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Afterword

When writing about data compression, | am haunted by the idea that many of the techniques
discussed in this book have been patented by their inventors or others. The knowledge that a data
compression algorithm can effectively be taken out of the hands of programmers through the use of
so-called “intellectual property” law seems contrary to the basic principles that led me and many
othersinto this profession.

| have yet to see any evidence that applying patents to software advances that art or protects the
rights of inventors. Several companies continue to collect royalties on patents long after their
inventors have moved onto bigger and better thing with other companies. Have the patent-holders
done anything notable other than collect royalties? Have they advanced the art of computer science?

Making a software product into a commercial success requires innovation, good design, high-quality
documentation, and listening to customers. These are things that nobody can steal from you. On the
other hand, a mountain of patents can’t keep you from letting these things slip away through
inattention or complacency. Thislesson seems to be lost on those who traffic in intellectual property
“portfolios.”

What can you do? First, don’t patent your own work, and discourage your peers from doing so.
Work on improving your products, not erecting legal obstacles to competition. Secondly, lobby for
change. This means change within your company, those you do business with, and most importantly,
within the federal government. Write to your congressman and your senator. Write to the ACM.
Write to the House Subcommittee on Intellectual Property. And finally, you can join me by
becoming a member of the League for Programming Freedom. Write for more information:

L eague For Programming Freedom
1 Kendall Square #143

P.O. Box 9171

Cambridge, MA 02139



| concluded, we kinotropists must be numbered among Britain's most adept programmers of
Enginery of any sort, and virtually all advances on the compression of data have originated as
kinotropic applications.

At this point, he interrupted again, asking if | had indeed said "the compression of data," and was |
familiar with the term "algorithmic compression”? | assured him | was.

The Difference Engine

William Gibson and Bruce Sterling

Why ThisBook IsFor You

If you want to learn how programs like PKZIP and LHarc work, this book isfor you. The
compression techniques used in these programs are described in detail, accompanied by working
code. After reading this book, even the novice C programmer will be able to write a complete
compression/archiving program that can be ported to virtually any operating system or hardware
platform.

If you want to include data compression in other programs you write, this book will become an
invaluabletool. It contains dozens of working programs with C code that can easily be added to your
applications. In-depth discussions of various compression methods will help you make intelligent
decisions when creating programs that use data compression.

If you want to learn why lossy compression of graphicsisthe key factor in enabling the multimedia
revolution, you need this book. DCT-based compression like that used by the JPEG algorithm is
described in detail. The cutting edge technology of fractal compression is explained in useful terms,
instead of the purly theoretical. Working programs let you experiment with these fascinating new
technologies.

The Data Compression Book provides you with a comprehensive reference to this important field.
No other book available has the detailed description of compression algorithms or working C
implementations for those algorithms. If you are planning to work in this field, The Data
Compression Book isindispensable.
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Chapter 1
I ntroduction to Data Compression

The primary purpose of this book is to explain various data-compression techniques using the C
programming language. Data compression seeks to reduce the number of bits used to store or
transmit information. It encompasses awide variety of software and hardware compression
techniques which can be so unlike one another that they have little in common except that they
compress data. The LZW algorithm used in the Compuserve GIF specification, for example, has
virtually nothing in common with the CCITT G.721 specification used to compress digitized voice
over phone lines.

This book will not take a comprehensive ook at every variety of data compression. Thefield has
grown in the last 25 years to a point where thisis simply not possible. What this book will cover are
the various types of data compression commonly used on personal and midsized computers,
including compression of binary programs, data, sound, and graphics.

Furthermore, this book will either ignore or only lightly cover data-compression techniques that rely
on hardware for practical use or that require hardware applications. Many of today’ s voice-
compression schemes were designed for the worldwide fixed-bandwidth digital telecommunications
networks. These compression schemes are intellectually interesting, but they require a specific type
of hardware tuned to the fixed bandwidth of the communications channel. Different algorithms that
don’'t have to meet this requirement are used to compress digitized voice on a PC, and these
algorithms generally offer better performance.

Some of the most interesting areas in data compression today, however, do concern compression
techniques just becoming possible with new and more powerful hardware. Lossy image
compression, like that used in multimedia systems, for example, can now be implemented on
standard desktop platforms. This book will cover practical ways to both experiment with and
implement some of the algorithms used in these techniques.

The Audience

Y ou will need basic programming skills to adequately discuss data-compression code. The ability to
follow block-structured code, such as C or Pascal, is arequirement. In addition, understanding
computer architecture well enough to follow bit-oriented operations, such as shifting, logical ORing
and ANDing, and so on, will be essential.

This does not mean that you need to be a C guru for this book to be worthwhile. You don’t even
have to be a programmer. But the ability to follow code will be essential, because the concepts
discussed here will beillustrated with portable C programs. The C code in this book has been written
with an eye toward simplicity in the hopes that C novices will still be able to follow the programs.
We will avoid the more esoteric constructs of C, but the code will be working tested C—no
pseudocode or English.

Why C?

The use of C to illustrate data-compression algorithms may rai se some hackles, although less so
these days than when the first edition of this book came out. A more traditional way to write this
book would have been to use pseudocode to sketch out the algorithms. But the lack of rigor in a
pseudocode “program” often leads to hazy or incomplete definitions full of lines like “PROCESS
FILE UNTIL OUT OF DATA.” Theresult isthat pseudocode is easy to read, but not so easy to
trand ate into aworking program.



If pseudocode is unsatisfactory, the next best choice is to use a conventional programming language.
Though hundreds of choices are available, C seems the best choice for this type of book for several
good reasons. First, in many respects C has become the lingua franca of programmers. That C
compilers support computers ranging from alowly 8051 microcontroller to supercomputers capable
of 100 million instructions per second (MIPS) has had much to do with this. It doesn’t mean that C is
the language of choice for all programmers. What it does mean is that most programmers should
have a C compiler available for their machines, and most are probably regularly exposed to C code.
Because of this, many programmers who use other languages can still manage to code in C, and even
more can at least read C.

A second reason for using C isthat it is alanguage without too many surprises. The few constructs it
uses as basic language elements are easily trangated to other languages. So a data-compression
program that isillustrated using C can be converted to a working Pascal program through arelatively
straightforward translation procedure. Even assembly-language programmers should find the process
relatively painless.

Perhaps the most important reason for using C is simply one of efficiency. C is often thought of asa
high-level assembly language, since it allows programmers to get close to the hardware. Despite the
increasing optimization found in recent C compilers, it is not likely that C will ever exceed the speed
or size possible in hand-coded assembly language. That flaw is offset, however, by the ability to
easily port C code to other machines. So for abook of thistype, C is probably the most efficient
choice.

Which C?

Despite being advertised as a“ portable” language, a C program that compiles and executes on a
given machine is not guaranteed to run on any other. It may not even compile using a different
compiler on the same machine. The important thing to remember is not that C is portable, but that it
can be portable. The code for this book has been written to be portable, and it compiles and runs
cleanly using several compilers and environments. The compilers/environments used here include:

Microsoft Visual C++ 1.5, MS-DOS 5.0/6.22

Borland C++ 4.0-4.5, MS-DOS 5.0/6.22

Symantec C++ 6.0-7.0, MS-DOS 5.0/6.22

Interactive Unix System 3.2 with the portable C compiler
Solaris 2.4 with SunSoft compiler

Linux 1.1 with the GNU C compiler

Issuesin Writing Portable C

One important portability issueis library function calls. Though the C programming language was
fairly well defined by the original K&R book (Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language [Englewood Cliffs, NJ.: Prentice-Hall, 1978)), the run-time library
implementation was left totally up to the whims of the implementor. Fortunately, the American
National Standards Institute was able to complete the C language specification in 1990, and the
result was published as ANSI standard XJ11.34. This standard not only expanded and pinned down
the original K& R language specification, but it also took on the definition of a standard C run-time
library. This makes it much easier to write code that works the same way from machine to machine.
The code in this book will be written with the intention of using only ANSI C library calls.
Compiler-dependent extensions to either the language or the library will be avoided wherever
possible.

Given the standardization of the libraries, the remaining portability issues center around two things:



sizes of the basic data types and dealing with noncompliant compilers. The mgjority of data-type
conflicts arise when switching between 16- and 32-bit machines.

Fortunately, it isfairly easy to manage the change between 16- and 32-bit machines. Though the
basic integer data type switches between 16- and 32-bits, both machines have a 16-bit “short int”
datatype. Once again, a“longint” is generally 32 bits on both machines. So in cases where the size
of an integer clearly matters, it can be pinned down to either 16-or 32-bits with the appropriate
declaration.

On the vast majority of machines used in the world today, the C compiler implementation of the
“char” datatypeis 8 bitswide. In this book, we will gloss over the possibility that any other size
exists and stick with 8-bit characters. In general, porting a program shown here to a machine with an
unusual char sizeis not too difficult, but spending too much time on it will obscure the important
point of the programs here, which is data compression.

Thefinal issue to deal with when writing portable code is the problem of noncompliant compilers. In
the MS-DOS world, most C compilers undergo major releases and upgrades every two years or so.
This means that most compiler vendors have been able to release new versions of their compilers
that now conform closely to the ANSI C standard. But thisis not the case for users of many other
operating systems. In particular, UNIX users will frequently be using a C compiler which came with
their system and which conforms to the older K& R language definition. Whilethe ANSI C
committee went to great lengths to make ANSI C upwardly compatible from K&R C, we need to
watch out for afew problems.

Thefirst problem liesin the use of function prototypes. Under K&R C, function prototypes were
generally used only when necessary. The compiler assumed that any unseen function returned an
integer, and it accepted this without complaint. If afunction returned something unusual—a pointer
or along, for instance—the programmer would write a function prototype to inform the compiler.

long | ocate_string();

Here, the prototype told the compiler to generate code that assumes that the function returned along
instead of an int. Function prototypes didn’t have much more use than that. Because of this, many C
programmers working under a K& R regime made little or no use of function prototypes, and their
appearance in a program was something of an oddity.

While the ANSI C committee tried not to alter the basic nature of C, they were unable to pass up the
potential improvements to the language that were possible through the expansion of the prototyping
facility. Under ANSI C, afunction prototype defines not only the return type of afunction, but also
the type of al the arguments as well. The function shown earlier, for example, might have the
following prototype with an ANSI C compiler:

long locate_string( FILE *input _file, char *string );

This lets the compiler generate the correct code for the return type and check for the correct type and
number of arguments as well. Since passing the wrong type or number of argumentsto afunction is
amajor source of programmer error in C, the committee correctly assumed that allowing this form of
type checking constituted a step forward for C.

Under many ANSI C compilers, use of full ANSI function prototypes is strongly encouraged. In fact,
many compilers will generate warning messages when afunction is used without previously
encountering a prototype. Thisiswell and good, but the same function prototypes will not work on a
trusty portable C compiler under UNIX.



The solution to this dilemmais not pretty, but it works. Under ANSI C, the predefined macro
____STDC____isawaysdefined to indicate that the code is being compiled through a presumably
ANSI-compliant compiler. We can let the preprocessor turn certain sections of our header files on or
off, depending on whether we are using a noncompliant compiler or not. A header file containing the
prototypes for a bit-oriented package, for example, might ook something like this:

#ifdef __ STDC

FI LE *open_bitstreanm( char *file_nane, char *node );
void close bitstream( FILE *bitstream);

int read _bit( FILE*bitstream);

int wite_bit( FILE *bitstream int bit );

#el se

FI LE *open_bitstream);
void cl ose_bitstream);
int read _bit();

int wite_bit();

#endi f

The preprocessor directives don’'t contribute much to the look of the code, but they are a necessary
part of writing portable programs. Since the programs in this book are supposed to be compiled with
the compiler set to its maximum possible warning level, afew “#ifdef” statementswill be part of the
package.

A second problem with the K&R family of C compilersliesin the actual function body. Under K&R
C, aparticular function might have a definition like the one below.

int foo( ¢ )
char c;

{
/* Function body */

}
The same function written using an ANSI C function body would look like this:

int foo( char c )

{
/* Function body */

}

These two functions may look the same, but ANSI C rules require that they be treated differently.
The K&R function body will have the compiler “ promote” the character argument to an integer
before using it in the function body, but the ANSI C function body will leave it as a character.
Promoting one integral type to another lets |ots of sneaky problems dlip into seemingly well-written
code, and the stricter compilers will issue warnings when they detect a problem of this nature.

Since K& R compilers will not accept the second form of afunction body, be careful when defining
character arguments to functions. Unfortunately, the solutions are once again either to not use
character arguments or to resort to more of the ugly “#ifdef” preprocessor baggage.

K eeping Score

Throughout this book, there will be references to “compression ratios” and compression statistics. To
keep the various forms of compression on alevel playing field, compression statistics will always be



in relationship to the sample compression files used in the February 1991 Dr. Dobb’s Journal
compression contest. These files consist of about 6 megabytes of data broken down into three
roughly equal categories. Thefirst category istext, consisting of manuscripts, programs, memos, and
other readable files. The second category consists of binary data, including database files, executable
files, and spreadsheet data. The third category consists of graphics files stored in raw screen-dump
formats.

The programs created and discussed in this book will be judged by three rough measures of
performance. The first will be the amount of memory consumed by the program during compression;
this number will be approximated as well as it can be. The second will be the amount of time the
program takes to compress the entire Dr. Dobb’ s dataset. The third will be the compression ratio of
the entire set.

Different people use different formulas to cal culate compression ratios. Some prefer bits/bytes. Other
useratios, such as2:1 or 3:1 (advertising people seem to like this format). In this book, we will use a
simple compression-percentage formula:

(1 - ( conpressed_size / rawsize ) ) * 100

This means that afile that doesn’t change at all when compressed will have a compression ratio of 0
percent. A file compressed down to one-third of its original size will have a compression ratio of 67
percent. A file that shrinks down to O bytes (!) will have a compression ratio of 100 percent.

Thisway of measuring compression may not be perfect, but it shows perfection at 100 percent and
total failure at O percent. In fact, afile that goes through a compression program and comes out
larger will show a negative compression ratio.

The Structure

This book consists of thirteen chapters and a floppy disk. The organization roughly paralelsthe
historical progression of data compression, starting in the “dawn age” around 1950 and working up
to the present.

Chapter 2 is areference chapter which attempts to establish the fundamental data-compression
lexicon. It discusses the birth of information theory, and it introduces a series of concepts, terms,
buzzwords, and theories used over and over in the rest of the book. Even if you are a data-
compression novice, mastery of chapter 2 will bring you up to the “cocktail party” level of
information, meaning that you will be able to carry on an intelligent-sounding conversation about
data compression even if you don’t fully understand its intricacies.

Chapter 3 discusses the birth of data compression, starting with variable-length bit coding. The
development of Shannon-Fano coding and Huffman coding represented the birth of both data
compression and information theory. These coding methods are still in wide use today. In addition,
chapter 3 discusses the difference between modeling and coding—the two faces of the data-
compression coin.

Standard Huffman coding suffers from a significant problem when used for high-performance data
compression. The compression program has to pass a complete copy of the Huffman coding statistics
to the expansion program. As the compression program collects more statistics and tries to increase
its compression ratio, the statistics take up more space and work against the increased compression.
Chapter 4 discusses away to solve this dilemma: adaptive Huffman coding. Thisis arelatively
recent innovation, due to CPU and memory requirements. Adaptive coding greatly expands the
horizons of Huffman coding, leading to vastly improved compression ratios.



Huffman coding has to use an integral number of bits for each code, which is usually dightly less
than optimal. A more recent innovation, arithmetic coding, uses afractional number of bits per code,
allowing it to incrementally improve compression performance. Chapter 5 explains how this recent
innovation works, and it shows how to integrate an arithmetic coder with a statistical model.

Chapter 6 discusses statistical modeling. Whether using Huffman coding, adaptive Huffman coding,
or arithmetic coding, it is still necessary to have a statistical model to drive the coder. This chapter
shows some of the interesting techniques used to implement powerful models using limited memory
resources.

Dictionary compression methods take a completely different approach to compression from the
techniques discussed in the previous four chapters. Chapter 7 provides an overview of these
compression methods, which represent strings of characters with single codes. Dictionary methods
have become the de facto standard for general-purpose data compression on small computers due to
their high-performance compression combined with reasonable memory requirements.

The fathers of dictionary-based compression, Ziv and Lempel published a paper in 1977 proposing a
dliding dictionary methods of data compression which has become very popular. Chapter 8 looks at
recent adaptations of LZ77 compression used in popular archiving programs such as PKZIP.

Chapter 9 takes detailed look at one of the first widely popular dictionary-based compression
methods. LZW compression. LZW is the compression method used in the UNIX COMPRESS
program and in earlier versions of the MS-DOS ARC program. This chapter also takes alook at the
foundation of LZW compression, published in 1978 by Ziv and Lempel.

All of the compression techniques discussed through chapter 9 are “lossless.” Lossy methods can be
used on speech and graphics, and they are capable of achieving dramatically higher compression
ratios. Chapter 10 shows how lossy compression can be used on digitized sound data which
techniques like linear predictive coding and adaptive PCM.

Chapter 11 discusses lossy compression techniques applied to computer graphics. The industry is
standardizing rapidly on the JPEG standard for compressing graphical images. The techniques used
in the JPEG standard will be presented in this chapter.

Chapter 12 describes how to put it all together into an archive program. A general-purpose archiving
program should be able to compress and decompress files while keeping track of files names, dates,
attributes, compression ratios, and compression methods. An archive format should ideally be
portable to different types of computers. A sample archive program is developed, which applies the
techniques used in previous chapters to put together a complete program.

Chapter 13 isadetailed look at fractal compression techniques. The world of fractal compression
offers some exciting methods of achieving maximum compression for your data.



Chapter 2
The Data-Compression Lexicon, with a History

Like any other scientific or engineering discipline, data compression has avocabulary that at first
seem overwhelmingly strange to an outsider. Terms like Lempel-Ziv compression, arithmetic
coding, and statistical modeling get tossed around with reckless abandon.

Whilethelist of buzzwordsislong enough to merit a glossary, mastering them is not as daunting a
project asit may first seem. With abit of study and afew notes, any programmer should hold his or
her own at a cocktail-party argument over data-compression techniques.

The Two Kingdoms

Data-compression techniques can be divided into two major families; lossy and lossless. Lossy data
compression concedes a certain loss of accuracy in exchange for greatly increased compression.
Lossy compression proves effective when applied to graphics images and digitized voice. By their
very nature, these digitized representations of analog phenomena are not perfect to begin with, so the
idea of output and input not matching exactly is alittle more acceptable. Most lossy compression
techniques can be adjusted to different quality levels, gaining higher accuracy in exchange for less
effective compression. Until recently, lossy compression has been primarily implemented using
dedicated hardware. In the past few years, powerful lossy-compression programs have been moved
to desktop CPUs, but even so the field is still dominated by hardware implementations.

L ossless compression consists of those techniques guaranteed to generate an exact duplicate of the
input data stream after a compress/expand cycle. Thisis the type of compression used when storing
database records, spreadsheets, or word processing files. In these applications, the loss of even a
single bit could be catastrophic. Most techniques discussed in this book will be lossless.

Data Compression = Modeling + Coding

In general, data compression consists of taking a stream of symbols and transforming them into
codes. If the compression is effective, the resulting stream of codes will be smaller than the origina
symbols. The decision to output a certain code for a certain symbol or set of symbolsis based on a
model. The model is simply a collection of data and rules used to process input symbols and
determine which code(s) to output. A program uses the model to accurately define the probabilities
for each symbol and the coder to produce an appropriate code based on those probabilities.

Modeling and coding are two distinctly different things. People frequently use the term coding to
refer to the entire data-compression process instead of just a single component of that process. Y ou
will hear the phrases “Huffman coding” or “Run-Length Encoding,” for example, to describe a data-
compression technique, when in fact they are just coding methods used in conjunction with a model
to compress data.

Using the example of Huffman coding, a breakdown of the compression process looks something
likethis:

I Symbals Probabilities Codaes
Input Cutput
’- Model H Enciod H
Stream 2 Heroad Stream

Figure2.1 A Statistical Model with a Huffman Encoder.




In the case of Huffman coding, the actual output of the encoder is determined by a set of
probabilities. When using this type of coding, a symbol that has a very high probability of
occurrence generates a code with very few bits. A symbol with alow probability generates a code
with alarger number of bits.

We think of the model and the program’s coding process as different because of the countless ways
to model data, all of which can use the same coding process to produce their output. A simple
program using Huffman coding, for example, would use a model that gave the raw probability of
each symbol occurring anywhere in the input stream. A more sophisticated program might calculate
the probability based on the last 10 symbolsin the input stream. Even though both programs use
Huffman coding to produce their output, their compression ratios would probably be radically
different.

So when the topic of coding methods comes up at your next cocktail party, be alert for statements
like “Huffman coding in general doesn’t produce very good compression ratios.” Thiswould be your
perfect opportunity to respond with “That’ s like saying Converse sneakers don’t go very fast. |
always thought the leg power of the runner had alot to do with it.” If the conversation has aready
dropped to the point where you are discussing data compression, this might even go over asared
demonstration of wit.

The Dawn Age

Data compression is perhaps the fundamental expression of Information Theory. Information Theory
isabranch of mathematics that had its genesisin the late 1940s with the work of Claude Shannon at
Bell Labs. It concernsitself with various questions about information, including different ways of
storing and communicating messages.

Data compression entersinto the field of Information Theory because of its concern with
redundancy. Redundant information in a message takes extra bit to encode, and if we can get rid of
that extrainformation, we will have reduced the size of the message.

Information Theory uses the term entropy as a measure of how much information is encoded in a
message. The word entropy was borrowed from thermodynamics, and it has a similar meaning. The
higher the entropy of a message, the more information it contains. The entropy of a symbol is
defined as the negative logarithm of its probability. To determine the information content of a
message in bits, we express the entropy using the base 2 logarithm:

Nurmber of bits = - Log base 2 (probability)
The entropy of an entire message is simply the sum of the entropy of all individual symbols.

Entropy fits with data compression in its determination of how many bits of information are actually
present in amessage. |f the probability of the character ‘€ appearing in this manuscript is 1/16, for
example, the information content of the character isfour bits. So the character string “eeeee” has a
total content of 20 bits. If we are using standard 8-bit ASCII characters to encode this message, we
are actually using 40 bits. The difference between the 20 bits of entropy and the 40 bits used to
encode the message is where the potential for data compression arises.

One important fact to note about entropy is that, unlike the thermodynamic measure of entropy, we
can use no absolute number for the information content of a given message. The problem is that
when we calculate entropy, we use a number that gives us the probability of a given symbol. The
probability figure we use is actually the probability for a given model, not an absolute number. If we
change the model, the probability will change with it.



How probabilities change can be seen clearly when using different orders with a statistical model. A
statistical model tracks the probability of a symbol based on what symbols appeared previously in
the input stream. The order of the model determines how many previous symbols are taken into
account. An order-0 model, for example, won't look at previous characters. An order-1 model looks
at the one previous character, and so on.

The different order models can yield drastically different probabilities for a character. The letter ‘U’
under an order-0 model, for example, may have only a 1 percent probability of occurrence. But
under an order-1 model, if the previous character was‘q,’ the ‘u’ may have a 95 percent probability.

This seemingly unstable notion of a character’s probability proves troublesome for many people.
They prefer that a character have afixed “true’ probability that told what the chances of its “really”
occurring are. Claude Shannon attempted to determine the true information content of the English
language with a“party game” experiment. He would uncover a message concealed from his
audience a single character at atime. The audience guessed what the next character would be, one
guess at atime, until they got it right. Shannon could then determine the entropy of the message as a
whole by taking the logarithm of the guess count. Other researchers have done more experiments
using similar techniques.

While these experiments are useful, they don’t circumvent the notion that a symbol’ s probability
depends on the model. The difference with these experimentsis that the model is the one kept inside
the human brain. This may be one of the best models available, but it is still amodel, not an absolute
truth.

In order to compress data well, we need to select models that predict symbols with high probabilities.
A symbol that has a high probability has alow information content and will need fewer bitsto
encode. Once the model is producing high probabilities, the next step is to encode the symbols using
an appropriate number of bits.

Coding

Once Information Theory had advanced to where the number of bits of information in a symbol
could be determined, the next step was to develop new methods for encoding information. To
compress data, we need to encode symbols with exactly the number of bits of information the
symbol contains. If the character ‘€ only gives us four bits of information, then it should be coded
with exactly four bits. If ‘X’ contains twelve bits, it should be coded with twelve bits.

By encoding characters using EBCDIC or ASCII, we clearly aren’t going to be very closeto an
optimum method. Since every character is encoded using the same number of bits, we introduce lots
of error in both directions, with most of the codes in a message being too long and some being too
short.

Solving this coding problem in areasonable manner was one of the first problems tackled by
practitioners of Information Theory. Two approaches that worked well were Shannon-Fano coding
and Huffman coding—two different ways of generating variable-length codes when given a
probability table for a given set of symbols.

Huffman coding, named for itsinventor D.A. Huffman, achieves the minimum amount of
redundancy possiblein afixed set of variable-length codes. This doesn’t mean that Huffman coding
isan optimal coding method. It means that it provides the best approximation for coding symbols
when using fixed-width codes.

The problem with Huffman or Shannon-Fano coding is that they use an integral number of bitsin



each code. If the entropy of agiven character is 2.5 bits, the Huffman code for that character must be
either 2 or 3 hits, not 2.5. Because of this, Huffman coding can’t be considered an optimal coding
method, but it is the best approximation that uses fixed codes with an integral number of bits. Hereis
asample of Huffman codes:

Symbol Huffman Code
E 100

T 101

A 1100

I 11010

X 01101111

Q 01101110001

z 01101110000

An Improvement

Though Huffman coding is inefficient due to using an integral number of bits per code, itis
relatively easy to implement and very economical for both coding and decoding. Huffman first
published his paper on coding in 1952, and it instantly became the most-cited paper in Information
Theory. It probably still is. Huffman’s original work spawned numerous minor variations, and it
dominated the coding world till the early 1980s.

Asthe cost of CPU cycles went down, new possibilities for more efficient coding techniques
emerged. Onein particular, arithmetic coding, is a viable successor to Huffman coding.

Arithmetic coding is somewhat more complicated in both concept and implementation than standard
variable-width codes. It does not produce a single code for each symbol. Instead, it produces a code
for an entire message. Each symbol added to the message incrementally modifies the output code.
Thisis an improvement because the net effect of each input symbol on the output code can be a
fractional number of bitsinstead of an integral number. So if the entropy for character ‘€’ is 2.5 hits,
it ispossible to add exactly 2.5 bits to the output code.

An example of why this can be more effective is shown in the following table, the analysis of an
imaginary message. In it, Huffman coding would yield atotal message length of 89 bits, but
arithmetic coding would approach the true information content of the message, or 83.56 bits. The
difference in the two messages works out to approximately 6 percent. Here are some sample message
probabilities:

Symbol Number of Information Huffman Total Bits  Total Bits
Occurrences Content CodeBit Huffman Arithmetic
Count Coding Coding
E 20 1.26 bits 1 bits 20 25.2
A 20 1.26 bits 2 bits 40 25.2

X 3 4.00 bits 3 hits 9 12.0



Y 3 4.00 bits 4 hits 12 12.0
z 2 4.58 hits 4 bits 8 9.16
89 83.56

The problem with Huffman coding in the above message isthat it can’t create codes with the exact
information content required. In most casesit isalittle above or alittle below, leading to deviations
from the optimum. But arithmetic coding gets to within a fraction of a percent of the actua
information content, resulting in more accurate coding.

Arithmetic coding requires more CPU power than was available until recently. Even now it will
generaly suffer from a significant speed disadvantage when compared to older coding methods. But
the gains from switching to this method are significant enough to ensure that arithmetic coding will
be the coding method of choice when the cost of storing or sending information is high enough.

Modeling

If we use a an automotive metaphor for data compression, coding would be the wheels, but modeling
would be the engine. Regardless of the efficiency of the coder, if it doesn’t have amodel feeding it
good probabilities, it won't compress data.

L ossless data compression is generally implemented using one of two different types of modeling:
statistical or dictionary-based. Statistical modeling reads in and encodes a single symbol at atime
using the probability of that character’ s appearance. Dictionary-based modeling uses a single code to
replace strings of symbols. In dictionary-based modeling, the coding problem is reduced in
significance, leaving the model supremely important.

Statistical Modeling

The simplest forms of statistical modeling use a static table of probabilities. In the earliest days of
information theory, the CPU cost of analyzing data and building a Huffman tree was considered
significant, so it wasn't frequently performed. Instead, representative blocks of data were analyzed
once, giving atable of character-frequency counts. Huffman encoding/decoding trees were then built
and stored. Compression programs had access to this static model and would compress data using it.

But using auniversal static model has limitations. If an input stream doesn’t match well with the
previously accumulated statistics, the compression ratio will be degraded—possibly to the point
where the output stream becomes larger than the input stream. The next obvious enhancement is to
build a statistics table for every unique input stream.

Building a static Huffman table for each file to be compressed has its advantages. Thetableis
uniquely adapted to that particular file, so it should give better compression than a universal table.
But there is additional overhead since the table (or the statistics used to build the table) hasto be
passed to the decoder ahead of the compressed code stream.

For an order-0 compression table, the actual statistics used to create the table may take up aslittle as
256 bytes—not a very large amount of overhead. But trying to achieve better compression through
use of a higher order table will make the statistics that need to be passed to the decoder grow at an
alarming rate. Just moving to an order 1 model can boost the statistics table from 256 to 65,536
bytes. Though compression ratios will undoubtedly improve when moving to order-1, the overhead
of passing the statistics table will probably wipe out any gains.

For this reason, compression research in the last 10 years has concentrated on adaptive models.



When using an adaptive model, data does not have to be scanned once before coding in order to
generate statistics. Instead, the statistics are continually modified as new characters are read in and
coded. The general flow of a program using an adaptive model looks something like that shown in
Figures2.2 and 2.3.

Read Input Encoda Update Cutput
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Figure2.2 Genera Adaptive Compression.
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Figure 2.3 General Adaptive Decompression.

The important point in making this system work is that the box labeled “Update Model” has to work
exactly the same way for both the compression and decompression programs. After each character
(or group of characters) isread in, it is encoded or decoded. Only after the encoding or decoding is
complete can the model be updated to take into account the most recent symbol or group of symbols.

One problem with adaptive modelsis that they start knowing essentially nothing about the data. So
when the program first starts, it doesn’t do avery good job of compression. Most adaptive
algorithms tend to adjust quickly to the data stream and will begin turning in respectable
compression ratios after only afew thousand bytes. Likewise, it doesn’t take long for the
compression-ratio curve to flatten out so that reading in more data doesn’t improve the compression
ratio.

One advantage that adaptive models have over static modelsis the ability to adapt to local
conditions. When compressing executable files, for example, the character of the input data may
change drastically as the program file changes from binary program code to binary data. A well-
written adaptive program will weight the most recent data higher than old data, so it will modify its
statistics to better suit changed data.

Dictionary Schemes

Statistical models generally encode a single symbol at atime— reading it in, calculating a
probability, then outputting a single code. A dictionary-based compression scheme uses a different
concept. It readsin input data and looks for groups of symbols that appear in adictionary. If astring
match is found, a pointer or index into the dictionary can be output instead of the code for the
symbol. The longer the match, the better the compression ratio.

This method of encoding changes the focus of dictionary compression. Simple coding methods are



generally used, and the focus of the program is on the modeling. In LZW compression, for example,
simple codes of uniform width are used for all substitutions.

A static dictionary is used like the list of references in an academic paper. Through the text of a
paper, the author may simply substitute a number that pointsto alist of references instead of writing
out the full title of areferenced work. The dictionary is static because it is built up and transmitted
with the text of work—the reader does not have to build it on the fly. The first time | see anumber in
the text like this—[2]—I know it points to the static dictionary.

The problem with a static dictionary isidentical to the problem the user of a statistical model faces:
The dictionary needs to be transmitted along with the text, resulting in a certain amount of overhead
added to the compressed text. An adaptive dictionary scheme helps avoid this problem.

Mentally, we are used to atype of adaptive dictionary when performing acronym replacementsin
technical literature. The standard way to use this adaptive dictionary is to spell out the acronym, then
put its abbreviated substitution in parentheses. So the first time | mention the Massachusetts I nstitute
of Technology (MIT), | define both the dictionary string and its substitution. From then on, referring
to MIT in the text should automatically invoke a mental substitution.

Ziv and Lempel

Until 1980, most general-compression schemes used statistical modeling. But in 1977 and 1978,
Jacob Ziv and Abraham Lempel described a pair of compression methods using an adaptive
dictionary. These two algorithms sparked a flood of new techniques that used dictionary-based
methods to achieve impressive new compression ratios.

LZ77

The first compression algorithm described by Ziv and Lempel is commonly referredtoasLZ77. Itis
relatively smple. The dictionary consists of all the stringsin awindow into the previously read input
stream. A file-compression program, for example, could use a 4K-byte window as a dictionary.
While new groups of symbols are being read in, the algorithm looks for matches with strings found
in the previous 4K bytes of data already read in. Any matches are encoded as pointers sent to the
output stream.

LZ77 and its variants make attractive compression algorithms. Maintaining the model is simple;
encoding the output is simple; and programs that work very quickly can be written using LZ77.

Popular programs such as PKZIP and LHarc use variants of the LZ77 algorithm, and they have

proven very popular.

LZ78

The LZ78 program takes a different approach to building and maintaining the dictionary. Instead of
having a limited-size window into the preceding text, LZ78 buildsits dictionary out of all of the
previously seen symbolsin the input text. But instead of having carte blanche access to all the
symbol strings in the preceding text, adictionary of stringsis built asingle character at atime. The
first time the string “Mark” is seen, for example, the string “Ma’ is added to the dictionary. The next
time, “Mar” isadded. If “Mark” is seen again, it is added to the dictionary.

Thisincremental procedure works very well at isolating frequently used strings and adding them to
the table. Unlike LZ77 methods, stringsin LZ78 can be extremely long, which allows for high-
compression ratios. LZ78 was the first of the two Ziv-Lempel algorithms to achieve popular success,
due to the LZW adaptation by Terry Welch, which forms the core of the UNIX compress program.



L ossy Compression

Until recently, lossy compression has been primarily performed on special-purpose hardware. The
advent of inexpensive Digital Signal Processor (DSP) chips began lossy compression’s move off the
circuit board and onto the desktop. CPU prices have now dropped to where it is becoming practical
to perform lossy compression on general-purpose desktop PCs.

Lossy compression is fundamentally different from lossless compression in one respect: it accepts a
dlight loss of datato facilitate compression. Lossy compression is generally done on analog data
stored digitally, with the primary applications being graphics and sound files.

Thistype of compression frequently makes two passes. A first pass over the data performs a high-
level, signal-processing function. This frequently consists of transforming the data into the frequency
domain, using algorithms similar to the well-known Fast Fourier Transform (FFT). Once the data has
been transformed, it is “smoothed,” rounding off high and low points. Loss of signal occurs here.
Finally, the frequency points are compressed using conventional |ossless techniques.

The smoothing function that operates on the frequency-domain data generally has a* quality factor”
built into it that determines just how much smoothing occurs. The more the data is massaged, the
greater the signal loss—and more compression will occur.

In the small systems world, atremendous amount of work is being done on graphical image
compression, both for still and moving pictures. The International Standards Organization (1SO) and
the Consultive Committee for International Telegraph and Telephone (CCITT) have banded together
to form two committees. The Joint Photographic Experts Group (JPEG) and the Moving Pictures
Expert Group (MPEG). The JPEG committee has published its compression standard, and many
vendors are now shipping hardware and software that are JPEG compliant. The MPEG committee
completed an intial moving picture compression standard, and is finalizing a second, MPEG-I1.

The JPEG standard uses the Discrete Cosine Transform (DCT) algorithm to convert a graphics
image to the frequency domain. The DCT algorithm has been used for graphics transforms for many
years, so efficient implementations are readily available. JPEG specifies a quality factor of 0 to 100,
and it lets the compressor determine what factor to select.

Using the JPEG algorithm on images can result in dramatic compression ratios. With little or no
degradation, compression ratios of 90-95 percent are routine. Accepting minor degradation achieves
ratios as high as 98-99 percent.

Software implementations of the JPEG and MPEG algorithms are still struggling to achieve real-
time performance. Most multimedia development software that uses this type of compression till
depends on the use of a coprocessor board to make the compression take place in areasonable
amount of time. We are probably only afew years away from software-only real-time compression
capabilities.

Programsto Know

General-purpose data-compression programs have been available only for the past ten years or so. It
wasn’t until around 1980 that machines with the power to do the analysis needed for effective
compression started to become commonplace.

In the Unix world, one of the first general-purpose compression programs was COMPACT.
COMPACT isaredlatively straightforward implementation of an order-O compression program that
uses adaptive Huffman coding. COMPACT produced good enough compression to make it useful,



but it was slow. COMPACT was also a proprietary product, so it was not available to all Unix users.

Compress, a somewhat improved program, became available to Unix users afew yearslater. It isa
straightforward implementation of the LZW dictionary-based compression scheme. compress gave
significantly better compression than COMPACT, and it ran faster. Even better, the source code to a
compress was readily available as a public-domain program, and it proved quite portable. compress
isstill in wide use among UNIX users, though its continued use is questionable due to the LZW
patent held by Unisys.

In the early 1980s, desktop users of CP/M and MS-DOS systems were first exposed to data
compression through the SQ program. SQ performed order-0O compression using a static Huffman
tree passed in the file. SQ gave compression comparable to that of the COMPACT program, and it
was widely used by early pioneers in desktop telecommunications.

Asin the Unix world, Huffman coding soon gave way to LZW compression with the advent of ARC.
ARC is ageneral-purpose program that performs both file compression and archiving, two features
that often go hand in hand. (Unix userstypically archivefilesfirst using TAR, then they compress
the entire archive.) ARC could originally compress files using run-length encoding, order-0 static
Huffman coding, or LZW compression. The original LZW code for ARC appears to be aderivative
of the Unix compress code.

Due to the rapid distribution possible using shareware and telecommunications, ARC quickly
became a de facto standard and began spawning imitators right and left. ARC underwent many
revisions but has faded in popularity in recent years. Today, if there is a compression standard in the
DOSworld, it is the shareware program PKZIP, written by Phil Katz.

PKZIPisarelatively inexpensive program that offers both superior compression ratios and
compression speed. At thiswriting, the current shareware version is PKZip V2.04g and can be found
on many bulletin boards and online forums. Katz's company, PK Ware, also sells acommercial
version. Note that VV2.04g of PKZIP can create ZIP files that are not backward compatible with
previous versions. On Compuserve, many forums have switched to the new format for files kept in
the forum libraries. Usually, a copy of the distribution PKZ204.EXE is also found in the forum
library. For example, you can find this file on 23 different forums on Compuserve. Because Phil
Katz has placed the file format in the public domain, there are many other archiving/compression
utilities that support the ZIP format. A search on Compuserve, using the File Finder facility on the
keyword "PKZIP' resulted in 580 files found, most of which were utilities rather than datafiles.
Programs like WinZIP, that integrate with the Windows File Manager, provide a modern interface to
avenerable file format.

In DOS, two strong aternatives to PKZIP are LHArc and ARJ. LHARC comes from Japan, and has
several advantages over other archiving/compression programs. First, the source to LHArc isfreely
available and has been ported to numerous operating systems and hardware platforms. Second, the
author of LHarc, Haruyasu Y oshizaki (Y oshi), has explicitly granted the right to use his program for
any purpose, persona or commercial.

ARJisaprogram written by Robert Jung (robjung@world.std.com) and is free for non-commercial
use. It has managed to achieve compression ratios slightly better than the best LHArc can offer. It is
available for DOS, Windows, Amiga, MAC, 0S/2, and includes source code.

On the Macintosh platform, there are also many archiving/compression programs which support file
formats found on DOS and Unix. In addition to LHArc and ARJ, there are programs like Ziplt V1.2
lets you work with ZIP files. However, the predominant archiving/compression program is Stufflt, a
shareware program written by Raymond Lau. On bulletin boards and online services that are geared
to Macintosh users, you will find more SIT files (Stufflt files) than any other format. Another



popular Macintosh format is CPT (created by Compact-Pro program) but it is not as widespread as
Stuffit.

In general, the trend istoward greater interoperability among platforms and formats. Jeff Gilchrist
(jeffg@mi.net) distributes a monthly Archive Comparison Test (ACT) that compares sixty different
DOS programs for speed and efficiency, working on avariety of files (text, binary executables,
graphics). If you have Internet access, you can view the current copy of ACT by fingering:
SOb8@jupiter.sun.csd.unb.ca. Y ou can also view ACT using the World-Wide Web at
http://www.mi.net/act/act.html. At this writing, one promising new archiver on Gilchrist' sACT list
is X1, written by Stig Valentini (sv@id.dtu.dk). The current version is 0.90, still in beta stage. This
program supports thirteen different archive formats, include: ZIP, LHA, ARJ, HA, PUT, TAR+GZIP
(TGZ), and ZOO.

As mentioned earlier, you can find archive programs on Compuserve, America Online and other
online services and bulletin boards. On the Internet, there are severa ftp repositories. Oneis at
oak.oakland.edu (in the directory /SimTel/msdos/archiver). Another is garbo.uwasalfi, in the
directory /pc/arcers.



Chapter 3
The Dawn Age: Minimum Redundancy Coding

In the late 1940s, the early years of Information Theory, the idea of developing efficient new coding
techniques was just starting to be fleshed out. Researchers were exploring the ideas of entropy,
information content, and redundancy. One popular notion held that if the probability of symbolsin a
message were known, there ought to be away to code the symbols so that the message would take up
less space.

Remarkably, this early work in data compression was being done before the advent of the modern
digital computer. Today it seems natural that information theory goes hand in hand with computer
programming, but just after World War |1, for al practical purposes, there were no digital computers.
So the idea of developing algorithms using base 2 arithmetic for coding symbols was really a great
leap forward.

The first well-known method for effectively coding symbolsis now known as Shannon-Fano coding.
Claude Shannon at Bell Labs and R.M. Fano at MIT developed this method nearly simultaneously. It
depended on simply knowing the probability of each symbol’ s appearance in a message. Given the
probabilities, atable of codes could be constructed that has several important properties:

« Different codes have different numbers of bits.

» Codes for symbols with low probabilities have more bits, and codes for symbols with high
probabilities have fewer bits.

» Though the codes are of different bit lengths, they can be uniquely decoded.

The first two properties go hand in hand. Developing codes that vary in length according to the
probability of the symbol they are encoding makes data compression possible. And arranging the
codes as a binary tree solves the problem of decoding these variable-length codes.

An example of the type of decoding tree used in Shannon-Fano coding is shown below. Decoding an
incoming code consists of starting at the root, then turning left or right at each node after reading an
incoming bit from the data stream. Eventually aleaf of the tree is reached, and the appropriate
symbol is decoded.

Figure 3.1 is a Shannon-Fano tree designed to encode or decode a simple five-symbol alphabet
consisting of the letters A through E. Walking through the tree yields the code table:

Symboal Code
A 00

B 01

C 10

D 110
E 111




]
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Figure 3.1 A simple Shannon-Fano tree.

The tree structure shows how codes are uniquely defined though they have different numbers of bits.
The tree structure seems designed for computer implementations, but it is also well suited for
machines made of relays and switches, like the teletype machines of the 1950s.

While the table shows one of the three properties discussed earlier, that of having variable numbers
of bits, more information is needed to talk about the other two properties. After all, code trees look
interesting, but do they actually perform avaluable service?

The Shannon-Fano Algorithm

A Shannon-Fano treeis built according to a specification designed to define an effective code table.
The actual algorithm issimple:

1. For agiven list of symbols, develop a corresponding list of probabilities or frequency
counts so that each symbol’s relative frequency of occurrence is known.

2. Sort the lists of symbols according to frequency, with the most frequently occuring symbols
at the top and the least common at the bottom.

3. Dividethelist into two parts, with the total frequency counts of the upper half being as
closeto the total of the bottom half as possible.

4. The upper half of thelist is assigned the binary digit 0, and the lower half is assigned the
digit 1. This means that the codes for the symbolsin the first half will al start with 0, and the
codes in the second half will all start with 1.

5. Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups and
adding bits to the codes until each symbol has become a corresponding code leaf on the tree.

The Shannon-Fano tree shown in Figure 3.1 was developed from the table of symbol frequencies
shown next.

Symbol Count
A 15

B 7

C 6

D 6

E 5

Putting the dividing line between symbols B and C assigns a count of 22 to the upper group and 17
to the lower, the closest to exactly half. This meansthat A and B will each have a code that starts
with a0 bit, and C, D, and E are all going to start with a 1 as shown:



Symbol Count

A 15 0
B 7 0
First division
C 6 1
D 6 1
E 5 1

Subsequently, the upper half of the table gets a new division between A and B, which puts A on a
leaf with code 00 and B on aleaf with code 01. After four division procedures, atable of codes
results. In the final table, the three symbols with the highest frequencies have al been assigned 2-bit
codes, and two symbols with lower counts have 3-bit codes as shown next.

Symbol Count
A 15 0 0

Second division
B 7 0 1

First division

C 6 1 0

Third division
D 6 1 1 0

Fourth division

E 5 1 1 1

That symbols with the higher probability of occurence have fewer bitsin their codes indicates we are
on the right track. The formulafor information content for a given symbol is the negative of the base
two logarithm of the symbol’s probability. For our theoretical message, the information content of
each symbol, along with the total number of bits for that symbol in the message, are found in the
following table.

Symbol Count Info Cont. Info Bits
A 15 1.38 20.68
B 7 2.48 17.35
C 6 2.70 16.20
D 6 2.70 16.20
E 5 2.96 14.82

The information for this message adds up to about 85.25 bits. If we code the characters using 8-bit
ASCII characters, we would use 39 x 8 bits, or 312 bits. Obvioudly there is room for improvement.

When we encode the same data using Shannon-Fano codes, we come up with some pretty good



numbers, as shown below.

Symboal Count Info Cont. Info Bits SF Size SF Bits
A 15 1.38 20.68 2 30
B 7 2.48 17.35 2 14
C 6 2.70 16.20 2 12
D 6 2.70 16.20 3 18
E 5 2.96 14.82 3 15

With the Shannon-Fano coding system, it takes only 89 bits to encode 85.25 bits of information.
Clearly we have come along way in our quest for efficient coding methods. And while Shannon-
Fano coding was a great leap forward, it had the unfortunate luck to be quickly superseded by an
even more efficient coding system: Huffman coding.

The Huffman Algorithm

Huffman coding shares most characteristics of Shannon-Fano coding. It creates variable-length
codes that are an integral number of bits. Symbols with higher probabilities get shorter codes.
Huffman codes have the unique prefix attribute, which means they can be correctly decoded despite
being variable length. Decoding a stream of Huffman codes is generally done by following a binary
decoder tree.

Building the Huffman decoding tree is done using a completely different algorithm from that of the
Shannon-Fano method. The Shannon-Fano tree is built from the top down, starting by assigning the
most significant bits to each code and working down the tree until finished. Huffman codes are built
from the bottom up, starting with the leaves of the tree and working progressively closer to the root.

The procedure for building the tree is simple and elegant. The individual symbols arelaid out asa
string of leaf nodes that are going to be connected by a binary tree. Each node has aweight, which is
simply the frequency or probability of the symbol’ s appearance. The tree is then built with the
following steps:

» Thetwo free nodes with the lowest weights are located.

* A parent node for these two nodes is created. It is assigned aweight equal to the sum of the
two child nodes.

» The parent node is added to the list of free nodes, and the two child nodes are removed from
thelist.

» One of the child nodes is designated as the path taken from the parent node when decoding a
0 bit. The other is arbitrarily set to the 1 bit.

» The previous steps are repeated until only one free node is left. This free node is designated
the root of the tree.

This algorithm can be applied to the symbols used in the previous example. The five symbolsin our
message are laid out, along with their frequencies, as shown:

15 7 6 6
A B C D E

(63}



These five nodes are going to end up as the leaves of the decoding tree. When the process first starts,
they make up the entire list of free nodes.

The first pass through the tree identifies the two free nodes with the lowest weights: D and E, with
weights of 6 and 5. (The tie between C and D was broken arbitrarily. While the way that ties are
broken affects the final value of the codes, it will not affect the compression ratio achieved.) These
two nodes are joined to a parent node, which is assigned aweight of 11. Nodes D and E are then
removed from the freelist.

Once this step is complete, we know what the least significant bitsin the codes for D and E are going
to be. D isassigned to the O branch of the parent node, and E is assigned to the 1 branch. These two
bits will be the LSBs of the resulting codes.

On the next pass through the list of free nodes, the B and C nodes are picked as the two with the
lowest weight. These are then attached to a new parent node. The parent node is assigned a weight of
13, and B and C are removed from the free node list. At this point, the tree looks like that shown in
Figure 3.2.

Figure 3.2 The Huffman tree after two passes.

On the next pass, the two nodes with the lowest weights are the parent nodes for the B/C and D/E
pairs. These are tied together with a new parent node, which is assigned aweight of 24, and the
children are removed from the free list. At this point, we have assigned two bits each to the Huffman
codesfor B, C, D, and E, and we have yet to assign a single bit to the code for A.

Finally, on the last pass, only two free nodes are | eft. The parent with aweight of 24 is tied with the
A nodeto create a new parent with aweight of 39. After removing the two child nodes from the free
list, we are left with just one parent, meaning the tree is complete. The final result looks like that
shown in Figure 3.3.

T
aa 0 1
24
4] 1 4] 1
13 11
15 T 5] G a
A B c o E

Figure 3.3 The Huffman tree.

To determine the code for a given symbol, we have to walk from the leaf node to the root of the
Huffman tree, accumulating new bits as we pass through each parent node. Unfortunately, the bits
arereturned to us in the reverse order that we want them, which means we have to push the bits onto
a stack, then pop them off to generate the code. This strategy gives our message the code structure
shown in the following table.

The Huffman Code Table



A 0

B 100
C 101
D 110
E 111

Asyou can see, the codes have the unique prefix property. Since no code is a prefix to another code,
Huffman codes can be unambiguously decoded as they arrive in a stream. The symbol with the
highest probability, A, has been assigned the fewest bits, and the symbol with the lowest probability,
E, has been assigned the most bits.

Note, however, that the Huffman codes differ in length from Shannon-Fano codes. The code length
for A isonly asingle bit, instead of two, and the B and C symbols have 3-bit codes instead of two
bits. The following table shows what effect this has on the total number of bits produced by the

message.

Symbol Count Huffman Size Huffman

Shannon-Fano Size Shannon-Fano Bits

Bits
A 15 2 30 1 15
B 7 2 14 3 21
C 6 2 12 3 18
D 6 3 18 3 18
E 5 3 15 3 15

This adjustment in code size adds 13 bits to the number needed to encode the B and C symbols, but
it saves 15 bits when coding the A symbol, for a net savings of 2 bits. Thus, for a message with an
information content of 85.25 bits, Shannon-Fano coding requires 89 bits, but Huffman coding
requires only 87.

In general, Shannon-Fano and Huffman coding are close in performance. But Huffman coding will
always at least equal the efficiency of Shannon-Fano coding, so it has become the predominant
coding method of its type. Since both algorithms take a similar amount of processing power, it seems
sensible to take the one that gives dlightly better performance. And Huffman was able to prove that
this coding method cannot be improved on with any other integral bit-width coding stream.

Since D. A. Huffman first published his 1952 paper, “A Method for the Construction of Minimum
Redundancy Codes,” his coding algorithm has been the subject of an overwhelming amount of
additional research. Information theory journals to this day carry numerous papers on the
implementation of various esoteric flavors of Huffman codes, searching for ever better ways to use
this coding method. Huffman coding is used in commercial compression programs, FAX machines,
and even the JPEG algorithm. The next logical step in thisbook is to outline the C code needed to
implement the Huffman coding scheme.

Huffmanin C

A Huffman coding treeis built as a binary tree, from the leaf nodes up. Huffman may or may not
have had digital computersin mind when he developed his code, but programmers use the tree data
structure all the time.



Two programs used here illustrate Huffman coding. The compressor, HUFF-C, implements asimple
order-0 model and a single Huffman tree to encode it. HUFF-E expands files compressed using
HUFF-C. Both programs use a few pieces of utility code that will be seen throughout this book.
Before we go on the actual Huffman code, here is a quick overview of what some of the utility
modules do.

BITIO.C

Data-compression programs perform lots of input/output (1/0) that does reads or writes of
unconventional numbers of bits. Huffman coding, for example, reads and writes bits one at atime.
LZW programs read and write codes that can range in size from 9 to 16 bits. The standard C 1/0
library defined in STDIO.H only accommodates I/O on even byte boundaries. Routines like putc()
and getc() read and write single bytes, while fread() and fwrite() read and write whole blocks of
bytes at atime. The library offers no help for programmers needing aroutine to write asingle bit at a
time.

To support this conventional 1/0 in a conventional way, bit-oriented I/O routines are confined to a
single source module, BITIO.C. Access to these routines is provided via a header file called
BITIO.H, which contains a structure definition and several function prototypes.

Two routines open files for bit 1/0, one for input and one for output. As defined in BITIO.H, they are

BIT_FILE *OpenlnputBitFile( char *nane );
BI T_FILE *QpenCQut putBitFile ( char *nane );

These two routines return a pointer to anew structure, BIT_FILE. BIT_FILE isalso defined in
BITIO.H as shown:

typedef struct bit_file {

FILE *file;

unsi gned char mask;

i nt rack;

i nt pacifier_counter;
} BIT_FILE

OpenlnputBitFile() or OpenOutputBitFile() perform a conventional fopen() call and store the
returned FILE structure pointer in the BIT_FILE structure. The other two structure elements are
initialized to their startup values, and a pointer to the resulting BIT_FILE structure is returned.

In BITIO.H, rack contains the current byte of data either read in from the file or waiting to be written
out to the file. mask contains a single bit mask used either to set or clear the current output bit or to
mask in the current input bit.

The two new structure elements, rack and mask, manage the bit-oriented aspect of a most significant
bit in the I/O byte gets or returns the first bit, and the least significant bit in the 1/O byte gets or
returns the last bit. This means that the mask element of the structure isinitialized to 0x80 when the
BIT_FILE isfirst opened. During output, the first write to the BIT_FILE will set or clear that bit,
then the mask element will shift to the next. Once the mask has shifted to the point at which all the
bits in the output rack have been set or cleared, the rack is written out to the file, and a new rack byte
is started.

Performing input from aBIT_FILE isdonein asimilar fashion. The mask isfirst set to 0x80, and a
single byte from thefileisread into the rack element. Each call to read a bit from the file masksin a
new bit, then shifts the mask over to the next lower significant bit. Eventually, al bitsin the input



rack have been returned, and the input routine can read in a new byte from the input file.

Two types of 1/O routines are defined in BITIO.C. Thefirst two routines read or write asingle bit at
atime. The second two read or write multiple bits, up to the size of an unsigned long. These four
routines have the following ANSI prototype in BITIO.H:

voi d QutputBit( BIT_FILE *bit_file, int bit );
voi d QutputBits( BIT_FILE *bit_file,

unsi gned | ong code, int count);
i nt InputBit( BIT FILE *bit _file );

unsi gned | ong InputBits( BIT FILE *bit _file, int bit_count );

Specialized routines open aBIT_FILE, and two specialized routines close aBIT_FILE. The output
routine makes sure that the last byte gets written out to the file. Both the input and output routines
need to close their files, then free up the BIT_FILE structure allocated when the file was opened.
The BIT_FILE routines used to close afile are defined in BITIO.H with these ANSI prototypes:

voi d CloselnputBitFile( BIT_FILE *bit_file );
voi d CloseQutputBitFile( BIT FILE *bit file );

The input and output routinesin BITIO.H aso have a pacifier feature that can be useful in testing
compression code. Every BIT_FILE structure has a pacifier_counter that gets incremented every
time anew byte isread in or written out to the corresponding file. Once every 2,048 bytes, asingle
character iswritten to stdout. This helps assure the impatient user that real work is being done. On
MS-DOS systems, it also helps ensure that the user can break out of the program if it does not appear
to be working correctly.

The header file and code for BITIO.H is shown next:.

/******************** Start Of BlTlOH**********************/

#ifndef BITIOH
#define BITIOH
#i ncl ude <stdio. h>

typedef struct bit _file {

FILE *file;

unsi gned char mask;

i nt rack;

int pacifier_counter;
} BIT_FILE

#ifdef _ STDC

BI T_FILE* Qpenl nputBitFil e( char *nane );
BI T_FI LE* OpenQut putBitFil e( char *nane );
voi d QutputBit( BIT_FILE *bit_file, int bit );
voi d QutputBits( BIT_FILE *bit_file,
unsi gned | ong code, int count );
i nt InputBit( BIT FILE *bit _file );
unsigned long InputBits( BIT_FILE *bit_file, int bit_count );
voi d CloselnputBitFile( BIT_FILE *bit_file );
voi d CloseCQutputBitFile( BIT_FILE *bit_file );
voi d FilePrintBinary( FILE *file, unsigned int code, int bits);

#else /* __STDC _ */

BI T_FILE* OpenlnputBitFile();
BI T_FILE* QpenQutputBitFile();
voi d QutputBit();



voi d Qut putBits();

i nt I nputBit();

unsi gned long I nputBits();

voi d CloselnputBitFile();
voi d G oseQutputBitFile();
voi d FilePrintBinary();

#endif /* __STDC__ */

#endif /* BITIOH */

/********************** End Of BI TI O H *********************/
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/ Start of BITIO C /

/*

* This utility file contains all of the routines needed to inplenent
* bit oriented routines under either ANSI or K&R C. It needs to be
* inked with every programused in the book

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i nclude "bitio. h"
#i ncl ude "errhand. h"

BIT FILE *OpenQutputBitFil e( nane )
char *nane;

{
BIT FILE *bit _file;
bit file = (BIT_FILE *) calloc( 1, sizeof( BIT FILE) );
if ( bit_file == NULL )

return( bit_file);

bit_file->file = fopen( name, "rb" );
bit file->rack = 0;
bit file->mask = 0x80
bit _file->pacifier_counter = 0;
return( bit_file);

}

BIT FILE *OpenlnputBitFil e( nane )
char *nane;

{
BIT FILE *bit _file;
bit file = (BIT_FILE *) calloc( 1, sizeof( BIT_FILE) );
if ( bit_file == NULL )
return( bit_file);
bit file->file = fopen( nane, "rb" );
bit file->rack = 0;
bit file->mask = 0x80
bit _file->pacifier_counter = 0;
return( bit_file);
}

void CoseQutputBitFile( bit_file )
BIT FILE *bit_file;
{

if ( bit_file->mask !'= 0x80 )
if ( putc( bit_file->rack, bit _file->file ) !'= bit _file->rack )
fatal _error( "Fatal error in CloseBitFilel\n" );
fclose( bit_file->file);
free( (char *) bit_file );



}

void CoselnputBitFile( bit_file)
BIT FILE *bit _file;
{
fclose( bit _file->file );
free( (char*) bit _file );

}
void QutputBit( bit file, bit )
BIT_FILE *bit_file;
int bit;
{
if ( bit)
bit_file->rack | = bit_file->mask;
bit file->mask >>= 1;
if ( bit_file->mask == 0 ) {
if ( putc( bit_file->rack, bit_file->file ) !=Dbit _file->rack )
fatal _error( "Fatal error in QutputBit!\n" );
el se
if ( ( bit_file->pacifier_counter++ & 4095 ) == 0)
putc( '.', stdout );
bit file->rack 0;
bit file->mask

}

void QutputBits( bit _file, code, count )
BIT FILE *bit_file;

unsi gned | ong code;

i nt count;

{

unsi gned | ong mask;

0x80:

mask = 1L << ( count - 1 );
while ( mask !'= 0) {
if ( mask & code )
bit_file->rack | = bit_file->mask;
bit file->mask >>= 1,
if ( bit _file->mask == 0 ) {
if ( putc( bit_file->rack, bit_file->file ) != bit_file->rack )
fatal _error( "Fatal error in QutputBit!\n" );

else if ( ( bit _file->pacifier_counter++ & 2047 ) == 0 )
putc( '.', stdout );
bit file->rack = 0;
bit file->nmask = 0x80;
}
mask >>= 1;

}
}

int InputBit( bit file)
BIT FILE *bit_file;
{

i nt val ue;

if ( bit_file->mask == 0x80 ) {
bit file->rack = getc( bit_file->file );
if ( bit_file->rack == ECF )
fatal _error( "Fatal error in InputBit!\n" );
if ( ( bit_file->pacifier_counter++ & 2047 ) == 0 )
putc( '.', stdout );
}
value = bit _file->rack & bit _fil e->mask;
bit file->mask >>= 1;
if ( bit file->mask = 0)



bit file->nmask = 0x80
return ( value 2 1 : 0);

}

unsigned long InputBits( bit _file, bit_count )
BIT_FILE *bit_file;
int bit_count;

{

unsi gned | ong mask;
unsi gned | ong return_val ue;

mask = 1L << ( bit_count - 1 );
return_val ue = 0;
while ( nmask !'= 0) {

if ( bit_file->msk == 0x80 ) {
bit_file->rack = getc( bit_file->file );
if ( bit _file->rack == ECF )
fatal _error( "Fatal error in InputBit!\n" );
if ( ( bit_file->pacifier_counter++ & 2047 ) == 0 )
putc( '.', stdout );

if ( bit_file->rack & bit_file->mask )
return_val ue | =nask;

mask >>= 1;

bit file->mask >>= 1

if ( bit _file->mask = 00 )
bit file->mask = 0x80

}

return( return_val ue );

void FilePrintBinary( file, code, bits )
FILE *file;
unsi gned i nt code;
int bits;
{
unsi gned i nt nask;
mask = 1 << ( bits - 1):
while ( mask !'= 0 ){
if ( code & mask )
fputc( "1', file);
el se
fputc( "0, file);
mask >>= 1;

}

/********************** End Of BlTlOC**********************/

A Reminder about Prototypes

The code in this book works on both Unix K& R and the more modern MS-DOS compilers. This

affects the code in this book mainly in the area of function parametersin both prototypes and the

function body itself. For the function body, all code in this book will use old-fashioned parameter
specifications like this:

int main( argc, argv )
int argc;
char *argv[];



Thisisthe only method of parameter declaration acceptable to K& R compilers, and as such it has the
blessing of the ANSI standard. A few compilers (Microsoft C 6.0 at Warning Level 4, for example)
will issue awarning when it encounters this type of function declaration, so be prepared to ignore
those warnings. Declaring function parameters in this method will generally have no effect on code
reliability or readability, so using the K& R style should be considered a benign anachronism.

Parameters in function declarations present alittle more of a problem. The ANSI C specification will
accept old style K& R function declarations (such as int main();), but there are good reasons to
specify al function arguments in the declaration. When using full prototyping—asin int main( int
argc, char *argv[] );—the compiler checks for correct parameter passing when it encounters a call to
afunction. This helps avoid one of the most commonplace C coding mistakes; incorrect parameter

types.

To use this prototyping, and at the same time to stay compatible with K& R compilers, al function
prototypes are given in two forms: a K& R-compatible prototype and afull ANSI C prototype. The
ANSI C prototypes are selected through acheck for __ STDC__, apredefined macro defined when a
compiler conforms to the ANSI C standard. So the prototype for a set of functionsin a header file
will look something like this:

#ifdef _ STDC__

int main( int argc, char *argv[] );
FQOO *open_foo( char *nane );

#else /* _ STDC __ */

int main();
FOO *open_foo();

#endif /* __STDC__ */

This compromise approach definitely hurts readability, and it is probably not the way to go during
code development. But once a set of routines is working properly and not likely to be changed, this
type of header file will work fine.

ANSI C compiler users will find that a problem with this header file crops up with numerous M S-
DOS compilers. Compilers such as Microsoft C or Borland C++ are ANSI C compilers, but by
default they include a number of language extensions, such as far pointers, alternate calling
conventions, and so on. When these language extensions are enabled (as they are by default),
__STDC___isnot defined, since the compiler is not operating strictly asan ANSI C compiler. This
means that the correct function prototypes will not be invoked.

The solution to this problem is to compile the code in this book with the compiler in ANSI C mode.
Put the compiler in this mode generally by disabling extensions. Microsoft C accomplishes this from
the command line with the /Za switch. Borland C++ uses the -A switch to disable C extensions.

To adapt this code for a specific use on a specific compiler, you may want to eliminate the “#ifdef

__STDC__" linesin the header file and code. As more and more compilers use ANSI C prototypes
and parameter definitions, this portability machinery will become less and less useful.

MAIN-C.C AND MAIN-E.C

Another piece of utility code used throughout this book isthe “main()” program for the compression
and expansion programs. Any piece of compression code needs to be plugged into a main program



that accepts command-line arguments, opens files, calls the compression routines, then closes the
files. For simplicity, | have created two versions of this code: one for the compression program
(MAIN-C.C) and one for the expansion program (MAIN-E.C).

Both MAIN-C.C and MAIN-E.C expect to find a compression or expansion routine in another file, a
help routine to explain command-line parameters, and an external string with the name of the
compression technique being used. The declarations for the functions and name are found in
MAIN.H. MAIN.H should be included in the compression modul e to ensure that the routines are
properly typed. MAIN.H is shown next.

The idea behind these two routinesis that the infrastructure of a compression test program should not
have to be rewritten every time a new compression module is coded. A new routine should just have
to interface with the existing compression code.

/********************** Start Of '\/AIN H ***********************/

#i fndef _MAIN H
#define _MAIN H

#i fdef _STDC_
voi d ConpressFile( FILE *input, BIT_FILE *output, int argc, char *argv[] );
voi d ExpandFile( BIT_FILE *input, FILE *output, int argc, char *argv[] );

#else /* __STDC _ */

voi d ConpressFile();
voi d ExpandFil e();

#endif /* __STDC__ */

extern char *Usage;
extern char *Conpressi onNang;
#endif /* _MAIN_H */

KRR S b S I IR O b R I I R O
/ End of MAIN H /

In MAIN-C.C, acompression module supplies three things: a Usage string, which can print out alist
of parameters, etc.; a CompressionName string, which lets the MAIN-C.C program print out the
compression method; and a CompressFile() routine, which actually compresses thefile. In this
chapter, these routines are in afile called HUFF.C, which implements an order 0 model with a
Huffman coder. MAIN-C.C is shown below.

/*********************** Start Of '\/AINC C**********************/

/*

*

This is the driver program used when testing conpression algorithms.
In order to cut back on repetitive code, this version of mainis
used with all of the conpression routines. 1In order to turnit into
a real program it needs to have another nodul e that supplies one
routine and two strings, nanely:

void ConpressFile( FILE *input, BIT_FILE *output,
int argc, char *argv );

char *Usage;

char *Conpr essi onNaneg;

The main() routine supplied here has the job of checking for valid
i nput and output files, opening them and then calling the
conpression routine. |If the files are not present, or no argunents
are supplied, it prints out an error message, which includes the
Usage string supplied by the conpression nodule. Al of the
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* routines and strings needed by this routine are defined in the
* main. h header file.

*

* After this is built into a conpression program of any sort, the
* programcan be called like this:

*

* main-c infile outfile [ options ]

*

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i nclude "bitio. h"
#i ncl ude "errhand. h"
#i ncl ude "main. h"
#ifdef _ STDC

voi d usage_exit( char *prog_name );
void print_ratios( char *input, char *output );
long file_size( char *nane );

#el se

voi d usage_exit();
void print_ratios();
long file_size();

#endi f

int main( argc, argv )
int argc;
char *argv[];

BI T_FI LE *ouput;
FI LE *i nput;

set buf ( stdout, NULL );
if ( argc < 3)
usage exit( argv[ 0] );
i nput = fopen(argv [ 1], "rb" );
if ( input == NULL )
fatal _error( "Error opening % for input/n", argv[ 1] );
output = OpenCutputBitFile( argv[ 2] );
if ( output == NULL )
fatal error( "Error opening % for input/n", argv[ 2] );
printf( "\nConpressing % to %\n", argv[ 1], argv[ 2] );
printf( "Using %\n, ConpressionNanme );
argc -= 3;
argv += 3;
ConpressFil e( input, output, argc, argv );
Cl oseQut putBitFile( output );
fclose( input );
print_ratios( argv[ 1], argv[ 2] );
return( 0 );

—

*

This routine just wants to print out the usage nessage that is
called for when the programis run with no parameters. The first
part of the Usage statenent is supposed to be just the program
nanme. argv[ O ] generally holds the fully qualified path nane

of the programbeing run. | make a half-hearted attenpt to strip

* %k kX X T~

get the general idea across.

out that path info and file extension before printing it. It should



*/
voi d usage_exit( prog_nane )
char *prog_nane;

{
char *short_nane;
char *extension;
short _name = strrchr( prog_nane, '\\' );
if (short_na == NULL )
short _nanme = strrchr( prog _nane, '/' );
if (short_name == NULL )
short _nanme = strrchr( prog_nane, ':' );
if (short_name !'= NULL )
short _name++;
el se
short_nanme = prog_naneg;
extension = strrchr( short_nane, '.' );
if ( extension !'= NULL )
*extension = '\0';
printf( "\ nUsage: % %\n", short_nane, Usage );
exit( 0);
}
/*
* This routine is used by main to get the size of a file after it has
* been closed. It does all the work, and returns a long. The main

* programgets the file size for the plain text, and the size of the
* conpressed file, and prints the ratio.

*/

#i f ndef SEEK_END

#def i ne SEEK _END 2

#endi f

long file_size( nane )
char *nane;
{
| ong eof ftell
FILE *file;

file = fopen( nane, "r");
if ( file == NULL )

return( OL );
fseek( file, O., SEEK END );
eof ftell = ftell( file);
fclose( file );
return( eof ftell )

}

/*
* This routine prints out the conpression ratios after the input and
* output files have been cl osed.
*/
void print_ratios( input, output )
char *input;
char *output;
{
[ ong i nput_si ze;
| ong out put _si ze;
int ratio;
i nput_size = file_size( input );
if ( input_size == 0)
i nput _si ze = 1;
output_size = file_size * 100L / input_size );
ratio = 100 - (int) ( output_size * 100L / input_size );



printf( "\ nlnput bytes: % d\n", input_size );
printf( "CQutput bytes: % d/ n", output_size );
if ( output_size == 0)

out put _size = 1;
printf( "Conpression ratio: %%WAn", ratio );

/*********************** End Of '\/AINCC*************************/

MAIN-C.C

There are afew expectations about how MAIN-C.C will run. MAIN-C.C is called to compress an
input file supplied on the command line and send the compressed output to another file, also
supplied on the command line. Thus, the basic command-line invocation of MAIN-C.C is MAIN-C
input-file output-file. If the user invokes MAIN-C.C without any arguments, a sSimple usage
statement prints out. The usage statement includes the usage string supplied by the compression
module.

If two likely looking file names are on the command line, MAIN-C.C tries to open them both. The
input file is opened as a standard file specified in STDIO.H, using fopen(). The output file is opened
asaBIT_FILE, asdefined in BITIO.H. If either file doesn’t open, an error message is printed out
and the program exits. If both files open, the next step isto call the compression routine.

MAIN-C.C expects the compression routine to be named CompresskFile(). Thisroutineis called with
four arguments. The first two are pointers to the file structure for the input file and a pointer to the
BIT_FILE structure for the output file. Finally, the updated values for argc and argv are passed to the
compression routine. The values for argc and argv will have been adjusted to go past argv[0], which
should be the program name, as well as argv[1] and argv[2], the names of the input and output files.
The compression program can then scan the remaining arguments for any arguments specific to that
particular compression routine. After the compression routine has finished, it returnsto MAIN-C.C,
which closes down the files and exits.

MAIN-E.C isthe converse program to MAIN-C.C. It takes two arguments as well, but this time the
input file is the compressed file and the output file is destined to be the uncompressed clear text file.
Just like MAIN-C.C, it checks to be sure there are at |east two arguments, then tries to open the two
files. If there aren’t two arguments, a usage message is printed. If either of the filesfails to open, an
error message is printed. MAIN-E.C islisted below.

/***********************Start Of ,\/AINE Ck**********************/

This driver programtests conpression algorithms. To cut back on
repetitive code, this version of main is used with all the expansion
routines. The main() routine supplied here checks for valid input and
output files, opens them then calls the conpression routine.

* X X F

*

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i nclude "bitio. h"
#i ncl ude "errhand. h"
#i ncl ude "mai n. h"

#i fdef __STDC__

voi d usage_exit( char *prog_nane );
#el se

voi d usage_exit();

#endi f

int main( argc, argv )
int argc;



char *argv[];

FI LE *out put;
BI T_FI LE *i nput;

set buf ( stdout, NULL );
if ( argc < 3)
usage_exit( argv[ 0] );

input = OpenlnputBitFile( argv[ 1] );
if ( input == NULL )

fatal _error( "Error opening % for input\n", argv[ 1 ]
output = fopen( argv[ 2], "wh" );
if ( output == NULL )

fatal _error( "Error opening % for output\n", argv[ 2 ]
printf( "\nExpanding % to % for output\n", argv[ 2] );
printf( "Using %n", ConpressionNane );
argc -= 3;
argv += 3;
ExpandFi | e( i nput, output, argc, argv );
CloselnputBitFile( input );
fcl ose( output );
putc( '\n', stdout );
return( 0 );

}

/*

* This routine wants to print out the usage nmessage called for when the
* programis run with no paraneters. The first part of the Usage state
* ment is supposed to be just the programmanme. argv[ O ] generally holds
* the fully qualified path nane of the program being run

*/

voi d usage_exit( prog_nane )

char *prog_nane;

char *short_nane;
char *extension;

short _name = strrchr( prog_nane, '"\\' );

if ( short_name = = NULL )

short _nanme = = strrchr( prog_nane, '/' );
if ( short_name = = NULL )

short _name = strrchr( prog_nane, ':' );

if ( short_name != NULL )
short name++;

el se
short_name = prog_naneg;
extension = strrchr( short_nane, '.' );
if ( extension !'= NULL )
*extension = '\ 0
printf( "\ nUsage: % 9%\n", short_nane, Usage );
exit( 0);

/********************** End Of '\/AIN_E Ck***********************)\')\'/

ERRHAND.C

One additional routine helps ssimplify the code. A production version of a program generally needs a
somewhat sophisticated error-handling mechanism. In particular, it isimportant to let the end user
know what is happening, clean up any files that may have been only partialy processed, and restore
any system settings that may have been changed.

In this book, our interest in compression concentrates on testing for accuracy, speed, and



compression ratios. Because of this, we have created a simple universal fatal-error handler. The error

handler is defined in ERRHAND.H:

/********************** Start Of ERR'_'AND.H**********************/

#i f ndef _ERRHAND H
#define _ERRHAND H

#ifdef __ STDC

void fatal _error( char *fnt

#else /* __ STDC */

void fatal _error();

#endif /* __ STDC __ */

#endif /* _ERRHAND H */

kkhkkkkhkkhkhkkkhkhkkkhkkhhkkkhhxkk,*kx%x EIE R R R I R R I O I O
/ End of ERRHAND. H /

The fatal-error handler is called when an unrecoverable error occurs in the program. It has the same
syntax as printf, which means it can be passed aformat string and arguments to format and print out.

/************************ Start Of ERR'_'AND C***********************/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <stdarg. h>
#i ncl ude "errhand. h"

#i fdef __STDC _

void fatal _error( char *fnt
#el se

#ifdef _ UNI X __

void fatal _error( fmt )
char *fnt;

va_dcl

#el se

void fatal _error( fnt )
#endi f

#endi f

{

va_list argptr;

va_start( argptr, fnt );

printf( "Fatal error:

vprintf( fmt, argptr );

va_end( argptr );
exit( -1);
}

/************************ End Of ERR'_'AND C***********************/

I nto the Huffman Code

With the infrastructure code in place, al we need to do to create a program that demonstrates
Huffman coding is to write two routines, CompressFile() and ExpandFile(), and a couple of strings
that describe the name of the compression method and program usage. The code for thisisfound in



HUFF.C.

To build the Huffman decoding tree, we need to create a data structure that models the tree on the
computer. In our previous examples, each node on the tree had several pieces of information: first,
the weight associated with it; second, pointers to two child nodes, one associated with the O bit and
one associated with the 1 bit. Finally, leaf nodes had the value of the symbol associated with the |eaf.

The data structure used in this program to model the Huffman tree was built around the node
structure:

typedef struct tree_node {
unsi gned int count;
unsi gned int saved_count;
int child_ 0;
int child_1;

} NODE;

The first thing to notice about this structure is that there is no information about the value of aleaf
node. Thisis because the node structures are allocated as an array of 514 nodes. The lower nodes are
all assigned to be leaf nodes, and the upper nodes become internal nodes. The information about the
value of aleaf isencoded based on the position of the nodein the array.

Instead of having 256 symbolsin our aphabet for this program, we actually have 257. Values 0
through 255 are reserved for the normal range of bytes that fit into a character. The remaining
symbol value of 256 is reserved for the end-of-stream indicator. Thisisthe last code written out to
the stream, and it indicates that no more datawill be arriving. Because of the bit-oriented nature of
compressed data, it is not ordinarily a simple matter to determine when you have reached an end-of-
file state. Handling it with a special code for end-of-stream is one method for getting around this.
Another would be to encode the length of the file as a prefix to the compressed data.

With 257 symbols to deal with, we know in advance the largest possible size of the Huffman tree. If
all 257 symbols are in use, we will have 256 internal nodes, meaning that we have to allocate an
array of 513 node structures. In the program, | actually allocate 514 and use the last one as a dummy
value for comparisons when building the tree.

Counting the Symbols

To build the treg, | first calculate the relative frequencies of the symbols. In HUFF.C, | set up an
array of 256 longs and count the occurrences of every character in the file, from the start to the end.
The position of the file input pointer is saved when the count starts and is restored when it is done.
All this takes place in function count_bytes().

Though | start with 32-bit unsigned long counts, | scale the counts back significantly in module
scale_counts. Scale_counts() finds the maximum count for any symbol in the file, then develops a
scaling factor to make that count and all the rest of the countsfit in a single unsigned character.
These counts are then copied into the weight elements of the first 257 node elements.

There are several good reasons for scaling back the counts. First, by limiting any symbol’s weight to
an 8-hit unsigned character, | can confine al of the math | perform when building the tree to 16-bit
unsigned integers. This helps the program run alittle faster, and it cuts back on the amount of storage
required for the node array. It aso limits the maximum size of a Huffman code as well, ensuring that
it will fitin a 16-bit unsigned integer.

Saving the Counts



For the expansion program to correctly expand the Huffman encoded bit stream it will be receiving,
it needs a copy of the Huffman tree identical to the one used by the encoder. This means that the tree,
or its equivalent, must be passed as a header to the file so the expander can read it in before it starts
to read Huffman codes.

The easiest way for the expansion program to get this data would probably be to store the entire node
array as apreamble to the compressed data. Thiswould work well and would not be too hard for the
compressor to do. An alternative method that occupies far less space in the compressed file,

however, isto transmit the symbol counts to the expander. Since the Huffman treeis built up in an
unambiguous manner from the symbol counts, it stands to reason that the expansion program doesn’t
need more to do itsjob. And since the scaled count array will be only 256 bytes, compared to the
Huffman tree's 4K bytes, there is good reason to choose this.

| elected to try to cut down on the amount of data to be passed even further. Under many
circumstances, the number of countsthat stay at zero is considerable. With ASCI| text files, such as
program listings, there will generally be only around 100 symbols in use out of the possible 256. It
seems a waste to transmit all those zero counts when they aren’t necessary. To make this happen, |
use a dlightly more complicated format for the header.

The header used in HUFF.C that contains the symbol counts consists of a series of “count run”
definitions, followed by a0 terminator. A count-run definition consists of the value of the first
symbol in the run, followed by the value of the last symbol in the run, followed by the counts for all
of the symbolsin the run from first to last. Thisis repeated until each run has been stored in the
output file. When there is no more data to store, afirst value of zero iswritten out to the file. Note
that avalue of zero for the very first run is not treated as an end of data.

For atypical ASCII file, the start of the compressed file might look something like Figure 3.4.

10 First, value = 10 (LF)
13 Last, valua = 13 (CR)
19 Count for 10
Count for 11

0 Count for 12
18 Count for 13
az First, value = 32(" '}

126 Last, value = 126 (-
10 Count for 32
18 Count for 23
19 Count for 24
12 Count for 25

ik Count for 126

0 Terminator

Figure 3.4 The start of atypical compressed ASCII file.

This symbol count format takes a fair amount of work to generate, performed in output_counts() in
HUFF.C. Reading in the symbols counts is much simpler, since the work has been done in advance.
Reading the counts in from the compressed file during expansion is done in the input_counts()
routine.



Buildingthe Tree

Whether compressing or expanding, once the counts have been loaded, it is time to build the
Huffman tree. In HUFF.C, thisis done in afunction called build_tree(). Because some care was
taken when creating the data structure, the actual process of creating the tree is the ssmple matter of
sitting in aloop and combining the two free nodes with the lowest weight into a new internal node
with the combined weight of the nodes. Once only one free node isleft, the tree is done, and the free
node is the root of the tree.

Thelogic of the build_tree() routine isfairly ssmple. When the routine isfirst entered, all nodes
below 257 have a count value set to their frequency in the file. A nonzero value here meansthat this
is an active node.

build_tree() also sets up a special node used as a straw man for comparison purposes. Node 513,
which will never be used, is set to have a count value of 65535, which no normal node can ever
exceed. When searching for the two minimum nodes, | will start by setting the minimum node to
513, knowing that any valid active node will fall below itsvalue.

Finally, before the comparisons start, an index to the next free node’ sinitialized. The node array isin
use from O to 256, so the next free node will be at 257.

After things have been set up, build_tree() goes into an infinite loop. On each pass through the loop,
build_tree triesto find the two active nodes with the lowest weights. If only one node is found, the
tree is complete and the loop is exited. If there are two good minimum values, a new node to the tree
can be created. This new node is set up using the next_free node index. Its two child pointers are set
to point to the two minimum nodes found before, and its weight is their sum. The two minimum
nodes are now marked as being inactive by setting their weightsto 0. Nodes with aweight of 0 are
considered to be unused and will never again be selected to represent a minimum.

One piece of inefficient code is deliberately left in build_tree(). There is an extra member in the node
structure called saved_count. When anode is taken off the active list by having its count set to zero,
the previous count is stored in saved _count. Later, if the user has selected the -d option in order to
print out the model, the saved _count can be printed. This helps when debugging the program and
when trying to understand how the tree works.

Usingthe Tree

During the expansion phase, it is easy to see how to use the Huffman tree. Starting at the root node, a
single bit at atimeisread in by the decoder. If the bit isa 0, the next node is the one pointed to by
the child_Oindex. If the bitisa 1, the next node is the one pointed to by the child_1 index. If the new
node is 256 or less, we have reached aleaf of the tree and can output the corresponding symbol. If
the symbol was the special end-of-stream symbol, we can exit instead of sending it out. Thisiswhat
isdonein the expand_node() function. It isjust afew lines of code, and it decodes a compressed
Huffman code file with relative ease.

Compressing the same fileis abit harder. Essentially, we want to work down the tree, outputting a 1
or a0 bit at each node, till we get to the appropriate leaf node. Unfortunately, the tree structure
makes this impossible. When we start at the root node, we have no idea whether to take the O or the 1
branch to arrive at a particular symbol.

One way to solve this problem when building the tree would be to add a parent member to the node
structure. When combining the two minimum nodes to form a new internal node, each minimum
node would have its parent structure set to point to the new node. With this new node, we could start
at the leaf node and work our way up through the tree toward the root. The only problem with this



procedure is that we would accumulate bitsin reverse order as we went up the tree. We would have
to rack them up till we reached the root node, then put them out in reverse order.

Fortunately, there is a better way to do this. Rather than trying to use the tree to code our symbols
when compressing afile, we could build a code table by recursively traversing the entire tree one
time only. This creates atable of codes, one for each symbol, along with the length of each code.
Once the tableis built, the file can be encoded by ssimply outputting the appropriate code for every
character in the input file.

The code to convert the tree data structures into a table of codesis very simple, thanksto arecursive
algorithm. We start at the root node of the tree with a zero. Then we begin working down the
individual branches of the tree, adding a one or a zero to the code each time we travel down a
branch. Whenever we reach aleaf, we store the code values for that leaf in the code array and back
up to the previous node, where we can start searching down the other side of the tree.

The code to accomplish thisisin function convert_tree to_code(). This routine takes a fair amount
of work to create the code table, but once it is done the actual file compression is very easy.

The Compression Code

The code for Huffman compression and decompression is shown in the listing below. Thissingle
file, HUFF.C, is about 500 lines long, of which probably 30 percent is comments. So we are able to
implement a static dictionary Huffman compressor in only about 300 lines of code. The actual
amount of code could easily be crunched down to a number much less than that. The small code and
storage requirements make Huffman coding ideal for applications where both memory and CPU
storage are at a premium.

/********************** Start Of HUFF C *************************/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i nclude "bitio. h"
#i ncl ude "errhand. h"
#i ncl ude "mai n. h"

/*
* The NODE structure is a node in the Huffman decoding tree. It has a
* count, which is its weight in the tree, and the node nunbers of its
two children. The saved_count nenber of the structure is only
there for debuggi ng purposes, and can be safely taken out at any
time. It just holds the intial count for each of the synbols, since
* the count menber is continually being nodified as the tree grows.
*/
typedef struct tree_node {

unsi gned int count;

unsi gned int saved_count;

int child O

int child_ 1
} NODE;

*  F X

*

A Huffman tree is set up for decoding, not encoding. Wen encodi ng,
| first walk through the tree and build up a table of codes for
each synbol. The codes are stored in this CODE structure.

*

S~ % * * =



typedef struct code {
unsi gned i nt code;
int code bits;

} CODE;

/*

* The special EOCS synmbol is 256, the first avail able synbol after al
* of the possible bytes. When decoding, reading this symbo

* indicates that all of the data has been read in.

*/

#defi ne END_OF_STREAM 256

/*
* Local function prototypes, defined with or wi thout ANSI prototypes.
*/
#ifdef _ STDC _
voi d count _bytes( FILE *input, unsigned |long *long_counts );
voi d scal e_counts( unsigned |ong *l ong _counts, NODE *nodes );
int build tree( NODE *nodes );
voi d convert _tree_to_code( NODE *nodes,

CODE *codes

unsi gned int code_so_far

int bits,

i nt node );
voi d output_counts( BIT_FILE *output, NODE *nodes );
void input_counts( BIT_FILE *input, NODE *nodes );
voi d print_nodel ( NODE *nodes, CODE *codes );
voi d conpress_data( FILE *input, BIT _FILE *output, CODE *codes );
voi d expand_data( BIT _Flle *input, FILE *output, NODE *nodes,

i nt root_node );

void print_char( int c );
#else /* _STDC _ */

voi d count _bytes();

void scal e counts();

int build_ tree();

void convert _tree_to _code();
voi d out put_counts();

void input_counts();

void print_nodel ();

voi d conpress_data();

voi d expand_data();

void print_char();

#endif /* __STDC__ */
/*

* These two strings are used by MAINNC.C and MAIN-E.C to print
* nmessages of inportance to the use of the program

*/

char *ConpressionName = "static order 0 nodel with Huffrman codi ng”;

char *Usage =

"infile outfile [-d]\n\n\ Specifying -d will dunp the nodeling\
data\ n";

/*

* ConpressFile is the conpression routine called by MAINNC.C. It

* | ooks for a single additional argunment to be passed to it from

* the command line: "-d". |If a "-d" is present, it neans the

* user wants to see the nodel data dunped out for debugging

* pur poses.

*

This routine works in a fairly straightforward manner. First,



*
*
*
*
*
*
*
*
*
*
*

it has to allocate storage for three different arrays of data.
Next, it counts all the bytes in the input file. The counts

are all stored in long int, so the next step is to scale them down
to single byte counts in the NODE array. After the counts are
scal ed, the Huffnman decoding tree is built on top of the NODE
array. Another routine walks through the tree to build a table

of codes, one per synbol. Finally, when the codes are all ready,
conpressing the file is a sinple matter. After the file is
conpressed, the storage is freed up, and the routine returns.

/

voi d ConpressFile( input, output, argc, argv )
FI LE *i nput;
BI T_FI LE *out put;

nt argc;

char *argv[];

EE T T e

~

unsi gned | ong *counts;
NODE *nodes;

CODE *codes

i nt root_node;

counts = ( unsigned long *)
cal l oc( 256, sizeof( unsigned long ) );
if ( counts == NULL )
fatal _error( "Error allocating counts array\n" );
if ( ( nodes = (NODE *)
calloc( 514, sizeof( NODE ) ) ) == NULL )
fatal _error( "Error allocating nodes array\n" );
if ( ( codes = (CODE *)
calloc( 257, sizeof( CODE ) ) ) == NULL )
fatal _error( "Error allocating codes array\n" );
count _bytes( input, counts );
scal e_counts( counts, nodes );
out put _counts( output, nodes );
root_node = build_tree( nodes );
convert _tree_to_code( nodes, codes, 0, 0, root_node );
if (argc >0 & strcnp( argv[ 0], "-d* ) ==0)
print_nodel ( nodes, codes );
conpress_data( input, output, codes );
free( (char *) counts );
free( (char *) nodes );
free( (char *) codes );

*

ExpandFile is the routine called by MAINNE.C to expand a file that
has been conpressed with order 0 Huf fman coding. This routine has
a sinpler job than that of the Conpression routine. Al it has to
do is read in the counts that have been stored in the conpressed
file, then build the Huffman tree. The data can then be expanded
by reading in a bit at a tine fromthe conpressed file. Finally,
the node array is freed and the routine returns.

voi d ExpandFile( input, output, argc, argv )
Bl T_FI LE *i nput;
FI LE *out put ;

nt argc;

char *argv[];

NCDE *nodes;
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i nt root_node;

if ( ( nodes = (NODE *)
calloc( 514, sizeof( NODE ) ) ) == NULL )
fatal _error( "Error allocating nodes array\n" );
i nput _counts( input, nodes );
root_node = build_tree( nodes );
if ( argc >0 & strcnp( argv[ 0], "-d* ) ==0)
print_nodel ( nodes, 0 );
expand_data( input, output, nodes, root_node );
free( (char *) nodes );

*

In order for the conpressor to build the sane nodel, | have to
store the synbol counts in the conpressed file so the expander can
read themin. In order to save space, | don't save all 256 synbols

unconditionally. The format used to store counts |ooks like this:
start, stop, counts, start, stop, counts, ... O
This nmeans that | store runs of counts, until all the non-zero

counts have been stored. At this time the list is termnated by
storing a start value of 0. Note that at least 1 run of counts has

to be stored, so even if the first start value is 0, | read it in.
It also neans that even in an enpty file that has no counts, | have
to pass at |east one count, which will have a val ue of O.

In order to efficiently use this format, | have to identify runs of
non-zero counts. Because of the format used, | don't want to stop a

run because of just one or two zeros in the count stream So | have
to sit in a loop |ooking for strings of three or nore zero val ues
in a row

This is sinple in concept, but it ends up being one of the nost
conplicated routines in the whole program A routine that just
wites out 256 values without attenpting to optimnmze would be nuch
sinmpler, but would hurt conpression quite a bit on small files.

voi d output_counts ( output, nodes )
BI T_FI LE *out put;

NODE *nodes;
{

int first;

int |ast;

i nt next;

int i;

first = 0;

while ( first < 255 && nodes[ first ].count == 0 )

first++;

/*
* Each tinme | hit the start of the loop, | assune that first is the
* start of a run of non-zero values. The rest of the loop is
* concerned with finding the value for last, which is the end of the
* run, and the value of next, which is the start of the next run
* At the end of the loop, | assign next to first, so it starts in on
* the next run.
*

~

for (; first <256 ; first = next) {
last = first + 1;
for (5 ;) {
for (; last < 256 ; last ++ )
if ( nodes[ last ].count == 0 )



/*

*

*/

*
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~

br eak;

| ast - -;
for ( next = last + 1; next < 256 ; next++ )
if ( nodes[ next ]. count ! = 0)
br eak;
if ( next > 255)
br eak;
if ( ( next - last ) > 3)
br eak;
| ast = next;
b
Here is where | output first, last, and all the counts in between.
if ( putc( first, output->file ) !'=first)
fatal _error( "Error witing byte counts\n" );
if ( putc( last, output->file ) != last)
fatal _error( "Error witing byte counts\n" );
for (i =first ; i <=last ; i++ ) {
if ( putc( nodes[ i ]. count, output->file ) I=
(int) nodes[ i ]. count)
fatal _error( "Error witing byte counts\n" );
}
if ( putc( O, output->file ) !'=0
fatal _error( "Error witing byte counts\n" );
When expanding, | have to read in the sanme set of counts. This is
quite a bit easier that the process of witing themout, since no
deci si on naking needs to be done. Al | dois read in first, check
to see if | amall done, and if not, read in last and a string of
counts.

voi d input_counts( input, nodes)

B

T_FILE *input;

NCDE *nodes;

{

int first;
int |ast;
int i;
int c;

for (i =0 ; i <256 ; i++)
nodes[ i ]. count = O;
if ( ( first = getc( input->file ) ) == EOF)
fatal _error( "Error reading byte counts\n" );
if ( ( last = getc( input->file ) ) == EOF)
fatal _error( "Error reading byte counts\n);
for (5 ;) {
for (i =first ; i <=last ; i++)
if ( (¢ =getc( input->file ) ) == EOF)
fatal _error( "Error reading byte counts\n" );
el se
nodes[ i ]. count = (unsigned int) c;
if ( ( first = getc( input->file ) ) == EOF)
fatal _error( "Error reading byte counts\n" );
if ( first == 0)
br eak;
if ( ( last = getc( input->file ) ) == EOF )
fatal _error( "Error reading byte counts\n" );

}
nodes[ END OF STREAM ].count =1



This routine counts the frequency of occurence of every byte in
the input file. It marks the place in the input streamwhere it
started, counts up all the bytes, then returns to the place where
it started. In nmost Cinplenentations, the length of a file
cannot exceed an unsigned long, so this routine should al ways

* work.

*/

#i f ndef SEEK_SET

#define SEEK SET 0

* 0% %k F T~

#endi f

voi d count _bytes( input, counts)
FILE *i nput;

unsi gned | ong *counts;

{

[ ong i nput _narker;
int c;

i nput _marker = ftell ( input );

while ( ( ¢ = getc( input ) ) !'= EOF)
counts[ c ]++;

fseek( input, input_marker, SEEK SET );

—

*

In order to linmt the size of ny Huffman codes to 16 bits, | scale
nmy counts down so they fit in an unsigned char, and then store them
all as initial weights in nmy NODE array. The only thing to be
careful of is to make sure that a node with a non-zero count doesn't
get scaled down to 0. Nodes with values of 0 don't get codes.

* %k kX X T~

~

voi d scal e _counts( counts, nodes )
unsi gned | ong *counts;
NODE *nodes;
{
unsi gned | ong nmax_count;
int i;

max_count = 0O;
for (i =0 ; i <256 ; i++)
if ( counts[ i ] > max_count )
max_count = counts[ i ] ;
if ( max_count == 0 ) {
counts[ 0] = 1;
max_count = 1;

}
max_count = max_count / 255;
max_count = max_count + 1;

for (i =0 ; i <256 ; i++) {
nodes[ i ].count = (unsigned int)
( counts[ i ] / max_count );
if ( nodes[ i ]J.count == 0 & counts[ i ] !'=0);
nodes[ i ].count =1

}
nodes[ END OF_STREAM]. count =1

Building the Huffman tree is fairly sinple. Al of the active nodes
are scanned in order to locate the two nodes with the m ni mum

wei ghts. These two wei ghts are added together and assigned to a new
node. The new node nakes the two minimumnodes into its O child

* Xk ok TS
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and 1 child. The two nmininmmnodes are then marked as inactive.
This process repeats until there is only one node left, which is
the root node. The tree is done, and the root node is passed back
to the calling routine.

Node 513 is used here to arbitratily provide a node with a guaran
teed maxi numvalue. It starts off being min_1 and min_2. After al
active nodes have been scanned, | can tell if there is only one
active node left by checking to see if min_1is still 513.

/

nt build tree( nodes )

NCDE *nodes;

{

* %k 3k X X ¥ TS

~

i nt next_free;
int i;

int mn_1;

int mn_2;

nodes[ 513

].count = Oxffff;
for ( next _fr
i

c
ree = END OF_ STREAM + 1 ; ; next _free++ ) {
mn_1 = 513;
513;
for ( =0; i <next_free; i++)
if ( nodes[ i ].count !'=0) {

if ( nodes[ i ].count < nodes[ mn_1 ].count ) {

mn2 + mn_1;

mnl=i;

} else if ( nodes[ i ].count

< nodes[ mn_2 ].count)
mn2=i;
}
if ( mn_2 == 513)
br eak;
nodes[ next free ].count = nodes[ min_1 ].count
+ nodes[ mn_2 ].count;

nodes[ mn_1 ].saved count = nodes[ mn_1 ].count;
nodes[ mn_1 ].count = O;
nodes[ min_2 ].saved_count
nodes[ mn_2 ].count = O;

nodes[ mn_2 ].count;

nodes[ next free ].child 0 = mn_1
nodes[ next free ].child 1 = mn_2;
}

next free--;

nodes[ next free ].saved count = nodes[ next free ].count;
return( next _free );

*

Since the Huffman tree is built as a decoding tree, there is

no sinple way to get the encodi ng val ues for each synbol out of
it. This routine recursively wal ks through the tree, adding the
child bits to each code until it gets to a leaf. When it gets
to a leaf, it stores the code value in the CODE el emrent, and
returns.

void convert _tree_to_code( nodes, codes, code_so far, bits, node )
NCDE *nodes;

CODE *codes;

unsi gned int code_so_far

{

nt bits;
nt node;

if ( node <= END OF_STREAM ) {
codes[ node ].code = code_so_far
codes[ node ].code_bits = bits;



return;

code_so_far <<= 1;

bi t s++;

convert _tree_to_code( nodes, codes, code so far, bits,
nodes[ node ]. child_0 );

convert _tree_to_code( nodes, codes, code_so far | 1
bits, nodes[ node ].child_1)

}

/*

* |f the -d conmand line option is specified, this routine is called
* to print out sone of the nodel information after the tree is built.
* Note that this is the only place that the saved_count NODE el enent
* is used for anything at all, and in this case it is just for

* diagnostic information. By the tinme | get here, and the tree has
* been built, every active element will have O in its count.

*/

voi d print_nodel( nodes, codes )

NODE *nodes;
CODE *codes;
t
int i;
for (i =0 ; i <513 ; i++) {
if ( nodes[ i ].saved count !'=0) {

printf( "node=" );

print_char( i );

printf( " count=%3d", nodes[ i ].saved count );

printf( " child 0=");

print_char( nodes[ i ]. child 0);

printf( " child_1=");

print_char( nodes[ i ].child_1);

if ( codes & i <= END OF_STREAM ) {
printf( " Huffrman code=" );
FilePrintBinary( stdout, codes[ i ].code,

codes[ i ].code_bits );

printf( "\n" );

}

/-k

* The print_nodel routine uses this function to print out node num

* bers. The catch is if it is a printable character, it gets printed
* out as a character. This nmakes the debug output a little easier to
* read.

*/
void print_char( c )
int c;
if ( ¢ >= 0x20 && ¢ < 127 )
printf( ""%'", ¢ );
el se
printf( "98d", c );
}
/*

* Once the tree gets built, and the CODE table is built, conpressing
* the data is a breeze. Each byte is read in, and its correspondi ng
* Huf fman code is sent out.

*/

voi d conpress_data( input, output, codes )



FI LE *i nput;

Bl T_FI LE *out put;
CODE *codes;

{

int c;

while ( ( ¢ = getc( input ) ) !'= EOF)
Qut put Bits( output, (unsigned |ong) codes[ c ].code,
codes[ ¢ ].code_bits );
Qut putBi ts( output, (unsigned |ong) codes[ END OF STREAM ]. code,
codes[ END OF STREAM ].code bhits );

}

/*

* Expandi ng conpressed data is a little harder than the conpression
* phase. As each new synbol is decoded, the tree is traversed,

* starting at the root node, reading a bit in, and taking either the
* child O or child_1 path. Eventually, the tree winds down to a

* | eaf node, and the correspondi ng synbol is output. [|f the synbol
* is the END OF STREAM synbol, it doesn't get witten out, and

* instead the whol e process terninates.

*

/

voi d expand_data( input, output, nodes, root_node )
BI T_FILE *input;

FI LE *out put ;

NODE *nodes;

i nt root node;

{

i nt node;

for (; ;) {
node = root_node;
do {
if ( InputBit( input ) )
node = nodes[ node ].child_1;
el se
node = nodes[ node ].child_O;
} while ( node . END OF STREAM);
if ( node == END_OF_STREAM)
br eak;
if ( ( putc( node, output ) ) != node )
fatal _error( "Error trying to wite byte to output” );

}

/******************************End Of HUFF Ck**************************/

Putting It All Together

The actual commands to build the compression and expansion programs will differ depending on
which compiler and operating system you are using. Assuming you name the compression program
HUFF-C and the expansion program HUFF-E, here are the command lines to compile the programs
with various compilers:

Mcrosoft C cl /WB /Za /FeHUFF-C MAIN-C. C HUFF. C BI TI O C ERRHAND. C
cl /WB /Za / FeHUFF-E MAI N-E. C HUFF. C BI TI O C ERRHAND. C
Borl and C++: bcc -Ax -w -eHUFF-C MAIN-C. C HUFF. C BI TI O C ERRHAND. C
bcc -Ax -w -eHUFF-E MAIN-E. C HUFF. C BI TI O. C ERRHAND. C

UNI X pcc: cc -ohuff-c main-c.c huff.c bitio.c errhand.c
cc -ohuff-e main-e.c huff.c bitio.c errhand.c

Remember that ANSI-compatible C compilers must have their extensions turned off on the
command lineto enablethe _ STDC __ macro. The __ STDC___macro is necessary to turn on the



ANSI prototypes. If you don’t want to continually have to add this unfamiliar command-line switch
when you compile, simply strip out the “#ifdef _ STDC__” line and always pull in the ANSI C

prototypes. The only reason for doing thisisto have code that will compile cleanly on K&R
compilers. If you aren’t using a K& R compiler, keeping in the K&R prototypesis of dubious value.

The module ERRHAND.C needsthe _ UNIX__ definition in order to use old-style variable
arguments. Fully compliant ANSI C compilers may not have to turn this option on. If you are going
to only be using your source code on your UNIX system, it would probably be simpler to put a
“#define_ UNIX__” inyour ERRHAND.C file.

Performance
Order 0 Huffman coding is not going to take any prizes for compression ratios. But it does fairly

well in terms of program size, memory requirements, and processing speed. To see how HUFF.C
does overall, see the scorecardsin Appendix A.



Chapter 4
A Significant Improvement: Adaptive Huffman Coding

In Chapter 3, we saw how Huffman coding could perform effective data compression by reducing
the amount of redundancy in the coding of symbols. Huffman coding does not in itself tell how to
reduce the information content of each symbol by developing an accurate model. But any model that
can calculate the probability of a symbol with any accuracy should be able to use Huffman coding to
compress data.

The examplesin Chapter 3 all used order 0 models, which are essentially context free. This means
that the probability of a given character is calculated without taking into account the characters that
preceded it in a message. The programs used in Chapter 3 just analyzed the entire input file and
created atable of probabilities for each symbol. Aslong as these probabilities deviated from a purely
uniform distribution, we were able to compress the data.

A minor drawback to Huffman coding programs is the requirement that they transmit a copy of the
probability table with the compressed data. The expansion program would have no way of correctly
decoding the data without the probability table. The table requires at most the addition of an extra
250 or so bytes to the output table, and consequently it usually doesn’t make much difference in the
compression ratio. Even small fileswon't be greatly affected, since the probability table should also
be small for thesefiles.

The problem with this “minor drawback” is that as we attempt to improve the compression ability of
our program, the penalty becomes more and more significant. If we move from order-0 to order-1
modeling, for example, we now have to transmit 257 probability tables instead of just one. So by
using atechnique that enables usto predict characters more accurately, we incur a penalty in terms
of added overhead. Unless the files we are going to compress are very large, this added penalty will
frequently wipe out any improvements made by increasing the order.

Adaptive Coding

This seemsto lead to an impasse. To compress better, we need to accumulate more statistics. When
we get more statistics, we achieve better compression but we wipe out any gains by having to send
more modeling data.

Fortunately, thereisaway out of this dilemma. Adaptive coding lets us use higher-order modeling
without paying any penalty for added statistics. It does this by adjusting the Huffman tree on the fly,
based on data previously seen and having no knowledge about future statistics.

Adaptive coding is not something that can just be used with Huffman coding. In principle, almost
any form of coding can be converted to use an adaptive method. The high-level C program required
to do adaptive compression is shown below.

initialize_nodel ();

do {
c = getc( input );
encode( c¢, output );
update_nodel ( ¢ );

} while ( ¢ != EOF);

The decompressor worksin a nearly identical fashion, as shown here:

initialize_nodel ();
while ( ( ¢ = decode( input ) ) ! = EOF ) {



putc( c, output );
update_nodel ( ¢ );

}

Adaptive coding works since two of the routines used in these two algorithms are identical :
initialize_model () and update_model(). If these routines differed even dlightly between the
compression and decompression programs, the whole system would fall apart.

This sort of coding isfairly simple. The compressor and decompressor start off with identical models
to encode and decode. So when the compressor puts out its very first encoded symbol, the
decompressor will be able to interpret it.

After the compressor emits the first symbol, it proceeds to the update_model () function. Thisis
where the adaptive nature of the program begins. The update model takes into account the character
that has just been seen and updates the frequency and encoding data used to encode that character. In
a Huffman tree, it means incrementing the count for the particular symbol, then updating the
Huffman coding tree.

Updating the Huffman Tree

The algorithm for constructing a Huffman coding tree isfairly simple, but it is not something we
would want to do after every character is encoded. It would be relatively simple to implement
adaptive Huffman coding with the following update function:

update _nodel ( int c )

{

counts[ c ]++;
construct _tree( counts );

}

Unfortunately, what we would end up with would probably be the world’ s slowest data-compression
program. Building the tree takes too much work to reasonably expect to do it after every character.

Fortunately, there is away to take an existing Huffman coding tree and modify it to account for a
new character. All it takesis adlightly different approach to building the tree in the first place. This
approach introduces a concept known as the sibling property. A Huffman tree is simply abinary tree
that has aweight assigned to every node, whether an internal node or aleaf node. Each node (except
for the root) has a sibling, the other node that shares the same parent. The tree exhibits the sibling
property if the nodes can be listed in order of increasing weight and if every node appears adjacent to
itssibling in the list.

A binary treeisaHuffman treeif and only if it obeys the sibling property. Figure 4.1 shows a
Huffman tree that illustrates how this works. In this tree, the nodes have been assigned numbers,
with the numbers assigned from left to right starting at the lowest row of nodes and working up. This
tree was created using a conventional Huffman algorithm given the weights A=1, B=2, C=2, D=2,
and E=10.
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Figure4.1 A Huffman tree.

In Figure 4.1, the A, B, C, and D nodes at the bottom of the tree are numbered in increasing order
starting at 1. Nodes 5 and 6 are the first two internal nodes, with weights of 3 and 4. The node
numbers work their way up to node 9, the root. This arrangement shows that this tree obeys the
sibling property. The nodes have been numbered in order of increasing weight, and each node is
adjacent to its sibling in the list.

The sibling property isimportant in adaptive Huffman coding since it helps show what we need to
do to a Huffman tree when it istime to update the counts. Maintaining the sibling property during
the update assures that we have a Huffman tree before and after the counts are adjusted.

Updating the tree consists of two basic types of operations. The first, incrementing the count, is easy
to follow conceptually. To increment the count for symbol ‘c,” start at the leaf node for the symbol
and increment the count for the leaf node. Then move up to the parent node. Since the weight of the
parent node is the sum of the weight of its children, incrementing its weight by one will adjust it to
its correct value. This process continues all the way up the tree till we reach the root node.

Figure 4.2 shows how the increment operation affects the tree. Starting at the leaf, the increment
works its way up the treetill it reaches the parent node. Implementing this portion of the code is
relatively smple. Be sure that each node has a parent pointer and that an index points to the |eaf
node for each symbol. This can be done using conventional data structures at alow cost. The average
number of increment operations required will correspond to the average number of bits needed to
encode a symbol.
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Figure 4.2 Theincrement process.

The second operation required in the update procedure arises when the node increment causes a
violation of the sibling property. This occurs when the node being incremented has the same weight
asthe next highest node in the list. If the increment were to proceed as normal, we would no longer
have a Huffman tree.

When we have an increment that violates the sibling property, we need to move the affected node to
ahigher point in the list. This means that the node is detached from its present position in the tree
and swapped with anode farther up thelist.

Figure 4.3 shows the same Huffman tree from Figure 4.2 after the A node has been incremented
again, then switched with the D node. How was the D node selected as the one to be switched? To
minimize the amount of work during the shuffle, we want to swap just two nodes. If the newly
incremented node has aweight of W + 1, the next higher node will have aweight of W. There may
be more nodes after the next higher one that have a value of W as well. The swap procedure moves
up the node list till it finds the last node with aweight of W. That node is swapped with the node
with weight W + 1. The new node list will then have a string of 1 or more weight W nodes, followed
by the newly incremented node with weight W + 1.

ROOT
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#=1 #=2 #=3 #=4

Figure 4.3 After anode switch (only the A node has been incremented).



In Figure 4.3, the A node was incremented from aweight of 2 to 3. Since the next node in the list,
the B node, had aweight of 2, the tree no longer obeyed the sibling property. This meant it was time
to swap. We worked our way up the list of nodestill we found the last node with aweight of 2, the D
node. The A and D nodes were then swapped, yielding a correctly ordered tree.

After the swap is completed, the update can continue. The next node to be incremented will be the
new parent of the incremented node. In Figure 4.3, thiswould be internal node #6. As each nodeis
incremented, a check is performed for correct ordering. A swap is performed if necessary.

What Swapping Does

The swap shown in Figure 4.3 doesn’t have a noticeable effect on the coding of the symbols. The A
and D nodes were swapped, but the length of their codes did not change. They were both three bits
long before the swap and three bits long after.

Figure 4.4 shows what happens to the three after the A symbol has been incremented two more
times. After the second increment, the A node has increased enough to swap positions with an
internal node on a higher level of the tree. This reshapes the tree, impacting the length of the codes.
When A had a count of two like three other symbols, it was encoded using three bits. Now, when its
count hasincreased to five, it is encoded using only 2 bits. Symbols C is still encoded using 3 bits,
but B and D have slipped down to 4 hits.

ROOT
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Figure 4.4 After another node switch.
The Algorithm

In summary, the algorithm for incrementing the count of a node goes something like what’ s shown
below:

for (5 ;) {

i ncrenent nodes[ node ].count;



if ( node == ROOT )
br eak;

if ( nodes[ node ].count > nodes[ node + 1 ].count )
swap_nodes();

node = nodes[ node ].parent;

}

The swap_nodes() routine has to move up through the list of nodes until it finds the right node to
swap with. It then performs the swap. This routine looks something like that shown below:

swap_node = node + 1;

whil e ( nodes[ swap_node + 1 ].count < nodes[ node ].count )
swap_node++;

tenmp = nodes[ swap_nhode ].parent;

nodes[ swap_node ].parent = nodes[ node ].parent;

nodes[ node ].parent = tenp;

An Enhancement

One way to make coding more efficient isto make sure your coder doesn’t waste coding space for
symbols not used in the message. With the standard Huffman coding in the previous chapter, this
was easy. Since we made a pass over the data to collect statistics before building the tree, we knew
in advance which symbols weren’t used. So when we built the Huffman tree we didn’t have to
include symbols with a count of 0.

With an adaptive process, we don’t know in advance which symbols will show up in the message.
The simplest way to handle this problem is to initialize the Huffman tree to have all 256 possible
bytes (for conventional 8-bit data messages) predefined with a count of 1. When the encoding first
starts, each message will have alength of eight bits. As statistics accumulate, frequently seen
characters will start to use fewer and fewer bits.

This method of encoding works, but in many cases it wastes coding capacity. Particularly in shorter
messages, the extra unused codes tend to blunt the effect of compression by skewing the statistics of

the message.

A better way to handle this aspect of coding isto start the encoding process with an empty table and
add symbols only as they are seen in the incoming message. But this presents us with a seeming
contradiction. The first time a symbol appears, it can’t be encoded since it doesn’'t appear in the
table. So how do we get around this problem?

The Escape Code

The answer to this puzzle is the escape code. The escape code is a special symbol sent out of the
encoder to signify that we are going to “escape’ from the current context. The decoder know that the
next symbol will be encoded in a different context. We can use this mechanism to encode symbols
that don’t appear in the currently defined Huffman tree.

In the example program in this chapter, the escape code signifies that the next symbol to be encoded
will be sent as a plain 8-bit character. The symbol is added to the table, and regular encoding
resumes. The C code to implement the encoder for this algorithm looks something like this:

encode( char c )

{
if (in_tree( c) )
transmt_huffman_code( ¢, out _file );



el se {
transmt_huff man_code( ESCAPE, out _file );
putc( c, out_file );
add_code _to tree( ¢ );

}

update tree( c );

}

This example shows that the escape code is transmitted like any other symbol from the Huffman
tree, so it has to appear in the Huffman tree to be properly transmitted. When the encoder first starts
up, it needs to beinitialized with the escape code aready present.

In the implementation used in the example code for this chapter, the Huffman tree is actually
initialized with two values: the escape code and the end of file code. Since both will appear in the
file, we start off with them in avery small Huffman tree:

ROOT
W=2

EOF ESCAPE
W=1 W=1

Figure4.5 A Huffman treeinitialized with two values.

As the encoding process goes on, the table fills up and the tree fleshes out. The end of file code will
always have aweight of one, and in thisimplementation, so will the escape code. As the tree grows,
these two codes will always be stuck down at the remotest branches of the tree and have the longest
codes.

The Overflow Problem

As the compression program progresses, the counts in the table increase. At some point, the counts
become large enough to cause trouble for the program. There are two possible areas of concern. The
first occurs when the weight of the root exceeds the capacity of the countersin the tree. For most of
the programs used here, that will be 16 bits.

Another possible problem can occur even sooner. It happens when the length of the longest possible
Huffman code exceeds the range of the integer used to transmit it. The decoding process doesn’'t care
how long acode is, since it works its way down through the tree a bit at atime. The transmitter has a
different problem though. It hasto start at the leaf node of the tree and work up towards the root. It
accumulates bits to be transmitted in reverse order, so it hasto stack them up. Thisis conventionally
donein an integer variable, so this means that when a Huffman code exceeds the size of that integer,
there is a problem.

The maximum length of a Huffman code is related to the maximum count via a Fibonacci sequence.
A Fibonacci function is defined as follows:

int fib( int n)
{
if (n<=1)
return( 1 );
el se
return( fib( n- 1) +fib( n-2));



The sequence of Fibonacci numbers looks something like this: 1, 1, 2, 3, 5, 8, 13, 21, 34, etc. These
numbers show up in the worst-case, most lopsided Huffman tree:

W=13
W=8
W=5
W=3
W=z
A B c
W=1 W=1 W= W=2 W=3 W=5

Figure 4.6 A lopsided Huffman tree produced through a sequence of Fibonacci numbers.

From this we can deduce that if the weight at the root node of a Huffman tree equalsfib(i), then the
longest code for that treeisi - 1. This means that if the integers used with our Huffman codes are
only 16 bitslong, aroot value of 4181 could potentially introduce an overflow. (Thislow valueis
frequently overlooked in simple Huffman implementations. Setting up afile with Fibonacci counts
up to fib[18] isagood way to test a Huffman program). When we update the tree, we ought to check
for amaximum value. Once we reach that value, we need to rescale al the counts, typically dividing
them by afixed factor, often two.

One problem with dividing al the counts by two isthat it can possibly reshape the tree. Since we are
dealing with integers, dividing by two truncates the fractional part of the result, which can lead to
imbalances. Consider the Huffman tree shown in Figure 4.7.
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Figure4.7 A Huffman tree created for four symbols.

Thisisatree created for four symbols: A, B, C, and D, with weights of 3, 3, 6, and 6. The nodes of
the tree are numbered in this diagram, and the diagram clearly shows that the tree is a Huffman tree,
since it obeys the sibling property. The problem with this tree occursif we try arescaling operation.
The simple version of the rescaling algorithm would go through the tree, dividing every leaf node
weight by two, then rebuilding upwards from the leaf nodes. The resulting tree would look like what
follows.
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Figure 4.8 Therescaling problem after the nodes are divided by two.

The problem with the resulting tree is that it is no longer a Huffman tree. Because of the vagaries of
truncation that follow integer division, we need to end up with atree that has a dlightly different
shape:

B
Wi=1 Wi=1
#=1 #=2

Figure 4.9 What the tree should look like after integer division.

The properly organized Huffman tree has a drastically different shape from what it had before being
rescaled. This happens because rescaling loses some of the precision in our statistical base,
introducing errors sometimes reflected in the rescaled tree. Astime goes on, we accumul ate more
statistics, and the effect of the errors gradually fades away.

Unfortunately, there is no simple way to compensate for the necessary reshaping the tree after
rescaling. The sample code in this chapter merely does a brute-force rebuilding after rescaling.
Rebuilding the entire tree is arelatively expensive operation, but since the rescaling operation is rare,
we can live with the cost.

A Rescaling Bonus

An interesting side effect comes out of rescaling our tree at periodic intervals. Though we lose
accuracy by scaling our counts, testing reveals that rescaling generally results in better compression
ratios than if rescaling is postponed. This occurs because data streams frequently have a*“decaying
recency” effect, or the statistics for recently seen symbols are generally more valid than those
accumulated farther back in the data stream. To put it simply, current symbols are more like recent
symbols than older symbols.



The rescaling operation tends to discount the effect of older symbols, while increasing the
importance of recent symbols. Though difficult to quantify, this seemsto have a good effect on
compression. Experimenting with various rescaling points will yield different results at differing
values, but it doesn’t seem possible to pin down an optimal strategy. There may be an optimal value
for rescaling, but it moves around with different types of data streams.

The Code

The sample code for this chapter is a simple order-0 adaptive Huffman compression routine. It is
linked with the standard 1/0O and user interface routines from the previous chapter to create a
standalone compression program and a decompression program.

The key to understanding how this sample code operates lies in understanding the data structuresin
the program. The data structure that describes the tree is shown next.

struct tree {
int leaf[ SYMBOL_COUNT ];
i nt next _free_node;
struct node {
unsi gned i nt weight;

i nt parent;
int child_is_|eaf;
int child;
} nodes[ NODE_TABLE_COUNT ];

} Tree;

Two arrays describe the tree. Thetree itself is entirely represented by the nodeq[] array. Thisarray is
aset of structures with the following elements:

unsigned int weight: Thisweight element is the weight of individual node, just asit has
been described previoudly in this chapter.

int parent: Thisint istheindex of the parent node. The parent node information
is necessary both when encoding a symbol, and when updating the
model.

int child_is leaf: The child of a given node can either be aleaf or apair of nodes. This
flag isused to indicate which it is.

int child: If the child isaleaf, thisint holds the value of the symbol encoded at

the leaf. If the child isa pair of nodes, this value is the index to the
first node. Because of the sibling property, the two nodes will always
be adjacent to one another, so we know the first node will be child,
and the second node will be child+1.

As described earlier in the chapter, every node in the tree is kept in a number list. When discussing
the list before, we had the nodes with the lowest weight starting at 1 and working up to higher
numbers until reaching the root. The implementation in this program is backwards from that, though
the same principles apply. Thelist of nodes is the nodeq[] array, with the highest number on the list
appearing at nodeg 0]. Aswe work our way down through the lower weights, we go to higher indices
in the nodes list.

When the treeisfirst initialized, nodeg[ 0] is the root node, nodes [1] is set to the end-of-stream
symbol, and nodeq[ 2] is set to the escape symbol. The next_free node element in the treeis then set
to 3, and the next time a character is added to the tree, it will be placed in nodeg[3].

The leaf[] array in the tree data structure is used to find the leaf node for a particular symbol. To



encode a symbol, start at the leaf node and work up to the root node of the tree, accumulating bits on
the way (in reverse order). Without aleaf[] array to keep track of the leaf nodes, we would have to
do a search through the entire tree every time we wanted to encode a character.

Initialization of the Array

Regardless of whether we perform compression or expansion, we initialize the Huffman tree using
the same routine. When performing adaptive compression, it is extremely important to use an
identical algorithm for both initialization and updating of the compression model. In this case, we
use the same code to ensure that it happens.

The initialization routine, InitializeTree(tree), is the first thing called by both the compression and
expansion code. It uses the following code to initialize nodes 0, 1, and 2:

tree->nodes[ ROOT_NODE]. child ROOT_NCDE + 1;

tree->nodes[ ROOT_NODE].child_is_|eaf = FALSE;
tree->nodes[ ROOT_NODE] . wei ght = 2;
tree->nodes|[ ROOT_NODE] . par ent = -1;

tree->nodes[ ROOT_NODE + 1 ]J.child = END_OF_ STREAM
tree->nodes[ ROOT_NODE + 1 ].child_is_|eaf = TRUE;
tree->nodes[ ROOT_NODE + 1 ].weight = 1;
tree->nodes[ ROOT_NODE + 1 ].parent = ROOT_NCDE;
tree->l eaf [ END_OF STREAM ] = ROOT_NOCDE + 1;
tree->nodes[ ROOT_NODE + 2 ].child = ESCAPE;
tree->nodes[ ROOT_NODE + 2 ].child_is_|eaf = TRUE;
tree->nodes][ ROOT_NODE + 2 ].weight = 1;
tree->nodes[ ROOT_NODE + 2 ]. parent = ROOT_NODE;
tree->l eaf[ ESCAPE ] = ROOT_NCDE + 2;
tree->next _free_node = ROOT_NCDE + 3;
for (i =0 ; i < END OF_STREAM ; i ++ )

tree->leaf[ i ] = -1;

The initialization of the tree->nodeq]] elementsisfairly direct. We assign the escape and end-of -
stream nodes aweight of 1, which givesthe root a weight of 2. The escape and end-of stream
elementsin the tree->leaf[] array areinitialized to point to the appropriate nodes, and the parent and
child pointers for each of the three nodes are initialized.

The final details required during initialization are to set up the tree->next_free_node index and to
initialize the remaining elements of the tree->leaf[] array. Since none of the leaf[] elements for our
conventional symbols have been initialized, they are all set to values of -1. During the encoding
process, we will compare the tree->leaf[] value for agiven symbol to -1 to seeif it has already been
defined.

The Compress Main Program

The code for the compression program is short:

InitializeTree( &Tree );

while ( ( ¢ = getc( input ) ) !'= EOF ) {
EncodeSynbol ( &Tree, c, output );
Updat eModel ( &Tree, ¢ );

}
EncodeSynbol (  &Tree, END_OF_STREAM out put );



Once the tree has been initialized, the program sitsin aloop encoding characters and updating the
model. When there are no more characters left to encode, it encodes the end-of-stream symbol, and it
isdone.

Complexities are hidden in these functions. The EncodeSymbol function needs to see if the symbol
isalready defined. If it isn't, EncodeSymbol needs to output the escape code and the unencoded
symbol. EncodeSymbol then needs to add the symbol to the tree, with a count of 0.

The UpdateModel function also hides some complexity. It performs the update discussed previously
in the chapter, which isfairly complex. Before doing the update, it checks to see if the root node has
reached the maximum allowable weight. If it has, the tree is scaled by afactor of two and rebuilt.

The Expand Main Program

Like the compress main program, the expand program is short and to the point. After initializing the
tree, it reads in symbols via the DecodeSymbol routine, then writes them to the output file. After
each symbol is decoded, it is written to the output file, and the model is updated.

Asin the compress program, a certain amount of complexity is concealed in the higher-level
functions. The DecodeSymbol routine has to seeif the symbol it decodesis an escape code. If itis,
DecodeSymbol throws away the escape code and reads in an “ unencoded” 8-bit symbol. The symbol
is then added to the Huffman tree, with an initial count of O.

As previously seen, the UpdateM odel () routine hasto see if the root node has reached the maximum
allowable count. If it has, the Huffman tree is rebuilt. After that, the normal increment/test/swap
routine ensues.

InitializeTree( &Tree );
while ( ( ¢ = DecodeSynbol ( &Tree, input ) ) !=END OF STREAM) {
if ( putc( c, output ) == EOF)
fatal _error( "Error witing character” );
Updat eModel ( &Tree, ¢ );

}

Encoding the Symbol

After initializing the tree, the compress routine repeatedly calls the EncodeSymbol routine. The
EncodeSymbol routine (shown below) first identifies the leaf node for the symbol to be encoded. If
the leaf table returns a1, it means that this symbol is not presently found in the Huffman tree. In that
case, the symbol to be encoded is switched to the escape code, and its root node is located.

The encoding process for a Huffman tree works by starting at the leaf node and moving up through
the parent nodes one at atime, until the root is reached. In a conventional Huffman tree, there will
usually be two child nodes for each parent, one that encodes a 0 bit and another that encodes a 1 bit.
The data structures used in this program take advantage of the sibling property by aways grouping
the two children of a parent node next to one another in the node list.

Grouping children together saves space by requiring only a single child pointer instead of two. It also
means that a child automatically knows whether it is the child that encodes a 1 or O by whether it is
odd or even. In this program, the odd child is arbitrarily designated the 1, and the even is always the
0.

Given thisinformation, the encoding process is accomplished without too many lines of C code.
Starting at the leaf node, each bit is added to the cumulative Huffman code. Whether the bitisa 1 or
a 0 determines whether the bit is odd or even. As each bit is encoded, the current_bit mask is shifted



by one so the next bit encoded will appear in the next most significant position. A counter is also
incremented that keeps track of how many bits have been accumulated in the output word so far.

code = 0;
current _bit = 1;
code_size = 0;
current_node = tree->leaf[ ¢ |;
if ( current_node == -1 )
current _node = tree->l eaf[ ESCAPE ];
while ( current_node != ROOT_NODE ) {
if ( ( current_node &1 ) ==0)
code | = current_bit;
current_bit <<= 1
code_si ze++;
current _node = tree->nodes[ current_node ].parent;

Qut putBi ts( output, code, code_size );
if (tree->leaf[ c ] ==-1) {
Qut putBits( output, c, 8 );
add_new node( tree, c );

}

After the bits of the Huffman code have been accumulated in the code word, the utility routine
OutputBits (found in BITIO.C) is called to send out the code. Thereis still one piece of work left to
do, however, before returning. If the code that was just output was the escape code, we have to
handle the specia condition created when a previously unreferenced symbol is encountered.

The first step taken after the escape code is sent is simple. The new symbol is output in an
unencoded fashion, just asit was read in from the file. Thislets the decoder know what symbol to
add to the table. The second step is to add the new node to the Huffman tree. When the new node is
added to the treg, it isinserted with aweight of 0. The O-weight node will be incremented later when
the model is updated, so it will not be O for long. The advantage to adding a node with aweight of
zeroisthat it can be done without having to worry about updating any other nodes or, worse,
changing the shape of the tree.

Using the sibling property definitions, we know that if the new node has aweight of 0, it will be the
very first node in the list, since nodes are ranked in order of weight. We add the node to the table by
finding the presently lowest-weight node and break it out into two new nodes. The old |owest-weight
node will be one of the two new nodes, and the new 0-weight node will be the other one.

Figure 4.10 illustrates how this process modifies a working tree. The Huffman tree has aready had
the A, B, C, and D nodes defined with nonzero weights. The A node has the lowest count and
consequently is at the start of the list (remember that the list in this program has the highest weights
at 0). When symbol E is going to be added to the tree, we first identify A asthe node at the end of
the list. The position A used to occupy is converted to an internal node, and two new nodes are
created. Since E is guaranteed to have the lowest weight in the treg, it is set to be the first node in the
list, and A is set to be the second node.
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Figure 4.10 The Huffman tree before and after addition of a zero weight node.

The code needed to add the node is listed below. The first step is to find the lowest-weight node,
which in the example was A. The new_node variable is the node which A will occupy, and the
0_weight_node iswhere E will go. Since these are two new nodes, they are set to be the
next_free_node and next_free_nodet+1. After thisis done, next_free node isincremented by two so
it will be ready for the next operation.

| ightest _node = tree->next_free_node - 1;
new _node = tree->next_free_node;
zero_wei ght _node = tree->next_free_node + 1;
tree->next _free_node += 2;

tree->nodes[ new node ] = tree->nodes[ |ightest node ];
tree->nodes[ new_node ].parent = |ightest_node;

tree->l eaf[ tree->nodes][ new node ].child] = new_node;
tree->nodes[ lightest _node ].child = new node;

tree->nodes[ lightest_node ].child_is_|leaf = FALSE

tree->nodes[ zero_wei ght_node ].child
tree->nodes[ zero_wei ght_node ].child_is_|eaf
tree->nodes[ zero_wei ght _node ].wei ght
tree->nodes[ zero_wei ght _node ]. parent
tree->leaf[ ¢ ] = zero_wei ght_node

c;

TRUE;
0;
| i ght est _node;

After the two new nodes are created, afew more bookkeeping details are needed to link the two new
children to their parent, to make sure their weights are correct, and to make sure the leaf array points
to the correct nodes. After that, the routine is done, and the tree is ready to be updated.

Updating the Tree

The most complicated part of the Adaptive Huffman program isin the routines called to update the
tree. Updating the model is ssimply a matter of incrementing a symbol weight by one and taking care
of all the side effects of that action. Taking care of the side effects, however, involves some
strenuous effort.

if ( tree->nodes[ ROOT_NODE].wei ght == MAX VEI GHT )
Rebui | dTree( tree );

current _node = tree->leaf[ ¢ ];

while ( current_node !'= -1) {
tree->nodes[ current_node ].wei ght ++;



for ( new_node = current_node ; new node > ROOT_NODE
new_node— )
if ( tree->nodes[ new node - 1 ].weight >=
tree->nodes[ current_node ].wei ght )
br eak;
if ( current_node != new node ) {
swap_nodes( tree, current_node, new _node );
current _node = new_node;

}

current _node = tree->nodes[ current_node ].parent;

}

This code performs all the work needed to update the tree. The first thing it checks for isto seeif the
tree has reached its maximum weight. If it has, the routine invokes the RebuildTree routine to scale
down all the counts.

After getting past the tree-rebuilding step, the loop that increments the node weightsis entered. The
first node to be incremented is the leaf node associated with the symbol. The loop increments the
weight of that symbol, then moves up to the parent to increment that node. This process continuestill
the root is reached, at which point the update is done. The single symbol added to statistical base
forming the tree has been accounted for.

There is one additiona step inside the loop, however, that takes place after every node has its weight
incremented. The loop immediately following the increment operation works its way back through
the list of nodes to see if the increased weight of the current node means it has to move up in thelist.
After the loop exits, new_node has the proper new location for the current node in the node list. If
new_node is the same as current_node, the incremented node is fine where it is, and we can move on
to the parent node. But if new_node and current_node aren’t the same, they have to be swapped.

The process of swapping nodes involves lifting two entire subtrees out of their present positionsin
the list and exchanging them. The use of atree data structure makes this easier than it may first
appear. The swapping process is straightforward, complicated only by the fact that each node being
swapped has links to both its parent and child, and the parent and child each have links to the node.
This takes no great conceptual leaps. The swapping code isillustrated:

struct node tenp;

if ( tree->nodes[ i ].child is |eaf )
tree->leaf[ tree->nodes [ i J.child ] =j;
el se {

tree->nodes[ tree->nodes |
tree->nodes[ tree->nodes |

].child ].parent = j;

i
i ].child + 1 ].parent = j;

}
if ( tree->nodes[ j ].child_is_leaf )
tree->leaf[ tree->nodes [ j ].child ] =i;
el se {
tree->nodes|[ tree->nodes[ j ].child ].parent =i
tree->nodes[ tree->nodes[ j ].child + 1 ].parent =i;
}
tenp = tree->nodes[ i ];
tree->nodes[ i ] = tree->nodes[ | ];
tree->nodes[ i ].parent = tenp.parent;
tenp. parent = tree->nodes[ j ].parent;
tree->nodes[ j ] = tenp;

An update can also force the rebuilding of the tree. Rebuilding takes a fair amount of work,
unfortunately, since it amounts to building a new Huffman tree.

The rebuilding process proceeds in three discrete steps. The first step isto collect all the leaf nodes,



throw away all the internal nodes, and divide the leaf-node weights by 2. The node list is compacted
so that the new leaf nodes are all at the start of the list.

j = tree->next_free_node - 1;

for (i =j ; i >= ROOT_NODE ; i— ) {
if ( tree->nodes[ i ].child_is_leaf ) {
tree->nodes[ j ] = tree->nodes[ i ];
tree->nodes[ j ].weight = (tree->nodes[ j ].weight + 1) / 2;

j—
}
}

The code to do thisis shown above. Note that in this implementation, none of the nodes scale down
to zero. Thisis accomplished by adding 1 to the node before dividing it by two. It may be desirable
to throw away infrequently seen symbols by reducing their counts to zero and deleting them from the
list, but we don’t do that here.

What we end up with in the above code isalist of leaf nodes that are at the start of thelist,
terminating at the next_free_node index. The internal nodes which start at 0 and end at the current
value of j, will now be rebuilt in the next step.

In Chapter 3, we built a Huffman tree by repeatedly scanning the node list and finding the two nodes
with the lowest weight. Those two nodes would be combined to form anew internal node. The tree-
rebuilding phase here takes a different approach based on the sibling property.

The loop that creates internal nodes starts with j pointing to the next node that needs to be defined; i
isan index that points to the next pair of nodes to be combined into an internal node. The loop
progressively steps through the nodes, combining and adding new internal nodes until reaching the
root node at location O.

The process of creating the new internal node is simple. The new node, located at index |, is assigned
aweight. The weight is simply the sum of the two nodes at location i, as would be expected. The
hard work comes next. After nodej is created, we have to decide where it belongs in the node list.
The decision on where the new node belongs is made based on the weights of the nodesin the list.
Recall that the sibling property says that the nodes have to be listed based on increasing weight. We
have to step through the list till we find the first node that is less that the new node j, then place the
new node immediately adjacent to that node in the list. Here is the procedure for the correct location
forj:

for (i = tree->next _free node - 2 ; j >= ROOT_NODE ;
i -=2, j—) |
k =i + 1;
tree->nodes[ j ].weight = tree->nodes[ i ].weight +
tree->nodes|[ k ].weight;
wei ght = tree->nodes[ j ].weight;
tree->nodes[ j ].child_is_|leaf = FALSE
for (( k =j +1; weight < tree->nodes[ k ].weight ; k++)
k—;
memmove( &t ree->nodes[ j ]. &ree->nodes[ j + 1],
( k- j ) * sizeof( struct node ) );

tree->nodes[ k ].weight = weight;

tree->nodes[ k ].child =1i;

tree->nodes[ k ].child_ is |leaf = FALSE
}

The variable ‘weight’ is assigned the weight of the new internal node. The routine then loops back



through the list until it finds the first node with aweight less than or equal to the weight of j. Node |
will be placed immediately after that node in the list. Before that node can be positioned, we need to
make room in the list by moving all the nodes that have higher weights up by one position. Thisis
done with the memmove() function. After that, the new node has its child and weight assigned, and
the loop continues.

This process can be seen in the short list of nodes about to be rebuilt in Figure 4.11. After having
been rescaled, symbols A, B, C, and D have weights of 1, 3, 5, and 7 respectively. After the internal
nodes have been stripped out, the list of nodes looks like Figure 4.11.

A
5 W=3 W=1
¥ #=5 #=06

T g
¥ d

7

#=3 #

Figure4.11 Thelist of nodes after the internal nodes have been stripped.

Thefirst two nodes to be combined will be B and A, creating a new node, j, at location 2 in the table.
By stepping back through the list from location 2, we see that the resulting internal node belongs
between locations 4 and 5, right before B. After the memory move function is executed and the node
is connected, the partial Huffman tree looks like this:

o o
W=7 W=6 W=4
#=2 #=3 #=4
B \
W=3 Wi=1
#=5 #=6

Figure4.12 A partial Huffman tree after the memory move function is executed.

Because we are moving nodes around so freely, we do not assign parent pointers during this process.
Once a node has been assigned as a child to another node, it is not going to change position in the
list. But parent nodes that have yet to be combined together as children of another internal node may
be moved farther up in the list as other nodes are combined. If we assigned parent nodes earlier in
the process, every time we moved a node we would have to go through a backtracking procedure to
locate its children and update their parent indices. We bypass this costly procedure by deferring
parent node building to the third and final step in the Rebuild procedure. Assigning parent nodesis
fairly smple. We start at the root node, and locate the children of each node in the tree. The children
then have their parent node index set. If the child is aleaf instead of another node, the leaf[] array
node index is set.

for (i =tree->next_free_node - 1 ; i >= ROOT_NCDE ; i-- ) {
if ( tree->nodes[ i ].child_is_leaf ) {
k = tree->nodes[ i ].child;
tree->leaf[ k] =1i;
} else {
k = tree->nodes[ i ].child;

tree->nodes[ k ].parent = tree->nodes[ k + 1 ].parent =i;
}
}

Decoding the Symbol



The final high-level procedure to be discussed here is the routine used to decode an incoming
symbol. Like the symbol encoder, this routine is short and simple. It starts at the root node of the tree
and readsin asingle bit at atime. Aseach bit isread in, one of the two children of the nodeis
selected based on whether the input bit is aone or azero. Eventually, this leads the routine to a leaf
node.

When the leaf node is reached, we have decoded a symbol. The only possible complication at this
point isif the decoded symbol is an escape code. If so, the symbol encoded by the encoder did not
yet appear in the Huffman tree. This means that the next eight bitsin the stream will contain an
unencoded version of the symbol. If thisis the case, the input routine is called to get the plain-text
version of the symbol.

current _node = ROOT_NCDE

while ( !tree->nodes[ current_node ].child is leaf ) {
current _node = tree->nodes[ current_node ].child;
current _node += InputBit( input );

}

c = tree->nodes[ current_node ].child;
if ( ¢ == ESCAPE ) {
c = (int) InputBits( input, 8 );
add_new node( tree, c );

}

return( c );

Either the decoded symbol or the escaped plain version of the symbol is passed back to the calling
program where it can be placed in the output file. The hard work will come after the symbol is
decoded, when the tree has to be updated to reflect the newly arrived symbol.

The Code

The code for the Adaptive Huffman compressor is listed next. This single module is contained on the
source disk in the file AHUFF.C. Building the compression routine requires that you compile this
fileand link it with the utility routines discussed in the last chapter: BITIO.C, ERRHAND.C, and
MAIN-C.C. To build the decompression routine you substitute MAIN-E.C. The two arguments for
both programs are simply an input file followed by an output file.

/~k************************** Start of AHUFF C*************************/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i nclude "bitio. h"
#i ncl ude "errhand. h"

char *Conpr essi onNane "Adaptive Huf fman coding, with escape codes";

char *Usage "infile outfile”

#defi ne END_OF STREAM 256

#def i ne ESCAPE 257

#def i ne SYMBOL_COUNT 258

#define NODE_TABLE COUNT  ( ( SYMBOL_COUNT * 2 ) - 1)
#def i ne ROOT_NCDE 0

#defi ne MAX_WEI GHT 0X8000

#defi ne TRUE 1

#define FALSE 0

*/
* This data structure is all that is needed to maintain an adaptive



Huf fman tree for both encodi ng and decoding. The leaf array is a
set of indices into the nodes that indicate which node is the
parent of a synbol. For exanple, to encode 'A, we would find the
| eaf node by way of leaf[ 'A" ]. The next_free_node index is used
to tell which node is the next one in the array that can be used.
Si nce nodes are allocated when characters are read in for the first
time, this pointer keeps track of where we are in the node array.
Finally, the array of nodes is the actual Huffnman tree. The child
index is either an index pointing to a pair of children, or an
actual synbol val ue, depending on whether 'child is leaf' is true
or fal se.

/
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typedef struct tree {
int leaf[ SYMBOL_COUNT ];
i nt next _free_node;
struct node {
unsi gned i nt weight;

i nt parent;
int child is_|eaf;
int child;
} nodes [ NODE_TABLE COUNT ];
} TREE;

*

The Tree used in this programis a global structure. Under other
circunmstances it could just as well be a dynami cally allocated
structure built when needed, since all routines here take a TREE
poi nter as an argunent.

* ok Xk ok T~

~

TREE Tree;

/*

Function prototypes for both ANSI C conpilers and their K&R breth-
* ren.
*/

#i fdef __STDC _
voi d ConmpressFile( FILE *input, BIT_FILE *output, int argc,
char *argv[] );

voi d ExpandFile( BIT_FILE *input, FILE *output, int argc,

char *argv[] );
void InitializeTree( TREE *tree );
voi d EncodeSynbol ( TREE *tree, unsigned int ¢, BIT_FILE *output );
i nt DecodeSynbol ( TREE *tree, BIT_FILE *input );
voi d Updat eModel ( TREE *tree, int c );
voi d Rebuil dTree( TREE *tree );
voi d swap_nodes( TREE *tree, int i, int j );
voi d add_new node( TREE *tree, int c );
void PrintTree( TREE *tree );
void print_codes( TREE *tree );
void print_code( TREE *tree, int c );
void cal culate rows( TREE *tree, int node, int |evel );
int calculate columms( TREE *tree, int node, int starting_guess );
int find_m nimumcolum( TREE *tree, int node, int nmax_row);
void rescal e_colums( int factor );

#el se

voi d ConpressFile();
voi d ExpandFil e();
void InitializeTree();
voi d EncodeSynbol ();



i nt DecodeSynbol ();
voi d Updat eModel () ;
voi d Rebuil dTree();
voi d swap_nhodes();

voi d add_new node();

#endi f

*

The high I evel view of the conpression routine is very sinple.
First, we initialize the Huffman tree, with just the ESCAPE and
END OF STREAM synbols. Then, we sit in a | oop, encoding synbols,
and adding themto the nodel. When there are no nore characters
to send, the special END OF STREAM synbol is encoded. The decoder
will later be able to use this synbol to know when to quit.

E I T R

~

voi d ConpressFile( input, output, argc, argv )
FI LE *i nput;

BI T_FI LE *out put;

i nt argc;

char *argv[];

int c;

InitializeTree( &Tree );

while ( ( ¢ = getc( input ) ) !'= EOF ) {
EncodeSynbol ( &Tree, c, output );
Updat eModel ( &Tree, ¢ );

}

EncodeSynbol ( &Tree, END OF STREAM output );

while ( argc—> 0 ) {
printf( "Unused argunent: 9%\n", *argv ); argv++,

}
}
/*
* The Expansion routine |ooks very nuch |ike the conpression routine.
* |t first initializes the Huffman tree, using the sane routine as
* the conpressor did. It then sits in a |oop, decoding characters and
* updating the nodel until it reads in an END _OF_STREAM synbol. At
* that point, it is tine to quit.
*

~

voi d ExpandFil e( input, output, argc, argv )
BI T_FILE *input;

FI LE *out put;

int argc;

char *argv[];

int c;
while ( argc— > 0 )
printf( "Unused argunent: 9%s\n", *argv++ );
InitializeTree( &Tree );
while ( ( ¢ = DecodeSynbol ( &Tree, input ) ) !'= END OF STREAM ) {
if ( putc( c, output ) == ECF )
fatal _error( "Error witing character” );
Updat eModel ( & Tree, ¢ );
}
}

/*
* When perform ng adaptive conpression, the Huffman tree starts out



very nearly enpty. The only two synbols present initially are the
ESCAPE synmbol and the END_OF_STREAM synbol. The ESCAPE synbol has to
be included so we can tell the expansion programthat we are
transmitting a previously unseen synbol. The END OF STREAM synbol

is here because it is greater than eight bits, and our ESCAPE
sequence only allows for eight bit synbols foll owi ng the ESCAPE

code.

In addition to setting up the root node and its two children, this
routine also initializes the |leaf array. The ESCAPE and
END OF STREAM | eaves are the only ones initially defined, the rest
of the leaf elements are set to -1 to show that they aren't present
in the Huf fman tree yet.

/
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void InitializeTree( tree )
TREE *tree;
{

int i;

tree->nodes[ ROOT_NODE ].child ROOT_NCDE + 1;

tree->nodes[ ROOT_NODE ].child_is_|eaf = FALSE
tree->nodes[ ROOT_NODE ].wei ght =2
tree->nodes[ ROOT_NODE ]. parent = -1;

tree->nodes[ ROOT_NODE + 1 ].child = END_OF STREAM
tree->nodes[ ROOT_NODE + 1 ].child_is_|eaf = TRUE
tree->nodes[ ROOT_NODE + 1 ].weight =1
tree->nodes[ ROOT_NODE + 1 ].parent = ROOT_NCDE
tree->l eaf[ END OF STREAM ] = ROOT_NCDE + 1;
tree->nodes[ ROOT_NODE + 2 ].child = ESCAPE
tree->nodes[ ROOT_NODE + 2 ].child_is_|eaf = TRUE
tree->nodes[ ROOT_NODE + 2 ].weight =1
tree->nodes[ ROOT_NODE + 2 ]. parent = ROOT_NCDE
tree->l eaf[ ESCAPE ] = ROOT_NCDE + 2;
tree->next _free_node = ROOT_NCDE + 3;
for (i =0 ; i < END OF_ STREAM ; i++ )

tree->leaf[ i ] =-1; }

*

This routine is responsible for taking a synmbol, and converting

it into the sequence of bits dictated by the Huffnman tree. The
only conplication is that we are working our way up fromthe | eaf
to the root, and hence are getting the bits in reverse order. This
means we have to rack up the bits in an integer and then send them
out after they are all accunulated. |In this version of the program
we keep our codes in a long integer, so the nmaxi numcount is set

to an arbitrary limt of 0x8000. It could be set as high as 65535

i f desired.

E I T T T T A

~

voi d EncodeSynbol ( tree, c, output )
TREE *tree;
unsi gned int c;
Bl T_FI LE *out put;
{
unsi gned | ong code;
unsi gned long current _bit;
i nt code_si ze;
i nt current_node;

code = 0;
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current_bit = 1;
code_size = 0;
current node = tree->leaf[ c ];
if ( current node == -1)
current _node = tree->leaf[ ESCAPE ];
while ( current_node != ROOT_NODE ) {
if ( ( current_node &1 ) ==0)
code | = current_bit;
current_bit <<= 1
code_si ze++;
current _node = tree->nodes[ current_node ].parent;
1
Qut putBi ts( output, code, code_size );
if ( tree->leaf[ ¢ ] ==-1) {
Qut putBits( output, (unsigned long) c, 8 );
add_new _node( tree, c );

}

*

Decodi ng synbols is easy. W start at the root node, then go down
the tree until we reach a leaf. At each node, we decide which
child to take based on the next input bit. After getting to the

| eaf, we check to see if we read in the ESCAPE code. If we did,

it means that the next synbol is going to come through in the next
eight bits, unencoded. |If that is the case, we read it in here,
and add the new synmbol to the table.

nt DecodeSynbol ( tree, input )

TREE *tree;
BI T_FILE *input;

{

—
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i nt current _node;
int c;

current _node = ROOT_NCDE

while ( !tree->nodes[ current_node ].child_ is leaf ) {
current _node = tree->nodes[ current_node ].child;
current_node += InputBit( input );

}

c = tree->nodes[ current_node ].child;

if ( ¢ == ESCAPE ) {
¢ = (int) InputBits( input, 8 );
add_new node( tree, c );

}

return( c );

*
Updat eModel is called to increment the count for a given synbol.
After increnmenting the synbol, this code has to work its way up
t hrough the parent nodes, incrementing each one of them That is
the easy part. The hard part is that after increnenting each
parent node, we have to check to see if it is now out of the proper
order. If it is, it has to be noved up the tree into its proper
pl ace.

/

voi d Updat eMbdel ( tree, ¢ )
TREE *tree;

{

nt c;

i nt current_node;
i nt new_node;



if ( tree->nodes[ ROOT_NODE].wei ght == MAX_VEI GHT )
Rebui | dTree( tree );
current_node = tree->leaf[ ¢ ];
while ( current_node !=-1) {
tree->nodes[ current_node ].wei ght ++;
for ( new_node = current_node ; new _node > ROOT_NCDE
new_node— )
if ( tree->nodes[ new node - 1 ].weight >=
tree->nodes|[ current_node ].wei ght )
br eak;
if ( current_node != new node ) {
swap_nodes( tree, current_node, new_node );
current _node = new_nhode

}
current _node = tree->nodes[ current_node ].parent;
}

}
/*
* Rebuilding the tree takes place when the counts have gone too
* high. Froma sinple point of view, rebuilding the tree just neans
* that we divide every count by two. Unfortunately, due to truncation
* effects, this neans that the tree's shape mi ght change. Sonme nodes
* m ght nove up due to cunul ative increases, while others nay nove
* down.
*

~

voi d Rebuil dTree( tree )

TREE *tree;
Lt
int i;
int j;
int k;
unsi gned i nt weight;
/*
* To start rebuilding the table, | collect all the | eaves of the
* Huffrman tree and put themin the end of the tree. VWhile | am doing
* that, | scale the counts down by a factor of 2
*/
printf( "R );
j = tree->next_free_node - 1;
for (i =j ; i >= ROOT_NCDE ; i— ) {
if ( tree->nodes[ i ].child_is_leaf ) {
tree->nodes[ j ] = tree->nodes[ i ];
tree->nodes[ j ].weight = ( tree->nodes[ j ].weight + 1) / 2;
J—:
}
}
/*
* At this point, j points to the first free node. | now have all the
* | eaves defined, and need to start building the higher nodes on the
* tree. | will start adding the new internal nodes at j. Every tine
* | add a new internal node to the top of the tree, | have to check
* to see where it really belongs in the tree. It nmight stay at the
* top, but there is a good chance | might have to nove it back down.
* |f it does have to go down, | use the nemmove() function to scoot
* everyone bigger up by one node.
*/
for (i = tree->next_free_node - 2 ; j >= ROOT_NOCDE
=2, j—) {
k =i + 1;



tree->nodes[ j ].weight = tree->nodes[ i ].weight +
tree->nodes[ k ].weight;
wei ght = tree->nodes[ j ].weight;
tree->nodes[ j ].child_is_leaf = FALSE
for (( k =j +1; weight < tree->nodes[ k ].weight ; k++ )
k——;
menmove( & ree->nodes[ j ], &ree->nodes[ j + 1],
( k- j ) * sizeof( struct node ) );
tree->nodes[ k ].weight = weight;
tree->nodes[ k ].child =i;
tree->nodes[ k ].child_is_|leaf = FALSE
}
/ *
* The final step in tree reconstruction is to go through and set up
* all of the leaf and parent nenbers. This can be safely done now
* that every node is in its final position in the tree.
*/
for (i =tree->next_free_node - 1 ; i >= ROOT_NCDE ; i— ) {
if ( tree->nodes[ i ].child is leaf ) {
k = tree->nodes[ i ].child;
tree->leaf[ k] =1i;
} else {
k = tree->nodes[ i ].child;
tree->nodes[ k ].parent = tree->nodes[ k + 1 ].parent =i
}
}

*

Swappi ng nodes takes place when a node has grown too big for its
* spot in the tree. When swapping nodes i and j, we rearrange the
* tree by exchanging the children under i with the children under j.

* o~

void swap_nodes( tree, i, j )
TREE *tree;

int i;

int j;

{

struct node tenp;

if ( tree->nodes [ i ].child_is_leaf )
tree->leaf[ tree->nodes[ i ].child ] =j;

el se {
tree->nodes|[ tree->nodes[ i ].child ].parent = j;
tree->nodes[ tree->nodes[ i ].child + 1 ].parent

1
—

if ( tree->nodes[ j ].child_is_leaf )
tree->leaf[ tree->nodes[ j ].child ] =i

el se {
tree->nodes[ tree->nodes[ j ].child ].parent =i
tree->nodes[ tree->nodes[ j ].child + 1 ].parent

}

tenp = tree->nodes[ i ];

tree->nodes[ i ] = tree->nodes|[ | ];
tree->nodes[ i ].parent = tenp.parent;
tenp. parent = tree->nodes[ j ].parent;
tree->nodes[ j ] = tenp;

Adding a new node to the tree is pretty sinple. It is just a matter
of splitting the lightest-weight node in the tree, which is the
hi ghest valued node. W split it off into two new nodes, one of
which is the one being added to the tree. W assign the new node a

* Xk ok TS



wei ght of 0, so the tree doesn't have to be adjusted. It wll be
updated | ater when the normal update process occurs. Note that this
code assunes that the |lightest node has a leaf as a child. |If this
is not the case, the tree woul d be broken

/

voi d add_new node( tree, c )

TREE *tree;

int c;

{

*  F X F

i nt |ightest_ node;
i nt new_node;
int zero_wei ght _node;

i ghtest _node = tree->next_free_node - 1,
new node = tree->next_free_node;
zero_wei ght _node = tree->next_free_node + 1
tree->next _free_node += 2;

tree->nodes[ new node ] = tree->nodes[ |ightest node ];
tree->nodes[ new node ].parent = |ightest node;

tree->l eaf[ tree->nodes[ new node ].child ] = new_node;
tree->nodes[ |ightest_node ].child = new_node;
tree->nodes[ lightest node ].child_ is_|eaf = FALSE
tree->nodes|[ zero_wei ght _node ].child =c

tree->nodes[ zero_wei ght_node ].child_is_|eaf = TRUE
tree->nodes[ zero_wei ght _node ].wei ght =0

tree->nodes[ zero_wei ght _node ]. parent = | i ghtest node;

/************************** End Of AHUFF C*****************************/



Chapter 5
Huffman One Better: Arithmetic Coding

The last two chapters show that Huffman coding uses knowledge about information content to
efficiently encode symbols. If the probability of a symbol’ s appearance in a message is known,
Huffman techniques can encode that symbol using a minimal number of bits. Huffman coding has
been proven the best fixed-length coding method available.

Difficulties

Huffman codes have to be an integral number of bits long, and this can sometimes be a problem. If
the probability of acharacter is 1/3, for example, the optimum number of bits to code that character
isaround 1.6 bits. Huffman coding has to assign either one or two bits to the code, and either choice
leads to alonger compressed message than is theoretically possible.

This non optimal coding becomes a noticeabl e problem when the probability of a character isvery
high. If astatistical method could assign a 90 percent probability to a given character, the optimal
code size would be 0.15 bits. The Huffman coding system would probably assign a 1-bit code to the
symbol, which is six times longer than necessary.

This would be a problem when compressing two-color images, like those coming from a fax
machine. Since there are only two colors, an ordinary coding method would assign the 1 bit to one
color and the O bit to the other. Since both codes have only a single bit, Huffman coding is not going
to be able to compress this data at all. No matter how high the probability of one of the bits, we are
still going to have to encode it using one bit.

The conventional solution to this problem isto group the bits into packets and apply Huffman
coding. But this weakness prevents Huffman coding from being a universal compressor.

Arithmetic Coding: A Step Forward

Only in the last fifteen years has a respectable candidate to replace Huffman coding been
successfully demonstrated: arithmetic coding. Arithmetic coding bypasses the idea of replacing an
input symbol with a specific code. It replaces a stream of input symbols with a single floating-point
output number. More bits are needed in the output number for longer, complex messages. This
concept has been known for some time, but only recently were practical methods found to implement
arithmetic coding on computers with fixed-sized registers.

The output from an arithmetic coding process is a single number less than 1 and greater than or equal
to 0. This single number can be uniquely decoded to create the exact stream of symbols that went
into its construction. To construct the output number, the symbols are assigned a set probabilities.
The message “BILL GATES,” for example, would have a probability distribution like this:

Character Probability
SPACE 110
A /10
B /10
E /10
G /10



/10
2/10
110
110

- nr- =

Once character probabilities are known, individual symbols need to be assigned arange along a
“probability line,” nominally 0 to 1. It doesn’t matter which characters are assigned which segment
of the range, aslong asit is done in the same manner by both the encoder and the decoder. The nine-
character symbol set used here would look like the following:

Character Probability Range

SPACE 1/10 0.00 [gte] r>0.10
A 1/10 0.10[gte] r > 0.20
B 1/10 0.20[gte] r>0.30
E 1/10 0.30[gte] r > 0.40
G 1/10 0.40 [gte] r > 0.50
I 1/10 0.50 [gte] r > 0.60
L 2/10 0.60 [gte] r>0.80
S 1/10 0.80[gte] r>0.90
T 1/10 0.90 [gte] r>1.00

Each character is assigned the portion of the O to 1 range that corresponds to its probability of
appearance. Note that the character “owns’ everything up to, but not including, the higher number.
So the letter T in fact has the range .90 to .9999...

The most significant portion of an arithmetic-coded message belongs to the first symbols—or B, in
the message “BILL GATES.” To decode the first character properly, the final coded message hasto
be a number greater than or equal to .20 and less than .30. To encode this number, track the range it
could fal in. After the first character is encoded, the low end for thisrange is .20 and the high end
is.30.

During the rest of the encoding process, each new symbol will further restrict the possible range of
the output number. The next character to be encoded, the letter 1, owns the range .50 to .60 in the
new subrange of .2 to .3. So the new encoded number will fall somewhere in the 50th to 60th
percentile of the currently established range. Applying thislogic will further restrict our number
to .25 to .26. The algorithm to accomplish this for a message of any length is shown here:

low = 0.0;

high = 1.0;

while ( ( ¢ = getc( input ) ) !'= EOF) {
range = high - |ow
high = low + range * high range( ¢ );
low = low + range * low range( c );

output ( low);

Following this process to its natural conclusion with our message results in the following table:



New Character Low value High Value
0.0 1.0

B 0.2 0.3

I 0.25 0.26

L 0.256 0.258

L 0.2572 0.2576

SPACE 0.25720 0.25724

G 0.257216 0.257220

A 0.2572164 0.2572168

T 0.25721676 0.2572168

E 0.257216772 0.257216776

S 0.2572167752 0.2572167756

So the final low value, .2572167752, will uniquely encode the message “BILL GATES” using our
present coding scheme.

Given this encoding scheme, it isrelatively easy to see how the decoding process operates. Find the
first symbol in the message by seeing which symbol owns the space our encoded message fallsin.
Since .2572167752 falls between .2 and .3, the first character must be B. Then remove B from the
encoded number. Since we know the low and high ranges of B, remove their effects by reversing the
process that put them in. First, subtract the low value of B, giving .0572167752. Then divide by the
width of the range of B, or .1. Thisgives avalue of .572167752. Then calculate where that lands,
which isin the range of the next letter, I. The algorithm for decoding the incoming number is shown
next:

nunber = input_code();

for (5 ;) {
synbol = find _synbol straddling this range( nunber );
putc( symbol );
range = high_range( symbol ) - low range( synbol );
number = nunber - |ow_range( synbol );
nunber = nunber / range;

}

| have conveniently ignored the problem of how to decide when there are no more symbols left to
decode. This can be handled either by encoding a specia end-of-file symbol or by carrying the
stream length with the encoded message. In the example in this chapter, as elsewhere in the book, |
carry along a special end-of-stream symbol that tells the decoder when it is out of symbols. The
decoding algorithm for the “BILL GATES’ message will proceed as shown:

Encoded Number Output Symbol Low High Range
0.2572167752 B 0.2 0.3 0.1
0.572167752 I 0.5 0.6 0.1
0.72167752 L 0.6 0.8 0.2
0.6083876 L 0.6 0.8 0.2
0.041938 SPACE 0.0 1 0.1



0.41938 G 04 0.5 0.1
0.1938 A 0.2 0.3 01
0.938 T 0.9 1.0 01
0.38 E 0.3 0.4 01
0.8 S 0.8 0.9 01
0.0

In summary, the encoding process is simply one of narrowing the range of possible numbers with
every new symbol. The new range is proportional to the predefined probability attached to that
symbol. Decoding is the inverse procedure, in which the range is expanded in proportion to the
probability of each symbol asit is extracted.

Practical Matters

Encoding and decoding a stream of symbols using arithmetic coding is not too complicated. But at
first glance it seems completely impractical. Most computers support floating-point numbers of
around 80 bits. So do you have to start over every time you encode ten or fifteen symbols? Do you
need afloating-point processor? Can machines with different floating-point formats communicate
through arithmetic coding?

Asit turns out, arithmetic coding is best accomplished using standard 16-bit and 32-bit integer math.
Floating-point math is neither required nor helpful. What is required is an incremental transmission
scheme in which fixed-size integer state variables receive new bits at the low end and shift them out
at the high end, forming a single number that can be as long as necessary, conceivably millions or
billions of bits.

Earlier, we saw that the algorithm works by keeping track of a high and low number that brackets the
range of the possible output number. When the algorithm first starts, the low number is set to 0 and
the high number is set to 1. The first ssimplification made to work with integer math is to change the
1t0.999 ..., or .111... in binary. Mathematicians agree that .111... binary is exactly the sameas 1
binary, and we take their assurance at face value. It ssimplifies encoding and decoding.

To store these numbersin integer registers, first justify them so the implied decimal point is on the
left side of the word. Then load as much of the initial high and low values as will fit into the word
size we are working with. My implementation uses 16-bit unsigned math, so theinitial value of high
is OXFFFF, and low is 0. We know that the high value continues with Fs forever, and the low
continues with zeros forever; so we can shift those extra bitsin with impunity when needed.

If you imagine our “BILL GATES’ examplein afive-decimal digit register (I use decimal digitsin
this example for clarity), the decimal equivalent of our setup would look like what follows on the
next page.

H GH: 99999 inplied digits => 999999999. ..
LOW 00000 inplied digits => 000000000. .

To find the new range of numbers, apply the encoding algorithm from the previous section. First,
calculate the range between the low and high values. The difference between the two registers will
be 100000, not 99999. Thisis because we assume the high register has an infinite number of 9s
added to it, so we need to increment the cal culated difference. We then compute the new high value
using the formula from the previous section:

high = | ow + hi gh_range(synbol)



In this case, the high range was .30, which gives a new value for high of 30000. Before storing the
new value of high, we need to decrement it, once again because of the implied digits appended to the
integer value. So the new value of high is 29999. The calculation of low follows the same procedure,
with aresulting new value of 20000. So now high and low look like this:

hi gh: 29999 (999...)
low. 20000 (000...)

At this point, the most significant digits of high and low match. Due to the nature of our algorithm,
high and low can continue to grow closer together without quite ever matching. So once they match
in the most significant digit, that digit will never change. We can now output that digit as the first
digit of our encoded number. Thisis done by shifting both high and low left by one digit and shifting
ina9intheleast significant digit of high. The equivalent operations are performed in binary in the C
implementation of this algorithm.

As this process continues, high and low continually grow closer together, shifting digits out into the
coded word. The process for our “BILL GATES’ message is shown next.

High Low Range Cumulative Output
Initial state 99999 00000 100000
Encode B (0.2—0.3) 29999 20000
Shift out 2 99999 00000 10000 2
Encode | (0.5—0.6) 59999 50000 2
Shift out 5 99999 00000 100000 25
Encode L (0.6—0.8) 79999 60000 20000 .25
Encode L (0.6—0.8) 75999 72000 25
Shift out 7 59999 20000 40000 257
Encode SPACE (0.0—0.1) 23999 20000 257
Shift out 2 39999 00000 40000 2572
Encode G (0.4—0.5) 19999 16000 2572
Shift out 1 99999 60000 40000 25721
Encode A (0.1—0.2) 67999 64000 25721
Shift out 6 79999 40000 40000 257216
Encode T (0.9—1.0) 79999 76000 257216
Shift out 7 99999 60000 40000 2572167
Encode E (0.3—0.4) 75999 72000 2572167
Shift out 7 59999 20000 40000 25721677
Encode S (0.8—0.9) 55999 52000 25721677
Shift out 5 59999 20000 257216775
Shift out 2 2572167752
Shift out O 25721677520

After all the letters are accounted for, two extra digits need to be shifted out of either the high or low
value to finish the output word. Thisis so the decoder can properly track the input data. Part of the
information about the data stream is still in the high and low registers, and we need to shift that
information to the file for the decoder to use later.



A Complication

This scheme works well for incrementally encoding a message. Enough accuracy is retained during
the double-precision integer calculations to ensure that the message is accurately encoded. But there
ispotential for aloss of precision under certain circumstances.

If the encoded word has a string of Os or 9sin it, the high and low values will lowly converge on a
value, but they may not see their most significant digits match immediately. High may be 700004,
and low may be 699995. At this point, the calculated range will be only a single digit long, which
means the output word will not have enough precision to be accurately encoded. Worse, after afew
more iterations, high could be 70000, and low could be 69999.

At this point, the values are permanently stuck. The range between high and low has become so
small that any iteration through another symbol will leave high and low at their same values. But
since the most significant digits of both words are not equal, the algorithm can’t output the digit and
shift. It seems to have reached an impasse.

Y ou can defeat this underflow problem by preventing things from ever getting that bad. The original
algorithm said something like, “If the most significant digit of high and low match, shift it out.” If
the two digits don’t match, but are now on adjacent numbers, a second test needs to be applied. If
high and low are one apart, we test to seeif the second most significant digit in highisa0 and if the
second digitinlow isa9. If so, it means we are on the road to underflow and need to take action.

Head off underflow with a dlightly different shift operation. Instead of shifting the most significant
digit out of the word, delete the second digits from high and low and shift the rest of the digits |eft to
fill the space. The most significant digit staysin place. Then set an underflow counter to remember
that we threw away a digit and aren’t quite sure whether it was going to bea0 or a9. This processis
shown here:

Before After
High: 40344 43449
Low: 39810 38100
Underflow: 0 1

After every recalculation, check for underflow digits again if the most significant digit don’t match.
If underflow digits are present, we shift them out and increment the counter.

When the most significant digits do finally converge to a single value, output that value. Then output
the underflow digits previously discarded. The underflow digits will all be 9s or Os, depending on
whether high and low converged on the higher or lower value. In the C implementation of this
algorithm, the underflow counter keeps track of how many ones or zeros to output.

Decoding

In the “ideal” decoding process, we had the entire input number to work with, and the algorithm had
to do things like “ divide the encoded number by the symbol probability.” In practice, we can’t
perform an operation like that on a number that could be billions of byteslong. Asin the encoding
process, however, the decoder can operate using 16- and 32-bit integers for calculations.



Instead of using just two numbers, high and low, the decoder has to use three numbers. The first two,
high and low, correspond exactly to the high and low values maintained by the encoder. The third
number, code, contains the current bits being read in from the input bit stream. The code value
always falls between the high and low values. Asthey come closer and closer to it, new shift
operations will take place, and high and low will move back away from code.

The high and low values in the decoder will be updated after every symbol, just as they were in the
encoder, and they should have exactly the same values. By performing the same comparison test on
the upper digit of high and low, the decoder knows when it is time to shift a new digit into the
incoming code. The same underflow tests are performed as well.

In the ideal algorithm, it was possible to determine what the current encoded symbol was just by
finding the symbol whose probabilities enclosed the present value of the code. In the integer math
algorithm, things are somewhat more complicated. In this case, the probability scale is determined
by the difference between high and low. So instead of the range being between .0 and 1.0, the range
will be between two positive 16-bit integer counts. Where the present code value falls along that
range determines current probability. Divide (value - low) by (high - low + 1) to get the actual
probability for the present symbol.

Where' sthe Beef?

It is not immediately obvious why this encoding process is an improvement over Huffman coding. It
becomes clear when we examine a case in which the probabilities are alittle different. If we have to
encode the stream “AAAAAAA,” and the probability of A isknown to be .9, thereisa 90 percent
chance that any incoming character will be the letter A. We set up our probability table so that A
occupiesthe .0 to . 9 range, and the end-of-message symbol occupiesthe .9 to 1 range. The encoding
process is shown next:

New Char acter Low value High value
0.0 1.0

A 0.0 0.9

A 0.0 0.81

A 0.0 0.729

A 0.0 0.6561

A 0.0 0.59049

A 0.0 0.531441

A 0.0 0.4782969

END 0.43046721 0.4782969

Now that we know the range of high and low values, all that remainsisto pick a number to encode
this message. The number .45 will make this message uniquely decodeto “AAAAAAA.” Thosetwo
decimal digits take slightly less than seven bits to specify, which means we have encoded eight
symbolsin less than eight bits! An optimal Huffman message would have taken a minimum of nine
bits.

To take this point to an even further extreme, | set up atest that had only two symbols. Init, 0 had a
16382/16383 probability, and an end-of-file symbol had a 1/16383 probability. | then created afile
filled with 100,000 Os. After compression using arithmetic coding, the output file was only three



bytes long! The minimum size using Huffman coding would have been 12,501 bytes. Thisis
obviously a contrived example, but it shows that arithmetic coding compresses data at rates much
better than one bit per byte when the symbol probabilities are right.

The Code

The code supplied with this chapter in ARITH.C isasimple module that performs arithmetic
compression and decompression using asimple order 0 model. It works exactly like the non-adaptive
Huffman coding program in Chapter 3. It first makes a single pass over the data, counting the
symbols. The datais then scaled down to make the counts fit into a single, unsigned character. The
scaled counts are saved to the output file for the decompressor to get at later, then the arithmetic
coding table is built. Finally, the compressor passes through the data, compressing each symbol as it
appears. When done, the end-of-stream character is sent out, the arithmetic coder is flushed, and the
program exits.

The Compression Program

The compression portion of this program is shown shortly. The main module is called by the utility
version of MAIN-E.C., which will have already taken care of opening files, parsing arguments, etc.
Once we get to the compression phase of the program, things are ready to go.

The compressor code breaks down neatly into three sections. The first two lines initialize the model
and the encoder. The while loop consists of two lines, which together with the line following the
loop perform the compression, and the last three lines shut things down.

bui | d_nodel ( i nput, output->file );
initialize_arithmetic_encoder();

while ( ( ¢ =getc( input ) ) ! = EOF) {
convert _int_to _synbol( c, & );
encode_synbol ( out put, &s );

}

convert_int_to_synbol ( END_OF_STREAM &s );
encode_synbol ( out put, &s );
flush_arithnetic_encoder( output );

Qut putBits( output, O, 16 );

The build_model() routine has several responsibilities. It makes the first pass over the input datato
count all the characters. It scales down the countsto fit in unsigned characters, then it takes those
counts and builds the range table used by the coder. Finaly, it writes the counts to the output file so
the decompressor will have access to them later.

The initialize arithmetic encoder routineisfairly simple. It just sets up the high- and low-integer
variables used during the encoding. The encoding loop calls two different routines to encode the
symbol. Thefirst, convert_int_to_symbol(), takes the character read in from the file and looks up the
range for the given symbol. The range is then stored in the symbol object, which has the structure
shown:

typedef struct {
unsi gned short int |ow count;
unsi gned short int high_count;
unsi gned short int scale;

} SYMBOL;

These three values are all that are needed for the symbol to be encoded using the arithmetic encoder.



The low-count and high-count values uniquely define where on the O to 1 range the symbol lies, and
the scale value tells what the total span of the O to 1 scaleis. If 1,000 characters had been counted in
atext file, for example, the low_count and high_count for A might be 178 and 199, and the scale
would be 1,000. Thiswould indicate that on the 0 to 1 number scale, A would own the range .178
to .199.

Once the symbol object has been defined, it can be passed to the encoder. The arithmetic encoder
needs only those three items to process the symbol and update the output number. It has the high-
and low-range values and the underflow count stored internally as static variables, and it doesn’t
need anything else.

The way we detached the modeling data from the coding data gives us a convenient mechanism for
experimenting with new ways of modeling. We just have to come up with the numbers that get
plugged into the symbol. The encoder doesn’t care how we got those numbers as long as they were
derived consistently so we can decode the file later.

When we reach the end of the input file, we encode and send the end-of-stream symbol. The
decompression program will use it to determine when it is done. To finish, call aroutineto flush the
arithmetic encoder, which takes care of any underflow bits. Finally, we have to output an extra
sixteen bits. The reason for thisis simple. When decoding symbols from the input bit stream, the
effective bits are in the most significant bit position of the input bit registers. To get the bits there,
we have to load other bitsinto the lower positions and shift them over. At least 15 insignificant bits
are needed to decode the last symbol. Outputting 16 bits at the end of the program ensures that the
decoder won't get a premature end of file while decoding the input file.

The Expansion Program

The main part of the expansion program follows the same pattern. First, the model is set up and the
arithmetic coder isinitialized. In this program, initializing the model means reading in the counts
from the input file where the compressor put them. Initializing the arithmetic decoder means loading
the low and high registers with 0000 and FFFF, then reading the first 16 bits from the input file into
the current code.

i nput_counts( input->file );
initialize_ arithnmetic_decoder( input );
for (5 ) {
get _synmbol _scale( &s );
count = get_current_count( &s );
¢ = convert_synbol to_int( count, &s );
if ( ¢ == END_OF_STREAM )
br eak;
renove_synbol _fromstream( input, &s );
putc( (char) c, output );
}

The decoding loop is alittle more complicated in this routine to keep the modeling and decoding
separate. First, get the scale for the current model to pass back to the arithmetic decoder. The
decoder then convertsits current input code into a count in the routine get_current_count. With the
count, we can determine which symbol is the correct one to decode. Thisis done in the routine
convert_symbol_to _int().

Though it seems strange, we don’t remove the encoded symbol from the input bit stream till after we
actually decode it. The process of removing it involves standard modifications of high and low and,
if necessary, shifting in new bits from the input stream. Finally, the decoded character is written to
the output file.



Initializing the M odel

The model for a program using arithmetic coding needs to have three pieces of information for each
symbol: the low end of its range, the high end of its range, and the scale of the entire alphabet’s
range (thisisthe samefor al symbolsin the aphabet). Since the top of a given symbol’srangeisthe
bottom of the next, we only need to keep track of N + 1 numbers for N symbols in the alphabet.

An example of how the range information would be created is shown for symbols A, B, C, D, and E.
These symbols have the counts 5, 2, 3, 3, and 8 respectively. The numbers can be arranged in any
order along the range, if done consistently.

Range 21
E : 13
D : 10
C 7
B 5
A 0

In this case, the alphabet has five symbols, and the number of counts to keep track of issix. The
array isformed by creating the cumulative total at each symbol, starting at zero and working up to
the range.

Given astructure like this, it is ssmple to derive the three items of information that define the symbol
for the arithmetic encoder. For symbol x in the array, the low count can be found at totalg[ x ], the
high count at totalg[ x + 1], and the range of scale at totalg[ N ], N being the number of symbolsin
the alphabet.

The routines that do compression create this array. In this program, the array is named totalg[], and it
has 258 elements. The number of symbolsin the aphabet is 257, the normal 256 plus one for the
end-of-stream symbol.

One additional constraint is placed on these counts. Two things determine the highest possible count:
the number of bits available in the high and low registers and the number of bitsin the code values.
Since floating-point calculations are performed in fixed-length registers, we have to minimize the
amount of precision in our calculations so errors do not occur.

Asit happens, there are two restrictions on the number of bits used in arithmetic coding: (1) the
number of bitsin the frequency values must be at least two less than the number of bitsin the high
and low registers; and (2) the number of bits in the frequency values plus the bits used in either the
high and low registers must not exceed the number of bits used in arithmetic calculations during the
coding process.

During calculations on the arithmetic registers, the code in this chapter uses unsigned long values,
which give 32 bits to work with. Since our high and low registers and our frequency counts are
limited to 16 bitsin unsigned short ints, we meet restriction 2 implicitly. Restriction 1, however,
requires more modifications. Since we are only using 16-bit registers for our high and low values, we
have to restrict the highest cumulative countsin the total[] array to no more than 14 bits, or 16,384.

The code to make sure that our total count of symbolsislessthan 16,384 isin the build_model
routine called on initialization of the model. It takes the process a step further, scaling the counts
down so they all fit in asingle byte. Thisis done so that the count data stored in the output file takes



aminimal amount of space.

During the compression phase of the program, the build_model() routineis called to perform al the
necessary chores associated with the order-0 modeling used in this program. The four lines of code
from build_model() are shown here:

count _bytes( input, counts );
scal e_counts( counts, scaled_counts );
out put _counts( output, scaled counts );
build total s( scaled counts );

Asyou can see above, the build_model routine does no work on its own. It calls a series of four
worker routines to handle the data for it. The first routine is count_bytes(). It doesjust that, counting
all the occurrences of each symbol in the file and maintaining the total in an array, like so:

i nput_marker = ftell ( input );

while ( ( ¢ = getc( input )) !'= ECF)
counts[ c ]++;

fseek( input, input_marker, SEEK SET );

The code for count_bytes scans the entire input file, then returns the input pointer to where it was
when called. We assume that the number of counts of a given symbol in the file cannot exceed the
gpan of an unsigned long. If thisis not true, other measures will need to be taken to avoid overflow
of the countq[] array elements.

After the array has been counted, the counts have to be scaled down. Thisis donein the scale_counts
() routine. The first step here isto scale down the unsigned long countg[] array to fit in an array of
unsigned characters. This stores the counts in less space in the output file. The code for thisislisted
here.

max_count = O;
for (i =0 ; i <256 ; i++)
if (counts[ i ] > max_count )
max_count = counts[ i ];
scale = max_count / 256
scale = scale + 1;

for (i =0; i <256 ; i++) {
scal ed_counts[ i ] = (unsigned char ) ( counts[ i ] /scale );
if ( scaled counts[ i ] == 0 & counts[ i ] !'=0)
scaled counts[ i ] = 1;
}

After thisis complete, one more scaling may need to be done. As part of the limitations on
performing arithmetic coding using fixed-length registers, we have to restrict the total of our counts
to less than 16,384, or fourteen bits. The second part of scale_counts does this with brute force,
checking the total, then dividing by either two or four to get the correct results. An additional count
has to be added because of the single count used by the end-of-stream character.

total = 1;

for (i =0 ; i <256 ; i++)
total += scaled_counts[ i ];

if ( total > ( 32767 - 256 ) )

scal e = 4;

else if ( total > 16383 )
scale = 2;

el se
return,

for (i =0 ; i <256 ; i ++)



scaled counts[ i ] /= scale;

Thereis certainly room in the scale_counts() routine for more sophistication. Every time we lose
some of the accuracy in our counts by scaling, we also lose a certain amount of compression. An
ideal scaling routine would scale down the countsto fit in the correct range while doing as little
scaling as possible. The routines listed here don’t work very hard at doing that.

Once the counts have been scaled down to fit in the unsigned character array, the output_counts()
routineis called to save them to the output file. This program employs the same method to store the
counts as used in Chapter 3 for the Huffman coding example. Instead of storing the entire array of
counts, we only store runs on nonzero values. For details on this, refer to Chapter 3.

The last step in building the model is to set up the cumulative totals array in totalg[]. Thisisthe array
used when actually performing the arithmetic coding. The code shown below builds that array.
Remember that after the totalg[] array has been built, the range for symbol x isfound in totalg X ]
and totalg[ x + 1 ]. The range used for the entire alphabet isfound in totalsf END_OF STREAM
+1].

totals[ 0] = 0;
for (i =0 ; i < END OF_STREAM; i++ )

totals[ i + 1] =totals[ i ] + scaled_counts[ i ];
totals|] END OF_ STREAM+ 1 ] = totals[ END OF STREAM] + 1;

Reading the M odel

For expansion, the code needs to build the same model array in totalg[] that was used in the
compression routine. Since the original file is not available to scan for counts, the program reads in
the scaled_countg[] array stored in the compressed file. The code that accomplishes thisisidentical
to the Huffman expansion code in Chapter 3. Refer to Chapter 3 for details on how this code works.

After the scaled _countq[] array has been read in, the same routine used by the compression code can
be invoked to build the total[] array. Calling build_totals() in both the compression and expansion
routines helps ensure that we are working with the same array.

Initializing the Encoder

Before compression can begin, we have to initialize the variables that constitute the arithmetic
encoder. Three 16-bit variables define the arithmetic encoder: low, high, and underflow_bits. When
the encoder first starts to run, the range of the output floating-point number is anywhere between 0
and 1. Thelow variableisinitialized to 0 and the high to OxFFFF. These two variables have an
implied decimal point just ahead of the most significant bit and an infinite trail of ones or zeros. The
ones will be shifted into the high variable and the zeros into the low.

low = 0;
high = Oxffff;
underfl ow bits = 0;

The Encoding Process

At this point, the program is ready to begin the actual encoding process. This consists of looping
through the entire file, reading in a character, determining its range variables, then encoding it. After
the file has been scanned, the final step isto encode the end-of-stream symbol.

while ( ( ¢ = getc( input ) ) !'=EOCF ) {
convert _int_to_synbol( c, & );



encode_synbol ( out put, &s );

}
convert _int_to_synbol ( END OF STREAM &s );
encode_synbol ( out put, &s );

Two routines encode a symbol. The convert_int_to_symbol() routine looks up the modeling
information for the symbol and retrieves the numbers needed to perform the arithmetic coding. This
consists of stuffing numbers into the three elements of the symbol’ s structure, as shown here:

s->scale = totals[ END OF_STREAM + 1 ];
s->low count = totals[ c ];
s->high_count = totals[ ¢ + 1 ];

After the symbol information is present, we are ready to encode the symbol using the arithmetic
encoding routine. The C code to do this, listed in encode_symbol(), has two distinct steps. The first
isto adjust the high and low variables based on the symbol data passed to the encoder.

range = (long) ( high-low) + 1;

high = low + (unsi gned short int)
(( range * s->high _count ) / s->scale - 1 );
low = low + (unsigned short int)

(( range * s->low count ) / s->scale );

The code shown below restricts the range of high and low by the amount indicated in the symbol
information. The range of the symbol is defined by s->low_count and s->high_count. These two
counts are measured relative to the s->scale variable. After the adjustments are made, low and high
will both be greater than or equal to their previous values. The range, or the distance between the
two, will be less than or equal to its previous value.

for (; ;) {
if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) {
QutputBit( stream high & 0x8000 );
while ( underflow bits > 0 ) {
QutputBit( stream ~high & 0x8000 );
underfl ow bits--;
}
} elseif ( ( low & 0x4000 ) && !( high & 0x4000 ) ) {
underflow bits += 1;
| ow &= Ox3fff;
hi gh | = 0x4000;
} else
return
| ow <<= 1;
hi gh <<= 1,
high | = 1;
}

After high and low have been adjusted, the routine needs to shift out any bits available for shifting.
After agiven arithmetic adjustment, it is never certain how many bits will need to be shifted out. If
the encoded symbol has avery high probability, the number of bitswill be low. If the encoded
symbol has alow probability, the number of bits may be high.

Since the number isn’t known in advance, the encoding routine sitsin aloop shifting bits until there
are no more shifts possible. The routine tests for two conditions to seeif shifting is necessary. The
first occurs when the most significant bits of the low and high word are the same. Because of the
math being used, once the two bits are identical, they will never change. When this occurs, the bit is
sent to the output file, and the high and low values are shifted.



Before shifting out the bit found when the most M SBs match, however, we have to transmit any
underflow bits previously saved up. The underflow bits will be a sequence of bits set to the opposite
value of the MSB. When we have an underflow, we have a binary sequence that ends up looking like
that shown above. The number of underflow bitsis found in the underflow_bits variable.

hi gh
| ow

. 100000. ..
.011111. ..

Which leads to the second condition under which high and low variables require shifting: underflow.
This occurs when the high and low words are growing dangerously close together but have not yet
had their most significant bits match, a situation similar to that shown above.

When words begin growing close together like this, the dynamic range becomes dangerously low.
Test for this condition after determining that the two most significant bits don’t match. If they don't,
check to seeif the next bit is 0 in the high word and 1 in the low word. If they are, perform an
underflow shift.

The underflow shift operation consists of throwing away the underflow bit (the one next to the most
significant digit), shifting the remaining bits over one by one to fill the gap, and incrementing the
underflow counter. The code to do thisis somewhat opaque, but it performs this operation.

The underflow code takes advantage of the fact that when in danger of underflow, we know two
things. First, we know that the most significant bit in the high word is 1 and in the low word O.
Second, the bit we throw away from the high word is 0 and from the low word 1.

Since we know the value of the highest two bits, we can simplify the shift operation. The code used
in this chapter toggles the second most significant bit in both the high and low registers, then
performs the normal shift operation. It looks as though the lower 14 bits were shifted left and the
MSB was |eft alone.

If we check for both possible shift conditions and don’t flag either one, we are done shifting bits out
and can end the encoding operation. If either of the tests passed, the actual shift operation can take
place. Both the high and low words are shifted |eft one bit position. The high word has a 1 shifted in
to the LSB, and the low word has a 0 shifted in. The loop then repeats, outputting and shifting
additional bits as necessary.

Flushing the Encoder

After encoding, it is necessary to flush the arithmetic encoder. The code for thisisin the
flush_arithmetic_encoder() routine. It outputs two bits and any additional underflow bits added along
the way.

The Decoding Process

Before arithmetic decoding can start, we need to initialize the arithmetic decoder variables. While
encoding, we had just a high and low variable. Both are maintained by the decoder with a code
variable, which contains the current bit stream read in from the input file.

During arithmetic decoding, the high and low variables should track exactly the same values they
had during the encoding process, and the code variable should reflect the bit stream asitisread in
from the input file. The only exception to thisis that the code variable has underflow bits taken from
it and thrown away, as with the high and low variables.

code = 0;



for (i =0; i <16 ; i++) {
code <<= 1;
code += I nputBit( stream);

}
|l ow = 0O;
high = Oxffff;

This implementation of the arithmetic decoding process requires four separate steps to decode each
character. Thefirst isto get the current scale for the symbol. Thisis simply a matter of looking in the
current model data. In thisimplementation, the scale isfound at totalsf END_OF STREAM + 1].
The reason for breaking this out as a separate routine rather than coding it in-line is that future
expansions to the basic compression program may use different modeling techniques. If adifferent
model is used, determining the scale of the model could end up being more complex. This happens
in the program used in the next chapter.

Once the current scale for the model is known, a second call is made to get the count for the current
arithmetic code. Thisinvolves trand ating the decoders range, expressed by the high and low
variables, into the range used by the model, which isin the scale variable.

range = (long) ( high - low) + 1;
count = (short int)

((((long) ( code - low) + 1) * s->scale-1) / range );
return( count );

The count returned to the expansion program is in essence a ssimple trandlation of the code variable
from one scale to another. Once the count has been determined, we can determine what symbol has
been encoded. Since we know the low and high range of the count for every symbol in the al phabet,
determining which symbol goes with which count is just a matter of looking through the counts
listed in the totalg[] array.

for ( ¢ = END OF STREAM ; count < totals[ ¢ ] ; c— )

s->hi gh_count = totals[ ¢ + 1 ];
s->l ow count = totals[ ¢ ];
return( c );

The implementation of the convert_symbol _to int() used here determines the correct symbol with
brute force. It simply starts looking at the top of the totalg[] array for a count that fits with the current
symbol, and it works down until it finds one that does. Thisis not optimal, since it could take 257
comparisons to locate the correct symbol.

An improved method of decoding would keep the symbols sorted so that the most frequently used
symbols would be checked first. This would reduce the average time required to locate a symbol,
though with random data we would not see much improvement. For simplicity, this was not the
method used here.

Once convert_symbol_to_int() locates the correct symbol in the totalg[] array, it takes the high and
low counts and stores them in the symbol variable. They will be used in the next step of the decoding
process. The correct value of the symbol is then returned to the calling program as an int.

After the correct symbol valueis set up in the symbol structure, remove_symbol_from_stream() is
called. Arithmetic coding isunusual in that it determines what the symbol is before it removes the
bits associated with it. Then it calls the routine that actually removes those bits from the code and
sets up the input code for the next symbol.

range = (long)( high - low) + 1;



high = low + (unsigned short int)
(( range * s->high_count ) / s->scale - 1 );
low = low + (unsigned short int)
(( range * s->low count ) / s->scale );
for (5 ;) {
if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) {
} elseif ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0 ) {
code "= 0x4000;
| ow &= Ox3fff;
hi gh | = 0x4000
} else
return;
| ow <<= 1;
hi gh <<= 1,
high | = 1;
code <<= 1;
code += I nputBit( stream);

}

The code that removes the symbol from the stream is listed above. It operates almost as a mirror
image of the encoding routine. It first rescales the high and low variables to their new ranges as
dictated by the range of the symbol being removed. Then the shifting process begins.

As before, there are two possible reasons to shift in new bits. First, if high and low have the same
most significant bit, they will be discarded and a new bit will be shifted in as a replacement. Second,
if high and low don’t have the same M SB, and the second most significant bits are threatening
underflow, we will discard the second most significant bits and shift in new bits.

If neither of the possible shift criteria are met, we can return, since the effects of the symbol have
been entirely removed from the input stream. Otherwise, we shift high, low, and code. The lowest bit
of high getsa 1, the lowest bit of low gets a0, and the lowest bit of code gets a new bit from the
input stream. This process continues indefinitely until all shifting is complete, at which point we
return to the calling routine.

Summary

Arithmetic coding seems more complicated than Huffman coding, but the size of the program
required to implement it is not significantly different. Runtime performance is significantly slower
than Huffman coding, however, due to the computational burden imposed on the encoder and
decoder. If squeezing the last bit of compression capability out of the coder isimportant, arithmetic
coding will always do as good a job or better, than Huffman coding. But careful optimization is
needed to get performance up to acceptable levels.

Code

/************************** Start Of ARITH C**************************/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude "errhand. h"
#i nclude "bitio. h"

/*

* The SYMBOL structure is what is used to define a synbol in

* arithmetic coding ternms. A synbol is defined as a range between

* 0 and 1. Since we are using integer math, instead of using 0 and 1
* as our end points, we have an integer scale. The |ow count and

* high_count define where the synbol falls in the range.

*/



typedef struct {
unsi gned short int |ow count;
unsi gned short int high_count;
unsi gned short int scale;

} SYMBOL;

/*
* Internal function prototypes, with or without ANSI prototypes.
*/

#ifdef _ STDC__

voi d build_nodel ( FILE *input, FILE *output );
voi d scal e_counts( unsigned |ong counts[],
unsi gned char scal ed_counts[] );
void build_total s( unsigned char scal ed_counts[] );
voi d count _bytes( FILE *input, unsigned |ong counts[] );
voi d out put_counts( FILE *output, unsigned char scal ed_counts[] );
void input_counts( FILE *stream);
void convert _int_to_synbol ( int synmbol, SYMBOL *s );
voi d get_synbol _scal e( SYMBOL *s );
int convert_synbol _to_int( int count, SYMBOL *s );
void initialize arithnetic_encoder( void );
voi d encode_synbol ( BIT_FILE *stream SYMBOL *s );
void flush_ arithnetic_encoder( BIT_FILE *stream);
short int get_curret_count( SYMBOL *s );
void initialize_arithmetic_decoder( BIT_FILE *stream):
void renove_synbol _fromstrean( BIT_FILE *stream SYMBOL * s );
#el se

voi d buil d_nodel ();

voi d scal e_counts();

void build total s();

voi d count _bytes();

voi d out put_counts();

void input_counts();

voi d convert_int_to_synbol ();

voi d get_synbol scal e();

int convert_synbol to int();

void initialize arithnetic_encoder();
voi d encode_synbol ();

void flush_arithnetic_encoder();
short int get _current_count();

void initialize arithnetic_decoder();
voi d renmove_synbol _from strean();

#endi f

#defi ne END_OF_STREAM 256
short int totals[ 258 ]; /* The cumul ative totals */

char *Conpr essi onName
char *Usage

"Adaptive order O nodel with arithnetic coding";
"in-file out-file\n\n\";

*

This conmpress file routine is a fairly orthodox conpress routine.

It first gathers statistics, and initializes the arithnmetic

encoder. It then encodes all the characters in the file, followed

by the EOF character. The output streamis then flushed, and we

exit. Note that an extra two bytes are output. Wen decodi ng an
arithmetic stream we have to read in extra bits. The decoding process
takes place in the nsb of the Iow and high range ints, so when we are
decoding our last bit we will still have to have at |east 15 junk

L I R .



* bits loaded into the registers. The extra two bytes account for
* that.
*/

voi d ConpressFile( input, output, argc, argv )
FILE * input;
BI T_FI LE *out put;

nt argc;

char *argv[];

* 0%k %k kX X Ok X X T~ =

~

int c;
SYMBCL s;

buil d_nodel ( i nput, output->file );
initialize_ arithnetic_encoder();

while ( ( ¢ = getc( input ) ) !'= EOF) {
convert _int_to_synbol( c, & );
encode_synbol ( out put, &s );

}

convert _int_to_synbol ( END OF STREAM &s );

encode_synbol ( out put, &s );

flush_arithmetic_encoder( output );

Qut putBits( output, OL, 16 );

while ( argc— > 0 ) {
printf( "Unused argunent: %\n", *argv );

ar gv++;
}
*
This expand routine is also very conventional. It reads in the
nodel, initializes the decoder, then sits in a |loop reading in
characters. Wen we decode an END OF STREAM it neans we can cl ose
up the files and exit. Note decoding a single character is a three
step process: first we deternine what the scale is for the current
synmbol by | ooking at the difference between the high and | ow val ues.
We then see where the current input values fall in that range.
Finally, we look in our totals array to find out what synbol is
a match. After that is done, we still have to renbve that synbo

fromthe decoder. Lots of work

voi d ExpandFil e( input, output, argc, argv )
BI T_FI LE *i nput;
FI LE *out put;

nt argc;

char *argv[];

SYMBQL s;
int c;
i nt count;

i nput_counts( input->file );
initialize_ arithnetic_decoder( input );
for ()
get _synmbol _scale( &s );
count = get_current_count( &s );
¢ = convert_synbol _to_int( count, &s );
if ( ¢ == END_OF_STREAM )
br eak;
remove_synbol _fromstrean( input, &s );
putc( (char) c, output ):



while ( argc— > 0 ) {
printf( "Unused argunent: 9%\n", *argv );
ar gv++;
}
}

/*

* This is the routine that is called to scan the input file, scale
* the counts, build the totals array, the output the scaled counts
* to the output file.

*/

voi d build_nodel ( input, output )

FI LE *i nput;

FI LE *out put ;

{
unsi gned | ong counts[ 256 ];
unsi gned char scal ed_counts[ 256 ];
count _bytes( input, counts );
scal e_counts( counts, scaled counts );
out put _count s( output, scaled _counts );
build_total s( scal ed_counts );

}

/*

* This routine runs through the file and counts the appearances of
* each character.

*/

#i f ndef SEEK_SET

#defi ne SEEK SET 0

#endi f
voi d count_bytes( input, counts )
FI LE *i nput;
unsi gned | ong counts[];
{
| ong i nput _maker;
int i;
int c;
for (i =0 ; i < 256; i++)
counts[ i ] = 0;

i nput _marker = ftell( input );

while ( ( ¢ =getc( input ) ) !'= EOF)
counts[ ¢ ]++;

fseek( input, input_marker, SEEK SET );

This routine is called to scale the counts down. There are two
types of scaling that nust be done. First, the counts need to be
scal ed down so that the individual counts fit into a single unsigned
char. Then, the counts need to be rescaled so that the total of al
counts is |l ess than 16384.

/

* % X kX X T~

voi d scal e_counts( counts, scaled_counts )
unsi gned | ong counts[];
unsi gned char scal ed_counts[];
Lt
int i;
unsi gned | ong max_count;
unsigned int total;
unsi gned | ong scal e;



/*

* The first section of code nmakes sure each count fits into a single
* byte.

*/

max_count = 0O;
for (i =0 ; i <256 ; i++)
if ( counts[ i ] > max_count )
max_count = counts[ i ];
scale = max_count / 256
scale = scale + 1;

for (i =0 ; i <256 ; i++) {
scal ed_counts[ i ] = (unsigned char ) ( counts[ i ] / scale);
if ( scaled counts[ i ] == 0 & counts[ i ] !'=0)
scaled_counts[ i ] = 1;

}
/*
* This next section nmakes sure the total is |ess than 16384.
* | initialize the total to 1 instead of 0O because there will be an
* additional 1 added in for the END OF STREAM synbol ;
*/

total = 1;

for (i =0 ; i <256 ; i++)

total += scaled counts[ i ];
if ( total > ( 32767 - 256 ) )
scale = 4;
else if ( total > 16383 )
scale = 2;
el se
return;
for (i =0 ; i <256 ; i++)
scal ed_counts[ i ] /= scale;

}
/*

* This routine is used by both the encoder and decoder to build the
* table of cunulative totals. The counts for the characters in the
* file are in the counts array, and we know that there will be a

* single instance of the EOF synbol .

*/

void build_total s( scaled_counts )

unsi gned char scal ed_counts[];

Lt

int i;

totals[ 0] = O;

for (i =0 ; i < END OF_STREAM ; i ++ )

totals[ i + 1] =totals[ i ] + scaled counts[ i ];

totals| END OF STREAM+ 1 ] = totals[ END OF STREAM] + 1;
}
/*
* |n order for the conpressor to build the sane nodel, | have to
* store the synbol counts in the conpressed file so the expander can
* read themin. 1In order to save space, | don't save all 256 synbols
* unconditionally. The format used to store counts |ooks like this:
*
* start, stop, counts, start, stop, counts, ...0
*
* This means that | store runs of counts, until all the non-zero
* counts have been stored. At this time the list is terminated by
* storing a start value of 0. Note that at least 1 run of counts has
*

to be stored, so even if the first start value is 0, | read it in.



It also neans that even in an enpty file that has no counts, | have
to pass at |east one count.

*

*

*

* In order to efficiently use this format, | have to identify runs of
* non-zero counts. Because of the format used, | don't want to stop a
* run because of just one or two zeros in the count stream So | have
* to sit in a loop looking for strings of three or nore zero val ues
*in a row

*

* This is sinple in concept, but it ends up being one of the nobst

* conplicated routines in the whole program A routine that just

*
*
*
*

wites out 256 values without attenpting to optimnm ze would be nuch
sinmpler, but would hurt conpression quite a bit on small files.

/

voi d output_counts( output, scaled counts )
FI LE *out put;

unsi gned char scal ed_counts[];

{
int first;
int |ast;
i nt next;
int i;
first = 0;
while ( first < 255 && scaled counts[ first ] == 0 )
first++;
/*
* Each time | hit the start of the loop, | assune that first is the
* nunber for a run of non-zero values. The rest of the loop is
* concerned with finding the value for last, which is the end of the
* run, and the value of next, which is the start of the next run.
* At the end of the loop, | assign next to first, so it starts in on
* the next run.
*/
for (; first <256 ; first = next ) {
last = first + 1
for (5 ;) {
for (; last < 256 ; last++ )
if ( scaled counts[ last ] == 0)
br eak;
| ast —;
for ( next = last + 1; next < 256 ; next++ )
if ( scaled counts[ next ] !'=0)
br eak;
if ( next > 255)
br eak;
if ( ( next - last ) > 3)
br eak;
| ast = next;
1
/*

* Here is where | output first, last, and all the counts in between.
*/

if ( putc( first, output ) !=first )

fatal _error( "Error witing byte counts\n" );
if ( putc( last, output ) !=last )

fatal _error( "Error witing byte counts\n" );
for (i =first ; i <=last ; i++) {

if ( putc( scaled counts[ i ], output ) !I=
(int) scaled counts[ i ] )
fatal _error( "Error witing byte counts\n" );



if ( putc( O, output ) !=0)
fatal _error( "Error witing byte counts\n" );

}

/*

* When expanding, | have to read in the sane set of counts. This is
* quite a bit easier that the process of witing themout, since no

* deci sion naking needs to be done. Al | dois read in first, check

* to seeif | amall done, and if not, read in last and a string of
* counts.

*/
voi d input_counts( input )
FI LE *i nput;
{
int first;
int |ast;
int i;
int c;
unsi gned char scal ed_counts[ 256 ];
for (i =0 ; i <256 ; i++)

scal ed_counts[ i ] = 0;
if ( ( first = getc( input ) ) == ECOF)
fatal _error( "Error reading byte counts\n" );
if ( ( last = getc( input ) ) == ECF)
fatal _error( "Error reading byte counts\n" );
for (5 ;) {
for (i =first ; i <=1last ; i++)
if ( ( ¢c=getc( input ) ) == EOF)
fatal _error( "Error reading byte counts\n" );
el se
scaled_counts[ i ] = (unsigned int) c;
if ( ( first = getc( input ) ) == ECF)
fatal _error( "Error reading byte counts\n" );
if ( first ==0)
br eak;
if ( ( last = getc( input ) ) == EOF)
fatal _error( "Error reading byte counts\n" );
}

build total s( scaled counts );

}

/*

* BEverything fromhere down defines the arithnetic coder section
* of the program

*/

/*

* These four variables define the current state of the arithnetic
* coder/decoder. They are assunmed to be 16 bits long. Note that
* by declaring themas short ints, they will actually be 16 bits
* on nost 80X86 and 680X0 machi nes, as well as VAXen

*/

static unsigned short int code;/* The present input code val ue */
static unsigned short int low, /* Start of the current code range */
static unsigned short int high;/* End of the current code range */
 ong underfl ow bits: /* Number of underflow bits pending */
/*

* This routine nust be called to initialize the encodi ng process.

* The high register is initialized to all 1s, and it is assumed that
* it has an infinite string of 1s to be shifted into the |ower bit

* positions when needed.

*/



void initialize arithnetic_encoder() {
low = 0;
high = Oxffff;
underflow bits = 0;

}

/*

* At the end of the encoding process, there are still significant
* bits left in the high and | ow registers. W output two bits,

* plus as many underflow bits as are necessary.

*/

void flush_arithnetic_encoder( stream)

BI T_FILE *stream

{
QutputBit( stream |ow & 0x4000 );
under fl ow_bi t s++;
while ( underflow bits— > 0)
QutputBit( stream ~low & 0x4000 );
}

*

/

* Finding the [ ow count, high count, and scale for a synbol

* is really easy, because of the way the totals are stored.

* This is the one redeenming feature of the data structure used
* in this inplenentation.

*/
void convert_int_to_symbol( ¢, s )
int c;
SYMBOL *s;
}
s->scale = totals[ END OF STREAM + 1];
s->l ow count = totals[ c ];
s->hi gh_count = totals[ ¢ + 1 ];
}
/*
* Getting the scale for the current context is easy.
*/
voi d get_synbol scale( s )
SYMBOL *s;
{
s->scale = totals[ END OF STREAM + 1 ];
}
/*
* During deconpression, we have to search through the table unti
* we find the synbol that straddles the "count"” paraneter. When
* it is found, it is returned. The reason for also setting the
*

hi gh count and | ow count is so that synbol can be properly renoved
* fromthe arithnetic coded input.

*/

int convert_synbol to_int( count, s )

int count;

SYMBOL *s;

L
int c;
for ( ¢ = END_ OF_STREAM; count < totals[ ¢ ] ; ¢c— )
s->high_count = totals[ ¢ + 1 ];
s->l ow count = totals[ ¢ ];
return( c );

}

/*



This routine is called to encode a synbol. The synbol is passed
in the SYMBOL structure as a | ow count, a high count, and a range,
i nstead of the nore conventional probability ranges. The encoding
process takes two steps. First, the values of high and | ow are
updated to take into account the range restriction created by the
new synbol. Then, as many bits as possible are shifted out to
the output stream Finally, high and | ow are stable again and
the routine returns.

/

voi d encode_synbol ( stream s )

BI T_FI LE *stream

SYMBOL *s;

{

| ong range;

/*

* These three lines rescale high and | ow for the new synbol.

*/

L I R T

range = (long) ( high-low) + 1;

high = low + (unsigned short int)
(( range * s->high count ) / s->scale - 1 );
low = I ow + (unsigned short int)

(( range * s->low count ) / s->scale );
/*
* This loop turns out new bits until high and | ow are far enough
* apart to have stabilized.

*/
for (; ;) {
/*

* |f this test passes, it nmeans that the MSDigits nmatch, and can
be sent to the output stream

*/
if ( ( high & 0x8000 ) == I ow & 0x8000 ) ) {
QutputBit( stream high & 0x8000 );
while ( underflow bits > 0 ) {
Qut putBit( stream ~high & 0x8000 );
under fl ow _bits—;
}
}
/*

* |f this test passes, the nunbers are in danger of underfl ow, because
* the MBDigits don't match, and the 2nd digits are just one apart.
*/
else if ( ( low & 0x4000 ) && !( high & 0x4000 )) {
underflow bits += 1

| ow &= Ox3fff;
hi gh | = 0x4000
} else
return ;
| ow <<= 1;
hi gh <<= 1;
high | = 1;
}
}
/*
* \When decoding, this routine is called to figure out which synbol
* is presently waiting to be decoded. This routine expects to get
* the current nodel scale in the s->scale paraneter, and it returns
* a count that corresponds to the present floating point code;
*
* code = count / s->scale
*

~

short int get_current_count( s )



SYMBOL *s;

{
| ong range;
short int count;
range = (long) ( high - low) + I;
count = (short int)
((((long) ( code - low) + 1) * s->scale-1) / range )
return( count );
}
/*

* This routine is called to initialize the state of the arithnetic
* decoder. This involves initializing the high and | ow registers

* to their conventional starting values, plus reading the first
* 16 bits fromthe input streaminto the code val ue.

*/

void initialize_ arithnetic_decoder( stream)

BI T_FI LE *stream

L
int i;
code = 0;
for (i =0; i <16 ; i++ ) {
code <<= 1;
code += I nputBit( stream);
}
|l ow = 0;
high = Oxffff;
}
/*

* Just figuring out what the present synmbol is doesn't renove

* it fromthe input bit stream After the character has been

* decoded, this routine has to be called to remove it fromthe
* i nput stream

*/

voi d renmove_synbol _from stream stream s )

BI T_FI LE *stream

SYMBOL *s;
{
| ong range;
/*
* First, the range is expanded to account for the synbol renoval.
*/
range = (long)( high - low) + I;
high = low + (unsigned short int)
(( range * s->high_count ) / s->scale - 1);
low = Il ow + (unsigned short int)
(( range * s->low count ) / s->scale );
*/
* Next, any possible bits are shipped out.
*/
for (; ;) {
/*

* |f the MSDigits match, the bits will be shifted out.
*/

if ( ( high & 0x8000 ) == | ow & 0x8000 ) ) {

}

/*
* Else, if underflowis threatening, shift out the 2nd MSDigit.
*/

else if ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0 ) {

code ~= 0x4000;



| ow &= Ox3ffff;
hi gh | = 0x4000;

} else
/*
* Ot herw se, nothing can be shifted out, so | return.
*/

return;

| ow <<= 1;

hi gh <<= 1,

high | = 1;

code <<= 1;
code += I nputBit( stream);

}

/*************************** End Of AR'TH C****************************/



Chapter 6
Statistical M odeling

The previous three chapters have shown several coding techniques used to compress data. The two
coding methods disscussed, Huffman and arithmetic coding, can be implemented using either the
fixed or adaptive approaches, but in all cases a statistical model needsto drive them. The chapters
which discuss these coding techniques all used a simple order-0 model, which provides fairly good
compression. This chapter discusses how to combine more sophisticated modeling techniques with
standard coding methods to acheive better compression.

Higher-Order M odeling

To compress data using arithmetic or Huffman coding, we need a model of the data stream. The
model needs to do two things to achieve compression: (1) it needsto accurately predict the
frequency/probability of symbolsin the input data stream, and (2) the symbol probabilities generated
by the model need to deviate from a uniform distribution.

Accurately predicting the probability of symbolsin the input datais an inherent need in arithmetic or
Huffman coding. Thistype of coding reduces the number of bits needed to encode a character asits
probability of appearance increases. If the letter E represents 25 percent of the input data, it should
take only two bitsto code. If the letter Z represents only .1 percent of the input data, it might take ten
bits to code. If the model is not generating probabilities accurately, it might take ten bitsto code E
and two bits to code Z, causing data expansion instead of compression.

The model also needs to make predictions that deviate from a uniform distribution. The better the
model is at making these predictions, the better the compression ratios will be. A model could be
created, for example, that assigned all 256 possible symbols a uniform probability of 1/256. This
model would create an output file exactly the same size as the input file, since every symbol would
take exactly eight bits to encode. Only by correctly finding probabilities that deviate from a normal
distribution can the number of bits be reduced, leading to compression. The increased probabilities
have to accurately reflect reality, of course, as prescribed by the first condition.

It may seem that the probability of a given symbol occurring in a data stream isfixed, but thisis not
quite true. The probability of a character can change quite a bit, depending on the model. When
compressing a C program, for example, the probability of a new-line character in the text might be
1/40, a probability determined by scanning the entire text and dividing the number of occurrences of
the character by the total number of characters. But if a modeling technique looks at asingle
previous character, the probabilities change. In that case, if the previous character werea‘}’, the
probability of a new-line character goes up to 1/2. Thisimproved modeling technique leads to better
compression, though both models were generating accurate probabilities.

Finite Context Modeling

The modeling discussed in this chapter is called “finite-context” modeling. It is based on asimple
idea; calculate the probabilities for each incoming symbol based on the context in which the symbol
appears. In al of the examples shown here, the context consists of nothing more than symbols
previously encountered. The “order” of the model refers to the number of previous symbols that
make up the context.

The simplest finite-context model would be an order-0 model that calculates the probability of each
symbol independently of any previous symbols. To implement this model, all that isneeded isa
single table containing the frequency counts for each symbol that might be encountered in the input
stream. An order-1 model keeps track of 256 different tables of frequencies, since it needs a separate



set of counts for each possible context. Similarly, an order-2 model needs to handle 65,536 different
tables of contexts.

The models used in chapters 3, 4, and 5 were al order-0 models. They didn’t take up much storage
space, and they were simple to manipulate. By confining ourselves to order-0 modeling, however,
we ensured that our data-compression ratios were relatively modest.

Adaptive Modeling

It seemslogical that as the order of the model increases, compression ratios ought to improve as
well. The probability of the letter u appearing in the text of this book may only be 5 percent, for
example, but if the previous context character is g, the probability goes up to 95 percent. Predicting
characters with high probability lowers the number of bits needed, and larger contexts ought to let us
make better predictions.

Unfortunately, as the order of the model increases linearly, the memory consumed by the model
increases exponentially. With an order 0 model, the space consumed by the statistics could be as
small as 256 bytes. Once the order of the model increasesto 2 or 3, even the most cleverly designed
models will consume hundreds of kilobytes.

The conventional way of compressing datais to make a pass over the symbols to gather statistics for
the model. Then a second pass is made to actually encode the data. The statistics are usually carried
with the compressed data so the decoder will have a copy. This approach obviously has serious
problemsif the statistics for the model take more space than the data to be compressed.

Adaptive compression is the solution to this problem. In adaptive data compression, both the
compressor and the decompressor start with the same model. The compressor encodes a symbol
using the existing model, then it updates the model to account for the new symbol using the existing
model, then it updates the model to account for the new symbol. The decompressor likewise decodes
asymbol using the existing model, then it updates the model. Aslong as the algorithm to update the
model operates identically for the compressor and the decompressor, the process can operate
perfectly without needing to pass a statistics table from the compressor to the decompressor.

Adaptive data compression has a dight disadvantage in that it starts compressing with less than
optimal statistics. By subtracting the cost of transmitting the statistics with the compressed data,
however, an adaptive algorithm will usually perform better than a fixed statistical model.

Adaptive compression also suffersin the cost of updating the model. When updating the count for a
particular symbol using arithmetic coding, for example, the update code has the potential cost of
updating the cumulative counts for all other symbols as well, leading to code that on the average
performs 128 arithmetic operations for every symbol encoded or decoded, using the modeling
techniques needed for arithmetic coding.

Because of high cost in both memory and CPU time, higher-order adaptive models have only
become practical in perhaps the last ten years. It isironic that as the cost of disk space and memory
goes down, the cost of compressing the data stored there also goes down. As these costs continue to
decline, we will be able to implement even more effective programs than are practical today.

A Simple Example
The sample program in Chapter 4 used Huffman coding to demonstrate adaptive compression. In this

chapter, the sample program will use adaptive arithmetic coding. When performing finite-context
modeling, we need a data structure to describe each context used while compressing the data. If we



move up from an order to an order-1, for example, we will use the previous symbol as a context for
encoding the current symbol.

An array of 256 context arraysis probably the simplest way to create the data structures for an order-
1 model. Aswe saw in the last chapter, a simple context model for an arithmetic encoder can be
created using an array of cumulative counts for each symbol. If we have 256 symbolsin our
alphabet, an array of pointersto 256 different context arrays can be created like this:

int *total s[ 256 ];

void initialize_nodel ()

{

i nt context;
int i;

for (context= 0 ; context < END OF STREAM ; context++ ) {

totals[ context ] = (int *) calloc( END OF _STREAM + 2,
sizeof( int ) );
if ( totals[ context ] == NULL )
fatal _error( "Failure allocating context %", context );
for (i =0 ; i <= ( ENDOF STREAM+ 1) ; i++)
totals[ context ][ i ] = 1;

}

This code not only creates the 256 context arrays, it also initializes each symbol’s count to 1. At this
point, we can begin encoding symbols as they comein. The loop for encoding the symbols |ooks
similar to the one used for other adaptive programs. Here is an order 1 arithmetic compression loop:

for (5 ) {
c = getc( input );
if (c == EOF )
¢ = END_OF_STREAM
convert _int_to_synbol ( ¢, context, &s );
encode_synbol ( out put, &s );
if ( ¢ == END_OF_STREAM)
br eak;
update_nodel ( ¢, context );
context = c;

}

Thisworks fairly smply. Instead of just having a single context table, like the code in chapter 5, we
now have a set of 256 context tables. Every symbol is encoded using the context table from the
previously seen symbol, and only the statistics for the selected context get updated after the symbol
is seen. This means we can now more accurately predict the probability of a character’ s appearance.

The decoding process for this order 1 code is also very simple, and it looks similar to the decoding
example from chapter 5. Here is the order 1 expansion loop:

for (; ;) {
get _synmbol _scal e( context, &s );
count = get_current_count( &s );
¢ = convert_synbol to_ int( count, context, &s );
renove_synbol fromstreanm( input, &s );
if (c == END_OF_STREAM )
br eak;
putc( (char) c, output );
update_nodel ( ¢, context );
context = c;



The only difference between this and conventional order-0 code is the addition of the context
variable, both within the loop and as a parameter to other functions. The remaining routines that
differ from the code in Chapter 5 are are shown next. The C source for this module is included on the
program disk.

voi d update_nodel ( int synmbol, int context )
int i;
for (i =synbol + 1 ; i <= ( ENDOF STREAM+ 1 ) ; i++)
totals[ context ][ i ]++
if ( totals[ context ][ END OF_STREAM + 1 ] < MAXI MUM _SCALE )
return;
for (i =1 ;i <= ( ENDOFSTREAM+ 1) ; i++ ) {
totals[ context ][ i ] /= 2;
if ( totals[ context ][ i ] <= totals[ context ][ i - 1] )
totals[ context ][ i ] =totals[ context ][ i - 1] + 1;
}
}
void convert _int _to synbol( int c, int context, SYMBOL *s )
{

s->scale = totals[ context ][ END OF STREAM + ];
s->l ow _count = totals[ context ][ ¢ ];
s->hi gh_count = totals[ context ][ ¢ + 1 ];

}
voi d get_synbol _scale( int context, SYMBOL *s )
{ s->scale = totals[ context][ END OF STREAM + 1 ];
%nt convert _synbol to_int( int count, int context, SYMBOL *s)
{
int c;
for ( ¢ =0; count >=totals[ context ][ ¢ + 1] ; c++)

s->hi gh_count = totals[ context ][ ¢ + 1 1;
s->l ow count = totals[ context ][ ¢ ];
return( c );

}

Using the Escape Code as a Fallback

The ssimple order-1 program doesin fact do a creditable job of compression, but it has a couple of
problems to address. First, the model for this program makes it a slow starter. Every context starts
off with 257 symbolsinitialized to a single count, meaning every symbol starts off being encoded in
roughly eight bits. As new symbols are added to the table, they will gradually begin to be encoded in
fewer bits. This process, however, will not happen very quickly.

For the context table for the |etter g, for example, we will probably see aavery high number of u
symbols. The very first u will have a probability of 1/257, and will accordingly be encoded in eight
bits. The second u will have a probability of 2/258, but will still require over seven bitsto encode. In
fact, it will take sixteen consecutive u symbols with no other appearances before the entropy of the
symbol is reduced to even four bits.

The reason for this slow reduction in bit count is obvious. The probability of the u symbol is being
weighted down by the other 256 symbolsin the table. Though they may never appear in the message,
they need a nonzero count. If their count were reduced to zero, we would not be able to encode them
if and when they appeared in the message.



There is a solution to this problem, however, and it isrelatively painless. Instead of having every
symbol appear automatically in every table, start off with a nearly empty table and add symbolsto
the table only as they appear. The g table would have zero counts for al the other symbols, giving
thefirst u that appears alow bit count.

But thereis acatch here. If a symbol doesn’t appear in a context table, how will it be encoded when
it appearsin amessage? The easiest way to accomplish thisis to use an escape code. The escape
code is aspecial symbol (much like the end-of-stream symbol) that indicates we need to “ escape’
from the current context.

When a context issues an escape symbol, we generally fall back to alower-order context. In our next
sample program, we escape to the escape context, a context that never gets updated. It contains 258
symbols, each of which has a count of 1. This guarantees that any symbol encountered in the
message can be encoded by outputting an escape code from the current context and by encoding the
symbol using the escape context.

How does this affect the example used for the letter u? Asit turns out, it makes an enormous
difference. Thefirst u symbol that took eight bitsin the previous example will take about eight bits
here as well. The escape code takes no bits to encode, and in the escape context the u has a 1/257
probability. After that, however, the u is added to the table and given a count of 1. The next
appearance of u will require only one bit to encode, since it has a probability of 1/2. By thetime 16
u’s have appeared, and while the previous model is still taking four bits to encode it, the escape-
driven model will take .06 bits!

The escape code frees us from burdening our models with characters that may never appear. This lets
the model adjust rapidly to changing probabilities and quickly reduces the number of bits needed to
encode high- probability symbols.

The encoding process for this particular implementation of a multi-order model requires only afew
modifications to the previous program. The convert_int_to_symbol() routine now has to check
whether a symbol is present in the given context. If not, the escape code is encoded instead, and the
function returns the appropriate result to the main encoding loop, as shown:

context = O;
initialize_nodel ();
initialize_ arithmetic_encoder();
for (5 ;) {
c = getc( input );
if ( ¢ == EOF)
¢ = END_OF_STREAM
escaped = convert_int_to_synbol ( c, context, &s );
encode_synbol ( output, &s );
if ( escaped ) {
convert _int_to_synbol ( ¢, ESCAPE, &s );
encode_synbol ( out put, &s );

}

if ( ¢ == END_OF_STREAM )
br eak;

updat e_nodel ( ¢, context );

context = c;

}

In the main compression loop shown, the compressor first tries to send the original symboal. If the
convert_int_to_symbol() routine returns atrue, the symbol did not appear in the current context, and
the routine resends the symbol using the escape context. We update just the current context model
with the symbol just sent, not the escape model.



The decompression loop for this program follows a similar pattern. The code shown next makes one
or two possible passes through the loop, depending on whether an escape code is detected. The
program for this order-1 context-switching program is on the program diskette that accompanies this
book.

context = O;
initialize_nodel ();
initialize_arithmetic_decoder( input );
for (5 ;) {
| ast _context = context;
do {
get _synbol _scal e( context, &s );
count = get_current_count( &s );
¢ = convert_synbol to_ int( count, context, &s );
renove_synbol fromstrean( input, &s );
context = c;
} while ( ¢ == ESCAPE );
if ( ¢ == END_OF_STREAM )
br eak;
putc( (char) c, output );
update _nodel ( ¢, last_context );
context = c;

}

| mprovements

Some problems with the method of encoding in ARITH-1.C are the high-cost operations associated
with the model. Each time we update the counts for symbol ¢, every count in total§[context][] from ¢
up to 256 has to be incremented. An average of 128 increment operations have to be performed for
every character encoded or decoded. For a simple demonstration program like the one shown here,
this may not be amajor problem, but a production program should be modified to be more efficient.

One way to reduce the number of increment operations is to move the counts for the most frequently
accessed symbolsto the top of the array. This makes the model keep track of each symbol’ s position
in the total s[context] array, but it reduces the number of increment operations by an order of
magnitude. Thisis arelatively simple enhancement to make to this program. A very good example
of aprogram that uses this technique has been published as part of the paper by lan H. Witten, Neal
Radford, and John Cleary, “Arithmetic Coding for Data Compression,” Communications of the
ACM (June 1987). This paper is an excellent source of information regarding arithmetic coding, with
some sample C source code illustrating the text.

Highest-Order M odeling

The previous sample program used order-1 statistics to compress data. It seemslogical that if we
move to higher orders, we should achieve better compression. The importance of the escape code
becomes even more clear here. When using an order-3 model, we potentially have 16 million context
tables to work with (actually 256* 256* 256, or 16,777,216). We would have to read in an incredible
amount of text before those 16 million tables would have enough statistics to start compressing data,
and many of those 16 million tables will never be used—which means they take up space in our
computer’s memory for no good reason. When compressing English text, for example, it does no
good to allocate space for the table QQW. It will never appear.

The solution to thisis, again, to set theinitial probabilities of all of the symbolsto O for agiven
context and to fall back to a different context when a previously unseen symbol occurs. So the
obvious question is: what do we use as the fallback context after emitting an escape code? In the last
example, we fell back to a default context called the escape context. The escape context was never



updated, which meant that using it generally would not provide any compression.

In the higher-order models, there is a better way to compress than just automatically falling back to a
default context. If an existing context can’t encode a symbol, fall back to the next smaller-order
context. If our existing context was REQ, for example, and U needs to be encoded for the first time,
an escape code will be generated. Following that, we drop back to an order-2 model to try to encode
the character U using the context EQ. This continues down through the order-0 context. If the escape
code is still generated at order-0, we fall back to a special order(-1) context that is never updated and
isset up at initialization to have a count of 1 for every possible symbol—so it is guaranteed to
encode every symbol.

Using this escape-code technique means only a slight modification to the driver program. The
program (see the code found in ARITH-N.C) now sitsin aloop trying to encode its characters, as
shown here;

do {
escaped = convert_int_to _synbol( c, & );
encode_synbol ( conpressed_file, &s );

} while ( escaped );

The modeling code keeps track of what the current order is, decrementing it whenever an escape is
emitted. Even more complicated is the modeling module’ s job of keeping track of which context
table needs to be used for the current order.

Updating the M odel

ARITH1E.C does a good job of compressing data. But quite afew improvements can still be made
to this simple statistical method without changing the fundamental nature of its algorithm. The rest
of this chapter is devoted to discussing those improvements, along with alook at a sample
compression module, ARITH-N.C, that implements most of them.

Using the highest-order modeling algorithm requires that instead of keeping just one set of context
tables for the highest order, we keep afull set of context tables for every order up to the highest
order. If we are doing order-2 modeling, for example, there will be a single order-0 table, 256 order-
1 tables, and 65,536 order-2 tables. When a new character is encoded or decoded, the modeling code
updates one of these tables for each order. In the example of U following REQ, the modeling code
would update the U countersin the order-3 REQ table, the order-2 EQ table, the order-1 Q table, and
the order-0 table. The code to update all of these tablesis shown next:

for ( order = 0 ; order <= max_order ; order++ )
updat e_nodel ( order, synbol );

A dlight modification to this algorithm results in both faster updates and better compression. Instead
of updating all the different order models for the current context, we can instead update only those
models actually used to encode the symbol. Thisis called “update exclusion,” since it excludes
unused lower-order models from being updated. It will generally give a small but noticeable
improvement in the compression ratio. Update exclusion works since symbols showing up frequently
in the higher-order models won't be seen as often in the lower-order models, which means we
shouldn’t increment the counters in the lower-order models. The modified code for update exclusion
will look like this:

for ( order = encoding_order ; order <= nax_order ; order++ )
updat e_nodel ( order, synbol );

Escape Probabilities



When the program first starts encoding atext stream, it will emit quite afew escape codes. The
number of bits used to encode escape characters will probably have alarge effect on the compression
ratio, particularly in small files. In our first attempts to use escape codes, we set the escape count to 1
and |eft it there, regardless of the state of the rest of the context table. Bell, Cleary, and Witten call
this“Method A.” Method B sets the count for the escape character at the number of symbols
presently defined for the context table. If eleven different characters have been seen so far, for
example, the escape symbol count will be set at eleven, regardless of what the counts are.

Both methods seem to work fairly well. The code in our previous program can easily be modified to
support either one. Probably the best thing about methods A and B is that they are not
computationally intensive. Adding the escape symbol to the Method A table can be done so that it
takes almost no more work to update the table with the symbol than without it.

The next sample program, ARITH-N.C, implements a slightly more complicated escape-count
calculation agorithm. It tries to take into account three different factors when cal culating the escape
probability. First, as the number of symbol defined in the context table increases, the escape
probability naturally decreases. This reaches its minimum when the table has all 256 symbols
defined, making the escape probability O.

Second, it takes into account a measure of randomnessin the table. It calculates this by dividing the
maximum count in the table by the average count. The higher the ratio, the less random the table.
The REQ table, for example, may have only three symbols defined: U, with a count of 50; u, with a
count of 10; and e, with acount of 3. Theratio of U’s count, 50, to the average, 21, isfairly high.
The U isthus predicted with arelatively high amount of accuracy, and the escape probability ought
to be lower. In atable where the high count was 10 and the average was 8, things would seem alittle
more random, and the escape probability should be higher.

The third factor taken into account is simply the raw count of how many symbols have been seen for
the particular table. Asthe number of symbols increases, the predictability of the table should go up,
making the escape probability go down.

The formulal use for calculating the number of counts for the escape symbol is below.

count (256 - number of synbols seen)*nunber of synbols seen
count count /(256 * the highest synbol count)
if count is less than 1

count =1

The missing variable in this equation is the raw symbol count. Thisisimplicit in the calculation,
because the escape probability is the escape count divided by the raw count. The raw count will
automatically scale the escape count to a probability.

Scor eboarding

When using highest-order modeling techniques, an additional enhancement, scoreboarding, can
improve compression efficiency. When we first try to compress a symbol, we can generate either the
code for the symbol or an escape code. If we generate an escape code, the symbol had not previously
occurred in that context, so we had a count of 0. But we do gain some information about the symbol
just by generating an escape. We can now generate alist of symbols that did not match the symbol to
be encoded. These symbols can temporarily have their counts set to 0 when we calcul ate the
probabilities for lower-order models. The counts will be reset back to their permanent values after
the encoding for the particular character is complete. This processis called scoreboarding.

An example of thisis shown below. If the present context is HAC and the next symbol isK, we will
use the tables shown next to encode the K. Without scoreboarding, the HAC context generates an



escape with a probability of 1/6. The AC context generates an escape with a probability of 1/8. The
C context generates an escape with a probability of 1/40, and the “” context finally generates aK
with a probability of 1/73.

“r “C” “AC” “HAC”
ESC1 ESC1 ESC1 ESC1
‘K1 ‘H 20 ‘C 5 ‘E'3
‘E40 ‘T 11 ‘H 2 ‘L1
1" 22 ‘L'5 ‘C1
‘A9 ‘A’ 3

If we use scoreboarding to exclude counts of previously seen characters, we can make a significant
improvement in these probabilities. The first encoding of an escape from HAC isn't affected, since
no characters were seen before. But the AC escape code eliminates the C from its calculations,
resulting in a probability of 1/3. The C escape code excludes the H and the A counts, increasing the
probability from 1/40 to 1/17. And finally, the “” context excludes the E and A counts, reducing that
probability from 1/73 to 1/24. This reduces the number of bits required to encode the symbol from
14.9to0 12.9, asignificant savings.

Keeping a symbol scoreboard will almost always result in some improvement in compression, and it
will never make things worse. The mgjor problem with scoreboarding is that the probability tables
for all of the lower-order contexts have to be recalculated every time the table is accessed. This
resultsin abig increase in the CPU time required to encode text. Scoreboarding is left in ARITH-
N.C. to demonstrate the gains possible when compressing text using it.

Data Structures

All improvements to the basic statistical modeling assume that higher-order modeling can actually
be accomplished on the target computer. The problem with increasing the order is one of memory.
The cumulative totals table in the order-0 model in Chapter 5 occupied 516 bytes of memory. If we
used the same data structures for an order-1 model, the memory used would shoot up to 133K, which
isstill probably acceptable. But going to order-2 will increase the RAM requirements for the
statistics unit to thirty-four megabytes! Since we would like to try orders even higher than 2, we need
to redesign the data structures that hold the counts.

To save memory space, we have to redesign the context statistics tables. In Chapter 5, the tableis
about as ssmple asit can be, with each symbol being used as an index directly into a pair of counts.
In the order-1 model, the appropriate context tables would be found by indexing once into an array
of context tables, then indexing again to the symbol in question, a procedure like that shown here:

| ow count = totals[ last_char ][ current_char ];
hi gh_count = totals[ last_char ][ current_char + 1 ];
range = totals[ last_char ][ 256 ];

Thisis convenient, but enormously wasteful. Full context space is allocated even for unused tables,
and within the tables space is allocated for all symbols, seen or not. Both factors waste enormous
amounts of memory in higher-order models.

The solution to the first problem, reserving space for unused contexts, is to organize the context
tables as atree. Place the order-0 context table at a known location and use it to contain pointers to



order-1 context tables. The order-1 context tables will hold their own statistics and pointers to order-
2 context tables. This continues until reaching the “leaves’ of the context tree, which contain order_n
tables but no pointers to higher orders. Using a tree structure can keep the unused pointer nodes set
to null pointers until a context is seen. Once the context is seen, atable is created and added to the
parent node of the tree.

The second problem is creating atable of 256 counts every time a new context is created. In redlity,
the highest-order contexts will frequently have only afew symbols, so we can save alot of space by
only allocating space for symbols seen for a particular context.

After implementing these changes, we have a set of data structures that look like this:

t ypedef struct {
unsi gned char synbol ;
unsi gned char counts;
} STATS;

typedef struct {
struct context *next;
} LI NKS;

typedef struct context {

i nt max_i ndex;

STATS *stats;

LI NKS *Ii nks;

struct context *|esser_context;
} CONTEXT;

The new context structure has four major elements. The first is the counter, max_index, which tells
how many symbols are presently defined for this particular context table. When atableisfirst
created, it has no defined symbols, and max_index is-1. A completely defined table will have a
max_index of 255. The max_index variable tells how many elements are allocated for the arrays
pointed to by stats and links. Statsis an array of structures, each containing a symbol and a count for
that symbol. If the context table is not one of the highest-order tables, it will also have alinks array.
Each symbol defined in the stats array will have a pointer to the next higher-order context tablein
the links table.

A sample of the context table tree is shown in figure 6.1. The table shown is one that will have just
been created after the input text “ABCABDABE” when keeping maximum order-3 statistics. Just
nine input symbols have already generated afairly complicated data structure, but it is orders of
magnitude smaller than one consisting of arrays of arrays.



Ordero Order 1 Order 2 Order 2

Context: " Contest:"A" Context: "AB" Context: "ABC"

Lesser: MLULL Lessar: " Lessar:"B" Lassar: "BC"

Symbol Count Link Symbol Count Link | Symbol Count Link Symbol Count  Link
A a A B a AR C 1 “ABC" A 1 MUILL
B a g Wi O 1 "aBD"

| Context: "B %
C 1 "G | agsar E 1_"ABE'] Contaxt: "BCA"
D T "0 | symbd GCount Link | Context:"BC" Lassar: "CA"
E 1k C 1 "BC"| Lessar:“C" Symbol Count  Link
D 1 "BO'| Symbol Count Link B 1 MUILL
E 1 "BE" A 1 "BCA"
Contesd: " C" Contest: "CA" Context: "CAR"
Lessar: " Lessar: "A" Lassar: “AB"
Symbol Count Link | Symbo Court Link Symbeol Count  Link
A 1 "CA" B 1 "CAR" O 1 MULL
Contesd:"D" Contest: "ED"
Lessar: " Lessar: “D" Contaxt: “ABO"
Symbol  Count Link | Symbol Count Link Lassear; "BO"
A 1 "DA" A 1 "BDA"[ Symbol Count Link
Context: "E" Context: "BE" A 1 MULL
Lessar: " Lessar: "E"
Symbol  Count Link Symbol Count Link | Context: "BOA"
Lassar: "BO"
Symbeol Count  Link
A 1 MUILL
Context: "Dap”
Lassar: "AR"
Symbol Count  Link
E 1 MUILL
Context: "ABE"
Lassar: "BE"
Symbol Count  Link

Figure6.1 A context tabletree: “ABCABDABE.”

One element in this structure that hasn’t been explained isthe lesser_context pointer. This pointer is
needed when using higher-order models. If the modeling code is trying to locate an order-3 context
table, it first has to scan through the order-0 symbol list looking for the first symbol, the match, the

order-1 symbol list, and so on. If the symbol listsin the lower orders are relatively full, this can be a
lengthy process. Even worse, every time an escape is generated, the process has to be repeated when
looking up the lower-order context. These searches can consume an inordinate amount of CPU time.

The solution to thisis to maintain a pointer for each table that points to the table for the context one
order less. The context table ABC should have its back pointer point to BC, for example, which
should have a back pointer to C, which should have a pointer to “”, the null table. Then the modeling
code only needs to keep a pointer to the current highest order context. Given that, finding the order-1
context table is simply a matter of performing (n-1) pointer operations.

With the table shown in Figure 6.1, for example, suppose the next incoming text symbol is X and the
current context is ABE. Without the benefit of the lesser context pointers, | have to check the order-
3,2, 1, and O tablesfor X. Thistakes 15 symbol comparisons and three table lookups. Using reverse
pointers eliminates all the symbols comparisons and performs just three table lookups.

To update the figure 6.1 context tree to contain an X after ABE, the modeling code has to perform a
single set of lookups for each order/context. This codeis shownin ARITH-N.Cinthe
add_character_to_model() routine. Every time anew tableis created, it needs to have its back
pointer created properly at the same time, which requires a certain amount of care in the design of
update procedures.



The Finishing Touches: Tables—1 and -2

The final touch to the context tree in ARITH-N.C is the addition of two special tables. The order(-1)
table has been discussed previoudly. Thisis atable with afixed probability for every symboal. If a
symbol is not found in any of the higher-order models, it will show up in the order(-1) model. Thisis
the table of last resort. Since it guarantees that it will always provide a code for every symbol in the
alphabet, we don’t update this table, which means it uses a fixed probability for every symbol.

ARITH-N.C also has a specia order(-2) table used for passing control information from the encoder
to the decoder. The encoder can pass a-1 to the decoder to indicate end-of-file. Since normal symbols
are always defined as unsigned values ranging from 0 to 255, the modeling code recognizes a
negative number as a special symbol that will generate escapes all the way back to the order(-2)
table. The modeling code can also determine that since -1 is a negative number, the symbol should
just be ignored when the update_model() codeis called.

Model Flushing

The creation of the order(-2) model allows us to pass a second control code from the encoder to the
expander—the flush code, which tells the decoder to flush statistics out of the model. The
compressor does this when the performance of the model startsto slip. Theratio is adjustable and is
set in thisimplementation to 10 percent. When compression falls belows thisratio, the model is
“flushed” by dividing all counts by two. This gives more weight to newer statistics, which should
improve the compression.

In reality the model should probably be flushed whenever the input symbol stream drastically
changes character. If the program is compressing an executable file, for example, the statistics
accumulated during the compression of the executable code are probably of no value when
compressing the program’ s data. Unfortunately, it isn’t easy to define an algorithm that detects a
“changein the nature” of the input.

I mplementation

Even with the Byzantine data structures used here, the compression and expansion programs built
around ARITH-N.C have prodigious memory requirements. WWhen running on DOS machines
limited to 640K, these programs have to be limited to order-1, or perhaps order-2 for text that has a
higher redundancy ratio.

To examine compression ratios for higher orders on binary files, there are a couple of choices for
these programs. First, they can be built using a DOS Extender, such as Rational Systems/16M. Or
they can be built on a machine that has either alarger address space or support for virtual memory,
such as Windows 95, VMS, or UNIX. The code distributed here was written in an attempt to be
portable across al these options.

Testing shows that with an extra megabyte of extended memory and a DOS Extender, virtually any
ASCII file can be compressed on a PC using order -3 compression. Some binary files require more
memory. A UNIX system had no problem with order -3 compression and turned in the best
performance overall in terms of speed.

Conclusions

Compression-ratio test show that statistical modeling can perform at |east as well as dictionary-based
methods. But these programs are at present somewhat impractical because of their high resource
requirements. ARITH-N isfairly slow, compressing data with speedsin the range of 1K per second



and needing huge amounts of memory to use higher-order modeling. As memory becomes cheaper
and processors become more powerful, however, schemes such as the ones shown here may become
practical. They could be applied today to circumstances in which either storage or transmission costs
are extremely high.

Order-0 adaptive modeling using arithmetic coding could be useful today in situations requiring
extremely low consumption of memory. The compression ratios might not be as good as those
gained with sophisticated models, but memory consumption is minimized.

Enhancement

The performance of these algorithms could be improved significantly beyond the implementation
discussed here. The first area for improvement would be in memory management. Right now, when
the programs run out of memory, they abort. A more sensible approach would be to have the
programs start with fixed amounts of memory available for statistics. When the statistics fill the
space, the program should then stop updating the tables and just use what it had. This would mean
implementing internal memory-management routines instead of using the C run-time library
routines.

Another potential improvement could come in the tree structure for the context tables. L ocating
tables through the use of hashing could be quite a bit faster and might require less memory. The
context tables themselves could also be improved. When atable has over 50 percent of the potential
symbols defined for it, an aternate data structure could be used with the counts stored in alinear
array. Thiswould allow for faster indexing and would reduce memory requirements.

Finally, it might be worth trying ways to adaptively modify the order of the model being used. When
compressing using order-3 statistics, early portions of the input text generate a lot of escapes while
the statistics tables fill up. It ought to be possible to start encoding using order-0 statistics while
keeping order-3 statistics. Asthe table fills up, the order used for encoding could be incremented
until it reaches the maximum.

ARITH-N Listing

KRR Sk Sk b S R S I R S R R R I O
/ Start of ARITH- N. C /

* This is the order-n arithnetic coding nodule used in the fina
part of chapter 6.

Compile with BITIOC. ERRHAND. C, and either MAINNC.C OR MAIN-E.C. This
program should be conpiled in large nodel. An even better alternative
is a DOS extender.

L I I S

/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude "errhand. h"
#i nclude "bitio. h"

/*

* The SYMBOL structure is what is used to defined a synbol in

* arithnmetic coding terns. A synbol is defined as a range between

* 0 and 1. Since we are using integer math, instead of using 0 and 1
* as our end points, we have an integer scale. The |ow count and

* high_count define where the synbol falls in the range.

*/



typedef struct {
unsi gned short int |ow count;
unsi gned short int high_count;
unsi gned short int scale;

} SYMBOL;

#def i ne MAXI MUM_SCALE 16383 /* Maxi num al | owed frequency count */
#defi ne ESCAPE 256 /* The escape synbol */
#defi ne DONE (-1) /* The output streamenpty synbol */
#define FLUSH (-2) /* The synbol to flush the nodel */
/*

* Function prototypes.

*/

#ifdef _ STDC__

void initialize_options( int argc, char **argv );

i nt check _conpression( FILE *input, BIT_FILE *output );
void initialize nodel( void );

voi d update_nodel ( int synbol );

int convert_int_to_synbol ( int synbol, SYMBCOL *s );

voi d get _synbol _scal e( SYMBOL *s );

int convert _synbol to int( int count, SYMBOL *s );

voi d add_character_to_nodel ( int ¢ );

void flush_nodel ( void );

void initialize_ arithnetic_decoder( BIT_FILE *stream) ;
voi d remove_synbol _fromstrean( BIT_FILE *stream SYMBOL *s );
void initialize arithnetic_encoder( void );

voi d encode_synbol ( BIT_FILE *stream SYMBOL *s );

void flush_ arithnetic_encoder( BIT_FILE *stream);

short int get_current_count( SYMBOL *s );

#el se

void initialize options();

i nt check_conpression();

void initialize_nodel ();

voi d updat e_nodel ();

int convert_int_to _synbol ();

voi d get _synbol scal e();

int convert_synbol _to_int();

voi d add_character_to_nodel ();

void flush_nodel ();

void initialize arithnetic_decoder();
voi d renmove_synbol _from strean();
void initialize arithnetic_encoder();
voi d encode_synbol ();

void flush_arithnetic_encoder();
short int get_current_count();

#endi f

char *Conpressi onNane = "Adaptive order n nodel with arithnetic codi ng"
char *Usage ="in-file out-file [ -o order J\n\n"
i nt max_order = 3

/*

* The main procedure is sinmlar to the main found in ARITHLE.C. It has
* to initialize the coder and the nodel. It then sits in a |oop reading
* input synbols and encoding them One difference is that every 256
synbol s a conpression check is perforned. |f the conpression ratio
falls below 10% a flush character is encoded. This flushes the encod
ing nodel, and will cause the decoder to flush its nodel when the

* X X
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file is being expanded. The second difference is that each synbol is
repeat edly encoded until a successful encoding occurs. Wen trying to
encode a character in a particular order, the nodel may have to
transmt an ESCAPE character. |If this is the case, the character has
to be retransmitted using a lower order. This process repeats until a
successful match is found of the synbol in a particular context.

Usual Iy this means goi ng down no further than the order -1 nodel
However, the FLUSH and DONE synbol s drop back to the order -2 nodel

/

voi d ConpressFile( input, output, argc, argv )
FI LE *i nput;
BI T_FI LE *out put;

nt argc;

char *argv[];

L T S T T R I e

SYMBOL s;
int c;
i nt escaped;
int flush = 0;
long int text_count = O;
initialize_options( argc, argv );
initialize _nodel ();
initialize-arithnetic_encoder();
for (5 ;) {

if ( ( ++text_count & OxOff ) == 0)

flush = check_conpression( input, output );

if ( !'flush)
c = getc( input );
el se
c = FLUSH
if ( c == EOF)
c = DONE;
do {

escaped = convert_int_to_synbol ( c, &s);
encode_synbol ( out put, &s );
} while ( escaped );
if ( ¢ == DONE)
br eak;
if (¢ ==FLUSH) {
flush_nodel ();
flush = 0;

updat e_nodel ( ¢ );
add_character_to_nodel ( ¢ );

flush_arithnetic_encoder( output );

*
The main [ oop for expansion is very simlar to the expansion
routine used in the sinpler conpression program AR THLE. C. The
routine first has to initialize the the arithmetic coder and the
nodel . The deconpression loop differs in a couple of respect.
First of all, it handles the special ESCAPE character, by
removing themfromthe input bit streambut just throw ng them
away ot herwi se. Secondly, it handles the special FLUSH character.
Once the main decoding | oop is done, the cleanup code is called,
and the programexits.

/

voi d ExpandFil e( input, output, argc, argv )
BI T_FILE *input;



FI LE *out put ;
int argc;
char *argv[];

SYMBQL s;
int c;
i nt count;

initialize_ options( argc, argv );
initialize nodel ();
initialize_ arithnetic_decoder( input );
for (7 ;) {
do {
get _synbol _scale( &s );
count = get_current_count( &s );
c = convert_synbol to_int( count, &s );
renove_synbol _fromstream( input, &s );
} while ( ¢ == ESCAPE );
if ( ¢ == DONE)
br eak;
if ( ¢ != FLUSH)
putc( (char) c, output );
el se
flush_nodel ();
update_nodel ( ¢ );
add_character _to _nodel ( ¢ );

}

/*

* This routine checks for command |ine options. At present, the only
* option being passed on the command line is the order.

*/

void initialize options( argc, argv )
int argc;
char *argv[];

while ( argc— > 0 ) {
if ( strcmp( *argv, "-0" ) == 0) {

argc—;
max_order = atoi( *++argv );
} else
printf( "Uknown argunment on commuand |line: %\n", *argv );
argc—;
ar gv++;
}
}
/*
* This routine is called once every 256 input synbols. Its job is to
* check to see if the conpression ratio falls below 10% If the
* output size is 90% of the input size, it means not much conpression
* |s taking place, so we probably ought to flush the statistics in the
* nodel to allow for nore current statistics to have greater inpact.
* This heuristic approach does seemto have sone effect.
*

~

i nt check _conpression( input, output )

FI LE *i nput;
BI T_FI LE *out put;
{

static long |ocal _input_marker = OL
static long | ocal output_marker = OL
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*

*/

| ong total i nput_bytes;
| ong total _output_bytes;
int local _ratio;

total i nput_bytes = ftell( input ) - local _input_marker;
total output bytes = ftell( output->file );
total output_bytes -= | ocal _output_marker;

if ( total _output_bytes == 0)
total output bytes = 1;
local _ratio = (int)( ( total output_bytes * 100 ) /
total i nput_bytes );
| ocal _i nput _marker = ftell ( input );
| ocal _out put _marker = ftell( output->file );
return( local _ratio > 90 );

The next few routines contain all of the code and data used to
perform nodeling for this program This nodeling unit keeps track
of all contexts fromO up to max_order, which defaults to 3. In
addition, there is a special context -1 which is a fixed nodel used
to encode previously unseen characters, and a context -2 which is
used to encode EOF and FLUSH nessages.

Each context is stored in a special CONTEXT structure, which is
docurent ed bel ow. Context tables are not created until the context
is seen, and they are never destroyed.

A context table contains a list of the counts for all symnbols

t hat have been seen in the defined context. For exanple, a
context of "Zor" night have only had 2 different characters
appear. 't' mght have appeared 10 tines, and '1" m ght have
appeared once. These two counts are stored in the context
table. The counts are stored in the STATS structure. Al of
the counts for a given context are stored in and array of STATS
As new characters are added to a particul ar contexts, the STATS
array will grow. Sonetinmes the STATS array will shrink

after flushing the nodel

t ypedef struct {

}

*
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*

*/

unsi gned char synbol ;
unsi gned char counts;
STATS;

Each context has to have links to higher order contexts. These
links are used to navigate through the context tables. For exanple,
to find the context table for "ABC', | start at the order O table,
then find the pointer to the "A" context table by | ooking through
the LINKS array. At that table, we find the "B" link and go to

that table. The process continues until the destination table is
found. The table pointed to by the LINKS array corresponds to the
synmbol found at the sanme offset in the STATS table. The reason that
LINKS is in a separate structure instead of being conmbined with
STATS is to save space. Al of the |leaf context nodes don't need
next pointers, since they are in the highest order context. |In the
| eaf nodes, the LINKS array is a NULL pointer

typedef struct {

struct context *next;



} LI NKS;

*

The CONTEXT structure holds all of the known information about

a particular context. The links and stats pointers are discussed
i medi ately above here. The nmax_index el ement gives the naximum

i ndex that can be applied to the stats or link array. Wen the
table is first created, and stats is set to NULL, nmax_index is set
to -1. As soon as single elenent is added to stats, nax_index is
incremented to O.

The | esser context pointer is a navigational aid. It points to
the context that is one |less than the current order. For exanple,
if the current context is "ABC', the |l esser_context pointer wll
point to "BC'. The reason for naintaining this pointer is that
this particular bit of table searching is done frequently, but

the pointer only needs to be built once, when the context is
created.

E I T S T T I R T R

*

*/
typedef struct context {
i nt max_i ndex;
LI NKS *1i nks;
STATS *stats;
struct context *|esser_context;

} CONTEXT

/*

* *contexts[] is an array of current contexts. If | want to find
* the order 0 context for the current state of the nmodel. | just

* | ook at contexts[0]. This array of context pointers is set up
* every tinme the nodel is updated.

*/

CONTEXT **cont exts;

ECF and FLUSH.

/-k

* current_order contains the current order of the nodel. It starts
* at max_order, and is decrenented every tinme an ESCAPE is sent. It
* will only go down to -1 for normal synmbols, but can go to -2 for

*

*

~

int current_order;

*

This table contains the cunulative totals for the current context.
Because this programis using exclusion, totals has to be cal cul ated
every tinme a context is used. The scoreboard array keeps track of
synmbol s that have appeared in higher order npodels, so that they
can be excluded from | ower order context total calcul ations.

/

* %k F F X T~

short int totals[ 258 ];
char scoreboard[ 256 ];

/*
* Local procedure declarations for nodeling routines.
*/
#ifdef __STDC _
voi d update_tabl e( CONTEXT *table, int synbol );
voi d rescal e_tabl e( CONTEXT *table );
void totalize table( CONTEXT *table );
CONTEXT *shift_to _next_context( CONTEXT *table, int c, int order );
CONTEXT *al | ocat e_next _order _tabl e( CONTEXT *t abl e,
i nt symbol
CONTEXT *| esser_context );
voi d recursive_flush( CONTEXT *table );



#el se

voi d update_table();

void rescal e_tabl e();

void totalize_ table();

CONTEXT *shift_to _next _context();
CONTEXT *al | ocat e_next _order _table();
void recursive_flush();

#endi f

*

This routine has to get everything set up properly so that

t he nodel can be maintained properly. The first step is to create
the *contexts[] array used later to find current context tables.
The *contexts[] array indices go from-2 up to max_order, so
the table needs to be fiddled with a little. This routine then
has to create the special order -2 and order -1 tables by hand,
since they aren't quite like other tables. Then the current
context is set to\0, \0, \0, ... and the appropriate tables
are built to support that context. The current order is set

to max_order, the scoreboard is cleared, and the systemis
ready to go.
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void initialize_nodel ()
Lt
int i;
CONTEXT *nul | _t abl e;
CONTEXT *control _table;

current _order = max_order
contexts = (CONTEXT **) calloc( sizeof( CONTEXT * ), 10 );
if ( contexts == NULL )

fatal _error( "Failure #1: allocating context table!" );
context += 2;
null _table = (CONTEXT *) calloc( sizeof( CONTEXT ), 1 );
if ( null _table == NULL )

fatal _error( "Failure #2: allocating null table!" );

nul | _tabl e->max_index = -1
contexts[ -1 ] = null_table;
for (i =0 ; i <= nmax_order ; 1++)
contexts[ i ] = allocate next_order_table( contexts[ i-11],

0,
contexts[ i-11 );
free( (char *) null _table->stats );
null _table->stats =
(STATS & calloc( sizeof( STATS ), 256 );
if ( null_table->stats == NULL )
fatal _error( "Failure #3: allocating null table!" );
nul | _tabl e->max_i ndex = 255;
for (1 i=0; i <256 ; i++ ) {
null _table->stats[ i ].synbol = (unsigned char) i
null _table->stats[ i ].counts =1

}

control table = (CONTEXT *) calloc( sizeof (CONTEXT), 1 );
if ( control _table == NULL )

fatal _error( "Failure #4: allocating null table!" );
control _table->stats =

(STATS *) calloc( sizeof( STATS ), 2 );

if ( control _table->stats == NULL )
fatal _error( "Failure #5.: allocating null table!" );
contexts[ -2 ] = control _table;

control _tabl e->max_i ndex = 1;
control table->stats[ 0 ].synbol = -FLUSH



control table->stats[ O ].counts = 1;
control _table->stats[ 1 ].synbol =— DONE
control table->stats[ 1 ].counts = 1;

for (i =0 ; i <256 ; i++)
scoreboard[ i ] = 0;

—

*

This is a utility routine used to create new tables when a new
context is created. It gets a pointer to the current context,
and gets the synbol that needs to be added to it. It also needs
a pointer to the |lesser context for the table that is to be
created. For exanple, if the current context was "ABC', and the
synbol 'D was read in, add _character_to _nodel would need to
create the new context "BCD'. This routine would get called
with a pointer to "BC', the synbol 'D, and a pointer to context
"CD'. This routine then creates a new table for "BCD', adds it
to the link table for "BC', and gives "BCD' a back pointer to
"CD'. Note that finding the lesser context is a difficult

task, and isn't done here. This routine mainly worries about
nodi fying the stats and links fields in the current context.
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CONTEXT *al | ocate_next _order table( table, synbol, |esser_context )
CONTEXT *t abl e;
i nt symbol ;
CONTEXT *| esser _cont ext;
{
CONTEXT *new_t abl e;
int i;
unsi gned int new size;

for (i =0 ; i <= table->max_index ; i++)
if (table->stats[ i ].synbol == (unsigned char) synbol )
br eak;
if (i > table->max_index ) {
t abl e- >max_i ndex++;
new_si ze = sizeof ( LINKS);
new si ze *= tabl e->max_i ndex + 1;
if ( table->links == NULL )
tabl e->links = (LINKS *) calloc( new size, 1);
el se
tabl e->links = (LINKS *)
realloc( (char *) table->links, new size );
new si ze = sizeof( STATS );
new si ze *= tabl e->max_i ndex + 1;
if ( table->stats == NULL )
tabl e->stats = (STATS *) calloc( new size, 1);
el se
tabl e->stats = (STATS *)
realloc( (char *) table->stats, new size );
if ( table->links == NULL )
fatal _error( "Failure #6: allocating new table" );
if ( table->stats == NULL )
fatal _error( "Failure #7: allocating new table" );
tabl e->stats[ i ].synmbol = (unsigned char) synbol
tabl e->stats[ i ].counts = O;
}
new_t abl e = (CONTEXT *) call oc(sizeof ( CONTEXT ), 1 );
if ( new_table == NULL )
fatal _error( "Failure #8: allocating new table" );
new_t abl e- >nax_i ndex = -1;
tabl e->links[ i ].next = new_table;
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new t abl e- >l esser _context = | esser_context;
return( new table );

*

This routine is called to increment the counts for the current
contexts. It is called after a character has been encoded or
decoded. Al it does is call update_table for each of the

current contexts, which does the work of increnenting the count.
This particul ar version of update _nodel () practices update exclusion
whi ch nmeans that if |ower order nopdels weren't used to encode

or decode the character, they don't get their counts updated.

This seens to inprove conpression perfornmance quite a bit.

To di sabl e update excl usion, the | oop would be changed to run

fromO to max_order, instead of current_order to max_order.

voi d updat e_nodel ( synbol )

{

—
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nt synbol

int i;
int |ocal _order;

if ( current_order <0 )
| ocal _order = 0;
el se
| ocal _order = current_order;
if ( synbol >=0) {
while ( local _order <= max_order ) {
if ( synbol >=0)
update_tabl e( contexts[ local _order ], synbol );
| ocal _order ++;
}
}

current _order =
for (i =0 ; i
scoreboard[ i

*

This routine is called to update the count for a particular synbol
in a particular table. The table is one of the current contexts,

and the synbol is the |ast synmbol encoded or decoded. |In principle
this is a fairly sinple routine, but a couple of conplications make
things a little nessier. First of all, the given table may not
al ready have the synbol defined in its statistics table. If it

doesn't, the stats table has to grow and have the new guy added

toit. Secondly, the synbols are kept in sorted order by count

in the table so that the table can be trinmmed during the flush
operation. Wen this synmbol is increnented, it m ght have to be noved
up to reflect its newrank. Finally, since the counters are only
bytes, if the count reaches 255, the table absolutely nust be rescal ed
to get the counts back down to a reasonable |evel

voi d update_table( table, synmbol )
CONTEXT *t abl e;

{

nt synbol

int i;

int index;

unsi gned char tenp;
CONTEXT *tenp_ptr;
unsi gned i nt new_ size;



/*

* First, find the synbol in the appropriate context table. The first

* synbol in the table is the nost active, so start there.
*/

i ndex = 0;
while ( index <= tabl e->max_i ndex &&
tabl e->stat s[i ndex].synbol != (unsigned char) synbol )
i ndex++;

if ( index > table->max_index ) {
t abl e- >max_i ndex++;
new size = sizeof ( LINKS );
new si ze *= tabl e->max_index + 1
if ( current_order < max_order ) {

if ( table->max_index == 0 )
tabl e->links - (LINKS *) calloc( new size, 1);
el se

tabl e->links = (LINKS *)
real loc( (char *) table->links, new size );
if ( table->links == NULL )
fatal _error( "Error #9: reallocating table space!” );
tabl e->li nks[ index ].next = NULL;
}
new_si ze = sizeof ( STATS );
new si ze *= tabl e->max_i ndex + 1;
i f (tabl e->max_i ndex==0)
tabl e->stats = (STATS *) calloc( new size, 1);
el se
tabl e->stats = (STATS *)
realloc( (char *) table->stats, new size );
if ( table->stats == NULL )
fatal _error( "Error #10: reallocating table space!" );
tabl e->stats[ index ].synbol = (unsigned char) synbol;
tabl e->stats[ index ].counts = 0;
}
/*
* Now | nove the synbol to the front of its list.
*/

i = index;
while (i >0 &&

tabl e->stats[ index ]. counts == table->stats[ i-1 ].counts )

I--;
if (i !'=index ) {
tenp = table->stats[ index ].synbol
tabl e->stats[ index ].synbol = table->stats[ i ].synbol;
tabl e->stats[ i ].synmbol = tenp;
if ( table->links !'= NULL ) {
tenmp_ptr = table->links[ index ].next;
tabl e->links[ index ].next = table->links[ i ].next;
table->links[ i ].next = tenp_ptr;
}
i ndex = 1;
}
/*
* The switch has been performed, now | can update the counts
*/
tabl e->stats[ index ].counts++;
if ( table->stats[ index ].counts == 255 )
rescale table( table );
}

/*
* This routine is called when a given synbol needs to be encoded.
* It is the job of this routine to find the synbol in the context



E o T S . T R R

/

tabl e associated with the current table, and return the | ow and
hi gh counts associated with that synmbol, as well as the scale.
Finding the table is sinple. Unfortunately, once | find the table,
| have to build the table of cumul ative counts, which is
expensive, and is done el sewhere. |If the synbol is found in the
table, the appropriate counts are returned. If the synbol is
not found, the ESCAPE synbol probabilities are returned, and

the current order is reduced. Note also the kludge to support
the order -2 character set, which consists of negative nunbers

i nstead of unsigned chars. This insures that no natch will ever
be found for the EOF or FLUSH synbols in any "nornmal" table.

int convert_int_to symbol( ¢, s )
int c;
SYMBOL *s;

{

*
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int i;
CONTEXT *t abl e;

table = contexts[ current_order ];
totalize table( table );
s->scale = totals[ 0 ];
if ( current_order == -2 )
cC = -¢;
for (i =0 ; i <= table->max_index ; i++)
if (¢ ==(int) table->stats[ i ].synbol ) {
if ( table->stats[ i ].counts == 0 )
br eak;
s->l ow count = totals[ i+2 ];
s->high_count = totals[ i+1 ];
return( 0 );
}
}
s->l ow count = totals[ 1 ];
s->hi gh-count = totals[ 0 ];
current _order—;
return( 1 );

This routine is called when decoding an arithnmetic nunber. In
order to decode the present synbol, the current scale in the
nodel rmust be determined. This requires |ooking up the current
table, then building the totals table. Once that is done, the
cunul ative total table has the synbol scale at el ement O.

voi d get _synbol _scal e( s)
SYMBOL *s;

{

*
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CONTEXT *tabl e;

table = contexts[ current_order ];
totalize table( table );
s->scale = totals[ 0 ];

This routine is called during decoding. It is given a count that
cane out of the arithmetic decoder, and has to find the synbol that
mat ches the count. The cunmul ative totals are already stored in the
totals[] table, fromthe call to get_synbol-scale, so this routine
just has to look through that table. Once the nmatch is found,

the appropriate character is returned to the caller. Two possible
conplications. First, the character m ght be the ESCAPE character,
in which case the current_order has to be decrenmented. The ot her



* conplication. First, the character m ght be the ESCAPE character
* in which case the current_order has to be decrenmented. The other
* conplication is that the order might be -2, in which case we return
* the negative of the synbol so it isn't confused with a norna
* synbol .
*/
int convert_synbol to_int( count, s )
i nt count;
SYMBOL *s;
L
int c;
CONTEXT *t abl e;

table - contexts[ current_order ];
for ( ¢ =0; count <totals[ c ] ; c++)

s->high_count = totals[ ¢ - 1 ];
s->l ow count = totals[ c ]:
if (c==1){

current _order—;

return( ESCAPE );

if ( current_order < -1)

return( (int) -table->stats][ c-2 ].synbol );
el se

return( table->stats[ c¢c-2 ].synbol );

—

*

After the nodel has been updated for a new character, this routine
is called to "shift" into the new context. For exanple, if the

| ast context was "ABC', and the synmbol 'D had just been processed,
this routine would want to update the context pointers to that
context[1]=="D", contexts[2]=="CD' and contexts[3]=="BCD'. The
potential problemis that sone of these tables may not exist.

The way this is handled is by the shift _to next_context routine.

It is passed a pointer to the "ABC' context, along with the synbo
"D, and its job is to return a pointer to "BCD'. Once we have
"BCD', we can follow the | esser context pointers in order to get
the pointers to "CD' and "C'. The hard work was done in
shift _to context().
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voi d add_character _to _nodel ( ¢ )

int c;
{
int i;
if ( max_order <0 || ¢ <0)
return;
contexts[ max_order ]| =
shift_to_next _context( contexts[ max_order ], c, max_order );
for (i = max_order-1; i >0 ; i—)
contexts[ i ] = contexts[ i+1 ]->lesser_context;
}
/*
* This routine is called when adding a new character to the nodel. From
* the previous exanple, if the current context was "ABC', and the new
* synbol was 'D, this routine would get called with a pointer to
* context table "ABC', and synbol 'D, with order nax_order. What this
* routine needs to do then is to find the context table "BCD'. This
* should be an easy job, and it is if the table already exists. Al
*

we have to in that case is follow the back pointer from"ABC' to "BC'.



* W then search the link table of "BC' until we find the link to "D".
* That link points to "BCD', and that value is then returned to the

* caller. The problemcrops up when "BC' doesn't have a pointer to

* "BCD'. This generally neans that the "BCD' context has not appeared
* yet. \When this happens, it nmeans a new table has to be created and
* added to the "BC' table. That can be done with a single call to

* the allocate_new table routine. The only problemis that the

* allocate new table routine wants to know what the | esser context for
* the newtable is going to be. In other words, when | create "BCD',
* | need to know where "CD' is located. In order to find "CD', |

* have to recursively call shift_to _next_context, passing it a pointer
* to context "C' and the synbol 'D . It then returns a pointer to

* "CD', which | use to create the "BCD' table. The recursion is

* guaranteed to end if it ever gets to order -1, because the null table
* |s guaranteed to have a link for every synbol to the order 0 table.
* This is the nost conplicated part of the nodeling program but it is
* necessary for performance reasons.

*/

CONTEXT *shift_to_next_context( table, c, order )

CONTEXT *t abl e;

int c;
i nt order;
{
int i;
CONTEXT *new_| esser
/*
* First, try to find the new context by backing up to the |esser
* context and searching its link table. [If | find the link, we take
* a quick and easy exit, returning the link. Note that there is a
* special kludge for context order 0. W know for a fact that
* the | esser context pointer at order O points to the null table,
* order -1, and we know that the -1 table only has a single link
* pointer, which points back to the order 0 table.
*

~

tabl e = tabl e->l esser_cont ext;

if ( order ==
return( table->links[ O ].next );
for (i =0 ; i <= table->max_index ; i++)
if ( table->stats[ i ].synbol == (unsigned char) c )
if ( table->links[ i ].next != NULL)
return( table->links[ i ].next );
el se
br eak;
If | get here, it neans the new context did not exist. | have to

create the new context, add a link to it here, and add the backwards
link to *his* previous context. Creating the table and adding it to
this table is pretty easy, but adding the back pointer isn't. Since
creating the new back pointer isn't easy, | duck nmy responsibility
and recurse to nmyself in order to pick it up

/
new | esser = shift_to _next_context( table, ¢, order-1);

/*
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* Now that | have the back pointer for this table, | can nake a cal
*toautility to allocate the new table
*/

table = allocate_next_order_table( table, c, new_|esser );
return( table );

}

/*
* Rescaling the table needs to be done for one of three reasons.
* First, if the maxi mum count for the table has exceeded 16383, it



nmeans that arithmetic coding using 16 and 32 bit registers m ght
no |l onger work. Secondly, if an individual synbol count has
reached 255, it will no longer fit in a byte. Third, if the
current nodel isn't conpressing well, the conpressor program nay
want to rescale all tables in order to give nore weight to newer
statistics. Al this routine does is divide each count by 2.

If any counts drop to O, the counters can be renoved fromthe
stats table, but only if this is a leaf context. O herw se, we
mght cut a link to a higher order table.

/

void rescale table( table )

CONTEXT *t abl e;

L B I T T B
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int i;
if ( table->max_index == -1 )
return;
for (i =0 ; i <= table->max_index ; i ++ )
tabl e->stats[ i ].counts /= 2;
if ( table->stats[ table]>nmax_index ].counts == 0 &&
tabl e->links == NULL ) {
while ( table->stats[ table->max_index ].counts == 0 &&
tabl e->max_i ndex >= 0 )
t abl e- >max_i ndex—;
if ( table->max_index == -1 ) {
free( (char *) table->stats );
tabl e->stats = NULL;
} else {
tabl e->stats = (STATS *)
realloc( (char *) table->stats,
sizeof ( STATS ) * ( table->max_index + 1) );
if ( table->stats == NULL )
fatal _error( "Error #11: reallocating stats space!" );
}
}
}
/*
* This routine has the job of creating a cunmulative totals table for
* a given context. The cumulative Iow and high for synbol ¢ are going to
* be stored in totals[c+2] and totals[c+1]. Locations O and 1 are
* reserved for the special ESCAPE synbol. The ESCAPE synbol
* count is calculated dynam cally, and changes based on what the
* current context looks like. Note also that this routine ignores
* any counts for synbols that have al ready shown up in the scoreboard,
* and it adds all new synbols found here to the scoreboard. This
* allows us to exclude counts of synmbols that have already appeared in
* higher order contexts, inproving conpression quite a bit.
*

~

void totalize table( table )
CONTEXT *tabl e;

{
int i;
unsi gned char nex;
for (5 ) {
max = 0;
i = tabl e->max_i ndex + 2;
totds[ i ] =0;
for ( ;i >1; i-){
totals[ i-1] = totals[ i ];
if ( tabl
(

bl e->stats[ i-2 ].counts )
(c

i f urrent _order == -2 ) |



scoreboard[ table->stats[ i-2 ].synbol ] == 0)
totals[ i-1] += table->stats[ i-2].counts;
if ( table->stats[ i-2 ].counts > max )
max = table->stats[ i-2 ].counts;

}
/*

* Here is where the escape cal cul ati on needs to take place.
*/

if ( max == 0)
] =

totals[ O 1;
el se {
totals[ O] = (short int) ( 256 - tabl e->max_index );
totals[ 0] *= tabl e->nmax_index;
totals[ 0] /= 256
totals[ 0] /= max;
total s[ O ]++;
0

total s[ ] +=totals[ 1];

}
if (totals[ 0] < MAXI MUM SCALE )

br eak;
rescale_table( table );
}
for (i =0 ; i < table->max_index ; i++ )
if (table->stats[i].counts != 0)
scoreboard][ table->stats[ i ].synbol ] = 1;
}
/-k
* This routine is called when the entire nodel is to be flushed.
* This is done in an attenpt to inprove the conpression ratio by
* giving greater weight to upcoming statistics. This routine
* starts at the given table, and recursively calls itself to
* rescale every table inits list of links. The table itself
* is then rescal ed.
*

~

void recursive_flush( table )
CONTEXT *t abl e;

0t

int i;

if ( table->links !'= NULL )

for (i =0 ; i <= table->max_index ; i++ )
if ( table->links[ i ].next != NULL )
recursive flush( table->links[ i ].next );

rescale_table( table );
}
/*

* This routine is called to flush the whole table, which it does
* by calling the recursive flush routine starting at the order O
* table.

*/

voi d flush_nodel ()

putc( 'F, stdout );
recursive_flush( contexts[ 0] );

}

/*

* Bverything fromhere down define the arithnetic coder section
* of the program

*/



*/

* These four variables define the current state of the arithnetic
* coder/decoder. They are assunmed to be 16 bits long. Note that
* by declaring themas short ints, they will actually be 16 bits
* on nost 80X86 and 680X0 machi nes, as well as VAXen

*/

static unsigned short int code;/* The present input code val ue */
static unsigned short int low, /* Start of the current code range */
static unsigned short int high;/* End of the current code range */
| ong underfl ow bits; /* Nunmber of underflow bits pending

*/

/*

* This routine nmust be called to initialize the encodi ng process.

* The high register is initialized to all 1s, and it is assuned that
* it has an infinite string of 1s to be shifted into the lower bit

* positions when needed.

*/
void initialize_ arithnetic_encoder()
{
low = 0;
high = Oxffff;
underflow bits = 0;
}
/*
* At the end of the encoding process, there are still significant

* bits left in the high and | ow registers. W output two bits,
* plus as many underflow bits as are necessary.

*/

void flush_arithmetic_encoder( stream)

BI T_FILE *stream

{

QutputBit( stream |ow & 0x4000 );

under f | ow_bi t s++;

while ( underflow bits-- > 0)

QutputBit( stream ~low & 0X4000 );

Qut putBits( stream OL, 16 );
}
/*
* This routine is called to encode a synbol. The synbol is passed
* in the SYMBOL structure as a low count, a high count, and a range,
* instead of the nore conventional probability ranges. The encoding
* process takes two steps. First, the values of high and | ow are
* updated to take into account the range restriction created by the
* new synbol. Then, as nany bits as possible are shifted out to
*

the output stream Finally, high and | ow are stable again and
* the routine returns.
*/

voi d encode_synbol ( stream s )
BI T_FI LE *stream

SYMBOL *s;

{

| ong range;

/*
* These three lines rescale high and | ow for the new synbol .
*/

range = (long) ( high-low) + 1;
high = low + (unsi gned short int)



(( range * s->high count ) / s->scale -1 );
low = low + (unsigned short int)
(( range * s->low count ) / s->scale );

/*

* This loop turns out new bits until high and | ow are far enough
* apart to have stabilized.

*/

* |f this test passes, it neans that the MSDigits match, and can
* be sent to the output stream

*/
if ( ( high & 0x8000 ) == ( low & 0x8000 ) ) {
QutputBit( stream high & 0x8000 );
while ( underflow bits > 0 ) {
Qut putBit( stream ~high & 0x8000 );
underfl ow bits--;
}
}
/*

* |f this test passes, the nunbers are in danger of underfl ow, because
* the MSDigits don't match, and the 2nd digits are just one apart.
*/

else if ( ( low & 0x4000 ) && !( high & 0x4000 )) {
underflow bits += 1

| ow &= Ox3fff;
hi gh | = 0x4000
} else
return ;
| ow <<= 1;
hi gh <<= 1;
high |=1;

*

When decoding, this routine is called to figure out which synbol
is presently waiting to be decoded. This routine expects to get
the current nodel scale in the s->scale paraneter, and it returns
a count that corresponds to the present floating point code;

L R I e ol
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code = count / s->scale

short int get _current_count( s )
SYMBOL *s;
{

| ong range;

short int count;

range = (long) ( high - low) + 1;
count = (short int)
((((long) ( code - low) + 1) * s->scale-1) / range );

return( count );
}
/*
* This routine is called to initialize the state of the arithnetic
* decoder. This involves initializing the high and | ow registers
* to their conventional starting values, plus reading the first



* 16 bits fromthe input streaminto the code val ue.
*/

void initialize_ arithnetic_decoder( stream)

BI T_FI LE *stream

{
int i;
code = 0;
for (i =0 ; i <16 ; i++ ) {
code <<= 1;
code += I nputBit( stream);
}
low = 0;
high = Oxffff;
}
/*

* Just figuring out what the present synmbol is doesn't renove
* it fromthe input bit stream After the character has been
* decoded, this routine has to be called to renmove it fromthe
* input stream

*/

voi d remove_synbol _from stream stream s )

BI T_FI LE *stream

SYMBOL *s;

{

| ong range;
/*
* First, the range is expanded to account for the synbol renoval.
*/

range = (long)( high - lTow) + 1,

high = low + (unsi gned short int)
(( range * s->high _count ) / s->scale -1 );
low = Il ow + (unsigned short int)

(( range * s->low count ) / s->scale );

/*
* Next, any possible bits are shipped out.
*/
for (7 ;) {
/*

* |f the MSDigits match, the bits will be shifted out.
*/

if ( ( high & 0x8000 ) == | ow & 0x8000 ) ) {

}
/*
* Else, if underflowis threatening, shift out the 2nd MsDigit.
*/

else if ((low & 0x4000) == 0x4000 && (high & 0x4000) == 0 ) {
code "= 0x4000;

| ow &= Ox3fff;
hi gh | = 0x4000;
} el se

/*
* Ot herwi se, nothing can be shifted out, so | return.
*/



return;

| ow <<= 1;
hi gh <<= 1,
high | = 1;

code <<= 1;
code += I nputBit( stream);

}

EE R I R I R R I I R I R R R I R I R I R R I O R
/ End of ARITH N. C /



Chapter 7
Dictionary-Based Compression

So far, the compression methods we have looked at used a statistical model to encode single
symbols. They achieve compression by encoding symbolsinto bit strings that use fewer bits than the
original symbols. The quality of the compression goes up or down depending on how good the
programis at developing amodel. The model not only has to accurately predict the probabilities of
symbols, it aso has to predict probabilities that deviate from the mean. More deviation achieves
better compression.

But dictionary-based compression algorithms use a completely different method to compress data.
Thisfamily of algorithms does not encode single symbols as variable-length bit strings; it encodes
variable-length strings of symbols as single tokens. The tokens form an index to a phrase dictionary.
If the tokens are smaller than the phrases they replace, compression occurs.

In many respects, dictionary-based compression is easier for people to understand. It represents a
strategy that programmers are familiar with—using indexes into databases to retrieve large amounts
of storage. In everyday life, we use phone numbers, Dewey Decimal numbers, and postal codes to
encode larger strings of text. Thisis essentially what a dictionary-based encoder does.

An Example

A good example of how dictionary based compression works can be created by using a standard
dictionary. For this example, | will use the Random House Dictionary of the English Language,
Second Edition, Unabridged. Using this dictionary’ s system as a key for encoding messages, | can
achieve areasonable amount of compression. Using my proprietary scheme, the first eight words of
the first sentence in this paragraph would read:

1/1 822/3 674/ 4 1343/ 60 928/ 75 550/ 32 173/ 46 421/2

This dictionary-based encoding scheme consists of a simple lookup table. The first number givesthe
page of the dictionary, and the second number tells the number of the word on that page. The
dictionary has 2,200 pages with less than 256 entries on each page. Thus, 1/1 encodes the first word
on the first page, whichis“A.” 822/3 encodes the third word on the 822nd page, which is“good.”

To see how much space this scheme would save, look at the number of bits actually used to encode a
word. Since aword can land on any of 2,200 pages, we need 12 bits to encode the page number.
Each page has fewer than 256 entries, so the number of the entry will take just 8 bits to encode. This
gives atotal of 20 bitsto encode any word in the dictionary, or 2.5 bytes per word.

The ASCII representation of the eight words in our encoded message takes 43 bytes. The encoded
message takes 2.5 x 8 bytes, or 20 bytes. Thus, we compressed our text to 50 percent of its original
Size using dictionary encoding.

In theory, a different encoding method can probably improve on this. The dictionary has about
315,000 words. Shannon’s formula for information content tells us that any one of the words in the
dictionary can be encoded using just alittle over eighteen bits. We used the page number/entry
number scheme to make it easier to look up the encoded word, a general theme in dictionary-based
compression.

Static vs. Adaptive

In general, dictionary-based compression replaces phrases with tokens. If the number of bitsin the



token is less than the number of bits in the phrase, compression will occur. But this definition of
dictionary-based compression still leaves enormous room for variation. Consider, for example, the
methods for building and maintaining a dictionary.

In some cases, it is advantageous to use a predefined dictionary to encode text. If the text to be
encoded is a database containing all motor-vehicle registrations for Texas, we could develop a
dictionary with only afew thousand entries that concentrated on words like “ General Motors,”
“Smith,” “Main,” and “1977.” Once this dictionary were compiled, it could be kept on-line and used
by both the encoder and decoder as needed.

A dictionary like thisis called a static dictionary. It is built up before compression occurs, and it does
not change while the datais being compressed. It has advantages and disadvantages. One of the
biggest advantages is that a static dictionary can be “tuned” to fit the data it is compressing. With the
motor-vehicle registration database, for example, Huffman encoding could allocate fewer bitsto
strings such as “Ford” and more bitsto “Yugo.” Of course, we could use different bit strings
depending on which field is being compressed.

Adaptive compression schemes can't tune their dictionaries in advance, which in principle would
seem amajor disadvantage. But static dictionary schemes have to deal with the problem of how to
pass the dictionary from the encoder to the decoder. Chapters 3 and 5 showed that passing statistics
along with compressed data can significantly harm compression, particularly on small files.

But this doesn’'t have to be a disadvantage in every case. In many situations, a static dictionary could
remain the same over long periods of time and be kept on line, available to both the compressor and
the decompressor. The motor-vehicle database dictionary could be calculated once, for example,
then kept on hand. In the case of an exceptionally large amount of data, the compression ratio may
not be significantly degraded if the dictionary is passed with the compressed text.

Adaptive Methods

At present, dictionary-based compression schemes using static dictionaries are mostly ad hoc,
implementation dependent, and not general purpose. Most well-known dictionary algorithms are
adaptive. Instead of having a completely defined dictionary when compression begins, adaptive
schemes start out either with no dictionary or with a default baseline dictionary. As compression
proceeds, the algorithms add new phrases to be used later as encoded tokens.

The basic principle behind adaptive dictionary programsisrelatively easy to follow. Imagine a
section of code that compressed text using an algorithm that looked something like this:

for (5 ;) {
word = read_word( input _file );
di ctionary_index = | ook up( word, dictionary );
if ( dictionary_index < 0 ) {
out put ( word, output file );
add_to_dictionary( word, dictionary );
} else
output( dictionary_index, output file );
}

If the dictionary index used here could be encoded as an integer index into atable, we would achieve
respectable compression with what is actually avery ssmple algorithm. This code is a specialized one
set up to apply to written documents, but the principle behind it is similar to that behind many more
sophisticated algorithms. It illustrates the basic components of an adaptive dictionary compression
algorithm;



1. To parsetheinput text stream into fragments tested against the dictionary.

2. Totest theinput fragments against the dictionary; it may or may not be desirable to report
on partial matches.

3. To add new phrases to the dictionary.

4. To encode dictionary indices and plain text so that they are distinguishable.

The corresponding decompression program has a slightly different set of requirements. It no longer
has to parse the input text stream into fragments, and it doesn’t have to test fragments against the
dictionary. Instead, it has the following requirements:. (1) to decode the input stream into either
dictionary indices or plain text; (2) to add new phrases to the dictionary; (3) to convert dictionary
indicesinto phrases; and (4) to output phrases as plain text. The ability to accomplish these tasks
with relatively low costs in system resources made dictionary-based programs popular over the last
ten years.

A Representative Example

Compressing data when sending it to magnetic tape has several nice side effects. First, it reduces the
use of magnetic tape. Though magnetic tape is not particulary expensive, some applications make
prodigous use of it. Second, the effective transfer rate to and from the tape is increased.
Improvements in transfer speed through hardware are generally expensive, but compression through
softwareisin asense “free.” Finally, in some cases, the overall CPU time involved may actually be
reduced. If the CPU cost of writing a byte to magnetic tape is sufficiently high, writing half as many
compressed bytes may save enough cyclesto pay for the compression.

While the benefits of compressing data before sending it to magnetic tape have been clear, only
sporadic methods were used until the late 1980s. In 1989, however, Stac Electronics successfully
implemented a dictionary-based compression algorithm on a chip. This algorithm was quickly
embraced as an industry standard and is now widely used by tape-drive manufacturers worldwide.

This compression method is generally referred to by the standard which definesit: QIC-122. (QIC
refers to the Quarter Inch Cartridge industry group, a trade association of tape-drive manufacturers.)
Asyou may know, Stac Electronics expanded the scope of this algorithm beyond tape drives to the
consumer hard disk utility market in the form of its successful Stacker program (discused later in this
chapter).

QIC-122 provides a good example of how a sliding-window, dictionary-based compression
algorithm actually works. It is based on the LZ77 sliding-window concept. As symbols are read in by
the encoder, they are added to the end of a 2K window that forms the phrase dictionary. To encode a
symbol, the encoder checksto seeif it is part of a phrase already inthedictionary. If it is, it createsa
token that defines the location of the phrase and its length. If it is not, the symbol is passed through
unencoded.

The output of a QIC-122 encoder consists of a stream of data, which, in turn, consists of tokens and
symbols freely intermixed. Each token or symbol is prefixed by a single bit flag that indicates
whether the following datais a dictionary reference or a plain symbol. The definitions for these two
sequences are: (1) plaintext: <1><eight-bit-symbol>; (2) dictionary reference: <O><window-
offset><phrase-length>.

The QIC-122 encoder complicates things by further encoding the window-offset and phrase-length
codes. Window offsets of less than 128 bytes are encoded in seven bits. Offsets between 128 bytes
and 2,047 bytes are encoded in eleven bits. The phrase length uses a variable-bit coding scheme
which favors short phrases over long. This explanation will gloss over these as “implementation
details.” The glossed-over version of the C code for this algorithm is shown here.



while ( 'out_of synbols ) {
length = find_| ongest _mat ch( &of fset);
if ( length > 1) {
output_bit( 0);
length = find | ongest _match( &offset );
out put_bits( offset );
output_bits( length );
shift_input_buffer( length );
} else {
output _bit( 1);
out put_byte( buffer[ 0] );
shift_input_buffer( 1 );
}
}

Following is an example of what this sliding window looks like when used to encode some C code,
in this case the phrase “output_byte.” The previously encoded text, which ends with the phrase
“output_bit( 1);\r,” isat the end of the window. The find_longest_match routine will return avalue
of 8, sincethefirst eight characters of “output_byte” match the first eight characters of “output_bit.”
The encoder will then output a0 bit to indicate that a dictionary referenceis following. Next it will
output a 15 to indicate that the start of the phrase is fifteen characters back into the window (‘\r’ isa
single symbol). Finaly, it will output an 8 to indicate that there are eight matching symbols from the
phrase.

Figure 7.1 A dliding window used to encode some C code.

Using QIC-122 encoding, this will take exactly sixteen bits to encode, which means it encodes 8
bytes of datawith only 2 bytes. Thisis clearly arespectable compression ratio, typical of how QIC-
122 works under the best circumstances as shown here:

Figure 7.2 Encoding 8 bytes of data using only 2 bytes.

After the dictionary reference is output, the input stream over eight characters, with the last symbol
encoded becoming the last symbol in the window. The next three symbols will not match anything in
the window, so they will have to be individually encoded.

This example of QIC-122 gives a brief look at how a dictionary-based compression scheme might
work. Chapter 8 will take a more extensive look at LZ77 and its derivatives.

| sraeli Roots

Dig beneath the surface of virtually any dictionary-based compression program, and you will find
the work of Jacob Ziv and Abraham Lempel. For all practical purposes, these two Isragli researchers
gave birth to this branch of information theory in the late 1970s.

Research in data compression up to 1977 included work on entropy, character and word frequencies,
and various other facets of statistical modeling. There were minor forays into other esoteric areas of
interest, such as finite state machines and linguistic models, but research went mainly into new and
improved methodologies for driving Huffman coders.



All this changed in 1977 with the publication of Jacob Ziv’'s and Abraham Lempel’s“A Universal
Algorithm for Sequential Data Compression” in IEEE Transactions on Information Theory. This
paper, with its 1978 sequel “Compression of Individual Sequences viaVariable-Rate Coding,”
triggered aflood of dictionary-based compression research, algorithms, and programs.

The two compression techniques developed in these papers are called LZ77 and LZ78 (the
transposition of the author’ sinitials is apparently an innocent historical accident, but one that is here
to stay). LZ77 isa*"dliding window” technique in which the dictionary consists of a set of fixed-
length phrases found in a“window” into the previously processed text. The size of the window is
generally somewhere between 2K and 16K bytes, with the maximum phrase length ranging from
perhaps 16 to 64 bytes. LZ78 takes a completely different approach to building adictionary. Instead
of using fixed-length phrases from awindow into the text, LZ78 builds phrases up one symbol at a
time, adding a new symbol to an existing phrase when a match occurs.

It iseasy to think that these two compression methods are closely related, particularly since people
will casually speak of “Lempel Ziv Compression” asif it were just one thing. These are, however,
two very different techniques. They have different implementation problems and solutions, different
strengths and weaknesses. Since they have had such a large impact on the world of data
compression, the next two chapters of this book will take a detailed look at an LZ77 and an LZ78
implementation.

History

While the publication of the two papersin 1977 and 1978 may have had an immediate impact in the
world of information theory, it was some time before programmers noticed the effects. In fact, it
took the publication of another paper in 1984 to really get things moving.

The June 1984 issue of IEEE Computer had an article entitled “ A Technique for High-Performance
Data Compression” by Terry Welch. Welch described work performed at Sperry Research Center
(now part of Unisys). His paper was a practical description of thisimplementation of the LZ78
algorithm, which he called LZW. It discussed the LZW compression algorithm in reference to its
possible usein disk and tape-drive controllers, but it was clear that the same algorithm could easily
be built into a general-purpose compression program.

Almost immediately after the article appeared, work began on the Unix compress program. compress
isa C program developed initially on the DEC’'s VAX. Ports to other machines, including the IBM
PC, followed shortly. The public release of compress became available almost exactly ayear after
the publication of the IEEE article.

Compress was a very influential program for a number of reasons. The program was well written. It
performed well, and it had a reasonable level of documentation. Many UNIX installations began
actively using compress soon after its release. Manual pages distributed with UNIX systems are now
routinely shipped in compressed form, and they are not decompressed until accessed for the first
time by the man program. The code was in the public domain from itsinitial release, which made for
wide distribution and study. Perhaps most importantly, the authors went out of their way to ensure
that the code was portable so that it could be used on awide variety of systems with no
modifications.

While compress was becoming a standard in the UNIX community, desktop software was still
struggling along with arather inefficient order-0 Huffman coding program known as SQ. But in
1985, desktop power was increasing; more and more people were using modems to communicate;
and hard-disk space was still relatively expensive. Conditions were ripe for an improvement in
compression, and dictionary-based coding stepped in.



ARC: The Father of MS-DOS Dictionary Compression

In 1985, System Enhancement A ssociates released a general -purpose compression and catal oging
program called ARC. ARC quickly took the MS-DOS desktop world by storm, becoming a de facto
standard for PC usersin a matter of months. Several factors helped ARC gain this position. First, it
ordinarily used a close derivative of compress to compress files. At the time, this provided state-of -
the-art compression and was essentially without peer. Second, ARC provided a cataloging or
archiving function as an integral part of the program. UNIX users were accustomed to using the “tar”
program to combine groups of filesinto a single archive, but PC users did not have a similar function
as part of their operating system. ARC added that capability, vital for transferring groups of files by
modem or even floppy diskette. Finally, ARC was distributed as shareware, which helped saturate
the user base in a short time.

With compress reigning supreme in the UNIX world and ARC ruling the MS-DOS world, it seemed
LZ78 would be the dominant compression method for years. Imitators such as PK Ware's PKARC
only strengthened LZ78' s hold by providing performance improvementsin both speed and
compression ratios. But oddly enough, in recent years the field has taken a step back, if you consider
moving from LZ78 to LZ77 a step backwards.

ARC lost its dominance of the desktop world to new contenders, most notably PKZIP, by PKWare;
but also LHarc, by Haruyasu Y oshizaki; and ARJ, by Robert Jung. These programs are built on an
LZ77 agorithm which uses adictionary based on a sliding window that moves through the text.
LZ77 was not a practical agorithm to implement until refinements were made in the mid 1980s.
Now LZ77 has alegitimate position alongside LZ78 as co-ruler of the general-purpose compression
world.

Most recently, a patent dispute between Unisys, which owns the patent for LZ78-derived algorithms
(Terry Welch’swork), versus the rest of the computer industry, has resulted in a definite shift over to
LZ77-derived algorithms. For example, the recently designed PNG format (discussed later in this
book) is being promulgated as a replacement to Compuserve’ s GIF format, in order to sidestep
Unisys patent claims.

Dictionary Compression: Wherelt Shows Up

Dictionary-based compression has found more and more homesin the last ten years as both
hardware and software improvements make it practical. We can subdivide applications for
dictionary-based compression into two areas. general-purpose programs and hardware-specific code.

As shown, dictionary-based coding took over desktop general-purpose compression. In the MS-DOS
world, programs such as PKZIP, ARC, ARJ, and LHarc all use dictionary-based agorithms to
compress and archive files in a general-purpose manner. Most of these programs have portsto at
least one or two other platforms, UNIX being the most popular.

Dictionary-based compression is also used in some special-purpose desktop programs. Most backup
programs, for example, use some form of compression to make their operation faster and more
efficient. PC Backup, developed by Central Point Software developed (a company later acquired by
symantic), uses a dictionary-based algorithm from Stac Electronics, the company that produces the
Stacker disk compression utility and which initiated the QIC-122 compression standard.

Compuserve Information Service developed a dictionary-based compression scheme used to encode
bit-mapped graphical images. The GIF format uses an LZW variant to compress repeated sequences
in screen images. Compression is clearly needed when using these type of images. Computer images
take up lots of storage space. As video resolutionsimprove, the size of the saved images grows



dramatically. Compuserve users also typically use modems to upload or download these images.
When running on older 2400 baud modems, compressing images becomes even more crucia. Even
at 14400 bps and faster speeds, the exploding use of the World-Wide Web on the Internet means
increased demand for speedy transfer of graphics, and increased reliance on the GIF format for non-
photographic images. (Image-oriented formats will be discussed in later chapters.)

Compressing files before transmitting them saves telecommuni cations bandwidth. But this requires
compatible compression software on both ends. A more convenient method of conserving
bandwidth’s to build data compression directly into the modem. Microcom Corp. originally
developed thisidea, which used Huffman coding to compress data before it was transmitted by its
modems. Microcom’ s compression algorithm, MNP-5, uses a dynamic Huffman coding scheme that
performs well as a general-purpose compressor on most data streams.

In recent years, the international telecommunications industry has widely ratified and adopted a new
compression algorithm used by modem manufacturers: V.42bis, a dictionary-based compression
scheme which offers better compression ratios than MNP-5. With the adoption of an international
standard, modem builders can now implement data compression in their modems and have
confidence that they can communicate with modems from other manufacturers.

As mentioned previously, tape drive manufacturers have adopted an industry-standard compression
algorithm: QIC-122. QIC-122 is generally implemented on the tape drive itself or on the tape
controller using a dedicated microcontroller or the Stac Electronics compression engine chip.
Hewlett-Packard has proposed an aternative compression standard known as DCLZ. DCLZ uses an
LZ78-type algorithm, which supposedly offers better compression performance than programs based
on QIC-122.

The hard disk has been an active battleground for dictionary-based compression. In recent years, the
utility programs for archiving and compressing files have been supplemented by programs that work
at the device-driver level to transparently compress data stored on disk. The most visible of these
utilities is Stacker, from Stac Electronics. There are others, including Disk Doubler on the Macintosh
platform. In version 6 of MS-DOS, Microsoft added Stacker-like compression to its operating
system, and then was forced to remove it after a well-publicized lawsuit between Microsoft and Stac
Electronics. When operating at the device-driver level, these programs add alevel of convenience to
compression that is hard to beat.

One of the primary difficulties with compressing data on the hard disk is that most of today’s
dictionary schemes are adaptive. A general-purpose algorithm would be needed to operate on a disk
drive or controller, making a static dictionary difficult to implement. Most adaptive algorithms do
not perform very well until they have built up some statistical information, which may take several K
of input data.

Unfortunately, disk drives are used in arandom-access mode, which means a program can begin
reading data at any point in thefile. If the file were compressed using a conventiona adaptive
method, we might have to go back to the start and begin reading there in order to properly
decompress the file. This may not be much of a problem in a 16 Kbyte text file, but imagine the
performance problems in a 16-Mbyte database!

At present, manufactures of software- and hardware-based disk compression drivers avoid these
problems by compressing at the sector level. Since the device driver typically readsin a sector or
more at atime, the adaptive algorithm will restart at the begining of each sector boundary. Even
better, if the device driver controls the size of the sector, it can be set to a somewhat larger value than
might normally be used, giving the adaptive algorithm a chance to improve its compression.

With algorithms such as QIC-122, increasing the sector size past a certain point will not likely



improve matters, since the dictionary is only composed of the previous 2K bytes of data. But more
powerful compression agorithms that take advantage of older information will frequently want to
increase the sector size.

In practice, many users of disk-compression programs that work at the device-driver level find
performance to be less of an issue than one might expect. Thisis due to the fact that, while
compression/decompression does consume additional CPU cycles, this effort is compensated for by
the reduced amount of data that needs to be transferred between memory and the hard disk. When a
mechanical procedure (physically moving the hard disk arm across the platter) competes with an
electronic one (decompressing data in a CPU cache), the electronic process usually wins out.

Danger Ahead—Patents

The fact that most work on dictionary-based compression has been done over the last ten or fifteen
years has a potentially dangerous side effect. Until the early 1980s, it was generally not possible to
patent software. But during the past ten years, increasingly large numbers of patents were awarded
for what are clearly algorithms.

One of the first data-compression patents was granted to Sperry Corp. (now Unisys) for the
improvementsto LZ78 developed by Terry Welch at the Sperry Research Center. In fact, this patent
became a point of contention during the standardization process for the V.42bis data-
communications standard. Since V.42bis is based on the LZW algorithm, Unisys claimed the right to
collect royalties on implementations which use V.42bis. There was some concerninthe CCITT
about the effect of basing a standard on a patented technique. Unisys dampened concern while
protecting its patent rights by publicly offering to license the algorithm to any modem manufacturer
for a onetime $25,000 fee.

After ahiatus of several years, Unisys recently woke from slumber and began patent-related legal
maneuvers, seeking to get licensing fees from CompuServe and other users of the popular GIF
format. Some in the industry viewed this request as unreasonable, given the lengthy delay between
the introduction of the GIF format, and the unexpected demands for licensing fees once the format
had gained wide acceptance. The response to Unisys' effort was creative rather than contentious.
Developers came together and in short order produced the PNG effort, alicense-free format that
contains many improvements over the existing GIF format.

As research in dictionary-based compression continues, patents are being filed at arelatively rapid
pace. Since patent filings are not a matter of public record, it is not possible to know if and when
certain techniques will be freely available. At present, the most prudent course for potential data-
compression users would be to conduct a patent search and to contact the inventors of any techniques
they intend to use.

Fortunately, manufacturers can generally come to terms on patent royalties for relatively modest
terms. The danger comes when the owner of the patent is competing for the same market as a
potential licensee. Unisyswas only too happy to license the LZW algorithm to modem
manufacturers, but it may have adopted an entirely different strategy in the online market—that of
benign neglect followed by hasty demands.

In recent years, the US Patent Office has come under severe criticism from some sectorsin the
industry by granting patents that some consider inappropriate or undeserved. The most visible
instance was the patent granted to Compton’s for simple and widely-used techniques found in its
multimedia encyclopedia product. This patent was later invalidated by the Patent Office, after much
debate and criticism. Another well-publicized case was the lawsuit between Microsoft and Stac
Electronics, which revolved around a number of issues, including certain patents on data



compression.

Regarding the general subject of software patents, the computer industry has been split along at |east
two points of view. One view holds that patents are inappropriate in a dynamic and innovative field
such as software, in which a computer program is built using dozens if not hundreds of techniques,
algorithms, and data structures (as opposed to a physical/mechanical device or product, whose
design centers around a much smaller array of techniques). In the case of software, patents can stifle
innovation and economic growth that benefits us all. Large, well-established companiesin the
industry that generally adhere to this view include Adobe and Oracle, in addition to smaller non-
profit organizations such as the League for Programming Freedom (see “ Afterword” at the end of
this book).

Another point of view isthat the patent process, while in some instances flawed and in need of
overhaul, is basically well-conceived and should be preserved. Companies like IBM and Apple seem
to adhere to this view. Regardless of their view, today most companies have stepped up their patent-
related efforts, either as an aggressive business strategy or a precautionary self-defensive maneuver.
Microsoft, for example, historically indifferent to the patent process, has bulked up for future
skirmishes by hiring a phalanx of intellectual-property lawyers.

After aseries of public hearings on the matter of software patents, the US Patent Office, under
Commissioner Bruce Lehman, has made improvements, added resources, and modified its
instructions to patent examiners so that software patents are more easily granted. Whether these
changes will have a positive effect on the computer industry remains to be seen. The only certainty is
that patents will continue to play a central role in the field of data compression.

Conclusion

Dictionary-based compression techniques are presently the most popular forms of compression in the
lossless arena. Almost without exception, these techniques can trace their origins back to the original
work published by Ziv and Lempel in 1977 and 1978. Refinements on these algorithms yield better
performance at lower cost, but both types of improvements are evolutionary, not revolutionary.



Chapter 8
Sliding Window Compression

The genesis of modern dictionary-based compression can be traced to the 1977 Ziv and Lempel
paper, “ A Universal Algorithm for Sequential Data Compression,” published in IEEE Transactions
on Information Theory. In retrospect, this algorithm (referred to hereafter as LZ77) does not seem
particularly remarkable. It is smple enough that it could have easily been described thirty or forty
years earlier, and there is no doubt that it could have been implemented at |east as a*“ proof of
principle” program well before 1977.

However, as was discussed in the previous chapter, till the late 1970s most data compression work
concentrated on improved ways to drive Huffman coders and perhaps on more exotic studies of
digrams or other statistical topics. So the LZ77 paper truly broke new ground.

The Algorithm

LZ77 compression uses previously seen text as adictionary. It replaces variable-length phrasesin the
input text with fixed-size pointers into the dictionary to achieve compression. The amount of
compression depends on how long the dictionary phrases are, how large the window into previously
seen text is, and the entropy of the source text with respect to the LZ77 model.

The main data structure in LZ77 is atext window, divided into two parts. The first consists of alarge
block of recently decoded text. The second, normally much smaller, is alook-ahead buffer. The
look-ahead buffer has characters read in from the input stream but not yet encoded.

The normal size of the text window is several thousand characters. The look-ahead buffer is
generally much smaller, maybe ten to one hundred characters. The algorithm tries to match the
contents of the look-ahead buffer to a string in the dictionary. A simplistic example of atext window
isshown in Figure 8.1.
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Figure8.1 A text window in use.

Figure 8.1 shows a snippet of C code being compressed. The text window has a total width of 64
characters, with 16 of those characters used by the look-ahead buffer. The LZ77 algorithm, as
originally conceived, issued sequences of tokens. Each token consists of three different dataitems
which defined a phrase of variable length in the current look-ahead buffer. The three itemsin the
token are: (1) an offset to a phrase in the text window; (2) the length of the phrase; and (3) the first
symbol in the look-ahead buffer that follows the phrase.

In the above exampl e, the look-ahead buffer contains the phrase “<MAX;j++)\r.” By searching
through the buffer, we find that “<MAX?” islocated at position 14 in the text window. It matches the
look-ahead buffer for the first four symbols. The first symbol not present in the look-ahead buffer is
the space character. So thistoken isencoded as: 14, 4, * .



The compression program that implements the LZ77 algorithm first emits the token, then shifts the
text window over by five characters, which is the width of the phrase just encoded. Five new
symbols are then read into the look-ahead buffer, and the process repests.

{i=0; i=MAX-1; i++ Ir for] i1 j=MAX | j+ )0 af i

Biochy of Text Window Look-Ahead Buffer

Figure 8.2 The window after encoding 14, 4, *

The next token issued by the compression algorithm would encode the phrase “;j+” as“40, 2,'+'.”
The syntax of this token allows for phrases that have no match of any length in the window. If the
look-ahead buffer shown above had no match, for example, it could be encoded a single character at
atime using a phrase length of zero: “0, 0, ;’.” This method is not efficient, but it ensures that the
algorithm can encode any message.

The code to implement this compression algorithm should be fairly ssimple. It merely hasto ook
through the entire text window for the longest match, encode it, then shift. A brute force application
of thisalgorithm might look something like this:

int wi ndow cnp( char *w, int i, int j, int length)

{

int count = O;

while ( length-- ) {
if (W i+t ] =w j++])
count ++;
el se
return( count );

}

return( count );

}

mat ch_position = 0;
match_l ength = O;
for (i =0 ; i < ( WNDOWNSIZE - LOOK _AHEAD SIZE ); i++ ) {
l ength = wi ndow_cnp( w ndow, i, LOOK AHEAD, LOOK AHEAD SI ZE );

if ( length > match _length ) {
mat ch_position = i;
match_l ength = | ength;

}

}

encode( match_position, match_| ength,
wi ndow| LOOK AHEAD+match _length ] )
memmove( wi ndow, wi ndow+natch | ength+1, W NDOW SIZE - natch_length );
for (i =0 ; i <mtch_length+l ; i++ )
wi ndowf W NDOW SI ZE - match_length + i ] = getc( input );

The decompression algorithm for LZ77 is even simpler, since it doesn’t have to do comparisons. It
reads in atoken, outputs the indicated phrase, outputs the following character, shifts, and repeats. It
maintains the window, but it does not work with string comparisons. A decompression program that
used the output of the previous program might have aloop like this:



decode( &match_position, &match |length, &character );
fwrite( wi ndowtmatch_position, 1, match_l ength, output );
putc( character, output );

for (i =0 ; i <mtch_length ; i++)
wi ndow| LOOK AHEAD+i ] = window match_position+i ];
wi ndow| LOOK AHEAD+i ] = character;

menmove( wi ndow, w ndowtmat ch_| engt h+1, W NDOW SI ZE - match_l ength );

One interesting side effect of this decompression method is that it can use phrases that have not yet
been encoded to encode existing phrases. In afile that had one hundred consecutive ‘A’ characters,
for example, we would encode thefirst A as (0, 0, ‘A’). Our window would then look like that
shown in Figure 8.3.

e Al AAAAAALALA

Figure 8.3 Coding for one hundred consecutive A characters.

We could then encode the next nine A charactersas (38, 9, ‘A’). It may seem odd to use a nine-
character phrase here. Though we can see the eight characters in the phrase presently in the look-
ahead buffer, the decoder won't be able to. When the decoder receivesthe (38, 9, *A’) token, its
buffer will look like Figure 8.4.

ey

match position j l look ahead buffer

Figure 8.4 The buffer for the decoder when it receivesthe (38, 9, ‘A’) token.

But by examining the decompression algorithm, you can see how the decompression routine
manages thistrick. It sitsin aloop, copying from the match position to the look-ahead buffer. After
the first character has been copies, the buffer looks like Figure 8.5.

-

match position+ j l look ahead buffer+i

Figure 8.5 What the buffer looks like after it copies the first character.

The next time through the loop the second A character will be available to be copied though it was
not in the window when the decoding started. After the entire copy is complete, along with the single
character store, the buffer is ready to shift, as shown in Figure 8.6.
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match ch.'rtin:un+ijL look ahead buffer+i

Figure 8.6 The buffer, when ready to shift.

Thisillustrates a powerful feature of LZ77 compression: rapid adaptation to the character of the
input stream. In this example, it encoded a sequence of ten characters when its “dictionary” had only
been loaded with a single character.

Problemswith LZ77

The implementation of LZ77 shown hereis deliberately crude. It also has to be considered a
somewhat liberal interpretation of the algorithm. The authors presented little discussion of
implementation details when they presented their method.

Thereisclearly amajor performance bottleneck in the LZ77 approach. When encoding, it has to
perform string comparisons against the look-ahead buffer for every position in the text window. Asit
tries to improve compression performance by increasing the size of the window, and thus the
dictionary, this performance bottleneck only gets worse. On the bright side, however, the
decompression portion of this algorithm does not have to suffer through this bottleneck. Sinceit only
copies the phrases, it can operate at a much higher rate. Even better, the LZ77 decompressor will not
be severely affected by increases in either the size of the text window or the look-ahead buffer.

A second performance problem occurs with the way the sliding window is managed. For conceptual
convenience, the discussion here treated the dliding window as though it were truly sliding “across”
the text, progressing from the end of the buffer to the front as the encoding process was executed.

This may be conceptually superior, but it is certainly not the best way to code an LZ77 program. In
fact, it is much better to have a dliding index or pointer into a fixed buffer. Instead of moving the
phrases toward the front of the window, a dliding pointer would keep the next in the same place in
the window and move the start and end pointers along the buffer as text is encoded.

Using dliding pointers does create a few problems. For one, we can’t use a straightforward string-
compare function like strncmp() to look for longest phrases because a phrase may land across the
end of the physical window, with the first character at window[ WINDOW _SIZE - 1] and the
second at window/[ 0 ]. This means that as we do string comparisons we need to use a modulo index
into the window instead of a normal index. A recoded version of strncmp() that would work properly
under these revised circumstances might look like this:

i nt window cnp( char *w, int i, int j, int length)
{
int count = O;
while ( length-- ) {
if(wW i ] =w7jl)
count ++;
el se
return( count );
i = ++i % W NDOW Sl ZE;
i ++j % W NDOW Sl ZE;
}

return( count );

}



Thisroutine is slightly more complicated, but it will pay for itself in savings on calls to memmove().
Keeping the buffer in one place is a big savingsin CPU cycles. In addition, the routine can be made
even more efficient if WINDOW_SIZE isan integral power of 2. The modulus operator can then be
replaced by alogical AND, saving even more time.

An Encoding Problem

Besides the CPU cost problems, the LZ77 algorithm has amajor efficiency problem. When encoding
phrases, LZ77 achieves good compression rapidly. Even if the phrases being substituted for input
text are short, they will still generally cause very effective compression to take place.

The problem occurs when matching phrases are not found in the dictionary. When thisis the case,
the compression program still has to use the same three component tokens to encode a single
character. To redlize the cost of this, imagine encoding a single character when using a 4,096-byte
window and a sixteen-byte look-ahead buffer. This would take twelve bits to encode a window
position and another four bits to encode a phrase length. Using this system, encoding the (0, O, c)
token would take twenty-four bits, al to encode a single eight-bit symbol. Thisisavery high price to
pay, and there ought to be away to improveit.

LZSS Compression

LZSS compression seeks to avoid some of the bottlenecks and performance problems in the origina
LZ77 agorithm. It makes two major changes to the way the algorithm works. The first isin the way
the text window is maintained. Under LZ77, the phrases in the text window were stored as asingle

contiguous block of text, with no other organization on top of it. LZSS still stores text in contiguous
windows, but it creates an additional data structure that improves on the organization of the phrases.

As each phrase passes out of the look-ahead buffer and into the encoded portion of the text windows,
LZSS adds the phrase to a tree structure. In the implementation that will be used in this chapter, the
tree isabinary search tree. By sorting the phrases into a tree such as this, the time required to find
the longest matching phrase in the tree will no longer be proportional to the product of the window
size and the phrase length. Instead, it will be proportional to the base 2 logarithm of the window size
multiplied by the phrase length.

The savings created by using the tree not only makes the compression side of the algorithm much
more efficient, it also encourages experimentation with longer window sizes. Doubling the size of
the text window now might only cause a small increase in the compression time, whereas before it
would have doubled it.

The second change liesin the actual tokens output by the compression algorithm. Recall that LZ77
output tokens consisted of a phrase offset, a match length, and the character that followed the phrase.
This meant that LZ77 was compelled to alternate pointers with plain characters, regardless of the
nature of the input text.

LZSS instead allows pointers and characters to be freely intermixed. When first starting up, for
example, the compression algorithm may not find any phrase matches to output for the first dozen or
so input symbols. Under the LZ77 system, the encoder would still have to output a dummy match
position with alength of zero for every symbol it outpui.

LZSS instead uses a single bit as a prefix to every output token to indicate whether it isan
offset/length pair or a single symbol for output. When outputting several consecutive single
characters, this method reduces the overhead from possibly severa bytes per character down to a
single byte per character.



Oncethe datais well characterized, the compressor may efficiently match up pointers every timeiit
loads new data into the look-ahead buffer. LZ77 had some inefficiency here as well, since every
offset/length pair had to be accompanied by a single character. Thisis not as bad as the previous type
of inefficiency, but it still reduces the compression ratio.

Data Structures

Two important data structures are used in the implementation of LZSS shown in this chapter. They
are the text window, which contains the previously encoded text buffer, and the look-ahead buffer.

The text buffer is a simple character buffer declared and used as might normally be expected inaC
program:

unsi gned char wi ndowf W NDOW SI ZE ];

As discussed previously, while the idea of a sliding window might imply that the text should “dlide”
through the window, this would actually be an inefficient way to implement it. Instead, the look-
ahead buffer moves through the array and tracks its index as it goes along. This means that once a
phraseis stored in the array, it staysthere until it is overwritten after WINDOW _SIZE characters
have been encoded.

This method of working with the text window also means that all string operations, copies, €etc.
performed on the window have to be done using modulo WINDOW _SIZE arithmetic. Computing
(i+1) mod WINDOW _SIZE is usually done most efficiently if WINDOW _SIZE is an integral power
of 2, and thisimplementation of LZSS expects that to be the case. Having WINDOW_SIZE be an
integral power of 2 also leads to the most efficient way of encoding the window indices, so thisis
almost always the method used in dliding-window data compression.

The second data structure in this program is the binary tree used to store the phrases currently in the
text window. The treeis defined by the tree structure shown here:

struct {
i nt parent;
int snaller_child;
int larger_child;
} treel] WNDOWSIZE + 1 ];

For every phrase in the window, a corresponding structure element defines the position that phrase
occupiesin the tree. Each phrase has a parent and up to two children. Since thisis abinary tree, the
two child nodes are defined as “smaller” and “larger” children. Every phrase that resides under the
smaller_child node must be smaller than the phrase defined by the current node, and every phrase
under the larger_ child node must be larger. The terms “larger” and “smaller” refer to where the
phrases fall in the collating sequence used by the compression program. In this particular program,
one phraseis“larger” or “smaller” in the same sense as that used by the standard library strcmp()
function.

The tree used in this program has a couple of unusual features that need to be explained. First,
though only WINDOW_SIZE phrases are in the window, we have defined the tree to have
WINDOW_SIZE + 1 elements. In the implementation used here, treef WINDOW_SIZE ] isthe
special node used to locate the tree’ sroot. This element doesn’t have a phrase of its own, asdo all
other nodes in the tree. It also doesn’t have smaller and greater children like the other nodes. Instead,
it hasthe index of alarger_child only, and thisindex points to the root node of the tree.

Pointing to the root node in this fashion saves processing time and simplifies the code. When
working our way up through the tree during an insertion or deletion, therefore, we don’t have to
check to seeif a parent node points to the root or to another node. Instead, we can assume that a



node’'s parent node is always avalid tree element. When deleting node i from the tree, for example,
you will typically have a section of code that looks something like this: treg| treg] i ].parent ].child =
treg] i ].child. Because the pointer to the root node is stored in the same tree, we don’t have to
perform any specia checksto seeif i istheroot node. Even if i isthe root node, treg| i ].parent still
pointsto avalid nodein the tree.

The second unusual feature is the use of another node for special purposes. Like the other programs
in this book, LZSS uses a special code to indicate when the end of the compressed data is reached. In
this case, awindow index of zero indicates an end-of-stream condition.

Sinceindex 0 has a special purpose, it can never be used as avalid phrase. So the code to insert a
new phrase into the tree automatically returns without even trying to insert the phrase at index O.
Since phrase 0 is not used, we can achieve even more code savings by using node O as the special
UNUSED index. This becomes useful when writing code to maintain the tree. A typical operation
performed when deleting node i from the tree, for example, isto reassign anew parent nodetoi’s
children. Code to perform this might look like what follows.

if (tree[ i ].smaller_child != UNUSED )

tree[ tree[ i ].smaller_child ].parent =tree[ i ].parent;
if ( tree[ i ].larger_child != UNUSED )

tree[ tree[ i ].larger_child ].parent =tree[ i ].parent;

But if the UNUSED index actually points to alegitimate storage area, the test for validity can be
bypassed, with the resulting code looking like the following:

tree[ tree[ i ].smaller_child ].parent = tree[ i ].parent;
tree[ tree[ i ].larger_child ].parent = tree[ i ].parent;

If either of the children in this example are UNUSED, no harm is done—the parent node for treg[ O ]
will merely be modified. Sincetree[ 0] isnever used for any tree navigation, no harm is done, and
significant CPU time is saved during tree updates.

A Balancing Act

Saving phrases in abinary tree can ssimplify the search for the best match. But a binary tree can
deteriorate when given data that is ordered in some fashion. In the worst case, a binary tree can turn
into nothing more than alinked list. Imagine afile that had the string “ ABCDEFGHIJKLMNOP” in
it. Since the phrases in that string would have to be added to the tree in order, the structure in Figure
8.7 would evolve.



ROOT

"ABCDEFG”
!_INUSED !'ECDEFGH'
UNUSED  "CDEFGHI”
UMNUSED "DEFGHI"
LUMUSED "EFGHIJK"
UNUSED  "FGHIJKL"

UMNUSED  "GHIJKLWMT

UNUSED  "HIJKLMN®

Figure 8.7 The structure that would evolve from the sequence “ABCDEFGHIJKLMNOP.”

This structure may have a pleasing pattern, but it is not well built for locating strings. Given that data
compressed from computer files will frequently have patterns of increasing or decreasing phrases,
what can we do to avoid this problem?

Of course we can do alot to help maintain a balanced tree. Many well-known algorithms are built
expressly to keep nicely built trees from turning into cycle-stealing unbalanced lists.

In the case of dliding-window data compression, however, it is relatively safe to ignore the problem.
Severely unbalanced trees may develop as data is compressed, but the nature of the sliding window
almost mandates that unbal anced situations quickly converge to more balanced states. Since old
phrases are pulled out of the tree as rapidly as new ones are put in, the effects of an ordered sequence

quickly disappear.

As aresult, tree balancing is usually not built into sliding-window programs. Probably the only time
it would be considered would be in a production version of a compression program that was under
severe constraints in terms of CPU cost alowed per byte compressed.

Greedy vs. Best Possible

Both LZ77 and LZSS are called “greedy” algorithms: They don’'t look ahead into the input stream to
analyze it for the best combination of indices and characters. Consider a dictionary-based encoding
scheme that used nine bits to encode a single character and twenty-five bits to encode a combined
index/offset pair. This scheme would have a break-even point somewhere between two and three
characters, which means it would encode a match of two characters as two individual symbols and a
match of three symbols as in index/offset token.

Consider now how we would go about encoding the phrase “Go To Statement Considered Harmful”
if the contents of the phrase dictionary contained the following fragments: “Go T” “0 S” “tat” “ Stat.”
A greedy encoder would naturally encode the“Go T” phrase of four characters length first, followed
by the“0 S’ phrase of three characters length, then the “tat” phrase of three characters length. The
output of the encoder up to this point would look like this:

Offset/Length of “Go T” : 25 bits
Offset/Length of “0 S’ : 25 bits



Offset/Length of “tat” X 25 bits

75 bits

The encoder looks like it was doing what makes sense, trying to build phrases up instead of
characters. But an optimal encoder would encode the fragment as shown:

Offset/Length of “Go “ : 25 bits
Character ‘' T’ : 9 bits
Character ‘0’ : 9 bits
Offset/Length of “ Stat” : 25 bits
68 bits

These figures clearly show that the greedy encoder did not do as well as the optimal encoder. But it
should also be noted that even in this contrived example, the difference between the two isonly
about 10 percent. When using dictionary coding, it is difficult to find examples of optimal encoders
outperforming greedy encoders by more than afew percent. The largest differences occur when only
short phrases are in the dictionary, and there is areal possibility that encoding single symbols will
take less space than a phrase.

The problem with optimal coding is simply one of payback. Implementing an optimal encoder
generally means that encoding speed will be drastically reduced. While optimizing algorithms are
available, they tend to be CPU intensive, and the profit derived is generally small. In the world of
data compression, afew good heuristics are often more respected than a provably superior algorithm.
The greedy heuristic in this case is definitely the choice of most compression programmers.

The Code

The C implementation of LZSS shown hereisrelatively ssmple. A production program would
probably want to take advantage of numerous potential improvements, which will be discussed at the
end of the chapter.

By the very nature of LZSS compression, the compression program will be considerably more
complicated than the decoder. The decoder does not have to worry about maintaining the tree or
searching for matches. Those two activities are what the encoder spends most of its time doing.

Constants and M acros

All of the constants and global data used in this program are shown following. The parameters of the
text window are initially defined by deciding how many bits to allocate to the two fields used to
define a pointer or index into the text window. In thisexample. INDEX_BIT_COUNT is set to
twelve: It will use twelve bits to define an index into the text window. The LENGTH_BIT_COUNT
macro is set to four bits, which meansit will use afour-bit field to encode the length of a matching
phrase.

After determining the size of the two bit fields, other macros can be given values derived from them.
First, the WINDOW _SIZE isdirectly determined by the size of the INDEX_BIT_COUNT. In this
case, our text window will consist of 4,096 bytes, or 1 << 12. Since we have allocated four bits for
the length parameter used to encode a phrase, we will be able to encode a length of up to sixteen
bytes, or 1 << 4. Thisis defined asthe RAW_LOOK_AHEAD_SIZE.



The next macro defined, BREAK_EVEN, determines whether it is better to encode a phrase as an
index/length pair or as single characters. In this program, the BREAK_EVEN point is determined by
adding up the INDEX_BIT_COUNT and the LENGTH_BIT_COUNT plus 1. These add up to
seventeen: it take seventeen bits to encode an index/length pair. Because of this, we set our
BREAK_EVEN point to one character. This means that in the program, any matching phrase that is
one character or fewer will be encoded as single characters instead of as a phrase.

#def i ne | NDEX_BI T_COUNT 12
#defi ne LENGTH_BI T_COUNT 4
#defi ne W NDOW S| ZE ( 1 << | NDEX_BI T_COUNT )

#define RAWLOOK AHEAD SIZE  ( 1 << LENGTH BI T_COUNT )
#define BREAK EVEN  ( ( 1 + INDEX_BIT_COUNT + LENGTH BIT_COUNT ) / 9 )

#defi ne LOOK_AHEAD Sl ZE ( RAW LOOK AHEAD SI ZE + BREAK _EVEN )
#def i ne TREE ROOT W NDOW SI ZE

#defi ne END- OF STREAM 0

#def i ne UNUSED 0

#defi ne MOD W NDOWN a ) ((a) &( WNDOWSIZE - 1) )

The BREAK_EVEN point adjusts our LOOK_AHEAD_SIZE. Since we aren’t going to code any
phrases with lengths O or 1, we can adjust our LOOK_AHEAD_SIZE upward by two. So when we
want to encode a phrase length, instead of outputting the length, we output the length -
BREAK_EVEN - 1. This means that the length numbers 0 through 15 will actually correspond to
phrases of length 2 through 17.

The TREE_ROOT macro defines the node that points to the binary tree root. Since TREE_ROOT is
defined asindex WINDOW_SIZE, it is a special node that actualy lies outside the binary tree.
Whenever the program searches the binary tree, it looks at the child of the node at TREE_ROQOT to
find the root of the tree.

The END_OF_STREAM constant defined the special index used to place an end-of-file indicator in
the output stream. In thisimplementation, END _OF STREAM is set to zero, specifically because
the UNUSED node index is also set to zero. Having the UNUSED node index set to zero leadsto a
dlight improvement in the program’ s performance. By using static initialization or be creating the
tree with calloc(), we will automatically have athree with every node pointer set to UNUSED—
which means we don’'t have to have a specific initialization step.

The final macro used in the program in MOD_WINDOW. Since input strings can wrap around the
end of the tree and head back to the front, we need to perform all of our arithmetic on window
indices modulo the tree size. The MOD_WINDOW macro provides a convenient way to do that.

Global Variables

The data structures that hold both the text window and the binary tree are defined as global variables
in this program. They could just as easily be dynamically allocated and passed to the encoder and
decoder as arguments, but here we cut afew corners by using globals.

The window[ WINDOW_SIZE ] variable holds the last 4,096 characters read in from the input file.
The last seventeen of those characters will have been read in from the file but not yet encoded. These
consgtitute the look-ahead buffer.

For comparison purposes, we also consider those 4,096 charactersto be 4,096 strings, with each
character being the first character in an 17-byte string. The code in this program also universally
refersto a string by theindex of itsfirst character in the text window. So when a piece of code does a
comparison on string ‘r’, it islooking at the seventeen-byte string starting at position ‘r’ in the text



window.
unsi gned char w ndow W NDOW Sl ZE ];

struct {

i nt parent;

int snmaller_child;

int larger_child;

} treel] WNDOWSIZE + 1 ];

The binary tree in this program is the data structure tree, which consists of an array of unnamed
structures. Each tree node has only three elements: a parent index, asmaller_child index, and a
larger_child index. Each of these indices are single numbers referring to the string at that position in
the text window. An example of how this tree might look after reading in twenty-five characters
follows. Remember that position O in the text window is used for other purposes, so strings there
don’t get added to the tree.

‘Window = "The Cruelty of Really Tea®

string 1: "The Curaly of Re”

string 2

string 3 :
string 4 :
string 5 :
string & :
string 7 :
string 8 :
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Figure 8.8 The binary tree after reading in 25 characters.

One nice feature of this binary tree isthat we know in advance how many total nodes will beinit, so
we can allocate the space in advance instead of while building the tree. This saves the code needed
for alocating and freeing nodes, and we know that the node for the string at position ‘i’ will bein the
tree structure at position ‘i.’

The Compression Code

The compression code follows. Like all previous programs in this book, it is called with pointers to



an open input file and to a special BIT_FILE structure that takes the compressed output. The
BIT_FILE structure lets us use the bit-oriented /O routinesin BITIO.H. The compression routine
breaks down into three different sections of code: an initialization section, the main compression
loop, and a termination section.

voi d ConpressFile( FILE *input. BIT_FILE *output, int argc,
char *argv[] )
{

int i;

int c;

i nt | ook _ahead bytes;
int current_position;
i nt replace_count;
int match_l engt h;

i nt match_position;

current _position = 1;
for (i =0 ; i < LOOK AHEAD SIZE ; i++ ) {
if ( ( c=getc( input ) ) == EOF)
br eak;
wi ndow current_position + i ] = c;

| ook_ahead_bytes = i;
InitTree( current_position );
match_l ength = O;
while ( | ook _ahead bytes > 0 ) {
if ( match_length > | ook_ahead_bytes )
mat ch_l engt h = | ook_ahead_byt es;
if ( match_length <= BREAK EVEN ) {
repl ace_count = 1;
QutputBit( output, 1 );
Qut putBits( output, window current_position], 8 );
} else {
Qut putBit( output, 0 );
Qut putBits( output, nmatch_position, | NDEX BI T_COUNT );
Qut putBits( output, match_length - ( BREAK EVEN + 1 ),
LENGTH_BI T_COUNT );
repl ace_count = match_| engt h;
}
for (i =0 ; i <replace_count ; i++ ) {
Del eteString( MOD WNDOWN current_position + LOOK AHEAD SIZE ) );
if ( (¢ =getc( input ) ) == EOF)
| ook_ahead_bytes--;
el se
wi ndow| MOD W NDOW current _position + LOOK AHEAD SIZE ) ] = c;
current _position = MOD WNDOW current_position + 1 );
if ( |ook_ahead_bytes )
match_l ength = AddString( current_position, &match_position );
}

}
QutputBit( output, 0 );
Qut put Bits( output, END OF STREAM | NDEX BI T_COUNT );

Initialization

The compression loop needs a steady state before it can start. Two things need to be done: first, the
look-ahead buffer needs to be loaded; and second, the tree needs to be initialized.

The code to load the look-ahead buffer is shown next. It tries to load up to seventeen bytes into the
buffer. After the loading is complete, two local variables are set up so that the main loop can begin



executing. First, current_position is set to one. This means that the look-ahead buffer now starts at
position 1. Second, look-ahead bytesis set to the number of bytesleft to be encoded in the |ook-
ahead buffer.

current _position = 1;

for (i =0 ; i < LOXK AHEAD SIZE ; i++ ) {
if ( ( c=getc( input ) ) == EOF)
br eak;
wi ndow{ current_position +i ] = c;
}

| ook_ahead _bytes = i;

The look-ahead_bytes variable will be set to seventeen most of the time the main loop executes.
Usually seventeen characters are left in the look-ahead buffer to encode. Once the program
approaches the end of the file, that number will start to drop.

The next step in the initialization program calls InitTree(). InitTree() establishes aroot node for the
tree. The first node put into the tree will be at the current position, position 1. The code in InitTree()
executes a standard insertion algorithm, establishing the child of the root pointer node and setting up
the parents and children of position 1.

void InitTree( int r )

{
tree[ TREE ROOT ].larger_child = r;
tree[ r ].parent = TREE ROOT;
tree[ r ].larger_child = UNUSED;
tree[ r ].smaller_child = UNUSED;

}

Thefinal step in theinitialization of CompressFile sets up a match_length of one. Thisforcesthe
encoding loop to output the first character of the look-ahead buffer as a single character instead of as
aphrase. It would not be possible at this point even to search for amatch to the string at position 1,
sinceit isthe only string in the tree.

TheMain Loop

The main loop runs as long as characters are left in the look-ahead buffer to encode. It does three
thingsin the loop: (1) It encodes the current phrase in the look-ahead buffer; (2) it reads new
characters into the look-ahead buffer while deleting the oldest from the tree; and (3) it inserts the
new strings defined by the new charactersinto the binary tree while the new characters are being
loaded into the look-ahead buffer.

while ( | ook _ahead bytes > 0 ) {
if ( match_length > | ook _ahead _bytes )
mat ch_Il ength = | ook_ahead_byt es;
if ( match_length <= BREAK EVEN ) {
repl ace_count = 1;
QutputBit( output, 1 );
Qut putBits( output, window current_position], 8 );
} else {
QutputBit( output, 0 );
Qut putBi ts( output, match_position, | NDEX BI T_COUNT );
Qut putBits( output, match_length - ( BREAK_EVEN + 1 ),
LENGTH_BI T_COUNT );
repl ace_count = match_| ength;
}
for (i =0 ; i <replace_count ; i++ ) {
Del eteString( MOD_WNDOWN current_position + LOOK_AHEAD SI ZE ) );
if ( ( ¢ =getc( input ) ) == EOF)



| ook_ahead bytes--;
el se
wi ndowf MOD W NDOW current_position + LOOK AHEAD SIZE ) ] = c;
current _position = MOD WNDOWN current_position + 1 );
if ( ook _ahead bytes )
match_length = AddString( current_position, &mtch _position );
}

}

The main loop assumes that at the top of the loop, the best match length and position are stored in
variables match_length and match_position. The AddString() operation normally does this at the
bottom of the loop, but the first time through the loop the initialization code set match_length to
zero.

Since the match_length is known, the code just has to decide whether to encode the current phrase in
the look-ahead buffer as an index/length pair or whether to output a single character. All that is
necessary hereis a simple comparison against BREAK _EVEN. If the current phrase match length is
more than BREAK_EVEN, it makes sense to encode it as a phrase. Otherwiseiit is encoded as a
single character.

The encoding process is straightforward. The output sequence for a solo character is output asa
single 1-hit, followed by the eight bits in the character. For an index/position token, the encoder
outputs a 0-bit, followed by the twelve-bit position and the four-bit length. The length is encoded as
anumber from zero to fifteen that corresponds to a length of two to seventeen.

After encoding, the look-ahead buffer has to be loaded with new characters to replace the ones that
have been output. If a phrase was encoded, the variable replace _count is set to the length of the
phrase, otherwise, replace _count is set to one to indicate that a single character needs to be replace.

The replacement loop code is shown in the following code excerpt.. New characters read into the
look-ahead buffer land on top of the oldest phrases in the text window. Accordingly, before each
character isread in, the DeleteString() routine deletes the older phrase.

for (i =0 ; i <replace_count ; i++ ) {
Del eteString( MOD_WNDOWN current_position + LOOK_AHEAD SI ZE ) );
if ( (¢ =getc( input ) ) == EOF)
| ook_ahead_bytes--;
el se
wi ndowf MOD_ W NDOW current_position + LOOK AHEAD SIZE ) ] = c;
current _position = MOD_ WNDOWN current_position + 1 );
if ( ook ahead bytes )
match_length = AddString( current_position, &match _position );
}

After the new character isread in, the current_position is updated, and the AddString() routine adds a
new phrase to the tree. AddString() also returns the position and length of the best match for the
inserted string. These variables will then be used at the top of the loop to encode the current phrase
in the look-ahead buffer.

The Exit Code

The exit code for the compression routine is very simple to implement in this program. All that needs
to be done is to encode the special END_OF _STREAM position code so that the decoder will know
that there is no more data to pull out of the compressed stream. Itsjob is completed, and it can then
return.

AddsString()



The bulk of the work done by the compression routine takes place in AddString(). This routine does
two jobs. First, it adds a new string to the binary tree. Second, it tracks the string currently in the tree
that best matches the one being inserted.

The process of locating the node for inspection of the new string uses standard techniques for
traversing abinary tree. AddString first checks to see if the new string isthe END_OF STREAM
node. If itis, it shouldn’'t be inserted into the tree, so it takes immediate return with amatch_length
of zero. Thisforces the encoder to output a single character instead of trying to encode a phrase at
index O.

After checking for a bad node, the test_node and initial match_length are set up. Throughout the
main loop, test_node will point to the current node that will be compared to the new_node. The
match_length variable will contain the current longest match found during traversal of the tree.

int AddString( int new node, int *match_position )
L

int i;

i nt test_node;

int delta,

i nt match_I engt h;

int *child;

if ( new_node == END OF_ STREAM )
return( 0 );
test_node = tree[ TREE_ROOT ].larger_child;
mat ch_l ength = O;
for (; ;) {
for (i =0 ; i < LOXK AHEAD SIZE ; i++ ) {
delta = windonf MOD WNDON new node + i ) ] -
wi ndowf MOD W NDOW test_node + i ) ];
if ( delta!=0)
br eak;
}
if (i > match_length ){
match_l ength = i;
*mat ch_position = test _node;
if ( match length >= LOOK_AHEAD SI ZE ) {
Repl aceNode( test_node, new_node );
return( match_length );

}

f ( delta >=0)

child = &ree[ test_node ].larger_child;
el se

child = &ree[ test_node ].smaller_child;
if ( *child == UNUSED ) {
*child = new_node
tree[ new node ].parent = test node;
tree[ new_node ].larger_child = UNUSED,
tree[ new node ].smaller_child = UNUSED;
return( match_length );

)
i

}

test _node = *child;

}
}

At this point, the main comparison loop is entered. The first section executes a comparison of the
test_node and the new_node. Two pieces of information are available after falling out of the loop.
Thefirst isthe value of delta. The delta variable will be less than one if the string at new_nodeis less
than the test_node, zero if they are the same, and one if the new_node is greater. The second, found



in the loop variablei, tells how many charactersin the two strings were identical, or the
match_length for a particular string.

for (i
delta

0; i < LOOK_AHEAD SIZE ; i++ ) {
wi ndowf MOD W NDOWN new node + i ) ] -
wi ndowf MOD W NDOW test_node + i ) ];
if ( delta!=0)
br eak;
}

After the comparison code compl etes, the main loop tests whether the match for this phrase is the
longest one recorded so far. If it is, the match_length variable is updated, and the test_node position
is saved.

if (i > match_length ) {
match_length = i;
*mat ch_position = test _node;
if ( match length >= LOOK_AHEAD SIZE ) {
Repl aceNode( test_node, new_node );
return( match_length );

}
}

Frequently, the phrase in the look-ahead buffer is an exact match for the test_node. When thisisthe
case, two things happen. First, since the longest match is found, the code will exit the AddString()
routine. But before exiting, it performs a node replacement by deleting the test_node and replacing it
with the new_node. It could just add new_node to the binary tree, but thereisreally no point to it,
test_node will be redundant data taking up timein the search path if it just uses the normal insertion
code. Instead, a special routine replaces test_node with new_node and returns. This leaves a sparser
tree that can be searched more quickly. And, since test_node would have been deleted before
new_node, it doesn’'t sacrifice any compression by doing this.

The final section of the main test loop is the tree navigation step. The delta variable tells whether to
follow the larger_child or smaller_child branches from the test_node. If the child we are supposed to
follow isUNUSED, we have gone as far as we can in the tree. At this point, the code inserts
new_node into the binary tree at the correct child and returns. Otherwise, it moves to the new
test_node and goes back to the start of the test loop.

if ( delta >=0)
child = &ree[ test_node ].larger_child;
el se
child = &ree[ test_node ].smaller_child;
if ( *child == UNUSED ) {
*child = new_node
tree[ new_node ].parent = test_node;
tree[ new node ].larger_child = UNUSED,
tree[ new node ].smaller_child = UNUSED;
return( match_length );

}

test _node = *child,

DeleteString()

DeleteString() is called from the main compression loop every time a new character isread into the
look-ahead buffer. It uses a standard binary tree deletion algorithm to delete a phrase from the text
window.

DeleteString() first determines whether the nodeisreally in thetree. It is possible for the AddString



() routine to have already deleted a string because it was a duplicate. If thisis the case, the work has
been done, and the routine can return.

void DeleteString( int p)

int replacenent;
if ( tree[ p].parent == UNUSED )
return;
if ( tree[] p].larger_child == UNUSED )
Contract Node( p. tree[ p ].smaller_child );
else if ( tree[ p].smaller_child == UNUSED)
Contract Node( p, tree[ p ].larger_child );
el se {
repl acenent = Fi ndNext Node( p );
Del eteString( replacenment );
Repl aceNode( p, replacenent );
}
}

If the string is presently in the tree, there are two possibilities for a deletion strategy. If either of the
node’s children are unused, deleting the node is just a matter of closing the link between the current
node’ s parent and the child in use, effectively pulling the node out of the tree. Thisis done by a
routine called ContractNode().

Parent

Child Unused

Figure 8.9 Tree before contraction of node p.

FPamnt

Child

Figure 8.10 Tree after contraction of node p.

The situation is alittle more complicated if the node to be deleted has children on both the
larger_child and smaller_child nodes. When thisis the case, the alternate deletion algorithm has to
be used. The way to delete node p when both children are used to find the node in the tree either
directly before or indirectly after node p in the ordered list of nodes. In this program, we find the
next smaller node. Thisis done in the FindNextNode() routine and is accomplished by taking the
first smaller_child branch, then following the larger_child branches until an UNUSED smaller_child
isfound. This next smaller node in the list is the replacement node.

The replacement node is then deleted from the tree, with arecursive call to DeleteString(). Out of



control recursion is not aworry at this point, since the replacement node by definition has at |east
one UNUSED child. This means we will never go more than one level deep in our recursion.

After the replacement node has been deleted, it is used to replace the original deleted node. Thisis
done by aroutine called ReplaceNode() which ssmply insertsit in the tree in the same position as the
original node.

Binary Tree Support Routines

The support routines used by AddString() and DeleteString() are ContractNode(), ReplaceNode(),
and FindNextNode(). ContractNode() deletes a node when one of the children is UNUSED. To do
this, the used child is linked with the parent, effectively pulling the node out of the tree. The deleted
node has its parent node set to UNUSED, which iswhat is used internally to determine if anodeisin
use.

voi d Contract Node( int old node, int new node )

{

tree[ new_node ].parent = tree[ old_node ].parent;

if ( tree[ tree[ old_node ].parent ].larger_child == ol d_node )
tree[ tree[ old_node ].parent ].larger_child = new _node;

el se

tree[ tree[ old node ].parent ].snaller_child = new _node;
tree[ ol d_node ].parent = UNUSED

}

ReplaceNode() is used during the deletion process when a new_node is going to be dropped into the
tree on top of the old_node. It is assumed that the new_node is not currently linked to the tree. When
the operation completes, the old_node will have been removed, and thisis indicated by setting the
parent to UNUSED.

voi d Repl aceNode( int ol d node, int new node )

{

i nt parent;

parent = tree[ old_node ].parent;

if ( tree[ parent ].smaller_child == ol d_node )
tree[ parent ].smaller_child = new _node;

el se

tree[ parent ].larger_child = new node;

tree[ new node ] = tree[ old _node ];

tree[ tree[ new node ].snaller _child ].parent = new node;
tree[ tree[ new node ].larger_child ].parent = new_node;
tree[ ol d_node ].parent = UNUSED

}

FindNextNode() is called when the DeleteString() routine needs to find the next smaller node in the
sorted list. It first takes the smaller branch from the starting node, then follows the larger branches
until an UNUSED child islocated. The node with the UNUSED larger_child isthe next highest in
the list. This routine assumes that the node has a next smallest node, meaning it hasto have a
smaller_child branch.

i nt Fi ndNext Node( int node )
{

i nt next;

next = tree[ node ].smaller_child;

while ( tree[ next ].larger_child != UNUSED )
next = tree[ next ].larger_child;

return( next );



}
The Expansion Routine

The LZSS compression algorithm is highly asymmetrical. The compression routine isfairly
complicated, and it does quite a bit of work for every character or phrase that is compressed. In
comparison, the expansion code is extremely simple. It has very little work to do, and in fact it can
operate nearly as fast as an ordinary copy routine. This makes LZSS an excellent choice for data that
needs to be compressed once and expanded many times.

voi d ExpandFile( BIT_FILE *input, FILE *output, int argc, char *argv[] )
L

int i;

int current_position;

int c;

int match_| ength;

int match_position;

current _position = 1;

for (5 ;) {

if ( InputBit( input ) ) {

c = InputBits( input, 8 );

putc( c, output );

wi ndow current_position ] = c;

current _position = MOD WNDON current_position + 1 );

} else {
mat ch_position = InputBits( input, INDEX BI T _COUNT );
if ( match_position == END OF STREAM )
br eak;
match_l ength = I nputBits( input, LENGTH Bl T_COUNT );
mat ch_| engt h += BREAK EVEN,
for (i =0 ; i <= mtch_length ; i++ ) {
¢ = wi ndowf MOD_ W NDOW match_position + i ) ];
putc( c, output );
wi ndowf current_position ] = c;
current _position = MOD WNDOW current_position + 1 );
}
}
}
}

Virtually all the time in the expansion routine is spent in the main loop. Thefirst step readsin a
single bit. If thisis azero, the next byte will contain an unencoded character. The character is read
in, output to the file, and put in the text window at the current position.

If the input bit was a one instead of a zero, the expansion routine reads in a match_position and
length instead of a character. It checksto seeif the match_position is actually the encoded
END_OF STREAM message. If so, the program is done, and it can exit. Otherwise, the
match_length isread in and adjusted to range 2 through 17.

Once the match_position and length are known, a short loop executes. In thisloop, the character
from the match string is pulled out of the text window, stored in the file, and put in the window at the
current position, which is then updated.

That isthe entire expansion routine. It is easy to see why expansion takes place so quickly.

| mprovements



While LZSS makes for afairly good compression algorithm, improvements can be made to it. For
instance, LZSS compresses poorly when it starts since it does not have any data in the text window
for matches. It isfairly ssmple to preload the window with WINDOW_SIZE-LOOK_AHEAD_SIZE
characters, then add all the appropriate strings to the binary tree.

The trouble with preloading the window is deciding what to preload it with, since we have no idea
what type of datawill come up in the input stream. Probably the easiest thing to do isto insert 256
strings that contain 16 consecutive occurrences of all of the possible symbols in the alphabet.
Unfortunately, runs of repeated characters are the types of initial data that will be helped the least by
preloading, but there will be some improvement.

Much experimentation can be done with the number of bits used in the index and the length codes. It
is possible to achieve better compression by increasing the number of bits used for each of these, but
there are at least two negative effects. First, the compression speed will suffer as the window grows,
due to the extrawork required to navigate and maintain alarger binary tree. Second, compression of
smaller fileswill suffer due to the increased time needed to build afull dictionary. Some of this
startup overhead can be reduced by starting the compression code with a smaller code size and
working up to the larger sizes asthe dictionary fills up.

One way the programs used here can be sped up dramatically is by using blocked I/O. The tokens
output by the compression program here are all exactly either one or two bytes. It is possible to
buffer these bytes up while accumulating the flag bits. When eight flag bits have been output, the
flag byte can be sent, followed by between 8 and 16 bytes of byte-oriented data. Since the eight to
sixteen bytes can be written using conventional byte-oriented code, the compression routines will run
considerably faster.

Another technique which speeds up both compression and expansion is to create a “ ghost buffer” at
the end of the text window. In the case of this program the ghost buffer would hold seventeen
characters, which would be identical to the charactersin the first seventeen locations of the window.
By maintaining a copy of the first seventeen bytes in the ghost buffer, the comparison routines can
run without using modul o arithmetic on the indices. Since the compression program spends so much
time on string comparison, this resultsin big time savings.

Onefinal bit of inefficiency found in LZSS relates to the handling of duplicate strings. We remove
duplicate strings from the binary tree, but we leave them in the text window, where they take up
valuable space. It is possible to free up the space used by these duplicate strings in the text window,
allowing for expansion of the dictionary. However, the side effect of thisis that the decompression
program has to keep track of duplicate strings, which will result in a significant cutback in expansion
Speed.

The Code

/*********************** Start Of LZSS C***********************

This is the LZSS nodul e, which inplenments an LZ77 style conpression
algorithm As inplenented here it uses a 12 bit index into the sliding
wi ndow, and a 4 bit length, which is adjusted to reflect phrase

| engt hs of between 2 and 17 bytes.

* X X F

*
~

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#include "bitio.h"



*

Various constants used to define the conpression paraneters. The

| NDEX_BI T_COUNT tells how many bits we allocate to indices into the
text window. This directly deternines the WNDOW SI ZE. The

LENGTH BI T_COUNT tells how many bits we allocate for the | ength of
an encode phrase. This deternines the size of the | ook-ahead buffer.
The TREE ROOT is a special node in the tree that always points to

t he root node of the binary phrase tree. END OF_ STREAM i s a speci al
i ndex used to flag the fact that the file has been conpletely

¥ 0% % 3k Sk X Xk kX X Xk T~

encoded, and there is no nore data. UNUSED is the null index for
the tree. MOD WNDOA) is a nmacro used to performarithnetic on tree
i ndi ces.
/
#defi ne | NDEX_BI T_COUNT 12
#defi ne LENGTH BI T_COUNT 4
#defi ne W NDOW SI ZE ( 1 << I NDEX_BI T_COUNT )
#defi ne RAW LOOK AHEAD SIZE ( 1 << LENGTH BI T_COUNT )
#defi ne BREAK_EVEN ( (1 + INDEX_BIT_COUNT +
LENGTH BIT_COUNT ) / 9 )
#defi ne LOOK_AHEAD_SI ZE ( RAW LOOK_AHEAD S| ZE + BREAK_EVEN)
#def i ne TREE_ROOT W NDOW S| ZE
#defi ne END_OF _STREAM 0
#def i ne UNUSED 0
#define MOD_W NDOWN a ) ((a) &( WNDOWSIZE - 1) )
char *Conpressi onName = "LZSS Encoder";
char *Usage = "in-file out-file\n\n";
/*

* These are the two global data structures used in this program

* The window] array is exactly that, the wi ndow of previously seen

* text, as well as the current |ook-ahead text. The tree[] structure
* contains the binary tree of all of the strings in the w ndow sorted
* in order.

*/

unsi gned char w ndow W NDOW SI ZE ];

struct {

i nt parent;

int snaller_child;

int larger_child;

} tree WNDOWSI ZE + 1 ];

/*
* Function prototypes for both ANSI C conpilers and their K&R brethren.
*/

#ifdef _ STDC

void InitTree( int r );

void Contract Node( int old_node, int new_node );

voi d Repl aceNode( int old_node, int new_node );

i nt Fi ndNext Node( int node );

void DeleteString( int p);

int AddString( int new node, int *match_position );

void ConpressFile( FILE *input, BIT_FILE *out put,
int argc, char *argv[] );

voi d ExpandFile( BIT_FILE *input, FILE *output, int argc, char *argv[] );



#el se

void InitTree();
voi d Contract Node();
voi d Repl aceNode();
i nt Fi ndNext Node();
void DeleteString();
int AddString();
voi d ConpressFile();
voi d ExpandFil e();

#endi f

/*
* Since the tree is static data, it comes up with every node
* initialized to 0, which is good, since 0 is the UNUSED code.
* However, to nake the tree really usable, a single phrase has to be
* added to the tree so it has a root node. That is done right here.
*/
void InitTree( r )
int r;
{
tree[ TREE ROOT ].larger_child = r;
tree[ r ].parent = TREE ROOT;
tree[ r ].larger_child = UNUSED
tree[ r ].smaller_child = UNUSED
}

/-k

* This routine is used when a node is being deleted. The link to

* its descendant is broken by pulling the descendant in to overlay
* the existing |ink.

*/

voi d Contract Node( ol d_node, new node )

i nt ol d_node;

i nt new_node;

tree[ new node ].parent = tree[ old _node ]. parent;

if ( tree[ tree[ old_node ].parent ].larger_child == old_node )
tree[ tree[ old node ].parent ].larger_child = new node;

el se

tree[ tree[ old_node ].parent ].smaller_child = new_node;
tree[ old_node ].parent = UNUSED

}

/*

* This routine is also used when a node is being del eted. However,

* in this case, it is being replaced by a node that was not previously
* in the tree.

*/

voi d Repl aceNode( ol d_node, new_node )

i nt ol d_node;

i nt new _node;

{

i nt parent;

parent = tree[ ol d_node ].parent;

if ( tree[ parent ]J.smaller_child == ol d_node )
tree[ parent ].snmaller_child = new node;
el se

tree[ parent ].larger_child = new_node;

tree[ new node ] = tree[ ol d_node ];

tree[ tree[ new node ].smaller_child ].parent = new_node;
tree[ tree[ new node ].larger_child ].parent = new _node;



tree[ old _node ].parent = UNUSED
}

/*

* This routine is used to find the next snallest node after the node
* argunent. It assunes that the node has a smaller child. W find

* the next smallest child by going to the smaller_child node, then

* going to the end of the larger_child descendant chai n.

*/

i nt Fi ndNext Node( node )

i nt node;

{

i nt next;

next = tree[ node ].smaller_child;

while ( tree[ next ].larger_child !'= UNUSED )
next = tree[ next ].larger_child;

return( next );

}

/*

* This routine perforns the classic binary tree deletion algorithm

* |f the node to be deleted has a null link in either direction, we

* just pull the non-null link up one to replace the existing link

* |f both Iinks exist, we instead delete the next link in order, which

* |s guaranteed to have a null link, then replace the node to be deleted
* with the next I|ink.

*

~

void DeleteString( p)
int p;
{

i nt replacenent;

if ( tree[ p].parent == UNUSED )

return;

if ( tree[ p].larger_child == UNUSED )
Contract Node( p, tree[ p ].smaller_child );
else if ( tree[ p].smaller_child == UNUSED )
Contract Node( p, tree[ p ].larger_child );
el se {

repl acenent = Fi ndNext Node( p );

Del eteString( replacenment );

Repl aceNode( p, replacenent );

}

—

*

This where nost of the work done by the encoder takes place. This

routine is responsible for adding the new node to the binary tree.
It also has to find the best match anong all the existing nodes in
the tree, and return that to the calling routine. To nake matters

even nore conplicated, if the new node has a duplicate in the tree
the ol d_node is deleted, for reasons of efficiency.

* 0% %k kX X T~

~

i nt AddString( new_node, match_position )
i nt mew_node;
int *match_position;
L
int i;
int test_node;
int delta;
int match_l ength;
int *child;



}

L I S T B e

~

if ( new_node == END_OF_STREAM )
return( 0 );
test_node = tree[ TREE_ROOT ].larger_child;
match_l ength = O;
for (; ;) {
for (i =0 ; i < LOOK_AHEAD SIZE ; i++ ) {
delta = windonf MOD WNDOAN new node + i ) ] -
wi ndowf MOD W NDOW test_node + i ) 1;
if ( delta'!=20)
br eak;
}
if (i > match_length ) {
match_l ength = i;
*mat ch_position = test _node;
if ( match_length >= LOOK _AHEAD SI ZE ) {
Repl aceNode( test_node, new _node );
return( match_length );

}

}
if ( delta >=0)
child = &ree[ test_node ]. larger_child;
el se
child = &ree[ test_node ].smaller-child;
if ( *child == UNUSED ) {
*child = new_node
tree[ new_node ].parent = test_node;
tree[ new_node ].larger_child = UNUSED,
tree[ new node ].snaller_child = UNUSED;
return( match_length );
}

test _node = *child;

}

*

This is the conpression routine. It has to first |load up the | ook
ahead buffer, then go into the main conpression |oop. The main | oop
deci des whether to output a single character or an index/length
token that defines a phrase. Once the character or phrase has been
sent out, another loop has to run. The second | oop reads in new
characters, deletes the strings that are overwitten by the new
character, then adds the strings that are created by the new
character.

voi d ConpressFile( input, output, argc, argv )
FI LE *i nput;
BI T_FI LE *out put;

nt argc;

char *argv[];

{

int i;

int c;

i nt | ook _ahead bytes;
int current_position
int replace_count;
int match_l engt h;

i nt match_position;

current _position =1

for (i =0 ; i < LOXK AHEAD SIZE ; i++ ) {
if ( (¢ =getc( input ) ) == EOF)
br eak;



wi ndow[ current_position + i ] = (unsigned char) c;
}
| ook_ahead_bytes = 1;
InitTree( current_position );
match_l ength = O;
mat ch_position = 0;
while ( | ook _ahead_bytes > 0 )
if ( match_length > | ook_ahead_bytes )
mat ch_l ength = | ook_ahead_byt es;
if ( match_length <= BREAK EVEN ) {
repl ace_count = 1;
QutputBit( output, 1 );
Qut put Bi t s( out put,
(unsigned I ong)wi ndow current_position ], 8 );
} else {
Qut putBit( output, 0 );
Qut put Bi t s( out put,
(unsigned | ong) match_position, | NDEX Bl T_COUNT );
Qut put Bi t s( out put,
(unsigned long) ( match_length - ( BREAK_ EVEN + 1 ) ),
LENGTH_BI T_COUNT );
repl ace_count = match_| engt h;
}
for (i =0 ; i <replace_count ; i++ ) {
Del eteString( MOD WNDON current_position + LOOK AHEAD SI ZE ) );
if ( ( ¢ =getc( input ) ) == EOF)
| ook_ahead_byt es--;
el se
wi ndow[ MOD W NDOW ( current_position + LOOK AHEAD SI ZE ) ]
= (unsigned char) c;
current position = MOD WNDOW current_position + 1 );
if ( ook ahead_bytes )
match_l ength = AddString( current_position, &match_position );
}
}
QutputBit( output, 0 );
Qut put Bi t s( out put,
(unsigned |1 ong) END OF STREAM | NDEX_BI T_COUNT) ;
while ( argc-- > 0)
printf( "Unknown argunent: %s\n", *argv++ );

/*
* This is the expansion routine for the LZSS algorithm Al it has
*todois read in flag bits, decide whether to read in a character or

* a index/length pair, and take the appropriate action
*/

voi d ExpandFil e( input, output, argc, argv )
BI T_FI LE *i nput;

FI LE *out put;

int argc;

char *argv[];

int i;

int current_position
int c;

int match_l ength;

int match_ position;

current _position = 1;

for (; ;) {
if ( InputBit( input ) ) {
c = (int) InputBits( input, 8);



putc( c, output );

wi ndowf current_position ] = (unsigned char) c;
current _position = MOD WNDOA current_position + 1 );
} else {

mat ch_position = (int) InputBits( input, |INDEX BI T _COUNT );
if ( match_position == END OF STREAM )
br eak;
match_length = (int) InputBits( input, LENGIH BI T_COUNT );
mat ch_| engt h += BREAK_EVEN,
for (i =0 ; i <= mtch_length ; i++) {
¢ = wi ndow| MOD W NDOWN nmatch_position + i ) ];
putc( c, output );
wi ndow{ current_position ] = (unsigned char) c;
current _position = MOD WNDOWN current_position + 1 );
}
}
}
while ( argc-- > 0)
printf( "Unknown argument: 9%\n", *argv++ );

}

/************************* End Of LZSS C*************************/



Chapter 9
LZ78 Compression

The LZ77 algorithms have a deficiency that must have troubled their creators, Jacob Ziv and
Abraham Lempel. These algorithms use only a small window into previously seen text, which means
they continuously throw away valuable phrases because they slide out of the dictionary. The phrase
“Jacob Ziv,” for example, may have appeared in the text in Chapter 7. If this book were being
compressed using an LZ77 agorithm, it almost certainly would not appear in the sliding window by
the time we arrived at this chapter. But the book would compress better if “Jacob Ziv”’ did appear in
the dictionary, since it shows up four or five times in scattered locations throughout the text.

The sliding window makes LZ77 algorithms biased toward exploiting recency in the text. Many, but
not all, streams of datatend to “look” more like what has been seen recently than what was seen long
ago. Encoding atelephone book is a good example of this. After encoding the first “Jones’ entry, it
would seem that the word “ Jones” was showing up everywhere. But the word “ Adams,” seen long
ago, would probably not show up at all. As we moved through the phone book, recency effects
would be patently obvious, and LZ77 would take advantage of them.

While compressing the phone book, if we looked carefully, we would also notice that some datawas
more or lessimmune to recency effects. The street address associated with each listing, for example,
would only show the effect faintly, when two listings with the same last name lived at the same
address. Thiswould result in fewer matches to text in the window, leading to less effective
compression.

A second deficiency in LZ77 compression is the limited size of a phrase that can be matched. The
longest match is approximately the size of the look-ahead buffer, which in the previous chapter was
just 17 bytes. Many of the seventeen-byte matches found when compressing using that algorithm
may actually be much longer.

Can LZ77 Improve?

One obvious way to tackle these problemsis simply to start tinkering with the size of the window
and the size of the |look-ahead buffer. Instead of using a4K window and a seventeen-byte buffer, for
example, why not use a 64K text window and a 1K look-ahead buffer? Wouldn’t that address both
problems effectively?

While raising the size of both parameters does seem to address these problems, the scheme has two
major drawbacks. First, when we increase the buffer size from 4K to 64K, we now need sixteen bits
to encode an index location instead of twelve. And instead of needing four bits to encode a phrase
length, we now need ten. So the cost of encoding a phrase rises from seventeen bits to twenty-seven.

This 50 percent increase in the bit size of an index/Iength token can have a severely negative impact
on the compression algorithm. For one thing, it will change the BREAK_EVEN point in the program
from just under two characters to three characters. This means that matches of three or fewer
characters will no longer be effectively coded in index/length tokens and will instead have to be
encoded as single characters. Encoding data as single characters is actually less efficient than plain
text, since it needs an additional bit to indicate that a normal character is coming.

An even more distressing effect is that changing these parameters will drastically increase the
amount of CPU time needed to perform compression. Under LZ77, just changing the text window
size from 4K to 64K will result in the average search taking sixteen times longer, since every string
in the window is compared to the look-ahead buffer. The situation is somewhat better under LZSS,
since the strings are kept in abinary tree. In this case, the runtime cost of the window sizeis



proportional to the logarithm of the window size. But this still means over a 30 percent increase in
runtime.

Thereal penalty comes when the size of the look-ahead buffer isincreased. Since our string
comparisons between the text window phrases and the look-ahead buffer proceed sequentially, the
runtime here will increase in direct proportion to the length of the look-ahead buffer. Going from
sixteen to 1,024 characters means this portion of the program is going to run sixty-four times more
slowly—a costly penalty indeed.

These effects combine to effectively cancel out any gains from increasing either of these parameters
inan LZ77 algorithm. And even with a 64K text window, we are still effectively tied to an algorithm
that depends on recency to perform adequate compression.

Enter LZ78

To effectively sidestep these problems, Ziv and Lempel developed a different form of dictionary-
based compression. This algorithm, popularly referred to as LZ78, was published in “ Compression
of Individual SequencesviaVariable-Rate Coding” in |EEE Transactions on Information Theory
(September 1978).

L Z78 abandons the concept of atext window. Under LZ77 the dictionary of phrases was defined by
afixed window of previously seen text. Under LZ78, the dictionary is a potentially unlimited list of
previously seen phrases.

LZ78 issimilar to LZ77 in some ways. LZ77 outputs a series of tokens. Each token has three
components. a phrase location, the phrase length, and a character that follows the phrase. LZ78 also
outputs a series of tokens with essentially the same meanings. Each LZ78 token consists of a code
that selects a given phrase and a single character that follows the phrase. Unlike LZ77, the phrase
length is not passed since the decoder knowsiit.

Unlike LZ77, LZ78 does not have a ready-made window full of text to use as adictionary. It creates
anew phrase each time atoken is output, and it adds that phrase to the dictionary. After the phraseis
added, it will be available to the encoder at any time in the future, not just for the next few thousand
characters.

LZ78 Details

When using the LZ78 agorithm, both encoder and the decoder start off with a nearly empty
dictionary. By definition, the dictionary has a single encoded string—the null string. As each
character isread in, it is added to the current string. Aslong as the current string matches some
phrase in the dictionary, this process continues.

But eventually the string will no longer have a corresponding phrase in the dictionary. Thisiswhen
LZ78 outputs atoken and a character. Remember that the string did have a match in the dictionary
until the last character was read in. The current string, therefore, is defined as that |ast match with
one new character added on. Thisiswhat LZ77 outputs: the index for the previous match and the
character that broke that match.

But at this point, LZ78 takes an additional step. The new phrase, consisting of the dictionary match
and the new character; is added to the dictionary. The next time that phrase appears, it can be used to
build an even longer phrase.

A code fragment to implement this algorithm is shown next. Some of the detail has been glossed



over, but thisisafairly faithful representation of the algorithm.

for (5 ;) {

current _match = 1;

current _length = 0;

menset ( test_string, '\0', MAX STRING );
for (5 ;) {

test_string[ current_length++ ] = getc( input );
new match = find _match( test_string );
if ( newmtch == -1)

br eak;

current _match = new_match;

}

out put _code( current_match );
out put _char( test_string[ current_length - 1] );
add_string to_dictionary( test_string );

}

By definition, the empty string will always match string O, the null node in the dictionary. Thus,
when we encounter a character for the first time, it is encoded as phrase O plus the new character.
The next time that character appears, it will be encoded as part of a phrase.

An example of the encoder output follows. The input text is a sequence of words from the dictionary
of aspelling checker. The LZ78 encoder starts encoding with no phrases in the dictionary; therefore,
the first character it reads in from the input text, ‘D’, creates a string that has no match in the
dictionary. The encoders will then output a phrase/character pair, in this case 0 and ‘D’. Remember
that the dictionary starts up with zero defined as the empty phrase.

Input text: "DAD DADA DADDY DADO..."

Output Phrase Output Character Encoded String
0 ‘D’ “D”

0 ‘A “A”

1 o “D*

1 ‘A “DA”

4 Cf “DA“

4 ‘D’ “DAD”

1 ‘Y’ “DY”

0 o “

6 ‘o “DADO”

Thefirst two characters to come through the encoder, ‘D’ and ‘A,’ have not been seen before. Each
will have to be encoded as a phrase, 0+ character pair. “D” is added to the dictionary as phrase 1, and
“A” isadded as phrase 2.

When the third character, ‘D, isread in, it matches an existing dictionary phrase. The* ’ character,
the next character read in, creates a new phrase with no match in the dictionary. LZ78 will output
code 1 for the previous match (the D string), then the“ " character.

As the encoding continues, the dictionary quickly builds up fairly long phrases. Of course, since
these entries are from a dictionary sorted in alphabetical order, we probably build up phrases much
faster than would normally be the case. After just nineteen characters have been read in and encoded,



the dictionary looks like the one following.

«p
“p
«py”
“DA”
“DA”
“DAD”
«py”

1] DADO”

O© 0o ~NO Ol b~ WDNPEF O

L Z78 Implementation

LikeLZ77, LZ78 can arbitrarily set the size of the phrase dictionary. And like LZ77,in LZ78 we
have to worry about the effects of thisin two ways. First, we have to consider the number of bits
allocated in the output token for the phrase code. Second, and more importantly, we have to consider
how much CPU time managing the dictionary will take.

In theory, LZ78 should compress better and better as the size of the dictionary increases. But this
only holds true as the length of the input text tends towards infinity. In practice, smaller files will
quickly begin to suffer as the code size grows larger.

Thereal difficulty with LZ78 actually comes in managing the dictionary. If we use a sixteen-bit code
for the phrase index, for example, we can accommodate 65,536 phrases, including the null code. The
phrases can vary tremendously in length, including the improbable possibility of 65,536 different
versions of aphrase composed of runs of asingle, repeated character.

These phrases are conventionally stored in a multiway tree. The tree starts at aroot node, 0, the null
string. Each possible character that can be added to the null string is a new branch of the tree, with
each phrase created that way getting a new node number.

g

Figure9.1 AnLZ78 Dictionary Tree.



The dictionary tree shown here would be created after the previous nineteen-character phrase was
encoded. The mgjor difficulty with managing atree such asthisis the potentially large number of
branches off of each node. When compressing binary files with an eight-bit a phabet, 256 branches
off of each node are possible. We could simply allocate an array of indices or pointers at each node
that was large enough to accommodate all 256 possible descendants. But since most nodes will not
have that many descendants, it would be incredibly wasteful to allocate so much storage. Instead,
descendant nodes are usually managed as alist of indices no longer than the number of descendant
nodes that actually exits. This technique makes better use of available memory, but it isalso
significantly slower. It is essentially the same technique used in chapter 6 to perform higher-order
modeling of data streams.

With atree like this, comparing an existing string to the dictionary issimple. It isjust a matter of
walking through the tree, traversing a single node of the tree for every character in the phrase. If the
phrase terminates at a particular node, we have a match. If there are more phrases but we have
reached aleaf node, there is not a match. After the symbol has been encoded, adding it to the leaf
node is also simple—just a matter of adding space to the descendant list, then inserting a new
descendant node at the node last matched.

One negative side effect of LZ78 not found in LZ77 is that the decoder has to maintain thistree as
well. With LZ77, adictionary index was just a pointer or index to a previous position in the data
stream. But with LZ78, the index is the number of a node in the dictionary tree. The decoder,
therefore, has to keep up the tree in exactly the same fashion as the encoder, or a disastrous
mismatch will occur.

Another issueignored so far is that of the dictionary filling up. Regardless of how big the dictionary
spaceis, itisgoing to fill up sooner or later. If we are using a sixteen-bit code, the dictionary will fill
up after it has 65,535 phrases defined in it.

There are several alternative choices regarding afull dictionary. Probably the safest default choiceis
to stop adding new phrases to the dictionary after it isfull. Thisonly requires an extraline or two of
code inthe add phrase to_dictionary() routine.

But just leaving the dictionary alone may not be the best choice. When compressing large streams of
data, we may see significant changes in the character of the incoming data. When compressing a
program’ s binary image (such as an EXE file), for example, we would expect to see amajor shift in
the statistical model of the data as we move out of the code section of the file and into the data
section.

If we keep using our existing phrase dictionary, we may be stuck with an out-of-date dictionary that
isn’t compressing very well. At the same time, we have to be careful not to throw away a dictionary
that is compressing well.

The UNIX compress program, which uses an LZ78 variant, manages the full dictionary problem by
monitoring the compression ratio of thefile. If the compression ratio ever starts to deteriorate, the
dictionary is deleted and the program starts over from scratch. Otherwise, the existing dictionary
continues to be used, though no new phrases are added to it.

An Effective Variant

Aswith LZ77, LZ78 was first published in aresearch journal and discussed in avery technical and
abstract fashion. It wasn't until 1984 that a variant of LZ78 made headway in the programming
world. Thiswas when Terry Welch published “A Technique for High-Performance Data
Compression” in |EEE Computer.



Work on the UNIX compress program began almost immediately after Terry Welch's article
appeared. The technique Welch described, and the implementation in compress, are referred to as
LZW compression.

LZSS improved on LZ77 compression by eliminating the requirement that each token output a
phrase and a character. LZW makes the same improvement on LZ78. In fact, under LZW, the
compressor never outputs single characters, only phrases.

To do this, the mgjor change in LZW isto preload the phrase dictionary with single-symbol phrases
egual to the number of symbolsin the alphabet. Thus, there is no symbol that cannot be immediately
encoded even if it has not already appeared in the input stream.

The LZW compression algorithm in its simplest form follows. A quick examination of the algorithm
shows that LZW always tries to output codes for strings that are already known. And each time a
new code is output, a new string is added to the string table.

old_string[ O] = getc(input);
old_string[ 1] ="\0";
while ( !'feof( input ) ) {
character = getc( input );
strcpy( new string, old string );
strncat ( new string, &character, 1 );
if ( in_dictionary( new string ) )
strcpy( old_string, new.string );
el se {
code = |l ook _up_dictionary( old string );
out put code( code );
add_to_dictionary( new string );

old string[ O] = character
old_string[ 1] ="'\0";

}

code = | ook_up_dictionary( old string );

out put _code( code );

A sample string used to demonstrate the algorithm is shown next. The input string is a set of English
words from a spelling dictionary, separated by the* * character. On the first pass through the loop, a
check is performed to see if the string “ W” isin the table. Sinceit isn't, the code for “ ” is output,
and the string “ W” is added to the table. Since the dictionary has codes 0-255 already defined as the
256 possible character values, the first string definition is assigned to code 256. After the third
letter,' E’, has been read in, the second string code, “WE”, is added to the table, and the code for
letter ‘W’ is output. In the second word, the characters‘ * and ‘W’ are read in, matching string
number 256. Code 256 is then output, and a three-character string is added to the string table. The
process continues until the string is exhausted and all codes have been output.

Input String: " WED WE WEE WEB WET "

CharactersInput Code Output New code value and associated string
“W” © 256 =" W~

“E ‘W’ 257 =“WE"

“D” ‘E’ 258 =“ED”

“ “D” 259=“D"

“WE” 256 260 = “WE"

“ ‘E’ 261 ="F"

“WEFE” 260 262 =“ WEE”



‘W 261 263=“EW”

“EB” 257 264 = “WEB”
“r B 265="“B”
“WET” 260 266 =“ WET”
<EOF> T

The sample output for the string is shown with the resulting string table. The string table fills up
rapidly, since anew string is added each time a code is output. In this highly redundant input, five
code substitutions were output, along with seven characters. If we were using nine-bit codes for
output, the nineteen-character input string would be reduced to a 13.5-byte output string. Of course,
this example was carefully chosen to demonstrate code substitution. In real world examples,
compression usually doesn’t begin until a sizable table has been built, usually after at least one
hundred or so bytes have been read in.

Decompr ession

The companion algorithm for compression is the decompression algorithm. It takes the stream of
codes output from the compression algorithm and uses them to recreate the exact input stream. One
reason for the efficiency of the LZW algorithm is that it does not need to pass the dictionary to the
decompressor. The table can be built exactly asit was during compression, using the input stream as
data. Thisis possible because the compression algorithm always outputs the phrase and character
components of acode before it usesit in the output stream, so the compressed data is not burdened
with carrying alarge dictionary.

old string[ O] = input_bits();
old string[ 1] ="\0";
putc( old_string[ O], output )
while ( ( new_code = input_bits() ) != ECF)
new_string = dictionary_|l ookup( new_code );
fputs( new string, output );
append_char _to_string( old string, newstring[ 0] );
add_to_dictionary( old_string );
strcpy( old_string, new.string );

}

Preceding is arough C implementation. Like the compression algorithm, it adds a new string to the
string table each time it reads in a new code. In addition, it translates each incoming code into a
string and sends it to the output.

Following is the output of the algorithm given the input created by the earlier compression. Note that
the string table ends up looking exactly like the table built during compression. The output string is
identical to the input string from the compression algorithm. Note also that the first 256 codes are
already defined to trandlate to single-character strings, as in the compression code.

Input Codes: "WED<256>E<260><261><257>B<260>T"

Input/ STRING/ New table entr
NEW_CODE OLD_CODE Output CHARACTER y

‘W o ‘W ‘W 256 ="“W"
£ E1 iW1 1] E” ‘ E’ 257 - “WE”



£ D’ ‘ E’ 1] D” ‘ D1 258 - 1] ED”

256 ‘D’ “W” o 259 =“D”"

‘E 256 “E" ‘E 260 =“ WE”"
260 ‘E “ WE” o 261 =“F"
261 260 “E“ ‘E 262 =“ WEFE”
257 261 “WE” ‘w 263=“EW”"
‘B’ 257 “B” ‘B’ 264 = “WEB”
260 ‘B’ “WE” o 265="B"

‘T 260 “T" ‘T 266 =“ WET”
The Catch

Unfortunately, the decompression algorithm shown is just alittle too simple. A single exception in
the LZW compression algorithm causes some trouble in decompression. Each time the compressor
adds a new string to the phrase table, it does so before the entire phrase has actually been output to
thefile. If for some reason the compressor used that phrase as its next code, the expansion code
would have a problem. It would be expected to decode a string that was not yet in its table.

Unfortunately, there isaway this can occur. If there is a phrase already in the table composed of a
CHARACTER, STRING pair, and the input stream then sees a sequence of CHARACTER,
STRING, CHARACTER, STRING, CHARACTER, the compression agorithm will output a code
before the decompressor definesiit.

A simple example will illustrate the point. Imagine the string IWOMBAT is defined in the table as
code 300. Later, the sequence IWOMBATIWOMBATI occursin the table. The compression output
will look like the following:

Input String: IWOMBAT....... IWOMBATIWOMBATIXXX

<Problem section>

New code value and
Character Input associated string Code Output
ol
WOMBATA 300 = IWOMBAT 288 (IWOMBA)
vl . .
WOMBATI 400 = IWOMBATI 300 (IWOMBAT)
WOMBATIX 401 = IWOMBATIX 400 (IWOMBATI)

When the decompression algorithm sees this input stream, it first decodes code 300 and outputs the
IWOMBATI string. It will then add the definition for code 399 to the table, whatever that may be. It
then reads the next input code, 400, and finds that it is not in the table.

Fortunately, thisisthe only time when the decompression algorithm will encounter an undefined
code. Sinceit isthe only time, we can add an exception handler to the algorithm. The modified



algorithm just looks for the special case of an undefined code and handles it. In the sample, the
decompression routine sees a code of 400. Since 400 is undefined the program goes back to the
previous code/string, which was “IWOMBAT”, or code 300. It then appends the first character of the
string to the end of the string, yielding “IWOMBATI,” the correct value for code 400. Processing
then proceeds as normal.

The exception handler takes advantage of the knowledge that this problem can happen only in the
special circumstances of CHARACTER+ STRING+CHARACTER+STRING+CHARACTER.
Given that, any time an unknown code occurs, it can determine what the unknown codeis given
knowledge of the previous string from the input.

old _string[ O] i nput _bits();
old string[ 1] "\0';
putc( old_string[ O], output )
while ( ( new_code = input_bits() ) !'= EOF ) {
new_string = dictionary_|l ookup( new_code );
if ( newstring == NULL ) {
strcpy( new string, old string );
append_character_to_string( new string, newstring[ 0] );

}

fputs( new_string, output );

append_character _to _string( old string, newstring[ 0] );
add to _dictionary( old_string );

strcpy( old_string, new. string );

}

LZW Implementation

The concepts in the compression algorithm are so simple that the whole algorithm can be expressed
in adozen lines. Implementation of this algorithm is somewhat more complicated, mainly due to
management of the dictionary. A short example program that uses twelve-bit codesisin LZW12.C,
and it will illustrate some of the techniques used here.

Tree Maintenance and Navigation

Asinthe LZ78 algorithm, the LZW dictionary is maintained as a multiway tree. But in the case of
LZW, the way the datais stored doesn’t look much like atree. A little analysis, however will reveal
amultiway tree hidden behind the dictionary data structures.

struct dictionary {
i nt code_val ue;
i nt parent_code;
char character;

} dict[ TABLE SIZE ];

The structure shown in the preceding figure holds the entire dictionary tree. Each element in the data
structure represents a single node. The node is defined by three items:. (1) Code value. This number
isthe actual code for the string that terminates at this node and is what the compression program
emits when it wants to encode the string; (2) Parent_code. Under LZ78-style compression, every
string in the dictionary has a parent string one character shorter than it. Thisinteger isthe code for
that parent string; (3) Character. Thisisthe character for this particular node. If the string encoded
by the parent of anode were “GREENLEA,” and the character value was“F,” this node would
encode “GREENLEAF.”

Something that immediately becomes noticeable as a problem hereis that each dictionary node does
not have a pointer or pointersto its child nodes. As we navigate the tree, how are we supposed to



find the children of each node if there are no pointers to children?

The answer isthat this tree maintains the dictionary pointers through a hashed array of nodes. To
find the child of a particular node, we apply a hashing function to see where that puts usin thelist.
The hashing function used in LZW12.C is shown next.

unsigned int find_child_node( parent_code, child_character )
i nt parent_code;
int child character;
{
int index;
int offset;

i ndex = ( child_character << ( BITS - 8 ) ) ™ parent_code;
if ( index == 0)

of fset = 1;

el se

of fset = TABLE S| ZE - i ndex;
for (5 ;) {

if ( dict[ index ].code_value == UNUSED )

return( index );

if ( dict[ index ].parent_code == parent_code &&

dict[ index ].character == (char) child _character )
return( index );
i ndex -= offset;

if ( index <0)
i ndex += TABLE Sl ZE
}

}

This hashing function is essentially the same one used in the UNIX compress program. It combines
the numeric values of the parent_code and the child_character to form a sixteen-bit offset into the list
of nodes. After finding the target node, it checks for collisions, since that node may be in use by
some other element in the tree. Eventually, one of two things happens. Either this function finds a
node already defined as belonging to the parent and child, or it finds an empty node that can be used
that way.

This hashing function performs fairly well. The collision avoidance mechanism depends on having
TABLE_SIZE be a prime number, and performance depends on it being at least 20 percent larger
than two raised to the BITS power. In LZW12.C, TABLE_SIZE needsto be larger than 4,096. The
number actually used was 5,021.

With the hashing function in place, we can now effectively navigate down through the tree. The data
structures used to maintain the dictionary during compression don’t help us move up the tree, but
during compression we don’t need to move up the tree, only down.

During decompression, the hashing function is no longer used. Instead, each node in the tree has its
parent code and character value stored at the array offset defined by its own code. This allows for
quick lookup of dictionary values, which lets us move up the tree quickly. We need to move up the
tree during decompression to determine the entire contents of a string, and this different storage
method makes this possible. We never need to move down the tree during decompression, so the
hashing function is no longer needed.

One additional feature of the dictionary tree used in LZW12.C needs explanation. The first 256
nodes are considered “specia” nodes by the program. Each of them represents the one character
string that corresponds with its node value. In other words, code 65 will always represent the
character “A,” and it will automatically be assumed not to have a parent. These nodes are all
predefined when the program isfirst initialized.



Compression

Armed just with the hashing function and the data structure, the compression program can be written
fairly easily. The program goes through a short initialization phase, then sitsin an encoding loop
reading characters in and sending codes out. Finally, it does a small amount of cleanup work, then
exits.

next code = FI RST CODE

for (i =0 ; i < TABLE SIZE ; i++ )
dict[ i ].code_value = UNUSED,

if ( ( string_code = getc( input ) ) == EOF)
string_code = END_OF STREAM

while ( ( character = getc( input ) ) !'= EOF ) {
i ndex = find_child _node( string_code, character );

if ( dict[ index ].code_value !'= - 1)
string_code = dict[ index ].code_val ue;
el se {

if ( next_code <= MAX CODE ) {
dict[ index ].code_value = next_code++;
dict[ index ].parent-code = string_code;
dict[ index ].character = (char) character

}
Qut putBits( output, string code, BITS );
string_code = character;

}

}
Qut putBits( output, string code, BITS );
Qut putBits( output, END OF STREAM BITS );

Thisroutine first initializes the dictionary array. It does this by marking al nodesin the tree as
unused. Remember that the first 256 nodes are special and will be considered used automatically.

The next_code variable is then set to the first available code. This program uses code 256 as an end-
of-file marker, so the first code defined will have avalue of 257. As new strings are read in and
defined, this number grows until it reaches the maximum code value of 4,095.

Finally, the first character isread in and assigned to the loop variable string_code. We can arbitrarily
assign the first character to a code value, since it is a special single-character string.

After initidlization, the main encoding loop begins. The working variable, string_code, keeps track
of which code matches the characters read in so far. When the program first starts, that isjust as
single-character string, but as the dictionary grows, string_code can represent very long strings.

A single character isread in from the input file, then find_child_node() is called to seeif the current
string_code has a child node that corresponds to that character. If it does, the child' s code is assigned
to string_code, and we move back to the top of the loop.

If there is no child node, we have reached the end of our string match. When this occurs, we output
the current code, then start over with a new string_code. Finally, we add the new string created by
the combination of string_code and character to the dictionary so the next time it occurs we will get a
match.

The main loop repeats until an end-of-fileisread in. When this occurs, we output the string_code
built up so far. Finally, the END_OF_STREAM code is output, which tells the decoder when we are
at the end of the data stream.

Decompr ession



As mentioned previously, maintaining the dictionary is simpler during decompression. We don’t
ever have to navigate down through the tree. Instead, we read in codes straight from the encoded
stream, then work our way up through the tree. Aslong as the parent nodes are properly defined in
the data structure, everything works fine.

The only problem with working up through the tree is that the decoded characters are gathered in
reverse order, so they have to be pushed into a stack, popped off in reverse order, and written to the
output file. Thisis done with the decode_string routine, shown next.

decode_string() follows the parent pointers up though the dictionary until it finds a code less than
256, which we have defined as the first character in the string. A count of characters in the decode
stack is then returned to the calling program.

unsi gned int decode_string( count, code )
unsi gned int count;
unsi gned i nt code;

while ( code > 255 ) {
decode_stack[ count++ } = dict[ code ].character
code = dict[ code]. parent_code;
}
decode_stack[ count++ ] = (char) code;
return( count );

}

Once the decode routine isin place, the decompression routine fallsinto order fairly easily. The
routine has afew lines of initialization code, followed by a main decoding loop.

Theinitialization section of the decompression routine in LZW12.C sets up the next_code variable.
Thislet it track the code value of each string asit is added to the table. Next, is readsin the first code
and copiesit to the output file. Once that is done, it can enter the main decoding loop.

next code = FI RST_CODE
old code = InputBits( input, BITS );
if ( old_code == END OF STREAM )
return;
character = ol d_code;
putc( ol d_code, output );
while ( ( new.code = InputBits( input, BITS) ) != END OF_STREAM) {
if ( new code >= next _code ) {
decode_stack[ 0 ] = (char) character
count = decode_string( 1, old_code );
}
el se
count = decode_string( 0, new code );
character = decode_stack[ count - 1 ];
while ( count > 0 )
putc( decode_stack[ --count ], output );
if ( next_code <= MAX CODE ) {
di ct[ next_code ].parent_code = ol d_code;
di ct[ next_code ].character = (char) character
next _code++;

ol d_code = new_code;

}

Normally, decoding is a simple matter. The loop reads in a code value, looks up the string, and
outputsit. Then it create a new string by adding the old_code and the first character of the current
string to the string table. It then goes back to the top of the loop and starts over.



But an additional complication is created when the CHARACTER+
STRING+CHARACTER+STRING+CHARACTER sequence shows up. This creates a code larger
than the largest currently defined code. Fortunately, we know what to do in this case. Our new string
will be the same as our last string, defined by old_code, with a copy of its first character appended to
itsend. Thisis handled by preinitializing the decoding_stack with a single character, then decoding
the old_code string into the stack with an offset of one instead of zero.

The Code

The source code for a complete twelve-bit version of LZW compression and decompression follows.
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/ Start of LZW2.C

*

* This is 12 bit LZWprogram which is discussed in the first part
* of the chapter. It uses a fixed size code, and does not attenpt
* to flush the dictionary after it fills up.

*/

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude "errand. h"

#i nclude "bitio.h"

/*

* Constants used throughout the program BITS defines how many bits
* will be in a code. TABLE_SIZE defines the size of the dictionary
* table.

*/

#define BITS 12

#defi ne MAX_CODE ((1<<BITS) - 1)
#defi ne TABLE_SI ZE 5021

#defi ne END_OF_STREAM 256

#defi ne FI RST_CODE 257

#def i ne UNUSED -1

/*

* Local prototypes.

*/

#i fdef __STDC _

unsigned int find_child_node( int parent_code, int child_character );
unsi gned int decode_string( unsigned int offset, unsigned int code );
#el se

unsigned int find child _node ();

unsi gned int decode_string ();

#endi f

char *ConpressionName = "LZW 12 Bit Encoder";

char *Usage = "in-file out-file\n\n";

/*

* This data structure defines the dictionary. Each entry in the
* dictionary has a code value. This is the code enitted by the

* conpressor. Each code is actually nade up of two piece: a

* parent_code, and a character. Code values of |ess than 256 are
* actually plain text codes.

*

/

struct dictionary {
i nt code_val ue;
i nt parent_code;
char character;

} dict[ TABLE_SI ZE ];



char decode_stack[ TABLE Sl ZE };

*

The conpressor is short and sinple. It reads in new synbols one
at atine fromthe input file. It then checks to see if the

conbi nati on of the current synbol and the current code are already
defined in the dictionary. If they are not, they are added to the
dictionary, and we start over with a new one synbol code. If they

our new code.

L T T T

~

voi d ConpressFile( input, output, argc, argv )
FI LE *i nput;

Bl T_FI LE *out put;

int argc;

char *argv[];

i nt next_code;

i nt character;

i nt string_code;
unsi gned int i ndex;
unsi gned int i

next code = FI RST_CCDE

for (i =0 ; i < TABLE SIZE ; i++)
dict[ i ].code_value = UNUSED

if ( ( string_code = getc( input ) )== EOF )
string_code = END OF STREAM

while ( ( character = getc( input ) ) !'= EOF ) {
i ndex = find_child_node( string_code, character );

if ( dict[ index ].code_value != - 1)
string_code = dict[ index ].code_val ue;
el se {

if ( next_code <= MAX CODE ) {

dict[ index ].code_value = next_code++;
dict[ index ].parent_code = string_code;
dict[ index ].character = (char) character

Qut putBits( output, (unsigned long) string code, BITS );

string_code = character;

}

}

Qut putBits( output, (unsigned long) string_code, BITS );
Qut putBi ts( output, (unsigned |ong) END OF STREAM BITS );
while ( argc-- > 0)

printf( "Unknown argument: 9%\n", *argv++ ); }

*

The file expander operates nuch |ike the encoder. It has to

read in codes, then convert the codes to a string of characters.
The only catch in the whol e operation occurs when the encoder
encounters a CHAR+STRI NG+CHAR+STRI NG+CHAR sequence. Wen this
occurs, the encoder outputs a code that is not presently defined
in the table. This is handled as an exception

E o T T R

~

voi d ExpandFile( input, output, argc, argv )
BI T_FILE *input;

FI LE *out put ;

i nt argc;

char *argv[];

unsi gned i nt next_code;

are, the code for the conbination of the code and character becones



unsi gned int new code;
unsi gned int ol d_code;
i nt character;

unsi gned int count;

next code = FI RST_CODE
ol d_code = (unsigned int) InputBits( input, BITS );
if ( old_code == END_OF_STREAM )
return,
character = ol d_code;
putc( ol d _code, output );

while ( ( new_code = (unsigned int) InputBits( input, BITS ) )

/

| = END_OF STREAM ) {

*

** This code checks for the CHARACTER+STRI NG+CHARACTER+STRI NG+CHARACTER
** case which generates an undefined code. It handles it by decoding

** the |last code, and adding a single character to the end of the

** decode string.

*/
if (new_code >= next_code ) {
decode_stack[ 0 ] = (char) character
count = decode_string( 1, old_code );
}
el se

/

*

*

* X X

*

count = decode_string( O, new code );
character = decode_string[ count - 1 ];
while ( count > 0 )
put c( decode_stack[ --count ], output );
if ( next_code <= MAX CODE ) {
di ct[ next_code ].parent_code = ol d_code;
dict[ next_code ].character = (char) character
next code++;

ol d_code = new code;

}

while ( argc-- > 0)

print( "Unknown argunent: %\n", *argv++ );

*

This hashing routine is responsible for finding the table |ocation
for a string/character conbination. The table index is created

by using an exclusive OR conbination of the prefix and character.
This code al so has to check for collisions, and handl es them by
junping around in the table.

/

unsigned int find _child _node( parent_code, child_character )

{

nt parent_code;
nt child _character;

i nt index;
int offset;

index = ( child_character << ( BITS - 8 ) ) "~ parent_code;
if ( index == 0)
of fset = 1;
el se
of fset = TABLE S| ZE - i ndex;
for (; ;) {
if ( dict[ index ].code_value == UNUSED )
return( index );
if ( dict[ index ].parent_code == parent_code &&
dict[ index ].character == (char) child_character )



return( index );

i ndex -= offset;

if ( index <0)

i ndex += TABLE_SI ZE
}

*

}
/
* This routine decodes a string fromthe dictionary, and stores it
* in the decode_stack data structure. It returns a count to the

* calling program of how many characters were placed in the stack.
*/

unsi gned int decode_string( count, code )
unsi gned int count;
unsi gned i nt code;

while ( code > 255 ) {
decode_stack[ count++ ] = dict[ code ].character
code = dict[ code ].parent_code;

}

decode_stack[ count++ ] = (char) code;
return( count );

}
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/ End of LZW.2.C /

I mprovements

A second version of the LZW program, LZW15V.C, follows. It contains several enhancements, most
of which are also found in the UNIX compress program.

LZW can be improved by increasing the size of the dictionary. Asit becomes possible to store more
and longer phrases, the program compresses to higher ratios. In this case, LZW15V.C usesa
maximum code size of fifteen bits, which allows for a 32K phrase dictionary. While there is enough
memory available on most MS-DOS machines to accommodate sixteen-bit code sizes, the program
has to convert most of the indices used during compression from unsigned int valuesto long ints.
This usually exacts afairly heavy performance penalty on a sixteen-bit machine, so this program
stayed with fifteen-bit values.

Unfortunately, moving to alarger code size actually retards compression when the file to be
compressed is small. Since phrases are initially found and added to the dictionary at the same pace,
whether the code is nine bits or fifteen bits long, the nine bit code will actually produce a smaller
file.

There is asimple solution to this problem, however. Instead of always outputting codes using fifteen
bits, LZW15V.C starts out using a nine-bit code, and it doesn’t advance to ten bits until the
dictionary has added 256 new entries. It progresses through ten, eleven, twelve, etc, until it starts
using fifteen-bit codes. This putsit on an equal footing with compressors using a smaller code size.

To let the decompression program know when the bit size of the output code is going to change, a
special BUMP_CODE is used. This code tells the decompression program to increase the bit size
immediately. While it is possible to synchronize the compressor and decompressor so that they don’t
need to explicitly use a code, the BUMP_CODE was employed for purposes of clarity.

One final enhancement in LZW15V.C isthe FLUSH_CODE. Thistells the decompressor to throw
away all phrases currently in the dictionary and to start over with ablank slate. When compressing
files several hundred K bytes long, the dictionary will ordinarily fill up with phrases. At this point,
the UNIX compress program starts to monitor the compression ration, looking for signs of decay.



This type of agorithm could be employed in LZW15V.C, but a simpler heuristic was chosen: when
the dictionary fills up, it is discarded. In practice this method generally gives results comparable to
those of the compress algorithm.
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/ Start of LZW5V.C

This is the LZW nodul e whi ch i npl enents a nore powerful version

of the algorithm This version of the program has three ngjor

i mprovenents over LZW2.C. First, it expands the naxi mum code size
to 15 bits. Second, it starts encoding with 9 bit codes, working
its way up in bit size only as necessary. Finally, it flushes the
di ctionary when done.

L R T T

Not e that under MS-DOS this programneeds to be built using the
Conpact or Large nenory nodel .

*

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude "errhand. h"
#i nclude "bitio.h"

/*

* Constants used throughout the program BITS defines the naxi mum

* nunber of bits that can be used in the output code. TABLE SI ZE defi nes
* the size of the dictionary table. TABLE BANKS are the nunber of

* 256 el enment dictionary pages needed. The code defines should be

* sel f-explanatory.

*/

#define BITS 15

#defi ne MAX_CODE ( (1 <<BITS) - 1)
#defi ne TABLE_SI ZE 35023L

#defi ne TABLE_ BANKS ( ( TABLE SIZE >>8 ) + 1)
#defi ne END_OF _STREAM 256

#def i ne BUVP_CODE 257

#def i ne FLUSH_CODE 258

#def i ne FI RST_CODE 259

#def i ne UNUSED -1

/ *

* Local prototypes.

*/

#i fdef __STDC __

unsigned int find_child_node( int parent_code, int child_character );
unsi gned int decode_string( unsigned int offset, unsigned int code );
#el se

unsigned int find_child_node();

unsi gned int decode_string();

#endi f

char *ConpressionNane = "LZW 15 Bit Vari able Rate Encoder”;

char *Usage = "in-file out-file\n\n";

/*

* This data structure defines the dictionary. Each entry in the
* dictionary has a code value. This is the code emtted by the

* conpressor. Each code is actually made up of two pieces: a

* parent_code, and a character. Code values of |ess than 256 are
* actually plain text codes.

*

* Note that in order to handle 16 bit segnented conpilers, such as nost
*

of the M5-DOS conpilers, it was necessary to break up the dictionary



* into a table of snaller dictionary pointers. Every reference to the

* dictionary was replaced by a macro that did a pointer dereference

* first. By breaking up the index al ong byte boundaries we should be as
* efficient as possible.

*/

struct dictionary
{
i nt code_val ue;
i nt parent_code:
char character;
} *dict[ TABLE_BANKS ]:

#define DICT( i ) dict[ i > 8 ][ i & Oxff ]

*

O her global data structures. The decode_stack is used to reverse
strings that conme out of the tree during decoding. next_code is the
next code to be added to the dictionary, both during conpression and
deconpression. current_code_bits defines how nmany bits are currently
bei ng used for output, and next_bunp_code defines the code that will
trigger the next junp in word size.
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char decode_stack[ TABLE Sl ZE ];
unsi gned int next_code;

int current_code bits;

unsi gned int next_bunp_code;

/*

* This routine is used to initialize the dictionary, both when the
* conpressor or deconpressor first starts up, and al so when a flush
* code cones in. Note that even though the deconpressor sets al

* the code_value elements to UNUSED, it doesn't really need to.

*/

void InitializeDictionary( void )

{

unsi gned int i

for (i =0 ; i < TABLE SIZE ; i++ )
DICT( i ).code_val ue = UNUSED;

next code = FI RST_CODE

putc( 'F', stdout );

current _code_hits = 9;

next bunp_code = 511

}
/*
* This routine allocates the dictionary. Since the total size of the
* dictionary is nuch larger than 64k, it can't be allocated as a single
* object. Instead, it is allocated as a set of pointers to snmaller
* dictionary objects. The special DI CT() macro is used to translate
* indices into pairs of references.
*/
void InitializeStorage( void )
{
int i;
for (i =0 ; i < TABLE BANKS ; i++ ) {

dict[ i ] = ( struct dictionary *)
call oc( 256, sizeof ( struct dictionary ) );
if ( dict[ i ] == NULL )



fatal _error( "Error allocating dictionary space" );

}
}
/*
* The conpressor is short and sinple. It reads i
* at atime fromthe input file. It then checks
* conbi nation of the current synbo
* defined in the dictionary. If they are not,
* dictionary, and we start over with a new one synbol
* are, the code for the conbination of the code
* our new code. Note that in this enhanced vers
* encoder needs to check the codes for boundary
*/

voi d ConpressFile( input, output, argc, argv )
FI LE *i nput;

BI T_FI LE *out put;

int argc;

char *argv[]

int character;
int string_code;
unsi gned int index;

InitializeStorage();
InitializeDictionary();
if ( ( string_code getc( input ) )
string_code END OF STREAM
while ( ( character = getc( input ) ) !'= EOF)
i ndex = find_child_node( string_code,
if ( DCT( index ).code_value != -1)
string_code DI CT( index ).code_val ue;
el se {
DI CT(

ECF )

i ndex ).code_val ue next code++;
DI CT( index ).parent_code string_code;
DI CT( index ).character = (char) character
Qut put Bi t s( out put,

(unsi gned | ong) string code,
string_code character;
if ( next_code > MAX CODE ) {
Qut put Bi t s( out put,

(unsigned | ong) FLUSH CODE
InitializeDictionary();
else if ( next_code > next_bunp_code ) {
Qut put Bi t s( out put,

(unsi gned | ong) BUMP_CCDE
current _code_bits++;
next bunp_code <<= 1
next _bunp_code | = 1;
putc( 'B', stdout );
}

}
}
Qut put Bi t s( out put,
Qut put Bi t s( out put,
while ( argc—> 0 )
printf( "Unknown argunent:

%\ n", *argv++ );

/*

* The file expander operates nuch |ike the encoder

*

read in codes, then convert the codes to a str

(unsi gned long) string_code,
(unsigned | ong) END OF STREAM current_code_bits);

n new synbols one
to see if the

and the current code are already
they are added to the

code. If they
and character becones
on of LZW the
condi ti ons.

{

character );

current _code_bhits );

current _code bits );

current _code bits );

current _code_bits );

It has to
i ng of characters.



The only catch in then whol e operation occurs when the encoder
encounters a CHAR+STRI NG+CHAR+STRI NG+CHAR sequence. When this
occurs, the encoder outputs a code that is not presently defined
in the table. This is handled as an exception. Al of the specia
i nput codes are handl ed in various ways.

/
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voi d ExpandFil e( input, output, argc, argv )
BI T_FILE *input;

FI LE *out put ;

int argc;

char *argv[];

unsi gned i nt new_code;
unsi gned int ol d _code;
i nt character;

unsi gned int count;

InitializeStorage();
while ( argc-- > 0)
printf( "Unknown argunent: 9%\n", *argv++ );
for (5 ;)
InitializeDictionary();
old code = (unsigned int) InputBits( input, current_code bits );
if ( old code == END_OF_STREAM )
return;
character = ol d _code;

putc( ol d _code, output );
for (5 ;)
new code = (unsigned int) InputBits( input, current_code bits );
if ( new_code == END _OF_STREAM )
return;
if ( new_code == FLUSH CODE )
br eak;
if ( new code == BUW_CODE ) {
current code_bit s++;
putc( 'B', stdout );
conti nue;

if ( new code >= next_code ) {

decode_stack[ O ] = (char) character;
count = decode_string( 1, old _code );
}
el se

count = decode_string( 0, new code );
character = decode_stack[ count - 1 ];
while ( count > 0 )

putc( decode_stack[ --count ], output );
DI CT( next _code ).parent _code = ol d_code;
DI CT( next _code ).character = (char) character
next code++;
ol d_code = new_code;

}
}
}

/*

* This hashing routine is responsible for finding the table |ocation
* for a string/character conbination. The table index is created

* by using an exclusive OR conbination of the prefix and character.
* This code al so has to check for collisions, and handl es them by

* junping around in the table.

*/



unsigned int find_child_node( parent_code, child_character )
i nt parent_code;
int child _character;
{
unsi gned i nt index;
int offset;

i ndex = ( child_character << ( BITS - 8 ) ) "~ parent_code;
if ( index == 0)
of fset = 1;
el se
of fset = TABLE S| ZE -i ndex;
for (5 ;) {
if ( DCT( index ).code_val ue == UNUSED )
return( (unsigned int) index );
if ( DCT( index ).parent_code == parent_code &&
DI CT( index ). character == (char) child_character )
return( index );
if ( index >= offset )
i ndex -= offset;
el se
i ndex += TABLE SI ZE - offset;
}
}

/*

* This routine decodes a string fromthe dictionary, and stores it
* in the decode_stack data structure. It returns a count to the

* calling program of how many characters were placed in the stack.
*/

unsi gned int decode_string( count, code )
unsi gned int count;
unsi gned i nt code;

{
while ( code > 255 ) {

decode_stack[ count++ ] = DICT( code ).character
code = DI CT( code ). parent_code;

decode_stack[ count++ ] = (char) code;
return( count );
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/ End of LzZWi5V.C /

Patents

One note of caution regarding the use of the LZW agorithm. Terry Welch filed for, and was
awarded, a U.S. patent covering at least some portions of his algorithm. This patent is presently
assigned to Unisys, which has made public itsintention to protect its intellectual property rights, and
has in recent years begun to do so. LZW compression is defined as part of the CCITT V.42bis
specification, and Unisys has defined specific terms under which it will license the algorithm to
modem manufacturers. Unisysis now in the process of seeking license payments from software
vendors who use the LZW agorithm in programs, most notably in the GIF graphics file format.

Clearly LZW is aderivative work of the LZ78 algorithm, but defining the boundaries of what is
covered by the patent and what is not probably requires the assistance of a skilled patent attorney.
Over the past ten years, quite afew software copyright battles have been fought in the courts, enough
so that software developers can sensibly use some general rules. The same cannot be said for
software patents. The U.S. patent office has only begun issuing these patents in a major way since
the mid 1980s, and very little significant litigation has made its way through the courts.



Programmers and manufacturers would be wise to seek competent counsel before stepping into these
waters.



Chapter 10
Speech Compression

Manipulation of sound by computersis arelatively new development. It has been possible since the
birth of digital computers, but only in the last five years or so has inexpensive hardware brought this
to the average user’ s desktop. Now the ability to play digitized sound is expected to be an integral
part of the “multimediarevolution.”

The use of multimediafocuses the issue of data compression for most users. Computer graphicsin
particular quickly take up all available disk space. Digitized audio isfar less voracious in its storage
requirements, but even so it can quickly swallow up al free space on the average user’s hard disk.

Fortunately for computer users, the world of telephony has used digitized audio since the 1960s, and
extensive research has been done on effective methods of encoding and compressing audio data. The
world’ s telecommuni cations companies were intensely aware of the cost of transmission bandwidth
and made efforts to reduce expenses in this area. Computer users today benefit from much of this
research.

This chapter looks first at some of the basic concepts involved in using digital audio, including the
software and hardware in today’ s generation of computers. Next, it looks at how well conventional
lossless compression techniques work on digitized voice. Finally, it explores some lossy techniques.

Digital Audio Concepts

For modern computers to manipulate sound, they first have to convert it to adigital format. The
sound samples can then be processed, transmitted, and converted back to analog format, where they
can finally be received by the human ear.

Digitization of sound began in earnest in the early 1960s. Like much of our early computer
technology, credit for development lieswith AT& T, which at that time had a regulated monopoly on
long-distance service in the United States. In 1962, AT& T established the first commercial digital
telephone link, a T1 interoffice trunk in Chicago.

In the short space of thirty years, we have seen the long-distance network in the United States
convert amost entirely from analog to digital transmission. Virtually all new switching equipment
installed by telephone companies today is digital. But analog switching is still found in older
installations and in the smaller PBX and key systemsinstalled in businesses. Of course, the fina
subscriber loop between the telephone company and the end user is still persistently analog.

Digital audio is now coming of age in the highly visible consumer electronics arena as well. The
digital compact disk has nearly completed its displacement of analog LP records. It remains to be
seen whether digital audio tape will do the same thing to analog cassette tape, but it seems likely that
some day most recorded music will be distributed in digital format.

Fundamentals

While this book cannot give a complete coursein digital signal processing, it certainly has room to
cover afew basic conceptsinvolved in digital sound. Figure 10.1 shows atypical audio waveform as
it might be displayed on an oscilloscope. The X axisin this diagram representstime. The Y axis
represents a voltage measured at an input device, typically a microphone. The microphone attempts
to faithfully reproduce changesin air pressure caused by sound waves traveling through it.

Some human ears can hear sounds at frequencies as high as 20,000Hz and nearly aslow as DC. The



dynamic range of our hearing is so wide that we have to employ alogarithmic scale of measurement,
the decibel, to reasonably accommodate it. This presents a unique set of requirements for
digitization.

A waveform like the shown in Figure 10.1 istypical of audio sample. It isn't anice, clean sine wave
that has aregular period and can be described as a ssmple mathematical function. Instead, itisa
combination of various frequencies at different amplitudes and phases. When combined, we see
something that looks fairly irregular and not easy to characterize.

g

Figure 10.1 A typica audio waveform.

This particular “snapshot” shows about 5 milliseconds (ms) of output. Notice that the largest
recognizable components of the waveform appear to have a period of roughly two milliseconds. This
corresponds to a frequency of about 500Hz, afairly characteristic frequency found in speech or
music.

The first step in working with digital audio is*sampling.” Sampling consists of taking measurements
of the input signal at regular times, converting them to an appropriate scale, and storing them. Figure
10.2 shows the same waveform sampled at an 8KHz rate. This means that 8,000 times per second a
measurement is taken of the voltage level of the input signal. The measurement points are marked
with an “x” on the waveform.

Figure 10.2 A typica audio waveform being sampled at 8KHz.

In most computer systems, this first step of digitization is done with an analog-to-digital converter
(ADC). The ADC takes a given voltage and scales it to an appropriate digital measurement. An
eight-bit ADC, for example, might have a“full scale” input voltage of 500 millivolts (mv)—it would
output an eight-bit value of 255 if the input voltage were 500mv and zero if the input voltage were



zero. A voltage between these values would be scaled to fit in the linear range of zero to 255.

Since audio signals are AC in natured, the ranges are usually adjusted so that a zero voltage signa
fallsin the middle of the range. For the previous example, the range would be adjusted to between -
250mv and +250mv. Outputs from the eight-bit ADC would range from -128 to +127.

The stored sample points then represent a series of voltages that were measured at the input of the
ADC. Figure 10.3 shows the representation of those voltages overlaid with the input AC signal. Note
that since the sample pointsin this case are occurring many times more frequently than the period of
the waveform, the digital samples themselves trace the analog signal very accurately.
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Figure 10.3 Sample voltages overlaid with the input AC signal

Now that the sound has been digitized, it can be stored via computer using any number of
technologies, ranging from fast storage, such as main processor RAM, to off-line slow storage on
magnetic tape. The actual speed of the storage medium isrelatively unimportant with digital sound,
since the bandwidth needed to accurately store the sound is relatively slow compared to most digital
media.

Eventually, the sound needs to be played back. Thisis done via another electronic component that is
the converse of the ADC: the digital-to-analog converter (DAC). The DAC isresponsible for taking
adigital value and converting it to a corresponding analog signal. To be effective, the conversion
process needs to be the mirror image of that performed when converting the analog signal to digital.
While the exact voltages produced at the output of the DAC do not need to be identical to those seen
at the input, they do need to be proportional to one another so that one waveform corresponds to the
other. In addition, the samples need to be output at exactly the same rate that they were read in. Any
deviation here will cause the output frequencies to be shifted up or down from the input, generally
not a good thing.

Figure 10.4 shows the output of the DAC when given the same set of samples produced in Figure
10.2. At first glance, it seems that thisisaradically different waveform. All the nice, smooth shapes
shown in the earlier figures are gone, replaced by this stair-step, rectangular, artificial-looking
creation.
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Figure 10.4 DAC output

Fortunately, Figure 10.4 is not that far removed from Figure 10.1. Mathematically, the sharp jumps
that occur when we move from sample to sample represent high-frequency components in the output
signal. These can (and must) be eliminated from the signal by means of alow-passfilter that lies
between the output of the DAC and the final amplification stage of the audio output.

A low-passfilter is anetwork of electrical components designed to let frequencies below a certain
value pass through it unhindered, while attenuating frequencies above that point. An ideal low-pass
filter used with the samples shown here would completely stop any frequency above 4KHz and let
frequencies below 4KHz pass through with no attenuation.

In practice, low-pass filters don't work perfectly, but even alow-budget filter can take Figure 10.4
and create a nearly indistinguishable copy of Figure 10.1. Without the filter, the sound sample will
still beintelligible, but it will be filled with distracting high-frequency “noise” that is part of the
reproduction process.

Figure 10.5 shows the same figure when the sampling rate has been stepped up to a much higher
rate. Thisincrease in sampling rate clearly does a more accurate job of reproducing the signal. The
next section discusses how variations in these parameters affect the output signal.
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Figure 10.5 Sampling at a much higher rate.

Sampling Variables

When an audio waveform is sampled, two important variables affect the quality of the reproduction:
the sample rate and the sample resolution. Both are important factors, but they play different rolesin
determining the level of distortion produced when a sampleis played back.



The sample resolution is simply a measure of how accurately the digital sample can measure the
voltage it is recording. When the input range is -500mv to +500mv, for example, an eight-bit ADC
can resolve the input signal down to about 4mv. So an input signal of 2mv will either get rounded up
to 4mv or down to Omv. Thisis called a quantization error.

Figure 10.6 shows the results of quantization error when sampling a waveform. In some cases the
sample point has alarger magnitude than the audio signal, but in other placesit has less. When the
digitized signal is played back through a DAC, the output waveform will closely track the sample
points, resulting in a certain amount of distortion.
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Figure 10.6 Quantization error when sampling a waveform

It might seem that eight bits should be enough to accurately record audio data, but this may not be
the case because of the large dynamic range of audio the human ear can detect. If our 500mv range
example were used, we might find that our input signal magnitudes range from 1mv to 500mv in a
single recording session. The crash of drumsin an orchestra could push the ADC to its limits, while
adelicate violin solo may never go outside 5mv. If the minimum digital resolution isonly 5mv, a
very noticeable level of distortion will be introduced during this part of arecording session.

The sampling rate plays a different role in determining the quality of digital sound reproduction. One
classic law in digital signal processing was published by Harry Nyquist in 1993. He determined that
to accurately reproduce asignal of frequency f, the sampling rate has to be greater than 2*f. Thisis
commonly called the Nyquist Rate.

The audio signal in Figure 10.7 is being measured at a considerably slower rate than that shownin
the previous examples, with noticeably negative consequences. At several placesin the waveform it
is not even sampled a single time during an excursion above or below the center line.
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Figure 10.7 A slower sampling rate.




Figure 10.8 shows the waveform we could expect after playing back the digitized samples stored
from Figure 10.7. Clearly, after the digitized output isfiltered, the resulting waveform differs quite a
bit from that shown in the previous figure. What has happened is that the high-frequency
components of the waveform have been lost by the slower sampling rate, letting only the low-
frequency parts of the sample through.

.Figure 10.8 The waveform after playing back digitized samples.

The human ear hears sound up to 20KHz, which implies that we need to sample audio to 40KHz or
better to achieve good reproduction. In fact, the sampling rate used for digital reproduction of music
via compact disk or digital audio tape is 44KHz, using sixteen-bit samples. The quality of sound
achieved at this sampling rate is generally acknowledged to be superior.

This does not mean that all digital recordings have to be done at 44KHz rates. Virtually every digita
phone system in the world uses an 8K Hz sampling rate to record human speech, with generally good
results. This means that the phone system is unable to pass any signal with afrequency of 4KHz or
higher. This clearly does not render the system useless—millions of long-distance calls over digital
lines are made every day. The average speech signal is composed of many different frequencies, and
even if everything above 4KHz is discarded, most of the speech energy still makesiit through the
system. Our ears detect thisloss as alower-fidelity signal, but they still understand it quite well.

The ultimate test of all thisis how the audio output sounds to our ears. It is difficult to quantify a
“guality of sound” measurement is strictly mathematical terms, so when discussing audio output, it is
always best to temper judgments with true listener trials.

PC-Based Sound

Some exotic work in digital signal processing has been going on for years, but it usualy involved
expensive special-purpose peripherals far out of reach of the average computer installation.

Early desktop computers did not really push the state of the art in sound reproduction. Original IBM
and Apple computers both had built-in speakers as standard equipment, but they gave the
programmer only a single bit with which to control the speaker. This meant the speaker could
generally be used only to emit beeps and buzzes, not true digitized sound.

In the early 1980s, however, many computer manufacturers saw that a true digitized sound capability
could be added to their computers at arelatively low cost. Apple was the most prominent
manufacturer, adding an eight-bit DAC to the Macintosh, which opened the door to the use of true
digitized audio.

Most desktop computers today are IBM compatible |SA computers based on Intel’ s 80x86 CPU
chips. Unfortunately for sound enthusiasts, IBM has not yet elected to add sound capability to the
PC, but third-party solutions are relatively inexpensive. The sound samples used in this book have
been created and manipulated using the Sound Blaster card, manufactured by Creative Labs. But
several other cards are on the market that can play digitized sound samples, and any of these can be
used, provided file-format conversion utilities exist.

The next generation of digitized sound on the desktop is now here. Many of today’s consumer
machines can digitize and playback 44 KHz sixteen-bit CD-quality sound data. Only afew years
ago, this capability seemed a bit unusual. The exotic black cube from NeXT Computer seemed to



presage the future when it was first introduced, incorporating adigital signal-processor (DSP) chip
as a co-processor; the intent was to offload work, such as manipulating digitized audio, from the
main CPU. For awhile, other manufacturers followed this design, for example, Apple with its AV
line of Macintosh computers. Today, the vast mgjority of PC-compatible machines sold in retail
consumer outlets come equipped with sound cards and CD-ROM drives—by one count, over 75%.
More recently, it seems that the pendulum may shift back in the other direction, as a new largesse of
processing power in the CPU will allow its deployment for audio and video processing, in addition
to handling its regular duties. Intel is promulgating such a configuration with its new P6 processor,
which has cycles to spare, that can be used for compressing and decompressing audio and video on
the fly, even while crunching numbers in a spreadsheet. Regardless of how it’s done, the multimedia
capabilities of today’ s machines only highlight the need for data compression, since they fill up a
hard disk faster than ever before. The explosive growth of the Internet and the World-Wide Web,
which allows multimedia-enriched distributed documents, also increases the need for compression,
because the bandwidth of communications linksis not increasing as fast as the processing power of
the host computers.

The files distributed with this book will be “raw” sound files. These will be pure binary recordings of
eight-bit input data. Virtually al sound software on desktop machines today expects more than that
for asound file, but many software packages have utilities to convert raw sound files to a particular
format. The Sound Blaster, for example, includes an executable program called VOC-HDR.EXE that
prepends a header file to araw sound file. The sound samples here were all sampled at 11KHz, a
commonly used rate for medium-fidelity digital recording.

By supplying sound data only, the code here can concentrate on compression, without worries about
additional superfluous datain thefile. A full-fledged sound-file compression package by necessity
needs to support the dozens of different file formats in existence, but that mostly consists of
implementation details.

Some sound capability resources are available for arelatively small investment. Many on-line
services, such as Compuserve, America Online, GEnie, and BI X, have active forums for audio
manipulation. There are also active forums on the Internet, such as Web sites and Usenet
newsgroups, focusing on digital audio. Freeware and shareware utility programs available in these
forums do a passable job of playing sound out of the PC speaker. Other programs convert sound files
between various formats. It wouldn’t be feasible to try to list specific examples here, but it should be
relatively ssmple to find this type of software. In addition, third-party sound cards are available for a
relatively low investment.

L ossless Compression of Sound

The original applications for sound compression could not take advantage of |ossless data-
compression techniques. One characteristic of al the compression techniques discussed so far in this
book is that the amount of compression they achieve on a given data set is not known in advance. In
some cases, the compression program can actually cause the data to expand, taking up more space
than it occupied before.

In the 1960s, telecommunications researchers were trying to find ways to put more conversions on
digital trunk lines, particularly on “expensive’ lines, such as undersea cables or satellite links. Unlike
disk space, which is somewhat flexible, these links have afixed total bandwidth. A single telephone
conversion might be allocated a 64K bps slot on one of these channels. If it suddenly needed

100K bps because the compression code hit a rough spot, there would be a major problem.

These early researchers were attempting to divide a 64K bps channel into two 32K bps channels to get
two for the price of one. This required compression techniques that would consistently compress
data by 50 percent, even if it meant losing some resolution.



Today, when trying to compress sound on disk for multimedia applications, we arein asightly
better position. We store and retrieve data from fixed disks, a more flexible medium for our work. If
our files are compressed by 95 percent in some cases, and -10 percent in others, it will not really
cause any trouble.

Problems and Results

How much can we compress voice files using conventional 1ossless techniques? To answer this

guestion, a set of six short sound files were created, ranging in length from about one second to

about seven seconds. To determine how compressible these files were, they were packed into an
archive using ARJ 2.10, a shareware compression program that generally compresses as well or

better than any other general-purpose program.

ARJresults showed that voice files did in fact compress relatively well. The six sample raw sound
files gave the following results:

Filename Original Compressed Ratio
SAMPLE-1.RAW 50777 33036 35%
SAMPLE-2.RAW 12033 8796 27%
SAMPLE-3.RAW 73091 59527 19%
SAMPLE-4.RAW 23702 9418 60%
SAMPLE-5.RAW 27411 19037 30%
SAMPLE-6.RAW 15913 12771 20%

These compression results look relatively promising. All the files were compressible to some extent,
and some were reduced to less than half their original size. Thislevel of compression is undoubtedly
useful and may well be enough for some applications.

ARJ.EXE performs two sorts of compression on an input data stream. First, it does an LZSS type of
windowed string matching on the string. The output from LZSS s, of course, a stream of tokens
referring to either individual characters or matched strings. ARJ, like LHArc, takes LZSS a step
further by performing Huffman compression on the output stream. Compressing these sound files
using just LZSS compression and simple order-0 Huffman coding might tell us alittle bit about what
kind of redundancy isin these voicefiles.

To check the results, the files were compressed again with the LZSS program from Chapter 8 and the
HUFF program from chapter 3. The results of these experiments are shown in the following table.

Filename ARJ Ratio LZSSRatio HUFF Ratio
SAMPLE-1.RAW 35% 23% 26%
SAMPLE-2.RAW 27% 5% 30%
SAMPLE-3.RAW 19% 3% 17%
SAMPLE-4.RAW 60% 25% 27%
SAMPLE-5.RAW 30% 15% 32%

SAMPLE-6.RAW 20% 2% 18%




The table shows that in every case, we perform more compression with simple order-0 Huffman
coding than we do LZSS dictionary compression. Since LZSS is normally a much more powerful
compression technique, thisis atelling result.

What LZSS takes advantage of when compressing is repeated strings of charactersin the file. Order-
0 Huffman coding just takes advantage of overall frequency differences for individual sequences.
What we see in these sounds files is some overall frequency difference between the various codes
that make up the files, but not as many repeated strings as we might normally expect.

A look at snapshots of these sound files reveals some of the character of the data we are trying to
compress. Figure 10.9 shows a section of about 600 sample points from SAMPLE-3.RAW. In this
case, the sound samples are only taking up about 30 percent of the possible range allocated for them
by the hardware. While individual samples can range from +127 to -128, in this snapshot they run
only from about +30 to -30.

By only using a portion of the available bandwidth, a sound file automatically makesitself a good
candidate for Huffman compression. The sample shown in Figure 10.9 can probably be compressed
by about 30 percent by just squeezing the samples down from eight bits to six or so bits. Thisis, in
effect, what the Huffman coder does.
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Figure 10.9 Sample points from SAMPLE-3.RAW.

Looking for repeated sequences in a sample such asthisis lessfruitful. We can certainly see a
pattern in the waveform, but it is somewhat irregular, and it is not likely to produce many repeated
patterns of even length 2. If we keep sampling long enough, random chance dictates that repeated
strings will recur, but the compression will be much less than in adata or program file.

Figure 10.10 shows a sound sample that is a much more difficult candidate for compression. Unlike
Figure 10.9, this sound sample utilizes nearly the entire dynamic range of the ADC, so an order-0
Huffman encoder will be much less effective. Likewise, the chances of finding repeated patterns
with an LZSS algorithm diminish considerably here. Thisisthe type of file that gives usonly afew
percentage points of compression.
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Of course, even when looking at a“busy” sample like this, the human eye picks out patterns. The
peaks and valleys of the waveform occur at somewhat regular intervals, telling us that sinusoidal
waveforms are present in the signal. Unfortunately, our existing compression algorithms aren’t
equipped to find this type of redundancy in an input waveform. To do better, we need to move to a
new frontier: lossy compression.
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Figure 10.10 A sound sample that is difficult to compress.

L ossy Compression

The very word “lossy” implies that when using this type of compression we are going to give up a
certain amount of precision. Thiswould certainly not be acceptable when compressing the data or
text files we use on our computers. We could probably compress the M& T Books annual financial
statement if we rounded all figures off to the nearest million dollars, for example, but the accounting
department would definitely have a problem working with the books after that.

By digitizing sound samples, however, we have in effect given up quite a bit of precision. For
example, our sound samples used in this chapter were al recorded at 11KHz. This means that we
have thrown away the entire portion of every sample greater than 5.5KHz in frequency. We are also
using only eight-bit samples, so we are introducing a significant amount of distortion in the form
guantization error.

All these factors are taken into account when designing the hardware and software for digitization.
Instead of trying to perfectly reproduce analog phenomena, we instead make compromises that give
us reproduction that is satisfactory for our purposes.

Likewise, when we look at lossy compression, we once again accept a certain lossin fidelity. The
signal we get after going through a compression/expansion cycle will not be identical to the original,
but we can adjust the parameters to get better or worse fidelity, and likewise better or worse
compression.

Lossy compression is not necessarily an end to itself. We frequently use lossy compression in a two-
phase process: alossy stage followed by alossless stage. One nice thing about lossy compression is
that it frequently smooths out the data, which makes it even more suitable for lossless compression.
So we get an extra unexpected benefit from lossy compression, above and beyond the compression
itself.

Silence Compression

Silence compression on sound filesis the equivalent of run-length encoding on normal datafiles. In



this case, however, the runs we encode are sequences of relative silencein asound file. Thisisa
lossy technique because we replace the sequences of relative silence with absolute silence.

Figure 10.11 shows atypical sound sample that has along sequence of silence. The first two thirds
of it is composed of silence. Note that though we call it “silence,” there are actually very small
“blips’ in the waveform. These are normal background noise and can be considered inconsequential.
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Figure 10.11 A typical sound sample with along sequence of silence.

A compression program for a sample like this needs to work with afew parameters. First, it needs a
threshold value for what can be considered silence. With our eight-bit samples, for example, 80H is
considered “pure’ silence. We might want to consider any sample value within a range of plus or
minus three from 80H to be silence.

Second, it needs away to encode arun of silence. The sample program that follows creates a special
SILENCE_CODE with avalue of FF used to encode silence. The SILENCE_CODE isfollowed by a
single byte that indicates how many consecutive silence codes there are.

Third, it needs a parameter that gives a threshold for recognizing the start of arun of silence. We
wouldn’t want to start encoding silence after seeing just asingle byte of silence. It doesn’'t even
become economical until three bytes of silence are seen. We may want to experiment with even
higher values than three to see how it affects the fidelity of the recording.

Finally, we need another parameter that indicates how many consecutive non-silence codes need to
be seen in the input stream before we declare the silence run to be over. Setting this parameter to a
value greater than one filters out anomalous spikes in the input data. This can also cut back on noise
in the recording.

The code to implement this silence compression follows. It incorporates a starting threshold of four
and a stop threshold of two, so we have to see four consecutive silence codes before we consider a
run started.

SILENCE.C by definition spends alot of time looking ahead at upcoming input data. For example,
to seeif asilence run hasreally started the program must look at the next upcoming four input
values. To simplify this, the program keeps alook-ahead buffer full of input data. It never directly
examines the upcoming dataread in via getc(). Instead, it looks at the bytes read into the buffer. This
makes it easy to write functions to determine if a silence run has been started or if oneisnow over.

/************************ Start Of Sl LENCE C************************

*

* This is the silence conpression coding nodul e used in chapter 10.
* Conpile with BITIO C, ERRHAND. C, and either MAINC.C or MAINE. C



*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i nclude "bitio. h"
#i ncl ude "errhand. h"
#i ncl ude "mai n. h"

/*

* These two strings are used by MAIN-C.C and MAIN-E.C to print
* messages of inportance to the user of the program

*/

char *Conpressi onNane = "Sil|l ence conpression”

char *Usage = "infile outfile\n"

/*

* These macros define the paranmeters used to conpress the silent

* sequences. SILENCE LIMT is the maxi mum size of a signal that can
* be considered silent, in ternms of offset fromthe center point.

* START_THRESHOLD gi ves the nunber of consecutive silent codes that
* have to be seen before a run is started. STOP_THRESHOLD tells how
* many non-silent codes need to be seen before a run is considered

* to be over. SILENCE CODE is the special code output to the

* conpressed file to indicate that a run has been detected.

* SILENCE _CODE is always followed by a single byte indicating how

* many consecutive silence bytes are to foll ow

*

~

#define SILENCE_LIMT 4

#define START_THRESHOL 5

#define STOP_THRESHOL 2

#defi ne SI LENCE_CODE Oxf f

#define IS SILENCE( ¢ ) ( (c) >( Ox7f - SILENCE LIMT ) && \
(c) < ( Ox80 + SILENCE_LIMT ) )

/*

* BUFFER_SI ZE is the size of the | ook-ahead buffer. BUFFER MASK is
* the nask applied to a buffer index when perform ng index math.
*/

#defi ned BUFFER_SI ZE 8

#def i ned BUFFER_MASK 7

/*

* Local function prototypes.
*/

#i fdef __STDC _

int silence_run( int buffer [], int index )
int end_of _silence( int buffer[], int index)

#el se

int silence_run();
int end_of_silence();

#endi f

/*

* The conpression routine has the hard job here. It has to detect

* when a silence run has started and when it is over. It does this
* by keepi ng up-and-coning bytes in a | ook-ahead buffer. The buffer



* and the current index are passed ahead to routines that check to
* see if arun has started or if it has ended.
*/

voi d ConpressFile( input, output, argc, argv )
FI LE *i nput;
BI T_FI LE *out put;

int argc;
char *argv[];

i nt |1ook_ahead][ BUFFER SI ZE ];
i nt index;

int i;

int run_Il ength;

for (i =0 ; i <BUFFER_SIZE ; i++ )
| ook_ahead[ i ] = getc( input );
i ndex = O;
for (7 ;) {
if ( look _ahead[ index ]| == ECF )
br eak;
/*
* |f run has started, | handle it here. | sit in the do | oop unti

* the run is conplete, |oading new characters all the while.
*/
if ( silence_run( | ook _ahead, index ) ) {
run_l ength = 0;
do {
| ook_ahead[ index ++ ] = getc( input );
i ndex &= BUFFER_MASK;
if ( ++run_length == 255 ) {
put c( SILENCE _CODE, output->file );
putc( 255, output->file );
run_length = 0;

} while ( !'end_of _silence( | ook _ahead, index ) );
if ( run_length >0 ) {
putc( SILENCE CODE, output->file );
putc( run_length, output->file );
}
}
/*
* Bventually, any run of silence is over, and | output sone plain codes.
* Any code that accidentally matches the silence code gets silently
* changed.
*/
if ( 1ook_ahead][ index ]== SILENCE_CCDE )
| ook_ahead[ index ]--;
putc( | ook _ahead[ index ], output->file );
| ook_ahead[ index++ ] = getc( input );
i ndex & = BUFFER_MASK
}
while ( argc-- > 0)
printf( "Unused argunent: %\n", *argv++ );
}

/*

* The expansi on routine used here has a very easy tine of it. It just
* has to check for the run code, and when it finds it, pad out the

* output file with sone silence bytes.

*/

voi d ExpandFil e( input, output, argc, argv )

BI T_FILE *input;



FI LE *out put ;
int argc;
char argv[];

int c;
int run_count;

while ( ( ¢ = getc( input->file ) ) I'= EOF ) {
if ( ¢ == SILENCE_CODE ) {
run_count = getc( input->file );
while ( run_count-- > 0)
putc( 0x80, output );
} else
putc( c, output );

while ( argc-- > 0 )
printf( "Unused argunent: %\n", *argv++ );
}

/*

* This support routine checks to see if the | ook-ahead buffer
* contains the start of a run, which by definition is

* START _THRESHOLD consecutive silence characters.

*/

int silence_run( buffer, index )
int buffer[];

i nt index;

{

int i;

for (i =0 ; i < START_THRESHOLD ; i ++ )
if ( 'I'S_SILENCE( buffer[ ( index + i ) & BUFFER MASK ] ) )
return( 0 );

return( 1 );

}

/*

* This support routine is called while we are in the niddle of a
* run of silence. It checks to see if we have reached the end of
* the run. By definition this occurs when we see STOP_THRESHOLD
* consecutive non-sil ence characters.

*/

int end_of silence( buffer, index )
int buffer[];
i nt index;
L
int i;
for (i =0 ; i < STOP_THRESHOLD ; i++ )
if ( IS_SILENCE( buffer[ ( index +i ) & BUFFER MASK ] ) )

return( 0 );
return( 1 );

/************************ End Of SI LENCE C************************/

Just how effective silence compression can be at compressing filesis shown in the following table.
As expected, files without much silence in them were not greatly affected. But files that contained
significant gaps were compressed quite a bit.




File Name Raw Size Compressed Size Compression

SAMPLE-1.RAW S0777 37769 26%
SAMPLE-2.RAW 12033 11657 3%
SAMPLE-3.RAW 73091 73072 0%
SAMPLE-4.RAW 13852 10962 21%
SAMPLE-5.RAW 27411 22865 17%

Thefinal question to ask about silence detection is how it affects the fidelity of input files. The best
way to answer that isto take the sample files, compress them, then expand them into new files. The
expanded files should differ only from the originalsin that strings of characters near the silence
value of 80H should all have been arbitrarily made exactly 80H, changing slightly noisy silence to
pure silence.

In most cases, it is not possible to tell the sound samples that have been through a
compression/expansion cycle from the originals. By tinkering with the parameters, it is possible to
start erasing significant sections of speech, but that obviously means the parameters are not set
correctly. All in al, when applied correctly, silence compression provides an excellent way to
squeeze redundancy out of sound files.

Companding

Silence compression can be a good way to remove redundant information from sound files, but in
some cases it may be ineffective. In the preceding examples, SAMPLE-3.RAW had so few silent
samplesit was only reduced by afew bytes out of 73K. This situation is somewhat analogous to
using run-length encoding on standard text or datafiles: it will sometimes produce great gains, but it
isnot particularly reliable.

In the early 1960s, telecommunications researchers were looking for amethod of data compression
that could always reduce the number of bitsin a sound sample. Customer satisfaction tests showed
that it took about thirteen bits of resolution in the DAC sampled at 8,000Hz to provide an acceptable
voice connection, but it seemed likely that much of that resolution was going to waste.

We need thirteen bits of resolution in a phone conversion because of the large dynamic range of the
human voice. To accommodate a loud speaker, the voltage input range of the DAC hasto be set at a
fairly high level. The problem is that the input voltage from a very soft voiceis several orders of
magnitude lower than this. If the ADC had eight bits of resolution, it would only detect input signals
closeto 1 percent of the magnitude of the highest input. This proved unacceptable.

It turns out, however, that the thirteen bits of resolution needed to pick up the voice of the quietest
speaker isoverkill for resolution of the loudest speaker. If our microphone input for aloud speaker is
in the neighborhood of 100mv, we might only need one millivolt of resolution to provide good sound
reproduction. The thirteen-bit ADC might be giving 200 microvolt resolution, which turns out to be
more than is necessary.

The telecommunications industry solved this using a non-linear matched set of ADCs and DACSs.
The normal ADC equipment used in desktop computers (and most electronic equipment) uses a
linear conversion scheme in which each increase in a code value corresponds to a uniform increase
in input/output voltage. This arrangement is shown in Figure 10.12.
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Figure10.12 A linear conversion scheme in which each increase in a code value correspondsto a
uniform increase in input/output voltage.

Using alinear conversion scheme such as this, when we go from code O to code 1, the output voltage
from the DAC might change from Omv to 1mv. Likewise, going from code 100 to code 101 will
change the DAC output voltage from 100mv to 101mv.

The system in our telecommunications equipment today uses a “companding codec” —jargon for
“compressing/expanding coder/decoder.” The codec is essentially a chip that combines several
functions, including those of the DAC, ADC, and input and output filters. We are concerned with the

DAC and ADC.

The codec used in virtualy all modern digital telephone equipment does not use a standard linear
function when converting codes to voltages and voltages to codes. Instead, it uses an exponential
function that changes the size of the voltage step between codes as the codes grow larger. Figure
10.13 shows an example of what this curve looks like. The resolution for smaller code valuesis
much finer than at the extremes of the range. For example, the difference between a code of zero and
a code of one might be 1mv, while the difference between code 100 and code 101 could be 10mv.

Cutput voltage

Coda Value

Figure 10.13 An exponential function that changes the size of voltage steps.

The exponential curve defined for telecommunications codecs gives an effective range of thirteen
bits out of a codec that only uses eight-bit samples. We can do the same thing with out eight-bit
sound files by squeezing eight-bit samplesinto a smaller number of codes.

Our eight-bit sound files can be considered approximately seven-bit samples with a single sign bit,



indicating whether the output voltage is positive or negative. This gives us a range running from zero
to 128 to encode for the output of our non-linear compression function.

If we assume that we will have N codes to express the range of zero to 127, we can develop a
transfer function for each code using the following equation:

output = 127.0 * ( pow 2.0, code / N) - 1.0)

In other words, we calculate the output by raising 2 to the code/N power. The value of code/N will
range from zero for code O up to one for code N, resulting in an output range that runs from zero to
127, with adecidedly non-linear look.

An example of how this might work would be found if we used eight samples to encode the range
zero to 128. This, in effect, compresses seven bits to three. The output value produced by an input
code is shown in the table that follows.

Transforming three bits to seven

Input Code Output Value
0

13

28

44

62

81

103

127

~No o0k wWwDN e O

The output step taken here between codes 0 and 1 is 13, but between 6 and 7 it goes up to 24. This
means that we have more resolution in the smaller input ranges, where we need it, and less resolution
for the loud sounds, where we don’t need it.

This compression algorithm does an excellent job of compressing sound without damaging quality. It
also has several nice features. First, both decompression and compression can take place viatable
lookup, resulting in extremely fast processing. Second, the amount of compression is known in
advance, since the amount of compression does not vary based on the input data stream. Finally, the
algorithm can be tuned to any desired compression ratio simply by varying the number of codes used
in the compressed file.

The code to implement a simple version of this compression scheme follows. File COMPAND.C can
be called with an additional parameter that tells how many bits to use per code during the
compression process. Experimental results show that compressing eight-bit samplesto four bits
resultsin very little degradation. Three bits or fewer starts to generate high-frequency componentsin
the output, which are heard as static, or noise. But it is atribute to the human ear to note that even
samples compressed down to one bit per sample are still frequently intelligible.

/************************ Start Of COVPANDC************************

* This is the conpandi ng nodul e used in chapter 10.

* Conpile with BITIO. C, ERRHAND. C, and either MAIN-C.C or MAIN-E. C
*/



#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i ncl ude <mat h. h>

#i nclude "bitio. h"
#i ncl ude "errhand. h"
#i ncl ude "mai n. h"

/*

* These two strings are used by MAIN-C.C and MAIN-E.C to print

* messages of inportance to the user of the program

*/

char *Conpressi onNane = "Sound sanpl e conpandi ng";

char *Usage =

"infile outfile [nN]\n\n n optionally sets the bits per sample\n\n";

#ifdef _ STDC _

long get file_length( FILE *file );
#el se

long get file_ length();

#endi f

#i f ndef SEEK END

#defi ne SEEK END 2

#endi f

#i f ndef SEEK_SET
#define SEEK SET 0

#endi f

/*

* The conpression routine runs very quickly, since all it does is

* performa table | ookup on each input byte. The first part of the
* routine builds that table. After that it is just a matter of

* reading bytes in and witing out the conpressed val ue.

*

* Unlike all of the other conpression routines in the book, this

* routine does not have a special END OF _STREAM code. Wth as few

* as four or eight codes, they seemtoo precious to give one up

* |nstead, the file length is witten out at the very start of the

* conpressed file, along with the nunber of bits used to encode the
* dat a.

*/

voi d ConpressFile( input, output, argc, argv )

FI LE *i nput;

BI T_FI LE *out put;

int argc;

char *argv[];

nt conpress[ 256 ];

i

int steps;
int bits;
i nt val ue;
int i;

int j;

int c;

/*
* The first section of code determ nes the nunber of bits to use



* for output codes, then wites it to the conpressed file. The
* length of the input file is also witten out.
*/
if ( argc-- > 0)
bits = atoi( *argv );
el se
bits = 4;
printf( "Conpressing using %d bits per sanple...\n", bits );
steps = (1 << ( bits - 1) );
Qut putBits( output, (unsigned long) bits, 8 );
Qut putBits( output, (unsigned long) get file length( input), 32 );
/*
* The conpression table is built here. Each input code maps to
* a single output code. There are "steps" codes to be used in
* the output space. This builds an exponential output function

*/
for (i =steps ; i >0; i--) {
value = 128.0 * ( pow 2.0, (double) i / steps ) - 1.0 ) + 0.5;
for (j =value ; j >0; j--) {
conpress[ j + 127 ] =i + steps - 1;
conpress[ 128 - j ] = steps - i;
}
}
/-k
* The actual conpression takes place here.
*/

while ( ( ¢ = getc( input ) ) !'= EOF)
Qut putBi ts( output, (unsigned |ong) conpress[ ¢ ], bits ); }

/*

* The expansion routine gets the nunber of bits per code fromthe
* conpressed file, then builds an expansion table. Each of the

* "steps" codes expands to a unique eight-bit code that lies on

* the exponential encoding curve.

*/

voi d ExpandFil e( input, output, argc, argv )
BI T_FI LE *i nput:

FI LE *out put;

int argc;

char *argv[];

i nt steps;

int bits;

int val ue;

int |ast_val ue;
int i;

int c;

| ong count;

i nt expand][ 256 ];

/*
* First this routine reads in the nunber of bits, then it builds
* the expansion table. Once the table is built, expanding the file
* is sinply a natter of perfornmng a table | ookup on each code.
*/
bits = (int) InputBits( input, 8 );
printf( "Expanding using %l bits per sanple...\n", BITS);
steps = ( 1 << (bits - 1) );
| ast _val ue = 0;

for (i =1; i <= steps; i++ ) {
value = 128.0 * ( pow(2.0, (double) i / steps ) - 1.0 ) + 0.5;
expand[ steps +i - 1] =128 + ( value + last_value ) / 2;

expand[ steps - i ] = 127 - ( value + last_value ) / 2;



| ast _val ue = val ue;

}
/*
* The actual file size is stored at the start of the conpressed
* file. It is read in to determ ne how many codes need to be
* expanded. Once that is done, expansion takes place rapidly.
*/
for ( count = InputBits( input, 32 ); count > 0 ; count-- ) {
c = (int) InputBits( input, bits );
putc(expand[ c ], output );

while ( argc-- > 0)
printf( "Unused argunment: %\n", *argv++ ) ;
}

/*
* This utility routine determnes the size of the input file.
*/

long get file length( file)
FILE *file;
{

[ ong marker;
I ong eof ftell;

marker = ftell( file );

fseek( file, OL, SEEK END )

eof ftell = ftell( file );
fseek( file, marker, SEEK SET );
return( eof ftell - marker );

/************************ End Of COVPAND C************************/

Aswas mentioned before, lossy compression is frequently used as a front end to alossless
compressor. In the case of COMPAND.C, thisis avery effective strategy. After the files have been
processed, far fewer codes are present in the output file, which makes string matching more likely,
such asthat used by LZSS compressors. By compressing afile by 50 percent using the companding
strategy, then by applying LZSS compression, we can frequently achieve upwards of 90 percent
compression on sound samples.

Other Techniques

This chapter covered some of the simpler techniques used to compress sound samples. Asthe level
of processing power available for processing goes up, far more complicated algorithms are being

applied.

One of the most common compression algorithms in use today has been sanctioned by the CCITT in
their recommendation G.721. The G.721 algorithm uses Adaptive Differential Pulse Code
Modulation (ADPCM) to encode digital signals at 16Kbps or 32K bps. This algorithm is commonly
performed by digital signal processors, and it is generally applied to data that has already been
digitized using standard codes.

The ADPCM agorithm combines two techniques. The first, delta pulse code modulation, encodes
sound signals by measuring the difference between two consecutive samples, not their absolute
values. The quantization level adapts itself to the changing input signals, so the size of the encoded
voltage changes as the input signal changes. When the signal moves from a high voltage to alow
voltage at a step rate, the encoded step value will be high. If aquiet input signal is being encoded,
the step value will be low.



This becomes complicated because the ADPCM algorithm requires that the transmitter predict in
advance where the input signal is headed. If this prediction is not made accurately, it is not possible
to make good judgments about the size of the step defined by each code. The process of predicting
where awaveform is headed occupies most of the processor’ s time.

To compress sound samples to even lower bit rates, even more sophisticated techniques, such as
Linear Predictive Coding (LPC), are used. Human speech can be compressed and replayed in a
recognizable state with rates as low as 2,400 bits per second using L PC.

L PC attempts to compress human speech by modeling the vocal tract that produces the speech.
Instead of storing thousands of samples per second. LPC instead attempts to determine just afew
parameters that model the process used to create the sound. The success or failure of LPC hinges on
the ability of the compressor to execute millions of instructions per second during the compression
process.

Processes such as LPC and ADPCM represent the type of algorithms that will be used more and
more frequently on the desktop. Unfortunately, the complexity of these algorithms are far beyond the
scope of a sample program in this chapter.



Chapter 11
L ossy Graphics Compression

Desktop computers communicate information primarily viatheir screens, so graphics are a major
concern for computer programmers and designers. Programmers spend enormous amounts of time
and effort trying to accommodate the proliferation of the Graphical User Interface (GUI). Millions of
man hours and billions of dollars worth of equipment are being allocated just to make improvements
in the way programs display data.

The money being spent on computers equipped to perform properly under GUIs such as Microsoft
Windows or Motif has created avast array of computers capable of displaying complex graphical
images, with resolution approaching that of conventional media, such as television or magazines. In
turn, this capability has spawned new software designed to exploit these capabilities.

Programs using complex graphics are showing up in virtually every area of computing applications:
games, education, desktop publishing, and graphical design, just to mention afew. These programs
have one factor in common. The images they use consume prodigious amounts of disk storage.

In the IBM world, for example, the VGA display is probably the current lowest common
denominator for high-quality color graphics. The VGA can display 256 simultaneous colors selected
from a palette of 262,144 colors. Thisletsthe VGA display continuous tone images, such as color
photographs, with a reasonable amount of fidelity.

The problem with using images of photographic quality is the amount of storage required to use
them in a program. For the previously mentioned VGA, a 256-color screen image has 200 rows of
320 pixels, each consuming a single byte of storage. This means that a single screen image consumes
aminimum of 64K! It isn’'t hard to imagine applications that would require literally hundreds of
these images to be accessed. An on-line catalog for aretail sales outlet, for example, could easily
have 1,000 images stored for immediate access. The problem isthat 1,000 images of this quality
would consume 64MB of storage. And thisis not an unreasonable number: We are just beginning to
see game programs being distributed on CD-ROM, due to the enormous amounts of storage required
by screen images.

This chapter discusses the use of lossy compression techniques to achieve very high levels of data
compression of continuous tone graphical images, such as digitized images of photographs.

Enter Compression

There has been an explosion of research into graphics storage during the last decade, and many
interesting results have been published. In the late 1970s and early 1980s, most graphics
compression concentrated on using conventional lossless techniques. Popular PC file formats now
use techniques discussed earlier in the book to achieve savings ranging from 10 to 90 percent on
graphics images. Well-known formats using compression include the PCX, GIF, and BMP standards.

Asthe use of stored graphical images increased, file formats such as PCX began to appear
inadequate. Cutting file sizes in half certainly is aworthwhile thing to do, but developers and users
Ywere filling their storage space up so fast that system requirements for multimedia systems
appeared prohibitively expensive. Worse yet, the promise of full motion video on the desktop was
simply not possible until some method was developed for radically reducing storage needs. Clearly,
compression capabilities needed to improve, perhaps by orders of magnitude.

Statistical and Dictionary Compression M ethods



Conventional programs and data on computers respond well to compression based on exploiting
statistical variations in the frequency of both individual symbols and strings of symbols or phrases.
Dictionary-based systems are in fact just statistical programs in disguise. Unfortunately, these types
of compression don’t tend to do very well on continuous tone images.

The primary problem these programs have stems from the fact that pixels in photographic images
tend to be well spread out over their entire range. If the colorsin an image are plotted as a histogram
based on frequency, the histogram is not as “spiky” aswe would like for statistical compression to
succeed. In fact, over the long run, histograms for live images from sources such astelevision tend to
be flat. This means that each pixel code has approximately the same chance of appearing as any
other, negating any opportunity for exploiting entropy differences.

Dictionary-based compression programs run into similar problems. Images based on scanned
photographs just don’t have the right kind of data characteristics to create multiple occurrences of
the same phrase. In arasterized image, for example, avertical structure such as the side of a house
may give similar strings in many consecutive rows of a picture. Unfortunately, because of the
vagaries of the real world, the same feature in each row will tend to be dightly different from the one
before. Out of astring of twenty pixels, one or two will vary by a single step from the scans before
and after. And while these differences are small enough that they are either undetectable or
meaningless to the human eye, they throw a monkey wrench into the works of dictionary-based
compression. Strings have to match exactly for this compression method to work. Because of minute
variations, the length of matching strings tends to be small, which limits the effectiveness of
compression.

L ossy Compression

Just like audio data (discussed in Chapter 10), graphical images have an advantage over conventional
computer datafiles: They can be slightly modified during the compression/expansion cycle without
affecting the perceived quality on the part of the user. Minor changes in the exact shade of a pixel
here and there can easily go completely unnoticed if the modifications are done carefully. Since the
graphical images on a computer are generally scanned from real-world sources, they usually
represent an already imperfect representation of a photograph or some other printed media. A lossy
compression program that doesn’t change the basic nature of the image ought to be feasible.

Given that lossy compression for graphical imagesis possible, how isit implemented? Researchers
initially tried some of the same techniques that worked on speech, such as differential coding and
adaptive coding. While these techniques helped compress graphics, they did not do as well as hoped.
One reason for thisliesin the fundamental difference between audio and video data

Audio data sampled using conventional formats tends to be very repetitive. Sounds, including
speech, are made of sine waves that repesat for seconds at a time. Though the input stream at the
DAC on acomputer may consist of dozens of different frequencies added together, sine waves
generally combine to produce repetitive waveforms.

The repetitive nature of audio data naturally lendsitself to compression. Techniques such as linear
predictive coding and adaptive differential pulse code modulation take advantage of this fact to
compress audio streams anywhere from 50 to 95 percent.

When research began on compression of graphics, attempts were made to apply similar techniquesto
digitized images, with some success. Initially, researchers worked on the compression of streams of
rasterized data, such as would be displayed on atelevision set.

When graphics data is rasterized, it is displayed as a sequential stream of pixels. Onerow at timeis



displayed on a screen, working from left to right, then top to bottom. Thus, athin slice of the picture
is painted as each row is completed, until the complete screen isfilled. When digitized, pixels can
range in size from asingle bit to as many as twenty-four bits. Desktop graphics today frequently uses
eight bitsto define asingle pixel.

Differential Modulation

Differential modulation depends on the notion that analog data tends to vary in “smooth” patterns,
with radical jumps in the magnitude of a signal being the exception, not the rule. In audio data, thisis
true as long as the sampling rate of the signal is somewhat higher than its maximum frequency
component.

Differential modulation of an audio signal takes advantage of this fact by encoding each sample as
the difference from its predecessor. If audio samples are eight bits each, for example, a differential
encoding system might encode the difference between samplesin four bits, compressing the input
data by 50 percent. The lossy part of the compression scheme arises from the fact that an exact
difference can’'t always be encoded using the standard differential method. The signal may be rising
faster than the encoding permits, or the encoding may be too coarse to accommodate a small
difference. The lossy aspect of differential encoding can be managed well enough to produce a good
signal.

Differential modulation has more of a problem when compressing graphical data. For one thing,
pixelsin agraphical image can't be reliably depended on to vary upward or downward in smooth
increments. Sharp dividing lines between different components of an image are the rule. This means
that a system that relies on differential encoding needs to accommodate both small and large
differences between samples, limiting its effectiveness. Many images will feature long stretches of
data where pixels have little or no difference between one another, and these will compress well;
however, others will feature many abrupt changes, and these may not compress at all.

In general, differential encoding of graphical images doesn’t seem to produce compression that is
significantly greater than that of the best lossless algorithms. It certainly doesn’t yield the order of
magnitude of improvement in compression that is needed.

Adaptive Coding

Adaptive coding (which is often used with differential coding) relies on predicting some information
about upcoming pixels based on previously seen pixels. If the last ten pixelsin agrey-scale
photograph all had values between forty-five and fifty, for example, an adaptive compression system
might predict with high probability that the next pixel would be in the same range. An entropy-based
encoding scheme, such as Huffman or arithmetic coding, could then assign probabilities to various
incoming codes. An alternative would be to use a companding scale, with the finest granularity
assigned to the range nearest the predicted guess. Assuming that the prediction method enabled you
to make an educated guess about the probabilities of the pixels, you should achieve some data
compression.

Most adaptive schemes rely on using just afew of the surrounding pixels as part of the calculation
for probabilities of the upcoming pixel. In Figure 11.1, the pixel to be encoded is shown at position
0,0. Pixelsthat are most commonly used when calculating probabilities are shown at positions A, B,
C, and D. Predictions about the upcoming value of the target pixel can be made based on any of
several predicting equations:
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Figure 11.1 Pixels used for adaptive coding.

Figure11.2 Pixd predictors.

These techniques use previous data to calculate the most likely value of the target pixel, and they
adjust the coding scheme accordingly. While these cal cul ations produce good results, once again
they are certainly not the order of magnitude needed to perform effective compression.

A Standard That Works: JPEG

In the late 1970s and early 1980s, research began on new types of image compression that promised
to greatly outperform the more conventional compression techniques discussed earlier. By the late
1980s, this work was beginning to find commercial applications for image processing on desktop
systems, mostly in the form of add-on coprocessor cards for UNIX and Macintosh workstations.
These cards were able to perform lossy compression on images at ratios of as much as 95 percent
without visible degradation of the image quality.

Other forces at this time combined to start development of an international standard that would
encompass these new varieties of compression. There are clear advantages to all partiesif standards
allowed for easy interchange of graphical formats. The main concern regarding early standardization
isthe possibility that it would constrain further innovation. The two standardization groups involved,
the CCITT and the SO, worked actively to get input from both industry and academic groups
concerned with image compression, and they seem to have avoided the potentially negative
consequences of their actions.

The standards group created by these two organizations is the Joint Photographic Experts Group
(JPEG). The JPEG standard was devel oped over the curse of several years, and is now firmly
entrenched as the leading format for lossy graphics compression.

The JPEG specification consists of several parts, including a specification for both lossless and lossy
encoding. The lossless compression uses the predictive/adaptive model described earlier in this
chapter, with a Huffman code output stage, which produces good compression of images without the
loss of any resolution.



The most interesting part of the JPEG specification isits work on alossy compression technique.
The rest of this chapter discusses the basics of this technique, with sample code to illustrate its
components.

JPEG Compression

The JPEG lossy compression algorithm operates in three successive stages, shown in Figure 11.3.
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Figure 11.3 JPEG lossy compression.

These three steps combine to form a powerful compressor, capable of compressing continuous tone
images to less than 10 percent of their original size, whilelosing little, if any, of their original
fidelity.

The Discrete Cosine Transform

The key to the compression process discussed here is a mathematical transformation known as the
Discrete Cosine Transform (DCT). The DCT isin aclass of mathematical operations that includes
the well-known Fast Fourier Transform (FFT), as well as many others. The basic operation
performed by these transforms is to take a signal and transform it from one type of representation to
another.

This transformation is done frequently when analyzing digital audio samples using the FFT. When
we collect a set of sample points from an incoming audio signal, we end up with the representation
of asignal in thetime domain. That is, we have a collection of points that show what the voltage
level was for the input signal at each point in time. The FFT transforms the set of sample points into
aset of frequency values that describes exactly the same signal.

Figure 11.4 shows the classic time domain representation of an analog signal. This particular signal
is composed of three different sine waves added together to form a single, slightly more complicated
waveform. Each of the sample points represents the relative voltage or amplitude of the signal at a
specific point in time.
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Figure 11.4 The classic time domain representation of an analog signal.

Figure 11.5 shows what happens to the same set of data points after FFT processing. In the time-
domain representation of the signal, each of the points on the X axis represents a different point in



time, and each of the pointson the Y axis represents a specific magnitude of the signal. After
processing the data points with an FFT, the X axis no longer has the same meaning. Now, each point
on the X axis represents a specific frequency, and the Y axis represents the magnitude of that
frequency.

Figure 11.5 Data points after FFT processing.

Given that interpretation of the output of the FFT, Figure 11.5 makes immediate sense. It says that
the signal displayed in the earlier figure can also be represented as the sum of three different
frequencies of what appears to be identical magnitude. Given thisinformation, it should be just as
easy to construct the signal as it would be with Figure 11.4.

Another important point to make about the this type of transformation function is that the function is
reversible. In principle, the same set of points shown in Figure 11.5 can be processed through an
inverse FFT function, and the points shown in Figure 11.4 should result. The two transformation
cycles are essentially lossless, except for loss of precision resulting from rounding and truncation
errors.

The DCT is closely related to the Fourier Transform, and produces a similar result. It takes a set of
points from the spatial domain and transforms them into an identical representation in the frequency
domain; however, we are going to introduce an additional complication in this particular instance.
Instead of atwo-dimensional signal plotted on an X and Y axis, the DCT will operate on athree-
dimensional signal plotted on an X, Y, and Z axis.

In this case, the “signal” isagraphical image. The X and Y axes are the two dimensions of the
screen. The amplitude of the “signal” in this case is simply the value of a pixel at a particular point
on the screen. For the examples used in this chapter, that is an eight-bit value used to represent a
grey-scale value. So a graphical image displayed on the screen can be thought of as a complex three-
dimensional signal, with the value on the Z axis denoted by the color on the screen at a given point.
Thisisthe spatial representation of the signal.

The DCT can be used to convert spatial information into “frequency” or “spectral” information, with
the X and Y axes representing frequencies of the signal in two different dimensions. And like the
FFT, thereisan Inverse DCT (IDCT) function that can convert the spectral representation of the
signal back to a spatial one.

DCT Specifics
The actual formulafor the two-dimensional DCT is shown in Figure 11.6, with its partner, the IDCT,

shown immediately below in Figure 11.7. The DCT is performed on an N x N square matrix of pixel
values, and it yieldsan N x N square matrix of frequency coefficients. The formulalooks somewhat



intimidating at first glance, but it can be done with arelatively straightforward piece of code.
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Figure11.6 The Discrete Cosine Transform
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Figure11.7 Thelnverse DCT

To write code to implement this function, it first becomes clear that simple table lookups can replace
many terms of the equation. The two cosine terms that have to be multiplied together only need to be
calculated once at the beginning for the program, and they can be stored for later use. Likewise, the
C(x) termsthat fall outside the summation loops can aso be replaced with table lookups. Once that
is done, code to compute the N-by-N portion of a display looks somewhat like that shown below:

for (i =0 ; i <N; i++)
for (j =0 j <Nj; j++) {
tenp = 0.0;

for ( x =0 ; X < N; x++)

for (y =0; y <N; y++) {

temp += Cosines[ x ][ i ] *
Cosines[ vy ][ j 1 *
pixel[ x ][ vy ];

) * Coefficients[ i ][ h];

y
tenmp *= sqgrt( 2 * N
] = INT_ROUND( temp );

DCT i J[ ]
}

Why Bother ?

While this code fragment looks as though it may be somewhat interesting to a mathematician, why
anyone would want to use it on a graphical image is not immediately obvious. After we transform
the pixels to frequency coefficients, we still have just as many points as before. It doesn’t seem asiif
that is a particularly good way to go about compressing data. It would be much more impressive if
the DCT took an N-by-N matrix of data and transformed it to an N/2 by N/2 matrix.

However, Figure 11.5 provides a clue as to what the JPEG committee sees in this algorithm. Figure
11.5 shows that the spectral representation of the audio waveform takes all the information needed to
describe the waveform and packs it into the three non-zero points on the graph. So in principle we
could describe the 512 points that make up the input waveform with just three points of frequency
data.

The DCT accomplishes something similar when it transforms data. In the N-by-N matrix, all the
elementsin row 0 have a frequency component of zero in one direction of the signal. All the
elements in column O have a frequency component of zero in the other direction. Asthe rows and
columns move away from origin, the coefficientsin the transformed DCT matrix begin to represent



higher frequencies, with the highest frequencies found at position N-1 of the matrix.

Thisis significant because most graphical images on our computer screens are composed of |ow-
frequency information. Asit turns out, the components found in row and column O (the DC
components) carry more useful information about the image than the higher-frequency components.
Aswe move farther away from the DC components in the picture, we find that the coefficients not
only tend to have lower values, but they become far less important for describing the picture.

So the DCT transformation identifies pieces of information in the signal that can be effectively
“thrown away” without seriously compromising the quality of the image. It is hard to imagine how
we would do this with a picture that hadn’t been transformed. With the image still described in
gpatia terms, using pixels, a program would have a difficult time figuring out which pixels are
important to the overall look of the picture and which aren't.

After defining the DCT as the transformation to be used, the JPEG committee then tackled the truly
difficult work: how to “throw away” the insignificant portions of the picture. Details on that come
later in this chapter.

Implementing the DCT

One of the first things that shows up when examining the DCT algorithm is that the calculation time
required for each element in the DCT is heavily dependent on the size of the matrix. Since a doubly
nested loop is used, the number of calculationsis O(N sgquared): as N goes up, the amount of time
required to process each element in the DCT output array will go up dramatically.

One of the consequences of thisisthat it is virtually impossible to perform a DCT on an entire
image. The amount of calculation needed to perform a DCT transformation on even a 256-by-256
grey-scale block is prohibitively large. To get around this, DCT implementations typically break the
image down into smaller, more manageable blocks. The JPEG group selected an 8-by-8 block for the
size of their DCT calculation.

While increasing the size of the DCT block would probably give better compression, it doesn’t take
long to reach a point of diminishing returns. Research shows that the connections between pixels
tend to diminish quickly, such that pixels even fifteen or twenty positions away are of very little use
as predictors. Thismeansthat aDCT block of 64-by-64 might not compress much better than if we
broke it down into four 16-by-16 blocks. And to make matters worse, the computation time would be
much longer.

While thereis probably a good argument for using 16-by-16 blocks as the basisfor DCT
computations, the JPEG committee elected to stick with 8-by-8. Much of this was motivated by a
desireto allow for practical implementations that could be built using today’ s technology. This type
of compression isreferred to as “block coding.”

Matrix Multiplication

The definition of the DCT shown aboveis arelatively straightforward, doubly nested loop. The inner
element of the loop gets executed N*N times for every DCT element that is calculated. The inner
line of the loop has two multiplication operations and a single addition operation.

A considerably more efficient form of the DCT can be calculated using matrix operations. To
perform this operation, we first create an N-by-N matrix known as the Cosine Transform matrix, C.
This matrix is defined by the equation shown in Figure 11.8.
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Figure 11.8 The Cosine Tranform Matrix.
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Once the Cosine Transform matrix has been built, we transpose it by rotating it around the main
diagonal. Thismatrix isreferred to in code as Ct, the Transposed Cosine Transform matrix. Building
this matrix is done only once during program initialization. Both matrices can be built at the same
time with arelatively short loop, shown below:

a [ 1] =1.0/7 sqrt( N)
} Ct[J][0]=C[0][J']
for (i =1 ; i <N; i++) {
for (j =0; j <N; j ++) {
g i ][ j] =sqgrt( 220/ N) *
cos( ((2*j +1) *i * pi
[ (2.0* N) );
arj i1 =aillijl
}

Once these two matrices have been built, we can take advantage of the alternative definition of the
DCT function:

DCT = C* Pixels * C

In this particular equation, the ‘** operator refers to matrix multiplication, not normal arithmetic
multiplication. Each factor in the equation is an N-by-N matrix. In the case of the JPEG a gorithm
and the program used to illustrate this chapter, the matrices are 8 by 8.

When multiplying two sguare matrices together, the arithmetic cost of each element of the output
matrix will be N multiplication operations and N addition operations. Since we perform two matrix
multiplications to create the DCT matrix, each element in the transformed DCT matrix was created
at the cost of 2N multiplications and additions, a considerable improvement over the nested loop
definition of the DCT used earlier.

/* MatrixMultiply( tenp, input, C ); */

for (i =0; i <N; i++) {
for (j =0; j <N; j++) {
temp[ i J[ j ] = 0.0;
for (( k =0; k <N,; k++)
tenp[ i J[ j ] += ( pixel[ P ][ k] ) *>Ca[ k][] I;
}
/* MatrixMultiply( output, C tenp ); */
for (i =0 ; i <N; i++) {
for (j =0; j <N; j++t) {
tenpl = ;

for ( k
tenpl +

0
0; k <N,; k++)
aq i 1l k] *temp[ kK I1[ j 1;

nino



}DCT[ 107 1 = tenpl;
}

A sample piece of code that implements the DCT viamatrix arithmetic is shown above. Note that the
code is essentially nothing more than a set of two triply nested loops. The first set of loops multiplies
the transposed Cosine Transform Matrix by the input set of pixels, creating atemporary matrix. The
temporary matrix is then multiplied by the Cosine Transform matrix, which results in the output, the
DCT matrix.

Continued I mprovements

The versions of the DCT presented here perform the same operations as those used in commercial
implementations, but without several more optimization steps needed to produce JPEG compressors
that operate in something approaching real time.

One improvement that can be made to the algorithm is to devel op versions of the algorithm that only
use integer arithmetic. To achieve the accuracy needed for faithful reproduction, the versions to the
program tested in this chapter all stick with reliable floating point math. It is possible, however, to
develop versions of the DCT that use scaled integer math, which is considerably faster on most
platforms.

Since the DCT isrelated to the Discrete Fourier Transform, it shouldn’t be surprising that many of
the techniques used to speed up the family of Fourier Transforms can also be applied to the DCT. In
fact, people all over the world are working full time on applying Digital Signa Processing
techniques to the DCT. Every cycle shaved off the time taken to perform the transform can be worth
asmall fortune, so there is good incentive for these research efforts.

Output of the DCT

Figure 11.9 shows a representative input block from a grey-scale image. As can be seen, the input
consists of an 8-by-8 matrix of pixel values which are somewhat randomly spread around the 140 to
175 range. These integer values are fed to the DCT algorithm, creating the output matrix shown
below it.

Imput Pixe | matric:

140 144 147 140 140 135 172 173
144 152 140 147 140 148 167 178
152 155 125 167 163 162 152 172
168 145 156 160 152 155 126 160
162 148 156 148 140 126 147 162
147 167 140 155 155 140 136 162
126 156 123 167 162 144 140 147
148 155 125 155 152 147 147 136

Output D CT matrix:

186G =18 13 =g 23 =g =14 19
21 = 25 =g =11 11 14 7

=10 -24 -2 G =18 3 =20 =1
- -3 14 -13 ] -3 -3 =]

-3 10 =] 1 -1 18 18 13

4 -2 -18 -] a8 -4 1 -7

a 1 -3 4 -1 -7 -1 -2

Q -8 -2 2 1 4 -G ¥]




Figure11.9 The DCT on aBlock of Pixelsfrom CHEETAH.GS

The output matrix shows the spectral compression characteristic the DCT is supposed to create. The
“DC coefficient” is at position 0,0 in the upper left-hand corner of the matrix. This value represents
an average of the overall magnitude of the input matrix, since it represents the DC component in
both the X and the Y axis. Note that the DC coefficient is almost an order of magnitude greater than
any of the other valuesin the DCT matrix. In addition, thereis ageneral trend in the DCT matrix. As
the elements move farther and farther from the DC coefficient, they tend to become lower and lower
in magnitude.

This means that by performing the DCT on the input data, we have concentrated the representation
of the image in the upper left coefficients of the output matrix, with the lower right coefficients of
the DCT matrix containing less useful information. The next section discusses how this can help
compress data.

Quantization

Figure 11.3 shows the JPEG compression process as a three-step procedure, the first step being a
DCT transformation. DCT is alossless transformation that doesn’t actually perform compression. It
prepares for the “lossy,” or quantization, stage of the process.

The DCT output matrix takes more space to store than the original matrix of pixels. The input to the
DCT function consists of eight-bit pixel values, but the values that come out can range from alow of
-1,024 to a high of 1,023, occupying eleven bits. Something drastic needs to happen before the DCT
matrix can take up less space.

The“drastic” action used to reduce the number of bits required for storage of the DCT matrix is
referred to as “ Quantization.” Quantization is simply the process of reducing the number of bits
needed to store an integer value by reducing the precision of the integer. Once aDCT image has
been compressed, we can generally reduce the precision of the coefficients more and more as we
move away from the DC coefficient at the origin. The farther away are from 0,0, the less the element
contributes to the graphical image, so the less we care about maintaining rigorous precision in its
value.

The JPEG algorithm implements Quantization using a Quantization matrix. For every element
position in the DCT matrix, a corresponding value in the quantization matrix gives a qguantum value.
The quantum value indicates what the step sizeis going to be for that element in the compressed
rendition of the picture, with values ranging from one to 255.

The elements that matter most to the picture will be encoded with asmall step size, size 1 offering
the most precision. Values can become higher as we move away from the origin. The actual formula
for quantization is quite simple:

Quantized Value(i,j) = -------------- Rounded to nearest integer

Quantum(i,j)
From the formula, it becomes clear that quantization values above twenty-five or perhaps fifty assure
that virtually all higher-frequency components will be rounded down to zero. Only if the high-
frequency coefficients get up to unusually large values will they be encoded as non-zero values.

During decoding, the dequantization formula operates in reverse:



DCT(i,j) = Quantized Value(i,j) * Quantun(i,j)

Once again, from this we can see that when you use large quantum values, you run the risk of
generating large errorsin the DCT output during dequantization. Fortunately, errors generated in the
high-frequency components during dequantization normally don’t have a serious effect on picture
quality.

Selecting a Quantization Matrix

Clearly an enormous number of schemes could be used to define values in the quantization matrix.
At least two experimental approaches can test different quantization schemes. One measures the
mathematical error found between an input and output image after it has been decompressed, trying
to determine an acceptable level of error. A second approach tries to judge the effect of
decompression on the human eye, which may not always correspond exactly with mathematical
differencesin error levels.

Since the quantization matrix can obviously be defined a runtime when compression takes place,
JPEG allows for the use of any quantization matrix; however, the | SO has developed a standard set
of quantization values supplied for use by implementers of JPEG code. These tables are based on
extensive testing by members of the JPEG committee, and they provide a good baseline for
established levels of compression.

One nice feature about selecting quantization matrices at runtimeisthat it is quite ssmpleto “dia in”
apicture quality value when compressing graphics using the JPEG algorithm. By choosing
extraordinarily high step sizes for most DCT coefficients, we get excellent compression ratios and
poor picture quality. By choosing cautiously low step sizes, compression ratios will beginto slip to
not so impressive levels, but picture quality should be excellent. This allows for agreat deal of
flexibility for the user of JPEG code, choosing picture quality based on both imaging requirements
and storage capacity.

The quantization tables used in the test code supplied with this program are created using a very
simple algorithm. To determine the value of the quantum step sizes, the user inputs asingle “quality
factor” which should range from one to about twenty-five. Values larger than twenty-five would
work, but picture quality has degraded far enough at quality level 25 to make going any farther an
exercisein futility.

for (i =0 ; i <N,; i++)
for (j =0; j <N; j++)
Quantunf i J[ jJ ] =1+ (C(1+i +] ) *quality );

The quality level sets the difference between adjoining bands of the same quantization level. These
bands are oriented on diagonal lines across the matrix, so quantization levels of the same value are
all roughly the same distance from the origin. An example of what the quantization matrix looks like
with aquality factor of two follows:

3 3 7 a 1 13 153 17
a 7 a 1 13 13 17 19
T a 11 13 13 17 19 21
a 11 13 13 17 19 21 23
11 13 13 17 19 21 23 23
12 13 17 19 21 23 23 27
13 17 19 21 23 23 2r 29
17 19 21 23 23 27 29 3

Figure 11.10 The matrix at quality factor 2.



As aresult of this configuration, the DCT coefficient at 7,7 would have to reach a value of sixteen to
be encoded as a value other than zero. This sets the threshold for the value of an element beforeitis
going to contribute any meaningful information to the picture. Any contribution under the value of
this threshold is simply thrown out. Thisis the exact point in the algorithm where the “lossy” effect
takes place. Thefirst DCT step is lossless except for minor mathematical precision loss. And the step
following quantization is alossless encoding step. So thisis the only place where we get a chance to
actualy discard data.

Figure 11.11 shows the effects of quantization on a DCT matrix. The quantization matrix shown in
the previous figure was applied to this block of DCT, which comes from the first block of test file
CHEETAH.GS. The quantization/dequantization cycle has readily apparent effects. The high-
frequency portions of the matrix have for the most part been truncated down to zero, eliminating
their effect on the decompressed image. The coefficientsin the matrix that are close to the DC
coefficient may have been modified, but only by small amounts.

DCT Matrix before 22 3 -a -7 3 -1 0 2
Quantization: -39 -58 12 =17 -2 2 4 2
—B4 G2 1 -18 3 4 -5 ]

-52 —36 =10 14 -10 4 -2 o]

—BG —40 49 -7 17 -G -2 5

-2 5] -12 -2 3 - -2 o]

=17 14 —3G 17 -1 a 3 -1

-54 az -a -2 = o] 1 a

DCT Matrix after =4 4] -7 4] 4] 4] 4] 4]
Dequantization: —-35 —56 a 11 4] 0 4] 0
—B4 54 o] -13 0 o] 0 o]

—45 -33 o] o] 0 o] 0 o]

=77 -38 45 o] 4] o] 4] 0

-52 G0 [u] o] 4] o] 4] o]

-15 Q -14a o] 4] o] 4] o]

-51 19 o] o] 4] o] 4] o]

Figure 11.11 The effects of quantization.

The interesting thing is that while we appear to be making wholesale changes to the saved image,
quality factor 2 makes only minor changes that are barely noticeable. Y et the clearing of so many of
the coefficients allows the image to be compressed by 60 percent, even in the very simple
compression program used in this chapter.

Coding

The final step in the JPEG process is coding the quantized images. The JPEG coding phase combines
three different steps to compress the image. The first changes the DC coefficient at 0,0 from an
absolute value to arelative value. Since adjacent blocks in an image exhibit a high degree of
correlation, coding the DC element as the difference from the previous DC element typically
produces a very small number. Next, the coefficients of the image are arranged in the “ zig-zag
sequence.” Then they are encoded using two different mechanisms. The first is run-length encoding
of zero values. The second iswhat JPEG calls “Entropy Coding.” This involves sending out the
coefficient codes, using either Huffman codes or arithmetic coding depending on the choice of the
implementer.

The Zig-Zag Sequence

One reason the JPEG algorithm compresses so effectively isthat alarge number of coefficientsin



the DCT image are truncated to zero values during the coefficient quantization stage. So many
values are set to zero that the JPEG committee elected to handle zero values differently from other
coefficient values.

Instead of relying on Huffman or arithmetic coding to compress the zero values, they are coded
using a Run-Length Encoding (RLE) algorithm. A simple code is devel oped that gives a count of
consecutive zero values in the image. Since over half of the coefficients are quantized to zero in
many images, this gives an opportunity for outstanding compression.

One way to increase the length of runsisto reorder the coefficientsin the zig-zag sequence. Instead
of compressing the coefficient in row-major order, as a programmer would probably do, the JPEG
algorithm moves through the block along diagonal paths, selecting what should be the highest value
elementsfirst, and working its way toward the values likely to be lowest.

The actual path of the zig-zag sequence is shown in Figure 11.12. In the code used in this chapter,
the diagonal sequences of quantization steps follow exactly the same lines, so the zig-zag sequence
should be optimal for our purposes.

0.0 o1 02 032 0.4 05 0.6 or

Figure 11.12 The path of the zig-zag sequence.

Implementing the zig-zag sequence in C is probably done best using a simple lookup table. In our
sample code for this chapter, the sequence is coded as part of a structure that can be accessed
sequentially to determine which row and column to encode:

struct zigzag {

int row,

int col;

} ZigZagf N* N ] =

{
{2, o}, {1, 1}, {0, 2},

{0, 3}, {1, 2}, {2, 1}, {3, 0},
{4, 0y, {3 1}, {2, 2}, {1, 3}, {0, 4},



{o, 5}, {1, 4}, {2, 3}, {3, 2}, {4, 1}, {5 0},

{6, 0}y, {5 1}, {4, 2}, {3, 3}, {2, 4}, {1, 5}, {0, 6},

{0, 7}, {1, 6}, {2, 5}, {3, 4}, {4, 3}, {5 2}, {6, 1}, {7, 0O},
{7, 1}, {6, 2}, {5 3}, {4, 4}, {3, 5}, {2, 6}, {1, 7},

}s

The C code that sends each of the DCT results to the compressor follows. Note that instead of
directly looking up each result, we instead determine which row and column to use next by looking it
up in the zig-zag structure. We then encode the element determined by the row and column from the
zig-zag structure.

for (i =0; i <(N*N) ;i ++) {

row = ZigZag[ i ].row

col = Zigzag[ i ].col;

result = DCT[ row ][ col ] / Quantunf row ][ col ];

Qut put Code( output _file, ROUND( result ) );

Entropy Encoding

After converting the DC element to a difference from the last block, then reordering the DCT block
in the zig-zag sequence, the JPEG algorithm outputs the elements using an “entropy encoding”
mechanism. The output has RLE built into it as an integral part of the coding mechanism. Basically,
the output of the entropy encoder consists of a sequence of three tokens, repeated until the block is
complete. The three tokens look like this:

*Run Length: The number of consecutive zeros that preceded the current element in the
DCT output matrix.

*Bit Count: The number of bits to follow in the amplitude number.

sAmplitude: The amplitude of the DCT coefficient.

The coding sequence used in this chapter’ s test program is a combination of Run Length Encoding
and variable-length integer coding. The run-length and bit-count values are combined to form a code
that is output. The bit count refers to the number of bits used to encode the amplitude as a variable-
length integer.

The variable-length integer coding scheme takes advantage of the fact that the DCT output should
consist of mostly smaller numbers, which we want to encode with smaller numbers of bits. The bit
counts and the amplitudes which the encode follow.

Bit Count Amplitudes

-1,1
-3to-2,2t03
7t0-4,4t07
-15t0-8,8t0 15
-31t0-16, 16to 31
-631t0-32, 32t0 64
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7 -127 to -64, 64 to 127

8 -25510-128, 128 to 255

9 -511 to -256, 256 to 511
10 -1023 to -512, 512 to 1023

Note that each bit count encodes a symmetrical set of high and low values. The values skipped over
in the middle will be encoded with alower bit count from one in the table.

While thisform of variable-bit coding is not quite as efficient as Huffman coding, it works fairly
well, particularly if the data performs as expected, which means smaller values dominate and larger
values arerare.

What About Color?

The sample programs in this chapter and most of the text have talked about how to compress images
that have only one color component, usually agrey scale. This leaves the question of what to do with
color images.

Color images are generally composed of three components, such as the red, green, and blue of RGB,
or the luminance and chrominance of YUV. In these cases, JPEG treats the image as if it were
actually three separate images. An RGB image would first have its red component compressed, then
its green, then itsblue. Thisis essentially just more of the same.

The Sample Program

The sample program used to demonstrate DCT compression in this chapter isin the C sourcefile
DCT.C. It scan be compiled and linked with the standard support source files, BITIO.C,
ERRHAND.C, and either MAIN-C.C for compression or MAIN-E.C for expansion.

The DCT compression program takes an additional parameter on the command line, the quality
factor. A factor of zero through twenty-five can be selected, zero being the best quality and twenty-
five being the lowest. Aswas discussed earlier in this chapter, the quality factor is used to initialize
the quantum table with the step sizes for each DCT element.

The command syntax for the compression programiis:
DCT-C input-file output-file [quality]

If no quality valueis selected, it defaultsto avalue of three, which is an arbitrarily chosen constant.
The quality factor is encoded in the compressed file, so the expansion program doesn’t need that
parameter on the command line. The syntax for expansion is:

DCT-E input-file output-file

The DCT sample program in this chapter is not an implentation of JPEG compression. It does
closely duplicate the first and second stages of the algorithm, however, which are the DCT
transformation of the input, followed by the quantization and zig-zag coding steps. The only
significant difference from the JPEG algorithm at this point is that the DC coefficient at 0,0 is not
encoded as a difference from the last coefficient.

The test program used here departs from being a JPEG implementation in the encoding phase after



guantization is complete. DCT.C does not implement Huffman coding on the output, but it does
implement a slightly different form of RLE and uses variable-length integer codes for output.

Input Format

Graphics files come in a plethora of formats. Decoding and understanding every format can become
a bewildering problem, and the purpose of this book is not to be atreatise on file formats. Thus, the
graphics examples used in this chapter are stored in the closest thing possible to a* non-format.”

All of the graphics files used in this section are stored in arow-major order, so that all the pixelsin
each row are stored adjacent to one another. The top of the screen is stored first, with subsequent
rows working their way down the screen. Each file is a 320 column by 200 row grey-scale image,
with pixels having eight bits, ranging from zero to 255. The grey-scale files have afile suffix of
“GS,” which identifies them as “non-formatted” grey-scalefiles.

Thisformat is particularly easy to display on IBM VGA displays, but should be easy to adapt to any
system that can display 256 colors. A short program, GS.C, isincluded to display the fileson IBM
VGA displays. Since VGA displays can only handle sixty-four grey-scale colors, some of the
resolution of the imageislost on display, but the effect isrelatively insignificant to the human eye.

In addition to GS.C, which displays GS files on an IBM compatible VGA adaptor, there is a second
display program called GSDIFF.C. Thistests the differences between an original file and its
reproduction after a compression/decompression cycle. First it gives avisua display of the
differences between the two files. Then the root mean squared (rms) error is written to the screen.
While the rms value is not the best way to assign a quality factor to a compression cycle, it does
provide a good way to see how well compression isworking.

The Code

A summarized version of the main compression module follows (a complete listing is at the end of
the chapter). The main program first calls the initialization module, which sets up the quantization
table and the cosine transform matrices. The quality parameter must be passed to this module to have
it set up the quantization matrix properly.

The next step isto write out the quality factor to the output file. By outputting this information, we
eliminate the possibility of inadvertently trying to decompress using the wrong quantization matrix.
This would cause the output to be catastrophically in error if it happened.

voi d ConpressFile( FILE *input, BIT_FILE *output,
int argc, char *argv[] )

int row,

int col

int i;

unsi gned char *input_array[ N ];
int output_array[ N][ N1J;

int quality;

quality = atoi( argv[ 0] );
printf( "Using quality factor of %\n", quality );
Initialize( quality );
Qut putBits( output, quality, 8 );
for ( row=0; row <ROAN5 ; row += N ) {
ReadPi xel Strip( input, PixelStrip );
for ( col =0 ; col <COLS; col += N) {
for (i =0; i <N,; i++)
input_array[ i ] = PixelStrip[ i ] + col



Forwar dDCT( i nput_array, output_array );
WiteDCTDat a( output, output_array );

}

}
Qut put Code( output, 1 );
}

Finally, the main compression loop is entered. Since the datais stored a single row at atime, we
need to read in a block of eight rows together before we can begin building 8-by-8 blocks to
compress. Thisis accomplished in the routine called ReadPixel Strip. It reads an entire strip of pixels
8 rows deep and 320 columns wide.

The next part of the loop sets up the input_array. This actually gets passed to the DCT routine. It
consists of ablock of eight pointersinto the pixel strip. When it is passed to the DCT routine, the
input_array can be treated in the code as an 8-by-8 input matrix.

The DCT routine isthen called. It is passed an 8-by-8 unsigned character matrix and returns an 8-by-
8 integer matrix. The integer matrix is then passed to the WriteDCTData() routine for compression
and to be written to the file.

The final step in the program isto call the OutputCode() routine one last time with adummy non-
zero value. The OutputCode() routine tracks consecutive zeros for the run-length encoding portion of
the program. If the file ends with several consecutive zeros, they many need to be flushed before the
program exits.

Initialization

DCT.C hassingle initialization routine that is called for both compression and expansion. It first sets
up the quantization matrix, using the quality parameter passed to it. This uses the simple formulafor
defining step sizes discussed earlier.

Once the quantization matrix is set up, the next step isto set up the cosine transform matrix and the
transposed cosine transform matrix These matrices are used by the forward DCT and the inverse
DCT, so they can be set up in acommon routine. Setting them up involves nothing more than a
simple translation of the formula shown in Figure 11.8.

Thefinal step in initialization isto initialize the run-length encoding counters used on input and
output. These values are used when either outputting or inputting codes, and they track the number
of consecutive zero codes that have output or will be input.

void Initialize( int quality )
{

int i;

int j;

for (i =0 ; i <N; i+t+)

for (j =0 ; ] <Nj j++)

Qantunf i J[ j ] =1+ (C(1+i +j ) > quality);
for (j =0; j <N,; j++) {

g 0]l j ] =207 sqgrt( N)

arjlrol =dqolrijl;
for (i =1 ;i <N; i++) {

for (j =0; j <N j++) {

g i J[j] =sqgrt( 220/ N) *

cos( (2*j) +1) *i *pi [/ (2.0* N) ) ;



}Ct[j][i]=C[i][j];

}

Qut put RunLength = 0;

| nput RunLength = 0;
}

The Forward DCT Routine

Despite the seeming complexity of the DCT, it is accomplished in a very short routine. All it doesis
first perform amatrix multiplication of the input pixel data matrix by the transposed cosine
transform matrix and store the result in atemporary N-by-N matrix. Then the temporary matrix is
multiplied by the cosine transform matrix, and the result is stored in the output matrix, which is
passed back to the caller.

Note here that all input pixel values are scaled before being multiplied by the transposed cosine
transform matrix. After being scaled, they have arange of -128 to 127 instead of the zero to 255
range they had before. Thisis consistent with the way the JPEG agorithm handles input data.

voi d ForwardDCT( input, output )
unsi gned char *input[ NJ;
int output] NJ[ N1J;

double temp[ N][ N1J;
doubl e tenpl;

int i;

int j;

int k;

[*NMatrixMultiply( tenmp, input, C ); */

for (i =0 ; i <N; i++) {
for (j =0, j <N; j++) {
tenp[ i ][ j ] =0.0;
for (( k =0; k <N,; k++)
temp[ i ][ j 1 += ( input[ i ][ k] - 128 ) *
alf k1 [J 1
}}
/*NMatrixMultiply( output, C tenp ); */
for (i =0 ; i <N; i++) {
for (j =0, <N; j++) {
templ = 0.0;
for ( k =0; k <N,; k++)
templ += C i ][ k] * temp[ k J[ j ];
output[ i ][ j ] = ROUND( tenmpl );
}
}

Another point to observeisthat we are dealing with several different datatypes here and a certain
amount of care needs to be exercised so as not to cause problems during conversions. The input data
coming from the pixel strip isunsigned character converted during the matrix multiplication to
integer, then multiplied by adouble. The result is stored in a double temporary matrix. Finaly, the
last matrix multiplication produces double values, which are then rounded to integers for storagein
the output matrix. If everything goes as planned, the integers should be in the range of -1,024 to
1,023, and they are ready for quantization.

WriteDCT Data()



Thisroutine isresponsible for ordering the DCT result matrix into the zigzag pattern, then quantizing
the data. Both of these just involve table lookups of values that have been stored either during
initialization or at compile time. Then, the quantized value is rounded to the nearest integer and sent
to the routine that outputs codes.

void WiteDCTData( BIT _FILE *output file, output _data] N]J[ N )
{

int i;

int row,

int col;

doubl e resul t;

for (i =0; i <( N* N) ; i++) {
row = ZigZag[ i ].row
col = ZigzZag[ i ].col;
result = output_data] row ][ col ] / Quantun]{ row ][ col ];
Qut put Code( output _file, ROUND( result ) );
}
}

OutputCode()

Thisroutine is complicated by the fact that it has to handle quite afew different situationsin the
output data. In general, this routine puts out two numbers every timeit is caled. The first number is
the number of bits used in the output word to follow. The second number is the actual amplitude of
the output, encoded using a variable-length word, as in the JPEG a gorithm.

The number of bits parameter that is output first can range anywhere from zero to ten. To encode this
number using standard binary arithmetic would take four bits for every number. To achieve a minor
amount of savings, this routine uses a smple prefix code to output the number of bits, which will
result in asmall net savings.

voi d Qut put Code( BIT_FILE *output file, int code )
{

i nt top_of_range;

i nt abs_code;

int bit_count;

if ( code == 0) {
Qut put RunLengt h++;
return;
}
if ( QutputRunLength !'=0) {
while ( QutputRunLength > 0 ) {

QutputBits( output file, 0, 2);

if ( QutputRunLength <= 16 ) {

Qut putBits( output file, QutputRunLength - 1, 4 );

Qut put RunLength = 0;

} else {

QutputBits( output file, 15, 4 );

Qut put RunLength -= 16;

}
}
}
if ( code <0)
abs _code = -code;
el se

abs_code = code;

top_of range = 1,

bit count = 1,

while ( abs_code > top_of _range ) {



bit count ++
top_of _range = ( ( top_of _range + 1) * 2 ) - 1;

}
if ( bit_count < 3)
Qut putBits( output file, bit _count + 1, 3 ) ;
el se
QutputBits( output _file, bit_count + 5, 4 );
if ( code > 0)
Qut putBits( output file, code, bit_count );
el se
Qut putBits( output file, code + top_of range, bit_count );
}

Humber of Bits Binary Code
o] oo
1 010
2 011
a 1000
4 1001
5 1010
5] 1011
7 1100
g 1101
a 1110
10 1111

Figure 11.13 The coding for number of bits.

Asif this prefix code didn’t complicate things enough, OutputCode() has an additional thing to
worry about; run-length encoding. Since it doesn’t make sense to have a number of bits equal to
zero, that value is actually used to encode a run of zeros. The number of consecutive zerosis
encoded as a four-bit number immediately following abit count of zero. Note that the four-bit
number encodes runs of length 1 to 16, not 0 to 15 as might be first suspected. Thisis done since
there is no reason to waste a code on arun length of zero.

To properly encode runs of zeros, OutputCode() tracks the current run length. Anytime OutputCode
() iscalled to send out a value of zero, the routine actually just increments the run-length counter,
then returns.

The routine will finally be able to output the length of a run when one of two things happens. First,
the run length can actually reach sixteen. Thisis the longest run we can encode, which meansit will
flush the counter with arun output. The other situation is when OutputCode() is called to send a non-
zero code, and the run-length counter is greater than zero. This means a run has just concluded, and
it istimeto output if.

The final complication in this routine is the encoding of normal numbers. Aswas shown in the
earlier figure, these have an unusual format, with each code encoding arange of negative numbers,
then arange of positive numbers, with agap in between.

OutputCode() first determines how many bits are going to be needed to encode the code by sitting in
aloop checking to seeif the output code fallsin the appropriate range. When it finds the correct
range, it encodes the number, using a different offset for negative and positive numbers.

File Expansion

Once the file-compression agorithm is understood, file expansion isrelatively easy to follow. The
expansion routine first reads in the quality number from the file and uses it to initialize the matrix



data. It then sitsin aloop, reading in 8-by-8 DCT blocks. The routine that reads the DCT data also
takesit out of the zig-zag sequence, storing it in row normal fashion, then dequantizing it. At that
point, it is run through the inverse DCT procedure, which returns a block of pixel data. Once an
entire strip of pixel data has beenread in, it iswritten to the uncompressed output file.

Note that the expansion routine uses an array of pointersto redirect the output of theinverse DCT to
the PixelStrip array. This array hasto be set up before every inverse DCT is called so the datais
directed to the correct point in the pixel strip. The pixel strip isamatrix 8 rows deep and 320
columns wide.

voi d ExpandFile( BIT_FILE *input, FILE *output,
int argc, char *argv[] )
{

int row,

int col;

int i;

int input_array[ N]J[ NJ;

unsi gned char *output_array[ N];
int quality;

quality = (int) InputBits( input, 8 );
Initialize( quality );
for ( row=0; row < ROA5; row += N ) {
for ( col =0 ; col <COLS; col += N) {
for (i =0 ; i <N; i++)
output _array[ i ] = PixelStrip[ i ] + col;
ReadDCTDat a( i nput, input_array );
I nver seDCT( input_array, output_array );

}
WitePixel Strip( output, PixelStrip );

}
}

ReadDCT Data()

Thisroutine readsin DCT codes from the InputCode routine, dequantizes them, then storesthem in
the correct location. The codes read back in have been stored in the zig-zag sequence, so they have to
be redirected to their appropriate locations in the 8-by-8 block. Thisis accomplished with asimple
table lookup.

voi d ReadDCTData( input_file, input_data )
BI T_FILE *input _file;
int input_data] N]J[ N1J;
L
int i;
int row,
int col;

for (i =0 ; i <( N* N) ; i++) {

row = ZigZag[ i ].row

col = ZigzZag[ i ].col;

i nput _datal] row ][ col ] = InputCode( input file ) *
Quantun{ row ][ col ];

}

}

Input DCT Codes

Reading in the DCT codes is somewhat |ess complicated than writing them out, but a number of
factors still need to be taken into account. First, we read in the first two bits of the bit count code. If



the two bits have avalue of zero, it meansthat arun of zerosis being encoded with thisvalue. The
zero count isread in using the next four bits and stored in the global run-length indicator.

The global run-length indicator is stored in the InputRunL ength variable, and it is checked every
time the InputCode routine is called. If the value in this variable is non-zero, we are still returning a
run of zeros. When thisisthe case, the run-length indicator is decremented, and a zero is returned to
the calling program.

In the event that the first two bits aren’t zero, we are working with anormal bit count code. Either
two or three more bits are read in to compose the rest of the code, which yields the correct bit count.
We can then read in the encoded amplitude of the DCT variable by reading in that bit count.

Oncethat value is loaded in, we need to convert it to a normal number from the specially encoded
formitisin, which isrelatively simple. Finally, the correct number is returned to the calling for
dequantization and processing.

i nt I nputCode( input_file)
BIT_FILE *input_file;
{

int bit_count;

int result;

if ( InputRunLength > 0 ) {
| nput RunLengt h- -;
return( 0 );

bit _count = (int) InputBits( input _file, 2);
if ( bit_count == 0) {

| nput RunLength = (int) InputBits( input_file, 4);
return( 0 );

}
if ( bit_count ==1)

bit_count = (int) InputBits( input_file, 1) + 1;
el se

bit count = (int) InputBits( input file, 2 ) +
( bit_count << 2 ) - b5;
result = (int) InputBits( input_file, bit_count );
if (result & ( 1 << ( bit_count - 1) ) )
return( result );
return( result - ( 1 << bit_count ) + 1 );

}
Thelnverse DCT

The Inverse DCT is performed using the exact reverse of the operations performed in the DCT. Firgt,
the DCT valuesin the N-by-N matrix are multiplied by the cosine transform matrix. The result of
this transformation is stored in atemporary N-by-N matrix of doubles. This matrix is then multiplied
by the transposed cosine transform matrix. The result of this multiplication is rounded, scaled to the
correct unsigned character range of zero to 255, then stored in the output block of pixels.

void I nverseDCT( int input[ N]J[ NJ], unsigned char *output[ N] )

double tenp[ N][ N1J;
doubl e tenpl;

int i;

int j;

int k;

/[*MatrixMultiply( tenmp, input, C); */



for (i =0; i <N; i++) {

for (j =0; ] <N; j++) {

temp[ i ][ ] = 0.0;

for (( k =0; k < N; k++)
} tenp[ i J[ j ] +=input[ i J[ k] = k][] ];
}
[*Matrixwultiply( output, C, tenmp ); */
for (i =0 ; i <N; i++) {

for (j =0, <N; j++) {

tenpl = 0.0;

for (( k =0; k <N,; k++)

templ += Q[ i ][ k] * tenp[ k [ j I;

tenpl += 128.0;
if ( tenpl < 0)

output[ i ][ j ] = 0;
else if ( templ > 255)
output[ i ][ j ] = 255;
el se
output[ i ][ j ] = ROUND( templ );
}
}
}

The Complete Code Listing

The complete listing of DCT.C follows.

\~k~k************************* Start of m‘r C*****************************

This is the DCT nodul e, which inplenments a graphics conpression
program based on the discrete cosine transform It needs to be
linked with the standard support routines.

* % %k X X X

~

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>
#i nclude "bitio. h"
#i ncl ude "errhand. h"

*

A few paraneters can be adjusted to nodify the conpression
algorithm The first two define the nunber of rows and columms in

* the grey-scale imge. The last one, 'N,' defines the DCT bl ock size.
*/

#define ROAS 200

#define COLS 320

#define N 8

* % S~

/*

* This macro is used to ensure correct roundi ng of integer val ues.

*/

#defi ne ROUND( a ) (( (a) <0) 2?2 (int) ( (&) - 0.5)
(int) ( (&) +0.5) )

char *Conpressi onName = "DCT conpression”
char *Usage = "infile outfile [quality]\nQuality from 0-25"

/*
* Function prototypes for both ANSI and K&R



*)
#ifdef _ STDC__

void Initialize( int quality );
voi d ReadPi xel Strip( FILE *input, unsigned char strip[] NJ[ CO.S ] );
i nt I nputCode( BIT_FILE *input );
voi d ReadDCTData( BIT_FILE *input, int input_datal] N][ N] );
voi d Qutput Code( BIT_FILE *output_file, int code );
void WiteDCTData( BIT_FILE *output_file, int output_datal] N]J[ N] );
void WitePixel Strip( FILE *output, unsigned char strip[] N]J[ CO.S ] );
voi d ForwardDCT( unsigned char *input[ N], int outputf] N]J[ NJ] );
void InverseDCT( int input[ N]J[ NJ], unsigned char *output[ N] )
voi d ConpressFile( FILE *input, BIT_FILE *output,

int argc, char *argv[] );
voi d ExpandFile( BIT_FILE *input, FILE *output, int argc, char *argv[]

#el se

void Initialize();

voi d ReadPi xel Strip();
i nt | nput Code();

voi d ReadDCTDat a() ;
voi d Qut put Code();
void WiteDCTDhat a();
void WitePixel Strip();
voi d Forwar dDCT() ;
void I nverseDCT();

voi d ConpressFile();
voi d ExpandFil e();

#endi f

/*

* G obal data used at various places in the program
*/

unsi gned char Pixel Strip[ N]J[ COS ];

double CJ N][ N1;

double C&[ N]J[ NT;

i nt | nput RunLengt h;

i nt Qut put RunLengt h;

int Quantunf N ][ N]J;

struct zigzag {

int row,

int col;

} ZigZzagfl N* N] =

{

{0, 0},

{o, 1}, {1, O},

{2, o}, {1, 1}, {0, 2},

{o, 3}y, {1, 2}, {2, 1}, {3, O},

{4, 0}, {3, 1}, {2, 2}, {1, 3}, {0, 4},

{o, 5}, {1, 4}, {2, 3}, {3, 2}, {4, 1}, {5, O},

{6, o}, {5 1}, {4, 2}, {3, 3}, {2, 4}, {1, 5}, {0, 6},
{o, 73, {1, 6}, {2, 5}, {3, 4}, {4, 3}, {5 2}, {6, 1}, {7, O},
{7, 1}, {6, 2}, {5, 3}, {4, 4}, {3, 5}, {2, 6}, {1, 7},
{2, 73, {3, 6}, {4, 5}, {5, 4}, {6, 3}, {7, 2},

{7, 3}, {6, 4}, {5, 5}, {4, 6}, {3, 7},

{4, 73, {5 6}, {6, 5}, {7, 4},

{7, 5}, {6, 6}, {5, 7},

{6, 73, {7, 6},

{7, 7}

b



*

The initialization routine has the job of setting up the cosine
transformmatrix, as well as its transposed value. These two matrices
are used when cal culating both the DCT and its inverse. In addition,
the quantization matrix is set up based on the quality paraneter
passed to this routine. The two run-length parameters are both

set to zero

E o I T R

~

void Initialize( quality )

int quality;
L
int i;
int j;
double pi = atan( 1.0 ) * 4.0;
for (i =0 ; i <N; i++)
for (j =0; j <N j++)

Quantunf i ][ j ]
Qut put RunLength = 0;
| nput RunLengt h

=1+ ((1+i +j ) * quality );

for (j =0; ] <N; j++) {
g 0]l j]1 =2.0/ sqgrt( (double) N);
}Ot[j][0]=C[0][j];
for (i =1 ; i <N; i++) {
for (j =0 ;] <N j++) {
g i J[j] =sagrt( 220/ N) *
cos( pi *(2*j +1)*i/l (2.0* N) ) ;
arj il =aqillil:
}
}
}
/*
* This routine is called when conpressing a grey-scale file. It reads
* in a strip that is N (usually eight) rows deep and COLS (usually 320)
* columms wide. This strip is then repeatedly processed, a block at a
* time, by the forward DCT routine.

~

voi d ReadPi xel Strip( input, strip)
FI LE *i nput;
unsi gned char strip[ N][ COLS ];
{
int row,
int col

int c;
for (row=0; row < N; row+ )
for ( col =0 ; col < COLS; col++) {
c = getc( input );
if ( ¢ == EOF)
fatal _error( "Error reading input grey scale file" );
strip[ row ][ col ] = (unsigned char) c;

}

*

* o~

This routine reads in a DCT code fromthe conpressed file. The code
* consists of two conponents, a bit count, and an encoded val ue. The
bit count is encoded as a prefix code with the follow ng binary

val ues:

Nunber of Bits Bi nary Code
0 00

*
*
*
*
*



010
011
1000
1001
1010
1011
1100
1101
1110
0 1111

POO~NOOA~AWNE

A bit count of zero is followed by a four-bit nunmber telling how nmany
zeros are in the encoded run. A value of one through ten indicates a
code val ue follows, which takes up that many bits. The encodi ng of
values into this systemhas the followi ng characteristics:

Bit Count Ampl i t udes
1 -1, 1
2 3to-2, 2to 3
3 -7 to -4, 4to7
4 -15to -8, 8 to 15
5 -31to -16, 16 to 31
6 -63 to -32, 32 to 64
7 -127 to -64, 64 to 127
8 -255 to -128, 128 to 255
9 -511 to -256, 256 to 511
10 -1023 to -512, 512 to 1023

L S T R R B N N N . N N N R R R

/

i nt I nputCode( input file)
BIT_FILE *input _file;

int bit_count;
int result;

if ( InputRunLength > 0 ) {
| nput RunLengt h- -;
return( 0 );
}
bit count = (int) InputBits( input file, 2);
if ( bit_count == 0 ) {
I nput RunLength = (int) InputBits( input_file, 4);

return( 0 );

if ( bit_count ==1)

bit _count = (int) InputBits( input_file, 1) + 1;
el se

bit count = (int) InputBits( input file, 2 ) +
( bit_count << 2 ) - b5;
result = (int) InputBits( input_file, bit_count );
if (result & ( 1 << ( bit_count - 1) ) )
return( result );
return( result - ( 1 << bit_count ) + 1);

}

/*

* This routine reads in a block of encoded DCT data froma conpressed
* file. The routine reorders it in row major format and dequantizes it
* using the quantization matrix.

*/

voi d ReadDCTData( input_file, input_data )
BI T_FILE *input_file;



int input_data] NJ[ N]J;

L
int i;
int row,
int col
for (i =0 ; i <( N* N) ; i++) {
row = ZigZag[ i ].row
col = Zigzag[ i ].col
i nput _datal] row ][ col ] = InputCode( input file ) *
Quantun{ row ][ col ];
}
}
/*

* This routine outputs a code to the conpressed DCT file. For specs

* on the exact format, see the comments that go with |InputCode, shown
* earlier inthis file.

*/

voi d Qut put Code( output file, code ) BIT_FILE *output file;
i nt code;
{

int top_of range

i nt abs_code;

int bit_count;

if ( code == 0 ) {
Qut put RunLengt h++;
return;
}
if ( QutputRunLength !'=0) {
while ( Qutput RunLength > 0 ) {
if ( QutputRunLength <= 16 ) {

Qut putBits( output file,

(unsi gned | ong) (CutputRunLength - 1), 4 );

Qut put RunLength = 0;
} else {

QutputBits( output file, 15L, 4 );

Qut put RunLength -= 16;

}

}
if ( code <0)
abs_code = -code;
el se

abs_code = code
top_of range = 1;
bit _count = 1;
while ( abs_code > top_of range ) {
bit_count ++
top_of _range = ( ( top_of _range + 1) * 2 ) - 1;

}
if ( bit_count < 3)

Qut putBits( output_file, (unsigned long) ( bit_count + 1), 3);
el se

Qut putBits( output file, (unsigned long) ( bit_count + 5 ), 4);
if (code > 0)

Qut putBits( output file, (unsigned |long) code, bit _count );
el se

QutputBits( output_file, (unsigned |long) ( code + top_of_range )

bit_count );



/*
* This routine takes DCT data, puts it in zigzag order, quantizes

* it, and outputs the code.
*/

void WiteDCTData( output_file, output_data )
BI T_FILE *output _file;
int output_datal] N][ N1J;
L
int i;
int row,
int col;
doubl e result;

for (i =0 ; i <( N* N) ; i++) {
row = ZigZag[ i ].row
col = Zigzag[ i ].col;
result = output_data] row ][ col ] / Quantunf row ][ col ];
Qut put Code( output file, ROUND( result ) ):
}
}

/-k
* This routine wites out a strip of pixel data to a GS format file.
*/

void WitePixel Strip( output, strip )
FI LE *out put ;

unsi gned char strip[ N][ COS ];

{

int row,

int col;

for (row=0; row < N; row+ )
for ( col =0 ; col < COLS ; col++)
putc( strip[ row][ col ], output ); }

/*

* The Forward DCT routine inplenents the matrix function:
*

* DCT = C * pixels * .

*/

voi d ForwardDCT( input, output )
unsi gned char *input[ N ;
int output[] NJ[ NT;

{
double tenp[ N][ NJ;

doubl e tenpl;
int i;
int j;
int k;
/* MatrixMultiply( tenp, input, C ); */
for (i =0 ; i <N; i++) {
for (j =0; ] <N; j++) {
temp[ i ][ j ] = 0.0;
for (( k =0; k <N; k++)
tenp[ i J[ j ] +=( (int) input [ i ][ k] - 128 ) *
} al k107 1s



/* MatrixMultiply( output, C tenp ); */
for (i =0 ; i <N; i++) {
for (j =0; ] <N; j++) {
tenpl = 0.0;
for ( k = ;o k++ )
= ] * temp[ kK ][ | ];
i = ROUND( tenpl );

/*
* The Inverse DCT routine inplements the matrix function:

* pixels = C* DCT * Ct
*/

void I nverseDCT( input, output )
int input[ N]J[ NJ;

unsi gned char *output[ N ];

double tenp[ N][ NJ;

doubl e tenpl;
int i;
int j;
int k;
/[* MatrixMultiply( tenp, input, C); */
for (i =0 ; i <Nj; i++){
for (j =0; j <N; j++) {
tenp[ i J[ j ] = 0.0;
for ( k =0; k <N,; k++)
temp[ i J[ j ] +=input[ i J[ k] = k][] ];
}
/* MatrixMultiply( output, C, tenmp ); */
for (i =0 ; i <N; i++) {
for (j =0 j <Nj; j++) {
tenpl = 0.0;
for ( k =0; k < N; k++)
templ += Q[ i J[ k] * tenp[ k [ j I;
tenpl += 128.0;

if ( tenpl <0)

output[ i J[ j ] =0;
else if ( tenpl > 255 )
output[ i ][ j ] = 255;
el se
output[ i ][ j 1 = (unsigned char) ROUND( tenpl );
}
}
}

/
* This is the nain conpression routine. By the tine it gets called,

* the input and output files have been properly opened, so all it has to
* do is the conpression. Note that the conpression routine expects an

* additional parameter, the quality value, ranging fromO to 25.

*

voi d ConpressFile( input, output, argc, argv )
FI LE *i nput;

Bl T_FI LE *out put;

int argc;



char *argv[];

int row

int col

int i;

unsi gned char *input_array[ N ];

int output_array[ N]J[ N1J;
int quality;

if ( argc-- > 0)
quality = atoi( argv[ 0] );

el se

quality = 3;

if (quality <0 || quality > 50)

fatal _error( "lllegal quality factor of %d\n", quality );

printf( "Using quality factor of %d\n", quality );
Initialize( quality );
Qut putBits( output, (unsigned long) quality, 8 );
for (row=0; row< ROA5 ; row += N ) {
ReadPi xel Strip( input, PixelStrip );
for ( col =0 ; col <COLS; col += N) {
for (i =0 ; i <N; i+t+)
input_array[ i ] = PixelStrip[ i ] + col
Forwar dDCT( i nput_array, output_array );
WiteDCTDat a( output, output_array );

}

}
Qut put Code( output, 1);
while ( argc-- > 0)
printf( "Unused argunent: %\n", *argv++ );
}

/* The expansion routine reads in the conpressed data fromthe DCT file,
* then wites out the deconpressed grey-scale file.
*/

voi d ExpandFil e( input, output, argc, argv)
BI T_FILE *input;
FI LE *out put ;
int argc;
char *argv[];
{
int row,
int col
int i;
int input_array[] N]J[ NTJ;
unsi gned char *output_array[ N]J;
int quality;

quality = (int) InputBits( input, 8 );
printf( "\rUsing quality factor of %\n", quality );
Initialized( quality );
for (row=0; row< ROAM5 ; row += N ) {
for ( col =0 ; col <COLS; col += N) {
for (i =0 ; i <N; i++)
output_array[ i ] = PixelStrip[ i ] + col;
ReadDCTDat a( i nput, input_array );
I nverseDCT( input_array, output_array );

}
WitePixel Strip( output, PixelStrip );

}
while ( argc-- > 0)
printf( "Unused argunent: %\n", *argv++ );



/**************************** End Of m‘r C*****************************/

Support Programs

The two support programs used in this chapter are GS.C, used to display “non-format” grey-scale
files, and GSDIFF.C, used to display the differences between two files and to print the rms value of
the error. They follow.

/*************************** Start Of (B C*****************************/

This is the GS program which displays grey-scale files on the

| BM VGA adaptor. It assunes that the grey-scale values run from
zero to 255, and scales themdown to a range of zero to sixty-three,
so they will be displayed properly on the VGA

This program can be called with a list of files, and will display them
in consecutive order, which is useful for trying to nmeasure visua
differences in conpressed files.

This programwites directly to video nmenory, which should work
properly on nost VGA adaptors. In the event that it doesn't, the
constant USE BIGS can be turned on, and the code will use BIOS calls
to wite pixels instead. This will be sonewhat slower, but should work
on every VGA adaptor.

L R I S T T R B S R

Note that the use of far pointers means this program shoul d probably
be conpiled without using the strict ANSI option of your conpiler.

*

*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <dos. h>

#i ncl ude <coni o. h>

mai n( int argc, char *argv[] )
{

uni on REGS ri n;

uni on REGS rout;

int i;

FILE *fil e;

char far *video

if (argc <2) {
printf( "Usage: gs file\n\n" );
exit( 1);

rin.h.ah 0;

rin.h.al = 0x13;

i nt 86( 0x10, &rin, & out );
rin.h.ah 0x10;

rin.h.al 0x10;

for (i =
rin.h.dh

;<64 i+t ) |
(unsi gned char) i
rin.h.ch (unsigned char) i
rin.h.cl (unsi gned char) i
rin.x.bx i;
i nt86( 0x10, &rin, &out );
}
rin.h.ah
rin.h.al
rin.x.cx
rin.x.bx

mniaimni o

0x10;
Ox1b;
256;
0;



int86( Ox10. &rin, &out );

ar gv++;
while ( —argc > 0 ) {
file = fopen( *argv++, "rb" );
if ( file == NULL ) {
putc( 7, stdout );
br eak;
}
video = (char far *) OxA0000000L
rin.h.ah = 0xOc;
rin.h.bh 0;
for (rin.x.dx =0 ; rin.x.dx < 200 ; rin.x.dx++ ) {
for (rin.x.cx =0 ; rin.x.cx <320 ; rin.x.cx++ ) {
#i f def USE_BI OS
rin.h.al = (unsigned char) ( getc( file ) >> 2);
i nt 86( 0x10, &rin, & out );

#el se
*vi deo++ = (char) ( getc( file ) >> 2);

#endi f

}

fclose( file );
getch();

}

rin.h.ah = 0;

rin.h.al = 3;

int86( Ox10. &rin, &out );
return O;

}

/***************************** End of % C*****************************/

/***************************** Start Of (£DI FF C***********************

This is the GSDI FF program which displays the differences between
two grey-scale files on the | BM VGA adaptor. It assunes that the
grey-scal e values run fromzero to 255, and scales themdown to a
range of zero to sixty-three, so they will be displayed properly on
t he VGA

This programwites directly to video nenory, which shoul d work
properly on nost VGA adaptors. In the event that it doesn't, the
constant USE BIOS can be turned on, and the code will use BIOS calls
to wite pixels instead. This will be sonmewhat slower, but should work
on every VGA adaptor

VWile this programis witing out to the display, it is also keeping a
running total of the error differences. Wien the programis

conplete, it prints out the RM5 error. If the -B switch is turned

on, the program operates in batch node, and doesn't display the
differences. It just computes and prints the rns error val ue.

Note that the use of far pointers means this program shoul d probably
be compiled wi thout using the strict ANSI option of your conpiler.

L T S R R B N R T . N N N B

~

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <string>

#i ncl ude <dos. h>

#i ncl ude <coni o. h>

#i ncl ude <mat h. h>

mai n( int argc, char *argv[] )

{



uni on REGS ri n;
uni on REGS rout;
int i;

FILE *fil el;
FILE *file2;

int diff;

int cl;

int c2;

char far *video
doubl e error;

i nt batch;

if ( argc < 3 ) {
printf( "Usage: gsdiff filel file2 [-B]\n\n" );
exit( 1);
}
filel = fopen( argv[ 1], "rb" )
file2 = fopen( argv[ 21, "rb" );
if ( filel == NULL || file2 == NULL ) {
printf( "Could not open filel\n" );
exit( 1);

}
batch = 0;
if ( argc > 3)
if ( strecmp( argv[ 3], "-b" ) ==0 ||
strcnmp( argv [ 3], "-B'" ) ==
batch = 1;
if ( !'batch ) {
rin.h.ah = 0O;
rin.h.al = 0x13;
i nt 86( 0x10, &rin, &out );
rin.h.ah = 0x10;
rin.h.al 0x10;
for (i =0 ; i <64 ; i++)
rin.h.dh (unsi gned char)
rin.h.ch (unsi gned char)
rin.h.cl (unsi gned char)
rin.x. bx i
i nt86( 0x10, &rin, & out );
b
ri
ri

{

i
i
i;

. ah 0x10;
. al Ox1b;

ri . CX 256;

rin.x.bx 0;

i nt 86( 0x10, &rin, &out );
}

error
vi deo

> 3 35

h
h
X
X
6
0. 0;
(char far *) 0OxA0000000L;
rin.h. = 0x0c;
rin.h. = 0;
for (rin.x.dx =0 ; rin.x.dx < 200 ; rin.x.dx++ ) {
for (rin.x.cx =0 ; rin.x.cx <320 ; rin.x.cx++ ) {
cl = getc( filel);
c2 = getc( file2);
diff =cl1 - c2;
error += diff*diff;
if ( diff <0)

oo Il
jum e

diff *= -1;
if (diff >63)
diff = 63;

if ( !'batch ) {
#i f def USE_BI S
rin.h.al = diff;
i nt86( 0x10, &rin, &out );



#el se
*vi deo++ = diff;
#endi f
}
}
}
fclose( filel);

fclose( file2);
if ( !'batch ) {

getch();
rin.h.ah = 0;
rin.h.al = 3;

i nt86( 0x10, &in, & out );

}
error /= 320.0 * 200. 0;
printf( "RMS error between % and % is %f\n",
argv[ 1], argv[ 2], sqrt( error ) );
return O;

}

/*************************** End Of %Dl FF C***************************/

Some Compression Results

The disk included with this book contains five grey-scale files to experiment with. Some of the
results of compressing these files using the DCT program is shown in Figure 11.14.



Starting Compressed
File Quiality Size Size R atic RMS Error
CHEETAH.GS 1 64000 2raog ST% 4.3
CHEETAH.GS 2 64000 18357 T2% 6.8
CHEETAH.GS 3 64000 14084 TE% s
CHEETAH.GS 4 64000 11T B2 a8
CHEETAH.GS 5 64000 10&32 B5% 108
CHEETAH.GS 10 64000 7167 BE% 126
CHEETAH.GS 15 64000 G074 a1% 152
CHEETAH.GS 25 64000 5094 3% 17.4
CLOWHN.GS 1 64000 20835 B68% a7
CLOWHN.GS 2 64000 14243 T8% 56
CLOWHN.GS 3 64000 11323 B3% 6.8
CLOWHN.GS 4 64000 9674 B5% 78
CLOWHN.GS 3 64000 8636 a7% 2.6
CLOWN.GS 10 54000 G155 a1% 108
CLOWN.GS 15 54000 3512 2% 123
CLOWN.GS 25 54000 4811 3% 14.1
LISAW.GS 1 54000 10650 4% 23
LISAW.GS 3 54000 Ga71 20% 32
LISAW.GS ] 54000 35944 a1% a7
LISAW.GS 10 54000 4958 3% 47
LISAW.GS 25 54000 4170 8% 6.6
ROSE.GS 1 64000 19425 T0% 26
ROSE.GS 3 64000 10452 =2 6.7
ROSE.GS 3 64000 8170 BA% 2.4
ROSE.GS 10 64000 GETT a1% 10.7
ROSE.GS 23 64000 4807 HE% 143
MOUSE GS 1 64000 9355 BE% 21
MOUSE GS 3 64000 G403 a0t a0
MOUSE GS 5 64000 5631 2% 35
MOUSE. GS 10 64000 4817 3% 4.5
MOUSE. GS 25 64000 4337 = 6.3

Figure 11.14 Compression results

On most of the images, compression quality figures of five or lower produce a slight loss of
resolution, but no significant loss of picture quality. Once the quality factor gets above five, visible
artifacts of the compression process start to become visible as “blocking” of the image.

Figure 11.15 shows a few images of CHEETAH.GS after going through a compression cycle. The
first few imageslook fairly good. In fact, it is hard to spot much of a difference. Viewing the images
oneimmediately after the other using GS.EXE will clearly show that there have been changes, but
they are not glaring differences. At quality 5, close inspection shows a few areas where the
compression is clearly starting to cause picture quality to slip. The images with quality factors 10,
15, and 20 show clear degradation.
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Figure 11.15 CHEETAH.GS after a compression cycle.

The compression results achieved from these experiments are quite impressive. In most cases,
images can be compressed up to about 85 percent without losing much picture quality. Better
compression than this could be expected from the JPEG algorithm, since it adds a Huffman coding
stage which DCT.C lacks.




Chapter 12
An Archiving Package

Programmers and users are perhaps most frequently exposed directly to data compression through
the use of an archiving program. In the MS-DOS world, the use of archiving packages is ubiquitous,
with the distribution of some packages fast approaching the saturation point. Programs such as
PKZIP and ARJ that are distributed through non-commercial channels tend to blanket the world of
“power users,” with new releases getting world-wide distribution in a matter of only days.

Because data compression is a competitive field, these programs tend to have very good performance
characteristics, having both high throughput and tight compression ratios. They tend to do their jobs
well.

But for the programmer, these data-compression programs are solely lacking in one respect: their
handling of source code. While it s nice to be able to invoke PAK or ARC from the MS-DOS
command line, that doesn’t help the programmer who wants to compress al of the on-line help
screens in his new spreadsheet program. It would be somewhat impractical for his program to have
to spawn a copy of PKUNZIP every time anew help screen needed to be accessed.

This chapter presents a solution to such dilemmas by showing you how to create a simple, stripped-
down version of an archiving program. While space limitations in the book prevent this program

from being a match for commercial programs, a good programmer armed with the techniques found
in this book should be able to enhance this program to make it as useful as commercial equivalents.

CAR and CARMAN

This chapter deals with two topics: Compressed Archive files and the program used to maintain
them. Compressed archive files conventionally have afile extension of “.CAR,” and will be referred
to as CAR files. The CAR file Manager will be named CARMAN.

CARMAN is astand alone program designed to manipulate CAR files. It has afairly simple set of
commands, and runs using command-line mode. CARMAN’sreal strength liesin either its extension
with more powerful compression techniques or more detailed file data, or the inclusion of portions of
its code into other programs.

The CARMAN Command Set

Running CARMAN with no arguments gives a brief help screen showing the usage of the program,
asshownin Figure 12.1.

Figure12.1 The CARMAN Help Screen



Every CARMAN operation has two basic requirements. First, it must have a single letter command
and, second, it must have the name of a CAR file. A brief synopsis of the commands follows.

Add files: This command is used to add new filesto an archive, which may or may
not already exist. Wild cards on the command line will be expanded under
MS-DOS. Full path names can be used to specify input files, but CAR will
strip the path components before storing the files. If the CAR file aready
exists, and afile to be added already exists in the archive, the new version
will replace the old.

Xtract files: This command extracts files from the archive and stores them in the
current directory. If no file names are listed on the command line all files
are extracted from the archive.

Replacefiles: This command attempts to replace al of the named archive fileswith a
new version from the current directory. If a specified file existsin the
archive but not in the current directory, a warning message is printed.

Deletefiles: The named files are deleted from the CAR file.
Print files: The specified files are copied to stdout. If no files are named, all files will
be extracted.
Test files: The specified files are tested to be sure they can be properly extracted, and
that the resulting CRC value will be correct.
List files: The statistics for the specified files are listed on stdout. If no file names
are specified, al filesare listed. A typical listing is shown next.
Original Compressed
Filenam e Size Size Ratic CRC-32 M eth od
buildere.c GEES =Rl 43% d0485dfe LZ5S
chechkoro.c 2864 3ar4 41%, 1a2G4b88 LZ5S
carman.c 2214 22187 G3% afbd 558 LZES
io.c 2369 1162 51% ATFS7 Sac LZES

Figure12.2 CARMAN List Command Output

As can be seen from this listing, the compression method employed in CARMAN isLZSS, with the
compression code being nearly identical to that shown in Chapter 8. Files that could not be
compressed to less than their original size will instead be stored in uncompressed format.

While LZSS does not offer the tightest compression possible, it does provide adequate performance.
In addition, it has one unique advantage: its expansion speed will meet or exceed that of nearly any
compression program available. So applications that need to decompress frequently may find LZSS
to be the algorithm of choice.

The CAR File

The structure of a CAR fileisvery simple: it ssimply consists of a sequential list of file header blocks
followed by file data. This sequence repeats indefinitely until a special header with anull file name
isencountered. Anillustration of this structure is shown in Figure 12.3.



File 1 Header

File 1 Data

File 2 Header

File 2 Data

File 3 Header

EOF Header

Figure 12.3 The structure of a CAR file.

A sequential structure like this has both advantages and disadvantages. The sequential nature of the
data means that both searches through and updates of the archive are not done using a random access
method. Instead, linear searches and copies are used. Even worse, any time filesin the archive are
modified, it means the entire archive has to be copied from the original to a new version of thefile.
These disadvantages are outweighed by the simplicity this technique offers. Good reliable code can
easily be written to support this storage method. In fact, most popular archiving programs use a
nearly identical format.

The Header

In the CAR format, the header for each file contains everything we know about the file. Thus,
selecting what goesin the header and what doesn't isfairly important. CARMAN uses afairly
stripped down set of information in the header file, with a C structure as follows:

typedef struct header {
char file_nanme[ FILENAVE MAX ];
char conpressi on_net hod;
unsi gned | ong ori gi nal _si ze;
unsi gned | ong conpressed_si ze;
unsi gned | ong original _crc;
unsi gned | ong header _crc;

} HEADER

Most of the information in the header is self explanatory, particularly in terms of how itisused aC
program. The place where the header information gets alittle confusing isin the process of storing or
reading it to/from a CAR file.

Storing the Header
To make CAR files portable across different systems and architectures, you need to take care when
writing data to files. Conventionally, if we were to write this structure out to afile, we might use a

line of code that looks like this;

fwite( header, sizeof( HEADER ), 1, outfile );

Thiswrites abinary image of the header data directly out to the file, so that can be easily read in
using an equivalent fread() statement.



There are two potential problems that crop up when writing data out thisway. Thefirst relates to the
packing of structures. Different C compilers will pack structure elementsin different fashions. For
example, we have a single char element as the second element of the header array shown above.
Since the next element is along integer, and MS-DOS compiler might put in three bytes of padding
so that the long element is aligned on afour-byte boundary. Generally, thisis done to generate faster,
more efficient code. (Many CPUs tend to work better with data aligned on certain boundaries.) A
different compiler on a different machine might not insert any padding, or might use an eight-byte
boundary.

When structures are packed differently, we can no longer count on portability between binary files
generated using fwrite() calls such as the one shown above. However, it would seem that this would
be arelatively easy problem to overcome. Instead of writing out the structure as a single entity, we
could just store it one element at a time, which would guarantee that no packing bytes were
inadvertently added to our outpui.

This solution runs afoul of our second portability problem. Unfortunately, we cannot be sure that
different computers will store identical data elements using the same structure. For example, along
integer with the hex value 0x12345678L would be stored in the following manner on an Intel 8086
machine;

Address Value
0000 78
0001 56
0002 34
0003 12

The same long integer stored on machine based on the Motorola 68000 architecture would have the
bytes stored in exactly the reverse order! These differences result from decisions the hardware
designers made long ago, for better or worse, and we all have to live with the consequences. In this
case, the consequence is a problem with binary file interchange.

The solution isto take control of the binary file format at the lowest level. Instead of trying to write
out short and long integers in one fell swoop, we write them out a byte at atime, using the ordering

that we select. This way we should be able to store and retrieve data items so that our CAR files can
be ported across various systems without worrying about incompatibilities.

When reading and writing the headers, you would first pack and unpack the short and long integer
datain the header file into a character array, using a pair of utility routines. We arbitrarily pack the
datawith the least significant bytes first, although it could just as easily be done in the other order.
The routines that do the packing follow:

voi d PackUnsi gnedDat a( nunber _of bytes, nunber, buffer )
i nt nunber_of bytes;

unsi gned | ong nunber

unsi gned char *buffer

{

while ( nunber_of bytes-- > 0 ) {
*puffer++ = ( unsigned char ) nunber & Oxff;
nunber >>= 8;

}

}



unsi gned | ong UnpackUnsi gnedDat a( nunber _of _bytes, buffer
i nt nunber _of byt es;
unsi gned char *buffer
{
unsigned |long result;
int shift_count;

result = 0;
shift_count = O;
while ( nunber_of bytes-- >0 ) {
result |= (unsigned |ong) *buffer++ << shift_count;
shift_count += 8;

}

return( result );

}

Given these packing and unpacking routines, reading and storing the header filesis simple. The
process is accomplished for the file /0 using an intermediate character array. The actual header data
is packed and unpacked to and from the array.

void WiteFil eHeader ()
{

unsi gned char header _data] 17 ];
int i;

for (i =0; ;
putc( Header.file_nane[ i ], QutputCarFile );
if ( Header.file_ nanme[ i++ ] =="'\0 )
br eak;

}

Header . header _crc = Cal cul ateBl ockCRC32( i, CRC_MASK
Header.file_name );

PackUnsi gnedData( 1, (Il ong)

Header . conpressi on_net hod, header_data + 0 );

PackUnsi gnedDat a( 4, Header.original _size, header_data + 1 );

PackUnsi gnedDat a( 4, Header.conpressed_size, header_data + 5 );

PackUnsi gnedDat a( 4, Header.original _crc, header_data + 9 );

Header . header _crc = Cal cul at eBl ockCRC32( 13, Header. header _crc,

header _data );

Header . header _crc ~= CRC_MASK;

PackUnsi gnedDat a( 4, Header. header _crc, header_data + 13 );

fwite( header _data, 1, 17, QutputCarFile );

}

The routine to write the file header out to the CAR file is somewhat simpler than the routine to read
the same data, since it doesn’t have to check for some of the possible error conditions. The first part
of aheader consists of the name of the compressed file, stored with a null terminator character. No
special care needs to be taken when writing out the file name, since eight-bit ASCII characters are
portable across all of the systems toward which CARMAN is targeted.

The remaining elements of the header are packed, one by one, into a character array using the

PackUnsignedData() routine. Once they have all been properly packed, they can be written out with
acall to fwrite(), with everything being in aknown state.

The Header CRC

One of the header elements written out by WriteFileHeader() is caled “header_crc.” The header



CRC isa32-bit number generated using the data in the header structure, and used as a checksum.
The CRC is generated using the CCITT-32 formula, which is the same formula used by many other
archiving programs, such as PKZIP and ARJ. It provides us with areasonably high probability of
detecting errorsin the header.

The reason for creating a CRC checksum for the header datais to provide an additional check for
validity of a CAR file. If for some reason one of the data elementsin the header file was
inadvertently modified, it could lead to to disastrous results either during decompression, or later
when attempting to use erroneous file data.

i nt ReadFi | eHeader ()
{

unsi gned char header _data] 17 ];
unsi gned | ong header _crc;
int i;

int c;
for (i =0; ;) {
c = getc( InputCarFile );
Header.file _name[ i ] = (char) c;
if (¢ ="\0)
br eak;
if ( ++i == FILENAVE _MAX )
Fatal Error( "File nane exceeded maxi numin header" );
}
if (i =0)
return( 0 );

header _crc= Cal cul ateBl ockCRC32( i + 1, CRC MASK, Header.file_nane );
fread( header_data, 1, 17, InputCarFile );

Header . conpr essi on_net hod= (char)

UnpackUnsi gnedDat a( 1, header_data + 0);
Header . ori gi nal _si ze = UnpackUnsi gnedDat a(4, header_data + 1);
Header . conpressed_si ze = UnpackUnsi gnedDat a(4, header _data + 5);
Header. ori gi nal _crc = UnpackUnsi gnedDat a(4, header_data + 9);
Header . header _crc = UnpackUnsi gnedDat a(4, header_data + 13);
header _crc = Cal cul at edBl ockCRC32( 13, header_crc, header_data );
header crc ~=CRC_MASK
i f ( Header.header _crc!= header _crc )

Fat al Error( "Header checksumerror for file %", Header.file_nane );
return( 1 );

}

Reading the file header is essentially the reverse procedure of writing it out—with a couple of twists.
During the process of reading in the file name, we need to check for a couple of different
possibilities. First, if thisisthe last header in a CAR file, it will have afile name length of 0. If thisis
the case, we immediately return with afailure indication, so the calling routine will know that we
have reached the end of the input CAR file.

A second possibility is that the file name may exceed the storage allocated for in the header
structure. In that case, afatal error exit is taken.

After all of the header data has been read in, we perform one last validity check by comparing the
calculated CRC for the header file with the CRC that was stored in the CAR file. In case of a
mismatch, we once again take the fatal error exit.

Command-Line Processing



Once we have the ability to read in a header from a CAR file, we have the capability to list the
archive. A simpleloop like this would be enough to do it:

while ( ReadFil eHeader() !'=0) {
ListCarFileEntry();

fseek( input, header.conpressed_size, SEEK CUR );
}

All that is needed to skip over al of the compressed datafor a given fileis the fseek() statement,
since we know the size of the compressed data. Thisis the mechanism used to work our way through
the CAR file when performing any type of processing. We start with the very first file, and work our
way from header to header, processing each file as needed. At no time does CARMAN ever back up
through an input archive, or try to seek ahead past the next file.

Now that we have the ability to start doing something with the CAR file, it istimeto start putting the
other pieces of the program together. The next logical step isto start adding the ability to handle the
command line.

There are three components to the CARMAN command line. First, the command is one of seven
single letters discussed previously. Second is the name of the CAR file. Finally comes the optional
list of file names. Aninitial call to ParseArguments() checks for the validity of the first command,
and performs some checking on the next two.

i nt ParseArgunents( argc, argv )
int argc;
char *argv[];

i nt comand;

if ( argc < 3 || strlen( argv[ 1] ) >1)

UsageExit();
switch( command = toupper( argv[ 1 ][ 01 ) ) {
case 'X':
fprintf( stderr, "Extracting files\n");
br eak;
case 'R :
fprintf( stderr, "Replacing files\n" );
br eak;
case 'P'
fprintf( stderr, "Print files to stdout\n" );
br eak;
case 'T
fprint( stderr, "Testing integrity of files\n" );
br eak;
case 'L’
fprintf( stderr, "Listing archive contents\n" );
br eak;
case 'A'
if ( argc <= 3)
UsageExit();
fprintf( stderr, "Adding/replacing files to archive\n" );
br eak;
case 'D
if ( argc <= 3)
UsageExit();
fprintf( stderr, "Deleting files from archive\n" )
br eak;
defaul t :
UsageExit();

return( command );



}

Thefirst step in parsing the command line is to make sure that are at |east three arguments on the
command line: the command name (CARMAN), asingle letter command, and a CAR file name. The
next step isto check the command letter for validity, to be sureit is one of the legally defined
CARMAN commands. As the command letter is determined, a short message is printed to indicate
that CARMAN has acknowledged the command. Finally, for two particular cases, CARMAN insists
that specific file names be included on the command line. For most of the CARMAN commands,
specifying no file names on the command line is defined as the equivalent of using the wildcard
argument “*”, (or “*.*” the MS-DOS equivalent). That means that “CARMAN | backup.car” will
list al the filesin the backup.car archive.

For the Add and Delete commands, this default mode of operation is probably alittle too dangerous,
so it resultsin an error message. If the user wants to add every file in the current directory to a CAR
file, it will be necessary to specify “*” or “*.*” on the command line, which should not be too much
of an inconvenience.

Generating theFileList

One of the basic requirements of CARMAN isthat it be able to handle lists of files, so that it can
perform operations on select groups of files. Every one of the seven CARMAN commands accepts a
list of files as an argument, so we need to have a general purpose way to build and manage a list of
files. The list function should also be able to accommodate at |east some level of wild card pattern
matching as well.

Wild card matching needs to be done alittle differently under MS-DOS and UNIX. First of all, there
are actually two types of wild card matching taking placein CARMAN. File specifications on the
command line with the *Add’ command, including wild cards, specify external files that are going to
be added to the CAR file. File specifications for all of the other commands refer to files stored inside
the CAR file. Thus we have to handle these two types of filelists using slightly different methods.

To complicate further, UNIX and MS-DOS differ significantly in the way their command lines
handle wild card file specifications. Under either operating system, if we want to add all the C files
in adirectory to an archive, we would type a similar command:

carman a c_files.car *.c

Under UNIX, the command interpreter, or shell program, expands the list of wild card file names
before the program ever seesit. This meansthat by the time CARMAN isinvoked, it is presented
with acommand line that might look something like this:

carman a c_files.car test.c io.c foo.c bar.c

Thisis one of the nice features of UNIX; an application program doesn’'t have to worry about wild
card expansion of files from the command line because the shell takes care of the work.

Under MS-DOS, matters are a little more complicated. Wild card expansion is thought of as being
the province of an application program, not the command-line interpreter. So code that builds the file
name list has to perform the expansion manually using C run-time library functions. Even worse, the
function names and structure definitions used to expand wild card listings have not been
standardized among compiler vendors, so that each new compiler needs a dlightly different
implementation.



In CARMAN, thelist of the file namesisfound in an array called FileList[]. FileList isan array of
character pointers which is set up viaaroutine called BuildFileList(). BuildFileList() is called right
after the command lineis parsed, and is passed a list of command-line arguments, along with a
count.

BuildFileList() normally just copies the arguments passed to it into the FileList[] array. If there are
no command-line arguments, FileList[0] isset to ‘*’, so that all file namesin the archive will be
matched as they are processed. This has the effect of converting acommand like “CARMAN L
TEST.CAR” to “CARMAN L TEST.CAR *”.

BuildFileList() changesits mode of operation if the user has specified that the command is‘A,’ to
add files, and the operating system is MS-DOS. Under these circumstances, a special routineis
called to expand a potential wild-card file specification into alist of file names, with the results all
being stored in the FileList[].

void Buil dFileList( argc, argv, conmmand )
int argc;
char *argv[];
i nt commuand;
L
int i;
int count;
count = O;
if ( argc == 0)
FileList[ count++ ] = "*";
el se {
for (i =0 ; <argc ; i++ ) {
#i f def MSDOS
if ( coomand == "A' )
count = ExpandAndMassageMsSDOSFi | eNanes (count, argv[ i ]);
el se
MassageMSDOSFi | eNanme( count++, argv[ i ] );
#endi f
#i f ndef MSDOS
FileList[ count ] = malloc( strlen( argv[ i ] ) + 2);
if ( FileList[ count ] == NULL )
Fatal Error( "Ran out of nenory storing file names" );
strcpy( FileList[ count++ ], argv[ i ];
#endi f
if ( count > 99 )
Fatal Error( "Too many file nanes" );
}
}
FileList[ count ] = NULL;

}

In addition, a special routine called MassageM SDOSFileName() is called to normalize all MS-DOS
file names. MS-DOS has a couple of complicationsin itsfile system. First of all, file names are case
insensitive, meaning that “FOO.BAR” and “foo.bar” both refer to the same file, despite the fact that
their names are different. Secondly, the 8+3 file naming convention means that “FOO” and “FOO.”
both refer to the same file, even though one has atrailing ‘.” character and the other doesn’t.

Massage M SDOSFileName() gets around this problem by performing two operations on file names.
First of all, uppercase charactersin file names on the command line are all converted to lowercase, to
avoid ambiguities created by case mismatches. Secondly, any file that doesn’t have an extension or a
‘.’ inthenamehasa‘.’ character appended to the end of its name. Note that if the file name contains
a‘'*’ or'? character, meaning it isawild card, the ‘.’ character is not appended to a file name with
no extension.



Note that not all MS-DOS compilers will define the manifest constant MSDOS. If your compiler
doesn’t, you may need to edit the source filesfor CARMAN.C.

voi d MassageMSDOSFi | eNane( count, file )
i nt count;
char *file;
L
int i;
char *p;

FileList[ count ] = malloc( strlen( file ) + 2 );

if ( FileList[ count ] == NULL )

Fatal Error( "Ran out of nmenory storing file nanes" );
strcpy( FileList[ count ], file );

for (i =0 ; FileList[ count ][ i ] '="\0" ; i++)
FileList[ count ][ i ] = tolower( FileList[ count ][ i ] );
if ( strpbrk( FileList[ count ], "*?" ) == NULL ) }

p = strrchr( FileList[ count ], "\\' );
if ( p == NUL)
p = FileList[ count ];

if ( strrchr( p, '." ) == NULL )
strcat( FileList[ count ], "." );
}

}

i nt ExpandAndMassageMsSDOSFi | eNanes( count, wild nane )
i nt count;
char *wild_nane;
{

i nt done;

DI R_STRUCT file_info_block
char *| eadi ng_pat h;
char *file_nane;

char *p;

| eadi ng_path = malloc( strlen( wild_nane ) + 1 );
file_name = malloc( strlen(wild_nane ) + 13 );
if ( leading_path == NULL || file_name == NULL )
Fatal Error( "Ran out of nenory storing file nanes" );
strcpy( leading path, wild nane );
p = strrchr( leading_path, "\\' );
if ( p!= NUL)

pl 1] ="\0";
el se {
p = strrchr( leading_path, ':' );
if ( p!= NUL)
p[ 1] ="\0";
el se

| eading_path[ 0] ="\0O

}
done = FIND FIRST( wild_name, &file_info_block, 0);
while ( !done ) {

strcpy( file_name, |eading_path );

strcat( file_name, file_info_block, DIR FILE NAME );

MassageMSDOSFi | eNane( count++, file_nane );

done = FI NDNEXT( &file_info_block );

if ( count > 99 )

Fatal Error( "Too many file names" );

}

free( leading_path );
free( file_nanme );



return( count );

}

The code shown here for expanding wild cards words with most popular MS-DOS compilers.
Conditional complication is used to define the macros in dightly different ways depending on which
compiler is being used. Check the complete listing at the end of this chapter for details on how thisis
accomplished.

Opening the Archive Files

Thefinal step before you can begin processing the CAR file is opening the input and output CAR
files. Thisroutine is complicated by several possible conditions. In general, aroutine that modifies
the archive will have both an input and an output CAR file. Thisincludes the ‘Add,” ‘Replace,” and
‘Delete’ commands. These commands operate by reading in and processing the CAR file while
copying files to the output file.

The remaining processing commands don’t actually modify the input CAR file, so they don’t have to
open an OutputFile. In addition, if the command isto ‘Add’ filesto the archive, an input file may not
exist, in which case a new one has to be created. The OpenArchiveFiles() command manages all
these possibilities.

voi d OpenArchi veFil es( name, comand )
char *nane;

i nt command;

{

char *s;

int i;

strncpy( CarFileNanme, nane, FILENAME MAX - 1 );
CarFi | eName[ FILENAME_ MAX - 1] = "'\0";
I nputCarFile = fopen( CarFil eName, "rb" );
if ( InputCarFile == NULL ) {
#i f def MSDOS
s = strrchr( CarFileNane, "\\' );
#else /* UNI X */
s = strrchr( CarFileNane, '/' );
#endi f
if (s == NULL )
s = CarFi |l eNane;
if ( strrchr( s, "." ) == NULL )
if ( strlen( CarFileName ) < ( FILENAME MAX - 4 ) ) {
strcat( CarFileName, ".car");
InputCarFile = fopen( CarFil eNanme, "rb" );

}
}
if ( InputCarFile == NULL && conmand !="A" )
Fatal Error( "Can't open archive '%'", CarFileNane );
if ( coomand == "A" || command == 'R || command == 'D ) {
strcpy( TenpFil eNanme, CarFileNane );
s = strrchr( TenpFileName, '.' );
if (s == NUL )
s = TenpFil eNane + strlen( TenpFil eNane );
for (i =0 ; i <10 ; i++) {
sprintf( s, ".$$%", i );
if ( ( QutputCarFile = fopen( TenpFileName, "r" ) ) == NULL )
br eak;

fclose( QutputCarFile );

Qut put CarFil e = NULL;

}

if (i ==10)

Fatal Error( "Can't open tenporary file %", TenpFil eNane );



QutputCarFile = fopen( TenpFil eNane, "wbh" );
if ( QutputCarFile == NULL )
Fatal Error( "Can't open tenporary file %", TenpFil eNane );
b

if ( InputCarFile !'= NULL )

setvbuf ( InputCarFile, NULL, _|IOFBF, 8192 );

if ( QutputCarFile !'= NULL )

setvbuf ( QutputCarFile, NULL, _|IOFBF, 8192 );
}

When an output file is created, it will be the file that eventually gets a copy of al the selected files
from the input archive. Once all that processing is over, the input file can be deleted and the output
file can be renamed to have the correct name. However, while CARMAN is still processing, the
output file has to have a different name. In this case, we create atemporary file name based on the
name of the CAR file. We do alimited amount of checking to try and create a name that isn’t already
inuse.

One additional feature that CARMAN developsin this routine is the ability to automatically attempt
to add afile extension to the archive name. If the input file name does not include an extension,
OpenArchiveFiles() first tries to open it normally. If the file cannot be opened, OpenArchiveFiles()
tries again with the “.CAR” extension appended to the file name. This lets the user type a command
like“CARMAN L FILES” when the correct command might really be “CARMAN L FILES.CAR”.

Finally, note that both files have big buffers set up using the setvbuf() command. This helps
throughput, particularly when performing bulk copies of compressed files from the input archive to
the output CAR file.

TheMain Processing L oop

With these steps out of the way, CARMAN isready to begin processing in earnest. The main
processing loop is found in the routine called ProcessAllFileslnlnputCar(). It sitsin abig loop,
finding filesin the input CAR file, checking to seeif they match up with any of the namesin thefile
list, then deciding what to do based on the command.

Before entering the main processing loop, CARMAN checks to see if the command given was to
‘Add’ filesto the CARfile. If it was, these files all need to be inserted into the output CAR file
before anything else happens. Thisis done in aroutine called AddFileListToArchive(). Thisroutine
attempts to add every file name that was specified in the command line to the output CAR file.

i nt AddFi |l eLi st ToArchi ve

()

L

int i;

int j;

i nt skip;

char *s;

FILE *i nput _text file;

for (i =0 ; FileList[ i ] '= NUL ; i++) {
input _text file = fopen( FileList[ i ], "rb" );
if ( input_text_file == NULL )
Fatal Error( "Could not open % to add to CAR file",
FileList[ i ] );
#i f def MSDOS
s = strrchr( FileList][ i ], "\\'" );
if (s == NULL )
s = strrchr( FileList[ i ], ":" );



#endi f
#i f ndef MSDOS /* Must be UNI X */
s = strrchr( FileList[ i ], '/");

#endi f
if (s != NULL )
S++;
el se
s = FileList[ i ];
skip = 0;
for (j =0, ] <i ; j++)

if ( strcmp( s, FileList[] j ] ) ==0) {
fprintf( stderr, "Duplicate file name: %", FileList[ i ] );
fprintf( stderr, " Skipping this file...\n" );

skip =
br eak;
}
if (s!= |IeList[ i1 {
for (j =0 s[j]1!="\0; j++)

FlleLlst[ i 1 ] ] =s[j1;
Filelist[ i ][ ] ='\0

}

if ( !'skip) {
strcpy( Header.file_nane, FileList[ i ];
Insert( input_text file, "Adding" );

} else
fclose( input_text file );

}

return( i );

}

Adding files to the archive has to take care of several thingsin order to accomplish its goal. First, it
has to use the full path name specified on the command line to try to open the file to be added. Once
the fileis opened, however, the file name needs to be stripped of its path and drive component.
CARMAN stores file names only, not leading drive or path definitions. Once the file name has been
stripped down, a search is made to be sure that thisis not a duplicate file name. Adding two files
with the same name to a CARMAN file would be abad idea. Finally, if everything went well, the
Insert() routineis called to compress the file and place it in the output CAR file.

Once any new files have been added, CARMAN enters the main processing loop, where most of the
real work takes place. The main processing loop isfairly simplein structure. It smply readsin file
header from the input file, then checksto seeif the file appears in the FileList, saving the answer.
Next, it enters a switch, and then performs processing on the input file based on the command type.
Each command makes a different decision on what to do based on whether or not the file name
appeared in thefilelist.

Two commands used in the main processing loop require a small amount of setup. The ‘Test’ and
‘Print’ commands actually act just like the ‘ Xtract’ command, except that they direct their output to
the null device and stdout, respectively. These output destinations are set up before theloop is
entered.

int ProcessAll FileslnlnputCar( comand, count )
i nt commuand;
i nt count;
{
i nt mat ched;
FILE *i nput _text _file;
FI LE *out put _desti nati on;

if ( command =="'P )
out put _destinati on = stdout;



else if ( command == "'T' )
#i f def MSDOS
out put _destination
#el se
out put _destination
#endi f
el se
out put _destination = NULL;

fopen( "NUL", "wb" );

fopen( "/dev/null", "wh" );

*

This is the | oop where it all happens. | read in the header for

each file in the input CAR then see if it matches any of the file

and wild card specifications in the FileList created earlier. That

i nformati on, conbined with the command, tells ne what | need to

know in order to process the file. Note that if the 'Addfiles' comrand
is being executed, the InputCarFile will be NULL, so this |oop

can be safety skipped.

L N T T

~

while ( InputCarFile != NULL & ReadFil eHeader() !'= 0 ) {
mat ched = SearchFil eLi st( Header.file_nane );
switch ( command ) {
case 'D
if ( matched ) {
Ski pOver Fi | eFrom nput Car () ;
count ++;
} else
CopyFi | eFrom nput Car () ;
br eak;
case 'A'
if ( matched )
Ski pOver Fi | eFrom nput Car () ;
el se
CopyFi | eFrom nput Car () ;
br eak;
case 'L' :
if ( matched ) {
ListCarFileEntry();
count ++;
}
Ski pOver Fi | eFrom nput Car () ;
br eak;
case 'P
case 'X
case 'T" :
if ( matched ) {
Extract( output_destination );
count ++;
} else
Ski pOver Fi | eFrom nput Car () ;
br eak;
case 'R :
if ( matched ) {
i nput _text _file = fopen( Header.file_name, "rb" );
if ( input_text_file == NULL ) {
fprintf( stderr, "Could not find %", Header.file_nanme );

fprintf( stderr, " for replacenment, skipping\n" );
CopyFi | eFrom nput Car () ;
} else {

Ski pOver Fi | eFrom nput Car () ;
Insert( input_text file, Replacing" );
count ++;
fclose( input_text file );
}
} else
CopyFi | eFrom nput Car () ;



br eak;

}

return( count );

}

The processing loop starts off by reading in the next available header file from the input CAR file. If
we are at the end of file, this operation returns a 0 and we exit. Otherwise, we call SearchFileList(),
which looks for a match of the file name in the FileList[] array, including wild card matches. The
result of that search is stored in the match variable, at which point the switch statement is started.
The actions taken in the switch depend on the command give on the command line:

Delete: If match istrue, it means the user wants to delete thisfile from the CAR
archive. In this case, thefileis skipped over with acall to
SkipOverFileFrominputCar(). Otherwise, the fileis copied to the output
CAR filewith acall to CopyFileFromlnputCar().

Add: If match istrue, means that one of the files that was added to the output
CAR file at the start of the program also appears in input CAR file. When
thisisthe case, we have to skip over thefile, since it has been superseded.
If no match isfound, thefileis copied to the output CAR file.

List: If amatch isfound, the file statistics are listed on stdout. No output fileis
being created by this command, so after it islisted, it is automatically
skipped.

Print: If a r_natch is_found, it meansthis file hasto be_extracted to one of the _

Test: ' possible destinati ons. For the Print comman(_JI, it goesto stdout. For Test, it

Xtréd: goesto the null device, and for Xtract, to afilethat is created with the

appropriate name. If no match was found, the file is skipped.

Replace: If amatch isfound, it means we need to replace the version of thefile
found in the archive with afile of the same name in the current directory.
If that fileisfound, it is Inserted into the output file, and the current input
fileis skipped. If no match isfound, or the file cannot be opened, the file
in the input CAR fileis copied to the output CAR file.

Once all of these operations are complete, a count of matched filesis returned to the calling routine,
for display when the program exits.

Skipping/Copying Input File

The main processing loop only has one of three choices to take to go past the current file in the input
CAR file. Thefirst two are the skip and copy routines. One of these copies the current filein the
input CAR to the output CAR file. The second routine skips over the file and moves on to the next
header.

The skip operation was discussed previously, and is quite ssimple, since we have the exact size in
bytes of the compressed file stored in the header. All the program hasto do is advance that number
of bytes forward in the input file. Once thisis done, the fileislost to the output file, so thisis only
done when thefileisto be Deleted or Replaced (including replacement with an Add command).

voi d Ski pOver Fi | eFrom nput Car ()

fseek( I nputCarFile, Header.conpressed size, SEEK CUR );
}

voi d Copyfil eFrom nput Car ()



char buffer[ 256 ];
unsi gned int count;

WiteFil eHeader();

whil e ( Header.conpressed size !'=0 ) {
i f ( Header.conpressed size < 256 )
count = (int) Header.conpressed_si ze;

el se

count = 256

if ( fread( buffer, 1, count, InputCarFile ) != count )

Fatal Error( "Error reading input file %", Header.file_nane );
Header . conpressed_si ze -= count;

if ( fwite( buffer, 1, count, QutputCarFile) != count )

Fatal Error( "Error witing to output CAR file" );

}

}

Copying the file from the input CAR file to the output CAR fileisthe “normal” mode of operation,
where the contents of the input file are not lost. Thisis only marginally more complicated than the

skip routine. All we need to do hereisread in the predetermined number of bytes ablock at atime,
and write them out to the output file, checking for errors along the way.

Once the copy is complete, the input file pointer isleft pointing at the next file header in the input
CAR file, and the program is ready to start back at the top of the loop.

File Insertion

The Insertion routine is called to insert an external file into the output CAR file. The insertion
routine makes afirst attempt to compress the file using the LZSS compression routine. If that routine
fails, astraight storage routine is called instead. Since we don’t know what the size of the
compressed file will be until after the compression actually takes place, Insert() has to back up and
rewrite the header after the compression is finally successful. In addition, the compression method is
stored in the header file aswell. A compression method of 1 is used for normal storage, 2 for LZSS
compression. Clearly it would be relatively simple to add new forms of compression by adding new
numbers to the table. All that would be needed then is additional code in the Extract() routine to
support the new compression method.

void Insert( input_text file, operation)
FILE *i nput _text _file;
char *operation;
{
| ong saved_position_of _header
| ong saved_position_of file;

fprintf( stderr, "% % 20s", operation, Header.file_ nane );
saved_position_of header = ftell( QutputCarFile );

Header . conpr essi on_net hod = 2;

WiteFil eHeader();

saved_position_of file = ftell(QutputCarFile);

fseek( input _text file, O., SEEK END );
Header.original _size = ftell( input_text file );

fseek( input_text file, O., SEEK SET );

if ( !'LZSSConpress( input_text file ) ) {

Header . conpr essi on_net hod = 1;

fseek( QutputCarFile, saved position_of file, SEEK SET );
rewi nd( i nput_text file );

Store( input_text_file);

fclose( input_text file );



fseek( QutputCarFile, saved position_of header, SEEK SET );
WiteFil eHeader ();
fseek( QutputCarFile, O., SEEK END );
printf( " %%An", RatiolnPercent( Header.conpressed_size
Header. original _size ) );
}

File Extraction

The extraction routine in some ways is ssmpler than the Insert() routine. It doesn’t have to deal with
the possibility that the LZSS compression routine failed to compress. Instead, it just calls the
appropriate routine based on the compression method stored in the header file. However, it does
have afew extra jobs to deal with.

First of all, Extract can be called with a predefined destination FILE pointer. This occurs when the
Print or Test commands are being executed. Print just extracts to stdout, and Test extracts to the null
device, or the “bit bucket”. When thisis the case, Extract() doesn’t have to open afile to store the
output.

In the case where Extract() is being called based on the Xtract command, it has to open the output
file, check to make sure that goes okay, then close the file after the expansion takes place.

In all cases, Extract() has to check the CRC of the output file after the expansion routine has
completed. When using the Test command, thisis the way CARMAN verifies the integrity of the
CARfile.

void Extract( destination )
FI LE *destinati on;
{
FI LE *out put _text file;
unsi gned | ong crc;

int error;

fprintf( stderr, "% 20s ", Header.file_nane );
error = 0;
if ( destination == NULL ) {

if ( ( output_text file = fopen(Header.file_nane, "wh")

) == NULL ) {

fprintf( stderr, "Can't open %\n", Header.file_name );

fprintf( stderr, "Not extracted\n" );

Ski pOver Fi | eFrom nput Car () ;

return;

}
} else

output text file = destination;
swi tch( Header.conpression_nethod ) {

case 1 :

crc = Unstore( output_text_file );

br eak;

case 2 :

crc = LZSSExpand( output _text file );

br eak;

def aul t

fprintf( stderr, "Unknown nethod: %\n",

Header . conpr essi on_net hod ) ;

Ski pOver Fi | eFroml nput Car () ;

error = 1;

crc = Header.original _crc;

br eak;



}

if ( crc !'= Header.original_crc ) {
fprintf( stderr, "CRC error reading data\n" );
error = 1,

}
if ( destination == NULL ) {
fclose( output_text file );
if ( error )
#i fdef __STDC _
renove( Header.file_ nanme );
#el se
unl i nk( Header.file_nanme );
#endi f

if ( lerror )
fprintf (stderr, " OK\n" );
}

Cleanup

Thefinal job left to CARMAN after making its way through the main processing loop is to clean up
the workspace used by the program. The first step isto write out the special EOF header to the
output CAR file. Thisis done using a dedicated routine called WriteEndOf CarHeader(), which
simply writes a zero length file name to the header file.

Next, the output CAR file is closed and checked for errors. At this point, the output CAR file has
been completely processed and is ready to replace the input file. In order to do this, theinput fileis
deleted, and the output file is renamed to have the original archive name. This takes dlightly different
code under UNIX than MS-DOS, but it is relatively straightforward.

The Code

A complete listing of the CARMAN program follows, including sections that have only been lightly
touched on in this chapter. The LZSS compression code is nearly identical to that shown earlier in
Chapter 8, with adlightly modified I/O system.

Programmers wishing to compile this under MS-DOS are advised to pay close attention to those
portions of the code that are surrounded by #fdef MSDOS sections. These portions may need slight
maodifications to work with different MSDOS compilers, but the modifications should only consist of
renamed functions and structures. The actual flow of control inside the program should be identical.

/**************************** Start of CAR,VAN C*************************

This is the main programfor the sinple Conpressed Archive Manager
Thi s program can be used to add, delete, extract, or list the files
in a CAR archive. The code here should run under standard ANS

conpil ers under M5-DOS (with ANSI node sel ected) or K&R conpilers
under UNI X. The code uses an LZSS conpression algorithmidentical to
that used earlier in the book.

E o B T R

~

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#ifdef _ STDC _

#i ncl ude <stdarg. h>
#el se

#i ncl ude <varargs. h>



#endi f

#ifdef _ STDC _
/* Al Borland C C++ versions */
#i fdef __ _TURBOC _
#define MSDOS 1
#i ncl ude <i o. h>
#i ncl ude <dir. h>
#define DI R _STRUCT struct ffblk
#define FIND FIRST(n, d, a ) findfirst( n, d, a)
#defi ne FI ND_NEXT fi ndnext
#define DIR_FILE NAME ff_nane
#endi f
/*M crosoft, Watcom Zortech */
#if defined( M_186 ) || defined ( __ZTC ) || defined ( __TSC )
#def i ne MSDOS 1
#i ncl ude <dos. h>
#define DIR _ STRUCT struct find_t
#define FIND FIRST( n, d, a) _dos findfirst( n, a, d)
#defi ne FI ND NEXT _dos_fi ndnext
#defi ne DI R_FI LE_NAVE nane
#endi f
#endi f
/*
* A few constants used throughout the program
*/

#def i ne BASE_HEADER Sl ZE 19
#defi ne CRC_MASK OxFFFFFFFFL
#def i ne CRC32_PCLYNOM AL OxEDB88320L

*

The only data structure used inside the CARfile is the header bl ock.
Each file is preceded by a header, stored in a portable fornat.

The header is read into and out of the structure defined bel ow

The CAR file is structured as a series of header/data sequences, with
the ECF being denoted as a header with a file nanme I ength of 0. Note
* that the length of each header will vary depending on the |length of

* the file nane.

*/

#i f ndef FI LENAME_MAX

#defi ne FI LENAME_MAX 128

#endi f

* % % %k F T~

typedef struct header ({
char file_nane[ FILENAMVE MAX ];
char conpressi on_net hod;
unsi gned | ong ori gi nal _si ze;
unsi gned | ong conpressed_si ze;
unsi gned | ong original _crc;
unsi gned | ong header _crc;

} HEADER

/*

* Local function prototypes
*/

#ifdef _ STDC _

void Fatal Error( char *nessage, ... );

voi d Bui | dCRCTabl e( void );

unsi gned | ong Cal cul at eBl ockCRC32( unsigned int count, unsigned |long crc,
void *buffer );

unsi gned | ong Updat eChar act er CRC32( unsigned long crc, int ¢ );



i nt ParseArgunments( int argc, char *argv[] );

voi d UsageExit( void );

voi d OpenArchiveFil es( char *nane, int comand );

void BuildFilelList( int argc, char *argv[], int comand );

i nt ExpandAndMassageMsSDOSFi | eNanes( int count, char *wld _name );

voi d MassageMSDOSFi | eNane( int count, char *file );

i nt AddFil eLi st ToArchive( void );

int ProcessAllFileslnlnputCar( int command, int count );

int SearchFileList( char *file_nanme );

int WIldCardwvatch( char *sl1, char *s2 );

voi d Ski pOverFil eFrom nputCar( void );

voi d CopyFi |l eFrom nput Car( void );

void PrintListTitles( void );

void ListCarFileEntry( void );

i nt RatiolnPercent( unsigned | ong conpressed, unsigned |ong original );

i nt ReadFil eHeader( void );

unsi gned | ong UnpackUnsi gnedDat a( i nt number _of _bytes,
unsi gned char *buffer );

void WiteFil eHeader( void );

voi d PackUnsi gnedDat a( i nt nunber_of bytes, unsigned | ong nunber,
unsi gned char *buffer );

void WiteEndO Car Header ( void );

void Insert( FILE *input_text_file, char *operation );

void Extract( FILE *destination );

int Store( FILE *input _text file );

unsi gned | ong Unstore( FILE *destination );

i nt LZSSConpress( FILE *input_text file );

unsi gned | ong LZSSExpand( FILE *destination );

#el se

void Fatal Error();

voi d Bui | dCRCTabl e();

unsi gned | ong Cal cul at eBl ockCRC32() ;
unsi gned | ong Updat eChar act er CRC32() ;
i nt ParseArgunents();

voi d UsageExit();

voi d OpenArchiveFiles();

voi d Buil dFileList();

i nt ExpandAndMassageMSDOSFi | eNanes() ;
voi d MassageMSDOSFi | eNane() ;

i nt AddFil eLi st ToAr chi ve();

int ProcessAllFileslnlnputCar();

int SearchFileList();

int WIdCardWatch();

voi d Ski pOver Fi | eFrom nput Car () ;
voi d CopyFi | eFrom nput Car () ;

void PrintListTitles();

void ListCarFileEntry();

int RatiolnPercent();

i nt ReadFi | eHeader () ;

unsi gned | ong UnpackUnsi gnedDat a() ;
void WiteFil eHeader();

voi d PackUnsi gnedDat a() ;

void WiteEndO Car Header () ;

void Insert();

voi d Extract();

int Store();

unsi gned | ong Unstore();

i nt LZSSConpress();

unsi gned | ong LZSSExpand();

#endi f



/*
* Al gl obal variables are defined here.
*/

char *TenpFi |l eNane[ FILENAME MAX ]; /* The output archive is first */
/* opened with a tenporary nane */

FI LE * Input CarFil e; /* The input CAR file. This file */
/* may not exist for '"A comrands */

char CarFil eNanme[ FILENAME MAX ]; /* Name of the CAR file, defined */
/* on the command |ine */

FI LE *Qut put Car Fi | e; /* The output CAR, only exists for*/
/* the '"A and 'R operations */

HEADER Header ; /* The Header block for the file */
/* presently being operated on */

char *FilelList[ 100 ]; [* The list of file names passed */
/* on the command |ine */

unsigned long Ccitt32Table[ 256 ]; [/* This array holds the CRC */
/* table used to calculate the 32 */
/* bit CRC val ues */

/*

* This is the main routine for processing CAR comands. Mst of the

* maj or work involved here has been del egated to other functions.

* This routine first parses the command |ine, then opens up the input

* and possibly the output archive. It then builds a list of files

* to be processed by the current command. If the command was 'A', al

* of the files are imedi ately added to the output archives. Finally,

* the main processing loop is called. It scans through the entire

* archive, taking action on each file as necessary. Once that is

* conplete, all that is left to do is optionally delete the input file,

* then renane the output file to have the correct CAR file nane.

~

int main( argc, argv )
int argc;
char *argv[];

i nt conmand;
i nt count;

set buf ( stdout, NULL );

setbuf ( stderr, NULL ):

fprintf( stderr, "CARMAN 1.0 : " );

Bui | dCRCTabl e() ;

command = Par seArgunments( argc, argv );
fprintf( stderr, "\n" );

OpenArchiveFiles( argv[ 2], command );
Buil dFil eList( argc - 3, argv + 3, comuand );

if ( conmand == "A )

count = AddFil eLi st ToArchive();
el se

count = 0;

if ( command == "'L"' )

PrintListTitles();
count = ProcessAll FileslnlnputCar( comuand, count );
if ( QutputCarFile !'= NULL & count !'= 0 ) {

Wit eEndOf Car Header () ;



if ( ferror( QutputCarFile ) || fclose( QutputCarFile ) == EOF )
Fatal Error( "Can't wite" );

#i fdef __STDC _
renove( CarFileNane );
renanme( TenpFi | eNane, CarFil eNane );
#el se
unlink( CarFileNanme );
i nk( TenpFil eName, CarFil eNane );
unl i nk( TenpFil eNane );

#endi f

}

if ( conmand !="P

printf( "\n%l file%\n", count, ( count == 1) 2?2 "" : "s" );

el se

fprintf( stderr, "\n% file%\n", count,

(count ==1) ? "' : "s" );

return( 0 );
}
/*
* Fatal Error provides a short way for us to exit the program when
* sonet hi ng bad happens, as well as printing a diagnostic nessage.
* | f an output CAR file has been opened, it is deleted as well,
* which cleans up nost of the traces of our work here. Note that
* K&R conpilers handle variable I ength argunment lists differently
* than ANSI conpilers, so we have two different entries for the
* routines.
*

~

#ifdef _ STDC__

void Fatal Error( char *fmt, ... )
{

va_|ist args;

va_start( args, fnt );
#el se

void Fatal Error( va_alist )
va_dcl

{

va_|ist args;

char *fnt;

va_start( args );
fnt = va_ arg( args, char * );

#endi f
putc( '\n', stderr );
viprintf( stderr, fnt, args );
putc( '\n', stderr );
va_end( args );
if ( QutputCarFile !'= NULL )
fclose( QutputCarFile );
#i fdef _ STDC _
renove( TenpFil eNane );
#el se
unl i nk( TenpFil eNane );
#endi f
exit( 1);
}



*

This routine sinply builds the coefficient table used to calcul ate
32-bit CRC val ues throughout this program The 256-1ong word table
has to be set up once when the program starts. Alternatively, the
val ues coul d be hard-coded in, which would offer a miniscule

i mprovenent in overall performance of the program

E R T I R

~

voi d Bui | dCRCTabl e()

L
int i;
int j;
unsi gned | ong val ue;
for (i =0; i <=255; i++) {
val ue = i;
fOf(J=8,j>0:J’--){
if ( value & )
value = ( value >> 1 ) ~ CRC32_POLYNOM AL;

el se
val ue >>= 1;

}
Ccitt32Table[ i ] = val ue;

/
* This is the routine used to calculate the 32-bit CRC of a bl ock of

* data. This is done by processing the input buffer using the

* coefficient table that was created when the programwas initialized.
* This routine takes an input value as a seed, so that a running

* calculation of the CRC can be used as bl ocks are read and witten.

*

unsi gned | ong Cal cul at eBl ockCRC32( count, crc, buffer )
unsi gned int count;
unsi gned | ong crc;
void *buffer;
{
unsi gned char *p = (unsigned char *) buffer
unsi gned | ong tenpl;
unsi gned | ong tenp2;

while ( count-- '=0) {

tenpl = ( crc >> 8 ) & OxOOFFFFFFL;

temp2 = Ccitt32Table[ ( (int) crc ™ *p++ ) & Oxff ];
crc = tenpl * tenp2;

}

return( crc );

*

If 1/0 is being done on a byte-by-byte basis, as is the case with the
LZSS code, it is easier to calculate the CRC of a byte at a tine
instead of a block at a tinme. This routine perforns that function
once again taking a CRC value as input, so that this can be used to
performon the fly calculations. In situations where performance is
critical, this routine could easily be recorded as a nacro.

* %k 3k X X TS

~

unsi gned | ong Updat eCharact er CRC32( crc, ¢ )
unsi gned | ong crc;
int c;
{
unsi gned | ong tenpl;
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unsi gned | ong tenp2;

tenmpl ( crc > 8 ) & OxOOFFFFFFL;

tenp2 Ccitt32Table[ ( (int) crc ~ ¢ ) & Oxff ];
crc = tenpl M tenp2;

return( crc );

*

When CARMAN first starts up, it calls this routine to parse the
conmand line. W | ook for several things here. If any of the
conditions needed to run CARMAN is not net, the routine opts for
the usage printout exit. The first thing to be sure of is that

the conmand |ine has at |east three argunents, which should be

the "CARMAN', a single character command, and an CAR archive nane.
After that, we check to be sure that the command nane is a valid
letter, and incidentally print out a short nmessage based on it.
Both the Addfiles and Del ete conmands require that some file nanes
be listed as well, so a check is made for additional argunents when
each of those argunents is encountered. Finally, the comand itself
is returned to main(), for use later in processing the command.

nt ParseArgunments( argc, argv )
nt argc;

char *argv[];

}

i nt conmmand;

if (argc < 3 || strlen( argv[ 1] ) > 1)
UsageExit();
switch( command = toupper( argv[ 1 ][ 01 ) ) {
case 'X
fprintf( stderr, "Extracting files\n"
br eak;
case 'R
fprintf( stderr, "Replacing files\n" );
br eak;
case 'P
fprintf( stderr, "Print files to stdout\n" );
br eak;
case 'T
fprintf( stderr, "Testing integrity of files\n" );
br eak;
case 'L
fprintf( stderr, "Listing archive contents\n" );
br eak;
case 'A'
if ( argc <= 3 )
UsageExit();
fprintf( stderr, "Adding/replacing files to archive\n" );
br eak;

case 'D
if ( argc <= 3)
UsageExit();
fprintf( stderr, "Deleting files fromarchive\n" )
br eak;
default :
UsageExit();

return( comand );

/*



UsageExit just provides a universal point of egress for those
* times when there appears to be a problemon the command |ine.
* This routine prints a short hel p nmessage then exits back to the OS
*/

voi d UsageExit ()
fputs( "CARMAN - Conpressed ARchive MANager\n", stderr );

fputs( "Usage: carman comrand car-file [file ...]\n", stderr );
fputs( "Commands:\n", stderr );

fputs( " a: Add files to a CAR archive (replace if present)\n"
stderr );

fputs( " x: Extract files froma CAR archive\n", stderr );
fputs( " r: Replace files in a CAR archive\n", stderr );
fputs( " d: Delete files froma CAR archive\n", stderr );
fputs( " p: Print files on standard output\n", stderr );
fputs( " I: List contents of a CAR archive\n", stderr );
fputs( " t: Test files in a CAR archive\n", stderr );

fputs( "\'n", stderr );

exit( 1);

}

*

After the command |ine has been parsed, main() has enough infornmation
tointelligently open the input and output CAR archive files. The
nane shoul d have been specified on the command |ine, and passed to
this routine by main(). As a convenience to the user, if the CAR
suffix is left off the archive, this routine will add it on.

There is one legitinate excuse for not being able to open the input
file, which is if this is the 'Addfiles' command. There may not be

an input archive when that command is called, in which case a failure
is tolerated. Once the input file has been opened, an output file

may have to be opened as well. The 'Addfiles', 'Delete', and

'Repl ace' commands all nodify the CAR archive, which neans the input
CAR file is going to be processed and copied to the output. Initially,
the output CAR file gets a tenporary nane. It will be renaned | ater
after the input has been processed.

Since we will probably be doing lots of bulk copies fromthe input
CAR file to the output CARfile, it nmakes sense to allocate big
buffers for the files. This is done with the two calls to setvbuf()
right before the routine exits.

L S A I T S R N R R A A T
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voi d OpenArchiveFil es( name, command )

char *nane;
i nt conmmand;
char *s;
int i;

strncpy( CarFil eNanme, name, FILENAME_MAX - 1 );
CarFi |l eName[ FILENAME_ MAX - 1] ="'\0O
InputCarFile = fopen( CarFileNane, "rb" );
if ( InputCarFile == NULL ) {
#i f def MSDOS
s = strrchr( CarFileNane, "\\' );
#else /* UNIX */
s = strrchr( CarFileNane, '/' );
#endi f
if (s == NULL )
s = CarFi | eNane;
if ( strrchr( s, "." ) == NULL )
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if ( strlen( CarFileName ) < ( FILENAME MAX - 4 ) ) {
strcat( CarFileName, ".car" );
Input CarFile = fopen( CarFil eNane, "rb" );

}
}
if ( InputCarFile == NULL & conmand !="A" )
Fatal Error( "Can't open archive '%'", CarFil eNane );
if ( command == "A" || command == 'R || command == 'D ) {
strcpy( TenpFil eNanme, CarFileNanme );
s = strrchr( TenpFileNane, '.');
if (s == NULL )
s = TenpFil eNane + strlen( TenpFil eNane );
for (i =0 ; i <10 ; i++ ) {
sprintf( s, ".$3%", i );
if ( ( QutputCarFile = fopen( TenpFileNane, "r" ) ) == NULL )
br eak;
fclose( QutputCarFile );
Qut put CarFil e = NULL;
}

if (i ==10)

Fatal Error( "Can't open tenporary file %", TenpFileNane );
Qutput CarFile = fopen( TenpFil eNane, "wbh" );

if ( QutputCarFile == NULL )

Fatal Error( "Can't open tenporary file %", TenpFil eNane );

}

if ( InputCarFile !'= NULL )

setvbuf ( I nputCarFile, NULL, _IOFBF, 8192 );
if ( QutputCarFile !'= NULL )

setvbuf ( QutputCarFile, NULL, _|OFBF, 8192 );

*

Most of the commands given here take one or nore file names as
arguments. The list of files given on the conmmand |ine needs to be
processed here and put into a list that can easily be nanipul ated by
other parts of the program That processing is done here. An array
called FileList is created, which will have a series of pointers to
file names. If no file nanes were listed on the comrand |ine, which
could be the case for comrands like 'List' or 'Extract', a single
file nanme of '*' is put on the start of the list. Since '*' is the
ultimate wild card, matching everything, we don't have to have specia
processi ng anywhere else for an enpty file list. The file names here
are also nmassaged a bit further for M5-DOS file nanes. Under Ms-DOS
case is not significant in file nanmes. This nmeans that CARVAN

shoul dn't get confused by thinking 'foo.c' and 'FOO. C are two
different files. To avoid this, all M5-DCS file nanes are converted
here to | ower case. Additionally, any file name w thout an extension
is forced to end with a period, for similar reasons. This ensures that
CARMAN knows 'FOO and 'FOO.' are the sanme file. Note that | don't
want to do this for wild card specifications. Finally, there is the
problem of M5-DOS wild card file names. When using the ' Add® comand,
wild cards on the command |ine need to be expanded into real file
nanes, then undergo the additional processing nentioned earlier. This
is done with a call to a function that is Ms-DOS specific. None of
this special processing is done under UNI X, where case is significant,
and wild cards are expanded by the shell

void Buil dFileList( argc, argv, conmmand )

nt argc;

char *argv[];

{

nt command;

int i;



int count;

count = O;
if ( argc == 0)
FileList[ count++ ] = "*";
el se {
for (i =0; i <argc; i+t ) {
#i f def MSDOS
if ( conmand == "A" )
count = ExpandAndMassageMSDOSFi | eNanes( count, argv[ i ] );
el se
MassageMSDOSFi | eNane( count++, argv[ i ] );
#endi f

#i f ndef __MSDOS__
FileList [ count ] = malloc( strlen( argv[ i ] ) + 2);
if ( FileList[ count ] == NULL )
Fatal Error( "Ran out of nmenory storing file nanes" );
strcpy( FilelList][ count++ ], argv[ i ] );
#endi f
if ( count > 99 )
Fatal Error( "Too many file nanmes" );
}

}
FileList[ count ] = NULL;

}

*

Under MS-DGOS, wildcards on the command |ine are not expanded to
alist of file nanes, so it is up to application prograns to do the
expansi on thensel ves. This routine takes care of that, by using

the findfirst and findnext routines. Unfortunately, each Ms-DCS
conpi |l er nmaker has inplenmented this function slightly differently, so
this may need to be nodified for your particular compiler. However,
this routine can be replaced with a call to MassageMSDOSFi | eNane(),
and the programw |l work just fine, without the ability to handle
wild card file nanes.

L I B B B

*

*/
#i f def MSDOS

#i ncl ude <dos. h>
#i ncl ude <dir. h>

i nt ExpandAndMassageMsSDOSFi | eNanes( count, wild_nane )
i nt count;
char *wild_nane;
{
i nt done;
DI R_STRUCT file_info_block
char *| eadi ng_pat h;
char *file_nane;
char *p;

| eadi ng_path = malloc( strlen( wild_name ) + 1 );
file_name = malloc( strlen( wild nane ) + 13 );
if ( leading_path == NULL || file_nane == NULL )

Fatal Error( "Ran out of nenory storing file names" );
strcpy( |eading path, wld_nanme );
p = strrchr( leading_path, "\\' );
if ( p!= NULL)

pl 1] ="\0";
el se {

p = strrchr( leading_path, ';"' );

if ( p!= NULL )

pl 1] ="\0";



el se
| eading_path[ 0] = "'\0";
}

done = FIND FIRST( wild nane, & file_info_block, 0 );
while ( !done ) {

strcpy( file_name, |eading_path );

strcat( file_name, file_info_block.D R FILE NAME );

MassageMSDOSFi | eNane( count++, file_nane );

done = FIND NEXT( & file_info_block );

if ( count > 99 )

Fatal Error( "Too many file names" );

}

free( leading path );
free( file_nanme );
return( count );

}

/*

* As was discussed earlier, this routine is called to performa snall

* ampunt of normalization on file nanmes. Under M5 _DOS, case is not

* significant in file nanes. In order to avoid confusion later, we force
* all file names to be all |ower case, so we can't accidentally add two
* files with the sane nane to a CAR archive. Likew se, we need to

* prevent confusion between files that end in a period, and the sane

* file without the ternminal period. We fix this by always forcing the

* file nane to end in a period.

*

~

voi d MassageMSDOSFi | eNane( count, file )

int count;
char *file;
L
int i;
char *p;
FileList[ count ]| = malloc( strlen( file ) + 2);
if ( FileList[ count ] == NULL )

Fatal Error( "Ran out of nmenory storing file nanes" );
strcpy( FileList[ count ], file );
for (i =0 ; FileList[ count 1] [ i ] !'="\0" ; i++)
FileList[ count ][ i ] = (char)
tolower (FileList[ count ][ i 1);
if ( strpbrk( FileList [ count ], "*?" ) == NULL ) {
p = strrchr( FileList[ count ], "\\' );
if ( p == NULL )
p = FileList[ count ];

if ( strrchr( p, "." ) == NULL )
strcat( FileList[ count ], "." );
}
}
#endi f
/*
* Once all of the argunent processing is done, the main() procedure
* checks to see if the command is 'Addfiles'. If it is, it calls
* this procedure to add all of the listed files to the output buffer
* before any other processing is done. That is taken care of right
* here. This routine basically does three jobs before calling the
* Insert() routine, where the conpression actually takes place. First,
* it tries to open the file, which ought to work. Second, it strips the
* |eading drive and path information fromthe file, since we don't keep

that information in the archive. Finally, it checks to see if the



resulting nane is one that has already been added to the archive.
* If it has, the file is skipped so that we don't end up with an

* invalid archive

*/

i nt AddFil eLi st ToAr chi ve()
L

int i;

int j;

i nt skip;

char *s;

FILE *i nput _text file;

for (i =0 ; FileList[ i ] !'= NULL ; i++) {
i nput _text file = fopen( FileList[ i ], "rb" );
if ( input_text file == NULL )
Fatal Error( "Could not open % to add to CAR file",
FileList[ i ] );
#i f def MSDOS
s = strrchr( FileList[ i ], "\\' );
if (s == NULL )
s = strrchr( FileList[ i ], ":" );
#endi f
#i f ndef MSDOS /* Must be UNI X */
s = strrchr( FileList[ i ], '/" );
#endi f
if (s != NUL )
S++;
el se
s = FileList[ i ];
skip = 0;
for (j =0, j <i | j+t)
if ( stremp( s, FileList[ j 1) ==0) {
fprintf( stderr, "Duplicate file name: %", FileList[ i ] );
fprintf( stderr, " Skipping this file...\n" );
skip = 1;
br eak;
}
if (s!=FileList[ i ] )
for (j =0; s[j ] !="\0 ; j++)
FileList[ i ][ j ] = s ;
FileList[ i ][ j 1 ="\0O

}
if ( !'skip) {
strcpy( Header.file name, FileList[ i ] );
Insert( input_text_file, "Adding" );
} else
fclose( input_text file );

}
return( i );
}
/*
* This is the main | oop where all the serious work done by this
* programtakes place. Essentially, this routine starts at the
* beginning of the input CAR file, and processes every file in
* the CAR Depending on what command i s bei ng executed, that m ght
* mean expanding the file, copying it to standard output,
* adding it to the output CAR, or skipping over it conpletely.

~

int ProcessAll FileslnlnputCar( comrand, count )
i nt conmmand;
int count;



{

i nt mat ched;
FI LE *i nput _text file;
FI LE *out put _desti nati on;

if ( command == "'P )
out put _destinati on = stdout;
else if ( command == "'T' )

#i f def MSDOS

fopen( "NUL", "wb" );

out put _destination

#el se
out put _destination = fopen( "/dev/null", "wh" );
#endi f
el se
out put _destination = NULL;
*
This is the loop where it all happens. | read in the header for

b I S T .

~

each file in the input CAR, then see if it matches any of the file

and wi |l dcard specifications in the FilelList created earlier. That

i nformati on, conbined with the command, tells ne what | need to

know in order to process the file. Note that if the 'Addfiles' comrand
is being executed, the InputCarFile will be NULL, so this |oop

can be safely skipped.

while ( InputCarFile != NULL &% ReadFil eHeader() != 0 ) {
mat ched = SearchFil eLi st( Header.file_nanme );
switch ( conmmand ) {
case 'D :
if ( matched ) {
Ski pOver Fi | eFroml nput Car () ;
count ++;
} else
CopyFi | eFrom nput Car () ;
br eak;
case 'A'
if ( matched )
Ski pOver Fi | eFrom nput Car () ;
el se
CopyFi | eFrom nput Car () ;
br eak;
case 'L' :
if ( matched ) {
Li stCarFil eEntry();
count ++;
} else
Ski pOver Fi | eFr om nput Car () ;
br eak;
case 'P
case 'X
case 'T" :
if ( matched ) {
Extract ( output_destination );
count ++;
} else
Ski pOver Fi | eFr om nput Car () ;
br eak;
case 'R :
if ( matched ) {
i nput _text file = fopen( Header.file_name, "rb" );
if ( input_text file == NULL ) {
fprintf( stderr, "Could not find %", Header.file_nane );
fprintf( stderr, " for replacenent, skipping\n" );
CopyFi | eFrom nput Car () ;



} else {
Ski pOver Fi | eFr om nput Car () ;
Insert( input_text _file, "Replacing" );

count ++;
fclose(input_text_file );
}
} else
CopyFi | eFrom nput Car () ;
br eak;
}
}
return( count );
}
/*
* This routine |looks through the entire list of argunents to see if
* there is a match with the file name currently in the header. As each
* newfile in InputCarFile is encountered in the main processing | oop
* this routine is called to determine if it has an appearance anywhere
* in the FileList[] array. The results is used to in the main | oop
* to deternine what action to take. For exanple, if the command were
* the 'Delete' command, the match result woul d determ ne whether to
* copy the file formthe InputCarFile to the QutputCarFile, or skip
* over it.
*
* The actual work in this routine is really perforned by the
* W I dCardMat ch() routine which checks the file nane agai nst one of the
* names in the FileList[] array. Since npost of the conmands can use
* wild cards to specify file names inside the CAR file, we need a
* special conparison routine.
*

~

int SearchFilelList( file_nane )
char *file_nane;

L
int i;
for (i =0 ; FileList[ i ] !'= NULL ; i++) {
if ( WldCardMatch( file_nane, FileList[ i ] ) )
return( 1 );
return( 0 );
}
/*
* W I dCardMat ch() conpares string to wild string, |ooking for a match.
* WIld card characters supported are only '*' and '?', where '*'
* represents a string of any length, including O, and '?" represents any
* single character.

~

int WldCardvatch( string, wild_string )
char *string;
char *wild_string;
{
for (5 5 ) {
if ( *wild_string =="*" ) {
Wil d_string++;
for (5 ;) {
while ( *string !="'"\0" && *string != *wild_string )
string++;
if ( WldCardivatch( string, wild_string ) )
return( 1 );
else if ( *string == "'\0" )
return( 0 );
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el se

string++;
} elseif ( *wild_string =="'7?" ) {
Wil d string++;
if (* string++ == "'"\0" )
return( 0 );
} else {

if ( * string !=*wild_string)
return( 0 );
if ( *string == "'\0" )
return( 1 );
string++;
Wil d_string++;
}
}

*

When the nmmin processing loop reads in a header, it checks to see

if it is going to copy that file either to the QutputCarFile or expand
it. If neither is going to happen, we need to skip past this file and
go on to the next header. This can be done by seeking past the
conpressed file. Since the conpressed size is stored in the header
information, it is easy to do. Note that this routine assunes that the
file pointer has not been nodified since the header was read in. This
means it should be located at the first byte of the conpressed data.

voi d Ski pOver Fi | eFroml nput Car ()

[

EE T S T I R

~

fseek( I nputCarFile, Header.conpressed_size, SEEK CUR );

*

When perforning an operation that nodifies the input CAR file,
conpressed files will frequently need to be copied fromthe input CAR
file to the output CAR file. This routine does that using sinple
repeat ed bl ock copy operations. Since it is witing directly to the
output CARfile, the first thing it needs to do is wite out the
current Header so that the CAR file will be properly structured.

Foll owi ng that, the conpressed file is copied one block at a time to
the out put. Wien this routine conpletes, the input file pointer is
positioned at the next header in the input CAR file, and the output
file pointer is positioned at the EOF position in the output file.
This is the proper place for the next record to begin.

voi d CopyFi | eFrom nput Car ()

char buffer[ 256 ];
i nt count;

WiteFil eHeader();

whi l e ( Header.conpressed size !'=0 ) {
i f ( Header.conpressed_size < 256 )
count = (int) Header.conpressed_size;

el se

count = 256

if ( fread( buffer, 1, count, InputCarFile ) !'= count )

Fatal Error( "Error reading input file %", Header.file_nane );
Header . conpressed_si ze -= count;

if ( fwite( buffer, 1, count, QutputCarfile) !'= count )
Fatal Error( "Error witing to output CAR file" );



}
}

/*

* When the operation requested by the user is '"List', this routine is

* called to print out the colum headers. List output goes to standard
* output, unlike nobst of the other nmessages in this program which go

* to stderr.

*/

void PrintListTitles()
{

printf( "\n" );

printf( " Oiginal Conpressed\n" );

printf( "Filenane Size Size Rati o CRC-32 Met hod\n" )
printf( " \n" );

}

/*

* When the List command is given, the main | oop reads in each header

* block, then tests to see if the file nane in the header bl ock natches
* one of the file names (including wildcards) in the FileList. If it is,
* this routine is called to print out the information on the file.

*/

void ListCarFil eEntry()

static char *nethods[] = {
" Stored",

" LZSS"

b

printf( "% 20s %0l u %0l u %d%%6 ¥981x %\ n",
Header. fil e_nane,
Header . ori gi nal _si ze,
Header . conpressed_si ze,
Rat i ol nPercent ( Header. conpressed_si ze,
Header . ori gi nal _size ), Header. ori gi nal _crc,
nmet hods[ Header.conpression nethod - 1] );

}

/-k

* The conpression figure used in this book is cal cul ated here. The val ue
* is scaled so that a file that has just been stored has a conpression

* ratio of 0% while one that has been shrunk down to nothing would have
*aratio of 100%

*/

i nt RatiolnPercent( conpressed, original )
unsi gned | ong conpressed;
unsi gned | ong ori gi nal

{

int result;

if (original ==0)

return( 0 );

result = (int) ( ( 100L * conpressed ) / original );
return( 100 - result );

}

/*
* This routine is where all the informati on about the next file in



the archive is read in. The data is read into the gl obal Header
structure. To preserve portability of CAR files across systens,

the data in each file header is packed into an unsigned char array
before it is witten out to the file. To read this data back in

to the Header structure, we first read it into another unsigned
character array, then enploy an unpacking routine to convert that

data into ints and longs. This hel ps us avoid problenms with

big/little endian conflicts, as well as inconpatibilities in structure
packi ng, whi ch show up even between different conpilers targetted for
the sane architecture

To avoid causing any additional confusion, the data nmenbers for the
header structure are at least stored in exactly the sane order as
they appear in the structure definition. The primary difference is
that the entire file nanme character array is not stored, which would
waste a | ot of space. Instead, we just store the nunber of characters
in the name, including the null termnation character. The file nane
serves the additional purpose of identifying the end of the CARfile
with a file name length of 0 bytes.

/
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i nt ReadFi | eHeader ()

{

unsi gned char header _data] 17 ];
unsi gned | ong header _crc;

int i;

int c;

for (i =0; ;) {
c = getc( InputCarFile );
Header.file _name[ i ] = (char) c;

if ( == "\0" )
br eak;
if ( ++i == FI LENAME_MAX )
Fatal Error ( "File name exceeded nmaxi mumin header" );
}
if (i ==0)
return( 0 );

header _crc = Cal cul ateBl ockCRC32( i + 1, CRC MASK, Header.file_name );
fread( header_data, 1, 17, InputCarFile );
Header . conpr essi on_net hod = (char)

UnpackUnsi gnedDat a( 1, header _data + 0 );

Header . ori gi nal _si ze = UnpackUnsi gnedDat a( 4, header _data + 1 );
Header . conpressed_size = UnpackUnsi gnedData( 4, header _data + 5 );
Header.original _crc = UnpackUnsi gnedDat a( 4, header _data + 9 );
Header . header crc = UnpackUnsi gnedDat a( 4, header _data + 13 );

header _crc = Cal cul at eBl ockCRC32( 13, header_crc, header_data );
header _crc "= CRC _MASK;

i f ( Header.header _crc != header _crc )

Fat al Error( "Header checksumerror for file %", Header.file_ nane );
return( 1 );

}

/*

* This routine is used to transform packed characters into unsigned
* integers. Its only purpose is to convert packed character data

* into integers and | ongs.

*/

unsi gned | ong UnpackUnsi gnedDat a( nunber of bytes, buffer )
i nt nunber_of bytes;
unsi gned char *buffer
{
unsi gned long result;
int shift_count;



result = 0;
shift_count = 0;
whil e ( number _of bytes-- > )

result |= (unsigned long) * buffer++ << shift_count;
shift_count += 8;
}
return( result );
}
/*

* This routine is called to wite out the current d obal header bl ock
* to the output CAR file. It enploys the same packi ng nmechani sm

* discussed earlier. This routine also calculates the CRC of the

* header, which is sonetines not necessary.

*/
void WiteFil eHeader ()
{
unsi gned char header _data] 17 ];
int i;
for (i =0; ;)
putc( Header.file nane[ i ], QutputCarFile );
if ( Header.file name[ i++ ] == "\0" )
br eak;
}

Header . header _crc = Cal cul at eBl ockCRC32( i, CRC_MASK,
Header.fil e_name );

PackUnsi gnedDat a( 1, (Il ong)

Header . conpr essi on_net hod, header _data + 0 );
PackUnsi gnedDat a( 4, Header.origi nal _size, header _data + 1 );
PackUnsi gnedDat a( 4, Header.conpressed_size, header_data + 5 );
PackUnsi gnedDat a( 4, Header. original _crc, header _data + 9 );

Header . header crc Cal cul at edBl ockCRC32( 13, Header. header _crc,
header _data );

Header . header _crc "= CRC_MASK;

PackUnsi gnedDat a( 4, Header. header _crc, header_data + 13 );

fwite( header _data, 1, 17, QutputCarFile );

}

*

This is the routine used to pack integers and longs into a character
array. The character array is what eventually gets witten out to the
CAR file. The data is always witten out with the |east significant
bytes of the integers or long integers going first.

* % %k F X T~
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voi d PackUnsi gnedDat a( numnber _of bytes, nunber, buffer )
i nt nunber_of bytes;

unsi gned | ong nunber;

unsi gned char *buffer

while ( nunber_of bytes-- > 0 ) {
*puffer++ = ( unsigned char ) nunber & Oxff;
nunber >>= 8;

}

}

/*

* The last header in a CARfile is defined by the fact that it has
* afile name length of zero. Since the file nanme is the

first elenent to be witten out, we can create the final header
by just witing out a null term nation character. This technique
saves a little bit of space.

* X X



*/
void WiteEndO Car Header ()

fputc( 0, QutputCarFile );
}

*

This is the routine called by the main processing | oop and the
Addfiles routine. It takes an input file and wites the header and
file data to the Qutput CAR file. There are several conplications that
the routine has to deal with. First of all, the header informtion

it gets when it first starts is inconplete. For instance, we don't
know how many bytes the file will take up when it is conpressed.
Because of this, the position of the header is stored, and the

i nconplete copy is witten out. After the conpression routine finishes,
the header is now conplete. In order to put the correct header into
the output CAR file, this routine seeks back in the file to the
original header position and rewites it.

The second conplication lies in the fact that sone files are not very
conpressible. In fact, for sonme files the LZSS al gorithm may actually
cause the file to expand. In these cases, the conpression routine
gives up and passes a failure code back to Insert(). Wen this
happens, the routine has to seek back to the start of the file, rew nd
the input file, and store it instead of conpressing it. Because of
this, the starting position of the file in the output CARfile is also
stored when the routine starts up
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void Insert( input_text file, operation)
FILE *i nput _text file;
char *operation;
{
| ong saved_position_of header
| ong saved _position_of file;

fprintf( stderr, "% % 20s", operation, Header, file_nane );
saved_position_of header = ftell( QutputCarFile );
Header . conpr essi on_net hod = 2;
Wit eFil eHeader () ;
saved_position_of file = ftell (QutputCarFile);
fseek( input_text file, O., SEEK END );
Header.original _size = ftell( input_text _file );
fseek( input_text file, O., SEEK SET );
if ( !'LZSSConpress( input_text file ) ) {
Header . conpr essi on_net hod = 1;
fseek( QutputCarFile, saved_position_of_file, SEEK SET );
rewi nd( input_text file );
Store( input_text file );
}
fclose( input_text file );
fseek( QutputCarFile, saved_position_of_header, SEEK_SET );
WiteFil eHeader();
fseek( QutputCarFile, O., SEEK END );
printf( "%%4n", RatiolnPercent( Header.conpressed_size,
Header. origi nal _size ) );
}

/*

* The Extract routine can be called for one of three reasons. If the

* fileinthe CARis truly being extracted, Extract() is called with

* no destination specified. In this case, the Extract routine opens the
* file specified in the header and either unstores or deconpresses the



file fromthe CARfile. If the archive is being tested for veracity,
the destination file will have been opened up earlier and specified as
the null device. Finally, the "Print' option nay have been sel ect ed,
in which case the destination file will be extracted to stdout.

/
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void Extract( destination )
FI LE *desti nati on;
{
FILE *out put _text file;
unsi gned | ong crc;
int error;

fprintf( stderr, "% 20s ", Header.file_nane );
error = 0;
if ( destination == NULL ) {
if ( ( output_text file = fopen(Header.file_nane, "wbh")
) == NULL ) {
fprintf( stderr, "Can't open %\n", Header.file_name );
fprintf( stderr, "Not extracted\n" );
Ski pOver Fi | eFrom nput Car () ;
return;
}
} else
output text file = destination;
swi tch( Header.conpression_nethod ) {
case 1 :
crc = Unstore( output_text_file );
br eak;
case 2 :
crc = LZSSExpand( output _text file );
br eak;
def aul t
fprintf( stderr, "Unknown nethod: %\n",
Header . conpr essi on_net hod );
Ski pOver Fi | eFrom nput Car () ;

error = 1;

crc = Header.original _crc;

br eak;
if ( crc !'= Header.original _crc ) {

fprintf( stderr, "CRC error reading data\n" );
error = 1;

}
if ( destination == NULL ) {
fclose( output_text file );
if ( error )
#i fdef __STDC _
renove( Header.file_ nanme );
#el se
unlink( Header.file_nane );
#endi f

if ( lerror )
fprintf( stderr, " OK\n" );

—

The CAR manager programis capable of handling many different forns of
conpression. Al the conpression programhas to do is obey a few
sinple rules. First of all, the conpression routine is required

to calculate the 32-bit CRC of the unconpressed data, and store the
result in the file Header, so it can be witten out by the Insert()
routi ne. The expansion routine calculates the CRC of the file it
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creates, and returns it to Extract() for a check agai nst the Header
val ue. Second, the conpression routine is required to quit if its
output is going to exceed the length of the input file. It needs to
quit *before* the output |ength passes the input, or problens wll
result. The conpression routine is required to return a true or false
val ue indicating whether or not the conpression was a success. And
finally, the expansion routine is expected to |leave the file pointer
to the Input CAR file positioned at the first byte of the next file
header. This neans it has to read in all the bytes of the conpressed
data, no nore or |ess.

Al'l these things are relatively easy to acconplish for Store() and
Unstore(), since they do no conpression or expansion

L I T S T T R T T
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int Store( input_text file)
FILE *input _text file;

{

unsi gned int n;

char buffer[ 256 ];

int pacifier;

pacifier = 0;
Header. ori gi nal _crc = CRC_MASK;

while ( ( n = fread( buffer, 1, 256, input_text file) ) =0 ) {
fwite( buffer, 1, n, QutputCarFile );
Header. origi nal _crc = Cal cul at eBl ockCRC32( n, Header.original _crc,
buffer );
if ( ( ++pacifier & 15 ) == 0)
putc( '.', stderr );
}
Header . conpressed_si ze = Header. ori gi nal _si ze;
Header. origi nal _crc "= CRC_MASK;
return( 1 );

}

unsi gned | ong Unstore( destination )
FI LE *desti nati on;
{

unsi gned | ong crc;

unsi gned int count;

unsi gned char buffer[ 256 ];

int pacifier;

pacifier = 0;
crc = CRC_MASK;
while ( Header.original _size '=0) {
if ( Header.original _size > 256 )
count = 256
el se
count = (int) Header.original_size;
if ( fread( buffer, 1, count, InputCarFile ) != count )
Fatal Error( "Can't read frominput CAR file" );
if ( fwite( buffer, 1, count, destination ) != count ) {
fprintf( stderr. "Error witing to output file" );
return( ~Header.original _crc );
}
crc = Cal cul at eBl ockCRC32( count, crc, buffer );
if ( destination != stdout & ( pacifier++ & 15 ) == 0 )
putc( '.', stderr );
Header . ori gi nal _si ze -= count;
}
return( crc ~ CRC_MASK );



—

/*
* The second set of conpression routines is found here. These
* routines inplenent LZSS conpression and expansi on using 12-bit
* index pointers and 4-bit match |l engths. These val ues were
* gpecifically chosen because they allow for "blocked 1/0'. Because
* of their values, we can pack match/length pairs into pairs of
* bytes, with characters that don't have matches going into single
* bytes. This helps increase I/O since single bit input and
* out put does not have to be enployed. Other than this single change,
* this code is identical to the LZSS code used earlier in the book.
*/
/*
* Various constants_used to define the conpression paraneters. The
* | NDEX_BI T_COUNT tells how many bits we allocate to indices into the
* text window. This directly deternines the WNDOW SI ZE. The
* LENGTH BI T_COUNT tells how nany bits we allocate for the |l ength of
* an encode phrase. This determ nes the size of the | ook ahead buffer.
* The TREE ROOT is a special node in the tree that always points to
* the root node of the binary phrase tree. END OF STREAM is a speci al
* index used to flag the fact that the file has been conpletely
* encoded, and there is no nore data. UNUSED is the null index for
* the tree. MOD WNDOW) is a nacro used to performarithnetic on tree
* indices.
*
*/
#defi ne | NDEX_BI T_COUNT 12
#defi ne LENGTH_BI T_COUNT 4
#defi ne W NDOW S| ZE ( 1 << INDEX_BI T_COUNT )
#defi ne RAW LOOK_AHEAD SI ZE ( 1 << LENGTH BI T_COUNT )
#def i ne BREAK_EVEN ( (1 + INDEX_BI T_COUNT + LENGTH BI T_COUNT ) \
/ 9)
#defi ne LOOK_AHEAD S| ZE ( RAW LOOK_AHEAD SI ZE + BREAK _EVEN )
#def i ne TREE_ROOT W NDOW SI ZE
#defi ne END_OF _STREAM 0
#def i ne UNUSED 0
#defi ne MOD W NDOWN a ) ((a) &( WNDOWSIZE - 1) )
/*
* These are the two global data structures used in this program
* The window] array is exactly that, the w ndow of previously seen
* text, as well as the current | ook ahead text. The tree[] structure
* contains the binary tree of all of the strings in the w ndow sorted
* in order.
*/
unsi gned char w ndow W NDOW Sl ZE ];
struct {
i nt parent;

int snmaller_child;
int larger_child;
} treel] WNDOWSIZE + 1 ];

/*

* Function prototypes for both ANSI C conpilers and their K&R brethren.
*/

#i fdef __STDC _

void InitTree( int r );
voi d Contract Node( int old _node, int new node );



voi d Repl aceNode( int old node, int new node );

i nt Fi ndNext Node( int node );

void DeleteString( int p);

int AddString( int new node, int *match_position );
void I nitQutputBuffer( void );

i nt FlushQutputBuffer( void );

int QutputChar( int data );

int QutputPair( int position, int length );

void InitlnputBuffer( void );

int InputBit( void );

#el se

void InitTree();

voi d Contract Node();
voi d Repl aceNode();

i nt Fi ndNext Node() ;

voi d Del eteString();

int AddString();

voi d | nitQutputBuffer();
i nt FlushQut putBuffer();
i nt CQutput Char ();

int QutputPair();

void InitlnputBuffer();
int InputBit();

#endi f
void InitTree( r )
int r;
{
int i;
for (i =0 ; i <( WNDOWNSIZE + 1) ; i++ ) {

tree[ i].parent = UNUSED;
tree[ i].larger_child = UNUSED,
tree[ i].smaller_child = UNUSED
}
tree[ TREE ROOT ].larger _child = r;
tree[ r].parent = TREE_ROOT;
tree[ r ].larger_child = UNUSED
tree[ r ].smaller_child = UNUSED
}

/*
* This routine is used when a node is being deleted. The link to
* its descendant is broken by pulling the descendant in to overlay
* the existing |ink.
*/
voi d Contract Node( ol d node, new node )
i nt ol d_node;
i nt new_node;
{
tree[ new node ].parent = tree[ old _node ].parent;
if ( tree[ tree[ old_node ].parent ].larger_child == ol d_node )
tree[ tree[ old_node ].parent ].larger_child = new_node;
el se
tree[ tree[ old_node ].parent ].snaller_child = new_node;
tree[ old _node ].parent = UNUSED

}

/*
* This routine is also used when a node is being del eted. However,
* in this case, it is being replaced by a node that was not previously



* in the tree.

*/

voi d Repl aceNode( ol d_node, new_node )
i nt ol d_node;

i nt new_node;

{

i nt parent;

parent = tree[ old_node ].parent;

if ( tree [ parent ].smaller_child == old_node )
tree[ parent ].smaller_child = new node;

el se

tree[ parent ].larger_child = new_node;

tree[ new node ] = tree[ old_node ];

tree[ tree[ new node ].snaller _child ].parent = new node;
tree[ tree[ new node ].larger_child ].parent = new_node;
tree[ ol d_node ].parent = UNUSED

}

/*

* This routine is used to find the next smallest node after the node
* argunent. It assunes that the node has a smaller child. W find

* the next smallest child by going to the smaller_child node, then

* going to the end of the larger_child descendant chai n.

*/

i nt Fi ndNext Node( node )

i nt node;

{

i nt next;

next = tree[ node ].smaller_child;

while ( tree [ next ].larger_child !'= UNUSED )
next = tree[ next ].larger_child;

return( next );

}

/*

* This routine perforns the classic binary tree deletion algorithm

* | f the node to be deleted has a null link in either direction, we

* just pull the non-null link up one to replace the existing link

* |f both Iinks exist, we instead delete the next link in order, which

* is guaranteed to have a null link, then replace the node to be deleted
* with the next link.

*

/
void DeleteString( p )
int p;
{
int replacenent;
if (tree[ p ].parent == UNUSED )
return;
if ( tree[ p].larger_child == UNUSED )
Contract Node( p, tree [ p].smaller_child );
else if (tree[ p].smaller_child == UNUSED )
ContractNode( p , tree[ p ].larger_child );
el se {
repl acenent = Fi ndNext Node( p );
Del eteString( replacenment );
Repl aceNode( p , replacenment );
}
}

/*
* This is where nost of the work done by the encoder takes place. This
* routine is responsible for adding the new node to the binary tree.
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It also has to find the best match anong all the existing nodes in
the tree, and return that to the calling routine. To nake mattes
even nore conplicated, if the new node has a duplicate in the tree,
the ol d_node is deleted, for reasons of efficiency.

/

nt AddString( new_node, match_position )
nt new_node;
nt *match_position;

int i;

int test_node;
int delta;

int match_l engt h;
int *child;

if ( new_node == END_OF_STREAM )

return( 0 ) ;
test_node = tree[ TREE_ROOT ].larger_child;
match_l ength = O;
for (5 ;) {

for (i =0 ; i < LOXK AHEAD SIZE ; i++ ) {
delta = windonf MOD WNDOAN new node + 1) ] -
wi ndowf MOD W NDOWN test node + i ) ];
if ( delta!=10)
br eak;

}

if (i > match_length ) {

match_l ength = i;

*mat ch_position = test _node;

if ( match length >= LOOK_AHEAD SI ZE ) {
Repl aceNode( test_node, new _node );
return( match_length );

}

}

if ( delta >=0)

child = &ree[ test_node ].larger_child;
el se

child = &ree[ test_node ].smaller_child;
if ( *child == UNUSED ) {

*child = new_node

tree[ new_node].parent = test_node;
tree[ new_node].larger_child = UNUSED;
tree[ new node].smaller_child = UNUSED
return( match_length );

}

test _node = *child;

—

*

This section of code and data makes up the bl ocked 1/O portion of the
program Every token output consists of a single flag bit, followed
by either a single character or a index/length pair. The flag bits
are stored in the first byte of a buffer array, and the characters
and index/length pairs are stored sequentially in the remaining
positions in the array. After every eight output operations, the
first character of the array is full of flag bits, so the remaining
bytes stored in the array can be output. This can be done with a
single fwite() operation, naking for greater efficiency.

Al'l that is needed to inplenent this is a few routines, plus three
data objects, which foll ow below. The buffer has the flag bits
packed into its first character, with the remai nder consisting of



the characters and index/length pairs, appearing in the order they
were output. The Fl agBitMask is used to indicate where the next

flag bit will go when packed into DataBuffer[ O ]. Finally, the
BufferOffset is used to indicate where the next token will be stored
in the buffer.

*  F X F

*/

char DataBuffer[ 17 ];
i nt FlagBit Mask;

int BufferOfset;

/*

* To initialize the output buffer, we set the FlagBitMask to the first
* bit position, can clear DataBuffer[0], which will hold all the

* Flag bits. Finally, the BufferOfset is set to 1, which is where the
* first character or index/length pair will go.

*/

voi d I nitQutputBuffer()

Dat aBuffer[ 0] = O;

Fl agBi t Mask = 1;

Buf ferOf fset = 1;
}
/*
* This routine is called during one of two different situations. First,
* it can potentially be called right after a character or a | ength/index
* pair is added to the DataBuffer[]. If the position of the bit in the
* FlagBit Mask indicates that it is full, the output routine calls this
* routine to flush data into the output file, and reset the output
* variables to their initial state. The other tine this routine is
* called is when the conpression routine is ready to exit. If there is
* any data in the buffer at that tine, it needs to the flushed.
*
* Note that this routine checks carefully to be sure that it doesn't
* ever wite out nore data than was in the original unconpressed file.
* It returns a 0 if this happens, which filters back to the conpression
* program so that it can abort if this happens.
*
*

~

i nt FlushQut put Buf fer()

if ( BufferOfset == 1)
return( 1 );
Header . conpressed_si ze += BufferOffset;
if ( ( Header.conpressed_size ) >= Header.original _size )
return( 0 );
if ( fwite( DataBuffer, 1, BufferOfset, QutputCarFile )
I =Buf ferO fset )
Fatal Error( "Error witing conmpressed data to CAR file" );
I ni tQut put Buffer();
return( 1 );

}

*

This routine adds a single character to the output buffer. In this
case, the flag bit is set, indicating that the next character is an
unconpressed byte. After setting the flag and storing the byte,

the flag bit is shifted over, and checked. If it turns out that al
eight bits in the flag bit character are used up, then we have to
flush the buffer and reinitialize the data. Note that if the

Fl ushQut put Buffer() routine detects that the output has grown | arger
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than the input, it returns a 0 back to the calling routine.
/

nt Qut put Char( data )
nt dat a;

Dat aBuffer[ BufferOfset++ ] = (char) data;
Dat aBuffer[ O ] |= Fl agBitMask
Fl agBi t Mask <<= 1;
if ( FlagBitMask == 0x100 )
return( FlushQutputBuffer() );
el se
return( 1 );

*

This routine is called to output a 12-bit position pointer and a 4-bit
length. The 4-bit length is shifted to the top four bits of the first
of two DataBuffer[] characters. The lower four bits contain the upper
four bits of the 12-bit position index. The next of the two DataBuffer
characters gets the lower eight bits of the position index. After

all that work to store those 16 bits, the FlagBitMask is shifted over,
and checked to see if we have used up all our bits. If we have,

the output buffer is flushed, and the output data el enents are reset.
If the FlushQutputBuffer routine detects that the output file has
grown too large, it passes and error return back via this routine,

so that it can abort.

nt Qut putPair( position, length)
nt position;
nt | ength;

Dat aBuf fer[ BufferOfest++ ] ( position >> 8 );
Dat aBuf fer[ BufferOfset++ ] (char) ( position & Oxff );
Fl agBi t Mask <<= 1,
if ( FlagBitMask == 0x100 )
return( FlushQutputBuffer() );
el se
return( 1 );

Dat aBuf fer[ BufferOffset ] = (char) ( length << 4 );
| =

*

The i nput process uses the sane data structures as the bl ocked out put
routines, but it is somewhat sinpler, in that it doesn't actually have
to read in a whole block of data at once. Instead, it just reads in

a single character full of flag bits into DataBuffer[0], and passes

i ndi vidual bits back to the Expansi on program when asked for them

The expansion programis left to its own devices for reading in the
characters, indices, and match | engths. They can be read in
sequentially using normal file I/0.

void InitlnputBuffer()

{

}
/

*
*
*

*

Fl agBi t Mask

= 1;
DataBuffer[ O ]

= (char) getc( InputCarFile );

*

When the Expansion programwants a flag bit, it calls this routine.
This routine has to keep track of whether or not it has run out of
flag bits. If it has, it has to go back and reinitialize so as to
have a fresh set.



*/
int InputBit()

if ( FlagBitMask == 0x00 )
InitlnputBuffer();
Fl agBi t Mask <<= 1,
return( DataBuffer[ 0] & ( FlagBitMask >> 1) );
}

*

This is the conpression routine. It has to first |oad up the | ook
ahead buffer, then go into the main conpression |oop. The main | oop
deci des whether to output a single character or an index/length

token that defines a phrase. Once the character or phrase has been
sent out, another loop has to run. The second | oop reads in new
characters, deletes the strings that are overwitten by the new
character, then adds the strings that are created by the new
character. While running it has the additional responsibility of
creating the checksum of the input data, and checking for when the
output data grows too large. The programreturns a success or failure
indicator. It also has to update the original _crc and conpressed_size
el enents in Header data structure.

L I T S T T I R

~

i nt LZSSConpress( input_text file )
FILE *input_text_file;
L

int i;

int c;

i nt |1 ook _ahead_bytes;

int current_position

int replace_count;

int match_| engt h;

int match_position;
Header . conpr essed_si ze = 0;
Header . origi nal _crc = CRC_MASK;
I nitQut put Buffer();

current _position = 1
for (i =0 ; i < LOXK AHEAD SIZE ; i++ ) {
if ( (¢ =getc( input_text file) ) == EOF)
br eak;
wi ndowf current_position + i ] = (unsigned char) c;
Header . ori gi nal _crc = Updat eChar act er CRC32( Header.original _crc, c );
}
| ook_ahead_bytes =i
InitTree( current _position );
match_l ength = O;
mat ch_position = 0;
while ( | ook _ahead_bytes > 0 )
if ( match_length > | ook _ahead_bytes )
mat ch_| ength = | ook_ahead_byt es;
if ( match_length <= BREAK EVEN ) {
repl ace_count = 1;
if (! QutputChar( window current_position] ) )
return( 0 );
} else {
if ( !'QutputPair( match_position, match length -
( BREAK EVEN + 1) ) )
return( 0 ):
repl ace_count = match_| engt h;

}



for (i =0 ; i <replace_count ; i++ ) {
Del eteString( MOD WNDON current_position + LOOK_AHEAD SIZE ) );
if ( (¢ =getc( input_text file) ) == EOF) {
| ook ahead bytes--;
} else {
Header.original _crc =
Updat eChar act er CRC32( Header.original _crc, ¢ );
wi ndowf MOD_W NDOW current _position + LOOK AHEAD SIZE ) | =
(unsi gned char) c;

}
current _position = MOD WNDOW current_position + 1 );
if ( current_position == 0 )

putc( '.', stderr );

if ( |ook _ahead _bytes )
match_length = AddString( current_position, &match _position );
}
1
Header . origi nal _crc "= CRC_MASK;
return( FlushQutputBuffer() );
}

/*

* This is the expansion routine for the LZSS algorithm Al it has to do
* isread in flag bits, decide whether to read in a character or a

* index/length pair, and take the appropriate action. It is responsible
* for keeping track of the crc of the output data, and nust return it

* to the calling routine, for verification

*/

unsi gned | ong LZSSExpand( out put )
FI LE *out put ;
L

int i;

int current _position

int c;

int match_| engt h;

i nt match_position;

unsi gned | ong crc;

unsi gned | ong out put _count;

out put _count = O;
crc = CRC_MASK;
I nitlnputBuffer();
current _position =1
whil e ( output_count < Header.original _size ) {

if ( InputBit() ) {

c = getc( InputCarFile );

putc( c, output );

out put _count ++;

crc = Updat eCharacter CRC32( crc, ¢ )

wi ndowf current_position ] = (unsigned char) c;

current _position = MOD WNDOA current_position + 1 );

if ( current_position == 0 & output != stdout )
putc( '.', stderr );
} else {

match_l ength = getc( InputCarFile );
mat ch_position = getc( InputCarFile );
match_position |= (match_length & Oxf ) << 8
match_l ength >>= 4; match_| ength += BREAK_EVEN
out put_count += match _length + 1;
for (i =0 ; i <= mtch_length ; i++ ) {
¢ = wi ndowf MOD_W NDOW match_position + i ) ];
putc( c, output );
crc = Updat eCharact er CRC32( crc, ¢ );



wi ndowf current_position ] = (unsigned char) c;
current _position = MOD WNDOAN current_position + 1 );
if ( current_position == 0 & output != stdout )
putc( '.', stderr );
}
}

}
return( crc » CRC_MASK );

/*************************** End Of CAR,VAN C***************************/



Chapter 13
Fractal Image Compression

DCT-based JPEG compression is quite effective at low or moderate compression ratios, up to ratios
of 20 or 25 to 1. Beyond this point, the image becomes very “blocky” as the compression increases
and the image quality becomes too poor for practical use. JPEG obtains high compression ratios by
cutting off the high frequency components of the image. This can also introduce very visible
artifacts, in particular for sharp edgesin the image. Thisis known as Gibb’s phenomenon. The
practical limit on the compression ratio in turnsimplies alimit on the number of images that can fit
on a hard disk or aCD-ROM. As such, the storage space requirements of graphics applications
continue to increase at avery fast rate.

Another drawback of JPEG compression isits resolution dependence. In order to “zoom-in” on a
portion of an image and to enlargeit, it is necessary to replicate pixels. The enlarged image will
exhibit acertain level of “blockiness’ which soon becomes unacceptable as the expansion factor
increases. Because of this problem, it is sometimes necessary to store the same image at different
resolutions, thus wasting storage space.

So, although JPEG is now a well-established standard for lossy image compression, it hasits limits
and alternative compression methods must be considered. Wavel et-based methods are gaining
popularity. They are similar in spirit to the DCT methods but do not suffer from some of its
shortcomings. Methods based on vector quantization (VQ) are also very promising. But, in this
chapter we will look in more detail at yet another technique: fractal image compression.

A brief history of fractal image compression

The term fractal wasfirst used by Benoit Mandelbrot to designate objects that are self-similar at
different scales. Such objects have details at every scale. A well-known example is the Mandel brot
set, which is described by avery ssmple equation yet exhibits an infinite variety of detail. This can be
viewed as an extreme form of compression: the equation itself can be described with afew bits of
information or implemented in a very short program, but the resulting image would need an infinite
amount of bitsto be represented as a set of pixels. The popular Fractint program can generate very
delicate pictures from one-line formulas.

Mandelbrot did not actually consider fractals for compression, but he showed that they could be used
for modeling real objects such as clouds, trees or mountains. Such objects reveal more detail
whenever you look closer at them. Mandelbrot’s book The Fractal Geometry of Nature first
published in 1977 attracted a lot of attention and the word fractal became very popular. The images
generated by fractal modeling were very realistic looking and these techniques are now commonly
used in many applications using computer-generated images.

Michael Barnsley and his coworkers at the Georgia Institute of Technology were the first to
recognize the potential interest of fractal methods for image compression. Barnsley devel oped the
theory of Iterated Function Systems (IFS) first introduced by J. Hutchinson in 1981. After the
publication of Barnsley’ s book Fractals Everywhere in 1988, and his paper in the January 1988 issue
of BYTE magazine, fractal compression became a very fashionable subject. The interest in this
technique was aroused by the fantastic compression ratios claimed by Barnsley, up to 10,000 to 1.
Together with Alan Sloan, Barnsley founded Iterated Systems, Inc. and obtained US patent
4,941,193 on image compression using IFS.

Unfortunately, the fantastic compression ratios could be obtained only on specially constructed
images, and only with considerable help from a person guiding the compression process. This
process is aso known as the “graduate student algorithm,” consisting of giving a graduate student an



office and a graphics workstation, locking the door, waiting until the student has found agood IFS
for the image, and opening the door. It was impossible to completely automate the compression
process, even with a supercomputer. Thus, IFS-based compression turned out to be impractical.

A breakthrough was made in 1988 by Arnaud Jacquin, one of Barnsley’s Ph.D. students. Instead of
trying to find an IFS for a complete image, Jacquin had the idea of partitioning the image into non-
overlapping ranges, and finding alocal IFS for each range. This transformed the problem into a
manageabl e task, which could be automated. For his doctoral thesis, Jacquin developed the theory of
Partitioned Iterated Function Systems (PIFS) and implemented a version of hisagorithmin
software. Yuval Fisher, Roger Boss, and Bill Jacobs were also among the first to make public
contributions to the theory of PIFS.

In 1991, Barnsley and Sloan obtained US patent 5,065,447 on this technique. Their company,
Iterated Systems, sells software and hardware products using it, but they have not made public the
details of their technology. In particular, the FIF (Fractal Image Format) used by the Iterated
Systems products has not been publicly described. Possibly because of this, and of the patents
attached to the method, fractal image compression is not yet used in practice as much as other
techniques. However fractal compression is still a subject of active research, and it has already
demonstrated its superiority at least for applications where very high compression ratios are required.

PIFS are also named Local Iterated Function Systems (LIFS), and Barnsley uses the term “Fractal
Transform.” They all refer to the same technique. Barnsley’ s terminology may be misleading
because the Fractal Transform is not atransform in the same sense as a Fourier Transform or a
Discrete Cosine Transform, so we will use the PIFS terminology in the rest of this chapter. All
practical implementations of fractal image compression, including the program given later in this
chapter, are based on PIFS. To understand better what a PIFS is, et usfirst come back to the
technique which precedeed it, based on IFS.

What isan Iterated Function System?

Mandelbrot had observed that complex images could be obtained from simple formulas. Given a
formula, it isrelatively easy to derive the corresponding image. Barnsley had the idea of going in the
other direction, from the image to the formula. When thisis possible, it can result in fantastic
compression ratios. Instead of representing the image as along sequence of pixel values, the image
can be reconstructed from a formula, which can be encoded in a much smaller number of bytes.
Let’s take an example which is not one of fractal compression but which can convey the right idea.

Assume that you want to represent a black and white image consisting of a black circular disk on a
white background. For an image of a given resolution (a given number of pixelsin the horizontal and
vertical dimensions), you can enumerate all the pixels which are inside the disk. Alternatively, you
can give an equation for the disk, specifying it as the set of points (x, y) which satisfy:

(x-a)2+ (y-b)2 < r2

wherer isthe radius of the disk and (&, b) its center. This equation is sufficient to reconstruct the
image of the disk. Moreover, the image can be reconstructed at any resolution—this would not be
true for an explicit list of pixels. A similar difference exists between scalable character fonts
(TrueType fontsin Microsoft Windows) and fonts that are made of a fixed number of pixels. Each
character in a scalable font is described by aformulafor drawing the character; a character in afixed
font isjust a set of pixels.

Unfortunately, real-world images almost never let themselves be represented as such simple
equations. Given an image, it is generally impossible to find a simple formula representing the image



exactly. Barndey’sideawas to take advantage of the self-similarity present in an imageto find an
approximate representation of the image as afractal, like Mandelbrot’ s fractals which exhibit self-
similarity at different scales. Also, instead of giving an explicit equation satisfied by al points of the
image, the fractal isimplicitly defined as the fixed-point solution of an Iterated Function System.
The theory of IFSis outside the scope of this book, so we will only mention very briefly some of the
mathematics involved without giving precise definitions.

Basic | FS mathematics

A mapping from a set to itself is said to be contractive if it reduces the distances: the distance
between f(x) and f(y) is smaller than the distance between x and y. For example, the function f(x) =
x/2 defined on the set of real numbersis contractive. The Contractive Mapping theorem states, in
short, that a contractive mapping has a unique fixed point, that is, a value x such asf(x) = x.
Moreover, the fixed point can be obtained by starting from any point x, and computing the sequence:

X1= F(xq)
Xo= f(xq) = F(f(xg))
etc...

The sequence converges to the unique fixed point. For example, starting with the value x = 1 and

applying the function f(x) = x/2 iteratively, we get the sequence 1, 1/2, 1/4, 1/8, etc... which
convergesto the value 0. The example was given in the set |R of the reals, but the Contractive
Mapping theorem also applies to higher dimensions, in particular for two dimensional images.

An Iterated Function System consists of afinite set of contractive mappings w, ... wy, on the plane

|R2. The IFS can be applied to a black and white image as follows. Each (black) point x of the image
is mapped to N points w,(X) ... wy(X). The union of all the resulting points formsitself another black

and white image. So the IFS transforms an image into another image. Hutchinson proved that in
some well defined sense, the IFS isitself a contractive mapping, and thus it has a unique fixed point
within the set of all black and white images. So by starting from an arbitrary image and applying the
IFS iteratively, the process converges to a unique image which depends only on the IFS and not on
the initial image.

Thisisin essence how fractal decompression works. The decompressor need only know the
description of the IFS, and can reconstruct an image from this. The method works regardless of the
exact form of the IFS, aslong asit is contractive. The IFS can be viewed as a specia copy machine
which creates N reduced copies of the input image, and pastes them together. The copies are reduced
since each w; is contractive. By feeding the output of this copying machine into itself in a feedback

loop, the images generated at each step get closer and closer to each other and the process converges
to the unique fixed-point image, also called the attractor of the IFS.

Theresulting image isafractal, since it contains reduced copies of itself at every scale. More detall
can be seen if we zoom on a portion of the image. Because of this self-similarity property, image
compression using | FS deserves the name of fractal image compression.

We have only mentioned black and white images so far, but the theory can be extended to grayscale
images. Color images can themselves be encoded as three grayscale images, one for each of the red,
green, and blue components (just like the JPEG algorithm does).

Up to now, we have only considered the decompression process. The compression process is to find
agood IFS for agivenimage. Thisisknown in the fractal compression literature as “the inverse
problem.” This problem is vastly more complicated than the decompression process.



I mage compression with Iterated Function Systems

An IFS provides a good approximation of atarget image | if the fixed point of the IFSis an image
closely resembling I. The goal isto find aset of contractive mappingsw; ... wy o that the union W

of all these mappings has a fixed point closeto I.

It is hopelessto find W by trying some mappings w;, computing the resulting fixed point, comparing

it with 1, and starting again with other mappings until a close match isfound. We will instead try to
find a contractive mapping W such that W(l) iscloseto |. Barnsley’s Collage Theorem states that if
W(1) issufficiently closeto I, then the fixed point

WER (1) = WOWOW. W)

isalso closeto I. Theimage W(I) is composed of acollage (union) of all the reduced imageswj .
Thisis how the theorem got its name.

So with the help of the Collage Theorem, the “inverse problem” can be restated as finding a good
collage for an image. Thisiswhere the real difficulties start. It is generally not feasible, even with
enormous computing power, to find a good collage automatically, thus human intervention is
required. A person must guide the compression process by segmenting the original image so that
each segment looks like a reduced copy of the whole image, and so that the union of all segments
covers the original image as best as possible. For example, the person determines that a branch of a
tree can be viewed as a reduced copy of the whole tree, possibly distorted.

Once the segments have been defined, the computer can derive the W, mappings and thus an IFS for

theimage. Thereisalot of flexibility in the choice of the mappings, aslong as they are contractive,
but affine functions are generally used for ssimplicity. In one dimension, an affine function has the
form

f(x) =a*x + b
where aand b are constants. In two dimensions, the image of apoint X = (x, y) is
f(X) = A* X+ B

where A is atwo-dimensional matrix and B a constant vector. The matrix A determines a rotation,
skew and scaling for the image, and the vector B determines a tranglation. The contractivity
condition on f can be expressed as conditions on the coefficients of the matrix A: the scaling factor
must be less than one.

After all the affine transformations have been selected, the IFS can be represented in a compact form
by encoding the coefficients of all the transformations. If a good collage has been found, the total
number of affine transformations is much smaller than the total number of pixelsin theimage, so
encoding the coefficients requires far fewer bits than enumerating all the pixel values. Thisiswhy
encoding an image as an IFS is actually aform of data compression. The compression is lossy
because the attractor of the IFSisin the best case close to the original image but not strictly equal to
it.

The main difficulty of this compression processis to find within the image reduced copies of the
whole image. Real-world images often contain some self-similarity, but only between selected
portions of the image. The breakthrough made by Jacquin was to partition the input image, and to



find alocal IFS for each partition. With this new method, it finally became possible to completely
automate the compression process and furthermore to do it in a reasonable amount of time.

I mage compression with Partitioned Iterated Function Systems

We have seen in chapter 8 “ Sliding Window Compression” that the LZ77 algorithm works by
finding redundancy within the input text in the form of common phrases. Similarly, some image
compression algorithms such as Vector Quantization and Fractal compression with PIFS work by
finding redundancy within the input image in the form of similar image portions. The parallel
between the text and image compression methods is not compl ete since the former are lossless,
whereas the latter only look for approximate matching and are thus lossy.

Vector Quantization uses a dictionary (or codebook) of pixel patterns. The input image is partitioned
into small pixel blocks, and each block is encoded as areference to the dictionary pattern which most
resembles the block. A block has the same size as the corresponding dictionary pattern, but all the
blocks need not have the same size. The decoder must have a copy of the dictionary, and can easily
reconstruct an approximation of the original image by assembling the dictionary patterns specified
by the encoder.

Fractal compression with PIFSis similar to Vector Quantization, but in this case, there is no externa
dictionary. The input image acts asits own dictionary. The decoder doesn’'t have thisimage initialy,
but it can reconstruct it gradually by iterating a PIFS. Thus the dictionary isonly a“virtual
codebook”.

The compressor first partitions the input image into a set of non-overlapping ranges. The ranges are
generally squares or rectangles, but good results can aso be obtained with other shapes such as
triangles. For each range, the compressor looks for a part of the input image called a domain, which
issimilar to the range. The domain plays the role of the pixel pattern in Vector Quantization, but
here it must be larger than the range to ensure that the mapping from the domain to the range is
contractive in the spatial dimensions.

Note: Barnsley has reversed the meanings of range and domain, but we prefer keeping the established
terminology: a transformation maps from a domain to arange.

In general, the compressor looks for domains that are twice as large as the range, but other ratios are
possible. As opposed to ranges, domains may overlap.

Thetest file LISAW.GS is shown in Figure 13.1. The same file compressed with fractal compression
at acompression ratio of 96% is shown in Figure 13.2.

il




Figure 13.1 Theorigina LISAW.GS (64000 bytes).

Figure 13.2 LISAW with fractal compression (2849 bytes).

In Figure 13.2, two ranges and the two corresponding domains selected by the compression
algorithm have been highlighted. The algorithm has found similarity between two unrelated portions
of the image: arange below the eye and adomain, twice as large, on the forehead. The compressor
has also found self-similarity within one domain, in the chin. In the latter case, the range and the
domain overlap. Thiskind of self-similarity is quite frequent in real-world images, and fractal
compression takes advantage of this.

To assess the similarity between a domain D and arange R, the compressor finds the best possible
mapping w from the domain to the range, so that the image w(D) is as close as possible to the image
R. Aswe have seen previously, affine transformations are convenient for this purpose, but non-linear
transformations could also be used as long as they are contractive. Two-dimensional transformations
were used for black and white images. Three dimensions are needed for grey scale images: two for
the spatial components and one for the luminance component. An affine map is then composed of a
geometric part which maps the domain into the range, and of aluminance part which changes the
pixel intensity values.

More precisely, a point (x, y) with luminance z belonging to domain D, is mapped into:

x ayy aie 0 x g“i’i
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The constants & j and d, j specify the geometric part, the constants ¢, and b, specify the luminance
part. ¢; represents a contrast factor, which must be smaller than one to make sure that the mapping is
contractive in the luminance dimension. b; represents a brightness offset applied after the contrast
has been reduced.

In practice, the compressor does not have to determine explicitly the constants a j and d, j for each

domain. They are implicitly defined by the relative size, orientation and position of the domain with
respect to the range. In particular, if the compressor only looks for domains that are exactly twice as
large as the range, the scaling factor which would normally be derived from the a j valuesis already

imposed and is equal to 0.5. Similarly, if domains and ranges are restricted to be squares, there are
only 8 possible orientations of the domain relative to the square: 4 rotations and 4 symmetries. Thus
3 bits are sufficient to encode this orientation. Finally, the translation constants d, jae determined by

the position of the top left corner of the domain.



The simplifications described above may seem too drastic, but they are actually necessary to reduce
the complexity of the “inverse problem” to manageable proportions. In theory, ranges and domains
can have potato shapes instead of a square shape, the contractive mappings can be non linear instead
of being affine maps, etc... However the total search space would become much too large and as a
result the compression would be too slow for practical use. But even with simple affine maps,
finding the optimal domain for a given range can still be an expensive operation.

For agiven range R, the compressor must examine a number of possible domains. For each such
domain D, the compressor must find the optimal affine map from D to R. The best one isthe map w
which minimizes the distance between the image R and the image w(D), where the distance is taken
in the luminance dimension, not the spatial dimensions.

Such adistance can be defined in various ways, but to simplify the computationsit is convenient to
use the Root Mean Square (RMS) metric (the program GSDIFF.C given in the previous chapter
computes such adistance). For a given range and and a given domain, the RM S distance depends
only on the contrast factor ¢; and the brightness offset b, The distance is minimum when the partial

derivatives with respect to these two variables are both zero. ¢; and b, can thus be obtained by
solving two simple linear equations, as we will see later in our sample fractal compression program.

Once the RM S distances between the range and all selected domains have been determined, the
compressor chooses the domain with the smallest distance, encodes the corresponding affine map,
and goes on working on the next range.

Fractal image decoding

The Partitioned Iterated Function System created with the above algorithm consists of alist of affine
maps, each map being restricted to a specific range. Since each map is contractive in the luminance
dimension (the contrast factor is less than one), we can apply the Contractive Mapping theorem to
decode the image. Starting from an arbitrary image, for example a completely black image, the
decoder can apply the PIFS iteratively. This process converges to the fixed point of the PIFS. If the
compressor has found agood PIFS for the image, that is, if the collage of all the transformed
domainsis close to the original image, then the fixed point of the PIFSis also close to thisimage.

To perform one iteration of the PIFS, the decoder takes the list of all affine maps and applies each
onein turn. Thistransforms a set of domainsinto a set of ranges. Since the ranges have been selected
to be non-overlapping and to cover the whole input image, a new complete image emerges as a
result. The decoder can then repeat the whole process, until convergence is achieved, that is, until
thereis very little difference between the input image and the output image. Convergenceis
generally obtained in 8 to 10 iterations.

Figure 13.3 shows the result of decoding the LISAW image with our sample program after 1, 2, 3
and 8 iterations, starting from an initially black image.



Figure 13.3 Image decoding after 1, 2, 3 and 8 iterations

Even after only one iteration, the image is recognizable. The minimum range size selected by the
encoder was 4 pixels wide, and such ranges are clearly visible, giving a“blocky” aspect to the
image. However since the affine maps are also contractive in the spatial dimensions (the domains are
twice as large as the ranges), more detail is created at each iteration. After the second iteration, the



remaining blocks are only two pixels wide. After 8 iterations, convergence has been achieved, and
the resulting image is extremely close to the original image. (The compressor was set to best quality
for thisimage.)

We can now better understand why the affine maps were chosen to be contractive in both the spatial
and luminance dimensions. The contraction in luminance (reduction of contrast) was essential to
ensure convergence of the decoding process. The spatial contraction is useful to create detail in the
image at all scales, and thus get a much better approximation of the original image. Without spatial
contraction, the decoding process would still converge, but it would converge to aavery “blocky”
image, without any contrast inside each block. With spatial contraction the contrast across ranges,
initially provided by the brightness offset components of the affine maps, is propagated within each
range to smaller and smaller scales after each iteration.

Close ingpection of the first image of Figure 13.3 reveals that sometimes detail is visible even within
arange. Since the domains of the initial image are uniformly black, each range after the first iteration
should have auniform grey level, given by the brightness offset in the affine map. However to

accel erate the convergence of the decoding process, our sample program uses the same buffer for
both input and output images, as we will see later. Thus the detail visible within arange after the first
iteration isonly a side effect of our particular implementation.

Resolution independence

To reconstruct an image, the decoder startsitsiterations with an arbitrary image of the same size as
the original image. But what happensif the decoder starts with an initial image that is twice as large?
The result of the decoding process will be also an image twice as large as the original image.
However, since the affine maps used to encode the image do not depend on its resolution, the
decoded image will not have the “blocky” aspect that would have been obtained if we had simply
replicated the pixels of the origina image. It will instead still contain detail at every scale.

Figure 13.4 shows adetail of the original LISAW image, enlarged 8 times. The 8x8 pixel blocks are
clearly visible. Figure 13.5 shows the same part of the image, but decoded with scale factor 8.

Figure 13.4 Detail of original LISAW enlarged 8 times.



Figure 13.5 Detail of LISAW decompressed with scale factor 8.

The image obtained through fractal decoding is much more natural-looking. The decoding process
has created artificial detail which was not present in the original image, but which looks as if we had
really zoomed on the original image. Thisis avery useful feature, but it does have limits. If wetry to
zoom at an enormous scale factor, we will not end up seeing the atoms at the surface of LISAW’s
skin, but rather we will be looking at detail which is completely artificial.

The fantastic compression ratios put forward by some advocates of fractal compression may have to
be taken with agrain of salt in some cases. For example, assume that an image of 320x200 pixels,
with an original size of 64 KB, has been compressed with aratio of 32 to 1, resulting in a
compressed image of 2 KB. Now, decode thisimage with a scale factor of 4. This creates an image
of 1280x800 pixels, with an uncompressed size of 64x16 = 1024 KB. It would be incorrect to state
that we have achieved a compression ratio of 1024 / 2 =512 to 1. The reason is that the
uncompressed image contains artificial detail which was not present in the original image. The
original information is still compressed with aratio of 32 to 1; the rest of the information has been
created artificially by the decoding process.

The sample program

The sample program used to demonstrate fractal compression in this chapter is found in the C source
file FRAC.C. It must be compiled and linked with the standard support source files, BITIO.C,
ERRHAND.C, and either MAIN-C.C for compression or MAIN-E.C for expansion.

The fractal compression program optionally takes additional parameters on the command line:

* The quality value, ranging from 0 to 20. It is used as average tolerated error between the
origina image and its uncompressed version. Small values result in better quality images,
large values result in better compression ratios. The default value has been arbitrarily chosen
as?2.

* The domain density factor, ranging from O (fastest compression) to 2 (best but very slow
compression). This parameter affects the size of the domain pool that will be searched.

* Horizontal and vertical images sizes (default 320 x 200). Both sizes must be multiples of 4
in this implementation.

The command syntax for the compression programiis:
FRAC infile outfile [-q quality] [-d density] [-h h_size] [-v v_size]

The image dimensions and the domain density factor are encoded in the compressed file, so the
expansion program doesn’t need these parameters on the command line. The syntax for expansion is:



FRAC-E infile outfile [-i iterations] [-s scale]
The optional parameters are:

* The number of iterations, ranging from 1 to 15. The image quality does not improve much
after 8 to 10 iterations. The default is 8.
* The scale factor (decompressed size divided by original size). The default is 1.

The main compression module

A summarized version of the main compression module is shown below.

voi d ConpressFile (FILE *input, BIT_FILE *output, int argc, char *argv[])
{

/* Allocate and initialize the image data and cunul ati ve i mage
data: */
conpress_init(x_size, y_size, input);

/* Initialize the donmain size information as in the
deconpressor: */
dom nfo_init(x_size, y_size, domdensity);

/* Classify all domains: */

for (s = MNBITS;, s <= MAX BITS; s++) {
classify_domai ns(x_si ze, y_size, S);

}

/* Qutput the header of the conpressed file. */
QutputBits(frac file, (uns_long)x_size, 16);
QutputBits(frac_file, (uns_long)y_size, 16);
QutputBits(frac_file, (uns_long)domdensity, 2);

/* Conpress the whol e i mage recursively */
traverse_image(0, 0, x_size, y_size, conpress_range);

/* Free all dynanmically allocated nenory: */
conpress_cl eanup(y_si ze);

}

Wefirst allocate and initialize all the necessary data structures. Then we classify all the possible
domains. This speeds up the compression process considerably, as we will see later. After this, we
store the image dimensions and the domain density factor in the compressed output file, since these
parameters are needed by the decompressor.

The bulk of the work is done in the call of the traverse_image() function, which partitions the image
recursively, and compresses each partition. In the end we free all the dynamically allocated data
structures.

Initialization

The initialization function compress init() first allocates and initializes arrays for the image and
domain data. Since the domains are twice as large as the ranges, each pixel in the domain imageis
the sum of 4 pixelsin the range image. We don’t average (divide by 4) to keep an integer format
without losing precision.

To speed up the compression process, we initialize cumulative tables for the image and domain data.
We often have to compute the sum of pixel values or squared pixel valuesin arange or domain. To



avoid repeated computations, we maintain for each pixel the sum of all pixel values strictly above
and to the left of the given pixel. Then we can easily obtain the sum of all pixel valueswithin a
sguare region by adding the cumulative values at the top left and bottom right corners, and
subtracting the cumulative values at the top right and bottom left corners. Thisis done in the code by
the region_sum() macro.

To reduce the memory requirements, some tables are maintained only for pixels of even coordinates.
In particular, domains are restricted to have their top left pixel with even coordinates. To simplify
some algorithms, ranges are al so restricted to have a size which is a multiple of four, hence the width
and height of the image must also be multiple of four in our simple implementation.

In order to get the best possible image quality, the compressor could compare a given range with all
possible domains. However this would be extremely slow. For an image of 320x200 pixels with
ranges 4 pixels wide and domains 8 pixels wide, there are 4000 ranges and 313x193 = 60409
domains, if the domains can start on any pixel boundary. Thus 241,636,000 domain-range
comparisons would have to be made, each comparison involving aleast-square regression analysis to
find the optimal affine map.

Note: Our sample program does not attempt comparisonsin all 8 possible orientations of the range
relative to the domain, otherwise this would increase the compression time by yet another factor.

To avoid such alengthy computation, we reduce the size of the domain pool using the domain
density parameter. For a density value of zero, the domains start on a boundary multiple of their size,
thus the domains do not overlap. When compression timeis not an issue and we are looking for the
best possible image quality, the domain step (distance between two consecutive domains) is divided
by 2 for adensity of 1, or by 4 for adensity of 2. The function dominfo_init(), which is common to
the compressor and the decompressor, takes this into account.

Domain classification

Despite the reduction of the domain pool described above, compression is still very slow compared
to other methods such as DCT based algorithms. Another significant speed improvement can be
obtained by avoiding domain-range comparisons which have little probability of providing a good
match. We assign a class number to each range and each domain, and we compare only members of
the same class. To avoid repeated computations, all domains are classified only once at the
beginning of the program, by the function classify _domains().

Several methods are possible for classifying ranges and domains. In our sample program, the classis
determined in the function find_class() by the ordering of the image brightnessin the four quadrants
of the range or domain. There are 24 possible orderings, hence 24 classes. For each quadrant we
compute the number of brighter quadrants; thisis sufficient to uniquely determine the class. Class 0
has quadrantsin order of decreasing brightness; class 23 has quadrants in order of increasing
brightness.

For simplicity and speed reasons, arange and a domain are compared only with the same orientation.
In addition, the contrast factor of affine mapsis constrained to be non-negative. After application of
such an affine map, the relative ordering of the image brightnessin the four quadrants is unchanged.
Thus adomain and arange are likely to match well only if they belong to the same class. The
validity of thisargument can be confirmed in practice by compiling the program with the option -
DCOMPLETE_SEARCH. Thisremoves the class restrictions, dramatically increases the
compression time, but improves the image quality only very marginaly.

Since ranges and domain are compared only with the same orientation, the affine maps are composed



in the spatial dimensions of just ascaling by 0.5 and atrandation. There is no rotation or symmetry.
Thus we do not have to output in the compressed file 3 bits per affine map indicating the selected
orientation.

I mage partitioning

The encoder can arbitrarily partition the input image into ranges, as long as the decompressor is able
to reconstruct the same partition. For simplicity, our sample program uses only sguare ranges with
sizesthat are powers of two. We could have further ssmplified the algorithm by using only ranges 4
pixels wide, but this would not have taken advantage of flat portions of the image, which can be
covered well by larger ranges. On the other hand, using ranges that are all 16 pixels wide or larger
would not achieve a good quality for the decoded image. Regions of the image with fine detail
generally have to be covered with small ranges.

To obtain a good balance between compression ratio and image quality, the function compress_range
() first attempts to find a good match for arange 16 pixelswide. If thereis no domain which is close
enough to the range, that is, if the RM S distance between the range and any domain is greater than
the quality value chosen by the user, then the rangeis split into 4 ranges, and the process is repeated
recursively for each of them. When arangeis split, the encoder outputs a single zero bit into the
compressed stream, to let the decoder know about the need for a split and thus follow the same
partitioning algorithm.

In theory, we could allow range splitting up to ranges that consist of asingle pixel. Thiswould
ensure a perfect quality for the image if the quality factor is selected as zero. For the affine maps, it
would be sufficient to chose a null contrast coefficient, and a brightness offset equal to the original
pixel value. Thiswould have the additional advantage that image decoding would convergein a
singleiteration. Unfortunately, all dreams about compression ratios would be gone, since the original
file would be expanded instead of being compressed! Therefore it makes sense to impose a minimum
Size of 4x4 pixelsfor each range.

The extreme example given above shows, by the way, that it is always possible to find a Partitioned
Iterated Function System for a given image; the real problem isto find a good one, which can encode
an image with good quality while still offering decent compression ratios.

Since the original image is generally not a square, the function traverse_image() first encodes the
largest square fitting in the image, then the two rectangles respectively on the right and below the
square. To ssimplify the algorithm, the size of the square is constrained to be a power of two. If the
square islarger than 16x16 pixels, the square is split recursively. We do not attempt to find good
matches for regions larger than 16x16 pixels, sinceit is generally awaste of time: no domain is close
enough.

Finding optimal affine maps
The function find_map() finds the best affine map from arange to adomain. Thisis done by
minimizing the RM S distance between range and mapped domain as a function of the contrast and

brightness. Actually, we use the sum of squared errorsinstead of the RMS value to ssmplify the
algorithm and avoid a square root operation. This error valueis:

Bled)=Y (cd; +b —1; )
i=1

where c is the contrast factor, b the brightness offset, n the number of pixelsin the range, d. the pixel



valuesin the domain and r; the pixel valuesin the range. The optimal values of ¢ and b are obtained

when the partial derivatives E(c,b) with respect to ¢ and b are both null. The resulting linear
equations are easily solved. The values of ¢ and b obtained in this manner are floating point

numbers. To ensure a compact encoding of the affine map, these values are quantized and written to
the output file asintegers using 4 bits for the contrast and 6 bits for the brightness. Using 5 and 7 bits
or more would provide a marginally better image quality at the expense of the compression ratio.

The error value E(c,b) is computed using the quantized values of ¢ and b, since the decoder will only
know these and not the original floating point values. The error value must depend on the affine map
actually selected, not the theoretical best map. There can be alarge difference between the optimal
contrast and the actual selected contrast since before the quantization, c is restricted to the interval
0.0—1.0. The lower bound is needed because of our simple domain classification mechanism, the
upper bound is needed to ensure that the affine map is contractive in the luminance dimension.

The decompr ession module

The decompression code uses the same traverse_image() function as the compressor, to ensure that
both use exactly the same partitioning strategy. The only differenceis that during the traversal, the
decoder only reads the encoded affine maps; it does not actually generates the output image at this

step.

Once the affine maps have been read in, the decoder starts with arandom initial image and calls
refine_image() anumber of times selected by the user. For each iteration, refine_image() goes
through all the maps and applies them to the current image. The “pure” method would compute a
separate new image and then swap the roles of the old and new image. However the convergence
towards the final image happens to be quicker if we overwrite the same image while applying the
affine maps; for the same quality of reconstructed image we need fewer iterations. Overwriting the
same image al so reduces the memory requirements since we need only a buffer for one image
instead of two.

After the image has been reconstructed, the decoder calls the function average boundaries() to
smooth the transition between adjacent ranges. Thisis only done for large ranges (8x8 and 16x16),
since averaging the small 4x4 ranges can degrade the image quality.

The complete code listing

The complete listing of FRAC.C follows.

/*********************** Start Of FRACC EIE IR R R R I O I R R O

*

* This is the FRAC nodul e, which inplenents a graphics fracta
conpr essi on
* program It needs to be linked with the standard support routines.
* Copyright 1995 Jean-loup Gailly
*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>
#i ncl ude "bitio.h"
#i ncl ude "errhand. h"

#i fdef unix
# define float double /* better accuracy but nore nenory usage */
#endi f



char *Conpressi onNane = "Fractal conpression”
char *Usage =
"infile outfile [-q quality] [-d density] [-h h_size] [-v v_size]\n\
quality from1..20, donmain density fromO0..2\n\
Deconpr essi on paraneters:\n\
infile outfile [-i iterations] [-s scale]\n";

t ypedef unsigned char inmage_dat a;
t ypedef unsigned | ong uns_| ong;

/*
* Maxi mum gray |level in an inmage
*/

#defi ne MAX_GREY 255

/*

* Nunmber of classes. Each class corresponds to one specific ordering
* of the inmage brightness in the four quadrants of a range or domain
* There are 4*3*2 = 24 cl asses.
*/

#def i ne NCLASSES 24

/
M ni mum and maxi mum nunber of bits for the side of a range. The actua
range sizes are between 1<<M N BI TS and 1<<MAX BITS. To sinplify the

i mpl enentati on and avoid ridiculously small ranges, M N BITS nust be
>= 2,

* This inplementation also requires MAX BITS <= 7

*/
#define M N BITS 2
#define MAX BITS 4

* % *

/-k
* Maxi num contrast factor in a range to donai n mappi ng.
*/

#defi ne MAX_CONTRAST 1.0

/-k
* Bit sizes for encodings of contrast and brightness in an affine map.
* Using snaller sizes increases conpression and degrades inmage quality.
*/

#def i ne CONTRAST_BI TS 4

#defi ne BRIGHTNESS BITS 6

#def i ne MAX_QCONTRAST ((1<<CONTRAST_BITS)-1) /* max quantized
contrast */

#defi ne MAX_ QBRI GHTNESS ((1<<BRI GHTNESS BI TS)-1) /* nmax quanti zed
bri ght ness */

/*
* De-quantize an integer value in the range 0 .. inmax to the range
0.0 .. max
* while preserving the mapping 0 -> 0.0 and i max -> max.
*/
#def i ne dequanti ze(val ue, max, imax) ((double)(val ue)*(max)/ (doubl e)i max)

/*
* Conpute the square of a pixel value and return the result as unsigned
| ong
*/

#defi ne square(pixel) (uns_long)(pixel)*(pixel)

/*



* Range data: range[i][j] is the brightness at row i and columm |
*/
i mage_data **range;

/*

* Domai n data, sunmed over 4 pixels: domain[i][j] is the sumof the
* pixel values at (2, 2i), (2j+1, 2i), (2j, 2i+1l) and (2j+1, 2i+1)
*/

unsi gned **donai n;

/*
* Cumul ative range data, kept only for pixels of even coordinates.
* cumrange[i][j] is the sumof all pixel values strictly above and to
t he
* left of pixel (2j, 2i). In particular, cumrange[y_sizel/2][x_sizel?2]
is
* the sumof all pixel values in the image. This table is also used for
* the cunul ati ve domai n dat a.
*/
uns_l ong **cum range

/*
* Cunul ative squared range data, kept only for pixels of even
coor di nat es.
* cumrange2[i][j] is the sumof the squares of all pixel values
strictly
* above and to the left of pixel (2j, 2i). In particular,
* cumrange2[y_size/2][x_sizel/2] is the sumof all the squared pixe
val ues
* in the imge.
*/
float **cumrange2

/*
* Cunul ative squared donmain data. cumdonmain2[i][j] is the sumof the
squar es
* of all domain values strictly above and to the left of domain (j,i),
whi ch
* corresponds to pixel (2j, 2i). The values in cumdonmain2 are scal ed
by
* a factor of 16.0 to avoid sonme nultiplications.
*/
float **cum donai n2;

/*
* Domain density: dommins of size s*s are |ocated every
(s>>dom density)
pi xel s. The density factor can range fromO to 2 (snmallest domains
have a size of 8 and nmust start on even pixels boundaries). Density
factors 1 and 2 get better inmmge quality but significantly slow
down conpressi on.

/

nt dom density = O;

* %k * X

/*

* Maxi mum tol erated nmean square error between original imge and
* reconstructed unconpressed i mage.

*/

doubl e nax_error2

/*

* The fractal (conpressed) file
*/

BIT_FILE *frac_file;



/*
* Information common to all dommins of a certain size: info[s]
descri bes
* domai ns of size 1<<(s+1), corresponding to ranges of size 1<<s
*/
struct domain_info {
int pos_bits; /* Nunber of bits required to encode a domain
position */
int x_domains; /* Nunmber of domains in x (horizontal) dinmension */
} dom.i nf o[ MAX BI TS+1];

/*
* Each donain is described by a "domain_data' structure.
* domai n_head[c][s] is the head of the list of donmmins of class c
* and size 1<<(s+1l) (corresponding to ranges of size 1<<s).
*/
typedef struct domai n_struct {

int x; /* horizontal position */

int vy; /* vertical position */

float d_sum /* sumof all values in the domain */

float d_sung; /* sumof all squared values in the
domain */

struct donmain_struct *next; /* next domamin in sane class */
} donmi n_dat a;

domai n_dat a *domai n_head[ NCLASSES] [ MAX_BI TS+1] ;

/-k

* Ranges are described by a "range _data' structure. This structure
* is conputed on the fly for each range as it is conpressed.

*/

typedef struct range_struct {

int x; /* horizontal position */
int vy; /* vertical position */
int s_|og; /* log base 2 of the range size */

double r_sum /* sumof all values in the range */
double r_sun®; /* sumof all squared values in the range */
} range_dat a;

/*

* Range to domai n mappi ngs are descri bed by an “affine_map' structure.
*/

typedef struct map_struct {

i nt contrast; /* quantized best contrast between range and
domain */

i nt brightness; /* quantized best brightness offset */

doubl e error2; /* sum of squared differences between range

and domain */
} affine_nap;

/*
* Function prototypes for both ANSI and K&R
*/

#i fdef __STDC _

# define OF(args) args

#el se

# define OF(args) ()

#endi f

/*
* Functions used for conpression
*/

void ConpressFile OF((FILE *input, BIT _FILE *output, int argc, char



*argv[]));

void conpress_init OF((int x_size, int y_size, FILE *imge_file));
voi d conpress_cl eanup OF((int y_size));

void classify domains OF((int x_size, int y size, int s));

int find_class OF((int x, int y, int size));

voi d conpress_range OF((int x, int y, int s log));

void find_map OF((range_data *rangep, domain_data *dom affine_map
“map) ) ;

/*
* Functions used for deconpression
*/
voi d ExpandFile OF((BIT_FILE *input, FILE *output, int argc, char
*argv[])); _ _ _
voi d deconpress_range OF((int x, int y, int s log));
voi d refine_inage OF((void));
voi d average_boundaries OF((void));
/*
* Functions conmon to conpression and deconpression
*/

typedef void (*process_func) OF((int x, int y, int s_log));

void traverse_image OF((int x, int y, int x_size, int y_size
process_func process));

int quantize OF((doubl e val ue, double nmax, int imax));
void dom nfo_init OF((int x_size, int y _size, int density));
void *xal |l oc OF((unsi gned si ze));

void **al |l ocate OF((int rows, int colums, int elemsize));
void free_array OF((void **array, int rows));

int bitlength OF((uns_long val));

/**********************************/

/* Functions used for conpression */

/**********************************/

/ * == - - - —_—_—_—_—_—_—_—_—_—_—_——_=—=—=Z—
* This is the nain conpression routine. By the tine it gets call ed,
* the input and output files have been properly opened, so all it
has to

* do is the conpression. Note that the conpression routine optionally
* accepts additional paraneters:
* - the quality value, ranging fromO to 20. It is used as average

tol erated
* error between the original inmage and its unconpressed version.
(Non
* i nteger values are al so accepted.)
* - the domain density factor, ranging fromO (fastest conpression)
to 2

* (best but very sl ow conpression).
* - horizontal and vertical inmages sizes (default 320 x 200). Both

si zes
* nmust be multiple of 4 in this inplementation (this restriction
coul d be
* renoved with slightly nore conpl ex code).
*/
voi d ConpressFile(input, output, argc, argv)
FI LE *i nput;
BI T_FI LE *out put;
int argc;
char *argv[];
{
int x_size = 320; /* horizontal inmage size */
int y_size = 200; /* vertical inmage size */



double quality = 2.0; /* quality factor */
int s; /* size index for domains; their size is
1<<(s+1) */

/* Check the comand |ine paraneters: */

for ( ; argc !'= 0; argv++, argc--) {

if (argv[O][0O] != "-" || argc == 1) {
fatal _error("Incorrect argunent: %\n", *argv);

}

switch(argv[0][1]) {
case 'q': quality = atof (*++argv); argc--; break
case "d': domdensity = atoi (*++argv); argc--; break;
case "h': x_size = atoi (*++argv); argc--; break
case 'Vv': y_size = atoi (*++argv); argc--; break
default: fatal _error("lncorrect argunent: %\n", *argv);

}

}
if (domdensity < 0 || domdensity > 2) {

fatal _error("Incorrect domain density.\n");
}

if (x_size %4 1=0|] y_size %4 '=0) {
fatal _error ("lnmage sizes nmust be nmultiple of 4\n");
}

/* Allocate and initialize the image data and cunul ati ve i mage
data: */
conpress_init(x_size, y_size, input);

/* Initialize the domain size information as in the
deconpressor: */
dom nfo_init(x_size, y _size, domdensity);

/* Classify all domains: */
for (s = MNBITS, s <= MAX BITS; s++) {
cl assify _domai ns(x_si ze, y_size, s);

}
/* Cytput t he header of the conpressed file. The first byte
: ngct;Fr) is just for a consistency check in the deconpressor
fr;c_file = out put;
QutputBits(frac file, (uns_long)'F, 8);

QutputBits(frac file, (uns_long)x_size, 16);
QutputBits(frac file, (uns_long)y_size, 16);
QutputBits(frac_file, (uns_long)domdensity, 2);

/* Conpress the whol e i mage recursively, stopping when the inage
* quality is good enough:

*/

max_error2 = quality*quality;

traverse_i mage(0, 0O, x_size, y_size, conpress_range);

/* Free all dynanmically allocated nenory: */
conpress_cl eanup(y_si ze);

* Allocate and initialize the image data and cunul ati ve i mage dat a.
*/
void conpress_init(x_size, y size, imge file)
int x_size; /* horizontal inmage size */
int y_size; /* vertical imge size */
FILE *image_file; /* the input imge file */



int x, v; /* horizontal and vertical indices */

uns_long r_sum /* cunul ati ve range and domain data */
doubl e r_sun®; /* cumul ative squared range data */
doubl e d_sun®; /* cumul ative squared donain data */
range = (i mage_data**)al | ocate(y_si ze, X_si ze,

si zeof (i mage_dat a) ) ;
domai n = (unsigned**)al |l ocate(y_si ze/ 2, X_sizel 2,

si zeof (unsi gned)) ;
(uns_long**)al l ocate(y_sizel/ 2+1, x_sizel 2+1
si zeof (uns_long));
(float**)all ocate(y