” and “below”; in the second
case, as “at the right” and “at the left”. Note that Japanese and Korean printers, and
Chinese printers from Taiwan, place these signs “before” (example: f#K 1 SEREMT I

5%), whereas printers from the People’s Republic of China place them “after” (f#fik
LR,

Creating a CSS “database” of fonts

In the previous section, we reviewed all the CSS declarations (of version 3) that make it
possible to specify the font desired for any element of an (X)HTML or XML document.
Now it is time to ask a question: how will the browser choose the font the best adapted
to our desiderata?

(X)HTML, CSS, and Fonts 327

To this end, we shall develop for the browser a “database” of fonts. Each of this database’s
entries will be a combination of “family name”, “Unicode coverage”, “set-width”, “weight”,

“style”, “variant” and “actual size”, which can only take absolute values. For each entry,
one must specify:

e Either a way to download the font in question
e Or a way to make a judicious substitution

e Or a way to generate the font artificially from a generic font

Provided, of course, that the browser supports these possibilities—which is far from be-
ing the case at this time.

Let us take a few examples:

@font-face { font-family: "Charcoal";
panose-: 2 053 000 2 0 4;
units-per-em: 2048;
stemv: 340; stemh: 233; slope: 0;
cap-height: 1509; x-height: 1151; ascent: 1509; descent: -;
}
@font-face { font-family: "Omega Serif";
font-style: italic;
unicode-range: U+0020-, U+0300-E, U+1E??, U+2000-F;
src: url("http://omega.enstb.org/fonts/omsela.otf")
format("opentype");
}
@font-face { font-family: "Heisei Mincho W3";
unicode-range: U+3000-FA2D, U+FF0O0-FFEE;
units-per-em: 2048;
widths: U+3000-FA2D 2048, U+FF0O-FF5F 2048, U+FF60-FFEE 1024;
bbox: -, -, 2048, 1755;
}

Here we have three entries in the font “database”. The first will be used when we request,
in an (X)HTML/XML document, Omega Serifitalic in a very specific Unicode zone (which
corresponds, in fact, to the Latin alphabet and its punctuation); the second, when we
request Charcoal; and the third, when we request Heisei Mincho W3 in a specific Unicode
zone (that of the ideographic characters). What is interesting is that in the three examples
above, if the font in question is missing, we ask the browser to carry out three different
operations:

o In the first case, we ask it to find another font that is as similar as possible to the orig-
inal font. To assist the browser in making this choice, we furnish a certain amount

328 Chapter 10 : Fonts and Web Pages

of information: the font’s Panose-1 classification (see Chapter 11) and some font-
metric information, such as the thickness of the horizontal and vertical strokes, the
slope, etc.

e In the second case, we ask it to download the font in question from a given URL,
with the specification that the font is of OpenType format.

e In the third case, we ask it to use a default font, but scaled so that its dimensions
correspond to those of the original font. Thus we specify the bounding box of the
original font and the set-widths of all of its glyphs.

Note that we can include within a declaration some instructions for intelligent substitu-
tion, downloading, and synthesis, as in the following (hypothetical) example:

@font-face { font-family: "Heisei Mincho W3";

unicode-range: U+3000-FA2D, U+FF0O0-FFEE;

src: url("http://not.found.anywhere/heiseiw3.otf")
format("opentype");

units-per-em: 2048;

panose-: 2 053000 20 4;

widths: U+3000-FA2D 2048, U+FF0O-FF5F 2048, U+FF60-FFEE 1024;

bbox: -, -, 2048, 1755;

ascent: 1653; descent: -;

}

In this case, the browser will first try to make an intelligent substitution for the font (and
the Panose-1 classification is of crucial importance to that attempt); then it will try to
download the font, and if it fails, it will attempt a substitution through “synthesis” using
a generic font—provided, yet again, that the browser is capable of carrying out all these
operations, which is not yet the case today.

Now let us examine in more detail the various declarations at our disposal. First and
foremost, the syntax @font-face, which is that of an “at-rule”, which applies not to one
or more elements in particular but to the entire document. Unlike ordinary selectors,
which may not be repeated, the @font-face rule frequently appears multiple times, once
for each entry in the font “database”.

Within each @font-face rule, two types of declarations occur:

e Those that make connections to the fonts requested by the user

e Those that tell the browser what to do—make a substitution, download a font, gen-
erate a font, etc.

The first of these are nothing more or less than the rules of the previous section: they
include the “family name”—but with no alternatives provided; here we are concerned
with only a single family name—the Unicode zone covered, the “style” (upright, italic,

(X)HTML, CSS, and Fonts 329

oblique), the “variant” (small capitals), the “weight”, the “set-width”, and finally the ac-
tual size. In the last four of these, only absolute values are permitted; therefore, do not
use larger, narrower, 110%, 1.2em, etc.

The declarations that will be of interest to us below are the second: those that tell the
browser what course to take when the font with the requested family name is not avail-
able on the system.’

Let us start with the simplest case: downloading. For downloading a font, the following
keywords are available:

e url("a URL"), which enables us to specify a URL (HTTP protocol or a local file).

e format("font format"), to indicate the font format. We may choose from the
following: truedoc-pfr, embedded-opentype, type-1 (PostScript Type 1), truetype,
opentype, truetype-gx, speedo, intellifont, svg.!? Note that, as always, the fact
that these names of font formats are part of the CSS specification does not in any
way guarantee that there is at least one browser in the world that can download and
use fonts of this kind.

e local("a font name"), to indicate the name of a font that is present on the lo-
cal system. Recall that the font-family declaration uses the “family name”; here,
however, it is the name of the font itself that is used, and therefore a name that also
contains the style, the weight, the set-width, etc., and that is a member of the font
family. Example: “ITC Franklin Gothic” is the name of a font family that includes
“FranklinGothic-Demi”, and we shall therefore write:

body { font-family: "ITC Franklin Gothic";
font-weight: 600;
src: local("FranklinGothic-Demi");

}

We may use any number of local(...) and url(...) keywords, separated by commas:
the browser will attempt, in the given order, to use a local font or download a remote
font and will continue to the next entry on the list if the attempt fails.

Now let us proceed to intelligent substitution. To find what CSS considers to be a “good
substitute” for a font that is not available, it is necessary to be able to describe certain
characteristics of this font, and the browser will compare them to the characteristics of
the fonts that it has available. Then it will choose the font that is the most similar. Thus
everything comes down to selecting relevant characteristics, i.e., those that are both pre-
cise and readily computable. Here are the characteristics available to us:

9 In fact, at startup, the browser builds its own internal font database containing all the fonts on the
system. The declarations in this database are read before those of the document’s stylesheet. If a font is already
present on the system, the browser will not even read the declaration in the stylesheet and will thus not attempt
to replace, download, or generate the font.

10 The svg format is not mentioned in the CSS specification [88], but it is used in an example in the spec-
ification of SVG [134]. Surely its omission was an oversight.

330 Chapter 10 : Fonts and Web Pages

e panose-1:the 10 whole numbers that make up the Panose-1 classification of the font.
In Chapter 11, we shall present the complete description of this system of font classi-
fication. The problem is still that only few font developers take the trouble of classi-
fying their fonts according to Panose-1, which makes the substitution mechanism
uneffective. Another problem is that this classification is more suited to Western
scripts than to Eastern ones.!! But let’s not ask for too much! After all, is it possible to
classify all the scripts of the world according to a single schema? Certainly not; but
most non-Latin fonts also include a Latin component, and we can compare those
components through the use of Panose, which is already a good start.

e units-per-em: the number of units per em. This is the number of subdivisions of
an em used to describe the font: frequently 1,024 or 2,048, but it may run as high as
tens of thousands, according to the foundry. The larger this number goes, the more
precision we have; but the more precision we have, the more memory the rendering
engine needs to perform the various calculations. Thus there is a trade-off between
the precision of the design and the consumption of RAM.

e stemv and stemh: the main thickness of vertical or horizontal strokes. Unfortunately,
the standard provides no further explanations of this subject. But we can agree, in
the case of a Latin, Cyrillic, or Greek font, that these two parameters indicate the
thickness of the downstrokes of the letter ‘H’ (“aitch” in Latin, “en” in Cyrillic, “eta”
in Greek).

e slope: the slope of the font, measured in degrees in the trigonometric sense (and
therefore a negative number in our customary italics). Once again, the standard is
not specific enough: what to do in the case of a font such as the sublime Lanston
Garamont Italic, in which the letters ‘K’, ‘T, and ‘7’ have slopes equal to 9, 12.4, and
18 degrees, respectively? Is the slope of the lowercase letters more significant for the
“look” of the font, given that these letters are more common than the capitals? These
questions will remain open as long as the CSS standard does not provide more pre-
cise instructions for calculating this parameter.

e cap-height and x-height: the height of the uppercase and lowercase letters; for ex-
ample, the height of the letters ‘H’ and ‘x’.

e ascent and descent: the height of the letters with ascenders (for example, ‘d’) and
the depth of those with descenders (for example, ‘g’).

Finally, font synthesis (a term used in the CSS specification). The term is ill chosen, as the
focus is entirely on the metrics of the font to “synthesize”; thus the procedure involves
replacing the glyphs of the original font with other glyphs, but with the same dimen-
sions. Why this insistence on preserving the same dimensions? The reason proffered in
the standard is progressive rendering. Suppose that our browser is able to download the

1 The aim of Panose-2 [113], an extension of Panose-1, was precisely to fill this void and offer a system of
classification based on measurements that are independent of the script. Although a white paper describing
this system was published as early as 1993, no software seems to support it yet.

(X)HTML, CSS, and Fonts 331

marvelous fonts of the site that we have just visited. But there are many of them, and
they contain large numbers of glyphs; thus downloading may take a long time. What do
we do when we must render a text but do not yet have the glyphs to use? We render
them with another font, preferably a system font that is readily available. But rendering
an (X)HTML+CSS page also implies global layout, and this layout cannot change when
the correct glyphs become available to replace the temporary ones. Thus, from the be-
ginning, we must place the glyphs so that the replacement of the temporary font with
the downloaded font can be performed entirely within the box of each glyph, without
any repercussions for the arrangement of the page’s visual elements.

Here are the available declarations:

e units-per-em, already seen above, which is indispensable when we use declarations
that refer to the font’s metrics.

e bbox, followed by four numbers: the bounding box, or container, of the font. These
are the coordinates of the lower left point and the upper right point of the smallest
rectangle that can contain every glyph in the font.

e widths, followed by any number of “Unicode coverage” pairs (with the same syntax
as unicode-range) and “set-widths” (whole numbers representing the set-widths of
the glyphs corresponding to the Unicode characters that precede them), separated by
commas. If there are fewer set-widths than characters, the last set-width is repeated
as often as necessary. For example, in the case of the font Le Monde Livre, which is
used for the text that the reader is currently reading:

units-per-em: 1000;
widths: U+002F- 255 510, U+003A-B 255;

which means: the glyph of the character!'? U+002F (the slash) has a set-width of 255,
and the glyphs of the characters from U+0030 to U+0039 (the Arabic digits ‘0’ to 9’)
all have the same set-width: 510. Similarly, the glyphs U+003A (the colon) and U+003B
(the semicolon) have a set-width of 255.

This technique is not new: it has been part of the PDF format from the beginning. In fact,
it is possible to refrain from including fonts in a PDF file. In that case, the two Multiple
Master fonts provided with Acrobat will be used: Adobe Serif and Adobe Sans. But in order
for these fonts to fit into the “body” of the original font, they require scaling that is per-
formed by Acrobat, using the set-widths of the glyphs of the original font. Fortunately,
the set-widths are not subject to copyright, and one may quite legally include within a
PDF file the set-widths of all the fonts employed.

That is roughly the same method that CSS sought to implement, except that in PDF the
set-widths are in an optimized and compressed binary format, whereas in CSS they ap-
pear in plain text and could potentially take up a great deal of space and cause significant

12 And here we run into a glaring inconsistency of this approach: what will happen if we use a font that
contains multiple glyphs for a single Unicode character, such as, for instance, even the humblest Arabic font?

332 Chapter 10 : Fonts and Web Pages

delays in the downloading and rendering of a page.'®> We can get around this problem by
only including in the stylesheet the set-widths of the glyphs that are actually used in the
XML/(X)HTML document, but that also means that we cannot separate the stylesheet
from the document. We shall have to see how the industry will implement this type of
approach, which certainly appears very awkward.

Conclusion: is CSS effective?

In the previous two sections, we studied CSS’s approach to font management in web
documents (X)HTML) and XML documents in general. We have seen that CSS sepa-
rates two points of view: that of the author of a web page, who wishes to use a certain
number of fonts without worrying too much about technical issues, and that of the “web
technician”, who does her utmost to ensure that the fonts requested by the author will
reach the browser or, as a last resort, be replaced by intelligently chosen fonts.

Is this method effective? When we compare the fine concepts described in the CSS spec-
ification with reality, we can see that everything depends, at the end of the day, on the
willingness of browsers to comply with the specifications and that, in the case of fonts,
that is not yet the case. Next we shall see the real possibilities that exist for downloading
fonts. We shall also see that the tools that make downloading possible also manage the
“web technician’s” part and enable the author of a web page to give free rein to his cre-
ativity without worrying about such crudely material details as the management of the
CSS font database.

Tools for Downloading Fonts from the Web

In the previous section, we described the CSS declaration src: url("...");, which re-
quests the downloading of a font from the Web. We even furnished a list of font formats
provided in the CSS specification. But what does this declaration actually do?

Well, the situation is not golden. Several factors are responsible: first, and we shall never
say it enough in this book, fonts are usually subject to copyright and cannot be made
available to the public. Thus (a) the format in which the font is downloaded must be an
encrypted and secure format so that extraction of its data will be impossible, and (b) the
file downloaded must serve no purpose other than the rendering of the web page in
question. That is all quite possible, through the use of unpublished font formats (unlike
OpenType, PostScript Type 1, etc.) and by locking the downloaded file to a given URL:
even if the file is recovered and moved to another location, it will be useless.

But the technical difficulties do not stop there. A browser usually resorts to graphical
routines in the operating system to render the contents of its windows. That means that

13 That is why, in the example of a stylesheet with set-widths that we presented above, we “cheated” by
considering an ideographic font. A huge yet wonderful paradox of the Japanese, Chinese, and Korean scripts:
they contain tens of thousands of signs, but these signs are all extremely disciplined and take up exactly the
same space: a square, symbol of balance and harmony. Thus giving the set-widths of the ideographic glyphs
presents no problem; after all, they all have the same set-width (with a single exception: the few dozen half-
width Japanese kana, a twentieth-century invention whose inclusion in Unicode led to the spilling of a great
deal of ink).

Tools for Downloading Fonts from the Web 333

the fonts used for rendering text also come from the operating system. But here we are
proposing to obtain a file from the Web—a file that only the browser will know how to
decrypt—and use its contents as a font, just like the fonts on the system. That approach
amounts to short-circuiting the operating system. At the same time, the glyphs rendered
must support searches, copying and pasting, etc. And that support presupposes a close
collaboration with the operating system—which is being short-circuited, with all the
risks of conflict that that entails.

And we have not even mentioned the problems of internationalization: how to render
Arabic on a client station that is not configured for the language? If we can download
an Arabic font, should we not also be able to render text with it, even if that assumes
contextual analysis that may be complex? And what about the link between characters
and glyphs? When we select an Arabic word whose glyphs we see and then copy the
selection to the clipboard, is it not reasonable to wish to obtain the Unicode characters
rather than the positions of the glyphs in a given font?

We can tell that the technical problems involved are not minor ones, and that may ex-
plain, at least in part, the weakness and the obscurity of the existing tools. At the same
time, these problems emphasize all the more the great accomplishment represented by
the development of a product such as GlyphGate, which we shall see below.

We shall present, in a chronological order, the three tools for downloading fonts that
are currently available: the TrueDoc technology of Bitstream, the WEFT software of Mi-
crosoft, and GlyphGate, by em2 Solutions.

TrueDoc, by Bitstream

Bitstream is a large American foundry; its fonts are neither the most magnificent nor
the most extravagant nor yet the most authentic, but they maintain a generally high
level of quality. Bitstream is known for having launched technologies that failed when
confronted with the commercial supremacy of giant multinationals such as Microsoft or
Adobe, the most famous examples being Speedo and TrueDoc, of which the latter is our
focus here. TrueDoc technology {81} is based on the PFR (for ‘Portable Font Resource’)
file format {99]. PER has the following technical characteristics:

e It is binary, and its architecture is recognizably different from that of TrueType and
PostScript Type 1. In particular, it has its own techniques for hinting, and any font
converted to PFR loses its original hints and is given new ones at the time of rendering,
which, according to Bitstream, enables the rendering to be optimized by creating
hints customized for each platform.

o It can theoretically contain up to 65,536 glyphs, but they are not connected to char-
acters, because there is no indication of the encoding being used. Moreover, these
glyphs have no name, only a position.

e Part of the PFR specification is freely accessible on Bitstream’s web site. But—and
this is hardly surprising—the locking of a font to one or more URLs is not docu-

334 Chapter 10 : Fonts and Web Pages

Bitstream WebFont Wizard $3| W Bitstream WebFont Wizard x|

allng — Select the font pou wish to use. Al el *our dynamic font file can contain a standard set of
sﬁgﬂ‘jﬁfg‘g ic ﬁﬁ'fﬂﬁfﬁ Ic characters, a complete set of Windows characters or a
Foht custom subset that vou define.

Choose the character set you wank:

M5 Outlook

5|
I HSimSun | " Standard. This set contains alphanumeric characters
for wab _ = for weh and punctustion
publishing SimHel publishing))
1~ Complete. This set contains all the ‘Windows characters
Font Style: Mormal b .
I _I rue UB & Custorn. This set only containg the selected characters
Script: ICyri\quue j v Specify Characters...
< Précédent I Suivant > I Arnuler I Aide | < Précédent I Suivant > | Annuler Aide |

Sets: R
s T) Supported URL paths:
Type the characters vou want to include in your custom set. Y'ou can also copy and @ﬁiﬁ'ﬁ‘ﬂﬁ mnmic = add
paste text into the box below, or choose a predefined set from the drop-down list box,
htt q
. Y Femove
"85 8], /0123456789, <=>7@ABCDEFGHIKLMNO = for wab hite: /7 erst bretanef =
PQRSTUVWXYZ[\]* _abedefghijklmnoparstuvwayz{ |} publishing |

o A1 %ob R4 8 @™ ey Tl I §EOE BI04
irp & Noa»j SstABBT AN 3 MK AMHOTTPC TV X LIHLL
b BIE SO Flafer g sMiK A MHOT ROTY G HITUIIITBERILDIOT

Type the URL paths for your web pages, then click the
Add buttan. Far example, type

"hittp: A, mysite. com/pagesd" in the text bow, then click
Add. You can add a3 many URLs as you want.

Click the Help button for tips on entering URL path names.

(Précédentl Suivant > l Annuler Aide
Ok I Cancel I Help |

Figure 10-2: Screenshots from WebFont Wizard.

mented. Furthermore, no information on hinting is provided, other than a tech-
nique for the replacement, at a low resolution, of certain curves with straight lines;
this technique is related to the flex of PostScript Type 1 fonts.

Just a few years ago, two products for generating PFR fonts were available on the market:

e Typograph, by HexWeb, a Macintosh software package in two versions—an indepen-
dent version and a plug-in version for the BBEdit text editor

e WebFont Wizard, by Bitstream, for the Macintosh and Windows

The first of these was triply unsuccessful, since the software is not distributed anymore,
the company HexWeb disappeared from the map and from the Web, and, finally, the
Typograph plug-in is incompatible with the latest versions of BBEdit and is therefore un-
usable. As for WebFont Wizard, the situation is less severe: the company still exists, and the
product is still usable today; it is simply no longer being distributed. Just in case Bitstream
ever decides to launch it again on the market, here is how it works:

Tools for Downloading Fonts from the Web 335

e First, one selects (Figure 10-2 {a]) the font to convert, from among the fonts installed
on the system. At the same time, one selects the style (regular, italic, bold, bold italic)
and the “script” In fact, what is called “script” here is nothing but a subset of the
WGLA set of glyphs, which was introduced by Windows NT. WGL4 corresponds to
a small part of Unicode that covers the languages of Western Europe (except Mal-
tese), Central Europe, the Baltic states, Eastern Europe, and the Balkans, as well as
Greek (only “monotonic”, thus a poor subset of true Greek (see {169, 166})) and
Turkish. One may select “Western”, “Greek”, “Turkish”, “Baltic languages”, “Central
Europe”, or “Cyrillic”, provided, of course, that the corresponding glyphs are avail-
able in the font.

e Next, one selects (Figure 10-2 [b]) the set of glyphs to include in the font: “alphanu-
meric characters (without accents) and punctuation”, the “complete” set, or a “cus-
tom” range. This window also affords us the possibility (Figure 10-2 [c]) of inspecting
the set of glyphs to ensure that we have made the correct choice and of preserving
only those that are needed for the web page.

e Finally (Figure 10-2 [d]), we choose the URL(s) of the web pages with which the font
may be used, and we save the font under a filename with the extension .pfr.

Thus we obtain a PFR file for which the set of glyphs and the authorized URLs are cus-
tomized. How can we use this font on a web page?

Unfortunately, TrueDoc does not comply with the recommendations of CSS; instead, it
uses an (X)HTML tag to supply the URL of the file containing the font. Here it is:

<link rel="fontdef" src="http://omega.enstb.org/fonts/palatino.pfr"/>

On the other hand, within the web page we use the font’s internal name (not its file-
name); thus we must have carefully made note of it somewhere. To facilitate that task,
WebFont Wizard produces, at the time of each conversion, an HTML file bearing the font’s
filename and containing a range of useful information: the font’s internal name, the
glyphs that are available, the authorized URLs, the code needed to download the font,
and some JavaScript code that will test the browser and install, in some cases, a plug-in
from Bitstream’s web site.

TrueDoc technology is compatible with the following browsers:

Browser MacOS Windows Unix
Netscape Navigator 4.x yes yes yes
Netscape Navigator 6, 7 no no no
Internet Explorer 4-6 no yes* —
iCab yes — —

where the asterisk denotes the need to download a plug-in.

336 Chapter 10 : Fonts and Web Pages

il
= Font] FontFarmil J Info Type Installed | Location I Yolume: __‘_J
¥ Lucida Sans Typewriter Lucida Sans Type... Installable TrueType Ves CHWINNTIFo...
¥ Lucida Sans Typewriter Gras Lucida Sans Type... Installable TrueType Yes CWIMNT\Fo...

W Lucida Sans Typewriter Gras Obl Lucida Sans Type... Installable TrueType Yes CAWIMMTYFoO. ..

¥iLucida Sans Typewriter Oblique Lucida Sans Type... Installable TrueType Ves CHWINNTIFO...

.!(.'Lucida Sans Unicode Lucida Sans Unicode Editable TrueType Ves CHWINNTIFa.,.

wiMarlett Marlett Installable TrueType Yes CWINMTYFoO. ..

M Microsoft Sans Serif Microsoft Sans Serif Installable TrueType Ves CHWINNTIFo...

¥ Monotype Corsiva Monotype Corsiva Installable TrueType Yes CAWIMNTIFo...

WS Outlook M5 Dutlook Installable TrueType Yes CAWINMTYFoO. ..

¥ NSimSun MSimSun Installable TrueType Colection Yes CHWINNTIFo...

i Palatino Linotype Palatino Linotype Editable TrueType Yes CAWIMNTIFo...

¥ Palatino Linotype Gras Palating Linatype Editable TrueType Yes CAWINNTYFo. ..

¥ Palating Linobype Gras Ttalique Palating Linotype: Editahle TrueType Yes CHWINNTYFo. ..

¥ Palatino Linotype Italigue Palatino Linotype Editable TrueType Yes CAWIMNT\Fo...

¥ SimHei SimHei Installable TrueType Yes CAWINMTYFoO. .. B

M simsun SimEun Installable TrueType Collection Ves CHWINNTYFo. ..

¥ Symbol Symbol Installable TrueType Yes CWIMNTIFo...

@ Tahoma Tshoma Editable TrueType Yes CAWINNTYFo. ..

-‘vij-Tahnma Gras Tahoma Editable TrueTvoe Ves CHAWINNTIFD, [= e
A

Figure 10-3: WEFT’s font database.

In the absence of a product to generate PFR files and with no support from Netscape
Navigator beyond version 6 or from Internet Explorer for the Macintosh, the survival
of TrueDoc technology is in jeopardy, to say the least. In discussions with employees at
Bitstream, the author has noticed a certain bitterness resulting from the abandonment
of this technology, especially with regard to Netscape, which supported it very well from
the beginning. It is typical that Bitstream has launched a call for help on its web site
to Internet citizens who care about beautiful fonts: “Bitstream suggests you contact Mi-
crosoft and AOL and encourage them to support dynamic fonts in the new releases of
their browsers.” Let us hope that this distress call will be answered!

Font Embedding, by Microsoft

Microsoft launched the first version of its WEFT (for “Web Embedding Fonts Tools™)
software {269] in 1997, at the same time as version 4 of Internet Explorer. This software
works only under Windows, and the technology in question is called Font Embedding (a
name that—Ilet’s face it—is not very imaginative). The font format used by this tech-
nology is Embeddable OpenType (EOT). Once again, this format is undocumented, and
Microsoft is not inclined to provide its specifications, even under cover of a nondisclo-
sure agreement. Our contacts at Microsoft have told us that it is an OpenType format
compressed with an Agfa technology called Microtype Express that contains only a subset
of the glyphs and that is inextricably linked to one or more URLs.

Since we cannot say anything more about EOT, let us move on to WEFT. How does
it work?

First of all, it is important to know that WEFT maintains a database of all the fonts in-
stalled on the system. By selecting View=>Available Fonts, one obtains a table with a list
of all the fonts (Figure 10-3), showing for each one its Windows name, its “family” (in the
Windows sense), its font format, an indication of whether it is installed on the system or
not, its location on the disk, and, most important of all, the right to include this font in

Tools for Downloading Fonts from the Web 337

a web page. Thus a font can be Editable or Installable (or downloadable, even for pages
in which the Internet user can write), Previewable (or downloadable, but exclusively for
pages that can only be read), 'No embedding' font, Windows core font (thus downloading
it is unnecessary), or Font may be broken!.

Before writing stylesheets for web pages, one must check, in this database, whether the
fonts that one wishes to use can be downloaded. Next, one writes the CSS stylesheets,
using the declarations font-family, font-style, etc., but not declarations for download-
ing the fonts, since WEFT will add them to the page.

Next (Figure 10-4 {a]), one has WEFT read one’s pages, using Tools>Add Web Pages. The
software will read them and generate a list of all the requested fonts, specifying whether
they are downloadable and how many characters are required from each: this informa-
tion will appear in the Fonts to Embed window (Figure 10-4 [b}).

This window is very interesting, as it offers us seven ways, arranged in increasing order,
to select the glyphs to include in a font to be downloaded.

e Per page subsetting: WEFT will analyze each (X)HTML file separately and will
create EOT files for each, which can be used by this file only. This procedure entails
the largest number of EOT files but also the greatest degree of independence of the
various files—the addition of a few glyphs to one file will not force the recompilation
of the full set of web pages on the site.

e Per site subsetting: a global analysis is performed on the entire site. The EOT files
generated will have enough glyphs for all the web pages on the site. The same fonts
will be used for all the pages.

e Family based subsetting: the analysis is global and, in addition, the fonts of the same
family (in the Windows sense) contain the same glyphs. For example, if an upright
font contains the glyphs ‘@) ‘b’ and ‘c’ and the italic version of the same font contains
only a ‘c’ and a ‘d}, the EOT fonts generated will each contain the same set of glyphs:
‘a, ‘b, ‘¢’ and ‘d’. The reason is as follows: Suppose that on your web page a JavaScript
script changes the style of your font from upright to italic, or from light to bold. It
would be a shame if some glyphs were missing simply because the JavaScript script
was not activated when the EOT files were produced. Thus all the glyphs are supplied
in all the styles in use. This is the default choice.

e Union subsetting: the same principle operates here as with selection by family, but
here it extends beyond font families. WEFT will make note of all the characters used
on all the pages and will generate EOT fonts, each of which contains enough glyphs
for all the characters. This method even covers pages on which JavaScript scripts may
change the fonts that are used.

e Raw subsetting: this approach goes even beyond selection by union because here
even the text that is not part of the visible contents of the (X)yHTML elements is
included—XML comments, the text that appears within scripts, tags, etc. The fact

Chapter 10 : Fonts and Web Pages

Add Web Pages x|

Enter the LRL address of your Ysb pags and click ‘Add!,

__! Add

[=] st |

I™ Do not add linked pages.

Exchude

anner |

< Précédent] Suivart 3 i

Fonts To Embed x|

Use the Embed{Don't embed' button to choose which fonts you
wartt to embed.

Subsetting: |3, Family based subsetting

Ll L4

Language: Ik

Font

[4 % Unknown

@ 8601476296110 . Unknown 79
0335(11479329611:[. Unknown 79
@ 386d1472829611cf.. Unknown 79
Falatino Linotype Editable Yes *7Q
Palatino Linotyme .. Editable Yes 79

Subset Editor

= syl [Regular

=1 Lene [|
|

Font: [Palatino Linatype

K A uviEo
ow 0o U w
|

¥ Showfort. |, 7BacejmnortuwogBRE TS Geniafydeln SrcAusEongermy dypudvid

| [Conedd |

Save. | Load Blobals.. | Feset | oK

add... | subset.. | petais.. |
<Prgcédent [Subvants | ek |
x|

The toolis now ready to create the font objects,

Enter the location where the font objects will be created:

[Fiessr =]|

[l

Font abjecks may only be used from pages under this root:

Mirror sites

[Fles 122\ itk fomega, ensth. org

[Create font declarations with relative URLs,
™ shaw C55 @font-Family declatations.
™ Skip weh Font creation,

Click ‘hext' ko start creating the Fonk object on your server,

Publish Web Pages

The kool is now ready to insert links to the Fark objects Frar
your Web pages on your web server,

1t Is strangly recommended that you back up all of your contert,
ar skdp the publishing process, because your original pages will
be overwritten. You may prefer ko review the changes mads by
the kool before manually copying them ta your sike From:

Explare

™ Do not upload modified pages ta my server,

Click et to start uploading the medifisd pages.

<P|écédenll Suivant > i

Arvuier |

Firishedt x|

You are al done now,

IF you wish, you may sawe your current settings as a Web font
embedding project. This will ket you re-run the toal [ater without
having ko enter Web page addresses etc, Selsct save From the
File menu to do this,

<F’récédeml Suivant > i

A |

Anruler

< Prgcédent |2 Temie j;

Figure 10-4: Steps for creating EOT fonts in WEFT.

Tools for Downloading Fonts from the Web 339

that the document is an (X)HTML page is disregarded; the file in question is con-
sidered to be a text file, and all the glyphs whose characters are found therein are
incorporated.

e Language subsetting: the glyphs of a Unicode block are included in the EOT files.
This choice is discouraged because it is possible to include only a single block, and
rare are the pages that use only one: a mere space character on the page makes the
ASCII block necessary; an em dash or a proper quotation mark will force us to use
the block of general punctuation; an accented letter, and the Latin Extended block is
required. One would not expect it, but the sentence “—Darling, don’t be naive! said
she” requires no fewer than three Unicode blocks!

e No subsetting: the inclusion of the entire font—not recommended for large fonts,
especially ideographic ones.

Did the reader not find what she wanted among these methods for selecting glyphs? She
may also select her glyphs by hand. Clicking on the Subset button brings up a dialog
window (Figure 104 {c]) showing all the glyphs in the font, arranged by Unicode table,
and the glyphs that are not used on the page are masked in gray. Merely clicking on a
glyph will cause it to be included in the font; one more click will deselect it. The full set
of glyphs selected is displayed at the bottom. One can even save a selection of glyphs to
a file and use it later for another font.

Now that we have finished selecting the glyphs to be included, we shall move on to the
creation of the EOT fonts (Figure 104 (d)). In the window Create Font Objects, we
simply indicate the location where the generated fonts are to be stored and the URLs
under which the fonts may be used. The location where the fonts are to be stored is used
both by the WEFT software (for saving the fonts) and by the CSS code generated by this
software: it is the argument to the src: url(...) declaration. We may use files on the
disk (file) or those accessible through the http, https, and ftp protocols.

As for the URLs under which a font may be used, we may supply any number at all, and
the authorized protocols are file (a file on the disk), http (an [XJHTML page), https (an
[XJHTML page with a secure connection), ftp (file transfer), mhtml (an [X]JHTML page
included in an email message).

The next two windows (Figures 104 (e), (f)) complete the process by asking us to update
the pages and to give confirmation.

This procedure was conceived by Microsoft for graphic artists and other authors of web
pages who wanted to write (X)HTML/CSS code first and then have the fonts generated
semi-automatically from their code. Those who feel more at ease with the technical na-
ture of EOT font generation may do it directly, without going through an analysis of web
pages. Selecting Tools>Expert Create Fonts will do the job. The window that appears
(Figure 10-5, left) offers a direct choice of fonts to generate, the possibility of choosing
glyphs to include (a manual choice, with the option of saving and reusing a set of glyphs),
the authorized URLs, and a location for the generated fonts. In short, all the functional-
ity outlined above—except, of course, the intelligent selection of glyphs to include from

340 Chapter 10 : Fonts and Web Pages

Expert Create I BET [55 styles x|
Faont I Info l Em... | Charsl {5Stand alone fFo
(¥ Courier New Installable fes 143
{5tand alone fonts}h _ﬂ
<5TYLE TYPE="textjcss">
<l-- [* $WEFT -- Created by: ¥annis Haralambous (yvannis.haralambaol
@font-face {
Font-Family: Caurier Mew;
font-style: mormal;
— = = Font-weight: normal;
Add. .. I Embed I Stbser I Detalls, I sre: UrlFile: /{2 HCOURTERD, eat);
iy
Location:]_'j File:s iZ:\ -
<[STYLE>
Eind:]http:h’omega.enstb.org
I¥ Show C55 Fant declaration ¥ Create €SS with relative URLS, 1)_'—l
Create Close
=

Figure 10-5: The window for generating EOT fonts in WEFT.

an analysis of the characters used on web pages, since there are no web pages to analyze
this time. And since there are no web pages yet, the CSS declarations are written in a
window (Figure 10-5, right) from which one can copy and paste them into (X)HTML or
CSS files.

In conclusion, WEFT seems, at first blush, to be the solution for downloading fonts from
the Web: it is efficient, Unicode-compatible, and completely free. It would indeed be
the ideal solution if all of humanity used Windows and surfed the Web with Internet
Explorer. But that is (un)fortunately not so, and with the exception of Internet Explorer
under Windows, no browser is compatible with EOT fonts (Internet Explorer under Mac-
intosh was compatible at one time, but it no longer is).

GlyphGate, by em2 Solutions

One thing that we have noticed about the two tools for downloading fonts that were
described above: however wonderful the technologies are, their success depends on their
compatibility with browsers, and neither of the two technologies has managed to prevail
in this area. We can amuse ourselves by creating PFR or EOT fonts and including them
in our web pages, but we have no guarantee that the Internet user who visits those pages
will be using a compatible browser. And we all know how annoying it is to read on a web
page: “This page can be displayed only with X version Y.

But is there a way to know which browser the cybernaut who connects to our server is
using?

We all know that the Web is anonymous: when we connect to a server, the server knows
very little about our identity. That is part of the Web’s code of ethics. But, at the same
time, this principle has its limits. It is quite helpful, for example, for the server to know
the type of browser that we are using, so that it can improve the configuration of the
pages that it sends us. That is indeed done, using information transmitted through the
HTTP protocol [152]: the User-Agent declaration, which is an integral part of every
HTTP request that the client sends to the server.

Tools for Downloading Fonts from the Web 341

But there turns out to be a problem of diversity. First of all, each browser is free to
identify itself with a string of its choice; no standards prevail. Next, there are oodles of
browsers, running on many platforms, and new versions of these browsers come out ev-
ery day. Thus it is a herculean task to preserve a record of every version of every browser
for every platform. And we would also need to prepare for each of these, according to
its features, a different version of the web page, with or without downloaded fonts, and
with the appropriate syntax.

That is exactly the idea that occurred to the company em2 Solutions—which, inciden-
tally, was Microsoft’s contractor for the development of WEFT. Rather than focusing on
having the author of the web pages generate downloadable fonts, em2 Solutions tack-
les the web server itself and furnishes a web server plug-in by the name of GlyphGate
(formerly called Fairy) {130]. This plug-in is compatible with Apache, servers compatible
with the Netscape API, and Microsoft IIS.

The principle behind its operation is similar to that of WEFT: one prepares web pages by
indicating the desired fonts, and GlyphGate does the rest. In fact, it is not even necessary
to generate the fonts; GlyphGate does so, in real time, and according to the nature of the
client that connects to the server. em2 Solutions does not claim to cover all browsers,
but actually it does. Indeed, it covers even the oldest ones, by sending GIF images of the
words in the document, if nothing else can be done.

But GlyphGate goes much further:

o If the web page requires contextual analysis—for example, if it contains text in
Arabic—and the browser cannot handle this functionality, GlyphGate will take care
of it and render the Arabic text correctly.

o If the font being used is an OpenType font with advanced typographic features, then
GlyphGate will offer special CSS declarations for enabling or disabling any of these
properties in any part of the document. For instance, one can enable ligatures, old-
style figures, stylistic variants, etc., on the fly.

e Unbelievable but true, GlyphGate even offers to perform kerning, something that
browsers ordinarily are not equipped to do. How does it perform kerning? Suppose
that the browser must render the pair of glyphs ‘AT’ and that it is necessary to move
the ‘T° closer to the ‘A’. GlyphGate will generate a new font in which the glyph ‘A’
will have a smaller set-width, so that when ‘AT’ is rendered one gets the impression
that kerning has occurred. Farfetched, yes, but darned effective!

e A key use of GlyphGate is to support less common languages on the Internet. This
is done through Web fonts in common browsers on personal computers, by graph-
ics on less common platforms and browsers, and through romanization on text only
browsers. There is as such support for any browser on any platform that support at
least HTML 2.0, even on platforms without a graphical user interface.

e Last but not least, GlyphGate offers a development kit containing modules for the
rearrangement, replacement, and repositioning of glyphs. One can thus construct

342 Chapter 10 : Fonts and Web Pages

GlyphGate Fonts folder

This page lists fonts that can be used in web pages on your GlyphGate web semver.
These are the only font names that GlyphGate will recognize in your web pages.
Some fonts will have a different name on some platforms than what is listed below.
You will find more information about how to use fonts with GlyphGate in the User

Manual.
[d] charter [4] clean clearlyu
clearlyu alternate gl... [£] clearlyu arabic extra... [4] clearlyu devangari ex...
clearlyu ligature [4] clearlyu pua] courier
[@] cursor [4) DECWSCURSCR DECWS$SESSION
[x] DS-Normal-Fraktur - [¢] em2Mono [¢] em2Sans
em2Serif [4] fangsong ti fixed
gothic helvetica [4] ledfixed
lucida [4] lucidabright lucidatypewriter
[d] Luxi Mano Luxi Sans @] Luxi Serif
micro [4] mincho new century schoolboo...
[4] newspaper [A] il open look cursor
open look glyph [xt Palatino Linotype song ti
[4] symbol [4] terminal [4] times
[d] utopia

Figure 10-6: Extract from the browser’s window: a list of fonts available on the server that was
generated by GlyphGate.

one’s own rules for contextual analysis, replacement of certain strings with glyphs
for ligatures, placement of diacritical marks, etc.

Now let us see how to use GlyphGate.

Suppose that GlyphGate has been installed on the server. The fonts to be used have to
be installed somewhere on the server.

Under http://our_web_site:8024/gg-fonts, GlyphGate shows us a list of all the fonts
available for web pages (Figure 10-6). By clicking on a font, we gain access to a series
of pages displaying all the font’s glyphs, including the glyphs generated by GlyphGate,
such as, for example, the accented letters that do not exist in the original font but whose
components (the base letter and the accent) are present. These glyphs are arranged by
Unicode table (Figure 10-7), and only the tables that contain at least one glyph are dis-
played. Note that these are not imported images but true Unicode characters that we
can copy and paste, print out, or search for if the operating system allows. What comes
close to being a miracle is that these characters are represented by glyphs in the font in
question, though that font is not installed on the client system.

Tools for Downloading Fonts from the Web 343

Palatino Linotype (opentype)

Click here to see additional information about this font,

This font can be used to show: Basic Latin, Latin-1 Supplement, Latin Extended-A,

Latin Extended-B, IPA Extensions, Spacing Modifier Letters, Combining Diacritical Marks,
Basic Greek, Greek Symbols And Coptic, Cyrillic, Latin Extended Additional,

Greek Extended, General Punctuation, Superscripts And Subscripts, Currency Symbols,
Letterlike Symbols, Number Forms, Mathematical Operators, Miscellaneous Technical,
Alphabetic Presentation Forms.

Latin Extended-A (U+0100 - U+017f)

100 LH101 D102 LH03 D104 LH05 LH06 LH07 H108 L1098 DHi0a LH0b Lhi0e LH0d Leioe L0

Al el ke el el el e e e

L1100 L1 D112 L1133 L LS L1 1E L7 D118 L1189 Lhida Leltb Dl L id Lhide Lh11E
B [H & E e e e BEE e g
LH120 LH121 D122 Lh123 D124 LH125 D126 L1127 U128 129 LeiZa Le12b LeiZc Lh12d LhiZe Lh12f
& U0 1 | 0 e vl e e) o) R 6 G
LH130 LH131 D132 L33 D134 LR35 L1136 L1137 U138 LH139 LHi3a Le13b Lei3c LH13d Lhi3e Lh13E

. — o
IS (S L My WS I (ke a0 IO 2 Tl
140 Lt D142 D143 Lhidd Lhads D48 147 D148 L1498 Dida Lidh Dhide Lhidd Leida L

& ’ o w ' - —_ =, w
I 3 FE I S N D e (g IS C e I
L1480 LH1S1 D152 LH1ES U154 L1155 LH1AE LHSY 158 159 D15 LSk LhiSe L15d Leibe LHSE

ey rr 5 r 4 w 3 4 P A
) o ChEoe R0 R B R 0S| | 6 & (80 0S I5
160 LH161 LH162 LH163 L1164 165 LHIG6 LHIG7 +168 LH169 163 LH16b LhiGc LH16d LHiGe LHIGT
) st 1 o -~ - - —_ = [o, &
5 B0 D 6 o o e R) |
LHI70 LHIT1 LHI7Z LTS LH74 LHITS LHITE LHITT 178 LHIT7E 173 L7 L1 7e LHITd L Te LHITE

TR R

Figure 10-7: Extract from the browser’s window: glyphs from the font Palatino Linotype in the
Unicode table Latin Extended-1, displayed by GlyphGate.

344 Chapter 10 : Fonts and Web Pages

Once we have checked that the fonts that we want are correctly recognized and displayed
by GlyphGate, we may go ahead and use them in our pages. No surprise: we can use
standard CSS declarations. From this point on, GlyphGate takes charge of rendering.
And it works!

Some browsers may take advantage of a plug-in called FontEnabler,'* which takes just a
minute to download and even less time to install. One must simply make sure that the
browser detected by the plug-in’s installation program is indeed the browser that one is
using.

To conclude this section, here are two CSS declarations defined by GlyphGate:

e text-otl is used to enable OpenType’s advanced typographic features (see Ap-
pendix D.9). It is followed by any number of labels for such properties. These labels
are always strings of four characters. For example, if in an OpenType font we define
a property onum that replaces the ordinary digits with old-style digits and a property
stct that replaces the strings ‘st’ and ‘ct’ with the ligatures ‘t’ and ‘&, then by writing

.oldstyle { text-otl: onum,stct; }
in a stylesheet, and
Acts of Justice of 1770.

in the document, we do indeed obtain text with old-style figures and ligatures: “Acts
of Justice of 1770”. It is also important to specify the language (with the lang at-
tribute), since the advanced typographic features of OpenType are always connected
to a language. We shall see that in detail when we discuss the editing and creation of
OpenType fonts (see Chapter 14).

e glyphgate enables or disables analysis by GlyphGate. It can take three values: skip
(GlyphGate completely disregards this part of the document), nofonts (partial pro-
cessing: CSS and contextual analysis are performed, and only the fonts are not down-
loaded), process (regular processing, which is the default value).

Thus GlyphGate is indeed the miracle solution, for those who have control over their
web server. Let us hope that the use of this system will become more and more common,
as it will improve the “look” of the Web and will democratize the use of even rare non-
Latin languages.

14 Internet Explorer will default to using web fonts without the plug-in. Browsers without native Web font
support, such as Safari and Mozilla, will default to using graphics for text in prominent places on a Web page.
By default, Web pages will thus “look right” in browsers without the use of a plug-in. The administrator of a
Web site may chose to offer the FontEnabler plug-in to browser users in order to enable the use of Web pages
that can be searched and printed more easily. This can be highly customized; for example, you can choose
the exact circumstances under which to make the plug-in available). In that case, it is up to the user to either
use the plug-in, with its benefits, or settle for the default behavior (which is probably good enough). For a
page with Arabic and Brahmi text, the use of the plug-in would be recommended, although still not required.
For example, you would be able to render Urdu text correctly in Mozilla without using either the plug-in or
graphics: GlyphGate would produce Arabic text with presentation forms to ensure that the text was legible,
albeit not with the intended font.

The SVG Format 345

The SVG Format

SVG is the acronym of Scalable Vector Graphics, a name that is quite ill chosen, being as
it is redundant. Specifically, scalable and vector mean exactly the same thing: that the
images can be scaled because they are mathematically abstract objects such as straight
lines, curves, circles, rectangles, polygons, etc.

The notion of a “vector image” has existed for a long time in the world of industrial de-
sign; it is thanks to software such as Adobe Illustrator and Corel Draw that “vector design”
is, and has been for a good decade, within the reach of the public.

Apart from the redundancy of its name, SVG holds nothing but pleasant surprises in
store for us. The most important of these: it is a W3C standard based entirely on XML.
That is an enormous advantage:

e First, because SVG’s vector images become human-readable and human-editable
documents. There are no more secrets, no more mysterious proprietary file formats,
no more “black boxes”. Which also means that an SVG image placed on the Web
can be indexed like any web page.

e Next, because all XML tools and technologies can also process SVG vector images.
For instance, if one wishes to generate or transform SVG images, there is no more
need to reinvent the wheel and write tools to do the job; tools already exist, and one
need only tell them what to do.

e Images become hierarchical objects; in particular, they can be composed of several
parts and/or layers, each of which is an SVG image in itself. Moreover, SVG manages
interactions and certain dynamic operations, and the reader can thus interact with
the different parts of the image.

e Finally, an SVG image and its different parts can be resources accessible on the Web
through the use of semantic metadata (web semantics) {107, 331}: each portion of
the image can carry metadata that is associated with one or more ontologies. For ex-
ample, if one is searching for resources indexed by the concepts “seed” and “corn” in
an “Agriculture” ontology, one may find a part of the SVG image showing different
types of seeds, one of which shows a seed of corn, because the creator of the image
took the trouble to index each part of the image separately, through the use of the
correct ontology.

Before tackling the use of fonts under SVG and its impact on the Web, a brief introduc-
tion to the concepts and terminology of XML is in order. (The reader may also profitably
consult the works [300, 2521.)

Fundamental Concepts of XML

In the exact sciences, and mathematics in particular, there are two possible pedagogical
approaches: the one that goes from the general to the specific and from the abstract to

346 Chapter 10 : Fonts and Web Pages

the concrete—which is the “Bourbakist” approach, named after the prestigious French
association of mathematicians—and the one that goes from the specific to the general,
from a set of concrete cases to an abstraction—which is the “American” approach. To
discuss XML, we shall take a Bourbakist approach, which may not actually be one, since
from the beginning of this chapter we have discussed the Web—and HTML, and more
specifically XHTML, is nothing but a special case of XML. Is XML then an extended
XHTML? A generalized XHTML?

It is all a matter of perspective. Some would say that XML is like XHTML, only that we
choose the names of the tags ourselves. There is a kernel of truth in that position, but
XML goes much further than that. Let us therefore wipe the slate clean and start again
from the beginning.

Our starting point is the document. Our goal is to give it a structure. What do we mean
by that? Well, that means that we are going to subdivide it into parts, each of which will
have a meaning, or at least a “description”. These parts will be embedded; in other words,
each of them will be included in one, and only one, immediately larger part, and so forth,
until we obtain the entire document, which contains all of the parts. We can represent
that with a “shoebox” diagram like the one shown below:

’ section‘ ’ section‘
’ section‘ ’ section‘
chapter chapter chapter book

» «

where we have called the parts “book”, “chapter”, and “section” to give an example of a
structured document that has been known for millennia: the book. We acknowledge the
customary form of embedding: the book contains chapters, which contain sections. But
these objects, unlike the unorganized elements of set theory, also have an order, which is
the order in which the book is read, and it is the logical order of our document. We can
therefore revise the figure shown above by adding the order of the subparts of each part:

’ section 1‘ ’ section 1‘
’ section 2‘ ’ section 2‘
chapter 1 chapter 2 chapter 3 book

And here is the first trick: using the figure above, we can draw a diagram in which the
nodes are the parts of the document, the edges represent the relationships for their incor-
poration, and the parts are arranged from left to right in the order of their occurrence,
thus eliminating the need to number them:!®

15 The sentence, “It was a dark and stormy night; the rain fell in torrents—except at occasional intervals,
when it was checked by a violent gust of wind which swept up the streets (for it is in London that our scene
lies), rattling along the house-tops, and fiercely agitating the scanty flame of the lamps that struggled against
the darkness”, from Bulwer-Lytton’s Paul Clifford (1830), is widely held to be the worst opening sentence in any
English novel. The author would like to thank Scott Horne for suggesting it.

The SVG Format 347

book

’ chapter ‘ ’ chapter ‘ ’ chapter ‘

’ section ‘ section ‘ ’ section ‘ ’ section

It was a dark and stormy night...

Surprising though this may be, the approach leads to a very important mathematical
concept, that of the tree. The parts of an XML document, symbolised by boxes in the
figure shown above, are called elements. The terminology used is in part botanical and
in part genealogical. Let us deal with the botanical aspect first: the element at the top
of the tree is called the tree’s “root”, the part of the tree that appears beneath a given
element is called a “branch”, and the elements that appear at the end and that have no
subelements are called “leaves”. Now for the genealogical aspect: an element has “ances-

tors” and “descendants”, “parents” “children” and “siblings”.

Here, then, is what an XML structure really is: a breakdown of a document into parts
that are embedded so as to form a tree. Having thus defined the XML structure, we can
immediately see its limitations: in the real world, not everything can be structured in
this manner. Consider a document that we arrange first according to the languages used
in it and then according to the styles (roman, italic, etc.); there is no reason that the
elements obtained in the first structure will be embeddable within those of the second or
vice versa. Thus structuring a document in tree form is a compromise—but an attractive
compromise, as it allows us to profit from existing techniques and tools for processing
trees.

And now our excursion through the world of concepts is complete: it is time to come
back down to earth and see how we represent an XML document in the form of com-
puter data. This is where we return to tags: since an element is part of a document, we
insert an opening tag at its beginning and an ending tag at its end:

<book>
<chapter>
<section>It was a dark and stormy night ...</section>
<section>...</section>
</chapter>
<chapter>
<section>...</section>
<section>...</section>
</chapter>
</book>

And if we have a page with no textual content, we will write an empty tag, with a slash at
the end. For example: .

Another fundamental notion: attributes. Suppose that we would like to attach certain
information to certain elements without incorporating this information into the text;
for example, the identification number of a section, the language of a paragraph, a short

348 Chapter 10 : Fonts and Web Pages

text describing an image for the benefit of visually impaired web users. This sort of in-
formation is placed within attributes, which are key-value pairs that are placed inside
opening tags or empty tags in the following manner:

<p xml:lang="en-us" id="p137">It was a dark and stormy night ...

In this example, we say that the paragraph tagged by <p> is identified by the string p137,
and that it is written in American English.

We may have as many attributes as we wish, and their order is not significant. We must be
careful, however, not to include any tags in the values of the attributes; they are supposed
to be strings with no tags in them.

Another interesting notion: entities. An entity is a block of text or a branch of a document
to which one has assigned a name. In the document, one uses the entity reference, which
is the name of the entity, preceded by an ampersand and followed by a semicolon. For
example: &foo;. We ask the software processing our XML to replace all entity references
with the corresponding text or branches at the start of processing. Thus there is nothing
profound about the notion of an entity: it is just a “shortcut” that masks text or even an
entire branch of a document—a branch, incidentally, that could even be contained in
another file.

One last important notion in this quick overview of XML: namespaces. Consider the
following problem: how to associate an element’s tag or an attribute with precise seman-
tics? Example: when we write , how can we indicate that it is indeed the img tag
of the XHTML standard of the W3C and that it must be interpreted as such, not as an
HTML tag or as any other sort of tag unknown to anyone but the person who wrote it?

Answer: by specifying that this tag belongs to the XHTML namespace. This namespace
is uniquely represented by the string:

http://www.w3.0rg/1999/xhtml

The technique is as follows: We declare a namespace in a branch of the XML document
(a branch that may very well be the entire document), and the elements and attributes
of this branch may, in turn, belong to this namespace or not. Here is what to write, for
example, to declare the XHTML namespace in a <section> branch of the document:

<section xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<xhtml:div>
<xhtml:p>
Blah-blah.... <foo/>...
</xhtml:p>
</xhtml:div>
</section>

The string xhtml is the alias associated with the namespace. In this example, only the tags
preceded by the alias belong to the namespace in question. Thus div and p are indeed

The SVG Format 349

the XHTML tags that we know and love; however, foo does not belong to this namespace
(simply because no foo tag appears in the XHTML standard). It is also possible to have
a namespace without an alias; in this case, we say that we declare a default namespace:

<body xmlns="http://www.w3.0rg/1999/xhtml">
<div>
. nothing but XHTML code, unless otherwise specified ...
</div>
</body>

Here all the tags that are not preceded by an alias belong to this namespace by default.
Note that the tag that declares the default namespace (the body tag, in the example
above) also belongs to this namespace, unless, of course, it is preceded by an explicit alias.

The namespace (and the corresponding alias, if any) is defined only in the branch of the
element that contains its definition. The choice of string for the alias is of no importance;
however, it is essential to write the string for the namespace itself correctly: with the
slightest error, it is no longer the same namespace!

The reader may be surprised by the resemblance of this string to a URL. It did not happen
by chance. Suppose that Mr. George Everyman has defined a set of tags that are very
useful for documents on the subject of oyster-farming. Which string will he choose as
the namespace for his tags in order to ensure that no one else will adopt the same name?

Choosing George-Everyman would be the height of self-centeredness; in any event, there
are plenty of other “George Everymans” in the world. A more eccentric choice, along
the lines of GeoEveryman-oyster-PodunkbytheSea, might have better chances of being
unique, but could we ever be sure? The W3C’s idea is much more natural. On the Web,
there is a syntax for strings that identify resources—a well-defined syntax, known around
the world and, in addition, many web users have already taken one of its strings: as the
reader has no doubt guessed, this syntax is the URL {74]. For example, the URL:

http://omega.enstb.org

is that of the author’s machine. If each person uses his own URLs or those with which
he is associated in one way or another, there will be no risk of duplicates. In addition,
by following the URL, the user of the namespace could possibly find information on the
set of tags in question. But the author is not required to publish such information at
the URL.

Namespaces exist for all major applications of XML: XHTML, XSLT, XSL-FO, XForms,
XLink, XOL, XQL, MathML, RDF, SMIL, XML Schema, VoiceML, WML, MML, etc. What
is interesting is that one can, thanks to these namespaces, mix several kinds of tags in
the same document, with no risk of conflict or confusion. Thus, right in the middle
of an XHTML document, one can insert an SVG figure without surprising anyone: it
is sufficient to specify the namespace of each tag used. The tools that process the XML
document will then know, unambiguously, whether or not they are able to process the
standards used therein.

350 Chapter 10 : Fonts and Web Pages

And what about SVG?

It is said that a picture is worth a thousand words. Well, to describe the picture below:

only four tags and 15 attributes were needed:

<svg xmlns="http://www.w3.0rg/2000/svg" width="233.503" height="113"
viewBox="0 0 233.503 113" overflow="visible"
enable-background="new 0 0 233.503 113">
<path fill="#CCCCCC" stroke="#000000"
d="M76.5,94.5h-v-h76V94.5z"/>
<path fill="#E6E6E6" stroke="#000000"
d="M188.5,56.5c0,30.928-.311,56-,565--.072
--$27.311-,61-5188.5,25.572,188.5,56.52" />
<path fill="#999999" stroke="#000000"
d="M186.265,12.596L200.53,41.5131.898,4.6351-.082,
22.49915.449,31.771-.531-1-.53,1515.449
-.771-.083-.499131.898-.635L186.265,12.5962"/>
</svg>

The four elements and their attributes are:

¢ An svg element, which contains all the other elements and is labeled with the SVG
namespace (in the example above, this is the default namespace). Through the at-
tributes of this element, the overall size of the image is also determined.

e Three path elements, which correspond to closed contours: a square, a circle, and
a star, each filled in with a different shade of gray. The fill and stroke attributes
indicate the color to be used for filling and drawing the contours, respectively. The
d attribute takes rather cryptic values: but don’t panicg; it is just an “optimized” way
to represent sequences of straight lines and Bézier curves in order to form contours.
We have written the word “optimized” in quotation marks because the optimization
is done more for the sake of the machine than for the sake of the human reader. In
any event, there is nothing mysterious about it; it consists merely of the coordinates
of a path to draw.

The reader is invited to compare the code above with that of the same image under
Hlustrator or Corel Draw: no vector format is so simple and logical. Each contour has

The SVG Format 351

its own path element, and the order of these elements is important, since it is the order
in which the figure will be drawn. Proof: the images slightly overlap, and each younger
sibling consistently encroaches upon his elders.

On the other hand, SVG allows the optimization of code through macros: the first part
of an SVG document is for definitions. A definition is a defs element that contains shapes
or colors or blocks of text that are used multiple times in a document. By defining them
within defs, we can later use them by merely referring to them with a special referencing
element. Fonts are also placed within defs, since, after all, they are global data that are
used throughout the document.

We shall not describe SVG in any more detail. The curious reader will find more infor-
mation in the book of the same title published by O’Reilly {129] and in an increasing
number of other books on this subject, including, of course, the specifications of this
standard {134].

In the following section, we shall concern ourselves with font management under SVG.
We shall first see how to select a font when writing text under SVG, and then how to
define a font in order to use it in the same document or in other documents. What is
interesting is the fact that SVG defines XML elements to describe the glyphs and all the
other metric properties that make up a font: thus it is in fact a font format—not a binary
one like OpenType or PostScript Type 1, but one written in a human-readable format
and, what is more, in XML. The result is vaguely reminiscent of the TTX fonts (see §D.1),
but here we are not rewriting OpenType fonts in XML but rather describing them in
an original way; and, unlike TTX (which is the personal creation of an individual), this
format is an integral part of SVG, which is a W3C standard.

Font Selection under SVG

In XHTML and in XML documents in general, each element has its own attributes; some
attributes may be shared, but that is the exception rather than the rule. In the case of
SVG, the situation is quite different: so as not to torture the writer of SVG code with the
eternal question “does element X take attribute Y or not?”, the designers of SVG opted for
complete libertinism: any element can be combined with any attribute. These attributes
are called properties. What happens if a property has no meaning for a given element?
If, for example, we define the size of a font when we are inside an element that draws
a circle, and thus has no font? Well, then, the property is ignored—with no grumbling
from the viewing software about the fact that “such-and-such has no meaning!” But if
the property in question has no meaning for the element itself, it may perhaps have a
meaning for some of the element’s descendants, and, indeed, most properties are auto-
matically inherited by the descendants.

What is attractive about properties, at least from the pedagogical point of view, is the
fact that one can describe elements and properties separately. The user will combine the
elements and properties that strike her as being compatible, and the viewing software
will decide whether the combinations in question are meaningful or not; in the worst
case, they will be ignored, as they are expected to be, since software of the kind must be
tolerant, as web browsers are.

352 Chapter 10 : Fonts and Web Pages

The element that makes it possible to include text in an SVG image is text. This element
can contain text directly or tref elements (which are links to blocks of text defined in
advance) or tspan elements (which, like the span elements of XHTML, have no meaning
in their own right but act as bearers of properties) or even textpath elements, which are
blocks of text set along a path.

The properties that manage the choice of font are the following: font-family, font-
style, font-variant, font-weight, font-stretch, font-size, font-size-adjust, font.
The reader who has read the section on CSS will have noticed that these are the same
names as those of the CSS font-selection declarations. Not for nothing is that so: indeed,
the SVG specification defers to CSS for an explanation of these properties and a descrip-
tion of the values that they can have. Here the CSS declarations, which, under XHTML,
should be described in a stylesheet or in the value of a class attribute, become true
attributes. Here is an example:

<svg xmlns="http://www.w3.0rg/2000/svg"
width="233.503" height="113" viewBox="0 0 233.503 113">
<text x="100" y="50" font-family="Historical-EnglishTextura">
<tspan fill="black" font-size="24pt">Hilfe!</tspan>
</text>
</svg>

which produces:
Dilfe!

In this example, we see the font-family property as an attribute of the text tag, and the
font-size property as an attribute of tspan.

Are all the properties that manage fonts merely CSS declarations in disguise? No, there is
an exception that proves the rule. It is kerning: an attribute, absent from CSS, that takes
the values auto, inherit (its default value), or a length. The effect of this property is to
enable (with the auto value) the kerning of glyphs as defined in the font. The code:

<svg xmlns="http://www.w3.0rg/2000/svg"
width="233.503" height="113" viewBox="0 0 233.503 113"
overflow="visible" enable-background="new 0 0 233.503 113"
xml:space="preserve" font-family="Times" font-size="24pt">
<text x="100" y="50" kerning="0pt">AVATAR</text>
<text x="100" y="30" kerning="auto">AVATAR</text>

</svg>

produces the following image:

The SVG Format 353

AVATAR
AVATAR

Why would we want to disable kerning? No reason comes to mind;'® but the property
does exist, and it already works in the latest Adobe viewer.

Alternate Glyphs

The previous section did not introduce any new concepts, since everything was drawn
straight from the CSS specification, with the CSS declarations becoming SVG properties.

Here we shall address a new concept: that of alternate glyphs. This concept shatters the
barriers between the textual content of a document and its fonts. Indeed, it affords us the
possibility of selecting an arbitrary glyph in any font and inserting it into our document.
And if this font, or this glyph, is not available, we can act as if nothing were wrong and
display the corresponding characters with their default representative glyphs. For exam-
ple, suppose that we wish to display an ‘fi’ ligature and that we know that this glyph exists
in the active font, with the identifier “g-f_i”. We shall write:

<altGlyph xlink:href="#g-f i" dx="238">fi</altGlyph>

In this case, if the glyph exists, it will be set, and the current location will be moved ahead
by 238 units.!” If, however, the glyph does not exist, the contents of altGlyph—in this
case the string ‘fi’ with no ligature—will be set.

The number sign in the value of the x1ink:href attribute shows that the string is in fact
a URL. If this glyph, with the same identifier, were contained in an SVG font, itself con-
tained in an XML document with the URL:

http://omega.enstb.org/fontes/svg/omsela.svg
then the element altGlyph would be written:

<altGlyph
xlink:href="http://omega.enstb.org/fontes/svg/omsela.svghg-f i"
dx="238">fi</altGlyph>

16 There is, in fact, a reason, but it seems quite unlikely to the author that that reason has ever occurred to
the inventors of SVG: one traditionally does not kern letters that represent variables in mathematical formulae.

17 These are SVG’s current units of length, a concept borrowed from the PostScript language, where there
is a basic unit of length—1/72 of an inch—but where the current transformation matrix can alter the size of the
units at any time.

354 Chapter 10 : Fonts and Web Pages

Which means, perhaps surprisingly, that we can use glyphs whose descriptions are found
anywhere on the Web. Unlike the methods for downloading fonts that we saw above,
here it is the glyph in question, and only that glyph, that will be obtained from the
Web. And if it cannot be obtained, the contents of the altGlyph element will be used
for display.

The dx attribute is used to indicate the offset of the current location once the glyph has
been typeset: it keeps the rendering engine from having to search for this information
in the font.

One may combine several alternate glyphs in a sequence of glyphs. To do so, one uses
a definition of alternate glyphs. Like all SVG definitions, this one is placed in the <def>
. </def> section of the SVG document. To indicate the glyphs that will make up the
desired sequence, we use another element, named glyphRef. This element is a variant
of altGlyph: it takes the same attributes and has the same role, i.e., to be a link between
a glyph named glyph in an SVG font; the difference between altGlyph and glyphRef is
that the latter does not supply a string of Unicode characters for the case in which the
glyph in question is not available. For example, by writing in the definitions area:

<altGlyphDef id="TeX">
<glyphRef xlink:href="#g-T"/>
<glyphRef xlink:href="#g-E" dx="-" dy="100"/>
<glyphRef xlink:href="#g-X" dx="-" dy="-"/>
</altGlyphDef>

we should then be able to write the following within the body of the document:
<altGlyph xlink:href="#TeX">TeX</altGlyph>

to obtain either the “TgX” logo or the string “TeX”. Note that when this book was being
prepared, and also under Adobe SVGViewer version 3, altGlyphDef could not yet contain
more than one glyphRef, and the relative displacement attributes dx and dy were not yet
recognized.!8

We can go even further. Suppose that the string of glyphs that we wish to obtain can
be represented in several ways, depending on the availability of one or another glyph.
Suppose further that a company called “FOO” has placed the SVG font containing the
‘F’ and ‘O’ glyphs of its logo on its company web site, http://www.foo.com/logo.svg.
The first option would be to download these glyphs. In case the site is ever unavailable,
the company has provided a second site: http://foo.free.fr/just-in-case/logo.svg.
And if there is no connection to the Web, then the glyphs can be taken from an SVG font
included in the document. What should be done so that the SVG reader will choose the
best solution according to the available glyphs?

18 1t is unfortunate to observe that, unlike the situation with web browsers, in which the fierce competition
between Netscape and Explorer forces the two companies to continue to improve their products, the near
monopoly that Adobe has on SVG products results in a lack of verification of the compatibility of SVGViewer
with the SVG standard and no guarantee that this compatibility will ever be achieved.

The SVG Format 355

For this purpose, there is the element altGlyphItem. This element, placed within an
altGlyphDef, informs the reader that its contents are only one possible choice among
others. The reader checks its feasibility and, if it fails, moves on to the following option.
And, of course, if all the choices of this kind fail, it may always fall back on the string in
altGlyph, which does not refer to any glyph and therefore has no reason to fail. Here is
an example of the use of altGlyphItem:

<altGlyphDef id="F00-logo">
<altGlyphItem>
<glyphref xlink:href="http://foo.com/logo.svgtg-T"/>
<glyphref xlink:href="http://foo.com/logo.svg#g-"/>
<glyphref xlink:href="http://foo.com/logo.svghg-T"/>
<glyphref xlink:href="http://foo.com/logo.svg#g-"/>
</altGlyphItem>
<altGlyphItem>
<glyphref xlink:href="http://foo.org/just-in-case/logo.svgig-T"/>
<glyphref xlink:href="http://foo.org/just-in-case/logo.svg#g-0"/>

</altGlyphItem>

<altGlyphItem>
<glyphref xlink:href="#g-T"/>
<glyphref xlink:href="#g-0"/>

</altGlyphItem>
</altGlyphDef>

Thus we see that, since the fonts being used are SVG fonts, we can directly obtain the
glyphs without the slightest hesitation—even if they are kept at the very depths of the
Web—and use them in the document. And if, for whatever reason, these glyphs are in-
accessible, we can always fall back on a string represented by their default glyphs.

The standard also gives access to fonts other than SVG fonts but leaves the details of im-
plementing this access to the developers. For instance, a glyphRef attribute is provided,
both for the altGlyph element and for the glyphRef element. This attribute takes as its
value “the glyph’s identifier, whose format depends on the font format”. In other words,
the SVG standard washes its hands of the details: let others struggle to define a syntax
for gaining access to a given glyph in an OpenType or PostScript Type 1 font! And how
can we begin to discuss implementation if we do not even have a syntax? In this area,
without a doubt, the future holds surprises in store.

SVG Fonts

We have already said, in the previous section, that the SVG standard allows for the com-
plete description of a font within an SVG document, so as to make totally independent
documents possible. What a pleasant surprise, when on the Web we are always obliged
to download fonts—in formats locked three times over so as not to infringe copyright!

356 Chapter 10 : Fonts and Web Pages

But what about copyright, exactly? An SVG font, like everything else prepared in SVG, is
written in plain text, with no encryption whatsoever. This is a veritable revolution, on a
par with that of October: free distribution of fonts to the proletarians of the world! And
how are the foundries reacting?

Well, they are not reacting at all. The W3C is encouraging developers not to write tools
for converting SVG fonts to a standard font format. The idea—and this idea is explicitly
stated in the SVG specification—is that the graphic artist who receives an SVG document
with the font embedded within it should only be able to view the document: to edit it, she
must first purchase the corresponding font. Thus we are returning to the classic model
of licenses for the use of fonts.

What is actually happening? We do not know yet; it is still too early to say. In any event,
today there are at least two tools for converting TrueType fonts to SVG: FontForge and
batik-ttf2svg (a tool in the Batik distribution {329], written in Java), but neither of them
reads SVG fonts in order to convert them to another format.

But let us return to the description of SVG fonts. An SVG font is completely contained
within a font element. This element applies to the entire SVG document and must there-
fore be placed among the document’s definitions. What usually appears in a font?

A preamble with general information, a certain number of glyphs, and a certain num-
ber of instructions about the behavior of the glyphs relative to each other: ligatures and
kerning pairs. The same is true here: font contains, first of all, a subelement font-face,
which contairs the global information for the font. Most of this information is provided
in the form of attributes and is the spitting image of the CSS declarations.

Next comes something new: an element named missing-glyph, which contains the de-
scription of the “missing glyph”, i.e., the glyph that is displayed in the place of another
that cannot be found. It is interesting to note that missing-glyph is mandatory and comes
before all the other glyphs.

Next follow, in no particular order, any number of glyph (descriptions of glyphs), hkern
(horizontal kerning), and vkern (vertical kerning) elements. Ligatures are defined, as we
shall see below, by an attribute of the glyph element.

Here, then, in schematic form, is the structure of an SVG font:

<font-face ... attributes taken from CSS ...>
<font-face-src>
<font-face-name name="... name of the font ..."/>
</font-face-src>
</font-face>
<glyph unicode="... Unicode code ...
glyph-name="... name of the glyph ..."
lang="... language ..."
... font-metric attributes ...
d="... description of the glyph's contours ..."/>

The SVG Format 357

<glyph .../>
<glyph .../>

<hkern ... various attributes .../>
<hkern .../>

<vkern ... various attributes .../>
<vkern .../>

Let us return now to a more detailed description of the elements font, font-face, glyph,
hkern, and vkern; after all, they deserve it, and they even hold a few pleasant surprises
in store for us.

The font element and its attributes

There is nothing much to say: the font element contains an SVG font. There are only six
characteristic properties that affect the set-width and the default spacing of the glyphs:

e horiz-adv-x and vert-adv-y: the default horizontal and vertical set-widths, used
when the glyph itself has no indication of its set-width. That makes no sense for
an ordinary Latin font, but for monospaced fonts it can come in handy, and it is
very useful indeed for ideographic fonts, for which there may be 30,000 glyphs, all
with the same set-width. No default value is specified for the horizontal set-width;
if the reader does not use this attribute, no problem will arise until the day that
he attempts to set type vertically. Specifically, as we shall see, SVG takes half of the
value of horiz-adv-xto define the baseline for vertical typesetting. The default value
for the vertical set-width is an em; thus the set-width is correct for the ideographic
fonts, which are, after all, the ones most often used in vertical typesetting; and for
the others—for example, in the unusual case of English typeset vertically, the em
corresponds to the standard leading, and is thus the most natural choice.

e horiz-origin-x and horiz-origin-y: the offset of the origin of each glyph when
type is set horizontally; their values are zero by default.

e vert-origin-x and vert-origin-y: the offset of the origin of each glyph when type
is set vertically. The default values are quite interesting: horizontally the value is half
of horiz-adv-x, and vertically it is the value of the ascent attribute of font-face—
an attribute that we already know, since it is part of the CSS declarations and gives the
height of the letters with ascenders. Once again, these choices are oriented towards
the ideographic languages: indeed, in this case, ascent and horiz-adv-x are both
equal to an em. Thus the default spacing amounts to starting above the glyph and
on its axis of vertical symmetry, which is the usual method for vertical typesetting.

358 Chapter 10 : Fonts and Web Pages

Characterizing a font

The first node under the font element is font-face, whose name is inspired by the “at-
rule” @font-face of CSS; the role of this element is to characterize the font being used.

Ifitis an SVG font whose glyphs are explicitly described by glyph elements, certain prop-
erties (such as the set-widths of all the glyphs) may be useless; but it may also be a font
to be downloaded, and in that case it is necessary to provide for the possibility that the
font may be inaccessible, and, therefore, to have enough informations to “synthesize” it
or make a judicious replacement. Thus we find ourselves in the same dilemma as in CSS,
and that is why font-face takes practically all of the CSS declarations that apply to fonts.
This element is therefore a catchall that contains no fewer than 33 properties specific to
it. We can classify these properties into four categories:

e An essential property: units-per-em, which determines the number of internal
units per em. The most common values are 1,000 (PostScript Type 1), 2,048 (True-
Type), 250 (Intellifont). Default value: 1,000.

e Those that we already know, having seen them and described them in detail in the
section on CSS (see page 320): font-family (the name of the “font family”), font-
style (roman, italic, slanted), font-variant (small capitals or not), font-weight
(weight), font-stretch (expansion or contraction of the set-width), font-size (ac-
tual size), unicode-range (Unicode range covered), panose-1 (a classification of the
font through the use of 10 numbers, described in Chapter 11), stemv (the thickness
of the main vertical downstroke), stemh (the thickness of the main horizontal down-
stroke), slope (slope), cap-height (height of the capitals), x-height (height of the
short letters), accent-height (height of the accents), ascent (height of the letters
with ascenders), descent (depth of the letters with descenders), widths (set-widths of
the glyphs—warning: only one glyph per Unicode character!), bbox (the bounding
box for all the glyphs in the font).

e Alignment properties: these are a certain number of baselines and axes for horizon-
tal and vertical alignment (Figure 10-8): alphabetic (our good old baseline), ideo-
graphic (the same, but for the ideographic characters, which are set slightly lower
than Latin and other letters), mathematical (the axis for aligning mathematical sym-
bols such as the minus sign, the plus sign, the equal sign, etc.), hanging (the “base-
line” for the scripts that “hang down”, such as Devanagari). Next come the vertical
counterparts of these properties: v-ideographic (the vertical axis of the ideographs),
v-alphabetical (the vertical axis of the alphabetic scripts set in this direction), v-
mathematical (the same for mathematical symbols), v-hanging (the same for “hang-
ing” scripts); note that these last four are added to the value of vert-origin-x, an
attribute of font.

e Finally, properties for underlining: underline-position (depth of the underline),
underline-thickness (thickness of the underline), strikethrough-position, strike-
through-thickness, overline-position, overline-thickness (height and thick-
ness of the bar used for striking through text or overlining) (Figure 10-8).

The SVG Format 359

©® e

Figure 10-8: Different SVG metric properties, specific to the font-face element. Left: (1) as-
cent, (2) cap-height, (3) x-height, (4) alphabetical, (5) descent. Right: (1) overline-
position, (2) strikethrough-position, (3) underline-position, (4) hanging, (5) math-
ematical, (6) alphabetical again, (7) ideographic.

We mentioned above the fact that font-face can use CSS’s strategies for the download-
ing, intelligent replacement, or synthesis of fonts. These tasks are achieved through the
subelements of font-face, with names that evoke the corresponding CSS declarations:

e font-face-src: the equivalent of the src: declaration. Its role is to indicate that no

font is explicitly described here but rather that downloading, replacement, or syn-
thesis of a font is desired.

font-face-uri, with the x1ink:href attribute: the equivalent of the url() keyword
of CSS. Its role is to give the location of the file containing the font on the Web or
on the disk. Note that “URI” is more accurate than “URL” since URIs include both
URLs and local files.

font-face-name, with the name attribute: the equivalent of the local() keyword of
CSS. Its role is to specify the name of the font in question as used in the operating
system. Note that the choice of the term “name” in SVG is more appropriate than
that of “local” in CSS, since, first, it is indeed an internal name, which justifies “name”,
and, second, url() can also point to a “local” file, and so the difference between it
and local() is not clear.

font-face-format, with the string attribute: the equivalent of the format() key-
word of CSS; in addition to the values of the latter keyword, there is also svg. Note
that font-face-format is a subelement of font-face-uri—which is quite logical: if
there are multiple URIs, they may not all be of the same format.

Thus our CSS example:

@font-face { font-family: "Omega Serif";
font-style: italic;
unicode-range: U+0020-, U+0300-E, U+1E??, U+2000-F;

360 Chapter 10 : Fonts and Web Pages

src: url("http://omega.enstb.org/fonts/omsela.otf")
format ("opentype");
local("Omega Serif Italic");

}

is written as follows in SVG:

<font-face font-family="Omega Serif" font-style="italic"
unicode-range="U+0020-, U+0300-E, U+1E??, U+2000-F">
<font-face-src>
<font-face-uri xlink:href="http://omega.enstb.org/fonts/omsela.otf">
<font-face-format string="opentype"/>
</font-face-uri>
<font-face-name name="Omega Serif Italic"/>
</font-face-src>
</font-face>

The reader may decide which of these forms is clearer.

Describing a glyph

After all this discussion a la CSS, we have finally reached the innovative part of SVG:
the description of glyphs. If glyphs are “atoms” in the presentation of a document, we
can say that SVG has managed to become the first XML standard that can operate at the
atomic level. But beware: in real life, when we descend to this level, we discover that
nature hides obscure and destructive forces that are quite capable of annihilating us. The
same is true here, but the role of Mother Nature is played by the foundries: if the reader
has fun including glyphs from fonts produced by the large foundries in his document, it
does not take an Einstein to anticipate what is likely to happen.

Now that we have issued this figurative warning, which, we hope, will be more effective
than the ubiquitous “small print” in licenses that no one ever bothers to read, let us
present a question: what is a glyph, and how can we describe it?

According to the straight and narrow road of PostScript Type 1 and True/OpenType, a
glyph is a set of contours enclosed in an abstract box that is used in typesetting. But
then why should we choose one glyph instead of another? Recall how typesetting is
done: the typesetting software receives Unicode characters and is supposed to supply
the glyphs. Thus it must first know which glyphs correspond to which given Unicode
characters (or to a set of Unicode characters, if these represent a ligature), then which
glyphs are available, and, finally, under which conditions it should choose a given glyph
from among them.

In the case in which the glyphs that correspond to the same Unicode character are only
graphical variants pure and simple, these glyphs must have identifiers so that they can
be selected through the use of altGlyph.

Let us continue. The description of a glyph is completely contained in a glyph element—
or perhaps in a missing-glyph element, which indicates the glyph to be used when the

The SVG Format 361

Y
Y-
Y
Y

'Y

Y
Y
Y

Y

Figure 10-9: Examples of horizontal and vertical typesetting: (1) the arrows start from the “hori-
zontal” origin (coordinates (0, 0)) of the glyph and have a length of horiz-adv-x; (2) the arrows
start from the “vertical” origin (coordinates (vert-origin-x, vert-origin-y)) of the glyph
and have a length of vert-adv-y.

requested glyph is missing. The attributes of glyph describe its abstract box, relate it to
Unicode, and allow it to be distinguished from other glyphs belonging to the same char-
acter:

e horiz-adv-x: the displacement of the current location for this glyph during the pro-
cess of (horizontal) typesetting.

e vert-adv-y: the same, but for vertical typesetting.

e vert-origin-x and vert-origin-y: the origin of the glyph in vertical typesetting
(see Figure 10-9).

e unicode: the Unicode character corresponding to the glyph. The usual XML tech-
niques for designating this character are available: either one uses the active en-
coding (UTEF-8, for example) or one uses a character entity (such as ꯍ or
8#12345;).

Here is where any ligatures are indicated: if the ligature is of the classic type, i.e., the
replacement of several glyphs by only one, we write here the corresponding Unicode
characters. Thus, by writing unicode="st", SVG will replace the glyphs for the char-
acters ‘s’ and ‘t’ with the glyph for the ligature ‘st’.

e id: a unique identifier (at the level of the entire XML document) that, in addition,
must begin with a letter (not, for example, with a digit or a punctuation mark). This
attribute is not specific to glyph and can be used with any SVG element. We men-
tion this here because it is the link that we have to the world outside the font. The
altGlyph element can directly invoke a glyph in the font by using the URI of the
XML document containing the font and this identifier.

362 Chapter 10 : Fonts and Web Pages

e glyph-name: one or more internal names for the glyph. If several are used, they are
separated by commas. These are also unique identifiers, but those used internally by
the font: they are used to describe kerning pairs.

e orientation:is this glyph used only for horizontal or vertical composition? Possible
values: h and v.

e lang: is this glyph specific to a certain language? That is the case, for example, for
the “Chinese” and “Japanese” variants of many ideographs, or even the letters ‘@’,
‘¢, ‘0’ and ‘U0, whose accent (“diaeresis” or “umlaut”) is not set at the same height in
English and German typography. Possible values {103]: a series of language codes (as
recommended by RFC 3066; in other words, a two-letter ISO 639 code for the name
of the language, possibly followed by an ISO 3166 country code and other auxiliary

codes), separated by commas. Example: lang="fr, en, es".

e arabic-form: the Arabic or Syriac contextual form of the glyph. Possible values:
initial, medial, terminal, isolated. Note that these forms also apply to ligatures.
Thus, for example, if we form a ligature by beginning with an initial (or medial)
glyph and ending with a medial (or final) glyph, the result is an initial glyph. (Like-
wise for medial, final, and isolated glyphs.)

e d: the contours. We have left the most important item for last: the value of this at-
tribute is a sequence of contours. Each contour is a closed path, i.e., a sequence of
concatenated Bézier curves and/or straight lines for which the terminal point of the
last is identical to the initial point of the first.

The syntax for the SVG paths used in the value of the d attribute remains to be seen. This
syntax is not specific to fonts but is also used for graphic design in SVG: drawing shapes,
setting text along curves. In it, we find quadratic Bézier curves, just as in TrueType fonts,
but also cubic ones, as in PostScript and OpenType/CFF fonts. There is even another type
of curve, never before used in fonts: elliptical arcs.

Another characteristic: the format looks like PostScript (or PDF) at first glance. For ex-
ample, we use operators with a single letter and coordinates. But we quickly learn that
there are fundamental differences. First of all, the notation is not reverse Polish: the
parameters follow the operator instead of preceding it. Next, there is no stack: it is im-
possible to push one value in order to pop it 10 lines below, as we can enjoy doing in
languages such as PostScript. Another peculiarity: we can separate operators and param-
eters from each other through the use of “separators” (spaces or commas), but we can
also delete all the separators, except for spaces that separate numbers. This compacting
of the code gives the value of d its terribly cryptic appearance.

Rather than describing the syntax of SVG paths in detail (the reader will find a detailed description
in [134, section 8.3]), we shall take apart a concrete example: the description of the glyph ‘R’ of the
font that we are currently using, Le Monde Livre, by Jean Francois Porchez (see Figure 10-10). Note
that the two programs (batik-ttf2svg and FontForge) produced exactly the same code, shown here:

The SVG Format 363

<glyph unicode="R" glyph-name="R" horiz-adv-x="689"
d="M 520 -,

496 29 459 76, T 382 173, T 305 270, T 244 350,

275,

307 350 337 357, T 390 380, T 428 424, T 443 492,

443 537 431 565, T 395 610, T 341 633, T 272 640,

226, V 129,

226 97 227 79, T 234 50, T 248 35, T 273 26,

317 14, V 0, H 33, V 14, L 77 26,

92 30 101 34, T 116 49, T 122 78, T 124 129,

546,

124 578 123 596, T 116 625, T 102 640, T 77 649,

33 661, V 675, H 309,

352 675 395 670, T 474 647, T 532 597, T 554 510,

554 473 539 445, T 499 395, T 442 359, T 375 336,

395 311 416 284, T 460 230, T 503 178, T 544 129,

587 80 610 56, T 654 25,

687 14, V 0, L 520 -, Z" />

—rOO0OO0OO0OrO<Or O ITO0ITOoOX=X

We have added spaces and commas to make the code more legible. Does it still appear cryptic?
Here are the rules of the game: Mis a motion without drawing; it is used only once to set the starting
point at the base of the leg of the ‘R’; Q and T are quadratic Bézier curves (as in TrueType), their
difference being that in Q both the control point and the end point are indicated, whereas in T
it is assumed that the control point is the reflection of the control point of the preceding curve
(which is why a T must always follow a Q); L is a straight line; H and V are straight lines, the former
horizontal and the latter vertical.

Let us examine the code, following the diagram in Figure 10-10. We begin with an M at the base of
the leg. Next come a series of Q commands and three Ts, to bring us to the top of the leg. Then we
move to the right with an H, which produces a short horizontal line, and then two 1-3 sequences
(i.e., a Q and three Ts) to form the inside curve. A horizontal line (H) follows, and then we move
straight down with a V. Now we prepare to draw the bottom serif. We begin with a 1-3 series, and
before reaching the flat part of the serif we have another short straight segment (L). We draw the
base (V, H, V) and proceed symmetrically with an L and a 1-3. The bottom serif is finished. We move
up with a V and then draw, as with the lower serif, the half-serif at the top: a 1-3, an L, then a V. We
have reached the top line. We go to the right (H) and draw the large curve with two 1-3 sequences.
Having again reached the leg, but this time on its upper part, we slide down with a 1-3. At the point
544,129, we follow the logic of the half-serif; we had expected a 1-3, but it is easier this time: a Q
followed by a single T, and then another L and the base: a V and an L to take us back to the starting
point. We finish with a Z, which closes the path and makes it into a contour.

After this excursion around the periphery of the ‘R’, and before concluding this section
on the glyph element, one more important point: up to now, we have assumed that a
glyph was merely a set of contours drawn with the d attribute, the glyph element being
left empty. SVG also affords us the possibility of including graphical elements in the
glyph. Indeed, we can include any graphical operator within glyph: an entire SVG image
can become a single glyph! Up to now that was possible only for PostScript Type 3 fonts
(whose death knell was sounded the day that Acrobat was released) and the virtual fonts
of TgX, in which both DVI commands and PostScript code can be included. The power
gained in this way boggles the imagination: a glyph can be colored in, contain a bitmap,

364 Chapter 10 : Fonts and Web Pages

H h=309 q 395,670
O >,
272,640

- Q)

T 474,647

T w
341,633 T
395,610

v 244,35

124,129

520,-1
Point de départ H v=0

Figure 10-10: The glyph ‘R’ from the font Le Monde Livre, converted to SVG.

be transparent, be animated, even interact with the user. It goes without saying that that
ground remains unexplored, but the fact that the SVG standard provides for it is in itself
a minor revolution!

Kerning and kerns

To conclude our journey through SVG fonts, only kerning remains to be discussed. Here
again, the developers of SVG drew their inspiration from very highly developed formats
such as OpenType, and they introduced a very flexible system for determining kerning
paires. The idea is that there are often families of glyphs that are kerned in the same way;
“A,A,A,A A A ...” isone example. On the other hand, while it is very practical to indi-
cate these glyphs through their Unicode characters—after all, for most of the characters
in the world, there is a one-to-one correspondence between character and glyph—that
is not always possible. If necessary, we can always use the internal names of the glyphs
(those of the glyph-name attribute of glyph).

Thus we can write:

Conclusion 365

<hkern u1="A,A,A,A,A,A,8#x100;,8#x104;" g1="A.pretty,A.bizarre"
u2="T,8#x162;,8#x164; ,8#x166;" g2="T.shirt"
k="35"/>

where hkern is a kerning pair for horizontal typesetting; u1 and g1 describe the family
of glyphs that appear at the left (u1 contains characters or zones of Unicode coverage,
separated by commas, and g1 contains internal glyph names, also separated by commas);
u2 and g2 describe the family of glyphs that appear at the right; k gives the kerning value
(positive equals closer spacing of the glyphs). Although the reader may not have expected
it, hkern has defined 10 x 5 = 50 kerning pairs.

One small detail, to avoid surprises if the reader is preparing to kern a Hebrew, Arabic,
or Syriac font: kerning is performed after the lefi-to-right rearrangement of the glyphs. In
other words, if the reader wishes to kern a reh followed by a beh (the beh thus being to
the left of the reh), she must write a pair with beh as g1, even though logically it comes
second, and reh as g2, even though logically it comes first. Thus kerning occurs in the
left-to-right visual order, not in the logical order. Could this be a flagrant lack of political
correctness on the part of the authors of SVG?

Finally, SVG provides vertical kerning pairs, which are very useful for certain typo-
graphic practices in the ideographic languages.! The syntax is the same, except that the
element is called vkern and the adjustment of spacing is towards the top.

Conclusion

Here we are at the end of this chapter devoted to the management and use of fonts on the
Web. We can see that the Web is the victim of its own success: faced with the explosion in
the number of users (and the size of the market that they represent), organizations and
companies have produced in record time a vast range of tools and standards. But there is
always something amiss: the tools are compatible with so few browsers that incompatibil-
ity is more the rule than the exception. The standards, as beautiful and powerful as they
may be, exist on paper only, in the vast majority of cases. Even worse, the multinational
corporations control the lion’s share: it is Microsoft that reigns supreme in the down-
loading of fonts, at least until GlyphGate comes to be more widely used—as it deserves
to be; and Adobe has a near monopoly on tools for SVG.

Let us not deceive ourselves: the true problem is neither technology nor the complexity
of the world’s writing systems. The problem is copyright. The fact that a font belongs to
the foundry that distributes it and that that foundry grants to only one person at a time
the right to use it stands in flagrant contradiction to the principles of the Web, where all
resources (text, images, sound, animations) are freely available to everyone. That is why
Bitstream, Microsoft, and em2 Solutions are bending over backwards to provide fonts

19 Ordinarily the ideographic languages are written vertically. But tradition demands that each glyph oc-
cupy a perfect square (the ideographic square) and that typesetting consist of the juxtaposition of these squares,
which is why kerning is denied. Some Japanese typographers, however, violate this tradition by recommending
kerning between ideographs whose shape calls for it. {208, p. £ 7. (75)], {240, p. 364}

366 Chapter 10 : Fonts and Web Pages

to web users—without actually providing them. That is the reason for which the best
intentions of CSS and SVG may go unheeded.

Let us hope that in the future we shall emerge from this tunnel, either by a miracle
solution to the problem of rights or by a decision from the large foundries to offer even
part of their fonts to the users of the Web so as to bring a little beauty to this virtual
space that is nothing less than the first space for communication on a planetary scale in
human history.

11

History and Classifications

In this chapter, we present a history of Latin typefaces,' illustrated by computer-based
fonts. The description of the classification of typefaces by Maximilien Vox and the As-
sociation Typographique Internationale (ATypI), which is based more on historical and
cultural than on graphical criteria, and the more modern and innovative classification
of Alessandrini will then allow us to approach the two “computerized” classifications of
fonts: that of IBM and the Panose-1 standard.

The Typographical Big Bang of the Fifteenth Century,
and the Fabulous Destiny of the Carolingian Script

An account of the history of typography, and more specifically the history of fonts, always
begins with a reference to Gutenberg, especially since Marshall McLuhan named our era
after him. Johannes Gensfleisch, or Gutenberg, born in Mainz circa 1395, did not long
reap the benefits of his invention of printing; a craftsman, he began to experiment at
the age of 40 in the greatest secrecy. Building a printer’s workshop from scratch was an
extremely costly undertaking, and his creditors, who were no philanthropists, seized his
equipment as soon as it became operational, in 1450. It was a lawyer, Johannes Fust, and
his son-in-law, Pierre Schoffer, who took over his workshop.

Gutenberg had a goal: he wished to produce Bibles that were virtually identical to hand-
written ones, but at a lower cost. And he succeeded.

The typeface used for these Bibles is no longer very legible to us readers of the twenty-
first century; the script is too old-fashioned, full of ligatures and abbreviations. But this
typeface was the one that was needed to satisfy his customers and make them believe

1 In this chapter, we shall use the term “character” in the sense of “typeface”, not in the sense of “Unicode
character”. A font, on the other hand, is still the computerized implementation of a typeface.

367

368 Chapter 11 : The History and Classifications of Latin Typefaces

that the copy had been written by hand. The fact that the versals and the illustrations
were still drawn by hand contributed to the illusion. Thus the history of typography in
Europe began with—fraud!

The script that Gutenberg chose for his Bibles was textura, which is characterized by its
almost lack of curved strokes. The letters i}, ‘0’ ‘m, and ‘u’ are often hard to distinguish:
an ‘n’ is a pair of undotted ‘i’s that are connected by a short stroke at the top; an ‘m’ is
made of three i’s, and so on. Here is a specimen of the typeface used in the 42-line Bible
printed in 1455:

ool audillee dauid:deleedit in
prefiliii. IBinhﬁum AU URITIENerS
mffulﬁ funtinvallevaphaim. Ferg-

This typeface was digitized by Walden Font in 1994 and released as the font Gutenberg
Bibelschrift:

Mhoiy ot audillet Fauddy: velcendit in

Still adhering to the principle that printing must imitate handwriting, Gutenberg also
cut another script, a rounder one: rotunda, which we see here as used by Gutenberg in
his Catholicon, printed in 1460:

aliqua diffevamug. Spiritus qpoe aplede nec fom
pe2 nec codenm modo ypbhere animit tangit.alion
enim fpiritug Jpbede ex Bfenti tangit animuz p

But in 1462 the conquest of Mainz by the troops of Archbishop Adolf of Nassau and
the consequent sacking of the city caused a brain drain and released the employees of
Gutenberg’s workshop from their oath of secrecy. Of Gutenberg’s students, for exam-
ple, Ulrich Zell left for Cologne, and Conrad Sweynheim and Arnold Pannartz set off
for Italy, accompanied—as the story goes, at any rate—by a legendary character, Nicolas
Jenson.

In Italy, humanism had already been in full swing for a century. After several hundred
years of austere Aristotelianism under the Roman Catholic church, the humanists redis-
covered Greek and Roman literature and began to view the world differently. Having
understood that “the medium is part of the message”, they wished to read these books
not in Gothic, which reminded them of the barbarian peoples to the north, but in a script
closer to that of the original manuscripts.

History of Latin Typefaces 369

Their view, still somewhat hazy, of the ancient world led them to err by some eight
centuries in their choice of an “ancient script”. Instead of selecting a script from ancient
Rome, they “rediscovered” the Carolingian minuscule script, which the emperor Charle-
magne had imposed on his empire four centuries earlier. They called this script antiqua
and used it to write and copy their texts.

Thus a script of the eighth century that had been considered dead reappeared in the
fourteenth century and became more popular than it had ever been. Today this script is
called humanist or Carolingian humanist; it is a little less famous than its mediaeval ances-
tor. Here is a specimen, from the hand of Spinello Aretino, that dates to 1410:

AELIVS ciecerom falurem . %zod tbs decedenfpollicienffiz
me omnef'ref urbanaf dzbgmmﬂime'ubt perferpturum .

The humanist is much more familiar to us than textura, and not merely by coincidence:
it is the origin of our roman typefaces, such as the one used in this book. Its only pecu-
liarity: the use of the “long s” everywhere, even at the end of a word!

Thus Sweynheim, Pannartz, and Jenson arrived in Italy and set themselves up in a
monastery—but not just any monastery: Santa Scholastica, in Subiaco, near Rome.
This monastery was founded in the fifth century by Saint Benedict himself. In this
humanist-friendly country setting and cradle of the Benedictine order, the typographic
virus brought in by these three men developed and mutated.

They cut typefaces that were neither textura nor rotunda but a first step towards the
humanist hand. Here is a specimen from the first book printed at Subiaco, in 1464:

mima Roma deportarent.es ea confules Curioec Octanianusi capitolio
quod tiic exat curance Quinco Camlo reftimeii: ponédacurarée, Apud bac
defamo 8¢ conditore rerit deo buinfmoi uerfus reperiiitur. AdepTos

Typography thus placed itself at the service of humanism. Just examine the capitals in
the text above: not a trace of the Gothic remains in them; they are purely Roman in-
scriptional capitals.

Legend has it that it was Nicolas Jenson who cut this typeface. But who was Nicolas Jen-
son?

Despite the secrecy that surrounded Gutenberg’s enterprise, King Charles VII of France
caught wind of it and sent one of his engravers, Nicolas Jenson, to Gutenberg in Mainz to
“acquyre knowledge of the new arte and the execution thereof for the sayde Kingdom of
France”. Jenson was the “James Bond” of the fifteenth century: this remarkable man was
always in the right place at the right time. After working at the first German printing

370 Chapter 11 : The History and Classifications of Latin Typefaces

house and cofounding the first Italian printing house at Subiaco, he moved to Venice,
where the two brothers Johann and Wendelin von Speyer had obtained from the duke of
Venice the grant of a five-year monopoly on printing. He was working for the von Speyer
brothers when, as it happened, one of them died, leaving the duke’s concession to expire.
Jenson established his own printing house in Venice and began to cut his own typefaces.

Ifthe typeface of Subiaco was an approximation of the humanist hand, the typeface cut at
Venice completely transfigured it! While Gutenberg had reasons to imitate textura, warts
and all, Jenson dared to go beyond the humanist hand and produced the first typeface
that was genuinely typographic. Typographic not only from the tool used, the physical
medium, the technology, but also from its shape and its aesthetic quality. In 1470, Jenson
printed the thenceforth famous book De Praeparatione Evangelica by Eusebius, an extract
of which is shown here:

ulla menuo erar . Quare nec1udxos(pofteris eni hoc nomen furt)neqs
gentiles:quoniam non ut gentes pluralitatem deorum inducebant(ed
hebrzos proprie noiamus autab Hebere utdi¢taeft:aut qa id nomen

Jenson’s typeface marks the definitive transition from calligraphy to typographic compo-
sition. In his classification of typefaces, Maximilien Vox set aside a category for Jenson’s
typeface and its derivatives: the humanist typefaces. These typefaces are characterized by
the low contrast between downstrokes and upstrokes; the cross stroke of the ‘¢’; the axis
of symmetry of the ‘o), which tilts towards the left; the oblique serifs of the ascenders; and
the serifs of the ‘T, which extend above the crossbar, the serif on the right being either
vertical or inclined towards the right:

Vox designated an entire category to the humanist typefaces even though only a few
dozen exist, as Jenson’s typeface would influence type designers for centuries to come.

William Morris, in 1895, declared that Jenson had created “the most perfect roman type-
face”. He drew his inspiration from this typeface in 1890 for his own Golden Type (so called
because it was used to print in English a mediaeval book, The Golden Legend), a very
special typeface that is heavier than Jenson’s. The oblique serifs of the ascenders are more
exaggerated than those of Jenson, as Morris wished to highlight the “humanist” aspects
of his typeface. Here is the digital version by the Font Company:

ulla mentio erat. Quare nec iudzos(pofteris eni hoc

History of Latin Typefaces 371

In 1893, Joseph Warren Phinney designed Jenson Old Style, inspired by Golden Type but
lighter and with even more pronounced oblique serifs. Even the dot on the i’ is diamond-
shaped. Here is the digital version by the foundry Lanston:

ulla mentio erat. Quare nec iudzos(polteris ent hoc

Bruce Rogers drew his inspiration from Jenson’s printing of Eusebius in the design, com-
pleted in 1901, of his Montaigne, which was intended to be used to print the translation
of Montaigne’s Essays. But this typeface did not come down to us; its creator completely
redesigned it once it was finished. The result is Centaur, one of the most beautiful type-
faces of the twentieth century, which was not completed until 1929. Here is the digital
version by Monotype:

ulla mentio erat. Quare nec iudaos(pofteris eni hoc

Centaur makes subtle use of the characteristics of humanist type and succeeds in captur-
ing the freshness of Jenson’s original and, through it, the heritage of the humanist hand.

Morris Benton, of Monotype, was also inspired by Jenson in his design of Cloister Old
Style in 1912, when Monotype was pursuing the rediscovery of older typefaces. If Centaur
is more suited to elegant typography, Cloister Old Style has more weight and can be used
for running text. Here is the digital version by Monotype:

ulla mentio erat. Quare nec iudeos(pofteris eni hoc

In fact, everyone wanted to design his own Jenson, including Frederic Goudy, who
in 1924 designed Italian Old Style, inspired more by the Golden Type of Morris than by
Jenson’s original. In Goudy’s typeface, the spirit of the small-scale letterpress of the turn
of the century is sought and celebrated more than the humanist spirit of the Renaissance.

Finally, to bring to a close this long list of fonts inspired by Jenson, here is Adobe Jenson,
designed in 1996 by Robert Slimbach, a good compromise between historical authentic-
ity and the ease of use in desktop publishing:

ulla mentio erat. Quare nec iudzos(pofteris eni hoc

But let us return to Nicolas Jenson. He would never go back to France: Louis XI, successor
to Charles VII, had little interest in printing. When Jenson died in glory in 1480, his
equipment came into the possession of Andrea Torresano of Asola (Andreas Asolanus),
of whom history has preserved only the name, as he was the father-in-law of a certain
Aldus Manutius.

From Venice to Paris, by Way of Rome

Aldus Manutius established himself in Venice in 1490. He set up a publishing house
and even an “academy” that attracted intellectuals who had fled Byzantium (which
was occupied by the Turks in 1453). His favorite punchcutter, Francesco da Bologna,

372 Chapter 11 : The History and Classifications of Latin Typefaces

known as Griffo, cut a new typeface for the printing of De Ztna, an account of a trip to
Mount ZAtna, written by Cardinal Pierre Bembo and printed in 1495. Here is an extract:

Collegimusnuper Codredo&iffime quotquothabe-
re potuimus gracasepiftolas, eds que typis noftris ex-
cufas,duobuslibris publicamus,preter multasillas Ba
filii, Gregorii,& Libanii,quas cii primum fuerit facul-

This typeface, more elegant than that of Jenson, has more contrast between the down-
strokes and the upstrokes, and—surprise!—the cross stroke of the ‘e’ is not oblique. It
is horizontal and is placed very high, leaving only a very small eye in the ‘e, with a
counter that can hardly be distinguished. Vox called this category of typefaces garaldes
(from “Garamond” and “Aldus”). In the garaldes, the axis of the ‘0’ tilts to the left, the
serifs on the ascenders are oblique, and the serifs on the arms of the ‘T are asymmetrical,
but all to a smaller degree than in the humanist typefaces:

eodT

De Ztna would come to influence typeface designers right up to the present, from the
contemporaries of Manutius, such as Garamond and Augereau, to Stanley Morrison,
who in 1929 issued Bembo as part of Monotype’s historical program:

{1li1. Gregorii,& Libanii,quas cti primum fuerit facul-

Among all the books printed by Aldus Manutius, the most interesting was certainly the
Hypnerotomachia Polyphili of 1499, translated in France a few years later under the title
Le Songe de Poliphile. Tt is an adventure novel that is at the same time an essay on archi-
tecture, sculpture, and poetry, as well as a pamphlet on the emancipation of female sex-
uality?. This book [231, 100}, written by Francois Colonna but published anonymously,
employs a typeface by Griffo that many consider to be the most beautiful Venetian type-
face. Here is an extract of the book:

2 In 2004, American authors Ian Caldwell and Dustin Thomason wrote an action novel based on this
book: The Rule of Four [93].

History of Latin Typefaces 373

EMIEDEBILEVOCE TALEOGR A
tiofe&diue Nymphe abfone peruenerino &
inconcinealla uoftrabenignaaudiétia, quale
laterrificaraucitate del urinante Efacho al fua-
ue canto dela piangeuole Philomela. Nondi

This typeface inspired Poliphilus, by Stanley Morrison, which was issued in 1923:

ue canto dela piangeuole Philomela. Nond:i

Much later, in 1998, designer Franck Jalleau attempted another interpretation of the
typeface of Hypnerotomachia Polyphili by including the effect of the bleeding of ink. He
called it Francesco in honor of Fran¢ois Colonna:

Jusqu’a quand abuseras-tu de notre patience, Catilina ?

Aldus Manutius explored the uses of handwriting in order to extend his repertoire of
typefaces. He noticed that the students at the University of Venice took their notes in
little notebooks using a very regular slanted script, probably inspired by the handwriting
of the great humanist Niccold Niccoli. On the basis of this observation, he invented, at
the same time, the pocket-sized book (the size of the students’ notebooks) and the italic
typeface. Here is a specimen of a pocket-sized book produced by Aldus Manutius with
italic type cut by Griffo:

S epe tenet noftris abouilibus imbuet agnus.
T llemeas errareboues ut cernis et ipfum

This is the italic typeface that inspired Alfred Fairbank of Monotype in 1929 for the italic
version of Bembo:

Scepe tener noftris ab oulibus imbuet agnus.

Griffo did not have much luck. During a quarrel he mortally wounded his son-in-law
with an iron bar and disappeared, doubtless for having been found guilty and hanged.
Cold comfort though it may be, his name was immortalized in the Spanish language, in
which italic letters are called letra grifa.

Manutius’s output was enormous. Humanism owes him much, as he was the most im-
portant publisher of Greek and Latin texts. He died at the age of 65 in a wretched state

374 Chapter 11 : The History and Classifications of Latin Typefaces

of health. His books, including his magnificent logo of a dolphin with an anchor, were
promptly reproduced, forged, pirated, and copied.

Other type designers took an interest in more calligraphic scripts. In Rome, Ludovico
degli Arrighi, a calligrapher to the chancery, successfully undertook a very risky experi-
ment: he cut a typeface that imitated his own handwriting with no loss of quality. Here
is a specimen of this typeface, digitized by the foundry IHOF (the font is called Operina,
after the name of Arrighi’s calligraphy textbook: Operina da imparare di scrivere littera
cancellarescha, of 1522 {283]):

j[moc{; c{; tetﬁaerm [; Drine (on [;: uarie Sorti

&z littere orclznat‘ofer Ludouico icentino,
n cRoma ne[anno MDXXIII
F

Antoine Blado bought Arrighi’s equipment in 1526 and further developed it. In 1532 he
printed books as famous as Machiavelli’s The Prince. The italic faces of the period were
used on a par with roman faces for setting text. Indeed, it is said that in the sixteenth
century there were as many Italian books printed in roman as in italic.

Arrighi’s typeface also inspired Blado, by Stanley Morrison (1923), which was destined to
accompany Poliphilus:

Il modo de temperare le Penne Con le uarie Sorti

In it we see the narrowness and vivacity of Arrighi’s handwriting, although Blado is not
a calligraphic typeface but rather a very dynamic italic.

Here is Arrighi, by Frederic Warde (1926), which Bruce Rogers considered the perfect
complement to Centaur:

jl modo de’ temperare’ le Penne’ @1 e uarie’Sorti

contains several calligraphic glyphs, but the dynamism of Blado has been lost.

In 1963 Ladislas Mandel designed a typeface much closer to Arrighi’s original for the
Lumitype phototypesetter, his Cancelleresca, simultaneously proving that the machine
was capable of kerning glyphs [245].

Let us return to the fifteenth century. How was printing established in France?

Five centuries before May 1968, the Sorbonne was at the heart of everything. In 1470 two
professors from this venerable institution, Johann Heynlin (called “de la Pierre”, from a
literal translation of the name of his hometown, Stein) and Guillaume Fichet decided

History of Latin Typefaces 375

to solicit the help of German printers to establish a printing house within the univer-
sity. They invited Michael Friburger, Ulrich Gering, and Martin Kranz, all of them from
Mainz, who built the equipment and set about cutting typefaces.

In a situation comparable to that of Subiaco, an atmosphere steeped in humanism, our
three pioneers issued in 1470 the first book printed in France, Gasparini Epistolae, of
which an extract is shown here:

Wnciatia mibu eft g menedotius uefter,
olobellg inimico meo hofpes & amicuf
exiftens effeat’ut intva loca nita caftra metan{

The typeface is a strange mixture of roman and gothic; it cannot be called beautiful,
but it does show that the three printers of the Sorbonne tried their best to break free
of the textura and rotunda that they had employed at Mainz and to breathe a breath of
humanist air into the dusty corridors of their hosts. But the day of humanism had not
yet arrived in France: French readers spurned this “experimental” typeface in favor of
known quantities.

In 1472 these printers left the Sorbonne to set up shop on Rue St-Jacques. Thereafter
they cut only rotundas. Here is an extract of the book that they printed in 1473:

£t oe ifta tentide diat in canticis.
A enui eum!nec oimitta- Le ifka fir

People wrote in Latin at that time; French was considered a vulgar tongue for every-
day purposes. Nonetheless, a few courageous printers ran the risk of producing books
in French. The first book in this language was Croniques de France, printed in 1477 by
another Parisian, Pasquier Bonhomme. Here is an extract:

Pu vopne ecuba fa femme. facite fut ar
fe et dcftruicte b peuple et fe6 Barone
oCCigemaig aucuns efcﬁapperent de cefte

Bonhomme drew his inspiration from another script that was very popular in France,
bastarda. Here is a sample of bastarda as digitized by Rainer Will in 1996 (as the font
MA Bastarda):

fo voyne couba fa fomme. fo cifefuf arfe of Seftrutese

376 Chapter 11 : The History and Classifications of Latin Typefaces

And here is another bastarda, designed in 1995 by Thierry Gouttenegre for the region of
Burgundy, Bdtarde bourguignonne:

la royne canba far femme. la cite fuse arfe e Xefermicre

Other printers, such as Simon Botticher, used rounded gothic typefaces called “Italian
gothics”. Here is an extract of the Confession de frere Olivier Maillard, printed in 1481:

Zlmfifont acomplies neufreigles.par lefquel
leslon pentfacillemet cognoiftre tout peche

This is the sort of typeface that inspired Karlgeorg Hoefer for his typeface San Marco,
issued in 1990 in Adobe’s collection of historic typefaces:

Ainfifontacomplics neufreigles.par lefquelles

People like Jean Du Pré, Antoine Vérard (noted for his textura, which was later carried
to England by William Caxton), Philippe Pigouchet, and Josse Badius printed religious
books or mediaeval chronicles mostly in gothic.

The Sorbonne was a bastion of conservatism in the midst of an era in which Protes-
tantism developed; the Balkans and the Middle East fell under the Ottoman yoke; and
Europe discovered the New World, freedom of the press, and freedom of conscience.

Geofroy de Tory, printer to King Francois I, philosopher, and man of letters, printed
in 1529 a splendid book, Le Champ Fleury {332], in which he developed a theory of the
relationships between the parts of letters and the parts of the human body—a theory
reminiscent of the Indian chakras. In this book, he also proposed the use of the accent
marks and the cedilla to make the spelling of the French language less eccentric than it
used to be. An accomplished humanist, Tory never stopped trying to popularize Aldine
typefaces in France.

Three publishers dominated book production in Paris at the time: the Estienne family,
Simon de Colines, and Michel Vascosan. Starting in 1535, they printed practically all
books in roman typefaces influenced by Aldine type. With the support of King Francis I,
French books thus achieved an unparalleled perfection.

The Estienne family employed a very talented type designer, Antoine Augereau. Claude
Garamond, one of Augereau’s students, was the first freelance type designer. His name
was to become legendary, whereas Augereau, de Colines, Vascosan, and so many others
are unknown today to the general public: millions of people use fonts bearing Gara-
mond’s name. But who was Claude Garamond?

Garamond designed roman and italic typefaces but also Greek ones, the famous Grecs du
roi. His roman face is of exceptional balance and stability; his italic is lively and elegant.
The first book using his roman type was a Paraphrase of Erasmus that was printed in 1530.

History of Latin Typefaces 377

Today we know that Garamond was inspired by Manutius’ De Ztna; specifically, in this
book, and in it alone, the type cut by Griffo has eight variants of certain letters, and seven
of them appear in Garamond’s roman.

How did Garamond’s typefaces come down to us?

Upon his death in 1561, many of his matrices were bought by an equally renowned
Antwerp printer, Christophe Plantin. Later, Jacques Sabon moved Garamond’s matri-
ces to the Egenolff-Berner publishing house in Frankfurt. This publishing house printed
in 1592 a catalog that inspired a large number of contemporary designers. Here is a spec-
imen of Garamond’s gros canon typeface (the equivalent of 48-point type) as reproduced
from this catalog:

%s credidic Audicui noftro: & brachium Iehouz

In 1845 some typefaces attributed to Garamond, Caracteres de l'université, appeared in a
type catalog from the Imprimerie Nationale, which also used them in Anatole Claudin’s
Histoire de 'imprimerie en France au xv ¢ et au xvi € siécles (History of French Printing in the
Fifteenth and Sixteenth Centuries), a work that was to fascinate type designers.

The first of these was Morris Benton, who designed the first Garamond for the American
Type Founders Company (ATF) in 1900. This typeface was taken up again by Linotype
in 1925 under the name of Garamond 3:

Quis credidit Auditui noftro:& brachium Iehouz

In 1920 Frederic Goudy designed a very attractive Garamont (with a ‘t’!) for Monotype
that is known today as Monotype Garamond:

Quis credidit Auditui noftro:& brachium Iehoua

But scandal broke out in 1926. One of Monotype’s former employees, Beatrice Warde,
subsequently became the high priestess of twentieth-century typography, discovered at
the Bibliotheque Nationale de France a catalog from 1621 by a certain Jean Jannon,
printer at Sedan: the dies that the Imprimerie Nationale had attributed to Garamond
were actually by Jannon! What had happened?

At least two stories are making the rounds. Some say that since Jean Jannon was a Protes-
tant, Cardinal Richelieu confiscated his equipment and printed his own Mémoires with
Jannon’s typeface. As for the Imprimerie Nationale, it claims {98, p. 34} that Sébastien
Cramoisy, its director, had entered into a legitimate contract in 1641 with Jean Jannon
for the updating of Garamond’s fonts. According to this version, nothing was ever con-
fiscated from anyone, and no misunderstanding ever occurred.

Whatever the case may be, Monotype Garamond, which is used, for example, in the pres-
tigious series Collection de la Pléiade, is always called “Garamond” instead of “Jannon”.

378 Chapter 11 : The History and Classifications of Latin Typefaces

This discovery inspired type designers to seek inspiration more from Benner’s catalog
than from the Caracteres d’universite.

The Stempel press created a Garamond based on Egenolff-Berner in 1924. Today this
typeface is distributed under the name of Stempel Garamond:

Quis credidit Auditui noltro:& brachium Iehouz

In 1928, George Jones, of Linotype’s British branch, also created a Garamond from the
same source. Doubtless as a reflection of his British humor, Jones distributed this type-
face under the name of Granjon, a contemporary of Garamond whom we shall discuss
below:

Quis credit Auditui noftro:& brachium Iehouz

In 1930, the designer Hunter Middleton designed a Garamond for the Ludlow Foundry
that is now called Ludlow Garamond and is considered by Bruce Rogers as the best inter-
pretation of Garamond. Indeed, it has a smaller x-height than the others, and the eye
of the ‘@’ is truly small. On the other hand, it has very thin serifs that are unusual for a
garalde:

Quis credidit Auditui noltro:& brachium Iehoua

In 1960, a German consortium (of the companies Monotype, Linotype, and Stempel)
decided to finance the creation of a new typeface inspired by Garamond that would be
compatible with their machines. This task was entrusted to a great theoretician of typog-
raphy, Jan Tschichold, who drew his inspiration from “St. Augustine” (14 points) for the
design of Sabon:

Quis credidit Auditui noltro:& brachium Iehouz

Things changed for the worse in the 1970s. John Stan, of the International Typeface
Corporation (ITC), designed an “Americanized” Garamond that became a smashing suc-
cess.3 Here is ITC Garamond:

Quis credidit Auditui noftro:& brachium Iehouae

This typeface suffers from an enormous x-height. The letters ‘0’ and ‘O’ are almost perfect
circles, a design element that completely destroys the typeface’s dynamics. The height of
sacrilege is that the typeface was designed in different weights (a concept completely for-
eign to Garamond’s era), from light to ultra-bold. Nevertheless, the typeface has become
very popular, doubtless owing to its large x-height, which facilitates reading at small
sizes; and it is to this rendition that Garamond owes its current fame. Apple even adopted
a version condensed by 80 percent as its official typeface.

In 1989, Robert Slimbach, of Adobe, designed a very elegant interpretation of Gara-
mond, Adobe Garamond, which is an excellent compromise between fidelity to the orig-
inal and ease of use in modern-day documents:

3 This typeface is used, among other places, on the covers of books by O’Reilly, such as this one.

History of Latin Typefaces 379

Quis credidit Auditui noftro:& brachium Iehouz

In 1994, Ross Mills, of the foundry Tiro Typeworks, designed 1530 Garamond, which has
the peculiarity of being strictly faithful to the original:

QliS Cdeidit Allditlli noﬁro:&d)rachium ICl’lOLlEE

This font was used* for the book Le Maitre de Garamond, by Anne Cuneo {105}, a histor-
ical novel on Antoine Augereau. Anne Cuneo acknowledges in the book that she drew
her inspiration from an email exchange with Ross Mills, who attributed the typeface to
Augereau.

In 2002, Jean Francois Porchez returned to Tschichold’s Sabon, which was intended for
the Linotype and Monotype machines, and took some of the proportions of Garamond’s
original in order to adapt them to the computer. The result is Sabon Next:

Quis credidit Auditui noftro:& brachium Iehouz

Finally, in 2005, when Lanston was bought by P22, another revival of Garamond was
released: Lanston Garamont, designed by Frederic Goudy in 1920 and digitized by Jim
Rimmer in 2001. The font is available in two weights: “display” and “text”. This is the
“display” version:

Quis credidit Auditui noftro:& brachium Iehoua

After this long excursion that has taken us up to 2002, let us return to the sixteenth cen-
tury. Garamond worked for the great Estienne family of publishers and printers (from
which the Ecole Estienne in Paris takes its name). The sire of this family was Henri Esti-
enne (1528-1598), whose widow married the other master of the era, Simon de Colines.
His son, Robert Estienne, took over the enterprise and created a number of masterpieces,
thanks in particular to an enlightened king and great lover of typography, Francis I.
Robert Estienne was named “printer and bookseller of Hebrew and Latin literature”.

But Francis I died in 1547, and Robert Estienne, a Protestant, hurriedly left for Geneva,
where his children Henry II and Francois continued the production of outstanding
books. The Parisian printing office was taken over by Robert Estienne’s brother Charles
Estienne, an avowed Catholic and therefore out of danger. But Charles died in prison
for his debts and left the company to his nephew, Robert II. In Geneva, Paul Estienne,
son of Henri II, decided to return to France. Once “converted back” to Catholicism
in Paris, he succeeded so much that his son, Antoine, great-grandson of the “traitor”
Robert, became the new printer to the king and “guardian of Greek matrices” The
death of Antoine Estienne in 1674 brought to a close the story of this illustrious family
of printers.

4 Unfortunately, this book is a glaring example of what not to do: using a typeface designed for gros canon
(48 points) at 12 points. The result is that the typeface seems too narrow and poorly spaced, making reading a
bit unpleasant. That is a pity, as the text itself is gripping!

380 Chapter 11 : The History and Classifications of Latin Typefaces

The other French printer and type designer of the sixteenth century, Robert Granjon
of Lyon, born in 1513 (not to be confused with Philippe Grandjean, who lived in the
seventeenth century), who designed typefaces for the publisher Plantin and for the Vat-
ican, wished to grace France with a typeface of her own. (In his opinion, Garamond’s
typefaces had an Italian appearance.) Robert Granjon thus sought inspiration from a
rounded gothic script used in children’s books, and in particular in the translation of a
work by Erasmus, Civilité Puérile (On Civility in Children). He called this typeface Civilité.
But it was not well received and was almost never used. Here is the digital version by
Jonathan Hoefler in his collection of historic fonts (the font is called St Augustin Civilité):

:Fefinc f’histoticn fut nay ‘Bus f”\@mpctcuk CCgScticn

In 1913, Frank Hinman Pierpont of Monotype designed a typeface inspired by Granjon’s
gros cicéro that he nonetheless named Plantin (after Granjon’s most important client):

Juiqu’a quand abuferas-tu de notre patience

Then, in 1978, Matthew Carter, son of historian of printing Harry Carter, designed for
Linotype a font inspired by an 8-point font that Granjon called “galliard” (the “gaillarde”
was a very popular dance of the Renaissance):

Julqu’a quand abuferas-tu de notre patience

Galliard was one of the first fonts to be designed on the Ikarus system of Peter Karow.

Granjon had poor luck: his Civilit¢ was a flop, and the typefaces that he inspired do not
bear his name, whereas the one that does bear his name was inspired not by him but by
Garamond.

Another controversy concerns the source of “Janson”. In 1922, the foundry Stempel re-
leased a typeface named “Janson”, named for a Dutch type designer, Antoine Janson,
whose matrices were in Stempel’s possession. In 1937, the foundries Monotype and Lino-
type each released a Janson without giving much historical information about them.
Here is the typeface by Linotype, distributed today under the name Janson Text:

Julqu’a quand abuleras-tu de notre patience

And here is the one by Monotype:

Julqu’a quand abuferas-zu de notre patience

Monotype used a 1739 catalog of the Ehrhardt foundry in Leipzig that contains the type-
faces still called “Janson” as the basis of its design of Ehrhardt, which was also released
commercially in 1937:

Juigu’a quand abuferas-tu de notre patience

History of Latin Typefaces 381

This typeface was destined primarily for the German market. According to a manager at
Monotype, “this typeface was to appeal to those who have a weakness for Fraktur”.

But scandal broke out in 1954. A historian of printing, Harry Carter, with the help of a
Hungarian colleague named George Buday, revealed the origin of these typefaces called
“Janson™ they were cut by the more famous Hungarian printer Miklés Tétfalusi Kis (pro-
nounced “quiche”). Kis, born in 1650, was a monk. Sent to the Netherlands in 1680 to
learn printing, he quickly achieved international fame. He turned down the offer of an
ideal position in Tuscany, preferring instead to return to Hungary to print Bibles. But
when he was able to return to Hungary, in 1690, he found nothing but misery, jeal-
ous compatriots, and an abominable political climate. He died before his time, in 1702.
Thus it was he who designed the first garaldes, which Blanchard called “germanized
Garamonds” {84, p. 172} and which already foreshadowed the typefaces of Fournier and
Caslon.

New Scripts Emerge in Germany

Now let us see what was happening in Germany in the sixteenth century. Printing houses
were set up all over the place and turned out books in textura, rotunda, and even roman.

In Germany, just as in Italy, typefaces were ennobled: a splendid example is the Diurnale
of Jean Schonsperger, printed at Nuremberg in 1514, of which a digitized version by
Walden Font is shown here. (The font is called Gebetbuch, or “prayer book”.)

Dens Abrahd-Dens PfAac-Deus Yacob

The evolution of typefaces in Germany is connected to the wishes of an emperor.
In 1517, the emperor Maximilian commissioned Schonsperger to print the chivalric
poem Theuerdanck of Melchior Pfinzing. This was the first manifestation of a new type
of gothic script, Fraktur—a script that was to become the German national script, right
up until 1943! Here is the typeface of Theurdanck, as recently digitized:

Dure) teglich avbeyt worden (hiwad)

Also in this era emerged a script rounder than Fraktur, called Schwabacher. Its name ap-
parently comes from the title of Eyn Gesprdch von dem gemainen Schwabacher Kasten, by
Friedrich Creuszner and Hieronymus Holtzel, which was set in this typeface. Here is an
example of Schwabacher, digitized by Walden Font (the font is called Alte Schwabacher):

Eyn Gefprach von dem gemainen

Schwabacher can be recognized from its ‘g’. Although at first there were whole books set
in Schwabacher, it came to play more an alternative role, similar to that of'italics relative
to roman.

382 Chapter 11 : The History and Classifications of Latin Typefaces

These scripts were also used in the countries that were culturally dependent on Germany,
although printers always tried to set Latin, Italian, and French words in roman script.

The Wild Adventure of Textura in England

The story of printing in England begins with a merchant born in Kent around 1420,
named William Caxton. He lived in Brugge and undertook the translation into English
of the Recueil des histoires de Troye, which he wished to offer to his benefactress, a sister of
Edward IV. But in order to make the gift worthy of its recipient, he decided to print it.
And to that end he studied printing with Ulrich Zell in Cologne in the 1470s. In 1475,
at Brugge, he succeeded in printing his translation, which thus became the first printed
book in the English language. Here is an extract:

ganineiee felte Gy felf among thhe Goze fect /[Wwae
m §ie Gerte terrpble andrp/ and, fapd, that [z wolt e
fBoztly auengpd/anoy b avooe fghitly and; toofe hie

The type used in this book, which never made its way to England, is quite peculiar, be-
ing heavily influenced by Flemish handwriting. Caxton next set up shop in Westminster
in 1476. Most of the books that he printed were in English, and he used a bastarda that
practically became the English national script until the middle of the sixteenth century,
when roman definitively took hold in England.

In 1892, William Morris designed a typeface called Troy to set his new edition of the
henceforth famous Recuyell of the Historyes of Troye. Here it is as digitized by P22 (an
American foundry {284} specializing in historical and artistic fonts):

gammedes felte bym felf among the bors feet

One of the typefaces used by Caxton (which the experts call “number 3”) was a textura.
Here is an extract of a book printed in 1477 at Westminster:

Fé it plefe ovcp man Givicuel o2 ternyorel (0 bpe ong
wies of W0 and thre wimemorands of Glilbue v

And here is the digitized version of this typeface by Jonathan Hoefler, in his collection
of historic typefaces (the font is called English Textura):

£ it plefe onp man fpiricuel o2 temporel

In 1490, Caxton bought a very beautiful textura from the Frenchman Antoine Vérard
and imported it to England.

History of Latin Typefaces 383

While textura was rapidly being abandoned elsewhere, England, thanks to its unparal-
leled conservatism, kept it alive for centuries! In 1611, the King James Bible was printed
in textura; so was the first English-language typography textbook, Mechanick Exercises, by
Joseph Moxon, in 1683; in 1734, William Caslon, the greatest English type designer, still
had it in his catalog, under the name Black English Letter. Here is an interpretation of the
type in Caslon’s catalog, digitized by Gerda Delbanco:

Nonoyle but filence and Lternall (leepe

The wild adventure of “English” textura continued in the twentieth century with Cloister
Black, cut by Morris Benton and Joseph Warren Phinney for ATF in 1904, a typeface quite
close to the texturas of the sixteenth century:

Nonoplebut {ilence and Eternall {leepe

Next, the extremely kitschy Wedding Text, also designed by Morris Benton, which is still
a roaring success under the name of Linotext:

Nonoy[e but [ilence andy Wernall [leepe

not to mention the numerous Victorian excesses, such as Colchester, by Dieter Steffmann:

P e bt Tilenre aod Eernall fleepe

Fortunately, the Germans came to the rescue of textura and saved it from British-
American kitsch. In 1913, the great German designer Rudolf Koch cut the impressive
Maximilian (in honor of the emperor Maximilian, who was a great patron of printing),
digitized by Gerda Delbanco:

Mo noyfe but filence and Eternall [leepe

This typeface combines the weight of textura’s downstrokes with almost calligraphic fine
strokes. From 1920 to 1926, the same Rudolf Koch designed a textura that is majestic in
its narrowness, Wilhelm Klingspor:

Aonoyfebut filence and Eternall leepe

Perhaps contrary to expectations, the name of this font does not come from any great
mythological or historical personage but from that of the brother of the patron of print-
ing Klingspor, Wilhelm, who died in 1925 as a result of a war injury.

In 1928, the Americans showed the world that they were also capable of designing beau-
tiful texturas. Frederic Goudy produced a textura for Monotype, Goudy Text, that is in no
way inferior to those of Koch:

384 Chapter 11 : The History and Classifications of Latin Typefaces

JAononfe but filence and FEeernall leepe

Textura, through its plasticity, also lent itself to experimentation. Here is Ganz Grobe
Gotisch, by Friedrich Hermann Ernst Schneidler, one of the heaviest texturas of the twen-
tieth century, dating to 1930:

Do nopfe but Leernall fleepe

Finally, here is the gothic typeface of Emil Rudolf Weiss, designed in the difficult year
of 1936. It is of remarkable sobriety.

1o noyfe but filence and Eternall fleepe

An after-war experiment, the typeface Kiihne Schrift, by Emil Hand Kithne (one of Koch’s
students), was designed in 1954 for the Klingspor printing company and digitized by
Klaus Burkhardt:

1o noyfe but ilence and £ternall [Teepe

This typeface is a curious hodgepodge of elements of textura, Fraktur, and roman. Inci-
dentally, there is a pun in the name of the script: “Kiihne” is, of course, the name of the
designer, but it also means “daring, audacious”, a name that suits this script well.

The Sun King Makes Waves

Let us back up. Starting in the sixteenth century, the trade in typefaces became a
monopoly. Printers who no longer had the means to cut dies or even to cast type
made recourse to specialized enterprises. The political and cultural circumstances were
such that the two main European type foundries, Plantin and Elsevier, turned out to
be located in the Netherlands. Thus all of Europe was using “Dutch typefaces” that
had nothing particularly Dutch about them but were often derived from the work of
Nicolas Jenson, Aldus Manutius, Claude Garamond, etc. Plantin and Elsevier may have
revolutionized the book trade in Europe, but they did not revolutionize typefaces.

In the seventeenth century, the prevailing rationalism of the “Age of Reason”, together
with the magnificence of Louis XIV’s reign, also influenced typography.

In 1692, a commission of the Académie des Sciences sought to define a purely geometric
typeface, which it designed by means of what one might call the ancestor of pixels: a
grid of 64 x 36 squares. The commission, headed by an abbot named Nicolas Jaugeon,
entrusted the cutting of this typeface to Philippe Grandjean (1666-1714), whose talent
humanized the cold geometry of the commission’s designs. This typeface, called the Ro-
main du Roi (“king’s roman”), was cut in 21 sizes, the last of them not finished until 1745,
more than 50 years after the project was launched.

History of Latin Typefaces 385

The dies of the Romain du Roi, or Grandjean, are preserved by the Imprimerie Nationale,
which has exclusive rights to its use. Here is a specimen:

Ceeft le fujet de cette Médaille. On vy voit Pallas
les Efpagnols défaits &r pouffeg an-dela de I Efcanld,

This font can be recognized immediately from the small appendage to the downstroke
of the ‘I, which serves to distinguish that letter from the ‘T’. The Romain du Roi is very far
removed from the garaldes and the humanist typefaces. The upper and lower serifs of
the ‘I’ are so symmetrical that one almost reads the letter as an ‘I’. Similarly, the ascender
of the ‘d’ has a genuine double serif that makes the ‘d’ resemble an upside-down ‘p’. The
symmetry expresses the regal perfection of the Romain du Roi.

In 1903, Arthur Christian, the director of the Imprimerie Nationale, asked an experi-
enced typecutter, Jules Hénaffe, to cut a typeface strictly consistent with the recommen-
dations of the Jaugeon Commission. The result was quite surprising:

Quel est Ie modele du musicien j'ai bien fait
ou du chant? c’est la déclamation, d’autres prodiges

Jaugeon may be used only by the Imprimerie Nationale. It was used, for example, to set
the sublime De plomb, d’encre ¢ de lumiére {971, published by the Imprimerie Nationale
in 1982.

Finally, between 1995 and 1997, Frank Jalleau digitized Grandjean’s typeface:
Jusqu’a quand abuseras-ru de notre patience, Catilina?

This font, Grandjean-IN, was used in the catalogue of the exhibit “Le Romain du Roi”
{276}, which was held in Lyon in 2002.

Even though the Romain du Roi was little used in the seventeenth century, it influenced
the typographers of the era, in particular Pierre-Simon Fournier (1712-1768), called “the
Younger”, who cut a simple yet elegant typeface that combined rationality and beauty.
An employee of his father’s printing house, which was run by his brother, he had the
luxury to be able to create new typefaces and to write as well. He published a Manuel
typographique utile aux gens de lettres ¢ a ceux qui exercent les différentes parties de UArt de
UImprimerie (Handbook of Typography: Intended for men of letters ¢ for those engaged in the
different aspects of the Art of Printing), in which he explains printing equipment but also
a few principles of cutting type. The typefaces that he cut are resolutely modern, simple,
and functional. He was the first to design the same typeface with different x-heights:
the large x-height is less beautiful but useful for running text, especially in small sizes—
he called it “Dutch-style” and criticized its “excessively material feel”—while the more
elegant one with the small x-height yields an airier text—Pierre-Simon Fournier called
it “poetic”. Here is a specimen of the poetic type, from a 1742 catalog:

386 Chapter 11 : The History and Classifications of Latin Typefaces

Senecque, Corbulon un de fes Ca- centes victimes de fa fureur, il leur
pitaines,, & plufieurs autres de fes fir fouffrir les plus cruels tourmens &

In 1925, Monotype issued a typeface named Fournier. To achieve the Dutch/poetic duality
without completely redesigning the typeface, it altered the height of the capitals without
changing the lowercase letters. Thus we have an ordinary Fournier (which is in fact the
Dutch version):

JUSQU’A quand abuferas-zu de notre PATIENCE

and a Fournier Tall Caps, which is the poetic version:

JUSQU’A quand abuferas-tu de notre PATIENCE

Fournier’s typeface belongs to a new category in Vox’s classification: transitional. They
are so called because they are transitional between the garaldes and the typefaces of the
nineteenth century that Vox called “didones”. In most transitional typefaces, the eye of
the ‘e’ is still quite small (smaller than half the height of the letter, at any rate), the ‘0’ is
absolutely symmetrical about its vertical axis, the ascender of the ‘d’ has less oblique serif
than its predecessors, and the serifs of the ‘T’ do not extend upward but are symmetric
relative to the letter’s vertical axis of symmetry:

eodT

Pierre-Simon Fournier died 30 years before the French Revolution. But before we discuss
the Didots, which will move us into the Industrial Age, let us see what was happening
on the other side of the English Channel.

England Takes the Lead in Typographic Innovation

In England in 1692, while the Jaugeon Commission was meeting for the first time,
the man who was to become the uncontested master of English typography was born:
William Caslon. (In fact, we should say “William Caslon I”, as his son was also named
William, together with his grandson and his great-grandson, as English tradition would
have it.)

Caslon was a child prodigy. Setting himself up in London at the age of 18, he was commis-
sioned to design an Arabic font for the needs of missionaries, which he cut at 12 points
together with his name, as a “signature” for the font. Greatly impressed by this single cut
word, the publishers and booksellers of London encouraged him to go into the design of

History of Latin Typefaces 387

typefaces and sponsored him by purchasing the required equipment. He issued his first
catalog of fonts in 1734.

Immediately he won great praise and admiration all over Europe, and also in the Ameri-
cas, where a certain Benjamin Franklin—who practiced two professions at the same time,
printer and US politician—so admired him that he insisted that the United States’ Dec-
laration of Independence be printed in his typeface.

Caslon followed in the footsteps of Manutius and Garamond, modernizing their type-
faces and adapting them to the tastes of his time. He died in 1766, but his foundry re-
mained in business until the death of the last male in the Caslon line, William Caslon IV,
in 1869.

Caslon’s typefaces were uncontestably inspired by the Dutch typefaces common in Eng-
land at the time, which were in turn inspired by the typefaces of Aldus Manutius and
Claude Garamond. They are therefore transitional faces with features borrowed from
the garaldes: Caslon’s italic, narrow and dynamic, still shows much of the character of
handwriting.

Caslon’s typeface was so successful that it has practically never ceased to be used, from
the seventeenth century to the present. Printers in the English-speaking countries still
say “When in doubt, use Caslon”.

A tremendous number of interpretations and digitized versions exist. Among the most
important are Caslon Old Face (digitized by Bitstream), which dates to 1902:

Juiqu’a quand abuleras-zu de notre patience

Here are ATF Caslon 471, now distributed by Berthold, and ATF Caslon 540, which is a 471
with shortened descenders:

Julqu’a quand abuferas-7u de notre patience

Carol Twombly of Adobe designed an Adobe Caslon in 1990 that is a good compromise
between modernity and fidelity to the original:

Julqu’a quand abuferas-zu de notre patience

But the most beautiful computer implementation of Caslon is without a doubt that of
Justin Howes (1996). In Figure 11-1 we show his font HW Caslon at 14 optical sizes, from 8
to 96 points. It is a monumental effort containing all the magic of multiple optical sizes,
with all the imperfections and idiosyncrasies of the originals.

Finally, a typeface with an element of deception: in the 1890s (!) a Chicago foundry,
Barnhart Brothers, issued a typeface called Fifteenth Century that simulated the bleeding
of ink:’

5 Which was revolutionary at the time and showed that typographers had achieved a technical level at
which bleeding could be perceived as intentional, not as an error in printing.

Chapter 11 : The History and Classifications of Latin Typefaces

J ufqu aquand a
Julqu'a quand abuler

Juiqu'aquandabuieras

Julqu’a quand abuferas-7« de

Julqu’a quand abuleras-z« de notre pa

Julqu’a quand abulferas-tu de notre patience,
Jufqu’a quand abuferas-z# de notre patience, Catil

Jufqu’a\l quand abuferas-z« de notre patience, Catilina? Quofgue t

Jufqu’a quand abuferas-zu de notre patience, Catilina 2 Quoufjue tandem abut
Jufqu’a quand abuferas-tu de notre patience, Catilina? Quoufgue tandem abutere

Jufqu’a quand abuferas-zu de notre patience, Catilina? Quoufgue tandem abutere Catilina patientia no
Jufqu'a quand abuferas-zu de notre patience, Catilina? Quoufque tandem abutere Catilina patientia noftra? Wie lange

Figure 11-1: Caslon’s typeface, digitized by Justin Howes. The sizes are 8, 10, 12, 14, 18, 22,
24, 30, 36, 42, 48, 60, 72, and 96 points.

History of Latin Typefaces 389

Julqu’d quand abuferas-tu de notre patience

But it was a commercial flop, as American printers were not interested in a font with
the mysterious and pallid name “Fifteenth Century”. The company decided therefore to
rename its product Caslon Antique, and it immediately became a smashing success. The
typeface became the perfect imitation of the American typefaces of the colonial era, even
though it had nothing to do with Caslon—and was phenomenally ugly to boot.

And while we are on the subject of imitations of the “colonial” Caslon, here is one by
Walden Font (the font Minuteman Printshop Caslon Book), an infinitely more elegant ren-
dition:

Jufqua quand abuferas-zu de notre patience

It comes with a font containing the 56 signatures that appear on the United States’ Dec-
laration of Independence.

In 1913, Ernest Jackson and Edward Johnston designed for Monotype a typeface inspired
by Caslon, which later became the favorite typeface of Oxford University Press. This type-
face is Imprint:

Jufqu’a quand abuferas-tu de notre patience

Caslon was not the only one of Worcestershire’s native sons who excelled at printing. The
year 1707 saw the birth, 15 years after Caslon, of John Baskerville, the man who, like
Gutenberg a few centuries before, contributed to all branches of the field of printing,
from the cutting of typefaces to the chemical composition of ink, without omitting lay-
out, which he kept simple and free of gimmicks, ornaments, and other frills. The books
that he produced were very “modern” and fascinated his contemporaries.

According to Rémy Peignot {97, p. 114], he was as different from Caslon as Grandjean
was from Garamond—which is saying a lot! Baskerville abandoned the excessive orna-
mentation of the baroque era and produced typography based solely on the typeface.
His typefaces are more streamlined and simpler than anything that his predecessors had
created.

But like his fellow genius Mozart (who, incidentally, lived during the same era),
Baskerville died in poverty and in debt. Four years after his death, in 1779, his widow
sold all his equipment to a French businessman® who appeared as if by some miracle.
After that, Baskerville’s typefaces vanished into oblivion.

6 This Frenchman was none other than Pierre-Augustin Caron de Beaumarchais, the author of The Mar-
riage of Figaro and The Barber of Seville. Beaumarchais had concocted a very ambitious financial plan: he
intended to publish Voltaire’s Collected Works in 70 and 92 volumes. He bought the rights to all of Voltaire’s
manuscripts for an astronomical sum, and then he bought Baskerville’s equipment. For political reasons, his
project could not be undertaken in France; therefore, he established himself in the fortress of Kehl, a German
town just across the border from Strasbourg, by paying bribes that were also quite high. Actually, it was not he
who did all those things but rather the “Literary and Typographic Society” of which he was the only member.
To raise the needed funds, he organized lotteries for the jet set of his day and placed himself under the kind
protection of Catherine the Great, Empress of Russia. The French Revolution broke out in 1789, and Beaumar-

390 Chapter 11 : The History and Classifications of Latin Typefaces

Or at least they did until 1917, when Bruce Rogers discovered a book by Baskerville
in a Cambridge library and launched a campaign to rehabilitate his typeface. In 1923,
Lanston Monotype issued what today we call Monotype Baskerville:

Julqu’a quand abuleras-tu de notre patience

Linotype continued, and soon there were many very similar typefaces on the market.
In 1978, Matthew Carter modernized the typeface a bit through the release of his ITC
New Baskerville:

Julqu’a quand abuferas-tu de notre patience

The production of computerized versions of Baskerville continued. In 1996, the Swede
Lars Bergquist designed a Baskerville quite close to the original and named this typeface
Baskerville 1757:

Julqu'a quand abuleras-tu de notre patience

Finally, there was also an early forgery: a type designer named Isaac Moore, of Edmund
Fry’s printing house in Bristol, copied Baskerville’s typefaces in 1768, when Baskerville
was still alive. It is this copy that is sold today under the name of Fry Baskerville:

Julqu’a quand abuferas-tu de notre patience

Didot and Bodoni Revolutionize Typefaces

With the American and French revolutions, the world was plunged into modernity.
Typefaces no longer had any connection with handwriting. The most important repre-
sentatives of this new style in France were the members of the Didot family. Just like
the Estiennes, the Didots were type designers, printers, and publishers for several gen-
erations. Francois Didot (1689-1758) passed his company down to Francois-Ambroise
Didot (1730-1804), who in turn bequeathed it to Firmin Didot (1764-1836), a great
philhellene who offered the new Greek nation its first printing house, in 1828.

The Didots’ typeface is geometric and dramatically exploits the contrast between down-
strokes and fine strokes. Typography was a symbol of power in this pre-industrial era,
and power must be clear, precise, inflexible, and determined. While Didot does have
serifs, they serve to assert its identity, and one asserts one’s identity through contrast. Vox
called these typefaces didones (from “Didot” and “Bodoni”). The didones are very easy to
recognize from their thin, flat serifs. Our four representative letters illustrate this point
clearly:

chais was one of'its instigators, but at the same time he destroyed his relations with the empress. Beaumarchais
died the following year.

History of Latin Typefaces 391

eodT

The cross stroke of the ‘e’ is horizontal and quite low, the axis of the ‘0’ is vertical, the
serif on the ‘d’ is horizontal, and those of the ‘T are vertical and do not extend upward.

The delicacy of the serifs causes big problems for us today in our digital renditions. What
Mandel calls the “original sin” of phototypesetting—i.e., the principle of having only a
single design, which applies to all sizes—stands in contradiction to the delicacy of Didot’s
serifs. A serif that is visible at 12 points is invisible at 7 points and much too thick at
72 points. Here is a 1991 interpretation of Didot’s typeface by Adrien Frutiger, Linotype
Didot:

Jusqu’a quand abuseras-tu de notre patience
Another interpretation of Didot, by the foundry URW, Firmin Didot:

Jusqu'a quand abuseras-tu de notre patience

Finally, a rather ornamental Didot, with no italic, produced by the Turin foundry Nebi-
olo, called Torino:

Jusqu'a quand abuseras-tu de notre patience

The most impressive digital version of Didot’s typeface is without a doubt that of
Jonathan Hoefler (HTF), who in 1994 designed seven distinct optical sizes of Didot:
HTF Didot (Figure 11-2).

Another great figure of the era, the Italian Giambattista Bodoni, was born in 1740. His
father was a printer and started raising him in the profession from a very young age,
with the result that, at age 18, he was already a typesetter at the Vatican’s press and thus
encountered all kinds of Latin and East Asian scripts. He was asked to catalog all of the
press’s historic dies, which led him to discover the Garamonds and the Granjons.

Bodoni was a great admirer of Baskerville, so much so that in 1768 he left his post at
the Vatican and traveled clear across Europe in order to meet him. But he fell ill at the
beginning of his journey. The duke of Parma then offered him the chance to manage his
press, as the duke of Tuscany had invited Miklds Tétfalusi Kis to do a century earlier. Kis
declined the offer and died in poverty in his homeland; Bodoni accepted, and became,
in his own words, “printer to kings and king of printers”.

But Bodoni never did meet Baskerville. At the beginning of his career in Parma, he or-
dered the typefaces of Fournier, then copied them, and finally created his own typefaces.
His typography was thus heavy and pompous. He took up the Didots’ geometric princi-
ples but pushed them to extremes.

392 Chapter 11 : The History and Classifications of Latin Typefaces

Jusquaquanda

Jusqu’é quand abusera

Jusqu'a quand abuseras-tu de notre palie

Jusqu'aquand abuseras-tu de notre patience, Catilina? Quou

Jusqu'a quand abuseras-tu de notre patience, Catilina? Quousque tandem abuteres pat

Jusqu'a quand abuseras-tu de notre patience, Catilina ? Quousque tandemabuteres patientia nostra? Jusqu'a quand abuseras-tu de notre patience, Catilina ?

Figure 11-2: Didot’s typeface, digitized by Jonathan Hoefler, HTF foundry. The sizes are 6, 11,
16, 24, 42, 64, and 96 points.

He created his typefaces in huge numbers of different sizes and versions: after his death,
some 25,000 dies and 51,000 (!) matrices of his creation were found. His most important
work was his Manuale tipografico, an annotated catalog of his typefaces. Its second edition,
bearing a preface written by his widow, came out five years after his death.

Among the twentieth-century interpretations of Bodoni are that of Morris Fuller Ben-
ton, completed for Monotype in 1907 and known today by the name of Monotype Bodoni:

Jusqu’a quand abuseras-tu de notre patience

and that of Heinrich Jost for Bauer, 1926, which is closer to the original. It is sold today
under the name of Bauer Bodoni:

Jusqu’a quand abuseras-tu de notre patience

History of Latin Typefaces 393

Jusqu'aquand

Jusqu’a quand abuseras-tu de notre patience, Catilina? Quousque tandem a

Jusqu’a quand abuseras-tu de notre patience, Catilina? Quousque tandem abuteres Catilina patientia nostra? Jusqu’a quand abuseras

Figure 11-3: ITC Bodoni, by Goldsmith, Parkinson, and Stone. The sizes shown are 6, 12, and
72 points.

Next, from 1991 to 1994, Holly Goldsmith and Jim Parkinson, working under the su-
pervision of Sumner Stone, designed a very refined version of Bodoni that is close to the
original, ITC Bodoni:

Jusqu’a quand abuseras-a de notre patience

As with the Caslon of Justin Howes and the Didot of Jonathan Hoefler, we show the three
optical sizes of ITC Bodoni at actual size in Figure 11-3.

The German “Sturm und Drang”
Meanwhile, German typography was also turning towards rationalism, but in a less dra-

matic way than in France or England.

Johann Gottlob Imannuel Breitkopf (1719-1794), a great Leipzig publisher and founder
of the prestigious Breitkopf & Hartel publishing house, which published the greatest
works of music, was using a quite well developed Fraktur, shown here as digitized by
Ralph Unger of the foundry URW:

Die Woglein dweigen im Walde, warte

A little later, Johann Friedrich Unger (1750-1804) brought new ideas to the design of
Fraktur type and tried to bring it closer to Didot’s roman. Unger went so far as to ask
Firmin Didot to cut gothic type, which unfortunately turned out to be rather mediocre.
Here, as a curiosity, is a sample of the gothic cut by Didot, which dates to 1793:

ote granyenlofe Slache des Lloriatifchen
Jteeres. Diefe Segen und Sveibeit ath:
mende Llusficht gibt befire Lmpfindun:
gen yoieder, und verdrangt jene, die der

394 Chapter 11 : The History and Classifications of Latin Typefaces

Note that he could not resist using a perfectly roman ‘S’ and that his ‘F’ is an ‘S’ with
slightly different terminals and a bar across the middle. One wonders why this script has
never been digitized.

And here is Unger’s Fraktur, digitized by Gerda Delbanco:

Ote Voalein {hwergen 1m Llalde, warte

Within the scope of a Fraktur typeface, the influence of the Didots’ classicist geometricity
is discernible. For example, the reader can see that the thickest strokes are often vertical,
as in the main curve of the ‘D’, while the same curve in traditional Frakturs is heavily
slanted to the left.

The concern for homogeneity between Unger’s Fraktur and Didot’s roman is not merely
a question of taste. It should be remembered that words in a Romance language within
a German document set in Fraktur have always been set in roman type. Thus the two
typefaces had to be compatible so as not to shatter the harmony of the page.

Other typographers cut a Fraktur and a roman at the same time. For instance, Justus
Erich Walbaum (1768-1837), another noted German of the eighteenth century, created
the perfect typeface for that era of “Sturm und Drang” and German romanticism. Wal-
baum drew his inspiration from Bodoni for the design of his roman type, shown here in
the digitized version by Monotype:

Jusqu’a quand abuseras-tu de notre patience

Walbaum also created a Fraktur typeface that is very well balanced and less “romanized”
than Unger’s, with the exception of the ball terminals under the capital letters:

Die Voglein |chiveigen im Walde, warte

The Nineteenth Century, Era of Industrialization

The nineteenth century was the century of great technical progress: stereotypy, the metal
press, the steam-driven press, the rotary press, photoengraving, lithography, photolithog-
raphy and photography, and finally Linotype and Monotype. The economic situation
was such that the quality of typefaces was far from being the top priority of printers. Their
products were destined for the broad masses of consumers, and advertising turned out
uglier and uglier typefaces for the delivery of its messages.

The influence of Didot and Bodoni still prevailed, but its mixture with other, more an-
cient, influences kept the typefaces from being as radically “modern”.

Among the typefaces that distinguished themselves from the general mediocrity are
those designed in London by Richard Austin at the beginning of the nineteenth century.
Austin also worked in Scotland. His typeface was widely used in the United States under
the name of Scotch Type. It was later issued by Monotype under the name of Monotype
Scotch:

History of Latin Typefaces 395

Jusqu’a quand abuseras-tu de notre patience

Printers at the beginning of the twentieth century felt that the capitals of Scotch were
too heavy. Linotype therefore asked William Addison Dwiggings (a student of Goudy) to
refurbish the typeface. He drew his inspiration from Bulmer in designing the typefaces
that Linotype called Caledonia:

Jusqu'a quand abuseras-tu de notre patience

Towards the end of the nineteenth century, publishers showed more and more concern
for legibility and required new typefaces to satisfy this criterion. For instance, in 1894,
Linn Boyd Benton (the father of Morris Fuller Benton) and Theodore de Vinne (another
great theoretician of printing) designed Century, known today as Century Old Style, for a
magazine of that name:

Jusqu'a quand abuseras-tu de notre patience

Morris Fuller Benton designed variants of this typeface, including Century Expanded:

Jusqu’a quand abuseras-tu de notre patience

and Century Schoolbook, which corresponded to the prevailing notion of a good typeface
for textbooks in that day:

Jusqu’a quand abuseras-tu de notre patience

In 1896, Bertram Grosvenor Goodhue, an American architect with an interest in the
graphic arts, designed a new typeface for a small printing house named Cheltenham
Press. This typeface, Cheltenham, became the most popular typeface in America. In 1902,
Morris Fuller Benton designed a dozen variants of it, which Linotype marketed, followed
immediately by Monotype. Here is Cheltenham Old Style, which is close to the original:

Jusqu’a quand abuseras-tu de notre patience

In 1975, Tony Stan (designer of the ignoble ITC Garamond) issued a new version of Chel-
tenham with a larger x-height—ITC Cheltenham, which is the most popular version today:

Jusqu'a quand abuseras-tu de notre patience

The nineteenth century was also the century of sans serif and Egyptian typefaces. In 1816,
William Caslon IV cut the first sans serif typefaces, in capitals only:

CASLON JUNR LETTERFOUND

He was followed by a German foundry in 1825 and by three British foundries in 1832—
one of which, Thorowgood, invented the label “grotesque”, which is still used in the

396 Chapter 11 : The History and Classifications of Latin Typefaces

English-speaking countries to denote sans serif type. Then followed more and more sans
serif typefaces of little interest, until the German foundry Stempel issued in 1898 its type-
face Akzidenz Grotesk:

Jusqu’a quand abuseras-tu de notre patience

The word “Akzidenz” is indeed cognate to the English “accident”, but in the context of
printing it corresponds to the English “job work”—i.e., any printing job other than a
book. The name shows how the typeface was used at the time. This typeface inspired the
Swiss Max Miedinger, who in 1956 designed a typeface that we all know well, Helvetica,
shown here in an improved version of 1957 called Helvetica Neue:

Jusgu’a quand abuseras-tu de notre patience

In 1990, Robin Nicholas and Patricia Sau