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Lecture Overview 

• This course has largely revolved around 
exploiting x86 binaries on Ubuntu 14.04 i386 
– Linux is easier and a bit more academic 
– Same can be said about 32bit x86 
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Lecture Overview 

• This course has largely revolved around 
exploiting x86 binaries on Ubuntu 14.04 i386 
– Linux is easier and a bit more academic 
– Same can be said about 32bit x86 

 

• But how does exploitation change for x86_64 
systems? ARM devices? How about Windows? 
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Lecture Overview 

• Architecture Differences 
– x86  
– x86_64 
– ARM 

• Platform Differences 
– Windows 

MBE - 05/08/2015 x64, ARM, Windows 4 



x86 Overview 

• x86 is a 32bit instruction set developed by Intel 
– Sometimes known as x32, x86, IA32 
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x86 Overview 

• x86 is a 32bit instruction set developed by Intel 
– Sometimes known as x32, x86, IA32 

 
• It’s a CISC architecture that is super popular 

and used all around the world 
– yadayadayada, you’ve been using it all semester 
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x86 CPU 
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x86 Registers 
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x86 Registers 
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EAX 

EAX (32bits) 



x86 Registers 
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AX 

EAX (32bits) 

AX (16bits) 



x86 Registers 
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EAX (32bits) 

AH AL 

AX (16bits) 

     AH            AL         <----  (8bits each) 



x86 Calling Conventions 

• cdecl 
– Caller cleans up the stack 
– Unknown or variable # of arguments, eg printf() 

• stdcall  
– Callee cleans up the stack 
– Standard calling convention for the Win32 API 

• fastcall 
– First two arguments are put into ECX, and EDX, the 

rest are put onto the stack 
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x86 Misc Notes 

• x86 is like the wild west in computing 
– “it’s like it was designed to be exploited” 
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x86 Misc Notes 

• x86 is like the wild west in computing 
– “it’s like it was designed to be exploited” 
– No instruction alignment, and you can jump in the 

middle of instructions (great for ROP Gadgets) 
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x86 Misc Notes 

• x86 is like the wild west in computing 
– “it’s like it was designed to be exploited” 
– No instruction alignment, and you can jump in the 

middle of instructions (great for ROP Gadgets) 
– Hundreds of instructions, many rarely used 
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x86 Instruction Stats 
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http://www.strchr.com/x86_machine_code_statistics 



x86 Misc Notes 

• x86 is like the wild west in computing 
– “it’s like it was designed to be exploited” 
– No instruction alignment, and you can jump in the 

middle of instructions (great for ROP Gadgets) 
– Hundreds of instructions, many rarely used 
– Instructions can range from 1 byte long, to 15 

bytes long! 
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x86 Long Instructions 

lock add DWORD PTR ds:[esi+ecx*4+0x12345678],0xefcdab89 
 

67 66 f0 3e 81 84 8e 78 56 34 12 89 ab cd ef 
 
 

(from http://blog.onlinedisassembler.com/blog/?p=23) 
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x86 Misc Notes 

• x86 is like the wild west in computing 
– “it’s like it was designed to be exploited” 
– No instruction alignment, and you can jump in the 

middle of instructions (great for ROP Gadgets) 
– Hundreds of instructions, many rarely used 
– Instructions can range from 1 byte long, to 15 

bytes long! 
 

• It’s the devil’s playground 
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Lecture Overview 

• Architecture Differences 
– x86  
– x86_64 
– ARM 

• Platform Differences 
– Windows 
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x86_64 Overview 

• x86_64 is the 64bit successor to 32bit x86 
– Sometimes known as x64, x86_64, AMD64 
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x86_64 Overview 

• x86_64 is the 64bit successor to 32bit x86 
– Sometimes known as x64, x86_64, AMD64 

 
• We’re well into the 64bit era at this point with 

32bit x86 machines slowly on their way out 
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x86_64 Overview 

• x86_64 is the 64bit successor to 32bit x86 
– Sometimes known as x64, x86_64, AMD64 

 
• We’re well into the 64bit era at this point with 

32bit x86 machines slowly on their way out 
 

• x86_64 is Bigger, better, faster… and familiar! 
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x86_64 CPU 
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x86_64 Registers 
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• Pretty similar to x86, but with a few upgrades 
– General Purpose Registers 

• Everything starts with R instead of E - RAX, RBX, RCX... 
• GPR’s are now 64bit, not 32bit 
• There is now 8 more GPR’s for use - R8 to R15 

 

– More XMM* registers (128 bits) 



x86_64 Registers 
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x86_64 Registers 
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RAX 

RAX (64bits) 



x86_64 Registers 
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EAX (32bits) 

AX (16bits) 

     AL             AH 

RAX (64bits) 



x86_64 Registers 
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x86_64 Calling Conventions 

• The 64bit calling convention is a lot like 32bit 
fastcall where arguments are put into registers 
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x86_64 Calling Conventions 

• The 64bit calling convention is a lot like 32bit 
fastcall where arguments are put into registers 
 

• But Linux and Windows use different registers 
for their respective calling conventions 
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x86_64 Calling Conventions 

• The 64bit calling convention is a lot like 32bit 
fastcall where arguments are put into registers 
 

• But Linux and Windows use different registers 
for their respective calling conventions 
– Linux: RDI, RSI, RDX, RCX, R8, R9 
– Windows: RCX, RDX, R8, R9 
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x86_64 Calling Conventions 

• The 64bit calling convention is a lot like 32bit 
fastcall where arguments are put into registers 
 

• But Linux and Windows use different registers 
for their respective calling conventions 
– Linux: RDI, RSI, RDX, RCX, R8, R9 
– Windows: RCX, RDX, R8, R9 

 
(any other arguments are pushed onto the stack) 

MBE - 05/08/2015 x64, ARM, Windows 33 



x86_64 ROP 

• Chaining multiple function calls via ROP is way 
easier on 64bit  
– Why? 
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x86_64 ROP 

• Chaining multiple function calls via ROP is way 
easier on 64bit  
– Why? 

 

• You simply load function arguments into 
registers, they don’t need to be on the stack! 
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x86_64 ASLR 

• 64bit address space means better ASLR 
– ‘better’ simply means more entropy to bruteforce 
– Bruteforcing ASLR on 64bit is rarely done 
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x86_64 ASLR 
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doom@upwn64:~$ cat /proc/self/maps 
(the same segment after multiple runs) 
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887 
... 



x86_64 ASLR 
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doom@upwn64:~$ cat /proc/self/maps 
(the same segment after multiple runs) 
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887 
... 
7f6fa368e000-7f6fa3849000 r-xp 00000000 08:01 922887  
... 



x86_64 ASLR 
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doom@upwn64:~$ cat /proc/self/maps 
(the same segment after multiple runs) 
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887 
... 
7f6fa368e000-7f6fa3849000 r-xp 00000000 08:01 922887  
... 
7f974db38000-7f974dcf3000 r-xp 00000000 08:01 922887  
... 



x86_64 ASLR 
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doom@upwn64:~$ cat /proc/self/maps 
(the same segment after multiple runs) 
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887 
... 
7f6fa368e000-7f6fa3849000 r-xp 00000000 08:01 922887  
... 
7f974db38000-7f974dcf3000 r-xp 00000000 08:01 922887  
... 



x86_64 ASLR 
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doom@upwn64:~$ cat /proc/self/maps 
(the same segment after multiple runs) 
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887 
... 
7f6fa368e000-7f6fa3849000 r-xp 00000000 08:01 922887  
... 
7f974db38000-7f974dcf3000 r-xp 00000000 08:01 922887  
... 

At least 7 nibbles of libc is changing per run on Ubuntu 14.04 x64 
7 (nibbles) * 4 (bits) = 28 

228 bruteforce 
0.0000000037% exploit reliability! 



x86_64 Addresses 

• 64bit addresses almost always have a NULL 
upper byte, meaning ROP chains and string 
functions (eg strncpy) don’t get along 
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x86_64 Addresses 
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doom@upwn64:~$ cat /proc/self/maps 
00400000-0040b000 r-xp 00000000 08:01 790596   /bin/cat 
0060a000-0060b000 r--p 0000a000 08:01 790596   /bin/cat 
0060b000-0060c000 rw-p 0000b000 08:01 790596   /bin/cat 
... 
7fc6a4788000-7fc6a4943000 r-xp 00000000 08:01 922887  libc-2.19.so 
7fc6a4943000-7fc6a4b42000 ---p 001bb000 08:01 922887  libc-2.19.so 
7fc6a4b42000-7fc6a4b46000 r--p 001ba000 08:01 922887  libc-2.19.so 
7fc6a4b46000-7fc6a4b48000 rw-p 001be000 08:01 922887  libc-2.19.so 
... 



x86_64 Addresses 
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doom@upwn64:~$ cat /proc/self/maps 
00400000-0040b000 r-xp 00000000 08:01 790596   /bin/cat 
0060a000-0060b000 r--p 0000a000 08:01 790596   /bin/cat 
0060b000-0060c000 rw-p 0000b000 08:01 790596   /bin/cat 
... 
7fc6a4788000-7fc6a4943000 r-xp 00000000 08:01 922887  libc-2.19.so 
7fc6a4943000-7fc6a4b42000 ---p 001bb000 08:01 922887  libc-2.19.so 
7fc6a4b42000-7fc6a4b46000 r--p 001ba000 08:01 922887  libc-2.19.so 
7fc6a4b46000-7fc6a4b48000 rw-p 001be000 08:01 922887  libc-2.19.so 
... 

0x0000000000400000 - 0x000000000040b000 
0x00007fc6a4788000 - 0x00007fc6a4943000 

These are 64bit addresses, so yes there’s plenty of space for nulls 



x86_64 Syscalls 

• The syscall numbers in 32bit vs 64bit Linux are 
different, so be sure you’re looking at the 
respective table when writing your payloads 
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x86_64 Syscalls 

• The syscall numbers in 32bit vs 64bit Linux are 
different, so be sure you’re looking at the 
respective table when writing your payloads 
 

 exec syscall on 32bit: 0x0b
 exec syscall on 64bit: 0x3b 
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Lecture Overview 

• Architecture Differences 
– x86  
– x86_64 
– ARM 

• Platform Differences 
– Windows 
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ARM Overview 

• ARM is a 32bit RISC instruction set built for low 
power devices 
– Has a ’16bit’ THUMB mode 
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ARM Overview 

• ARM is a 32bit RISC instruction set built for low 
power devices 
– Has a ’16bit’ THUMB mode 

 
 

• Used on your phone, tablet, raspberry pi, other 
small or mobile devices 
– ‘low power’ 
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ARM Registers 
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ARM Calling Convention 

• Calling convention is basically like fastcall 
– r0-r3 hold your function arguments 
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ARM Assembly 

• Some ARM/THUMB instructions can operate 
on multiple registers at once 
 

 pop {r4, r5, r6, lr} 
 ... 
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Instruction Alignment 

• ARM mode has 4 byte instruction alignment 
– Can’t jump in the middle of instructions 

 

• THUMB mode has 2 byte instruction alignment 
– When ROPing there’s usually more THUMB gadgets 

that will be of use due to the 2 byte alignment 
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An Interesting Bit 

• Because of 2 & 4 byte instruction alignment, 
the lowest bit of the program counter (eg r15) 
will never be set 
 

 0x080462B0 
 00001000000001000110001010110000 
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An Interesting Bit 

• Because of 2 & 4 byte instruction alignment, 
the lowest bit of the program counter (eg r15) 
will never be set 
 

 0x080462B0 
 00001000000001000110001010110000 
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This bit is re-purposed to tell the processor if we 
are in THUMB mode or ARM mode 



An Interesting Bit 

r15 = 0x080462B0 
       = 00001000000001000110001010110000 

Interpret bytes at 0x080462B0 as ARM 
 

r15 = 0x080462B1 
       = 00001000000001000110001010110001 

Interpret bytes at 0x080462B0 as THUMB 
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Caching 

• In x86 the processor will invalidate icache lines 
if the line is written to 
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Caching 

• In x86 the processor will invalidate icache lines 
if the line is written to 
 

• With ARM you have to request manual cache 
flushes, or do large memory operations to 
flush the cache naturally 
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Caching 

• In x86 the processor will invalidate icache lines 
if the line is written to 
 

• With ARM you have to request manual cache 
flushes, or do large memory operations to 
flush the cache naturally 
– Can get annoying in exploitation 
– ‘what you seez, may not beez what it iz ‘ 

 
MBE - 05/08/2015 x64, ARM, Windows 59 



Lecture Overview 

• Architecture Differences 
– x86  
– x86_64 
– ARM 

• Platform Differences 
– Windows 
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Windows vs Linux 

• Almost all the vulnerability classes and 
exploitation techniques you have learned in 
this course will apply directly to Windows 
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Windows Basics 

• The executable format on Windows is 
obviously .EXE’s instead of Linux ELF’s 
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Windows Basics 

• The executable format on Windows is 
obviously .EXE’s instead of Linux ELF’s 
 

• Libraries are .DLL’s, like Linux .so’s 
– eg: MSVCRT.dll is like libc 

• Microsoft Visual C(++) Common Runtime 
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Windows Basics 
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Loaded DLL’s 



Windows Basics 

• The executable format on Windows is 
obviously .EXE’s instead of Linux ELF’s 
 

• Libraries are .DLL’s, like Linux .so’s 
– eg: MSVCRT.dll is like libc 

• Microsoft Visual C(++) Common Runtime 

 
• A process usually loads lots of libs (dll’s) 
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Windows Debuggers 

• If you’re going to get rolling on Windows, try to 
pick up skills debugging with WinDbg EARLY 

MBE - 05/08/2015 x64, ARM, Windows 67 



Windows Debuggers 

• If you’re going to get rolling on Windows, try to 
pick up skills debugging with WinDbg EARLY 
 

• WinDBG is Microsoft’s debugger 
– Basically GDB with different command mappings 
– Not as convenient as OllyDBG, but way less sketchy 
– Best 64bit debugger 
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WinDbg 
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Windows Exploitation Basics 

• Raw syscalls are virtually never seen in native 
windows applications or libraries 
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Windows Exploitation Basics 

• Raw syscalls are virtually never seen in native 
windows applications or libraries 
– No more  `int 0x80` shellcode 
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Windows Exploitation Basics 

• Raw syscalls are virtually never seen in native 
windows applications or libraries 
– No more  `int 0x80` shellcode 
– Why? 
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Windows Exploitation Basics 

• Raw syscalls are virtually never seen in native 
windows applications or libraries 
– No more  `int 0x80` shellcode 
– Why? 

 

• Syscall numbers tend to change from version 
to version of Windows and would be hard or 
unreliable to code into an exploit  
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ntdll.dll and kernel32.dll 

• ntdll.dll – the ‘Native API’ 
– Wraps all the syscalls for the given version of 

Windows, is pretty low level stuff 
 

• kernel32.dll – the ‘Win32 API’ 
– More familiar high level stuff 

• OpenFile(), ReadFile(), CreateProcess(), LoadLibrary(), 
GetProcAddress(), 
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Windows Fun Facts 

• Most people think kernel32.dll is required by 
every windows process, but ntdll.dll is infact 
the only one that MUST be loaded 
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Windows Exploitation Basics 

• So instead of using syscalls, an exploit will 
almost always use existing imported functions 
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Windows Exploitation Basics 

• If a function of interest is not imported by a 
loaded DLL, an exploit payload will usually do 
what is known as ‘walking the IAT’ 
– It resolves the function location manually 
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Windows Exploitation Basics 

• If a function of interest is not imported by a 
loaded DLL, an exploit payload will usually do 
what is known as ‘walking the IAT’ 
– It resolves the function location manually 

 

• If GetProcAddress() is imported from 
kernel32.dll, you can easily lookup functions 
– Same as dlsym() on Linux 
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Windows Exploitation Basics 

 
GetProcAddress(k32h, “CreateProcess”); 
 
... 
 
Looking up the CreateProcess function 
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Windows XP Security 

• Windows XP SP2 marked the start of the 
modern security era (Summer 2004) 
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Protection – Bypass – ??? 



Windows XP Security 

• Windows XP SP2 marked the start of the 
modern security era (Summer 2004) 
– Hardware Enforced DEP – ROP 
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Windows XP Security 

• Windows XP SP2 marked the start of the 
modern security era (Summer 2004) 
– Hardware Enforced DEP – ROP 
– Stack Cookies (GS) – Leak & replace, write past, SEH 
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Windows XP Security 

• Windows XP SP2 marked the start of the 
modern security era (Summer 2004) 
– Hardware Enforced DEP – ROP 
– Stack Cookies (GS) – Leak & replace, write past, SEH 
– Safe heap unlinking – Heap metadata exploits 
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Windows XP Security 

• Windows XP SP2 marked the start of the 
modern security era (Summer 2004) 
– Hardware Enforced DEP – ROP 
– Stack Cookies (GS) – Leak & replace, write past, SEH 
– Safe heap unlinking – Heap metadata exploits 
– SafeSEH – ? 
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Windows XP Security 

• Windows XP SP2 marked the start of the 
modern security era (Summer 2004) 
– Hardware Enforced DEP – ROP 
– Stack Cookies (GS) – Leak & replace, write past, SEH 
– Safe heap unlinking – Heap metadata exploits 
– SafeSEH – ? What is SEH/SafeSEH ? 
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Protection – Bypass – ??? 



Structured Exception Handling 

• Structured Exception Handling is a lot like 
assigning signal handlers on Linux 
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Structured Exception Handling 

• Structured Exception Handling is a lot like 
assigning signal handlers on Linux 
 

• You simply register an exception handler, and 
if something bad like a segfault happens, code 
flow is redirected to the handler 
– Print an error message, exit semi-gracefully, etc… 
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Exploiting SEH 

• Exception records are placed on the stack, so 
they’re relatively easy to corrupt 

MBE - 05/08/2015 x64, ARM, Windows 88 



Exploiting SEH 
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• Because you only have one gadget of 
execution through an overwritten SEH record, 
you usually have to use it to stack pivot 
 



Exploiting SEH 
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• Because you only have one gadget of 
execution through an overwritten SEH record, 
you usually have to use it to stack pivot 
 

• Classically you could use a ‘pop pop ret’ 
gadget to easily return onto the smashed 
stack (assumes executable stack) as a pointer 
to your overwritten SEH record is nearby 



Exploiting SEH 
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SafeSEH 

• SafeSEH is an additional set of checks made to 
ensure that a registered exception handler has 
not been corrupted 
 

• You can enable it using the /SAFESEH flag at 
compile time 
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Bypassing SafeSEH 

• With SafeSEH, an exception record is invalid if: 
– The exception handler is pointing onto the stack 
– The exception handler does not match the list of 

registered exception handlers in module it is 
pointing into 
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Windows Vista Security 

• Windows Vista was marred by instability and 
performance issues, but made good progress in 
terms of security 
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Windows Vista Security 

• Windows Vista was marred by instability and 
performance issues, but made good progress in 
terms of security 
– ASLR – Info leaks, partial overwrites, non aslr’d code 
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Windows Vista Security 

• Windows Vista was marred by instability and 
performance issues, but made good progress in 
terms of security 
– ASLR – Info leaks, partial overwrites, non aslr’d code 
– SEHOP – ? 
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SEH Overwrite Protection 

• SEH Overwrite Protection (SEHOP) is the 
second attempt Microsoft made to mitigate 
SEH exploitation 
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SEH Overwrite Protection 

• SEH Overwrite Protection (SEHOP) is the 
second attempt Microsoft made to mitigate 
SEH exploitation 
 

• When an exception is triggered, the SEH 
dispatcher attempts to walk the SEH chain to a 
symbolic ‘terminating’ record 
– If this record cannot be reached, the chain is bad 
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SEH Overwrite Protection 
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Bypassing SEHOP 

• Bypassing SEHOP is pretty painful and 
basically involves faking a chain to the 
terminating record 
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Windows Vista Security 

• Windows Vista was marred by instability and 
performance issues, but made good progress in 
terms of security 
– ASLR – Info leaks, partial overwrites, non aslr’d code 
– SEHOP – Faking SEH Chains 
– Heap Hardening – More heap metadata checks 
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Windows 7 Security 

• I don’t think much new stuff happened with 
Windows 7 in terms mitigation technologies 
 

• Mostly cleaning up stability issues from Vista 
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Windows 8 Security 

• Windows 8/8.1 took a big step forward in sec 
– Enhanced GS (Stack Cookies) 
– VTGuard – Like a Vtable Canary 
– Heap Hardening 

• Allocation order randomization – Non-deterministic alloc. order 
• Guard pages – A bit like canaries between heap pages 

– ASLR Entropy Improvements – More entropy all around 
– PatchGuard – Prevent the kernel from being live patched 
– Secure Boot – Eliminate root/boot kits with chain of trust 
– Control Flow Guard – Whitelist indirect calls  
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Desktop Market Share, May 2015 

Windows market share, ~90.93% 
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Windows Summary 

• In the end, Windows based exploitation isn’t too 
different from Linux, but it’s quickly getting harder 
 
 
 
 
 

•   
•   
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Windows Summary 

• In the end, Windows based exploitation isn’t too 
different from Linux, but it’s quickly getting harder 
 

• Some main takeaways 
– Differing 64bit calling convention 
– Syscalls aren’t really a thing on Windows 
– New class of vulnerabilities, SEH Exploitation 

• New protections, SafeSEH, SEHOP 
– Better ASLR & Heap internals 
– Its mitigation technologies are rapidly evolving 
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