push edi

call gub 314623

test 84X, €ax

je short loc 31306D
[ebp+arg 0], ebx
short loc 313066
[ebp+var 70]
[ebp+var &4]
nwort loc 313066
[ebp+var &4]

o o
[T 1}
Moo

o
Al

]
ek

Ll

Al
al

M @ P @
]
B

[
=

MoV [ebp+arg 0], eax
call sub 31486R
test eax, eax

j= short loc 31306D

x64, ARM, Wind:

1z short loc 313060

ax, [ebp+arg 0]

edi

sub_ 314623

& r =

jz short loc_31308F

Modern Binary Exploitation

push 0Dh

GCI 4968 - SPﬂngzols aub,_ 314115

11
call gub_3140F3

TEestT SaX, eax
Markus Gaasedelen = = .-
call sub_3140F3

Jmp short loc 31308C

; CODE XREF: sub 312FD#
¢ sub 312FD&+49

= ey
. [oA O O e
or eax, auUlruuuun

MBE - 05/08/2015 x64, ARM, Windows 1
loc 31308C: s CODE XREF: sub 312FD8
i [ebp+war 4], &

fu

Lecture Overview

e This course has largely revolved around
exploiting x86 binaries on Ubuntu 14.04 i386

— Linux is easier and a bit more academic .
— Same can be said about 32bit x86

ubuntu

MBE - 05/08/2015 x64, ARM, Windows

Lecture Overview

e This course has largely revolved around
exploiting x86 binaries on Ubuntu 14.04i386

— Linux is easier and a bit more academic .
— Same can be said about 32bit x86

ubuntu

e But how does exploitation change for x86 64
systems? devices? -Iow about Windows?

' ' a ; O
L)
L}
' 5 10
L8 - =

MBE - 05/08/2015 x64, ARM, Windows

Lecture Overview

— x86_64
— ARM

e Platform Differences

— Windows

MBE - 05/08/2015 x64, ARM, Windows

X86 Overview

* x86 is a 32bit instruction set developed by Intel
— Sometimes known as x32, x86, |IA32

MBE - 05/08/2015 x64, ARM, Windows)

X86 Overview

* x86 is a 32bit instruction set developed by Intel
— Sometimes known as x32, x86, |IA32

e |t’s a CISC architecture that is super popular
and used all around the world

MBE - 05/08/2015 x64, ARM, Windows 6

x86 CPU

& 8 @ @ DOO @)
CROCE

MBE - 05/08/2015 x64, ARM, Windows

X86 Registers

+—— 16 bits —

0]
-
Q

et

10|
)l
@

o
Q
)
o]
o
o
3
o

=
i
(]
=
Q

&)

ESP
(stack pointer)

EBP
(base pointer)

MBE - 05/08/2015 x64, ARM, Windows

X86 Registers

EAX (32bits)

A

MBE - 05/08/2015 x64, ARM, Windows

X86 Registers

T e

EAX (32bits)
| : |
\] J
|
AX (16bits)

MBE - 05/08/2015

x64, ARM, Windows

10

X86 Registers

EAX (32bits)

| |
AH e AL
\ |
AX (16bits)

<---- (8bits each)

MBE - 05/08/2015 x64, ARM, Windows

11

x86 Calling Conventions

e cdecl
cleans up the stack
— Unknown or variable # of arguments, eg printf()
e stdcall
cleans up the stack
— Standard calling convention for the Win32 AP
e fastcall

— First two arguments are put into ECX, and EDX, the
rest are put onto the stack

MBE - 05/08/2015 x64, ARM, Windows 12

X86 Misc Notes

* x86 is like the wild west in computing

”

— “it’s like it was designed to be

MBE - 05/08/2015 x64, ARM, Windows

13

X86 Misc Notes

* x86 is like the wild west in computing

”

— “it’s like it was designed to be

— No instruction alignment, and you can jump in the
middle of instructions (great for ROP Gadgets)

MBE - 05/08/2015 x64, ARM, Windows 14

X86 Misc Notes

* x86 is like the wild west in computing

”

— “it’s like it was designed to be

— No instruction alignment, and you can jump in the
middle of instructions (great for ROP Gadgets)

— Hundreds of instructions, many rarely used

MBE - 05/08/2015 x64, ARM, Windows 15

X86 Instruction Stats

Top 20 instructions of x86 architecture

Others

|
lea |
-

] |E| F.:I _||

4%

http://www.strchr.com/x86 _machine code statistics

MBE - 05/08/2015 x64, ARM, Windows

16

X86 Misc Notes

* x86 is like the wild west in computing

”

— “it’s like it was designed to be

— No instruction alignment, and you can jump in the
middle of instructions (great for ROP Gadgets)

— Hundreds of instructions, many rarely used

— Instructions can range from 1 byte long, to
bytes long!

MBE - 05/08/2015 x64, ARM, Windows 17

X86 Long Instructions “;f’

MBE - 05/08/2015 x64, ARM, Windows

X86 Misc Notes

* x86 is like the wild west in computing

”

— “it’s like it was designed to be

— No instruction alignment, and you can jump in the
middle of instructions (great for ROP Gadgets)

— Hundreds of instructions, many rarely used

— Instructions can range from 1 byte long, to
bytes long!

MBE - 05/08/2015 x64, ARM, Windows 19

Lecture Overview

— ARM

e Platform Differences
— Windows

MBE - 05/08/2015 x64, ARM, Windows

20

x86_64 Overview

* x86_64 is the 64bit successor to 32bit x86
— Sometimes known as x64, x86_64, AMD64

MBE - 05/08/2015 x64, ARM, Windows

21

X86 64 Overview

e x86 64 is the 64bit successor to 32bit x86
— Sometimes known as x64, x86_64, AMD64

e We're well into the 64bit era at this point with
32bit x86 machines slowly on their way out

MBE - 05/08/2015 x64, ARM, Windows 22

X86 64 Overview

e x86 64 is the 64bit successor to 32bit x86
— Sometimes known as x64, x86_64, AMD64

e We're well into the 64bit era at this point with
32bit x86 machines slowly on their way out

e x86 64 is Bigger, better, faster... and familiar!

MBE - 05/08/2015 x64, ARM, Windows 23

x86 64 CPU

<
J

L. \j LI'(}"JHI_
UST RICA
146B143 @

MBE - 05/08/2015

x64, ARM, Windows

p

X86 64 Registers

e Pretty similar to x86, but with a few upgrades

— General Purpose Registers
e Everything starts with R instead of E - RAX, RBX, RCX...
e GPR’s are now 64bit, not 32bit
e There is now 8 more GPR’s for use - R8 to R15

— More XMM* registers ()

MBE - 05/08/2015 x64, ARM, Windows

25

General-Purpose 64-Bit Media and 128-Bit Media
Registers (GPRs) Floating-Point Registers Registers

MMX0/FPRO
MMX1/FPRI
MMX2/FPR2
MMX3/FPR3
MMX4/FPR4
MMX5/FPR5
MMX6/FPR6
MMX7/FPR7

R8
R9
R10 Flags Register

N I [EFLAGS] RFLAGS
R12

63 0
R13 ‘ .
R14 Instruction Pointer

R15 EIP RIP
0 63 0 127

Legacy x86 registers, supported in all modes Application-programming registers also include the
128-bit media control-and-status register and the
Register extensions, supported in 64-bit mode x87 tag-word, control-word, and status-word registers

b3

sub_314623

loc 31306D

. [+arg 0],
loc 313066
X86 64 Registers
[+var_ 4]
— loc 313066
[+var_ 4]
[+arg_0],

RAX (64bits)
A

sub_ 31486A
loc 31306D

[+arg 0]

loc_31306D:

loc_31307D0:

sub_ 314623

sub 31411B

gub_3140F3
loc_31307D

sub_3140F3
loc 31308C

sub 3140F3

MBE - 05/08/2015

x64, ARM, Windows

loc 31308C:

anw DAL T O

27

X86 64 Registers

T e

RAX (64bits)
A

EAX (32bits)

AX (16bits)

MBE - 05/08/2015 x64, ARM, Windows

28

X86 64 Registers

Not modified for 8-bit operands

Not modified for 16-bit operands

Register - Zero-extended for Lo

encoding 32-bit operands -bit 16-bit 32-bit
AL AX EAX

BL BX EBX

CL . ECX

DL EDX

SIL: 51 ESI

DL EDI

BPL BFP EBP

SPL: 5P ESP

REB | REW RED

RYB | RYW RYD
E10B | R10W R10D
R11B [R11W RIID
R1ZB [R12ZW RIZD
R13B [R13W RI3D
R14B [R14W RI14D
R13B [R15W RI5D

63 32 G 15 8§ 7 0
T Not legal with REX prefix T Requires REX prefix

MBE - 05/08/2015 x64, ARM, Windows

x86 64 Calling Conventions

 The 64bit calling convention is a lot like 32bit
fastcall where arguments are put into registers

MBE - 05/08/2015 x64, ARM, Windows 30

x86 64 Calling Conventions

 The 64bit calling convention is a lot like 32bit
fastcall where arguments are put into registers

e But Linux and Windows use different registers
for their respective calling conventions

MBE - 05/08/2015 x64, ARM, Windows 31

x86 64 Calling Conventions

 The 64bit calling convention is a lot like 32bit
fastcall where arguments are put into registers

e But Linux and Windows use different registers
for their respective calling conventions

— Linux: RDI, RSI, RDX, RCX, R8, R9
— Windows: RCX, RDX, R8, R9

MBE - 05/08/2015 x64, ARM, Windows 32

x86 64 Calling Conventions

 The 64bit calling convention is a lot like 32bit
fastcall where arguments are put into registers

e But Linux and Windows use different registers
for their respective calling conventions

— Linux: RDI, RSI, RDX, RCX, R8, R9
— Windows: RCX, RDX, R8, R9

MBE - 05/08/2015 x64, ARM, Windows 33

x86 64 ROP

* Chaining multiple function calls via ROP is way
easier on 64bit

MBE - 05/08/2015 x64, ARM, Windows 34

Xx86_64 ROP

* Chaining multiple function calls via ROP.is way
easier on 64bit

MBE - 05/08/2015 x64, ARM, Windows) 35

x86 64 ASLR

e 64bit address space means better ASLR

— ‘better’ simply means more entropy to bruteforce
— Bruteforcing ASLR on 64bit is rarely done

MBE - 05/08/2015 x64, ARM, Windows 36

x86 64 ASLR

doom@upwn64:~$ cat /proc/self/maps
(the same segment after multiple runs)

71638218c000-716382347000 r-xp 00000000 08:01 922887

MBE - 05/08/2015 x64, ARM, Windows

37

x86 64 ASLR

doom@upwn64:~$ cat /proc/self/maps
(the same segment after multiple runs)
71638218c000-716382347000 r-xp 00000000 08:01 922887

7f6ta368e000-7f61a3849000 r-xp 00000000 08:01 922887

MBE - 05/08/2015 x64, ARM, Windows

38

x86 64 ASLR

doom@upwn64:~$ cat /proc/self/maps

(the same segment after multiple runs)
71638218c000-716382347000 r-xp 00000000 08:01 922887
7f6fa368e000-7161a3849000 r-xp 00000000 08:01 922887

7f974db38000-7f974dcf3000 r-xp 00000000 08:01 922887

MBE - 05/08/2015 x64, ARM, Windows

39

x86 64 ASLR

doom@upwn64:~$ cat /proc/self/maps
(the same segment after multiple runs)

7f 000-7f 000 r-xp 00000000 08:01 922887
7f 000-7f 000 r-xp 00000000 08:01 922887
7f 000-7f 000 r-xp 00000000 08:01 922887

MBE - 05/08/2015 x64, ARM, Windows 40

x86 64 ASLR

doom@upwn64:~$ cat /proc/self/maps
(the same segment after multiple runs)

7f 000-7f 000 r-xp 00000000 08:01 922887
7f 000-7f 000 r-xp 00000000 08:01 922887
7f 000-7f 000 r-xp 00000000 08:01 922887

7 (nibbles) * 4 (bits) = 28
228 bruteforce

MBE - 05/08/2015 x64, ARM, Windows

41

X86 64 Addresses

* 64bit addresses almost always have a
upper byte, meaning ROP chains and string
functions (eg strncpy) don’t get along

MBE - 05/08/2015 x64, ARM, Windows

42

Xx86 64 Addresses

doom@upwn64:~$ cat /proc/self/maps

400000-0040b00O r-xp 00000V 08:01 790596 /bin/cat
602000-0060b0OO r--p 000020 08:01 790596 /bin/cat
60b000-0060c000 rw-p 00QObOVO ©8:01 790596 /bin/cat

7fc6a4788000-71c6a4943000 r-xp 00000000 08:01 922887
7fc6a4943000-7fc6a4b42000 ---p 001bboo0 08:01 922887
7fc6a4b42000-7fc6a4b46000 r--p 001bavoo 08:01 922887
7fc6a4b46000-7fc6a4b48000 rw-p 001bed00 08:01 922887

Iibc-2.19.
1ibc-2.19.
libc-2.19.
libc-2.19.

SO
SO
SO
SO

MBE - 05/08/2015 x64, ARM, Windows

43

X86 64 Addresses

doom@upwn64:~$ cat /proc/self/maps
400000-0040b000 r-xp 00000 ©8:01 790596 /bin/cat
602000-0060b00O r--p 000VaVOO 08:01 790596 /bin/cat
G0b00O-0060CcO00 rw-p 0VOObOVO 08:01 790596 /bin/cat

7fc624788000-71c6a4943000 r-xp 00000000 08:01 922887 1ibc-2.19.so0
7fc6c4943000-7fc6a4b42000 ---p 001bbooO 08:01 922887 libc-2.19.s0
7fc6a4b42000-7tc6a4b46000 r--p 001bavoo 08:01 922887 1libc-2.19.so
7fc6a4n046000-71-6a4b48000 rw-p 001be00O 08:01 922887 1ibc-2.19.so0

(5D 4 400000\ - Ox 40b000o
(5D 4 7fc6a4788000 - Ox 7fc6a4943000

MBE - 05/08/2015 x64, ARM, Windows 44

Xx86 64 Syscalls

 The syscall numbers in 32bit vs 64bit Linux are
different, so be sure you're looking at the
respective table when writing your payloads

MBE - 05/08/2015 x64, ARM, Windows 45

Xx86 64 Syscalls

 The syscall numbers in 32bit vs 64bit Linux are
different, so be sure you're looking at the
respective table when writing your payloads

exec syscall on 32bit:
exec syscall on 64bit:

MBE - 05/08/2015 x64, ARM, Windows 46

Lecture Overview

e Platform Differences
— Windows

MBE - 05/08/2015 x64, ARM, Windows

47

ARM Overview

is @ 32bit RISC instruction set bU|It for low

power devices
ARM

— Has a '16bit’ THUMB mode

MBE - 05/08/2015 x64, ARM, Windows) 48

ARM Overview

is @ 32bit RISC instruction set built for low

power devices .
A

— Has a '16bit’ THUMB mode

e Used on your phone, tablet, raspberry pi, other
small or mobile devices

, , -
— ‘low power "' |

S
(.." i - ';:@
p}i‘ ZiE N2 -

MBE - 05/08/2015 x64, ARM, Windows 49

ARM Registers

-3 use larameters
rl2 intra-| lure scratch

will be overwritten by subroutines

rd-rll

Link Register:
set by BL or BLX on entry of routine
overwritten by further use of BL or BLX

m Counter

Eegister Use in the ARM Procedure Call Standard

MBE - 05/08/2015 x64, ARM, Windows

50

ARM Calling Convention

e Calling convention is basically like fastcall
— r0-r3 hold your function arguments

MBE - 05/08/2015 x64, ARM, Windows

51

ARM Assembly

e Some /THUMB instructions can operate
on multiple registers at once

pop {r4, r5, r6, lr}

MBE - 05/08/2015 x64, ARM, Windows

52

Instruction Alignment

mode has 4 byte instruction alignment
— Can’t jump in the middle of instructions

* THUMB mode has 2 byte instructionalignment

— When ROPing there’s usually more THUMB gadgets
that will be of use due to the 2 byte alighment

MBE - 05/08/2015 x64, ARM, Windows 53

An Interesting Bit

e Because of 2 & 4 byte instruction alignment,
the lowest bit of the program counter (egrl5)
will never be set

0x080462B0
0000100000000100011000101011000

MBE - 05/08/2015 x64, ARM, Windows 54

An Interesting Bit

e Because of 2 & 4 byte instruction alignment,
the lowest bit of the program counter (egrl5)
will never be set

0x080462B0
0000100000000100011000101011000

THUMB

MBE - 05/08/2015 x64, ARM, Windows 55

An Interesting Bit

r15 = 0x080462B0
= 0000100000000100011000101011000
Interpret bytes at 0x080462B0 as AR

rl5=0x080462B1
= 00001000000001000110001010110001

Interpret bytes at 0x080462B0 as THUNIB

MBE - 05/08/2015 x64, ARM, Windows 56

Caching

* |In x86 the processor will invalidate icache lines
if the line is written to

MBE - 05/08/2015 x64, ARM, Windows 57

Caching

* |In x86 the processor will invalidate icache lines
if the line is written to

e With you have to request manual cache
flushes, or do large memory operations to
flush the cache naturally

MBE - 05/08/2015 x64, ARM, Windows 58

Caching

* |In x86 the processor will invalidate icache lines
if the line is written to

e With you have to request manual cache
flushes, or do large memory operations to
flush the cache naturally

MBE - 05/08/2015 x64, ARM, Windows 59

push edi
call gub 314623
test EaX, €ax
je short loc_31306D
CIEY [ebp+arg 0], ebx
jnz short loc_313066
um ew MoV eax, [ebp+var 70]
fasi 3] eax, [ebp+var 84]
jb short loc_313066
sub eax, [ebp+var 84]
push esi
push eax
N o push edi
e Architecture Ditterences i
call sub 31486R
test eax, €ax
j= short loc 31306D
. X86 push esi
lea eax, [ebp+arg 0]
push eax
i aytg esi, 1D0Oh
R X86 64 push esi
. push [ebp+arg 4]
push edi
call sub_ 314623
. ARIVI test gax, eax
je short loc_31306D
CINE [ebp+arg 0], esi
° j= short loc_31308F
e Platform Differences
loc 313066: ; CODE XREF: sub 312FD8
; sub 312FD8+55
° push 0Dh B
— WI ndOWS call sub 31411B
loc_31306D: s CODE XREF: sub 312FD#
;s sub 312FD&+49
call gub_3140F3
test eax, eax
jg short loc_31307D
call sub_3140F3
Jmp short loc_31308C
loc_31307D: - CODE XREF: sub 312FD#
call sub 3140F3
or eax, S0070000nR
MBE - 05/08/2015 x64, ARM, Windows 60
loc 31308C: s CODE XREF: sub 312FD8
JiiTayig [ebp+war 4], eax

Windows vs Linux

* Almost all the vulnerability classes and
exploitation techniques you have learnedin
this course will apply directly to Windows

MBE - 05/08/2015 x64, ARM, Windows 61

Windows Basics

* The executable format on Windows is .
obviously .EXE’s instead of Linux ELF’s

MBE - 05/08/2015 x64, ARM, Windows

62

DOS HEADER

SHOWS IT'S A BINARY

PE HEADER

SHOWS IT'S A MODERN BINARY

OPTIONAL HEADER

EXECUTABLE INFORMATION

DATA DRECTOREES

POINTERS TO EXTRA STRUCTURES (EXPORTS, IMPORTS,..)

HEADER

TECHNICAL DETAILS ABOUT THE EXECUTABLE

SECTIONS TABLE

DEFINES HOW THE FILE IS LOADED IN MEMORY

SIMPLE EXE

CODE

WHAT IS EXECUTED

SECTIONS

CONTENTS OF THE EXECUTABLE |MPORTS

LINK BETWEEN THE EXECUTABLE AND (WINDOWS) LIBRARES

DATA

INFORMATION USED BY THE CODE

MBE - 05/08/2015 x64, ARM, Windows

Windows Basics

e The executable format on Windows is
obviously .EXE’s instead of Linux ELF’s

e Libraries are .DLL’s, like Linux .so’s
— eg: MISVCRT.dIl is like libc

e Microsoft Visual C(++) Common Runtime

MBE - 05/08/2015 x64, ARM, Windows

64

Windows Basics

“ Dependency Walker - [Regshoi-x86-"Inicode.exe]
B Fle Edit View Options Profile Wi
Wl .2 R alE

EEaE

— ™ Al

FlushFileBuffe
FreeEnvironmentSkringshy

EEEEOaaaE

L B |

|ﬁ

MBE - 05/08/2015 x64, ARM, Windows

Windows Basics

e The executable format on Windows is
obviously .EXE’s instead of Linux ELF’s

e Libraries are .DLL’s, like Linux .so’s
— eg: MISVCRT.dIl is like libc

e Microsoft Visual C(++) Common Runtime

MBE - 05/08/2015 x64, ARM, Windows

66

Windows Debuggers

e If you're going to get rolling on Windows, try to
pick up skills debugging with WinDbg

MBE - 05/08/2015 x64, ARM, Windows 67

Windows Debuggers

e |f you're going to get rolling on Windows, try to
pick up skills debugging with WinDbg

e WIinDBG is Microsoft’s debugger
— Basically GDB with different command mappings
— Not as convenient as OllyDBG, but way less sketchy
— Best 64bit debugger

MBE - 05/08/2015 x64, ARM, Windows 68

Eile Edit W¥iew Debug ‘Window He
= EMEE SE I R I HREEEEREDOEE

pe',com_1,pipe’ - WinDbg:6.8.0004. | (|
kd> !drwcbi atspi 2 2 . ﬂ wirkual: |81?d2a68 Frevious
Driver object | 1 is for: T ——t
“IDriver-atapi Cisplay Format: |P|:|inter and Symbol j Mext
DriverEntry: £99b7974 atapi!DriverEntry
DriverStartIo: {99%acl2e atapi!ldePortStartlo 817d2a68 00280004
DriverUnload: {99bdcta atapi!ldePortUnload
AddDevice: f99b2fac atapi!ChanneliddDevice

Reg
gs
817d2abc 81791498 f=
817d2a70 00000012 e
817d2a74 £99a5000 atapi!InitleviceGeons d=
817d2a78 00015380 1502592

Dispatch routines:
TRE_M1_CREATE 9928860 atapi! IdePortilvaysStatusSuccesslrp Blfazaic Blificds 0
: fEAEE9E0

IRF MJ_CREATE HAMED PIPE s050086f nt | IopInwalidDeviceRequest 81742284 001a001a
IRP MJ_ CLOSE f9%aeltbc atapi! IdePortilvaysStatusSuccessIrp 81742288 =131bd00 3f8
IEF_HJ_READ a0s0086f nt ! IopInvalidDeviceRequest 817d2a8c 806700c8 nt!CmRegistryMachineH 8054af9c
U o DR ERmECeRs st ngoann: :

" HT_ _ nt !l IopInvalidDeviceRequest : i
IRF_MI_SET_INFORMATION B050086f nt! TopInval idDeviceRequest Blarats toohrard atapt \DeiverEntry éSEi‘E%Eﬁ
IRF_MJ_OQUERY_EA 20500861 nt!IoplnvalidDeviceRequest 817d759c f995h4c5a atapi | TdeFPortUnload g
IRP_MJ_SET_E& 20500861 nt!IopInvalidDeviceRequest 817d%540 f99a=060 atapi | TdePortalwaysSt 202
IRF_MJ_FLUSH_EUFFEES gnsooget nt | IopInvalidDeviceRequest 817d75a4 S0S0056E nt I?DlﬁInvalidDevigeRe f9edel6d
IRF_MJ_QUERY_WOLUME INFOEMATION gosoo8et nt ! IopInwvalidDeviceRequest 817d7248 f99a=060 atépi I IdePortalwaysSt sce
IRF MJ_SET_VOLUME INFOREMATION 8050086t nt | IopInwvalidDeviceRequest 817d75ac S0S00L6F nt! IDﬁInvalidDeviceRe 10
IRF MJ_DIRECTORY_CONTROL 8050086t nt | IopInwalidDeviceRequest 817d42=b0 S0S00S6F nt | IcpInvalidDeviceRe a
IRP_MJ_FILE SYSTEM_CONTROL 80500861 nt!IopInvalidDeviceRequest ﬂ 817d%ab4 B050086f nt! IopInvalidDevicsRe g

TRM WT RETITAT ~cATThAT fAA__Ana [P TN AL I N ST S | B17d50L8 B0S00G6f nt|TopTnvalidDovicoRo. | dx

817dZ2abc 8050086f nt!IoplnvalidDeviceRe
817d2ac0 8050086f nt!IarInvalidDeuiceRev dré EEEEDEE0 o
(3

4] » 4
i [B =l Exl
Offset: | f9%aclze Mext | Previous | virtual: [Ox"££££££££ 80695759 || Display format: |Byte - Previous | Yirtual: Previous |

Egg:gggg ggcn Next | Display farmat: |Pointer and
£99ac028 Sf i gggggggg Mext |
£99ac029 §
f993202a c:g 80695771 f9=del8c 00000000
f99ac02b <2000 80695774 Egege%gg gggggggg

| : 80695789 ede
ta .IdeortStartID_ 80695795 f9=d=198 00000000
£99ac02f 8 , 806957al Egege%gg gggggggg
806957ad edela
e f9=delad 00000000 e

80695709
f99%ac03z f9deslal f9=dc000 A
[»

£99ac033 ecx, dvord ptr [ebp+8] 806957c5
Ln 0, Col 0 |Sys 0:kdSkw:S |Proc 000:0 | Thrd 000:0

Wm0

DHE /oh o i
DO DNGE D s 8o
S WO0MO 0D
HeOhoHDD RE

EoecnonE0n S0

masm-

£99ac036 8b450c cax, dvord ptr [ebp+0Ch] 806357d1

MBE - 05/08/2015 x64, ARM, Windows

Windows Exploitation Basics

e Raw syscalls are virtually never seen in native
windows applications or libraries

MBE - 05/08/2015 x64, ARM, Windows

70

Windows Exploitation Basics

e Raw syscalls are virtually never seen in native
windows applications or libraries

— No more 'int " shellcode

MBE - 05/08/2015 x64, ARM, Windows

71

Windows Exploitation Basics

e Raw syscalls are virtually never seen in native
windows applications or libraries

— No more 'int " shellcode

MBE - 05/08/2015 x64, ARM, Windows

72

Windows Exploitation Basics

* Raw syscalls are virtually never seen in native
windows applications or libraries
— No more ‘int " shellcode

e Syscall numbers tend to change from version
to version of Windows and would be hard or
unreliable to code into an exploit

MBE - 05/08/2015 x64, ARM, Windows 73

ntdll.dll and kernel32.dll

e ntdll.dll —the ’ ’

— Wraps all the syscalls for the given version of
Windows, is pretty low level stuff

e kernel32.dll—the ’

— More familiar high level stuff

e OpenfFile(), ReadFile(), CreateProcess(), LoadLibrary(),
GetProcAddress(),

MBE - 05/08/2015 x64, ARM, Windows

74

Windows Fun Facts

 Most people think kernel32.dll is required by
every windows process, but ntdll.dll is infact
the only one that be loaded

MBE - 05/08/2015 x64, ARM, Windows

75

Windows Exploitation Basics

e So instead of using syscalls, an exploit will
almost always use existing

I 7 Dependency Walker - [Regshot-xB6-Linicode.exe]
: B Fle Edit Yiew Options Profile Window Help

— ™ Al

fironmentSkringsi

L B |

C]
C]
C]
C]
C]
C]
C]
C]
C]
C]
C]
C_]
C]

GebCommandLinei

|ﬁ

MBE - 05/08/2015 x64, ARM, Windows

76

Windows Exploitation Basics

e |f a function of interest is not imported by a
loaded DLL, an exploit payload will usually do
what is known as ‘ ’

— It resolves the function location manually

MBE - 05/08/2015 x64, ARM, Windows 77

Windows Exploitation Basics

e |f a function of interest is not imported by a
loaded DLL, an exploit payload will usually do
what is known as ‘ ’

— It resolves the function location manuatly

o |f GetProcAddress() is imported from
kernel32.dll, you can easily lookup functions

— Same as dlsym() on Linux

MBE - 05/08/2015 x64, ARM, Windows

78

Windows Exploitation Basics

GetProcAddress(k32h, N

MBE - 05/08/2015 x64, ARM, Windows

79

Windows XP Security

* Windows XP SP2 marked the start of the
modern security era (Summer 2004)

— Bypass — 2.2 91307

MBE - 05/08/2015 x64, ARM, Windows

80

Windows XP Security

* Windows XP SP2 marked the start of the
modern security era (Summer 2004)
— ROP

- Bypass - ?:?_?'_5:':

MBE - 05/08/2015 x64, ARM, Windows

81

Windows XP Security

* Windows XP SP2 marked the start of the
modern security era (Summer 2004)
— ROP
— Leak & replace, writfe_;gist, SEH

— Bypass — 2.2 91307

MBE - 05/08/2015 x64, ARM, Windows) 82

Windows XP Security

* Windows XP SP2 marked the start of the
modern security era (Summer 2004)
— ROP N
— Leak & replace, wri-tfe;pg_st, SEH
— Heap metadata explelts

— Bypass — 2.2 91307

MBE - 05/08/2015 x64, ARM, Windows) 83

Windows XP Security

* Windows XP SP2 marked the start of the
modern security era (Summer 2004)
— ROP N
— Leak & replace, wri-tfe;pg_st, SEH
— Heap metadata explelts

— Bypass — 2.2 91307

MBE - 05/08/2015 x64, ARM, Windows) 84

Windows XP Security

* Windows XP SP2 marked the start of the
modern security era (Summer 2004)
— ROP N
— Leak & replace, wri-tfe;pg_st, SEH
— Heap metadata explelts
— ? What is SEH/SafegiEmI_-I- ?

— Bypass — 2.2 91307

MBE - 05/08/2015 x64, ARM, Windows) 85

Structured Exception Handlinéi{f

is a lot like
assigning signal handlers on Linux

MBE - 05/08/2015 x64, ARM, Windows

86

Structured Exception Handling

is a lot like
assigning signal handlers on Linux

* You simply register an , and
if something bad like a segfault happens, code
flow is redirected to the

— Print an error message, exit semi-gracefully, etc...

MBE - 05/08/2015 x64, ARM, Windows 87

Exploiting SEH

e Exception records are placed on the

, SO

they’re relatively easy to corrupt

BE1ZEBFIC
B 1ZBF 26
BE12BF24
BE12BF 22
BE1ZEF2C
B8 1 2EBF 36
BE12EBF 24
BE1ZEF3S
B8 1ZBF3C
BE12BF46
BE1ZEBF 44
BE1ZBF45
BE12BF4C
B8 12BFSA
B8 12BFS4
BE12BFEE
B8 12BFSC

BE1ZCICE L%, Pointer to next SEH record

HE!

FOAICTHS HEpel

BREAAEE2

sEA1ZCI0E T+,

rCA16351

Rlat

BREAREEE ...
CAlSEnEs @.=t

BE1Z2CESC
BHEAREEG
BE1ZBF2C
BEZEZHER
BE1218A6

Ba12EBFR4 /

Bl ZBFAR
rFFOFBER

BE252EBES

Tirs.
D
W
aMll,
in#.
s
3+,

SE handler
ntdll.7CI1C348

RETUEH to ntdll.7C916351 from ntdll.7CoI1C205

ASCIT "S5sHA, ™

« UMICODE "™~ sC2CADRV 21487 284 d3fAeSORADI4CO1 2187 4L wman ++. B8, 236"

MBE - 05/08/2015

x64, ARM, Windows 88

Exploiting SEH

 Because you only have one gadget of
execution through an overwritten
you usually have to use it to stack pivot

MBE - 05/08/2015 x64, ARM, Windows

89

Exploiting SEH

 Because you only have one gadget of
execution through an overwritten ,
you usually have to use it to stack pivot

e Classically you could use a ‘pop pop ret’
gadget to easily return onto the smashed
stack (assumes executable stack) as a pointer
to your overwritten IS nearby

MBE - 05/08/2015 x64, ARM, Windows 90

Exploiting SEH

|
H i*—‘p- app! except handlerd

[H Ir—-} k32! except handlerd

N l H Ir—}- ntdll! except handlerd

OxfEffE£££Ef

handler ‘fu ACEsON POIRTEF

' 0x414106eb

ye called as an ex

ef

0xTcld0Bac

An exception will cause O0x7cl408ac

vtion handler as:

MBE - 05/08/2015 x64, ARM, Windows

91

SafeSEH

e SafeSEH is an additional set of checks made to
ensure that a registered exception handler has
not been corrupted

* You can enable it using the /SAFESEH flag at
compile time

MBE - 05/08/2015 x64, ARM, Windows 92

Bypassing SafeSEH

o With SafeSEH, an exception record is invalid if:
— The exception handler is pointing onto the stack

— The exception handler does not match the list of
registered exception handlers in module itis
pointing into

MBE - 05/08/2015 x64, ARM, Windows 93

Windows Vista Security

* Windows Vista was marred by instability and
performance issues, but made good progress in
terms of security

— Bypass — 22?2

MBE - 05/08/2015 x64, ARM, Windows 94

Windows Vista Security

* Windows Vista was marred by instability and
performance issues, but made good progress in
terms of security

— Info leaks, partial overwrites, non'aslr’'d code

— Bypass — 22?2

MBE - 05/08/2015 x64, ARM, Windows 95

Windows Vista Security

* Windows Vista was marred by instability and
performance issues, but made good progress in
terms of security

— Info leaks, partial overwrites, non'aslr’'d code
_7

— Bypass — 22?2

MBE - 05/08/2015 x64, ARM, Windows 96

SEH Overwrite Protection

* SEH Overwrite Protection (SEHOP) is the
second attempt Microsoft made to mitigate

MBE - 05/08/2015 x64, ARM, Windows

97

SEH Overwrite Protection

e SEH Overwrite Protection (SEHOP) is the
second attempt Microsoft made to mitigate

e When an exception is triggered, the
dispatcher attempts to walk the toa
symbolic ‘terminating’ record

MBE - 05/08/2015 x64, ARM, Windows 98

SEH Overwrite Protection

Valid SEH Chain Invalid SEH Chain

N] H l-—) app!_except_handlerd N H —» 0x7cl408ac

| N
't N J H }—} k32! _except_handlerd Ox414106eb

N | H }—) ntdll|FinalExceptionHandler

Can'treach final record!

MBE - 05/08/2015 x64, ARM, Windows

99

Bypassing SEHOP

e Bypassing SEHOP is pretty painful and
basically involves faking a chain to the
terminating record

MBE - 05/08/2015 x64, ARM, Windows 100

Windows Vista Security

* Windows Vista was marred by instability and
performance issues, but made good progress in
terms of security

— Info leaks, partial overwrites, non'aslr’'d code
— Faking SEH Chains
— More heap metadata checks

— Bypass — 22?2

MBE - 05/08/2015 x64, ARM, Windows 101

Windows 7 Security

e | don’t think much new stuff happened with
Windows 7 in terms mitigation technologies

e Mostly cleaning up stability issues from Vista

MBE - 05/08/2015 x64, ARM, Windows 102

Windows 8 Security

* Windows 8/8.1 took a big step forward in sec

— Like a Vtable Canary

— Non-deterministic.alloc. order
— A bit like canaries between heap pages

— More entropy all around
— Prevent the kernel from being live patched
— Eliminate root/boot kits with chain of trust
— Whitelist indirect calls

MBE - 05/08/2015 x64, ARM, Windows 103

Desktop Market Share, May 2015

Windows market share,

MBE - 05/08/2015 x64, ARM, Windows 104

Windows Summary

* |nthe end, Windows based exploitation isn’t too
different from Linux, but it’s quickly getting harder

MBE - 05/08/2015 x64, ARM, Windows 105

Windows Summary

* |nthe end, Windows based exploitation isn’t too
different from Linux, but it’s quickly getting harder

— Differing 64bit calling convention
— Syscalls aren’t really a thing on Windows

— New class of vulnerabilities, SEH Exploitation
 New protections, SafeSEH, SEHOP

— Better ASLR & Heap internals
— Its mitigation technologies are rapidly evolving

MBE - 05/08/2015 x64, ARM, Windows 106

	x64, ARM, Windows
	Lecture Overview
	Lecture Overview
	Lecture Overview
	x86 Overview
	x86 Overview
	x86 CPU
	x86 Registers
	x86 Registers
	x86 Registers
	x86 Registers
	x86 Calling Conventions
	x86 Misc Notes
	x86 Misc Notes
	x86 Misc Notes
	x86 Instruction Stats
	x86 Misc Notes
	x86 Long Instructions
	x86 Misc Notes
	Lecture Overview
	x86_64 Overview
	x86_64 Overview
	x86_64 Overview
	x86_64 CPU
	x86_64 Registers
	x86_64 Registers
	x86_64 Registers
	x86_64 Registers
	x86_64 Registers
	x86_64 Calling Conventions
	x86_64 Calling Conventions
	x86_64 Calling Conventions
	x86_64 Calling Conventions
	x86_64 ROP
	x86_64 ROP
	x86_64 ASLR
	x86_64 ASLR
	x86_64 ASLR
	x86_64 ASLR
	x86_64 ASLR
	x86_64 ASLR
	x86_64 Addresses
	x86_64 Addresses
	x86_64 Addresses
	x86_64 Syscalls
	x86_64 Syscalls
	Lecture Overview
	ARM Overview
	ARM Overview
	ARM Registers
	ARM Calling Convention
	ARM Assembly
	Instruction Alignment
	An Interesting Bit
	An Interesting Bit
	An Interesting Bit
	Caching
	Caching
	Caching
	Lecture Overview
	Windows vs Linux
	Windows Basics
	Slide Number 63
	Windows Basics
	Windows Basics
	Windows Basics
	Windows Debuggers
	Windows Debuggers
	WinDbg
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows Exploitation Basics
	ntdll.dll and kernel32.dll
	Windows Fun Facts
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows XP Security
	Windows XP Security
	Windows XP Security
	Windows XP Security
	Windows XP Security
	Windows XP Security
	Structured Exception Handling
	Structured Exception Handling
	Exploiting SEH
	Exploiting SEH
	Exploiting SEH
	Exploiting SEH
	SafeSEH
	Bypassing SafeSEH
	Windows Vista Security
	Windows Vista Security
	Windows Vista Security
	SEH Overwrite Protection
	SEH Overwrite Protection
	SEH Overwrite Protection
	Bypassing SEHOP
	Windows Vista Security
	Windows 7 Security
	Windows 8 Security
	Desktop Market Share, May 2015
	Windows Summary
	Windows Summary

