Michael Gertz
Sushil Jajodia
i Editors

Handbook of
Database
Security
Applications and Trends

@ Springer

Handbook of

Database Security
Applications and Trends

Handbook of

Database Security
Applications and Trends

edited by

Michael Gertz

University of California at Davis

USA

Sushil Jajodia
George Mason University
USA

@ Springer

Michael Gertz Sushil Jajodia

University of California at Davis George Mason University

Dept. of Computer Science Center for Secure Information Systems
One Shields Avenue Research I, Suite 417

Davis, CA 95616-8562 Fairfax VA 22030-4444
gertz@cs.ucdavis.edu jajodia@gmu.edu

Library of Congress Control Number: 2007934795

ISBN-13: 978-0-387-48532-4
e-ISBN-13: 978-0-387-48533-1

Printed on acid-free paper.

(©2008 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

987654321

springer.com

Preface

Motivation for the book

Database security has been gaining a great deal of importance as industry, military,
and government organizations have increasingly adopted Internet-based technolo-
gies on a large-scale, because of convenience, ease of use, and the ability to take
advantage of rapid advances in the commercial market. Along with the traditional
security aspects of data integrity and availability, there is an increasing interest in
research and development in data privacy. This is because today’s often mission-
critical databases no longer contain only data used for day-to-day processing by
organization; as new applications are being added, it is possible for organizations to
collect and store vast amounts of data quickly and efficiently and to make the data
readily accessible to the public, typically through Web-based applications. Unfortu-
nately, if security threats related to the integrity, availability, and privacy of the data
are not properly resolved, databases remain vulnerable to malicious attacks and ac-
cidental misuse. Such incidents, in turn, may translate into financial losses or losses
whose values are obviously high but difficult to quantify, e.g., the loss of the public’s
trust in the data management infrastructure and services offered by an organization.

In assembling this handbook, we have had a twofold objective: first, to provide
a comprehensive summary of the results of research and development activities in
various aspects of database security up to this point, and second, to point toward
directions for future work in this important and fruitful field of research.

This handbook offers twenty three essays contributed by a selected group of
prominent researchers. Given the dynamic nature of the field of database security,
we have attempted to obtain a balance among various viewpoints by inviting multi-
ple contributions on the same topic. We believe that this diversity provides a richness
generally not available in one book. In some cases, authors have tried to reconcile
their differences by contributing a single essay on a topic.

vi Preface

About the book
Essays in this handbook can be roughly divided into following eight areas:
Foundations of Access Control

e Recent Advances in Access Control by Sabrina De Capitani di Vimercati, Sara
Foresti, and Pierangela Samarati

e Access Control Models for XML by Sabrina De Capitani di Vimercati, Sara
Foresti, Stefano Paraboschi, and Pierangela Samarati

e Access Control Policy Languages in XML by Naizhen Qi and Michiharu Kudo

Trust Management and Trust Negotiation

e Database Issues in Trust Management and Trust Negotiation by Dongyi Li,
William Winsborough, Marianne Winslett, and Ragib Hasan

Secure Data Outsourcing

e Authenticated Index Structures for Outsourced Databases by Feifei Li, Marios
Hadjileftheriou, George Kollios, and Leonid Reyzin

e Towards Secure Data Outsourcing by Radu Sion

e Managing and Querying Encrypted Data by Bijit Hore, Sharad Mehrotra, and
Hakan Haciglimus

Security in Advanced Database Systems and Applications

e Security in Data Warehouses and OLAP Systems by Lingyu Wang and Sushil
Jajodia

Security for Workflow Systems by Vijayalakshmi Atluri and Janice Warner
Secure Semantic Web Services by Bhavani Thuraisingham

Geospatial Database Security by Soon Ae Chun and Vijayalakshmi Atluri
Security Re-engineering for Databases: Concepts and Techniques by Michael
Gertz and Madhavi Gandhi

Database Watermarking

e Database Watermarking for Copyright Protection by Radu Sion
e Database Watermarking: A Systematic View by Yingjiu Li

Trustworthy Record Retention and Recovery

e Trustworthy Records Retention by Ragib Hasan, Marianne Winslett, Soumyadeb
Mitra, Windsor Hsu, and Radu Sion

e Damage Quarantine and Recovery in Data Processing Systems by Peng Liu,
Sushil Jajodia, and Meng Yu

Preface vii

Privacy

e Hippocratic Databases: Current Capabilities and Future Trends by Tyrone Gran-
dison, Christopher Johnson, and Jerry Kiernan

e Privacy-Preserving Data Mining: A Survey by Charu C. Aggarwal and Philip S.
Yu

e Privacy in Database Publishing: A Bayesian Perspective by Alin Deutsch

e Privacy Preserving Publication: Anonymization Frameworks and Principles by
Yufei Tao

Privacy in Location-based Services

e Privacy Protection through Anonymity in Location-based Services by Claudio
Bettini, Sergio Mascetti, and X. Sean Wang

e Privacy-enhanced Location-based Access Control by Claudio A. Ardagna, Marco
Cremonini, Sabrina De Capitani di Vimercati, and Pierangela Samarati

e Efficiently Enforcing the Security and Privacy Policies in a Mobile Environment
by Vijayalakshmi Atluri and Heechang Shin

Intended audience

This handbook is suitable as a reference for practitioners and researchers in indus-
try and academia who are interested in the state-of-the-art in database security and
privacy. Instructors may use this handbook as a text in a course for upper-level un-
dergraduate or graduate students. Any graduate student who is interested in database
security and privacy must definitely read this book.

Acknowledgements

We are extremely grateful to all those who contributed to this handbook. It is a
pleasure to acknowledge the authors for their contributions. Special thanks go to
Susan Lagerstrom-Fife, Senior Publishing Editor for Springer, and Sharon Palleschi,
Editorial Assistant at Springer, whose enthusiasm and support for this project were
most helpful.

Davis, California, and Fairfax, Virginia Michael Gertz
September 2007 Sushil Jajodia

Contents

10

11

Recent Advances in Access Control
Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

Access Control Models for XML
Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, and
Pierangela Samarati

Access Control Policy Languagesin XML
Naizhen Qi and Michiharu Kudo

Database Issues in Trust Management and Trust Negotiation
Dongyi Li, William Winsborough, Marianne Winslett and Ragib Hasan

Authenticated Index Structures for Outsourced Databases
Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

Towards Secure Data Outsourcing
Radu Sion

Managing and Querying Encrypted Data
Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimtis

Security in Data Warehouses and OLAP Systems.................
Lingyu Wang and Sushil Jajodia

Security for Workflow Systems
Vijayalakshmi Atluri and Janice Warner

Secure Semantic Web Services
Bhavani Thuraisingham

Geospatial Database Security
Soon Ae Chun and Vijayalakshmi Atluri

12

13

14

15

16

17

18

19

20

21

22

23

Contents

Security Re-engineering for Databases: Concepts and Techniques . . . 267
Michael Gertz and Madhavi Gandhi

Database Watermarking for Copyright Protection 297
Radu Sion
Database Watermarking: A Systematic View 329
Yingjiu Li
Trustworthy Records Retention 357

Ragib Hasan, Marianne Winslett, Soumyadeb Mitra, Windsor Hsu, and
Radu Sion

Damage Quarantine and Recovery in Data Processing Systems 383
Peng Liu, Sushil Jajodia, and Meng Yu

Hippocratic Databases: Current Capabilities and Future Trends 409
Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

Privacy-Preserving Data Mining: A Survey...................... 431
Charu C. Aggarwal and Philip S. Yu

Privacy in Database Publishing: A Bayesian Perspective 461
Alin Deutsch

Privacy Preserving Publication: Anonymization Frameworks and
Principles 489
Yufei Tao

Privacy Protection through Anonymity in Location-based Services .. 509
Claudio Bettini, Sergio Mascetti, and X. Sean Wang

Privacy-enhanced Location-based Access Control 531
Claudio A. Ardagna, Marco Cremonini, Sabrina De Capitani di
Vimercati, and Pierangela Samarati

Efficiently Enforcing the Security and Privacy Policies in a Mobile
Environment 553
Vijayalakshmi Atluri and Heechang Shin

List of Contributors

Charu C. Aggarwal
IBMT. J. Watson Research Center, Hawthorne, NY, e-mail: charu@us . ibm. com

Claudio A. Ardagna
Dipartimento di Tecnologie dell’Informazione, Universita degli Studi di Milano,
Crema, Italy, e-mail: ardagna@dti.unimi.it

Vijayalakshmi Atluri
Rutgers University, Newark, NJ, e-mail: at luri@cimic.rutgers.edu

Claudio Bettini
DICo, University of Milan, Italy, e-mail: bettini@dico.unimi.it

Sabrina De Capitani di Vimercati
Dipartimento di Tecnologie dell’Informazione, Universita degli Studi di Milano,
Crema, Italy, e-mail: decapita@dti.unimi.it

Soon Ae Chun
City University of New York, College of Staten Island, Staten Island, NY, e-mail:
chun@mail.csi.cuny.edu

Marco Cremonini
Dipartimento di Tecnologie dell’Informazione, Universita degli Studi di Milano,
Crema, Italy, e-mail: cremonini@dti.unimi.it

Alin Deutsch
Department of Computer Science and Engineering, University of California San
Diego, La Jolla, CA, e-mail: deut sche@cs.ucsd.edu

Sara Foresti
Dipartimento di Tecnologie dell’Informazione, Universita degli Studi di Milano,
Crema, Italy, e-mail: foresti@edti.unimi.it

xi

charu@us.ibm.com
ardagna@dti.unimi.it
atluri@cimic.rutgers.edu
bettini@dico.unimi.it
decapita@dti.unimi.it
chun@mail.csi.cuny.edu
cremonini@dti.unimi.it
deutsch@cs.ucsd.edu
foresti@dti.unimi.it

xii List of Contributors

Madhavi Gandhi
Department of Mathematics and Computer Science, California State University,
East Bay, CA, e-mail: madhavi.gandhi@eastbay.edu

Michael Gertz
Department of Computer Science, University of California at Davis, Davis, CA,
e-mail: gertz@ecs.ucdavis.edu

Tyrone Grandison
IBM Almaden Research Center, San Jose, CA, e-mail: tyroneg@us . ibm. com

Hakan Haciglimis
IBM Almaden Research Center, San Jose, CA, e-mail: hakanh@acm. org

Marios Hadjileftheriou
AT&T Labs Inc., e-mail: narioh@research.att.com

Ragib Hasan

Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
e-mail: rhasanecs.uiuc.edu

Bijit Hore

Donald Bren School of Computer Science, University of California, Irvine, CA,
e-mail: bhore@ics.uci.edu

Windsor Hsu
Data Domain, Inc., e-mail: windsor .hsu@datadomain.com

Sushil Jajodia
Center for Secure Information Systems, George Mason University, Fairfax, VA,
e-mail: jajodiae@egmu.edu

Christopher Johnson
e-mail: chrisjohnson@alum.berkeley.edu

Jerry Kiernan
IBM Almaden Research Center, San Jose, CA, e-mail: jkiernan@us.ibm.com

George Kollios
Computer Science Department, Boston University, Boston, MA, e-mail:
gkollios@cs.bu.edu

Michiharu Kudo
Tokyo Research Laboratory, IBM, Japan, e-mail: kudo@jp. ibm. com

Dongyi Li
Department of Computer Science, University of Texas at San Antonio, TX, e-mail:
dlie@cs.utsa.edu

Feifei Li
Department of Computer Science, Florida State University, FL, e-mail:
lifeifeiecs.fsu.edu

madhavi.gandhi@eastbay.edu
gertz@cs.ucdavis.edu
tyroneg@us.ibm.com
hakanh@acm.org
marioh@research.att.com
rhasan@cs.uiuc.edu
bhore@ics.uci.edu
windsor.hsu@datadomain.com
jajodia@gmu.edu
chrisjohnson@alum.berkeley.edu
jkiernan@us.ibm.com
gkollios@cs.bu.edu
kudo@jp.ibm.com
dli@cs.utsa.edu
lifeifei@cs.fsu.edu

List of Contributors xiii

Yingjiu Li
School of Information Systems, Singapore Management University, 80 Stamford
Road, Singapore, e-mail: yjli@smu.edu. sg

Peng Liu
Pennsylvania State University, PA, e-mail: pliu@ist .psu.edu

Sergio Mascetti
DICo, University of Milan, Italy, e-mail: mascetti@dico.unimi.it

Sharad Mehrotra
Donald Bren School of Computer Science, University of California, Irvine, CA,
e-mail: sharad@eics.uci.edu

Soumyadeb Mitra
Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
e-mail: mitral@cs.uiuc.edu

Stefano Paraboschi
University of Bergamo, Dalmine, Italy, e-mail: parabosc@unibg. it

Naizhen Qi
Tokyo Research Laboratory, IBM, Japan, e-mail: naishin@jp.ibm.com

Leonid Reyzin
Computer Science Department, Boston University, Boston, MA, e-mail:
reyzin@cs.bu.edu

Pierangela Samarati
Dipartimento di Tecnologie dell’Informazione, Universita degli Studi di Milano,
Crema, Italy, e-mail: samarati@dti.unimi.it

Heechang Shin
Rutgers University, Newark, NJ, e-mail: hshin@cimic.rutgers.edu

Radu Sion
Network Security and Applied Cryptography Lab, Stony Brook University, NY,
e-mail: sion@cs.stonybrook.edu

Yufei Tao

Department of Computer Science and Engineering, Chinese Univer-
sity of Hong Kong, Sha Tin, New Territories, Hong Kong, e-mail:
taoyf@cse.cuhk.edu.hk

Bhavani Thuraisingham
University of Texas at Dallas, TX, e-mail: bhavani . thuraisingham@utdallas.edu

Lingyu Wang
Concordia Institute for Information Systems Engineering, Concordia University,
Montreal, QC H3G 1MS8, Canada, e-mail: wang@ciise.concordia.ca

X. Sean Wang
Department of Computer Science, University of Vermont, VT, e-mail:
Xxywang@emba .uvm. edu

yjli@smu.edu.sg
pliu@ist.psu.edu
mascetti@dico.unimi.it
sharad@ics.uci.edu
mitra1@cs.uiuc.edu
parabosc@unibg.it
naishin@jp.ibm.com
reyzin@cs.bu.edu
samarati@dti.unimi.it
hshin@cimic.rutgers.edu
sion@cs.stonybrook.edu
taoyf@cse.cuhk.edu.hk
bhavani.thuraisingham@utdallas.edu
wang@ciise.concordia.ca

Xiv List of Contributors

Janice Warner
Rutgers University, Newark, NJ, e-mail: janice@cimic.rutgers.edu

William Winsborough
Department of Computer Science, University of Texas at San Antonio, TX, e-mail:
wwinsborough@acm.org

Marianne Winslett
Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
e-mail: winslett@cs.uiuc.edu

Meng Yu
Western Illinois University, Macomb, IL, e-mail: m-yu2@wiu.edu

Philip S. Yu
IBM T. J. Watson Research Center, Hawthorne, NY, e-mail: psyu@us . ibm.com

xywang@emba.uvm.edu
janice@cimic.rutgers.edu
wwinsborough@acm.org
winslett@cs.uiuc.edu
m-yu2@wiu.edu
psyu@us.ibm.com

1

Recent Advances in Access Control

S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Dipartimento di Tecnologie dell’Informazione
Universita degli Studi di Milano

26013 Crema, Italy
{decapita,foresti,samarati}@dti.unimi.it

Summary. Access control is the process of mediating every request to resources
and data maintained by a system and determining whether the request should be
granted or denied. Traditional access control models and languages result limiting
for emerging scenarios, whose open and dynamic nature requires the development
of new ways of enforcing access control. Access control is then evolving with the
complex open environments that it supports, where the decision to grant an access
may depend on the properties (attributes) of the requestor rather than her identity
and where the access control restrictions to be enforced may come from different
authorities. These issues pose several new challenges to the design and implemen-
tation of access control systems. In this chapter, we present the emerging trends in
the access control field to address the new needs and desiderata of today’s systems.

1 Introduction

Information plays an important role in any organization and its protection
against unauthorized disclosure (secrecy) and unauthorized or improper mod-
ifications (integrity), while ensuring its availability to legitimate users (no
denials-of-service) is becoming of paramount importance. An important ser-
vice in guaranteeing information protection is the access control service. Ac-
cess control is the process of mediating every request to resources and data
maintained by a system and determining whether the request should be
granted or denied. An access control system can be considered at three dif-
ferent abstractions of control: access control policy, access control model, and
access control mechanism. A policy defines the high level rules used to verify
whether an access request is to be granted or denied. A policy is then formal-
ized through a security model and is enforced by an access control mechanism.
The separation between policies and mechanisms has a number of advantages.
First, it is possible to discuss protection requirements independently of their
implementation. Second, it is possible to compare different access control poli-
cies as well as different mechanisms that enforce the same policy. Third, it is
possible to design access control mechanisms able to enforce multiple policies.

2 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

In this way, a change in the access control policy does not require any changes
in the mechanism. Also, the separation between model and mechanism makes
it possible to formally prove security properties on the model; any mechanism
that correctly enforces the model will then enjoy the same security properties
proved for the model.

The variety and complexity of the protection requirements that may need
to be imposed in today’s systems makes the definition of access control policies
a far from trivial process. An access control system should be simple and
expressive. It should be simple to make easy the management task of specifying
and maintaining the security specifications. It should be expressive to make
it possible to specify in a flexible way different protection requirements that
may need to be imposed on different resources and data. Moreover, an access
control system should include support for the following features.

e Policy combination. Since information may not be under the control of a
single authority, access control policies information may take into consider-
ation the protection requirements of the owner, but also the requirements
of the collector and of other parties. These multiple authorities scenario
should be supported from the administration point of view providing solu-
tions for modular, large-scale, scalable policy composition and interaction.

e Anonymity. Many services do not need to know the real identity of a user.
It is then necessary to make access control decisions dependent on the
requester’s attributes, which are usually proved by digital certificates.

e Data outsourcing. A recent trend in the information technology area is rep-
resented by data outsourcing, according to which companies shifted from
fully local management to outsourcing the administration of their data by
using externally service providers [1, 2, 3]. Here, an interesting research
challenge consists in developing an efficient mechanism for implementing
selective access to the remote data.

These features pose several new challenges to the design and implementa-
tion of access control systems. In this chapter, we present the emerging trends
in the access control field to address the new needs and desiderata of today’s
systems. The remainder of the chapter is organized as follows. Section 2 briefly
discusses some basic concepts about access control, showing the main charac-
teristics of the discretionary, mandatory, and role-based access control policies
along with their advantages and disadvantages. Section 3 introduces the prob-
lem of enforcing access control in open environments. After a brief overview
of the issues that need to be addressed, we describe some proposals for trust
negotiation and for regulating service access. Section 4 addresses the problem
of combining access control policies that may be independently stated. We
first describe the main features that a policy composition framework should
have and then illustrate some current solutions. Section 5 presents the main
approaches for enforcing selective access in an outsourced scenario. Finally,
Sect. 6 concludes the chapter.

Recent Advances in Access Control 3

l HDocumentl‘Document2 Programl Program?2

Ann (read, write |read execute

Bob |jread read read, execute

Carol read, write read, execute
David read, write, execute|read, write, execute

Fig. 1. An example of access matrix

2 Classical Access Control Models

Classical access control models can be grouped into three main classes: dis-
cretionary access control (DAC), which bases access decisions on users’ iden-
tity; mandatory access control (MAC), which bases access decisions on man-
dated regulations defined by a central authority; and role-based access control
(RBAC), which bases access decisions on the roles played by users in the mod-
els. We now briefly present the main characteristics of these classical access
control models.

2.1 Discretionary Access Control

Discretionary access control is based on the identity of the user requesting
access and on a set of rules, called authorizations, explicitly stating which
user can perform which action on which resource. In the most basic form, an
authorization is a triple (s, 0, a), stating that user s can execute action a on
object o. The first discretionary access control model proposed in the literature
is the access matriz model [4, 5, 6]. Let S, O, and A be a set of subjects,
objects, and actions, respectively. The access matrix model represents the set
of authorizations through a |S| x |O| matrix A. Each entry A[s, o] contains the
list of actions that subject s can execute over object o. Figure 1 illustrates an
example of access matrix where, for example, user Ann can read and write
Documentl.

The access matrix model can be implemented through different mecha-
nisms. The straightforward solution exploiting a two-dimensional array is not
viable, since A is usually sparse. The mechanisms typically adopted are:

e Authorization table. The non empty entries of A are stored in a table with
three attributes: user, action, and object.

o Access control list (ACL). The access matrix is stored by column, that
is, each object is associated with a list of subjects together with a set of
actions they can perform on the object.

e (Clapability. The access matrix is stored by row, that is, each subject is
associated with a list indicating, for each object, the set of actions the
subject can perform on it.

Figure 2 depicts the authorization table, access control lists, and capability
lists corresponding to the access matrix of Fig. 1.

4

S. De Capitani di Vimercati, S. Foresti, and P. Samarati

User Action Object
Ann read Document1
Ann write Document1
Ann read Document2
Ann execute Programl
Bob read Document1
Bob read Document2
Bob read Programl
Bob execute Programl
Carol read Document2
Carol write Document2
Carol execute Program2
David read Programl
David write Programl
David execute Programl
David read Program?2
David write Program?2
David execute Program?2
(a)

Documentl — g Ann ™ Bob Ann __p|Document1| *Document2| ™| Programl
read read read read execute
write write

Document2 — Ann ™| Bob ™| carol Bob __p|Documentl| [™Document2| [Programl
read read read read read read

write execute

Programl — p Ann ™ Bob ™ David Carol __p|Document2| [*] Program2
execute read read read execute

execute write write
execute

Program2 — Carol ™ David David — | Programl Program2
execute read read read

write write write
execute execute execute
(b) (c)
Fig. 2. Access matrix implementation mechanisms

From the access matrix model, discretionary access control systems have

evolved and they include support for the following features.

Conditions. To make authorization validity depend on the satisfaction of
some specific constraints, today’s access control systems typically support
conditions associated with authorizations. [5]. For instance, conditions im-
pose restrictions on the basis of: object content (content-dependent condi-
tions), system predicates (system-dependent conditions), or accesses pre-

viously executed (history-dependent conditions).

Recent Advances in Access Control 5

Personnel

RN

Administration Medical

N

Nurse Doctor

> |

Ann Bob Carol David

Fig. 3. An example of user-group hierarchy

Abstractions. To simplify the authorization definition process, discre-
tionary access control supports also user groups and classes of objects,
which may also be hierarchically organized. Typically, authorizations spec-
ified on an abstraction propagate to all its members according to different
propagation policies [7]. Figure 3 illustrates an example of user-group hi-
erarchy. Here, for example, an authorization specified for the Nurse group
applies also to Bob and Carol.

Ezceptions. The definition of abstractions naturally leads to the need of

supporting exceptions in authorization definition. Suppose, for example,

that all users belonging to a group but u can access resource r. If exceptions
were not supported, it would be necessary to associate an authorization
with each user in the group but u, therefore not exploiting the possibility
of specifying the authorization of the group. This situation can be easily
solved by supporting both positive and negative authorizations: the system
would have a positive authorization for the group and a negative autho-

rization for w.

The introduction of both positive and negative authorizations brings to

two problems: inconsistency, when conflicting authorizations are associ-

ated with the same element in a hierarchy; and incompleteness, when
some accesses are neither authorized nor denied.

Incompleteness is usually easily solved by assuming a default policy, open

or closed (this latter being more common), where no authorization applies.

In this case, an open policy approach allows the access, while the closed

policy approach denies it.

To solve the inconsistency problem, different conflict resolution policies

have been proposed [7, 8], such as:

— No confiict. The presence of a conflict is considered an error.

— Denials take precedence. Negative authorizations take precedence.

— Permissions take precedence. Positive authorizations take precedence.

— Nothing takes precedence. Conflicts remain unsolved.

— Most specific takes precedence. An authorization associated with an
element n overrides a contradicting authorization (i.e., an authoriza-
tion with the same subject, object, and action but with a different
sign) associated with an ancestor of n for all the descendants of n. For
instance, consider the user-group hierarchy in Fig. 3 and the autho-

6 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

S, {Admin, Medical} C, {Admin, Medical}

S, {Admin} U, {Admin,Medical} S, {Medical} C,{Admin} I, {Admin,Medical} C,{Medical}

| > =<7 | | > > |

U, {Admin} s, {} U, {Medical} I, {Admin} c, {} I, {Medical}
(a) (b)

Fig. 4. An example of security (a) and integrity (b) lattices

rizations (Medical Documentl,+r) and (Nurse,Documentl,—r). Carol
cannot read Document1, since the Nurse group is more specific than
the Medical group.

— Most specific along a path takes precedence. An authorization associ-
ated with an element n overrides a contradicting authorization asso-
ciated with an ancestor n/ for all the descendants of n, only for the
paths passing from n. The overriding has no effect on other paths. For
instance, with respect to the previous example, Carol gains a positive
authorization from the path (Medical,Doctor,Carol), and a negative
one from path (Nurse,Carol).

While convenient for their expressiveness and flexibility, in high security
settings discretionary access control results limited for its vulnerability to
Trojan horses. The reason for this vulnerability is that discretionary access
control does not distinguish between users (i.e., human entity whose identity
is exploited to select the privileges for making the access control decision) and
subjects (i.e., process generated by a user and that makes requests to the sys-
tem). A discretionary access control system evaluates the requests made by a
subject against the authorizations of the user who generated the correspond-
ing process. It is then vulnerable from processes executing malicious programs
that exploit the authorizations of the user invoking them. Protection against
these processes requires controlling the flows of information within processes
execution and possibly restricting them. Mandatory policies provide a way to
enforce information flow control through the use of labels.

2.2 Mandatory Access Control

Mandatory security policies enforce access control on the basis of regulations
mandated by a central authority. The most common form of mandatory policy
is the multilevel security policy, based on the classifications of subjects and
objects in the system. Each subject and object in the system is associated with
an access class, usually composed of a security level and a set of categories.
Security levels in the system are characterized by a total order relation, while

Recent Advances in Access Control 7

categories form an unordered set. As a consequence, the set of access classes
is characterized by a partial order relation, denoted > and called dominance.
Given two access classes ¢; and co, ¢ dominates co, denoted c¢; > co, iff the
security level of ¢y is greater than or equal to the security level of ¢y and
the set of categories of ¢; includes the set of categories of ¢o. Access classes
together with their partial order dominance relationship form a lattice [9].

Mandatory policies can be classified as secrecy-based and integrity-based,
operating in a dual manner.

Secrecy-Based Mandatory Policy [10, 11, 12, 13]. The main goal of secrecy-
based mandatory policies is to protect data confidentiality. As a consequence,
the security level of the access class associated with an object reflects the
sensitivity of its content, while the security level of the access class associated
with a subject, called clearance, reflects the degree of trust placed in the
subject not to reveal sensitive information. The set of categories associated
with both subjects and objects defines the area of competence of users and
data. A user can connect to the system using her clearance or any access class
dominated by her clearance. A process generated by a user connected with a
specific access class has the same access class as the user.

The access requests submitted by a subject are evaluated by applying the
following two principles.

No-Read-Up. A subject s can read an object o if and only if the access class
of the subject dominates the access class of the object.

No-Write-Down. A subject s can write an object o if and only if the access
class of the object dominates the access class of the subject.

Consider, as an example, the security lattice in Fig. 4(a), where there
are two security levels, Secret (S) and Unclassified (U), with S>U, and
the set of categories {Admin, Medical}. Suppose that user Ann has clearance
(8,{Admin}) and she connects to the system as the (S,{}) subject. She is
allowed to read objects (S.{}) and (U,{}). She can write objects with access
class (S,{}), (S,{Admin}), (S,{Medical}), and (S,{Admin,Medicall}).

Note that a user is allowed to connect to the system at different access
classes to the aim of accessing information at different levels (provided that
she is cleared for it). Otherwise, these accesses would be blocked by the no-
write-down principle.

The principles of the secrecy-based mandatory policy prevent information
flows from high level subjects/objects to subjects/objects at lower (or incom-
parable) levels, thus preserving information confidentiality. However, these
two principles may turn out to be too restrictive. For instance, in a real sce-
nario data may need to be downgraded (e.g., this may happen at the end of
the embargo). To consider also these situations, the secrecy-based mandatory
models can allow exceptions for processes that are trusted and ensure that
the information produced is sanitized.

8 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Integrity-Based Mandatory Policy [14]. The main goal of integrity-based
mandatory policies is to prevent subjects from indirectly modifying informa-
tion they cannot write. The integrity level associated with a user reflects then
the degree of trust placed in the subject to insert and modify sensitive infor-
mation. The integrity level associated with an object indicates the degree of
trust placed on the information stored in the object and the potential damage
that could result from unauthorized modifications of the information. Again,
the set of categories associated with both subjects and objects defines the
area of competence of users and data.

The access requests submitted by a subject are evaluated by applying the
following two principles.

No-Read-Down. A subject s can read an object o if and only if the integrity
class of the object dominates the integrity class of the subject.

No-Write-Up. A subject s can write an object o if and only if the integrity
class of the subject dominates the integrity class of the object.

Consider, as an example, the integrity lattice in Fig. 4(b), where there
are two integrity levels Crucial (C) and Important (I), with C>I, and the
set of categories {Admin, Medical}. Suppose that user Ann connects to the
system as the (C,{Admin}) subject. She can read objects having integrity class
(C,{Admin}) and (C,{Admin ,Medical}) and she can write objects with integrity
class (C,{Admin}), (C, {}), (I,{Admin}), and (I {}).

These two principles are the dual with respect to the principles adopted by
secrecy-base policies. As a consequence, the integrity model prevents flows of
information from low level objects to higher objects. A major limitation of this
model is that it only captures integrity breaches due to improper information
flows. However, integrity is a much broader concept and additional aspects
should be taken into account [15].

Note that secrecy-based and integrity-based models are not mutually ex-
clusive, since it may be useful to protect both the confidentiality and the
integrity properties. Obviously, in this case, objects and subjects will be as-
sociated with both a security and an integrity class.

A major drawback of mandatory policies is that they control only flows
of information happening through overt channels, that is, channels operating
in a legitimate way. As a consequence, the mandatory policies are vulnerable
to covert channels [16], which are channels not intended for normal commu-
nication but that still can be exploited to infer information. For instance, if a
low level subject requests the use of a resource currently used by a high level
subject, it will receive a negative response, thus inferring that another (higher
level) subject is using the same resource.

2.3 Role-Based Access Control

A third approach for access control is represented by Role-Based Access Con-
trol (RBAC) models [17, 18]. A role is defined as a set of privileges that any

Recent Advances in Access Control 9

user playing that role is associated with. When accessing the system, each user
has to specify the role she wishes to play and, if she is granted to play that
role, she can exploit the corresponding privileges. The access control policy is
then defined through two different steps: first the administrator defines roles
and the privileges related to each of them; second, each user is assigned with
the set of roles she can play. Roles can be hierarchically organized to exploit
the propagation of access control privileges along the hierarchy.

A user may be allowed to simultaneously play more than one role and
more users may simultaneously play the same role, even if restrictions on
their number may be imposed by the security administrator.

It is important to note that roles and groups of users are two different
concepts. A group is a named collection of users and possibly other groups,
and a role is a named collection of privileges, and possibly other roles. Fur-
thermore, while roles can be activated and deactivated directly by users at
their discretion, the membership in a group cannot be deactivated.

The main advantage of RBAC, with respect to DAC and MAC, is that
it better suits to commercial environments. In fact, in a company, it is not
important the identity of a person for her access to the system, but her re-
sponsibilities. Also, the role-based policy tries to organize privileges mapping
the organization’s structure on the roles hierarchy used for access control.

3 Credential-Based Access Control

In an open and dynamic scenario, parties may be unknown to each other and
the traditional separation between authentication and access control cannot
be applied anymore. Such parties can also play the role of both client, when
requesting access to a resource, and server for the resources it makes available
for other users in the system. Advanced access control solutions should then
allow to decide, on one hand, which requester (client) is to be granted access
to the resource, and, on the other hand, which server is qualified for providing
the same resource. Trust management has been developed as a solution for
supporting access control in open environments [19]. The first approaches
proposing a trust management solution for access control are PolicyMaker [20]
and KeyNote [21]. The key idea of these proposals is to bind public keys to
authorizations and to use credentials to describe specific delegations of trust
among keys. The great disadvantage of these early solutions is that they assign
authorizations directly to users’ keys. The authorization specification is then
difficult to manage and, moreover, the public key of a user may act as a
pseudonym of herself, thus reducing the advantages of trust management,
where the identity of the users should not be considered.

The problem of assigning authorizations directly to keys has been solved
by the introduction of digital certificates. A digital certificate is the on-line
counterpart of paper credentials (e.g., a driver licence). A digital certificate is
a statement, certified by a trusted entity (the certificate authority), declaring

10 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

a set of properties of the certificate’s holder (e.g., identity, accreditation, or
authorizations). Access control models, by exploiting digital certificates for
granting or denying access to resources, make access decisions on the basis of
a set of properties that the requester should have. The final user can prove to
have such properties by providing one or more digital certificates [22, 23, 24,
25, 26].

The development and effective use of credential-based access control mod-
els require however tackling several problems related to credential manage-
ment and disclosure strategies, delegation and revocation of credentials, and
establishment of credential chains [27, 28, 29, 30]. In particular, when devel-
oping an access control system based on credentials, the following issues need
to be carefully considered [22].

e Ontologies. Since there is a variety of security attributes and requirements
that may need to be considered, it is important to guarantee that different
parties will be able to understand each other, by defining a set of common
languages, dictionaries, and ontologies.

o (lient-side and server-side restrictions. Since parties may act as either a
client or a server, access control rules need to be defined both client-side
and server-side.

e (redential-based access control rules. New access control languages sup-
porting credentials need to be developed. These languages should be both
expressive (to define different kinds of policies) and simple (to facilitate
policy definition).

e Access control evaluation outcome. The resource requester may not be
aware of the attributes she needs to gain access to the requested resource.
As a consequence, access control mechanisms should not simply return a
permit or deny answer, but should be able to ask the final user for the
needed credentials to access the resource.

e Trust negotiation strategies. Due to the large number of possible alternative
credentials that would enable an access request, a server cannot formulate
a request for all these credentials, since the client may not be willing to
release the whole set of her credentials. On the other hand, the server
should not disclose too much of the underlying security policy, since it
may contain sensitive information.

In the following, we briefly describe some proposals that have been devel-
oped for trust negotiation and for regulating service access in open environ-
ments.

3.1 Overview of Trust Negotiation Strategies

As previously noted, since the interacting parties may be unknown to each
other, the resource requester may not be aware of the credentials necessary
for gaining access privileges. Consequently, during the access control process,

Recent Advances in Access Control 11

the two parties exchange information about the credentials needed for access.
The access control decision comes then after a complex process, where par-
ties exchange information not only related to the access itself, but also to
additional restrictions imposed by the counterpart. This process, called trust
negotiation, has the main goal of establishing trust between the interacting
parties in an automated manner. A number of trust negotiation strategies
have been proposed in the literature, which are characterized by the following
steps.

The client first requests to access a resource.
The server then checks if the client provided the necessary credentials. In
case of a positive answer, the server grants access to the resource; otherwise
it communicates the client the policies that she has to fulfill.

e The client selects the requested credentials, if possible, and sends them to
the server.

e If the credentials satisfy the request, the client is granted access to the
resource.

This straightforward trust negotiation process suffers of privacy problems,
since both the server discloses its access control policy entirely and the client
exposes all her certificates to gain access to a resource. To solve such an
inconvenience, a gradual trust establishment process can be enforced [31]. In
this case, upon receiving an access request, the server selects the policy that
governs the access to the service and discloses only the information that it is
willing to show to an unknown party. The client, according to its practices,
decides if it is willing to disclose the requested credentials. Note that this
incremental exchange of requests and credentials can be iteratively repeated
as many times as necessary.

PRUdent NEgotiation Strategy (PRUNES) is another negotiation strat-
egy whose main goal is to minimize the number of certificates that the client
communicates to the server [30]. It also ensures that the client communicates
her credentials to the server only if the access will be granted. Each party
defines a set of credential policies on which the negotiation process is based.
The established credential policies can be graphically represented through a
tree, called negotiation search tree, composed of two kinds of nodes: credential
nodes, representing the need for a specific credential, and disjunctive nodes,
representing the logic operators connecting the conditions for credential re-
lease. The root of the tree represents the resource the client wants to access.
The negotiation process can be seen as a backtracking operation on the tree.
To the aim of avoiding the cost of a brute-force backtracking, the authors pro-
pose the PRUNES method to prune the search tree without compromising
completeness or correctness of the negotiation process. The basic idea is that
if a credential has just been evaluated and the state of the system has not
changed too much, then it is useless to evaluate again the same credential.

A large set of negotiation strategies, called disclosure tree strategy (DTS)
family [32], has been also defined and proved to be closed. This means that,

12 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

if two parties use different strategies from the DST family, they will be able
to negotiate trust. A Unified Schema for Resource Protection (UniPro) [33]
has been proposed to protect the information specified within policies. UniPro
gives (opaque) names to policies and allows any named policy P; to have its
own policy P», meaning that the content of P; can only be disclosed to parties
who satisfy P». Another solution is the Adaptive Trust Negotiation and Access
Control (ATNAC) approach [34]. This method grants (or denies) access on
the basis of a suspicion level associated with subjects. The suspicion level
is not fixed but may vary on the basis of the probability that the user has
malicious intents.

It is important to note that in recent, more complicated, scenarios disclo-
sure policies can be defined both on resources and on credentials [22]. In this
case, the client, upon receiving a request for a certificate, can answer with a
counter-request to the server for another certificate.

3.2 Overview of a Credential-Based Access Control Framework

One of the first solutions providing a uniform framework for credential-based
access control specification and enforcement was presented by Bonatti and
Samarati [22]. The proposed access control system includes an access control
model, a language, and a policy filtering mechanism.

The paper envisions a system composed of two entities: a client and a
server, interacting through a predefined negotiation process. The server is
characterized by a set of resources. Both the client and the server have a port-
Jolio, which is a collection of credentials (i.e., statements issued by authorities
trusted for making them [35]) and declarations (statements issued by the party
itself). Credentials correspond to digital certificates and are guaranteed to be
unforgeable and verifiable through the public key of the issuing authority.

To the aim of performing gradual trust establishment between the two
interacting parties, the server defines a set of service accessibility rules, and
both the client and the server define their own set of portfolio disclosure rules.
The service accessibility rules specify the necessary and sufficient conditions
for accessing a resource, while portfolio disclosure rules define the conditions
that govern the release of credentials and declarations. Both the two classes
of rules are expressed by using a logic language. A special class of predicates
is represented by abbreviations. Since there may exist a number of alternative
combinations of certificates allowing access to a resource, abbreviation pred-
icates may be used for reducing the communication cost of such certificates.
The predicates of the language adopted exploit the current state (i.e., parties’
characteristics, certificates already exchanged in the negotiation, and requests
made by the parties) to take a decision about a release. The information about
the state is classified as persistent state, when the information is stored at the
site and spans different negotiations, and negotiation state, when it is acquired
during the negotiation and is deleted when the same terminates.

Recent Advances in Access Control 13

service request

Portfolio

credentials/
declarations

Portfolio

credentials/
declarations

request for prerequisites P

prerequisites P

State State
permanent/ requirements R request permanent/
negot.-dep. negot.-dep.

TR requirements R’ counter-req. (AFRFEFFFFRR
Policy Policy

. . R’ .

information services/

release info. release|
R

service granted

Client Server

Fig. 5. Client-server negotiation

The main advantage of this proposal is that it maximizes both server and
client’s privacy, by minimizing the set of certificates exchanged. In particular,
the server discloses the minimal set of policies for granting access, while the
client releases the minimal set of certificates to access the resource. To this pur-
pose, service accessibility rules are distinguished in prerequisites and requisites.
Prerequisites are conditions that must be satisfied for a service request to be
taken into consideration (they do not guarantee that it will be granted); req-
uisites are conditions that allow the service request to be successfully granted.
Therefore, the server will not disclose a requisite rule until the client satisfies
a prerequisite rule. Figure 5 illustrates the resulting client/server interaction.
It is important to highlight here that, before releasing rules to the client, the
server needs to evaluate state predicates that involve private information. For
instance, the client is not expected to be asked many times the same informa-
tion during the same session and if the server has to evaluate if the client is
considered not trusted, it cannot communicate this request to the client itself.

4 Policy Composition

In many real word scenarios, access control enforcement needs to take into
consideration different policies independently stated by different administra-
tive subjects, which must be enforced as if they were a single policy. As an
example of policy composition, consider an hospital, where the global policy
may be obtained by combining together the policies of its different wards and
the externally imposed constraints (e.g., privacy regulations). Policy compo-
sition is becoming of paramount importance in all those contexts in which
administrative tasks are managed by different, non collaborating, entities.
Policy composition is an orthogonal aspect with respect to policy models,
mechanisms, and languages. As a matter of fact, the entities expressing the

14 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

policies to be composed may even not be aware of the access control system
adopted by the other entities specifying access control rules. The main desider-
ata for a policy composition framework can be summarized as follows [36].

e Heterogeneous policy support. The framework should support policies ex-
pressed in different languages and enforced by different mechanisms.

e Support of unknown policies. The framework should support policies that
are not fully defined or are not fully known when the composition strategy
is defined. Consequently, policies are to be treated as black-boxes and are
supposed to return a correct and complete response when queried at access
control time.

o Controlled interference. The framework cannot simply merge the sets of
rules defined by the different administrative entities, since this behavior
may cause side effects. For instance, the accesses granted/denied might
not correctly reflect the specifications anymore.

o FExpressiveness. The framework should support a number of different ways
for combining the input policies, without changing the input set of rules
or introducing ad-hoc extensions to authorizations.

o Support of different abstraction levels. The composition should highlight
the different components and their interplay at different levels of abstrac-
tion.

e Formal semantics. The language for policy composition adopted by the
framework should be declarative, implementation independent, and based
on a formal semantic to avoid ambiguity.

We now briefly describe some solutions proposed for combining different
policies.

4.1 Overview of Policy Composition Solutions

Various models have been proposed to reason about security policies [37,
38, 39, 40]. In [37, 39] the authors focus on the secure behavior of program
modules. McLean [40] introduces the algebra of security, which is a Boolean
algebra that enables to reason about the problem of policy conflict, arising
when different policies are combined. However, even though this approach
permits to detect conflicts between policies, it does not propose a method to
resolve the conflicts and to construct a security policy from inconsistent sub-
policies. Hosmer [38] introduces the notion of meta-policies, which are defined
as policies about policies. Metapolicies are used to coordinate the interaction
about policies and to explicitly define assumptions about them. Subsequently,
Bell [41] formalizes the combination of two policies with a function, called
policy combiner, and introduces the notion of policy attenuation to allow the
composition of conflicting security policies. Other approaches are targeted to
the development of a uniform framework to express possibly heterogeneous
policies [42, 43, 44, 45, 46].

Recent Advances in Access Control 15

A different approach has been illustrated in [36], where the authors propose
an algebra for combining security policies together with its formal semantics.
Here, a policy, denoted P;, is defined as a set of triples of the form (s,0,a),
where s is a constant in (or a variable over) the set of subjects S, o is a constant
in (or a variable over) the set of objects O, and « is a constant in (or a variable
over) the set of actions A. Policies of this form are composed through a set of
algebra operators whose syntax is represented by the following BNF:

E ::=id|F + E|E&E|E — E|E"C|o(E, E, E)|E x R|T(E)|(E)
T ::=7id.F

where id is a unique policy identifier, F is a policy expression, T is a construct,
called template, C' is a construct describing constraints, and R is a construct
describing rules. The order of evaluation of algebra operators is determined
by the precedence, which is (from higher to lower) 7, ., + and & and -, * and
A

The semantic of algebra operators is defined by a function that maps
policy expressions in a set of ground authorizations (i.e., a set of authorization
triples). The function that maps policy identifiers into sets of triples is called
environment, and is formally defined as follows.

Definition 1. An environment e is a partial mapping from policy identifiers
to sets of authorization triples. By e¢[X/S] we denote a modification of envi-
ronment e such that

/s = { Sy D

The semantic of an identifier X in the environment e is denoted by [X], =
e(X).

The operators defined by the algebra for policy composition basically re-
flect the features supported by classical policy definition systems. As an ex-
ample, it is possible to manage exceptions (such as negative authorizations),
propagation of authorizations, an so on. The set of operators together with
their semantic is briefly described in the following.

e Addition (4). It merges two policies by returning their union.
[P+ P, =[], U [P].

Intuitively, additions can be applied in any situation where accesses can be
authorized if allowed by any of the component policies (maximum privilege
principle).

o Conjunction (&). It merges two policies by returning their intersection.

[P&P], =[], Nn[F2],

This operator enforces the minimum privilege principle.

16

S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Subtraction (—). It deletes from a first policy, all the authorizations spec-
ified in a second policy.

[P — P], =[]\ [P2].

Intuitively, subtraction operator is used to handle exceptions, and has the
same functionalities of negative authorizations in existing approaches. It
does not generate conflicts since P; prevails on P, by default.
Closure (). It closes a policy under a set of derivation rules.

[P x R], = closure(R, [P],)

The closure of policy P under derivation rules R produces a new policy
that contains all the authorizations in P and those that can be derived
evaluating R on P, according to a given semantics. The derivation rules
in R can enforce, for example, an authorization propagation along a pre-
defined subject or object hierarchy.

Scoping Restriction (). Tt restricts the applicability of a policy to a given
subset of subjects, objects, and actions of the system.

[Pc]l, = {t € [P], | t satisfy c}

where ¢ is a condition. It is useful when administration entities need to
express their policy on a confined subset of subjects and/or objects (e.g.,
each ward can express policies about the doctors working in the ward).
Overriding (o). It overrides a portion of policy P; with the specifications
in policy P»; the fragment that is to be substituted is specified by a third
policy Ps.

[o(Py, Poy P3)]|, = [(P1 — P3) + (P2&P3)],

Template(T). It defines a partially specified (i.e., parametric) policy that
can be completed by supplying the parameters.

[rX.P].(S) = [[Pﬂe[S/X]

where S is the set of all policies, and X is a parameter. Templates are
useful for representing policies as black-boxes. They are needed any time
when some components are to be specified at a later stage. For instance,
the components might be the result of a further policy refinement, or might
be specified by a different authority.

Due to the formal definition of the semantic of algebra operators, it is

possible to exploit algebra expressions to formally prove the security properties
of the obtained (composed) policy.

Once the policies have been composed through the algebraic operators

described above, for their enforcement it is necessary to provide executable
specifications compatible with different evaluation strategies. To this aim,
the authors propose the following three main strategies to translate policy
expressions into logic programs.

Recent Advances in Access Control 17

e Materialization. The expressions composing policies are explicitly evalu-
ated, by obtaining a set of ground authorizations that represents the policy
that needs to be enforced. This strategy can be applied when all the com-
posed policies are known and reasonably static.

e Partial materialization. Whenever materialization is not possible since
some of the policies to be composed are not available, it is possible to
materialize only a subset of the final policy. This strategy is useful also
when some of the policies are subject to sudden and frequent changes, and
the cost of materialization may be too high with respect to the advantages
it may provide.

e Run-time evaluation. In this case no materialization is performed and run-
time evaluation is needed for each request (access triple), which is checked
against the policy expressions to determine whether the triple belongs to
the result.

The authors then propose a method (pe2lp) for transforming algebraic pol-
icy composition expressions into a logic program. The method proposed can be
easily adapted to one of the three materialization strategies introduced above.
Basically, the translation process creates a distinct predicate symbol for each
policy identifier and for each algebraic operator in the expression. The logic
programming formulation of algebra expressions can be used to enforce ac-
cess control. As already pointed out while introducing algebra operators, this
policy composition algebra can also be used to express simple access control
policies, such as open and closed policy, propagation policies, and exceptions
management. For instance, let us consider a hospital composed of three wards,
namely Cardiology, Surgery, and Orthopaedics. Each ward is responsible for
granting access to data under its responsibility. Let PCardiology PSurgery
and POrthopaedics be the policies of the three wards. Suppose now that an
access is authorized if any of the wards policies state so and that authoriza-
tions in policy PSurgery are propagated to individual users and documents
by classical hierarchy-based derivation rules, denoted Rp. In terms of the
algebra, the hospital policy can be represented as follows.

PC’ardiology&PSurgery * RH&POrthopaedics

Following this work, Jajodia et al. [47] presented a propositional algebra
for policies with a syntax consisting of abstract symbols for atomic policy
expressions and composition operators.

5 Access Control Through Encryption
Since the amount of data that organizations need to manage is increasing

very quickly, data outsourcing is becoming more and more attractive. Data
outsourcing provides data storage at a low rate, allowing the data owner to

18 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

concentrate its activity on its core business where data are managed by an
external service provider. The main drawback of this practice is that the ser-
vice provider may not be fully trusted. The data owner and final users are
usually supposed to trust the provider for managing data stored on its server,
and to correctly execute queries on it, but the provider is not fully trusted
for accessing data content. To solve this problem, different solutions have
been proposed in the literature, mainly based on the use of cryptography as
a mechanism for protecting data privacy [1, 2, 3]. Most of the proposals in
this area focus on issues related to querying encrypted data, to the aim of
avoiding server-side decryption, while minimizing client-side burden in query
evaluation. Another drawback of existing proposals is that they assume that
any client has complete access to the query results, and therefore the data
owner has to be involved for filtering out the data not accessible by the client.
This would cause an excessive burden on the owner, thus nullifying the ad-
vantages of outsourcing data management. On the other hand, the remote
server cannot enforce access control policies, since it may not be allowed to
know the access control policy defined by the owner. Since neither the data
owner nor the remote server can enforce the access control policy, for either
security or efficiency reasons, the data themselves need to implement selective
access. This can be realized through selective encryption, which consists in
encrypting data using different keys and distributing the keys so that users
can decrypt only the data they are authorized to access.

The problem of enforcing access control policies through selective encryp-
tion has been analyzed both for databases and for XML documents. In the
following, we briefly introduce the most important proposals for these two
scenarios [48, 49, 50].

5.1 Overview of Database Outsourcing Solutions

Let us consider a system composed of a set U of users and a set R of resources.
A resource may be a table, an attribute, a tuple, or even a cell, depending on
the granularity at which the data owner wishes to define her policy. Since this
distinction does not affect access control policy enforcement, we will always
refer generically to resources. The access control policy defined by the data
owner can be easily represented through a traditional access matrix A, where
each cell Afu,r] may assume either the value 1, if u can access 7, or the value
0, otherwise (currently only read privileges have been considered). Figure 6
represents an example of access matrix, where there are four users, namely A,
B, C, and D, and four resources r1, 72, r3, and 4.

A first solution that could be adopted for selectively encrypting data for
access control purposes consists in using a different key for each resource,
and in communicating each user the set of keys used to protect the resources
belonging to her capability list (i.e., the set of resources that the user can
access). This solution requires each user to keep a possibly great number of

Recent Advances in Access Control 19

Fig. 6. An example of binary access matrix

(secret) keys, depending on the number of her privileges. To the aim of reduc-
ing the number of keys that each user has to manage, key derivation methods
can be adopted [51]. A key derivation method allows the computation of an
encryption key, by proving the knowledge of another secret key in the system.
By adequately organizing encryption keys and adopting a derivation method,
it is possible to communicate a small number of keys to users, granting then
the possibility of deriving from these keys, those needed for accessing data.
Typically, these methods assume the existence of a partial order relationship
defined on the set of keys. Given the set of encryption keys K in the system,
and a partial order relationship < defined on it, the pair (K, <) represents
the key derivation hierarchy of the system, where Vk;, k; € K, if k; = k; then
k; is derivable from k;. Consequently, by knowing a key k;, it is possible to
compute the value of any k; such that k; < k;. Graphically, a key derivation
hierarchy can be represented as a graph, with a vertex for each key in I, and
a path from k; to k; if k; < k;. A key derivation hierarchy can however assume
three different graphical structures, which in turn influence the key derivation
method that can be adopted, as described in the following.

e Chain of vertexes. The relation = is a total order relation for C; the value
of k; depends only on the value of the key of its (unique) direct ancestor
k; [52].

e Tree. The relation = is a partial order relation for I such that if k; < k;
and k; = ki, then either k; < k; or k; < kj;; the value of k; depends on the
value of the key of its (unique) direct ancestor k;, and on the public label
l; associated with k; [52, 53, 54].

e DAQG. Different classes of solutions have been proposed for DAGs [51].
In particular, Atallah et al. [55] introduce an interesting solution that
allows insertion an deletion of keys in the hierarchy without the need
of redefining the whole set of keys K. This method associates a piece of
public information (called token) with each edge in the DAG. Given an
edge connecting key k; with k;, token T; ; = k; @ h(k;,l;), where [; is a
publicly available label associated with k;, h is a secure hash function, and
@ is the n-ary xor operator.

Damiani et al. [56] propose an access control solution for outsourcing data
that is based on the definition of a key derivation hierarchy reflecting the
user-group containment relation. Given a set U of users, a user-based hierarchy,
denoted UH, is defined as a pair (P(U), <), where P(U) represents the powerset

20 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

0 T1T2T3T4
P7AANN N
A B C D T1T273 T1T2T4 T1T3T4 T2T3T4
eSS N2 g =< e N\
AB AC _ AD BC BD CD "2 Tirs TiT4 ToT3 TaTa T3T4
S \w /
ABCD (b)
(a)

Fig. 7. An example of UH (a) and RH (b)

(i.e., the set of all subsets of i) of U, and contains 21l items, and < is defined
as the set containment relation, that is, Va,b € P(U), a = b if and only if
b C a. Each vertex v; in UH is associated with a private key k;. Each user
u; €U is then communicated key k; associated with the vertex representing
the singleton set {u;}. Each resource r; is instead encrypted with the key k;
associated with the vertex representing its acl. Since partial order relation
=< is defined on the basis of the set containment relation, any user in the
system, by knowing the key of vertex {u;}, can derive all and only the keys
of vertexes representing sets of users including u;. Figure 7(a) represents the
user hierarchy suitable for the access matrix in Fig. 6. To correctly enforce
the given access control policy, r1 is encrypted with the key of vertex ABC,
ro with the key of vertex ABD, r3 with the key of vertex C'D, and r4 with the
key of vertex A. Due to this key assignment, any user can access exactly the
resources in her capability list. As an example, with respect to the hierarchy
in Fig. 7(a), it is easy to see that B can derive the key associated with vertexes
AB and BD that in turn can be used for deriving the keys associated with
vertexes ABC and ABD, this allowing to access 1 and rsy, respectively.

In a dual way, it is possible to build a key derivation hierarchy on the
basis of the resources in the system. A resource-based hierarchy, denoted RH,
is defined as a pair (P(R), <), where P(R) represents the powerset of R, and
= is a partial order relation such that Va,b € P(R), a = b if and only if a C b.
To correctly enforce the given policy, each user u; is assigned the key of the
vertex representing her capability list, while each resource r; is encrypted with
the key of the vertex representing the singleton set {r;}. Considering again the
access matrix in Fig. 6, the corresponding resource hierarchy is represented
in Fig. 7(b).

Although both the models presented for defining a key derivation hierarchy
correctly enforce the access control policy defined by the owner, there is an
important difference that should be considered when deciding which structure
to adopt. As a matter of fact, UH allows resources to share the same encryp-
tion key, while each user has her secret key. By contrast, when adopting RH,

Recent Advances in Access Control 21

Cc D
CcD

A B

ABC ABD

Fig. 8. An example of transformed user hierarchy.

different users can share the same secret key, while resources are all encrypted
using a different key. Moreover, since the number of vertexes in the hierarchy
depends on the number of users (resources, respectively) in the system, if U is
smaller than R, UH will be probably more convenient than RH. In the following,
we focus on the user-based hierarchy, but the discussion is however applicable
also to the resource-based hierarchy.

It is easy to note that UH structure defines a great number of keys, some
of which may be useful neither for encryption nor for distribution to users.
This causes both an expensive key derivation process on the client side, and
an excessive storage workload for the server. As a matter of fact, the length
of key derivation paths in UH is linear in ||, and the number of tokens stored
on the server grows with [U/|.

To the aim of reducing both key derivation costs and, more generally, the
size of the key derivation hierarchy, the authors propose to remove from UH
all those vertexes that are not necessary for access control enforcement [48].
Therefore, the vertexes that are maintained in the hierarchy are those that
represent singleton sets of users and resources’ acls. These vertexes are then
connected in a new hierarchical structure, according to the < partial order
relation. The resulting hierarchy should guarantee that any user w; can com-
pute, from her private key, the keys used to encrypt all and only the resources
belonging to her capability list. To this purpose, the authors propose an algo-
rithm that, starting from the set of required vertexes, builds a key derivation
hierarchy on which they apply the Atallah et al. key derivation method. To
improve the key derivation process for final users, the algorithm tries to min-
imize the number of tokens in the system. To this aim, other vertexes besides
the necessary ones are possibly added to the hierarchical structure. Consider-
ing the user hierarchy in Fig. 7, Fig. 8 illustrates the hierarchy corresponding
to the access control policy in Fig. 6, and containing only the vertexes needed
for a correct enforcement of the policy.

Zych and Petkovic [49] exploit Diffie-Hellman key generation scheme and
asymmetric encryption for enforcing selective access on outsourced data.
Given a user-based hierarchy, the authors propose to build a V-graph start-
ing from it. For each vertex in the V-graph, the number of incoming edges is
either 2 or 0, and for any two vertexes, there is at most one common parent
vertex. The resulting structure is a binary tree, whose leaves represent single-
ton sets of users, and whose root represents the group containing all the users

22 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

in the system. Also, any user knows the private key of the vertex representing
herself in the hierarchy, and each resource is encrypted with the private key
associated with the vertex representing its acl. However, differently from other
proposals, key derivation goes from leaves to the root of the tree.

5.2 Overview of XML Document Outsourcing Solutions

Besides traditional databases, also XML documents can contain sensitive in-
formation, and their outsourcing may cause privacy breaches. As a conse-
quence, it is necessary to develop techniques for enforcing access control on
outsourced XML data as well. Although some of the approaches presented
for the relational database outsourcing scenario are suited for XML data out-
sourcing, they do not exploit the main characteristics of XML documents
(e.g., their tree structure) and different specific approaches have then been
proposed. The solutions presented exploit once again selective encryption as
a way for enforcing access control when publishing or outsourcing sensitive
data.

Miklau and Suciu [50] propose a way for differentiating the encryption
of different portions of an XML document, on the basis of users or groups
who can access them. The proposed access control mechanism is enriched by
adding metadata XML nodes, adopted to enforce access control rules with
conditions on the values contained in the document. Wang et al. [57] present
an access control system that both protects data stored in the XML document
and the associations among data by introducing association constraints that
need to be satisfied by the encryption model adopted.

6 Conclusions

This chapter discussed recent trends in the access control field. We described
the basic concepts of access control and investigated different issues concern-
ing the development of an access control system. In particular, we outlined
the needs for providing means to: support access control in open environ-
ments, where the identities of the involved parties may be unknown; combine
authorization specifications that may be independently stated; enforce ac-
cess control through the use of selective encryption. For these contexts, we
described recent proposals and ongoing work.

Acknowledgements

This work was supported in part by the European Union under contract IST-
2002-507591, and by the Italian Ministry of Research, within programs FIRB,
under project “RBNEO5FKZ2”, and PRIN 2006, under project “Basi di dati
crittografate” (2006099978).

Recent Advances in Access Control 23

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Haciglimiis, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted

data in the database-service-provider model. In: Proc. of the ACM SIGMOD
2002, Madison, Wisconsin, USA (2002)

Hacigiimiis, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc.
of 18th International Conference on Data Engineering, San Jose, California, USA
(2002)

Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Balancing confidentiality and efficiency in untrusted relational DBMSs. In:
Proc. of the 10th ACM Conference on Computer and Communications Security
(CCS03), Washington, DC, USA (2003)

Graham, G., Denning, P.: Protection- principles and practice. In: Proc. of
the Spring Jt. Computer Conference. Volume 40., Montvale, NJ, USA (1972)
417-429

Harrison, M., Ruzzo, W., Ullman, J.: Protection in operating systems. Com-
munications of the SCM 19(8) (August 1976) 461-471

Lampson, B.W.: Protection. ACM Operating Systems Review 8(1) (January
1974) 18-24

Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transaction on Database Systems 26(2)
(June 2001) 214-260

Lunt, T.: Access control policies: Some unanswered questions. In: Proc. of IEEE
Computer Security Foundations Workshop II, Franconia, New Hampshire (1988)
Sandhu, R.: Lattice-based access control models. IEEE Computer 26(11) (1993)
9-19

Bell, D., La Padula, L.: Secure computer systems: A mathematical model.
Technical Report MTR-2547, Vol 2, MITRE Corp., Bedford, MA (November
1973)

Bell, D., La Padula, L.: Secure computer systems: Mathematical foundations.
Technical Report MTR-2547, Vol 1, MITRE Corp., Bedford, MA (November
1973)

Bell, D., La Padula, L.: Secure computer systems: A refinement of the math-
ematical model. Technical Report MTR-2547, Vol 3, MITRE Corp., Bedford,
MA (April 1974)

Bell, D., La Padula, L.: Secure computer systems: Unified exposition and multics
interpretation. Technical Report MTR-2997, Vol 4, MITRE Corp., Bedford, MA
(July 1975)

Biba, K.J.: Integrity considerations for secure computer systems. MTR-3153
rev., MITRE Corp., Vol 1, Bedford, MA (April 1977)

Samarati, P., De Capitani di Vimercati, S.: Access control: Policies, models, and
mechanisms. In Focardi, R., Gorrieri, R., eds.: Foundations of Security Analysis
and Design. LNCS 2171. Springer-Verlag (2001)

McLean, J.: Security models. In Marciniak, J., ed.: Encyclopedia of Software
Engineering. John Wiley & Sons (1994)

Ferraiolo, D., Kuhn, D.: Role-based access control. In: Proc. of the 15th National
Computer Security Conference. (1992)

Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control
models. IEEE Computer 29(2) (1996) 38-47

24

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Security and trust management (2005)
http://www.ercim.org/publication/Ercim_News/enw63/.

Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proc.
of the 17th Symposium on Security and Privacy, Oakland, California, USA (May
1996)

Blaze, M., Feigenbaum, J., Toannidis, J., Keromytis, A.: The KeyNote Trust
Management System (Version 2). Internet RFC 2704 edn. (1999)

Bonatti, P., Samarati, P.: A unified framework for regulating access and infor-
mation release on the web. Journal of Computer Security 10(3) (2002) 241-272
Irwin, K., Yu, T.: Preventing attribute information leakage in automated trust
negotiation. In: Proc. of the 12th ACM Conference on Computer and Commu-
nications Security, Alexandria, VA, USA (2005)

Li, N., Mitchell, J., Winsborough, W.: Beyond proof-of-compliance: Security
analysis in trust management. Journal of the ACM 52 (2005) 474-514

Ni, J., Li, N., Winsborough, W.: Automated trust negotiation using crypto-
graphic credentials. In: Proc. of the 12th ACM Conference on Computer and
Communications Security, Alexandria, VA, USA (2005)

Yu, T., Winslett, M., Seamons, K.: Supporting structured credentials and sen-
sitive policies trough interoperable strategies for automated trust. ACM Trans-
actions on Information and System Security (TISSEC) 6(1) (February 2003)
1-42

Seamons, K.E., Winsborough, W., Winslett, M.: Internet credential acceptance
policies. In: Proc. of the Workshop on Logic Programming for Internet Appli-
cations, Leuven, Belgium (July 1997)

Seamons, K.E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills,
H., Yu, L.: Requirements for policy languages for trust negotiation. In: Proc.
of the 3rd International Workshop on Policies for Distributed Systems and Net-
works (POLICY 2002), Monterey, CA (June 2002)

Winslett, M., Ching, N., Jones, V., Slepchin, I.: Assuring security and privacy
for digital library transactions on the web: Client and server security policies.
In: Proc. of the ADL 97 — Forum on Research and Tech. Advances in Digital
Libraries, Washington, DC (May 1997)

Yu, T., Ma, X., Winslett, M.: An efficient complete strategy for automated
trust negotiation over the internet. In: Proc. of the 7th ACM Computer and
Communication Security, Athens, Greece (November 2000)

Seamons, K., Winslett, M., Yu, T.: Limiting the disclosure of access control
policies during automated trust negotiation. In: Proc. of the Symposium on
Network and Distributed System Security, San Diego, CA (April 2001)

Yu, T., Winslett, M., Seamons, K.: Interoperable strategies in automated trust
negotiation. In: Proc. of the 8h ACM Conference on Computer and Commu-
nications Security, Philadelphia, Pennsylvania (November 2001)

Yu, T., Winslett, M.: A unified scheme for resource protection in automated
trust negotiation. In: Proc. of the IEEE Symposium on Security and Privacy,
Berkeley, California (May 2003)

Ryutov, T., Zhou, L., Neuman, C., Leithead, T., Seamons, K.: Adaptive trust
negotiation and access control. In: Proc. of the 10th ACM Symposium on Access
Control Models and Technologies, Stockholm, Sweden (June 2005)

Gladman, B., Ellison, C., Bohm, N.: Digital signatures, certificates and elec-
tronic commerce. http://www.clark.net/pub/cme/html/spki.html.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Recent Advances in Access Control 25

Bonatti, P., De Capitani di Vimercati, S., Samarati, P.. An algebra for com-
posing access control policies. ACM Transactions on Information and System
Security 5(1) (February 2002) 1-35

Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Pro-
gramming Languages 14(4) (October 1992) 1-60

Hosmer, H.: Metapolicies II. In: Proc. of the 15th National Computer Security
Conference, Baltimore, MD (October 1992)

Jaeger, T.: Access control in configurable systems. Lecture Notes in Computer
Science 1603 (2001) 289-316

McLean, J.: The algebra of security. In: Proc. of the 1988 IEEE Computer
Society Symposium on Security and Privacy, Oakland, CA, USA (April 1988)
Bell, D.: Modeling the multipolicy machine. In: Proc. of the New Security
Paradigm Workshop, Little Compton, Rhode Island, USA (August 1994)
Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for re-
lational data management systems. ACM Transactions on Information Systems
17(2) (April 1999) 101-140

Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems 26(2)
(June 2001) 214-260

Jajodia, S., Samarati, P., Subrahmanian, V., Bertino, E.: A unified framework
for enforcing multiple access control policies. In: Proc. of the 1997 ACM In-
ternational SIGMOD Conference on Management of Data, Tucson, AZ (May
1997)

Li, N., Feigenbaum, J., Grosof, B.: A logic-based knowledge representation for
authorization with delegation. In: Proc. of the 12th IEEE Computer Security
Foundations Workshop, Washington, DC, USA (July 1999)

Woo, T., Lam, S.: Authorizations in distributed systems: A new approach.
Journal of Computer Security 2(2,3) (1993) 107-136

Wijesekera, D., Jajodia, S.: A propositional policy algebra for access control.
ACM Transactions on Information and System Security 6(2) (May 2003) 286—
325

Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi,
S., Samarati, P.: An experimental evaluation of multi-key strategies for data
outsourcing. In: Proc. of the 22nd IFIP TC-11 International Information Secu-
rity Conference (SEC 2007), Sandton, South Africa (May 2007)

Zych, A., Petkovic, M.: Key management method for cryptographically enforced
access control. In: Proc. of the 1st Benelux Workshop on Information and System
Security, Antwerpen, Belgium (2006)

Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of the 29th VLDB Conference, Berlin, Germany (September 2003)
Crampton, J., Martin, K., Wild, P.: On key assignment for hierarchical access
control. In: In Proc. of the 19th IEEE Computer Security Foundations Workshop
(CSFW’06), Los Alamitos, CA, USA (2006)

Sandhu, R.: On some cryptographic solutions for access control in a tree hi-
erarchy. In: Proc. of the 1987 Fall Joint Computer Conference on Exploring
Technology: Today and Tomorrow, Dallas, Texas, USA (1987)

Gudes, E.: The design of a cryptography based secure file system. IEEE Trans-
actions on Software Engineering 6 (1980) 411-420

Sandhu, R.: Cryptographic implementation of a tree hierarchy for access control.
Information Processing Letters 27 (1988) 95-98

26

55.

56.

57.

S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Atallah, M., Frikken, K., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: Proc. of the 12th ACM conference on Computer and
Communications Security (CCS05), Alexandria, VA, USA (2005)

Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi,
S., Samarati, P.: Selective data encryption in outsourced dynamic environments.
In: Proc. of the Second International Workshop on Views On Designing Com-
plex Architectures (VODCA 2006). Electronic Notes in Theoretical Computer
Science, Bertinoro, Italy, Elsevier (2006)

Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of the 32nd VLDB Conference, Seoul, Korea (Septem-
ber 2006)

2

Access Control Models for XML

S. De Capitani di Vimercati!, S. Foresti!, S. Paraboschi?, and P. Samarati'

L University of Milan — 26013 Crema, Italy
{decapita,foresti,samarati}@dti.unimi.it

2 University of Bergamo — 24044 Dalmine, Italy
parabosc@unibg.it

Summary. XML has become a crucial tool for data storage and exchange. In this
chapter, after a brief introduction on the basic structure of XML, we illustrate the
most important characteristics of access control models. We then discuss two models
for XML documents, pointing out their main characteristics. We finally present
other proposals, describing their main features and their innovation compared to
the previous two models.

1 Introduction

The amount of information that is made available and exchanged on the Web
sites is continuously increasing. A large portion of this information (e.g., data
exchanged during EC transactions) is sensitive and needs to be protected.
However, granting security requirements through HTML-based information
processing turns out to be rather awkward, due to HTML’s inherent limi-
tations. HTML provides no clean separation between the structure and the
layout of a document and some of its content is only used to specify the doc-
ument layout. Moreover, site designers often prepare HTML pages according
to the needs of a particular browser. Therefore, HTML markup has generally
little to do with data semantics.

To the aim of separating data that need to be represented from how they
are displayed, the World Wide Web Consortium (W3C) has standardized a
new markup language: the eXtensible Markup Language (XML) [1]. XML is
a markup meta-language providing semantics-aware markup without losing
the formatting and rendering capabilities of HTML. XML’s tags’ capability
of self-description is shifting the focus of Web communication from conven-
tional hypertext to data interchange. Although HTML was defined using only
a small and basic part of SGML (Standard Generalized Markup Language:
ISO 8879), XML is a sophisticated subset of SGML, designed to describe
data using arbitrary tags. As its name implies, extensibility is a key feature of
XML; users and applications are free to declare and use their own tags and at-
tributes. Therefore, XML ensures that both the logical structure and content

28 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

of semantically rich information is retained. XML focuses on the description
of information structure and content as opposed to its presentation. Presen-
tation issues are addressed by a separate language, XSL [2] (XML Stylesheet
Language), which is also a W3C standard for expressing how XML-based data
should be rendered.

Since XML documents can be used instead of traditional relational
databases for data storage and organization, it is necessary to think of a secu-
rity system for XML documents protection. In this chapter, we will focus on
access control enforcement. Specifically, in the literature, different access con-
trol models have been proposed for protecting data stored in XML documents,
exploiting the flexibility offered by the markup language. Even if traditionally
access control models can be applied to XML documents, by simply treating
them as files, a finer grained access control system is frequently necessary. As
a matter of fact, an XML document may contain both sensitive and publicly
available information, and it is necessary to distinguish between them when
specifying the access control policy.

The remainder of the chapter is organized as follows. Section 2 discusses
the basic XML concepts, by introducing DTD, XML Schema, XPath and
XQuery syntax and semantics. Section 3 introduces the problem of access
control for XML documents, points out the characteristics that an access
control model for XML documents should have. Section 4 illustrates in the
details two of the first access control models proposed for XML documents,
and briefly describes other proposals. Finally, Sect. 5 concludes the chapter.

2 Preliminary Concepts

XML [1] (eXtensible Markup Language) is a markup language developed
by the World Wide Web Consortium (W3C) and used for describing semi-
structured information. We introduce some of the most important concepts
related to XML, which are useful to define an access control system for pro-
tecting XML documents.

2.1 Well-Formed and Valid XML Documents

XML document is composed of a sequence of (possibly nested) elements and
attributes associated with them. Basically, elements are delimited by a pair
of start and end tags (e.g., <request> and </request>) or, if they have
no content, are composed of an empty tag (e.g., <request/>). Attributes
represent properties of elements and are included in the start tag of the el-
ement with which they are associated (e.g., <request number=“10">). An
XML document is said to be well-formed if its syntax complies with the rules
defined by the W3C consortium [1], which can be summarized as follows:

e the document must start with the prologue <?xml version=“1.0"7>;

Access Control Models for XML 29

e the document must have a root element, containing all other elements in
the document;

e all open tags must have a corresponding closed tag, provided it is not an
empty tag;
elements must be properly nested;
tags are case-sensitive;
attribute values must be quoted.

An XML language is a set of XML documents that are characterized by a
syntax, which describes the markup tags that the language uses and how they
can be combined, together with its semantics. A schema is a formal definition
of the syntax of an XML language, and is usually expressed through a schema
language. The most common schema languages, and on which we focus our
attention, are DTD and XML Schema, both originating from W3C.

Document Type Definition.

A DTD document may be either internal or external to an XML document
and it is not itself written in the XML notation.

A DTD schema consists of definition of elements, attributes, and other
constructs. An element declaration is of the form <!ELEMENT element_name
content>, where element_name is an element name and content is the de-
scription of the content of an element and can assume one of the following
alternatives:

the element contains parsable character data (#PCDATA);

the element has no content (Empty);

the element may have any content (Any);

the element contains a group of one or more subelements, which in turn
may be composed of other subelements;

e the element contains parsable character data, interleaved with subele-
ments.

When an element contains other elements (i.e., subelements or mixed con-
tent), it is necessary to declare the subelements composing it and their organi-
zation. Specifically, sequences of elements are separated by a comma “,” and
alternative elements are separated by a vertical bar “|”. Declarations of se-
quence and choices of subelements need to describe subelements’ cardinality.
With a notation inspired by extended BNF grammars, “*” indicates zero or
more occurrences, “+” indicates one or more occurrences, “?” indicates zero
or one occurrence, and no label indicates exactly one occurrence.

An attribute declaration is of the form <!'ATTLIST element-name at-
tribute_def>, where element_name is the name of an element, and attribute_def
is a list of attribute definitions that, for each attribute, specify the at-
tribute name, type, and possibly default value. Attributes can be marked
as #REQUIRED, meaning that they must have an explicit value for each occur-
rence of the elements with which they are associated; #IMPLIED, meaning that

30 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

they are optional; #FIXED, meaning that they have a fixed value, indicated in
the definition itself.

An XML document is said to be walid with respect to a DTD if it is
syntactically correct according to the DTD. Note that, since elements and
attributes defined in a DTD may appear in an XML document zero (optional
elements), one, or multiple times, depending on their cardinality constraints,
the structure specified by the DTD is not rigid; two distinct XML documents
of the same schema may differ in the number and structure of elements.

XML Schema.

An XML Schema is an XML document that, with respect to DTD, has a
number of advantages. First, an XML Schema is itself an XML document,
consequently it can be easily extended for future needs. Furthermore, XML
Schemas are richer and more powerful than DTDs, since they provide support
for data types and namespaces, which are two of the most significant issues
with DTD.

An element declaration specifies an element name together with a simple
or complex type. A simple type is a set of Unicode strings (e.g., decimal,
string, float, and so on) and a complex type is a collection of requirements
for attributes, subelements, and character data that apply to the elements
assigned to that type. Such requirements specify, for example, the order in
which subelements must appear, and the cardinality of each subelement (in
terms of maxOccurs and minOccurs, with 1 as default value).

Attribute declarations specify the attributes associated with each element
and indicate attribute name and type. Attribute declarations may also spec-
ify either a default value or a fixed value. Attributes can be marked as:
required, meaning that they must have an explicit value for each occurrence
of the elements with which they are associated; optional, meaning that they
are not necessary.

Example 1. Suppose that we need to define an XML-based language for
describing bank account operations. Figure 1(a) illustrates a DTD stating
that each account_operation contains a request element and one or more
operation elements. Each account_operation is also characterized by two
mandatory attributes: bankAccN, indicating the number of the bank account
of the requester; and id, identifying the single update. Each request element
is composed of date, means, and notes elements, where only date is required.
Element operation is instead composed of: type, amount, recipient, and
possibly one between notes and value.

Figure 1(b) illustrates an XML document valid with respect to the DTD
in Fig. 1(a).

DTDs and XML documents can be graphically represented as trees.
A DTD is represented as a labeled tree containing a node for each element,
attribute, and value associated with fixed attributes. To distinguish elements

Access Control Models for XML 31

< !DOCTYPE record| <?7xml version=“1.0" 7>
< !ELEMENT account_operation < IDOCTYPE record SYSTEM “record.dtd” >
(request, operation+)> <account_operation
<IATTLIST account_operation bankAccN=*0012" id=%“00025" >
bankAccN CDATA #REQUIRED <request number=“10">
id CDATA #REQUIRED> <date> 04-20-2007 </date>
<!ELEMENT request <means> Internet </means>
(date,means?,notes?)> <notes> urgent </notes>
< 'ATTLIST request number CDATA #REQUIRED> </request>
< !ELEMENT operation <operation>
(type, amount, recipient, (notes|value)?)> <type> bank transfer </type>
< !ELEMENT date (#PCDATA)> <amount> $ 1,500 </amount>
< !ELEMENT means (#PCDATA)> <recipient> 0023 </recipient>
< 'ELEMENT notes (#PCDATA)> <notes> Invoice 315 of 03-31-2007
< 'ELEMENT type (#PCDATA)> </notes>
< !'ELEMENT amount (#PCDATA)> </operation>
< !ELEMENT recipient (#PCDATA)> </account_operation>
< !ELEMENT value (#PCDATA)>
1>
(a) (b)

Fig. 1. An example of DTD (a) and a corresponding valid XML document (b)

and attributes in the graphical representation, elements are represented as
ovals, while attributes as rectangles. There is an arc in the tree connecting
each element with all the elements/attributes belonging to it, and between
each #FIXED attribute and its value. Arcs connecting an element with its
subelements are labeled with the cardinality of the relationship. Arcs labeled
or and with multiple branching are used to represent a choice in an element
declaration (]). An arc with multiple branching is also used to represent a
sequence with a cardinality constraint associated with the whole sequence
(7, +, *). To preserve the order between elements in a sequence, for any two
elements e; and e;, if e; follows e; in the element declaration, node e; appears
below node e; in the tree.

Each XML document is represented by a tree with a node for each element,
attribute, and value in the document. There is an arc between each element
and each of its subelements/attributes/values and between each attribute and
each of its value(s). Each arc in the DTD tree may correspond to zero, one, or
multiple arcs in the XML document, depending on the cardinality of the corre-
sponding containment relationship. Note that arcs in XML documents are not
labeled, as there is no further information that needs representation. Figure 2
illustrates the graphical representation of both DTD and XML document in
Fig. 1.

2.2 Elements and Attributes Identification

The majority of the access control models for XML documents identify the
objects under protection (i.e., elements and attributes) through the XPath
language [3]. XPath is an expression language, where the basic building block
is the path expression.

32 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

@ccount_opcration bankAccN] @ccoumﬁoperation bankAccN }— “0012”
L——(Trequest)—{ number | (request)—{ number |———*10"
?
?
+ -
opertion %
bank transter
$ 1,500
0023
or [7
Invoice 315 of
()3,3],2007
(a) DTD tree (b) XML document tree

Fig. 2. An example of graphical representation of DTD and XML document

A path expression on a document tree is a sequence of element names
or predefined functions separated by character / (slash): {1 /ls/ ... /l,. Path
expressions may terminate with an attribute name as the last term of
the sequence. Attribute names are syntactically distinguished by preceding
them with special character @. A path expression ly/l2/.../l, on a docu-
ment tree represents all the attributes or elements named [, that can be
reached by descending the document tree along the sequence of nodes named
li/la/ ... /l,—1. A path expression can be either absolute, if it starts from the
root of the document (the path expression starts with /); or relative, if it
starts from a predefined element in the document (the path expression starts
with element name). The path expression may also contain operators (e.g.,
operator . represents the current node, operator .. represents the parent
node, operator // represents an arbitrary descending path), functions, and
predicates (we refer the reader to [3] for more details).

XPath allows the association of conditions with nodes in a path; in this
case the path expression identifies the set of nodes that satisfy all the condi-
tions. Conditional expressions in XPath may operate on the “text” of elements
(i.e., character data in elements) or on names and values of attributes. A con-
dition is represented by enclosing it within square brackets, following a label
l; in a path expression Iy /l2/ ... /l,,. The condition is composed of one or more
predicates, which may be combined via and and or boolean operators. Each
predicate compares the result of the evaluation of the relative path expres-
sion (evaluated at ;) with a constant or with another expression. Multiple
conditional expressions appearing in the same path expression are considered
to be anded (i.e., all the conditions must be satisfied). In addition, condi-
tional expressions may include functions last () and position() that permit

Access Control Models for XML 33

the extraction of the children of a node that are in given positions. Func-
tion last () evaluates to true on the last child of the current node. Function
position() evaluates to true on the node in the evaluation context whose
position is equal to the context position.

Path expressions are also the building blocks of other languages, such as
XQuery [4] that allows to make queries on XML documents through FLWOR
expressions. A FLOWR expression is composed of the following clauses:

e FOR declares variables that are iteratively associated with elements in the
XML documents, which are identified via path expressions;

LET declares variables associated with the result of a path expression;
WHERE imposes conditions on tuples;

ORDER BY orders the result obtained by FOR and LET clauses;

RETURN generates the final result returned to the requester.

FEzample 2. Consider the DTD and the XML document in Example 1. Some
examples of path expressions are the following.

e /account_operation/operation: returns the content of the operation
element, child of account_operation;

e /account_operation/@bankAccN: returns attribute bankAccN of element
account_operation;

e /account_operation//notes: returns the content of the notes el-
ements, anywhere in the subtree rooted at account_operation; in
this case, it returns both /account_operation/request/notes and
/account_operation/operation/notes;

e /account_operation/operation[./type=“bank transfer”]: returns the
content of the operation element, child of account_operation, only if
the type element, child of operation, has value equal to “bank transfer”.

The following XQuery extracts form the XML document in Fig. 1(b) all the
account_operation elements with operation type equal to “bank transfer”.
For the selected elements, the amount and the recipient of the operation are
returned, along with all notes appearing in the selected account_operation
element.

<BankTransf>

{ FOR $r in document(“update_account”)/account_operation
WHERE $r/operation/type=“bank transfer”
RETURN $r/operation/amount, $r/operation/recipient, $r//notes

}

</BankTransf>

3 XML Access Control Requirements

Due to the peculiar characteristics of the XML documents, they cannot be
protected by simply adopting traditional access control models, and specific

34 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

models need to be defined. By analyzing the existing proposals, it is easy to
see that they are all based on the definition of a set of authorizations that at
least specify the subjects on which they apply, the objects to be protected,
and the action to be executed. The existing XML-based access control models
differentiate on the basis of the subjects, objects, and actions they can support
for access control specification and enforcement.

Subject. Subjects are usually referred to on the basis of their identities or
of the network location from which requests originate. Locations can
be expressed with reference to either the numeric IP address (e.g.,
150.100.30.8) or the symbolic name (e.g., bank.com) from which the
request comes.

It often happens that the same privilege should be granted to sets of

subjects, which share common characteristics, such as the department

where they work, or the role played in the company where they work. To
the aim of simplifying the authorizations definition, some access control
models allow the specification of authorizations having as subject:

e a group of users, which is a statically defined set of users; groups can
be nested and overlapping;

e a location pattern, which is an expression identifying a set of physi-
cal locations, obtained by using the wild character * in physical or
symbolic addresses;

e a role, which is a set of privileges that can be exploited by any user
while playing the specific role; users can dynamically decide which role
to play, among the ones they are authorized to play.

Also, subjects are often organized in hierarchies, where an authorization

defined for a general subject propagates to its descendants.

Public
/ \
BankEmployee Client
StatisticalAnaly{ \CashOpcrator
T T N
Alice Bob Carol David Eric Fiona Gregory Hilary Ivan

Fig. 3. An example of user-group hierarchy

A hierarchy can be pictured as a directed acyclic graph containing a node
for each element in the hierarchy and an arc from element x to element y, if
2 directly dominates y. Dominance relationships holding in the hierarchy
correspond to paths in the graph. Figure 3 shows an example of user-group
hierarchy.

Access Control Models for XML 35

Recently proposed models [5] for access control on XML documents intro-
duce the possibility of specifying authorizations on the basis of subject’s
characteristics, called credentials, without even knowing the user’s identity
and/or location.

Object Granularity. The identification of the object involved in a specific au-

thorization can exploit the possibility given by XML of identifying el-
ements and attributes within a document through path expressions as
defined by the XPath language.
Consequently, XML allows the specification of authorizations at a fine
grained level. Any portion of a document that can be referred by a path
expression can be the object of an authorization. For instance, a single el-
ement or a single attribute are objects as well as a whole XML document.
It is important to note that not all models support entirely XPath syntax,
since it is very expressive and may be difficult to manage. For instance,
some models impose restrictions on the number of times that the // op-
erator can appear in a path expression [6], other proposals do not allow
predicates to be specified after the // operator [7].

Action. Most of the proposed XML access control models support only read
operations, since there is not a standard language for XML update. Fur-
thermore, the management of write privileges is a difficult task, which
needs to take into account both the access control policy and the DTD
(or XML Schema) defined for the document. In fact, the DTD may
be partially hidden to the user accessing the document, as some ele-
ments/attributes may be denied by the access control policy. For instance,
when adding an element to the document, the user may even not be aware
of the existence of a required attribute associated with it, as she is not
entitled to access the attribute itself.

However, some approaches try to also support write privileges that are
usually classified as: insert operations, update operations, and delete op-
erations.

In [8], the author proposes to differentiate also read privileges in two
categories: the privilege of reading the content of an element, from the
privilege of knowing that there is an element in a certain position of the
XML document (without knowing the name and content of the element
itself). The former authorization class is modeled as read action, while
the latter is modeled as position action. In the same paper, the author
proposes also to add the possibility, for the security administrator, to
propagate privileges with-grant option, as in typical database contexts.

We now discuss the basic peculiar features that are supported by the
existing XML-based access control models.

Support for Fine and Coarse Authorizations. The different protection re-
quirements that different documents may have call for the support of
access restrictions at the level of each specific document. However, re-
quiring the specification of authorizations for each single document would

36

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

make the authorization specification task too heavy. The system may then
support, beside authorizations on single documents (or portions of doc-
uments), authorizations on collections of documents [9]. The concept of
DTD can be naturally exploited to this end, by allowing protection re-
quirements to refer to DTDs or XML documents, where requirements
specified at the level of DTD apply to all those documents instance of
the considered DTD. Authorizations specified at DTD level are called
schema level authorizations, while those specified at XML document level
are called instance level authorizations.

Furthermore, it is important to be able to specify both organization-wide
and domain authorizations, which apply only to a part of the whole or-
ganization. To this purpose, some systems [9] allow access and protection
requirements to be specified both at the level of the enterprise, stating
general regulations, and at the level of specific domains where, according
to a local policy, additional constraints may need to be enforced or some
constraints may need to be relaxed. Organizations specify authorizations
with respect to DTDs; domains can specify authorizations with respect
to specific documents as well as to DTDs.

Propagation Policy. The structure of an XML document can be exploited by

possibly applying different propagation strategies that allow the derivation
of authorizations from a given set of authorizations explicitly defined over
elements of DTD and/or XML documents. Some proposals therefore dis-
tinguish between two kinds of authorizations: local, and recursive [9]. Local
authorizations defined on an element apply to all its attributes only. A
recursive authorization defined on an element applies to its whole content
(both attributes and subelements). Recursive authorizations represent an
easy way for specifying authorizations holding for the whole structured
content of an element (for the whole document if the element is the root
node of the document).
The models proposed in [6, 7] assume that negative authorizations are
always recursive, while positive authorizations may be either local or re-
cursive.
Besides downward propagation, upward propagation methods have been
introduced [10]. Here, the authorizations associated with a node in the
XML tree propagate to all its parents.
Some of the most common propagation policies (which include also some
resolution policies for possible conflicts) are described in the following [11].
e No propagation. Authorizations are not propagated. This is the case
of local authorizations.
e No overriding. Authorizations of a node are propagated to its descen-
dants, but they are all kept.
o Most specific overrides. Authorizations of a node are propagated to
its descendants, if not overridden. An authorization associated with a

Access Control Models for XML 37

node n overrides a contradicting authorization® associated with any
ancestor of n for all the descendants of n.

e Path overrides. Authorizations of a node are propagated to its descen-
dants, if not overridden. An authorization associated with a node n
overrides a contradicting authorization associated with an ancestor n’
for all the descendants of n only for the paths passing from n. The
overriding has no effect on other paths.

These policies can be adopted also for the authorization subject hierarchy.
Support of Exceptions. The support of authorizations at different granularity
levels allows for easy expressiveness of both fine and coarse grained autho-
rizations. Such an advantage would remain however very limited without
the ability of the authorization model to support exceptions, since the
presence of a granule (document or element/attribute) with protection
requirements different from those of its siblings would require the ex-
plicit specification of authorizations at that specific granularity level. For
instance, the situation where a user should be granted access to all docu-
ments associated with a DTD but one specific instance, would imply the
need of stating the authorizations explicitly for all the other documents
as well; thereby ruling out the advantage of supporting authorizations
at the DTD level. A simple way to support exceptions is by using both
positive (permissions) and negative (denials) authorizations, where per-
missions and denials can override each other.
The combined use of positive and negative authorizations brings to the
problem of how the two specifications should be treated when conflict-
ing authorizations are associated with the same node element for a given
subject and action. This requires the support for conflict resolution poli-
cies [11].
Most of the models proposed for XML access control adopt, as a conflict
resolution policy, the “denials take precedence” policy, meaning that, in
case of conflict, access is denied.
Note that, when both permissions and denials can be specified, another
problem that naturally arises is the incompleteness problem, meaning that
for some accesses neither a positive nor a negative authorization exists.
The incompleteness problem is typically solved by applying a default open
or closed policy [12].

4 XML Access Control Models

Several access control models have been proposed in the literature for regu-
lating access to XML documents. We start our overview of these models by
presenting the first access control model for XML [9], which has then inspired

3 Two authorizations (s, 0,a) and (s',0',a’) are contradictory if s = s, 0 = o, and
a = a’, but one of them grants access, while the other denies it.

38 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

many other subsequent proposals. We then illustrate the Kudo et al. [13]
model that introduced the idea of using a static analysis system for XML
access control. Finally, we briefly describe other approaches that have been
studied in the literature to the aim of supporting write privileges and adopting
cryptography as a method for access control enforcement.

4.1 Fine Grained XML Access Control System

Damiani et al [9] propose a fine grained XML access control system, which
extends the proposals in [14, 15, 16], exploiting XML’s own capabilities to
define and implement an authorization model for regulating access to XML
documents.

We now present the authorizations supported by the access control model
and illustrate the authorizations enforcement process.

Authorizations Specification

Access authorization determines the accesses that the system should allow or
deny. In this model, access authorizations are defined as follows.

Definition 1 ((Access Authorization)). An access authorization a € Auth
is a five-tuple of the form: (subject, object, action, sign, type), where:

subject € AS is the subject for which the authorization is intended;
object is either a URIEObj or is of the form URI:PE, where URIEObj and
PFE is a path expression on the tree of document URI;
action=read is the action being authorized or forbidden;
sign € {+,—} is the sign of the authorization, which can be positive (allow
access) or negative (forbid access);

e type € {LDH, RDH, L, R, LD, RD, LS, RS} is the type of the authorization and
requlates whether the authorization propagates to other objects and how it
interplays with other authorizations (exception policy).

We now discuss in more detail each of the five elements composing an
access authorization.

Subject. This model allows to identify the subject of an authorization by
specifying both her identity and her location. This choice provides more
expressiveness as it is possible to restrict the subject authorized to access
an object on the basis of her identity and of the location from which the
request comes.

Subjects are then characterized by a triple
(user-id,IP-address,sym-address), where user-id is the identity with
which the user connected to the system, and IP-address (sym-address,
respectively) is the numeric (symbolic, respectively) identifier of the
machine from which the user connected. The proposed model supports

Access Control Models for XML 39

also user-groups and location patterns and the corresponding hierarchies.
Location patterns are however restricted by imposing that multiple wild
characters must be continuous, and that they must always appear as
rightmost elements in IP patterns and as leftmost elements in symbolic
patterns. As a consequence, location pattern hierarchies are always trees.
The user-group hierarchy and the location pattern hierarchies need to
be merged in a unique structure: the authorization subject hierarchy
AS, obtained as Cartesian product of the user-group hierarchy, the
IP hierarchy, and the symbolic names hierarchy. Any element in the
hierarchy is then associated with a user-id (or group), an IP address (or
pattern), and a symbolic name (or pattern). When one of these three
values corresponds to the top element in the corresponding hierarchy, the
characteristics it defines are not relevant for access control purposes, as
any value is allowed.

Object. The set of objects that should be protected is denoted as Obj and is
basically a set of URIs (Uniform Resources Identifiers) referring to XML
documents or DTDs. Reference to the finer element and attribute grains
is supported through path expressions, which are specified in the XPath
language.

Action. The authors limit the basic model definition to read authorizations
only. However, the support of write actions such as insert, update, and
delete does not complicate the authorization model. In [9] the authors
briefly introduce a method to handle also write operations, using a model
similar to the one proposed for read operations.

Sign. Authorizations can be either positive (permissions) or negative (de-
nials), to provide a simple and effective way to specify authorizations
applicable to sets of subjects/objects with support for ezceptions.

Type. The type defines how the authorizations must be treated with respect
to propagation at a finer granularity and overriding.

Authorizations specified on an element can be defined as applicable to
the element’s attributes only (local authorizations) or, in a recursive ap-
proach, to its subelements and their attributes (recursive authorizations).
To support exceptions (e.g., the whole content, except a specific element,
can be read), recursive propagation from a node applies until stopped by
an explicit conflicting (i.e., of different sign) authorization on the descen-
dants, following the “most specific overrides” principle. Authorizations
can be specified on single XML documents (instance level authorizations)
or on DTDs (schema level authorizations). Authorizations specified on a
DTD are applicable (i.e., are propagated) to all XML documents that are
instances of the DTD. According to the “most specific overrides” prin-
ciple, schema level authorizations being propagated to an instance are
overridden by possible authorizations specified for the instance. To ad-
dress situations where this precedence criterion should not be applied, the
model allows users to specify instance level authorizations as soft (i.e., to
be applied unless otherwise stated at the schema level) and schema level

40

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

Table 1. Authorization types

Propagation
Level/Strength Local Recursive
Instance L R
Instance (soft statement)|LS RS
DTD LD RD
DTD (hard statement) |LDH RDH

authorizations as hard (i.e., to be applied independently from instance
level authorizations). Besides the distinction between instance level and
schema level authorizations, this model allows the definition of two types
of schema level authorizations: organization and domain schema level au-
thorizations. Organization schema level authorizations are stated by a
central authority and can be used to implement corporate wide access
control policies on document classes. Domain schema level authorizations
are specified by departmental authorities and describe department poli-
cies complementing the corporate ones. For simplicity, these two classes
of authorizations are merged by performing a flat union (i.e., they are
treated in the same way).

The combination of the options above (i.e., local vs recursive, schema
vs instance level, and soft vs hard authorizations) introduces the eight
authorization types summarized in Table 1. Their semantics dictates a
priority order among the authorization types. The priority order from the
highest to the lowest is: LDH (local hard authorization), RDH (recursive
hard authorization), L (local authorization), R (recursive authorization),
LD (local authorization specified at the schema level), RD (recursive autho-
rization specified at the schema level), LS (local soft authorization), and
RS (recursive soft authorization).

Access Control Enforcement

Whenever a user makes a request for an object of the system, it is necessary to
evaluate which portion of the object (if any) she is allowed to access. To this
aim, the system builds a view of the document for the requesting subject [9].
The view of a subject on each document depends on the access permissions
and denials specified by the authorizations and on their priorities. Such a view
can be computed through a tree labeling process, followed by a transformation
process.

Given an access request rq and the requested XML document URI, the

tree labeling process considers the tree corresponding to URI and, for each of
its nodes, tries to identify if the requesting subject is allowed or denied access.
Each node n in the considered tree is associated with a vector n.veclabel|t]

Access Control Models for XML 41

that, for each authorization type ¢ €{LDH, RDH, L, R, LD, RD, LS, RS}, stores
the users for which there is a positive (n.veclabel[t].Allowed) and negative
(n.veclabel[t]. Denied) authorization of type t that applies to n. The algorithm
mainly executes the following steps.

Step 1: Authorization retrieval. Determine the set A of authorizations defined
for the document URI at the instance and schema levels and applicable
to the requester in rq (i.e., the subject of the authorization is the same,
or a generalization of the requested subject).

Step 2: Initial labeling. For each authorization
a=(subject, object, action, sign, type)c A, determine the set N of
nodes that are identified by a.object. Then, for each node n in N,
a.subject is added to the list n.veclabel[a.type].Allowed or to the list
n.veclabel|a.type]. Denied depending if a.sign is + or —, respectively.
Since several authorizations, possibly of different sign, may exist for each
authorization type, the application of a conflict resolution policy is neces-
sary. The final sign n.veclabelt].sign applicable to node n for each type ¢
is then obtained by combining the two lists according to the selected con-
flict resolution policy. The model is applicable and adaptable to different
conflict resolution policies. However, for simplicity it is assumed that con-
flicts are solved by applying the “most specific subject takes precedence”
principle together with the “denials take precedence” principle.

Step 3: Label propagation. The labels (signs) associated with nodes are then
propagated to their subelements and attributes according to the following
criteria: (1) authorizations on a node take precedence over those on its
ancestors, and (2) authorizations at the instance level, unless declared
as soft, take precedence over authorizations at the schema level, unless
declared as hard. The nodes whose sign remains undeterminate (€) are
associated with a negative sign since the closed policy is applied.

Step 4: View computation. Once the subtree associated with the request has
been properly labeled with + — signs, it is necessary to compute the
document’s view to be returned to the requester. Note that, even if the
requester is allowed access to all and only the elements and attributes
whose label is positive, the portion of the document visible to the re-
quester includes also start and end tags of elements with a negative label,
but that have a descendant with a positive label. Otherwise, the structure
of the document would change, becoming non compliant with the DTD
any more. The view of the document can be obtained by pruning from
the original document tree all the subtrees containing only nodes with a
negative or undefined label. The pruned document may be not valid with
respect to the DTD referenced by the original XML document. This may
happen, for instance, when attributes marked as #REQUIRED are deleted
because the final user cannot access them. To avoid this problem, a loos-
ening transformation is applied to the DTD, which simply defines as op-
tional all the elements (and attributes) marked as required in the original

42 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

Table 2. An example of access control policies

Subject Object Sign Action Type
1 Public,*,* /account_operation/@bankAccN — read LD
2 BankEmployee, *, * /account_operation + read RD
3 StatisticalAnalyst,*,* /account_operation + read RD
4 StatisticalAnalyst,*,* //notes — read LD
5 StatisticalAnalyst,*,* /account_operation/operation — read RD
[./type=“bank transfer”]
6 Client,*,* /account_operation —+ read R
[./@bankAccN=$userAcc]
7 BankEmployee,150.108.33.%,* /account_operation/@bankAccN + read L
8 StatisticalAnalyst,*,*.bank.com /account_operation//notes + read L
9 CashOperators,*,* /account_operation/ — read R

request [./means=“Internet”]

DTD. DTD loosening prevents users from detecting whether information
has been hidden by the security enforcement or was simply missing in the
original document [14].

Example 3. Consider the DTD and the XML document in Fig. 1, and
the user-group hierarchy in Fig. 3. Table 2 shows a list of access con-
trol policies. The first schema-level authorization states that nobody can
access attribute @bankAccN of element account_operation (1). Users be-
longing to BankEmployee and StatisticalAnalyst groups can access
the account_operation element (2 and 3), but StatisticalAnalyst
group is denied access to //notes (4). Since the fourth authorization
is LD, while third authorization is RD, the fourth policy overrides the
third one. Furthermore, StatisticalAnalyst group is denied access to
/account_operation/operation[./type=“bank transfer’], meaning that
users belonging to the group cannot access /account_operation/operation
if the operation is a bank transfer (5). Consider now the instance-
level authorizations. Users belonging to Client group can access the
account_operation element, if condition ./@bankAccN=$userAcc holds (vari-
able $userAcc represents the variable containing the bank account num-
ber for the requesting user) (6). Also, members of the BankEmployee
group and connected from 150.108.33.% can access @bankAccN at-
tribute (7). This authorization overrides the first authorization in
the table. Members of the StatisticalAnalyst group and connected
from *.bank.com can read /account_operation//motes for the spe-
cific instance (8). Finally, CashOperators group is denied access to
/account_operation/request[./means="“Internet”] (9).

Suppose now that Alice and David submit a request to read the document
in Fig. 1(b). Figure 4 illustrates the views returned to Alice and David at the
end of the access control process.

Access Control Models for XML 43

(accountioperatiun bankAccN % “0012”
[id] 00025

opertion
account_operation bank transfer
“00025” §1.500
W “10 0023
04-20-2007
Invoice 315 of
Internet notes 03-31-2007
(a) Alice’s view (b) David’s view

Fig. 4. Examples of views

4.2 Kudo et al. Static Analysis

Most of the access control systems proposed for XML documents are based on
a run-time policy evaluation, that is, any time an access request is submitted
to the system, the access control policies are evaluated. However, this run-
time policy evaluation may be quite expensive [13]. To avoid this problem,
Kudo et al. proposed an access control system based on static analysis, which
is complemented by a run-time analysis when needed [13].

Authorization Specification

Access authorizations are defined as triples of the form (s, +a, 0), stating that
authorization subject s is (or not, depending on the sign) allowed to perform
action a on object o.

An authorization subject may be a user-id, a role, or a group name: the
subject name is preceded by a prefix indicating its type. Note that hierarchical
structures are not supported by this model. The XPath language is used to
define objects in an authorization rule, but functions are not handled by the
considered model. Like in [9], the authors limit the basic model definition to
read authorizations only, and support both positive and negative authoriza-
tions to easily handle exceptions. However, this model does not distinguish
between schema and instance level authorizations.

Authorizations specified on an element can be defined as applicable to the
element’s attributes only (local authorizations) or, in a recursive approach,
to its subelements and their attributes (recursive authorizations). To solve
conflicts that may arise on a node, the proposed model can adopt either the
“denials take precedence” or the “permissions take precedence” principles,
independently from the node on which the conflicting authorizations have been
specified. For security reasons, the model presented in the paper limits the
analysis to “denials take precedence” principle adoption. The default closed
policy is applied when no authorizations are specified.

44 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

The framework proposed for static analysis is based on the use of automata
to compare schemas, authorizations, and queries. The static analysis tries to
evaluate anything that does not depend on the specific XML instance and
that can be evaluated simply on the basis of the schema and of the access
control policy. Formally, an automaton is defined as follows.

Definition 2 ((Non deterministic finite state automaton)). A non
deterministic finite state automaton (NFA) M is a five-tuple of the form
(2,Q,Q™", Q™. 8) where:

(2 is the alphabet;

Q is a finite set of states of M ;

Q™" C () is the set of initial states of M;
Q7™ C Q is the set of final states of M ;

0:Q X 2 — Q is the transition function of M.

The set of strings accepted by M, denoted L(M), is the language of the au-
tomaton.

Given the definition of non deterministic finite state automaton, it is pos-
sible to build a NFA corresponding to an arbitrary XPath expression r that
does not contain conditions. The NFA accepts a path iff it matches with r.
This correspondence is possible since XPath is limited to // operator and
conditions are not considered while building the NFA. However, if an XPath
expression contains conditions, it is possible to partially capture their seman-
tics by building two NFAs for the given XPath expression r: an overestimation
M]r] and an underestimation M|r]. The former automaton is obtained by as-
suming all conditions satisfied, while the latter is obtained by assuming all
conditions not satisfied.

Static Analysis

The static analysis exploits the definition of automaton and is composed of
the following four steps.

Step 1: Create schema automata. Given a schema (DTD or XML Schema)
that a document should follow, a schema automaton MS is built. This
automaton accepts all and only the paths that are allowed by the schema.

Step 2: Create access control automata. For each role (group) in the system,
a pair of automata is defined: an underestimate access-control automaton
M7" and an overestimate access-control automaton MT. For each role,
this pair of automata should accept the set of paths to elements and/or
attributes that the role is authorized to access. It is necessary to define
both an underestimate and an overestimate automaton since conditions
may be added to correctly handle the propagation of positive and negative
authorizations along the XML tree. In particular, since the “denials take
precedence” principle is adopted, an element is accessible only if it is the

Access Control Models for XML 45

descendant of an authorized node, and it is not the descendant of any

denied node.

Step 3: Create query reqular expressions. Given a query expressed in XQuery,
the XPath expressions appearing in the query are translated in equivalent
regular expressions E”. XPath expressions appearing as argument for the
clauses FOR, LET, ORDER, and WHERE are translated in equivalent (possibly
overestimated) regular expressions. XPath expressions appearing in the
RETURN clause are overestimated and the regular expression generated cap-
tures also any descendant of the nodes defined by the XPath expression.
Note that recursive queries cannot be handled, since the corresponding
regular expression would not be defined.

Step 4: Compare schema and access control automata with query reqular ex-
pressions. Given an XPath expression 7, it may be:

e always granted, if every path accepted by the query regular expression
E7 and by the schema automaton M is accepted by the (underesti-
mated) access control automaton MT;

e always denied, if no path is accepted by all of the query regular expres-
sion E", the schema automaton M%, and the (overestimated) access
control automaton M1

e statically indeterminated, otherwise.

Note that, if the schema is not defined, the schema automaton M accepts

any path.

The proposed static analysis method does not support conditions involv-
ing values specified in the XML documents. However, it is possible to extend
the model to the aim of partially handling value-based access control. Intu-
itively, if an access control policy and a query specify the same predicate, it
is possible to incorporate the predicate in the underlying alphabet adopted to
build NFAs. To this aim, it is necessary a pre-processing phase of the static
analysis method that identifies and substitutes predicates with symbols. Even
if this solution does not eliminate predicates completely, it improves query
efficiency by anticipating some predicate evaluations.

The main advantage of static analysis is that queries can be rewritten on
the basis of the XPath expressions they consider. If the query contains a path
expression classified as always denied by the fourth step of the static analysis
process, it can be removed from the query without evaluation. By contrast,
path expressions classified as always granted, simply need to be returned to
the requester. Those path expressions that are classified as statically indeter-
minate have to be run-time evaluated, on the basis of the specific instance
they refer to.

The authors provide also a way for easily building a schema (DTD or XML
Schema), which can be released without security threats, depending on the
authorizations of the requesting user. This method is based on the automata
structures previously described. The view schema contains only elements vis-

46 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

ible to the final user, while non accessible elements containing accessible ones
are renamed as AccessDenied elements [13].

As a support for the proposal, experimental results are presented demon-
strating the efficiency gain due to static analysis with respect to run-time
analysis proposed by other approaches.

Example 4. Consider the DTD and the XML document in Fig. 1 and suppose
that there are three user-groups: BankEmployee, which are employees of the
considered bank institute, StatisticalAnalyst, which are bank employees
who make statistics about clients and their operations, and Client, which are
people having a bank account at the institute.

Consider a set of authorizations stating that the members of the
BankEmployee group can access the whole content of the account_operation
element, members of the StatisticalAnalyst group can access the content of
the account_operation element but the notes elements, and each client can
access the account_operation elements about their bank account. Formally,
these authorizations can be expressed as follows.

group: BankEmployee, /account_operation, + read, recursive

group: StatisticalAnalyst, /account_operation, + read, recursive
group: StatisticalAnalyst, //notes, - read, recursive

group: Client, /account_operation[./@bankAccN=$userAcc], + read,
recursive

We first define the schema automaton corresponding to the considered
DTD. It is first necessary to define two sets of symbols, representing elements
and attributes, respectively.

rE= {account,operation, request, operation, date, means, notes, type,
amount, recipient, value}
Y A= {@bankAccN, @Id, @number}

Given X¥ and X4, it is now possible to define the schema automaton M as
follows.

N=xfyxs
Q={Account_Operation, Request, Operation, Date, Means, Notes, Type,
Amount, Recipient, Value}U{¢"™*}u{q/""}
Qinit:{qinit}
Q’""={Date, Means, Notes, Type, Amount, Recipient, Value}U{q/"}
5(¢"™* ;account_operation)=Account_Operation
0(Account_Operation,request)=Request
(Account_Operation,operation)=Operation
(Request,date)=Date
(Request,means)=Means
(Request,notes)=Notes
(Operation,type)=Type
(Operation,amount)=Amount;

o
o
o
o
4]
o

Access Control Models for XML 47

0(Operation,recipient)=Recipient
d(Operation,notes)=Notes;
d(Operation,value)=Value
§(Account_Operation,@bankAccN)=q/ ™"
§(Account_Operation,@Id)=¢f "
§(Request,@number)=g/""

The schema automaton defined accepts the same paths allowed by the
considered DTD. Specifically, L(M%) is equal to: /account_operation,
/account_operation/@Id, /account_operation/@bankAccN,
/account_operation/request, /account_operation/request/@number,
/account_operation/request/date, /account_operation/request/means,
/account_operation/request/notes, /account_operation/operation,
/account_operation/operation/type,
/account_operation/operation/amount,
/account_operation/operation/recipient,
/account_operation/operation/notes,
/account_operation/operation/value.

The second step of the static analysis method consists in building the
access control automata M’ and M7, for each of the three groups of users
considered. For the sake of simplicity, we represent only the language of the
automaton.

BankEmployee L(MT)={account_operation}-(XF)* . (X4 U {e})

Statistical Analyst L(M!")={account_operation}-(L¥)* . (X4 U {e})\
{notes}-(XE)* . (X4 U {e}) L

Client L(MT)=0 - (£F)* . (24 U {e}); L(MT)={account_operation}-(XF)* .
(ZAU{e})

Here, - is the concatenation operator, \ is the set difference operator, € is the
nil character, and (XF)* represents any string in JF.

Consider now the XQuery expression introduced in Example 2. The cor-
responding XPath expressions, classified on the basis of the clause they are
represented in, are:

FOR, LET, ORDER BY ,WHERE: /account_operation;
/account_operation/operation/type

RETURN: account_operation/operation/amount;
account_operation/operation/recipient;
account_operation//notes

Here record//motes implies both record/request/notes and
record/operation/notes.

On the basis of the static analysis, it is possible to classify the requests
submitted by users. As an example, consider the following requests.

e BankEmployee requests /account_operation/operation/type: the re-
quest is always granted,;

48 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

e StatisticalAnalyst requests /account_operation//notes: the request
is always denied,

e Client requests /account_operation/operation/amount: the request is
statically indeterminate.

The last request introduced by the example is statically indeterminate as the
path expression /account_operation[./@bankAccN=$userAcc] in the access
control policy cannot be statically captured by an automaton. To solve this
problem, it is possible to rewrite the policy, and all the statical analysis tools,
adding two new symbols to the considered alphabet: account_operationl =
/account_operation[./@bankAccN=$userAcc] and account_operation2 =
/account_operation[not ./@bankAccN=$userAcc].

4.3 Other Approaches

Besides the two access control models described above, a number of other
models have been introduced in the literature for controlling access to XML
documents.

The first work of Kudo et al. [10] introduce provisional authorizations in
XML access control. A provisional authorization is an authorization allowing
the specification of a security action that the user (and/or the system) has to
execute to gain access to the requested resource. A security action may be for
example, the encryption of a resource with a given key, or the recording in
the log of an access control decision. Due to the problem of run-time policy
evaluation, Kudo et al. [6] present a different access control model, based
on the definition of an Access-Condition-Table (ACT). An ACT structure is
statically generated from an access control policy. The ACT contains, for each
target path in the XML document, an access condition and a subtree access
conditions, which are the conditions that have to be fulfilled to gain access
to the node and to its subtree, respectively. By using the ACT, the run-time
evaluation of requests is reduced from the whole policy to an access condition.
The proposed model has however some disadvantages: it does not scale well,
and it imposes limitations on XPath expressions. To overcome these issues
the authors propose an alternative structure to ACT, the Policy Matching
Tree (PMT) [7], which supports real-time updates of both policy and data. In
this case, the pre-processing phase consists in building the tree structure on
the basis of the access control policy. Whenever a user makes a request, an
algorithm visits the path in the tree that matches the request, to compute the
correct answer stored in the leaf. To further improve computational efficiency,
the authors propose a function-based access control model that has a rule
function for each authorization in the policy [17]. A rule function is a piece
of executable code, which is run any time an access request matches with
the rule, and returning the answer for the final user. Function rules can be
organized on the basis of the subject or object they refer to: the first solution
has been empirically proven to be more efficient.

Access Control Models for XML 49

An alternative solution to the static analysis proposed by Kudo et al. is
presented in [18], where the authors propose to store the access control policy
in a space and time efficient data structure, called compressed accessibility
map (CAM). This structure is obtained by exploiting the structural locality
of access authorizations, that is, by grouping object having similar access
profiles.

Another model proposing a pre-processing phase for access control pur-
poses is introduced in [19], where the pre-processing algorithm, called QFilter
rewrites these queries by pruning any part that violate access control rules.

The concept of view as the portion of an XML document that can be
released to the user (introduced first by Damiani et al. [9]) has been exploited
by different models.

The solution proposed by Fan et al. [20] is based on the concept of security
view. A security view of an XML document provides with each user group both
a view of the XML document with all and only the information that the group
can access, and a view of the DTD, compliant with the released portion of the
XML document. It is important to note that, concretely, each document has
one security view, obtained by marking the XML document according with
the access control policy. Authorized users are then supposed to make queries
over their security view. In the paper, the authors propose both an algorithm
for computing security views from an access control policy, and an algorithm
for reformulating queries posed on security views to be evaluated on the whole
XML document, avoiding materialization.

An alternative method for view generation has also been proposed [21].
This model uses an authorization sheet to collect all the authorizations. The
authorization sheet is then translated in an XSLT sheet, which grants the
generation of the correct view to the user when she asks for (a portion of) the
document.

In [22] the authors propose an alternative method to the tree labeling
process for view generation, since it may be inefficient if the size of the tree and
the number of requests increase. The alternative model stores XML documents
in a relational database, which is used to select data on users’ request, and to
check only selected data against the access control policy, instead of labeling
the whole XML tree.

Bertino et al. proposed different works aimed at access control enforce-
ment in XML documents [23, 24, 25, 5]. In particular, they propose a model
supporting the use of credentials (i.e., sets of attributes concerning a specific
user) for subject definition.

Since XML documents represent an alternative to the traditional rela-
tional database model, some models adopt solutions proposed for relational
databases [8, 26]. In [8] the author proposes to adopt SQL syntax and se-
mantics to XML documents. Each user manages all privileges on her files,
and grants or revokes them to other users, possibly along with the grant
option.

50 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

The model proposed in [26] does not use SQL syntax, but exploits the
concept of view as in relational databases to restrict access to data. In this
case, views are defined by using the XQuery language, and may be authoriza-
tion objects. The model supports not only structure-based authorizations, but
also rules depending on the context or content of the considered documents
by adding conditions in XQuery expressions.

Since relationship among elements/attributes may reveal sensitive infor-
mation, in [27] the authors propose the definition of access control rules on the
relationship among XML elements and attributes (i.e., on arcs in the XML
tree). It is then presented a technique to control the view that can be released
of the path leading to any authorized node in an XML document. The authors
introduce also a rule-based formulation of the new class of authorizations.

To the aim of adding semantic meaning to authorizations, RDF (Resource
Description Framework) is used as a new way for expressing access control
policies [28]. The paper focuses also on the problem of controlling data associ-
ations, and adds a new object type to the classical model: the association secu-
rity object. An association security object is an XML subtree whose elements
can be accessed only separately. To solve the problem of data associations,
the model uses temporal data.

All the models introduced above for access control of XML documents
are based on the discretionary access control model [12]. In [29], the authors
propose a role-based access control model (RBAC) for XML documents, which
exploits the main characteristics of XML data.

In [30] the authors propose the first access control model for XML docu-
ments operating client-side. The main difference with respect to the previous
proposals is that this method needs to operate on stream data and it is sup-
posed to operate on a system where the server storing data may not be trusted
for access control enforcement.

Recently, a new class of methods have been also proposed for access con-
trol enforcement for XML documents [5, 31, 32]. These methods consider a
data outsourcing scenario, where XML documents are stored on a possibly
not trusted server, and are not under the data owner’s direct control. In these
cases, XML documents themselves should enforce access control, since this
task cannot either be executed by the owner or by the storing server. Access
control is enforced through selective encryption, that is, by encrypting differ-
ent portions of the XML tree by using different encryption keys. Consequently,
a correct key distribution to users ensures that access control enforcement is
correct.

5 Conclusions
The role of XML in the representation and processing of information in cur-

rent information systems is already significant and is certainly going to see
a considerable increase in the next years. The design and implementation of

Access Control Models for XML 51

an access control model for XML promises to become an important tool for
the construction of modern applications. The research of the last few years
presented in this chapter has produced several proposals for the construction
of an access control solution for XML data. These results are a robust basis
for the work of a standard committee operating within one of the important
consortia involved in the definition of Web standards. Thanks to the avail-
ability of such a standard, it is reasonable to expect that XML access control
models will be used to support the data protection requirements of many ap-
plications, making XML access control a common tool supporting the design
of generic software systems.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (XML) 1.0 (fourth edition) (August 2006) W3C Recommen-
dation.

2. Berglund, A.: Extensible stylesheet language (XSL) version 1.1 (December 2006)
W3C Recommendation.

3. Clark, J., DeRose, S.: XML path language (XPath) version 1.0 (November 1999)
W3C Recommendation.

4. Boag, S., Chamberlin, D., Fernndez, M.F., Florescu, D., Robie, J., Simon, J.:
XQuery 1.0: An XML query language (January 2007) W3C Recommendation.

5. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents.
ACM Transaction Information System Security 5(3) (August 2002) 290-331

6. Qi, N., Kudo, M.: Access-condition-table-driven access control for XML
databases. In: Proc. of the 9th European Symposium on Research in Computer
Security, Sophia Antipolis, France (September 2004)

7. Qi, N., Kudo, M.: XML access control with policy matching tree. In: Proc. of
the 10th European Symposium on Research in Computer Security, Milan, Italy
(September 2005)

8. Gabillon, A.: An authorization model for XML databases. In: Proc. of the 2004
Workshop on Secure Web Service (SWS04), Fairfax, Virginia (November 2004)

9. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A
fine-grained access control system for XML documents. ACM Transaction In-
formation System Security 5(2) (May 2002) 169-202

10. Kudo, M., Hada, S.: Xml document security based on provisional authoriza-
tion. In: Proc. of the 7th ACM Conference on Computer and Communications
Security (CCS00). (November 2000)

11. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems 26(2)
(June 2001) 214-260

12. Samarati, P., di Vimercati, S.D.C.: Access control: Policies, models, and mech-
anisms. In Focardi, R., Gorrieri, R., eds.: Foundations of Security Analysis and
Design. LNCS 2171. Springer-Verlag (2001)

13. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. ACM Transaction Information System Security 9(3) (August 2006)
292-324

52

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: De-
sign and implementation of an access control processor for XML documents.
Computer Networks 33(1-6) (June 2000) 59-75

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Securing
XML documents. In: Proc. of the 7th International Conference on Extending
Database Technology (EDBT00), Konstanz, Germany (March 2000)

Damiani, E., Samarati, P., De Capitani di Vimercati, S., Paraboschi, S.: Con-
trolling access to XML documents. IEEE Internet Computing 5(6) (Novem-
ber/December 2001) 18-28

Qi, N., Kudo, M., Myllymaki, J., Pirahesh, H.: A function-based access control
model for XML databases. In: Proc. of the 2005 ACM CIKM International Con-
ference on Information and Knowledge Management, Bremen, Germany (Octo-
ber - November 2005)

Yu, T., Srivastava, D., Lakshmanan, L.V.S., Jagadish, H.V.: Compressed ac-
cessibility map: Efficient access control for XML. In: Proc. of the 28th Inter-
national Conference on Very Large Data Bases (VLDB), Hong Kong, China
(August 2002)

Luo, B., Lee, D., Lee, W.C., Liu, P.: QFilter: fine-grained run-time XML access
control via NFA-based query rewriting. In: Proc. of the 2004 ACM CIKM Inter-
national Conference on Information and Knowledge Management, Washington,
DC, USA (November 2004)

Fan, W., Chan, C.Y., Garofalakis, M.: Secure XML querying with security views.
In: Proc. of the 2004 ACM SIGMOD International Conference on Management
of Data, Paris, France (June 2004)

Gabillon, A., Bruno, E.: Regulating access to XML documents. In: Proc. of the
Fifteenth Annual Working Conference on Database and Application Security
(Das01), Niagara, Ontario, Canada (July 2002)

Tan, K.L., Lee, M.L., Wang, Y.: Access control of XML documents in relational
database systems. In: Proc. of the 2001 International Conference on Internet
Computing, Las Vegas, Nevada, USA (June 2001)

Bertino, E., Braun, M., Castano, S., Ferrari, E., Mesiti, M.: Author-X: A Java-
based system for XML data protection. In: Proc. of the IFIP TC11/ WG11.3
Fourteenth Annual Working Conference on Database Security, Amsterdam, The
Netherlands (August 2000)

Bertino, E., Castano, S., Ferrari, E.: Securing XML documents with Author-X.
IEEE Internet Computing 5(3) (May/June 2001) 21-31

Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying and enforcing access
control policies for XML document sources. World Wide Web 3(3) (June 2000)
139-151

Goel, S.K., Clifton, C., Rosenthal, A.: Derived access control specification for
XML. In: Proc. of the 2003 ACM Workshop on XML Security (XMLSEC-03),
New York (October 2003)

Finance, B., Medjdoub, S., Pucheral, P.: The case for access control on XML
relationships. In: Proc. of the 2005 ACM CIKM International Conference on
Information and Knowledge Management, Bremen, Germany (October - Novem-
ber 2005)

Gowadia, V., Farkas, C.: RDF metadata for XML access control. In: Proc. of
the 2003 ACM Workshop on XML Security (XMLSEC-03), New York (October
2003)

29.

30.

31.

32.

Access Control Models for XML 53

Hitchens, M., Varadharajan, V.: RBAC for XML document stores. In: Proc. of
the Third International Conference on Information and Communications Secu-
rity (ICICS01), Xian, China (November 2001)

Bouganim, L., Ngoc, F.D., Pucheral, P.: Client-based access control manage-
ment for XML documents. In: Proc of the 30th VLDB Conference, Tornoto,
Canada (September 2004)

Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of the 29th VLDB Conference, Berlin, Germany (September 2003)
Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of the 32nd VLDB Conference, Seoul, Korea (Septem-
ber 2006)

3

Access Control Policy Languages in XML

Naizhen Qi and Michiharu Kudo

Tokyo Research Laboratory
IBM, Japan
{naishin, kudo}@jp.ibm.com

Summary. Policy specification for XML data access control has been difficult since
the specification languages usually have complicated semantics and syntax. In this
chapter, first we introduce the semantics and syntax of two security policy languages
and one policy framework. Then we address several tools for policy modeling and
generation which help users in capturing security concerns during the design, and
developing the security policies and functions during the implementation.

1 Introduction

Since repeated security incidents such as unexpected personal information
leakages and identity thefts have been increasing recently, secure data man-
agement is becoming a crucial factor for applications and services. A fun-
damental enforcement of data management is to specify the access control
policies to control each request to the data handled by the system and to
determine whether the request should be granted or denied. Several expres-
sive and powerful policy specification languages like XACL [9], XACML [10]
and WS-Policy [20] have been designed for the specification of XML-based
security policies. However, there are also difficulties in policy specification, in-
tegration, management, and maintenance owing to the complicated semantics
and syntax of these policy languages.

In this chapter, we discuss several access control policy languages designed
for fine-grained XML data management, then address several mechanisms
and tools for policy modeling and generation. With these tools, the business
stakeholders are able to capture and integrate security concerns at a higher
business level, and the developers can easily associate the security-related
requirements with the security policies and the implementation.

56 Naizhen Qi and Michiharu Kudo
2 Policy Specification Languages

Generally speaking, there are three types of policy representation regarding
access authorization: access control policy specification languages, privacy pol-
icy specification languages, and formal specification languages. Access control
policy specification languages include XACL, XACML, and Authorization
Specification Language (ASL) [11, 12]. Privacy policy specification languages
include P3P [15], and EPAL [2]. The XACML also covers some features of pri-
vacy policy. Formal specification languages include Alloy [1], Formal Tropos
[6], KAOS [5], Larch [7], UML [16][19], and Z [18]. Moreover, as Web services
become more and more common in use, the WS-Policy framework[20] for Web
services, is also well-known.

In this chapter, we briefly introduce the access control policy specification
languages of XACL, XACML, and the Web services governance specification
of WS-Policy framework as they can be broadly used in various XML-based
systems, and as standardized by specific organizations.

3 Example XML Document and Associated Policy

First, we use a sample XML document and policy to illustrate how to represent
fine-grained access control policy for XML documents. The example is a Web-
based paper review application that simulates a typical anonymous paper-
reviewing process. In addition, all of the access control policies in this chapter
are specified for this XML document.

e Authors submit their papers and a chairperson assigns one or more re-
viewers to each submitted paper.

e The reviewers read and evaluate the papers assigned to them without
knowing who the authors are.

e The program committee members read the reviewers’ evaluations and de-
cide which papers should be accepted.
The chairperson makes the final decisions on the accepted papers.
Each author receives notification of acceptance or rejection.

The review summary XML document stores all of the information and
the states for the reviewing process such as the author information and the
evaluation results. Figure 1 shows such an XML document that includes one
paper submission from Carol, which final decision is to accept reviewed by
a reviewer Robert with a rating of 3.5. Any operations regarding the paper
review process can be represented as an access to the XML document such as
a read access to the paper id attribute and an update access to the result
element.

We need to specify appropriate access control policies that will be enforced
on this XML document in order to support the anonymous paper reviewing
process. Figure 2 shows an example access control policy specified on the

Access Control Policy Languages in XML 57

<review_summary>
<notificationDue>6/30/07 0:0 AM</notificationDue>
<entry>
<paper id="0120">XML Policy Model</paper>
<contents encoding="Base64">4Dxk5lw...</contents>
<authorName>Carol</authorName>
<review>
<reviewerName>Robert</reviewerName>
<rating>3.5</rating>
</review>
<result status="final">Accept</result>
</entry>
</review_summary>

Fig. 1. An example XML document

review XML document. The rule R1 is the default policy for the chairperson.
Rule R2 gives the write permission on the result field to the chairperson. Rule
R3 allows the reviewers to read any node below the entry element except for
the authorName element. Rule R4 allows the reviewers to update their rating
element. Rule R5 allows authors access to their paper submission. Rule R6
defines the temporal policy with regard to the notification date.

R1: The chairperson can read any elements, attributes and text nodes of the review
document.

R2: The chairperson can write the review result (accept or reject) in the result
field.

R3: Each reviewer can read the entry element (and any subordinates nodes) as-
signed to him except for the authorName.

R4: Each reviewer can fill in the rating element assigned to him.

R5: Each author can read his own submission entry except for the review elements.

R6: Each author can read the result of his submission after the date of the noti-
fication.

Fig. 2. An access control policy example

For example, when the chairperson issues a read access request for the
author Name element, the access should be permitted according to R1. On
the other hand, when a reviewer tries to read the authorName element, the
access should be denied according to R3. When an author tries to read the
result element, the access should be permitted only after the notification
date has passed according to R6. Therefore, a query like "retrieve complete
XML nodes below the document root” must reflect all of the access control
policies at the time of the access.

58 Naizhen Qi and Michiharu Kudo
4 XML Access Control Policy Languages

4.1 XACL

The XML Access Control Language (XACL)[9] is a fine-grained access control
policy specification language for XML data. It allows application developers
to specify policies at the element and attribute levels with various conditional
expressions. XACL uses XPath expressions to specify the targets of a policy
with either positive or negative permissions. It provides several ways to re-
solve conflicts between the decisions, either by the permit-takes-precedence or
the denial-takes-precedence resolution policies. The XACL also defines how
the access effects propagate on the XML tree structure. By default, a read
permission specified on a certain element automatically propagates upward to
the root node as well as propagating downward to its descendants.

Policy Syntax and Semantics.

The XACL policies are specified using xacl elements and one or more rule
elements that specify permit or deny authorization conditions. Two or more
rules are disjunctively combined according to the pre-defined combining al-
gorithms. The authorization subject is specified using one or more subject
descriptors of group, role, or userid under a subject element. With regard
to the authorization objects, XACL only supports XPath expressions as an
href attribute of the object element. There are four types of authorization
actions in XACL, read, write, create, and delete. Arbitrary conditional
expressions can be specified using the operation attributes, the predicate
elements, or the parameter elements below the condition elements. Figure
3 expresses Rule R3 of Figure2.

Rule R3-1 specifies a permissive rule on a /review_summary/entry el-
ement for the reviewer group with the condition that only the reviewer in
charge can access the paper content and the submission information. Since
the XACL supports the downward propagation from the target node by de-
fault, any subordinate nodes below the entry element, e.g. the authorName
and reviewerName elements, are also the target authorization objects of this
rule.

In contrast, Rule R3-2 specifies a denial rule for all reviewers on the /re-
view_summary/entry/authorName element which enables anonymous paper
review policy. Where this rule contradicts the permissive R3-1 rule, the con-
flict resolution denial-takes-precedence policy, which is supposed to be
specified for the property element below the policy element, denies access
to the authorName.

Binding Scheme.

How to bind a set of policies written in XACL with target documents is out
of the scope of XACL. There are two fundamental approaches. One is the

Access Control Policy Languages in XML 59

<policy xmlns="http://www.trl.ibm.com/projects/xml/xacl">
<xacl id="R3-1">
<object href=" /review_summary/entry"/>
<rule><acl>
<subject><group>reviewer</group></subject>

<action name="read" permission="grant"/>
<condition operation="and">
<predicate name="compareStr">
<parameter value="eq"/>
<parameter><function name="getValue">
<parameter value="./review/reviewerName/text()"/></function>
</parameter>
<parameter><function name="getUid"/></parameter>
</predicate>
</condition>
</acl></rule>
</xacl>

<xacl id="R3-2">

<object href="/review_summary/entry/authorName" />

<rule><acl>
<subject><group>reviewer</group></subject>
<action name="read" permission="deny"/>

</rule></acl>

</xacl>

</policy>

Fig. 3. XACL Policy

association at the schema definition (e.g. DTD) level and the other is the
association at the level of each specific document. In the DTD-level approach,
a set of policies is bound to all documents valid according to the specified
DTD. Therefore, one needs to maintain the mapping between a particular
DTD and the associated policy. In the document-level approach, a policy is
bound to each specific document. In this case, an associated policy, which is
encoded as a policy element, may be an element contained within the target
document.

Basic Matching Algorithm

The access control system basically takes an authorization request as input
and outputs an authorization decision including provisional actions. The ac-
cess control enforcement may consist of the basic matching algorithm and the
policy evaluation algorithm.

Input: An authorization request which contains a requested object, a subject
for the requester, and the action.
Output: A decision list, which may contain multiple decisions.
Step 1. Object-Check: Search the associated policy for each xacl el-
ement whose object element contains a node specified in the autho-
rization request.

60 Naizhen Qi and Michiharu Kudo

Step 2. Subject-Check: For each xacl element unit, check if the sub-
ject and the action are semantically equal to the corresponding spec-
ification in the xacl element.

Step 3. Condition-Check: For each of the remaining xacl elements,
check if it meets the condition.

Step 4. Decision-Record: Make a decision for each of the remaining
xacl elements, where each decision includes the object, the subject,
and the action specified in the xacl element, and append all the de-
cisions to the authorization decision list.

Policy Evaluation Algorithm

The policy evaluation algorithm deals with propagation and conflict resolu-
tion. We note that this algorithm always outputs exactly one authorization
decision.

Input: An authorization request.
Output: A decision of grant or deny.

Step 1. Propagation Processing: Call the basic matching algorithm
for the request and append the propagated access effects to the deci-
sion list.

Step 2. Conflict Resolution: If there is a conflict on the request
object, resolve with the conflict resolution policy.

Step 2. Default Resolution: If there is no authorization decision in
the list, make a decision according to the default policy and append
it to the decision list.

Step 3. Select one decision: Select on evaluation result from the
list containing at least one decision.

4.2 XACML

XACML [10] is an access control policy specification language standardized by
OASIS. XACML defines the format for policy and request/response messages.
The scope of this language is to cover access control systems as broadly as
possible. Therefore, the XACML core schema is designed to be extensible for
yet unknown features.

XACML achieves interoperability of access control policies among hetero-
geneous computing platforms. The biggest difference from the XACL language
is that the XACL focuses on the access control policy only for XML datal',
while the generalized XACML policies support any resources, including XML
data.

! Many portions of XACML policy model is originated from the XACL language

Access Control Policy Languages in XML 61
XACML Architecture.

Figure 4 shows an XACML data-flow diagram.

XACML adds one additional component called a Context Handler between
PEP and PDP, which supplies sufficient information for any access request using
the Policy Information Point (PIP). The interface from PIP to PDP is
defined in XACML as a Request Context. PDP retrieves applicable access
control policies from Policy Administration Point (PAP) and makes the
decision using the relevant policies and the request context. The decision is
returned back to PEP via Context Handler.

Obligations
Service
Request Response ——
Access
Requester
Context
e
Policy
Repository Request Response
Context Context
{ PEP: Policy Enforcement Point |
PAP PDP { PIP: Policy Information Point ;
XACML | PAP: Policy Administration Point |
Policy . PDP: Policy Decision Point |

Fig. 4. XACML Architecture

Policy Syntax and Semantics.

Each XACML policy is basically specified using a Policy element which con-
sists of a Target element that specifies the conditions when the policy is
applicable, and one or more Rule elements that contain Boolean expressions
specifying permit or deny authorization conditions. In addition, Rule can be
evaluated in isolation to form a basic unit of management and can be reused
in multiple policies when PolicySet is used to specify multiple policies si-
multaneously. XACML also provides a flexible way to extend the semantic
knowledge to support application-specific access control policies with an ex-
tensible Rule-combining (or Policy-combining) algorithm.

62 Naizhen Qi and Michiharu Kudo

Figure 5 shows an example? for a XACML policy corresponding to the
third rule R3 of Figure 2. The Target element specifies the applicability of
some R by saying that the role of the requesting subject should be Reviewer-
Name and the requested action should be read. The policy R consists of three
Rules, R3-1, R3-2, and R3-3.

R3-1 signifies that an access to the review_summary element is permit-
ted. Note that this rule does not indicate anything about subordinate nodes,
since the xpath-node-equal matching function checks the access only for
the specified node, which is a review_summary element. R3-2 signifies that
a read access to an entry element and its subordinate nodes is permitted
when the name of the requesting subject is identical to the value specified in
the reviewerName element. The semantics of the propagation to subordinate
nodes is handled by the xpath-node-match matching function. R3-3 states
that a read access to the authorName element is denied.

These three rules are combined by the denial-overrides algorithm,
which basically means that if any rule evaluates to deny, then the result
of the rule combination should be deny. For example, R3-2 permits read ac-
cess to the authorName element while R3-3 explicitly denies the access. Then
the denial -overrides algorithm concludes that the access to the entry
element should be denied. In addition, there are several other rule combin-
ing algorithms in the XACML specification, such as first applicable and
only-one applicable.

Decision Combining Algorithms

Each rule can specify a rule combining algorithm which defines a procedure
for arriving at an authorization decision when the individual results of the
evaluations of a set of rules or policies are provided. Various rule combin-
ing algorithms, in particular, Permit-overrides, Only-one-applicable, and
First-applicable, are supported besides the

Deny-overrides algorithm of the previous example.

The Permit-overrides algorithm is a procedure such that if there exists
any rule that evaluates to permit, then the decision is permit. However, if all
of the rules evaluate to not applicable, or some rules evaluate to deny but
some evaluate to not applicable, then the decision is deny.

The Only-one-applicable algorithm says that if more than one rule ap-
plies, then the decision is indeterminate. If no rule applies, then the result is
not applicable. If only-one policy applies, the decision is evaluated by that
rule.

The First-applicable algorithm is a procedure such that the rules are
evaluated in the order of appearance in the policy. The first rule such that the

2 The syntax used in Figure5 is somewhat abbreviated due to space lim-
itations. The exact URI specification of the rule-combining algorithm is
“urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm: deny-overrides”.

Access Control Policy Languages in XML 63

<Policy xmlns:rs="reviewpaper.xsd" PolicyId="R3"

RuleCombiningAlgId="deny-overrides">
<PolicyDefaults><XPathVersion>Rec-xpath-19991116</XPathVersion>
</PolicyDefaults>
<Target>

<Subjects><Subject><SubjectMatch MatchId="string-equal">
<AttributeValue DataType="string">Reviewer</AttributeValue>
<SubjectAttributeDesignator AttributeId="role" DataType="string"/>
</SubjectMatch></Subject></Subjects>
<Actions><Action><ActionMatch MatchId="string-equal">
<AttributeValue DataType="string">read</AttributeValue>
<ActionAttributeDesignator AttributeId="action-id"
DataType="string"/>
</ActionMatch></Action></Actions>
</Target>
<Rule RuleId="R3-1" Effect="Permit">
<Target><Resources><Resource><ResourceMatch MatchId="zpath-node-equal">
<AttributeValue DataType="xpath-exp">//rs:review_summary</>
<ResourceAttributeDesignator Attributeld="resource-id"
DataType="xpath-exp"/>
</ResourceMatch></Resource></Resources></Target>
</Rule>
<Rule RuleId="R3-2" Effect="Permait">
<Target><Resources><Resource><ResourceMatch MatchId="zpath-node-
match">

<AttributeValue DataType="xpath-exp">//rs:review_summary/rs:entry</>
<ResourceAttributeDesignator Attributeld="resource-id"
DataType="xpath-exp"/>
</ResourceMatch></Resource></Resources></Target>
<Condition><Apply FunctionId="string-equel">
<AttributeSelector DataType="xpath-exp"
RequestContextPath="//rs:review_summary/rs:entry/rs:review/rs:reviewerName
Jrs:text()"/>
<SubjectAttributeDesignator AttributeId="subject-id"
DataType="xpath-exp"/>
</Apply></Condition>
</Rule>
<Rule RuleId="R3-3" Effect="Deny">
<Target><Resources><Resource><ResourceMatch MatchId="xpath-node-
match">
<AttributeValue DataType="xpath-exp">//rs:review_summary/rs:entry
/rs:authorName</>
<ResourceAttributeDesignator AttributeId="resource-id"
DataType="xpath-exp"/>
</ResourceMatch></Resource></Resources></Target>
</Rule>
</Policy>

Fig. 5. XACML access control policy corresponding to R3

64 Naizhen Qi and Michiharu Kudo

access target matches and the optional conditions match, is used to decide
the result of the request.

These decision combining algorithms allow administrators to provide var-
ious levels of security restrictions on their sensitive data.

Access Request.

XACML defines the format for the request message that provides context
for the policy-based decisions. Each request may contain multiple Subject
elements and multiple attributes for the Subject, Resource and Action.

Figure 6 shows a sample XACML Request Context format where Robert
requests a read access for the first entry element of the review summary XML
document. The request context consisting of three sub-structures, Subject
information, Resource information, and Action information, each consisting
of one or more attribute type-value pairs. In this example, subject-id and
role are attribute types and Robert and reviewerName are attribute values,
respectively. It is assumed that those attributes are given by a separate au-
thentication mechanism that is out of the scope of the XACML specification.

Regarding to resource information, the XACML request context can con-
tain the target XML data as relevant information about the target resource.
The ResourceContent element contains the review_summary XML data with
the namespace prefixed by rs:. The target XML document is referred to from
the access control policy using the AttributeSelector function. For exam-
ple, rule R3-2 of Figure 5 specifies the path, //rs:review_summary/rs:entry
/rs:review/rs:reviewerName/text (), which refers to Robert. This is one
of the advantages of the XACML policy model that allows the policy to refer
to any of the values of the target XML data as embedded in the Request
Context and to compare those values against constant values.

Access Response.

The response message defined by XACML provides the format for conveying
the Decision (Deny or Permit) and the Status of an access request evaluation
as Figure 7 shows. In our example, the decision is Deny since the requested
entry element contains an AuthorName element that should not be acces-
sible to the Reviewer. The EntireHierarchy scope parameter specified in
the Resource of the XACML Request Context defines the semantics of the
response context such that if any of the descendants nodes of the requested
node have one or more access-denial nodes, then the resulting decision should
be a denial.

4.3 WS-Policy

WS-Policy Framework [20] is a W3C standard Web services governance spec-
ification that enables a service to specify what it expects of callers and how

Access Control Policy Languages in XML

<Request>

<Subject>
<Attribute AttributeId="subject-id" DataType="string">
<AttributeValue>Robert</AttributeValue> </Attribute>
<Attribute AttributeId="role" DataType="string">
<AttributeValue>Reviewer</AttributeValue>

</Attribute>

</Subject>

<Resource scope="EntireHierarchy">
<ResourceContent>

<rs:review-summary xTmlns:rs="urn:review_-summary:schema">
<rs:notificationDue>6/30/07</rs:notificationDue>
<rs:entry>
<rs:paper t1d="0120">XML Policy Model</rs:paper>
<rs:authorName>Carol</rs:authorName>
<rs:review><rs:reviewerName>Robert</rs:reviewerName>
<rs:rating>3.5</rs:rating>
</rs:review>
<rs:result status="final">Accept</rs:result>
</rs:entry>
</7rs:review_summary>
</ResourceContent>
<Attribute Attributeld="resource-id" DataType="xpath-expression">
<AttributeValue>//rs:review_summary/rs:entry[position()=1]
</AttributeValue>
</Attribute>
</Resource>
<Action>
<Attribute AttributeId="action-id" DataType="string">
<AttributeValue>read</AttributeValue>
</Attribute>
</Action>
</Request>

Fig. 6. XACML Request Context Sample

<Response>
<Result>
<Decision>Deny</Decision>
</Result>
</Response>

Fig. 7. XACML Response Context Sample

65

it implements its interface to grant access from callers. WS-Policy is critical
to achieve interoperability for the high-level functional operation of the Web

services.

Unlike XACL and XACML, WS-Policy defines a wrapper to hold one
or more policy assertions. The wrapper itself has limited semantics, leaving
the details to the policy assertions from various domains such as security,

privacy, application priority, user account priorities, and traffic

control.

Some of these assertions specify traditional requirements and capabilities
that will ultimately be manifested on the wire (i.e., security, traffic control).

66 Naizhen Qi and Michiharu Kudo

Some others specify requirements and capabilities that are critical to proper
service selection and usage (i.e., privacy, application priority, user account
priorities). WS-Policy provides a single policy grammar to allow both kinds
of assertions in a consistent manner. However, there are no policy assertions
defined for authorization and access control.

Policy Syntax and Semantics.

<wsp:Policy xmlns:sp="...">
<wsp:ExactlyOne>
<wsp:Al1>
<sp:SignedElements>
<sp:XPath>/S:Envelope/S:Body</sp:XPath>
</sp:SignedElements>
</usp:All>
<wsp:Al1>
<sp:EncryptedElements>
<sp:XPath>/S:Envelope/S:Body</sp:XPath>
</sp:EncryptedElements>
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

Fig. 8. An WS-Policy Example

WS-Policy® defines three components: policy expressions, policy asser-
tions, and policy operations (OnOrMore, All, and ExactlyOne). A policy is
composed of policy expressions that may each contain only one of the policy
operations, policy assertions, or policy reference. The policy expressions can
be used as containers for application-specific or service-type-specific policy
definitions. In addition, policy operations can be nested and may contain any
externally defined content. As an example, Figure 8 gives a simple policy ex-
ample in the security domain. The policy contains two policy assertions to
restrict the elements depicted by the XPath expression /S:Envelope/S:Body
so they should be either signed or encrypted.

5 Policy Modeling and Generation

XACL, XACML, and WS-Policy are expressive and powerful for policy speci-
fication, but also too complicated, especially for the users who are not experts
in their use. People also want to be able to address the underlying security
concerns in ways that are easy to understand, and so that they can identify
the particular technical implementations. Moreover, recently attention has

3 Since in Chapter 13 of Security and Web Services, WS-Policy is introduced in
details, we do not go deeply into it in this section.

Access Control Policy Languages in XML 67

been increasingly given to the techniques and tools required for architecting
enterprise-scale software solutions. Many enterprises extend the life of an ex-
isting solution by designing new business logic that manipulates existing data
resources, presenting existing data and transactions through new channels,
integrating previously disconnected systems supporting overlapping business
activities, and so on. The design of a high-quality solution therefore also calls
for early architectural decisions on privacy and security [4]. Consequently, it
is important to

e Model privacy and security concerns as carefully as any other concerns.
e Propagate the security requirements to the security policies and security
implementation inexpensively.

5.1 Policy Modeling

Policy modeling is the process to describe and capture a level of abstrac-
tion between the security policies and mechanisms, enabling the design of
implementation mechanisms to enforce multiple policies in various computing
environments without considering the underlying platform of the system and
the implementation technologies. During the policy modeling process, system
requirements, organizational security and privacy policies, and organizational
structures are analyzed to specify access control policies. In particular, orga-
nizational complexity introduces the challenge that it is difficult to identify
and agree upon a set of roles (or groups) and associated permissions (grant
or deny) within an organization that may have hundreds of roles (or groups).

Several approaches have been proposed in the area of policy modeling
with UML. Brose et al. [3] propose integrating access control design into the
software development process by extending UML to specify access control
policies. This approach does not emphasize the compliance between different
levels of the policies, requirements, and system designs. Jurjens proposes in
[8] to specify requirements for confidentiality and integrity in analysis models,
also on the basis of UML. Their underlying security models are multi-level
security and mandatory access control.

In the area of models for RBAC, Lodderstedt et al. [14] proposes a mod-
eling language for integrating the specifications for RBAC into application
models. These approaches focus more on system implementation represen-
tations that are not easy for the business stakeholders to capture for the
enterprise-scale security requirements at a higher business level.

Johnston introduces an approach in [13] that provides a set of primitive
modeling elements to allow the users to specify the intention of the security
within the requirements process. They generalize the security issues as four
domains: Privacy, Authentication, Authorization, and Audit. Figure 9
demonstrates the dependencies between these four domains. For example, it
is not possible to implement authorization without authentication. On the
other hand both authorization and authentication rely on auditing, not for

68 Naizhen Qi and Michiharu Kudo

implementation but to ensure that any exceptions are captured for analysis
and for non-repudiation. Privacy relies on both authentication and auditing.

Authorization

Authentication

Privacy

Fig. 9. Dependencies between Security Domains

Primitive intentions that are common in these four domains are addressed
and presented as stereotypes that can be applied to the UML elements in
capturing the business requirements. Figure 10 shows an example of the spec-
ification of an authentication service based on Johnson’s approach [13]. In
the figure, the messages between the customer and the online bank must
be authenticated when the customer performs a wire transfer. The overall
security-related concerns can be defined without considering the underlying
technologies such as the encryption algorithms and the message formats, etc.

<<authentication>> :
transfer(accountNo., amount)

<< authentication >>
balance

Fig. 10. A Sequence Diagram Example with an <<authentication>> Stereotype

5.2 Policy Generation

With policy modeling, the security intentions are explicitly defined in an ab-
stract manner independent of the underlying platform and the implementation
technologies. The software developers can easily capture the security require-
ments through policy modeling as well. However, the security implementa-
tion by hand is difficult and errors often arise if the software developers lack
sufficient experience, and therefore the low-level development such as policy
definition usually calls for support tools to avoid various problems.

Access Control Policy Languages in XML 69

Lodderstedt et al. [14] not only propose a methodology for modeling se-
curity policies, they also created an EJB generator which allows software de-
velopers to generate EJB applications with fully configured role-based access
control including role definitions, method permissions, role assignments, and
authorization constraints without specifying the policies by hand. The soft-
ware developers are therefore able automatically implement the role-based
access control enforcement mechanisms without complicated EJB coding.

Differing from Lodderstedt et al. the approach of [14], Satoh et al. [17]
propose a framework to create security policies in WS-Policy. The frame-
work enables the users who are not-security experts to configure authenti-
cation policies easily in a platform-independent manner on the basis of the
application semantics. The key point is that an abstract security qualifier,
Authentication, is defined to specify an identity that should be authenti-
cated, and then the security qualifier is transformed to a platform-specific
security policy using security policy templates. In this approach, the concrete
security policies are created using the security policy template for authentica-
tion shown in Figure 11, where the parameters are represented using brackets
like {DOMAIN_NAME}. MileageNo, for example, the real domain name replaces
{DOMAIN_NAME} in policy transformation. As a result, the software developers
can specify the security policies without detailed knowledge of WS-Policy.

<wsp:Policy xmlns:sp="http://...">
<Authentication>
<CallerToken>
<securityDomain domainName="{DOMAIN_NAME}"/>
{CALLER_TOKEN_ASSERTION}
<TrustToken method=" {TRUSTMETHOD,TYPE} ">
<securityDomain domainName="{DOMAIN_NAME}"/>
{{TRUST_TOKEN_ASSERTION}}
</TrustToken>
</CallerToken>
</Authentication>
</wsp:Policy>

Fig. 11. Security Policy Template

6 Conclusions

In this chapter, we have discussed the main features of two security policy
languages and one policy framework. XACL and XACML are expressive and
powerful in specifying access control policies for the XML data, while WS-
Policy framework focuses more on security-related functional operation of the
services. Also, we addressed the policy modeling and generation tools that
have been developed to help users in capturing the security requirements
during the design, and to develop the security policies and functions during

70 Naizhen Qi and Michiharu Kudo

the implementation. However, as more and more enterprises recognize the
need for security solutions to protect their data, many problems remain. For
example, how to integrate the security functions into the existing systems
efficiently and inexpensively, and how to verify the relationships between the
security requirements and the implementations.

References

1. D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Transaction
on Software Engineering and Methodology, Vol. 11(2), pp. 256-290, 2002.

2. P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter: Enterprise Privacy
Authorization Language (EPAL 1.1) Specification. IBM Research Report, 2003.
Available at http://www.zurich.ibm.com/security/enterprise-privacy/epal.

3. G. Brose, M. Koch, and K.-P. Lohr: Integrating Access Control Design into the
Software Development Process. In Proceeding of the 6th International Conference
on Integrated Design and Process Technology (IDPT), 2002.

4. A. Brown, S. Johnston, and K. Kelly: Using service-oriented architecture and
component-based development to build Web service applications. Rational Soft-
ware White Paper. Available at http://www-128.ibm.com/developerworks/
rational/library/content /03 July/2000/2169/2169.pdf.

5. A. Dardenne, A. van Lamsweerde, and S. Fickas: Goal-directed Requirements
Acquisition. Science of Computer Programming, Vol. 20(1-2), pp. 3-50, 1993.

6. A. Fuxman, R. Kazhamiakin, M. Pistore, and M. Roveri: Formal Tropos: lan-
guages and semantics. University of Trento and IRST, Trento, Italy, 2003.

7. J.V. Guttag and J.J. Horning, with S.J. Garland, K.D. Jones, A. Modet, and
J.M. Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag,
1993.

8. J. Jurjens: Towards Development of Secure Systems using UMLsec. In Proceedings
of Fundamental Approaches to Software Engineering, 4th Internacional Confer-
ence, pp. 187-200, 2001.

9. M. Kudo and S. Hada: XML Document Security based on Provisional Autho-
rization. 7th ACM Conference on Computer and Communications Security, pp.
87-96, 2000.

10. OASIS eXtensible Access Control Markup Language (XACML). OASIS (2002).

11. S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian: Flexible Support
for Multiple Access Control Policies. ACM Transactions on Database Systems,
Vol. 26(2), pp. 214-260, 2001.

12. S. Jajodia, P. Samarati, and V.S. Subrahmanian: A Logical Language for Ex-
pressing Authorizations. In Proceedings of 1997 IEEE Symposium on Security
and Privacy, pp. 31-42, 1997.

13. S. Johnston: Modeling security concerns in service-oriented archi-
tectures. Rational Software White Paper. Available at http://www-
128.ibm.com/developerworks/rational /library/4860.html. (2004)

14. T. Lodderstedt, D. Basin, and J.Doser: SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In 5th International conference on The Uni-
fied Modeling Language, pp. 426-441, 2000.

15. The Platform for Privacy Preferences 1.1 (P3P 1.1). Available at
http://www.w3.org/TR/2006/NOTE-P3P11-20061113/.

Access Control Policy Languages in XML 71

16. J. Rumbaugh, I. Jacobson, and G. Booch: The Unified Modeling Language Ref-
erence Manual. Addison-Wesley, 1999.

17. F. Satoh, Y. Nakamura, and K. Ono: Adding Authentication to Model Driven
Security. International Conference on Web Services 2006, pp. 585-594, 2006.

18. J.M. Spivey: The Z Notation: A Reference Manual. 2nd edition, Pentice-Hall,
Englewood Cliffs, NJ, 1992.

19. The Unified Modeling Language (UML) Version 2.1.1. Available at
http://www.omg.org/technology/documents/formal /uml.htm

20. Web Services Policy 1.2 - Framework (WS-Policy). Available at
http://www.ws.org/Submission/WS-Policy/.

4

Database Issues in Trust Management and
Trust Negotiation

Dongyi Li', William Winsborough!, Marianne Winslett? and Ragib Hasan?

! Department of Computer Science, University of Texas at San Antonio,
dli@cs.utsa.edu, wwinsborough@acm.org

2 Department of Computer Science, University of Illinois at Urbana-Champaign,
(winslett,rhasan)@cs.uiuc.edu

Summary. Trust management is the process of managing authorization decisions
in a decentralized environment where many of the participants do not have pre-
established trust relationships, such as logins and passwords, with one another. Trust
management is important for enterprise-level and cross-organizational database ap-
plications such as supply chain management, enterprise resource planning, and cus-
tomer relationship management. Trust management research may also interest the
database research community because of the former’s affinity for a Datalog-based
world, in which a query (authorization request) launches a multi-site search for a
proof of authorization. To complicate the process, sites have autonomy and may not
always cooperate in proof construction; it is not always obvious where to find the
facts and rules needed to construct a proof; and attempts to access particular facts
and rules may spawn new authorization requests.

1 Introduction to Trust Management

Authorization is one of the most important problems in computer security
and privacy. It lies at the heart of meeting the objectives of confidentiality,
integrity, and availability. Within a single organization, pre-established trust
relationships are used to assign authorizations and prearranged information
such as login names and passwords can serve as the basis for making autho-
rization decisions at run time. For instance, an enterprise has pre-established
trust relationships with its employees, so it is necessary only to authenticate
that a certain resource request is being made by a certain employee for the
request to be given appropriate authorization.

On the other hand, when resource provider and resource requester belong
to different organizations or have no prior relationship whatsoever, there are
no pre-existing trust relationships. This problem can be mitigated slightly
by using manual procedures for cross-domain authentication and authoriza-
tion, such as maintaining local logins and passwords (or lists of X.509 iden-
tities) for all employees in a partner company. However, even in the case of

74 D. Li, W. Winsborough, R. Hasan, M. Winslett

cross-organizational resource sharing, this imposes an excessive administrative
burden in our world of rapidly changing organizational structures and part-
nerships. It becomes entirely ad hoc, chaotic, and unmanageable when the
requirements for authorization have nothing to do with formal organizational
affiliations, such as a senior citizen discount or letting family and friends ac-
cess an on-line photo album. This is because the approach relies too heavily
on pre-established trust relationships.

Over the last 10-15 years, researchers have proposed new techniques that
enable on-line parties to establish trust on the fly, as the need arises. Bina et
al. proposed using characteristics other than identity, attested to by known
authorities in digital certificates, as a basis for authorization on the Inter-
net [8]. Blaze et al. introduced a complementary approach to authorization
based on delegation of privileges and coined the term trust management to
describe it [11]. Ellison et al. introduced a similar scheme called SPKI [22].
Rivest et al. introduced a scheme called SDSI [54] that provides an ingenious
way to introduce names and bind them to public keys controlled by indi-
viduals and groups, which greatly facilitates identifying authorized principals
electronically. Following these seminal works, a great deal of work has been
done, much of which we will survey in this chapter.

Trust management systems typically use cryptographic credentials to con-
vey information relevant to authorization decisions. The authorization deci-
sion determines whether a given set of credentials demonstrate that a given
request to access a resource, such as a web or peer-to-peer service, is autho-
rized, which is to say that the access request complies with current policy gov-
erning that resource. This raises two additional problems that we also survey
here. First, the credentials are issued in a decentralized manner, and somehow
the relevant credentials need to be collected or otherwise made available to
the authorization evaluation process. Second, some credentials carry sensitive,
confidential information, and may need to be subject to access control them-
selves when dealing with an unfamiliar resource provider or requester. The
same may also be true of policy: an access control policy may give clues about
the nature of the resource it protects. For example, if a patient’s prescription
can be viewed only by their pharmacist or by their parent, then one can guess
that the prescription is for a child. To preserve the privacy of the resources
that they protect, policies themselves may need protection just like any other
resource. In other words, access to the contents of a policy may need to be
governed by another access control policy. These additional authorization de-
cisions can also be based on credentials. Thus, there is a need for a process
of credential exchange in which both parties seek to enable a positive au-
thorization decision for the main resource request, while also supporting the
additional authorization decisions that may be necessary to achieve this. This
process is trust negotiation [64, 65], an automated approach to establishing
bilateral trust between two parties at run time.

Current and emerging practice implements authorization decisions in mid-
dleware or, often, even in the application. Consequently, the goal of this

Trust Management and Trust Negotiation 75

chapter is not to discuss the integration of trust management techniques with
database technology. Rather, it is to present problems that arise in designing
and implementing trust management systems, many of which are reminiscent
of problems from database research. In particular, many trust management
systems have foundations based on Datalog, a language used extensively in
deductive database systems. Authorization decisions in this class of trust man-
agement systems are obtained by evaluating a query involving the client and
the requested resource. Evaluation in general requires collecting data and
rules from distributed repositories. Our hope is that these and other overlaps
will stimulate greater interest in trust management issues on the part of the
database community.

The notion of the term “trust management” that we survey in this chap-
ter refers to authorization systems that support principally human agents in
defining security policies based on their own judgments of the characteristics
of system participants. The focus of research in this area is on providing pol-
icy language features and corresponding enforcement mechanisms that meet
the needs of policy authors for requirements such as scalability and high as-
surance in decentralized environments. There is another kind of system some-
times dubbed “trust management” that has a rather different aim, and it
is important to be clear that this other type of system is not a subject of
this chapter. This sort of system is a bit like a reputation system. It seeks
to estimate the trustworthiness of entities within the system by automated
or semi-automated means, by compiling and aggregating the evaluations of
other parties who have interacted with those entities [34].

The remainder of this chapter is structured as follows. In Section 2 we
present the basic notions and aims of trust management. In Section 3 we sur-
vey the principal contributions to the field to date. In Section 4 we discuss
issues in the evaluation of authorization queries based on considerations such
as the distributed definition and storage of credentials and other policy state-
ments. In Section 5 we discuss issues and work in automated trust negotiation.
In Section 6 we discuss open issues and trends.

2 What is Trust Management?

Traditional access control models base authorization decisions on the identity
of the principal who requests a resource. In an operating system, this iden-
tity may be a user name that must appear on an access control list (ACL)
associated with a file, if access to the file is authorized. In a large enterprise,
an identity may be a distinguished name mentioned in a Public Key Infras-
tructure (PKI) certificate. In these and similarly closed environments, the
identities of all authorized resource requesters are presumed to be known to
the resource provider, or at least to some local administrator who aggregates
identities into groups or roles to which the resource provider can grant ac-
cess. However, the number of autonomous services that are administered in

76 D. Li, W. Winsborough, R. Hasan, M. Winslett

a decentralized manner (i.e., within different security domains) has increased
enormously on the Internet. As a result, services are often provided to clients
whose identities are not previously known to the service provider. Similarly,
the participants in a peer-to-peer system need to establish mutual trust in
one another. In such a decentralized environment, the traditional access con-
trol mechanisms such as ACLs cannot be used to secure the system without
excluding vast numbers of valuable and well-intentioned clients and peers.

The trust management (TM) approach, first developed by Blaze et al. [11],
aims to provide a basis for authorization in highly decentralized environments
by enabling resource owners to delegate authority to other entities who will
help them identify the appropriate requesters to authorize. In this manner,
resource owners and other policy authors can enlist the assistance of appro-
priate authorities in determining the suitability of individual requesters for
authorization.

Trust management relies on digital credentials, which are unforgeable
statements signed by their issuer. Typically, a digital credential contains an
assertion about the properties of one or more principals mentioned in the
credential. The best-known standard for digital credentials is X.509v3 [31],
though many alternatives exist. Most of these schemes rely on public key cryp-
tography: the credential issuer signs the credential using its private key, and
anyone can verify the contents of the credential by obtaining the correspond-
ing public key and checking the signature. In the US, recent legislation such
as the Sarbanes-Oxley Act has forced the widespread adoption of the pub-
lic key infrastructures needed to support digital credentials. Today’s digital
credentials are typically identity certificates, i.e., they simply say what pub-
lic key is associated with a particular principal. However, current credential
standards already support the inclusion of additional information describing
a principal’s properties, such as one would need for a digital employee ID,
driver’s license, or birth certificate.

In TM systems, security policy is made by local administrators to specify
access control rules on local resources. Blaze et al. [10] said that trust man-
agement systems combined the notion of specifying security policy with the
mechanism for specifying security credentials. The authorization semantics of
most TM systems is monotonic in the sense that if any given action is ap-
proved when given a set of evidence E (i.e., policies and credentials), then it
will also be approved when given any superset of E. This means that no nega-
tive evidence is allowed in the system. Monotonicity ensures fail-safe behavior
in which no potentially dangerous action is allowed by default, simply be-
cause of an inability to find negative credentials. This is especially important
in decentralized environments due to the many factors that can prevent one
from obtaining complete information about all the credentials in the system
(network interruption, uncooperative credential repositories, lost information,
ete.).

Most discussions of TM systems use the terms “certificate” and “creden-
tial” more or less interchangeably. However, unlike certificates in public key

Trust Management and Trust Negotiation 77

infrastructure (PKI) systems, such as X.509 or PGP, which bind public keys
to identities, certificates and credentials in TM systems do not typically bind
public keys to identities, but rather to other information on which authoriza-
tion decisions are based.

In the early TM systems PolicyMaker [11] and KeyNote [9], the informa-
tion bound to a key by a credential is essentially an authorization to use a
specific resource. In this sense they are quite similar to capabilities, which
were first introduced by Dennis and Van Horn [20] in the context of operating
systems to specify what privileges (e.g., a set of actions on certain objects
in the operating systems) the holder (e.g., subjects in operating systems) of
the capability may use. A delegated capability is copied (or moved) from one
holder to another.

Just as the holder of a car key can start the corresponding car, whomever
holds a capability can use the privileges it specifies. While an operating sys-
tem can rely on protected memory to implement assignment and delegation of
privileges, in TM systems, credentials are used to bind capabilities to public
keys. Credentials may optionally also grant the right to further delegate the
capability. Chains of such credentials can be used to document a sequence of
delegations of privileges from the resource owner to the requester, and thus
can prove that the requester indeed is authorized for the requested resource.
Each credential in the chain is signed by using the public key in the previ-
ous credential; the first is signed by the resource owner or his designee. The
requester proves she is the authorized entity by answering challenges or oth-
erwise demonstrating possession of the public key in the last credential in the
chain.

When privileges are specified directly in the credentials, the authorization
decision is quite simple. However, additional expressive power can greatly fa-
cilitate scalability in environments such as the Internet where service providers
may wish to authorize large numbers of principals. Managing the delegation
of access rights, for instance, to all students at a given university requires is-
suing a credential to each student for each resource to which they have access
(library, cafeteria, gym, etc.). On the other hand, by utilizing credentials that
characterize their owners as being students, the same student ID credential
can be used to authorize a wide range of actions.

Indeed, later TM systems (e.g., to some extent SPKI/SDSI [18, 54, 22], and
certainly RT [46] and Cassandra [5]) use credentials to characterize the holders
of the credentials. These credentials need not contain specific authorizations,
but provide more general attributes of the credential holders (e.g., student,
US citizen, licensed driver born in 1960, etc.), which can be reused by various
resource owners to make their access control decisions. This enables much
more scalable policy definition. For instance, anyone who is 21 can purchase
alcohol legally. It would be very unsatisfactory to require on-line shoppers to
obtain a credential that can be used solely for purchasing alcoholic beverages
from a specific vender, as a purely capability-based approach would require. A
much more viable solution is to enable all venders of all age-restricted products

78 D. Li, W. Winsborough, R. Hasan, M. Winslett

to utilize any suitable credential that the client already happens to have (e.g.,
a digital drivers license or passport).

Besides the basic notion of delegation in which one entity gives some of
its access rights to another entity, there are two additional delegation idioms
that are most often discussed in the designs of trust management systems: ap-
pointment and threshold delegation. In the case of appointment, the appointer
has the (appointment) right to confer on another (the appointee) an attribute
or right that the appointer may not herself have. (In general, the conferred
right can itself be an appointment right.) Threshold delegation is also called
k-out-of-n (n > 1 and n > k > 1) delegation, meaning the authority is dele-
gated to n parties, each of which only gets a fragment of it. It is effective only
if at least k of these parties issue their requests or exercise their authorities
in concert.

Compliance checking (also called policy evaluation or query evaluation)
answers the question: Does a set of credentials prove that a request complies
with the security policy associated with a given resource? The process of eval-
uating a query involves finding a chain of credentials that delegate authority
from the resource owner to the requester. This process is also called credential
chain discovery [47]. As we shall see, it can be helpful to imagine credential
chains in graphical terms. To a first approximation, a credential chain can
be thought of as a path from the resource provider to the requester in which
nodes are principals and edges are credentials. However, the details of such
a credential graph depend on the TM system and, in general, a chain may
correspond to a richer subgraph structure.

As mentioned earlier, trust negotiation is the process of establishing bi-
lateral trust at run time. Trust negotiation uses verifiable, unforgeable digital
credentials that describe principals’ properties, together with explicit policies
that describe the properties that a principal must possess in order to gain
access to a particular resource. When Alice wishes to access a resource owned
by Bob, she and Bob follow one of many proposed trust negotiation protocols
to determine whether she has the right properties, i.e., whether her credentials
satisfy the policy that Bob has specified for access to that resource.

To show how trust negotiation works, let us consider the scenario in Figure
1. Suppose that Alice wants to purchase prescription medication over the web
from Bob’s pharmacy, which she has never visited before.

Bob’s pharmacy sends her its sales policy, which will allow Alice to
make the purchase if she presents a prescription issued to her by a
doctor licensed to practice medicine in Bob’s country.

Since Alice has no prior experience with Bob’s pharmacy, she tells
Bob that he must prove that he is a licensed pharmacist before she
will reveal her prescription. In response, Bob presents a state-issued
pharmacist’s credential. Alice verifies that the credential is properly
signed, and follows a short protocol that allows Bob to prove that he

Trust Management and Trust Negotiation 79

Alice Bob’s Pharmacy

Request to fill prescription

Policy: Have Rx from licensed Dr.?

F 3

Policy: Registered pharmacist? |

Pharmacist license credential

F 3

Rx from Dr. Carl, Dr. Carl’s license

Request to fill Rx granted

Fig. 1. Example trust negotiation

owns the pharmacist credential.

Alice is now willing to send her prescription to Bob. She sends that
along with proof that the prescription was issued by a doctor within
the country, in the form of a credential signed by a national agency
that attests that her doctor is licensed to practice medicine. Her doc-
tor should have given her this credential the first time she asked for a
digital prescription; if he did not, she can query him now (credential
discovery) to obtain it.

Bob verifies the signature on the doctor’s license certificate, and then
verifies that the prescription was signed by the doctor mentioned in
the license certificate. He also follows a short protocol that allows
Alice to prove that she is the patient mentioned in the credential.
Afterwards, Bob’s policy has been satisfied, so he allows Alice to pur-
chase the medication.

Under traditional identity-based authorization, Alice and her doctor would
have to follow lengthy out-of-band procedures to establish the same level of
trust with the pharmacy web site. Both would have to set up accounts before-
hand at the pharmacy web site, and Bob would need to see paper credentials
to ensure that Alice’s doctor really is a doctor. So that Bob can know that
the prescription really is for Alice, she will have to give her pharmacy account
number to her doctor so that the doctor can mention it in the prescription.
Further, the doctor must submit the prescription directly to the site, so that
Bob knows that the doctor really did create it. In addition to the hassle of

80 D. Li, W. Winsborough, R. Hasan, M. Winslett

creating accounts and remembering passwords, this traditional approach will
severely limit Alice’s options for shopping around for the best price. The trust
negotiation approach overcomes all of these shortcomings: Alice and Bob meet,
disclose their policies, and exchange credentials to establish a trust relation-
ship instantly. Further, all the negotiating steps listed above can be carried
out automatically by small software agents acting on their owners’ behalf, so
that trust establishment is transparent to the human participants.

The pharmacy example shows only one possible way of establishing trust,
based on explicit disclosure of credentials and policies. Researchers have in-
vestigated many alternative approaches, each with its own advantages and
disadvantages, and we will describe them later in this chapter.

3 History

In this section, we survey the principal contributions to date. We will introduce
each system by explaining what features it has, what main contributions it
makes and the applications its designers had in mind.

3.1 PolicyMaker and KeyNote

PolicyMaker, developed and defined by Blaze et al. [11], was the first trust
management system. It was designed as a proof of concept for the design
principles of trust management with a minimalist prototype implementation.
For example, the PolicyMaker system does not take responsibility for cryp-
tographic verification of credentials. Instead, these verifications must be done
by the application that call the trust management system.

In PolicyMaker, assertions (security policies and credentials) have the form
“<Source> ASSERTS <AuthorityStruct> WHERE <Filter>.” ASSERTS
and WHERE are keywords in PolicyMaker, while the syntax of the fields
<Source>, <AuthorityStruct> and <Filter> are application-dependent. The
<Source> field identifies the authority that makes this assertion, the <Author
ityStruct> field contains the subjects to whom this assertion applies, and
the <Filter> field has an application-specified string “<action string>" that
must be satisfied for the assertion to hold. The whole assertion states that the
<Source> trusts the subjects to be associated with <action string>.

KeyNote [9, 10] is a direct descendant of PolicyMaker, and follows most
of its design principles. However, unlike PolicyMaker whose assertions are
fully programmable and application-dependent, KeyNote’s [9] assertions are
written in a specific, concise and human readable assertion language. The
assertion language is defined to be simple and to be supported by a small
interpreter. In addition, the expressiveness of the assertions is carefully limited
so as to ensure that resource usage is proportional to policy size.

Figure 2 shows a sample KeyNote assertion that states that the authorizer
delegates to either of the licensees for read access on file “/etc/passwd.” The

Trust Management and Trust Negotiation 81

KeyNote-Version: 1

Authorizer: rsa-pkesl-hex: “1234abcd”

Licensee: dsa-hex: “9876dcba” || rsa-pkesl-hex: “6789defg”

Comment: Authorizer delegates read access to either of the licensees
Condition: ($file == “/etc/passwd” && $access == “read”) — {return “OK”}
Signature: rsa-md5-pkesl-hex: “f00£f5673”

Fig. 2. An example KeyNote assertion.

example also illustrates the fact that KeyNote takes responsibility for verifying
cryptographic signatures, and thus reduces the workload of the calling appli-
cations and better enforces the security policy. Compared to PolicyMaker,
KeyNote aims to be a relatively complete software solution for authorization.

KeyNote assertions bind public keys to authorizations for specific security-
critical resources. As in capability-based systems, KeyNote’s authorization
decision procedure is quite straightforward, and does not require resolving
the name or identity of the requester. Security-critical actions are given by a
set of name, value bindings called an action environment, which is specified
by the calling application. Assertions contain a condition field that expresses
constraints on these bindings that must be satisfied for the assertion to par-
ticipate in a proof of compliance with the authorization policy governing the
action. For example, in the assertion shown in Figure 2, $access is a name and
the constraint on the value assigned to this name is that it must be equal to
“read”. So if the application binds “action” to “read” whenever the requested
operation is a read, then this credential can be used only to grant read access.

3.2 SPKI/SDSI

SPKI/SDSI [18] merged the SDSI [54] and the SPKI [22] efforts together
to achieve an expressive and powerful trust management system. SDST (pro-
nounced “sudsy”), short for “Simple Distributed Security Infrastructure,” was
proposed as a new public-key infrastructure by Rivest and Lampson. Concur-
rently, Carl Ellison et al. developed “Simple Public Key Infrastructure,” or
SPKI (officially pronounced “s-p-k-i” [18], but sometimes informally called
“spooky”).

SDSI’s greatest contribution is its design of local and extended names,
which are bound to keys through the use of SDSI name certificates (see below),
and which solve the problem of globally unambiguous naming. The owner of
each public key can define names local to a name space that is associated with
and identified by that key. For example, “K ;.. bob” is an example of a local
name in which “bob” is an identifier and K 4;;.. is a globally unique key that
we assume here belongs to a specific principal, Alice, who has sole authority
to define bindings for the local name. Alice can define “K 4;;c. bob” to refer
to a particular key “Kpy” by issuing a tuple of the form (K ajice, bob, Ko,
1). This in effect says that the principal that Alice refers to as bob has the

82 D. Li, W. Winsborough, R. Hasan, M. Winslett

key Kpop. (The “17 just indicates that the certificate is valid.) Given such a
binding, a reference to the SDSI name “K 4. bob” can be resolved to the
key Kpop, which Bob can prove he controls when he needs to prove that he
is the referenced principal.

Whereas a local name is a key followed by an identifier, an extended name
is a key followed by two or more identifiers. The meaning of these are the result
of multiple bindings of local names. For instance, if Bob were to issue the cer-
tificate (K pop, friend, Kcarol, 1), then the extended name “K 415 bob friend”
could be resolved to K¢groi- This brings up another important point about
SDSI names; they can refer to more than one principal. For instance, Bob
could also issue (Kpep, friend, Kpaye friend, 1) with the effect that “K ajice
bob friend” would refer not only to Carol, but to all of Dave’s friends as well.
Thus, SDSI names (both local and extended) can denote groups of keys and,
equivalently, properties of key owners.

In general, SDSI name certificates are 4-tuples of the form (K, A, S, V),
in which K is the key used to issue the certificate, “K A” is the local name
being defined, S is either a key, a local name, or an extended name, and V' is
a certificate validity bit.

A key point about SDSI’s use of name spaces is that names that start
with different keys are different names, so there is no danger of controllers of
different public keys accidentally trying to bind the same name in conflicting
ways. In other words, global uniqueness of names can be achieved without
necessitating coordination among naming authorities.

While SDSI contributed to SPKI/SDSI name certificates that are used to
bind names to public keys, SPKI contributed authorization certificates. These
are 5-tuples of the form (K, A, D, T, V') in which K is the key issuing the cer-
tificate, A is the subject of the certificate, D is a delegation bit which indicates
whether the authorization being conveyed to A can be further delegated by A,
T is a tag that specifies the authorization being granted, and V is a certificate
validity bit. While in the original design of SPKI, A was required to be a key,
in SPKI/SDSI, A can also be a SDSI name. For example, a certificate such
as (Kajice; Kpave friends, 1, downloadPhotos, 1) might indicate that Alice
allows Dave’s friends to download photos and to delegate the permission to
others. Notice that as principals are added to or removed from the group of
Dave’s friends, they automatically gain or lose this permission.

3.3 QCM and SD3

QCM [25], short for “Query Certificate Manager,” was designed at the Uni-
versity of Pennsylvania as part of the SwitchWare project on active networks.
It was designed specifically to support secure maintenance of distributed data
sets. For example, QCM can be used to support decentralized administration
of distributed repositories housing public key certificates that map names to
public keys. In the sense of access control, QCM provides security support for
the query and retrieval of ACLs. Although QCM is not designed to be a trust

Trust Management and Trust Negotiation 83

management system, it had significant impact on the TM system SD3 [32, 33|
proposed by Trevor Jim. One of the main contributions of QCM that can
be adopted by other TM systems is its design of a policy directed certificate
retrieval mechanism [25], which enables the TM evaluator to automatically
detect and identify missing but needed certificates and to retrieve them from
remote certificate repositories. It uses query decomposition and optimization
techniques, and discusses its novel solutions in terms of network security, such
as private key protection methods.

SD3 [32, 33] is the successor of QCM and inherits design features from
QCM, such as the certificate retrieval mechanism in a dynamic decentralized
certificate storage system. The SD3 project aimed to make trust manage-
ment systems easy for applications to use. To this end, SD3 is responsible
for verifying cryptographic signatures. In addition, SD3 has a credential re-
trieval mechanism that enables the evaluation of authorization decisions in
the context of distributed credential storage. (We return to this in Section 4.)
Finally, in order to guarantee returning a correct answer, SD3 implements
certified evaluations, in which a checker checks the evaluator’s outcome be-
fore passing it to the calling application. Together these features ensure that
calling applications need only specify policy, without worrying about how it
is enforced.

SD3 enables application developers to write policy statements in an ex-
tended Datalog that introduces a notion of name space in which predi-
cates and relations are defined. It extends Datalog with SDSI names. For
example, consider the following SD3 rule, which expresses the recursive
case in the definition of the transitive closure (T') of the edge relation E:
“T(x,y):-K$E(x,y),T(y,z)”. Here K is a public key, E is a local relation
name, defined in K’s name space, and K$FE is a global relation name, the
definition of which is independent of the point of evaluation. The presence of
this rule in a rule base associated with a given name space says that the pair
(z,y) is in the the local relation T if it is in K’s E relation. SD3 also allows an
IP address A to be paired with its global name, such as (K@QA)$E, in which
A is the IP address of an evaluation service operated by the principal that has
public key K. The address assists in locating the evaluation agent and rule
base associated with K, though the authenticity of the rule base is ensured
by using K.

We take this opportunity to introduce some Datalog terminology: the
atomic formula to the left of the := (T'(z,y) in the example) is called the
head of the rule or clause; the comma-separated list of atomic formulas to the
right is called the body. These commas represent conjunction.

3.4 RT

The RT framework [46, 48, 45] is a family of Role-based Trust-management
languages that combines the strengths of RBAC (Role-Based Access Con-
trol) [1] and the strengths of trust-management systems. Different languages

84 D. Li, W. Winsborough, R. Hasan, M. Winslett

in the family incorporate different features, but all members are designed
to permit efficient (polynomial time) evaluation of ordinary authorization
queries. Like SD3, RT is based on Datalog. However, rather than writing
arbitrary Datalog clauses, the RT policy author uses a distinct RT syntax or-
ganized around RT language abstractions whose semantics is given by a formal
translation of RT statements (i.e., credentials) into Datalog. This approach
enforces an orderly policy-definition discipline while obtaining significant ben-
efits from using what is in effect a subset of Datalog: (1) the semantics are
unambiguous and can be constructed in several well understood and equiv-
alent manners (logical entailment, fixpoint, top down, bottom up, etc.); (2)
authorization queries are easily generalized to ask, for example, which prin-
cipals are authorized to access a given resource, or which resources a given
principal is authorized to access; (3) the complexity of the RT features is eas-
ily determined by making use of established complexity results for evaluation
of Datalog queries. In addition, the way in which the Datalog clauses gener-
ated from RT statements are restricted enables RT' credentials to be stored
in a manner that is more flexible than is possible with QCM or SD3. As we
will see in Section 4, because of these restrictions, RT credentials that are
stored with either their subject or their issuer can be located and retrieved as
needed during authorization query evaluation. In QCM and SD3, credentials
must be stored with their issuers.

The definition and use of roles in RT is based on and extends that of groups
in SDSI. Keys are called principals. Each principal A controls the definition
of a collection of roles of the form A.R in which R is called a role name and
is either an identifier r or, in members of the RT family of languages that
support parameterized roles, an identifier applied to a list of parameters, as
in r(ty,...,t;). Parameters are quite helpful for the purpose of expressing
quantitative attributes, such as age or budget, as well as for enabling roles
to express relationships between principals and data objects. For instance,
Alice.read(’ Jusr/alice/research’) might represent principals allowed to read
Alice’s research directory.

Certificates in RT are called statements or credentials. For concreteness,
we consider the forms these can take in RTy. There are four types of credentials
that an entity A can issue, each corresponding to a different way of defining
the membership of one of A’s roles, A.r.

o Simple Member: A.r «—— D.
With this credential A asserts that D is a member of A.r.

o Simple Inclusion: A.r «—— B.ry.
With this credential A asserts that A.r includes (all members of) B.r;.
This represents a delegation from A to B, as B may cause new entities
to become members of the role A.r by issuing credentials defining (and
extending) B.ry.

e Linking Inclusion: A.r «—— A.ry.ro.

Trust Management and Trust Negotiation 85

A.ri.rg is called a linked role. With this credential A asserts that A.r
includes B.ro, for every B that is a member of A.r;. This represents a
delegation from A to all the members of the role A.rq.

o Intersection Inclusion: A.r «—— Bi.r1 N By.ra.
Bi.r1 N By.ry is called an intersection. With this credential A asserts that
A.r includes every principal who is a member of both Bj.r; and By.rs.
This represents partial delegation from A to By and to Bs.

Again to illustrate the technique by which semantics are given to a set
of RT, credentials, we now present the translation to Datalog. Given a set C
of RTy credentials, the corresponding semantic program, SP(C), is a Datalog
program with one ternary predicate m. Intuitively, m(A, r, D) indicates that D
is a member of the role A.r. Given an RT statement ¢, the semantic program of
¢, SP(c), is defined as follows, where identifiers starting with the “?” character
are logic variables:

SP(A.r «— D) =m(A,r, D).
SP(A.r «— B.r;) =m(A,r,?X) :— m(B,r,?X).
SP(A.r — A.rg.rg) = m(A,r,7X) i— m(A,r1,?7Y), m(?Y, ry, 7X).
SP(A.r «— B;.r; N Ba.rg) = m(A,r,7X) :— m(By,r1,7X),m(Ba,re, 7X).

SP extends to the set of statements in the obvious way: SP(C) = {SP(c) | c €
C}. Now to determine whether a principal D belongs to role A.r, one simply
evaluates a query (according to any one of a variety of evaluation mechanisms)
to determine whether it is the case that SP(C) = m(A4,r, D).

RT} adds parameterized roles to RTj, and RT5 adds logical objects to RT7 .
Just as roles group together related entities so that their authorizations can be
assigned in fewer statements, logical objects logically group together objects
so that their permissions can be assigned together. RTC [44, 45] incorporates
constraint systems, carefully selected to preserve query-answering efficiency.
Constraints are very helpful for representing ranges of quantitative values and
object specifiers such as directory paths. For instance, they can very concisely
express policies such as “anyone over 65 is entitled to a senior citizen discount”
and “Alice can access the entire directory subtree of /usr/home/Alice”. RTT
provides manifold roles and role-product operators, which can express thresh-
old policies and separation-of-duty policies. RT? provides delegation of role
activations, which can express selective use of capacities and delegation of
these capacities. RTP and RT7T can be used, together or separately, with
each of RTy, RTy, or RT5. The resulting combinations are written RT;, RTiD ,
RTF, and RTPT fori =0, 1, 2.

SDSI extended names and RT"’s linked roles both rely on agreement among
principals as to the intended meaning of role names (“identifiers” in SDSI). For
instance, a linked name such as ABET.accredited University.student is only
meaningful if there is some agreement among ABET-accredited universities as
to what it means to be a student. One technique for providing a scalable means

86 D. Li, W. Winsborough, R. Hasan, M. Winslett

of establishing such agreement is based on a structure called an application
domain specification document (ADSD) [46]. ADSDs contain natural-language
descriptions of role names that pertain to a given application domain. They
can also be used to specify other technical information useful for ensuring
consistent use of these role names, such as how many parameters of what
types are required for each role name. ADSDs are made available on the web
via a universal resource identifier (a web address) that can serve not only as
a locator, but also as an identifier of the vocabulary defined by the ADSD.
Credentials that make use of these role names can use this identifier along
with the role name to disambiguate the intended meaning.

3.5 OASIS and Cassandra

OASIS [67, 26, 28] and Cassandra [5, 6] are role-based trust management
systems that have many design considerations in common. Cassandra was in-
fluenced by the OASIS design. However, while OASIS was designed for general
purpose use, Cassandra was designed with the goal of supporting the access
control policies for a national electronic health record system.

OASIS introduced the notion of appointment. Appointment occurs when a
member of some role issues an appointment credential that will allow some user
to activate another role [67]. Thus appointers belong to roles that resemble
administrative roles in RBAC [56].

OASIS uses first-order logic clauses to represent security policy. For ex-
ample, “ri,wy Fry” is a policy statement that means a user who is active in
role 1 and holds the appointment certificate w; can activate the role r4.

Asin RT1, roles in Cassandra are parameterized. Cassandra represents pol-
icy statements as Datalog clauses with constraints. One interesting character-
istic of Cassandra is that its expressivity can be tuned by selecting constraint
systems having differing complexity (as discussed further in Section 4).

Unlike most trust management systems, OASIS and Cassandra support
the notion of a session. In this respect, they are unique among the systems
we discuss here and thus are perhaps the most justified in calling themselves
role-based. Indeed, some researchers have been critical of characterizing lan-
guages such as RT' as being role-based, because they have no notion of session.
On the other hand, the presence of sessions introduces a highly dynamic com-
ponent of system state into OASIS and Cassandra not present in other trust
management systems, which raises serious concerns about scalability in highly
distributed systems.

Cassandra makes the interesting choice of implementing some aspects of
session state within extensional Datalog relations. There are six predefined
predicates in Cassandra: permits(e,a) holds if entity e can perform action
a; canActivate(e,r) holds if e can activate role r; hasActivated(e,r) holds
if e has activated r; canDeactivate(ey, ez, r) holds if e; has the power to
deactivate eq’s activation of role r; isDeactivated(e, r) holds if role r has been
deactivated for entity e; canReqCred(ey, e2.p('€)) holds if e; is permitted to

Trust Management and Trust Negotiation 87

Server Client

Web HTTP
a—

Browser Proxy HTTP Server

P!'np. Checker
Gen.

Fact Server

Fig. 3. The PCA system

request credentials issued by ey asserting the atomic formula p(€’). The body
of a clause having canReqCred(e1, es.p(€)) as its head can specify conditions
that must be satisfied before a credential can be disclosed, which is useful in
supporting trust negotiation.

3.6 PCA

PCA (Proof Carrying Authorization) [2, 4] was designed primarily for access
control in web services. Figure 3 shows the components of the PCA system
working in a web browsing environment. HTTP proxies are used to make the
whole process of accessing a web page transparent to the web browser. The
web browser only knows the final result of either a displayed web page that it
attempted to access, or a denial message. The proxy is designed to be portable
and easily integrated into the client system without changing anything inside
the original web browser. As depicted in Figure 3, the client is responsible for
constructing a proof of authorization, which the server need only check for
correctness. This substantially reduces the burden imposed on the server by
the authorization process.

PCA uses higher-order logic to specify policies and credentials, so that
it can be very expressive. Indeed, in general the determination of whether a
proof of authorization exists is undecidable, much less tractable. PCA over-
comes this issue as follows. First, as mentioned earlier, the server only has
to check the proof constructed by the requester, and the checking process is
decidable and tractable. Second, on the client side, the proxy is responsible for
discovering and retrieving credentials, computing proofs, and communicating

88 D. Li, W. Winsborough, R. Hasan, M. Winslett

XML:
< GROUP NAME = “Hospitals” >
< RULE >
< INCLUSION ID = “reco” TY PE = “Recommendation”
FROM = “self” >< \INCLUSION >
< \RULE >
< \GROUP >
Prolog:
group(X,Hospitals) = cert(Y, X, “Recommendation”,RecFields),

group(Y, self).

Fig. 4. An example TPL rule shown in its concrete XML syntax and its internal
Prolog representation.

with the server. To avoid undecidable computations on the client side, the
client proxy does not use the full logic; instead, it uses a limited, application-
specific logic, in which authorization decisions are tractable.

3.7 TPL

TPL (Trust Policy Language) [27], designed at IBM Haifa Research Lab, was
proposed specifically for trust establishment between strangers. TPL is based
on RBAC [23, 1] and extends it by being able to map strangers automatically
to roles. Unlike other trust management systems [46, 67|, TPL’s efforts are
put only into mapping users to roles, and not into mapping roles to privileges,
which simplifies the design. The latter is the responsibility of the application.

The concrete syntax of TPL uses XML to represent security rules. These
are then translated by TPL into a standard logic programming language, viz.,
Prolog. Figure 4 shows an example TPL rule in the portable XML notation
and its internal Prolog translation [27].

Using different transcoders, TPL is certificate format independent: rules
written in XML can be translated and reorganized by the transcoders into any
certificate formats, such as X.509 or PGP. In each certificate, the certificate
type field points to its certificate profile, which selects the proper transcoder
to interpret that certificate into its XML rules.

The mandatory components of each certificate are the issuer’s public key,
the subject’s public key, the certificate type, the version of the certificate, the
profile URL, the issuer certificate repository, and the subject certificate repos-
itory. The last two components were innovative considerations with respect to
credential retrieval. First, to enable the TPL system to automatically retrieve
relevant certificates from remote repositories, the certificate that is currently
being processed should specify the locations of the repositories where the rel-
evant certificates are housed. Second, certificates can be referenced negatively
in TPL, which means that TPL is non-monotonic in the sense that adding cer-
tificates can diminish authorizations. Thus TPL cannot rely on requesters to

Trust Management and Trust Negotiation 89

present certificates that are referenced negatively. Instead the resource owner
specifies a credential “collector” [27], which is a software module configured
to know about trusted repositories of negative certificates.

4 Evaluation Problems and Strategies

The trust management engine evaluates authorization queries based on se-
curity policies and credentials. Several issues regarding how such evaluation
proceeds have been addressed in the evolution of modern TM systems. In this
section we consider many of these issues. We defer until Section 5 discussion
of issues that bear on the fact that policy and credentials may themselves
be sensitive. Other issues, notably certificate revocation, we omit altogether.
Topics discussed in this section include the following:

1. Separating the authorization service from the application pro-
vides several advantages.
Software components that manage security are subject to very high in-
tegrity requirements as their correct functioning is essential to preventing
misuse.

2. Policies should be written in special-purpose languages, not in
general-purpose programming languages.
This has an obvious impact on the extent to which the trust manage-
ment engine can efficiently evaluate authorization queries. Finding lan-
guage constructs that are sufficiently expressive to enable policy objec-
tives to be met, while simultaneously supporting efficient evaluation, has
been an important factor in the evolution of TM systems.

3. Credential discovery and retrieval is an essential part of the
authorization problem.
One of the important problems for TM systems is that of finding creden-
tials that are not only issued and revoked in a decentralized manner, but
whose storage is also distributed. In this environment, there is no cen-
tral, well-known directory that records and keeps track of locations for
each credential in the network, and on which entities can rely to retrieve
credentials. If credentials cannot be found when they are needed during
evaluation of authorization queries it is not possible to prevent denying
some access to resources that should be should be permitted.

It is possible to perform query evaluation with distributed credentials ei-
ther by bringing the evaluation process to the remote credentials, and thus
distributing the evaluation process, or by bringing the remote credentials to a
central evaluation point. As we will see in this section, both approaches have
been taken by TM systems. Moreover, there are alternatives with respect to
where to locate credentials; at a minimum, they can naturally be located with
their issuer or with their subject. However, permitting this flexibility raises
challenges for ensuring that all credentials can be found by the evaluation

90 D. Li, W. Winsborough, R. Hasan, M. Winslett

process if they are needed, and thus that any access authorized by the current
set of valid policy statements can be granted.

4.1 General-Purpose Query Evaluation Engine

As mentioned above, PolicyMaker [10] was the first trust management system
per se. It aimed to provide a general-purpose, application-independent defi-
nition of proof of compliance. The designers identified two main advantages
that can be obtained by using a general-purpose compliance checker. First,
the design and implementation of an authorization system is not as simple as
application programmers might at first imagine, and considerable efficiency
can be obtained from reusing a general-purpose authorization engine. Second,
it is a generally accepted design principle to minimize the amount of code
whose integrity is essential to the secure operation of the system. By clearly
separating the role of the application from the role of the compliance checker,
PolicyMaker provides a general-purpose application-independent compliance
checker that can be explained, formalized and proven correct once and for all.
Applications that use PolicyMaker’s compliance checker can thus gain high
assurance that compliance-checker results depend only on the given query and
assertions, and not on any implicit policy decisions or bugs in the design or
implementation of the compliance checker. Subsequent TM systems have all
followed PolicyMaker’s example in these respects.

4.2 Efficiency and Expressivity

In the interest of generality, PolicyMaker [10] put very few restrictions on
the specifications of authorizations and delegations. Policies and credentials
(collectively called assertions) are given by arbitrary executable programs.
As long as the underlying programming language is safe in the sense that it
is restricted in terms of the I/O operations and resource consumption per-
mitted, there are no restrictions on what programming language is used. The
advantage of this is that it is clearly flexible and expressive enough to allow
application developers to define authorizations and their delegations however
they wish. However, there are also serious shortcomings, including that com-
pliance checking is in general undecidable. No algorithm can, for each set of
assertions and each request, decide whether the request is authorized.

PolicyMaker evaluation proceeds by iteratively selecting an assertion and
executing it. Each assertion can output a set of “acceptance records” as inter-
mediate results. These are added onto a global append-only blackboard. The
contents of the blackboard are available to be read by assertions executed sub-
sequently. It is not defined in what order or how many times the assertions
should be run by the compliance checker. However, a proof of compliance is
given by a (possibly repeating and non-exhaustive) sequence of assertions that,
when run by the compliance checker, leaves on the blackboard an acceptance
record indicating that the request is approved.

Trust Management and Trust Negotiation 91

There are several restricted variants of PolicyMaker’s proof of compliance
problem that are decidable with various complexities. A polynomial variant
can be obtained by imposing two complementary restrictions. The first of
these is the monotonicity of the assertions themselves. The second involves
restricting the resources available to the compliance checker and denying ac-
cess should any resource limit be exceeded. The authors call it locally bounded
proof of compliance (LBPOC), which actually subsumes four subordinate re-
strictions. The first limits the time used to execute each assertion to be a
polynomial in the size of the blackboard’s content. The second bounds by a
constant the number of acceptance records that can be written to the black-
board. The third bounds by a constant the size of acceptance records written
on the blackboard. The fourth bounds by a constant the length of the sequence
of assertions that make up the proof of compliance. PolicyMaker provides no
assistance to the policy author in ensuring that assertions do not violate these
restrictions.

There are other drawbacks to basing assertion semantics on program ex-
ecution semantics rather than on some more declarative approach, such as
logic or relational algebra. To understand the meaning of a program-based
assertion, a human must mentally simulate its various executions, which can
be difficult to do correctly, and the human may find it quite difficult to un-
derstand how the effects of different assertions will combine when executed.
Furthermore, as we discuss further in later sections, this approach to policy
definition provides no assistance in answering questions such as where one
can find credentials that may be relevant to evaluating a given query, or in
answering more general questions, such as “who are all the principals that are
authorized for this resource?”

In addition to becoming more declarative, credentials in later TM systems
typically identify a credential subject as well as the credential issuer. The
subject is the principal to which the credential is issued and that is charac-
terized by the credential. Explicitly identifying the subject greatly facilitates
determining which credentials might be useful at various points in the proof
of compliance as it is under construction.

SPKI/SDSI [18] represents authorizations and delegations in structured
formats with dedicated fields. Issuers, subjects, delegation bit and authoriza-
tion tag are specified separately and can easily be recognized by the evalu-
ator. The evaluation is of authorization queries is based on composition, a
basic operation that takes two valid, compatible certificates as input and out-
puts another valid certificate. The evaluation algorithm uses composition to
compute a closure in a bottom-up manner [18]. The resulting set contains all
certificates that can be derived by composition from the given input set. The
time complexity of the evaluation algorithm is polynomial in the size of the
input set. The closure process must be repeated whenever any certificate is
added, expired or revoked, so it is not well suited to be used with a very large
and frequently changed certificate pool.

92 D. Li, W. Winsborough, R. Hasan, M. Winslett

Like SPKI/SDSI [18], KeyNote [9] uses structured assertions. It defines
an assertion language that formally captures the decision semantics of a set
of credentials and a query (given by an action environment in KeyNote).
Monotonicity of KeyNote assertions is inherent in that decision semantics.
That said, it has been shown by Li and Mitchell [44] that KeyNote’s semantics
are sufficiently expressive that it is undecidable to determine the set of all
requests that a collection of KeyNote assertions authorizes.

As we have discussed, trust management systems such as SD3 [32] and
RT [46] use Datalog to represent policies and credentials. Although we do not
discuss them here, other trust management languages have also been based
on Datalog, including Binder [21] and Delegation Logic [43]. There are many
ways in which Datalog can be evaluated. In SD3, evaluation is performed in
a top-down manner, much as would be done by a Prolog interpreter, but dis-
tributed. In RT, evaluation is performed using a special-purpose goal-directed
algorithm that combines benefits of top-down and bottom-up evaluation. Dat-
alog can be extended to support constraints on variables ranging over specific
domains. If the constraint domains are selected with care, this can be done
while preserving the guarantee of polynomial-time query evaluation [44]. The
constraints are limited in the sense that they can be used only to define con-
stant bounds on variable values, either in numeric domains or in the domain
of finite sequences, such as can be used to represent directory paths or URLs.
Constraints over two variables are not permitted. Based on this work, RT has
been extended to support constraints [45].

Cassandra [5] is another system that uses Datalog with constraints to
express semantics of access control. Cassandra approaches the problem of
tractability quite differently than does RT. Policy authors have the ability to
select constraint domains that may not in general support efficient evaluation
or even to guarantee termination. In order to ensure that query evaluation
does in fact terminate for the clauses actually used as policy statements, the
Cassandra system uses a logic programming implementation technique called
static groundness analysis. During the course of evaluation, when summarizing
the effect of a single clause, the variable environment is projected on to the
variables appearing in the head of the clause by existentially quantifying the
variables that appear only in the body. The system of constraints that contains
existential quantifiers then needs to be simplified so as to eliminate these
quantifiers, and it is at this point that the presence of constraints threatens
to compromise efficient evaluation. Groundness analysis can be used to ensure
that at the time existential quantifier elimination must be performed, certain
potentially expensive functions and relational symbols in the constraint will
be applied only to constant values, not to unbound variables. This means that
these operations can be evaluated before quantifier elimination is performed. It
effectively removes these function and relational symbols from the constraint
domain on which quantifier elimination must be supported. In this way the
designers have made an interesting agreement with the policy writer that says,
roughly, you can use all these extra functions and relations when you express

Trust Management and Trust Negotiation 93

your policies, but I will reject the clause if I cannot statically verify that the
arguments of those function and relation symbols will be constant by a certain
stage in the evaluation of the clause body.

Cassandra’s designers, Becker and Sewell [5], discuss a design option sim-
ilar to the one taken by Clarke et al. with SPKI/SDSI, which precomputes
answers to all authorization queries, enabling the results to be cached and
reused to make authorization decisions until new credentials are issued or old
credentials expire or are revoked. They elect not to take this approach be-
cause the policy set is changed every time a role is activated or deactivated.
Instead, Cassandra uses Toman’s top-down CLP evaluation algorithm [61]
based on SLG resolution, which focuses computational effort on one query at
a time in the interest of efficiency, as well as using a memoization strategy to
avoid inefficiency and non-termination problems suffered by simpler top-down
methods.

Higher order logic has also been used to specify policies and credentials.
LolliMon [53] is proposed as a typed higher-order linear logic programming
language to specify security statements, which is proven to be more expressive
and efficient than Datalog or Prolog, especially in dealing with integration of
authorization checking and credential retrieval for certificate chain discovery
problem. The evaluation process combines bottom-up proof search and top-
down proof-search. Every evaluation execution starts and ends in the bottom-
up search mode, in which there are switches to and back from top-down mode.
Therefore, although the top-down search is still subject to cyclic dependency
behaviors, termination can be guaranteed by the property of linear logic.
PCA [2] also chooses to use higher-order logic. In order to avoid undecidable
computation, the service requester is required to construct and provide the
proof and the authorizer only needs to check the proof.

4.3 Credential Retrieval Mechanisms

Early trust management systems [10, 9, 18] assume that all credentials rel-
evant to making a given authorization decision are provided to the system
by the calling application. If no proof of compliance can be found, access is
denied. There is no consideration of the possibility that the credentials to
complete a proof exist, but are simply missing. This may be reasonable for
capability-based systems, like KeyNote, in which credentials are issued for
authorizing access to a specific resource, so clients can be expected to know
what credentials to provide to the application. However, when the credential
requirements of a requested resource are less obvious, it may not be obvious
what credentials might be needed. For instance, suppose an online ticket sales
service has a special offer for students of universities that are members of
the NCAA (National Collegate Athletics Association). In this case, a student
might have to present her student ID and a credential issued by the NCAA to
her university. Clearly an ideal system would not require the student to figure
out what credentials to submit and how to find them.

94 D. Li, W. Winsborough, R. Hasan, M. Winslett

To be able to assist in ensuring that a proof of compliance can be found
when the appropriate credentials do exist, Blaze et al. [10] suggested nega-
tive authorization decisions be accompanied by additional information about
how a proof might be possible, given additional credentials. Gunter and Jim
argued [25] that a better approach is to enlist the assistance of the trust man-
agement engine in determining which credentials, should they exist, could
prove compliance. Specifically, they observed that doing so can avoid dupli-
cation of effort that would be incurred by using a compliance checker that
provides hints how a proof might be constructed when sufficient credentials
are not presently available. The first kind of duplication is between the call-
ing application and the compliance checker. Whenever the compliance checker
returns a negative answer to an authorization query, the application itself un-
dertakes to locate the missing credentials. Then the application again invokes
the compliance checker. This process attempts to construct the proof three
times, twice by the compliance checker and once by the application when it
attempts to collect sufficient credentials to construct a proof. The second form
of duplication occurs between different applications that use the TM engine.
Each application needs to have its own checking module in order to find and
collect missing credentials.

Gunter and Jim observed that these two forms of duplication of effort can
be avoided if during the evaluation the trust management engine can take
responsibility for discovering which credentials are needed to complete the
proof and retrieving them, if they exist.

Thus, trust management systems came to include a credential retrieval
mechanism and to interleave credential retrieval operations, be they local or
remote, with evaluation steps; corresponding credential repository services are
also included. QCM [25] was the first TM system to incorporate credential
retrieval; the SD3 [32], RT' [49, 53], Minami and Kotz [51], Bauer et al. [3],
and PeerAccess [66] systems do so as well. TM engines that support credential
retrieval cooperate with each other directly, independently of the calling appli-
cations. They discover and retrieve missing credentials as needed to complete
the proof.

There are two different approaches to remote credential retrieval taken in
the literature. In the first, the request for remote credentials is itself a query
in the TM language. It requests the remote TM system to evaluate that query
and to return either the answer or credentials required to derive the answer.
The remote engine may itself send subqueries to other engines that have cre-
dentials required to complete a proof. The first approach is taken by QCM,
SD3, Bauer et al., and PeerAccess. In the second approach, the remote TM
system is requested only to provide certain credentials that the local engine
has determined are needed. The remote system simply returns credentials
matching the description given by in the request. It does not participate in
collecting further credentials from other sites. The second approach is taken
by RT. In the next two subsections, we discuss issues involved in these two
approaches.

Trust Management and Trust Negotiation 95

Application Application
QCM Engine QCM Engine
Evaluator
Evaluator

Fig. 5. QCM system

4.4 Distributed Evaluation

As mentioned above, QCM was the first system to incorporate credential re-
trieval into the evaluation engine. (See Figure 5.) Queries that cannot be
solved using locally available credentials are transmitted to other engines be-
longing to principals whose assertions address the query in question. QCM’s
credential retriever is designed in such a way that it does not significantly
increase the engine’s code size because it shares most of its code with the
evaluator. In the interest of flexibility, the QCM engine has two modes: verify-
only and verify-retrieval. If the calling application chooses verify-only mode,
the credential retrieval feature is disabled. This mode is used, for example, to
check that the credentials returned from a remote query evaluation do indeed
solve the query. In this subsection, we examine several issues that arise in
the context of TM systems like QCM and SD3 in which remote engines are
invoked to answer subqueries.

When one engine queries another, the latter can reply in one of two ways.
Either it can give what QCM calls a direct reply, in which the remote engine
provides a table of tuples that satisfy the query, or it can provide a proof,
a partial proof, or just a set of credentials from which the answer can be
deduced. The former are called extensional answers and the latter three are
called intensional answers, by the designers of SD3. In the case of a direct
reply, the remote engine typically has to construct a new signed credential
containing an assertion (the table) deduced from other credentials. Unlike
when providing answers to another TM engine, answers returned by a TM
engine to the calling application should be extensional [33].

In addition to supporting extensional answers, SD3 also supports several
forms of intentional answers. The server decides which kind of answer to return
to the client. For example, in order to avoid bottlenecks and denial of service
attacks, the designers of SD3 [33] argue that the server should be able to offer
a range of quality of service, corresponding to different forms of answers. In
the top level of service, the server evaluates the query fully, communicating
with other servers as necessary to do so, and returns a direct reply. A medium
service level might return a partial proof along with hints to the client as to

96 D. Li, W. Winsborough, R. Hasan, M. Winslett

other servers that might be able to provide additional relevant credentials.
The lowest level just returns relevant credentials held locally.

When one TM system replies to another, integrity and authenticity are
normally provided by signing the reply. There are two approaches to sign-
ing: on-line signing and off-line signing. Online signing enables the server to
sign extensional answers as they are generated. Off-line signing requires the
server to return a set of credentials previously signed off line. Off-line sign-
ing protects the server’s private key, but at the same time requires frequent
synchronization and coordination between the trust management server and
the off-line signer. Additionally, intentional answers typically require clients
to verify more signatures. (QCM uses a technique based on hash trees to
decrease the overhead of signing credentials, especially when the set of cre-
dentials is very large. This may also reduce the overall effort required to verify
credentials in some cases.) QCM allows different servers to choose different
signing solutions because neither off-line signing nor on-line signing can be
clearly proven superior to the other.

Another issue that must be managed in distributed evaluation arises as a
result of cyclic dependencies among the definitions of predicate (i.e., relation)
symbols. These can easily lead to repeated subqueries to remote hosts and, if
unchecked, can result in nontermination. Two techniques have been proposed
to mitigate this problem. QCM [25] uses a timer to detect whether there is
a cycle dependency or anything that may have gone wrong if no response is
returned within a time-out limit. However, it is not clear what an appropriate
time-out period is, so it may possibly lead to denying access to requests that
should be authorized. SD3 [32] tags each query with a set of sites that are
waiting for it to terminate, so it can always be checked whether the destination
site is in this set and may cause a cycle. This method is simple, but may be
time consuming and costly in bandwidth.

4.5 Local Evaluation with Distributed Credentials

QCM and its successor SD3 were the first TM systems to address the problem
of evaluating authorization policy when credentials (policy statements) are not
only issued and revoked in a decentralized manner, but their storage is also
distributed. These systems showed that credentials could be stored with their
issuers and located as needed during evaluation. In this way it is possible to
ensure that every credential in every proof of authorization can be discovered
when needed (under basic availability assumptions regarding the network and
relevant servers), and thus that it is possible to grant access to all entities that
should be authorized according to the set of currently valid policy statements.

However, the assumption that credentials be stored exclusively with their
issuers is quite restrictive. In many applications it is more appropriate to
store some credentials with their subjects. For example, when a store offers
discounts to students at the University of Texas, it may not be reasonable to
expect that the university will provide the credentials (student IDs). Firstly,

Trust Management and Trust Negotiation 97

if the student ID includes personally sensitive information, it should be the
student who decides whether to give her ID to the store. Secondly, there may
be thousands of services that are offered to students, and the university may
not be interested in assisting these transactions.

One of the contributions of RT [49] was to devise the first scheme that
permits credentials to be stored either at their issuers or at their subjects.
RT differs from QCM and SD3 by performing the evaluation process locally
and relying on remote servers only to provide credentials relevant to the eval-
uation process. The evaluation process is based on constructing a graph that
represents relationships between different role expressions, which is to say, be-
tween different principals, roles, linked roles, and intersections. Proofs of role
membership are certain subgraphs called chains. Nodes in the graph are given
by role expressions. Edges represent credentials, as well as some derived rela-
tionships. A path connecting two role expressions indicates set containment
of the first role expression in the other.

Evaluation of the query asking whether D is a member of A.r begins by
introducing nodes representing these two entities and proceeds by adding inci-
dent edges. This requires locating the credentials represented by those edges.
Speaking very intuitively, credentials are identified as being relevant to extend-
ing the graph based on the principals appearing in the nodes. Unfortunately,
when trying to extend the graph by including edges incident to a given node,
unless the corresponding credentials are stored by principals identified by the
node, it is not clear who has the credential. So the evaluation procedure may
not be able to find all the credentials that exist and that, if found, would
participate in a proof of authorization. (It should be noted that RT’s notion
of a principal is assumed to provide sufficient information to locate credentials
stored “by” the principal.)

We use an example from [49] to better illustrate this problem. Consider
the RTy credentials shown in Table 1, which are referred to by number in
the following. A fictitious web publishing server, EPub, offers a discount to
preferred customers of its parent organization EOrg (3). EOrg considers uni-
versity students to be preferred customers (6). EOrg delegates authority to
identify universities to FAB, a Fictitious Accrediting Board (4). The univer-
sity StateU is accredited by FAB (1). StateU delegates authority to identify
students to RegistrarB, which is the registrar of one of StateU’s campuses (5).
RegistrarB has issued a credential to Alice stating that Alice is a student (2).

These credentials form a chain that shows Alice belongs to EPub.discount.
The chain consists of three parts (the expressions are now nodes and the
arrows are now edges):

Part (a): EPub.discount «— EOrg.preferred «—— EQOrg.university.student

Part (b): EOrg.university «—— FAB.accredited «— StateU

Part (c): StateU.student «— RegistrarB.student «— Alice

It is natural that credential (4) is a local policy of EOrg and of limited
interest to FAB. So it should be stored at its issuer EOrg. Similarly, credentials
(3), (5) and (6) should be stored at their issuers. On the other hand, Alice

98 D. Li, W. Winsborough, R. Hasan, M. Winslett

(1) FAB.university «— StateU

(2) RegistrarB.student «— Alice

(3) EPub.discount «— EOrg.preferred

(4) EOrg.university «— FAB.accredited

(5) StateU.student «— RegistrarB.student

(6) EOrg.preferred «— EOrg.university.student

Table 1.

should hold credential (2) and StateU should be able to provide (1). Otherwise,
in order to prove that Alice belongs to EOrg.university.student, one would
have to obtain from FAB a complete list of universities, and contact each of
these universities to ask whether Alice is one of their students.

This illustrates that storing credentials only with their issuers can be im-
practical. However, when credentials can be stored with either their issuers
or their subjects, serious issues arise with ensuring credentials can be found
as needed during evaluation. Suppose credentials (2) and (5) are both stored
exclusively with RegistrarB. In this case, the process of elaborating the graph
would have no basis on which to identify RegistrarB as being the principal
with which these necessary credentials are stored, and the proof of Alice’s
authorization could not be constructed. Although the credentials exist in the
system, they cannot be found in order to make a correct positive authorization
decision.

A solution to this problem proposed by [49] balances the advantages of
having flexibility in where credentials are stored and the necessity of finding
all needed credentials. The solution is based on a type system for credentials
that assigns types to role names. The type of a role name indicates, among
other things, where to store credentials that define roles with that role name.
Well-typing rules are introduced that impose constraints on how role names of
various types can be combined within the same credential. These constraints
are local to the credentials, yet they have the global effect of ensuring that
for every credential chain in the system, each credential in the chain can be
discovered and retrieved by a search process that starts from one end of the
chain or the other. Since these ends are known based on the authorization
query, this means that all queries can be answered correctly. The techniques
discussed above were first developed for RTj, but have subsequently been
extended to full RT [50].

The more recent PeerAccess [66] system addresses the same problem
through a system of referrals by brokers, issuers, and subjects who are knowl-
edgeable about certain types of credentials. For example, one can imagine a
broker rather like a Google for credential search. Parties can have their own
favorite brokers that they consult when they do not know where to find a
needed credential, or they can take advantage of hints given to them by other

Trust Management and Trust Negotiation 99

parties during proof construction. For example, if someone asks the university
for Alice’s student credential, the university can suggest that they instead ask
Alice or, if the requester is Alice, that she contact the university’s student ID
repository to obtain her ID credential. This facility of PeerAccess, called proof
hints, can be used to encode the credential retrieval strategies of QCM, SD3,
RT, and other useful techniques.

5 Automated Trust Negotiation

There are many different algorithms that a set of autonomous parties can
follow to establish trust at run time. From just a small sampling, e.g., [14],
idemiz [17], Binder [21], Unipro [68], interactive access control [36], Trust-y
[7], Cassandra [6], Protune [12], OSBE and OAcerts [42, 39], [51], PeerAccess
[66], cryptographic-based protocols [41], and [3], we find an amazing diversity
of algorithms for the distributed construction of proofs. Some of the simpler
algorithms have been described in the previous sections of this chapter; for
more sophisticated approaches, space constraints force us to refer the reader
to the literature.

However, all recent approaches to trust negotiation do share the following
advantages over traditional identity-based approaches to authorization:

e Two previously unacquainted principals can establish bilateral trust be-
tween themselves at run time.

e The authorization policy for a resource can specify the properties that
authorized parties must possess, removing the administrative burden of
maintaining access control lists of authorized identities.

e Trust establishment does not rely on the existence of any trusted third
parties, other than credential issuers.

e In trust negotiation approaches that involve direct disclosure of creden-
tials, trust can be built up gradually through an iterative process, starting
with less sensitive properties and moving on to more sensitive ones after
a certain level of trust has been established.

e In trust negotiation approaches that do not involve direct disclosure of cre-
dentials, trust can be established without either principal learning exactly
which properties the other principal possesses.

All approaches to trust negotiation also share a reliance on policy lan-
guages with certain properties [58], including the following:

e The policy language must possess a well-defined semantics. This implies
that the meaning of the policy in that language must be independent of
any particular implementation of the language. Otherwise, two negotiating
parties can disagree on whether a particular policy has been satisfied by a
set of credentials, leading to chaos.

100 D. Li, W. Winsborough, R. Hasan, M. Winslett

e As hinted in earlier sections, the language and runtime system should
be monotonic in the sense that once a particular level of trust has been
reached (e.g., access has been granted), the disclosure of additional cre-
dentials should not lower the level of trust. This limits the use of negation
in policies in a pragmatic manner. For example, suppose that convicted
felons cannot buy guns. This policy can be used as is in trust negotiation,
as long as the store owner checks the negated construct (not a convicted
felon) by conducting the appropriate credential discovery process himself.
In other words, the store owner cannot decide that it is okay to sell Al-
ice a gun, just because she has not supplied a convicted felon credential.
The store owner must go out to the national registry of criminals and see
whether Alice is listed there. If the runtime system does not support cre-
dential discovery and the store owner has not cached the list of criminals
before negotiation starts, then the policy cannot be used as written.

e At a minimum, the policy language should also support conjunction, dis-
junction, transitive closure, constraints on attribute values, and constraints
that restrict combinations of multiple credentials (theta-joins, in database
terminology).

In the remainder of this section, we discuss ways to support autonomy
during negotiation, ways to minimize information leakage during trust nego-
tiation, and implementations of trust negotiation.

5.1 Supporting Autonomy during Trust Negotiation

Most modern trust negotiation (TN) approaches assume that each negotiating
party has a significant degree of autonomy in its choice of actions during each
step of a negotiation. This assumption mirrors the real world—after all, Alice
does not hawve to fill her prescription at Bob’s pharmacy—and also helps to
make TN algorithms more resilient against attack. When negotiations depend
on slavish adherence to the details of a complex algorithm, then a malicious
participant can easily attack by deviating from the prescribed behavior, and
even a non-malicious participant may have little incentive to cooperate. Any
practical TN algorithm must recognize that one cannot just hand a subgoal
to an arbitrary party and expect them to produce a proof of it—what is the
incentive for them to spend their time in that manner? Similarly, from any dis-
cussion of current credential systems, it is clear that their authors intend them
to describe properties of entities. However, any database researcher knows that
entities, attributes, and relationships are all needed to describe the state of
the real world. Once credentials are used to describe relationships, simplifying
assumptions such as “each credential has one subject” quickly break down.
Who is the subject of a marriage certificate? A birth certificate? These certifi-
cates describe relationships between several subjects, rather than an attribute
of a single subject. While such simplifying assumptions are helpful for getting
early TN systems off the ground, at some point they must be abandoned if
TN is to scale to arbitrary web services and clients.

Trust Management and Trust Negotiation 101

In this section, we describe research efforts to abandon the assumption
that a negotiating party has exactly one possible message that it can send
at each point during a negotiation, dictated by a common distributed proof
construction algorithm shared by all participants. Instead, two negotiating
parties begin their negotiation by agreeing on a negotiation protocol, which is
a set of conventions about the types of messages they will send to one another
and any restrictions on the ordering of those messages [68]. Within those
conventions, each party has freedom to choose the content of its messages.
This approach is intended for situations in which parties disclose (send) their
credentials and policies to one another.

In addition to a protocol, each negotiating party needs to have a trust
negotiation strategy, i.e., its own algorithm that determines the content of
each message that it sends out, based on its own credentials plus the messages
that it has received so far. Every strategy must ensure that all disclosures are
safe, i.e., if a particular credential is disclosed, then the policy governing
access to that credential has already been satisfied by previous disclosures.
For example, Alice’s prescription should not be disclosed until Bob has proved
that he is a pharmacist. Some example strategies:

e Make every possible disclosure of the credentials on hand. In the pharmacy
example, this strategy will lead Alice to disclose her doctor’s credential
immediately—and probably her library card, frequent flyer cards, CPR
course certification, and many other irrelevant credentials as well.

e Disclose every credential on hand that is relevant to the negotiation. For
example, Alice can disclose every credential of hers that has been men-
tioned in the policies previously disclosed by the other party.

e Disclose a minimal set of credentials on hand that will advance the state
of the negotiation, where “minimal” is defined using set inclusion. The
definition of what it means to advance the state of the negotiation can be
surprisingly complex [68].

e Disclose a minimal set of credentials on hand that will advance the state
of the negotiation, where “minimal” is defined using a system of weights
over the credentials. For example, a party can give low weights to the
credentials that it does not consider very sensitive, to steer the negotiation
toward disclosure of those credentials.

e Use a cryptographic protocol that will allow the two parties to determine
whether access is authorized, without letting them learn how the access
policy is satisfied (or, in some variants, what the policy was) [16, 17, 30,
15, 24, 39]

e For the less sensitive parts of the negotiation, use one of the direct dis-
closure strategies mentioned above. For more sensitive aspects, use one of
the cryptographic protocols mentioned in the previous item [41].

A negotiating partner may request a credential that a party does not have
on hand, but might be able to obtain over the internet at run time through
credential discovery. For example, if Alice did not have proof that her doctor

102 D. Li, W. Winsborough, R. Hasan, M. Winslett

was licensed to practice in Bob’s country, then she could try to obtain that
credential on line. For example, it might be available from a national registry,
from the doctor’s office, from her insurance company, or from her mother.
Alice’s negotiation strategy must make the decision about whether to try to
look for a missing credential, and guide any subsequent search.

While some approaches to trust negotiation still assume that the two par-
ties agree on the exact strategy that they will use during a negotiation, this
is unnecessarily restrictive in general. Agreeing on an exact choice of strategy
compromises local autonomy and can leave a principal vulnerable to attack
by a negotiating partner who does not follow the agreed-upon strategy. Re-
searchers have shown that for trust negotiation approaches that directly dis-
close credentials, it is sufficient for the two negotiating parties to agree upon
a broad set of strategies that may be used during the negotiation, including
strategies described in the first four items in the list above [68]. Each par-
ticipant has free choice of any strategy from the set, and is still guaranteed
that the negotiation will result in trust being established if it is theoretically
possible to do so; in other words, all strategies in the set are guaranteed to
be interoperable. These guarantees apply to the negotiation between the
resource requester and provider (i.e., they do not consider ancillary credential
discovery searches), and they still apply if policies themselves may contain sen-
sitive information (i.e., the disclosure of a policy is governed by an additional
access control policy).

5.2 Avoiding Information Leakage during Trust Negotiation

Researchers recognized early on that negotiation strategies that directly dis-
close credentials may leak information about credentials and policies that are
never disclosed. By observing the behavior of a party, one may also be able
to determine what strategy they are using, which can be used as leverage
in extracting additional information. We describe some of these leaks in this
section.

A credential may contain more information than needed to satisfy a pol-
icy. For example, Alice can prove that she is over 21 by presenting a digital
driver’s license. However, the license also gives her home address, exact date
of birth, weight, and other details that are not needed to prove that she is
over 21. To address these shortcomings, researchers have proposed versions of
digital credentials that allow one to hide information that is irrelevant to the
negotiation at hand, such as Alice’s home address [29, 60]. More sophisticated
(and more expensive) schemes provide even more privacy, by avoiding direct
disclosure of credentials. For example, Alice can prove that she is over 21,
without disclosing her exact age [16, 17, 30, 15, 39]. These schemes allow Al-
ice to prove to Bob that she has the properties specified in his policy, without
Bob learning exactly what properties she has. For example, in the pharmacy
example, Bob might learn that Alice is authorized to place an order, without

Trust Management and Trust Negotiation 103

learning who her doctor is. Bob only learns that Alice has some combination
of properties that satisfy his policy.

Often, possession or non-possession of a sensitive credential is itself sen-
sitive information. For example, suppose that Alice is a CIA employee, and
Bob is looking for people who might be such agents. Bob might query people
for their CIA credentials. Even if Alice has a policy to protect the credential,
her response for Bob’s credentials on receipt of such a request can indicate
that she has the credential. In other words, a request for such a credential
may cause the recipient to issue counter-requests for credentials needed to
satisfy disclosure of the sensitive credential. This, in turn, may indicate that
the recipient possesses the sensitive credential. Non-possession may also be
sensitive, and termination of a negotiation upon request for a credential can
indicate non-possession.

If the value of an attribute in a credential is sensitive, then it is possible
for a principal to determine ownership and value of the attribute by the other
negotiating principal based on her replies. For example, suppose that Alice
has a sensitive date of birth field in her driver’s license. Now, if Bob’s policy
has a constraint on age, and upon receipt of Bob’s policy, Alice responds by
asking for any further credentials from Bob, then Bob can assume that Alice
has the attribute that satisfies the constraint. By using a scheme similar to
binary search, it is possible for Bob to determine Alice’s age, without Alice
revealing it to him.

Under many proposed approaches to trust negotiation [14, 62, 68], an
attacker can even use a need-to-know attack to systematically harvest infor-
mation about an arbitrary set of credentials that are not even relevant to
the client’s original request [52]. To do this, the attacker rewrites her policies
in such a way that they are logically equivalent to the original policies, but
when used during negotiation, they force the victim into a series of disclo-
sures related to the credentials being harvested. Once the harvest is over, the
negotiation completes as it would have with the original policies.

The most complete solution to these problems is to adopt a negotiation ap-
proach that does not involve direct disclosure of credentials [16, 17, 30, 15, 24,
39]. While these approaches vary in the degree of privacy that they provide,
all of them can avoid the leaks cataloged in this section. The price of this
improved protection, of course, is significantly longer execution times; thus
one may wish to reserve these expensive strategies for policies that are par-
ticularly sensitive, and use direct disclosure elsewhere [41]. In general, these
TN approaches replace direct disclosure with sophisticated cryptography, usu-
ally coupled with special-purpose formats for credentials. These approaches
are very interesting in their own right; due to space limitations, we refer the
reader to the publications listed above for more information.

In some instances, less expensive forms of protection can be effective
against leakage. One approach is that when Bob queries Alice about a sen-
sitive attribute, she does not respond, whether she has that attribute or not
[57]. Only after Bob satisfies the conditions to allow disclosure does Alice

104 D. Li, W. Winsborough, R. Hasan, M. Winslett

would disclose the credential or disclose the fact that she does not possess it.
This approach is also effective if non-possession is sensitive. However, it relies
on the willingness of individuals to behave in the same manner whether or
not they possess the sensitive attribute—and for those who do not possess
it, there may be little incentive to behave in this manner, as the negotiation
will progress faster if they immediately confess that they do not have the
attribute.

Another solution with moderate runtime costs involves the use of acknowl-
edgement policies [63]. In this scheme, Alice has an acknowledgement policy
(ack-policy) for each possible sensitive credential, regardless of whether she
has that credential or not. She only discloses whether she has the credential
after the ack-policy has been satisfied. This approach also relies on the willing-
ness of people who do not possess a sensitive attribute to act as though they
did, even though it will prolong negotiations. The other disadvantage of this
approach is that users will have many more policies, and policy specification
and maintenance is a huge practical challenge.

Another way to address the problem is to abstract away from requesting
specific credentials, and instead request a particular attribute [59]. For ex-
ample, one can request age instead of a driver’s license. With the help of an
ontology of concepts and credential contents, a party can choose which creden-
tial to disclose to prove possession of the desired attribute, in such a manner
that as little sensitive information as possible is disclosed in the process. For
example, Alice might choose to prove her age by disclosing her passport rather
than her driver’s license, as the latter includes her home address and other
sensitive information not present in a passport. The ontology can also be used
to help respond to requests for a particular attribute by disclosing either more
specific or more general information than was requested. For example, if asked
to prove North American residency, a party might instead prove that they live
in Mexico.

In all approaches where parties directly disclose credentials to one another,
a credential owner has no guarantee that the other party will not show her
disclosed credentials and policies to additional parties. In other words, there
is no guarantee, or even any suggestion, that others will respect her disclo-
sure policies. PeerAccess [66] addresses this problem by requiring recipients
of information to ensure that future recipients of that information also sat-
isfy the original owner’s disclosure policies; however, a malicious party could
simply ignore this requirement. Another low-cost option is to employ P3P
during trust negotiation, as proposed for the privacy-preserving version of the
Trust-x framework for TN [60]. Under this approach, information owners can
examine the P3P policies of their negotiation partners, before disclosing any
credentials or policies. Of course, a malicious party might not abide by their
own P3P policy. In addition, when a credential is forwarded to a third party,
the original owner does not have the opportunity to inspect the P3P policy
of that party and approve the transfer. If these are significant concerns, then

Trust Management and Trust Negotiation 105

a more expensive TN approach that does not directly disclose credentials or
policies is always an option.

5.3 Trust Negotiation Implementations

To date, research on TN has focused mainly on the theoretical issues in-
volved in the negotiation process. While most of the trust management ap-
proaches discussed in this chapter have been implemented, and many of them
have broken interesting new ground in their implementations, very few of
them have been publicly released. Most implementations have been designed
as proofs of concept, and were never intended to be used heavily in prac-
tice. These theoretical works and proofs of concept have been quite suc-
cessful, and thus researchers must now begin to address the implementa-
tion constraints that act as barriers to the deployment of these systems.
Among the systems that support bilateral trust establishment, only Trust-
Builder (http://isrl.cs.byu.edu), TrustBuilder2 (http://dais.cs.uiuc.edu/tn),
and Trust-xy (http://www.cs.purdue.edu/homes/squiccia/trustx) are cur-
rently freely available for download. As TrustBuilder2 was built specifically
as a platform for others to reuse and adapt for their own experiments with
TN, we describe it briefly here.

TrustBuilder2 is a flexible and reconfigurable Java-based framework for
supporting research on the systems aspects of TN approaches to authorization.
In TrustBuilder2, the primary components of a TN system—such as strategy
modules, compliance checkers, query interfaces, and audit modules—are rep-
resented using abstract interfaces, as shown in the architectural diagram in
Figure 6. Any or all of these component interfaces can be implemented or
extended by users of the TrustBuilder2 system, thereby making the system’s
functionality extensible. The TrustBuilder2 configuration files can be modified
to load these custom components in place of the default system components;
this facilitates code reuse and the incorporation of new features without mod-
ifications to the underlying runtime system. Further, TrustBuilder2 supports
the interposition of user-defined plug-ins at communication points between
system components to allow for easy monitoring of system activity or the
modification of messages passed between components.

The TrustBuilder2 framework provides an environment for researchers to
begin considering the technical issues surrounding the deployment of trust
negotiation protocols in production environments and makes several contri-
butions within this space. In addition to the aspects of flexibility described
above, the abstract type interfaces used by TrustBuilder2 for representing
policies, credentials, and resources ensure that new policy languages, cre-
dential formats, and the inclusion of new evidence types can be supported
without requiring modifications to existing system components or changes to
the TrustBuilder2 framework. This allows users to rapidly implement support
for new features, and also provides a framework within which the trade-offs

D. Li, W. Winsborough, R. Hasan, M. Winslett

106

(sfaimg (sjeseqeieq
|enuspaID swiery

Iabeuepayold JabUBAIID BuIEUT Aany [Bwexg |
|

IIIIHIIII;

————

uoyeayddy

— P N
R wabe zal
(ssuodsay T Tams g @)0Lwal 1o} asuodsay
~ . Yoo ZIBpIngIsniL
T) + | NS " juabe gg1
AT fangy — A N BjoLal Woly Y
Jojelpayyaubuzens JmElpayenpoyyfiaels
.m @ M
uifing 2a: E a|npajpuoNEndILENO)
=
'El 5
)
a =
i B
| @ BINPOUD]IEZENSLA o e
— — | | 1 |
- ™y ™,) 1 ! I enss
(s)ainonns . uo) <) | 80lnes suolefigD M |quapay 1
[EIUSPEL PayIEN 500 N - \A a . | h_ | h_
TR | wooH B S bemm
|, (sloumongs | .._,n,u..
. | FepaI _— . y
JOLIPBNUIELD BIUBREID JOJEIPE BB DEIUBIHLIOT
e R T
JazZ|EnsIAS|DSUOODISEg smzEISAING __DMHM_N_M“.:_ _ uonebiqo | _ jewg _ _ Eww:%?._wo& _
1 || peugap-tesn || 1 .
- - B [B - J

a user could execute the same set of negotiations using two dif-

i

Fig. 6. Internal structure of a TrustBuilder2 trust negotiation agent
between various system configurations can be quantitatively analyzed. Trust-
Builder2 allows users to keep the majority of system components constant
and change only minor portions of the framework between trust negotiations;

for example

Trust Management and Trust Negotiation 107

ferent policy compliance checkers. This enables reasonable comparisons to be
made between specific system components without requiring modification to
the runtime system itself. Further information regarding the specifics of the
TrustBuilder2 framework can be found in the programmer documentation and
user manuals included with the TrustBuilder2 software distribution.

6 Open Issues and Trends

6.1 Policy Engineering and User Interfaces

The properties of those who can access a resource are specified in the ac-
cess control policy determined by the resource’s owner. Any mistake in the
specification or implementation of the policy can potentially be found and
automatically exploited by adversaries. Unfortunately, it is very easy to make
a mistake when writing a policy. As Cornwell et al. report from their testbed
deployment of user-created privacy policies in a pervasive computing environ-
ment [19]: “Rules specified at the beginning of the [trials] only captured their
policies 59% of the time. [...] Even when using the rules that users ended up
with at the end of the experiments and re-running these rules on all 30 (or 45)
scenarios, decisions were only correct 70% of the time.” The authors suggest
that using machine learning techniques to learn users’ privacy policies might
be more effective.

More generally, software engineering methods to help people write, up-
date, analyze, and understand authorization policies are an open research
area. A great amount of research is needed on environments for policy speci-
fication, analysis, and debugging; HCI issues in policy engineering, including
user-friendly policy languages and interfaces to policy engineering environ-
ments [38]; ways to explain authorization decisions to people, and to suggest
how they can get a negative decision reversed [35, 13]; and how to compile
operational policies from high-level abstract policies.

As a small aid, we expect that many credential issuers will supply sug-
gested default policies to protect the credentials they issue. For example,
Alice’s doctor’s office can supply a suggested policy with each prescription
written by the doctor, saying that the prescription should only be disclosed
to its owner (Alice) or to a licensed physician. For more complex situations,
issuers could offer a Chinese-menu-style set of options. The use of default
policies will shield credential bearers from the need to understand policy lan-
guages, and will reduce the number of loopholes in their policies.

6.2 Real-world Trust Negotiation Deployments

After several years of research, trust negotiation protocols have yet to make
their way into the mainstream; the one exception is the inclusion of idemiz in
the Trusted Platform Module specification, for use in anonymous attestation.

108 D. Li, W. Winsborough, R. Hasan, M. Winslett

Prior to deploying access control systems based on TN, their systems and
architectural properties must be fully explored. Most existing trust negotiation
implementations exist largely as proofs of concept designed to illustrate the
feasibility of the underlying theory and have performed admirably in this
capacity. We need experience with small-scale real-world deployments to really
understand what research issues must be addressed before TN can hit the
mainstream.

As part of this effort, trust negotiation systems must be hardened against
attack and made scalable under heavy load. While initial steps have been
made in this direction [55, 40], much more remains to be done.

6.3 Distributed Proof Construction

The process of constructing a proof of authorization is one instance of the
general problem of distributed proof construction, which has received a bit of
attention in the logic programming community. However, authorization proofs
face several construction challenges that have not been fully addressed.

Autonomy in proof methods. Each party is autonomous and may have its
own way of constructing proofs, delegating work to others, and choosing what
queries to answer and which to ignore. Further, these parameters may change
over time; for example, a party may need to ignore low-priority queries during
periods of high load, or provide intensional answers instead of its usual ex-
tensional answers. In such an environment, how can we orchestrate everyone’s
individual efforts toward the larger goal of building a single authorization
proof?

Sensitive information. As an additional complication, pieces of a proof may
be sensitive and not freely disclosable to others. Thus successful proof con-
struction may depend on finding the right party to act as a helper in collecting
information. Further, it may be necessary to cloak sensitive information as it
passes through the hands of third parties during proof construction [51]. Ide-
ally, we should also have a means of ensuring that others have respected our
rules about what they can do with the sensitive information we disclose to
them. These are lofty goals, and a great deal of work is needed before they
will be met.

Non-monotonicity. As discussed in the previous section, TN systems need
to be monotonic in the sense that the arrival of additional evidence will not
decrease the level of trust. As explained earlier, this does not mean a policy
cannot call for the absence of a particular piece of evidence (e.g., that a
credential not be revoked); rather, one has to be very careful about which
party checks those negative conditions. The best way to integrate the checking
of negative conditions into distributed proof construction is an open problem.

When TN is used in pervasive computing, the current environment may be
one factor in authorization decisions. For example, perhaps a student can use
a conference room only between 8 AM and 5 PM. The environment can change
over time, violating monotonicity. To date, researchers have developed several

Trust Management and Trust Negotiation 109

theoretical approaches to addressing this problem [37]; additional challenges
are likely to arise when TN is deployed in such a setting.

References

10.

11.

12.

13.

ANSI. American National Standard for Information Technology — Role Based
Access Control. ANSI INCITS 359-2004, February 2004.

Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In
CCS ’99: Proceedings of the 6th ACM Conference on Computer and Communi-
cations Security, pages 52—62, New York, NY, USA, 1999. ACM Press.

Lujo Bauer, Scott Garriss, and Michael K. Reiter. Efficient proving for practical
distributed access-control systems. In 12th Furopean Symposium on Research
in Computer Security (ESORICS), September 2007.

Lujo Bauer, Michael A. Schneider, and Edward W. Felten. A general and flexible
access-control system for the web. In Proceedings of the 11th USENIX Security
Symposium, pages 93—108, Berkeley, CA, USA, 2002. USENIX Association.
Moritz Y. Becker and Peter Sewell. Cassandra: Distributed access control poli-
cies with tunable expressiveness. In POLICY ’04: Proceedings of the Fifth
IEEFE International Workshop on Policies for Distributed Systems and Networks
(POLICY’04), page 159, Washington, DC, USA, 2004. IEEE Computer Society.
Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management,
applied to electronic health records. In CSFW ’04: Proceedings of the 17th IEEE
Computer Security Foundations Workshop (CSFW’04), page 139, Washington,
DC, USA, 2004. IEEE Computer Society.

Elisa Bertino, Elena Ferrari, and Anna Cinzia Squicciarini. Trust-X: A peer-to-
peer framework for trust establishment. IEEE Transactions on Knowledge and
Data Engineering, 16(7):827-842, 2004.

E. Bina, V. Jones, R. McCool, and M. Winslett. Secure Access to Data Over
the Internet. In Conference on Parallel and Distributed Information Systems,
September 1994.

Matt Blaze, Joan Feigenbaum, John loannidis, and Angelos D. Keromytis. The
KeyNote trust-management system, version 2. IETEF RFC 2704, September
1999.

Matt Blaze, Joan Feigenbaum, John loannidis, and Angelos D. Keromytis.
The role of trust management in distributed systems. In Secure Internet Pro-
gramming, volume 1603 of Lecture Notes in Computer Science, pages 185-210.
Springer, 1999.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages
164-173. IEEE Computer Society Press, May 1996.

Piero Bonatti and Daniel Olmedilla. Driving and monitoring provisional
trust negotiation with metapolicies. In POLICY ’05: Proceedings of the Sixth
IEEFE International Workshop on Policies for Distributed Systems and Networks
(POLICY’05), pages 14-23, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

Piero A. Bonatti and Daniel Olmedilla. Policy Language Specification. deliver-
able 12-D2, ISI- Knowledge-Based Systems, University of Hannover, 2005.

110

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

D. Li, W. Winsborough, R. Hasan, M. Winslett

Piero A. Bonatti and Pierangela Samarati. A uniform framework for regulating
service access and information release on the web. J. Comput. Secur., 10(3):241—
271, 2002.

R. Bradshaw, J. Holt, and K. E. Seamons. Concealing complex policies with
hidden credentials. In Eleventh ACM Conference on Computer and Communi-
cations Security, October 2004.

Stefan Brands. Rethinking Public Key Infrastructures and Digital Certificates;
Building in Privacy. MIT Press, 2000.

Jan Camenisch and Els Van Herreweghen. Design and implementation of the
Idemix anonymous credential system. In ACM Computer and Communication
Security, 2002.

Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Mor-
cos, and Ronald L. Rivest. Certificate chain discovery in SPKI/SDSI. Journal
of Computer Security, 9(4):285-322, 2001.

Jason Cornwell, lan Fette, Gary Hsieh, Madhu Prabaker, Jinghai Rao, Karen
Tang, Kami Vaniea, Lujo Bauer, Lorrie Cranor, Jason Hong, Bruce McLaren,
Mike Reiter, and Norman Sadeh. User-controllable security and privacy for
pervasive computing. In Eighth IEEE Workshop on Mobile Computing Systems
and Applications (HotMobile), February 2007.

Jack B. Dennis and Earl C. Van Horn. Programming semantics for multipro-
grammed computations. Commun. ACM, 9(3):143-155, 1966.

John DeTreville. Binder, a logic-based security language. In Proceedings of the
2002 IEEE Symposium on Security and Privacy, pages 105-113. IEEE Com-
puter Society Press, May 2002.

Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu
Ylonen. SPKI certificate theory. IETF RFC 2693, September 1999.

David F. Ferraiolo, Janet A. Cuigini, and D. Richard Kuhn. Role-based access
control (RBAC): Features and motivations. In Proceedings of the 11th Annual
Computer Security Applications Conference (ACSAC’95), December 1995.
Keith Frikken, Mikhail Atallah, and Jiangtao Li. Attribute-based access control
with hidden policies and hidden credentials. IEEE Transactions on Computers
(TC), 55(10), 2006.

Carl A. Gunter and Trevor Jim. Policy-directed certificate retrieval. Software:
Practice & Experience, 30(15):1609-1640, September 2000.

R. J. Hayton, J. M. Bacon, and K. Moody. Access control in an open distributed
environment. In IEEE Symposium of Security and Privacy, pages 3-14, ‘1998.
Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor, and Yiftach Ravid. Access
control meets public key infrastructure, or: Assigning roles to strangers. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages 2—14.
IEEE Computer Society Press, May 2000.

John A. Hine, Walt Yao, Jean Bacon, and Ken Moody. An architecture for
distributed oasis services. In Middleware '00: IFIP/ACM International Con-
ference on Distributed systems platforms, pages 104-120, Secaucus, NJ, USA,
2000. Springer-Verlag New York, Inc.

J. Holt and K. E. Seamons. Selective disclosure credential sets. Cryptology
ePrint Archive, 2002.

Jason Holt, Robert W. Bradshaw, Kent E. Seamons, and Hilarie Orman. Hidden
credentials. In Workshop on Privacy in the Electronic Society (WPES), 2003.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Trust Management and Trust Negotiation 111

Russell Housely, Warwick Ford, Tim Polk, and David Solo. Internet X.509 public
key infrastructure certificate and CRL profile. IETF Request for Comments
RFC-2459, January 1999.

Trevor Jim. SD3: A trust management system with certified evaluation. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy, pages 106—
115. IEEE Computer Society Press, May 2001.

Trevor Jim and Dan Suciu. Dynamically distributed query evaluation. In PODS
’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 28-39, New York, NY, USA, 2001.
ACM Press.

A. Jsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for
online service provision. Decision Support Systems, 43(2):618-644, March 2007.
Apu Kapadia, Geetanjali Sampemane, and Roy H. Campbell. KNOW why your
access was denied: Regulating feedback for usable security. In Proceedings of the
ACM Conference on Computers and Communication Security (CCS), pages 52—
61, Washington, DC, Oct 2004.

H. Koshutanski and F. Massacci. An interactive trust management and negoti-
ation scheme. In Theo Dimitrakos and Fabio Martinelli, editors, Formal Aspects
of Security and Trust, pages 139-152. KAP, 2004.

Adam J. Lee, Kazuhiro Minami, and Marianne Winslett. Lightweight consis-
tency enforcement schemes for distributed proofs with hidden subtrees. In 12th
ACM Symposium on Access Control Models and Technologies (SACMAT 2007),
June 2007.

Adam J. Lee and Marianne Winslett. Open problems for usable and secure open
systems. In Workshop on Usability Research Challenges for Cyberinfrastructure
and Tools held in conjunction with ACM CHI, April 2006.

Jiangtao Li and Ninghui Li. OACerts: Oblivious attribute certificates. IEEFE
Transactions on Dependable and Secure Computing (TDSC), 3(4), 2006.
Jiangtao Li, Ninghui Li, XiaoFeng Wang, and Ting Yu. Denial of Service At-
tacks and Defenses in Decentralized Trust Management. In 2nd IEEE Inter-
national Conference on Security and Privacy in Communication Networks (Se-
cureComm,), August 2006.

Jiangtao Li, Ninghui Li, and William Winsborough. Automated trust negoti-
ation using cryptographic credentials. ACM Transactions on Information and
System Security (TISSEC), 2007.

Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based envelope.
In PODC ’03: Proceedings of the twenty-second annual symposium on Principles
of distributed computing, pages 182-189, New York, NY, USA, 2003. ACM Press.
Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation Logic: A
logic-based approach to distributed authorization. ACM Transaction on Infor-
mation and System Security, 6(1):128-171, February 2003.

Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for
trust management languages. In Proceedings of the Fifth International Sympo-
stum on Practical Aspects of Declarative Languages (PADL 2003), number 2562
in LNCS, pages 58-73. Springer, January 2003.

Ninghui Li and John C. Mitchell. RT: A role-based trust-management frame-
work. In The Third DARPA Information Survivability Conference and Ezposi-
tion (DISCEX III). IEEE Computer Society Press, April 2003.

112

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

D. Li, W. Winsborough, R. Hasan, M. Winslett

Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-
based trust management framework. In Proceedings of the 2002 IEEE Sympo-
sium on Security and Privacy, pages 114-130. IEEE Computer Society Press,
May 2002.

Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed creden-
tial chain discovery in trust management (extended abstract). In Proceedings of
the Eighth ACM Conference on Computer and Communications Security (CCS-
8), pages 156-165. ACM Press, November 2001.

Ninghui Li, William H. Winsborough, and John C. Mitchell. Beyond proof-of-
compliance: Safety and availability analysis in trust management. In Proceedings
of IEEE Symposium on Security and Privacy, pages 123-139. IEEE Computer
Society Press, May 2003.

Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed cre-
dential chain discovery in trust management. Journal of Computer Security,
11(1):35-86, February 2003.

Ziqing Mao, Ninghui Li, and William H. Winsborough. Distributed credential
chain discovery in trust management with parameterized roles and constraints.
In 2006 International Conference on Information and Communications Security
(ICICS 2006), December 2006.

Kazuhiro Minami and David Kotz. Secure context-sensitive authorization. Jour-
nal of Pervasive and Mobile Computing, 1(1), March 2005.

Lars E. Olson, Michael J. Rosulek, and Marianne Winslett. Harvesting Cre-
dentials in Trust Negotiation as an Honest-But-Curious Adversary. In ACM
Workshop on Privacy in the Electronic Society (WPES), 2007.

Jeff Polakow and Christian Skalka. Specifying distributed trust management
in Lollimon. In PLAS ’06: Proceedings of the 2006 Workshop on Programming
Languages and Analysis for Security, pages 37-46, New York, NY, USA, 2006.
ACM Press.

Ronald L. Rivest and Bulter Lampson. SDSI — a simple dis-
tributed security infrastructure, October 1996. Available at
hitp://theory.lcs.mit.edu/~rivest/sdsil1.html.

T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and K. E. Seamons. Adaptive
trust negotiation and access control. In 10th ACM Symposium on Access Control
Models and Technologies, June 2005.

Ravi S. Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97
model for role-based aministration of roles. ACM Transactions on Information
and Systems Security, 2(1):105-135, February 1999.

K. E. Seamons, M. Winslett, T. Yu, L. Yu, and R. Jarvis. Protecting privacy
during on-line trust negotiation. In Proceedings of the 2nd Workshop on Privacy
Enhancing Technologies, April 2002.

Kent Seamons, Marianne Winslett, Ting Yu, B. Smith, E. Child, J. Jacobson,
H. Mills, and Lina Yu. Requirements for policy languages for trust negotiation.
In Third IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY’02), pages 68-79, June 2002.

A. C. Squicciarini, E. Bertino, and E. Ferrari. Achieving Privacy with an
Ontology-Based Approach in Trust Negotiations. IEEE Transaction on De-
pendable and Secure Computing (TDSC), 3(1):13-30, 2006.

A. C. Squicciarini, E. Bertino, E. Ferrari, F. Paci, and B. Thuraisingham. PP-
Trust-X: A System for Privacy Preserving Trust Negotiations. ACM Transac-
tions on Information and System Security (TISSEC), 10(3), July 2007.

61.

62.

63.

64.

65.

66.

67.

68.

Trust Management and Trust Negotiation 113

David Toman. Memoing evaluation for constraint extensions of datalog. Con-
straints and databases, pages 99-121, 1998.

William H. Winsborough and Ninghui Li. Towards practical automated trust
negotiation. In Proceedings of the Third International Workshop on Policies for
Distributed Systems and Networks (Policy 2002), pages 92-103. IEEE Computer
Society Press, June 2002.

William H. Winsborough and Ninghui Li. Safety in automated trust negotiation.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 147-160,
May 2004.

William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated
trust negotiation. In DARPA Information Survivability Conference and Expo-
sition, volume I, pages 88-102. IEEE Press, January 2000.

Marianne Winslett. An introduction to trust negotiation. In Proceedings of
1Trust, pages 275-283, 2003.

Marianne Winslett, Charles C. Zhang, and Piero A. Bonatti. Peeraccess: a
logic for distributed authorization. In CCS ’05: Proceedings of the 12th ACM
Conference on Computer and Communications Security, pages 168-179, New
York, NY, USA, 2005. ACM Press.

Walt Yao, Ken Moody, and Jean Bacon. A model of oasis role-based access
control and its support for active security. In SACMAT ’01: Proceedings of
the sixzth ACM Symposium on Access Control Models and Technologies, pages
171-181, New York, NY, USA, 2001. ACM Press.

Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured
credentials and sensitive policies through interoperable strategies for automated
trust negotiation. ACM Transactions on Information System Security, 6(1):1—
42, 2003.

5

Authenticated Index Structures for
Outsourced Databases

Feifei Li', Marios Hadjileftheriou?, George Kollios?, and Leonid Reyzin?

! Department of Computer Science

Florida State University
lifeifei@cs.fsu.edu
? AT&T Labs Inc.
marioh@research.att.com
Computer Science Department
Boston University
gkollios@cs.bu.edu,reyzin@cs.bu.edu

Summary. In an outsourced database (ODB) system the database owner publishes
data through a number of remote servers, with the goal of enabling clients at the
edge of the network to access and query the data more efficiently. As servers might be
untrusted or can be compromised, query authentication becomes an essential com-
ponent of ODB systems. In this chapter we present three techniques to authenticate
selection range queries and we analyze their performance over different cost metrics.
In addition, we discuss extensions to other query types.

1 Introduction

Today, there is a large number of corporations that use electronic commerce
as their primary means of conducting business. As the number of customers
using the Internet for acquiring services increases, the demand for providing
fast, reliable and secure transactions increases accordingly — most of the
times beyond the capacity of individual businesses to provide the level of
service required, given the overwhelming data management and information
processing costs involved.

Increased demand has fueled a trend towards outsourcing data manage-
ment and information processing needs to third-party service providers in
order to mitigate the in-house cost of furnishing online services [1]. In this
model the third-party service provider is responsible for offering the neces-
sary resources and mechanisms for efficiently managing and accessing the
outsourced data, by data owners and customers respectively. Clearly, data out-
sourcing intrinsically raises issues related with trust. Service providers cannot
always be trusted (they might have malicious intend), might be compromised
(by other parties with malicious intend) or run faulty software (unintentional

116 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

errors). Hence, this model raises important issues on how to guarantee quality
of service in untrusted database management environments, which translates
into providing verification proofs to both data owners and clients that the
information they process is correct.

Three main entities exist in the ODB model as discussed so far: the data
owner, the database service provider (a.k.a. server) and the client. In prac-
tice, there is a single or a few data owners, a few servers, and many clients.
The data owners create their databases, along with the necessary index and
authentication structures, and upload them to the servers. The clients issue
queries about the owner’s data through the servers, which use the authenti-
cation structures to provide provably correct answers. It is assumed that the
data owners may update their databases periodically and, hence, authentica-
tion techniques should be able to support dynamic updates. In this setting,
query authentication has three important dimensions: correctness, complete-
ness and freshness. Correctness means that the client must be able to validate
that the returned answers truly exist in the owner’s database and have not
been tampered with. Completeness means that no answers have been omitted
from the result. Finally, freshness means that the results are based on the most
current version of the database, that incorporates the latest owner updates.
It should be stressed here that result freshness is an important dimension of
query authentication that is directly related to incorporating dynamic updates
into the ODB model.

There are a number of important costs pertaining to the aforementioned
model, relating to the database construction, querying, and updating phases.
In particular, in this chapter the following metrics are considered: 1. The
computation overhead for the owner, 2. The owner-server communication cost,
3. The storage overhead for the server, 4. The computation overhead for the
server, 5. The client-server communication cost, and 6. The computation cost
for the client (for verification).

It should be pointed out that there are other important security issues in
ODB systems that are orthogonal to the problems considered here. Exam-
ples include privacy-preservation issues [2, 3, 4], secure query execution [5],
security in conjunction with access control requirements [6, 7, 8, 9] and query
execution assurance [10]. Aslo, we concentrate on large databases that need
to be stored on external memory. Therefore, we will not discuss main memory
structures [11, 12, 13] or data stream authentication [14, 15].

2 Cryptographic Background
In this section we discuss some basic cryptographic tools. These tools are

essential components of the authentication data structures that we discuss
later.

Authenticated Index Structures for Outsourced Databases 117
2.1 Collision-resistant hash functions.

For our purposes, a hash function H is an efficiently computable function
that takes a variable-length input z to a fixed-length output y = H(x). Colli-
sion resistance states that it is computationally infeasible to find two inputs
x1 # xo such that H(z1) = H(xz). Collision-resistant hash functions can be
built provably based on various cryptographic assumptions, such as hardness
of discrete logarithms [16]. However, we concentrate on using heuristic hash
functions that have the advantage of being very fast to evaluate. Specifically
we focus on SHA-1 [17], which takes variable-length inputs to 160-bit (20-
byte) outputs. SHA-1 is currently considered collision-resistant in practice,
despite some recent successful attacks [18, 19]. We also note that any even-
tual replacement to SHA-1 developed by the cryptographic community can
be used instead of SHA-1.

2.2 Public-key digital signature schemes.

A public-key digital signature scheme, formally defined in [20], is a tool for
authenticating the integrity and ownership of the signed message. In such a
scheme, the signer generates a pair of keys (SK, PK), keeps the secret key
SK secret, and publishes the public key PK associated with her identity.
Subsequently, for any message m that she sends, a signature s,, is produced by
Sm = S(SK,m). The recipient of s,, and m can verify s,, via V(PK,m, sp,)
that outputs “valid” or “invalid.” A valid signature on a message assures
the recipient that the owner of the secret key intended to authenticate the
message, and that the message has not been changed. The most commonly
used public digital signature scheme is RSA [21]. Existing solutions [9, 22, 23,
24] for the query authentication problem chose to use this scheme, hence we
adopt the common 1024-bit (128-byte) RSA here. Its signing and verification
cost is one hash computation and one modular exponentiation with 1024-bit
modulus and exponent.

2.3 A Signature Aggregation Scheme.

In the case when t signatures sq,...,s; on t messages mi,...,m; signed by
the same signer need to be verified all at once, certain signature schemes allow
for more efficient communication and verification than ¢ individual signatures.
Namely, for RSA it is possible to combine the ¢ signatures into a single ag-
gregated signature s;; that has the same size as an individual signature and
that can be verified (almost) as fast as an individual signature. This tech-
nique is called Condensed-RSA [25]. The combining operation can be done
by anyone, as it does not require knowledge of SK; moreover, the security of
the combined signature is the same as the security of individual signatures.
In particular, aggregation of ¢ RSA signatures can be done at the cost of ¢t —1
modular multiplications, and verification can be performed at the cost of ¢t —1

118 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

Stree =S (Nroot)
hyoor=H(hy2 |h34)

hyo=H(hy %25/

hy=H(r ho=TH(rs) hy="H(x;

hgy="H (hs|hy)

4=H(1'4)

‘ L8 ‘ ‘) ‘ ‘ 3 ‘ ‘ T4 ‘

Fig. 1. Example of a Merkle hash tree.

multiplications, ¢ hashing operations, and one modular exponentiation (thus,
the computational gain is that ¢ — 1 modular exponentiations are replaced by
modular multiplications). Note that aggregating signatures is possible only
for some digital signature schemes.

2.4 The Merkle Hash Tree.

The straightforward solution for verifying a set of n values is to generate n
digital signatures, one for each value. An improvement on this straightforward
solution is the Merkle hash tree (see Figure 1), first proposed by [26]. Tt
solves the simplest form of the query authentication problem for point queries
and datasets that can fit in main memory. The Merkle hash tree is a binary
tree, where each leaf contains the hash of a data value, and each internal
node contains the hash of the concatenation of its two children. Verification
of data values is based on the fact that the hash value of the root of the
tree is authentically published (authenticity can be established by a digital
signature). To prove the authenticity of any data value, all the prover has
to do is to provide the verifier, in addition to the data value itself, with the
values stored in the siblings of the path that leads from the root of the tree to
that value. The verifier, by iteratively computing all the appropriate hashes
up the tree, at the end can simply check if the hash she has computed for the
root matches the authentically published value. The security of the Merkle
hash tree is based on the collision-resistance of the hash function used: it is
computationally infeasible for a malicious prover to fake a data value, since
this would require finding a hash collision somewhere in the tree (because
the root remains the same and the leaf is different—hence, there must be
a collision somewhere in between). Thus, the authenticity of any one of n
data values can be proven at the cost of providing and computing log, n hash
values, which is generally much cheaper than storing and verifying one digital
signature per data value. Furthermore, the relative position (leaf number)
of any of the data values within the tree is authenticated along with the
value itself. Finally, in [27] this idea is extended to dynamic environments,
by dynamizing the binary search tree using 2-3 trees. Thus, insertions and
deletions can be handled efficiently by the Merkle hash tree.

Authenticated Index Structures for Outsourced Databases 119

Table 1. Notation used.

Symbol|Description

r A database record

k A Bt-tree key

D A BT -tree pointer

h A hash value

s A signature

|| Size of object x

Np Total number of database records

Ng Total number of query results

P Page size

fa Node fanout of structure x

dy Height of structure x

‘H;(xz) |A hash operation on input z of length !
Si(x) |A signing operation on input x of length [
Vi(z) |A verifying operation on input z of length [
Ce Cost of operation x

VO The verification object

3 Authenticated Index Structures for Selection Queries

Existing solutions for the query authentication problem work as follows. The
data owner creates a specialized authenticated data structure that captures
the original database and uploads it at the servers together with the database
itself. The structure is used by the servers to provide a verification object
VO, along with every query answer, which clients can use for authenticating
the results. Verification usually occurs by means of using collision-resistant
hash functions and digital signature schemes. Note that in any solution, some
information that is known to be authentically published by the owner must be
made available to the client directly; otherwise, from the client’s point of view,
the owner cannot be differentiated from any other potentially malicious entity.
For example, this information could be the owner’s public key of any public
signature scheme. For any authentication method to be successful it must be
computationally infeasible for a malicious server to produce an incorrect query
answer along with a verification object that will be accepted by a client that
holds the correct authentication information of the owner.

Next, we illustrate three approaches for query correctness and complete-
ness for selection queries on a single attribute: a signature-based approach
similar to the ones described in [9, 24], a Merkle-tree-like approach based on
the ideas presented in [28], and an improved embedded tree approach [29]. We
present them for the static scenario where no data updates occur between the
owner and the servers on the outsourced database. We also present analytical
cost models for all techniques, given a variety of performance metrics.

120 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

In particular, we provide models for the storage, construction, query,
and authentication cost of each technique, taking into account the overhead
of hashing, signing, verifying data, and performing expensive computations
(like modular multiplications of large numbers). The analysis considers range
queries on a specific database attribute A indexed by a B*-tree [30]. The size
of the structure is important first for quantifying the storage overhead on the
servers, and second for possibly quantifying the owner/server communication
cost. The construction cost is useful for quantifying the overhead incurred
by the database owner for outsourcing the data. The query cost quantifies
the incurred server cost for answering client queries, and hence the potential
query throughput. The authentication cost quantifies the server/client com-
munication cost and, in addition, the client side incurred cost for verifying
the query results. The notation used is summarized in Table 1. In the rest,
for ease of exposition, it is assumed that all structures are bulk-loaded in a
bottom-up fashion and that all index nodes are completely full. Extensions
for supporting multiple selection attributes are discussed in Section 6.

Aggregated Signatures with BT -trees

The first authenticated data structure for static environments is a direct ex-
tension of aggregated signatures and ideas that appeared in [24, 9]. To guar-
antee correctness and completeness the following technique can be used: First,
the owner individually hashes and signs all consecutive pairs of tuples in the
database, assuming some sorted order on a given attribute A. For example,
given two consecutive tuples r;, 7; the owner transmits to the servers the pair
(ri, s;), where s; = S(r;|r;j) (‘|” denotes some canonical pairing of strings that
can be uniquely parsed back into its two components; e.g., simple string con-
catenation if the lengths are fixed). The first and last tuples can be paired with
special marker records. Chaining tuples in this way will enable the clients to
verify that no in-between tuples have been dropped from the results or mod-
ified in any way. An example of this scheme is shown in Figure 2.

,—'“y\\ Bt-tree

r Ty r3 Tn Ta
S(rilra) S(ralrs) S(ralra) S(rulra)

Fig. 2. The signature-based approach.

In order to speed up query execution on the server side a BT -tree is con-
structed on top of attribute A. To answer a query the server constructs a VO
that contains one pair 74|s, per query result. In addition, one tuple to the left
of the lower-bound of the query results and one to the right of the upper-bound

Authenticated Index Structures for Outsourced Databases 121

is returned, in order for the client to be able to guarantee that no boundary
results have been dropped. Notice that since our completeness requirements
are less stringent than those of [9] (where they assume that database access
permissions restrict which tuples the database can expose to the user), for
fairness we have simplified the query algorithm substantially here.

There are two obvious and serious drawbacks associated with this ap-
proach. First, the extremely large VO size that contains a linear number
of signatures w.r.t. Ng (the total number of query results), taking into ac-
count that signature sizes are very large. Second, the high verification cost
for the clients. Authentication requires Ny verification operations which, as
mentioned earlier, are very expensive. To solve this problem one can use the
aggregated signature scheme discussed in Section 2.3. Instead of sending one
signature per query result the server can send one combined signature s™ for all
results, and the client can use an aggregate verification instead of individual
verifications.

By using aggregated RSA signatures, the client can authenticate the results
by hashing consecutive pairs of tuples in the result-set, and calculating the
product m™ = [y, hg (mod n) (where n is the RSA modulus from the public
key of the owner). It is important to notice that both s™ and m™ require a
linear number of modular multiplications (w.r.t. Ng). The cost models of the
aggregated signature scheme for the metrics considered are as follows:

Node fanout:

The node fanout of the BT -tree structure is:

P—p
fa_ ‘|

= +1. (1
EX])

where P is the disk page size, |k| and |p| are the sizes of a BT-tree key and
pointer respectively.

Storage cost:

The total size of the authenticated structure (excluding the database itself)
is equal to the size of the BT-tree plus the size of the signatures. For a total
of Np tuples the height of the tree is equal to d, = log;, Np, consisting of

da _ _ .
Ny = f;a_ll (= Z?iol ?) nodes in total. Hence, the total storage cost is

equal to:

R Sy U (2)

fa -1
The storage cost also reflects the initial communication cost between the
owner and servers. Notice that the owner does not have to upload the B*-tree
to the servers, since the latter can rebuild it by themselves, which will reduce
the owner/server communication cost but increase the computation cost at
the servers. Nevertheless, the cost of sending the signatures cannot be avoided.

122 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin
Construction cost:

The cost incurred by the owner for constructing the structure has three com-
ponents: the signature computation cost, bulk-loading the B'-tree, and the
I/O cost for storing the structure. Since the signing operation is very expen-
sive, it dominates the overall cost. Bulk-loading the B*-tree in main memory
is much less expensive and its cost can be omitted. Hence:

a

C
Ce = Np - (Cryy +Csyn) + 3 Ci0 (3)
VO construction cost:

The cost of constructing the VO for a range query depends on the total disk
I/O for traversing the BT-tree and retrieving all necessary record/signature

pairs, as well as on the computation cost of s™. Assuming that the total
number of leaf pages accessed is Ng = %, the VO construction cost is:

Ng-|r| | Ngr-|s|
: STy 4
Iz + P) Cro+C ()

C:;:(NQ-I—da—l-f—

where the last term is the modular multiplication cost for computing the
aggregated signature, which is linear to Ng. The I/O overhead for retrieving
the signatures is also large.

Authentication cost:
The size of the VO is equal to the result-set size plus the size of one signature:
[VO|* = Ng - |r| + |s|. (5)

The cost of verifying the query results is dominated by the hash function
computations and modular multiplications at the client:

Cy = Ng - Crjpy + Conm + Cyyy (6)

where the modular multiplication cost for computing the aggregated hash
value is linear to the result-set size Ng, and the size of the final product has
length in the order of |n| (the RSA modulus). The final term is the cost of
verifying the product using s™ and the owner’s public key.

It becomes obvious now that one advantage of the aggregated signature
scheme is that it features small VO sizes and hence small client/server com-
munication cost. On the other hand it has the following serious drawbacks: 1.
Large storage overhead on the servers, dominated by the large signature sizes,
2. Large communication overhead between the owners and the servers that
cannot be reduced, 3. A very high initial construction cost, dominated by the
cost of computing the signatures, 4. Added I/O cost for retrieving signatures,
linear to Ny, 5. An added modular multiplication cost, linear to the result-set

Authenticated Index Structures for Outsourced Databases 123

size, for constructing the VO and authenticating the results, 6. The require-
ment for a public key signature scheme that supports aggregated signatures.
For the rest of the chapter, this approach is denoted as Aggregated Signatures
with BT-trees (ASB-tree). The ASB-tree has been generalized to work with
multi-dimensional selection queries in [24, 31].

The Merkle B-tree

Motivated by the drawbacks of the ASB-tree, we present a different approach
for building authenticated structures that is based on the general ideas of
[28] (which utilize the Merkle hash tree) applied in our case on a BT-tree
structure. We term this structure the Merkle B-tree (MB-tree).

As already explained in Section 2.4, the Merkle hash tree uses a hierarchical
hashing scheme in the form of a binary tree to achieve query authentication.
Clearly, one can use a similar hashing scheme with trees of higher fanout and
with different organization algorithms, like the BT-tree, to achieve the same
goal. An MB-tree works like a BT-tree and also consists of ordinary BT-tree
nodes that are extended with one hash value associated with every pointer
entry. The hash values associated with entries on leaf nodes are computed
on the database records themselves. The hash values associated with index
node entries are computed on the concatenation of the hash values of their
children. For example, an MB-tree is illustrated in Figure 3. A leaf node
entry is associated with a hash value h = H(r;), while an index node entry
with h = H(hy|-- - |hs,), where hq,..., hy,, are the hash values of the node’s
children, assuming fanout f,, per node. After computing all hash values, the
owner has to sign the hash of the root using its secret key SK.

Ak | p | R=Hh|.|hy)

[e || ki Di hi=H(r;) e J ooe
Fig. 3. An MB-tree node.

To answer a range query the server builds a VO by initiating two top-
down BT-tree like traversals, one to find the left-most and one the right-
most query result. At the leaf level, the data contained in the nodes between
the two discovered boundary leaves are returned, as in the normal BT -tree.
The server also needs to include in the VO the hash values of the entries
contained in each index node that is visited by the lower and upper boundary
traversals of the tree, except the hashes to the right (left) of the pointers
that are traversed during the lower (upper) boundary traversals. At the leaf
level, the server inserts only the answers to the query, along with the hash

124 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

values of the residual entries to the left and to the right parts of the boundary
leaves. The result is also increased with one tuple to the left and one to the
right of the lower-bound and upper-bound of the query result respectively,
for completeness verification. Finally, the signed root of the tree is inserted as
well. An example query traversal is shown in Figure 4.

return h; p1
/—/\ﬁ

L

Fig. 4. A query traversal on an MB-tree. At every level the hashes of the residual
entries on the left and right boundary nodes need to be returned.

I I I3 I; Ts ‘ 1;

in
]

Ls LGJ [117

-
return h; Do return r;

Ly Ls || Lo || Lio|| L1y

The client can iteratively compute all the hashes of the sub-tree corre-
sponding to the query result, all the way up to the root using the VO. The
hashes of the query results are computed first and grouped into their corre-
sponding leaf nodes?*, and the process continues iteratively, until all the hashes
of the query sub-tree have been computed. After the hash value of the root
has been computed, the client can verify the correctness of the computation
using the owner’s public key PK and the signed hash of the root. It is easy
to see that since the client is forced to recompute the whole query sub-tree,
both correctness and completeness is guaranteed. It is interesting to note here
that one could avoid building the whole query sub-tree during verification by
individually signing all database tuples as well as each node of the Bt-tree.
This approach, called VB-tree, was proposed in [22] but it is subsumed by
the ASB-tree. Another approach that does not need to build the whole tree
appeared in [32]. The analytical cost models of the MB-tree are as follows:

Node fanout:

The node fanout in this case is:

P —|p| — |h|

fm =
[k + |pl + |h]

+ 1. (7)
Notice that the maximum node fanout of the MB-tree is considerably smaller
than that of the ASB-tree, since the nodes here are extended with one hash
value per entry. This adversely affects the total height of the MB-tree.

4 Extra node boundary information can be inserted in the VO for this purpose with
a very small overhead.

Authenticated Index Structures for Outsourced Databases 125
Storage cost:

The total size is equal to:

fim 1
m:P~ m .
ey =P s)

An important advantage of the MB-tree is that the storage cost does not
necessarily reflect the owner/server communication cost. The owner, after
computing the final signature of the root, does not have to transmit all hash
values to the server, but only the database tuples. The server can recompute
the hash values incrementally by recreating the MB-tree. Since hash compu-
tations are cheap, for a small increase in the server’s computation cost this
technique will reduce the owner/sever communication cost drastically.

Construction cost:

The construction cost for building an MB-tree depends on the hash function
computations and the total I/Os. Since the tree is bulk-loaded, building the
leaf level requires Np hash computations of input length |r|. In addition, for
every tree node one hash of input length f,, - |h| is computed. Since there

dm _q
are a total of N; = Im) nodes on average (given height d,, = logy Np),

the total number of hash function computations, and hence the total cost for
constructing the tree is given by:

m

C
an:ND'CHm +NI.CHfm\h\ +Cs|h\ —l—%-C[O. (9)

VO construction cost:

The VO construction cost is dominated by the total disk I/O. Let the total
number of leaf pages accessed be equal to Ng = %, dm = logy, Np and d, =
log; Ng be the height of the MB-tree and the query sub-tree respectlvely
In the general case the index traversal cost is:

Ng - |r|

o, (10)

Cy' = [(dm —dq +1) +2(dg — 2) + N +
taking into account the fact that the query traversal at some point splits into
two paths. It is assumed here that the query range spans at least two leaf
nodes. The first term corresponds to the hashes inserted for the common path
of the two traversals from the root of the tree to the root of the query sub-tree.
The second term corresponds to the cost of the two boundary traversals after
the split. The last two terms correspond to the cost of the leaf level traversal
of the tree and accessing the database records.

126 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin
Authentication cost:

Assuming that pg is the total number of query results contained in the left
boundary leaf node of the query sub-tree, oy on the right boundary leaf node,
and p;, 0; the total number of entries of the left and right boundary nodes on
level 4,1 < i < d,, that point towards leaves that contain query results (see
Figure 4), the size of the VO is:

‘VO|7TL —
(2fm = po — 00)|h| + Ng - [r| + |s] +
(dm - dq) ! (fm - 1)|h| +

dq—2

S (2 — i — o)l +

i=1

(fm_pdq—l _qu—1)|h" (11)

This cost does not include the extra boundary information needed by the
client in order to group hashes correctly, but this overhead is very small (one
byte per node in the VO) especially when compared with the hash value size.
Consequently, the verification cost on the client is:

dq—1
C,' = Nr-Cn, + Z frn Crggim T
i=0
(dm —dq) .C’Hfm\hl +CV|h‘~ (12)

Given that the computation cost of hashing versus signing is orders of
magnitude smaller, the initial construction cost of the MB-tree is expected
to be orders of magnitude less expensive than that of the ASB-tree. Given
that the size of hash values is much smaller than that of signatures and that
the fanout of the MB-tree will be smaller than that of the ASB-tree, it is not
easy to quantify the exact difference in the storage cost of these techniques,
but it is expected that the structures will have comparable storage cost, with
the MB-tree being smaller. The VO construction cost of the MB-tree will be
much smaller than that of the ASB-tree, since the ASB-tree requires many
I/0Os for retrieving signatures, and also some expensive modular multiplica-
tions. The MB-tree will have smaller verification cost as well since: 1. Hashing
operations are orders of magnitude cheaper than modular multiplications, 2.
The ASB-tree requires N modular multiplications for verification. The only
drawback of the MB-tree is the large VO size, which increases the client /server
communication cost. Notice that the VO size of the MB-tree is bounded by
Jm - logs Np. Since generally f, > log; Np, the VO size is essentially
determined by f,,, resulting in large sizes.

Authenticated Index Structures for Outsourced Databases 127

]
N

b

hy=H (b1 |...] hrp,)

)

k; h;=H(r;)

Pi

Fig. 5. An EMB-tree node.

The Embedded Merkle B-tree

In this section we present another data structure, the Embedded Merkle B-
tree (EMB-tree), that provides a nice, adjustable trade-off between robust
initial construction and storage cost versus improved VO construction and
verification cost. The main idea is to have different fanouts for storage and
authentication and yet combine them in the same data structure.

Every EMB-tree node consists of regular B -tree entries, augmented with
an embedded MB-tree. Let f. be the fanout of the EMB-tree. Then each
node stores up to f. triplets k;|p;|h;, and an embedded MB-tree with fanout
fr < fe. The leaf level of this embedded tree consists of the f. entries of the
node. The hash value at the root level of this embedded tree is stored as an h;
value in the parent of the node, thus authenticating this node to its parent.
Essentially, we are collapsing an MB-tree with height d. - d, = log;, Np into
a tree with height d. that stores smaller MB-trees of height d; within each
node. Here, d. =logy, Np is the height of the EMB-tree and dj, = logy, fe is
the height of each small embedded MB-tree. An example EMB-tree node is
shown in Figure 5.

For ease of exposition, in the rest of this discussion it will be assumed that
fe is a power of fi such that the embedded trees when bulk-loaded are always
full. The technical details if this is not the case can be worked out easily. The
exact relation between f, and fj, will be discussed shortly. After choosing f
and f., bulk-loading the EMB-tree is straightforward: Simply group the Np
tuples in groups of size f. to form the leaves and build their embedded trees
on the fly. Continue iteratively in a bottom up fashion.

When querying the structure the server follows a path from the root to the
leaves of the external tree as in the normal BT -tree. For every node visited, the
algorithm scans all f. — 1 triplets k;|p;|h; on the data level of the embedded
tree to find the key that needs to be followed to the next level. When the
right key is found the server also initiates a point query on the embedded tree
of the node using this key. The point query will return all the needed hash
values for computing the concatenated hash of the node, exactly like for the
MB-tree. Essentially, these hash values would be the equivalent of the f. — 1
sibling hashes that would be returned per node if the embedded tree was not
used. However, since now the hashes are arranged hierarchically in an f,-way

128 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

tree, the total number of values inserted in the VO per node is reduced to
(fr — 1)dg.

To authenticate the query results the client uses the normal MB-tree au-
thentication algorithm to construct the hash value of the root node of each
embedded tree (assuming that proper boundary information has been included
in the VO for separating groups of hash values into different nodes) and then
follows the same algorithm once more for computing the final hash value of
the root of the EMB-tree.

The EMB-tree structure uses extra space for storing the index levels of
the embedded trees. Hence, by construction it has increased height compared
to the MB-tree due to smaller fanout f.. A first, simple optimization for
improving the fanout of the EMB-tree is to avoid storing the embedded trees
altogether. Instead, each embedded tree can be instantiated by computing
fewer than f./(fx — 1) hashes on the fly, only when a node is accessed during
the querying phase. We call this the EM B~ -tree. The EM B~ -tree is logically
the same as the EMB-tree, however its physical structure is equivalent to an
MB-tree with the hash values computed differently. The querying algorithm
of the EM B~ -tree is slightly different than that of the EMB-tree in order to
take into account the conceptually embedded trees. With this optimization
the storage overhead is minimized and the height of the EM B~ -tree becomes
equal to the height of the equivalent MB-tree. The trade-off is an increased
computation cost for constructing the VO. However, this cost is minimal as
the number of embedded trees that need to be reconstructed is bounded by
the height of the EM B~ -tree.

As a second optimization, one can create a slightly more complicated em-
bedded tree to reduce the total size of the index levels and increase fanout f..
We call this the EM B*-tree. Essentially, instead of using a B*-tree as the
base structure for the embedded trees, one can use a multi-way search tree

with fanout f; while keeping the structure of the external (}EMB—tree intact.
The embedded tree based on BT-trees has a total of N; = f}‘kk__ll
for example, a B-tree based embedded tree (recall that a B-tree is equivalent
to a balanced multi-way search tree) would contain N; = J zj nodes instead.
A side effect of using multi-way search trees is that the cost for querying the
embedded tree on average will decrease, since the search for a particular key
might stop before reaching the leaf level. This will reduce the expected cost
of VO construction substantially. Below we give the analytical cost models of
the EMB-tree. The further technical details and the analytical cost models
associated with the FM B*-tree and EM B~ -tree are similar to the EMB-tree

case and can be worked out similarly.

nodes while,

Node fanout:

For the EMB-tree, the relationship between f. and f is given by:

Authenticated Index Structures for Outsourced Databases 129

P>
flngk fe—1 1
kf—_l[fk(lk\ + [pl + |A]) — [K[] +
k
[fe([El+ |p[+ [R]) — [KI]. (13)

First, a suitable f; is chosen such that the requirements for authentication
cost and storage overhead are met. Then, the maximum value for f. satisfying
(13) can be determined.

Storage cost:

The storage cost is equal to:

e_p.
C=p

S (14)

Construction cost:

The total construction cost is the cost of constructing all the embedded trees

plus the I/Os to write the tree back to disk. Given a total of N; = ffe__ll

nodes in the tree and N; = j;k—_1 nodes per embedded tree, the cost is:
e s
Ce ZJVD-CH‘r| +N[~Ni-Cka‘h‘ +Cs‘h‘ +?'C]O. (15)

It should be mentioned here that the cost for constructing the EM B~ -tree is
exactly the same, since in order to find the hash values for the index entries of
the trees one needs to instantiate all embedded trees. The cost of the EM B*-
tree is somewhat smaller than (15), due to the smaller number of nodes in the
embedded trees.

VO construction cost:

The VO construction cost is dominated by the total I/O for locating and

reading all the nodes containing the query results. Similarly to the MB-tree

case:

Ng - |r|
P

where d, is the height of the query sub-tree and Ng = N& s the number of
leaf pages to be accessed. Since the embedded trees are loaded with each node,
the querying computation cost associated with finding the needed hash values
is expected to be dominated by the cost of loading the node in memory, and
hence it is omitted. It should be restated here that for the EM B*-tree the
expected VO construction cost will be smaller, since not all embedded tree
searches will reach the leaf level of the structure.

Ci=[(de —dy+1)+2(dy —2)+ Ng +

q

|- Cro, (16)

130 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

Authentication cost:

The embedded trees work exactly like MB-trees for point queries. Hence, each
embedded tree returns (f; — 1)dj hashes. Similarly to the MB-tree the total
size of the VO is:

[VOI® = Ng - [r| + |s[+
dg—2 dm—1

D 2VOI" + VO™ + Y (fi — Ddilhl, (17)
0 dq

where [VO|™ is the cost of a range query on the embedded trees of the bound-
ary nodes contained in the query sub-tree given by equation (11), with a query
range that covers all pointers to children that cover the query result-set.

The verification cost is:

dq—1
Co=Ng Crpp + D F1-Crt (de —dg) - Cr + Cyp s (18)
i=0
where C, = N; - Cy,,, Is the cost for constructing the concatenated hash of
each node using the embedded tree.

For f; = 2 the authentication cost becomes equal to a Merkle hash tree,
which has the minimal VO size but higher verification time. For f; > f. the
embedded tree consists of only one node which can actually be discarded,
hence the authentication cost becomes equal to that of an MB-tree, which
has larger VO size but smaller verification cost. Notice that, as f; becomes
smaller, f. becomes smaller as well. This has an impact on VO construction
cost and size, since with smaller fanout the height of the EMB-tree increases.
Nevertheless, since there is only a logarithmic dependence on f. versus a
linear dependence on fy, it is expected that with smaller f; the authentication
related operations will become faster.

4 Authentication Index Structures in Dynamic Settings

In this section we analyze the performance of all approaches given dynamic
updates between the owner and the servers. In particular we assume that
either insertions or deletions can occur to the database, for simplicity. The
performance of updates in the worst case can be considered as the cost of a
deletion followed by an insertion. There are two contributing factors for the
update cost: computation cost such as creating new signatures and computing
hashes, and I/O cost.

Aggregated Signatures with BT-trees

Suppose that a single database record r; is inserted in or deleted from the
database. Assuming that in the sorted order of attribute A the left neighbor

Authenticated Index Structures for Outsourced Databases 131

of r; is r;_1 and the right neighbor is r; 1, for an insertion the owner has to
compute signatures S(r;_1|r;) and S(r;|ri+1), and for a deletion S(r;_1|r;+1).
For k consecutive updates in the best case a total of k 4 2 signature compu-
tations are required for insertions and 1 for deletions if the deleted tuples are
consecutive. In the worst case a total of 2k signature computations are needed
for insertions and k for deletions, if no two tuples are consecutive. Given k
updates, suppose the expected number of signatures to be computed is repre-
sented by E{k}(k < E{k} < 2k). Then the additional I/O incurred is equal
to w, excluding the I/Os incurred for updating the BT -tree structure.
Since the cost of signature computations is larger than even the 1/O cost of
random disk accesses, a large number of updates is expected to have a very
expensive updating cost. The total update cost for the ASB-tree is:

E{k} - |s]

«_ @ A
Ci = B{k} - Co+ =

-Cro- (19)

The Merkle B-tree

The MB-tree can support efficient updates since only hash values are stored
for the records in the tree and, first, hashing is orders of magnitude faster
then signing, second, for each tuple only the path from the affected leaf to
the root need to be updated. Hence, the cost of updating a single record is
dominated by the cost of I/Os. Assuming that no reorganization to the tree
occurs the cost of an insertion is C]* = Hj,| + dm(H s |n| + Cr0) + Sjnl-

In realistic scenarios though one expects that a large number of updates
will occur at the same time. In other cases the owner may decide to do a
delayed batch processing of updates as soon as enough changes to the database
have occurred. The naive approach for handling batch updates would be to do
all updates to the MB-tree one by one and update the path from the leaves
to the root once per update. Nevertheless, in case that a large number of
updates affect a similar set of nodes (e.g., the same leaf) a per tuple updating
policy performs an unnecessary number of hash function computations on
the predecessor path. In such cases, the computation cost can be reduced
significantly by recomputing the hashes of all affected nodes only once, after
all the updates have been performed on the tree. A similar analysis holds for
the incurred 1/0O as well.

Clearly, the total update cost for the per tuple update approach for k
insertions is k - C] which is linear to the number of affected nodes & - d,,.
The expected cost of k updates using batch processing can be computed
as follows. Given k updates to the MB-tree, assuming that all tuples are
updated uniformly at random and using a standard balls and bins argu-
ment, the probability that leaf node X has been affected at least once is
P(X)=1- (1 - —t=)* and the expected number of leaf nodes that have

fam—t
been affected is fIm~!. P(X). Using the same argument, the expected num-
ber of nodes at level ¢ (where i = 1 is the leaf level and 1 < ¢ < d,,) is

132 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

fim=i. Py(X), where Py(X) = [1 — (1 —)¥]. Hence, for a batch of k
updates the total expected number of nodes that will be affected is:

dml
m

dm—1 1

B{X} = Z fnll = (1= fT)’“] (20)

Hence, the expected MB-tree update cost for batch updates is
Ci' =k My + E{X} (Hspin +Cro) + Sjny- (21)

In order to understand better the relationship between the per-update
approach and the batch-update, we can find the closed form for E{X} as

follows:
Soim f (1 - (fmtyE)
= i = (=)
de_lfml_z 'Z];>
SD DA D DA)(()"
:kdm—z’; 2 (5) V7 S

1—(—g)"
k k "
=kdy — 4y (z) (‘Dzw
The second term quantifies the cost decrease afforded by the batch update
operation, when compared to the per update cost.
For non-uniform updates to the database, the batch updating technique is
expected to work well in practice given that in real settings updates exhibit

a certain degree of locality. In such cases one can still derive a similar cost
analysis by modelling the distribution of updates.

/\

The Embedded MB-tree

The analysis for the EMB-tree is similar to the one for MB-trees. The update
cost for per tuple updates is equal to k - C, where C;, = H,| + d.logy, fe -
(H fn| +Cro) + Sjn|, once again assuming that no reorganizations to the tree
occur. Similarly to the MB-tree case the expected cost for batch updates is
equal to:

Cy =k -Hy +E{X}- log s, fe- (kaw +Cro) + Sjp- (22)

Discussion

For the ASB-tree, the communication cost for updates between owner and
servers is bounded by E{K}|s|, and there is no possible way to reduce this cost
as only the owner can compute signatures. However, for the hash based index
structures, there are a number of options that can be used for transmitting

Authenticated Index Structures for Outsourced Databases 133

the updates to the server. The first option is for the owner to transmit only
a delta table with the updated nodes of the MB-tree (or EMB-tree) plus the
signed root. The second option is to transmit only the signed root and the
updates themselves and let the servers redo the necessary computations on
the tree. The first approach minimizes the computation cost on the servers but
increases the communication cost, while the second approach has the opposite
effect.

5 Query Freshness

The dynamic scenarios considered before reveal a third dimension of the query
authentication problem, that of query result freshness. When the owner up-
dates the database, a malicious or compromised server may still retain an
older version of the data. Since the old version was authenticated by the
owner already, the client will still accept any query results originating from
an old version as authentic, unless the latter is informed by the owner that
this is no longer the case. In fact, a malicious server may choose to answer
queries using any previous version, and in some scenarios even a combination
of older versions of the data. If the client wishes to be assured that queries
are answered using the latest data updates, additional work is necessary.

This issue is similar to the problem of ensuring the freshness of signed
documents, which has been studied extensively in the context of certificate
validation and revocation. There are many approaches which we do not review
here. The simplest is to publish a list of revoked signatures, one for every
expired version of the database. More sophisticated ones are: 1. Including
the time interval of validity as part of the signed root of the authenticated
structures and reissuing the signature after the interval expires, 2. Using hash
chains to confirm validity of signatures at frequent intervals [33].

Clearly, all signature freshness techniques impose a cost which is linear to
the number of signatures used by any authentication structure. The advantage
of the Merkle tree based methods is that they use one signature only — that
of the root of the tree — which is sufficient for authenticating the whole
database. Straightforwardly, database updates will also require re-issuing only
the signature of the root.

6 Extensions

This section extends our discussion to other interesting topics that are related
to the query authentication problem.

Multi-dimensional Selection and Aggregation Range Queries. The
same ideas that we discussed before can be used for authenticating multi-
dimensional range queries. In particular, any tree based multi-dimensional

134 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

index structure, like the R-tree, can be used to create verification objects
for multi-dimensional data. The tree is extended with hash values that are
computed using both the hash values of its children nodes in the tree and the
multi-dimensional information that is used to navigate the tree. For the R-tree,
this means that the hash value for a node N will contain all the hash values
and the MBR’s of the children nodes of N. Signature based approaches can
be also used [34, 31]. Furthermore, aggregation queries can be authenticated
using aggregation trees [35, 36]. The only difference is that the aggregate value
of each subtree should be included in the computation of the hash values. That
is, for each node N of an aggregation tree we add the aggregate value of the
subtree that starts at N and we include this in the hash value of the node [37].

General Query Types. The authenticated structures presented before can
support other query types as well. We briefly discuss here a possible extension
of these techniques for join queries. Other query types that can be supported
are projections and relational set operations.

Assume that we would like to provide authenticated results for join queries
such as R >4,—4; S, where A; € Rand A; € S (R and S could be relations
or result-sets from other queries), and authenticated structures for both A;
in R and A; in S exist. The server can provide the proof for the join as
follows: 1. Select the relation with the smaller size, say R, 2. Construct the
VO for R (if R is an entire relation then the VO contains only the signature
of the root node from the index of R), 3. Construct the VOs for each of the
following selection queries: for each record r;, in R, g, =“SELECT * FROM
S WHERE r.A; = r;.A;”. The client can easily verify the join results. First,
it authenticates that the relation R is complete and correct. Then, using the
VO for each query g, it makes sure that it is complete for every k (even when
the result of gy is empty). After this verification, the client can construct the
results for the join query and be sure that they are complete and correct.

7 Conclusion

In this chapter we presented three approaches to authenticate range queries
in ODBs. The first approach is based on signature chaining and aggregation,
the second on combining a Merkle hash tree with a B+-tree and the third is
an improved version of the hash tree approach. We discussed advantages and
disadvantages of each approach and we gave an analytical cost model for each
approach and different cost metrics. Finally, we discussed the performance of
each method under a dynamic environment and we gave extensions of these
techniques to other query types. A interesting future direction is to enhance
the proposed methods to work efficiently for complex relational queries. An-
other direction is to investigate authentication techniques for other types of
databases beyond relational databases.

Authenticated Index Structures for Outsourced Databases 135

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Hacigumus, H., Iyer, B.R., Mehrotra, S.: Providing database as a service. In:

Proc. of International Conference on Data Engineering (ICDE). (2002) 29-40
Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proc. of Very Large Data Bases (VLDB). (2004) 720-731

Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of ACM
Management of Data (SIGMOD). (2000) 439-450

Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy
preserving data mining. In: Proc. of ACM Symposium on Principles of Database
Systems (PODS). (2003) 211-222

Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted
data in the database service provider model. In: Proc. of ACM Management of
Data (SIGMOD). (2002) 216-227

Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of Very Large Data Bases (VLDB). (2003) 898-909

Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting
techniques for fine-grained access control. In: Proc. of ACM Management of
Data (SIGMOD). (2004) 551-562

Bouganim, L., Ngoc, F.D., Pucheral, P., Wu, L.: Chip-secured data access:
Reconciling access rights with data encryption. In: Proc. of Very Large Data
Bases (VLDB). (2003) 1133-1136

Pang, H., Jain, A., Ramamritham, K., Tan, K.L.: Verifying completeness of
relational query results in data publishing. In: Proc. of ACM Management of
Data (SIGMOD). (2005) 407-418

Sion, R.: Query execution assurance for outsourced databases. In: Proc. of Very
Large Data Bases (VLDB). (2005) 601-612

Anagnostopoulos, A., Goodrich, M., Tamassia, R.: Persistent authenticated
dictionaries and their applications. In: ISC. (2001) 379-393

Goodrich, M., Tamassia, R., Triandopoulos, N., Cohen, R.: Authenticated data
structures for graph and geometric searching. In: CT-RSA. (2003) 295-313
Tamassia, R., Triandopoulos, N.: Computational bounds on hierarchical data
processing with applications to information security. In: ICALP. (2005) 153-165
Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-infused streams: Enabling
authentication of sliding window queries on streams. In: Proc. of Very Large
Data Bases (VLDB). (2007)

Papadopoulos, S., Yang, Y., Papadias, D.: CADS: Continuous authentication
on data streams. In: Proc. of Very Large Data Bases (VLDB). (2007)
McCurley, K.: The discrete logarithm problem. In: Proc. of the Symposium in
Applied Mathematics, American Mathematical Society (1990) 49-74

National Institute of Standards and Technology: FIPS PUB 180-1: Secure Hash
Standard. National Institute of Standards and Technology (1995)

Wang, X., Yin, Y., Yu, H.: Finding collisions in the full sha-1. In: CRYPTO.
(2005)

Wang, X., Yao, A., Yao, F.: New collision search for SHA-1 (2005) Presented
at the rump session of Crypto 2005.

Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing 17(2)
(1988) 96-99

136

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM (CACM) 21(2)
(1978) 120-126

Pang, H., Tan, K.L.: Authenticating query results in edge computing. In: Proc.
of International Conference on Data Engineering (ICDE). (2004) 560-571
Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. In: Symposium on Network and Distributed Systems Secu-
rity (NDSS). (2004)

Narasimha, M., Tsudik, G.: Dsac: Integrity of outsourced databases with sig-
nature aggregation and chaining. In: Proc. of Conference on Information and
Knowledge Management (CIKM). (2005) 235-236

Mykletun, E., Narasimha, M., Tsudik, G.: Signature bouquets: Immutability
for aggregated/condensed signatures. In: European Symposium on Research in
Computer Security (ESORICS). (2004) 160-176

Merkle, R.C.: A certified digital signature. In: Proc. of Advances in Cryptology
(CRYPTO). (1989) 218-238

Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Pro-
ceedings 7th USENIX Security Symposium (San Antonio, Texas). (1998)
Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.:
A general model for authenticated data structures. Algorithmica 39(1) (2004)
21-41

Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated
index structures for outsourced databases. In: Proc. of ACM Management of
Data (SIGMOD). (2006)

Comer, D.: The ubiquitous B-tree. ACM Computing Surveys 11(2) (1979)
121-137

Cheng, W., Pang, H., Tan, K.: Authenticating multi-dimensional query results
in data publishing. In: DBSec. (2006)

Nuckolls, G.: Verified query results from hybrid authentication trees. In: DBSec.
(2005) 84-98

Micali, S.: Efficient certificate revocation. Technical Report MIT/LCS/TM-
542b, Massachusetts Institute of Technology, Cambridge, MA (1996)
Narasimha, M., Tsudik, G.: Authentication of outsourced databases using sig-
nature aggregation and chaining. In: DASFAA. (2006) 420-436

Lazaridis, 1., Mehrotra, S.: Progressive approximate aggregate queries with a
multi-resolution tree structure. In: Proc. of ACM Management of Data (SIG-
MOD). (2001) 401412

Tao, Y., Papadias, D.: Range aggregate processing in spatial databases. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 16(12) (2004) 1555—
1570

Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index
sturctures for aggregation queries in outsourced databases. Technical report,
CS Dept., Boston University (2006)

6

Towards Secure Data Outsourcing

Radu Sion

Network Security and Applied Cryptography Lab
Computer Science, Stony Brook University
sion@cs.stonybrook.edu

Summary. The networked and increasingly ubiquitous nature of today’s data man-
agement services mandates assurances to detect and deter malicious or faulty be-
havior. This is particularly relevant for outsourced data frameworks in which clients
place data management with specialized service providers. Clients are reluctant to
place sensitive data under the control of a foreign party without assurances of confi-
dentiality. Additionally, once outsourced, privacy and data access correctness (data
integrity and query completeness) become paramount. Today’s solutions are fun-
damentally insecure and vulnerable to illicit behavior, because they do not handle
these dimensions.

In this chapter we will explore the state of the art in data outsourcing mech-
anisms providing strong security assurances of (1) correctness, (2) confidentiality,
and (3) data access privacy.

There exists a strong relationship between such assurances; for example, the lack
of access pattern privacy usually allows for statistical attacks compromising data
confidentiality. Confidentiality can be achieved by data encryption. However, to be
practical, outsourced data services should allow expressive client queries (e.g., rela-
tional joins with arbitrary predicates) without compromising confidentiality. This is
a hard problem because decryption keys cannot be directly provided to potentially
untrusted servers. Moreover, if the remote server cannot be fully trusted, protocol
correctness become essential.

Here we will discuss query mechanisms targeting outsourced relational data that
(i) ensure queries have been executed with integrity and completeness over their
respective target data sets, (ii) allow queries to be executed with confidentiality
over encrypted data, (iii) guarantee the privacy of client queries and data access
patterns. We will then propose protocols that adapt to the existence of trusted
hardware — so critical functionality can be delegated securely from clients to servers.
We have successfully started exploring the feasibility of such solutions for providing
assurances for query execution and the handling of binary predicate JOINs with full
privacy in outsourced scenarios.

The total cost of ownership of data management infrastructure is 5—10 times
greater than the hardware costs, and more data is produced and lives digitally every
day. In the coming years, secure, robust, and efficient outsourced data management
will be demanded by users. It is thus important to finally achieve outsourced data

138 Radu Sion

management a trustworthy solution, viable in both personal-level and large corpo-
rate settings.

1 Introduction

Today, sensitive data is being managed on remote servers maintained by third
party outsourcing vendors. This is because the total cost of data management
is 5-10 times higher than the initial acquisition costs [61]. In such an out-
sourced “database as a service” [72] model, clients outsource data manage-
ment to a “database service provider” that provides online access mechanisms
for querying and managing the hosted data sets.

This is advantageous and significantly more affordable for parties with
limited abilities to manage large in-house data centers of potentially large re-
source footprints. By comparison, database service providers [1-6,6-9,11-15]
— ranging from corporate-level services such as the IBM Data Center Out-
sourcing Services to personal level database hosting — have the advantage
of expertize consolidation. More-over, they are likely to be able to offer the
service much cheaper, with increased service availability (e.g. uptime) guar-
antees.

Notwithstanding these clear advantages, a data outsourcing paradigm
faces significant challenges to widespread adoption, especially in an online, un-
trusted environment. Current privacy guarantees of such services are at best
declarative and often subject customers to unreasonable fine-print clauses—
e.g., allowing the server operator (and thus malicious attackers gaining access
to its systems) to use customer behavior and content for commercial, profiling,
or governmental surveillance purposes [52]. Clients are naturally reluctant to
place sensitive data under the control of a foreign party without strong secu-
rity assurances of correctness, confidentiality, and data access privacy. These
assurances are essential for data outsourcing to become a sound and truly vi-
able alternative to in-house data management. However, developing assurance
mechanisms in such frameworks is challenging because the data is placed un-
der the authority of an external party whose honest behavior is not guaranteed
but rather needs to be ensured by this very solution.

In this chapter, we will explore the challenges of designing and implement-
ing robust, efficient, and scalable relational data outsourcing mechanisms,
with strong security assurances of correctness, confidentiality, and data access
privacy. This is important because today’s outsourced data services are fun-
damentally insecure and vulnerable to illicit behavior, as they do not handle
all three dimensions consistently and there exists a strong relationship be-
tween such assurances: e.g., the lack of access pattern privacy usually allows
for statistical attacks compromising data confidentiality. Even if privacy and
confidentiality are in place, to be practical, outsourced data services should
allow sufficiently expressive client queries (e.g., relational operators such as
JOINs with arbitrary predicates) without compromising confidentiality. This

Towards Secure Data Outsourcing 139

‘ assurances c {query correctness, data confidentiality, access privacy} ‘

,,,,,,,,,,,,,,,,,,,

i
:
! Data Pre-
amm | Processor
:
:
:

“outsourcing” " -
L!J encrypted

queries

B plaintext

Outsourced
Data

Query Processor

data server (un-trusted)

sorpelU| Alenp suluo

C ' 3
] ﬁéquery results, assurances

\E Query
/ ;7 S | Pre/Post-
KV Processing I
data client(s!)
i

Mallory Eve

Fig. 1. Secure Data Outsourcing. Clients require assurances of correctness, confi-
dentiality and access privacy.

is a hard problem because in most cases decryption keys cannot be directly
provided to potentially untrusted database servers. Moreover, result complete-
ness and data integrity (i.e., correctness) become essential. Therefore, solu-
tions that do not address these dimensions are incomplete and insecure.

We will explore designs for outsourced relational data query mechanisms
that (i) ensure queries have been executed with integrity and completeness
over their respective target data sets, (ii) allow queries to be executed with
confidentiality over encrypted data, and (iii) guarantee the privacy of client
queries and data access patterns:

Correctness. Clients should be able to verify the integrity and complete-
ness of any results the server returns. For example, when executing a JOIN
query, they should be able to verify that the server returned all matching
tuples.

Confidentiality. The data being stored on the server should not be
decipherable either during transit between the client and the server, or at the
server side, even in the case when the server is malicious.

Access Privacy. An intruder or a malicious server should not be able
to perform statistical attacks by exploiting query patterns. For example, it
should not be able to compromise data confidentiality by correlating known
public information with frequently queried data items.

We will discuss how to design protocols that adapt to the existence of
trusted hardware — so critical functionality can be delegated securely from
clients to servers and increased assurance levels can be achieved more ef-

140 Radu Sion

ficiently. Moreover, it is important to design for scalability to large data
sets and high query throughputs. We note that client authentication and
authorization, two important but orthogonal security dimensions, are exten-
sively addressed in existing research, discussed in both this book and else-
where [22,27,31,33,39,68, 75,79, 80,88,90, 102,103, 105, 123]; therefore they
and are not the main focus here. The assurances discussed here naturally
complement these dimensions in providing increased end-to-end security.

2 Designing Secure Data Outsourcing Mechanisms.

2.1 Model

In our discourse, we will consider the following concise yet representative
interaction model. Sensitive data is placed by a client on a database server
managed by a database service provider. Later, the client or a third party
will access the outsourced data through an online query interface exposed by
the server. Network layer confidentiality is assured by mechanisms such as
SSL/TPSec.

We will represent both the server and the client as interactive polynomial-
time Turing Machines; we write CLI for the client and SERvV for the server
machine. A client can interact with the server and issue a sequence of update
or processing queries (Q1,...,Q;). We call such a sequence of queries a trace
T. After executing a query @, the client Turing Machine either outputs T
or L, indicating whether the client accepts or rejects the server’s response
(denoted as D7 ¢); in the first case, the client believes that the server replied
honestly. We write CLI(7,Q, D7 o) € {T,L} to denote the output of the
client as a result of the server’s execution of trace 7 and query () yielding the
result D7 q.

A server’s response D is said to be consistent with both 7 and @Q, if an
honest server, after starting with an empty database and executing trace 7
honestly, would reply with D to the query Q). Two traces 7 and 7" are called
similar with respect to @, written as T=g7’, if the query @ yields the same
answer when queried after a trace 7 or 77, i.e., D7 g = D7 ¢.

The data server is considered to be un-trusted, potentially malicious, com-
promised or simply faulty. Given the possibility to get away undetected, it
will attempt to compromise data confidentiality, infer data access patterns
and return incorrect query results. In certain cases we will assume reason-
able computational limits such as the inability to factor large numbers or find
cryptographic hash collisions. We will not make any limiting assumptions on
the DBMS. In particular we will accommodate both multi-processor and dis-
tributed query processing DBMS. We will collaborate with other researches
to investigate how to accommodate non-relational data integration [17] but
mention that this does not constitute the subject of this work.

Towards Secure Data Outsourcing 141

The main performance constraint we are interested in is maintaining the
benefits of outsourcing. In particular, for a majority of considered operations,
if they are more efficient (than client processing) in the unsecured data out-
sourcing model — then they should still be more efficient in its secured version.
We believe this constraint is essential, as it is important to identify solutions
that validate in real life.

We note the existence of a large number of apparently more elegant cryp-
tographic primitives that could be deployed that would fail this constraint.
In particular, experimental results indicate that often, individual data-item
operations on the server should not involve any expensive modular arithmetic
such as exponentiation or multiplication. We believe it is imperative to resist
the (largely impractical) trend to use homomorphisms in server side opera-
tions unless absolutely necessary — as this often simplifies protocols in theory
but fails in practice due to extremely poor performance, beyond usability.

Throughout this chapter we reference active secure hardware such as the
IBM 4758 PCI [18] and the newer IBM 4764 PCI-X [19] cryptographic co-
processors [21]. The benefits of deploying such hardware in un-trusted remote
data processing contexts can be substantial, because the server can now run
important parts of the secure client logic. Additionally, the secure hardware’s
proximity to the data will reduce communication overheads. Practical limita-
tions of such devices however, make this a non-trivial task. To explain this,
we briefly survey the processors.

The 4764 is a PowerPC - based board and runs embedded Linux. The 4758
is based on a Intel 486 architecture and is preloaded with a compact runtime
environment that allows the loading of arbitrary external certified code. The
CPUs can be custom programmed. Moreover, they (4758 models 2 and 23 and
4764 model 1) are compatible with the IBM Common Cryptographic Architec-
ture (CCA) API [20]. The CCA implements common cryptographic services
such as random number generation, key management, digital signatures, and
encryption (DES/3DES,RSA). Both processors feature tamper resistant and
responsive designs [56]. In the eventuality of illicit physical handling, the de-
vices will simply destroy their internal state (in a process powered by internal
long-term batteries) and then shutdown. Tamper resistant designs however,
face major challenges in heat dissipation. This is one of the main reasons why
secure coprocessors are significantly constrained in both computation ability
and memory (main heat producer) capacity, often being orders of magnitude
slower that the main CPUs in their host systems. For example, at the higher
end, the 4758s feature 100Mhz CPUs and 8MB+ of RAM.

These constraints require careful consideration in achieving efficient pro-
tocols. Simplistic implementations of query processors inside the SCPU are
bound to fail in practice simply due to lack of performance. The host CPUs
will remain starkly underutilized and the entire cost-proposition of having fast
(unsecured) main CPUs and an expensive and slow secured CPU will be de-
feated. Efficient designs are likely to access the secure hardware just sparsely,
in critical portions, not synchronized with the main data flow. Therefore we

142 Radu Sion

will pursue designs that use such hardware only as a trusted-aide, while con-
sidering its limited I/O and computation throughput. For example, we be-
lieve efficient solutions can be achieved by balancing a storage-computation
trade-off when main un-secured storage capacity is significantly cheaper than
the purchase of additional secure computation elements. In such a model,
additional secure metadata structures are constructed over the outsourced
data, by both clients and SCPUs. These enable the unsecured main CPU to
perform computation-intensive portions of secure queries without requiring
trusted hardware support. The cost of constructing these additional helper
data structures will be amortized over multiple query instances.

We use the term encryption to denote any semantically secure (IND-CPA)
encryption mechanism [65], unless specified otherwise. We note that the mech-
anisms introduced here do not depend on any specific encryption mechanism.
A one-way cryptographic hash H() is a function with two important properties
of interest: (i) it is computationally infeasible, for a given value V' to find a V
such that H(V) = V' (one-wayness), and (ii) changing even one bit of the hash
input causes random changes to the output bits (i.e., roughly half of them
change even if one bit of the input is flipped). Examples of potential candi-
dates are the MD5 (fast) or the SHA class of hashes (more secure). Bloom
filters [35] offer a compact statistical representation of a set of data items and
fast set inclusion tests. They are one-way, in that, the “contained” set items
cannot be enumerated easily. For more details see [65,113].

2.2 Query Correctness

Informally, we will call a query mechanism correct if the server is bound
to the sequence of update requests performed by the client. Either the server
responds correctly to a query or its malicious behavior is immediately detected
by the client:

Definition 1. A query protocol is correct, if (except with negligible probability
[65]) for all traces T and T' with T'#o7T, any query Q and server response
Dy q, we have CLI(T,Q, D1 q) = L.

In applied settings, correctness in database outsourcing can be often de-
composed into two protocol properties, namely data integrity and query com-
pleteness. Data integrity guarantees that outsourced data sets are not tam-
pered with by the server. Completeness ensures that queries are executed
against their entire target data sets and that query results are not ‘truncated”
by servers.

Existing work focuses mostly on solutions for simple one-dimensional range
queries, and variants thereof. In a publisher-subscriber model, Devanbu et
al. deployed Merkle trees to authenticate data published at a third party’s
site [54], and then explored a general model for authenticating data structures
[97,98]. Hard-to-forge verification objects are provided by publishers to prove
the authenticity and provenance of query results.

Towards Secure Data Outsourcing 143

In [104], mechanisms for efficient integrity and origin authentication for
simple selection predicate query results are introduced. Different signature
schemes (DSA, RSA, Merkle trees [100] and BGLS [37]) are explored as po-
tential alternatives for data authentication primitives. Mykletun et al. [57]
introduce signature immutability for aggregate signature schemes — the diffi-
culty of computing new valid aggregated signatures from an existing set. Such
a property is defeating a frequent querier that could eventually gather enough
signatures data to answer other (un-posed) queries. The authors explore the
applicability of signature-aggregation schemes for efficient data authentica-
tion and integrity of outsourced data. The considered query types are simple
selection queries.

Similarly, in [94], digital signature and aggregation and chaining mech-
anisms are deployed to authenticate simple selection and projection opera-
tors. While these are important to consider, nevertheless, their expressiveness
is limited. A more comprehensive, query-independent approach is desirable.
Moreover, the use of strong cryptography renders this approach less useful.
Often simply transferring the data to the client side will be faster.

In [108] verification objects VO are deployed to authenticate simple data
retrieval in “edge computing” scenarios, where application logic and data is
pushed to the edge of the network, with the aim of improving availability and
scalability. Lack of trust in edge servers mandates validation for their results
— achieved through verification objects.

In [77] Merkle tree and cryptographic hashing constructs are deployed to
authenticate the result of simple range queries in a publishing scenario in
which data owners delegate the role of satisfying user queries to a third-party
un-trusted publisher. Additionally, in [95] virtually identical mechanisms are
deployed in database outsourcing scenarios. [53] proposes an approach for
signing XML documents allowing untrusted servers to answer certain types
of path and selection queries.

Drawbacks of these efforts include the fact that they operate in an unrealis-
tic “semi - honest” adversarial model. As a result, for example, data updates
are not handled properly and the mechanisms are vulnerable to “universe
split” attacks discussed in section 2.2.

Moreover, deploying expensive cryptographic operations (e.g., aggregate
signatures, homomorphisms) has the potential to defeat the very purpose of
outsourcing. Unless the actual query predicates are comparably compute in-
tensive, often simply transferring the entire database and executing the query
on the client will be faster. This is the case simply because securely server -
processing a bit will be more expensive that the bit transfer over a network.
A detailed argument can be found in [118] and in section 2.4. Maybe most im-
portantly, existing solutions operate under un-realistic “cooperating” server
assumptions. For example, they are unable to address data updates. More
specifically, at the time of a client update, the server is assumed to cooperate
in also updating corresponding server-side security checksums and signature
chains. A truly malicious server however, can choose to ignore such requests

144 Radu Sion

and compromise future correctness assurances by omitting the updated data
from the results (causing an “universe split”). This drastically limits the ap-
plicability of these mechanisms.

We started to explore query correctness by first considering the query ex-
pressiveness problem. Thus, in [114] we proposed a novel method for proofs
of actual query execution in an outsourced database framework for arbitrary
queries. The solution prevents a “lazy” or malicious server from incompletely
(or not at all) executing queries submitted by clients. It is based on a mech-
anism of runtime query “proofs” in a challenge - response protocol. For each
batch of client queries, the server is “challenged” to provide a proof of query
execution that offers assurance that the queries were actually executed with
completeness, over their entire target data set. This proof is then checked
at the client site as a prerequisite to accepting the actual query results as
accurate.

The execution proofs are built around an extension to the ringer concept
first introduced in [67]. Its core strength derives from the non-“invertibility”
of cryptographic hash functions. In other words, a successful fake execution
proof requires the “inversion”! of a cryptographic hash or a lucky guess. The
probability of the lucky guess is known, controllable and can be made arbi-
trary small. If, as part of the response to a query execution batch, the server
includes a correct, verifiable query execution proof, the client is provided with
a (tunable) high level of assurance that the queries in the batch were exe-
cuted correctly. This constitutes a strong counter-incentive to “lazy”, (e.g.,
cost-cutting) behavior.

We implemented a proof of concept and experimentally validated it in
a real-world data mining application, proving its deployment feasibility. We
analyzed the solution and show that its overheads are reasonable and far
outweighed by the added security benefits. For example an assurance level of
over 95% can be achieved with less than 25% execution time overhead.

Future Work: Powerful Adversary. Arbitrary Queries. Data Up-
dates.

As the above query execution proofs only validate server-side processing
but not also actual returned results, handling truly malicious adversaries will
require different mechanisms. Moreover, while compute-intensive query sce-
narios are extremely relevant in data-mining applications, a more general so-
lution should consider general types of queries with less computation load
per data tuple (e.g., aggregates such as SUM, COUNT). Handling these is
especially challenging due to the large size of the query space, the hardness of
building general purpose authenticators and the hardness of predicting future
query loads.

We believe future work should focus on two research directions: (1) the
design of secure query (de)composition techniques coupled with specialized

! We informally define “inversion” of hash functions as finding at least one input
that hashes to a target output.

Towards Secure Data Outsourcing 145

query - specific metadata that enables correctness assurance protocols for a
set of primitive queries, and (2) mechanisms for trusted hardware.

In (1), additional server-side storage will be traded for efficient correctness
assurances. At outsourcing time, in a pre-processing phase, clients generate
query and predicate - specific metadata that will be stored on the server,
authenticated by minimal state information maintained by clients. For each
considered primitive predicate and type of query (e.g., simple range query),
its corresponding “correctness metadata” will allow the client (or a trusted
proxy such as a secure CPU) to assess the correctness of individual results. We
call such primitive queries for which correctness can be assessed, “correctness-
assured”.

It is important to build on existing work [57,77,94,95,104], to reduce
the computational footprint on the server, and allow consistent handling of
updates in the presence of a truly malicious server. For example, we believe
incremental hashing paradigms can be deployed to persist client-side authenti-
cation information. This will allow a client to efficiently authenticate returned
signature values, thus detecting any malicious behavior even after updates.

Another future work item will be to design techniques that decompose
or rewrite complex queries into a subset of the primitive queries considered
above. Consider the following simple, yet illustrative query listing all account
holders with account rates less than the Federal Reserve’s base rate on January
1st, 2006:

SELECT accounts.name FROM accounts WHERE accounts.rate <
(SELECT federalreserve.baserate FROM federalreserve
WHERE convert (char(10),federalreserve.date,101)=’01/01/2006")

Its correctness can be efficiently assessed by requiring the server to prove
correctness for the inner query first, followed by the outer query. Similar de-
compositions can be applied to any correctness-assured nested queries. Never-
theless, often such query decomposition or rewriting cannot be achieved with
efficiency for arbitrary queries in fully unsecured environments. For example,
it is not trivial to extend correctness - assured simple range predicates to even
marginally more complex multi-dimensional range queries such as

SELECT X.a FROM X WHERE X.b > 10 AND X.c > 20

It is important to investigate composition mechanisms that allow the utiliza-
tion of metadata ensuring correctness of either simple range predicate (e.g.,
X.b > 10 or X.c > 20), to guarantee correctness for the composite predicate.
To achieve correctness assurances for a larger class of queries we propose
to consider mechanisms that leverage the presence of active secure hardware
such as secure co-processors (SCPUs). Achieving efficiency however, is an
extremely challenging task. Trivially deploying query processor functionality
inside power - constrained SCPUs is simply not scalable in practice due to
limited communication and computation throughputs. We believe protocols
that combine the query decomposition approach in (1) with SCPU processing

146 Radu Sion

for required, yet unavailable correctness-assured primitive queries constitute
a promising avenue of future research. As a result, SCPU processing will be
minimal and amortized over multiple query instances.

As an example, in the above multi-dimensional range query, a trusted
SCPU hosted by the server will instruct the main server CPU to execute
and prove correctness for the first predicate (X.b > 10) and then evaluate
the second predicate (X.c > 20) securely on the result. Heuristics could be
deployed to evaluate which of the individual predicates would result in a
smaller result set so as to minimize the SCPU computation. Optionally, the
process will also generate associated metadata for the joint predicate and
cache it on the server for future use, effectively amortizing the cost of this
query over multiple instances.

Operating in an unified client model [54,104] assumes the existence of
a single client accessing the data store at any one time. In multi-threaded
data-intensive application scenarios however, such a model is often of limited
applicability. It is important to allow multiple client instances or even different
parties to simultaneously access outsourced data sets.

This is challenging because allowing different parties to access the same
data store may require the sharing of secrets among them. This is often not
a scalable proposition, in particular considering different administrative do-
mains. Moreover, data updates require special consideration in such a scenario
due to what we call the “universe split” phenomenon. We explain this in the
following.

In single - client settings, to efficiently handle incoming data updates,
update-able metadata structures can be designed, e.g., leveraging such mecha-
nisms as the incremental hashing paradigm of Bellare and Micciancio [26]. Re-
cently we have demonstrated the feasibility of such methods in the framework
of network data storage. In [117] outsourced documents were incrementally
authenticated with efficient checksums allowing updates, document additions
and removals in constant time.

However, when two clients simultaneously access the same data sets, a
malicious server can chose to present to each client a customized version of
the data universe, by keeping the other client’s updates hidden from the cur-
rent view. We believe other authors have encountered this issue in different
settings, e.g., by Li et al. [91] in an un-trusted networked file system setting?.
Naturally, if mutually aware of their accesses, the clients can use an external
authenticated channel to exchange transactional state on each other’s updates.
This can occur either during their access, if simultaneous, or asynchronously
otherwise. Periodically executing such exchanges will significantly decrease the
probability of undetected illicit “universe split” server behavior. Over multiple
transactions, undetected malicious behavior will become unsustainable.

In practice, such awareness and online interaction assumptions are not al-
ways acceptable, and often the only potential point of contact between clients

2 In their work universe splitting would be the inverse of “fetch-consistency”

Towards Secure Data Outsourcing 147

is the database server itself. One solution to this problem is to design alter-
native protocols that leverage the existence of active secure hardware such
as secure co-processors (SCPU). The SCPU will authenticate clients securely
and also persist transactional state, including a minimal amount of checksum
information used to authenticate transaction chains of committed client up-
dates. The unique vendor-provided SCPU public key and its associated trust
chain provide an authenticated communication channel between the SCPU
and database clients. The clients will use this channel to retrieve up to date
transactional state at the initiation of each server interaction. This will defeat
“universe split” attacks. Servers are unable to impersonate SCPUs without
access to the secrets in its tamper-proof storage.

2.3 Data Confidentiality

Confidentiality constitutes another essential security dimension required in
data outsourcing scenarios, especially when considering sensitive information.
Potentially un-trusted servers should be able to process queries on encrypted
data on behalf of clients without compromising confidentiality. To become
practical, any such processing mechanism requires a certain level of query
expressiveness. For example, allowing only simple data retrieval queries will
often not be sufficient to justify the outsourcing of the data — the database
would then be used as a passive data repository. We believe it is important
to efficiently support complex queries such as joins and aggregates with con-
fidentiality and correctness.

Hacigumus et al. [71] propose a method to execute SQL queries over partly
obfuscated outsourced data. The data is divided into secret partitions and
queries over the original data can be rewritten in terms of the resulting parti-
tion identifiers; the server can then partly perform queries directly. The infor-
mation leaked to the server is claimed to be 1-out-of-s where s is the partition
size. This balances a trade-off between client-side and server-side processing,
as a function of the data segment size. At one extreme, privacy is completely
compromised (small segment sizes) but client processing is minimal. At the
other extreme, a high level of privacy can be attained at the expense of the
client processing the queries in their entirety. Moreover, in [76] the authors ex-
plore optimal bucket sizes for certain range queries. Similarly, data partition-
ing is deployed in building “almost”-private indexes on attributes considered
sensitive. An untrusted server is then able to execute “obfuscated range queries
with minimal information leakage”. An associated privacy-utility trade-off for
the index is discussed. As detailed further in section 2.3 the main drawbacks
of these solutions lies in their computational impracticality and inability to
provide strong confidentiality.

One of the main drawbacks of such mechanisms is the fact that they leak
information to the server, at a level corresponding to the granularity of the
partitioning function. For example, if such partitioning is used in a range
query, to execute rewritten queries at the partition level, the server will be

148 Radu Sion

required to precisely know the range of values that each partition contains.
Naturally, increasing partition sizes tends to render this knowledge more fuzzy.
This, however, requires additional client side work in pruning the (now) larger
results (due to the larger partitions). Even if a single data tuple matches the
query, its entire corresponding partition will be transferred to the client. On
the other hand, reducing partition size will immediately reveal more infor-
mation to the server, as the smaller number of items per partition and the
knowledge of the covered range will allow it to determine more accurately what
the likely values are for each tuple. Additionally, for more complex queries,
particularly joins, due to the large segments, such methods can feature an
communication overhead larger than the entire database, hardly a practical
proposition.

Nevertheless, these efforts illustrate a trade-off between confidentiality and
overheads: large partitions reveal less but require more computation on the
client, small partitions reveal more but increase efficiency. Ultimately, how-
ever, unless partitions are very large (in which case the purpose of outsourcing
is likely defeated by the additional overheads) true confidentiality cannot be
achieved by such partitioning schemes. Statistical security needs to be re-
placed by efficient, yet stronger mechanisms. In the following we show how
this can be achieved not only for range queries but also for more complex
joins.

In ongoing work [42] we explore a low-overhead method for executing bi-
nary predicate joins with confidentiality on outsourced data. It handles general
binary join predicates that satisfy certain properties: for any value in the con-
sidered data domain, the number of corresponding “matching” pair values
(for which the predicate holds) is (i) finite, and (ii) the average of its expected
value is upper bound. We call these predicates ezpected finite match (EFM)
predicates.

Such predicates are extremely common and useful, including discrete data
scenarios, such as ranges, inventory and company asset data-sets, forensics,
genome and DNA data (e.g., fuzzy and exact Hamming distances), and health-
care databases (e.g., bacteria to antibiotics matches). For illustration purposes
let us consider the following discrete time — range join query that joins arrivals
with departures within the same hour (e.g., in a train station):

SELECT * FROM arrivals,departures
WHERE departures.time - arrivals.time < 60

For any finite time granularity (e.g. minutes) the join predicate above is an
EFM predicate (e.g., with an AEMS of 60). Performing such joins at the server
side on encrypted data, is the main functionality desired here.

To analyze the confidentiality assurances of this solution we will consider
here a server that is curious: given the possibility to get away undetected,
it will attempt to compromise data confidentiality (e.g., in the process of
query execution). Naturally, it should not be able to evaluate predicates (i)
without the permission of the client, (ii) on two values of the same attribute,

Towards Secure Data Outsourcing 149

and (iii) on data not specified/allowed by the client — specifically, no inter-
attribute transitivity should be possible. Additionally it should not be able to
(iv) evaluate other predicates on “unlocked” data. This also means that no
additional information should be leaked in the process of predicate evaluation.
For example, allowing the evaluation of p(x,y) := (| — y| < 100), should not
reveal |z — y|.

One solution relies on the use of predicate-specific metadata that clients
place on the server together with the main data sets. This metadata does
not reveal anything about the main data fields and stays in a “locked” state
until its corresponding data is involved in a join. The client then provides
“unlocking” information for the metadata and the server is able to perform
ezxactly the considered query, without finding out any additional information.
In the following we briefly outline this. For more details see [42].

Let N be a public security parameter, and K a symmetric (semantically
secure) encryption key. For each column A, let R{* # R4 be two random uni-
form values in {0,1}". In a client pre-processing phase, for each confidential
data attribute A with elements a;, i = 1..n, the client computes an obfuscation
of a;, O(a;) := H(a;) ® R{*. For all values y € P(a;) := {y|p(ai,y) = true},
the client computes H(y) @ R4'. and stores it into a Bloom filter specific to
a;, BF(a;). It then outsources {Ex(a;), O(a;), BF(a;)} to the server. To al-
low a join of two columns A and B on the predicate p, the client sends the
server the value qap = Rﬁ‘ @ RP. For each element a; in column A and b; in
column B, the server computes Ty, := O(b;) ® gap = H(b;) ® R4 It then
outputs all tuples < Ex(a;), Ex(b;),... > for which BF(a;) contains Tj_.q.
The following can be shown:

Theorem 1. The server cannot perform join operations on initially stored
data.

Theorem 2. The server cannot perform transitive joins.

Theorem 3. Given a binary EFM predicate p, for any matching pair of values
returned as a result of a join, < ' = Ex(a;),y = Ex(b;) >, no additional
information about a; and b; or their relationship can be inferred by the server,
other than the fact that p(a;,b;) = true.

The solution handles data updates naturally. For any new incoming data
item, the client pre-processing can be executed per-item and its results simply
forwarded to the server. Additionally, in the case of a multi-threaded server,
multiple clients (sharing secrets and keys) can access the same data store
simultaneously.

We note also that multiple predicate evaluations are also accommodated
naturally. Confidentiality can be provided for the attributes involved in binary
EFM predicates. In the following database schema, the association between
patients and diseases is confidential but any other information is public and
can be used in joins. To return a list of New York City patient names and
their associated antibiotics (but not their disease) the server will access both

150 Radu Sion

confidential (disease) and non-confidential (name,zip-code) values. In the fol-
lowing, only the predicate md() — associating antibiotics with diseases — will
operate on confidential data:

SELECT patients.name,antibiotics.name FROM patients,antibiotics
WHERE md(patients.disease,antibiotics.name)
AND patients.zipcode = 10128

This will be achieved (as discussed above) by encrypting the patients.disease
attribute and generating metadata for the antibiotics relation (which con-
tains a list of diseases that each antibiotic is recommended for).

Additional predicate instances and applications of this solution are ex-
plored in [42], including mechanisms for Hamming distance evaluations and
DNA fuzzy match predicates. Moreover, we show that the computation over-
heads of the solution are small. In initial evaluations, throughputs of well
beyond 0.5 million predicate evaluations per second can be accommodated.

Future Work: Arbitrary Predicates. Policies. Query Composability.

In future work, we believe it is important to pursue arbitrary query types
and multi-assurance compositions. For example we would like to understand
how to endow the above method with correctness assurances and data access
privacy as discussed in sections 2.2, 2.4 respectively.

Moreover, it is important to analyze the applicability of the protocols for
general types of predicates. We believe a recursive decomposition approach
can be applied to handle multiple argument EFM predicates. Transformations
from arbitrary predicates to a canonical EFM form should be explored. In a
first stage this is easy to achieve by simply discretizing queries over continuous
data domains. As this will introduce small errors in results (of a magnitude
inverse proportional to the quantization), this process needs to be designed
such that the errors will result only in the addition of a small, controllable,
number of non-matching tuples. These will then be pruned by the client.

To fully leverage the potential offered by confidentiality assurances, it is
important to investigate an integration with security policy frameworks [60,
111]. This will allow for more complex specifications over the space of data
sets, access rights, confidentiality policies and principals. For example, such
specifications could include relaxation of expensive DBMS - maintained access
control for data sets that are already encrypted.

Exploring novel notions of confidential query “composability” in the pres-
ence of multiple confidential data sources and associated secrets (e.g., cryp-
tographic keys) is another avenue of future research. We believe this can be
achieved by deploying intra-server secure multi-party computation (SMC) pro-
tocols [55, 58,59, 63, 78] mediated by secure hardware. The presence of secure
hardware will result in more efficient, practical SMC. This will ultimately
allow for multi-source confidential data integration.

Towards Secure Data Outsourcing 151
2.4 Data Access Privacy

In existing protocols, even though data sets are stored in encrypted form on
the server, the client query access patterns leak essential information about
the data. A simple attack can correlate known public information with hot
data items (i.e., with high access rates), effectively compromising their confi-
dential nature. In competing business scenarios, such leaks can be extremely
damaging, particularly due to their unpredictable nature.

This is why, to protect confidentiality, it is important to also provide as-
surances of access pattern privacy. No existing work has tackled this problem
yet for relational frameworks. It is thus essential to explore query protocols
that leak minimal information about the currently executing query. Access
patterns to data tuples become less meaningful when access semantics are un-
known to the server. For example the binary predicate join method proposed
above does not require the server to know the actual join predicates. Achieving
such goals for arbitrary relational queries will be a challenging proposition in
today’s query processors, potentially requiring fundamental changes in base
query processing.

To achieve these goals we first turn to existing research. Private Informa-
tion Retrieval (PIR) protocols were first proposed as a theoretical primitive
for accessing individual items of outsourced data, while preventing servers to
learn anything about the client’s access patterns [47]. Chor et al. [48] proved
that in information theoretic settings in which queries do not reveal any infor-
mation about the accessed data items, a solution requires {2(n) bits of com-
munication. To avoid this overhead, they show that for multiple non-colluding
databases holding replicated copies of the data, PIR schemes exist that re-
quire only sub-linear communication overheads. This multi-server assumption
however, is rarely viable in practice.

In single-server settings, it is known that PIR requires a full transfer of
the database [47,49] for computationally unbounded servers. For bounded
adversaries however, computational PIR (cPIR) mechanisms have been pro-
posed [40,41, 45,86, 87,93,96,122]. In such settings however, it is trivial to
establish an O(n) lower bound on server processing, mandating expensive
trapdoor operations per bit, to achieve access privacy. This creates a signif-
icant privacy - efficiency trade-off between the required server computation
cycles and the time to actually transfer the data and perform the query at
the client site.

We explore this trade-off in [118] where we discuss single-server com-
putational PIR for the purpose of preserving client access patterns leakage.
We show that deployment of non-trivial single server private information re-
trieval protocols on real (Turing) hardware is orders of magnitude more time-
consuming than trivially transferring the entire database to the client. The
deployment of computational PIR in fact increases both overall execution
time, and the probability of forward leakage, when the deployed present trap-

152 Radu Sion

doors become eventually vulnerable — e.g., today’s access patterns will be
revealed once factoring of today’s values will become possible in the future.

We note that these results are beyond existing knowledge of mere “im-
practicality” under unfavorable assumptions. On real hardware, no existing
non-trivial single server PIR protocol could have possibly had outperformed
the trivial client-to-server transfer of records in the past, and is likely not to
do so in the future either. Informally, this is due to the fact that it is more
expensive to PIR-process one bit of information than to transfer it over a
network.

PIR’s aim is to simply transfer one single remote bit with privacy. We
showed above that theoretical lower bounds prevent current cryptography to
offer efficient solutions in practical settings. Arguably, for more complex query
processing this will also be the case. Thus it is important to design practical
solutions that have the potential to break the PIR computation-privacy trade-
off. We believe a very promising avenue for further research relies on deploying
secure hardware hosted by the server, allowing the delegation of client-logic
in closer data proximity.

And because (as discussed above) trivial “run client ”proxy” inside secure
CPU” approaches are likely to be impractical — as typically such hardware
is orders of magnitude slower than main CPUs — any solution needs to de-
ploy SCPUs efficiently, to defeat statistical correlation attacks on data access
patterns.

3 Related Work.

Extensive research has focused on various aspects of DBMS security, including
access control techniques as well as general information security issues [29,31,
51,73,75,80,81,90,106,107,110,112], many of which are discussed elsewhere in
this book. Additionally, increasing awareness of requirements for data storage
security mechanisms and support can be found with DBMS vendors such as
IBM [10] and Oracle [16].

3.1 Database as a Service

The paradigm of providing a database as a service recently emerged [72] as a
viable alternative, likely due in no small part to the dramatically increasing
availability of fast, cheap networks. Given the global, networked, possibly hos-
tile nature of the operation environments, security assurances are paramount.
Data Sharing. Statistical and Hippocratic databases aim to address the
problem of allowing aggregate queries on confidential data (stored on trusted
servers) without additional information leaks [24,25,50,51,89] to the queries.
In [125] Zhang et al. discuss privacy in information sharing scenarios in a
distributed multi-party context, where each party operates a private database.
An leakage measure is defined for information sharing and several privacy
multi-party protocols deploying commutative encryption are defined.

Towards Secure Data Outsourcing 153

3.2 XML Sharing

In [30] Bertino et al. discuss a solution for access control to XML data. They
deploy multi-key encryption such that only the appropriate parts of out-
sourced XML documents can be accessed by principals. In [32] (also in [28]),
they propose a mechanism deploying watermarking [23,69,92,115,116,120] to
protect ownership for outsourced medical data. Similarly, Carminati et al. en-
sure the confidentiality of XML in a distributed peer network by using access
rights and encryption keys associated with XML nodes [43]. They enforce the
authenticity and integrity of query answers using Merkle signatures [100]. This
complicates outsourcing of new documents as new Merkle trees will need to be
generated. To ensure query correctness, the server also stores encrypted query
templates containing the structure of the original documents. This solution is
insecure because it leaks decryption keys and content access patterns.

3.3 Secure Storage

Encrypted Storage. Blaze’s CFS [34], TCFS [44], EFS [101], StegFS [99],
and NCryptfs [124] are file systems that encrypt data before writing to stable
storage. NCryptfs is implemented as a layered file system [74] and is capable of
being used even over network file systems such as NFS. SFS [70] and BestCrypt
[82] are device driver level encryption systems. Encryption file systems and
device drivers protect the confidentiality of data, but do not allow for efficient
queries, search, correctness, or access privacy assurances.

Integrity- Assured Storage. Tripwire [84,85] is a user level tool that verifies
stored file integrity at scheduled intervals of time. File systems such as I’FS
[83], GFS [62], and Checksummed NCryptfs [119] perform online real-time
integrity verification. Venti [109] is an archival storage system that performs
integrity assurance on read-only data. SUNDR [91] is a network file system
designed to store data securely on untrusted servers and allow clients to detect
unauthorized accesses as long as they see each other’s file modifications.

3.4 Searches on Encrypted Data

Song et al. [121] propose a scheme for performing simple keyword search on
encrypted data in a scenario where a mobile, bandwidth-restricted user wishes
to store data on an untrusted server. The scheme requires the user to split the
data into fixed-size words and perform encryption and other transformations.
Drawbacks of this scheme include fixing the size of words, the complexities of
encryption and search, the inability of this approach to support access pat-
tern privacy, or retrieval correctness. Eu-Jin Goh [64] proposes to associate
indexes with documents stored on a server. A document’s index is a Bloom
filter [35] containing a codeword for each unique word in the document. Chang
and Mitzenmacher [46] propose a similar approach, where the index associ-
ated with documents consists of a string of bits of length equal to the total

154 Radu Sion

number of words used (dictionary size). Boneh et al. [36] proposed an alter-
native for senders to encrypt e-mails with recipients’ public keys, and store
this email on untrusted mail servers. They present two search protocols: (1) a
non-interactive search-able encryption scheme based on a variant of the Diffie-
Hellman problem that uses bilinear maps on elliptic curves; and (2) a protocol
using only trapdoor permutations, requiring a large number of public-private
key pairs. Both protocols are computationally expensive. Golle et al. [66]
extend the above idea to conjunctive keyword searches on encrypted data.
They propose two solutions. (1) The server stores capabilities for conjunctive
queries, with sizes linear in the total number of documents. They claim that a
majority of the capabilities can be transferred offline to the server, under the
assumption that the client knows beforehand its future conjunctive queries.
(2) Doubling the size of the data stored by the server, which reduces the com-
munication overheads between clients and servers significantly. The scheme
requires users to specify the exact positions where the search matches have to
occur, and hence is impractical. Brinkman et al. [38] deploy secret splitting
of polynomial expressions to search in encrypted XML.

4 Acknowledgments

The author is supported partly by the NSF through awards CT CNS-0627554,
CT CNS-0716608 and CRI CNS 0708025. The author also wishes to thank
Motorola Labs, IBM Research, CEWIT, and the Stony Brook Office of the
Vice President for Research.

References
1. Activehost.com Internet Services. Online at http://www.activehost.com.
2. Adhost.com MySQL Hosting. Online at http://www.adhost.com.
3. Alentus.com Database Hosting. Online at http://www.alentus.com.
4. Datapipe.com Managed Hosting Services. Online at
http://www.datapipe.com.
5. Discountasp.net Microsoft SQL Hosting. Online at

http://www.discountasp.net.

6. Gate.com Database Hosting Services. Online at http://www.gate.com.

7. Hostchart.com Web Hosting Resource Center. Online at
http://www.hostchart.com.

8. Hostdepartment.com MySQL Database Hosting. Online at
http://www.hostdepartment.com/mysqlwebhosting/.

9. IBM Data Center Outsourcing Services. Online at
http://www-1.ibm.com/services/.

10. IBM Data Encryption for DB2. Online at

http://www.ibm.com/software/data/db2.
11. Inetu.net Managed Database Hosting. Online at http://www.inetu.net.

http://www.activehost.com
http://www.adhost.com
http://www.alentus.com
http://www.datapipe.com
http://www.discountasp.net
http://www.gate.com
http://www.hostchart.com
http://www.hostdepartment.com/mysqlwebhosting/
http://www-1.ibm.com/services/
http://www.ibm.com/software/data/db2
http://www.inetu.net

12.

13.

14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Towards Secure Data Outsourcing 155

Mercurytechnology.com Managed Services for Oracle Systems. Online at
http://www.mercurytechnology.com.

Neospire.net Managed Hosting for Corporate E-business. Online at
http://www.neospire.net.

Netnation.com Microsoft SQL Hosting. Online at http://www.netnation. com.
Opendb.com Web Database Hosting. Online at http://www.opendb. com.
Oracle: Database Encryption in Oracle 10g. Online at
http://www.oracle.com/database.

The IBM WebSphere Information Integrator. Online at
http://www.ibm.com/software/data/integration.

IBM 4758 PCI Cryptographic =~ Coprocessor. Online at

http://www-03.ibm.com/security/cryptocards/pcicc/overview.shtml,
2006.

IBM 4764 PCI-X Cryptographic Coprocessor (PCIXCC). Online at
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml,
2006.

IBM Common Cryptographic Architecture (CCA) APL Online at
http://www-03.ibm.com/security/cryptocards//pcixcc/overcca.shtml,
2006.

IBM Cryptographic Hardware. Online at
http://www-03.1ibm.com/security/products/, 2006.

Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A
calculus for access control in distributed systems. ACM Trans. Program. Lang.
Syst., 15(4):706-734, 1993.

Andre Adelsbach and Ahmad Sadeghi. Advanced techniques for dispute resolv-
ing and authorship proofs on digital works. In Proceedings of SPIE Electronic
Imaging, 2003.

Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hip-
pocratic databases. In Proceedings of the International Conference on Very
Large Databases VLDB, pages 143154, 2002.

Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining.
In Proceedings of the ACM SIGMOD, pages 439-450, 2000.

M. Bellare and D. Micciancio. A new paradigm for collision-free hashing:
Incrementality at reduced cost. In Proceedings of EuroCrypt, 1997.

Steven M. Bellovin. Spamming, phishing, authentication, and privacy. Com-
munications of the ACM, 47(12):144, 2004.

E. Bertino. Data hiding and security in an object-oriented database system.
In Proceedings of the 8th IEEE International Conference on Data Engineering,
1992.

Elisa Bertino, M. Braun, Silvana Castano, Elena Ferrari, and Marco Mesiti.
Author-X: A Java-Based System for XML Data Protection. In IFIP Workshop
on Database Security, pages 15-26, 2000.

Elisa Bertino, Barbara Carminati, and Elena Ferrari. A temporal key manage-
ment scheme for secure broadcasting of xml documents. In Proceedings of the
9th ACM conference on Computer and communications security, pages 31-40,
2002.

Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. A flexible authorization
mechanism for relational data management systems. ACM Transactions on
Information Systems, 17(2), 1999.

http://www.mercurytechnology.com
http://www.neospire.net
http://www.netnation.com
http://www.opendb.com
http://www.oracle.com/database
http://www.ibm.com/software/data/integration
http://www-03.ibm.com/security/cryptocards/pcicc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
http://www-03.ibm.com/security/cryptocards//pcixcc/overcca.shtml
http://www-03.ibm.com/security/products/

156

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Radu Sion

Elisa Bertino, Beng Chin Ooi, Yanjiang Yang, and Robert H. Deng. Privacy
and ownership preserving of outsourced medical data. In Proceedings of the
International Conference on Data Engineering, 2005.

Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Refik Molva,
and Moti Yung. The kryptoknight family of light-weight protocols for authen-
tication and key distribution. IEEE/ACM Trans. Netw., 3(1):31-41, 1995.
M. Blaze. A Cryptographic File System for Unix. In Proceedings of the first
ACM Conference on Computer and Communications Security, pages 9-16,
Fairfax, VA, 1993. ACM.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422-426, 1970.

D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryp-
tion with keyword search. In Proceedings of FEurocrypt 2004, pages 506—522.
LNCS 3027, 2004.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In FuroCrypt, 2003.

R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching
in encrypted data. In Secure Data Management, 2004.

M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In SOSP
’89: Proceedings of the twelfth ACM symposium on Operating systems princi-
ples, pages 1-13, New York, NY, USA, 1989. ACM Press.

C. Cachin, S. Micali, and M. Stadler. Computationally private information
retrieval with polylog communication. In Proceedings of EUROCRYPT, 1999.
C. Cachin, S. Micali, and M. Stadler. Private Information Retrieval with
Polylogarithmic Communication. In Proceedings of Eurocrypt, pages 402—414.
Springer-Verlag, 1999.

Bogdan Carbunar and Radu Sion. Arbitrary-Predicate Joins for Outsourced
Data with Privacy Assurances, 2006. Stony Brook Network Security and Ap-
plied Cryptography Lab Tech Report 2006-07.

B. Carminati, E. Ferrari, and E. Bertino. Assuring security properties in third-
party architectures. In Proceedings of International Conference on Data Engi-
neering (ICDE), 2005.

G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The Design and
Implementation of a Transparent Cryptographic Filesystem for UNIX. In Pro-
ceedings of the Annual USENIX Technical Conference, FREENIX Track, pages
245-252, Boston, MA, June 2001.

Y. Chang. Single-Database Private Information Retrieval with Logarithmic
Communication. In Proceedings of the 9th Australasian Conference on Infor-
mation Security and Privacy ACISP. Springer-Verlag, 2004.

Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on
remote encrypted data. Cryptology ePrint Archive, Report 2004/051, 2004.
http://eprint.iacr.org/.

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In IEEE Symposium on Foundations of Computer Science, pages
41-50, 1995.

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proceedings of FOCS. IEEE Computer Society, 1995.

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. J. ACM, 45(6):965-981, 1998.

http://eprint.iacr.org/

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

Towards Secure Data Outsourcing 157

Chris Clifton, Murat Kantarcioglu, AnHai Doan, Gunther Schadow, Jaideep
Vaidya, Ahmed Elmagarmid, and Dan Suciu. Privacy-preserving data integra-
tion and sharing. In The 9th ACM SIGMOD workshop on Research issues in
data mining and knowledge discovery, pages 19-26. ACM Press, 2004.

Chris Clifton and Don Marks. Security and privacy implications of data min-
ing. In Workshop on Data Mining and Knowledge Discovery, pages 15-19,
Montreal, Canada, 1996. Computer Sciences, University of British Columbia.
CNN. Feds seek Google records in porn probe. Online at http://www.cnn. com,
January 2006.

Premkumar T. Devanbu, Michael Gertz, April Kwong, Chip Martel, G. Nuck-
olls, and Stuart G. Stubblebine. Flexible authentication of XML documents. In
ACM Conference on Computer and Communications Security, pages 136-145,
2001.

Premkumar T. Devanbu, Michael Gertz, Chip Martel, and Stuart G. Stub-
blebine. Authentic third-party data publication. In IFIP Workshop on
Database Security, pages 101-112, 2000.

W. Du and M. J. Atallah. Protocols for secure remote database access with
approximate matching. In Proceedings of the 1st ACM Workshop on Security
and Privacy in E-Commerce, 2000.

Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van
Doorn, Sean W. Smith, and Steve Weingart. Building the ibm 4758 secure
coprocessor. Computer, 34(10):57-66, 2001.

Einar Mykletun and Maithili Narasimha and Gene Tsudik. Signature Bou-
quets: Immutability for Aggregated/Condensed Signatures. In Proceedings of
the European Symposium on Research in Computer Security ESORICS, pages
160-176, 2004.

Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin Strauss, and
Rebecca N. Wright. Secure multiparty computation of approximations. In
ICALP ’01: Proceedings of the 28th International Colloguium on Automata,
Languages and Programming,, pages 927-938, 2001.

M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In In Advances in Cryptology EUROCRYPT, pages 1-19, 2004.
Irini Fundulaki and Maarten Marx. Specifying access control policies for xml
documents with xpath. In The ACM Symposium on Access Control Models
and Technologies, pages 61-69. ACM Press, 2004.

Gartner, Inc. Server Storage and RAID Worldwide. Technical report, Gartner
Group/Dataquest, 1999. www.gartner. com.

S. Ghemawat, H. Gobioff, and S. T. Leung. The Google File System. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP
’03), pages 29-43, Bolton Landing, NY, October 2003. ACM SIGOPS.

Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikinen. On private
scalar product computation for privacy-preserving data mining. In ICISC,
pages 104-120, 2004.

E. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/2003/216/.

O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.
P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over
encrypted data. In Proceedings of ACNS, pages 31-45. Springer-Verlag; Lecture
Notes in Computer Science 3089, 2004.

http://www.cnn.com
www.gartner.com
http://eprint.iacr.org/2003/216/

158

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.
83.

84.

Radu Sion

Philippe Golle and Ilya Mironov. Uncheatable distributed computations. In
Proceedings of the 2001 Conference on Topics in Cryptology, pages 425-440.
Springer-Verlag, 2001.

Li Gong. Efficient network authentication protocols: lower bounds and optimal
implementations. Distrib. Comput., 9(3):131-145, 1995.

David Gross-Amblard. Query-preserving watermarking of relational databases
and xml documents. In Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 191—
201, New York, NY, USA, 2003. ACM Press.

P. C. Gutmann. Secure filesystem (SFS) for DOS/Windows.
www.cs.auckland.ac.nz/~pgut001/sfs/index.html, 1994.

H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted
data in the database-service-provider model. In Proceedings of the ACM SIG-
MOD international conference on Management of data, pages 216-227. ACM
Press, 2002.

H. Hacigumus, B. R. Iyer, and S. Mehrotra. Providing database as a service.
In IEEE International Conference on Data Engineering (ICDE), 2002.

J. Hale, J. Threet, and S. Shenoi. A framework for high assurance security of
distributed objects, 1997.

J. S. Heidemann and G. J. Popek. File system development with stackable
layers. ACM Transactions on Computer Systems, 12(1):58-89, February 1994.
E. Hildebrandt and G. Saake. User Authentication in Multidatabase Systems.
In R. R. Wagner, editor, Proceedings of the Ninth International Workshop on
Database and Expert Systems Applications, August 2628, 1998, Vienna, Aus-
tria, pages 281-286, Los Alamitos, CA, 1998. IEEE Computer Society Press.
B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range
queries. In Proceedings of ACM SIGMOD, 2004.

HweeHwa Pang and Arpit Jain and Krithi Ramamritham and Kian-Lee Tan.
Verifying Completeness of Relational Query Results in Data Publishing. In
Proceedings of ACM SIGMOD, 2005.

Piotr Indyk and David Woodruff. Private polylogarithmic approximations and
efficient matching. In Theory of Cryptography Conference, 2006.

S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Language for Ex-
pressing Authorizations. In IEEE Symposium on Security and Privacy, pages
31-42, Oakland, CA, May 04-07 1997. IEEE Press.

S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for
expressing authorizations. In IEEE Symposium on Security and Privacy. Oak-
land, CA, pages 31-42, 1997.

S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified frame-
work for enforcing multiple access control policies. In SIGMOD, 1997.

Jetico, Inc. BestCrypt software home page. www.jetico.com, 2002.

A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An In-Kernel In-
tegrity Checker and Intrusion Detection File System. In Proceedings of the 18th
USENIX Large Installation System Administration Conference (LISA 2004),
pages 69-79, Atlanta, GA, November 2004. USENIX Association.

G. Kim and E. Spafford. Experiences with Tripwire: Using Integrity Checkers
for Intrusion Detection. In Proceedings of the Usenixz System Administration,
Networking and Security (SANS III), 1994.

www.cs.auckland.ac.nz/~pgut001/sfs/index.html
www.jetico.com

Towards Secure Data Outsourcing 159

85. G. Kim and E. Spafford. The Design and Implementation of Tripwire: A
File System Integrity Checker. In Proceedings of the 2nd ACM Conference on
Computer Commuications and Society (CCS), November 1994.

86. E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In Proceedings of FOCS. IEEE
Computer Society, 1997.

87. E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are sufficient
for non-trivial single-server private information retrieval. In Proceedings of
EUROCRYPT, 2000.

88. Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wob-
ber. Authentication in distributed systems: theory and practice. ACM Trans.
Comput. Syst., 10(4):265-310, 1992.

89. Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan,
Yirong Xu, and David J. DeWitt. Limiting disclosure in hippocratic databases.
In Proceedings of the International Conference on Very Large Databases VLDB,
pages 108-119, 2004.

90. Li, Feigenbaum, and Grosof. A logic-based knowledge representation for au-
thorization with delegation. In PCSFW: Proceedings of the 12th Computer
Security Foundations Workshop, 1999.

91. J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secure Untrusted Data Repos-
itory (SUNDR). In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI 2004), pages 121-136, San Francisco, CA,
December 2004. ACM SIGOPS.

92. Yingjiu Li, Vipin Swarup, and Sushil Jajodia. A robust watermarking scheme
for relational data. In Proceedings of the Workshop on Information Technology
and Systems (WITS), pages 195-200, 2003.

93. H. Lipmaa. An oblivious transfer protocol with log-squared communication.
Cryptology ePrint Archive, 2004.

94. Maithili Narasimha and Gene Tsudik. DSAC: integrity for outsourced
databases with signature aggregation and chaining. Technical report, 2005.

95. Maithili Narasimha and Gene Tsudik. Authentication of Outsourced Databases
using Signature Aggregation and Chaining. In Proceedings of DASFAA, 2006.

96. E. Mann. Private access to distributed information. Master’s thesis, Technion
- Israel Institute of Technology, 1998.

97. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. Stubblebine.
A general model for authenticated data structures. Technical report, 2001.

98. Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April
Kwong, and Stuart G. Stubblebine. A general model for authenticated data
structures. Algorithmica, 39(1):21-41, 2004.

99. A. D. McDonald and M. G. Kuhn. StegF'S: A Steganographic File System for
Linux. In Information Hiding, pages 462—477, 1999.

100. R. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on
Research in Security and Privacy, 1980.

101. Microsoft Research. Encrypting File System for Windows
2000. Technical report, Microsoft Corporation, July 1999.
www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp.

102. Fabian Monrose and Aviel D. Rubin. Authentication via keystroke dynamics.
In ACM Conference on Computer and Communications Securily, pages 48-56,
1997.

www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp

160

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

Radu Sion

Fabian Monrose and Aviel D. Rubin. Keystroke dynamics as a biometric for
authentication. Future Generation Computer Systems, 16(4):351-359, 2000.
E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity
in outsourced databases. In ISOC Symposium on Network and Distributed
Systems Security NDSS, 2004.

Roger M. Needham and Michael D. Schroeder. Using encryption for authenti-
cation in large networks of computers. Commun. ACM, 21(12):993-999, 1978.
M. Nyanchama and S. L. Osborn. Access rights administration in role-based
security systems. In Proceedings of the IFIP Workshop on Database Security,
pages 37-56, 1994.

Sylvia L. Osborn. Database security integration using role-based access control.
In Proceedings of the IFIP Workshop on Database Security, pages 245-258,
2000.

HweeHwa Pang and Kian-Lee Tan. Authenticating query results in edge com-
puting. In ICDE ’04: Proceedings of the 20th International Conference on Data
Engineering, page 560, Washington, DC, USA, 2004. IEEE Computer Society.
S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In
Proceedings of the First USENIX Conference on File and Storage Technologies
(FAST 2002), pages 89-101, Monterey, CA, January 2002. USENIX Associa-
tion.

David Rasikan, Sang H. Son, and Ravi Mukkamala. Support-
ing security requirements in multilevel real-time databases, cite-
seer.nj.nec.com/david95supporting.html, 1995.

Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending
query rewriting techniques for fine-grained access control. In Proceedings of the
2004 ACM SIGMOD international conference on Management of data, pages
551-562. ACM Press, 2004.

Ravi S. Sandhu. On five definitions of data integrity. In Proceedings of the
IFIP Workshop on Database Security, pages 257-267, 1993.

B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in
C. Wiley & Sons, 1996.

Radu Sion. Query execution assurance for outsourced databases. In Proceedings
of the Very Large Databases Conference VLDB, 2005.

Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Relational data rights pro-
tection through watermarking. IEFEE Transactions on Knowledge and Data
Engineering TKDE, 16(6), June 2004.

Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Ownership proofs for cate-
gorical data. IEEE Transactions on Knowledge and Data Engineering TKDE,
2005.

Radu Sion and Bogdan Carbunar. Indexed Keyword Search with Privacy and
Query Completeness, 2005. Stony Brook Network Security and Applied Cryp-
tography Lab Tech Report 2005-07.

Radu Sion and Bogdan Carbunar. On the Computational Practicality of Pri-
vate Information Retrieval. In Proceedings of the Network and Distributed Sys-
tems Security Symposium, 2007. Stony Brook Network Security and Applied
Cryptography Lab Tech Report 2006-06.

G. Sivathanu, C. P. Wright, and E. Zadok. Enhancing File Sys-
tem Integrity Through Checksums. Technical Report FSL-04-04,
Computer Science Department, Stony Brook University, May 2004.
www.fsl.cs.sunysb.edu/docs/nc-checksum-tr/nc-checksum.pdf.

www.fsl.cs.sunysb.edu/docs/nc-checksum-tr/nc-checksum.pdf

120

121.

122.

123.

124.

125.

Towards Secure Data Outsourcing 161

. J. Smith and C. Dodge. Developments in steganography. In A. Pfitzmann,
editor, Proceedings of the third Int. Workshop on Information Hiding, pages
77-87, Dresden, Germany, September 1999. Springer Verlag.

D. Xiaodong Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In SP ’00: Proceedings of the 2000 IEEE Symposium on
Security and Privacy (SE&P 2000). IEEE Computer Society, 2000.

J. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In
Proceedings of Asia Crypt, pages 357-371, 1998.

Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed systems.
Computer, 25(1):39-52, 1992.

C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A Secure and Convenient
Cryptographic File System. In Proceedings of the Annual USENIX Technical
Conference, pages 197-210, San Antonio, TX, June 2003. USENIX Association.
Nan Zhang and Wei Zhao. Distributed Privacy Preserving Information Sharing.
In Proceedings of the International Conference on Very Large Databases VLDB,
2005.

7

Managing and Querying Encrypted Data

Bijit Hore!, Sharad Mehrotra', and Hakan Hacigiimiig?

! Donald Bren School of Computer Science
University of California, Irvine {bhore,sharad}@ics.uci.edu
% IBM Almaden Research Center hakanh@acm.org

Summary. Encryption is a popular technique for ensuring confidentiality of sensi-
tive data. While data encryption is able to enhance security greatly, it can impose
substantial overhead on the performance of a system in terms of data management.
Management of encrypted data needs to address several new issues like choice of the
appropriate encryption algorithms, deciding the key management architecture and
key distribution protocols, enabling efficient encrypted data storage and retrieval,
developing techniques for querying and searching encrypted data, ensuring integrity
of data etc. In this chapter, we give an overview of the state-of-the-art in some of
these areas using the “Database As a Service” (DAS) as the prototype application.
We especially concentrate on techniques for querying encrypted data and summa-
rize the basic techniques proposed for SQL queries over encrypted relational data,
keyword search over encrypted text data and XPath queries over encrypted XML
data. We also provide brief summaries of works relating to other issues mentioned
above and provide further references to the related literature.

1 Introduction

The proliferation of a new breed of data management applications that store
and process data at remote service-providers’ locations leads to a new con-
cern, that of security. Especially when sensitive information is contained in
the data, ensuring its confidentiality is a key concern in such a model. In a
typical setting of the problem, the confidential portions of the data are stored
at the remote location in an encrypted form at all times. For example, in
a DAS setting data encryption becomes important when the client chooses
to hide away certain contents from server-side entities. Two new challenges
emerge: (i) Efficient encryption algorithms for relational data. (ii) Supporting
queries on the encrypted relational data. While supporting a fully functional
RDBMS over encrypted data is a challenge that remains far from being met,
other specialized application domains fitting this model have emerged over the
past few years. An application that has driven a lot of research in the crypto-
graphic community is that of keyword-matching over encrypted text data. For

164 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

instance, such schemes can be used to build a secure email server where the
server stores emails of account holders in encrypted format and allows users
to search emails based on keywords without having to decrypt the documents
on the server. The returned emails could then be decrypted on the client ma-
chine. Another new breed of applications that have emerged more recently can
be classified as “secure personal storage” applications [33, 35]. These applica-
tions let individuals store a variety of data on remote servers and access them
over the network securely from any place. For instance pVault stores and
manages an individual’s passwords for his online accounts. It also provides
support for high-entropy password generation and mobile access. DataVault
is another application that makes a secure network drive available to individ-
uals. It utilizes standard unsecure storage facilities on the web, for example
Gmail for data storage and provides encryption and navigational support on
them. It provides mobile, seamless access to one’s files and directories from
remote locations. While these specialized classes of applications are far less
complex than supporting entire RDBMS functionalities as envisaged in the
DAS framework, they share many common features with it. Some other pieces
of work exists that have addressed similar issues for XML data [45, 34]. In
case of XML, not only the data but structure is also important, which brings
up new kinds of challenges.

In the remaining part, we will take DAS to be a prototypical application
and present an overview of the various issues involved in managing encrypted
data in its context. Depending on the nature of the underlying data (relational,
text or XML) encryption techniques and query mechanisms vary. We will
highlight these differences and provide short discussions as and when these
issues are discussed in the subsequent sections.

In section 2, we start by describing the architecture of a typical DAS
system and give an overview of the different approaches for querying encrypted
data. Then we summarize the techniques proposed in [26] for query processing
over encrypted relational data. In section 2.4 we outline one of the techniques
proposed for searching encrypted text data and in section 2.5 we present a
brief summary of one technique proposed to handle queries over encrypted
XML data. In section 2.4 we give a brief overview of privacy analysis for
the partitioning/generalization based secure index creation. In section 3 we
describe various other issues that need to be addressed in encrypted data
management, like choice of encryption function, key management, authenticity
and integrity checking etc. Finally, in section 4 we conclude and point out some
of the open problems that need to be addressed.

2 DAS - Storing & Querying Encrypted Data

The DAS model offers a variety of data management functionalities in the form
of service to clients. It is an emerging alternative to in-house data management
that overcomes many of the above listed challenges of traditional architectures.

Managing and Querying Encrypted Data 165

A key concern in such an application is that of confidentiality of the sensitive
information in the database residing on the server. In many cases, some or all
of the data might be considered sensitive and needs to be protected from any
kind of unauthorized access on the server side. “Unauthorized access” could
refer to a break-in by hackers or an access by a legitimate, but malicious
insider, for example a database administrator. A solution is to encrypt the
sensitive portions or data where only the client has the access to the key.
As a result one needs to address a variety of new issues related to encrypted
data management, like support for encryption algorithms, key management,
query execution on encrypted data etc. By far, non-trivial query processing on
the encrypted data is the most challenging new problem that arises in such
applications. A variety of techniques for executing queries over relational,
textual and XML data have been developed in literature. We will summarize
some of these techniques in this section. We start by describing the security
model in a typical DAS application.

2.1 DAS setup & security model

In a typical setting of a DAS application, there is a data-owner, one or more
clients of the data (can be same as the owner) and a server. The owner stores
the data on the server and the clients may query/modify parts of this data
remotely according to their access rights. In a typical setting, some portions
of the data (e.g., some of the attributes of a relational table) are sensitive
and need to be protected from the adversaries. An adversary is some individ-
ual/organization who has malicious intention and particularly the entity from
whom the sensitive information needs to be kept hidden. In DAS applica-
tions, the client/owner side environment is assumed to be secure and trusted
therefore the main threat is from server-side adversaries. In most models the
service provider is assumed to carry out the data processing tasks honestly,
and the main concern is regarding a malicious insider who might get access
to the data (e.g., a malicious database administrator) and use this to harm
the owner or the client. In such a scenario the sensitive portions of the data
must remain encrypted at all times on the server and the secret encryption
key should remain with the client. Data is only decrypted on the client side.
This is called the passive or curious adversary model and is by far the most
widely assumed security model. In another scenario, the server-side might be
completely trustworthy, but in order to protect the data from becoming ac-
cessible to an outside hacker, the minimum requirement might be to keep the
data encrypted on disk (since for the majority of the time, that is where the
data resides).

Protecting against active adversaries is obviously more difficult and re-
quires greater effort on the client’s part to ensure proper functioning of the
system. Authenticity and integrity checking becomes important in this sce-
nario and we will describe some of the work in this area in section 3.

166 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

Now, we look at some of the approaches proposed in literature for querying
encrypted relational data.

2.2 Querying Encrypted Relational Data

Consider a user Alice who outsources the database consisting of the following
two relations:

EMP (eid, ename, salary, addr, did)
DEPARTMENT (did, dname, mgr)

The fields in the EMP table refer to the employee id, name of the employee,
salary, address and the id of the department the employee works for. The fields
in the DEPARTMENT table correspond to the department id, department
name, and name of the manager of the department. In the DAS model, the
above tables will be stored at the service provider. Since the service provider is
untrusted, the relations must be stored in an encrypted form. Unless specified
otherwise, we will assume that data is encrypted at the row level; that is, each
row of each table is encrypted as a single unit. Thus, an encrypted relational
representation consists of a set of encrypted records.

The client? may wish to execute SQL queries over the database. For in-
stance, Alice may wish to pose following query to evaluate "total salary for
employees who work for Bob”. Such a query is expressed in SQL as follows:

SELECT SUM(E.salary) FROM EMP as E, DEPARTMENT as D
WHERE E.did = D.did AND D.mgr = "Bob"

An approach Alice could use to evaluate such a query might be to request
the server for the encrypted form of the EMP and DEPARTMENT tables.
The client could then decrypt the tables and execute the query. This however,
would defeat the purpose of database outsourcing, reducing it to essentially
a remote secure storage. Instead, the goal in DAS is to process the queries
directly at the server without the need to decrypt the data. Before we discuss
techniques proposed in the literature we note that processing such queries
requires mechanisms to support the following basic operators over encrypted
data:

e Comparison operators such as =, #, <, <,=, >, > These operators may
compare attribute values of a given record with constants (e.g., DEPART-
MENT.sal > 45000 as in selection queries) or with other attributes (e.g.,
EMP.did = DEPARTMENT.did as in join conditions).

e Arithmetic operators such as addition, multiplication, division that
perform simple arithmetic operations on attribute values associated with
a set of records in one or more relations. Such operators are part of any
SQL query that involves aggregation.

3 Alice in this case since we have assumed that the client and the owner is the same
entity.

Managing and Querying Encrypted Data 167

The example query given above illustrates usage of both classes of oper-
ators. For instance, to execute the query, the mgr field of each record in the
DEPARTMENT table has to be compared with “Bob”. Furthermore, records
in the DEPARTMENT table whose mgr is “Bob” have to be matched with
records in EMP table based on the did attribute. Finally, the salary fields of
the corresponding record that match the query conditions have to be added
to result in the final answer.

The first challenge in supporting SQL queries over encrypted relational
representation is to develop mechanisms to support comparison and arithmetic
operations on encrypted data. The techniques developed in the literature can
be classified into the following two categories.

Approaches based on new encryption techniques: These techniques
can support either arithmetic and/or comparison operators directly on en-
crypted representation. Encryption techniques that support limited compu-
tation without decryption have been explored in cryptographic literature in
the past. Amongst the first such technique is the privacy homomorphism (PH)
developed in [39, 16] that supports basic arithmetic operations. While PH can
be exploited to compute aggregation queries at the remote server (see [27] for
details), it does not allow comparison and, as such, cannot be used as basis for
designing techniques for relational query processing over encrypted data. In
[4], the authors developed a data transformation technique that preserves the
order in the original data. Such a transformation serves as an order-preserving
encryption and can therefore support comparison operators. Techniques to im-
plement relational operators such as selection, joins, sorting, grouping can be
built on top of the order preserving encryption. The encryption mechanism,
however, cannot support aggregation at the server. While new cryptographic
approaches are interesting, one of the limitation of such approaches has been
that they are safe only under limited situations where the adversary’s knowl-
edge is limited to the ciphertext representation of data. These techniques have
either been shown to break under more general attacks (e.g., PH is not secure
under chosen plaintext attack [6, 10]), or the security analysis under diverse
types of attacks has not been performed.

Information-hiding based Approaches: Unlike in encryption based ap-
proaches, such techniques store additional auxiliary information along with
encrypted data to facilitate evaluation of comparison and/or arithmetic oper-
ations at the server. Such auxiliary information, stored in the form of indices
(which we refer to as secure indices) may reveal partial information about the
data to the server. Secure indices are designed carefully exploiting information
hiding mechanisms (developed in the context of statistical disclosure control)
[48, 47, 1] to limit the amount of information disclosure. The basic techniques
used for disclosure control are the following [47, 1]:

1. Perturbation: For a numeric attribute of a record, add a random value
(chosen from some distribution, like normal with mean 0 and standard
deviation o) to the true value.

168 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

2. Generalization: Replace a numeric or categorical value by a more general
value. For numeric values, it could be a range that covers the original value
and for categorical data, this may be a more generic class, e.g., an ancestor
node in a taxonomy tree.

3. Swapping: Take two different records in the data set and swap the values
of a specific attribute (say, the salary value is swapped between the records
corresponding to two individuals).

Of all the disclosure-control methods, the one that has been primarily uti-
lized to realize DAS functionalities is that of generalization. The nature of
disclosure in information hiding based schemes is different from that in cryp-
tographic schemes. In the latter, the disclosure risk is inversely proportional to
the difficulty of breaking the encryption scheme and if broken, it means there
is complete disclosure of the plaintext values. In contrast, the information
disclosure in information hiding approaches could be partial or probabilistic
in nature. That is, there could be a non-negligible probability of disclosure of
a sensitive value given the transformed data, e.g., the bucket identity might
give a clue regarding the actual value of the sensitive attribute.

In this section, we will primarily concentrate on the information hiding
based approach and show how it has been utilized to support SQL queries. As
will be clear, information hiding approaches can be used to support compari-
son operators on the server and can hence be the basis for implementing SPJ
(select-project-join) queries. They can also support sorting and grouping op-
erators. Such techniques, however, cannot support aggregation at the server.
A few papers [27, 24] have combined an information hiding approach with
PH to support both server-side aggregation as well as SPJ queries. Of course,
with PH being used for aggregation, these techniques become vulnerable to
diverse types of attacks. In the remainder of the section, we will concentrate
on how information hiding techniques are used to support SPJ queries. We
will use the query processing architecture proposed in [22, 26] to explain the
approach.

Query Processing Architecture for DAS [26]

Figure 1 illustrates the control flow for queries in DAS where information
hiding technique is used to represent data at the server. The figure illustrates
the three primary entities of the DAS model: user, client and server. The
client stores the data at the server which is hosted by the service provider and
this is known as the server-side. The data is stored in an encrypted format
at the server-side at all times for security purposes. The encrypted database
is augmented with additional information (secure indexes) that allows certain
amount of query processing to occur at the server without jeopardizing data
privacy. The client also maintains metadata for translating user queries to the
appropriate representation on the server, and performs post-processing on
server-query results. Based on the auxiliary information stored, the original

Managing and Querying Encrypted Data 169

' Client Site > :
: R:ﬁu" < Temporary \¢—Encrypted Results
liter Results | :
P : :
Q Query over Encrypted Data
o Query . .
5 Translator . Service Provider v
o \ 4 : :
< (Meta () : .
e .
Data A Original Query . Encrypted
. . Client
g D Database

Web Browser
(USER)

Fig. 1. Query Processing in DAS

query over un-encrypted relations are broken into (1) a server-query over
encrypted relations which run on the server, and (2) a client-query which
runs on the client and post-processes the results returned after executing the
server-query. We achieve this goal by developing an algebraic framework for
query rewriting over encrypted representation.

2.3 Relational Encryption and Storage Model

For each relation
R(Aq, Ag, ... Ay)

one stores on the server an encrypted relation:
RS (etuple, AT, A3, ... AS)

where the attribute etuple stores an encrypted string that corresponds to a
tuple in relation R. Each attribute AZS corresponds to the index for the at-
tribute A; and is used for query processing at the server. For example, consider
a relation emp below that stores information about employees.

leid [ename[salary[addr [did‘
23 |Tom |70K |Maple |40
860|Mary |60K |Main 80
320|John |50K |River 50
875|Jerry |55K |Hopewell|110

The emp table is mapped to a corresponding table at the server:

emp? (etuple, eid®, ename®, salary® , addr®, did®)

170 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

It is only necessary to create an index for attributes involved in search and
join predicates. Without loss of generality, one can assume that an index is
created over each attribute of the relation.

Partition Punctions: To explain what is stored in attribute AY of R for each
attribute A; of R the following notations are useful. The domain of values (D;)
of attribute R.A; are first mapped into partitions {p1, ..., pr}, such that these
partitions taken together cover the whole domain. The function partition is
defined as follows:

partition(R.A;) = {p1,p2, ..., Pk}

As an example, consider the attribute eid of the emp table above. Suppose
the values of domain of this attribute lie in the range [0,1000]. Assume that
the whole range is divided into 5 partitions, represented as:

partition(emp.eid) = {[0,200], (200, 400], (400, 600], (600, 800], (800, 1000] }

Different attributes may be partitioned using different partition functions,

or they might be partitioned together using a multidimensional model. The
partition of attribute A; corresponds to a splitting of its domain into a set
of buckets. The strategy used to split the domain into a set of buckets has
profound implications on both the efficiency of the resulting query processing
as well as on the disclosure risk of sensitive information to the server. For
now, to explain the query processing strategy, we will make a simplifying
assumption that the bucketization of the domain is based on the equi-width*
partitioning (though the strategy developed will work for any partitioning of
the domain). We will revisit the efficiency and disclosure risks in the following
subsections.
Identification Functions: An identification function called ident assigns a ran-
dom, unique identifier identr_ 4, (p;) to each partition p; of attribute A;. Fig-
ure 2 shows the identifiers assigned to the 5 partitions of the attribute emp.eid.
For instance, identemp.eia([0, 200]) = 2, and identemp.ciq((800, 1000]) = 4.

2 7 5 1 4
I I I I I |

0 200 400 600 800 1000

Fig. 2. Partition and identification functions of emp.eid

Mapping Functions: Given the above partition and identification functions, a
mapping function Mapr 4, maps a value v in the domain of attribute A; to
the identifier of the partition to which v belongs: Mapg. 4, (v) = identr 4; (pj),
where p; is the partition that contains v. Later we describe a more general
approach where a value might be assigned to multiple buckets [30] (probabilis-
tically). This can be shown to achieve a greater degree of security than the

4 where the domain of each bucket has the same width

Managing and Querying Encrypted Data 171

more rigid case where partitions are non-overlapping. We describe the work
in [30] later in this section. The mapping information is stored on the client to
enable query translation (i.e., from plaintext queries to server-side queries).
More details about query translation can be found in [21, 26].

Storing Encrypted Data: For each tuple t = (ay,as,...,a,) in R, the relation

RY stores a tuple:

(encrypt({ai, az,...,an}), Mapg. a, (a1), Mapr. a,(a2), ..., Mapr. a, (an))

where encrypt is the function used to encrypt a tuple of the relation. For
instance, the following is the encrypted relation emp® stored on the server:

l etuple ‘eids‘enames‘salarys‘addrs‘didsl
1100110011110010...| 2 19 81 18 2
1000000000011101...| 4 31 59 41 4
1111101000010001...| 7 7 7 22 2
1010101010111110...| 4 71 49 22 4

The first column etuple contains the string corresponding to the encrypted

tuples in emp. For instance, the first tuple is encrypted to “1100110011110...”
that is equal to encrypt(23, Tom, 70K, Maple,40). The second is encrypted
to “1000000000011101...” equal to encrypt(860, Mary, 60K, Main,80). The
encryption function is treated as a black box and any block cipher technique
such as AES, Blowfish, DES etc., can be used to encrypt the tuples. We
discuss some of the issues related to choice of encryption function in the next
section. The second column corresponds to the index on the employee ids. For
example, value for attribute eid in the first tuple is 23, and its corresponding
partition is [0,200]. Since this partition is identified to 2, we store the value
“2”7 as the identifier of the eid for this tuple.
Decryption Functions: Given the operator E that maps a relation to its en-
crypted representation, its inverse operator D maps the encrypted represen-
tation to its corresponding decrypted representation. That is, D(R%) = R. In
the example above, D(emp®) = emp. The D operator may also be applied
on query expressions. A query expression consists of multiple tables related
by arbitrary relational operators (e.g., joins, selections, etc). Decryption will
regenerate the whole record.

Mapping Conditions

To translate specific query conditions in operations (such as selections and
joins) to corresponding conditions over the server-side representation, a trans-
lation function called Mapeonq is used. These conditions help translate rela-
tional operators for server-side implementation, and how query trees are trans-
lated. For each relation, the server-side stores the encrypted tuples, along with
the attribute indices determined by their mapping functions. The client stores
the meta data about the specific indices, such as the information about the

172 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

partitioning of attributes, the mapping functions, etc. The client utilizes this
information to translate a given query Q to its server-side representation Q°,
which is then executed by the server. More details can be found in [26].

Translating Relational Operators

Now let us give an idea of how relational operators are implemented in [26].
We illustrate the implementation of the selection and join operators in the
proposed architecture. The strategy is to partition the computation of the
operators across the client and the server such that a superset of answers is
generated by the operator using the attribute indices stored at the server. This
set is then filtered at the client after decryption to generate the true results.
The goal is to minimize the work done at the client (as much as possible).
We use R and T to denote two relations, and use the operator notations in [17].

The Selection Operator (o): Consider a selection operation 0¢(R) on a re-
lation R, where C' is a condition specified on one or more of the attributes
Ay, Ag, ... A, of R. A straightforward implementation of such an operator
is to transmit the relation R® from the server to the client. Then the client
decrypts the result using the D operator, and implements the selection. This
strategy, however, pushes the entire work of implementing the selection to
the client. In addition, the entire encrypted relation needs to be transmitted
from the server to the client. An alternative mechanism is to partially com-
pute the selection operator at the server using the indices associated with the
attributes in C', and push the results to the client. The client decrypts the
results and filters out tuples that do not satisfy C. Specifically, the operator
can be rewritten as follows:

oc(R)=0¢ (D(U%apmnd(c*) (RS)))

Note that the o operator that executes at the server is adorned with a
superscript “S”. All non-adorned operators execute at the client. The decryp-
tion operator D will only keep the attribute etuple of R, and drop all the
other A7 attributes. We explain the above implementation using an example
O eid<395ndid=140(emp). Based on the definition of Map.onq(C) discussed in
the previous section, the above selection operation will be translated into

Oc (D(Jg, (emps))>
where the condition C’ on the server is:
C' = Mapeona(C) = (eid® € [2,7] A did® = 4)

The Join Operator (X): Consider a join operation R |>Cq S. The join condition
C' could be either an equality condition (in which case the join corresponds to

Managing and Querying Encrypted Data 173

an equijoin), or could be a more general condition (resulting in theta-joins).
The above join operation can be implemented as follows:

RS Tzac(D(RS MapEj:dw) TS))

As before, the S adornment on the join operator denotes the fact that the
join is to be executed at the server. For instance, join operation

X
EMP emp.did=mgr.did TgT

is translated to: .

JC(D(empS Dév mgrs))

where the condition C’ on the server is condition C; defined in Section 2.3.

Now we show how the above operators are used to rewrite SQL queries
for the purpose of splitting the query computation across the client and the
server.

Query Execution

Given a query @, the goal is to split the computation of @) across the server
and the client. The server will use the implementation of the relational oper-
ators discussed in the previous subsection to compute “as much of the query
as possible”, relegating the remainder of the computation to the client. Query
processing and optimization have been extensively studied in database re-
search [20, 12, 41]. The objective is to come up with the “best” query plan
for @ that minimizes the amount of work to be done at the client site. In this
setting, the cost of a query consists of many components — the I/O and CPU
cost of evaluating the query at the server, the network transmission cost, and
the I/O and CPU cost at the client. As an example, consider the following
query over the emp table than retrieves employees whose salary is greater that
the average salary of employees in the department identified by did = 1.

SELECT emp.name FROM emp
WHERE emp.salary > (SELECT AVG(salary)
FROM emp WHERE did = 1);

The corresponding query tree and some of the evaluation strategies are
illustrated in Figures 3 to 6. The first strategy (Figure 4) is to simply trans-
mit the emp table to the client, which evaluates the query. An alternative
strategy (Figure 5) is to compute part of the inner query at the server, which
selects (as many as possible) tuples corresponding to Mapeond(did = 1). The
server sends to the client the encrypted version of the emp table, i.e., emp®,
along with the encrypted representation of the set of tuples that satisfy the
inner query. The client decrypts the tuples to evaluate the remainder of the
query. Yet another possibility (Figure 6) is to evaluate the inner query at the

174 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

1 ' C
1 Tena.me : 0o
1 .
: salary > X :
; l i
! A : s
Py T Q_“
: T Y g 4 h i
: | ename ! ' Map,.,,fsalary >X) H
1 1 1 :
i Dqsalz\ry >X 1 : .]
1 1 1 1
H i . | emp (T H
1 1] 1
r _.‘_'$_':'_-_' Simmmemizabeih _Q_ - : 'Y PH h h :
! N n \ ! AVG (salary)—>X !
1 emp TAvG Galay 15X 1 : l !
i i ' f i
: L : ! Ggig-gmy 1
i did =E(1) ' ! | !
: | : ! s :
| ' | enp :
Fig. 3. Original query tree Fig. 4. Replacing encrypted rela-
tions
Wename

emp sa sal Q° Tename
Oemp sal>avgsal
|

eee- l? wemmeeeen Yawg(sal)—avgsal i
; emps é | Q* emp salw‘\
: Odid=1 emp: S

i o Ug(sal)—)avgsal:
H ¢ :
s ? A DS

o Mu]pwnd (did=1) ll)

O Mapeona(did=1)

s § 0
emp : emps

...

Fig. 5. Doing selection at server Fig. 6. Multiple interactions between
client and server

server. That is, select the tuples corresponding to the employees that work in
department did = 1. The results are shipped to the client, which decrypts the
tuples and computes average salary. The average salary is encrypted by the
client and shipped back to the server, which then computes the join at the
server. Finally, the results are decrypted at the client.

Supporting Aggregation Operators in Queries: The various query translation
techniques discussed above are designed explicitly for relational operators that

Managing and Querying Encrypted Data 175

perform comparisons. While information hiding techniques work for relational
operators, they do not work for arithmetic operators such as aggregation. No-
tice that in the previous query there is an aggregation but that aggregation is
done at the client side after decryption. If aggregation is to be performed at
the server side, the information hiding approach has to be augmented with an
encryption approach that supports arithmetic operations on encrypted rep-
resentation. [27] illustrates how privacy homomorphisms (PH) [39, 16] can
be combined with the basic approach described above for this purpose. Ad-
ditional complexities arise since the information hiding technique does not
exactly identify the target group to be aggregated (i.e., the server side results
typically contain false positives). The paper develops algebraic manipulation
techniques to separate an aggregation group into two subsets a set that cer-
tainly qualifies the conditions specified in the query, and a set that may or
may not satisfy the selection predicates of the query (i.e., could contain false
positives). The first set can be directly aggregated at the server using PH
while the tuples belonging to the second category will need to be transmitted
to the client side to determine if they indeed satisfy the query conditions.

Query Optimization in DAS: As in traditional relational query evaluation, in
DAS multiple equivalent realizations for a given query are possible. This nat-
urally raises the challenge of query optimization. In [24], query optimization
in DAS is formulated as a cost-based optimization problem by introducing
new query processing functions and defining new query transformation rules.
The intuition is to define transfer of tuples from server to the client and de-
cryption at the client as operators in the query tree. Given different hardware
constraints and software capabilities at the client and the server different cost
measures are applied to the client-side and server-side computations. A novel
query plan enumeration algorithm is developed that identifies the least cost
plan.

Now, having given a summary of the various techniques for handling en-
crypted relational data we move onto encryption of text data.

2.4 Keyword search on encrypted text data

In this section we discuss approaches proposed in the literature to support
keyword based retrieval of text documents. The majority of the techniques
proposed in literature are cryptographic in nature. Let Alice be the data owner
who has a collection of text documents D = {D1,...,D,}. A document D; is
modelled as a set of keywords D; = {I/lei ey W,ﬁi }, each word w € W, and
(W) is the set of all possible keywords. Alice stores her document collection
at a service provider. Since the service provider is not trusted, documents are
stored encrypted. Each document is encrypted at the word level as follows:
Each document is divided up into equal length “words”. Typically each such
word corresponds to an English language word where extra padding (with ‘0’
and ‘1’ bits) are added to make all words equal in length. Periodically Alice

176 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

may pose a query to the server to retrieve a subset of documents. The query
itself is a set of keywords and the answer corresponds to the set of documents
that contain all the keywords in the query. More formally, the answer to a
query q is given by:

Ans(q) = {D; € D|Vk; € q,k; € D;}

The goal is to design techniques to retrieve answers while not revealing any
information beyond the presence (or absence) of the keywords (of the query)
in each document.

A few different variations of the basic keyword-search problem have been
studied over the past years [8, 18, 44, 11, 19, 7, 46]. The authors in [44, 11]
study the basic problem where a private-key based encryption scheme is used
to design a matching technique on encrypted data that can search for any
word in the document. Authors in [8] provide a safe public-key based scheme
to carry out “non-interactive” search on data encrypted using user’s public-
key for a select set of words. [18] proposes a document indexing approach
using bloom filters that speeds up the keyword search algorithm but could
result in some false-positive retrievals. The work in [19, 7] propose secure
schemes for conjunctive keyword search where the search term might contain
the conjunction of two or more keywords. The goal here again is to avoid
any leakage of information over and above the fact that the retrieved set of
documents contain all the words specified in the query.

In this section, we describe a private-key based approach which is moti-
vated by [44] and was amongst the first published solutions to the problem of
searching over encrypted text data. The approach described incurs significant
overhead, requiring O(n) cryptographic operations per document where n is
the number of words in the document.

Private-Key based Search Scheme on Encrypted Text Data

Consider a data owner Alice who wishes to store a collection of documents
with Bob (the service provider). Alice encrypts each document D prior to
storing it with Bob. In addition, Alice creates a secure index, I(D), which is
stored at the service provider that will help her perform keyword search. The
secure index is such that it reveals no information about its content to the
adversary. However, it allows the adversary to test for presence or absence of
keywords using a trapdoor associated with the keyword where a trapdoor is
generated with a secret key that resides with the owner. A user wishing to
search for documents containing word w, generates a trapdoor for w which
can then be used by the adversary to retrieve relevant documents.

The secure index is created over the keywords in D as follows. Let doc-
ument D consist of the sequence of words wyq,...,w;. The index is created
by computing the bitwise XOR (denoted by the symbol @) of the clear-text
with a sequence of pseudo-random bits that Alice generates using a stream

Managing and Querying Encrypted Data 177

cipher. Alice first generates a sequence of pseudo-random values sq, ..., s; us-
ing a stream cipher, where each s; is n —m bit long. For each pseudo-random
string s;, Alice computes a pseudo-random function Fj_(s;) seeded on key k.
which generates a random m-bit sequence®. Using the result of Fy_(s;), Alice
computes a n-bit sequence t; :=< s;, Fy(s;) >, where < a,b > denotes con-
catenation of the string a and b). Now to encrypt the n-bit word w;, Alice
computes the XOR of w; with t;, i.e., ciphertext ¢; := w; ®t;. Since, only Alice
generates the pseudo-random stream %1, ...,%; so no one else can decrypt ¢;.

Given the above representation of text document, the search mechanism
works as follows. When Alice needs to search for files that contain a word w,
she transmits w and the key k. to the server. The server (Bob) searches for w
in the index files associated with documents by checking whether ¢; & w is of
the form < s, Fj_(s) >. The server returns to Alice documents that contain
the keyword w which can then be decrypted by Alice.

The scheme described above provides secrecy if the pseudo-random func-
tion F', the stream cipher used to generate s;, and the encryption of the
document D are secure(that is, the value ¢; are indistinguishable from truly
random bits for any computationally bounded adversary). Essentially, the ad-
versary cannot learn content of the documents simply based on ciphertext
representation.

While the approach described above is secure, it has a fundamental limi-
tation that the adversary learns the keyword w; that the client searches for.
The search strategy allows the adversary to learn which documents contain
which keywords over time using such query logs. Furthermore, the adversary
can launch attacks by searching for words on his own without explicit autho-
rization by the user thereby learning document content.

A simple strategy to prevent server from knowing the exact search word is
to pre-encrypt each word w of the clear text separately using a deterministic
encryption algorithm Ej , where the key k, is a private key which is kept
hidden from the adversary. After this pre-encryption phase, the user has a
sequence of E-encrypted words x1, . .., x;. Now he post-encrypts that sequence
using the stream cipher construction as before to obtain ¢; := z; ® t;, where
r; = By (w;) and t; =< s, Fj (2;) >. During search, the client, instead of
revealing the keyword to be searched, Computes Ej, (w;) with the server.

The proposed scheme is secure and ensures that the adversary does not
learn document content from query logs. The scheme is formalized below.

5 Pseudo-random functions: A pseudo-random function denoted as F' : Kp X
X — Y, where Kp is the set of keys, X denotes the set {0,1}" and Y denotes
the set {0, 1}™. Intuitively, a pseudo-random function is computationally indistin-
guishable from a random function - given pairs (xs, f(x1,k)), ..., (Tm, f(Tm, k)),
an adversary cannot predict f(Zm+1,k) for any zm,+41. In other words, F takes a
key k € Kr the set of keys, a n bit sequence € X where X is the set {0,1}"
and returns a m bit sequence y € Y where Y is the set {0,1}™.

178 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

kp: Denotes the private-key of the user. k, € {0,1}* which is kept a secret
by the user.

k: Denotes a key called the collection key of the user. k. € {0,1}® and is
publicly known

Pseudo-Random Function: F' : {0,1}° x {0,1}"™™ — {0,1}™, is a
pseudo-random function that takes a n — m bit string, a s-bit key and
maps it to a random m-bit string. F' is publicly known.

Trapdoor function: Let T denote a trapdoor function which takes as
input, a private-key k, and a word w and outputs the trapdoor for the
word w, i.e., T'(ky,w) = Ej,(w) where E is a deterministic encryption
function. For a given document, we denote the trapdoor for the i*"* word
by ti.

BuildIndex(D, kp, k): This function is used to build the index for doc-
ument D. It uses a pseudo-random generator G which outputs random
string of size s. The pseudo-code of the function is given below.

A

Igorithm 1 : BuildIndex

1: Input: D, kp, ke;

2: Output: Ip /* The index for the document™®/

3:

4: Ip = ¢;

5: for all w; € D do

6: Generate a pseudo-random string s; using G;
7 Compute trapdoor T'(w;) = E, (w;);

8: Compute ciphertext ¢; = T'(w;) @ (si, Fre(S:));
9: Ip =1Ip Uc;

10: end for

11: Return Ip;

e SearchIndex(Ip,T(w)): Given the document index and the trapdoor
for the word w being searched, the SearchIndex functionality returns the
document D if the word w is present in it. The pseudo-code is given below.

Algorithm 2 : SearchIndex

: Input: Ip, T(w);
: Output: D or ¢

: for all ¢; € Ip do
if ¢; @ T'(w) is of the form (s, Fi.(s)) then
Return D;
end if
end for
: Return ¢;

Managing and Querying Encrypted Data 179
Speeding up encrypted keyword data

The approach described above to search over encrypted text has a limita-
tion. Essentially, it requires O(n) comparisons (cryptographic operations) at
the server to test if the document contains a given keyword, where n is the
number of keywords in the document. While such an overhead might be tol-
erable for small documents and small document collections, the approach is
inherently not scalable. Authors in [18] overcome this limitation by exploit-
ing bloom filters for indexing documents. More details about the bloom filter
based approach can be found in [18, 21].

2.5 Search over Encrypted XML Data

While management and querying of XML data have been addressed exten-
sively, there has been relatively little work in the area of encrypted XML
data management [45, 34]. The new angle that becomes important in case of
XML data is the structural information in the data. In [45] the problem of
supporting XPath queries in the DAS model is considered where the under-
lying data is in XML format and propose a Xpath expressions based method
to specify security constraints (SCs). They distinguish between two kinds of
constraints, one where the goal is to hide the values at the tree nodes and
another where one needs to hide the association between different attributes.
For example, in a medical database containing patient data, an user might
want to protect the information of the following nature: The insurance infor-
mation of each patient; which SSN matches which patient’s name; association
between patient and disease etc. Such constraints can be specified in the form
of XPath expressions and may be classified as either node-type constraints or
association-type constraints. SCs can be enforced by hiding away the contents
of some subset of nodes in the XML tree by encrypting their content. When
association between two elements need to be hidden, encrypting any one of
the nodes can enforce the SC. The optimization problem then requires one
to determine a minimal set of nodes that need to be encrypted in order to
satisfy all the SCs. But [45] employs deterministic encryption schemes where
a plaintext value is always mapped to the same ciphertext. Deterministic en-
cryption is not secure due to its vulnerability to statistical attacks. To avoid
this the authors propose using decoy values to hide the true frequencies.

The query processing follows the typical DAS approach we outlined in
the previous sections, wherein some metadata is stored on the server along
with the encrypted data to enable server-side query processing. The authors
propose using two indexes, one is the structural index to enable tree traversal
and the second one is a value indez for enabling attribute value based queries
like range queries. The former is called the discontinuous structural interval
(DSI) index, which associates each node of the tree with intervals from a
range of an ordered domain (e.g., from [0, 1]). The interval sizes are chosen in
a random manner so as not to give away any information about the number

180 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

of children of a node. The DSI index is stored using two tables on the server-
side which enables retrieval of subtrees of the XML document tree without
revealing the structure.

For searching on values from an ordered domain (e.g., for range queries),
the authors use an “order-preserving encryption” scheme [4] to transform
the values from their original domain to a new domain. Since the order is
preserved, one can use B-trees on these modified values to implement range-
queries. To prevent against frequency-based attacks, the authors insert some s;
(small number) copies of each ciphertext ¢; corresponding to a value v;. But
this process imposes an overhead due to the increases dataset size and the
corresponding performance degradation has not been sufficiently analyzed.
Also, the proposed scheme seems to be requiring a large number of “keys”
(depending on the frequency range of values), thereby imposing a significant
overhead of key management. Further, this scheme is unsafe under known
plaintext attack (due to the usage of order-preserving encryption scheme [4])
thereby making it vulnerable to many attack scenarios where some plaintext-
ciphertext pairs may be revealed to an adversary.

The query processing on the server is carried out using the structural and
value indices which yields a superset of the true set of nodes satisfying the
query predicates. These encrypted nodes are then returned to the client where
a post-processing step discards the false-positives. Further details and proofs
can be found in [45].

2.6 Privacy Aware Bucketization

In the previous section we discussed how DAS functionality can be realized
when data is represented in the form of buckets. Such a bucketized represen-
tation can result in disclosure of sensitive attributes. For instance, given a
sensitive numeric attribute (e.g., salary) which has been bucketized, assume
that the adversary somehow comes to know the maximum and minimum val-
ues occurring in the bucket B. Then he can be sure that all data elements in
this bucket have a value that falls in the range [minpg, maz], thereby leading
to partial disclosure of sensitive values for data elements in B. If, the adver-
sary has knowledge of distribution of values in the bucket, he may also be
able to make further inference about the specific records. A natural question
is how much information does the generalized representation of data reveal
that is, given the bucket label, how well can the adversary predict/guess the
value of the sensitive attribute of a given entity? Intuitively, this depends
upon the granularity at which data is generalized. For instance, assigning all
values in the domain to a single bucket will make the bucket-label completely
non-informative. However, such a strategy will require the client to retrieve
every record from the server. On the other extreme, if each possible data value
has a corresponding bucket, the client will get no confidentiality although the
records returned by the server will contain no false positives. There is a natu-
ral trade-off between the performance overhead and the degree of disclosure.

Managing and Querying Encrypted Data 181

Such a tradeoff has been studied in [30] where authors develop a strategy to
minimize the disclosure with constraint on the performance degradation®.

Let us take the case where bucket based generalization is performed over
a single dimensional ordered data set, e.g., a numeric attribute and the query
class is that of 1-dimensional range queries. The authors in [30] propose en-
tropy and wvariance of the value distributions in the bucket as appropriate
measure of (the inverse) disclosure risk. Entropy captures the notion of uncer-
tainty associated with a random element chosen with a probability that follows
a certain distribution. The higher the value of entropy of a distribution (i.e.,
larger the number of distinct values and more uniform the frequencies, larger
is the value of the entropy), greater is the uncertainty regarding the true value
of the element. For example, given a domain having 5 distinct values and the
data set having 20 data points, the entropy is maximized if all 5 values appear
equal number of time, i.e. each value has a frequency of 4.

In a secure index-based scheme, the adversary only sees the bucket label B
of a data element t. Therefore, if the adversary (somehow) learns the distribu-
tion (frequencies) of values within B, he can guess the true value (say v*) of
t with a probability equal to the fractional proportion of elements with value
v* within the bucket. The notion of uncertainty regarding the true value can
be captured in an aggregate manner by the entropy of the value distribution
within B. Entropy of a discrete random variable X taking values z; = 1,...,n
with corresponding probabilities p;,7 = 1,...,n is given by:

Entropy(X) = H(X) = =Y piloga(p:)
1=1

If the domain of the attribute has an order defined on it as in the case
of a numeric attribute, the above definition of entropy does not capture the
notion of distance between two values. In the worst case model, since the value
distribution is assumed to be known to the adversary, greater the spread of
each bucket distribution, better is the protection against disclosure. Therefore,
the authors propose variance of the bucket distribution as the second (inverse)
measure of disclosure risk associated with each bucket. That is, higher the
variance of the value distribution, lower is the disclosure risk.

) n 1 n
Variance(X) = lez(ﬂh — E(X))?, where E(X) = - lele

After specifying these measures of disclosure-risk, [30] propose a 2-phase
algorithm for creating the secure indices. The goal is to provide the data owner

5 Notice the dual of the problem maximize performance with a constraint on
information disclosure would also be addressed once we agree on the metric for
information disclosure. However, such an articulation of the problem has not been
studied in the literature.

182 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

a tunable algorithm that allows him to select a desired degree of tradeoff be-
tween performance and security. In the first phase, the values appearing in the
attribute are divided into an user-specified (say M) number of buckets such
that the average number of false-positives is minimized over all possible range
queries (i.e., queries with range predicates on the specified attribute). The
buckets so created might not meet the required security criteria (i.e., some
minimum level of entropy and variance) and therefore in a second pass, the
values within these optimal buckets are re-distributed in a “controlled man-
ner” into a new set of M buckets so as to increase the value of entropy and
variance of the bucket level distributions while admitting only up to a speci-
fied maximum degree of performance degradation. The tunable (user-chosen)
parameter specifies this maximum allowed degree of quality degradation.
Similar measures of disclosure-risk have been proposed for privacy preserv-
ing data publishing [36]. There too, the key technique for achieving anonymity
is data generalization which is akin to the partitioning approach in [30]. For
more discussion on the choice of the privacy measures and details of the par-
titioning and redistribution algorithms the interested reader can refer to [30].

Discussion

In this section only single dimensional data was considered. Most real data sets
have multiple attributes with various kinds of dependencies and correlations
between the attributes. There may be some kinds of functional dependencies
(exact or partial) and correlations as in multidimensional relational data or
even structural dependencies as in XML data. Therefore, knowledge about
one attribute might disclose the value of another via the knowledge of such
associations. The security-cost analysis for such data becomes significantly
different. Also, in this section, the analysis that was presented, was carried
out for the worst-case scenario where it was assumed that the complete value
distribution of the bucket is known to an adversary. In reality it is unrealistic
to assume that an adversary has exact knowledge of the complete distribution
of a data set. Moreover, to learn the bucket-level joint-distribution of data,
the required size of the training set (in order to approximate the distribu-
tion to a given level of accuracy) grows exponentially with the number of
attributes/dimensions. This makes the assumption of “complete bucket-level”
knowledge of distribution even more unrealistic for multidimensional data. [31]
proposes a new approach to analyze the disclosure risk for multidimensional
data and extends the work in [30] to this case.

3 Trust, Encryption, Key-management, Integrity & Data
Confidentiality

Having discussed the querying aspects of encrypted data , let us look at some
basic security related issues that need to be addressed in a DAS application.

Managing and Querying Encrypted Data 183

There are 3 basic models of trust that are widely studied in literature. The first
model is that of “complete trust” where the server-side is completely trusted
by the client to implement the required functionalities (e.g., query execution)
and has complete faith on its security measures. In this scenario encryption
might not be required at all and therefore, the data management issues are
quite similar to those arising in standard DBMS systems. The second sce-
nario is that of “partial trust”, where though the service-provider is trusted
to implement functionalities correctly, the sensitive information might be ac-
cessible to some adversary in the following two scenarios: (i) Some server-side
entities (e.g., administrators) who may have the authority to access the data,
but cannot be trusted completely to maintain confidentiality. (ii) The security
measures on the server-side (e.g., network security) cannot be guaranteed to
be completely safe from unauthorized access by outside hackers. In both these
scenarios, the goal is to ensure the confidentiality of sensitive data by prevent-
ing its misuse by either legitimate or unauthorized users. The third model of
trust is where the server is not trusted to even implement all functionalities
correctly (truthfully). We refer to this as the “untrusted model”. In this case
additional steps need to be taken by the client to ensure authenticity of data
and correctness of query results.

We start by discussing some of the issues that need to be considered while
selecting the encryption function, especially with respect to relational data.
Then, we summarize the techniques proposed in literature for integrity and
authentication for the untrusted server model.

3.1 Encrypting relational data

The appropriate encryption algorithm to support in a relational database sys-
tem is decided based on its performance characteristics. An important factor
that dictates the performance is the data granularity at which encryption is
supported. In a typical RDBMS, the encryption granularity could be at the
field, the row or the page level. Authors in [22] report that embedding encryp-
tion within relational databases entails a significant startup cost. Row/page
level encryption amortize this cost over larger data and therefore are more
preferable than field-level encryption in general. Another criteria to consider
while choosing the encryption algorithm is software versus hardware level en-
cryption. Whereas software level encryption allows more flexibility in terms
of algorithm selection and granularity control, hardware-based solutions are
much faster, but can support only a small set of algorithms, like DES [15] and
AES [2]. Therefore depending upon the application and trust model, a choice
has to be made whether to use hardware or software level encryption. Au-
thors in [26] experimentally determine that a row-level symmetric key based
encryption scheme offers the best tradeoff between performance and object
granularity. In general, the 3 important issues to keep in mind are (1) How
fast is the encryption function, is it implementable at the hardware level; (2)
how to perform key management; (3) at what granularity to encrypt data.

184 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

The main challenge is to introduce security functionality without incurring
too much of overhead in terms of both performance and storage.
Encryption algorithms: Symmetric key encryption schemes like AES [2],
DES [15] and Blowfish [40] are some of the popular algorithms for encrypting
relational data. Encrypting the same amount of data using fewer large blocks
is more efficient than using several smaller blocks. This is mainly due to the
start-up cost associated with the initialization of the encryption algorithm.
While Blowfish and DES work with 8-byte data blocks, AES works with 16-
bytes blocks. Authors in [32] compare the performance of the above three
algorithms and report that Blowfish is the fastest, but has a large startup
cost. AES has the best average-case performance out of all the 3. We will
discuss the key-management issues later.

Some other schemes in literature propose using public-key encryption al-

gorithms (e.g., RSA) which avoids the problem of secure key distribution that
is faced by symmetric key encryption schemes. Nonetheless symmetric key
schemes are orders of magnitude faster in practice [32], and therefore are
more preferable.
Encryption granularity: In general, finer encryption granularity affords
more flexibility in allowing the server to choose what data to encrypt. The
obvious encryption granularity choices are: (i) Field-level, which is the small-
est achievable granularity; each attribute value of a tuple is encrypted sep-
arately. (ii) Record/row level where each row is encrypted separately. This
allows one to retrieve individual rows without decrypting the whole table.
(iil) Attribute/column level encryption where one chooses to encrypt only cer-
tain sensitive attributes in a table. (iv) Page/block level encryption could also
be used. This is geared towards automating the encryption process. Whenever
a page/block of sensitive data is stored on disk, the entire block is encrypted.
Efficient storage for encrypted data: Authors in [32] investigate the per-
formance issues associated with storage of encrypted data on the disk. They
propose the “Partitioned Plaintext and Ciphertext” (PPC) model for support-
ing storage of encrypted data. The basic idea is to cluster the non-sensitive
and sensitive data separately in order to minimize the number of encryption
operations. The PPC scheme logically breaks each page into two minipages,
based on plaintext and ciphertext attributes. PPC takes advantage of the n-
ary storage model (NSM) while enabling efficient encryption. Therefore imple-
menting PPC on existing DBMS’s that use NSM requires only modifications
to the page layout. Within a page, each record is broken down into two parts,
the plaintext attributes which do not require encryption and the ciphertext
part that requires encryption. Both minipages are organized as NSM pages.
Small changes need to be made to the buffer manager and catalog files in
order to accommodate this change.

Managing and Querying Encrypted Data 185
3.2 Authentication & Integrity issues

When a client queries the data on the server, he expects in return a set of
records satisfying the query predicates. A query on a single relational table
having m rows for instance, may require any one of the possible 2™ possible
different subsets to be retrieved. The problem then is that of facilitating secure
and efficient authentication of all possible query replies. Authors in [37] look at
the problem when the server cannot be trusted with the integrity of the data.
In other words, if the malicious server or an adversary inserts fake records
into the database or modifies existing records, the client wants to detect this
efficiently, without spending too much resources. This work concentrates only
on simple query predicates involving relational operators like =, <, <, >, and
>.

Data integrity and authentication can be provided at different levels of
granularity. In principle, integrity checks can be at the level of a table, a col-
umn, a row (record), or an individual field (attribute) value in a row. Record-
level integrity checking is thought to be the best choice to balance the tradeoff
between flexibility of query answering and overhead of integrity checking. The
authors look at 3 different scenarios: unified client model (where the client and
data owner are one and the same entity), multiple clients-single owner and
multiple clients-multiple owners.

The simplest approach for a client scenario is to store for each record a
message authentication code (MAC) of that record. MAC is a keyed hash of
the record’s content. The secret key is known only to the client and therefore
computable only at the client. The MAC-s tend to be small and of constant
length, therefore making them easier to handle. Then with a query response,
the server inserts a single integrity check computed as a hash (not a keyed
hash) of all record-level MAC-s in the query reply which the client can verify.
With a very high probability such hashes will be collision-free, i.e., distinct
for different sets of records. The advantage of this approach is that bandwidth
overhead is minimal and the computation overhead at the client is low.

The MAC-s are attractive for the unified client model, but in multi owner
and multi querier models, one would require the MAC key to be shared be-
tween all the entities. This means non-repudiation for the queriers cannot be
achieved. Instead of MAC-s, public-key digital signatures can be used for in-
tegrity checking (verification), i.e., the record content is encrypted using the
owner’s private key and verified by the client by decrypting it with the owner’s
public key.

In using public key algorithms for verification, the efficiency issues become
a key concern due to their substantially higher complexity. The proposed so-
lution is to carry out some form of signature aggregation which allows the
client to aggregate multiple individual signatures into one unified signature.
Authors in [37] suggest two aggregation based signature verification schemes,
one uses the RSA encryption algorithm and the other uses elliptic-curve and
bilinear mappings to aggregate multiple signatures into one. The condensed-

186 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

RSA scheme uses the multiplicative homomorphic property of RSA to combine
multiple signatures generated by a single signer into one “condensed” signa-
ture. The result can then be verified quickly by comparing it with the product
of the signatures of each record returned to the client in response to his query.
In case of multiple owners the client has to verify the different sets of records
(i.e., corresponding to the different owners) separately. The second scheme
is similar to the first and we point the the interested reader to [37] for the
technical details. Further work on authentication and query completeness can
be found in [23, 43].

3.3 Key Management in DAS

There have been several proposals for key-management in DAS applications
[28, 29, 14]. We briefly summarize the schemes proposed in [28].

The data owner first decides the key-assignment granularity, as to whether
it will be at the database level, table level or row-level. The first choice gen-
erates a single key for the whole database. In the second case, tables within
the database maybe grouped based on some criteria and one key generated
for each group. In the third option, grouping is carried out at the record level
within tables and each group of records are encrypted with a separate key.
Note that the key assignment granularity is different from the encryption gran-
ularity. For instance, a single key might be used for the whole database, but
encryption may be carried out at the row level. The key generation process
itself is classified into two classes: pre-computation based and re-computation
based approaches. In the first case, all keys are generated ahead of time and
stored in the key registry of the system. In the second case, instead of the key,
the key generating information is stored, e.g., seed for the random key gener-
ating function. In DAS key generation can be carried out at the client-side or
at a third-party trusted server. Key registry is the data structure (table) that
stores the information about the keys, namely the key-Id, key correspondence
information (i.e., the database object to which the key is assigned), key mode
(pre-computation or re-computation) and key-material (the actual key or the
seed with which to compute the key). Besides key generation, the other issue
addressed is that of key updates. The authors investigate the compatibility
of key updates along with other data transactions (read/write/update). The
efficiency issues related to key-updates is tackled separately in [29].

4 Summary & Related Work

In this chapter, we summarized some of the work done in encrypted data
management in the context of database as a service model. Much of the exist-
ing work on querying encrypted data have studied the problem in one of the
three contexts: keyword search over encrypted text documents, SQL search
over encrypted relational data, and XPATH queries over XML data. Since the

Managing and Querying Encrypted Data 187

initial work [44, 26] in these areas, many extensions to the problem have been
considered. We briefly mention these advances that we have not covered so
far to provide interested readers with references.

Besides extending the data model, some researchers have considered relax-
ing assumptions made by the basic DAS model itself. The basic DAS model,
as discussed in this chapter, assumes “curious but honest” adversary, but such
an assumption might not necessarily hold in certain situations. In particular,
the service provider may return erroneous data. An error in the result to a
query may manifest itself in two ways — the returned answers may be tampered
by the service provider, or alternatively, the results returned by the service
provider may not be the complete set of matching records. The problem of in-
tegrity of the returned results was first studied in [26] for the untrusted server
model. Any authentication mechanism adds additional processing cost at the
client, and therefore authentication mechanisms using Merkle Hash trees and
group signatures that attempt to reduce such an overhead have been studied
in [38]. The authors have developed techniques for both the situation where
the client (i.e., the user who poses the query) is the same as well as different
from the data owner.

Another avenue of DAS research has been to exploit secure coprocessor
to maintain confidentiality of outsourced database [5]. Unlike the basic DAS
model in which the client is trusted and the service provider is entirely un-
trusted, in the model enhanced with a secure coprocessor, it is assumed that
the service provider has a tamper proof hardware — a secure coprocessor —
which is attached to the untrusted server and has (limited) amount of storage
and processing capabilities. Data while outside the secure processor must be
in the encrypted form, it could be in plaintext within the coprocessor without
jeopardizing data confidentiality. Exploiting a secure coprocessor significantly
simplifies the DAS model since now intermediate query results do not need
to be transmitted to the clients if further computation requires data to be
in plaintext. Instead, secure coprocessor can perform such a function, there-
fore significantly reducing network overheads and optimizing performance.
Another additional advantage is that such a model can naturally support sit-
uations where the owner of the database is different from the user who poses
the query. Another very similar approach using “smart cards” was proposed
in [9].

There are several interesting proposals for designing systems that support
querying and management of encrypted data [3, 9, 13]. [3] proposes a “two-
server” model where data vertical data partitioning and selective attribute
encryption is used for enabling confidentiality. [9] proposes an architecture
that uses a small trusted hardware (a “smart card”) to carry out computation
over plaintext data while the bulk storage and processing is carried out by the
untrusted server which has only access to the encrypted data. [13] propose
a secure B+-tree based indexing approach to query data kept on a single
untrusted server and analyze the disclosure risk in terms of inference-based
attacks where the adversary has different degrees of background knowledge.

188 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig
4.1 Open Issues & Future Trends

While much progress in research has been made over the past few years on
DAS, we believe that many further challenges remain before the vision out-
lined in [26] of a secure data management service that simultaneously meets
the data confidentiality and efficiency requirements. A few of the many prac-
tical challenges that still remain open are the following: (1) techniques to sup-
port dynamic updates — some initial approaches to this problem have been
studied in [25], (2) mechanisms to support stored procedures and function ex-
ecution as part of SQL processing, and (3) support for a more complete SQL -
e.g., pattern matching queries. Furthermore, given multiple competing models
for DAS (e.g., the basic model, the model with secure coprocessor, model with
two servers) there is a need for a detailed comparative study that evaluates
these approaches from different perspectives: feasibility, applicability under
diverse conditions, efficiency, and achievable confidentiality. Furthermore, a
detailed security analysis including the nature of attacks as well as privacy
guarantees supported by different schemes needs to be carried out. Various
other security issues need deeper analysis, like parameter selection for security
(e.g., how much entropy, how much variance) and structural information hid-
ing for XML data. Furthermore, wherever cryptographic primitives are used,
special most of the works do not address issues related algorithm selection,
choice of key-length, key-generation, distribution and revocation. These issues
definitely require greater attention than they have received till this point.

A large number of security breaches in databases happen due to insider
attacks, a fruitful avenue of research in secure data management would be to
enable secure database administration. The goal is to determine what infor-
mation needs to be revealed to administrators that allow them to carry out
their tasks while hiding away as much excess information as possible that may
potentially disclose some sensitive information.

5 Acknowledgements

This work has been possible due to the following NSF grants: 0331707 and
11S-0220069.

References

1. N.R. Adam, J.C. Worthmann Security-control methods for statistical databases:
a comparative study In ACM Computing Surveys, Vol 21, No. 4, 1989.

2. Advanced Encryption Standard, NIST. FIPS PUB 197. (2001)

3. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, U. Sri-
vastava, D. Thomas, Y. Xu. Two Can Keep a Secret: A Distributed Architecture
for Secure Database Services In Proc. of CIDR 2005.

o

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Managing and Querying Encrypted Data 189

. R. Agrawal, J. Kiernan, R. Srikant, Y. Xu Order Preserving Encryption for
Numeric Data In Proc. of SIGMOD 2004.

R. Agrawal, D. Asonov, M. Kantarcioglu, Y. Li Sovereign Joins In ICDE 2006.
N. Ahituv, Y. Lapid, S. Neumann Processing Encrypted Data In Communica-
tions of the ACM, 1987 Vol. 30, 9, pp.777-780

L. Ballard, S. Kamara, F. Monrose Achieving Efficient conjunctive keyword
searches over encrypted data. In ICICS 2005.

D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano Public Key Encryp-
tion with Keyword Search. In Advances in Cryptology - Eurocrypt 2004 (2004).
volume 3027 of Lecture Notes in Computer Science, pp. 506-522. Springer-
Verlag, 2004.

L. Bouganim, and P. Pucheral. Chip-Secured Data Access: Confidential Data
on Untrusted Servers In Proc. of VLDB 2002.

E. Brickell, Y. Yacobi On Privacy Homomorphisms In Proc. Adavances in
Cryptology-Eurocrypt 87

Y. Chang and M. Mitzenmacher Privacy preserving keyword searches on remote
encrypted data. In Third International Conference on Applied Cryptography and
Network Security (ACNS 2005), volume 3531 of Lecture Notes in Computer
Science, pp. 442-455. Springer-Verlag, 2005.

S. Chaudhuri. An overview of query optimization in relational systems. In Proc.
of ACM Symposium on Principles of Database Systems (PODS), 1998.

E. Damiani et al. Balancing Confidentiality and Efficiency in Untrusted Rela-
tional DBMSs In C'CS, 2003.

E. Damiani et al. Key Management for Multi-User Encrypted Databases In
StorageSS, 2005.

Data Encryption Standard (DES), NIST. FIPS 46-3. (1993)

J. Domingo-Ferrer A New Privacy Homomorphism and Applications In Infor-
mation Processing Letters, 6(5):277-282, 1996.

H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete
Book. Prentice Hall, 2002.

E-J. Goh Secure Indexes. Technical report 2003/216, In TACR ePrint Cryptog-
raphy Archive, (2003). See http://eprint.iacr.org/2003/216.

P. Golle, J. Staddon, B. Waters Secure conjunctive keyword search over en-
crypted data. In Applied Cryptography and Network Security (ACNS 2004),
volume 3089 of Lecture Notes in Computer Science, pp. 31-45. Springer, 2004.

G. Graefe. Query eveluation techniques for large databases. ACM Computing
Surveys, 25(2):73-170, 1993.

H. Hacigiimiig, B. Hore, B. Iyer, S. Mehrotra Search on Encrypted Data. In
Secure Data Management in Decentralized Systems, Springer US, 2007.

H. Haciglimiis, B. Iyer, and S. Mehrotra. Providing Database as a Service. In
Proc. of ICDE, 2002.

H. Haciglimiis, B. Iyer, and S. Mehrotra. Ensuring the Integrity of Encrypted
Databases in Database as a Service Model. In Proc. of 17th IFIP WG 11.3
Conference on Data and Applications Security, 2003.

H. Hacigtimiig, B. Iyer, S. Mehrotra Query Optimization in Encrypted Database
Systems, In DASFAA, 2005.

H. Hacigiimiis. Privacy in Database-as-a-Service Model. Ph.D. Thesis, Depart-
ment of Information and Computer Science, University of California, Irvine,
2003.

H. Haciglimiig, B. Iyer, C. Li and S. Mehrotra Executing SQL over encrypted
data in the database-service-provider model. In Proc. SIGMOD, 2002.

190 Bijit Hore, Sharad Mehrotra, and Hakan Hacigiimiig

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48

. H. Hacigimiig, B. Iyer, and S. Mehrotra Efficient Execution of Aggregation

Queries over Encrypted Relational Databases. In DASFAA, 2004.

H. Hacigimiis, Sharad Mehrotra Performance concious key management in

Encrypted Databases In DBSec, 2004.

H. Hacigiimiis, Sharad Mehrotra Efficient Key Updates in Encrypted Database

Systems In Secure Data Management, 2005.

B. Hore, S. Mehrotra, and G. Tsudik. A Privacy-Preserving Index for Range

Queries. In Proc. of VLDB 2004.

B. Hore. Storing and Querying Data Securely in Untrusted Environments. Ph.D.

Thesis, Department of Information and Computer Science, University of Cali-

fornia, Irvine, 2007.

B. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and Y. Wu A Framework for

Efficient Storage Security in RDBMS In Proc. of EDBT 2004.

R. C. Jammalamadaka, S. Mehrotra, and N. Venkatasubramanian PVault: A

Client-Server System Providing Mobile Access to Personal Data In StorageSS,

2005.

R. Jammalamadaka, S. Mehrotra Querying Encrypted XML Documents In

IDEAS, 2006.

R.C. Jammalamadaka, R. Gamboni, S. Mehrotra, K. Seamons, N. Venkata-

subramanian gVault:A Gmail Based Cryptographic Network File System. In

proceedings of 21st Annual IFIP WG 11.3 Working Conference on Data and

Applications Security, 2007.

A. Machanavajjhala, J. E. Gehrke, D. Kifer, M. Venkitasubramaniam I-

Diversity: Privacy Beyond k-Anonymity. In ICDE, 2006.

E. Mykletun, M. Narasimhan, G. Tsudik Authentication and Integrity in Out-

sourced Databases In NDSS, 2004.

M. Narasimhan, G. Tsudik DSAC: Integrity of Outsourced Databases with

Signature Aggregation and Chaining In CIKM, 2005.

R. Rivest, R.L. Adleman and M. Dertouzos. On Data Banks and Privacy Ho-

momorphisms. In Foundations of Secure Computations, 1978.

B. Schneier. Description of a New Variable-Length Key, 64-Bit Block Cipher

(Blowfish). Fast software Encryption, Cambridge Security Workshop Proceed-

ings. (1993) 191-204.

P. Sellinger, M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access Path Selection in Relational Database Management Systems. In Proc.

of ACM SIGMOD, 1979.

E., Shmueli, R. Waisenberg, Y., Elovici, E. Gudes Designing Secure Indexes for

Encrypted Databases Secure Data Management, 2004.

R. Sion Query Execution Assurance for Outsourced Databases In VLDB 2005.

D. Song and D. Wagner and A. Perrig. Practical Techniques for Search on

Encrypted Data. In Proc. of IEEE SRSP, 2000.

H. Wang, L. Lakshmanan Efficient Secure Query Evaluation over Encrypted

XML Databases In VLDB, 2006.

B. Waters, D. Balfanz, G. Durfee, and D. Smetters Building and encrypted and

searchable audit log. In NDSS (2004).

L. Willenborg, T. De Waal Elements of Statistical Disclosure Control Springer,

2001.

. L. Willenborg, T. De Waal Statistical Disclosure Control in Practice Springer-
Verlag, 1996.

8

Security in Data Warehouses and OLAP
Systems

Lingyu Wang! and Sushil Jajodia?

1 Concordia Institute for Information Systems Engineering

Concordia University

Montreal, QC H3G 1MS8, Canada
wang@ciise.concordia.ca

Center for Secure Information Systems
George Mason University

Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

Summary. Unlike in operational databases, aggregation and derivation play a ma-
jor role in on-line analytical processing (OLAP) systems and data warehouses. Un-
fortunately, the process of aggregation and derivation can also pose challenging
security problems. Aggregated and derived data usually look innocent to traditional
security mechanisms, such as access control, and yet such data may carry enough
sensitive information to cause security breaches. This chapter first demonstrates the
security threat from aggregated and derived data in OLAP systems and warehouses.
The chapter then reviews a series of methods for removing such a threat. T'wo efforts
in extending existing inference control methods to the special setting of OLAP sys-
tems and warehouses are discussed. Both methods are not fully satisfactory due to
limitations inherited from their counter parts in statistical databases. The chapter
then reviews another solution based on a novel preventing-then-removing approach,
which shows a promising direction towards securing OLAP systems and data ware-
houses.

1 Introduction

With rapid advancements in computer and network technology, it becomes a
common practice for organizations to collect, store, and analyze vast amounts
of data quickly and efficiently. On-line analytical processing (OLAP) systems
and data warehouses of today are used to store and analyze everything — vi-
tal or not — to an organization. The security of data warehouses and OLAP
systems is crucial to the interest of both organizations and individuals. Stolen
organizational secrets may cause serious and immediate damages to an orga-
nization. Indiscriminate collection and retention of data represents an extraor-
dinary intrusion on privacy of individuals. Security breaches in governmental

192 Lingyu Wang and Sushil Jajodia

data warehouses may lead to losses of information that translate into financial
losses or losses whose values are obviously high but difficult to quantify (for
example, national security).

Unlike in traditional databases, information stored in data warehouses is
typically accessed through decision support systems, such as OLAP systems.
OLAP systems help analysts to gain insights to different perspectives of large
amounts of data stored in a data warehouse. Due to the sheer volume of data,
OLAP systems heavily depend on aggregates of data in order to hide in-
significant details and hence to accentuate global patterns and trends. As the
underlying data model, a data cube [15] can nicely organize multi-dimensional
aggregates formulated by dimension hierarchies. Although security breaches
in a data warehouse are possible in many ways, the most challenging threat is
from insiders who have legitimate accesses to data through OLAP queries. Un-
fortunately, most of today’s OLAP systems lack effective security measures to
safeguard the data accessed through them. Existing security mechanisms can
at best alleviate security breaches but cannot completely remove the threat.
Data sanitization has long been recognized as insufficient for protecting sen-
sitive data by itself due to potential linking attacks [24]. Access control tech-
niques, although mature in traditional data management systems, are usually
not directly applicable to OLAP systems and data warehouses due to the
difference in data models.

Moreover, OLAP systems and underlying data warehouses are especially
vulnerable to indirect inferences of protected data. The aggregation process
used by OLAP systems does not completely destroy sensitive information. The
remaining vestiges of sensitive information, together with knowledge obtained
through out of bound channels, can cause disclosures of such information.
Although studied since 1970$ in statistical databases, inference control for
on-line systems is largely regarded as impractical due to its negative-in-tone
complexity results [7]. Most restriction-based inference control methods adopt
a detecting-then-removing approach. The detection of inferences must take
into accounts all combinations of answered queries, which implies complicated
on-line computations and constant bookkeeping of queries. Even at such a
high cost, each method usually applies to only a few unrealistically simplified
cases, such as with only one aggregation type. These facts partially explain
why inference control is absent in most commercial OLAP systems. On the
other hand, off-line inference control methods have long been used in releasing
census tables, which demonstrates that the threat of inferences is real.

This chapter starts by demonstrating the security threat to data ware-
houses caused by inferences using OLAP queries. Various requirements in
designing security measures for such systems are discussed. Armed with this
understanding, the chapter then takes steps to meet the stated requirements.
Two efforts in extending existing inference control methods to the special
setting of OLAP systems are reviewed. The results show that the threat of
unauthorized accesses and indirect inferences known in relational databases
is still possible even when users are restricted to OLAP queries. Although im-

Security in Data Warehouses and OLAP Systems 193

proved performance is obtained by exploring unique characteristics of OLAP
queries, both methods are not fully satisfactory due to limitations inherited
from their counter parts in statistical databases. The chapter then reviews
another solution, which adopts a preventing-then-removing approach. This
latter solution can thwart both unauthorized accesses and indirect inferences
of sensitive data, and the solution can potentially be applied to a broach range
of settings in terms of aggregation types and sensitivity criteria. The solution
thus shows a promising direction towards security OLAP systems and data
warehouses.

The rest of the chapter is organized as follows. Section 2 reviews back-
ground knowledge and related work. Section 3 discusses the threat of infer-
ences and the security requirements. Section 4 outlines a three-tier security
architecture for OLAP systems. Section 5 then reviews methods for controlling
inferences in such systems. Finally, Section 6 concludes the chapter.

2 Background

In this section, we first review background knowledge such as data warehouses
and OLAP systems. We then review other research efforts relevant to our
discussions in this chapter.

2.1 Data Warehouses and OLAP Systems

A centralized data warehouse is usually used to store enterprise data. The
data are organized based on a star schema, which usually has a fact table with
part of the attributes called dimensions and the rest called measures. Each
dimension is associated with a dimension table indicating a dimension hierar-
chy. The dimension tables may contain redundancy, which can be removed by
splitting each dimension table into multiple tables, one per attribute in the
dimension table. The result is called a snowflake schema. A data warehouse
usually stores data collected from multiple data sources, such as transactional
databases throughout an organization. The data are cleaned and transformed
to a common consistent format before they are stored in the data warehouse.
Subsets of the data in a data warehouse can be extracted as data marts to
meet the specific requirements of an organizational division. Unlike in transac-
tional databases where data are constantly updated, typically the data stored
in a data warehouse are refreshed from data sources only periodically.
Coined by Codd et. al in 1993 [9], OLAP stands for On-Line Analyti-
cal Processing. The concept has its root in earlier products such as the IRI
Express, the Comshare system, and the Essbase system [29]. Unlike statis-
tical databases which usually store census data and economic data, OLAP
is mainly used for analyzing business data collected from daily transactions,
such as sales data and health care data [27]. The main purpose of an OLAP
system is to enable analysts to construct a mental image about the underlying

194 Lingyu Wang and Sushil Jajodia

data by exploring it from different perspectives, at different level of generaliza-
tions, and in an interactive manner. Popular architectures of OLAP systems
include ROLAP (relational OLAP) and MOLAP (multidimensional OLAP).
ROLAP provides a front-end tool that translates multidimensional queries
into corresponding SQL queries to be processed by the relational backend.
MOLAP does not rely on the relational model but instead materializes the
multidimensional views. Using MOLAP for dense parts of the data and RO-
LAP for the others leads to a hybrid architecture, namely, the HOLAP or
hybrid OLAP.

As a component of decision support systems, OLAP interacts with other
components, such as data mining, to assist analysts in making business de-
cisions. While data mining algorithms automatically produce knowledge in a
pre-defined form, such as association rule or classification. OLAP does not
directly generate such knowledge, but instead relies on human analysts to ob-
serve it by interpreting the query results. On the other hand, OLAP is more
flexible than data mining in the sense that analysts may obtain all kinds of
patterns and trends rather than only knowledge of fixed forms. OLAP and
data mining can also be combined to enable analysts in obtaining data mining
results from different portion of the data and at different level of generaliza-
tion [17]. The requirements on OLAP systems have been defined differently,
such as the FASMI (Fast Analysis of Shared Multidimensional Information)
test [23] and the Codd rules [9]. Some of the requirements are especially rel-
evant to this chapter. First, to make OLAP analysis an interactive process,
the OLAP system must be highly efficient in answering queries. OLAP sys-
tems usually rely on extensive pre-computations, indexing, and specialized
storage to improve the performance. Second, to allow analysts to explore the
data from different perspectives and at different level of generalization, OLAP
organizes and generalizes data along multiple dimensions and dimension hi-
erarchies. The data cube model we shall address shortly is one of the most
popular abstract models for this purpose.

Data cube was proposed as a SQL operator to support common OLAP
tasks like histograms and sub-totals [15]. Even though such tasks are usually
possible with standard SQL queries, the queries may become very complex.
The number of needed unions is exponential in the number of dimensions of
the base table. Such a complex query may result in many scans of the base
table, leading to poor performance. Because sub-totals are very common in
OLAP queries, it is desired to define a new operator for the collection of such
sub-totals, namely, data cube.

Figure 1 depicts a fictitious data cube. It has two dimensions: time and
organization with three and four attributes, respectively. We regard all as a
special attribute having one attribute value ALL, which depends on all other
attribute values. The attributes of each dimension are partially ordered by
the dependency relation =< into a dependency lattice [18], that is, quarter <
year = all and employee =< department =< branch = all. The product of
the two lattices gives the dependency lattice of cuboids. Each element of

Security in Data Warehouses and OLAP Systems 195

the dependency lattice is a tuple < T,0 >, where T is an attribute of the
time dimension and O is an attribute of the organization. Attached to each
such tuple < T,0 > is an empty two-dimensional array, namely, a cuboid.
Each cell of the cuboid < T,0 > is also a tuple < t,0 >, where t and o
are attribute values of the attribute T' and O, respectively. The dependency
relation extends to be among cells. For example, a cell < Y1, Bob > depends
on the cells < Q1,Bob >, < Q2,Bob >, < @3,Bob >, and < Q4, Bob >.
Hence, all cells also form a dependency lattice.

A base table with the schema (quarter, employee, commission) is used
to populate the data cube with values of a measure attribute commission.
Each record in the base table, a triple (¢,e,m), is used to populate a cell
< q,e > of the core cuboid < quarter,employee >, where ¢, e, and m are
values of the attributes quarter, employee, and commission, respectively.
Some cells of < quarter,employee > remain empty (or having the NULL
value), if corresponding records are absent in the base table. If multiple records
correspond to the same cell, since the two attributes quarter and employee
are not necessarily a key of the base relation, they are aggregated using the
aggregation function SUM. All cuboids are then populated using the same
aggregation function. For example, in the cuboid < year,employee >, a cell
< Y1, Bob > takes the value 8500, which is the total amount of the four cells
it depends on, < @1, Bob >, < 2, Bob >,< ()3, Bob >, and < (4, Bob >.
An empty cell is deemed as zero (which depends on the aggregation function)
in aggregation.

<all, all>
time > ~ organization
\ <all, branch> <year, all>
<all ,department> <year, branch> <quarter, all>
- ~_ e ~ P
<all employee> <year, department> <quarter, branch> Al Q Q.
All \ e ~ e
Q Q, Qs
Bob ... <year, employee> <quarter, department> Branch,
Alice
‘I{/Ilmll Y, Yo ... \ / Q Q, Qs Q, Qs...
allory ... | Bop $8500 ... <quarter, employee> | Book $10000 $6000 $11000 $9000 ...
Alice $10000 ... CcD
Jim $6100 ...
Q Q. Qs Qs Qs ...
Mallory $12400 ... Bob $1500 $1500 $5500
Alice $4500 $5500 & SUM
Jim $3100 $3000 ...
SUM @ Mallory $6400 $6000 ...

Fig. 1. An Example of Data Cubes

196 Lingyu Wang and Sushil Jajodia
2.2 Related Work

Although the need for security and privacy in data warehouses and OLAP sys-
tems has long been identified [5, 27, 28], today’s commercial OLAP products
usually provide insufficient security measures [27]. In contrast, access control
is mature in relational databases. In relational databases, accesses to sensitive
data are regulated based on various models. The discretional access control
(DAC) uses owner-specified grants and revokes to achieve an owner-centric
control of objects [16]. The role-based access control (RBAC) simplifies ac-
cess control tasks by introducing an intermediate tier of roles that aggregates
and bridges users and permissions [25]. The flexible access control framework
(FAF) provides a universal solution to handling conflicts in access control poli-
cies through authorization derivation and conflict resolution logic rules [20].

Inference control has been studied in statistical databases and census data
for more than thirty years [1, 12, 35]. The proposed methods can roughly be
classified into restriction-based techniques and perturbation-based techniques.
Restriction-based inference control methods prevent malicious inferences by
denying unsafe queries. Those methods determine the safety of queries based
on the minimal number of values aggregated by a query [12], the maximal num-
ber of common values aggregated by different queries [13], and the maximal
rank of a matrix representing answered queries [8]. The perturbation-based
techniques prevent inference by inserting random noises to sensitive data [30],
to answers of queries [4], or to database structures [26].

Cell suppression and partitioning most closely relate to the methods we
shall introduce. To protect census data released in statistical tables, cells that
contains small COUNT values are suppressed, and possible inferences of the
suppressed cells are then detected and removed using linear programming-
based techniques. The detection method is effective for two-dimensional cases
but becomes intractable for three or more dimensional tables [10, 11]. Par-
titioning defines a partition on sensitive data and restricts queries to aggre-
gate only complete blocks in the partition [7, 37]. Similarly, microaggregation
replaces clusters of sensitive values with their averages [21, 35]. Partitioning
and microaggregation methods usually assume a specific type of aggregations.
Moreover, their partitions are not based on dimension hierarchies inherent to
data and hence may contain many blocks that are meaningless to a user.

Perturbation-based methods have been proposed for preserving privacy
in data mining [2]. Random noises are added to sensitive values to preserve
privacy, while the statistical distribution is approximately reconstructed from
the perturbed data to facilitate data mining tasks. Protecting sensitive data in
OLAP is different from that in data mining. Unlike most data mining results,
such as classifications and association rules, the results of OLAP usually can-
not be obtained from distribution models alone. The methods proposed in [3]
can approximately reconstruct COUNTSs from perturbed data with statisti-
cally bound errors, so OLAP tasks like classification can be fulfilled. However,
potential errors in individual values may prevent an OLAP user from gaining

Security in Data Warehouses and OLAP Systems 197

trustful insights into small details of the data, such as outliers. The methods
we shall introduce do not perturb data so any answer will always be precise
and trustful.

Secure multi-party data mining allows multiple distrusted parties to coop-
eratively compute aggregations over each other’s data [31, 14]. Cryptographic
protocols enable each party to obtain the final result with minimal disclosures
of their own data. This problem is different from inference control, because
the threat of inferences comes from what users know, not from the way they
know it. The k-anonymity model enables sensitive values to be released with-
out threatening privacy [24, 36]. Each record is indistinguishable from at least
k — 1 others because they all have exactly the same identifying attribute val-
ues. An adversary can link an individual in the physical world to at least (the
sensitive values of) k records, which is considered a tolerable privacy threat.
Inference control and the k-anonymity model can be considered as dual ap-
proaches. The information theoretic approach in [22] formally characterizes
insecure queries as those that bring a user with more confidence in guessing
possible records [22]. However, such a perfect-secrecy metric will not tolerate
any partial disclosure, such as those caused by aggregations.

3 Security Requirements

In this section, we first demonstrate the threat of indirect inferences in OLAP
systems. We then describe various requirements in designing security measures
for such systems.

3.1 The Threat of Inferences

Unlike in traditional databases where unauthorized accesses are the main
security concern, an adversary using an OLAP system can more easily infer
prohibited data from answers to legitimate queries. Example 1 illustrates an
one dimensional (or 1-d for short) inference where the sensitive cell is inferred
using exactly one of its descendants.

Ezample 1 (1-d Inference). In Figure 1, suppose an adversary is prohibited
from accessing the cuboid (quarter,employee) but is allowed to access its
descendant (quarter, department). Further suppose the empty cells denote
the values that the adversary already knows through outbound channels. The
adversary can then infer (5, Bob) as exactly the same value in (@5, Book)
(that is, 3500).

A multi-dimensional (or m-d) inference is the complementary case of 1-d
inferences. That is, a cell is inferred using two or more of its descendants, and
neither of those descendants causes 1-d inferences. Example 2 illustrates an
m-d inference in a two-dimensional SUM-only data cube. Example 3 and 4
illustrate m-d inferences with MAX-only, and with SUM, MAX, and MIN.

198 Lingyu Wang and Sushil Jajodia

Ezample 2 (m-d Inferences with SUM). Suppose now an adversary is prohib-
ited from accessing the core cuboid in Figure 1 but is allowed to access its
descendants (quarter, department) and (year, employee). The adversary can
no longer employ any 1-d inference to infer data in the first year, because
each cell in (quarter, department) and (year, employee) has at least two an-
cestors in the core cuboid. However, an m-d inference is possible as follows.
the adversary first sums the two cells (Y1, Bob) and (Y'1, Alice) in the cuboid
(year,employee) and then subtracts from the result (that is, 18500) the two
cells (Q2, Book) and (Q3, Book) (that is, 11000). The final result yields a
sensitive cell (Q1, Bob) as 1500.

Ezample 3 (m-d Inferences with MAX). Suppose now an adversary is pre-
vented from knowing the values in the empty cells. The core cuboid then seems
to the adversary full of unknown values. As we shall show later, such a data
cube will be free of inferences if the aggregation function is SUM. However,
the following m-d inference is possible with MAXs. The MAX values in cells
(Y1, Mallory) and (Q4, Book) are 6400 and 6000, respectively. From those
two values the adversary can infer that one of the three cells (Q1, Mallory),
(Q2, Mallory), and (Q3, Mallory) must be 6400, because (Q4, M allory) must
be no greater than 6000. Similarly, an adversary infers neither (Q2, Mallory)
and (Q3, Mallory) can be 6400. The sensitive cell (Q1, Mallory) is then suc-
cessfully inferred as 6400.

Ezample 4 (Inferences with SUM, MAX and MIN). Now suppose an adversary
can ask queries using SUM, MAX, and MIN on the data cube. Following
Example 3, (Q1, Mallory) is 6400. The MAX, MIN, and SUM values of the cell
(Y1, Mallory) are 6400,6000, and 12400, respectively. From those three values
the adversary can infer the following. That is, (Q2, Mallory),(Q3, Mallory),
and (Q4, Mallory) must be 6000 and two zeroes, although he/she does not
know exactly which is 6000 and which are zeroes. The MAX ,MIN, and SUM
values of (Q2, Book), (Q3, Book) and (Q4, Book) then tell the adversary the
following facts. In {(quarter,employee), two cells in Q2 are 1500 and 4500;
those in @3 are 5500 and 5500; those in Q4 are 3000 and 6000; and the rest
are all zeroes. The adversary then concludes that (Q4, Mallory) must be 6000,
because the values in Q3 and Q)2 cannot be. Similarly, the adversary can infer
(Q4, Jim) as 3000, and consequently infer all cells in (quarter, employee).

3.2 The Requirements

As illustrated in above examples, a security solution for OLAP systems must
combine access control and inference control to remove security threats. At
the same time, providing security should not adversely reduce the usefulness
of data warehouses and OLAP systems. A practical solution must achieve a
balance among following objectives.

Security in Data Warehouses and OLAP Systems 199

e Security: Sensitive data stored in underlying data warehouses should be
guarded from both unauthorized accesses and malicious inferences. Such a
definition of security considers not only the information a user can directly
obtain from an OLAP system, but also those that he/she can derive using
answers to seemingly irrelevant queries.

o Applicability: The security provided by a solution should not rely on any
unrealistic assumptions about OLAP systems. In particular, assumptions
made in statistical databases are usually not unacceptable in OLAP appli-
cations. A desired solution should cover a wide range of scenarios without
the need for significant modifications.

o [fficiency: The name of OLAP itself indicates the interactive nature of
such systems. Most queries should be answered in a matter of seconds or
minutes. A significant portion of the OLAP literature has been devoted to
meeting such stringent performance requirements. A desired security must
be computationally efficient, especially with respect to on-line overhead.

e Awailability: Data should be readily available to legitimate users who have
sufficient privileges. A solution must place security upon justifiable restric-
tions of accesses in the sense that removing the restrictions will either lead
to security breaches or render the method computationally infeasible.

e Practicality: A practical security solution should not demand significant
modifications to the existing infrastructure of an OLAP system. A solution
should take advantage of any query-processing mechanisms and security
mechanisms that are already in place.

The main challenge, however, lies in the inherent tradeoff between above
objectives. To have provable security and justifiable availability in varying
settings of OLAP systems usually implies complicated on-line computations,
which are expensive and hard to implement. The methods we shall describe
in this chapter represent efforts towards a balance among these objectives.

4 A Three-Tier Security Architecture

Security in statistical databases usually has two tiers, that is, sensitive data
and aggregation queries. Inference control mechanisms check each aggrega-
tion query to decide whether answering the query, in addition to previously
answered queries, may disclose any protected data through inferences. How-
ever, applying such a two-tier architecture to OLAP systems has some inher-
ent drawbacks. First, checking queries for inferences at run time may bring
unacceptable delay to query processing. The complexity of such checking is
usually high due to the fact that m-d inferences must be checked against sets
of queries instead of each individual query. Second, inference control methods
cannot take advantage of the special characteristics of an OLAP application
under the two-tier architecture. For example, OLAP queries are usually an-
swered using materialized views, such as data cubes. As we shall show, the

200 Lingyu Wang and Sushil Jajodia

User Queries
Q

Access Control

/ Inference Control

Data Set
D)

Fig. 2. A Three-Tier Inference Control Architecture

on-line overhead of inference control can be dramatically reduced if this fact
can be explored.

The methods we shall review are based on a three-tier security architec-
ture. As illustrated in Figure 2, this architecture introduces an intermediate
aggregation tier between the data tier and the query tier. More specifically,
the architecture has three tiers and three relations, and the aggregation tier
must satisfy three properties. First, inference control is enforced between the
aggregation tier and the data tier such that the former is secure with respect
to the latter. Access control then helps to enforce that only safe aggregations
will be used to compute results to queries. Second, the size of the aggregation
tier must be comparable to the data tier. Third, the problem of inference con-
trol can be partitioned into blocks in the data tier and the aggregation tier
such that security only need to be ensured between each corresponding pair
of blocks in the two tiers.

The three-tier architecture helps to reduce the performance overhead of
inference control in several aspects. The first property of the model implies
that the aggregation tier can be pre-computed such that the computation-
intensive part of inference control can be shifted to off-line processing. The
on-line part is to enforce access control based on whether a query can be
rewritten using the aggregation tier (that is, security through views). Second,
the last two properties both reduce the size of inputs to inference control
algorithms and consequently reduce the complexity. Note that an aggregation
tier can be designed to meet the second property, but the size of the query
tier is inherently exponential in the size of the data tier. The third property
also localizes inference control tasks to each block of the data tier so a failure
in one block will not affect other blocks.

Security in Data Warehouses and OLAP Systems 201
5 Securing OLAP Data Cubes

The data cube is a natural data model for OLAP systems and underlying
data warehouses. This section reviews several methods in safeguarding OLAP
data cubes against both unauthorized accesses and indirect inferences.

5.1 SUM-only Data Cubes

This section describes two efforts inspired by previous inference control meth-
ods in statistical databases. As an inherited limitation, only SUMs are con-
sidered. Moreover, only the core cuboid is considered as sensitive. We show
that improved results can be obtained by exploring the unique structures of
data cubes.

Cardinality-Based Method

The cardinality-based method by Dobkin et. al [13] determines the existence
of inferences based on the number of answered queries. In a data cube, aggre-
gations are pre-defined based on the dimension hierarchy, and what may vary
is the number of empty cells, that is previously known values. Recall that
in Section 3.1, Example 1 illustrated a straightforward connection between
1-d inferences and the number of empty cells in a data cube. That is, an 1-d
inference is present when an adversary can access any cell that has exactly
one ancestor in the core cuboid. A similar but less straightforward connection
also exists between m-d inferences and the number of empty cells, as we shall
show in this here.

The model for inferences in this case is similar to that given by Chin et.
al [8], but the queries are limited to data cube cells. Here we only consider one-
level dimension hierarchy where each dimension can only have two attributes,
that is the attribute in core cuboid and the all. For each attribute of the core
cuboid, we assume an arbitrary but fixed order on its domain. Although an
attribute may have infinitely many values, we shall only consider the values
that appear in at least one non-empty cell in the given data cube instance. The
number of such values is thus fixed. From the point of view of an adversary,
the value in any non-empty cell is unknown, and hence the cell is denoted by
an unknown variable. The central tabulation in Table 1 rephrases part of the
core cuboid in Figure 1.

Table 1 also includes cells in descendants of the core cuboid, namely, the
aggregation cuboids. These are (all, employee), {(quarter,all), and {(all, all), as
we only consider one-level dimension hierarchy. For SUM-only data cubes, the
dependency relation can be modeled as linear equations. At the left side of
those equations are the unknown variables in the core cuboid, and at the left
side the values in the aggregation cuboids. Table 2 shows a system of nine
equations corresponding to the nine cells in the aggregation cuboids.

Next we obtain the reduced row echelon form (RREF) M,...; of the coeffi-
cients matrix through a sequence of elementary row operations [19], as shown

202 Lingyu Wang and Sushil Jajodia

Table 1. Modeling A Core Cuboid

Q1 Q2 Q3 Qi||ALL
Bob xr1 X9 T3 8500
Alice T4 Ts5 10000
Jim x6 x7 || 6100
Mallory| xs xg ||12400

[ALL 10000 6000 11000 9000[[36000]

Table 2. Modeling the Aggregation Cuboids

111000000 1 8500
000110000 T2 10000
000001100 T3 6100
000000011 T4 12400
100001010 | x| @5 | = | 10000
010100000 T6 6000
001010000 T7 11000
000000101 T8 9000
111111111 T9 36000

in Table 3. From M,...¢ it can be observed that the system of linear equations
in Table 2 has infinitely many solutions. This means that an adversary cannot
infer the entire core cuboid from the given aggregation cuboids. However, the
first row vector of M.y being a unit vector (that is, it has a single 1) indi-
cates that the value of x1 must remain the same among all the solutions to the
system of equations. Consequently, the adversary can infer Bob’s commission

n Q1~

Table 3. The Reduced Row Echelon Form M,y

1000 0 000 O

0100-1000 O
0010 1 000 O
0001 1 000 O
0000 0 1001
0000 0 010 1
0000 0001 1
0000 0 000 O
0000 0 00O O

The existence of at least one unit row vectors in M. is indeed the neces-
sary and sufficient condition for any unknown variable to have the same value

Security in Data Warehouses and OLAP Systems 203

among all the solutions [8]. We shall adopt this notion to model inferences
in SUM-only data cubes. Notice that for the special case of 1-d inferences,
as shown in Example 1, the coefficients matrix itself would have a unit row
vector (which will certainly also appear in M,,.s). It is well-known that the
RREF of a m x n matrix can be obtained by a Gauss-Jordan elimination with
complexity O(m?n) [19].

The number of empty cells can only determine the existence of 1-d infer-
ences in two extreme cases. First, if the core cuboid has no empty cell, then
trivially it is free of 1-d inferences as long as all the attributes have more than
one value. The second straightforward result says that any data cube whose
core cuboid has fewer non-empty cells than the given upper bound 2~ d, 0z,
where k is the number of dimensions and d,,., is the greatest domain size
among all dimensions, will always have 1-d inferences. If the number of empty
cells falls between the two bounds, then the existence of 1-d inferences can no
longer be determined simply based on the number of empty cells.

Although less straightforward, there is only a connection between existence
of m-d inferences and the number of empty cells (a lengthy proof of Theorem 1
can be found in [34]). Similar to the case of 1-d inferences, any data cube with
a core cuboid having no empty cells is free of m-d inferences. To relax this
rigid result, Theorem 1 gives a tight upper bound on the number of empty
cells for a data cube to remain free of m-d inferences. The bound is tight in the
sense that we can no longer tell whether m-d inferences are present from the
number of empty cells, once this number goes beyond the bound. Notice that
the bound only guarantees the absence of m-d inferences, while 1-d inferences
may still be present as long as the core cuboid has empty cells.

Theorem 1 (m-d Inferences). In any k-dimensional data cube with one-
level dimension hierarchy, let C. be the core cuboid and Cgyy be the collection
of all aggregation cuboids. Suppose the it" attribute of C, has d; values, and
let d,, and d, be the two smallest among the d;’s, then Cy; does not cause
any m-d inferences to C., if the number of empty cells in C. is less than
2(dy —4) +2(dy —4) =1 and d; > 4 for all 1 < i < k; for any integer
w > 2(d, —4) + 2(d, — 4) — 1, there always exists a data cube with w empty
cells that causes m-d inferences.

These connections between inferences and the number of empty cells have
following implications. First, a data cube with no empty cells being free of
inferences means that the threat of inferences is absent if the adversary does
not know any cell from outbound channels. Second, a data cube can still be
free of m-d inferences, if it has fewer empty cells than the given upper bound;
however, the data cube needs to be checked for 1-d inferences. Hence, if an
adversary knows about a few cells in the core cuboid, inferences can still be
easily controlled. Third, a data cube having more empty cells than a given
bound always has inferences. That is, a data cube cannot be protected from
an adversary who already knows most of the cells. Finally, if the number of

204 Lingyu Wang and Sushil Jajodia

empty cells falls between the given bounds, we can no longer tell whether
inferences are possible by only looking at the number of empty cells.

The above results can be used to compute inference-free aggregations based
on the three-tier architecture. The data tier corresponds to the core cuboid;
the aggregation tier corresponds to a collection of cells in aggregation cuboids
that are free of inferences; the query tier includes any query that can be rewrit-
ten using the cells in the aggregation tier. To compute the aggregation tier,
we first partition the core cuboid based on dimension hierarchies. We then
apply the above sufficient conditions to find blocks that are free of inferences.
The union of those blocks then forms the aggregation tier. It is straightfor-
ward that the aggregation tier satisfies the three properties of the three-tier
architecture. Computing the aggregation tier has a linear time complexity in
nature since it only requires counting the number of empty cells in each block.
This is an improvement over previously known methods, such as transforming
a matrix to its RREF [8].

Parity-Based Method

The second method is based on a simple fact that even number is closed under
the operation of addition and subtraction. The nature of an m-d inference is to
keep adding or subtracting (strictly speaking, set union and set difference) sets
of cells until the result yields a single cell. Suppose now all the sets have even
number of cells, then how to add and subtract those sets to obtain one cell
would be significantly more difficult, although still possible as we shall show
shortly. We consider the multi-dimensional range (or MDR for short) query,
which can be regarded as an axis-parallel box. We use the notation ¢*(u,v) to
denote an MDR query, where u and v are any two given cells. Table 4 gives
examples of MDR queries and their answers. By restricting MDR, queries
to only include even number of cells, it may seem that inferences are hard
to obtain. However, if we add up the answers to the last four queries and
subtract from it the answer to the first query, then dividing the result by two
gives us Bob’s commission in @9, that is o = 500.

Table 4. Examples of Multi-dimensional Range Queries

Qs3, Alice), (Qua, Alice))|1500
*((Qs, Bob), (Qs, Alice)) |2500

The Core Cuboid MDR Queries
MDR Query Answer
- q" ({Q1, Bob), (Qu4, Alice)) [6500
Eema))
Alice vy Ts w6 q*((Qg,Alzce>7 (@3, Alice))|2000
q((
7"

The model of inferences in SUM-only data cube needs to be enhanced
with the new concept of derivability and equivalence between sets of queries.

Security in Data Warehouses and OLAP Systems 205

Intuitively, if a set of queries is derivable from another set, then the answers
to the former can be computed using the answers to the latter. By definition,
if a set of queries is derivable from another set of queries, then the former
is free of inferences if the latter is so, while the converse is not necessar-
ily true. To determine whether the collection of even MDR queries, denoted
as QF, causes any inferences, we find another collection of queries that are
equivalent to Q" and whose inferences are easier to detect. Intuitively, the
collection of even MDR, queries contains redundancy that can be removed by
decomposing the queries into the smallest even range queries, that is pairs of
cells. For example, in Table 4 the query ¢*({Q2, Bob), (Q3, Alice)) is deriv-
able from {¢*({Q2, Bob), (Qs, Bob)), ¢*({Q2, Alice), (@3, Alice))}, and hence
is redundant in terms of causing inferences.

It is not always apparent whether we can find an appropriate collection of
pairs equivalent to Q*. First, the collection of pairs included by Q*, as shown
in Table 5, is not enough for this purpose. The query ¢*({Q1, Bob), (Q4, Alice))
is not derivable from the pairs included by Q*. Second, the collection of all
possible pairs is too much. For example, the pair {(Q1, Bob), (Q3, Bob)} is not
derivable from Q*. Fortunately, Theorem 2 shows that there always exists a
set of pairs equivalent to the collection of even MDR, queries (the proof can be
found in [33]). The proof of the theorem includes an algorithm that constructs
the desired set of pairs QP for any given data cube.

Table 5. The Collection of Even MDR Queries Q* For The Data Cube in Table 4

Pairs q*(<Q11B0b>’<Q27BOb>) q*(<Q27B0b>7<Q37BOb>)
q" ((Q2, Bob), (Q2, Alice)) q*({Q2, Alice), (Q3, Alice))
q" ((Qs3, Alice), (Qu, Alice)) ¢*({Q3, Bob), (Qs, Alice))

Non-pairs| ¢* ({(Q1, Bob), (Qu4, Alice)) ¢*({Q2, Bob), (Qs, Alice))

Theorem 2. Given any data cube, let the core cuboid be C. and the collection
of even MDR queries be Q*, then a set of pairs QP = {{u,v} | u € C.,v €
Ce,u # v} can always be found in O(] C. | - | Q* |) time, such that Q* =4 QP

s true.

For example, in Table 5, the algorithm groups cells included by the query
into pairs. For ¢*((Q1, Bob), (Qa4, Alice)), it first group cells along one dimen-
sion and have {(Q1, Bob), (Q2, Bob)} and {(Q2, Alice), (Qs, Alice)}. It then
groups the remaining two cells (Qs, Bob) and (Qq, Alice) into a third pair.
Similarly, it processes the other queries in Table 5. The final result QF will
include all the pairs given in Table 5 plus {(Q3, Bob), (Q4, Alice)}, as shown
in Table 6. It can be verified that the QP in Table 6 is indeed equivalent to the
Q* in Table 5. First, any query in Q* can be derived by adding up the corre-
sponding pairs in QP. Second, each pair in QP can be derived by subtracting
queries in Q*.

206 Lingyu Wang and Sushil Jajodia

Table 6. A Collection of Pairs QF Equivalent To The Even MDR, Queries in Table 5

In Q* {<Q17B0b>7<Q27BOb>} {<Q27BOb>7<Q3aBOb>}
{(Q2, Bob), (Q2, Alice)} {(Q2, Alice), (Qs, Alice)}
{{Qs3, Alice), (Qu, Alice)} {{Qs, Bob), (Qs, Alice)}
{(Qs, Bob), (Qa, Alice) }

Not In Q*

Knowing that Q* is equivalent to QP, we only need to decide if the lat-
ter causes any inference. We first denote QP as an undirected simple graph
G(C., QP). That is, the core cuboid is the vertex set and the collection of pairs
OP is the edge set. We then apply Chin’s result that a collection of pairs is
free of inferences iff the corresponding graph is a bipartite graph (that is, a
graph with no cycle composed of odd number of edges) [37]. The existence
of odd cycles can easily be decided with a breadth-first search, taking time
O(] C. | + | QF |). As an example, the graph corresponding to the QP given in
Table 6 will have an odd cycle of three edges, corresponding to the inference
described earlier.

The parity-based method can be enforced based on the three-tier inference
control architecture described earlier. A partition of the core cuboid based on
dimension hierarchies composes the data tier. We then apply the parity-based
method to each block in the partition to compute the aggregation tier. The
query tier includes any query that is derivable from the aggregation tier.
The relation Rap and Rga between the three tiers are simply the derivable
relation. The first property of the aggregation tier is satisfied because the
number of pairs in QP must be O(n?), where n is the size of the core cuboid.
The last two conditions are satisfied in a straightforward way.

5.2 Generic Data Cubes

The two methods we just described can only deal with SUM-only data cubes,
which is a limitation inherited from statistical databases. Chin has shown that
even to detect inferences caused by queries involving both MAXs and SUMs is
intractable [6]. This section describes a method that does not directly detect
inferences, but instead first prevents m-d inferences and then removes 1-d
inferences. This approach enables the method to deal with data cubes with
generic aggregation types, and it also significantly reduces the complexity
because 1-d inferences are generally easy to detect by examining each query
separately. In contrast, m-d inferences are hard to detect because they are
caused by combinations of queries instead of each individual query.

Access Control

Limiting access control to the core cuboid is not always appropriate. Values
in aggregation cuboids may also carry sensitive information. For example, in
Figure 1 a user may need to be prohibited from accessing any employee’s yearly

Security in Data Warehouses and OLAP Systems 207

or more detailed commissions. This requirement makes the values in both the
core cuboid (quarter, employee) and the aggregation cuboid (year, employee)
sensitive. The data cube is thus partitioned along the dependency lattice into
two parts. As another example, the previous requirement may only need to
be applied to the first year data, whereas data in other years can be freely
accessed. That is, the data cube should also be partitioned along the time
dimension.

To meet such security requirements, we describe a framework for speci-
fying authorization objects in data cubes. The function Below() partitions
the data cube along the dependency lattice, and the function Slice() parti-
tions the data cube along dimensions. An object is simply the intersection of
the two. For example, the above security requirements can now be specified as
Object(L, S), where L = {(year,employee)} and S includes all the cells in the
first four quarters of the core cuboids. The cells included by object(L, S) must
be included by one of the two cuboids in Below(L), that is (year, employee)
and {(quarter, employee); the cell must also be in the first year, that is their
first attribute must be one of the following values: @1 through Q4, Y7 , or
ALL.

The object specification satisfies the following desired property. First, for
any cell in an object, the object will also include all the ancestors of that
cell. Intuitively, ancestors of a sensitive cell contain more detailed information
and should also be regarded as sensitive. For example, if an object includes
the cuboid (year,employee), then it also includes the core cuboid , because
otherwise an adversary may compute the former from the latter. Second,
the definition can be easily extended to objects specified with multiple pairs
O = {L;,S;} due to the fact that Below() is distributive over set union.
That is, Below(Ly U Ly) = Below(L1) U Below(Lz). The union of the objects
Object(L;, S;) thus composes a new object Object(O).

Lattice-Based Inference Control

We do not assume specific models of inferences. Instead, we consider inferences
that satisfy given algebraic properties. More specifically, given any two set of
cells in a data cube, denoted as S and T, we say a cell ¢ is redundant with
respect to 1" if S includes both ¢ and all its ancestors in any single cuboid;
a cell ¢ is non-comparable to T, if for every ¢’ € T, ¢ is neither ancestor nor
descendant of ¢’. We say a definition of inference is reducible, if for any c € S
that is either redundant or non-comparable (or both) then S causes inferences
to T iff S — {c} does so. That is, reducible inferences can be checked without
considering any redundant or non-comparable cells. For example, the infer-
ence in SUM-only data cubes, as discussed in the previous section, is indeed
reducible. For example, suppose S denotes the union of (all,employee) and
(year,employee), and suppose T includes the cells of (quarter,employee))}
in the first four quarters. Then the cell in {(all, employee) is redundant and
the cell (Ya, Bob) is non-comparable.

208 Lingyu Wang and Sushil Jajodia

Intuitively, a redundant cell in S can be ignored, because it can be com-
puted from other cells in S. This implies that we only consider distribu-
tive aggregation functions [15], such as SUM, MAX, MIN, COUNT, or non-
distributive functions that can be converted to distributive ones, such as
AVERAGE to a pair (SUM,COUNT). By ignoring non-comparable cells,
we shall only consider the inference caused by descendants. This assump-
tion may not hold if outbound knowledge can correlate cells that do not
depend on each other. To simplify our discussion, we first consider a spe-
cial case where the set S in any Object(L,S) is a complete cuboid. The
object Object(L,S) is thus simply (the union of) the cuboids in Below(L).
For example, in Figure 3 the lower curve in solid line depicts such an object
Below({{a',b',c?,d?), (a',b?, ¢, d?)}) in a four-dimensional data cube. Let T’
be the object and S be its complement to the data cube. To remove inferences
from S to T, we first find a subset of S that is free of m-d inferences to 7" and
at the same time is maximal for this purpose. We then remove 1-d inferences
from this subset.

Fig. 3. An Example of Preventing m-d Inferences

The definition of reducible inferences can help to find a maximal subset of
S that is free of m-d inferences to T. Roughly speaking, with respect to each
cuboid in T, we can remove all the redundant and non-comparable cuboids
from S such that only a set of minimal descendants need to be considered.
For example, in Figure 3, only the two minimal descendants (a2, b', ¢!, d') and
(a*,b?,c?,d*) need to be examined for inferences. However, checking whether
the set of minimal descendants cause m-d inferences may still incur high com-
plexity, and we want to avoid such checking. We take a more aggressive ap-
proach by only allowing accesses to one minimal descendant. For example, we
can choose to allow (a?,b!,c!,d') and remove (a',b?,c?,d') from S. We also

Security in Data Warehouses and OLAP Systems 209

need to remove other cuboids that are not redundant, such as (a',b?, %, d?)
and (a',b? c?,d?). The result is a subset of S that includes all the descen-
dants of (a?,b',c!,d'), namely, a descendant closure, as illustrated by the
upper curve in Figure 3.

The descendant closure has only one minimal descendant of the core
cuboid, and hence is free of m-d inferences to the core cuboid. The prop-
erty actually holds for any other cuboid in 7. That is, for any ¢ € T, only
one minimal descendant of ¢ appears in this subset of S, and hence m-d infer-
ences to ¢ are no longer possible. On the other hand, it is easy to observe that
the upper curve cannot be modified to include any of the cuboids between the
current two curves in Figure 3 without inducing possible m-d inferences. More
generally, as long as a cuboid ¢, satisfies that all its ancestors are included by
T, the descendant closure of ¢, will be the maximal result for preventing m-d
inferences. Moreover, the descendant closure turns out to be the only choice,
if any subset of S is to prevent the need for checking m-d inferences and at
the same time being maximal for that purpose. These results are summarized
in Theorem 3 (the proof can be found in [32]).

Theorem 3. In any data cube, let L be the collection of all cuboids. Given
any L C L, any C C L — Below(L) can satisfy both that each cuboid not in C
has exactly one descendant in C' that is not redundant, and any superset of C
must include more than one descendant of some cuboid in Below(L), iff C is
the descendant closure of some cuboid ¢, satisfying that ¢, is not in Below(L)
but all of its ancestors are in Below(L).

The results in Theorem 3 can be extended to the general case where the
object is specified by a set of cells instead of a set of cuboids. The key issue in
such an extension is that Slice(S;)’s may overlap, and it would be prohibitive
if we need to compute a descendant closure for each of their intersections.
Fortunately, the set intersection of descendant closures is always another de-
scendant closure. This property guarantees that no m-d inferences are possible
to the cells included by multiple slices. However, obtaining the maximal re-
sult in Theorem 3 is intractable in the general case, and is no easier than the
maximum independent set problem.

After m-d inferences are prevented, we still need to remove 1-d inferences.
It may seem to be a viable solution to simply restrict any cell that causes 1-d
inferences. However, the restricted cells themselves then become targets of
inferences. Hence, we must adopt the following iterative procedure to remove
1-d inferences. First, we check each cell and add those that cause 1-d infer-
ences to the object so they will be prohibited by access control. Second, we
control m-d inferences to this new object by applying the results in Theorem 3
again. By repeating the two steps, we gradually remove all 1-d inferences. The
procedure terminates in at most m steps, where m is the number cuboids. The
final result is a set of cells that are guaranteed to be free of inferences to the
object.

210 Lingyu Wang and Sushil Jajodia

The lattice-based inference control method can be implemented based on
the three-tier inference control model given in Section 4. The authorization
object computed through the above iterative process comprises the data tier.
The complement of the object is the aggregation tier since it does not cause
any inferences to the data tier. The first property of the three-tier model is
satisfied because the number of cuboids is constant compared to the number
of cells, and hence the size of the aggregation tier must be polynomial in the
size of the data tier. Because the aggregation tier is a collection of descendant
closures of single cuboids, the aggregation tier naturally forms a partition on
the data tier, satisfying the second property. The aggregation tier apparently
satisfies the last property.

6 Conclusion

This chapter has discussed the security requirements of OLAP systems and
data warehouses. We have argued that the most challenging security threat
lies in that sensitive data stored in a data warehouse may be disclosed through
seemingly innocent OLAP queries. We then described three methods specif-
ically proposed for securing OLAP data cubes. The first two methods have
been inspired by existing inference control methods in statistical databases.
We have shown that better results can be obtained by exploring the unique
structures of data cube queries, although both methods also inherit limita-
tions from their counterparts in statistical databases. Finally, the lattice-based
method aimed to remove many limitations of previous methods. The method
adopted a preventing-then-removing approach to avoid the infeasible task of
detecting m-d inferences. The method also based itself upon algebraic prop-
erties instead of on specific models of inferences, which helped to broaden the
scope of inference control. All the proposed methods could be implemented
on the basis of a three-tier inference control architecture that is especially
suitable for OLAP systems.

Acknowledgements

This material is based upon work supported by National Science Founda-
tion under grants CT-0627493, 11S-0242237, and 11S-0430402; and by Natu-
ral Sciences and Engineering Research Council of Canada under Discovery
Grant N01035. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the sponsoring organizations.

References

1. N.R. Adam and J.C. Wortmann. Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys, 21(4):515-556, 1989.

[\]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

Security in Data Warehouses and OLAP Systems 211

. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings
of the Nineteenth ACM SIGMOD Conference on Management of Data (SIG-
MOD’00), pages 439-450, 2000.

R. Agrawal, R. Srikant, and D. Thomas. Privacy-preserving olap. In Proceed-
ings of the Twenty-fourth ACM SIGMOD Conference on Management of Data
(SIGMOD’05), pages 251-262, 2005.

L.L. Beck. A security mechanism for statistical databases. ACM Trans. on
Database Systems, 5(3):316-338, 1980.

B. Bhargava. Security in data warehousing (invited talk). In Proceedings of the
3rd Data Warehousing and Knowledge Discovery (DaWak’00), 2000.

F.Y. Chin. Security problems on inference control for sum, max, and min queries.
Journal of the Association for Computing Machinery, 33(3):451-464, 1986.
F.Y. Chin and G. Ozsoyoglu. Statistical database design. ACM Trans. on
Database Systems, 6(1):113-139, 1981.

F.Y. Chin and G. Ozsoyoglu. Auditing and inference control in statistical
databases. IEEE Trans. on Software Engineering, 8(6):574-582, 1982.

E.F. Codd, S.B. Codd, and C.T. Salley. Providing olap to user-analysts: An I'T
mandate. White Paper, 1993. E.F. Codd Associates.

L.H. Cox. On properties of multi-dimensional statistical tables. Journal of
Statistical Planning and Inference, 117(2):251-273, 2003.

D.E. Denning. Cryptography and data security. Addison-Wesley, Reading, Mas-
sachusetts, 1982.

D.E. Denning and J. Schlorer. Inference controls for statistical databases. IEEE
Computer, 16(7):69-82, 1983.

D. Dobkin, A.K. Jones, and R.J. Lipton. Secure databases: protection against
user influence. ACM Trans. on Database Systems, 4(1):97-106, 1979.

W. Du and Z. Zhan. Building decision tree classifier on private data. In Proceed-
ings of the 2002 IEEE International Conference on Data Mining (ICDM’02),
2002.

J. Gray, A. Bosworth, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator gen-
eralizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Dis-
covery, 1(1):29-53, 1997.

P. Griffiths and B.W. Wade. An authorization mechanism for a relational
database system. ACM Transactions on Database Systems, 1(3):242-255,
September 1976.

J. Han. OLAP mining: Integration of OLAP with data mining. In IFIP Conf.
on Data Semantics, pages 1-11, 1997.

V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes effi-
ciently. In Proceedings of the Fifteenth ACM SIGMOD international conference
on Management of data (SIGMOD’96), pages 205227, 1996.

K. Hoffman. Linear Algebra. Prentice-Hall, Englewood Cliffs, New Jersey, 1961.
S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible support
for multiple access control policies. ACM Transactions on Database Systems,
26(4):1-57, dec 2001.

J.M. Mateo-Sanz and J. Domingo-Ferrer. A method for data-oriented multi-
variate microaggregation. In Proceedings of the Conference on Statistical Data
Protection’98, pages 89-99, 1998.

212

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Lingyu Wang and Sushil Jajodia

G. Miklau and D. Suciu. A formal analysis of information disclosure in data ex-
change. In Proceedings of the 23th ACM SIGMOD Conference on Management
of Data (SIGMOD’04), 2004.

N. Pendse. The olap report - what is olap. OLAP Report Technical Report,
2001. http:// www.olapreport.com / fasmi.htm.

P. Samarati. Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering, 13(6):1 010-1027, 2001.
R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access
control models. IEEE Computer, 29(2):38-47, 1996.

J. Schlorer. Security of statistical databases: multidimensional transformation.
ACM Trans. on Database Systems, 6(1):95-112, 1981.

A. Shoshani. OLAP and statistical databases: Similarities and differences. In
Proceedings of the Sixzteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’97), pages 185-196, 1997.

G. Pernul T. Priebe. Towards olap security design - survey and research issues.
In Proceedings of 8rd ACM International Workshop on Data Warehousing and
OLAP (DOLAP’00), pages 114-121, 2000.

Pedersen T.B. and Jense C.S. Multidimensional database technology. IEFEE
Computer, 34(12):40-46, 2001.

J.F. Traub, Y. Yemini, and H. WozZniakowski. The statistical security of a
statistical database. ACM Trans. on Database Systems, 9(4):672-679, 1984.

J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically
partitioned data. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD’02), pages 639-644,
2002.

L. Wang, S. Jajodia, and D. Wijesekera. Securing OLAP data cubes against
privacy breaches. In Proceedings of the 2004 IEEE Symposium on Security and
Privacy (S&P’04), pages 161-175, 2004.

L. Wang, Y.J. Li, D. Wijesekera, and S. Jajodia. Precisely answering multi-
dimensional range queries without privacy breaches. In Proceedings of the Eighth
European Symposium on Research in Computer Security (ESORICS’03), pages
100-115, 2003.

L. Wang, D. Wijesekera, and S. Jajodia. Cardinality-based inference control in
data cubes. Journal of Computer Security, 12(5):655-692, 2004.

L. Willenborg and T. de Walal. Statistical disclosure control in practice. Springer
Verlag, New York, 1996.

C. Yao, X. Wang, and S. Jajodia. Checking for k-anonymity violation by
views. In Proceedings of the Thirty-first Conference on Very Large Data Base
(VLDB’05), 2005.

C.T. Yu and F.Y. Chin. A study on the protection of statistical data bases. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD’77), pages 169-181, 1977.

9

Security for Workflow Systems

Vijayalakshmi Atluri! and Janice Warner?

! Rutgers University, Newark, NJ atluri@cimic.rutgers.edu
2 Rutgers University, Newark, NJ janice@cimic.rutgers.edu

Summary. Workflow technology is often employed by organizations to automate
their day-to-day business processes. The primary advantage of adopting workflow
technology is to separate the business policy from the business applications so that
flexibility and maintainability of business process reengineering can be enhanced.
Today’s workflows are not necessarily bound to a single organization, but may span
multiple organizations where the tasks within a workflow are executed by different
organizations.

In order to execute a workflow in a secure and correct manner, one must ensure
that only authorized users should be able to gain access to the tasks of the workflow
and resources managed by them. This can be accomplished by synchronizing the
access control with the specified control flow dependencies among tasks. Without
such synchronization, a user may still hold privileges to execute a task even after its
completion, which may have adverse effects on security. In addition, the assignment
of authorized users to tasks should respect the separation of duty constraints speci-
fied to limit the fraud. Another challenging issue in dealing with workflows spanning
multiple organizations is to ensure their secure execution while considering conflict-
of-interest among these organizations. Another issue that is of theoretical interest is
the safety analysis of the proposed authorization models and their extension in this
area. In this book chapter, we review all the above security requirements pertaining
to workflow systems, and discuss the proposed solutions to meet these requirements.

1 Introduction

Organizations constantly reengineer and optimize their business processes to
reduce costs, deliver timely services, and enhance their competitive advan-
tage in the market. Reengineering involves assessment, analysis, and redesign
of business processes, including introducing new processes into existing sys-
tems, eliminating redundant processes, reallocating sharable resources, and
optimizing the process. Business processes are supported via information sys-
tems that include databases that create, access, process and manage business
information.

214 Vijayalakshmi Atluri and Janice Warner

As advances in information systems take place to facilitate business trans-
actions, organizations are seeking ways to effectively integrate and automate
their business processes. The advent of database technology has made the
change of data more adaptive by successfully separating the access of data
from the applications. However, any change and enhancement to the business
policies would entail modifying application codes, as the business policy is still
often hard-coded in applications rather than accessible to all systems. Work-
flow systems are a step in the direction of providing both automation and
reengineering functionalities. The fundamental idea of workflow technology is
to separate the business policy from the business applications to enhance flex-
ibility and maintainability of business process reengineering. This separation
facilitates reengineering at the organizational level without delving into the ap-
plication details. Other advantages include supporting resource allocation and
dynamically adapting to workload changes. As a testament to the recognition
of these benefits, workflow systems are today used in numerous business ap-
plication domains including office automation, finance and banking, software
development, healthcare, telecommunications, manufacturing and production,
and scientific research.

Workflow management aims at modeling and controlling the execution of
business processes involving a combination of manual and automated activi-
ties in an organization. A workflow is defined as a set of coordinated activities
that achieves a common business objective [1]. Thus, a workflow separates the
various activities of a given organizational process into a set of well-defined
activities, called tasks. A task is a described piece of work that contributes
toward the accomplishment of a process [23, 15]. Tasks may be carried out
by humans, application programs, or processing entities according to the or-
ganizational rules relevant to the process represented by the workflow. Tasks
that build up the workflow are usually related and dependent upon one an-
other, which in turn are specified by a set of execution constraints called task
dependencies. These task dependencies play a key role in supporting various
workflow specifications such as concurrency, serialization, exclusion, alterna-
tion, compensation and so on. To ensure the correctness of workflow execution,
tasks need to be executed in a coordinated manner based on these dependency
requirements. A workflow management system (WFMS) is a system that sup-
ports process specification, enactment, monitoring, coordination, and admin-
istration of workflow process through the execution of software, whose order
of execution is based on the workflow logic [1]. In the following, we provide
an example workflow to facilitate understanding of tasks and dependencies.

Ezample 1. Consider a travel reimbursement processing workflow [2] as shown
in Figure 1. This workflow consists of four tasks: preparing a claim (77),
approving the claim (75), issuing a check (73) and notifying the employee in
case the claim is denied (T}).

Coordinating constraints between the tasks are represented by dependen-
cies shown above the arrows connecting the tasks. The task dependency “bs”

Security for Workflow Systems 215

Authorized Role:
Clerk

T+: Prepare
Claim

To: Approve
Claim

Authorized Role: Authorized Role:

Employee Supervisor Ta: Notify

Employee

Authorized Role:
Clerk

Fig. 1. Example Workflow

means that the next task begins if the previous task successfully completes.
The task dependency “bf” means that the next task begins if the previous task
completes in failure. A check will be issued (T3) if the claim is approved (T
is completed in success). Otherwise, the employee will be sent a notification
(T4).

Each task is also associated with processing entities who are authorized to
perform the task. Specifically, task T can be executed by any employee, task
T5 must be executed by a supervisor, and tasks T3 and T are to be executed
by clerks.

Workflow or business process management systems are widely available as
complete systems or software that can be added to other systems in order
to integrate them. Major providers of business process management systems
include SAP NetWeaver, Bea’s WebLogic Integration, Sunguard Carnot, IBM
FlowMark, Intalio BPMS, Lombari TeamWorks, Seagull LegaSuite, Oracle
BPEL, Savvion Business Manager, and Ultimus BPM. Features include design
and lay-out of workflow including creation of rules for task assignment such
as those shown in the example with which assignments of tasks can be made
based on individual authorization, group authorization or role.

2 Security Requirements in Workflow Systems

In addition to the traditional security requirements such as confidentiality,
integrity, availability and authentication, a number of security measures need
to be taken into account while building a secure workflow system. In the
following, we enumerate these and discuss the issues and solutions proposed
by researchers in the following sections.

e Authorization - Refers to enforcing access control to ensure only autho-
rized individuals/roles are allowed to execute tasks within a workflow by
adhering to the workflow dependencies

216 Vijayalakshmi Atluri and Janice Warner

e Separation of Duty - These are additional constraints associated with the
workflow to limit the abilities of agents to reduce the risk of fraud.
Delegation Refers to the delegation of authority to execute a task.
Conflict-of-interest - Refers to preventing the flow of sensitive information
flow among competing organizations participating in the workflow.

o Safety analysis - Refers to the analysis of studying the propagation of
authorizations from the current state. This helps in answering questions
such as whether a subject (user) can gain access to execute a task.

3 Workflow Authorization Model

A workflow deals with coordinated execution of tasks that involve processing
of each of the tasks in the workflow by executing agents (humans or programs).
To execute a task, relevant privileges on required objects have to be granted to
appropriate subjects. Agents authorized to execute a task should gain access
on the required objects only when the task is to be executed. Considering
once again example 1, an employee should not be able to change the prepared
claim after it has been approved by his supervisor. Atluri and Huang proposed
a Workflow Authorization Model (WAM) [5] that is capable of specifying
authorizations in such a way that subjects gain access to required objects only
during the execution of the task, thus synchronizing the authorization flow
with the workflow. To achieve this synchronization, WAM uses the notion
of an Authorization Template (AT) that can be associated with each task.
AT is comprised of the static parameters of the authorization that can be
defined during the design of the workflow. A task may have more than one
AT associated with it in the case where there is more than one type of object
to be processed or more than one executing agent needed to perform the task.
WAM dynamically assigns authorizations to support workflow activities in
a way that the time interval associated with the required authorization to
perform a task changes according to the time during which the task actually
executes. When the task starts execution, its AT(s) are used to derive the
actual authorization. When the task finishes, the authorization is revoked.
This is accomplished by placing an object hole in the AT.

A new authorization is granted to an executing agent only when an ob-
ject hole is filled with an appropriate object. Besides specifying authorizations
on tasks to specific individuals, alternatively, one may also specify them in
terms of roles. Roles represent organizational agents who perform certain job
functions. Users, in turn, are assigned to appropriate roles based on their qual-
ifications. Specifying authorizations on roles is not only convenient but reduces
the complexity of access control because the number of roles in an organiza-
tion is significantly smaller than that of users. Moreover, the use of roles as
authorization subjects (instead of users) avoids having to revoke and re-grant
authorizations whenever users change their positions and /or duties within

Security for Workflow Systems 217

the organization. In workflow environments, role-based authorization also fa-
cilitates dynamic load balancing when a task can be performed by several
individuals. Most commercials WFMSs support role-based authorizations.

The synchronization of the workflow and the authorization flow, as accom-
plished by WAM, is illustrated with the following example:

FEzxzample 2. Consider the workflow in example 1. Suppose the associated ex-
ecuting agents for performing tasks 77, 75 and T3 are John, Mary, and Ken
respectively. The authorization templates associated with the tasks would
be: AT(Ty) = (employee, (claimo), prepare), AT (Ty) = (supervisor, (claim
o), approve) and AT (T3) = (clerk, (claim o),issue). When John initiates a
claim, the hole (i.e., o) in AT(T}) will be filled with the object being pro-
cessed by T. As soon as the object hole in the authorization template is filled
with the claim form, John receives the authorization to prepare it. Assume
he starts this at time 40. At this point, John is granted the authorization
to prepare the claim. Suppose he finishes it and sends it to his supervisor at
time 47. The authorization template then generates the authorization (John,
claiml, prepare, [40,47]), which means the authorization is revoked as soon
as he finishes his task. When he finishes 77, the object was send to 75, i.e.,
for approval. Now the hole in AT(T3) is filled with this object. When the
claim (the instance is claiml) arrives to Mary at 47, an authorization to ap-
prove is given to Mary. However, John no longer holds the authorization on
this instance of the claim any more. When Mary finishes the approval task,
say at 82, her authorization is revoked, thus generating (Mary, claiml, ap-
prove, (47,82)). Finally, when Mary approves the claim, the hole in AT(T5)
and filled in AT(T3), and appropriate authorizations are generated. In this
fashion, WAM synchronizes the authorization flow with the progression of the
workflow.

4 Separation of Duty

By using authorization templates, one can ensure that access to resources to
perform relevant tasks is only given along with the progression of the workflow.
In addition to this simple authorization specification as to who is allowed
to perform a task and when, workflow designers often specify separation of
duty constraints primarily to minimize risk due to fraudulent activities. These
constraints, also know as Separation of Duty (SOD) constraints, are rules
stating that the executing agent for one task is constrained from performing
another task. Considering once again example 1, such a constraint could be
that the tasks “prepare claim” and “issue check” should not be executed by
the same user [24]. Constraints can also be specified to obtain the opposite
effect of separation of duty, that is to specify a binding constraint. An example
of a binding constraint is that the person assigned to one task should also be
assigned to another.

218 Vijayalakshmi Atluri and Janice Warner

While this example is an intra-instance SOD constraint, more complex
constraints specified over multiple workflow instances, called inter-instance
constraints may be necessary. Broadly speaking, SOD constraints can be cat-
egorized as follows.

e Intra-instance constraints [18, 10, 9] are specified on a workflow schema
and therefore apply to a single instance. While some of these constraints
can be enforced at the time of workflow schema specification, others can
only be enforced at run-time. Based on this criteria, these can be catego-
rized as follows.

— Static constraints: These constraints can be evaluated without execut-
ing the workflow. Examples of such constraints include: (i) At least
three roles must be involved in executing the workflow. (ii) The same