
x64, ARM, Windows
Modern Binary Exploitation

CSCI 4968 - Spring 2015
Markus Gaasedelen

MBE - 05/08/2015 x64, ARM, Windows 1

Lecture Overview

• This course has largely revolved around
exploiting x86 binaries on Ubuntu 14.04 i386
– Linux is easier and a bit more academic
– Same can be said about 32bit x86

MBE - 05/08/2015 x64, ARM, Windows 2

Lecture Overview

• This course has largely revolved around
exploiting x86 binaries on Ubuntu 14.04 i386
– Linux is easier and a bit more academic
– Same can be said about 32bit x86

• But how does exploitation change for x86_64
systems? ARM devices? How about Windows?

MBE - 05/08/2015 x64, ARM, Windows 3

Lecture Overview

• Architecture Differences
– x86
– x86_64
– ARM

• Platform Differences
– Windows

MBE - 05/08/2015 x64, ARM, Windows 4

x86 Overview

• x86 is a 32bit instruction set developed by Intel
– Sometimes known as x32, x86, IA32

MBE - 05/08/2015 x64, ARM, Windows 5

x86 Overview

• x86 is a 32bit instruction set developed by Intel
– Sometimes known as x32, x86, IA32

• It’s a CISC architecture that is super popular

and used all around the world
– yadayadayada, you’ve been using it all semester

MBE - 05/08/2015 x64, ARM, Windows 6

x86 CPU

MBE - 05/08/2015 x64, ARM, Windows 7

x86 Registers

MBE - 05/08/2015 x64, ARM, Windows 8

x86 Registers

MBE - 05/08/2015 x64, ARM, Windows 9

EAX

EAX (32bits)

x86 Registers

MBE - 05/08/2015 x64, ARM, Windows 10

AX

EAX (32bits)

AX (16bits)

x86 Registers

MBE - 05/08/2015 x64, ARM, Windows 11

EAX (32bits)

AH AL

AX (16bits)

 AH AL <---- (8bits each)

x86 Calling Conventions

• cdecl
– Caller cleans up the stack
– Unknown or variable # of arguments, eg printf()

• stdcall
– Callee cleans up the stack
– Standard calling convention for the Win32 API

• fastcall
– First two arguments are put into ECX, and EDX, the

rest are put onto the stack

MBE - 05/08/2015 x64, ARM, Windows 12

x86 Misc Notes

• x86 is like the wild west in computing
– “it’s like it was designed to be exploited”

MBE - 05/08/2015 x64, ARM, Windows 13

x86 Misc Notes

• x86 is like the wild west in computing
– “it’s like it was designed to be exploited”
– No instruction alignment, and you can jump in the

middle of instructions (great for ROP Gadgets)

MBE - 05/08/2015 x64, ARM, Windows 14

x86 Misc Notes

• x86 is like the wild west in computing
– “it’s like it was designed to be exploited”
– No instruction alignment, and you can jump in the

middle of instructions (great for ROP Gadgets)
– Hundreds of instructions, many rarely used

MBE - 05/08/2015 x64, ARM, Windows 15

x86 Instruction Stats

MBE - 05/08/2015 x64, ARM, Windows 16

http://www.strchr.com/x86_machine_code_statistics

x86 Misc Notes

• x86 is like the wild west in computing
– “it’s like it was designed to be exploited”
– No instruction alignment, and you can jump in the

middle of instructions (great for ROP Gadgets)
– Hundreds of instructions, many rarely used
– Instructions can range from 1 byte long, to 15

bytes long!

MBE - 05/08/2015 x64, ARM, Windows 17

x86 Long Instructions

lock add DWORD PTR ds:[esi+ecx*4+0x12345678],0xefcdab89

67 66 f0 3e 81 84 8e 78 56 34 12 89 ab cd ef

(from http://blog.onlinedisassembler.com/blog/?p=23)

MBE - 05/08/2015 x64, ARM, Windows 18

x86 Misc Notes

• x86 is like the wild west in computing
– “it’s like it was designed to be exploited”
– No instruction alignment, and you can jump in the

middle of instructions (great for ROP Gadgets)
– Hundreds of instructions, many rarely used
– Instructions can range from 1 byte long, to 15

bytes long!

• It’s the devil’s playground

MBE - 05/08/2015 x64, ARM, Windows 19

Lecture Overview

• Architecture Differences
– x86
– x86_64
– ARM

• Platform Differences
– Windows

MBE - 05/08/2015 x64, ARM, Windows 20

x86_64 Overview

• x86_64 is the 64bit successor to 32bit x86
– Sometimes known as x64, x86_64, AMD64

MBE - 05/08/2015 x64, ARM, Windows 21

x86_64 Overview

• x86_64 is the 64bit successor to 32bit x86
– Sometimes known as x64, x86_64, AMD64

• We’re well into the 64bit era at this point with

32bit x86 machines slowly on their way out

MBE - 05/08/2015 x64, ARM, Windows 22

x86_64 Overview

• x86_64 is the 64bit successor to 32bit x86
– Sometimes known as x64, x86_64, AMD64

• We’re well into the 64bit era at this point with

32bit x86 machines slowly on their way out

• x86_64 is Bigger, better, faster… and familiar!

MBE - 05/08/2015 x64, ARM, Windows 23

x86_64 CPU

MBE - 05/08/2015 x64, ARM, Windows 24

x86_64 Registers

MBE - 05/08/2015 x64, ARM, Windows 25

• Pretty similar to x86, but with a few upgrades
– General Purpose Registers

• Everything starts with R instead of E - RAX, RBX, RCX...
• GPR’s are now 64bit, not 32bit
• There is now 8 more GPR’s for use - R8 to R15

– More XMM* registers (128 bits)

x86_64 Registers

MBE - 05/08/2015 x64, ARM, Windows 26

x86_64 Registers

MBE - 05/08/2015 x64, ARM, Windows 27

RAX

RAX (64bits)

x86_64 Registers

MBE - 05/08/2015 x64, ARM, Windows 28

EAX (32bits)

AX (16bits)

 AL AH

RAX (64bits)

x86_64 Registers

MBE - 05/08/2015 x64, ARM, Windows 29

x86_64 Calling Conventions

• The 64bit calling convention is a lot like 32bit
fastcall where arguments are put into registers

MBE - 05/08/2015 x64, ARM, Windows 30

x86_64 Calling Conventions

• The 64bit calling convention is a lot like 32bit
fastcall where arguments are put into registers

• But Linux and Windows use different registers
for their respective calling conventions

MBE - 05/08/2015 x64, ARM, Windows 31

x86_64 Calling Conventions

• The 64bit calling convention is a lot like 32bit
fastcall where arguments are put into registers

• But Linux and Windows use different registers
for their respective calling conventions
– Linux: RDI, RSI, RDX, RCX, R8, R9
– Windows: RCX, RDX, R8, R9

MBE - 05/08/2015 x64, ARM, Windows 32

x86_64 Calling Conventions

• The 64bit calling convention is a lot like 32bit
fastcall where arguments are put into registers

• But Linux and Windows use different registers
for their respective calling conventions
– Linux: RDI, RSI, RDX, RCX, R8, R9
– Windows: RCX, RDX, R8, R9

(any other arguments are pushed onto the stack)

MBE - 05/08/2015 x64, ARM, Windows 33

x86_64 ROP

• Chaining multiple function calls via ROP is way
easier on 64bit
– Why?

MBE - 05/08/2015 x64, ARM, Windows 34

x86_64 ROP

• Chaining multiple function calls via ROP is way
easier on 64bit
– Why?

• You simply load function arguments into
registers, they don’t need to be on the stack!

MBE - 05/08/2015 x64, ARM, Windows 35

x86_64 ASLR

• 64bit address space means better ASLR
– ‘better’ simply means more entropy to bruteforce
– Bruteforcing ASLR on 64bit is rarely done

MBE - 05/08/2015 x64, ARM, Windows 36

x86_64 ASLR

MBE - 05/08/2015 x64, ARM, Windows 37

doom@upwn64:~$ cat /proc/self/maps
(the same segment after multiple runs)
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887
...

x86_64 ASLR

MBE - 05/08/2015 x64, ARM, Windows 38

doom@upwn64:~$ cat /proc/self/maps
(the same segment after multiple runs)
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887
...
7f6fa368e000-7f6fa3849000 r-xp 00000000 08:01 922887
...

x86_64 ASLR

MBE - 05/08/2015 x64, ARM, Windows 39

doom@upwn64:~$ cat /proc/self/maps
(the same segment after multiple runs)
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887
...
7f6fa368e000-7f6fa3849000 r-xp 00000000 08:01 922887
...
7f974db38000-7f974dcf3000 r-xp 00000000 08:01 922887
...

x86_64 ASLR

MBE - 05/08/2015 x64, ARM, Windows 40

doom@upwn64:~$ cat /proc/self/maps
(the same segment after multiple runs)
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887
...
7f6fa368e000-7f6fa3849000 r-xp 00000000 08:01 922887
...
7f974db38000-7f974dcf3000 r-xp 00000000 08:01 922887
...

x86_64 ASLR

MBE - 05/08/2015 x64, ARM, Windows 41

doom@upwn64:~$ cat /proc/self/maps
(the same segment after multiple runs)
7f638218c000-7f6382347000 r-xp 00000000 08:01 922887
...
7f6fa368e000-7f6fa3849000 r-xp 00000000 08:01 922887
...
7f974db38000-7f974dcf3000 r-xp 00000000 08:01 922887
...

At least 7 nibbles of libc is changing per run on Ubuntu 14.04 x64
7 (nibbles) * 4 (bits) = 28

228 bruteforce
0.0000000037% exploit reliability!

x86_64 Addresses

• 64bit addresses almost always have a NULL
upper byte, meaning ROP chains and string
functions (eg strncpy) don’t get along

MBE - 05/08/2015 x64, ARM, Windows 42

x86_64 Addresses

MBE - 05/08/2015 x64, ARM, Windows 43

doom@upwn64:~$ cat /proc/self/maps
00400000-0040b000 r-xp 00000000 08:01 790596 /bin/cat
0060a000-0060b000 r--p 0000a000 08:01 790596 /bin/cat
0060b000-0060c000 rw-p 0000b000 08:01 790596 /bin/cat
...
7fc6a4788000-7fc6a4943000 r-xp 00000000 08:01 922887 libc-2.19.so
7fc6a4943000-7fc6a4b42000 ---p 001bb000 08:01 922887 libc-2.19.so
7fc6a4b42000-7fc6a4b46000 r--p 001ba000 08:01 922887 libc-2.19.so
7fc6a4b46000-7fc6a4b48000 rw-p 001be000 08:01 922887 libc-2.19.so
...

x86_64 Addresses

MBE - 05/08/2015 x64, ARM, Windows 44

doom@upwn64:~$ cat /proc/self/maps
00400000-0040b000 r-xp 00000000 08:01 790596 /bin/cat
0060a000-0060b000 r--p 0000a000 08:01 790596 /bin/cat
0060b000-0060c000 rw-p 0000b000 08:01 790596 /bin/cat
...
7fc6a4788000-7fc6a4943000 r-xp 00000000 08:01 922887 libc-2.19.so
7fc6a4943000-7fc6a4b42000 ---p 001bb000 08:01 922887 libc-2.19.so
7fc6a4b42000-7fc6a4b46000 r--p 001ba000 08:01 922887 libc-2.19.so
7fc6a4b46000-7fc6a4b48000 rw-p 001be000 08:01 922887 libc-2.19.so
...

0x0000000000400000 - 0x000000000040b000
0x00007fc6a4788000 - 0x00007fc6a4943000

These are 64bit addresses, so yes there’s plenty of space for nulls

x86_64 Syscalls

• The syscall numbers in 32bit vs 64bit Linux are
different, so be sure you’re looking at the
respective table when writing your payloads

MBE - 05/08/2015 x64, ARM, Windows 45

x86_64 Syscalls

• The syscall numbers in 32bit vs 64bit Linux are
different, so be sure you’re looking at the
respective table when writing your payloads

 exec syscall on 32bit: 0x0b
 exec syscall on 64bit: 0x3b

MBE - 05/08/2015 x64, ARM, Windows 46

Lecture Overview

• Architecture Differences
– x86
– x86_64
– ARM

• Platform Differences
– Windows

MBE - 05/08/2015 x64, ARM, Windows 47

ARM Overview

• ARM is a 32bit RISC instruction set built for low
power devices
– Has a ’16bit’ THUMB mode

MBE - 05/08/2015 x64, ARM, Windows 48

ARM Overview

• ARM is a 32bit RISC instruction set built for low
power devices
– Has a ’16bit’ THUMB mode

• Used on your phone, tablet, raspberry pi, other
small or mobile devices
– ‘low power’

MBE - 05/08/2015 x64, ARM, Windows 49

ARM Registers

MBE - 05/08/2015 x64, ARM, Windows 50

ARM Calling Convention

• Calling convention is basically like fastcall
– r0-r3 hold your function arguments

MBE - 05/08/2015 x64, ARM, Windows 51

ARM Assembly

• Some ARM/THUMB instructions can operate
on multiple registers at once

 pop {r4, r5, r6, lr}
 ...

MBE - 05/08/2015 x64, ARM, Windows 52

Instruction Alignment

• ARM mode has 4 byte instruction alignment
– Can’t jump in the middle of instructions

• THUMB mode has 2 byte instruction alignment
– When ROPing there’s usually more THUMB gadgets

that will be of use due to the 2 byte alignment

MBE - 05/08/2015 x64, ARM, Windows 53

An Interesting Bit

• Because of 2 & 4 byte instruction alignment,
the lowest bit of the program counter (eg r15)
will never be set

 0x080462B0
 00001000000001000110001010110000

MBE - 05/08/2015 x64, ARM, Windows 54

An Interesting Bit

• Because of 2 & 4 byte instruction alignment,
the lowest bit of the program counter (eg r15)
will never be set

 0x080462B0
 00001000000001000110001010110000

MBE - 05/08/2015 x64, ARM, Windows 55

This bit is re-purposed to tell the processor if we
are in THUMB mode or ARM mode

An Interesting Bit

r15 = 0x080462B0
 = 00001000000001000110001010110000

Interpret bytes at 0x080462B0 as ARM

r15 = 0x080462B1
 = 00001000000001000110001010110001

Interpret bytes at 0x080462B0 as THUMB

MBE - 05/08/2015 x64, ARM, Windows 56

Caching

• In x86 the processor will invalidate icache lines
if the line is written to

MBE - 05/08/2015 x64, ARM, Windows 57

Caching

• In x86 the processor will invalidate icache lines
if the line is written to

• With ARM you have to request manual cache
flushes, or do large memory operations to
flush the cache naturally

MBE - 05/08/2015 x64, ARM, Windows 58

Caching

• In x86 the processor will invalidate icache lines
if the line is written to

• With ARM you have to request manual cache
flushes, or do large memory operations to
flush the cache naturally
– Can get annoying in exploitation
– ‘what you seez, may not beez what it iz ‘

MBE - 05/08/2015 x64, ARM, Windows 59

Lecture Overview

• Architecture Differences
– x86
– x86_64
– ARM

• Platform Differences
– Windows

MBE - 05/08/2015 x64, ARM, Windows 60

Windows vs Linux

• Almost all the vulnerability classes and
exploitation techniques you have learned in
this course will apply directly to Windows

MBE - 05/08/2015 x64, ARM, Windows 61

Windows Basics

• The executable format on Windows is
obviously .EXE’s instead of Linux ELF’s

MBE - 05/08/2015 x64, ARM, Windows 62

MBE - 05/08/2015 x64, ARM, Windows 63

Windows Basics

• The executable format on Windows is
obviously .EXE’s instead of Linux ELF’s

• Libraries are .DLL’s, like Linux .so’s
– eg: MSVCRT.dll is like libc

• Microsoft Visual C(++) Common Runtime

MBE - 05/08/2015 x64, ARM, Windows 64

Windows Basics

MBE - 05/08/2015 x64, ARM, Windows 65

Loaded DLL’s

Windows Basics

• The executable format on Windows is
obviously .EXE’s instead of Linux ELF’s

• Libraries are .DLL’s, like Linux .so’s
– eg: MSVCRT.dll is like libc

• Microsoft Visual C(++) Common Runtime

• A process usually loads lots of libs (dll’s)

MBE - 05/08/2015 x64, ARM, Windows 66

Windows Debuggers

• If you’re going to get rolling on Windows, try to
pick up skills debugging with WinDbg EARLY

MBE - 05/08/2015 x64, ARM, Windows 67

Windows Debuggers

• If you’re going to get rolling on Windows, try to
pick up skills debugging with WinDbg EARLY

• WinDBG is Microsoft’s debugger
– Basically GDB with different command mappings
– Not as convenient as OllyDBG, but way less sketchy
– Best 64bit debugger

MBE - 05/08/2015 x64, ARM, Windows 68

WinDbg

MBE - 05/08/2015 x64, ARM, Windows 69

Windows Exploitation Basics

• Raw syscalls are virtually never seen in native
windows applications or libraries

MBE - 05/08/2015 x64, ARM, Windows 70

Windows Exploitation Basics

• Raw syscalls are virtually never seen in native
windows applications or libraries
– No more `int 0x80` shellcode

MBE - 05/08/2015 x64, ARM, Windows 71

Windows Exploitation Basics

• Raw syscalls are virtually never seen in native
windows applications or libraries
– No more `int 0x80` shellcode
– Why?

MBE - 05/08/2015 x64, ARM, Windows 72

Windows Exploitation Basics

• Raw syscalls are virtually never seen in native
windows applications or libraries
– No more `int 0x80` shellcode
– Why?

• Syscall numbers tend to change from version
to version of Windows and would be hard or
unreliable to code into an exploit

MBE - 05/08/2015 x64, ARM, Windows 73

ntdll.dll and kernel32.dll

• ntdll.dll – the ‘Native API’
– Wraps all the syscalls for the given version of

Windows, is pretty low level stuff

• kernel32.dll – the ‘Win32 API’
– More familiar high level stuff

• OpenFile(), ReadFile(), CreateProcess(), LoadLibrary(),
GetProcAddress(),

MBE - 05/08/2015 x64, ARM, Windows 74

Windows Fun Facts

• Most people think kernel32.dll is required by
every windows process, but ntdll.dll is infact
the only one that MUST be loaded

MBE - 05/08/2015 x64, ARM, Windows 75

Windows Exploitation Basics

• So instead of using syscalls, an exploit will
almost always use existing imported functions

MBE - 05/08/2015 x64, ARM, Windows 76

Windows Exploitation Basics

• If a function of interest is not imported by a
loaded DLL, an exploit payload will usually do
what is known as ‘walking the IAT’
– It resolves the function location manually

MBE - 05/08/2015 x64, ARM, Windows 77

Windows Exploitation Basics

• If a function of interest is not imported by a
loaded DLL, an exploit payload will usually do
what is known as ‘walking the IAT’
– It resolves the function location manually

• If GetProcAddress() is imported from
kernel32.dll, you can easily lookup functions
– Same as dlsym() on Linux

MBE - 05/08/2015 x64, ARM, Windows 78

Windows Exploitation Basics

GetProcAddress(k32h, “CreateProcess”);

...

Looking up the CreateProcess function

MBE - 05/08/2015 x64, ARM, Windows 79

Windows XP Security

• Windows XP SP2 marked the start of the
modern security era (Summer 2004)

MBE - 05/08/2015 x64, ARM, Windows 80

Protection – Bypass – ???

Windows XP Security

• Windows XP SP2 marked the start of the
modern security era (Summer 2004)
– Hardware Enforced DEP – ROP

MBE - 05/08/2015 x64, ARM, Windows 81

Protection – Bypass – ???

Windows XP Security

• Windows XP SP2 marked the start of the
modern security era (Summer 2004)
– Hardware Enforced DEP – ROP
– Stack Cookies (GS) – Leak & replace, write past, SEH

MBE - 05/08/2015 x64, ARM, Windows 82

Protection – Bypass – ???

Windows XP Security

• Windows XP SP2 marked the start of the
modern security era (Summer 2004)
– Hardware Enforced DEP – ROP
– Stack Cookies (GS) – Leak & replace, write past, SEH
– Safe heap unlinking – Heap metadata exploits

MBE - 05/08/2015 x64, ARM, Windows 83

Protection – Bypass – ???

Windows XP Security

• Windows XP SP2 marked the start of the
modern security era (Summer 2004)
– Hardware Enforced DEP – ROP
– Stack Cookies (GS) – Leak & replace, write past, SEH
– Safe heap unlinking – Heap metadata exploits
– SafeSEH – ?

MBE - 05/08/2015 x64, ARM, Windows 84

Protection – Bypass – ???

Windows XP Security

• Windows XP SP2 marked the start of the
modern security era (Summer 2004)
– Hardware Enforced DEP – ROP
– Stack Cookies (GS) – Leak & replace, write past, SEH
– Safe heap unlinking – Heap metadata exploits
– SafeSEH – ? What is SEH/SafeSEH ?

MBE - 05/08/2015 x64, ARM, Windows 85

Protection – Bypass – ???

Structured Exception Handling

• Structured Exception Handling is a lot like
assigning signal handlers on Linux

MBE - 05/08/2015 x64, ARM, Windows 86

Structured Exception Handling

• Structured Exception Handling is a lot like
assigning signal handlers on Linux

• You simply register an exception handler, and
if something bad like a segfault happens, code
flow is redirected to the handler
– Print an error message, exit semi-gracefully, etc…

MBE - 05/08/2015 x64, ARM, Windows 87

Exploiting SEH

• Exception records are placed on the stack, so
they’re relatively easy to corrupt

MBE - 05/08/2015 x64, ARM, Windows 88

Exploiting SEH

MBE - 05/08/2015 x64, ARM, Windows 89

• Because you only have one gadget of
execution through an overwritten SEH record,
you usually have to use it to stack pivot

Exploiting SEH

MBE - 05/08/2015 x64, ARM, Windows 90

• Because you only have one gadget of
execution through an overwritten SEH record,
you usually have to use it to stack pivot

• Classically you could use a ‘pop pop ret’
gadget to easily return onto the smashed
stack (assumes executable stack) as a pointer
to your overwritten SEH record is nearby

Exploiting SEH

MBE - 05/08/2015 x64, ARM, Windows 91

SafeSEH

• SafeSEH is an additional set of checks made to
ensure that a registered exception handler has
not been corrupted

• You can enable it using the /SAFESEH flag at
compile time

MBE - 05/08/2015 x64, ARM, Windows 92

Bypassing SafeSEH

• With SafeSEH, an exception record is invalid if:
– The exception handler is pointing onto the stack
– The exception handler does not match the list of

registered exception handlers in module it is
pointing into

MBE - 05/08/2015 x64, ARM, Windows 93

Windows Vista Security

• Windows Vista was marred by instability and
performance issues, but made good progress in
terms of security

MBE - 05/08/2015 x64, ARM, Windows 94

Protection – Bypass – ???

Windows Vista Security

• Windows Vista was marred by instability and
performance issues, but made good progress in
terms of security
– ASLR – Info leaks, partial overwrites, non aslr’d code

MBE - 05/08/2015 x64, ARM, Windows 95

Protection – Bypass – ???

Windows Vista Security

• Windows Vista was marred by instability and
performance issues, but made good progress in
terms of security
– ASLR – Info leaks, partial overwrites, non aslr’d code
– SEHOP – ?

MBE - 05/08/2015 x64, ARM, Windows 96

Protection – Bypass – ???

SEH Overwrite Protection

• SEH Overwrite Protection (SEHOP) is the
second attempt Microsoft made to mitigate
SEH exploitation

MBE - 05/08/2015 x64, ARM, Windows 97

SEH Overwrite Protection

• SEH Overwrite Protection (SEHOP) is the
second attempt Microsoft made to mitigate
SEH exploitation

• When an exception is triggered, the SEH
dispatcher attempts to walk the SEH chain to a
symbolic ‘terminating’ record
– If this record cannot be reached, the chain is bad

MBE - 05/08/2015 x64, ARM, Windows 98

SEH Overwrite Protection

MBE - 05/08/2015 x64, ARM, Windows 99

Bypassing SEHOP

• Bypassing SEHOP is pretty painful and
basically involves faking a chain to the
terminating record

MBE - 05/08/2015 x64, ARM, Windows 100

Windows Vista Security

• Windows Vista was marred by instability and
performance issues, but made good progress in
terms of security
– ASLR – Info leaks, partial overwrites, non aslr’d code
– SEHOP – Faking SEH Chains
– Heap Hardening – More heap metadata checks

MBE - 05/08/2015 x64, ARM, Windows 101

Protection – Bypass – ???

Windows 7 Security

• I don’t think much new stuff happened with
Windows 7 in terms mitigation technologies

• Mostly cleaning up stability issues from Vista

MBE - 05/08/2015 x64, ARM, Windows 102

Windows 8 Security

• Windows 8/8.1 took a big step forward in sec
– Enhanced GS (Stack Cookies)
– VTGuard – Like a Vtable Canary
– Heap Hardening

• Allocation order randomization – Non-deterministic alloc. order
• Guard pages – A bit like canaries between heap pages

– ASLR Entropy Improvements – More entropy all around
– PatchGuard – Prevent the kernel from being live patched
– Secure Boot – Eliminate root/boot kits with chain of trust
– Control Flow Guard – Whitelist indirect calls

MBE - 05/08/2015 x64, ARM, Windows 103

Desktop Market Share, May 2015

Windows market share, ~90.93%

MBE - 05/08/2015 x64, ARM, Windows 104

Windows Summary

• In the end, Windows based exploitation isn’t too
different from Linux, but it’s quickly getting harder

•
•

MBE - 05/08/2015 x64, ARM, Windows 105

Windows Summary

• In the end, Windows based exploitation isn’t too
different from Linux, but it’s quickly getting harder

• Some main takeaways
– Differing 64bit calling convention
– Syscalls aren’t really a thing on Windows
– New class of vulnerabilities, SEH Exploitation

• New protections, SafeSEH, SEHOP
– Better ASLR & Heap internals
– Its mitigation technologies are rapidly evolving

MBE - 05/08/2015 x64, ARM, Windows 106

	x64, ARM, Windows
	Lecture Overview
	Lecture Overview
	Lecture Overview
	x86 Overview
	x86 Overview
	x86 CPU
	x86 Registers
	x86 Registers
	x86 Registers
	x86 Registers
	x86 Calling Conventions
	x86 Misc Notes
	x86 Misc Notes
	x86 Misc Notes
	x86 Instruction Stats
	x86 Misc Notes
	x86 Long Instructions
	x86 Misc Notes
	Lecture Overview
	x86_64 Overview
	x86_64 Overview
	x86_64 Overview
	x86_64 CPU
	x86_64 Registers
	x86_64 Registers
	x86_64 Registers
	x86_64 Registers
	x86_64 Registers
	x86_64 Calling Conventions
	x86_64 Calling Conventions
	x86_64 Calling Conventions
	x86_64 Calling Conventions
	x86_64 ROP
	x86_64 ROP
	x86_64 ASLR
	x86_64 ASLR
	x86_64 ASLR
	x86_64 ASLR
	x86_64 ASLR
	x86_64 ASLR
	x86_64 Addresses
	x86_64 Addresses
	x86_64 Addresses
	x86_64 Syscalls
	x86_64 Syscalls
	Lecture Overview
	ARM Overview
	ARM Overview
	ARM Registers
	ARM Calling Convention
	ARM Assembly
	Instruction Alignment
	An Interesting Bit
	An Interesting Bit
	An Interesting Bit
	Caching
	Caching
	Caching
	Lecture Overview
	Windows vs Linux
	Windows Basics
	Slide Number 63
	Windows Basics
	Windows Basics
	Windows Basics
	Windows Debuggers
	Windows Debuggers
	WinDbg
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows Exploitation Basics
	ntdll.dll and kernel32.dll
	Windows Fun Facts
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows Exploitation Basics
	Windows XP Security
	Windows XP Security
	Windows XP Security
	Windows XP Security
	Windows XP Security
	Windows XP Security
	Structured Exception Handling
	Structured Exception Handling
	Exploiting SEH
	Exploiting SEH
	Exploiting SEH
	Exploiting SEH
	SafeSEH
	Bypassing SafeSEH
	Windows Vista Security
	Windows Vista Security
	Windows Vista Security
	SEH Overwrite Protection
	SEH Overwrite Protection
	SEH Overwrite Protection
	Bypassing SEHOP
	Windows Vista Security
	Windows 7 Security
	Windows 8 Security
	Desktop Market Share, May 2015
	Windows Summary
	Windows Summary

