

Handbook of
Database Security

Applications and Trends

Handbook of
Database Security

Applications and Trends

edited by

Michael Gertz
University of California at Davis

USA

Sushil Jajodia
George Mason University

USA

Michael Gertz Sushil Jajodia
University of California at Davis George Mason University
Dept. of Computer Science Center for Secure Information Systems
One Shields Avenue Research I, Suite 417
Davis, CA 95616-8562 Fairfax VA 22030-4444
gertz@cs.ucdavis.edu jajodia@gmu.edu

Library of Congress Control Number: 2007934795

ISBN-13: 978-0-387-48532-4
e-ISBN-13: 978-0-387-48533-1

Printed on acid-free paper.

c©2008 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Preface

Motivation for the book

Database security has been gaining a great deal of importance as industry, military,
and government organizations have increasingly adopted Internet-based technolo-
gies on a large-scale, because of convenience, ease of use, and the ability to take
advantage of rapid advances in the commercial market. Along with the traditional
security aspects of data integrity and availability, there is an increasing interest in
research and development in data privacy. This is because today’s often mission-
critical databases no longer contain only data used for day-to-day processing by
organization; as new applications are being added, it is possible for organizations to
collect and store vast amounts of data quickly and efficiently and to make the data
readily accessible to the public, typically through Web-based applications. Unfortu-
nately, if security threats related to the integrity, availability, and privacy of the data
are not properly resolved, databases remain vulnerable to malicious attacks and ac-
cidental misuse. Such incidents, in turn, may translate into financial losses or losses
whose values are obviously high but difficult to quantify, e.g., the loss of the public’s
trust in the data management infrastructure and services offered by an organization.

In assembling this handbook, we have had a twofold objective: first, to provide
a comprehensive summary of the results of research and development activities in
various aspects of database security up to this point, and second, to point toward
directions for future work in this important and fruitful field of research.

This handbook offers twenty three essays contributed by a selected group of
prominent researchers. Given the dynamic nature of the field of database security,
we have attempted to obtain a balance among various viewpoints by inviting multi-
ple contributions on the same topic. We believe that this diversity provides a richness
generally not available in one book. In some cases, authors have tried to reconcile
their differences by contributing a single essay on a topic.

v

vi Preface

About the book
Essays in this handbook can be roughly divided into following eight areas:

Foundations of Access Control

• Recent Advances in Access Control by Sabrina De Capitani di Vimercati, Sara
Foresti, and Pierangela Samarati

• Access Control Models for XML by Sabrina De Capitani di Vimercati, Sara
Foresti, Stefano Paraboschi, and Pierangela Samarati

• Access Control Policy Languages in XML by Naizhen Qi and Michiharu Kudo

Trust Management and Trust Negotiation

• Database Issues in Trust Management and Trust Negotiation by Dongyi Li,
William Winsborough, Marianne Winslett, and Ragib Hasan

Secure Data Outsourcing

• Authenticated Index Structures for Outsourced Databases by Feifei Li, Marios
Hadjileftheriou, George Kollios, and Leonid Reyzin

• Towards Secure Data Outsourcing by Radu Sion
• Managing and Querying Encrypted Data by Bijit Hore, Sharad Mehrotra, and

Hakan Hacıgümüş

Security in Advanced Database Systems and Applications

• Security in Data Warehouses and OLAP Systems by Lingyu Wang and Sushil
Jajodia

• Security for Workflow Systems by Vijayalakshmi Atluri and Janice Warner
• Secure Semantic Web Services by Bhavani Thuraisingham
• Geospatial Database Security by Soon Ae Chun and Vijayalakshmi Atluri
• Security Re-engineering for Databases: Concepts and Techniques by Michael

Gertz and Madhavi Gandhi

Database Watermarking

• Database Watermarking for Copyright Protection by Radu Sion
• Database Watermarking: A Systematic View by Yingjiu Li

Trustworthy Record Retention and Recovery

• Trustworthy Records Retention by Ragib Hasan, Marianne Winslett, Soumyadeb
Mitra, Windsor Hsu, and Radu Sion

• Damage Quarantine and Recovery in Data Processing Systems by Peng Liu,
Sushil Jajodia, and Meng Yu

Preface vii

Privacy

• Hippocratic Databases: Current Capabilities and Future Trends by Tyrone Gran-
dison, Christopher Johnson, and Jerry Kiernan

• Privacy-Preserving Data Mining: A Survey by Charu C. Aggarwal and Philip S.
Yu

• Privacy in Database Publishing: A Bayesian Perspective by Alin Deutsch
• Privacy Preserving Publication: Anonymization Frameworks and Principles by

Yufei Tao

Privacy in Location-based Services

• Privacy Protection through Anonymity in Location-based Services by Claudio
Bettini, Sergio Mascetti, and X. Sean Wang

• Privacy-enhanced Location-based Access Control by Claudio A. Ardagna, Marco
Cremonini, Sabrina De Capitani di Vimercati, and Pierangela Samarati

• Efficiently Enforcing the Security and Privacy Policies in a Mobile Environment
by Vijayalakshmi Atluri and Heechang Shin

Intended audience
This handbook is suitable as a reference for practitioners and researchers in indus-
try and academia who are interested in the state-of-the-art in database security and
privacy. Instructors may use this handbook as a text in a course for upper-level un-
dergraduate or graduate students. Any graduate student who is interested in database
security and privacy must definitely read this book.

Acknowledgements

We are extremely grateful to all those who contributed to this handbook. It is a
pleasure to acknowledge the authors for their contributions. Special thanks go to
Susan Lagerstrom-Fife, Senior Publishing Editor for Springer, and Sharon Palleschi,
Editorial Assistant at Springer, whose enthusiasm and support for this project were
most helpful.

Davis, California, and Fairfax, Virginia Michael Gertz
September 2007 Sushil Jajodia

Contents

1 Recent Advances in Access Control . 1
Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati

2 Access Control Models for XML . 27
Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, and
Pierangela Samarati

3 Access Control Policy Languages in XML . 55
Naizhen Qi and Michiharu Kudo

4 Database Issues in Trust Management and Trust Negotiation 73
Dongyi Li, William Winsborough, Marianne Winslett and Ragib Hasan

5 Authenticated Index Structures for Outsourced Databases 115
Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

6 Towards Secure Data Outsourcing . 137
Radu Sion

7 Managing and Querying Encrypted Data . 163
Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

8 Security in Data Warehouses and OLAP Systems 191
Lingyu Wang and Sushil Jajodia

9 Security for Workflow Systems . 213
Vijayalakshmi Atluri and Janice Warner

10 Secure Semantic Web Services . 231
Bhavani Thuraisingham

11 Geospatial Database Security . 247
Soon Ae Chun and Vijayalakshmi Atluri

ix

x Contents

12 Security Re-engineering for Databases: Concepts and Techniques . . . 267
Michael Gertz and Madhavi Gandhi

13 Database Watermarking for Copyright Protection 297
Radu Sion

14 Database Watermarking: A Systematic View . 329
Yingjiu Li

15 Trustworthy Records Retention . 357
Ragib Hasan, Marianne Winslett, Soumyadeb Mitra, Windsor Hsu, and
Radu Sion

16 Damage Quarantine and Recovery in Data Processing Systems 383
Peng Liu, Sushil Jajodia, and Meng Yu

17 Hippocratic Databases: Current Capabilities and Future Trends 409
Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

18 Privacy-Preserving Data Mining: A Survey . 431
Charu C. Aggarwal and Philip S. Yu

19 Privacy in Database Publishing: A Bayesian Perspective 461
Alin Deutsch

20 Privacy Preserving Publication: Anonymization Frameworks and
Principles . 489
Yufei Tao

21 Privacy Protection through Anonymity in Location-based Services . . 509
Claudio Bettini, Sergio Mascetti, and X. Sean Wang

22 Privacy-enhanced Location-based Access Control 531
Claudio A. Ardagna, Marco Cremonini, Sabrina De Capitani di
Vimercati, and Pierangela Samarati

23 Efficiently Enforcing the Security and Privacy Policies in a Mobile
Environment . 553
Vijayalakshmi Atluri and Heechang Shin

Index . 575

List of Contributors

Charu C. Aggarwal
IBM T. J. Watson Research Center, Hawthorne, NY, e-mail: charu@us.ibm.com

Claudio A. Ardagna
Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano,
Crema, Italy, e-mail: ardagna@dti.unimi.it

Vijayalakshmi Atluri
Rutgers University, Newark, NJ, e-mail: atluri@cimic.rutgers.edu

Claudio Bettini
DICo, University of Milan, Italy, e-mail: bettini@dico.unimi.it

Sabrina De Capitani di Vimercati
Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano,
Crema, Italy, e-mail: decapita@dti.unimi.it

Soon Ae Chun
City University of New York, College of Staten Island, Staten Island, NY, e-mail:
chun@mail.csi.cuny.edu

Marco Cremonini
Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano,
Crema, Italy, e-mail: cremonini@dti.unimi.it

Alin Deutsch
Department of Computer Science and Engineering, University of California San
Diego, La Jolla, CA, e-mail: deutsch@cs.ucsd.edu

Sara Foresti
Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano,
Crema, Italy, e-mail: foresti@dti.unimi.it

xi

charu@us.ibm.com
ardagna@dti.unimi.it
atluri@cimic.rutgers.edu
bettini@dico.unimi.it
decapita@dti.unimi.it
chun@mail.csi.cuny.edu
cremonini@dti.unimi.it
deutsch@cs.ucsd.edu
foresti@dti.unimi.it

xii List of Contributors

Madhavi Gandhi
Department of Mathematics and Computer Science, California State University,
East Bay, CA, e-mail: madhavi.gandhi@eastbay.edu

Michael Gertz
Department of Computer Science, University of California at Davis, Davis, CA,
e-mail: gertz@cs.ucdavis.edu

Tyrone Grandison
IBM Almaden Research Center, San Jose, CA, e-mail: tyroneg@us.ibm.com

Hakan Hacıgümüş
IBM Almaden Research Center, San Jose, CA, e-mail: hakanh@acm.org

Marios Hadjileftheriou
AT&T Labs Inc., e-mail: marioh@research.att.com

Ragib Hasan
Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
e-mail: rhasan@cs.uiuc.edu

Bijit Hore
Donald Bren School of Computer Science, University of California, Irvine, CA,
e-mail: bhore@ics.uci.edu

Windsor Hsu
Data Domain, Inc., e-mail: windsor.hsu@datadomain.com

Sushil Jajodia
Center for Secure Information Systems, George Mason University, Fairfax, VA,
e-mail: jajodia@gmu.edu

Christopher Johnson
e-mail: chrisjohnson@alum.berkeley.edu

Jerry Kiernan
IBM Almaden Research Center, San Jose, CA, e-mail: jkiernan@us.ibm.com

George Kollios
Computer Science Department, Boston University, Boston, MA, e-mail:
gkollios@cs.bu.edu

Michiharu Kudo
Tokyo Research Laboratory, IBM, Japan, e-mail: kudo@jp.ibm.com

Dongyi Li
Department of Computer Science, University of Texas at San Antonio, TX, e-mail:
dli@cs.utsa.edu

Feifei Li
Department of Computer Science, Florida State University, FL, e-mail:
lifeifei@cs.fsu.edu

madhavi.gandhi@eastbay.edu
gertz@cs.ucdavis.edu
tyroneg@us.ibm.com
hakanh@acm.org
marioh@research.att.com
rhasan@cs.uiuc.edu
bhore@ics.uci.edu
windsor.hsu@datadomain.com
jajodia@gmu.edu
chrisjohnson@alum.berkeley.edu
jkiernan@us.ibm.com
gkollios@cs.bu.edu
kudo@jp.ibm.com
dli@cs.utsa.edu
lifeifei@cs.fsu.edu

List of Contributors xiii

Yingjiu Li
School of Information Systems, Singapore Management University, 80 Stamford
Road, Singapore, e-mail: yjli@smu.edu.sg

Peng Liu
Pennsylvania State University, PA, e-mail: pliu@ist.psu.edu

Sergio Mascetti
DICo, University of Milan, Italy, e-mail: mascetti@dico.unimi.it

Sharad Mehrotra
Donald Bren School of Computer Science, University of California, Irvine, CA,
e-mail: sharad@ics.uci.edu

Soumyadeb Mitra
Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
e-mail: mitra1@cs.uiuc.edu

Stefano Paraboschi
University of Bergamo, Dalmine, Italy, e-mail: parabosc@unibg.it

Naizhen Qi
Tokyo Research Laboratory, IBM, Japan, e-mail: naishin@jp.ibm.com

Leonid Reyzin
Computer Science Department, Boston University, Boston, MA, e-mail:
reyzin@cs.bu.edu

Pierangela Samarati
Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano,
Crema, Italy, e-mail: samarati@dti.unimi.it

Heechang Shin
Rutgers University, Newark, NJ, e-mail: hshin@cimic.rutgers.edu

Radu Sion
Network Security and Applied Cryptography Lab, Stony Brook University, NY,
e-mail: sion@cs.stonybrook.edu

Yufei Tao
Department of Computer Science and Engineering, Chinese Univer-
sity of Hong Kong, Sha Tin, New Territories, Hong Kong, e-mail:
taoyf@cse.cuhk.edu.hk

Bhavani Thuraisingham
University of Texas at Dallas, TX, e-mail: bhavani.thuraisingham@utdallas.edu

Lingyu Wang
Concordia Institute for Information Systems Engineering, Concordia University,
Montreal, QC H3G 1M8, Canada, e-mail: wang@ciise.concordia.ca

X. Sean Wang
Department of Computer Science, University of Vermont, VT, e-mail:
xywang@emba.uvm.edu

yjli@smu.edu.sg
pliu@ist.psu.edu
mascetti@dico.unimi.it
sharad@ics.uci.edu
mitra1@cs.uiuc.edu
parabosc@unibg.it
naishin@jp.ibm.com
reyzin@cs.bu.edu
samarati@dti.unimi.it
hshin@cimic.rutgers.edu
sion@cs.stonybrook.edu
taoyf@cse.cuhk.edu.hk
bhavani.thuraisingham@utdallas.edu
wang@ciise.concordia.ca

xiv List of Contributors

Janice Warner
Rutgers University, Newark, NJ, e-mail: janice@cimic.rutgers.edu

William Winsborough
Department of Computer Science, University of Texas at San Antonio, TX, e-mail:
wwinsborough@acm.org

Marianne Winslett
Department of Computer Science, University of Illinois at Urbana-Champaign, IL,
e-mail: winslett@cs.uiuc.edu

Meng Yu
Western Illinois University, Macomb, IL, e-mail: m-yu2@wiu.edu

Philip S. Yu
IBM T. J. Watson Research Center, Hawthorne, NY, e-mail: psyu@us.ibm.com

xywang@emba.uvm.edu
janice@cimic.rutgers.edu
wwinsborough@acm.org
winslett@cs.uiuc.edu
m-yu2@wiu.edu
psyu@us.ibm.com

1

Recent Advances in Access Control

S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano
26013 Crema, Italy
{decapita,foresti,samarati}@dti.unimi.it

Summary. Access control is the process of mediating every request to resources
and data maintained by a system and determining whether the request should be
granted or denied. Traditional access control models and languages result limiting
for emerging scenarios, whose open and dynamic nature requires the development
of new ways of enforcing access control. Access control is then evolving with the
complex open environments that it supports, where the decision to grant an access
may depend on the properties (attributes) of the requestor rather than her identity
and where the access control restrictions to be enforced may come from different
authorities. These issues pose several new challenges to the design and implemen-
tation of access control systems. In this chapter, we present the emerging trends in
the access control field to address the new needs and desiderata of today’s systems.

1 Introduction

Information plays an important role in any organization and its protection
against unauthorized disclosure (secrecy) and unauthorized or improper mod-
ifications (integrity), while ensuring its availability to legitimate users (no
denials-of-service) is becoming of paramount importance. An important ser-
vice in guaranteeing information protection is the access control service. Ac-
cess control is the process of mediating every request to resources and data
maintained by a system and determining whether the request should be
granted or denied. An access control system can be considered at three dif-
ferent abstractions of control: access control policy , access control model , and
access control mechanism. A policy defines the high level rules used to verify
whether an access request is to be granted or denied. A policy is then formal-
ized through a security model and is enforced by an access control mechanism.
The separation between policies and mechanisms has a number of advantages.
First, it is possible to discuss protection requirements independently of their
implementation. Second, it is possible to compare different access control poli-
cies as well as different mechanisms that enforce the same policy. Third, it is
possible to design access control mechanisms able to enforce multiple policies.

2 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

In this way, a change in the access control policy does not require any changes
in the mechanism. Also, the separation between model and mechanism makes
it possible to formally prove security properties on the model; any mechanism
that correctly enforces the model will then enjoy the same security properties
proved for the model.

The variety and complexity of the protection requirements that may need
to be imposed in today’s systems makes the definition of access control policies
a far from trivial process. An access control system should be simple and
expressive. It should be simple to make easy the management task of specifying
and maintaining the security specifications. It should be expressive to make
it possible to specify in a flexible way different protection requirements that
may need to be imposed on different resources and data. Moreover, an access
control system should include support for the following features.

• Policy combination. Since information may not be under the control of a
single authority, access control policies information may take into consider-
ation the protection requirements of the owner, but also the requirements
of the collector and of other parties. These multiple authorities scenario
should be supported from the administration point of view providing solu-
tions for modular, large-scale, scalable policy composition and interaction.

• Anonymity. Many services do not need to know the real identity of a user.
It is then necessary to make access control decisions dependent on the
requester’s attributes, which are usually proved by digital certificates.

• Data outsourcing. A recent trend in the information technology area is rep-
resented by data outsourcing, according to which companies shifted from
fully local management to outsourcing the administration of their data by
using externally service providers [1, 2, 3]. Here, an interesting research
challenge consists in developing an efficient mechanism for implementing
selective access to the remote data.

These features pose several new challenges to the design and implementa-
tion of access control systems. In this chapter, we present the emerging trends
in the access control field to address the new needs and desiderata of today’s
systems. The remainder of the chapter is organized as follows. Section 2 briefly
discusses some basic concepts about access control, showing the main charac-
teristics of the discretionary, mandatory, and role-based access control policies
along with their advantages and disadvantages. Section 3 introduces the prob-
lem of enforcing access control in open environments. After a brief overview
of the issues that need to be addressed, we describe some proposals for trust
negotiation and for regulating service access. Section 4 addresses the problem
of combining access control policies that may be independently stated. We
first describe the main features that a policy composition framework should
have and then illustrate some current solutions. Section 5 presents the main
approaches for enforcing selective access in an outsourced scenario. Finally,
Sect. 6 concludes the chapter.

Recent Advances in Access Control 3

Document1 Document2 Program1 Program2

Ann read, write read execute
Bob read read read, execute
Carol read, write read, execute
David read, write, execute read, write, execute

Fig. 1. An example of access matrix

2 Classical Access Control Models

Classical access control models can be grouped into three main classes: dis-
cretionary access control (DAC), which bases access decisions on users’ iden-
tity; mandatory access control (MAC), which bases access decisions on man-
dated regulations defined by a central authority; and role-based access control
(RBAC), which bases access decisions on the roles played by users in the mod-
els. We now briefly present the main characteristics of these classical access
control models.

2.1 Discretionary Access Control

Discretionary access control is based on the identity of the user requesting
access and on a set of rules, called authorizations, explicitly stating which
user can perform which action on which resource. In the most basic form, an
authorization is a triple (s, o, a), stating that user s can execute action a on
object o. The first discretionary access control model proposed in the literature
is the access matrix model [4, 5, 6]. Let S, O, and A be a set of subjects,
objects, and actions, respectively. The access matrix model represents the set
of authorizations through a |S|×|O| matrix A. Each entry A[s, o] contains the
list of actions that subject s can execute over object o. Figure 1 illustrates an
example of access matrix where, for example, user Ann can read and write
Document1.

The access matrix model can be implemented through different mecha-
nisms. The straightforward solution exploiting a two-dimensional array is not
viable, since A is usually sparse. The mechanisms typically adopted are:

• Authorization table. The non empty entries of A are stored in a table with
three attributes: user, action, and object.

• Access control list (ACL). The access matrix is stored by column, that
is, each object is associated with a list of subjects together with a set of
actions they can perform on the object.

• Capability. The access matrix is stored by row, that is, each subject is
associated with a list indicating, for each object, the set of actions the
subject can perform on it.

Figure 2 depicts the authorization table, access control lists, and capability
lists corresponding to the access matrix of Fig. 1.

4 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

User Action Object

Ann read Document1
Ann write Document1
Ann read Document2
Ann execute Program1
Bob read Document1
Bob read Document2
Bob read Program1
Bob execute Program1
Carol read Document2
Carol write Document2
Carol execute Program2
David read Program1
David write Program1
David execute Program1
David read Program2
David write Program2
David execute Program2

(a)

Document1 Ann

read
write

Bob

read

Document2 Ann

read

Bob

read

Carol

read
write

Program1 Ann

execute

Bob

read

David

read
writeexecute
execute

Program2 Carol

execute

David

read
write
execute

(b)

Ann Document1

read
write

Bob

Carol

David

Document2

read

Program1

execute

Document1

read

Document2

read

Program1

read
execute

Document2

read
write

Program2

execute

Program1

read
write

Program2

execute

read
write
execute

(c)

Fig. 2. Access matrix implementation mechanisms

From the access matrix model, discretionary access control systems have
evolved and they include support for the following features.

• Conditions. To make authorization validity depend on the satisfaction of
some specific constraints, today’s access control systems typically support
conditions associated with authorizations. [5]. For instance, conditions im-
pose restrictions on the basis of: object content (content-dependent condi-
tions), system predicates (system-dependent conditions), or accesses pre-
viously executed (history-dependent conditions).

Recent Advances in Access Control 5

Personnel

Administration

������
Medical

�����

Nurse

�����
Doctor

����

Ann Bob Carol

�����
����
David

Fig. 3. An example of user-group hierarchy

• Abstractions. To simplify the authorization definition process, discre-
tionary access control supports also user groups and classes of objects,
which may also be hierarchically organized. Typically, authorizations spec-
ified on an abstraction propagate to all its members according to different
propagation policies [7]. Figure 3 illustrates an example of user-group hi-
erarchy. Here, for example, an authorization specified for the Nurse group
applies also to Bob and Carol.

• Exceptions. The definition of abstractions naturally leads to the need of
supporting exceptions in authorization definition. Suppose, for example,
that all users belonging to a group but u can access resource r. If exceptions
were not supported, it would be necessary to associate an authorization
with each user in the group but u, therefore not exploiting the possibility
of specifying the authorization of the group. This situation can be easily
solved by supporting both positive and negative authorizations: the system
would have a positive authorization for the group and a negative autho-
rization for u.
The introduction of both positive and negative authorizations brings to
two problems: inconsistency , when conflicting authorizations are associ-
ated with the same element in a hierarchy; and incompleteness, when
some accesses are neither authorized nor denied.
Incompleteness is usually easily solved by assuming a default policy, open
or closed (this latter being more common), where no authorization applies.
In this case, an open policy approach allows the access, while the closed
policy approach denies it.
To solve the inconsistency problem, different conflict resolution policies
have been proposed [7, 8], such as:
– No conflict. The presence of a conflict is considered an error.
– Denials take precedence. Negative authorizations take precedence.
– Permissions take precedence. Positive authorizations take precedence.
– Nothing takes precedence. Conflicts remain unsolved.
– Most specific takes precedence. An authorization associated with an

element n overrides a contradicting authorization (i.e., an authoriza-
tion with the same subject, object, and action but with a different
sign) associated with an ancestor of n for all the descendants of n. For
instance, consider the user-group hierarchy in Fig. 3 and the autho-

6 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

S, {Admin, Medical}

S, {Admin}

�������
U, {Admin, Medical} S, {Medical}

�������

U, {Admin}

�������
S, {}

��������

��������
U, {Medical}

�������

U, {}

��������
��������

(a)

C, {Admin, Medical}

C, {Admin}

�������
I, {Admin, Medical} C, {Medical}

�������

I, {Admin}

�������
C, {}

��������

��������
I, {Medical}

�������

I, {}

��������
��������

(b)

Fig. 4. An example of security (a) and integrity (b) lattices

rizations (Medical,Document1,+r) and (Nurse,Document1,−r). Carol
cannot read Document1, since the Nurse group is more specific than
the Medical group.

– Most specific along a path takes precedence. An authorization associ-
ated with an element n overrides a contradicting authorization asso-
ciated with an ancestor n′ for all the descendants of n, only for the
paths passing from n. The overriding has no effect on other paths. For
instance, with respect to the previous example, Carol gains a positive
authorization from the path 〈Medical,Doctor,Carol〉, and a negative
one from path 〈Nurse,Carol〉.

While convenient for their expressiveness and flexibility, in high security
settings discretionary access control results limited for its vulnerability to
Trojan horses. The reason for this vulnerability is that discretionary access
control does not distinguish between users (i.e., human entity whose identity
is exploited to select the privileges for making the access control decision) and
subjects (i.e., process generated by a user and that makes requests to the sys-
tem). A discretionary access control system evaluates the requests made by a
subject against the authorizations of the user who generated the correspond-
ing process. It is then vulnerable from processes executing malicious programs
that exploit the authorizations of the user invoking them. Protection against
these processes requires controlling the flows of information within processes
execution and possibly restricting them. Mandatory policies provide a way to
enforce information flow control through the use of labels.

2.2 Mandatory Access Control

Mandatory security policies enforce access control on the basis of regulations
mandated by a central authority. The most common form of mandatory policy
is the multilevel security policy, based on the classifications of subjects and
objects in the system. Each subject and object in the system is associated with
an access class, usually composed of a security level and a set of categories.
Security levels in the system are characterized by a total order relation, while

Recent Advances in Access Control 7

categories form an unordered set. As a consequence, the set of access classes
is characterized by a partial order relation, denoted ≥ and called dominance.
Given two access classes c1 and c2, c1 dominates c2, denoted c1 ≥ c2, iff the
security level of c1 is greater than or equal to the security level of c2 and
the set of categories of c1 includes the set of categories of c2. Access classes
together with their partial order dominance relationship form a lattice [9].

Mandatory policies can be classified as secrecy-based and integrity-based,
operating in a dual manner.

Secrecy-Based Mandatory Policy [10, 11, 12, 13]. The main goal of secrecy-
based mandatory policies is to protect data confidentiality. As a consequence,
the security level of the access class associated with an object reflects the
sensitivity of its content, while the security level of the access class associated
with a subject, called clearance, reflects the degree of trust placed in the
subject not to reveal sensitive information. The set of categories associated
with both subjects and objects defines the area of competence of users and
data. A user can connect to the system using her clearance or any access class
dominated by her clearance. A process generated by a user connected with a
specific access class has the same access class as the user.

The access requests submitted by a subject are evaluated by applying the
following two principles.

No-Read-Up. A subject s can read an object o if and only if the access class
of the subject dominates the access class of the object.

No-Write-Down. A subject s can write an object o if and only if the access
class of the object dominates the access class of the subject.

Consider, as an example, the security lattice in Fig. 4(a), where there
are two security levels, Secret (S) and Unclassified (U), with S>U, and
the set of categories {Admin, Medical}. Suppose that user Ann has clearance
〈S,{Admin}〉 and she connects to the system as the 〈S,{}〉 subject. She is
allowed to read objects 〈S,{}〉 and 〈U,{}〉. She can write objects with access
class 〈S,{}〉, 〈S,{Admin}〉, 〈S,{Medical}〉, and 〈S,{Admin,Medical}〉.

Note that a user is allowed to connect to the system at different access
classes to the aim of accessing information at different levels (provided that
she is cleared for it). Otherwise, these accesses would be blocked by the no-
write-down principle.

The principles of the secrecy-based mandatory policy prevent information
flows from high level subjects/objects to subjects/objects at lower (or incom-
parable) levels, thus preserving information confidentiality. However, these
two principles may turn out to be too restrictive. For instance, in a real sce-
nario data may need to be downgraded (e.g., this may happen at the end of
the embargo). To consider also these situations, the secrecy-based mandatory
models can allow exceptions for processes that are trusted and ensure that
the information produced is sanitized .

8 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

Integrity-Based Mandatory Policy [14]. The main goal of integrity-based
mandatory policies is to prevent subjects from indirectly modifying informa-
tion they cannot write. The integrity level associated with a user reflects then
the degree of trust placed in the subject to insert and modify sensitive infor-
mation. The integrity level associated with an object indicates the degree of
trust placed on the information stored in the object and the potential damage
that could result from unauthorized modifications of the information. Again,
the set of categories associated with both subjects and objects defines the
area of competence of users and data.

The access requests submitted by a subject are evaluated by applying the
following two principles.

No-Read-Down. A subject s can read an object o if and only if the integrity
class of the object dominates the integrity class of the subject.

No-Write-Up. A subject s can write an object o if and only if the integrity
class of the subject dominates the integrity class of the object.

Consider, as an example, the integrity lattice in Fig. 4(b), where there
are two integrity levels Crucial (C) and Important (I), with C>I, and the
set of categories {Admin, Medical}. Suppose that user Ann connects to the
system as the 〈C,{Admin}〉 subject. She can read objects having integrity class
〈C,{Admin}〉 and 〈C,{Admin,Medical}〉 and she can write objects with integrity
class 〈C,{Admin}〉, 〈C, {}〉, 〈I,{Admin}〉, and 〈I,{}〉.

These two principles are the dual with respect to the principles adopted by
secrecy-base policies. As a consequence, the integrity model prevents flows of
information from low level objects to higher objects. A major limitation of this
model is that it only captures integrity breaches due to improper information
flows. However, integrity is a much broader concept and additional aspects
should be taken into account [15].

Note that secrecy-based and integrity-based models are not mutually ex-
clusive, since it may be useful to protect both the confidentiality and the
integrity properties. Obviously, in this case, objects and subjects will be as-
sociated with both a security and an integrity class.

A major drawback of mandatory policies is that they control only flows
of information happening through overt channels, that is, channels operating
in a legitimate way. As a consequence, the mandatory policies are vulnerable
to covert channels [16], which are channels not intended for normal commu-
nication but that still can be exploited to infer information. For instance, if a
low level subject requests the use of a resource currently used by a high level
subject, it will receive a negative response, thus inferring that another (higher
level) subject is using the same resource.

2.3 Role-Based Access Control

A third approach for access control is represented by Role-Based Access Con-
trol (RBAC) models [17, 18]. A role is defined as a set of privileges that any

Recent Advances in Access Control 9

user playing that role is associated with. When accessing the system, each user
has to specify the role she wishes to play and, if she is granted to play that
role, she can exploit the corresponding privileges. The access control policy is
then defined through two different steps: first the administrator defines roles
and the privileges related to each of them; second, each user is assigned with
the set of roles she can play. Roles can be hierarchically organized to exploit
the propagation of access control privileges along the hierarchy.

A user may be allowed to simultaneously play more than one role and
more users may simultaneously play the same role, even if restrictions on
their number may be imposed by the security administrator.

It is important to note that roles and groups of users are two different
concepts. A group is a named collection of users and possibly other groups,
and a role is a named collection of privileges, and possibly other roles. Fur-
thermore, while roles can be activated and deactivated directly by users at
their discretion, the membership in a group cannot be deactivated.

The main advantage of RBAC, with respect to DAC and MAC, is that
it better suits to commercial environments. In fact, in a company, it is not
important the identity of a person for her access to the system, but her re-
sponsibilities. Also, the role-based policy tries to organize privileges mapping
the organization’s structure on the roles hierarchy used for access control.

3 Credential-Based Access Control

In an open and dynamic scenario, parties may be unknown to each other and
the traditional separation between authentication and access control cannot
be applied anymore. Such parties can also play the role of both client, when
requesting access to a resource, and server for the resources it makes available
for other users in the system. Advanced access control solutions should then
allow to decide, on one hand, which requester (client) is to be granted access
to the resource, and, on the other hand, which server is qualified for providing
the same resource. Trust management has been developed as a solution for
supporting access control in open environments [19]. The first approaches
proposing a trust management solution for access control are PolicyMaker [20]
and KeyNote [21]. The key idea of these proposals is to bind public keys to
authorizations and to use credentials to describe specific delegations of trust
among keys. The great disadvantage of these early solutions is that they assign
authorizations directly to users’ keys. The authorization specification is then
difficult to manage and, moreover, the public key of a user may act as a
pseudonym of herself, thus reducing the advantages of trust management,
where the identity of the users should not be considered.

The problem of assigning authorizations directly to keys has been solved
by the introduction of digital certificates. A digital certificate is the on-line
counterpart of paper credentials (e.g., a driver licence). A digital certificate is
a statement, certified by a trusted entity (the certificate authority), declaring

10 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

a set of properties of the certificate’s holder (e.g., identity, accreditation, or
authorizations). Access control models, by exploiting digital certificates for
granting or denying access to resources, make access decisions on the basis of
a set of properties that the requester should have. The final user can prove to
have such properties by providing one or more digital certificates [22, 23, 24,
25, 26].

The development and effective use of credential-based access control mod-
els require however tackling several problems related to credential manage-
ment and disclosure strategies, delegation and revocation of credentials, and
establishment of credential chains [27, 28, 29, 30]. In particular, when devel-
oping an access control system based on credentials, the following issues need
to be carefully considered [22].

• Ontologies. Since there is a variety of security attributes and requirements
that may need to be considered, it is important to guarantee that different
parties will be able to understand each other, by defining a set of common
languages, dictionaries, and ontologies.

• Client-side and server-side restrictions. Since parties may act as either a
client or a server, access control rules need to be defined both client-side
and server-side.

• Credential-based access control rules. New access control languages sup-
porting credentials need to be developed. These languages should be both
expressive (to define different kinds of policies) and simple (to facilitate
policy definition).

• Access control evaluation outcome. The resource requester may not be
aware of the attributes she needs to gain access to the requested resource.
As a consequence, access control mechanisms should not simply return a
permit or deny answer, but should be able to ask the final user for the
needed credentials to access the resource.

• Trust negotiation strategies. Due to the large number of possible alternative
credentials that would enable an access request, a server cannot formulate
a request for all these credentials, since the client may not be willing to
release the whole set of her credentials. On the other hand, the server
should not disclose too much of the underlying security policy, since it
may contain sensitive information.

In the following, we briefly describe some proposals that have been devel-
oped for trust negotiation and for regulating service access in open environ-
ments.

3.1 Overview of Trust Negotiation Strategies

As previously noted, since the interacting parties may be unknown to each
other, the resource requester may not be aware of the credentials necessary
for gaining access privileges. Consequently, during the access control process,

Recent Advances in Access Control 11

the two parties exchange information about the credentials needed for access.
The access control decision comes then after a complex process, where par-
ties exchange information not only related to the access itself, but also to
additional restrictions imposed by the counterpart. This process, called trust
negotiation, has the main goal of establishing trust between the interacting
parties in an automated manner. A number of trust negotiation strategies
have been proposed in the literature, which are characterized by the following
steps.

• The client first requests to access a resource.
• The server then checks if the client provided the necessary credentials. In

case of a positive answer, the server grants access to the resource; otherwise
it communicates the client the policies that she has to fulfill.

• The client selects the requested credentials, if possible, and sends them to
the server.

• If the credentials satisfy the request, the client is granted access to the
resource.

This straightforward trust negotiation process suffers of privacy problems,
since both the server discloses its access control policy entirely and the client
exposes all her certificates to gain access to a resource. To solve such an
inconvenience, a gradual trust establishment process can be enforced [31]. In
this case, upon receiving an access request, the server selects the policy that
governs the access to the service and discloses only the information that it is
willing to show to an unknown party. The client, according to its practices,
decides if it is willing to disclose the requested credentials. Note that this
incremental exchange of requests and credentials can be iteratively repeated
as many times as necessary.

PRUdent NEgotiation Strategy (PRUNES) is another negotiation strat-
egy whose main goal is to minimize the number of certificates that the client
communicates to the server [30]. It also ensures that the client communicates
her credentials to the server only if the access will be granted. Each party
defines a set of credential policies on which the negotiation process is based.
The established credential policies can be graphically represented through a
tree, called negotiation search tree, composed of two kinds of nodes: credential
nodes, representing the need for a specific credential, and disjunctive nodes,
representing the logic operators connecting the conditions for credential re-
lease. The root of the tree represents the resource the client wants to access.
The negotiation process can be seen as a backtracking operation on the tree.
To the aim of avoiding the cost of a brute-force backtracking, the authors pro-
pose the PRUNES method to prune the search tree without compromising
completeness or correctness of the negotiation process. The basic idea is that
if a credential has just been evaluated and the state of the system has not
changed too much, then it is useless to evaluate again the same credential.

A large set of negotiation strategies, called disclosure tree strategy (DTS)
family [32], has been also defined and proved to be closed. This means that,

12 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

if two parties use different strategies from the DST family, they will be able
to negotiate trust. A Unified Schema for Resource Protection (UniPro) [33]
has been proposed to protect the information specified within policies. UniPro
gives (opaque) names to policies and allows any named policy P1 to have its
own policy P2, meaning that the content of P1 can only be disclosed to parties
who satisfy P2. Another solution is the Adaptive Trust Negotiation and Access
Control (ATNAC) approach [34]. This method grants (or denies) access on
the basis of a suspicion level associated with subjects. The suspicion level
is not fixed but may vary on the basis of the probability that the user has
malicious intents.

It is important to note that in recent, more complicated, scenarios disclo-
sure policies can be defined both on resources and on credentials [22]. In this
case, the client, upon receiving a request for a certificate, can answer with a
counter-request to the server for another certificate.

3.2 Overview of a Credential-Based Access Control Framework

One of the first solutions providing a uniform framework for credential-based
access control specification and enforcement was presented by Bonatti and
Samarati [22]. The proposed access control system includes an access control
model, a language, and a policy filtering mechanism.

The paper envisions a system composed of two entities: a client and a
server, interacting through a predefined negotiation process. The server is
characterized by a set of resources. Both the client and the server have a port-
folio, which is a collection of credentials (i.e., statements issued by authorities
trusted for making them [35]) and declarations (statements issued by the party
itself). Credentials correspond to digital certificates and are guaranteed to be
unforgeable and verifiable through the public key of the issuing authority.

To the aim of performing gradual trust establishment between the two
interacting parties, the server defines a set of service accessibility rules, and
both the client and the server define their own set of portfolio disclosure rules.
The service accessibility rules specify the necessary and sufficient conditions
for accessing a resource, while portfolio disclosure rules define the conditions
that govern the release of credentials and declarations. Both the two classes
of rules are expressed by using a logic language. A special class of predicates
is represented by abbreviations. Since there may exist a number of alternative
combinations of certificates allowing access to a resource, abbreviation pred-
icates may be used for reducing the communication cost of such certificates.
The predicates of the language adopted exploit the current state (i.e., parties’
characteristics, certificates already exchanged in the negotiation, and requests
made by the parties) to take a decision about a release. The information about
the state is classified as persistent state, when the information is stored at the
site and spans different negotiations, and negotiation state, when it is acquired
during the negotiation and is deleted when the same terminates.

Recent Advances in Access Control 13

negot.-dep.
permanent/

State

Portfolio

declarations
credentials/

Policy

information
release

����
����
����
����

negot.-dep.
permanent/

State

Portfolio

declarations
credentials/

Policy

services/
info. release

����
����
����
����

service request

request for prerequisites P

requirements R request

prerequisites P

requirements R’ counter-req.

R’

R

service granted

ServerClient

Fig. 5. Client-server negotiation

The main advantage of this proposal is that it maximizes both server and
client’s privacy, by minimizing the set of certificates exchanged. In particular,
the server discloses the minimal set of policies for granting access, while the
client releases the minimal set of certificates to access the resource. To this pur-
pose, service accessibility rules are distinguished in prerequisites and requisites.
Prerequisites are conditions that must be satisfied for a service request to be
taken into consideration (they do not guarantee that it will be granted); req-
uisites are conditions that allow the service request to be successfully granted.
Therefore, the server will not disclose a requisite rule until the client satisfies
a prerequisite rule. Figure 5 illustrates the resulting client/server interaction.
It is important to highlight here that, before releasing rules to the client, the
server needs to evaluate state predicates that involve private information. For
instance, the client is not expected to be asked many times the same informa-
tion during the same session and if the server has to evaluate if the client is
considered not trusted, it cannot communicate this request to the client itself.

4 Policy Composition

In many real word scenarios, access control enforcement needs to take into
consideration different policies independently stated by different administra-
tive subjects, which must be enforced as if they were a single policy. As an
example of policy composition, consider an hospital, where the global policy
may be obtained by combining together the policies of its different wards and
the externally imposed constraints (e.g., privacy regulations). Policy compo-
sition is becoming of paramount importance in all those contexts in which
administrative tasks are managed by different, non collaborating, entities.

Policy composition is an orthogonal aspect with respect to policy models,
mechanisms, and languages. As a matter of fact, the entities expressing the

14 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

policies to be composed may even not be aware of the access control system
adopted by the other entities specifying access control rules. The main desider-
ata for a policy composition framework can be summarized as follows [36].

• Heterogeneous policy support. The framework should support policies ex-
pressed in different languages and enforced by different mechanisms.

• Support of unknown policies. The framework should support policies that
are not fully defined or are not fully known when the composition strategy
is defined. Consequently, policies are to be treated as black-boxes and are
supposed to return a correct and complete response when queried at access
control time.

• Controlled interference. The framework cannot simply merge the sets of
rules defined by the different administrative entities, since this behavior
may cause side effects. For instance, the accesses granted/denied might
not correctly reflect the specifications anymore.

• Expressiveness. The framework should support a number of different ways
for combining the input policies, without changing the input set of rules
or introducing ad-hoc extensions to authorizations.

• Support of different abstraction levels. The composition should highlight
the different components and their interplay at different levels of abstrac-
tion.

• Formal semantics. The language for policy composition adopted by the
framework should be declarative, implementation independent, and based
on a formal semantic to avoid ambiguity.

We now briefly describe some solutions proposed for combining different
policies.

4.1 Overview of Policy Composition Solutions

Various models have been proposed to reason about security policies [37,
38, 39, 40]. In [37, 39] the authors focus on the secure behavior of program
modules. McLean [40] introduces the algebra of security, which is a Boolean
algebra that enables to reason about the problem of policy conflict, arising
when different policies are combined. However, even though this approach
permits to detect conflicts between policies, it does not propose a method to
resolve the conflicts and to construct a security policy from inconsistent sub-
policies. Hosmer [38] introduces the notion of meta-policies, which are defined
as policies about policies. Metapolicies are used to coordinate the interaction
about policies and to explicitly define assumptions about them. Subsequently,
Bell [41] formalizes the combination of two policies with a function, called
policy combiner , and introduces the notion of policy attenuation to allow the
composition of conflicting security policies. Other approaches are targeted to
the development of a uniform framework to express possibly heterogeneous
policies [42, 43, 44, 45, 46].

Recent Advances in Access Control 15

A different approach has been illustrated in [36], where the authors propose
an algebra for combining security policies together with its formal semantics.
Here, a policy, denoted Pi, is defined as a set of triples of the form (s,o,a),
where s is a constant in (or a variable over) the set of subjects S, o is a constant
in (or a variable over) the set of objects O, and a is a constant in (or a variable
over) the set of actions A. Policies of this form are composed through a set of
algebra operators whose syntax is represented by the following BNF:

E ::=id|E + E|E&E|E − E|E∧C|o(E,E,E)|E ∗ R|T (E)|(E)
T ::= τ id.E

where id is a unique policy identifier, E is a policy expression, T is a construct,
called template, C is a construct describing constraints, and R is a construct
describing rules. The order of evaluation of algebra operators is determined
by the precedence, which is (from higher to lower) τ , ., + and & and -, * and
∧.

The semantic of algebra operators is defined by a function that maps
policy expressions in a set of ground authorizations (i.e., a set of authorization
triples). The function that maps policy identifiers into sets of triples is called
environment , and is formally defined as follows.

Definition 1. An environment e is a partial mapping from policy identifiers
to sets of authorization triples. By e[X/S] we denote a modification of envi-
ronment e such that

e[X/S](Y) =
{

S if Y = X
e(Y) otherwise

The semantic of an identifier X in the environment e is denoted by [[X]]e =
e(X).

The operators defined by the algebra for policy composition basically re-
flect the features supported by classical policy definition systems. As an ex-
ample, it is possible to manage exceptions (such as negative authorizations),
propagation of authorizations, an so on. The set of operators together with
their semantic is briefly described in the following.

• Addition (+). It merges two policies by returning their union.

[[P1 + P2]]e = [[P1]]e ∪ [[P2]]e
Intuitively, additions can be applied in any situation where accesses can be
authorized if allowed by any of the component policies (maximum privilege
principle).

• Conjunction (&). It merges two policies by returning their intersection.

[[P1&P2]]e = [[P1]]e ∩ [[P2]]e
This operator enforces the minimum privilege principle.

16 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

• Subtraction (−). It deletes from a first policy, all the authorizations spec-
ified in a second policy.

[[P1 − P2]]e = [[P1]]e \ [[P2]]e
Intuitively, subtraction operator is used to handle exceptions, and has the
same functionalities of negative authorizations in existing approaches. It
does not generate conflicts since P1 prevails on P2 by default.

• Closure (∗). It closes a policy under a set of derivation rules.

[[P ∗ R]]e = closure(R, [[P]]e)

The closure of policy P under derivation rules R produces a new policy
that contains all the authorizations in P and those that can be derived
evaluating R on P , according to a given semantics. The derivation rules
in R can enforce, for example, an authorization propagation along a pre-
defined subject or object hierarchy.

• Scoping Restriction (∧). It restricts the applicability of a policy to a given
subset of subjects, objects, and actions of the system.

[[P∧
1 c]]e = {t ∈ [[P]]e | t satisfy c}

where c is a condition. It is useful when administration entities need to
express their policy on a confined subset of subjects and/or objects (e.g.,
each ward can express policies about the doctors working in the ward).

• Overriding (o). It overrides a portion of policy P1 with the specifications
in policy P2; the fragment that is to be substituted is specified by a third
policy P3.

[[o(P1, P2, P3)]]e = [[(P1 − P3) + (P2&P3)]]e
• Template(τ). It defines a partially specified (i.e., parametric) policy that

can be completed by supplying the parameters.

[[τX.P]]e(S) = [[P]]e[S/X]

where S is the set of all policies, and X is a parameter. Templates are
useful for representing policies as black-boxes. They are needed any time
when some components are to be specified at a later stage. For instance,
the components might be the result of a further policy refinement, or might
be specified by a different authority.

Due to the formal definition of the semantic of algebra operators, it is
possible to exploit algebra expressions to formally prove the security properties
of the obtained (composed) policy.

Once the policies have been composed through the algebraic operators
described above, for their enforcement it is necessary to provide executable
specifications compatible with different evaluation strategies. To this aim,
the authors propose the following three main strategies to translate policy
expressions into logic programs.

Recent Advances in Access Control 17

• Materialization. The expressions composing policies are explicitly evalu-
ated, by obtaining a set of ground authorizations that represents the policy
that needs to be enforced. This strategy can be applied when all the com-
posed policies are known and reasonably static.

• Partial materialization. Whenever materialization is not possible since
some of the policies to be composed are not available, it is possible to
materialize only a subset of the final policy. This strategy is useful also
when some of the policies are subject to sudden and frequent changes, and
the cost of materialization may be too high with respect to the advantages
it may provide.

• Run-time evaluation. In this case no materialization is performed and run-
time evaluation is needed for each request (access triple), which is checked
against the policy expressions to determine whether the triple belongs to
the result.

The authors then propose a method (pe2lp) for transforming algebraic pol-
icy composition expressions into a logic program. The method proposed can be
easily adapted to one of the three materialization strategies introduced above.
Basically, the translation process creates a distinct predicate symbol for each
policy identifier and for each algebraic operator in the expression. The logic
programming formulation of algebra expressions can be used to enforce ac-
cess control. As already pointed out while introducing algebra operators, this
policy composition algebra can also be used to express simple access control
policies, such as open and closed policy, propagation policies, and exceptions
management. For instance, let us consider a hospital composed of three wards,
namely Cardiology, Surgery, and Orthopaedics. Each ward is responsible for
granting access to data under its responsibility. Let PCardiology, PSurgery
and POrthopaedics be the policies of the three wards. Suppose now that an
access is authorized if any of the wards policies state so and that authoriza-
tions in policy PSurgery are propagated to individual users and documents
by classical hierarchy-based derivation rules, denoted RH . In terms of the
algebra, the hospital policy can be represented as follows.

PCardiology&PSurgery ∗ RH&POrthopaedics

Following this work, Jajodia et al. [47] presented a propositional algebra
for policies with a syntax consisting of abstract symbols for atomic policy
expressions and composition operators.

5 Access Control Through Encryption

Since the amount of data that organizations need to manage is increasing
very quickly, data outsourcing is becoming more and more attractive. Data
outsourcing provides data storage at a low rate, allowing the data owner to

18 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

concentrate its activity on its core business where data are managed by an
external service provider. The main drawback of this practice is that the ser-
vice provider may not be fully trusted. The data owner and final users are
usually supposed to trust the provider for managing data stored on its server,
and to correctly execute queries on it, but the provider is not fully trusted
for accessing data content. To solve this problem, different solutions have
been proposed in the literature, mainly based on the use of cryptography as
a mechanism for protecting data privacy [1, 2, 3]. Most of the proposals in
this area focus on issues related to querying encrypted data, to the aim of
avoiding server-side decryption, while minimizing client-side burden in query
evaluation. Another drawback of existing proposals is that they assume that
any client has complete access to the query results, and therefore the data
owner has to be involved for filtering out the data not accessible by the client.
This would cause an excessive burden on the owner, thus nullifying the ad-
vantages of outsourcing data management. On the other hand, the remote
server cannot enforce access control policies, since it may not be allowed to
know the access control policy defined by the owner. Since neither the data
owner nor the remote server can enforce the access control policy, for either
security or efficiency reasons, the data themselves need to implement selective
access. This can be realized through selective encryption, which consists in
encrypting data using different keys and distributing the keys so that users
can decrypt only the data they are authorized to access.

The problem of enforcing access control policies through selective encryp-
tion has been analyzed both for databases and for XML documents. In the
following, we briefly introduce the most important proposals for these two
scenarios [48, 49, 50].

5.1 Overview of Database Outsourcing Solutions

Let us consider a system composed of a set U of users and a set R of resources.
A resource may be a table, an attribute, a tuple, or even a cell, depending on
the granularity at which the data owner wishes to define her policy. Since this
distinction does not affect access control policy enforcement, we will always
refer generically to resources. The access control policy defined by the data
owner can be easily represented through a traditional access matrix A, where
each cell A[u,r] may assume either the value 1, if u can access r, or the value
0, otherwise (currently only read privileges have been considered). Figure 6
represents an example of access matrix, where there are four users, namely A,
B, C, and D, and four resources r1, r2, r3, and r4.

A first solution that could be adopted for selectively encrypting data for
access control purposes consists in using a different key for each resource,
and in communicating each user the set of keys used to protect the resources
belonging to her capability list (i.e., the set of resources that the user can
access). This solution requires each user to keep a possibly great number of

Recent Advances in Access Control 19

r1 r2 r3 r4

A 1 1 0 1
B 1 1 0 0
C 1 0 1 0
D 0 1 1 0

Fig. 6. An example of binary access matrix

(secret) keys, depending on the number of her privileges. To the aim of reduc-
ing the number of keys that each user has to manage, key derivation methods
can be adopted [51]. A key derivation method allows the computation of an
encryption key, by proving the knowledge of another secret key in the system.
By adequately organizing encryption keys and adopting a derivation method,
it is possible to communicate a small number of keys to users, granting then
the possibility of deriving from these keys, those needed for accessing data.
Typically, these methods assume the existence of a partial order relationship
defined on the set of keys. Given the set of encryption keys K in the system,
and a partial order relationship 	 defined on it, the pair (K,) represents
the key derivation hierarchy of the system, where ∀ki, kj ∈ K, if kj 	 ki then
kj is derivable from ki. Consequently, by knowing a key ki, it is possible to
compute the value of any kj such that kj 	 ki. Graphically, a key derivation
hierarchy can be represented as a graph, with a vertex for each key in K, and
a path from ki to kj if kj 	 ki. A key derivation hierarchy can however assume
three different graphical structures, which in turn influence the key derivation
method that can be adopted, as described in the following.

• Chain of vertexes. The relation 	 is a total order relation for K; the value
of ki depends only on the value of the key of its (unique) direct ancestor
kj [52].

• Tree. The relation 	 is a partial order relation for K such that if ki 	 kj

and ki 	 kl, then either kj 	 kl or kl 	 kj ; the value of ki depends on the
value of the key of its (unique) direct ancestor kj , and on the public label
li associated with ki [52, 53, 54].

• DAG. Different classes of solutions have been proposed for DAGs [51].
In particular, Atallah et al. [55] introduce an interesting solution that
allows insertion an deletion of keys in the hierarchy without the need
of redefining the whole set of keys K. This method associates a piece of
public information (called token) with each edge in the DAG. Given an
edge connecting key ki with kj , token Ti,j = kj ⊕ h(ki, lj), where lj is a
publicly available label associated with kj , h is a secure hash function, and
⊕ is the n-ary xor operator.

Damiani et al. [56] propose an access control solution for outsourcing data
that is based on the definition of a key derivation hierarchy reflecting the
user-group containment relation. Given a set U of users, a user-based hierarchy,
denoted UH, is defined as a pair (P (U),), where P (U) represents the powerset

20 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

∅

A

									
B

C

�����
D

���������

AB

�������
AC

�������������
AD

����
�������������

BC

��������
BD

�������������
CD

����
�������

ABC

����
�����������

ABD

������
�����������

ACD

�������

�����������
������

BCD

����
����

ABCD

�����
�������

							

(a)

r1r2r3r4

��
��

�
��������

��������
��

��
�

r1r2r3

��
��

�������������r1r2r4

�������
������������� r1r3r4

��������

�������r2r3r4

!!
!!

!
��

��

r1r2

��
��

��������r1r3

��������������� r1r4

!!
!!

!
��������������� r2r3

���������� r2r4

 r3r4

��
��

��������

r1

���������� r2

""
""

" r3

##
##

#
r4

����������

∅
(b)

Fig. 7. An example of UH (a) and RH (b)

(i.e., the set of all subsets of U) of U , and contains 2|U| items, and 	 is defined
as the set containment relation, that is, ∀a, b ∈ P (U), a 	 b if and only if
b ⊆ a. Each vertex vi in UH is associated with a private key ki. Each user
ui∈U is then communicated key ki associated with the vertex representing
the singleton set {ui}. Each resource rj is instead encrypted with the key kj

associated with the vertex representing its acl. Since partial order relation
	 is defined on the basis of the set containment relation, any user in the
system, by knowing the key of vertex {ui}, can derive all and only the keys
of vertexes representing sets of users including ui. Figure 7(a) represents the
user hierarchy suitable for the access matrix in Fig. 6. To correctly enforce
the given access control policy, r1 is encrypted with the key of vertex ABC,
r2 with the key of vertex ABD, r3 with the key of vertex CD, and r4 with the
key of vertex A. Due to this key assignment, any user can access exactly the
resources in her capability list. As an example, with respect to the hierarchy
in Fig. 7(a), it is easy to see that B can derive the key associated with vertexes
AB and BD that in turn can be used for deriving the keys associated with
vertexes ABC and ABD, this allowing to access r1 and r2, respectively.

In a dual way, it is possible to build a key derivation hierarchy on the
basis of the resources in the system. A resource-based hierarchy, denoted RH,
is defined as a pair (P (R),), where P (R) represents the powerset of R, and
	 is a partial order relation such that ∀a, b ∈ P (R), a 	 b if and only if a ⊆ b.
To correctly enforce the given policy, each user ui is assigned the key of the
vertex representing her capability list, while each resource rj is encrypted with
the key of the vertex representing the singleton set {rj}. Considering again the
access matrix in Fig. 6, the corresponding resource hierarchy is represented
in Fig. 7(b).

Although both the models presented for defining a key derivation hierarchy
correctly enforce the access control policy defined by the owner, there is an
important difference that should be considered when deciding which structure
to adopt. As a matter of fact, UH allows resources to share the same encryp-
tion key, while each user has her secret key. By contrast, when adopting RH,

Recent Advances in Access Control 21

A

$$
$$

$$
$$

$$
B

%%
%%
%%
%%
%%

C

 ��

��
D

CD

ABC ABD

Fig. 8. An example of transformed user hierarchy.

different users can share the same secret key, while resources are all encrypted
using a different key. Moreover, since the number of vertexes in the hierarchy
depends on the number of users (resources, respectively) in the system, if U is
smaller than R, UH will be probably more convenient than RH. In the following,
we focus on the user-based hierarchy, but the discussion is however applicable
also to the resource-based hierarchy.

It is easy to note that UH structure defines a great number of keys, some
of which may be useful neither for encryption nor for distribution to users.
This causes both an expensive key derivation process on the client side, and
an excessive storage workload for the server. As a matter of fact, the length
of key derivation paths in UH is linear in |U|, and the number of tokens stored
on the server grows with |U|.

To the aim of reducing both key derivation costs and, more generally, the
size of the key derivation hierarchy, the authors propose to remove from UH
all those vertexes that are not necessary for access control enforcement [48].
Therefore, the vertexes that are maintained in the hierarchy are those that
represent singleton sets of users and resources’ acls. These vertexes are then
connected in a new hierarchical structure, according to the 	 partial order
relation. The resulting hierarchy should guarantee that any user ui can com-
pute, from her private key, the keys used to encrypt all and only the resources
belonging to her capability list. To this purpose, the authors propose an algo-
rithm that, starting from the set of required vertexes, builds a key derivation
hierarchy on which they apply the Atallah et al. key derivation method. To
improve the key derivation process for final users, the algorithm tries to min-
imize the number of tokens in the system. To this aim, other vertexes besides
the necessary ones are possibly added to the hierarchical structure. Consider-
ing the user hierarchy in Fig. 7, Fig. 8 illustrates the hierarchy corresponding
to the access control policy in Fig. 6, and containing only the vertexes needed
for a correct enforcement of the policy.

Zych and Petkovic [49] exploit Diffie-Hellman key generation scheme and
asymmetric encryption for enforcing selective access on outsourced data.
Given a user-based hierarchy, the authors propose to build a V-graph start-
ing from it. For each vertex in the V-graph, the number of incoming edges is
either 2 or 0, and for any two vertexes, there is at most one common parent
vertex. The resulting structure is a binary tree, whose leaves represent single-
ton sets of users, and whose root represents the group containing all the users

22 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

in the system. Also, any user knows the private key of the vertex representing
herself in the hierarchy, and each resource is encrypted with the private key
associated with the vertex representing its acl. However, differently from other
proposals, key derivation goes from leaves to the root of the tree.

5.2 Overview of XML Document Outsourcing Solutions

Besides traditional databases, also XML documents can contain sensitive in-
formation, and their outsourcing may cause privacy breaches. As a conse-
quence, it is necessary to develop techniques for enforcing access control on
outsourced XML data as well. Although some of the approaches presented
for the relational database outsourcing scenario are suited for XML data out-
sourcing, they do not exploit the main characteristics of XML documents
(e.g., their tree structure) and different specific approaches have then been
proposed. The solutions presented exploit once again selective encryption as
a way for enforcing access control when publishing or outsourcing sensitive
data.

Miklau and Suciu [50] propose a way for differentiating the encryption
of different portions of an XML document, on the basis of users or groups
who can access them. The proposed access control mechanism is enriched by
adding metadata XML nodes, adopted to enforce access control rules with
conditions on the values contained in the document. Wang et al. [57] present
an access control system that both protects data stored in the XML document
and the associations among data by introducing association constraints that
need to be satisfied by the encryption model adopted.

6 Conclusions

This chapter discussed recent trends in the access control field. We described
the basic concepts of access control and investigated different issues concern-
ing the development of an access control system. In particular, we outlined
the needs for providing means to: support access control in open environ-
ments, where the identities of the involved parties may be unknown; combine
authorization specifications that may be independently stated; enforce ac-
cess control through the use of selective encryption. For these contexts, we
described recent proposals and ongoing work.

Acknowledgements

This work was supported in part by the European Union under contract IST-
2002-507591, and by the Italian Ministry of Research, within programs FIRB,
under project “RBNE05FKZ2”, and PRIN 2006, under project “Basi di dati
crittografate” (2006099978).

Recent Advances in Access Control 23

References

1. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted
data in the database-service-provider model. In: Proc. of the ACM SIGMOD
2002, Madison, Wisconsin, USA (2002)

2. Hacigümüs, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc.
of 18th International Conference on Data Engineering, San Jose, California, USA
(2002)

3. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Balancing confidentiality and efficiency in untrusted relational DBMSs. In:
Proc. of the 10th ACM Conference on Computer and Communications Security
(CCS03), Washington, DC, USA (2003)

4. Graham, G., Denning, P.: Protection- principles and practice. In: Proc. of
the Spring Jt. Computer Conference. Volume 40., Montvale, NJ, USA (1972)
417–429

5. Harrison, M., Ruzzo, W., Ullman, J.: Protection in operating systems. Com-
munications of the SCM 19(8) (August 1976) 461–471

6. Lampson, B.W.: Protection. ACM Operating Systems Review 8(1) (January
1974) 18–24

7. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transaction on Database Systems 26(2)
(June 2001) 214–260

8. Lunt, T.: Access control policies: Some unanswered questions. In: Proc. of IEEE
Computer Security Foundations Workshop II, Franconia, New Hampshire (1988)

9. Sandhu, R.: Lattice-based access control models. IEEE Computer 26(11) (1993)
9–19

10. Bell, D., La Padula, L.: Secure computer systems: A mathematical model.
Technical Report MTR-2547, Vol 2, MITRE Corp., Bedford, MA (November
1973)

11. Bell, D., La Padula, L.: Secure computer systems: Mathematical foundations.
Technical Report MTR-2547, Vol 1, MITRE Corp., Bedford, MA (November
1973)

12. Bell, D., La Padula, L.: Secure computer systems: A refinement of the math-
ematical model. Technical Report MTR-2547, Vol 3, MITRE Corp., Bedford,
MA (April 1974)

13. Bell, D., La Padula, L.: Secure computer systems: Unified exposition and multics
interpretation. Technical Report MTR-2997, Vol 4, MITRE Corp., Bedford, MA
(July 1975)

14. Biba, K.J.: Integrity considerations for secure computer systems. MTR-3153
rev., MITRE Corp., Vol 1, Bedford, MA (April 1977)

15. Samarati, P., De Capitani di Vimercati, S.: Access control: Policies, models, and
mechanisms. In Focardi, R., Gorrieri, R., eds.: Foundations of Security Analysis
and Design. LNCS 2171. Springer-Verlag (2001)

16. McLean, J.: Security models. In Marciniak, J., ed.: Encyclopedia of Software
Engineering. John Wiley & Sons (1994)

17. Ferraiolo, D., Kuhn, D.: Role-based access control. In: Proc. of the 15th National
Computer Security Conference. (1992)

18. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control
models. IEEE Computer 29(2) (1996) 38–47

24 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

19. Security and trust management (2005)
http://www.ercim.org/publication/Ercim News/enw63/.

20. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proc.
of the 17th Symposium on Security and Privacy, Oakland, California, USA (May
1996)

21. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote Trust
Management System (Version 2). Internet RFC 2704 edn. (1999)

22. Bonatti, P., Samarati, P.: A unified framework for regulating access and infor-
mation release on the web. Journal of Computer Security 10(3) (2002) 241–272

23. Irwin, K., Yu, T.: Preventing attribute information leakage in automated trust
negotiation. In: Proc. of the 12th ACM Conference on Computer and Commu-
nications Security, Alexandria, VA, USA (2005)

24. Li, N., Mitchell, J., Winsborough, W.: Beyond proof-of-compliance: Security
analysis in trust management. Journal of the ACM 52 (2005) 474–514

25. Ni, J., Li, N., Winsborough, W.: Automated trust negotiation using crypto-
graphic credentials. In: Proc. of the 12th ACM Conference on Computer and
Communications Security, Alexandria, VA, USA (2005)

26. Yu, T., Winslett, M., Seamons, K.: Supporting structured credentials and sen-
sitive policies trough interoperable strategies for automated trust. ACM Trans-
actions on Information and System Security (TISSEC) 6(1) (February 2003)
1–42

27. Seamons, K.E., Winsborough, W., Winslett, M.: Internet credential acceptance
policies. In: Proc. of the Workshop on Logic Programming for Internet Appli-
cations, Leuven, Belgium (July 1997)

28. Seamons, K.E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills,
H., Yu, L.: Requirements for policy languages for trust negotiation. In: Proc.
of the 3rd International Workshop on Policies for Distributed Systems and Net-
works (POLICY 2002), Monterey, CA (June 2002)

29. Winslett, M., Ching, N., Jones, V., Slepchin, I.: Assuring security and privacy
for digital library transactions on the web: Client and server security policies.
In: Proc. of the ADL ’97 — Forum on Research and Tech. Advances in Digital
Libraries, Washington, DC (May 1997)

30. Yu, T., Ma, X., Winslett, M.: An efficient complete strategy for automated
trust negotiation over the internet. In: Proc. of the 7th ACM Computer and
Communication Security, Athens, Greece (November 2000)

31. Seamons, K., Winslett, M., Yu, T.: Limiting the disclosure of access control
policies during automated trust negotiation. In: Proc. of the Symposium on
Network and Distributed System Security, San Diego, CA (April 2001)

32. Yu, T., Winslett, M., Seamons, K.: Interoperable strategies in automated trust
negotiation. In: Proc. of the 8th ACM Conference on Computer and Commu-
nications Security, Philadelphia, Pennsylvania (November 2001)

33. Yu, T., Winslett, M.: A unified scheme for resource protection in automated
trust negotiation. In: Proc. of the IEEE Symposium on Security and Privacy,
Berkeley, California (May 2003)

34. Ryutov, T., Zhou, L., Neuman, C., Leithead, T., Seamons, K.: Adaptive trust
negotiation and access control. In: Proc. of the 10th ACM Symposium on Access
Control Models and Technologies, Stockholm, Sweden (June 2005)

35. Gladman, B., Ellison, C., Bohm, N.: Digital signatures, certificates and elec-
tronic commerce. http://www.clark.net/pub/cme/html/spki.html.

Recent Advances in Access Control 25

36. Bonatti, P., De Capitani di Vimercati, S., Samarati, P.: An algebra for com-
posing access control policies. ACM Transactions on Information and System
Security 5(1) (February 2002) 1–35

37. Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Pro-
gramming Languages 14(4) (October 1992) 1–60

38. Hosmer, H.: Metapolicies II. In: Proc. of the 15th National Computer Security
Conference, Baltimore, MD (October 1992)

39. Jaeger, T.: Access control in configurable systems. Lecture Notes in Computer
Science 1603 (2001) 289–316

40. McLean, J.: The algebra of security. In: Proc. of the 1988 IEEE Computer
Society Symposium on Security and Privacy, Oakland, CA, USA (April 1988)

41. Bell, D.: Modeling the multipolicy machine. In: Proc. of the New Security
Paradigm Workshop, Little Compton, Rhode Island, USA (August 1994)

42. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for re-
lational data management systems. ACM Transactions on Information Systems
17(2) (April 1999) 101–140

43. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems 26(2)
(June 2001) 214–260

44. Jajodia, S., Samarati, P., Subrahmanian, V., Bertino, E.: A unified framework
for enforcing multiple access control policies. In: Proc. of the 1997 ACM In-
ternational SIGMOD Conference on Management of Data, Tucson, AZ (May
1997)

45. Li, N., Feigenbaum, J., Grosof, B.: A logic-based knowledge representation for
authorization with delegation. In: Proc. of the 12th IEEE Computer Security
Foundations Workshop, Washington, DC, USA (July 1999)

46. Woo, T., Lam, S.: Authorizations in distributed systems: A new approach.
Journal of Computer Security 2(2,3) (1993) 107–136

47. Wijesekera, D., Jajodia, S.: A propositional policy algebra for access control.
ACM Transactions on Information and System Security 6(2) (May 2003) 286–
325

48. Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi,
S., Samarati, P.: An experimental evaluation of multi-key strategies for data
outsourcing. In: Proc. of the 22nd IFIP TC-11 International Information Secu-
rity Conference (SEC 2007), Sandton, South Africa (May 2007)

49. Zych, A., Petkovic, M.: Key management method for cryptographically enforced
access control. In: Proc. of the 1st Benelux Workshop on Information and System
Security, Antwerpen, Belgium (2006)

50. Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of the 29th VLDB Conference, Berlin, Germany (September 2003)

51. Crampton, J., Martin, K., Wild, P.: On key assignment for hierarchical access
control. In: In Proc. of the 19th IEEE Computer Security Foundations Workshop
(CSFW’06), Los Alamitos, CA, USA (2006)

52. Sandhu, R.: On some cryptographic solutions for access control in a tree hi-
erarchy. In: Proc. of the 1987 Fall Joint Computer Conference on Exploring
Technology: Today and Tomorrow, Dallas, Texas, USA (1987)

53. Gudes, E.: The design of a cryptography based secure file system. IEEE Trans-
actions on Software Engineering 6 (1980) 411–420

54. Sandhu, R.: Cryptographic implementation of a tree hierarchy for access control.
Information Processing Letters 27 (1988) 95–98

26 S. De Capitani di Vimercati, S. Foresti, and P. Samarati

55. Atallah, M., Frikken, K., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: Proc. of the 12th ACM conference on Computer and
Communications Security (CCS05), Alexandria, VA, USA (2005)

56. Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi,
S., Samarati, P.: Selective data encryption in outsourced dynamic environments.
In: Proc. of the Second International Workshop on Views On Designing Com-
plex Architectures (VODCA 2006). Electronic Notes in Theoretical Computer
Science, Bertinoro, Italy, Elsevier (2006)

57. Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of the 32nd VLDB Conference, Seoul, Korea (Septem-
ber 2006)

2

Access Control Models for XML

S. De Capitani di Vimercati1, S. Foresti1, S. Paraboschi2, and P. Samarati1

1 University of Milan – 26013 Crema, Italy
{decapita,foresti,samarati}@dti.unimi.it

2 University of Bergamo – 24044 Dalmine, Italy
parabosc@unibg.it

Summary. XML has become a crucial tool for data storage and exchange. In this
chapter, after a brief introduction on the basic structure of XML, we illustrate the
most important characteristics of access control models. We then discuss two models
for XML documents, pointing out their main characteristics. We finally present
other proposals, describing their main features and their innovation compared to
the previous two models.

1 Introduction

The amount of information that is made available and exchanged on the Web
sites is continuously increasing. A large portion of this information (e.g., data
exchanged during EC transactions) is sensitive and needs to be protected.
However, granting security requirements through HTML-based information
processing turns out to be rather awkward, due to HTML’s inherent limi-
tations. HTML provides no clean separation between the structure and the
layout of a document and some of its content is only used to specify the doc-
ument layout. Moreover, site designers often prepare HTML pages according
to the needs of a particular browser. Therefore, HTML markup has generally
little to do with data semantics.

To the aim of separating data that need to be represented from how they
are displayed, the World Wide Web Consortium (W3C) has standardized a
new markup language: the eXtensible Markup Language (XML) [1]. XML is
a markup meta-language providing semantics-aware markup without losing
the formatting and rendering capabilities of HTML. XML’s tags’ capability
of self-description is shifting the focus of Web communication from conven-
tional hypertext to data interchange. Although HTML was defined using only
a small and basic part of SGML (Standard Generalized Markup Language:
ISO 8879), XML is a sophisticated subset of SGML, designed to describe
data using arbitrary tags. As its name implies, extensibility is a key feature of
XML; users and applications are free to declare and use their own tags and at-
tributes. Therefore, XML ensures that both the logical structure and content

28 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

of semantically rich information is retained. XML focuses on the description
of information structure and content as opposed to its presentation. Presen-
tation issues are addressed by a separate language, XSL [2] (XML Stylesheet
Language), which is also a W3C standard for expressing how XML-based data
should be rendered.

Since XML documents can be used instead of traditional relational
databases for data storage and organization, it is necessary to think of a secu-
rity system for XML documents protection. In this chapter, we will focus on
access control enforcement. Specifically, in the literature, different access con-
trol models have been proposed for protecting data stored in XML documents,
exploiting the flexibility offered by the markup language. Even if traditionally
access control models can be applied to XML documents, by simply treating
them as files, a finer grained access control system is frequently necessary. As
a matter of fact, an XML document may contain both sensitive and publicly
available information, and it is necessary to distinguish between them when
specifying the access control policy.

The remainder of the chapter is organized as follows. Section 2 discusses
the basic XML concepts, by introducing DTD, XML Schema, XPath and
XQuery syntax and semantics. Section 3 introduces the problem of access
control for XML documents, points out the characteristics that an access
control model for XML documents should have. Section 4 illustrates in the
details two of the first access control models proposed for XML documents,
and briefly describes other proposals. Finally, Sect. 5 concludes the chapter.

2 Preliminary Concepts

XML [1] (eXtensible Markup Language) is a markup language developed
by the World Wide Web Consortium (W3C) and used for describing semi-
structured information. We introduce some of the most important concepts
related to XML, which are useful to define an access control system for pro-
tecting XML documents.

2.1 Well-Formed and Valid XML Documents

XML document is composed of a sequence of (possibly nested) elements and
attributes associated with them. Basically, elements are delimited by a pair
of start and end tags (e.g., <request> and </request>) or, if they have
no content, are composed of an empty tag (e.g., <request/>). Attributes
represent properties of elements and are included in the start tag of the el-
ement with which they are associated (e.g., <request number=“10”>). An
XML document is said to be well-formed if its syntax complies with the rules
defined by the W3C consortium [1], which can be summarized as follows:

• the document must start with the prologue <?xml version=“1.0”?>;

Access Control Models for XML 29

• the document must have a root element, containing all other elements in
the document;

• all open tags must have a corresponding closed tag, provided it is not an
empty tag;

• elements must be properly nested;
• tags are case-sensitive;
• attribute values must be quoted.

An XML language is a set of XML documents that are characterized by a
syntax, which describes the markup tags that the language uses and how they
can be combined, together with its semantics. A schema is a formal definition
of the syntax of an XML language, and is usually expressed through a schema
language. The most common schema languages, and on which we focus our
attention, are DTD and XML Schema, both originating from W3C.

Document Type Definition.

A DTD document may be either internal or external to an XML document
and it is not itself written in the XML notation.

A DTD schema consists of definition of elements, attributes, and other
constructs. An element declaration is of the form <!ELEMENT element name
content>, where element name is an element name and content is the de-
scription of the content of an element and can assume one of the following
alternatives:

• the element contains parsable character data (#PCDATA);
• the element has no content (Empty);
• the element may have any content (Any);
• the element contains a group of one or more subelements, which in turn

may be composed of other subelements;
• the element contains parsable character data, interleaved with subele-

ments.

When an element contains other elements (i.e., subelements or mixed con-
tent), it is necessary to declare the subelements composing it and their organi-
zation. Specifically, sequences of elements are separated by a comma “,” and
alternative elements are separated by a vertical bar “|”. Declarations of se-
quence and choices of subelements need to describe subelements’ cardinality.
With a notation inspired by extended BNF grammars, “*” indicates zero or
more occurrences, “+” indicates one or more occurrences, “?” indicates zero
or one occurrence, and no label indicates exactly one occurrence.

An attribute declaration is of the form <!ATTLIST element name at-
tribute def >, where element name is the name of an element, and attribute def
is a list of attribute definitions that, for each attribute, specify the at-
tribute name, type, and possibly default value. Attributes can be marked
as #REQUIRED, meaning that they must have an explicit value for each occur-
rence of the elements with which they are associated; #IMPLIED, meaning that

30 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

they are optional; #FIXED, meaning that they have a fixed value, indicated in
the definition itself.

An XML document is said to be valid with respect to a DTD if it is
syntactically correct according to the DTD. Note that, since elements and
attributes defined in a DTD may appear in an XML document zero (optional
elements), one, or multiple times, depending on their cardinality constraints,
the structure specified by the DTD is not rigid; two distinct XML documents
of the same schema may differ in the number and structure of elements.

XML Schema.

An XML Schema is an XML document that, with respect to DTD, has a
number of advantages. First, an XML Schema is itself an XML document,
consequently it can be easily extended for future needs. Furthermore, XML
Schemas are richer and more powerful than DTDs, since they provide support
for data types and namespaces, which are two of the most significant issues
with DTD.

An element declaration specifies an element name together with a simple
or complex type. A simple type is a set of Unicode strings (e.g., decimal,
string, float, and so on) and a complex type is a collection of requirements
for attributes, subelements, and character data that apply to the elements
assigned to that type. Such requirements specify, for example, the order in
which subelements must appear, and the cardinality of each subelement (in
terms of maxOccurs and minOccurs, with 1 as default value).

Attribute declarations specify the attributes associated with each element
and indicate attribute name and type. Attribute declarations may also spec-
ify either a default value or a fixed value. Attributes can be marked as:
required, meaning that they must have an explicit value for each occurrence
of the elements with which they are associated; optional, meaning that they
are not necessary.

Example 1. Suppose that we need to define an XML-based language for
describing bank account operations. Figure 1(a) illustrates a DTD stating
that each account operation contains a request element and one or more
operation elements. Each account operation is also characterized by two
mandatory attributes: bankAccN, indicating the number of the bank account
of the requester; and id, identifying the single update. Each request element
is composed of date, means, and notes elements, where only date is required.
Element operation is instead composed of: type, amount, recipient, and
possibly one between notes and value.

Figure 1(b) illustrates an XML document valid with respect to the DTD
in Fig. 1(a).

DTDs and XML documents can be graphically represented as trees.
A DTD is represented as a labeled tree containing a node for each element,

attribute, and value associated with fixed attributes. To distinguish elements

Access Control Models for XML 31

<!DOCTYPE record[
<!ELEMENT account operation

(request, operation+)>
<!ATTLIST account operation

bankAccN CDATA #REQUIRED
id CDATA #REQUIRED>

<!ELEMENT request
(date,means?,notes?)>

<!ATTLIST request number CDATA #REQUIRED>
<!ELEMENT operation

(type, amount, recipient, (notes|value)?)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT means (#PCDATA)>
<!ELEMENT notes (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT amount (#PCDATA)>
<!ELEMENT recipient (#PCDATA)>
<!ELEMENT value (#PCDATA)>

]>

<?xml version=“1.0” ?>
<!DOCTYPE record SYSTEM “record.dtd”>

<account operation
bankAccN=“0012” id=“00025”>
<request number=“10”>

<date> 04-20-2007 </date>
<means> Internet </means>
<notes> urgent </notes>

</request>
<operation>

<type> bank transfer </type>
<amount> $ 1,500 </amount>
<recipient> 0023 </recipient>
<notes> Invoice 315 of 03-31-2007
</notes>

</operation>
</account operation>

(a) (b)

Fig. 1. An example of DTD (a) and a corresponding valid XML document (b)

and attributes in the graphical representation, elements are represented as
ovals, while attributes as rectangles. There is an arc in the tree connecting
each element with all the elements/attributes belonging to it, and between
each #FIXED attribute and its value. Arcs connecting an element with its
subelements are labeled with the cardinality of the relationship. Arcs labeled
or and with multiple branching are used to represent a choice in an element
declaration (|). An arc with multiple branching is also used to represent a
sequence with a cardinality constraint associated with the whole sequence
(?, +, *). To preserve the order between elements in a sequence, for any two
elements ei and ej , if ej follows ei in the element declaration, node ej appears
below node ei in the tree.

Each XML document is represented by a tree with a node for each element,
attribute, and value in the document. There is an arc between each element
and each of its subelements/attributes/values and between each attribute and
each of its value(s). Each arc in the DTD tree may correspond to zero, one, or
multiple arcs in the XML document, depending on the cardinality of the corre-
sponding containment relationship. Note that arcs in XML documents are not
labeled, as there is no further information that needs representation. Figure 2
illustrates the graphical representation of both DTD and XML document in
Fig. 1.

2.2 Elements and Attributes Identification

The majority of the access control models for XML documents identify the
objects under protection (i.e., elements and attributes) through the XPath
language [3]. XPath is an expression language, where the basic building block
is the path expression.

32 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

account_operation bankAccN

id

request number

date

means

notes

opertion

type

amount

recipient

notes

value

+

?

?

or ?

(a) DTD tree

account_operation bankAccN

id

request number

date

means

notes

opertion

type

amount

recipient

notes

“0012”

“00025”

“10”

04-20-2007

Internet

urgent

bank transfer

$ 1,500

0023

Invoice 315 of
03-31-2007

(b) XML document tree

Fig. 2. An example of graphical representation of DTD and XML document

A path expression on a document tree is a sequence of element names
or predefined functions separated by character / (slash): l1/l2/ . . . /ln. Path
expressions may terminate with an attribute name as the last term of
the sequence. Attribute names are syntactically distinguished by preceding
them with special character @. A path expression l1/l2/ . . . /ln on a docu-
ment tree represents all the attributes or elements named ln that can be
reached by descending the document tree along the sequence of nodes named
l1/l2/ . . . /ln−1. A path expression can be either absolute, if it starts from the
root of the document (the path expression starts with /); or relative, if it
starts from a predefined element in the document (the path expression starts
with element name). The path expression may also contain operators (e.g.,
operator . represents the current node, operator .. represents the parent
node, operator // represents an arbitrary descending path), functions, and
predicates (we refer the reader to [3] for more details).

XPath allows the association of conditions with nodes in a path; in this
case the path expression identifies the set of nodes that satisfy all the condi-
tions. Conditional expressions in XPath may operate on the “text” of elements
(i.e., character data in elements) or on names and values of attributes. A con-
dition is represented by enclosing it within square brackets, following a label
li in a path expression l1/l2/ . . . /ln. The condition is composed of one or more
predicates, which may be combined via and and or boolean operators. Each
predicate compares the result of the evaluation of the relative path expres-
sion (evaluated at li) with a constant or with another expression. Multiple
conditional expressions appearing in the same path expression are considered
to be anded (i.e., all the conditions must be satisfied). In addition, condi-
tional expressions may include functions last() and position() that permit

Access Control Models for XML 33

the extraction of the children of a node that are in given positions. Func-
tion last() evaluates to true on the last child of the current node. Function
position() evaluates to true on the node in the evaluation context whose
position is equal to the context position.

Path expressions are also the building blocks of other languages, such as
XQuery [4] that allows to make queries on XML documents through FLWOR
expressions. A FLOWR expression is composed of the following clauses:

• FOR declares variables that are iteratively associated with elements in the
XML documents, which are identified via path expressions;

• LET declares variables associated with the result of a path expression;
• WHERE imposes conditions on tuples;
• ORDER BY orders the result obtained by FOR and LET clauses;
• RETURN generates the final result returned to the requester.

Example 2. Consider the DTD and the XML document in Example 1. Some
examples of path expressions are the following.

• /account operation/operation: returns the content of the operation
element, child of account operation;

• /account operation/@bankAccN: returns attribute bankAccN of element
account operation;

• /account operation//notes: returns the content of the notes el-
ements, anywhere in the subtree rooted at account operation; in
this case, it returns both /account operation/request/notes and
/account operation/operation/notes;

• /account operation/operation[./type=“bank transfer”]: returns the
content of the operation element, child of account operation, only if
the type element, child of operation, has value equal to “bank transfer”.

The following XQuery extracts form the XML document in Fig. 1(b) all the
account operation elements with operation type equal to “bank transfer”.
For the selected elements, the amount and the recipient of the operation are
returned, along with all notes appearing in the selected account operation
element.

<BankTransf>
{ FOR $r in document(“update account”)/account operation

WHERE $r/operation/type=“bank transfer”
RETURN $r/operation/amount, $r/operation/recipient, $r//notes

}
</BankTransf>

3 XML Access Control Requirements

Due to the peculiar characteristics of the XML documents, they cannot be
protected by simply adopting traditional access control models, and specific

34 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

models need to be defined. By analyzing the existing proposals, it is easy to
see that they are all based on the definition of a set of authorizations that at
least specify the subjects on which they apply, the objects to be protected,
and the action to be executed. The existing XML-based access control models
differentiate on the basis of the subjects, objects, and actions they can support
for access control specification and enforcement.

Subject. Subjects are usually referred to on the basis of their identities or
of the network location from which requests originate. Locations can
be expressed with reference to either the numeric IP address (e.g.,
150.100.30.8) or the symbolic name (e.g., bank.com) from which the
request comes.
It often happens that the same privilege should be granted to sets of
subjects, which share common characteristics, such as the department
where they work, or the role played in the company where they work. To
the aim of simplifying the authorizations definition, some access control
models allow the specification of authorizations having as subject:
• a group of users, which is a statically defined set of users; groups can

be nested and overlapping;
• a location pattern, which is an expression identifying a set of physi-

cal locations, obtained by using the wild character * in physical or
symbolic addresses;

• a role, which is a set of privileges that can be exploited by any user
while playing the specific role; users can dynamically decide which role
to play, among the ones they are authorized to play.

Also, subjects are often organized in hierarchies, where an authorization
defined for a general subject propagates to its descendants.

Public

����������

��������������

BankEmployee

�������
��������� Client

��
��
��
��
�

��
��

��
��

�

StatisticalAnalyst

���
��� 								 CashOperator

�����

Alice Bob Carol David Eric Fiona Gregory Hilary Ivan

Fig. 3. An example of user-group hierarchy

A hierarchy can be pictured as a directed acyclic graph containing a node
for each element in the hierarchy and an arc from element x to element y, if
x directly dominates y. Dominance relationships holding in the hierarchy
correspond to paths in the graph. Figure 3 shows an example of user-group
hierarchy.

Access Control Models for XML 35

Recently proposed models [5] for access control on XML documents intro-
duce the possibility of specifying authorizations on the basis of subject’s
characteristics, called credentials, without even knowing the user’s identity
and/or location.

Object Granularity. The identification of the object involved in a specific au-
thorization can exploit the possibility given by XML of identifying el-
ements and attributes within a document through path expressions as
defined by the XPath language.
Consequently, XML allows the specification of authorizations at a fine
grained level. Any portion of a document that can be referred by a path
expression can be the object of an authorization. For instance, a single el-
ement or a single attribute are objects as well as a whole XML document.
It is important to note that not all models support entirely XPath syntax,
since it is very expressive and may be difficult to manage. For instance,
some models impose restrictions on the number of times that the // op-
erator can appear in a path expression [6], other proposals do not allow
predicates to be specified after the // operator [7].

Action. Most of the proposed XML access control models support only read
operations, since there is not a standard language for XML update. Fur-
thermore, the management of write privileges is a difficult task, which
needs to take into account both the access control policy and the DTD
(or XML Schema) defined for the document. In fact, the DTD may
be partially hidden to the user accessing the document, as some ele-
ments/attributes may be denied by the access control policy. For instance,
when adding an element to the document, the user may even not be aware
of the existence of a required attribute associated with it, as she is not
entitled to access the attribute itself.
However, some approaches try to also support write privileges that are
usually classified as: insert operations, update operations, and delete op-
erations.
In [8], the author proposes to differentiate also read privileges in two
categories: the privilege of reading the content of an element, from the
privilege of knowing that there is an element in a certain position of the
XML document (without knowing the name and content of the element
itself). The former authorization class is modeled as read action, while
the latter is modeled as position action. In the same paper, the author
proposes also to add the possibility, for the security administrator, to
propagate privileges with-grant option, as in typical database contexts.

We now discuss the basic peculiar features that are supported by the
existing XML-based access control models.

Support for Fine and Coarse Authorizations. The different protection re-
quirements that different documents may have call for the support of
access restrictions at the level of each specific document. However, re-
quiring the specification of authorizations for each single document would

36 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

make the authorization specification task too heavy. The system may then
support, beside authorizations on single documents (or portions of doc-
uments), authorizations on collections of documents [9]. The concept of
DTD can be naturally exploited to this end, by allowing protection re-
quirements to refer to DTDs or XML documents, where requirements
specified at the level of DTD apply to all those documents instance of
the considered DTD. Authorizations specified at DTD level are called
schema level authorizations, while those specified at XML document level
are called instance level authorizations.
Furthermore, it is important to be able to specify both organization-wide
and domain authorizations, which apply only to a part of the whole or-
ganization. To this purpose, some systems [9] allow access and protection
requirements to be specified both at the level of the enterprise, stating
general regulations, and at the level of specific domains where, according
to a local policy, additional constraints may need to be enforced or some
constraints may need to be relaxed. Organizations specify authorizations
with respect to DTDs; domains can specify authorizations with respect
to specific documents as well as to DTDs.

Propagation Policy. The structure of an XML document can be exploited by
possibly applying different propagation strategies that allow the derivation
of authorizations from a given set of authorizations explicitly defined over
elements of DTD and/or XML documents. Some proposals therefore dis-
tinguish between two kinds of authorizations: local, and recursive [9]. Local
authorizations defined on an element apply to all its attributes only. A
recursive authorization defined on an element applies to its whole content
(both attributes and subelements). Recursive authorizations represent an
easy way for specifying authorizations holding for the whole structured
content of an element (for the whole document if the element is the root
node of the document).
The models proposed in [6, 7] assume that negative authorizations are
always recursive, while positive authorizations may be either local or re-
cursive.
Besides downward propagation, upward propagation methods have been
introduced [10]. Here, the authorizations associated with a node in the
XML tree propagate to all its parents.
Some of the most common propagation policies (which include also some
resolution policies for possible conflicts) are described in the following [11].
• No propagation. Authorizations are not propagated. This is the case

of local authorizations.
• No overriding. Authorizations of a node are propagated to its descen-

dants, but they are all kept.
• Most specific overrides. Authorizations of a node are propagated to

its descendants, if not overridden. An authorization associated with a

Access Control Models for XML 37

node n overrides a contradicting authorization3 associated with any
ancestor of n for all the descendants of n.

• Path overrides. Authorizations of a node are propagated to its descen-
dants, if not overridden. An authorization associated with a node n
overrides a contradicting authorization associated with an ancestor n′

for all the descendants of n only for the paths passing from n. The
overriding has no effect on other paths.

These policies can be adopted also for the authorization subject hierarchy.
Support of Exceptions. The support of authorizations at different granularity

levels allows for easy expressiveness of both fine and coarse grained autho-
rizations. Such an advantage would remain however very limited without
the ability of the authorization model to support exceptions, since the
presence of a granule (document or element/attribute) with protection
requirements different from those of its siblings would require the ex-
plicit specification of authorizations at that specific granularity level. For
instance, the situation where a user should be granted access to all docu-
ments associated with a DTD but one specific instance, would imply the
need of stating the authorizations explicitly for all the other documents
as well; thereby ruling out the advantage of supporting authorizations
at the DTD level. A simple way to support exceptions is by using both
positive (permissions) and negative (denials) authorizations, where per-
missions and denials can override each other.
The combined use of positive and negative authorizations brings to the
problem of how the two specifications should be treated when conflict-
ing authorizations are associated with the same node element for a given
subject and action. This requires the support for conflict resolution poli-
cies [11].
Most of the models proposed for XML access control adopt, as a conflict
resolution policy, the “denials take precedence” policy, meaning that, in
case of conflict, access is denied.
Note that, when both permissions and denials can be specified, another
problem that naturally arises is the incompleteness problem, meaning that
for some accesses neither a positive nor a negative authorization exists.
The incompleteness problem is typically solved by applying a default open
or closed policy [12].

4 XML Access Control Models

Several access control models have been proposed in the literature for regu-
lating access to XML documents. We start our overview of these models by
presenting the first access control model for XML [9], which has then inspired

3 Two authorizations (s, o, a) and (s′, o′, a′) are contradictory if s = s′, o = o′, and
a = a′, but one of them grants access, while the other denies it.

38 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

many other subsequent proposals. We then illustrate the Kudo et al. [13]
model that introduced the idea of using a static analysis system for XML
access control. Finally, we briefly describe other approaches that have been
studied in the literature to the aim of supporting write privileges and adopting
cryptography as a method for access control enforcement.

4.1 Fine Grained XML Access Control System

Damiani et al [9] propose a fine grained XML access control system, which
extends the proposals in [14, 15, 16], exploiting XML’s own capabilities to
define and implement an authorization model for regulating access to XML
documents.

We now present the authorizations supported by the access control model
and illustrate the authorizations enforcement process.

Authorizations Specification

Access authorization determines the accesses that the system should allow or
deny. In this model, access authorizations are defined as follows.

Definition 1 ((Access Authorization)). An access authorization a ∈ Auth
is a five-tuple of the form: 〈subject, object, action, sign, type〉, where:

• subject ∈ AS is the subject for which the authorization is intended;
• object is either a URI∈Obj or is of the form URI:PE, where URI∈Obj and

PE is a path expression on the tree of document URI;
• action=read is the action being authorized or forbidden;
• sign ∈ {+,−} is the sign of the authorization, which can be positive (allow

access) or negative (forbid access);
• type ∈ {LDH, RDH, L, R, LD, RD, LS, RS} is the type of the authorization and

regulates whether the authorization propagates to other objects and how it
interplays with other authorizations (exception policy).

We now discuss in more detail each of the five elements composing an
access authorization.

Subject. This model allows to identify the subject of an authorization by
specifying both her identity and her location. This choice provides more
expressiveness as it is possible to restrict the subject authorized to access
an object on the basis of her identity and of the location from which the
request comes.
Subjects are then characterized by a triple
〈user-id,IP-address,sym-address〉, where user-id is the identity with
which the user connected to the system, and IP-address (sym-address,
respectively) is the numeric (symbolic, respectively) identifier of the
machine from which the user connected. The proposed model supports

Access Control Models for XML 39

also user-groups and location patterns and the corresponding hierarchies.
Location patterns are however restricted by imposing that multiple wild
characters must be continuous, and that they must always appear as
rightmost elements in IP patterns and as leftmost elements in symbolic
patterns. As a consequence, location pattern hierarchies are always trees.
The user-group hierarchy and the location pattern hierarchies need to
be merged in a unique structure: the authorization subject hierarchy
AS, obtained as Cartesian product of the user-group hierarchy, the
IP hierarchy, and the symbolic names hierarchy. Any element in the
hierarchy is then associated with a user-id (or group), an IP address (or
pattern), and a symbolic name (or pattern). When one of these three
values corresponds to the top element in the corresponding hierarchy, the
characteristics it defines are not relevant for access control purposes, as
any value is allowed.

Object. The set of objects that should be protected is denoted as Obj and is
basically a set of URIs (Uniform Resources Identifiers) referring to XML
documents or DTDs. Reference to the finer element and attribute grains
is supported through path expressions, which are specified in the XPath
language.

Action. The authors limit the basic model definition to read authorizations
only. However, the support of write actions such as insert, update, and
delete does not complicate the authorization model. In [9] the authors
briefly introduce a method to handle also write operations, using a model
similar to the one proposed for read operations.

Sign. Authorizations can be either positive (permissions) or negative (de-
nials), to provide a simple and effective way to specify authorizations
applicable to sets of subjects/objects with support for exceptions.

Type. The type defines how the authorizations must be treated with respect
to propagation at a finer granularity and overriding.
Authorizations specified on an element can be defined as applicable to
the element’s attributes only (local authorizations) or, in a recursive ap-
proach, to its subelements and their attributes (recursive authorizations).
To support exceptions (e.g., the whole content, except a specific element,
can be read), recursive propagation from a node applies until stopped by
an explicit conflicting (i.e., of different sign) authorization on the descen-
dants, following the “most specific overrides” principle. Authorizations
can be specified on single XML documents (instance level authorizations)
or on DTDs (schema level authorizations). Authorizations specified on a
DTD are applicable (i.e., are propagated) to all XML documents that are
instances of the DTD. According to the “most specific overrides” prin-
ciple, schema level authorizations being propagated to an instance are
overridden by possible authorizations specified for the instance. To ad-
dress situations where this precedence criterion should not be applied, the
model allows users to specify instance level authorizations as soft (i.e., to
be applied unless otherwise stated at the schema level) and schema level

40 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

Table 1. Authorization types

Propagation
Level/Strength Local Recursive

Instance L R

Instance (soft statement) LS RS

DTD LD RD

DTD (hard statement) LDH RDH

authorizations as hard (i.e., to be applied independently from instance
level authorizations). Besides the distinction between instance level and
schema level authorizations, this model allows the definition of two types
of schema level authorizations: organization and domain schema level au-
thorizations. Organization schema level authorizations are stated by a
central authority and can be used to implement corporate wide access
control policies on document classes. Domain schema level authorizations
are specified by departmental authorities and describe department poli-
cies complementing the corporate ones. For simplicity, these two classes
of authorizations are merged by performing a flat union (i.e., they are
treated in the same way).
The combination of the options above (i.e., local vs recursive, schema
vs instance level, and soft vs hard authorizations) introduces the eight
authorization types summarized in Table 1. Their semantics dictates a
priority order among the authorization types. The priority order from the
highest to the lowest is: LDH (local hard authorization), RDH (recursive
hard authorization), L (local authorization), R (recursive authorization),
LD (local authorization specified at the schema level), RD (recursive autho-
rization specified at the schema level), LS (local soft authorization), and
RS (recursive soft authorization).

Access Control Enforcement

Whenever a user makes a request for an object of the system, it is necessary to
evaluate which portion of the object (if any) she is allowed to access. To this
aim, the system builds a view of the document for the requesting subject [9].
The view of a subject on each document depends on the access permissions
and denials specified by the authorizations and on their priorities. Such a view
can be computed through a tree labeling process, followed by a transformation
process.

Given an access request rq and the requested XML document URI, the
tree labeling process considers the tree corresponding to URI and, for each of
its nodes, tries to identify if the requesting subject is allowed or denied access.
Each node n in the considered tree is associated with a vector n.veclabel[t]

Access Control Models for XML 41

that, for each authorization type t ∈{LDH, RDH, L, R, LD, RD, LS, RS}, stores
the users for which there is a positive (n.veclabel[t].Allowed) and negative
(n.veclabel[t].Denied) authorization of type t that applies to n. The algorithm
mainly executes the following steps.

Step 1: Authorization retrieval. Determine the set A of authorizations defined
for the document URI at the instance and schema levels and applicable
to the requester in rq (i.e., the subject of the authorization is the same,
or a generalization of the requested subject).

Step 2: Initial labeling. For each authorization
a=〈subject, object, action, sign, type〉∈ A, determine the set N of
nodes that are identified by a.object. Then, for each node n in N ,
a.subject is added to the list n.veclabel[a.type].Allowed or to the list
n.veclabel[a.type].Denied depending if a.sign is + or −, respectively.
Since several authorizations, possibly of different sign, may exist for each
authorization type, the application of a conflict resolution policy is neces-
sary. The final sign n.veclabel[t].sign applicable to node n for each type t
is then obtained by combining the two lists according to the selected con-
flict resolution policy. The model is applicable and adaptable to different
conflict resolution policies. However, for simplicity it is assumed that con-
flicts are solved by applying the “most specific subject takes precedence”
principle together with the “denials take precedence” principle.

Step 3: Label propagation. The labels (signs) associated with nodes are then
propagated to their subelements and attributes according to the following
criteria: (1) authorizations on a node take precedence over those on its
ancestors, and (2) authorizations at the instance level, unless declared
as soft, take precedence over authorizations at the schema level, unless
declared as hard. The nodes whose sign remains undeterminate (ε) are
associated with a negative sign since the closed policy is applied.

Step 4: View computation. Once the subtree associated with the request has
been properly labeled with + − signs, it is necessary to compute the
document’s view to be returned to the requester. Note that, even if the
requester is allowed access to all and only the elements and attributes
whose label is positive, the portion of the document visible to the re-
quester includes also start and end tags of elements with a negative label,
but that have a descendant with a positive label. Otherwise, the structure
of the document would change, becoming non compliant with the DTD
any more. The view of the document can be obtained by pruning from
the original document tree all the subtrees containing only nodes with a
negative or undefined label. The pruned document may be not valid with
respect to the DTD referenced by the original XML document. This may
happen, for instance, when attributes marked as #REQUIRED are deleted
because the final user cannot access them. To avoid this problem, a loos-
ening transformation is applied to the DTD, which simply defines as op-
tional all the elements (and attributes) marked as required in the original

42 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

Table 2. An example of access control policies

Subject Object Sign Action Type

1 Public,*,* /account operation/@bankAccN − read LD
2 BankEmployee,*,* /account operation + read RD
3 StatisticalAnalyst,*,* /account operation + read RD
4 StatisticalAnalyst,*,* //notes − read LD
5 StatisticalAnalyst,*,* /account operation/operation − read RD

[./type=“bank transfer”]
6 Client,*,* /account operation + read R

[./@bankAccN=$userAcc]
7 BankEmployee,150.108.33.*,* /account operation/@bankAccN + read L
8 StatisticalAnalyst,*,*.bank.com /account operation//notes + read L
9 CashOperators,*,* /account operation/ − read R

request[./means=“Internet”]

DTD. DTD loosening prevents users from detecting whether information
has been hidden by the security enforcement or was simply missing in the
original document [14].

Example 3. Consider the DTD and the XML document in Fig. 1, and
the user-group hierarchy in Fig. 3. Table 2 shows a list of access con-
trol policies. The first schema-level authorization states that nobody can
access attribute @bankAccN of element account operation (1). Users be-
longing to BankEmployee and StatisticalAnalyst groups can access
the account operation element (2 and 3), but StatisticalAnalyst
group is denied access to //notes (4). Since the fourth authorization
is LD, while third authorization is RD, the fourth policy overrides the
third one. Furthermore, StatisticalAnalyst group is denied access to
/account operation/operation[./type=“bank transfer”], meaning that
users belonging to the group cannot access /account operation/operation
if the operation is a bank transfer (5). Consider now the instance-
level authorizations. Users belonging to Client group can access the
account operation element, if condition ./@bankAccN=$userAcc holds (vari-
able $userAcc represents the variable containing the bank account num-
ber for the requesting user) (6). Also, members of the BankEmployee
group and connected from 150.108.33.* can access @bankAccN at-
tribute (7). This authorization overrides the first authorization in
the table. Members of the StatisticalAnalyst group and connected
from *.bank.com can read /account operation//notes for the spe-
cific instance (8). Finally, CashOperators group is denied access to
/account operation/request[./means=“Internet”] (9).

Suppose now that Alice and David submit a request to read the document
in Fig. 1(b). Figure 4 illustrates the views returned to Alice and David at the
end of the access control process.

Access Control Models for XML 43

account_operation

id

request number

date

means

“00025”

“10”

04-20-2007

Internet

(a) Alice’s view

account_operation bankAccN

id

opertion

type

amount

recipient

notes

“0012”

“00025”

bank transfer

$ 1,500

0023

Invoice 315 of
03-31-2007

(b) David’s view

Fig. 4. Examples of views

4.2 Kudo et al. Static Analysis

Most of the access control systems proposed for XML documents are based on
a run-time policy evaluation, that is, any time an access request is submitted
to the system, the access control policies are evaluated. However, this run-
time policy evaluation may be quite expensive [13]. To avoid this problem,
Kudo et al. proposed an access control system based on static analysis, which
is complemented by a run-time analysis when needed [13].

Authorization Specification

Access authorizations are defined as triples of the form (s,±a, o), stating that
authorization subject s is (or not, depending on the sign) allowed to perform
action a on object o.

An authorization subject may be a user-id, a role, or a group name: the
subject name is preceded by a prefix indicating its type. Note that hierarchical
structures are not supported by this model. The XPath language is used to
define objects in an authorization rule, but functions are not handled by the
considered model. Like in [9], the authors limit the basic model definition to
read authorizations only, and support both positive and negative authoriza-
tions to easily handle exceptions. However, this model does not distinguish
between schema and instance level authorizations.

Authorizations specified on an element can be defined as applicable to the
element’s attributes only (local authorizations) or, in a recursive approach,
to its subelements and their attributes (recursive authorizations). To solve
conflicts that may arise on a node, the proposed model can adopt either the
“denials take precedence” or the “permissions take precedence” principles,
independently from the node on which the conflicting authorizations have been
specified. For security reasons, the model presented in the paper limits the
analysis to “denials take precedence” principle adoption. The default closed
policy is applied when no authorizations are specified.

44 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

The framework proposed for static analysis is based on the use of automata
to compare schemas, authorizations, and queries. The static analysis tries to
evaluate anything that does not depend on the specific XML instance and
that can be evaluated simply on the basis of the schema and of the access
control policy. Formally, an automaton is defined as follows.

Definition 2 ((Non deterministic finite state automaton)). A non
deterministic finite state automaton (NFA) M is a five-tuple of the form
(Ω,Q,Qinit, Qfin, δ) where:

• Ω is the alphabet;
• Q is a finite set of states of M ;
• Qinit ⊆ Q is the set of initial states of M ;
• Qfin ⊆ Q is the set of final states of M ;
• δ : Q × Ω → Q is the transition function of M .

The set of strings accepted by M , denoted L(M), is the language of the au-
tomaton.

Given the definition of non deterministic finite state automaton, it is pos-
sible to build a NFA corresponding to an arbitrary XPath expression r that
does not contain conditions. The NFA accepts a path iff it matches with r.
This correspondence is possible since XPath is limited to // operator and
conditions are not considered while building the NFA. However, if an XPath
expression contains conditions, it is possible to partially capture their seman-
tics by building two NFAs for the given XPath expression r: an overestimation
M [r] and an underestimation M [r]. The former automaton is obtained by as-
suming all conditions satisfied, while the latter is obtained by assuming all
conditions not satisfied.

Static Analysis

The static analysis exploits the definition of automaton and is composed of
the following four steps.

Step 1: Create schema automata. Given a schema (DTD or XML Schema)
that a document should follow, a schema automaton MG is built. This
automaton accepts all and only the paths that are allowed by the schema.

Step 2: Create access control automata. For each role (group) in the system,
a pair of automata is defined: an underestimate access-control automaton
MΓ and an overestimate access-control automaton MΓ . For each role,
this pair of automata should accept the set of paths to elements and/or
attributes that the role is authorized to access. It is necessary to define
both an underestimate and an overestimate automaton since conditions
may be added to correctly handle the propagation of positive and negative
authorizations along the XML tree. In particular, since the “denials take
precedence” principle is adopted, an element is accessible only if it is the

Access Control Models for XML 45

descendant of an authorized node, and it is not the descendant of any
denied node.

Step 3: Create query regular expressions. Given a query expressed in XQuery,
the XPath expressions appearing in the query are translated in equivalent
regular expressions Er. XPath expressions appearing as argument for the
clauses FOR, LET, ORDER, and WHERE are translated in equivalent (possibly
overestimated) regular expressions. XPath expressions appearing in the
RETURN clause are overestimated and the regular expression generated cap-
tures also any descendant of the nodes defined by the XPath expression.
Note that recursive queries cannot be handled, since the corresponding
regular expression would not be defined.

Step 4: Compare schema and access control automata with query regular ex-
pressions. Given an XPath expression r, it may be:
• always granted, if every path accepted by the query regular expression

Er and by the schema automaton MG is accepted by the (underesti-
mated) access control automaton MΓ ;

• always denied, if no path is accepted by all of the query regular expres-
sion Er, the schema automaton MG, and the (overestimated) access
control automaton MΓ ;

• statically indeterminated, otherwise.
Note that, if the schema is not defined, the schema automaton MG accepts
any path.

The proposed static analysis method does not support conditions involv-
ing values specified in the XML documents. However, it is possible to extend
the model to the aim of partially handling value-based access control. Intu-
itively, if an access control policy and a query specify the same predicate, it
is possible to incorporate the predicate in the underlying alphabet adopted to
build NFAs. To this aim, it is necessary a pre-processing phase of the static
analysis method that identifies and substitutes predicates with symbols. Even
if this solution does not eliminate predicates completely, it improves query
efficiency by anticipating some predicate evaluations.

The main advantage of static analysis is that queries can be rewritten on
the basis of the XPath expressions they consider. If the query contains a path
expression classified as always denied by the fourth step of the static analysis
process, it can be removed from the query without evaluation. By contrast,
path expressions classified as always granted, simply need to be returned to
the requester. Those path expressions that are classified as statically indeter-
minate have to be run-time evaluated, on the basis of the specific instance
they refer to.

The authors provide also a way for easily building a schema (DTD or XML
Schema), which can be released without security threats, depending on the
authorizations of the requesting user. This method is based on the automata
structures previously described. The view schema contains only elements vis-

46 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

ible to the final user, while non accessible elements containing accessible ones
are renamed as AccessDenied elements [13].

As a support for the proposal, experimental results are presented demon-
strating the efficiency gain due to static analysis with respect to run-time
analysis proposed by other approaches.

Example 4. Consider the DTD and the XML document in Fig. 1 and suppose
that there are three user-groups: BankEmployee, which are employees of the
considered bank institute, StatisticalAnalyst, which are bank employees
who make statistics about clients and their operations, and Client, which are
people having a bank account at the institute.

Consider a set of authorizations stating that the members of the
BankEmployee group can access the whole content of the account operation
element, members of the StatisticalAnalyst group can access the content of
the account operation element but the notes elements, and each client can
access the account operation elements about their bank account. Formally,
these authorizations can be expressed as follows.

• group: BankEmployee, /account operation, + read, recursive
• group: StatisticalAnalyst, /account operation, + read, recursive
• group: StatisticalAnalyst, //notes, - read, recursive
• group: Client, /account operation[./@bankAccN=$userAcc], + read,

recursive

We first define the schema automaton corresponding to the considered
DTD. It is first necessary to define two sets of symbols, representing elements
and attributes, respectively.

ΣE= {account operation, request, operation, date, means, notes, type,
amount, recipient, value}

ΣA= {@bankAccN, @Id, @number}
Given ΣE and ΣA, it is now possible to define the schema automaton MG as
follows.

• Ω=ΣE ∪ ΣA

• Q={Account Operation, Request, Operation, Date, Means, Notes, Type,
Amount, Recipient, Value}∪{qinit}∪{qfin}

• Qinit={qinit}
• Qfin={Date, Means, Notes, Type, Amount, Recipient, Value}∪{qfin}
• δ(qinit,account operation)=Account Operation

δ(Account Operation,request)=Request
δ(Account Operation,operation)=Operation
δ(Request,date)=Date
δ(Request,means)=Means
δ(Request,notes)=Notes
δ(Operation,type)=Type
δ(Operation,amount)=Amount;

Access Control Models for XML 47

δ(Operation,recipient)=Recipient
δ(Operation,notes)=Notes;
δ(Operation,value)=Value
δ(Account Operation,@bankAccN)=qfin

δ(Account Operation,@Id)=qfin

δ(Request,@number)=qfin

The schema automaton defined accepts the same paths allowed by the
considered DTD. Specifically, L(MG) is equal to: /account operation,
/account operation/@Id, /account operation/@bankAccN,
/account operation/request, /account operation/request/@number,
/account operation/request/date, /account operation/request/means,
/account operation/request/notes, /account operation/operation,
/account operation/operation/type,
/account operation/operation/amount,
/account operation/operation/recipient,
/account operation/operation/notes,
/account operation/operation/value.

The second step of the static analysis method consists in building the
access control automata MΓ and MΓ , for each of the three groups of users
considered. For the sake of simplicity, we represent only the language of the
automaton.

BankEmployee L(MΓ)={account operation}·(ΣE)∗ · (ΣA ∪ {ε})
StatisticalAnalyst L(MΓ)={account operation}·(ΣE)∗ · (ΣA ∪ {ε})\

{notes}·(ΣE)∗ · (ΣA ∪ {ε})
Client L(MΓ)=∅ · (ΣE)∗ · (ΣA ∪ {ε}); L(MΓ)={account operation}·(ΣE)∗ ·

(ΣA ∪ {ε})
Here, · is the concatenation operator, \ is the set difference operator, ε is the
nil character, and (ΣE)∗ represents any string in ΣE .

Consider now the XQuery expression introduced in Example 2. The cor-
responding XPath expressions, classified on the basis of the clause they are
represented in, are:

FOR, LET, ORDER BY ,WHERE: /account operation;
/account operation/operation/type

RETURN: account operation/operation/amount;
account operation/operation/recipient;
account operation//notes

Here record//notes implies both record/request/notes and
record/operation/notes.

On the basis of the static analysis, it is possible to classify the requests
submitted by users. As an example, consider the following requests.

• BankEmployee requests /account operation/operation/type: the re-
quest is always granted;

48 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

• StatisticalAnalyst requests /account operation//notes: the request
is always denied;

• Client requests /account operation/operation/amount: the request is
statically indeterminate.

The last request introduced by the example is statically indeterminate as the
path expression /account operation[./@bankAccN=$userAcc] in the access
control policy cannot be statically captured by an automaton. To solve this
problem, it is possible to rewrite the policy, and all the statical analysis tools,
adding two new symbols to the considered alphabet: account operation1 =
/account operation[./@bankAccN=$userAcc] and account operation2 =
/account operation[not ./@bankAccN=$userAcc].

4.3 Other Approaches

Besides the two access control models described above, a number of other
models have been introduced in the literature for controlling access to XML
documents.

The first work of Kudo et al. [10] introduce provisional authorizations in
XML access control. A provisional authorization is an authorization allowing
the specification of a security action that the user (and/or the system) has to
execute to gain access to the requested resource. A security action may be for
example, the encryption of a resource with a given key, or the recording in
the log of an access control decision. Due to the problem of run-time policy
evaluation, Kudo et al. [6] present a different access control model, based
on the definition of an Access-Condition-Table (ACT). An ACT structure is
statically generated from an access control policy. The ACT contains, for each
target path in the XML document, an access condition and a subtree access
conditions, which are the conditions that have to be fulfilled to gain access
to the node and to its subtree, respectively. By using the ACT, the run-time
evaluation of requests is reduced from the whole policy to an access condition.
The proposed model has however some disadvantages: it does not scale well,
and it imposes limitations on XPath expressions. To overcome these issues
the authors propose an alternative structure to ACT, the Policy Matching
Tree (PMT) [7], which supports real-time updates of both policy and data. In
this case, the pre-processing phase consists in building the tree structure on
the basis of the access control policy. Whenever a user makes a request, an
algorithm visits the path in the tree that matches the request, to compute the
correct answer stored in the leaf. To further improve computational efficiency,
the authors propose a function-based access control model that has a rule
function for each authorization in the policy [17]. A rule function is a piece
of executable code, which is run any time an access request matches with
the rule, and returning the answer for the final user. Function rules can be
organized on the basis of the subject or object they refer to: the first solution
has been empirically proven to be more efficient.

Access Control Models for XML 49

An alternative solution to the static analysis proposed by Kudo et al. is
presented in [18], where the authors propose to store the access control policy
in a space and time efficient data structure, called compressed accessibility
map (CAM). This structure is obtained by exploiting the structural locality
of access authorizations, that is, by grouping object having similar access
profiles.

Another model proposing a pre-processing phase for access control pur-
poses is introduced in [19], where the pre-processing algorithm, called QFilter
rewrites these queries by pruning any part that violate access control rules.

The concept of view as the portion of an XML document that can be
released to the user (introduced first by Damiani et al. [9]) has been exploited
by different models.

The solution proposed by Fan et al. [20] is based on the concept of security
view. A security view of an XML document provides with each user group both
a view of the XML document with all and only the information that the group
can access, and a view of the DTD, compliant with the released portion of the
XML document. It is important to note that, concretely, each document has
one security view, obtained by marking the XML document according with
the access control policy. Authorized users are then supposed to make queries
over their security view. In the paper, the authors propose both an algorithm
for computing security views from an access control policy, and an algorithm
for reformulating queries posed on security views to be evaluated on the whole
XML document, avoiding materialization.

An alternative method for view generation has also been proposed [21].
This model uses an authorization sheet to collect all the authorizations. The
authorization sheet is then translated in an XSLT sheet, which grants the
generation of the correct view to the user when she asks for (a portion of) the
document.

In [22] the authors propose an alternative method to the tree labeling
process for view generation, since it may be inefficient if the size of the tree and
the number of requests increase. The alternative model stores XML documents
in a relational database, which is used to select data on users’ request, and to
check only selected data against the access control policy, instead of labeling
the whole XML tree.

Bertino et al. proposed different works aimed at access control enforce-
ment in XML documents [23, 24, 25, 5]. In particular, they propose a model
supporting the use of credentials (i.e., sets of attributes concerning a specific
user) for subject definition.

Since XML documents represent an alternative to the traditional rela-
tional database model, some models adopt solutions proposed for relational
databases [8, 26]. In [8] the author proposes to adopt SQL syntax and se-
mantics to XML documents. Each user manages all privileges on her files,
and grants or revokes them to other users, possibly along with the grant
option.

50 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

The model proposed in [26] does not use SQL syntax, but exploits the
concept of view as in relational databases to restrict access to data. In this
case, views are defined by using the XQuery language, and may be authoriza-
tion objects. The model supports not only structure-based authorizations, but
also rules depending on the context or content of the considered documents
by adding conditions in XQuery expressions.

Since relationship among elements/attributes may reveal sensitive infor-
mation, in [27] the authors propose the definition of access control rules on the
relationship among XML elements and attributes (i.e., on arcs in the XML
tree). It is then presented a technique to control the view that can be released
of the path leading to any authorized node in an XML document. The authors
introduce also a rule-based formulation of the new class of authorizations.

To the aim of adding semantic meaning to authorizations, RDF (Resource
Description Framework) is used as a new way for expressing access control
policies [28]. The paper focuses also on the problem of controlling data associ-
ations, and adds a new object type to the classical model: the association secu-
rity object. An association security object is an XML subtree whose elements
can be accessed only separately. To solve the problem of data associations,
the model uses temporal data.

All the models introduced above for access control of XML documents
are based on the discretionary access control model [12]. In [29], the authors
propose a role-based access control model (RBAC) for XML documents, which
exploits the main characteristics of XML data.

In [30] the authors propose the first access control model for XML docu-
ments operating client-side. The main difference with respect to the previous
proposals is that this method needs to operate on stream data and it is sup-
posed to operate on a system where the server storing data may not be trusted
for access control enforcement.

Recently, a new class of methods have been also proposed for access con-
trol enforcement for XML documents [5, 31, 32]. These methods consider a
data outsourcing scenario, where XML documents are stored on a possibly
not trusted server, and are not under the data owner’s direct control. In these
cases, XML documents themselves should enforce access control, since this
task cannot either be executed by the owner or by the storing server. Access
control is enforced through selective encryption, that is, by encrypting differ-
ent portions of the XML tree by using different encryption keys. Consequently,
a correct key distribution to users ensures that access control enforcement is
correct.

5 Conclusions

The role of XML in the representation and processing of information in cur-
rent information systems is already significant and is certainly going to see
a considerable increase in the next years. The design and implementation of

Access Control Models for XML 51

an access control model for XML promises to become an important tool for
the construction of modern applications. The research of the last few years
presented in this chapter has produced several proposals for the construction
of an access control solution for XML data. These results are a robust basis
for the work of a standard committee operating within one of the important
consortia involved in the definition of Web standards. Thanks to the avail-
ability of such a standard, it is reasonable to expect that XML access control
models will be used to support the data protection requirements of many ap-
plications, making XML access control a common tool supporting the design
of generic software systems.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (XML) 1.0 (fourth edition) (August 2006) W3C Recommen-
dation.

2. Berglund, A.: Extensible stylesheet language (XSL) version 1.1 (December 2006)
W3C Recommendation.

3. Clark, J., DeRose, S.: XML path language (XPath) version 1.0 (November 1999)
W3C Recommendation.

4. Boag, S., Chamberlin, D., Fernndez, M.F., Florescu, D., Robie, J., Simon, J.:
XQuery 1.0: An XML query language (January 2007) W3C Recommendation.

5. Bertino, E., Ferrari, E.: Secure and selective dissemination of XML documents.
ACM Transaction Information System Security 5(3) (August 2002) 290–331

6. Qi, N., Kudo, M.: Access-condition-table-driven access control for XML
databases. In: Proc. of the 9th European Symposium on Research in Computer
Security, Sophia Antipolis, France (September 2004)

7. Qi, N., Kudo, M.: XML access control with policy matching tree. In: Proc. of
the 10th European Symposium on Research in Computer Security, Milan, Italy
(September 2005)

8. Gabillon, A.: An authorization model for XML databases. In: Proc. of the 2004
Workshop on Secure Web Service (SWS04), Fairfax, Virginia (November 2004)

9. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A
fine-grained access control system for XML documents. ACM Transaction In-
formation System Security 5(2) (May 2002) 169–202

10. Kudo, M., Hada, S.: Xml document security based on provisional authoriza-
tion. In: Proc. of the 7th ACM Conference on Computer and Communications
Security (CCS00). (November 2000)

11. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems 26(2)
(June 2001) 214–260

12. Samarati, P., di Vimercati, S.D.C.: Access control: Policies, models, and mech-
anisms. In Focardi, R., Gorrieri, R., eds.: Foundations of Security Analysis and
Design. LNCS 2171. Springer-Verlag (2001)

13. Murata, M., Tozawa, A., Kudo, M., Hada, S.: XML access control using static
analysis. ACM Transaction Information System Security 9(3) (August 2006)
292–324

52 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, and P. Samarati

14. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: De-
sign and implementation of an access control processor for XML documents.
Computer Networks 33(1-6) (June 2000) 59–75

15. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Securing
XML documents. In: Proc. of the 7th International Conference on Extending
Database Technology (EDBT00), Konstanz, Germany (March 2000)

16. Damiani, E., Samarati, P., De Capitani di Vimercati, S., Paraboschi, S.: Con-
trolling access to XML documents. IEEE Internet Computing 5(6) (Novem-
ber/December 2001) 18–28

17. Qi, N., Kudo, M., Myllymaki, J., Pirahesh, H.: A function-based access control
model for XML databases. In: Proc. of the 2005 ACM CIKM International Con-
ference on Information and Knowledge Management, Bremen, Germany (Octo-
ber - November 2005)

18. Yu, T., Srivastava, D., Lakshmanan, L.V.S., Jagadish, H.V.: Compressed ac-
cessibility map: Efficient access control for XML. In: Proc. of the 28th Inter-
national Conference on Very Large Data Bases (VLDB), Hong Kong, China
(August 2002)

19. Luo, B., Lee, D., Lee, W.C., Liu, P.: QFilter: fine-grained run-time XML access
control via NFA-based query rewriting. In: Proc. of the 2004 ACM CIKM Inter-
national Conference on Information and Knowledge Management, Washington,
DC, USA (November 2004)

20. Fan, W., Chan, C.Y., Garofalakis, M.: Secure XML querying with security views.
In: Proc. of the 2004 ACM SIGMOD International Conference on Management
of Data, Paris, France (June 2004)

21. Gabillon, A., Bruno, E.: Regulating access to XML documents. In: Proc. of the
Fifteenth Annual Working Conference on Database and Application Security
(Das01), Niagara, Ontario, Canada (July 2002)

22. Tan, K.L., Lee, M.L., Wang, Y.: Access control of XML documents in relational
database systems. In: Proc. of the 2001 International Conference on Internet
Computing, Las Vegas, Nevada, USA (June 2001)

23. Bertino, E., Braun, M., Castano, S., Ferrari, E., Mesiti, M.: Author-X: A Java-
based system for XML data protection. In: Proc. of the IFIP TC11/ WG11.3
Fourteenth Annual Working Conference on Database Security, Amsterdam, The
Netherlands (August 2000)

24. Bertino, E., Castano, S., Ferrari, E.: Securing XML documents with Author-X.
IEEE Internet Computing 5(3) (May/June 2001) 21–31

25. Bertino, E., Castano, S., Ferrari, E., Mesiti, M.: Specifying and enforcing access
control policies for XML document sources. World Wide Web 3(3) (June 2000)
139–151

26. Goel, S.K., Clifton, C., Rosenthal, A.: Derived access control specification for
XML. In: Proc. of the 2003 ACM Workshop on XML Security (XMLSEC-03),
New York (October 2003)

27. Finance, B., Medjdoub, S., Pucheral, P.: The case for access control on XML
relationships. In: Proc. of the 2005 ACM CIKM International Conference on
Information and Knowledge Management, Bremen, Germany (October - Novem-
ber 2005)

28. Gowadia, V., Farkas, C.: RDF metadata for XML access control. In: Proc. of
the 2003 ACM Workshop on XML Security (XMLSEC-03), New York (October
2003)

Access Control Models for XML 53

29. Hitchens, M., Varadharajan, V.: RBAC for XML document stores. In: Proc. of
the Third International Conference on Information and Communications Secu-
rity (ICICS01), Xian, China (November 2001)

30. Bouganim, L., Ngoc, F.D., Pucheral, P.: Client-based access control manage-
ment for XML documents. In: Proc of the 30th VLDB Conference, Tornoto,
Canada (September 2004)

31. Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of the 29th VLDB Conference, Berlin, Germany (September 2003)

32. Wang, H., Lakshmanan, L.V.S.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of the 32nd VLDB Conference, Seoul, Korea (Septem-
ber 2006)

3

Access Control Policy Languages in XML

Naizhen Qi and Michiharu Kudo

Tokyo Research Laboratory
IBM, Japan
{naishin,kudo}@jp.ibm.com

Summary. Policy specification for XML data access control has been difficult since
the specification languages usually have complicated semantics and syntax. In this
chapter, first we introduce the semantics and syntax of two security policy languages
and one policy framework. Then we address several tools for policy modeling and
generation which help users in capturing security concerns during the design, and
developing the security policies and functions during the implementation.

1 Introduction

Since repeated security incidents such as unexpected personal information
leakages and identity thefts have been increasing recently, secure data man-
agement is becoming a crucial factor for applications and services. A fun-
damental enforcement of data management is to specify the access control
policies to control each request to the data handled by the system and to
determine whether the request should be granted or denied. Several expres-
sive and powerful policy specification languages like XACL [9], XACML [10]
and WS-Policy [20] have been designed for the specification of XML-based
security policies. However, there are also difficulties in policy specification, in-
tegration, management, and maintenance owing to the complicated semantics
and syntax of these policy languages.

In this chapter, we discuss several access control policy languages designed
for fine-grained XML data management, then address several mechanisms
and tools for policy modeling and generation. With these tools, the business
stakeholders are able to capture and integrate security concerns at a higher
business level, and the developers can easily associate the security-related
requirements with the security policies and the implementation.

56 Naizhen Qi and Michiharu Kudo

2 Policy Specification Languages

Generally speaking, there are three types of policy representation regarding
access authorization: access control policy specification languages, privacy pol-
icy specification languages, and formal specification languages. Access control
policy specification languages include XACL, XACML, and Authorization
Specification Language (ASL) [11, 12]. Privacy policy specification languages
include P3P [15], and EPAL [2]. The XACML also covers some features of pri-
vacy policy. Formal specification languages include Alloy [1], Formal Tropos
[6], KAOS [5], Larch [7], UML [16][19], and Z [18]. Moreover, as Web services
become more and more common in use, the WS-Policy framework[20] for Web
services, is also well-known.

In this chapter, we briefly introduce the access control policy specification
languages of XACL, XACML, and the Web services governance specification
of WS-Policy framework as they can be broadly used in various XML-based
systems, and as standardized by specific organizations.

3 Example XML Document and Associated Policy

First, we use a sample XML document and policy to illustrate how to represent
fine-grained access control policy for XML documents. The example is a Web-
based paper review application that simulates a typical anonymous paper-
reviewing process. In addition, all of the access control policies in this chapter
are specified for this XML document.

• Authors submit their papers and a chairperson assigns one or more re-
viewers to each submitted paper.

• The reviewers read and evaluate the papers assigned to them without
knowing who the authors are.

• The program committee members read the reviewers’ evaluations and de-
cide which papers should be accepted.

• The chairperson makes the final decisions on the accepted papers.
• Each author receives notification of acceptance or rejection.

The review summary XML document stores all of the information and
the states for the reviewing process such as the author information and the
evaluation results. Figure 1 shows such an XML document that includes one
paper submission from Carol, which final decision is to accept reviewed by
a reviewer Robert with a rating of 3.5. Any operations regarding the paper
review process can be represented as an access to the XML document such as
a read access to the paper id attribute and an update access to the result
element.

We need to specify appropriate access control policies that will be enforced
on this XML document in order to support the anonymous paper reviewing
process. Figure 2 shows an example access control policy specified on the

Access Control Policy Languages in XML 57

<review summary>
<notificationDue>6/30/07 0:0 AM</notificationDue>
<entry>
<paper id="0120">XML Policy Model</paper>
<contents encoding="Base64">4Dxk5lw...</contents>
<authorName>Carol</authorName>
<review>
<reviewerName>Robert</reviewerName>
<rating>3.5</rating>

</review>
<result status="final">Accept</result>

</entry>
</review summary>

Fig. 1. An example XML document

review XML document. The rule R1 is the default policy for the chairperson.
Rule R2 gives the write permission on the result field to the chairperson. Rule
R3 allows the reviewers to read any node below the entry element except for
the authorName element. Rule R4 allows the reviewers to update their rating
element. Rule R5 allows authors access to their paper submission. Rule R6
defines the temporal policy with regard to the notification date.

R1: The chairperson can read any elements, attributes and text nodes of the review
document.

R2: The chairperson can write the review result (accept or reject) in the result
field.

R3: Each reviewer can read the entry element (and any subordinates nodes) as-
signed to him except for the authorName.

R4: Each reviewer can fill in the rating element assigned to him.
R5: Each author can read his own submission entry except for the review elements.
R6: Each author can read the result of his submission after the date of the noti-

fication.

Fig. 2. An access control policy example

For example, when the chairperson issues a read access request for the
author Name element, the access should be permitted according to R1. On
the other hand, when a reviewer tries to read the authorName element, the
access should be denied according to R3. When an author tries to read the
result element, the access should be permitted only after the notification
date has passed according to R6. Therefore, a query like ”retrieve complete
XML nodes below the document root” must reflect all of the access control
policies at the time of the access.

58 Naizhen Qi and Michiharu Kudo

4 XML Access Control Policy Languages

4.1 XACL

The XML Access Control Language (XACL)[9] is a fine-grained access control
policy specification language for XML data. It allows application developers
to specify policies at the element and attribute levels with various conditional
expressions. XACL uses XPath expressions to specify the targets of a policy
with either positive or negative permissions. It provides several ways to re-
solve conflicts between the decisions, either by the permit-takes-precedence or
the denial-takes-precedence resolution policies. The XACL also defines how
the access effects propagate on the XML tree structure. By default, a read
permission specified on a certain element automatically propagates upward to
the root node as well as propagating downward to its descendants.

Policy Syntax and Semantics.

The XACL policies are specified using xacl elements and one or more rule
elements that specify permit or deny authorization conditions. Two or more
rules are disjunctively combined according to the pre-defined combining al-
gorithms. The authorization subject is specified using one or more subject
descriptors of group, role, or userid under a subject element. With regard
to the authorization objects, XACL only supports XPath expressions as an
href attribute of the object element. There are four types of authorization
actions in XACL, read, write, create, and delete. Arbitrary conditional
expressions can be specified using the operation attributes, the predicate
elements, or the parameter elements below the condition elements. Figure
3 expresses Rule R3 of Figure2.

Rule R3-1 specifies a permissive rule on a /review summary/entry el-
ement for the reviewer group with the condition that only the reviewer in
charge can access the paper content and the submission information. Since
the XACL supports the downward propagation from the target node by de-
fault, any subordinate nodes below the entry element, e.g. the authorName
and reviewerName elements, are also the target authorization objects of this
rule.

In contrast, Rule R3-2 specifies a denial rule for all reviewers on the /re-
view summary/entry/authorName element which enables anonymous paper
review policy. Where this rule contradicts the permissive R3-1 rule, the con-
flict resolution denial-takes-precedence policy, which is supposed to be
specified for the property element below the policy element, denies access
to the authorName.

Binding Scheme.

How to bind a set of policies written in XACL with target documents is out
of the scope of XACL. There are two fundamental approaches. One is the

Access Control Policy Languages in XML 59

<policy xmlns="http://www.trl.ibm.com/projects/xml/xacl">

<xacl id="R3-1">
<object href="/review summary/entry"/>
<rule><acl>
<subject><group>reviewer</group></subject>
<action name="read" permission="grant"/>
<condition operation="and">
<predicate name="compareStr">
<parameter value="eq"/>
<parameter><function name="getValue">
<parameter value="./review/reviewerName/text()"/></function>
</parameter>

<parameter><function name="getUid"/></parameter>
</predicate>

</condition>
</acl></rule>

</xacl>

<xacl id="R3-2">
<object href="/review summary/entry/authorName"/>
<rule><acl>
<subject><group>reviewer</group></subject>
<action name="read" permission="deny"/>

</rule></acl>
</xacl>

</policy>

Fig. 3. XACL Policy

association at the schema definition (e.g. DTD) level and the other is the
association at the level of each specific document. In the DTD-level approach,
a set of policies is bound to all documents valid according to the specified
DTD. Therefore, one needs to maintain the mapping between a particular
DTD and the associated policy. In the document-level approach, a policy is
bound to each specific document. In this case, an associated policy, which is
encoded as a policy element, may be an element contained within the target
document.

Basic Matching Algorithm

The access control system basically takes an authorization request as input
and outputs an authorization decision including provisional actions. The ac-
cess control enforcement may consist of the basic matching algorithm and the
policy evaluation algorithm.

Input: An authorization request which contains a requested object, a subject
for the requester, and the action.

Output: A decision list, which may contain multiple decisions.
Step 1. Object-Check: Search the associated policy for each xacl el-

ement whose object element contains a node specified in the autho-
rization request.

60 Naizhen Qi and Michiharu Kudo

Step 2. Subject-Check: For each xacl element unit, check if the sub-
ject and the action are semantically equal to the corresponding spec-
ification in the xacl element.

Step 3. Condition-Check: For each of the remaining xacl elements,
check if it meets the condition.

Step 4. Decision-Record: Make a decision for each of the remaining
xacl elements, where each decision includes the object, the subject,
and the action specified in the xacl element, and append all the de-
cisions to the authorization decision list.

Policy Evaluation Algorithm

The policy evaluation algorithm deals with propagation and conflict resolu-
tion. We note that this algorithm always outputs exactly one authorization
decision.

Input: An authorization request.
Output: A decision of grant or deny.

Step 1. Propagation Processing: Call the basic matching algorithm
for the request and append the propagated access effects to the deci-
sion list.

Step 2. Conflict Resolution: If there is a conflict on the request
object, resolve with the conflict resolution policy.

Step 2. Default Resolution: If there is no authorization decision in
the list, make a decision according to the default policy and append
it to the decision list.

Step 3. Select one decision: Select on evaluation result from the
list containing at least one decision.

4.2 XACML

XACML [10] is an access control policy specification language standardized by
OASIS. XACML defines the format for policy and request/response messages.
The scope of this language is to cover access control systems as broadly as
possible. Therefore, the XACML core schema is designed to be extensible for
yet unknown features.

XACML achieves interoperability of access control policies among hetero-
geneous computing platforms. The biggest difference from the XACL language
is that the XACL focuses on the access control policy only for XML data1,
while the generalized XACML policies support any resources, including XML
data.
1 Many portions of XACML policy model is originated from the XACL language

Access Control Policy Languages in XML 61

XACML Architecture.

Figure 4 shows an XACML data-flow diagram.
XACML adds one additional component called a Context Handler between
PEP and PDP, which supplies sufficient information for any access request using
the Policy Information Point (PIP). The interface from PIP to PDP is
defined in XACML as a Request Context. PDP retrieves applicable access
control policies from Policy Administration Point (PAP) and makes the
decision using the relevant policies and the request context. The decision is
returned back to PEP via Context Handler.

Access
Requester

PEP
Obligations

Service

Resource

PIP

Context
Handler

Request Response

PDP

Request
Context

Response
Context

XACML
Policy

Repository

PAP
XACML
Policy

PEP: Policy Enforcement Point
PIP: Policy Information Point
PAP: Policy Administration Point
PDP: Policy Decision Point

Fig. 4. XACML Architecture

Policy Syntax and Semantics.

Each XACML policy is basically specified using a Policy element which con-
sists of a Target element that specifies the conditions when the policy is
applicable, and one or more Rule elements that contain Boolean expressions
specifying permit or deny authorization conditions. In addition, Rule can be
evaluated in isolation to form a basic unit of management and can be reused
in multiple policies when PolicySet is used to specify multiple policies si-
multaneously. XACML also provides a flexible way to extend the semantic
knowledge to support application-specific access control policies with an ex-
tensible Rule-combining (or Policy-combining) algorithm.

62 Naizhen Qi and Michiharu Kudo

Figure 5 shows an example2 for a XACML policy corresponding to the
third rule R3 of Figure 2. The Target element specifies the applicability of
some R by saying that the role of the requesting subject should be Reviewer-
Name and the requested action should be read. The policy R consists of three
Rules, R3-1, R3-2, and R3-3.

R3-1 signifies that an access to the review summary element is permit-
ted. Note that this rule does not indicate anything about subordinate nodes,
since the xpath-node-equal matching function checks the access only for
the specified node, which is a review summary element. R3-2 signifies that
a read access to an entry element and its subordinate nodes is permitted
when the name of the requesting subject is identical to the value specified in
the reviewerName element. The semantics of the propagation to subordinate
nodes is handled by the xpath-node-match matching function. R3-3 states
that a read access to the authorName element is denied.

These three rules are combined by the denial-overrides algorithm,
which basically means that if any rule evaluates to deny, then the result
of the rule combination should be deny. For example, R3-2 permits read ac-
cess to the authorName element while R3-3 explicitly denies the access. Then
the denial -overrides algorithm concludes that the access to the entry
element should be denied. In addition, there are several other rule combin-
ing algorithms in the XACML specification, such as first applicable and
only-one applicable.

Decision Combining Algorithms

Each rule can specify a rule combining algorithm which defines a procedure
for arriving at an authorization decision when the individual results of the
evaluations of a set of rules or policies are provided. Various rule combin-
ing algorithms, in particular, Permit-overrides, Only-one-applicable, and
First-applicable, are supported besides the
Deny-overrides algorithm of the previous example.

The Permit-overrides algorithm is a procedure such that if there exists
any rule that evaluates to permit, then the decision is permit. However, if all
of the rules evaluate to not applicable, or some rules evaluate to deny but
some evaluate to not applicable, then the decision is deny.

The Only-one-applicable algorithm says that if more than one rule ap-
plies, then the decision is indeterminate. If no rule applies, then the result is
not applicable. If only-one policy applies, the decision is evaluated by that
rule.

The First-applicable algorithm is a procedure such that the rules are
evaluated in the order of appearance in the policy. The first rule such that the
2 The syntax used in Figure5 is somewhat abbreviated due to space lim-

itations. The exact URI specification of the rule-combining algorithm is
“urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides”.

Access Control Policy Languages in XML 63

<Policy xmlns:rs="reviewpaper.xsd" PolicyId="R3"

RuleCombiningAlgId="deny-overrides">
<PolicyDefaults><XPathVersion>Rec-xpath-19991116</XPathVersion>
</PolicyDefaults>
<Target>
<Subjects><Subject><SubjectMatch MatchId="string-equal">
<AttributeValue DataType="string">Reviewer</AttributeValue>
<SubjectAttributeDesignator AttributeId="role" DataType="string"/>
</SubjectMatch></Subject></Subjects>
<Actions><Action><ActionMatch MatchId="string-equal">
<AttributeValue DataType="string">read</AttributeValue>
<ActionAttributeDesignator AttributeId="action-id"

DataType="string"/>

</ActionMatch></Action></Actions>
</Target>
<Rule RuleId="R3-1" Effect="Permit">
<Target><Resources><Resource><ResourceMatch MatchId="xpath-node-equal">
<AttributeValue DataType="xpath-exp">//rs:review summary</>
<ResourceAttributeDesignator AttributeId="resource-id"

DataType="xpath-exp"/>

</ResourceMatch></Resource></Resources></Target>
</Rule>
<Rule RuleId="R3-2" Effect="Permit">
<Target><Resources><Resource><ResourceMatch MatchId="xpath-node-

match">
<AttributeValue DataType="xpath-exp">//rs:review summary/rs:entry</>
<ResourceAttributeDesignator AttributeId="resource-id"

DataType="xpath-exp"/>

</ResourceMatch></Resource></Resources></Target>
<Condition><Apply FunctionId="string-equel">
<AttributeSelector DataType="xpath-exp"
RequestContextPath="//rs:review summary/rs:entry/rs:review/rs:reviewerName
/rs:text()"/>
<SubjectAttributeDesignator AttributeId="subject-id"

DataType="xpath-exp"/>

</Apply></Condition>
</Rule>
<Rule RuleId="R3-3" Effect="Deny">
<Target><Resources><Resource><ResourceMatch MatchId="xpath-node-

match">
<AttributeValue DataType="xpath-exp">//rs:review summary/rs:entry

/rs:authorName</>
<ResourceAttributeDesignator AttributeId="resource-id"

DataType="xpath-exp"/>

</ResourceMatch></Resource></Resources></Target>
</Rule>
</Policy>

Fig. 5. XACML access control policy corresponding to R3

64 Naizhen Qi and Michiharu Kudo

access target matches and the optional conditions match, is used to decide
the result of the request.

These decision combining algorithms allow administrators to provide var-
ious levels of security restrictions on their sensitive data.

Access Request.

XACML defines the format for the request message that provides context
for the policy-based decisions. Each request may contain multiple Subject
elements and multiple attributes for the Subject, Resource and Action.

Figure 6 shows a sample XACML Request Context format where Robert
requests a read access for the first entry element of the review summary XML
document. The request context consisting of three sub-structures, Subject
information, Resource information, and Action information, each consisting
of one or more attribute type-value pairs. In this example, subject-id and
role are attribute types and Robert and reviewerName are attribute values,
respectively. It is assumed that those attributes are given by a separate au-
thentication mechanism that is out of the scope of the XACML specification.

Regarding to resource information, the XACML request context can con-
tain the target XML data as relevant information about the target resource.
The ResourceContent element contains the review summary XML data with
the namespace prefixed by rs:. The target XML document is referred to from
the access control policy using the AttributeSelector function. For exam-
ple, rule R3-2 of Figure 5 specifies the path, //rs:review summary/rs:entry
/rs:review/rs:reviewerName/text(), which refers to Robert. This is one
of the advantages of the XACML policy model that allows the policy to refer
to any of the values of the target XML data as embedded in the Request
Context and to compare those values against constant values.

Access Response.

The response message defined by XACML provides the format for conveying
the Decision (Deny or Permit) and the Status of an access request evaluation
as Figure 7 shows. In our example, the decision is Deny since the requested
entry element contains an AuthorName element that should not be acces-
sible to the Reviewer. The EntireHierarchy scope parameter specified in
the Resource of the XACML Request Context defines the semantics of the
response context such that if any of the descendants nodes of the requested
node have one or more access-denial nodes, then the resulting decision should
be a denial.

4.3 WS-Policy

WS-Policy Framework [20] is a W3C standard Web services governance spec-
ification that enables a service to specify what it expects of callers and how

Access Control Policy Languages in XML 65

<Request>

<Subject>
<Attribute AttributeId="subject-id" DataType="string">
<AttributeValue>Robert</AttributeValue> </Attribute>

<Attribute AttributeId="role" DataType="string">
<AttributeValue>Reviewer</AttributeValue>

</Attribute>
</Subject>
<Resource scope="EntireHierarchy">
<ResourceContent>

<rs:review summary xmlns:rs="urn:review summary:schema">
<rs:notificationDue>6/30/07</rs:notificationDue>
<rs:entry>
<rs:paper id="0120">XML Policy Model</rs:paper>
<rs:authorName>Carol</rs:authorName>
<rs:review><rs:reviewerName>Robert</rs:reviewerName>
<rs:rating>3.5</rs:rating>
</rs:review>
<rs:result status="final">Accept</rs:result>

</rs:entry>
</rs:review summary>

</ResourceContent>
<Attribute AttributeId="resource-id" DataType="xpath-expression">
<AttributeValue>//rs:review summary/rs:entry[position()=1]
</AttributeValue>

</Attribute>
</Resource>
<Action>
<Attribute AttributeId="action-id" DataType="string">
<AttributeValue>read</AttributeValue>

</Attribute>
</Action>

</Request>

Fig. 6. XACML Request Context Sample

<Response>

<Result>
<Decision>Deny</Decision>

</Result>
</Response>

Fig. 7. XACML Response Context Sample

it implements its interface to grant access from callers. WS-Policy is critical
to achieve interoperability for the high-level functional operation of the Web
services.

Unlike XACL and XACML, WS-Policy defines a wrapper to hold one
or more policy assertions. The wrapper itself has limited semantics, leaving
the details to the policy assertions from various domains such as security,
privacy, application priority, user account priorities, and traffic
control.

Some of these assertions specify traditional requirements and capabilities
that will ultimately be manifested on the wire (i.e., security, traffic control).

66 Naizhen Qi and Michiharu Kudo

Some others specify requirements and capabilities that are critical to proper
service selection and usage (i.e., privacy, application priority, user account
priorities). WS-Policy provides a single policy grammar to allow both kinds
of assertions in a consistent manner. However, there are no policy assertions
defined for authorization and access control.

Policy Syntax and Semantics.

<wsp:Policy xmlns:sp="...">

<wsp:ExactlyOne>
<wsp:All>
<sp:SignedElements>
<sp:XPath>/S:Envelope/S:Body</sp:XPath>

</sp:SignedElements>
</wsp:All>
<wsp:All>
<sp:EncryptedElements>
<sp:XPath>/S:Envelope/S:Body</sp:XPath>

</sp:EncryptedElements>
</wsp:All>

</wsp:ExactlyOne>
</wsp:Policy>

Fig. 8. An WS-Policy Example

WS-Policy3 defines three components: policy expressions, policy asser-
tions, and policy operations (OnOrMore, All, and ExactlyOne). A policy is
composed of policy expressions that may each contain only one of the policy
operations, policy assertions, or policy reference. The policy expressions can
be used as containers for application-specific or service-type-specific policy
definitions. In addition, policy operations can be nested and may contain any
externally defined content. As an example, Figure 8 gives a simple policy ex-
ample in the security domain. The policy contains two policy assertions to
restrict the elements depicted by the XPath expression /S:Envelope/S:Body
so they should be either signed or encrypted.

5 Policy Modeling and Generation

XACL, XACML, and WS-Policy are expressive and powerful for policy speci-
fication, but also too complicated, especially for the users who are not experts
in their use. People also want to be able to address the underlying security
concerns in ways that are easy to understand, and so that they can identify
the particular technical implementations. Moreover, recently attention has
3 Since in Chapter 13 of Security and Web Services, WS-Policy is introduced in

details, we do not go deeply into it in this section.

Access Control Policy Languages in XML 67

been increasingly given to the techniques and tools required for architecting
enterprise-scale software solutions. Many enterprises extend the life of an ex-
isting solution by designing new business logic that manipulates existing data
resources, presenting existing data and transactions through new channels,
integrating previously disconnected systems supporting overlapping business
activities, and so on. The design of a high-quality solution therefore also calls
for early architectural decisions on privacy and security [4]. Consequently, it
is important to

• Model privacy and security concerns as carefully as any other concerns.
• Propagate the security requirements to the security policies and security

implementation inexpensively.

5.1 Policy Modeling

Policy modeling is the process to describe and capture a level of abstrac-
tion between the security policies and mechanisms, enabling the design of
implementation mechanisms to enforce multiple policies in various computing
environments without considering the underlying platform of the system and
the implementation technologies. During the policy modeling process, system
requirements, organizational security and privacy policies, and organizational
structures are analyzed to specify access control policies. In particular, orga-
nizational complexity introduces the challenge that it is difficult to identify
and agree upon a set of roles (or groups) and associated permissions (grant
or deny) within an organization that may have hundreds of roles (or groups).

Several approaches have been proposed in the area of policy modeling
with UML. Brose et al. [3] propose integrating access control design into the
software development process by extending UML to specify access control
policies. This approach does not emphasize the compliance between different
levels of the policies, requirements, and system designs. Jurjens proposes in
[8] to specify requirements for confidentiality and integrity in analysis models,
also on the basis of UML. Their underlying security models are multi-level
security and mandatory access control.

In the area of models for RBAC, Lodderstedt et al. [14] proposes a mod-
eling language for integrating the specifications for RBAC into application
models. These approaches focus more on system implementation represen-
tations that are not easy for the business stakeholders to capture for the
enterprise-scale security requirements at a higher business level.

Johnston introduces an approach in [13] that provides a set of primitive
modeling elements to allow the users to specify the intention of the security
within the requirements process. They generalize the security issues as four
domains: Privacy, Authentication, Authorization, and Audit. Figure 9
demonstrates the dependencies between these four domains. For example, it
is not possible to implement authorization without authentication. On the
other hand both authorization and authentication rely on auditing, not for

68 Naizhen Qi and Michiharu Kudo

implementation but to ensure that any exceptions are captured for analysis
and for non-repudiation. Privacy relies on both authentication and auditing.

Authentication

Privacy

Authorization

Audit

Fig. 9. Dependencies between Security Domains

Primitive intentions that are common in these four domains are addressed
and presented as stereotypes that can be applied to the UML elements in
capturing the business requirements. Figure 10 shows an example of the spec-
ification of an authentication service based on Johnson’s approach [13]. In
the figure, the messages between the customer and the online bank must
be authenticated when the customer performs a wire transfer. The overall
security-related concerns can be defined without considering the underlying
technologies such as the encryption algorithms and the message formats, etc.

:Customer

<<authentication>>

transfer(accountNo., amount)

<< authentication >>

balance

:Bank

Fig. 10. A Sequence Diagram Example with an <<authentication>> Stereotype

5.2 Policy Generation

With policy modeling, the security intentions are explicitly defined in an ab-
stract manner independent of the underlying platform and the implementation
technologies. The software developers can easily capture the security require-
ments through policy modeling as well. However, the security implementa-
tion by hand is difficult and errors often arise if the software developers lack
sufficient experience, and therefore the low-level development such as policy
definition usually calls for support tools to avoid various problems.

Access Control Policy Languages in XML 69

Lodderstedt et al. [14] not only propose a methodology for modeling se-
curity policies, they also created an EJB generator which allows software de-
velopers to generate EJB applications with fully configured role-based access
control including role definitions, method permissions, role assignments, and
authorization constraints without specifying the policies by hand. The soft-
ware developers are therefore able automatically implement the role-based
access control enforcement mechanisms without complicated EJB coding.

Differing from Lodderstedt et al. the approach of [14], Satoh et al. [17]
propose a framework to create security policies in WS-Policy. The frame-
work enables the users who are not-security experts to configure authenti-
cation policies easily in a platform-independent manner on the basis of the
application semantics. The key point is that an abstract security qualifier,
Authentication, is defined to specify an identity that should be authenti-
cated, and then the security qualifier is transformed to a platform-specific
security policy using security policy templates. In this approach, the concrete
security policies are created using the security policy template for authentica-
tion shown in Figure 11, where the parameters are represented using brackets
like {DOMAIN NAME}. MileageNo, for example, the real domain name replaces
{DOMAIN NAME} in policy transformation. As a result, the software developers
can specify the security policies without detailed knowledge of WS-Policy.

<wsp:Policy xmlns:sp="http://...">

<Authentication>
<CallerToken>
<securityDomain domainName="{DOMAIN NAME}"/>

{CALLER TOKEN ASSERTION}
<TrustToken method="{TRUSTMETHOD TYPE}">
<securityDomain domainName="{DOMAIN NAME}"/>

{{TRUST TOKEN ASSERTION}}
</TrustToken>

</CallerToken>
</Authentication>

</wsp:Policy>

Fig. 11. Security Policy Template

6 Conclusions

In this chapter, we have discussed the main features of two security policy
languages and one policy framework. XACL and XACML are expressive and
powerful in specifying access control policies for the XML data, while WS-
Policy framework focuses more on security-related functional operation of the
services. Also, we addressed the policy modeling and generation tools that
have been developed to help users in capturing the security requirements
during the design, and to develop the security policies and functions during

70 Naizhen Qi and Michiharu Kudo

the implementation. However, as more and more enterprises recognize the
need for security solutions to protect their data, many problems remain. For
example, how to integrate the security functions into the existing systems
efficiently and inexpensively, and how to verify the relationships between the
security requirements and the implementations.

References

1. D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Transaction
on Software Engineering and Methodology, Vol. 11(2), pp. 256-290, 2002.

2. P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter: Enterprise Privacy
Authorization Language (EPAL 1.1) Specification. IBM Research Report, 2003.
Available at http://www.zurich.ibm.com/security/enterprise-privacy/epal.

3. G. Brose, M. Koch, and K.-P. Lohr: Integrating Access Control Design into the
Software Development Process. In Proceeding of the 6th International Conference
on Integrated Design and Process Technology (IDPT), 2002.

4. A. Brown, S. Johnston, and K. Kelly: Using service-oriented architecture and
component-based development to build Web service applications. Rational Soft-
ware White Paper. Available at http://www-128.ibm.com/developerworks/
rational/library/content/03July/2000/2169/2169.pdf.

5. A. Dardenne, A. van Lamsweerde, and S. Fickas: Goal-directed Requirements
Acquisition. Science of Computer Programming, Vol. 20(1-2), pp. 3-50, 1993.

6. A. Fuxman, R. Kazhamiakin, M. Pistore, and M. Roveri: Formal Tropos: lan-
guages and semantics. University of Trento and IRST, Trento, Italy, 2003.

7. J.V. Guttag and J.J. Horning, with S.J. Garland, K.D. Jones, A. Modet, and
J.M. Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag,
1993.

8. J. Jurjens: Towards Development of Secure Systems using UMLsec. In Proceedings
of Fundamental Approaches to Software Engineering, 4th Internacional Confer-
ence, pp. 187-200, 2001.

9. M. Kudo and S. Hada: XML Document Security based on Provisional Autho-
rization. 7th ACM Conference on Computer and Communications Security, pp.
87-96, 2000.

10. OASIS eXtensible Access Control Markup Language (XACML). OASIS (2002).
11. S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian: Flexible Support

for Multiple Access Control Policies. ACM Transactions on Database Systems,
Vol. 26(2), pp. 214-260, 2001.

12. S. Jajodia, P. Samarati, and V.S. Subrahmanian: A Logical Language for Ex-
pressing Authorizations. In Proceedings of 1997 IEEE Symposium on Security
and Privacy, pp. 31-42, 1997.

13. S. Johnston: Modeling security concerns in service-oriented archi-
tectures. Rational Software White Paper. Available at http://www-
128.ibm.com/developerworks/rational/library/4860.html. (2004)

14. T. Lodderstedt, D. Basin, and J.Doser: SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In 5th International conference on The Uni-
fied Modeling Language, pp. 426-441, 2000.

15. The Platform for Privacy Preferences 1.1 (P3P 1.1). Available at
http://www.w3.org/TR/2006/NOTE-P3P11-20061113/.

Access Control Policy Languages in XML 71

16. J. Rumbaugh, I. Jacobson, and G. Booch: The Unified Modeling Language Ref-
erence Manual. Addison-Wesley, 1999.

17. F. Satoh, Y. Nakamura, and K. Ono: Adding Authentication to Model Driven
Security. International Conference on Web Services 2006, pp. 585-594, 2006.

18. J.M. Spivey: The Z Notation: A Reference Manual. 2nd edition, Pentice-Hall,
Englewood Cliffs, NJ, 1992.

19. The Unified Modeling Language (UML) Version 2.1.1. Available at
http://www.omg.org/technology/documents/formal/uml.htm

20. Web Services Policy 1.2 - Framework (WS-Policy). Available at
http://www.w3.org/Submission/WS-Policy/.

4

Database Issues in Trust Management and
Trust Negotiation

Dongyi Li1, William Winsborough1, Marianne Winslett2 and Ragib Hasan2

1 Department of Computer Science, University of Texas at San Antonio,
dli@cs.utsa.edu, wwinsborough@acm.org

2 Department of Computer Science, University of Illinois at Urbana-Champaign,
(winslett,rhasan)@cs.uiuc.edu

Summary. Trust management is the process of managing authorization decisions
in a decentralized environment where many of the participants do not have pre-
established trust relationships, such as logins and passwords, with one another. Trust
management is important for enterprise-level and cross-organizational database ap-
plications such as supply chain management, enterprise resource planning, and cus-
tomer relationship management. Trust management research may also interest the
database research community because of the former’s affinity for a Datalog-based
world, in which a query (authorization request) launches a multi-site search for a
proof of authorization. To complicate the process, sites have autonomy and may not
always cooperate in proof construction; it is not always obvious where to find the
facts and rules needed to construct a proof; and attempts to access particular facts
and rules may spawn new authorization requests.

1 Introduction to Trust Management

Authorization is one of the most important problems in computer security
and privacy. It lies at the heart of meeting the objectives of confidentiality,
integrity, and availability. Within a single organization, pre-established trust
relationships are used to assign authorizations and prearranged information
such as login names and passwords can serve as the basis for making autho-
rization decisions at run time. For instance, an enterprise has pre-established
trust relationships with its employees, so it is necessary only to authenticate
that a certain resource request is being made by a certain employee for the
request to be given appropriate authorization.

On the other hand, when resource provider and resource requester belong
to different organizations or have no prior relationship whatsoever, there are
no pre-existing trust relationships. This problem can be mitigated slightly
by using manual procedures for cross-domain authentication and authoriza-
tion, such as maintaining local logins and passwords (or lists of X.509 iden-
tities) for all employees in a partner company. However, even in the case of

74 D. Li, W. Winsborough, R. Hasan, M. Winslett

cross-organizational resource sharing, this imposes an excessive administrative
burden in our world of rapidly changing organizational structures and part-
nerships. It becomes entirely ad hoc, chaotic, and unmanageable when the
requirements for authorization have nothing to do with formal organizational
affiliations, such as a senior citizen discount or letting family and friends ac-
cess an on-line photo album. This is because the approach relies too heavily
on pre-established trust relationships.

Over the last 10–15 years, researchers have proposed new techniques that
enable on-line parties to establish trust on the fly, as the need arises. Bina et
al. proposed using characteristics other than identity, attested to by known
authorities in digital certificates, as a basis for authorization on the Inter-
net [8]. Blaze et al. introduced a complementary approach to authorization
based on delegation of privileges and coined the term trust management to
describe it [11]. Ellison et al. introduced a similar scheme called SPKI [22].
Rivest et al. introduced a scheme called SDSI [54] that provides an ingenious
way to introduce names and bind them to public keys controlled by indi-
viduals and groups, which greatly facilitates identifying authorized principals
electronically. Following these seminal works, a great deal of work has been
done, much of which we will survey in this chapter.

Trust management systems typically use cryptographic credentials to con-
vey information relevant to authorization decisions. The authorization deci-
sion determines whether a given set of credentials demonstrate that a given
request to access a resource, such as a web or peer-to-peer service, is autho-
rized, which is to say that the access request complies with current policy gov-
erning that resource. This raises two additional problems that we also survey
here. First, the credentials are issued in a decentralized manner, and somehow
the relevant credentials need to be collected or otherwise made available to
the authorization evaluation process. Second, some credentials carry sensitive,
confidential information, and may need to be subject to access control them-
selves when dealing with an unfamiliar resource provider or requester. The
same may also be true of policy: an access control policy may give clues about
the nature of the resource it protects. For example, if a patient’s prescription
can be viewed only by their pharmacist or by their parent, then one can guess
that the prescription is for a child. To preserve the privacy of the resources
that they protect, policies themselves may need protection just like any other
resource. In other words, access to the contents of a policy may need to be
governed by another access control policy. These additional authorization de-
cisions can also be based on credentials. Thus, there is a need for a process
of credential exchange in which both parties seek to enable a positive au-
thorization decision for the main resource request, while also supporting the
additional authorization decisions that may be necessary to achieve this. This
process is trust negotiation [64, 65], an automated approach to establishing
bilateral trust between two parties at run time.

Current and emerging practice implements authorization decisions in mid-
dleware or, often, even in the application. Consequently, the goal of this

Trust Management and Trust Negotiation 75

chapter is not to discuss the integration of trust management techniques with
database technology. Rather, it is to present problems that arise in designing
and implementing trust management systems, many of which are reminiscent
of problems from database research. In particular, many trust management
systems have foundations based on Datalog, a language used extensively in
deductive database systems. Authorization decisions in this class of trust man-
agement systems are obtained by evaluating a query involving the client and
the requested resource. Evaluation in general requires collecting data and
rules from distributed repositories. Our hope is that these and other overlaps
will stimulate greater interest in trust management issues on the part of the
database community.

The notion of the term “trust management” that we survey in this chap-
ter refers to authorization systems that support principally human agents in
defining security policies based on their own judgments of the characteristics
of system participants. The focus of research in this area is on providing pol-
icy language features and corresponding enforcement mechanisms that meet
the needs of policy authors for requirements such as scalability and high as-
surance in decentralized environments. There is another kind of system some-
times dubbed “trust management” that has a rather different aim, and it
is important to be clear that this other type of system is not a subject of
this chapter. This sort of system is a bit like a reputation system. It seeks
to estimate the trustworthiness of entities within the system by automated
or semi-automated means, by compiling and aggregating the evaluations of
other parties who have interacted with those entities [34].

The remainder of this chapter is structured as follows. In Section 2 we
present the basic notions and aims of trust management. In Section 3 we sur-
vey the principal contributions to the field to date. In Section 4 we discuss
issues in the evaluation of authorization queries based on considerations such
as the distributed definition and storage of credentials and other policy state-
ments. In Section 5 we discuss issues and work in automated trust negotiation.
In Section 6 we discuss open issues and trends.

2 What is Trust Management?

Traditional access control models base authorization decisions on the identity
of the principal who requests a resource. In an operating system, this iden-
tity may be a user name that must appear on an access control list (ACL)
associated with a file, if access to the file is authorized. In a large enterprise,
an identity may be a distinguished name mentioned in a Public Key Infras-
tructure (PKI) certificate. In these and similarly closed environments, the
identities of all authorized resource requesters are presumed to be known to
the resource provider, or at least to some local administrator who aggregates
identities into groups or roles to which the resource provider can grant ac-
cess. However, the number of autonomous services that are administered in

76 D. Li, W. Winsborough, R. Hasan, M. Winslett

a decentralized manner (i.e., within different security domains) has increased
enormously on the Internet. As a result, services are often provided to clients
whose identities are not previously known to the service provider. Similarly,
the participants in a peer-to-peer system need to establish mutual trust in
one another. In such a decentralized environment, the traditional access con-
trol mechanisms such as ACLs cannot be used to secure the system without
excluding vast numbers of valuable and well-intentioned clients and peers.

The trust management (TM) approach, first developed by Blaze et al. [11],
aims to provide a basis for authorization in highly decentralized environments
by enabling resource owners to delegate authority to other entities who will
help them identify the appropriate requesters to authorize. In this manner,
resource owners and other policy authors can enlist the assistance of appro-
priate authorities in determining the suitability of individual requesters for
authorization.

Trust management relies on digital credentials, which are unforgeable
statements signed by their issuer. Typically, a digital credential contains an
assertion about the properties of one or more principals mentioned in the
credential. The best-known standard for digital credentials is X.509v3 [31],
though many alternatives exist. Most of these schemes rely on public key cryp-
tography: the credential issuer signs the credential using its private key, and
anyone can verify the contents of the credential by obtaining the correspond-
ing public key and checking the signature. In the US, recent legislation such
as the Sarbanes-Oxley Act has forced the widespread adoption of the pub-
lic key infrastructures needed to support digital credentials. Today’s digital
credentials are typically identity certificates, i.e., they simply say what pub-
lic key is associated with a particular principal. However, current credential
standards already support the inclusion of additional information describing
a principal’s properties, such as one would need for a digital employee ID,
driver’s license, or birth certificate.

In TM systems, security policy is made by local administrators to specify
access control rules on local resources. Blaze et al. [10] said that trust man-
agement systems combined the notion of specifying security policy with the
mechanism for specifying security credentials. The authorization semantics of
most TM systems is monotonic in the sense that if any given action is ap-
proved when given a set of evidence E (i.e., policies and credentials), then it
will also be approved when given any superset of E. This means that no nega-
tive evidence is allowed in the system. Monotonicity ensures fail-safe behavior
in which no potentially dangerous action is allowed by default, simply be-
cause of an inability to find negative credentials. This is especially important
in decentralized environments due to the many factors that can prevent one
from obtaining complete information about all the credentials in the system
(network interruption, uncooperative credential repositories, lost information,
etc.).

Most discussions of TM systems use the terms “certificate” and “creden-
tial” more or less interchangeably. However, unlike certificates in public key

Trust Management and Trust Negotiation 77

infrastructure (PKI) systems, such as X.509 or PGP, which bind public keys
to identities, certificates and credentials in TM systems do not typically bind
public keys to identities, but rather to other information on which authoriza-
tion decisions are based.

In the early TM systems PolicyMaker [11] and KeyNote [9], the informa-
tion bound to a key by a credential is essentially an authorization to use a
specific resource. In this sense they are quite similar to capabilities, which
were first introduced by Dennis and Van Horn [20] in the context of operating
systems to specify what privileges (e.g., a set of actions on certain objects
in the operating systems) the holder (e.g., subjects in operating systems) of
the capability may use. A delegated capability is copied (or moved) from one
holder to another.

Just as the holder of a car key can start the corresponding car, whomever
holds a capability can use the privileges it specifies. While an operating sys-
tem can rely on protected memory to implement assignment and delegation of
privileges, in TM systems, credentials are used to bind capabilities to public
keys. Credentials may optionally also grant the right to further delegate the
capability. Chains of such credentials can be used to document a sequence of
delegations of privileges from the resource owner to the requester, and thus
can prove that the requester indeed is authorized for the requested resource.
Each credential in the chain is signed by using the public key in the previ-
ous credential; the first is signed by the resource owner or his designee. The
requester proves she is the authorized entity by answering challenges or oth-
erwise demonstrating possession of the public key in the last credential in the
chain.

When privileges are specified directly in the credentials, the authorization
decision is quite simple. However, additional expressive power can greatly fa-
cilitate scalability in environments such as the Internet where service providers
may wish to authorize large numbers of principals. Managing the delegation
of access rights, for instance, to all students at a given university requires is-
suing a credential to each student for each resource to which they have access
(library, cafeteria, gym, etc.). On the other hand, by utilizing credentials that
characterize their owners as being students, the same student ID credential
can be used to authorize a wide range of actions.

Indeed, later TM systems (e.g., to some extent SPKI/SDSI [18, 54, 22], and
certainly RT [46] and Cassandra [5]) use credentials to characterize the holders
of the credentials. These credentials need not contain specific authorizations,
but provide more general attributes of the credential holders (e.g., student,
US citizen, licensed driver born in 1960, etc.), which can be reused by various
resource owners to make their access control decisions. This enables much
more scalable policy definition. For instance, anyone who is 21 can purchase
alcohol legally. It would be very unsatisfactory to require on-line shoppers to
obtain a credential that can be used solely for purchasing alcoholic beverages
from a specific vender, as a purely capability-based approach would require. A
much more viable solution is to enable all venders of all age-restricted products

78 D. Li, W. Winsborough, R. Hasan, M. Winslett

to utilize any suitable credential that the client already happens to have (e.g.,
a digital drivers license or passport).

Besides the basic notion of delegation in which one entity gives some of
its access rights to another entity, there are two additional delegation idioms
that are most often discussed in the designs of trust management systems: ap-
pointment and threshold delegation. In the case of appointment, the appointer
has the (appointment) right to confer on another (the appointee) an attribute
or right that the appointer may not herself have. (In general, the conferred
right can itself be an appointment right.) Threshold delegation is also called
k-out-of-n (n ≥ 1 and n ≥ k ≥ 1) delegation, meaning the authority is dele-
gated to n parties, each of which only gets a fragment of it. It is effective only
if at least k of these parties issue their requests or exercise their authorities
in concert.

Compliance checking (also called policy evaluation or query evaluation)
answers the question: Does a set of credentials prove that a request complies
with the security policy associated with a given resource? The process of eval-
uating a query involves finding a chain of credentials that delegate authority
from the resource owner to the requester. This process is also called credential
chain discovery [47]. As we shall see, it can be helpful to imagine credential
chains in graphical terms. To a first approximation, a credential chain can
be thought of as a path from the resource provider to the requester in which
nodes are principals and edges are credentials. However, the details of such
a credential graph depend on the TM system and, in general, a chain may
correspond to a richer subgraph structure.

As mentioned earlier, trust negotiation is the process of establishing bi-
lateral trust at run time. Trust negotiation uses verifiable, unforgeable digital
credentials that describe principals’ properties, together with explicit policies
that describe the properties that a principal must possess in order to gain
access to a particular resource. When Alice wishes to access a resource owned
by Bob, she and Bob follow one of many proposed trust negotiation protocols
to determine whether she has the right properties, i.e., whether her credentials
satisfy the policy that Bob has specified for access to that resource.

To show how trust negotiation works, let us consider the scenario in Figure
1. Suppose that Alice wants to purchase prescription medication over the web
from Bob’s pharmacy, which she has never visited before.

Bob’s pharmacy sends her its sales policy, which will allow Alice to
make the purchase if she presents a prescription issued to her by a
doctor licensed to practice medicine in Bob’s country.

Since Alice has no prior experience with Bob’s pharmacy, she tells
Bob that he must prove that he is a licensed pharmacist before she
will reveal her prescription. In response, Bob presents a state-issued
pharmacist’s credential. Alice verifies that the credential is properly
signed, and follows a short protocol that allows Bob to prove that he

Trust Management and Trust Negotiation 79

Fig. 1. Example trust negotiation

owns the pharmacist credential.

Alice is now willing to send her prescription to Bob. She sends that
along with proof that the prescription was issued by a doctor within
the country, in the form of a credential signed by a national agency
that attests that her doctor is licensed to practice medicine. Her doc-
tor should have given her this credential the first time she asked for a
digital prescription; if he did not, she can query him now (credential
discovery) to obtain it.

Bob verifies the signature on the doctor’s license certificate, and then
verifies that the prescription was signed by the doctor mentioned in
the license certificate. He also follows a short protocol that allows
Alice to prove that she is the patient mentioned in the credential.
Afterwards, Bob’s policy has been satisfied, so he allows Alice to pur-
chase the medication.

Under traditional identity-based authorization, Alice and her doctor would
have to follow lengthy out-of-band procedures to establish the same level of
trust with the pharmacy web site. Both would have to set up accounts before-
hand at the pharmacy web site, and Bob would need to see paper credentials
to ensure that Alice’s doctor really is a doctor. So that Bob can know that
the prescription really is for Alice, she will have to give her pharmacy account
number to her doctor so that the doctor can mention it in the prescription.
Further, the doctor must submit the prescription directly to the site, so that
Bob knows that the doctor really did create it. In addition to the hassle of

80 D. Li, W. Winsborough, R. Hasan, M. Winslett

creating accounts and remembering passwords, this traditional approach will
severely limit Alice’s options for shopping around for the best price. The trust
negotiation approach overcomes all of these shortcomings: Alice and Bob meet,
disclose their policies, and exchange credentials to establish a trust relation-
ship instantly. Further, all the negotiating steps listed above can be carried
out automatically by small software agents acting on their owners’ behalf, so
that trust establishment is transparent to the human participants.

The pharmacy example shows only one possible way of establishing trust,
based on explicit disclosure of credentials and policies. Researchers have in-
vestigated many alternative approaches, each with its own advantages and
disadvantages, and we will describe them later in this chapter.

3 History

In this section, we survey the principal contributions to date. We will introduce
each system by explaining what features it has, what main contributions it
makes and the applications its designers had in mind.

3.1 PolicyMaker and KeyNote

PolicyMaker, developed and defined by Blaze et al. [11], was the first trust
management system. It was designed as a proof of concept for the design
principles of trust management with a minimalist prototype implementation.
For example, the PolicyMaker system does not take responsibility for cryp-
tographic verification of credentials. Instead, these verifications must be done
by the application that call the trust management system.

In PolicyMaker, assertions (security policies and credentials) have the form
“<Source> ASSERTS <AuthorityStruct> WHERE <Filter>.” ASSERTS
and WHERE are keywords in PolicyMaker, while the syntax of the fields
<Source>, <AuthorityStruct> and <Filter> are application-dependent. The
<Source> field identifies the authority that makes this assertion, the <Author
ityStruct> field contains the subjects to whom this assertion applies, and
the <Filter> field has an application-specified string “<action string>” that
must be satisfied for the assertion to hold. The whole assertion states that the
<Source> trusts the subjects to be associated with <action string>.

KeyNote [9, 10] is a direct descendant of PolicyMaker, and follows most
of its design principles. However, unlike PolicyMaker whose assertions are
fully programmable and application-dependent, KeyNote’s [9] assertions are
written in a specific, concise and human readable assertion language. The
assertion language is defined to be simple and to be supported by a small
interpreter. In addition, the expressiveness of the assertions is carefully limited
so as to ensure that resource usage is proportional to policy size.

Figure 2 shows a sample KeyNote assertion that states that the authorizer
delegates to either of the licensees for read access on file “/etc/passwd.” The

Trust Management and Trust Negotiation 81

KeyNote-Version: 1
Authorizer: rsa-pkcs1-hex: “1234abcd”
Licensee: dsa-hex: “9876dcba” ‖ rsa-pkcs1-hex: “6789defg”
Comment: Authorizer delegates read access to either of the licensees
Condition: ($file == “/etc/passwd” && $access == “read”) → {return “OK”}
Signature: rsa-md5-pkcs1-hex: “f00f5673”

Fig. 2. An example KeyNote assertion.

example also illustrates the fact that KeyNote takes responsibility for verifying
cryptographic signatures, and thus reduces the workload of the calling appli-
cations and better enforces the security policy. Compared to PolicyMaker,
KeyNote aims to be a relatively complete software solution for authorization.

KeyNote assertions bind public keys to authorizations for specific security-
critical resources. As in capability-based systems, KeyNote’s authorization
decision procedure is quite straightforward, and does not require resolving
the name or identity of the requester. Security-critical actions are given by a
set of name, value bindings called an action environment, which is specified
by the calling application. Assertions contain a condition field that expresses
constraints on these bindings that must be satisfied for the assertion to par-
ticipate in a proof of compliance with the authorization policy governing the
action. For example, in the assertion shown in Figure 2, $access is a name and
the constraint on the value assigned to this name is that it must be equal to
“read”. So if the application binds “action” to “read” whenever the requested
operation is a read, then this credential can be used only to grant read access.

3.2 SPKI/SDSI

SPKI/SDSI [18] merged the SDSI [54] and the SPKI [22] efforts together
to achieve an expressive and powerful trust management system. SDSI (pro-
nounced “sudsy”), short for “Simple Distributed Security Infrastructure,” was
proposed as a new public-key infrastructure by Rivest and Lampson. Concur-
rently, Carl Ellison et al. developed “Simple Public Key Infrastructure,” or
SPKI (officially pronounced “s-p-k-i” [18], but sometimes informally called
“spooky”).

SDSI’s greatest contribution is its design of local and extended names,
which are bound to keys through the use of SDSI name certificates (see below),
and which solve the problem of globally unambiguous naming. The owner of
each public key can define names local to a name space that is associated with
and identified by that key. For example, “KAlice bob” is an example of a local
name in which “bob” is an identifier and KAlice is a globally unique key that
we assume here belongs to a specific principal, Alice, who has sole authority
to define bindings for the local name. Alice can define “KAlice bob” to refer
to a particular key “KBob” by issuing a tuple of the form (KAlice, bob, KBob,
1). This in effect says that the principal that Alice refers to as bob has the

82 D. Li, W. Winsborough, R. Hasan, M. Winslett

key KBob. (The “1” just indicates that the certificate is valid.) Given such a
binding, a reference to the SDSI name “KAlice bob” can be resolved to the
key KBob, which Bob can prove he controls when he needs to prove that he
is the referenced principal.

Whereas a local name is a key followed by an identifier, an extended name
is a key followed by two or more identifiers. The meaning of these are the result
of multiple bindings of local names. For instance, if Bob were to issue the cer-
tificate (KBob, friend, KCarol, 1), then the extended name “KAlice bob friend”
could be resolved to KCarol. This brings up another important point about
SDSI names; they can refer to more than one principal. For instance, Bob
could also issue (KBob, friend, KDave friend, 1) with the effect that “KAlice

bob friend” would refer not only to Carol, but to all of Dave’s friends as well.
Thus, SDSI names (both local and extended) can denote groups of keys and,
equivalently, properties of key owners.

In general, SDSI name certificates are 4-tuples of the form (K, A, S, V),
in which K is the key used to issue the certificate, “K A” is the local name
being defined, S is either a key, a local name, or an extended name, and V is
a certificate validity bit.

A key point about SDSI’s use of name spaces is that names that start
with different keys are different names, so there is no danger of controllers of
different public keys accidentally trying to bind the same name in conflicting
ways. In other words, global uniqueness of names can be achieved without
necessitating coordination among naming authorities.

While SDSI contributed to SPKI/SDSI name certificates that are used to
bind names to public keys, SPKI contributed authorization certificates. These
are 5-tuples of the form (K, A, D, T , V) in which K is the key issuing the cer-
tificate, A is the subject of the certificate, D is a delegation bit which indicates
whether the authorization being conveyed to A can be further delegated by A,
T is a tag that specifies the authorization being granted, and V is a certificate
validity bit. While in the original design of SPKI, A was required to be a key,
in SPKI/SDSI, A can also be a SDSI name. For example, a certificate such
as (KAlice, KDave friends, 1, downloadPhotos, 1) might indicate that Alice
allows Dave’s friends to download photos and to delegate the permission to
others. Notice that as principals are added to or removed from the group of
Dave’s friends, they automatically gain or lose this permission.

3.3 QCM and SD3

QCM [25], short for “Query Certificate Manager,” was designed at the Uni-
versity of Pennsylvania as part of the SwitchWare project on active networks.
It was designed specifically to support secure maintenance of distributed data
sets. For example, QCM can be used to support decentralized administration
of distributed repositories housing public key certificates that map names to
public keys. In the sense of access control, QCM provides security support for
the query and retrieval of ACLs. Although QCM is not designed to be a trust

Trust Management and Trust Negotiation 83

management system, it had significant impact on the TM system SD3 [32, 33]
proposed by Trevor Jim. One of the main contributions of QCM that can
be adopted by other TM systems is its design of a policy directed certificate
retrieval mechanism [25], which enables the TM evaluator to automatically
detect and identify missing but needed certificates and to retrieve them from
remote certificate repositories. It uses query decomposition and optimization
techniques, and discusses its novel solutions in terms of network security, such
as private key protection methods.

SD3 [32, 33] is the successor of QCM and inherits design features from
QCM, such as the certificate retrieval mechanism in a dynamic decentralized
certificate storage system. The SD3 project aimed to make trust manage-
ment systems easy for applications to use. To this end, SD3 is responsible
for verifying cryptographic signatures. In addition, SD3 has a credential re-
trieval mechanism that enables the evaluation of authorization decisions in
the context of distributed credential storage. (We return to this in Section 4.)
Finally, in order to guarantee returning a correct answer, SD3 implements
certified evaluations, in which a checker checks the evaluator’s outcome be-
fore passing it to the calling application. Together these features ensure that
calling applications need only specify policy, without worrying about how it
is enforced.

SD3 enables application developers to write policy statements in an ex-
tended Datalog that introduces a notion of name space in which predi-
cates and relations are defined. It extends Datalog with SDSI names. For
example, consider the following SD3 rule, which expresses the recursive
case in the definition of the transitive closure (T) of the edge relation E:
“T (x, y):-K$E(x, y), T (y, z)”. Here K is a public key, E is a local relation
name, defined in K’s name space, and K$E is a global relation name, the
definition of which is independent of the point of evaluation. The presence of
this rule in a rule base associated with a given name space says that the pair
(x, y) is in the the local relation T if it is in K’s E relation. SD3 also allows an
IP address A to be paired with its global name, such as (K@A)$E, in which
A is the IP address of an evaluation service operated by the principal that has
public key K. The address assists in locating the evaluation agent and rule
base associated with K, though the authenticity of the rule base is ensured
by using K.

We take this opportunity to introduce some Datalog terminology: the
atomic formula to the left of the :- (T (x, y) in the example) is called the
head of the rule or clause; the comma-separated list of atomic formulas to the
right is called the body. These commas represent conjunction.

3.4 RT

The RT framework [46, 48, 45] is a family of Role-based Trust-management
languages that combines the strengths of RBAC (Role-Based Access Con-
trol) [1] and the strengths of trust-management systems. Different languages

84 D. Li, W. Winsborough, R. Hasan, M. Winslett

in the family incorporate different features, but all members are designed
to permit efficient (polynomial time) evaluation of ordinary authorization
queries. Like SD3, RT is based on Datalog. However, rather than writing
arbitrary Datalog clauses, the RT policy author uses a distinct RT syntax or-
ganized around RT language abstractions whose semantics is given by a formal
translation of RT statements (i.e., credentials) into Datalog. This approach
enforces an orderly policy-definition discipline while obtaining significant ben-
efits from using what is in effect a subset of Datalog: (1) the semantics are
unambiguous and can be constructed in several well understood and equiv-
alent manners (logical entailment, fixpoint, top down, bottom up, etc.); (2)
authorization queries are easily generalized to ask, for example, which prin-
cipals are authorized to access a given resource, or which resources a given
principal is authorized to access; (3) the complexity of the RT features is eas-
ily determined by making use of established complexity results for evaluation
of Datalog queries. In addition, the way in which the Datalog clauses gener-
ated from RT statements are restricted enables RT credentials to be stored
in a manner that is more flexible than is possible with QCM or SD3. As we
will see in Section 4, because of these restrictions, RT credentials that are
stored with either their subject or their issuer can be located and retrieved as
needed during authorization query evaluation. In QCM and SD3, credentials
must be stored with their issuers.

The definition and use of roles in RT is based on and extends that of groups
in SDSI. Keys are called principals. Each principal A controls the definition
of a collection of roles of the form A.R in which R is called a role name and
is either an identifier r or, in members of the RT family of languages that
support parameterized roles, an identifier applied to a list of parameters, as
in r(t1, . . . , tk). Parameters are quite helpful for the purpose of expressing
quantitative attributes, such as age or budget, as well as for enabling roles
to express relationships between principals and data objects. For instance,
Alice.read(′/usr/alice/research′) might represent principals allowed to read
Alice’s research directory.

Certificates in RT are called statements or credentials. For concreteness,
we consider the forms these can take in RT0. There are four types of credentials
that an entity A can issue, each corresponding to a different way of defining
the membership of one of A’s roles, A.r.

• Simple Member : A.r ←− D.
With this credential A asserts that D is a member of A.r.

• Simple Inclusion: A.r ←− B.r1.
With this credential A asserts that A.r includes (all members of) B.r1.
This represents a delegation from A to B, as B may cause new entities
to become members of the role A.r by issuing credentials defining (and
extending) B.r1.

• Linking Inclusion: A.r ←− A.r1.r2.

Trust Management and Trust Negotiation 85

A.r1.r2 is called a linked role. With this credential A asserts that A.r
includes B.r2, for every B that is a member of A.r1. This represents a
delegation from A to all the members of the role A.r1.

• Intersection Inclusion: A.r ←− B1.r1 ∩ B2.r2.
B1.r1 ∩B2.r2 is called an intersection. With this credential A asserts that
A.r includes every principal who is a member of both B1.r1 and B2.r2.
This represents partial delegation from A to B1 and to B2.

Again to illustrate the technique by which semantics are given to a set
of RT0 credentials, we now present the translation to Datalog. Given a set C
of RT0 credentials, the corresponding semantic program, SP(C), is a Datalog
program with one ternary predicate m. Intuitively, m(A, r,D) indicates that D
is a member of the role A.r. Given an RT statement c, the semantic program of
c, SP(c), is defined as follows, where identifiers starting with the “?” character
are logic variables:

SP(A.r ←− D) = m(A, r,D).
SP(A.r ←− B .r1) = m(A, r, ?X) :− m(B, r1, ?X).

SP(A.r ←− A.r1 .r2) = m(A, r, ?X) :− m(A, r1, ?Y),m(?Y, r2, ?X).
SP(A.r ←− B1 .r1 ∩ B2 .r2) = m(A, r, ?X) :− m(B1, r1, ?X),m(B2, r2, ?X).

SP extends to the set of statements in the obvious way: SP(C) = {SP(c) | c ∈
C}. Now to determine whether a principal D belongs to role A.r, one simply
evaluates a query (according to any one of a variety of evaluation mechanisms)
to determine whether it is the case that SP(C) |= m(A, r,D).

RT1 adds parameterized roles to RT0, and RT2 adds logical objects to RT1.
Just as roles group together related entities so that their authorizations can be
assigned in fewer statements, logical objects logically group together objects
so that their permissions can be assigned together. RTC [44, 45] incorporates
constraint systems, carefully selected to preserve query-answering efficiency.
Constraints are very helpful for representing ranges of quantitative values and
object specifiers such as directory paths. For instance, they can very concisely
express policies such as “anyone over 65 is entitled to a senior citizen discount”
and “Alice can access the entire directory subtree of /usr/home/Alice”. RTT

provides manifold roles and role-product operators, which can express thresh-
old policies and separation-of-duty policies. RTD provides delegation of role
activations, which can express selective use of capacities and delegation of
these capacities. RTD and RTT can be used, together or separately, with
each of RT0, RT1, or RT2. The resulting combinations are written RTi, RTD

i ,
RTT

i , and RTDT
i for i = 0, 1, 2.

SDSI extended names and RT ’s linked roles both rely on agreement among
principals as to the intended meaning of role names (“identifiers” in SDSI). For
instance, a linked name such as ABET.accreditedUniversity.student is only
meaningful if there is some agreement among ABET-accredited universities as
to what it means to be a student. One technique for providing a scalable means

86 D. Li, W. Winsborough, R. Hasan, M. Winslett

of establishing such agreement is based on a structure called an application
domain specification document (ADSD) [46]. ADSDs contain natural-language
descriptions of role names that pertain to a given application domain. They
can also be used to specify other technical information useful for ensuring
consistent use of these role names, such as how many parameters of what
types are required for each role name. ADSDs are made available on the web
via a universal resource identifier (a web address) that can serve not only as
a locator, but also as an identifier of the vocabulary defined by the ADSD.
Credentials that make use of these role names can use this identifier along
with the role name to disambiguate the intended meaning.

3.5 OASIS and Cassandra

OASIS [67, 26, 28] and Cassandra [5, 6] are role-based trust management
systems that have many design considerations in common. Cassandra was in-
fluenced by the OASIS design. However, while OASIS was designed for general
purpose use, Cassandra was designed with the goal of supporting the access
control policies for a national electronic health record system.

OASIS introduced the notion of appointment. Appointment occurs when a
member of some role issues an appointment credential that will allow some user
to activate another role [67]. Thus appointers belong to roles that resemble
administrative roles in RBAC [56].

OASIS uses first-order logic clauses to represent security policy. For ex-
ample, “r1, w1 � r4” is a policy statement that means a user who is active in
role r1 and holds the appointment certificate w1 can activate the role r4.

As in RT1, roles in Cassandra are parameterized. Cassandra represents pol-
icy statements as Datalog clauses with constraints. One interesting character-
istic of Cassandra is that its expressivity can be tuned by selecting constraint
systems having differing complexity (as discussed further in Section 4).

Unlike most trust management systems, OASIS and Cassandra support
the notion of a session. In this respect, they are unique among the systems
we discuss here and thus are perhaps the most justified in calling themselves
role-based. Indeed, some researchers have been critical of characterizing lan-
guages such as RT as being role-based, because they have no notion of session.
On the other hand, the presence of sessions introduces a highly dynamic com-
ponent of system state into OASIS and Cassandra not present in other trust
management systems, which raises serious concerns about scalability in highly
distributed systems.

Cassandra makes the interesting choice of implementing some aspects of
session state within extensional Datalog relations. There are six predefined
predicates in Cassandra: permits(e, a) holds if entity e can perform action
a; canActivate(e, r) holds if e can activate role r; hasActivated(e, r) holds
if e has activated r; canDeactivate(e1, e2, r) holds if e1 has the power to
deactivate e2’s activation of role r; isDeactivated(e, r) holds if role r has been
deactivated for entity e; canReqCred(e1, e2.p(−→e)) holds if e1 is permitted to

Trust Management and Trust Negotiation 87

Fig. 3. The PCA system

request credentials issued by e2 asserting the atomic formula p(−→e). The body
of a clause having canReqCred(e1, e2.p(−→e)) as its head can specify conditions
that must be satisfied before a credential can be disclosed, which is useful in
supporting trust negotiation.

3.6 PCA

PCA (Proof Carrying Authorization) [2, 4] was designed primarily for access
control in web services. Figure 3 shows the components of the PCA system
working in a web browsing environment. HTTP proxies are used to make the
whole process of accessing a web page transparent to the web browser. The
web browser only knows the final result of either a displayed web page that it
attempted to access, or a denial message. The proxy is designed to be portable
and easily integrated into the client system without changing anything inside
the original web browser. As depicted in Figure 3, the client is responsible for
constructing a proof of authorization, which the server need only check for
correctness. This substantially reduces the burden imposed on the server by
the authorization process.

PCA uses higher-order logic to specify policies and credentials, so that
it can be very expressive. Indeed, in general the determination of whether a
proof of authorization exists is undecidable, much less tractable. PCA over-
comes this issue as follows. First, as mentioned earlier, the server only has
to check the proof constructed by the requester, and the checking process is
decidable and tractable. Second, on the client side, the proxy is responsible for
discovering and retrieving credentials, computing proofs, and communicating

88 D. Li, W. Winsborough, R. Hasan, M. Winslett

XML:
< GROUP NAME = “Hospitals” >

< RULE >
< INCLUSION ID = “reco” TY PE = “Recommendation”

FROM = “self′′ >< \INCLUSION >
< \RULE >

< \GROUP >

Prolog:
group(X, Hospitals) : − cert(Y, X, “Recommendation”, RecFields),

group(Y, self).

Fig. 4. An example TPL rule shown in its concrete XML syntax and its internal
Prolog representation.

with the server. To avoid undecidable computations on the client side, the
client proxy does not use the full logic; instead, it uses a limited, application-
specific logic, in which authorization decisions are tractable.

3.7 TPL

TPL (Trust Policy Language) [27], designed at IBM Haifa Research Lab, was
proposed specifically for trust establishment between strangers. TPL is based
on RBAC [23, 1] and extends it by being able to map strangers automatically
to roles. Unlike other trust management systems [46, 67], TPL’s efforts are
put only into mapping users to roles, and not into mapping roles to privileges,
which simplifies the design. The latter is the responsibility of the application.

The concrete syntax of TPL uses XML to represent security rules. These
are then translated by TPL into a standard logic programming language, viz.,
Prolog. Figure 4 shows an example TPL rule in the portable XML notation
and its internal Prolog translation [27].

Using different transcoders, TPL is certificate format independent: rules
written in XML can be translated and reorganized by the transcoders into any
certificate formats, such as X.509 or PGP. In each certificate, the certificate
type field points to its certificate profile, which selects the proper transcoder
to interpret that certificate into its XML rules.

The mandatory components of each certificate are the issuer’s public key,
the subject’s public key, the certificate type, the version of the certificate, the
profile URL, the issuer certificate repository, and the subject certificate repos-
itory. The last two components were innovative considerations with respect to
credential retrieval. First, to enable the TPL system to automatically retrieve
relevant certificates from remote repositories, the certificate that is currently
being processed should specify the locations of the repositories where the rel-
evant certificates are housed. Second, certificates can be referenced negatively
in TPL, which means that TPL is non-monotonic in the sense that adding cer-
tificates can diminish authorizations. Thus TPL cannot rely on requesters to

Trust Management and Trust Negotiation 89

present certificates that are referenced negatively. Instead the resource owner
specifies a credential “collector” [27], which is a software module configured
to know about trusted repositories of negative certificates.

4 Evaluation Problems and Strategies

The trust management engine evaluates authorization queries based on se-
curity policies and credentials. Several issues regarding how such evaluation
proceeds have been addressed in the evolution of modern TM systems. In this
section we consider many of these issues. We defer until Section 5 discussion
of issues that bear on the fact that policy and credentials may themselves
be sensitive. Other issues, notably certificate revocation, we omit altogether.
Topics discussed in this section include the following:

1. Separating the authorization service from the application pro-
vides several advantages.
Software components that manage security are subject to very high in-
tegrity requirements as their correct functioning is essential to preventing
misuse.

2. Policies should be written in special-purpose languages, not in
general-purpose programming languages.
This has an obvious impact on the extent to which the trust manage-
ment engine can efficiently evaluate authorization queries. Finding lan-
guage constructs that are sufficiently expressive to enable policy objec-
tives to be met, while simultaneously supporting efficient evaluation, has
been an important factor in the evolution of TM systems.

3. Credential discovery and retrieval is an essential part of the
authorization problem.
One of the important problems for TM systems is that of finding creden-
tials that are not only issued and revoked in a decentralized manner, but
whose storage is also distributed. In this environment, there is no cen-
tral, well-known directory that records and keeps track of locations for
each credential in the network, and on which entities can rely to retrieve
credentials. If credentials cannot be found when they are needed during
evaluation of authorization queries it is not possible to prevent denying
some access to resources that should be should be permitted.

It is possible to perform query evaluation with distributed credentials ei-
ther by bringing the evaluation process to the remote credentials, and thus
distributing the evaluation process, or by bringing the remote credentials to a
central evaluation point. As we will see in this section, both approaches have
been taken by TM systems. Moreover, there are alternatives with respect to
where to locate credentials; at a minimum, they can naturally be located with
their issuer or with their subject. However, permitting this flexibility raises
challenges for ensuring that all credentials can be found by the evaluation

90 D. Li, W. Winsborough, R. Hasan, M. Winslett

process if they are needed, and thus that any access authorized by the current
set of valid policy statements can be granted.

4.1 General-Purpose Query Evaluation Engine

As mentioned above, PolicyMaker [10] was the first trust management system
per se. It aimed to provide a general-purpose, application-independent defi-
nition of proof of compliance. The designers identified two main advantages
that can be obtained by using a general-purpose compliance checker. First,
the design and implementation of an authorization system is not as simple as
application programmers might at first imagine, and considerable efficiency
can be obtained from reusing a general-purpose authorization engine. Second,
it is a generally accepted design principle to minimize the amount of code
whose integrity is essential to the secure operation of the system. By clearly
separating the role of the application from the role of the compliance checker,
PolicyMaker provides a general-purpose application-independent compliance
checker that can be explained, formalized and proven correct once and for all.
Applications that use PolicyMaker’s compliance checker can thus gain high
assurance that compliance-checker results depend only on the given query and
assertions, and not on any implicit policy decisions or bugs in the design or
implementation of the compliance checker. Subsequent TM systems have all
followed PolicyMaker’s example in these respects.

4.2 Efficiency and Expressivity

In the interest of generality, PolicyMaker [10] put very few restrictions on
the specifications of authorizations and delegations. Policies and credentials
(collectively called assertions) are given by arbitrary executable programs.
As long as the underlying programming language is safe in the sense that it
is restricted in terms of the I/O operations and resource consumption per-
mitted, there are no restrictions on what programming language is used. The
advantage of this is that it is clearly flexible and expressive enough to allow
application developers to define authorizations and their delegations however
they wish. However, there are also serious shortcomings, including that com-
pliance checking is in general undecidable. No algorithm can, for each set of
assertions and each request, decide whether the request is authorized.

PolicyMaker evaluation proceeds by iteratively selecting an assertion and
executing it. Each assertion can output a set of “acceptance records” as inter-
mediate results. These are added onto a global append-only blackboard. The
contents of the blackboard are available to be read by assertions executed sub-
sequently. It is not defined in what order or how many times the assertions
should be run by the compliance checker. However, a proof of compliance is
given by a (possibly repeating and non-exhaustive) sequence of assertions that,
when run by the compliance checker, leaves on the blackboard an acceptance
record indicating that the request is approved.

Trust Management and Trust Negotiation 91

There are several restricted variants of PolicyMaker’s proof of compliance
problem that are decidable with various complexities. A polynomial variant
can be obtained by imposing two complementary restrictions. The first of
these is the monotonicity of the assertions themselves. The second involves
restricting the resources available to the compliance checker and denying ac-
cess should any resource limit be exceeded. The authors call it locally bounded
proof of compliance (LBPOC), which actually subsumes four subordinate re-
strictions. The first limits the time used to execute each assertion to be a
polynomial in the size of the blackboard’s content. The second bounds by a
constant the number of acceptance records that can be written to the black-
board. The third bounds by a constant the size of acceptance records written
on the blackboard. The fourth bounds by a constant the length of the sequence
of assertions that make up the proof of compliance. PolicyMaker provides no
assistance to the policy author in ensuring that assertions do not violate these
restrictions.

There are other drawbacks to basing assertion semantics on program ex-
ecution semantics rather than on some more declarative approach, such as
logic or relational algebra. To understand the meaning of a program-based
assertion, a human must mentally simulate its various executions, which can
be difficult to do correctly, and the human may find it quite difficult to un-
derstand how the effects of different assertions will combine when executed.
Furthermore, as we discuss further in later sections, this approach to policy
definition provides no assistance in answering questions such as where one
can find credentials that may be relevant to evaluating a given query, or in
answering more general questions, such as “who are all the principals that are
authorized for this resource?”

In addition to becoming more declarative, credentials in later TM systems
typically identify a credential subject as well as the credential issuer. The
subject is the principal to which the credential is issued and that is charac-
terized by the credential. Explicitly identifying the subject greatly facilitates
determining which credentials might be useful at various points in the proof
of compliance as it is under construction.

SPKI/SDSI [18] represents authorizations and delegations in structured
formats with dedicated fields. Issuers, subjects, delegation bit and authoriza-
tion tag are specified separately and can easily be recognized by the evalu-
ator. The evaluation is of authorization queries is based on composition, a
basic operation that takes two valid, compatible certificates as input and out-
puts another valid certificate. The evaluation algorithm uses composition to
compute a closure in a bottom-up manner [18]. The resulting set contains all
certificates that can be derived by composition from the given input set. The
time complexity of the evaluation algorithm is polynomial in the size of the
input set. The closure process must be repeated whenever any certificate is
added, expired or revoked, so it is not well suited to be used with a very large
and frequently changed certificate pool.

92 D. Li, W. Winsborough, R. Hasan, M. Winslett

Like SPKI/SDSI [18], KeyNote [9] uses structured assertions. It defines
an assertion language that formally captures the decision semantics of a set
of credentials and a query (given by an action environment in KeyNote).
Monotonicity of KeyNote assertions is inherent in that decision semantics.
That said, it has been shown by Li and Mitchell [44] that KeyNote’s semantics
are sufficiently expressive that it is undecidable to determine the set of all
requests that a collection of KeyNote assertions authorizes.

As we have discussed, trust management systems such as SD3 [32] and
RT [46] use Datalog to represent policies and credentials. Although we do not
discuss them here, other trust management languages have also been based
on Datalog, including Binder [21] and Delegation Logic [43]. There are many
ways in which Datalog can be evaluated. In SD3, evaluation is performed in
a top-down manner, much as would be done by a Prolog interpreter, but dis-
tributed. In RT , evaluation is performed using a special-purpose goal-directed
algorithm that combines benefits of top-down and bottom-up evaluation. Dat-
alog can be extended to support constraints on variables ranging over specific
domains. If the constraint domains are selected with care, this can be done
while preserving the guarantee of polynomial-time query evaluation [44]. The
constraints are limited in the sense that they can be used only to define con-
stant bounds on variable values, either in numeric domains or in the domain
of finite sequences, such as can be used to represent directory paths or URLs.
Constraints over two variables are not permitted. Based on this work, RT has
been extended to support constraints [45].

Cassandra [5] is another system that uses Datalog with constraints to
express semantics of access control. Cassandra approaches the problem of
tractability quite differently than does RT . Policy authors have the ability to
select constraint domains that may not in general support efficient evaluation
or even to guarantee termination. In order to ensure that query evaluation
does in fact terminate for the clauses actually used as policy statements, the
Cassandra system uses a logic programming implementation technique called
static groundness analysis. During the course of evaluation, when summarizing
the effect of a single clause, the variable environment is projected on to the
variables appearing in the head of the clause by existentially quantifying the
variables that appear only in the body. The system of constraints that contains
existential quantifiers then needs to be simplified so as to eliminate these
quantifiers, and it is at this point that the presence of constraints threatens
to compromise efficient evaluation. Groundness analysis can be used to ensure
that at the time existential quantifier elimination must be performed, certain
potentially expensive functions and relational symbols in the constraint will
be applied only to constant values, not to unbound variables. This means that
these operations can be evaluated before quantifier elimination is performed. It
effectively removes these function and relational symbols from the constraint
domain on which quantifier elimination must be supported. In this way the
designers have made an interesting agreement with the policy writer that says,
roughly, you can use all these extra functions and relations when you express

Trust Management and Trust Negotiation 93

your policies, but I will reject the clause if I cannot statically verify that the
arguments of those function and relation symbols will be constant by a certain
stage in the evaluation of the clause body.

Cassandra’s designers, Becker and Sewell [5], discuss a design option sim-
ilar to the one taken by Clarke et al. with SPKI/SDSI, which precomputes
answers to all authorization queries, enabling the results to be cached and
reused to make authorization decisions until new credentials are issued or old
credentials expire or are revoked. They elect not to take this approach be-
cause the policy set is changed every time a role is activated or deactivated.
Instead, Cassandra uses Toman’s top-down CLP evaluation algorithm [61]
based on SLG resolution, which focuses computational effort on one query at
a time in the interest of efficiency, as well as using a memoization strategy to
avoid inefficiency and non-termination problems suffered by simpler top-down
methods.

Higher order logic has also been used to specify policies and credentials.
LolliMon [53] is proposed as a typed higher-order linear logic programming
language to specify security statements, which is proven to be more expressive
and efficient than Datalog or Prolog, especially in dealing with integration of
authorization checking and credential retrieval for certificate chain discovery
problem. The evaluation process combines bottom-up proof search and top-
down proof-search. Every evaluation execution starts and ends in the bottom-
up search mode, in which there are switches to and back from top-down mode.
Therefore, although the top-down search is still subject to cyclic dependency
behaviors, termination can be guaranteed by the property of linear logic.
PCA [2] also chooses to use higher-order logic. In order to avoid undecidable
computation, the service requester is required to construct and provide the
proof and the authorizer only needs to check the proof.

4.3 Credential Retrieval Mechanisms

Early trust management systems [10, 9, 18] assume that all credentials rel-
evant to making a given authorization decision are provided to the system
by the calling application. If no proof of compliance can be found, access is
denied. There is no consideration of the possibility that the credentials to
complete a proof exist, but are simply missing. This may be reasonable for
capability-based systems, like KeyNote, in which credentials are issued for
authorizing access to a specific resource, so clients can be expected to know
what credentials to provide to the application. However, when the credential
requirements of a requested resource are less obvious, it may not be obvious
what credentials might be needed. For instance, suppose an online ticket sales
service has a special offer for students of universities that are members of
the NCAA (National Collegate Athletics Association). In this case, a student
might have to present her student ID and a credential issued by the NCAA to
her university. Clearly an ideal system would not require the student to figure
out what credentials to submit and how to find them.

94 D. Li, W. Winsborough, R. Hasan, M. Winslett

To be able to assist in ensuring that a proof of compliance can be found
when the appropriate credentials do exist, Blaze et al. [10] suggested nega-
tive authorization decisions be accompanied by additional information about
how a proof might be possible, given additional credentials. Gunter and Jim
argued [25] that a better approach is to enlist the assistance of the trust man-
agement engine in determining which credentials, should they exist, could
prove compliance. Specifically, they observed that doing so can avoid dupli-
cation of effort that would be incurred by using a compliance checker that
provides hints how a proof might be constructed when sufficient credentials
are not presently available. The first kind of duplication is between the call-
ing application and the compliance checker. Whenever the compliance checker
returns a negative answer to an authorization query, the application itself un-
dertakes to locate the missing credentials. Then the application again invokes
the compliance checker. This process attempts to construct the proof three
times, twice by the compliance checker and once by the application when it
attempts to collect sufficient credentials to construct a proof. The second form
of duplication occurs between different applications that use the TM engine.
Each application needs to have its own checking module in order to find and
collect missing credentials.

Gunter and Jim observed that these two forms of duplication of effort can
be avoided if during the evaluation the trust management engine can take
responsibility for discovering which credentials are needed to complete the
proof and retrieving them, if they exist.

Thus, trust management systems came to include a credential retrieval
mechanism and to interleave credential retrieval operations, be they local or
remote, with evaluation steps; corresponding credential repository services are
also included. QCM [25] was the first TM system to incorporate credential
retrieval; the SD3 [32], RT [49, 53], Minami and Kotz [51], Bauer et al. [3],
and PeerAccess [66] systems do so as well. TM engines that support credential
retrieval cooperate with each other directly, independently of the calling appli-
cations. They discover and retrieve missing credentials as needed to complete
the proof.

There are two different approaches to remote credential retrieval taken in
the literature. In the first, the request for remote credentials is itself a query
in the TM language. It requests the remote TM system to evaluate that query
and to return either the answer or credentials required to derive the answer.
The remote engine may itself send subqueries to other engines that have cre-
dentials required to complete a proof. The first approach is taken by QCM,
SD3, Bauer et al., and PeerAccess. In the second approach, the remote TM
system is requested only to provide certain credentials that the local engine
has determined are needed. The remote system simply returns credentials
matching the description given by in the request. It does not participate in
collecting further credentials from other sites. The second approach is taken
by RT . In the next two subsections, we discuss issues involved in these two
approaches.

Trust Management and Trust Negotiation 95

Fig. 5. QCM system

4.4 Distributed Evaluation

As mentioned above, QCM was the first system to incorporate credential re-
trieval into the evaluation engine. (See Figure 5.) Queries that cannot be
solved using locally available credentials are transmitted to other engines be-
longing to principals whose assertions address the query in question. QCM’s
credential retriever is designed in such a way that it does not significantly
increase the engine’s code size because it shares most of its code with the
evaluator. In the interest of flexibility, the QCM engine has two modes: verify-
only and verify-retrieval. If the calling application chooses verify-only mode,
the credential retrieval feature is disabled. This mode is used, for example, to
check that the credentials returned from a remote query evaluation do indeed
solve the query. In this subsection, we examine several issues that arise in
the context of TM systems like QCM and SD3 in which remote engines are
invoked to answer subqueries.

When one engine queries another, the latter can reply in one of two ways.
Either it can give what QCM calls a direct reply, in which the remote engine
provides a table of tuples that satisfy the query, or it can provide a proof,
a partial proof, or just a set of credentials from which the answer can be
deduced. The former are called extensional answers and the latter three are
called intensional answers, by the designers of SD3. In the case of a direct
reply, the remote engine typically has to construct a new signed credential
containing an assertion (the table) deduced from other credentials. Unlike
when providing answers to another TM engine, answers returned by a TM
engine to the calling application should be extensional [33].

In addition to supporting extensional answers, SD3 also supports several
forms of intentional answers. The server decides which kind of answer to return
to the client. For example, in order to avoid bottlenecks and denial of service
attacks, the designers of SD3 [33] argue that the server should be able to offer
a range of quality of service, corresponding to different forms of answers. In
the top level of service, the server evaluates the query fully, communicating
with other servers as necessary to do so, and returns a direct reply. A medium
service level might return a partial proof along with hints to the client as to

96 D. Li, W. Winsborough, R. Hasan, M. Winslett

other servers that might be able to provide additional relevant credentials.
The lowest level just returns relevant credentials held locally.

When one TM system replies to another, integrity and authenticity are
normally provided by signing the reply. There are two approaches to sign-
ing: on-line signing and off-line signing. Online signing enables the server to
sign extensional answers as they are generated. Off-line signing requires the
server to return a set of credentials previously signed off line. Off-line sign-
ing protects the server’s private key, but at the same time requires frequent
synchronization and coordination between the trust management server and
the off-line signer. Additionally, intentional answers typically require clients
to verify more signatures. (QCM uses a technique based on hash trees to
decrease the overhead of signing credentials, especially when the set of cre-
dentials is very large. This may also reduce the overall effort required to verify
credentials in some cases.) QCM allows different servers to choose different
signing solutions because neither off-line signing nor on-line signing can be
clearly proven superior to the other.

Another issue that must be managed in distributed evaluation arises as a
result of cyclic dependencies among the definitions of predicate (i.e., relation)
symbols. These can easily lead to repeated subqueries to remote hosts and, if
unchecked, can result in nontermination. Two techniques have been proposed
to mitigate this problem. QCM [25] uses a timer to detect whether there is
a cycle dependency or anything that may have gone wrong if no response is
returned within a time-out limit. However, it is not clear what an appropriate
time-out period is, so it may possibly lead to denying access to requests that
should be authorized. SD3 [32] tags each query with a set of sites that are
waiting for it to terminate, so it can always be checked whether the destination
site is in this set and may cause a cycle. This method is simple, but may be
time consuming and costly in bandwidth.

4.5 Local Evaluation with Distributed Credentials

QCM and its successor SD3 were the first TM systems to address the problem
of evaluating authorization policy when credentials (policy statements) are not
only issued and revoked in a decentralized manner, but their storage is also
distributed. These systems showed that credentials could be stored with their
issuers and located as needed during evaluation. In this way it is possible to
ensure that every credential in every proof of authorization can be discovered
when needed (under basic availability assumptions regarding the network and
relevant servers), and thus that it is possible to grant access to all entities that
should be authorized according to the set of currently valid policy statements.

However, the assumption that credentials be stored exclusively with their
issuers is quite restrictive. In many applications it is more appropriate to
store some credentials with their subjects. For example, when a store offers
discounts to students at the University of Texas, it may not be reasonable to
expect that the university will provide the credentials (student IDs). Firstly,

Trust Management and Trust Negotiation 97

if the student ID includes personally sensitive information, it should be the
student who decides whether to give her ID to the store. Secondly, there may
be thousands of services that are offered to students, and the university may
not be interested in assisting these transactions.

One of the contributions of RT [49] was to devise the first scheme that
permits credentials to be stored either at their issuers or at their subjects.
RT differs from QCM and SD3 by performing the evaluation process locally
and relying on remote servers only to provide credentials relevant to the eval-
uation process. The evaluation process is based on constructing a graph that
represents relationships between different role expressions, which is to say, be-
tween different principals, roles, linked roles, and intersections. Proofs of role
membership are certain subgraphs called chains. Nodes in the graph are given
by role expressions. Edges represent credentials, as well as some derived rela-
tionships. A path connecting two role expressions indicates set containment
of the first role expression in the other.

Evaluation of the query asking whether D is a member of A.r begins by
introducing nodes representing these two entities and proceeds by adding inci-
dent edges. This requires locating the credentials represented by those edges.
Speaking very intuitively, credentials are identified as being relevant to extend-
ing the graph based on the principals appearing in the nodes. Unfortunately,
when trying to extend the graph by including edges incident to a given node,
unless the corresponding credentials are stored by principals identified by the
node, it is not clear who has the credential. So the evaluation procedure may
not be able to find all the credentials that exist and that, if found, would
participate in a proof of authorization. (It should be noted that RT ’s notion
of a principal is assumed to provide sufficient information to locate credentials
stored “by” the principal.)

We use an example from [49] to better illustrate this problem. Consider
the RT0 credentials shown in Table 1, which are referred to by number in
the following. A fictitious web publishing server, EPub, offers a discount to
preferred customers of its parent organization EOrg (3). EOrg considers uni-
versity students to be preferred customers (6). EOrg delegates authority to
identify universities to FAB, a Fictitious Accrediting Board (4). The univer-
sity StateU is accredited by FAB (1). StateU delegates authority to identify
students to RegistrarB, which is the registrar of one of StateU’s campuses (5).
RegistrarB has issued a credential to Alice stating that Alice is a student (2).

These credentials form a chain that shows Alice belongs to EPub.discount.
The chain consists of three parts (the expressions are now nodes and the
arrows are now edges):

Part (a): EPub.discount←−EOrg.preferred←−EOrg.university.student
Part (b): EOrg.university←−FAB.accredited←−StateU
Part (c): StateU.student←−RegistrarB.student←−Alice
It is natural that credential (4) is a local policy of EOrg and of limited

interest to FAB. So it should be stored at its issuer EOrg. Similarly, credentials
(3), (5) and (6) should be stored at their issuers. On the other hand, Alice

98 D. Li, W. Winsborough, R. Hasan, M. Winslett

(1) FAB.university←−StateU
(2) RegistrarB.student←−Alice
(3) EPub.discount←−EOrg.preferred
(4) EOrg.university←−FAB.accredited
(5) StateU.student←−RegistrarB.student
(6) EOrg.preferred←− EOrg.university.student

Table 1.

should hold credential (2) and StateU should be able to provide (1). Otherwise,
in order to prove that Alice belongs to EOrg.university.student, one would
have to obtain from FAB a complete list of universities, and contact each of
these universities to ask whether Alice is one of their students.

This illustrates that storing credentials only with their issuers can be im-
practical. However, when credentials can be stored with either their issuers
or their subjects, serious issues arise with ensuring credentials can be found
as needed during evaluation. Suppose credentials (2) and (5) are both stored
exclusively with RegistrarB. In this case, the process of elaborating the graph
would have no basis on which to identify RegistrarB as being the principal
with which these necessary credentials are stored, and the proof of Alice’s
authorization could not be constructed. Although the credentials exist in the
system, they cannot be found in order to make a correct positive authorization
decision.

A solution to this problem proposed by [49] balances the advantages of
having flexibility in where credentials are stored and the necessity of finding
all needed credentials. The solution is based on a type system for credentials
that assigns types to role names. The type of a role name indicates, among
other things, where to store credentials that define roles with that role name.
Well-typing rules are introduced that impose constraints on how role names of
various types can be combined within the same credential. These constraints
are local to the credentials, yet they have the global effect of ensuring that
for every credential chain in the system, each credential in the chain can be
discovered and retrieved by a search process that starts from one end of the
chain or the other. Since these ends are known based on the authorization
query, this means that all queries can be answered correctly. The techniques
discussed above were first developed for RT0, but have subsequently been
extended to full RT [50].

The more recent PeerAccess [66] system addresses the same problem
through a system of referrals by brokers, issuers, and subjects who are knowl-
edgeable about certain types of credentials. For example, one can imagine a
broker rather like a Google for credential search. Parties can have their own
favorite brokers that they consult when they do not know where to find a
needed credential, or they can take advantage of hints given to them by other

Trust Management and Trust Negotiation 99

parties during proof construction. For example, if someone asks the university
for Alice’s student credential, the university can suggest that they instead ask
Alice or, if the requester is Alice, that she contact the university’s student ID
repository to obtain her ID credential. This facility of PeerAccess, called proof
hints, can be used to encode the credential retrieval strategies of QCM, SD3,
RT , and other useful techniques.

5 Automated Trust Negotiation

There are many different algorithms that a set of autonomous parties can
follow to establish trust at run time. From just a small sampling, e.g., [14],
idemix [17], Binder [21], Unipro [68], interactive access control [36], Trust-χ
[7], Cassandra [6], Protune [12], OSBE and OAcerts [42, 39], [51], PeerAccess
[66], cryptographic-based protocols [41], and [3], we find an amazing diversity
of algorithms for the distributed construction of proofs. Some of the simpler
algorithms have been described in the previous sections of this chapter; for
more sophisticated approaches, space constraints force us to refer the reader
to the literature.

However, all recent approaches to trust negotiation do share the following
advantages over traditional identity-based approaches to authorization:

• Two previously unacquainted principals can establish bilateral trust be-
tween themselves at run time.

• The authorization policy for a resource can specify the properties that
authorized parties must possess, removing the administrative burden of
maintaining access control lists of authorized identities.

• Trust establishment does not rely on the existence of any trusted third
parties, other than credential issuers.

• In trust negotiation approaches that involve direct disclosure of creden-
tials, trust can be built up gradually through an iterative process, starting
with less sensitive properties and moving on to more sensitive ones after
a certain level of trust has been established.

• In trust negotiation approaches that do not involve direct disclosure of cre-
dentials, trust can be established without either principal learning exactly
which properties the other principal possesses.

All approaches to trust negotiation also share a reliance on policy lan-
guages with certain properties [58], including the following:

• The policy language must possess a well-defined semantics. This implies
that the meaning of the policy in that language must be independent of
any particular implementation of the language. Otherwise, two negotiating
parties can disagree on whether a particular policy has been satisfied by a
set of credentials, leading to chaos.

100 D. Li, W. Winsborough, R. Hasan, M. Winslett

• As hinted in earlier sections, the language and runtime system should
be monotonic in the sense that once a particular level of trust has been
reached (e.g., access has been granted), the disclosure of additional cre-
dentials should not lower the level of trust. This limits the use of negation
in policies in a pragmatic manner. For example, suppose that convicted
felons cannot buy guns. This policy can be used as is in trust negotiation,
as long as the store owner checks the negated construct (not a convicted
felon) by conducting the appropriate credential discovery process himself.
In other words, the store owner cannot decide that it is okay to sell Al-
ice a gun, just because she has not supplied a convicted felon credential.
The store owner must go out to the national registry of criminals and see
whether Alice is listed there. If the runtime system does not support cre-
dential discovery and the store owner has not cached the list of criminals
before negotiation starts, then the policy cannot be used as written.

• At a minimum, the policy language should also support conjunction, dis-
junction, transitive closure, constraints on attribute values, and constraints
that restrict combinations of multiple credentials (theta-joins, in database
terminology).

In the remainder of this section, we discuss ways to support autonomy
during negotiation, ways to minimize information leakage during trust nego-
tiation, and implementations of trust negotiation.

5.1 Supporting Autonomy during Trust Negotiation

Most modern trust negotiation (TN) approaches assume that each negotiating
party has a significant degree of autonomy in its choice of actions during each
step of a negotiation. This assumption mirrors the real world—after all, Alice
does not have to fill her prescription at Bob’s pharmacy—and also helps to
make TN algorithms more resilient against attack. When negotiations depend
on slavish adherence to the details of a complex algorithm, then a malicious
participant can easily attack by deviating from the prescribed behavior, and
even a non-malicious participant may have little incentive to cooperate. Any
practical TN algorithm must recognize that one cannot just hand a subgoal
to an arbitrary party and expect them to produce a proof of it—what is the
incentive for them to spend their time in that manner? Similarly, from any dis-
cussion of current credential systems, it is clear that their authors intend them
to describe properties of entities. However, any database researcher knows that
entities, attributes, and relationships are all needed to describe the state of
the real world. Once credentials are used to describe relationships, simplifying
assumptions such as “each credential has one subject” quickly break down.
Who is the subject of a marriage certificate? A birth certificate? These certifi-
cates describe relationships between several subjects, rather than an attribute
of a single subject. While such simplifying assumptions are helpful for getting
early TN systems off the ground, at some point they must be abandoned if
TN is to scale to arbitrary web services and clients.

Trust Management and Trust Negotiation 101

In this section, we describe research efforts to abandon the assumption
that a negotiating party has exactly one possible message that it can send
at each point during a negotiation, dictated by a common distributed proof
construction algorithm shared by all participants. Instead, two negotiating
parties begin their negotiation by agreeing on a negotiation protocol, which is
a set of conventions about the types of messages they will send to one another
and any restrictions on the ordering of those messages [68]. Within those
conventions, each party has freedom to choose the content of its messages.
This approach is intended for situations in which parties disclose (send) their
credentials and policies to one another.

In addition to a protocol, each negotiating party needs to have a trust
negotiation strategy, i.e., its own algorithm that determines the content of
each message that it sends out, based on its own credentials plus the messages
that it has received so far. Every strategy must ensure that all disclosures are
safe, i.e., if a particular credential is disclosed, then the policy governing
access to that credential has already been satisfied by previous disclosures.
For example, Alice’s prescription should not be disclosed until Bob has proved
that he is a pharmacist. Some example strategies:

• Make every possible disclosure of the credentials on hand. In the pharmacy
example, this strategy will lead Alice to disclose her doctor’s credential
immediately—and probably her library card, frequent flyer cards, CPR
course certification, and many other irrelevant credentials as well.

• Disclose every credential on hand that is relevant to the negotiation. For
example, Alice can disclose every credential of hers that has been men-
tioned in the policies previously disclosed by the other party.

• Disclose a minimal set of credentials on hand that will advance the state
of the negotiation, where “minimal” is defined using set inclusion. The
definition of what it means to advance the state of the negotiation can be
surprisingly complex [68].

• Disclose a minimal set of credentials on hand that will advance the state
of the negotiation, where “minimal” is defined using a system of weights
over the credentials. For example, a party can give low weights to the
credentials that it does not consider very sensitive, to steer the negotiation
toward disclosure of those credentials.

• Use a cryptographic protocol that will allow the two parties to determine
whether access is authorized, without letting them learn how the access
policy is satisfied (or, in some variants, what the policy was) [16, 17, 30,
15, 24, 39]

• For the less sensitive parts of the negotiation, use one of the direct dis-
closure strategies mentioned above. For more sensitive aspects, use one of
the cryptographic protocols mentioned in the previous item [41].

A negotiating partner may request a credential that a party does not have
on hand, but might be able to obtain over the internet at run time through
credential discovery. For example, if Alice did not have proof that her doctor

102 D. Li, W. Winsborough, R. Hasan, M. Winslett

was licensed to practice in Bob’s country, then she could try to obtain that
credential on line. For example, it might be available from a national registry,
from the doctor’s office, from her insurance company, or from her mother.
Alice’s negotiation strategy must make the decision about whether to try to
look for a missing credential, and guide any subsequent search.

While some approaches to trust negotiation still assume that the two par-
ties agree on the exact strategy that they will use during a negotiation, this
is unnecessarily restrictive in general. Agreeing on an exact choice of strategy
compromises local autonomy and can leave a principal vulnerable to attack
by a negotiating partner who does not follow the agreed-upon strategy. Re-
searchers have shown that for trust negotiation approaches that directly dis-
close credentials, it is sufficient for the two negotiating parties to agree upon
a broad set of strategies that may be used during the negotiation, including
strategies described in the first four items in the list above [68]. Each par-
ticipant has free choice of any strategy from the set, and is still guaranteed
that the negotiation will result in trust being established if it is theoretically
possible to do so; in other words, all strategies in the set are guaranteed to
be interoperable. These guarantees apply to the negotiation between the
resource requester and provider (i.e., they do not consider ancillary credential
discovery searches), and they still apply if policies themselves may contain sen-
sitive information (i.e., the disclosure of a policy is governed by an additional
access control policy).

5.2 Avoiding Information Leakage during Trust Negotiation

Researchers recognized early on that negotiation strategies that directly dis-
close credentials may leak information about credentials and policies that are
never disclosed. By observing the behavior of a party, one may also be able
to determine what strategy they are using, which can be used as leverage
in extracting additional information. We describe some of these leaks in this
section.

A credential may contain more information than needed to satisfy a pol-
icy. For example, Alice can prove that she is over 21 by presenting a digital
driver’s license. However, the license also gives her home address, exact date
of birth, weight, and other details that are not needed to prove that she is
over 21. To address these shortcomings, researchers have proposed versions of
digital credentials that allow one to hide information that is irrelevant to the
negotiation at hand, such as Alice’s home address [29, 60]. More sophisticated
(and more expensive) schemes provide even more privacy, by avoiding direct
disclosure of credentials. For example, Alice can prove that she is over 21,
without disclosing her exact age [16, 17, 30, 15, 39]. These schemes allow Al-
ice to prove to Bob that she has the properties specified in his policy, without
Bob learning exactly what properties she has. For example, in the pharmacy
example, Bob might learn that Alice is authorized to place an order, without

Trust Management and Trust Negotiation 103

learning who her doctor is. Bob only learns that Alice has some combination
of properties that satisfy his policy.

Often, possession or non-possession of a sensitive credential is itself sen-
sitive information. For example, suppose that Alice is a CIA employee, and
Bob is looking for people who might be such agents. Bob might query people
for their CIA credentials. Even if Alice has a policy to protect the credential,
her response for Bob’s credentials on receipt of such a request can indicate
that she has the credential. In other words, a request for such a credential
may cause the recipient to issue counter-requests for credentials needed to
satisfy disclosure of the sensitive credential. This, in turn, may indicate that
the recipient possesses the sensitive credential. Non-possession may also be
sensitive, and termination of a negotiation upon request for a credential can
indicate non-possession.

If the value of an attribute in a credential is sensitive, then it is possible
for a principal to determine ownership and value of the attribute by the other
negotiating principal based on her replies. For example, suppose that Alice
has a sensitive date of birth field in her driver’s license. Now, if Bob’s policy
has a constraint on age, and upon receipt of Bob’s policy, Alice responds by
asking for any further credentials from Bob, then Bob can assume that Alice
has the attribute that satisfies the constraint. By using a scheme similar to
binary search, it is possible for Bob to determine Alice’s age, without Alice
revealing it to him.

Under many proposed approaches to trust negotiation [14, 62, 68], an
attacker can even use a need-to-know attack to systematically harvest infor-
mation about an arbitrary set of credentials that are not even relevant to
the client’s original request [52]. To do this, the attacker rewrites her policies
in such a way that they are logically equivalent to the original policies, but
when used during negotiation, they force the victim into a series of disclo-
sures related to the credentials being harvested. Once the harvest is over, the
negotiation completes as it would have with the original policies.

The most complete solution to these problems is to adopt a negotiation ap-
proach that does not involve direct disclosure of credentials [16, 17, 30, 15, 24,
39]. While these approaches vary in the degree of privacy that they provide,
all of them can avoid the leaks cataloged in this section. The price of this
improved protection, of course, is significantly longer execution times; thus
one may wish to reserve these expensive strategies for policies that are par-
ticularly sensitive, and use direct disclosure elsewhere [41]. In general, these
TN approaches replace direct disclosure with sophisticated cryptography, usu-
ally coupled with special-purpose formats for credentials. These approaches
are very interesting in their own right; due to space limitations, we refer the
reader to the publications listed above for more information.

In some instances, less expensive forms of protection can be effective
against leakage. One approach is that when Bob queries Alice about a sen-
sitive attribute, she does not respond, whether she has that attribute or not
[57]. Only after Bob satisfies the conditions to allow disclosure does Alice

104 D. Li, W. Winsborough, R. Hasan, M. Winslett

would disclose the credential or disclose the fact that she does not possess it.
This approach is also effective if non-possession is sensitive. However, it relies
on the willingness of individuals to behave in the same manner whether or
not they possess the sensitive attribute—and for those who do not possess
it, there may be little incentive to behave in this manner, as the negotiation
will progress faster if they immediately confess that they do not have the
attribute.

Another solution with moderate runtime costs involves the use of acknowl-
edgement policies [63]. In this scheme, Alice has an acknowledgement policy
(ack-policy) for each possible sensitive credential, regardless of whether she
has that credential or not. She only discloses whether she has the credential
after the ack-policy has been satisfied. This approach also relies on the willing-
ness of people who do not possess a sensitive attribute to act as though they
did, even though it will prolong negotiations. The other disadvantage of this
approach is that users will have many more policies, and policy specification
and maintenance is a huge practical challenge.

Another way to address the problem is to abstract away from requesting
specific credentials, and instead request a particular attribute [59]. For ex-
ample, one can request age instead of a driver’s license. With the help of an
ontology of concepts and credential contents, a party can choose which creden-
tial to disclose to prove possession of the desired attribute, in such a manner
that as little sensitive information as possible is disclosed in the process. For
example, Alice might choose to prove her age by disclosing her passport rather
than her driver’s license, as the latter includes her home address and other
sensitive information not present in a passport. The ontology can also be used
to help respond to requests for a particular attribute by disclosing either more
specific or more general information than was requested. For example, if asked
to prove North American residency, a party might instead prove that they live
in Mexico.

In all approaches where parties directly disclose credentials to one another,
a credential owner has no guarantee that the other party will not show her
disclosed credentials and policies to additional parties. In other words, there
is no guarantee, or even any suggestion, that others will respect her disclo-
sure policies. PeerAccess [66] addresses this problem by requiring recipients
of information to ensure that future recipients of that information also sat-
isfy the original owner’s disclosure policies; however, a malicious party could
simply ignore this requirement. Another low-cost option is to employ P3P
during trust negotiation, as proposed for the privacy-preserving version of the
Trust-χ framework for TN [60]. Under this approach, information owners can
examine the P3P policies of their negotiation partners, before disclosing any
credentials or policies. Of course, a malicious party might not abide by their
own P3P policy. In addition, when a credential is forwarded to a third party,
the original owner does not have the opportunity to inspect the P3P policy
of that party and approve the transfer. If these are significant concerns, then

Trust Management and Trust Negotiation 105

a more expensive TN approach that does not directly disclose credentials or
policies is always an option.

5.3 Trust Negotiation Implementations

To date, research on TN has focused mainly on the theoretical issues in-
volved in the negotiation process. While most of the trust management ap-
proaches discussed in this chapter have been implemented, and many of them
have broken interesting new ground in their implementations, very few of
them have been publicly released. Most implementations have been designed
as proofs of concept, and were never intended to be used heavily in prac-
tice. These theoretical works and proofs of concept have been quite suc-
cessful, and thus researchers must now begin to address the implementa-
tion constraints that act as barriers to the deployment of these systems.
Among the systems that support bilateral trust establishment, only Trust-
Builder (http://isrl.cs.byu.edu), TrustBuilder2 (http://dais.cs.uiuc.edu/tn),
and Trust-χ (http://www.cs.purdue.edu/homes/squiccia/trustx) are cur-
rently freely available for download. As TrustBuilder2 was built specifically
as a platform for others to reuse and adapt for their own experiments with
TN, we describe it briefly here.

TrustBuilder2 is a flexible and reconfigurable Java-based framework for
supporting research on the systems aspects of TN approaches to authorization.
In TrustBuilder2, the primary components of a TN system—such as strategy
modules, compliance checkers, query interfaces, and audit modules—are rep-
resented using abstract interfaces, as shown in the architectural diagram in
Figure 6. Any or all of these component interfaces can be implemented or
extended by users of the TrustBuilder2 system, thereby making the system’s
functionality extensible. The TrustBuilder2 configuration files can be modified
to load these custom components in place of the default system components;
this facilitates code reuse and the incorporation of new features without mod-
ifications to the underlying runtime system. Further, TrustBuilder2 supports
the interposition of user-defined plug-ins at communication points between
system components to allow for easy monitoring of system activity or the
modification of messages passed between components.

The TrustBuilder2 framework provides an environment for researchers to
begin considering the technical issues surrounding the deployment of trust
negotiation protocols in production environments and makes several contri-
butions within this space. In addition to the aspects of flexibility described
above, the abstract type interfaces used by TrustBuilder2 for representing
policies, credentials, and resources ensure that new policy languages, cre-
dential formats, and the inclusion of new evidence types can be supported
without requiring modifications to existing system components or changes to
the TrustBuilder2 framework. This allows users to rapidly implement support
for new features, and also provides a framework within which the trade-offs

106 D. Li, W. Winsborough, R. Hasan, M. Winslett

Fig. 6. Internal structure of a TrustBuilder2 trust negotiation agent

between various system configurations can be quantitatively analyzed. Trust-
Builder2 allows users to keep the majority of system components constant
and change only minor portions of the framework between trust negotiations;
for example, a user could execute the same set of negotiations using two dif-

Trust Management and Trust Negotiation 107

ferent policy compliance checkers. This enables reasonable comparisons to be
made between specific system components without requiring modification to
the runtime system itself. Further information regarding the specifics of the
TrustBuilder2 framework can be found in the programmer documentation and
user manuals included with the TrustBuilder2 software distribution.

6 Open Issues and Trends

6.1 Policy Engineering and User Interfaces

The properties of those who can access a resource are specified in the ac-
cess control policy determined by the resource’s owner. Any mistake in the
specification or implementation of the policy can potentially be found and
automatically exploited by adversaries. Unfortunately, it is very easy to make
a mistake when writing a policy. As Cornwell et al. report from their testbed
deployment of user-created privacy policies in a pervasive computing environ-
ment [19]: “Rules specified at the beginning of the [trials] only captured their
policies 59% of the time. [...] Even when using the rules that users ended up
with at the end of the experiments and re-running these rules on all 30 (or 45)
scenarios, decisions were only correct 70% of the time.” The authors suggest
that using machine learning techniques to learn users’ privacy policies might
be more effective.

More generally, software engineering methods to help people write, up-
date, analyze, and understand authorization policies are an open research
area. A great amount of research is needed on environments for policy speci-
fication, analysis, and debugging; HCI issues in policy engineering, including
user-friendly policy languages and interfaces to policy engineering environ-
ments [38]; ways to explain authorization decisions to people, and to suggest
how they can get a negative decision reversed [35, 13]; and how to compile
operational policies from high-level abstract policies.

As a small aid, we expect that many credential issuers will supply sug-
gested default policies to protect the credentials they issue. For example,
Alice’s doctor’s office can supply a suggested policy with each prescription
written by the doctor, saying that the prescription should only be disclosed
to its owner (Alice) or to a licensed physician. For more complex situations,
issuers could offer a Chinese-menu-style set of options. The use of default
policies will shield credential bearers from the need to understand policy lan-
guages, and will reduce the number of loopholes in their policies.

6.2 Real-world Trust Negotiation Deployments

After several years of research, trust negotiation protocols have yet to make
their way into the mainstream; the one exception is the inclusion of idemix in
the Trusted Platform Module specification, for use in anonymous attestation.

108 D. Li, W. Winsborough, R. Hasan, M. Winslett

Prior to deploying access control systems based on TN, their systems and
architectural properties must be fully explored. Most existing trust negotiation
implementations exist largely as proofs of concept designed to illustrate the
feasibility of the underlying theory and have performed admirably in this
capacity. We need experience with small-scale real-world deployments to really
understand what research issues must be addressed before TN can hit the
mainstream.

As part of this effort, trust negotiation systems must be hardened against
attack and made scalable under heavy load. While initial steps have been
made in this direction [55, 40], much more remains to be done.

6.3 Distributed Proof Construction

The process of constructing a proof of authorization is one instance of the
general problem of distributed proof construction, which has received a bit of
attention in the logic programming community. However, authorization proofs
face several construction challenges that have not been fully addressed.

Autonomy in proof methods. Each party is autonomous and may have its
own way of constructing proofs, delegating work to others, and choosing what
queries to answer and which to ignore. Further, these parameters may change
over time; for example, a party may need to ignore low-priority queries during
periods of high load, or provide intensional answers instead of its usual ex-
tensional answers. In such an environment, how can we orchestrate everyone’s
individual efforts toward the larger goal of building a single authorization
proof?

Sensitive information. As an additional complication, pieces of a proof may
be sensitive and not freely disclosable to others. Thus successful proof con-
struction may depend on finding the right party to act as a helper in collecting
information. Further, it may be necessary to cloak sensitive information as it
passes through the hands of third parties during proof construction [51]. Ide-
ally, we should also have a means of ensuring that others have respected our
rules about what they can do with the sensitive information we disclose to
them. These are lofty goals, and a great deal of work is needed before they
will be met.

Non-monotonicity. As discussed in the previous section, TN systems need
to be monotonic in the sense that the arrival of additional evidence will not
decrease the level of trust. As explained earlier, this does not mean a policy
cannot call for the absence of a particular piece of evidence (e.g., that a
credential not be revoked); rather, one has to be very careful about which
party checks those negative conditions. The best way to integrate the checking
of negative conditions into distributed proof construction is an open problem.

When TN is used in pervasive computing, the current environment may be
one factor in authorization decisions. For example, perhaps a student can use
a conference room only between 8 AM and 5 PM. The environment can change
over time, violating monotonicity. To date, researchers have developed several

Trust Management and Trust Negotiation 109

theoretical approaches to addressing this problem [37]; additional challenges
are likely to arise when TN is deployed in such a setting.

References

1. ANSI. American National Standard for Information Technology – Role Based
Access Control. ANSI INCITS 359-2004, February 2004.

2. Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In
CCS ’99: Proceedings of the 6th ACM Conference on Computer and Communi-
cations Security, pages 52–62, New York, NY, USA, 1999. ACM Press.

3. Lujo Bauer, Scott Garriss, and Michael K. Reiter. Efficient proving for practical
distributed access-control systems. In 12th European Symposium on Research
in Computer Security (ESORICS), September 2007.

4. Lujo Bauer, Michael A. Schneider, and Edward W. Felten. A general and flexible
access-control system for the web. In Proceedings of the 11th USENIX Security
Symposium, pages 93–108, Berkeley, CA, USA, 2002. USENIX Association.

5. Moritz Y. Becker and Peter Sewell. Cassandra: Distributed access control poli-
cies with tunable expressiveness. In POLICY ’04: Proceedings of the Fifth
IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY’04), page 159, Washington, DC, USA, 2004. IEEE Computer Society.

6. Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management,
applied to electronic health records. In CSFW ’04: Proceedings of the 17th IEEE
Computer Security Foundations Workshop (CSFW’04), page 139, Washington,
DC, USA, 2004. IEEE Computer Society.

7. Elisa Bertino, Elena Ferrari, and Anna Cinzia Squicciarini. Trust-X: A peer-to-
peer framework for trust establishment. IEEE Transactions on Knowledge and
Data Engineering, 16(7):827–842, 2004.

8. E. Bina, V. Jones, R. McCool, and M. Winslett. Secure Access to Data Over
the Internet. In Conference on Parallel and Distributed Information Systems,
September 1994.

9. Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The
KeyNote trust-management system, version 2. IETF RFC 2704, September
1999.

10. Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis.
The role of trust management in distributed systems. In Secure Internet Pro-
gramming, volume 1603 of Lecture Notes in Computer Science, pages 185–210.
Springer, 1999.

11. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages
164–173. IEEE Computer Society Press, May 1996.

12. Piero Bonatti and Daniel Olmedilla. Driving and monitoring provisional
trust negotiation with metapolicies. In POLICY ’05: Proceedings of the Sixth
IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY’05), pages 14–23, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

13. Piero A. Bonatti and Daniel Olmedilla. Policy Language Specification. deliver-
able I2-D2, ISI- Knowledge-Based Systems, University of Hannover, 2005.

110 D. Li, W. Winsborough, R. Hasan, M. Winslett

14. Piero A. Bonatti and Pierangela Samarati. A uniform framework for regulating
service access and information release on the web. J. Comput. Secur., 10(3):241–
271, 2002.

15. R. Bradshaw, J. Holt, and K. E. Seamons. Concealing complex policies with
hidden credentials. In Eleventh ACM Conference on Computer and Communi-
cations Security, October 2004.

16. Stefan Brands. Rethinking Public Key Infrastructures and Digital Certificates;
Building in Privacy. MIT Press, 2000.

17. Jan Camenisch and Els Van Herreweghen. Design and implementation of the
Idemix anonymous credential system. In ACM Computer and Communication
Security, 2002.

18. Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Mor-
cos, and Ronald L. Rivest. Certificate chain discovery in SPKI/SDSI. Journal
of Computer Security, 9(4):285–322, 2001.

19. Jason Cornwell, Ian Fette, Gary Hsieh, Madhu Prabaker, Jinghai Rao, Karen
Tang, Kami Vaniea, Lujo Bauer, Lorrie Cranor, Jason Hong, Bruce McLaren,
Mike Reiter, and Norman Sadeh. User-controllable security and privacy for
pervasive computing. In Eighth IEEE Workshop on Mobile Computing Systems
and Applications (HotMobile), February 2007.

20. Jack B. Dennis and Earl C. Van Horn. Programming semantics for multipro-
grammed computations. Commun. ACM, 9(3):143–155, 1966.

21. John DeTreville. Binder, a logic-based security language. In Proceedings of the
2002 IEEE Symposium on Security and Privacy, pages 105–113. IEEE Com-
puter Society Press, May 2002.

22. Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu
Ylonen. SPKI certificate theory. IETF RFC 2693, September 1999.

23. David F. Ferraiolo, Janet A. Cuigini, and D. Richard Kuhn. Role-based access
control (RBAC): Features and motivations. In Proceedings of the 11th Annual
Computer Security Applications Conference (ACSAC’95), December 1995.

24. Keith Frikken, Mikhail Atallah, and Jiangtao Li. Attribute-based access control
with hidden policies and hidden credentials. IEEE Transactions on Computers
(TC), 55(10), 2006.

25. Carl A. Gunter and Trevor Jim. Policy-directed certificate retrieval. Software:
Practice & Experience, 30(15):1609–1640, September 2000.

26. R. J. Hayton, J. M. Bacon, and K. Moody. Access control in an open distributed
environment. In IEEE Symposium of Security and Privacy, pages 3–14, ‘1998.

27. Amir Herzberg, Yosi Mass, Joris Mihaeli, Dalit Naor, and Yiftach Ravid. Access
control meets public key infrastructure, or: Assigning roles to strangers. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages 2–14.
IEEE Computer Society Press, May 2000.

28. John A. Hine, Walt Yao, Jean Bacon, and Ken Moody. An architecture for
distributed oasis services. In Middleware ’00: IFIP/ACM International Con-
ference on Distributed systems platforms, pages 104–120, Secaucus, NJ, USA,
2000. Springer-Verlag New York, Inc.

29. J. Holt and K. E. Seamons. Selective disclosure credential sets. Cryptology
ePrint Archive, 2002.

30. Jason Holt, Robert W. Bradshaw, Kent E. Seamons, and Hilarie Orman. Hidden
credentials. In Workshop on Privacy in the Electronic Society (WPES), 2003.

Trust Management and Trust Negotiation 111

31. Russell Housely, Warwick Ford, Tim Polk, and David Solo. Internet X.509 public
key infrastructure certificate and CRL profile. IETF Request for Comments
RFC-2459, January 1999.

32. Trevor Jim. SD3: A trust management system with certified evaluation. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy, pages 106–
115. IEEE Computer Society Press, May 2001.

33. Trevor Jim and Dan Suciu. Dynamically distributed query evaluation. In PODS
’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 28–39, New York, NY, USA, 2001.
ACM Press.

34. A. Jsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for
online service provision. Decision Support Systems, 43(2):618–644, March 2007.

35. Apu Kapadia, Geetanjali Sampemane, and Roy H. Campbell. KNOW why your
access was denied: Regulating feedback for usable security. In Proceedings of the
ACM Conference on Computers and Communication Security (CCS), pages 52–
61, Washington, DC, Oct 2004.

36. H. Koshutanski and F. Massacci. An interactive trust management and negoti-
ation scheme. In Theo Dimitrakos and Fabio Martinelli, editors, Formal Aspects
of Security and Trust, pages 139–152. KAP, 2004.

37. Adam J. Lee, Kazuhiro Minami, and Marianne Winslett. Lightweight consis-
tency enforcement schemes for distributed proofs with hidden subtrees. In 12th
ACM Symposium on Access Control Models and Technologies (SACMAT 2007),
June 2007.

38. Adam J. Lee and Marianne Winslett. Open problems for usable and secure open
systems. In Workshop on Usability Research Challenges for Cyberinfrastructure
and Tools held in conjunction with ACM CHI, April 2006.

39. Jiangtao Li and Ninghui Li. OACerts: Oblivious attribute certificates. IEEE
Transactions on Dependable and Secure Computing (TDSC), 3(4), 2006.

40. Jiangtao Li, Ninghui Li, XiaoFeng Wang, and Ting Yu. Denial of Service At-
tacks and Defenses in Decentralized Trust Management. In 2nd IEEE Inter-
national Conference on Security and Privacy in Communication Networks (Se-
cureComm), August 2006.

41. Jiangtao Li, Ninghui Li, and William Winsborough. Automated trust negoti-
ation using cryptographic credentials. ACM Transactions on Information and
System Security (TISSEC), 2007.

42. Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based envelope.
In PODC ’03: Proceedings of the twenty-second annual symposium on Principles
of distributed computing, pages 182–189, New York, NY, USA, 2003. ACM Press.

43. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation Logic: A
logic-based approach to distributed authorization. ACM Transaction on Infor-
mation and System Security, 6(1):128–171, February 2003.

44. Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for
trust management languages. In Proceedings of the Fifth International Sympo-
sium on Practical Aspects of Declarative Languages (PADL 2003), number 2562
in LNCS, pages 58–73. Springer, January 2003.

45. Ninghui Li and John C. Mitchell. RT: A role-based trust-management frame-
work. In The Third DARPA Information Survivability Conference and Exposi-
tion (DISCEX III). IEEE Computer Society Press, April 2003.

112 D. Li, W. Winsborough, R. Hasan, M. Winslett

46. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-
based trust management framework. In Proceedings of the 2002 IEEE Sympo-
sium on Security and Privacy, pages 114–130. IEEE Computer Society Press,
May 2002.

47. Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed creden-
tial chain discovery in trust management (extended abstract). In Proceedings of
the Eighth ACM Conference on Computer and Communications Security (CCS-
8), pages 156–165. ACM Press, November 2001.

48. Ninghui Li, William H. Winsborough, and John C. Mitchell. Beyond proof-of-
compliance: Safety and availability analysis in trust management. In Proceedings
of IEEE Symposium on Security and Privacy, pages 123–139. IEEE Computer
Society Press, May 2003.

49. Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed cre-
dential chain discovery in trust management. Journal of Computer Security,
11(1):35–86, February 2003.

50. Ziqing Mao, Ninghui Li, and William H. Winsborough. Distributed credential
chain discovery in trust management with parameterized roles and constraints.
In 2006 International Conference on Information and Communications Security
(ICICS 2006), December 2006.

51. Kazuhiro Minami and David Kotz. Secure context-sensitive authorization. Jour-
nal of Pervasive and Mobile Computing, 1(1), March 2005.

52. Lars E. Olson, Michael J. Rosulek, and Marianne Winslett. Harvesting Cre-
dentials in Trust Negotiation as an Honest-But-Curious Adversary. In ACM
Workshop on Privacy in the Electronic Society (WPES), 2007.

53. Jeff Polakow and Christian Skalka. Specifying distributed trust management
in Lollimon. In PLAS ’06: Proceedings of the 2006 Workshop on Programming
Languages and Analysis for Security, pages 37–46, New York, NY, USA, 2006.
ACM Press.

54. Ronald L. Rivest and Bulter Lampson. SDSI — a simple dis-
tributed security infrastructure, October 1996. Available at
http://theory.lcs.mit.edu/∼rivest/sdsi11.html.

55. T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and K. E. Seamons. Adaptive
trust negotiation and access control. In 10th ACM Symposium on Access Control
Models and Technologies, June 2005.

56. Ravi S. Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97
model for role-based aministration of roles. ACM Transactions on Information
and Systems Security, 2(1):105–135, February 1999.

57. K. E. Seamons, M. Winslett, T. Yu, L. Yu, and R. Jarvis. Protecting privacy
during on-line trust negotiation. In Proceedings of the 2nd Workshop on Privacy
Enhancing Technologies, April 2002.

58. Kent Seamons, Marianne Winslett, Ting Yu, B. Smith, E. Child, J. Jacobson,
H. Mills, and Lina Yu. Requirements for policy languages for trust negotiation.
In Third IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY’02), pages 68–79, June 2002.

59. A. C. Squicciarini, E. Bertino, and E. Ferrari. Achieving Privacy with an
Ontology-Based Approach in Trust Negotiations. IEEE Transaction on De-
pendable and Secure Computing (TDSC), 3(1):13–30, 2006.

60. A. C. Squicciarini, E. Bertino, E. Ferrari, F. Paci, and B. Thuraisingham. PP-
Trust-X: A System for Privacy Preserving Trust Negotiations. ACM Transac-
tions on Information and System Security (TISSEC), 10(3), July 2007.

Trust Management and Trust Negotiation 113

61. David Toman. Memoing evaluation for constraint extensions of datalog. Con-
straints and databases, pages 99–121, 1998.

62. William H. Winsborough and Ninghui Li. Towards practical automated trust
negotiation. In Proceedings of the Third International Workshop on Policies for
Distributed Systems and Networks (Policy 2002), pages 92–103. IEEE Computer
Society Press, June 2002.

63. William H. Winsborough and Ninghui Li. Safety in automated trust negotiation.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 147–160,
May 2004.

64. William H. Winsborough, Kent E. Seamons, and Vicki E. Jones. Automated
trust negotiation. In DARPA Information Survivability Conference and Expo-
sition, volume I, pages 88–102. IEEE Press, January 2000.

65. Marianne Winslett. An introduction to trust negotiation. In Proceedings of
iTrust, pages 275–283, 2003.

66. Marianne Winslett, Charles C. Zhang, and Piero A. Bonatti. Peeraccess: a
logic for distributed authorization. In CCS ’05: Proceedings of the 12th ACM
Conference on Computer and Communications Security, pages 168–179, New
York, NY, USA, 2005. ACM Press.

67. Walt Yao, Ken Moody, and Jean Bacon. A model of oasis role-based access
control and its support for active security. In SACMAT ’01: Proceedings of
the sixth ACM Symposium on Access Control Models and Technologies, pages
171–181, New York, NY, USA, 2001. ACM Press.

68. Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured
credentials and sensitive policies through interoperable strategies for automated
trust negotiation. ACM Transactions on Information System Security, 6(1):1–
42, 2003.

5

Authenticated Index Structures for
Outsourced Databases

Feifei Li1, Marios Hadjileftheriou2, George Kollios3, and Leonid Reyzin3

1 Department of Computer Science
Florida State University
lifeifei@cs.fsu.edu

2 AT&T Labs Inc.
marioh@research.att.com

3 Computer Science Department
Boston University
gkollios@cs.bu.edu,reyzin@cs.bu.edu

Summary. In an outsourced database (ODB) system the database owner publishes
data through a number of remote servers, with the goal of enabling clients at the
edge of the network to access and query the data more efficiently. As servers might be
untrusted or can be compromised, query authentication becomes an essential com-
ponent of ODB systems. In this chapter we present three techniques to authenticate
selection range queries and we analyze their performance over different cost metrics.
In addition, we discuss extensions to other query types.

1 Introduction

Today, there is a large number of corporations that use electronic commerce
as their primary means of conducting business. As the number of customers
using the Internet for acquiring services increases, the demand for providing
fast, reliable and secure transactions increases accordingly — most of the
times beyond the capacity of individual businesses to provide the level of
service required, given the overwhelming data management and information
processing costs involved.

Increased demand has fueled a trend towards outsourcing data manage-
ment and information processing needs to third-party service providers in
order to mitigate the in-house cost of furnishing online services [1]. In this
model the third-party service provider is responsible for offering the neces-
sary resources and mechanisms for efficiently managing and accessing the
outsourced data, by data owners and customers respectively. Clearly, data out-
sourcing intrinsically raises issues related with trust. Service providers cannot
always be trusted (they might have malicious intend), might be compromised
(by other parties with malicious intend) or run faulty software (unintentional

116 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

errors). Hence, this model raises important issues on how to guarantee quality
of service in untrusted database management environments, which translates
into providing verification proofs to both data owners and clients that the
information they process is correct.

Three main entities exist in the ODB model as discussed so far: the data
owner, the database service provider (a.k.a. server) and the client. In prac-
tice, there is a single or a few data owners, a few servers, and many clients.
The data owners create their databases, along with the necessary index and
authentication structures, and upload them to the servers. The clients issue
queries about the owner’s data through the servers, which use the authenti-
cation structures to provide provably correct answers. It is assumed that the
data owners may update their databases periodically and, hence, authentica-
tion techniques should be able to support dynamic updates. In this setting,
query authentication has three important dimensions: correctness, complete-
ness and freshness. Correctness means that the client must be able to validate
that the returned answers truly exist in the owner’s database and have not
been tampered with. Completeness means that no answers have been omitted
from the result. Finally, freshness means that the results are based on the most
current version of the database, that incorporates the latest owner updates.
It should be stressed here that result freshness is an important dimension of
query authentication that is directly related to incorporating dynamic updates
into the ODB model.

There are a number of important costs pertaining to the aforementioned
model, relating to the database construction, querying, and updating phases.
In particular, in this chapter the following metrics are considered: 1. The
computation overhead for the owner, 2. The owner-server communication cost,
3. The storage overhead for the server, 4. The computation overhead for the
server, 5. The client-server communication cost, and 6. The computation cost
for the client (for verification).

It should be pointed out that there are other important security issues in
ODB systems that are orthogonal to the problems considered here. Exam-
ples include privacy-preservation issues [2, 3, 4], secure query execution [5],
security in conjunction with access control requirements [6, 7, 8, 9] and query
execution assurance [10]. Aslo, we concentrate on large databases that need
to be stored on external memory. Therefore, we will not discuss main memory
structures [11, 12, 13] or data stream authentication [14, 15].

2 Cryptographic Background

In this section we discuss some basic cryptographic tools. These tools are
essential components of the authentication data structures that we discuss
later.

Authenticated Index Structures for Outsourced Databases 117

2.1 Collision-resistant hash functions.

For our purposes, a hash function H is an efficiently computable function
that takes a variable-length input x to a fixed-length output y = H(x). Colli-
sion resistance states that it is computationally infeasible to find two inputs
x1 �= x2 such that H(x1) = H(x2). Collision-resistant hash functions can be
built provably based on various cryptographic assumptions, such as hardness
of discrete logarithms [16]. However, we concentrate on using heuristic hash
functions that have the advantage of being very fast to evaluate. Specifically
we focus on SHA-1 [17], which takes variable-length inputs to 160-bit (20-
byte) outputs. SHA-1 is currently considered collision-resistant in practice,
despite some recent successful attacks [18, 19]. We also note that any even-
tual replacement to SHA-1 developed by the cryptographic community can
be used instead of SHA-1.

2.2 Public-key digital signature schemes.

A public-key digital signature scheme, formally defined in [20], is a tool for
authenticating the integrity and ownership of the signed message. In such a
scheme, the signer generates a pair of keys (SK ,PK), keeps the secret key
SK secret, and publishes the public key PK associated with her identity.
Subsequently, for any message m that she sends, a signature sm is produced by
sm = S(SK ,m). The recipient of sm and m can verify sm via V(PK ,m, sm)
that outputs “valid” or “invalid.” A valid signature on a message assures
the recipient that the owner of the secret key intended to authenticate the
message, and that the message has not been changed. The most commonly
used public digital signature scheme is RSA [21]. Existing solutions [9, 22, 23,
24] for the query authentication problem chose to use this scheme, hence we
adopt the common 1024-bit (128-byte) RSA here. Its signing and verification
cost is one hash computation and one modular exponentiation with 1024-bit
modulus and exponent.

2.3 A Signature Aggregation Scheme.

In the case when t signatures s1, . . . , st on t messages m1, . . . ,mt signed by
the same signer need to be verified all at once, certain signature schemes allow
for more efficient communication and verification than t individual signatures.
Namely, for RSA it is possible to combine the t signatures into a single ag-
gregated signature s1,t that has the same size as an individual signature and
that can be verified (almost) as fast as an individual signature. This tech-
nique is called Condensed-RSA [25]. The combining operation can be done
by anyone, as it does not require knowledge of SK ; moreover, the security of
the combined signature is the same as the security of individual signatures.
In particular, aggregation of t RSA signatures can be done at the cost of t−1
modular multiplications, and verification can be performed at the cost of t−1

118 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

r1 r2 r3 r4

h12=H(h1|h2) h34=H(h3|h4)

hroot=H(h12|h34)

h1=H(r1) h2=H(r2)h3=H(r3) h4=H(r4)

stree=S(hroot)

Fig. 1. Example of a Merkle hash tree.

multiplications, t hashing operations, and one modular exponentiation (thus,
the computational gain is that t− 1 modular exponentiations are replaced by
modular multiplications). Note that aggregating signatures is possible only
for some digital signature schemes.

2.4 The Merkle Hash Tree.

The straightforward solution for verifying a set of n values is to generate n
digital signatures, one for each value. An improvement on this straightforward
solution is the Merkle hash tree (see Figure 1), first proposed by [26]. It
solves the simplest form of the query authentication problem for point queries
and datasets that can fit in main memory. The Merkle hash tree is a binary
tree, where each leaf contains the hash of a data value, and each internal
node contains the hash of the concatenation of its two children. Verification
of data values is based on the fact that the hash value of the root of the
tree is authentically published (authenticity can be established by a digital
signature). To prove the authenticity of any data value, all the prover has
to do is to provide the verifier, in addition to the data value itself, with the
values stored in the siblings of the path that leads from the root of the tree to
that value. The verifier, by iteratively computing all the appropriate hashes
up the tree, at the end can simply check if the hash she has computed for the
root matches the authentically published value. The security of the Merkle
hash tree is based on the collision-resistance of the hash function used: it is
computationally infeasible for a malicious prover to fake a data value, since
this would require finding a hash collision somewhere in the tree (because
the root remains the same and the leaf is different—hence, there must be
a collision somewhere in between). Thus, the authenticity of any one of n
data values can be proven at the cost of providing and computing log2 n hash
values, which is generally much cheaper than storing and verifying one digital
signature per data value. Furthermore, the relative position (leaf number)
of any of the data values within the tree is authenticated along with the
value itself. Finally, in [27] this idea is extended to dynamic environments,
by dynamizing the binary search tree using 2-3 trees. Thus, insertions and
deletions can be handled efficiently by the Merkle hash tree.

Authenticated Index Structures for Outsourced Databases 119

Table 1. Notation used.

Symbol Description
r A database record
k A B+-tree key
p A B+-tree pointer
h A hash value
s A signature
|x| Size of object x
ND Total number of database records
NR Total number of query results
P Page size
fx Node fanout of structure x
dx Height of structure x
Hl(x) A hash operation on input x of length l
Sl(x) A signing operation on input x of length l
Vl(x) A verifying operation on input x of length l
Cx Cost of operation x
VO The verification object

3 Authenticated Index Structures for Selection Queries

Existing solutions for the query authentication problem work as follows. The
data owner creates a specialized authenticated data structure that captures
the original database and uploads it at the servers together with the database
itself. The structure is used by the servers to provide a verification object
VO, along with every query answer, which clients can use for authenticating
the results. Verification usually occurs by means of using collision-resistant
hash functions and digital signature schemes. Note that in any solution, some
information that is known to be authentically published by the owner must be
made available to the client directly; otherwise, from the client’s point of view,
the owner cannot be differentiated from any other potentially malicious entity.
For example, this information could be the owner’s public key of any public
signature scheme. For any authentication method to be successful it must be
computationally infeasible for a malicious server to produce an incorrect query
answer along with a verification object that will be accepted by a client that
holds the correct authentication information of the owner.

Next, we illustrate three approaches for query correctness and complete-
ness for selection queries on a single attribute: a signature-based approach
similar to the ones described in [9, 24], a Merkle-tree-like approach based on
the ideas presented in [28], and an improved embedded tree approach [29]. We
present them for the static scenario where no data updates occur between the
owner and the servers on the outsourced database. We also present analytical
cost models for all techniques, given a variety of performance metrics.

120 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

In particular, we provide models for the storage, construction, query,
and authentication cost of each technique, taking into account the overhead
of hashing, signing, verifying data, and performing expensive computations
(like modular multiplications of large numbers). The analysis considers range
queries on a specific database attribute A indexed by a B+-tree [30]. The size
of the structure is important first for quantifying the storage overhead on the
servers, and second for possibly quantifying the owner/server communication
cost. The construction cost is useful for quantifying the overhead incurred
by the database owner for outsourcing the data. The query cost quantifies
the incurred server cost for answering client queries, and hence the potential
query throughput. The authentication cost quantifies the server/client com-
munication cost and, in addition, the client side incurred cost for verifying
the query results. The notation used is summarized in Table 1. In the rest,
for ease of exposition, it is assumed that all structures are bulk-loaded in a
bottom-up fashion and that all index nodes are completely full. Extensions
for supporting multiple selection attributes are discussed in Section 6.

Aggregated Signatures with B+-trees

The first authenticated data structure for static environments is a direct ex-
tension of aggregated signatures and ideas that appeared in [24, 9]. To guar-
antee correctness and completeness the following technique can be used: First,
the owner individually hashes and signs all consecutive pairs of tuples in the
database, assuming some sorted order on a given attribute A. For example,
given two consecutive tuples ri, rj the owner transmits to the servers the pair
(ri, si), where si = S(ri|rj) (‘|’ denotes some canonical pairing of strings that
can be uniquely parsed back into its two components; e.g., simple string con-
catenation if the lengths are fixed). The first and last tuples can be paired with
special marker records. Chaining tuples in this way will enable the clients to
verify that no in-between tuples have been dropped from the results or mod-
ified in any way. An example of this scheme is shown in Figure 2.

...
r1 r2 r3 rn rx

B+-tree

S(r1|r2) S(r2|r3) S(r3|r4) S(rn|rx)

Fig. 2. The signature-based approach.

In order to speed up query execution on the server side a B+-tree is con-
structed on top of attribute A. To answer a query the server constructs a VO
that contains one pair rq|sq per query result. In addition, one tuple to the left
of the lower-bound of the query results and one to the right of the upper-bound

Authenticated Index Structures for Outsourced Databases 121

is returned, in order for the client to be able to guarantee that no boundary
results have been dropped. Notice that since our completeness requirements
are less stringent than those of [9] (where they assume that database access
permissions restrict which tuples the database can expose to the user), for
fairness we have simplified the query algorithm substantially here.

There are two obvious and serious drawbacks associated with this ap-
proach. First, the extremely large VO size that contains a linear number
of signatures w.r.t. NR (the total number of query results), taking into ac-
count that signature sizes are very large. Second, the high verification cost
for the clients. Authentication requires NR verification operations which, as
mentioned earlier, are very expensive. To solve this problem one can use the
aggregated signature scheme discussed in Section 2.3. Instead of sending one
signature per query result the server can send one combined signature sπ for all
results, and the client can use an aggregate verification instead of individual
verifications.

By using aggregated RSA signatures, the client can authenticate the results
by hashing consecutive pairs of tuples in the result-set, and calculating the
product mπ =

∏
∀q hq (mod n) (where n is the RSA modulus from the public

key of the owner). It is important to notice that both sπ and mπ require a
linear number of modular multiplications (w.r.t. NR). The cost models of the
aggregated signature scheme for the metrics considered are as follows:

Node fanout:

The node fanout of the B+-tree structure is:

fa =
P − |p|
|k| + |p| + 1 . (1)

where P is the disk page size, |k| and |p| are the sizes of a B+-tree key and
pointer respectively.

Storage cost:

The total size of the authenticated structure (excluding the database itself)
is equal to the size of the B+-tree plus the size of the signatures. For a total
of ND tuples the height of the tree is equal to da = logfa

ND, consisting of

NI = fda
a −1
fa−1 (=

∑da−1
i=0 f i

a) nodes in total. Hence, the total storage cost is
equal to:

Ca
s = P · fda

a − 1
fa − 1

+ ND · |s|. (2)

The storage cost also reflects the initial communication cost between the
owner and servers. Notice that the owner does not have to upload the B+-tree
to the servers, since the latter can rebuild it by themselves, which will reduce
the owner/server communication cost but increase the computation cost at
the servers. Nevertheless, the cost of sending the signatures cannot be avoided.

122 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

Construction cost:

The cost incurred by the owner for constructing the structure has three com-
ponents: the signature computation cost, bulk-loading the B+-tree, and the
I/O cost for storing the structure. Since the signing operation is very expen-
sive, it dominates the overall cost. Bulk-loading the B+-tree in main memory
is much less expensive and its cost can be omitted. Hence:

Ca
c = ND · (CH|r| + CS2|h|) +

Ca
s

P
· CIO. (3)

VO construction cost:

The cost of constructing the VO for a range query depends on the total disk
I/O for traversing the B+-tree and retrieving all necessary record/signature
pairs, as well as on the computation cost of sπ. Assuming that the total
number of leaf pages accessed is NQ = NR

fa
, the VO construction cost is:

Ca
q = (NQ + da − 1 +

NR · |r|
P

+
NR · |s|

P
) · CIO + Csπ , (4)

where the last term is the modular multiplication cost for computing the
aggregated signature, which is linear to NR. The I/O overhead for retrieving
the signatures is also large.

Authentication cost:

The size of the VO is equal to the result-set size plus the size of one signature:

|VO|a = NR · |r| + |s|. (5)

The cost of verifying the query results is dominated by the hash function
computations and modular multiplications at the client:

Ca
v = NR · CH|r| + Cmπ + CV|n| , (6)

where the modular multiplication cost for computing the aggregated hash
value is linear to the result-set size NR, and the size of the final product has
length in the order of |n| (the RSA modulus). The final term is the cost of
verifying the product using sπ and the owner’s public key.

It becomes obvious now that one advantage of the aggregated signature
scheme is that it features small VO sizes and hence small client/server com-
munication cost. On the other hand it has the following serious drawbacks: 1.
Large storage overhead on the servers, dominated by the large signature sizes,
2. Large communication overhead between the owners and the servers that
cannot be reduced, 3. A very high initial construction cost, dominated by the
cost of computing the signatures, 4. Added I/O cost for retrieving signatures,
linear to NR, 5. An added modular multiplication cost, linear to the result-set

Authenticated Index Structures for Outsourced Databases 123

size, for constructing the VO and authenticating the results, 6. The require-
ment for a public key signature scheme that supports aggregated signatures.
For the rest of the chapter, this approach is denoted as Aggregated Signatures
with B+-trees (ASB-tree). The ASB-tree has been generalized to work with
multi-dimensional selection queries in [24, 31].

The Merkle B-tree

Motivated by the drawbacks of the ASB-tree, we present a different approach
for building authenticated structures that is based on the general ideas of
[28] (which utilize the Merkle hash tree) applied in our case on a B+-tree
structure. We term this structure the Merkle B-tree (MB-tree).

As already explained in Section 2.4, the Merkle hash tree uses a hierarchical
hashing scheme in the form of a binary tree to achieve query authentication.
Clearly, one can use a similar hashing scheme with trees of higher fanout and
with different organization algorithms, like the B+-tree, to achieve the same
goal. An MB-tree works like a B+-tree and also consists of ordinary B+-tree
nodes that are extended with one hash value associated with every pointer
entry. The hash values associated with entries on leaf nodes are computed
on the database records themselves. The hash values associated with index
node entries are computed on the concatenation of the hash values of their
children. For example, an MB-tree is illustrated in Figure 3. A leaf node
entry is associated with a hash value h = H(ri), while an index node entry
with h = H(h1| · · · |hfm

), where h1, . . . , hfm
are the hash values of the node’s

children, assuming fanout fm per node. After computing all hash values, the
owner has to sign the hash of the root using its secret key SK .

... ...

...... ...

kj pj

piki

hj=H(h1|...|hf)

hi=H(ri)

Fig. 3. An MB-tree node.

To answer a range query the server builds a VO by initiating two top-
down B+-tree like traversals, one to find the left-most and one the right-
most query result. At the leaf level, the data contained in the nodes between
the two discovered boundary leaves are returned, as in the normal B+-tree.
The server also needs to include in the VO the hash values of the entries
contained in each index node that is visited by the lower and upper boundary
traversals of the tree, except the hashes to the right (left) of the pointers
that are traversed during the lower (upper) boundary traversals. At the leaf
level, the server inserts only the answers to the query, along with the hash

124 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

values of the residual entries to the left and to the right parts of the boundary
leaves. The result is also increased with one tuple to the left and one to the
right of the lower-bound and upper-bound of the query result respectively,
for completeness verification. Finally, the signed root of the tree is inserted as
well. An example query traversal is shown in Figure 4.

... ...

...

L1 L2 L3 L4 L5 L6

I1 I2 I3 I4 I5 I6

L7 L8 L9

return hi

return hi

I7 I8

return ri

ρ1

ρo

L10 L11 L12

Fig. 4. A query traversal on an MB-tree. At every level the hashes of the residual
entries on the left and right boundary nodes need to be returned.

The client can iteratively compute all the hashes of the sub-tree corre-
sponding to the query result, all the way up to the root using the VO. The
hashes of the query results are computed first and grouped into their corre-
sponding leaf nodes4, and the process continues iteratively, until all the hashes
of the query sub-tree have been computed. After the hash value of the root
has been computed, the client can verify the correctness of the computation
using the owner’s public key PK and the signed hash of the root. It is easy
to see that since the client is forced to recompute the whole query sub-tree,
both correctness and completeness is guaranteed. It is interesting to note here
that one could avoid building the whole query sub-tree during verification by
individually signing all database tuples as well as each node of the B+-tree.
This approach, called VB-tree, was proposed in [22] but it is subsumed by
the ASB-tree. Another approach that does not need to build the whole tree
appeared in [32]. The analytical cost models of the MB-tree are as follows:

Node fanout:

The node fanout in this case is:

fm =
P − |p| − |h|
|k| + |p| + |h| + 1. (7)

Notice that the maximum node fanout of the MB-tree is considerably smaller
than that of the ASB-tree, since the nodes here are extended with one hash
value per entry. This adversely affects the total height of the MB-tree.
4 Extra node boundary information can be inserted in the VO for this purpose with

a very small overhead.

Authenticated Index Structures for Outsourced Databases 125

Storage cost:

The total size is equal to:

Cm
s = P · fdm

m − 1
fm − 1

+ |s|. (8)

An important advantage of the MB-tree is that the storage cost does not
necessarily reflect the owner/server communication cost. The owner, after
computing the final signature of the root, does not have to transmit all hash
values to the server, but only the database tuples. The server can recompute
the hash values incrementally by recreating the MB-tree. Since hash compu-
tations are cheap, for a small increase in the server’s computation cost this
technique will reduce the owner/sever communication cost drastically.

Construction cost:

The construction cost for building an MB-tree depends on the hash function
computations and the total I/Os. Since the tree is bulk-loaded, building the
leaf level requires ND hash computations of input length |r|. In addition, for
every tree node one hash of input length fm · |h| is computed. Since there
are a total of NI = fdm

m −1
fm−1 nodes on average (given height dm = logfm

ND),
the total number of hash function computations, and hence the total cost for
constructing the tree is given by:

Cm
c = ND · CH|r| + NI · CHfm|h| + CS|h| +

Cm
s

P
· CIO. (9)

VO construction cost:

The VO construction cost is dominated by the total disk I/O. Let the total
number of leaf pages accessed be equal to NQ = NR

fm
, dm = logfm

ND and dq =
logfm

NR be the height of the MB-tree and the query sub-tree respectively.
In the general case the index traversal cost is:

Cm
q = [(dm − dq + 1) + 2(dq − 2) + NQ +

NR · |r|
P

] · CIO, (10)

taking into account the fact that the query traversal at some point splits into
two paths. It is assumed here that the query range spans at least two leaf
nodes. The first term corresponds to the hashes inserted for the common path
of the two traversals from the root of the tree to the root of the query sub-tree.
The second term corresponds to the cost of the two boundary traversals after
the split. The last two terms correspond to the cost of the leaf level traversal
of the tree and accessing the database records.

126 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

Authentication cost:

Assuming that ρ0 is the total number of query results contained in the left
boundary leaf node of the query sub-tree, σ0 on the right boundary leaf node,
and ρi, σi the total number of entries of the left and right boundary nodes on
level i, 1 ≤ i ≤ dq, that point towards leaves that contain query results (see
Figure 4), the size of the VO is:

|VO|m =
(2fm − ρ0 − σ0)|h| + NR · |r| + |s| +
(dm − dq) · (fm − 1)|h| +
dq−2∑
i=1

(2fm − ρi − σi)|h| +

(fm − ρdq−1 − σdq−1)|h|. (11)

This cost does not include the extra boundary information needed by the
client in order to group hashes correctly, but this overhead is very small (one
byte per node in the VO) especially when compared with the hash value size.
Consequently, the verification cost on the client is:

Cm
v = NR · CH|r| +

dq−1∑
i=0

f i
m · CHfm|h| +

(dm − dq) · CHfm|h| + CV|h| . (12)

Given that the computation cost of hashing versus signing is orders of
magnitude smaller, the initial construction cost of the MB-tree is expected
to be orders of magnitude less expensive than that of the ASB-tree. Given
that the size of hash values is much smaller than that of signatures and that
the fanout of the MB-tree will be smaller than that of the ASB-tree, it is not
easy to quantify the exact difference in the storage cost of these techniques,
but it is expected that the structures will have comparable storage cost, with
the MB-tree being smaller. The VO construction cost of the MB-tree will be
much smaller than that of the ASB-tree, since the ASB-tree requires many
I/Os for retrieving signatures, and also some expensive modular multiplica-
tions. The MB-tree will have smaller verification cost as well since: 1. Hashing
operations are orders of magnitude cheaper than modular multiplications, 2.
The ASB-tree requires NR modular multiplications for verification. The only
drawback of the MB-tree is the large VO size, which increases the client/server
communication cost. Notice that the VO size of the MB-tree is bounded by
fm · logfm

ND. Since generally fm � logfm
ND, the VO size is essentially

determined by fm, resulting in large sizes.

Authenticated Index Structures for Outsourced Databases 127

...

... ...

...... ...

... ...

kl pl

ki pi

embedded tree’s root

krj hrjprj

hi=H(ri)

hl=H(hr1 |...| hrfk
)

Fig. 5. An EMB-tree node.

The Embedded Merkle B-tree

In this section we present another data structure, the Embedded Merkle B-
tree (EMB-tree), that provides a nice, adjustable trade-off between robust
initial construction and storage cost versus improved VO construction and
verification cost. The main idea is to have different fanouts for storage and
authentication and yet combine them in the same data structure.

Every EMB-tree node consists of regular B+-tree entries, augmented with
an embedded MB-tree. Let fe be the fanout of the EMB-tree. Then each
node stores up to fe triplets ki|pi|hi, and an embedded MB-tree with fanout
fk < fe. The leaf level of this embedded tree consists of the fe entries of the
node. The hash value at the root level of this embedded tree is stored as an hi

value in the parent of the node, thus authenticating this node to its parent.
Essentially, we are collapsing an MB-tree with height de · dk = logfk

ND into
a tree with height de that stores smaller MB-trees of height dk within each
node. Here, de = logfe

ND is the height of the EMB-tree and dk = logfk
fe is

the height of each small embedded MB-tree. An example EMB-tree node is
shown in Figure 5.

For ease of exposition, in the rest of this discussion it will be assumed that
fe is a power of fk such that the embedded trees when bulk-loaded are always
full. The technical details if this is not the case can be worked out easily. The
exact relation between fe and fk will be discussed shortly. After choosing fk

and fe, bulk-loading the EMB-tree is straightforward: Simply group the ND

tuples in groups of size fe to form the leaves and build their embedded trees
on the fly. Continue iteratively in a bottom up fashion.

When querying the structure the server follows a path from the root to the
leaves of the external tree as in the normal B+-tree. For every node visited, the
algorithm scans all fe − 1 triplets ki|pi|hi on the data level of the embedded
tree to find the key that needs to be followed to the next level. When the
right key is found the server also initiates a point query on the embedded tree
of the node using this key. The point query will return all the needed hash
values for computing the concatenated hash of the node, exactly like for the
MB-tree. Essentially, these hash values would be the equivalent of the fe − 1
sibling hashes that would be returned per node if the embedded tree was not
used. However, since now the hashes are arranged hierarchically in an fk-way

128 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

tree, the total number of values inserted in the VO per node is reduced to
(fk − 1)dk.

To authenticate the query results the client uses the normal MB-tree au-
thentication algorithm to construct the hash value of the root node of each
embedded tree (assuming that proper boundary information has been included
in the VO for separating groups of hash values into different nodes) and then
follows the same algorithm once more for computing the final hash value of
the root of the EMB-tree.

The EMB-tree structure uses extra space for storing the index levels of
the embedded trees. Hence, by construction it has increased height compared
to the MB-tree due to smaller fanout fe. A first, simple optimization for
improving the fanout of the EMB-tree is to avoid storing the embedded trees
altogether. Instead, each embedded tree can be instantiated by computing
fewer than fe/(fk − 1) hashes on the fly, only when a node is accessed during
the querying phase. We call this the EMB−-tree. The EMB−-tree is logically
the same as the EMB-tree, however its physical structure is equivalent to an
MB-tree with the hash values computed differently. The querying algorithm
of the EMB−-tree is slightly different than that of the EMB-tree in order to
take into account the conceptually embedded trees. With this optimization
the storage overhead is minimized and the height of the EMB−-tree becomes
equal to the height of the equivalent MB-tree. The trade-off is an increased
computation cost for constructing the VO. However, this cost is minimal as
the number of embedded trees that need to be reconstructed is bounded by
the height of the EMB−-tree.

As a second optimization, one can create a slightly more complicated em-
bedded tree to reduce the total size of the index levels and increase fanout fe.
We call this the EMB∗-tree. Essentially, instead of using a B+-tree as the
base structure for the embedded trees, one can use a multi-way search tree
with fanout fk while keeping the structure of the external EMB-tree intact.

The embedded tree based on B+-trees has a total of Ni = f
dk
k −1

fk−1 nodes while,
for example, a B-tree based embedded tree (recall that a B-tree is equivalent
to a balanced multi-way search tree) would contain Ni = fe−1

fk−1 nodes instead.
A side effect of using multi-way search trees is that the cost for querying the
embedded tree on average will decrease, since the search for a particular key
might stop before reaching the leaf level. This will reduce the expected cost
of VO construction substantially. Below we give the analytical cost models of
the EMB-tree. The further technical details and the analytical cost models
associated with the EMB∗-tree and EMB−-tree are similar to the EMB-tree
case and can be worked out similarly.

Node fanout:

For the EMB-tree, the relationship between fe and fk is given by:

Authenticated Index Structures for Outsourced Databases 129

P ≥
f

logfk
fe−1

k − 1
fk − 1

[fk(|k| + |p| + |h|) − |k|] +

[fe(|k| + |p| + |h|) − |k|]. (13)

First, a suitable fk is chosen such that the requirements for authentication
cost and storage overhead are met. Then, the maximum value for fe satisfying
(13) can be determined.

Storage cost:

The storage cost is equal to:

Ce
s = P · fde

e − 1
fe − 1

+ |s|. (14)

Construction cost:

The total construction cost is the cost of constructing all the embedded trees
plus the I/Os to write the tree back to disk. Given a total of NI = fde

e −1
fe−1

nodes in the tree and Ni = f
dk
k −1

fk−1 nodes per embedded tree, the cost is:

Ce
c = ND · CH|r| + NI · Ni · CHfk|h| + CS|h| +

Ce
s

P
· CIO. (15)

It should be mentioned here that the cost for constructing the EMB−-tree is
exactly the same, since in order to find the hash values for the index entries of
the trees one needs to instantiate all embedded trees. The cost of the EMB∗-
tree is somewhat smaller than (15), due to the smaller number of nodes in the
embedded trees.

VO construction cost:

The VO construction cost is dominated by the total I/O for locating and
reading all the nodes containing the query results. Similarly to the MB-tree
case:

Ce
q = [(de − dq + 1) + 2(dq − 2) + NQ +

NR · |r|
P

] · CIO, (16)

where dq is the height of the query sub-tree and NQ = NR

fe
is the number of

leaf pages to be accessed. Since the embedded trees are loaded with each node,
the querying computation cost associated with finding the needed hash values
is expected to be dominated by the cost of loading the node in memory, and
hence it is omitted. It should be restated here that for the EMB∗-tree the
expected VO construction cost will be smaller, since not all embedded tree
searches will reach the leaf level of the structure.

130 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

Authentication cost:

The embedded trees work exactly like MB-trees for point queries. Hence, each
embedded tree returns (fk − 1)dk hashes. Similarly to the MB-tree the total
size of the VO is:

|VO|e = NR · |r| + |s|+
dq−2∑

0

2|VO|m + |VO|m +
dm−1∑

dq

(fk − 1)dk|h|, (17)

where |VO|m is the cost of a range query on the embedded trees of the bound-
ary nodes contained in the query sub-tree given by equation (11), with a query
range that covers all pointers to children that cover the query result-set.

The verification cost is:

Ce
v = NR · CH|r| +

dq−1∑
i=0

f i
e · Ck + (de − dq) · Ck + CV|h| , (18)

where Ck = Ni · CHfk|h| is the cost for constructing the concatenated hash of
each node using the embedded tree.

For fk = 2 the authentication cost becomes equal to a Merkle hash tree,
which has the minimal VO size but higher verification time. For fk ≥ fe the
embedded tree consists of only one node which can actually be discarded,
hence the authentication cost becomes equal to that of an MB-tree, which
has larger VO size but smaller verification cost. Notice that, as fk becomes
smaller, fe becomes smaller as well. This has an impact on VO construction
cost and size, since with smaller fanout the height of the EMB-tree increases.
Nevertheless, since there is only a logarithmic dependence on fe versus a
linear dependence on fk, it is expected that with smaller fk the authentication
related operations will become faster.

4 Authentication Index Structures in Dynamic Settings

In this section we analyze the performance of all approaches given dynamic
updates between the owner and the servers. In particular we assume that
either insertions or deletions can occur to the database, for simplicity. The
performance of updates in the worst case can be considered as the cost of a
deletion followed by an insertion. There are two contributing factors for the
update cost: computation cost such as creating new signatures and computing
hashes, and I/O cost.

Aggregated Signatures with B+-trees

Suppose that a single database record ri is inserted in or deleted from the
database. Assuming that in the sorted order of attribute A the left neighbor

Authenticated Index Structures for Outsourced Databases 131

of ri is ri−1 and the right neighbor is ri+1, for an insertion the owner has to
compute signatures S(ri−1|ri) and S(ri|ri+1), and for a deletion S(ri−1|ri+1).
For k consecutive updates in the best case a total of k + 2 signature compu-
tations are required for insertions and 1 for deletions if the deleted tuples are
consecutive. In the worst case a total of 2k signature computations are needed
for insertions and k for deletions, if no two tuples are consecutive. Given k
updates, suppose the expected number of signatures to be computed is repre-
sented by E{k}(k ≤ E{k} ≤ 2k). Then the additional I/O incurred is equal
to E{k}·|s|

P , excluding the I/Os incurred for updating the B+-tree structure.
Since the cost of signature computations is larger than even the I/O cost of
random disk accesses, a large number of updates is expected to have a very
expensive updating cost. The total update cost for the ASB-tree is:

Ca
u = E{k} · Cs +

E{k} · |s|
P

· CIO. (19)

The Merkle B-tree

The MB-tree can support efficient updates since only hash values are stored
for the records in the tree and, first, hashing is orders of magnitude faster
then signing, second, for each tuple only the path from the affected leaf to
the root need to be updated. Hence, the cost of updating a single record is
dominated by the cost of I/Os. Assuming that no reorganization to the tree
occurs the cost of an insertion is Cm

u = H|r| + dm(Hfm|h| + CIO) + S|h|.
In realistic scenarios though one expects that a large number of updates

will occur at the same time. In other cases the owner may decide to do a
delayed batch processing of updates as soon as enough changes to the database
have occurred. The naive approach for handling batch updates would be to do
all updates to the MB-tree one by one and update the path from the leaves
to the root once per update. Nevertheless, in case that a large number of
updates affect a similar set of nodes (e.g., the same leaf) a per tuple updating
policy performs an unnecessary number of hash function computations on
the predecessor path. In such cases, the computation cost can be reduced
significantly by recomputing the hashes of all affected nodes only once, after
all the updates have been performed on the tree. A similar analysis holds for
the incurred I/O as well.

Clearly, the total update cost for the per tuple update approach for k
insertions is k · Cm

u which is linear to the number of affected nodes k · dm.
The expected cost of k updates using batch processing can be computed
as follows. Given k updates to the MB-tree, assuming that all tuples are
updated uniformly at random and using a standard balls and bins argu-
ment, the probability that leaf node X has been affected at least once is
P (X) = 1 − (1 − 1

fdm−1
m

)k and the expected number of leaf nodes that have

been affected is fdm−1
m · P (X). Using the same argument, the expected num-

ber of nodes at level i (where i = 1 is the leaf level and 1 ≤ i ≤ dm) is

132 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

fdm−i
m · Pi(X), where Pi(X) = [1 − (1 − 1

fdm−i
m

)k]. Hence, for a batch of k

updates the total expected number of nodes that will be affected is:

E{X} =
dm−1∑
i=0

f i
m[1 − (1 − 1

f i
m

)k]. (20)

Hence, the expected MB-tree update cost for batch updates is

Cm
u = k · H|r| + E{X} · (Hfm|h| + CIO) + S|h|. (21)

In order to understand better the relationship between the per-update
approach and the batch-update, we can find the closed form for E{X} as
follows: ∑dm−1

i=0 f i
m(1 − (fi

m−1
fi

m
)k)

=
∑dm−1

i=0 f i
m(1 − (1 − 1

fi
m

)k)

=
∑dm−1

i=0 f i
m[1 −

∑k
x=0

(
k
x

)
(− 1

fi
m

)x]

=
∑dm−1

i=0 f i
m −

∑dm−1
i=0

∑k
x=0

(
k
x

)
(−1)x(1

fi
m

)x−1

= kdm −
∑k

x=2

(
k
x

)
(−1)x

∑dm−1
i=0 (1

fi
m

)x−1

= kdm −
∑k

x=2

(
k
x

)
(−1)x

1−(1

f
dm
m

)x−1

1−(1
fm

)x−1

The second term quantifies the cost decrease afforded by the batch update
operation, when compared to the per update cost.

For non-uniform updates to the database, the batch updating technique is
expected to work well in practice given that in real settings updates exhibit
a certain degree of locality. In such cases one can still derive a similar cost
analysis by modelling the distribution of updates.

The Embedded MB-tree

The analysis for the EMB-tree is similar to the one for MB-trees. The update
cost for per tuple updates is equal to k · Ce

u, where Ce
u = H|r| + de logfk

fe ·
(Hfk|h| + CIO)+S|h|, once again assuming that no reorganizations to the tree
occur. Similarly to the MB-tree case the expected cost for batch updates is
equal to:

Ce
u = k · H|r| + E{X} · logfk

fe · (Hfk|h| + CIO) + S|h|. (22)

Discussion

For the ASB-tree, the communication cost for updates between owner and
servers is bounded by E{K}|s|, and there is no possible way to reduce this cost
as only the owner can compute signatures. However, for the hash based index
structures, there are a number of options that can be used for transmitting

Authenticated Index Structures for Outsourced Databases 133

the updates to the server. The first option is for the owner to transmit only
a delta table with the updated nodes of the MB-tree (or EMB-tree) plus the
signed root. The second option is to transmit only the signed root and the
updates themselves and let the servers redo the necessary computations on
the tree. The first approach minimizes the computation cost on the servers but
increases the communication cost, while the second approach has the opposite
effect.

5 Query Freshness

The dynamic scenarios considered before reveal a third dimension of the query
authentication problem, that of query result freshness. When the owner up-
dates the database, a malicious or compromised server may still retain an
older version of the data. Since the old version was authenticated by the
owner already, the client will still accept any query results originating from
an old version as authentic, unless the latter is informed by the owner that
this is no longer the case. In fact, a malicious server may choose to answer
queries using any previous version, and in some scenarios even a combination
of older versions of the data. If the client wishes to be assured that queries
are answered using the latest data updates, additional work is necessary.

This issue is similar to the problem of ensuring the freshness of signed
documents, which has been studied extensively in the context of certificate
validation and revocation. There are many approaches which we do not review
here. The simplest is to publish a list of revoked signatures, one for every
expired version of the database. More sophisticated ones are: 1. Including
the time interval of validity as part of the signed root of the authenticated
structures and reissuing the signature after the interval expires, 2. Using hash
chains to confirm validity of signatures at frequent intervals [33].

Clearly, all signature freshness techniques impose a cost which is linear to
the number of signatures used by any authentication structure. The advantage
of the Merkle tree based methods is that they use one signature only — that
of the root of the tree — which is sufficient for authenticating the whole
database. Straightforwardly, database updates will also require re-issuing only
the signature of the root.

6 Extensions

This section extends our discussion to other interesting topics that are related
to the query authentication problem.

Multi-dimensional Selection and Aggregation Range Queries. The
same ideas that we discussed before can be used for authenticating multi-
dimensional range queries. In particular, any tree based multi-dimensional

134 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

index structure, like the R-tree, can be used to create verification objects
for multi-dimensional data. The tree is extended with hash values that are
computed using both the hash values of its children nodes in the tree and the
multi-dimensional information that is used to navigate the tree. For the R-tree,
this means that the hash value for a node N will contain all the hash values
and the MBR’s of the children nodes of N . Signature based approaches can
be also used [34, 31]. Furthermore, aggregation queries can be authenticated
using aggregation trees [35, 36]. The only difference is that the aggregate value
of each subtree should be included in the computation of the hash values. That
is, for each node N of an aggregation tree we add the aggregate value of the
subtree that starts at N and we include this in the hash value of the node [37].

General Query Types. The authenticated structures presented before can
support other query types as well. We briefly discuss here a possible extension
of these techniques for join queries. Other query types that can be supported
are projections and relational set operations.

Assume that we would like to provide authenticated results for join queries
such as R ��Ai=Aj

S, where Ai ∈ R and Aj ∈ S (R and S could be relations
or result-sets from other queries), and authenticated structures for both Ai

in R and Aj in S exist. The server can provide the proof for the join as
follows: 1. Select the relation with the smaller size, say R, 2. Construct the
V O for R (if R is an entire relation then the VO contains only the signature
of the root node from the index of R), 3. Construct the VOs for each of the
following selection queries: for each record rk in R, qk =“SELECT * FROM
S WHERE r.Aj = rk.Ai”. The client can easily verify the join results. First,
it authenticates that the relation R is complete and correct. Then, using the
VO for each query qk, it makes sure that it is complete for every k (even when
the result of qk is empty). After this verification, the client can construct the
results for the join query and be sure that they are complete and correct.

7 Conclusion

In this chapter we presented three approaches to authenticate range queries
in ODBs. The first approach is based on signature chaining and aggregation,
the second on combining a Merkle hash tree with a B+-tree and the third is
an improved version of the hash tree approach. We discussed advantages and
disadvantages of each approach and we gave an analytical cost model for each
approach and different cost metrics. Finally, we discussed the performance of
each method under a dynamic environment and we gave extensions of these
techniques to other query types. A interesting future direction is to enhance
the proposed methods to work efficiently for complex relational queries. An-
other direction is to investigate authentication techniques for other types of
databases beyond relational databases.

Authenticated Index Structures for Outsourced Databases 135

References

1. Hacigumus, H., Iyer, B.R., Mehrotra, S.: Providing database as a service. In:
Proc. of International Conference on Data Engineering (ICDE). (2002) 29–40

2. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proc. of Very Large Data Bases (VLDB). (2004) 720–731

3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of ACM
Management of Data (SIGMOD). (2000) 439–450

4. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy
preserving data mining. In: Proc. of ACM Symposium on Principles of Database
Systems (PODS). (2003) 211–222

5. Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted
data in the database service provider model. In: Proc. of ACM Management of
Data (SIGMOD). (2002) 216–227

6. Miklau, G., Suciu, D.: Controlling access to published data using cryptography.
In: Proc. of Very Large Data Bases (VLDB). (2003) 898–909

7. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting
techniques for fine-grained access control. In: Proc. of ACM Management of
Data (SIGMOD). (2004) 551–562

8. Bouganim, L., Ngoc, F.D., Pucheral, P., Wu, L.: Chip-secured data access:
Reconciling access rights with data encryption. In: Proc. of Very Large Data
Bases (VLDB). (2003) 1133–1136

9. Pang, H., Jain, A., Ramamritham, K., Tan, K.L.: Verifying completeness of
relational query results in data publishing. In: Proc. of ACM Management of
Data (SIGMOD). (2005) 407–418

10. Sion, R.: Query execution assurance for outsourced databases. In: Proc. of Very
Large Data Bases (VLDB). (2005) 601–612

11. Anagnostopoulos, A., Goodrich, M., Tamassia, R.: Persistent authenticated
dictionaries and their applications. In: ISC. (2001) 379–393

12. Goodrich, M., Tamassia, R., Triandopoulos, N., Cohen, R.: Authenticated data
structures for graph and geometric searching. In: CT-RSA. (2003) 295–313

13. Tamassia, R., Triandopoulos, N.: Computational bounds on hierarchical data
processing with applications to information security. In: ICALP. (2005) 153–165

14. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-infused streams: Enabling
authentication of sliding window queries on streams. In: Proc. of Very Large
Data Bases (VLDB). (2007)

15. Papadopoulos, S., Yang, Y., Papadias, D.: CADS: Continuous authentication
on data streams. In: Proc. of Very Large Data Bases (VLDB). (2007)

16. McCurley, K.: The discrete logarithm problem. In: Proc. of the Symposium in
Applied Mathematics, American Mathematical Society (1990) 49–74

17. National Institute of Standards and Technology: FIPS PUB 180-1: Secure Hash
Standard. National Institute of Standards and Technology (1995)

18. Wang, X., Yin, Y., Yu, H.: Finding collisions in the full sha-1. In: CRYPTO.
(2005)

19. Wang, X., Yao, A., Yao, F.: New collision search for SHA-1 (2005) Presented
at the rump session of Crypto 2005.

20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing 17(2)
(1988) 96–99

136 Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin

21. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM (CACM) 21(2)
(1978) 120–126

22. Pang, H., Tan, K.L.: Authenticating query results in edge computing. In: Proc.
of International Conference on Data Engineering (ICDE). (2004) 560–571

23. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. In: Symposium on Network and Distributed Systems Secu-
rity (NDSS). (2004)

24. Narasimha, M., Tsudik, G.: Dsac: Integrity of outsourced databases with sig-
nature aggregation and chaining. In: Proc. of Conference on Information and
Knowledge Management (CIKM). (2005) 235–236

25. Mykletun, E., Narasimha, M., Tsudik, G.: Signature bouquets: Immutability
for aggregated/condensed signatures. In: European Symposium on Research in
Computer Security (ESORICS). (2004) 160–176

26. Merkle, R.C.: A certified digital signature. In: Proc. of Advances in Cryptology
(CRYPTO). (1989) 218–238

27. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Pro-
ceedings 7th USENIX Security Symposium (San Antonio, Texas). (1998)

28. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.:
A general model for authenticated data structures. Algorithmica 39(1) (2004)
21–41

29. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated
index structures for outsourced databases. In: Proc. of ACM Management of
Data (SIGMOD). (2006)

30. Comer, D.: The ubiquitous B-tree. ACM Computing Surveys 11(2) (1979)
121–137

31. Cheng, W., Pang, H., Tan, K.: Authenticating multi-dimensional query results
in data publishing. In: DBSec. (2006)

32. Nuckolls, G.: Verified query results from hybrid authentication trees. In: DBSec.
(2005) 84–98

33. Micali, S.: Efficient certificate revocation. Technical Report MIT/LCS/TM-
542b, Massachusetts Institute of Technology, Cambridge, MA (1996)

34. Narasimha, M., Tsudik, G.: Authentication of outsourced databases using sig-
nature aggregation and chaining. In: DASFAA. (2006) 420–436

35. Lazaridis, I., Mehrotra, S.: Progressive approximate aggregate queries with a
multi-resolution tree structure. In: Proc. of ACM Management of Data (SIG-
MOD). (2001) 401–412

36. Tao, Y., Papadias, D.: Range aggregate processing in spatial databases. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 16(12) (2004) 1555–
1570

37. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index
sturctures for aggregation queries in outsourced databases. Technical report,
CS Dept., Boston University (2006)

6

Towards Secure Data Outsourcing

Radu Sion

Network Security and Applied Cryptography Lab
Computer Science, Stony Brook University
sion@cs.stonybrook.edu

Summary. The networked and increasingly ubiquitous nature of today’s data man-
agement services mandates assurances to detect and deter malicious or faulty be-
havior. This is particularly relevant for outsourced data frameworks in which clients
place data management with specialized service providers. Clients are reluctant to
place sensitive data under the control of a foreign party without assurances of confi-
dentiality. Additionally, once outsourced, privacy and data access correctness (data
integrity and query completeness) become paramount. Today’s solutions are fun-
damentally insecure and vulnerable to illicit behavior, because they do not handle
these dimensions.

In this chapter we will explore the state of the art in data outsourcing mech-
anisms providing strong security assurances of (1) correctness, (2) confidentiality,
and (3) data access privacy.

There exists a strong relationship between such assurances; for example, the lack
of access pattern privacy usually allows for statistical attacks compromising data
confidentiality. Confidentiality can be achieved by data encryption. However, to be
practical, outsourced data services should allow expressive client queries (e.g., rela-
tional joins with arbitrary predicates) without compromising confidentiality. This is
a hard problem because decryption keys cannot be directly provided to potentially
untrusted servers. Moreover, if the remote server cannot be fully trusted, protocol
correctness become essential.

Here we will discuss query mechanisms targeting outsourced relational data that
(i) ensure queries have been executed with integrity and completeness over their
respective target data sets, (ii) allow queries to be executed with confidentiality
over encrypted data, (iii) guarantee the privacy of client queries and data access
patterns. We will then propose protocols that adapt to the existence of trusted
hardware — so critical functionality can be delegated securely from clients to servers.
We have successfully started exploring the feasibility of such solutions for providing
assurances for query execution and the handling of binary predicate JOINs with full
privacy in outsourced scenarios.

The total cost of ownership of data management infrastructure is 5–10 times
greater than the hardware costs, and more data is produced and lives digitally every
day. In the coming years, secure, robust, and efficient outsourced data management
will be demanded by users. It is thus important to finally achieve outsourced data

138 Radu Sion

management a trustworthy solution, viable in both personal-level and large corpo-
rate settings.

1 Introduction

Today, sensitive data is being managed on remote servers maintained by third
party outsourcing vendors. This is because the total cost of data management
is 5–10 times higher than the initial acquisition costs [61]. In such an out-
sourced “database as a service” [72] model, clients outsource data manage-
ment to a “database service provider” that provides online access mechanisms
for querying and managing the hosted data sets.

This is advantageous and significantly more affordable for parties with
limited abilities to manage large in-house data centers of potentially large re-
source footprints. By comparison, database service providers [1–6,6–9,11–15]
– ranging from corporate-level services such as the IBM Data Center Out-
sourcing Services to personal level database hosting – have the advantage
of expertize consolidation. More-over, they are likely to be able to offer the
service much cheaper, with increased service availability (e.g. uptime) guar-
antees.

Notwithstanding these clear advantages, a data outsourcing paradigm
faces significant challenges to widespread adoption, especially in an online, un-
trusted environment. Current privacy guarantees of such services are at best
declarative and often subject customers to unreasonable fine-print clauses—
e.g., allowing the server operator (and thus malicious attackers gaining access
to its systems) to use customer behavior and content for commercial, profiling,
or governmental surveillance purposes [52]. Clients are naturally reluctant to
place sensitive data under the control of a foreign party without strong secu-
rity assurances of correctness, confidentiality, and data access privacy. These
assurances are essential for data outsourcing to become a sound and truly vi-
able alternative to in-house data management. However, developing assurance
mechanisms in such frameworks is challenging because the data is placed un-
der the authority of an external party whose honest behavior is not guaranteed
but rather needs to be ensured by this very solution.

In this chapter, we will explore the challenges of designing and implement-
ing robust, efficient, and scalable relational data outsourcing mechanisms,
with strong security assurances of correctness, confidentiality, and data access
privacy. This is important because today’s outsourced data services are fun-
damentally insecure and vulnerable to illicit behavior, as they do not handle
all three dimensions consistently and there exists a strong relationship be-
tween such assurances: e.g., the lack of access pattern privacy usually allows
for statistical attacks compromising data confidentiality. Even if privacy and
confidentiality are in place, to be practical, outsourced data services should
allow sufficiently expressive client queries (e.g., relational operators such as
JOINs with arbitrary predicates) without compromising confidentiality. This

Towards Secure Data Outsourcing 139

data serverdata client(s!)

encrypted

plaintext

Outsourced
Data

Mallory Eve

“outsourcing”
1

O
nline Q

uery Interface

Query Processor

Data queries
2

query results, assurances
3

Query
Pre/Post-

Processing

Data Pre-
Processor

assurances ⊆ {query correctness, data confidentiality, access privacy}

(un-trusted)

“owner”

Fig. 1. Secure Data Outsourcing. Clients require assurances of correctness, confi-
dentiality and access privacy.

is a hard problem because in most cases decryption keys cannot be directly
provided to potentially untrusted database servers. Moreover, result complete-
ness and data integrity (i.e., correctness) become essential. Therefore, solu-
tions that do not address these dimensions are incomplete and insecure.

We will explore designs for outsourced relational data query mechanisms
that (i) ensure queries have been executed with integrity and completeness
over their respective target data sets, (ii) allow queries to be executed with
confidentiality over encrypted data, and (iii) guarantee the privacy of client
queries and data access patterns:

Correctness. Clients should be able to verify the integrity and complete-
ness of any results the server returns. For example, when executing a JOIN
query, they should be able to verify that the server returned all matching
tuples.

Confidentiality. The data being stored on the server should not be
decipherable either during transit between the client and the server, or at the
server side, even in the case when the server is malicious.

Access Privacy. An intruder or a malicious server should not be able
to perform statistical attacks by exploiting query patterns. For example, it
should not be able to compromise data confidentiality by correlating known
public information with frequently queried data items.

We will discuss how to design protocols that adapt to the existence of
trusted hardware — so critical functionality can be delegated securely from
clients to servers and increased assurance levels can be achieved more ef-

140 Radu Sion

ficiently. Moreover, it is important to design for scalability to large data
sets and high query throughputs. We note that client authentication and
authorization, two important but orthogonal security dimensions, are exten-
sively addressed in existing research, discussed in both this book and else-
where [22, 27, 31, 33, 39, 68, 75, 79, 80, 88, 90, 102, 103, 105, 123]; therefore they
and are not the main focus here. The assurances discussed here naturally
complement these dimensions in providing increased end-to-end security.

2 Designing Secure Data Outsourcing Mechanisms.

2.1 Model

In our discourse, we will consider the following concise yet representative
interaction model. Sensitive data is placed by a client on a database server
managed by a database service provider. Later, the client or a third party
will access the outsourced data through an online query interface exposed by
the server. Network layer confidentiality is assured by mechanisms such as
SSL/IPSec.

We will represent both the server and the client as interactive polynomial-
time Turing Machines; we write Cli for the client and Serv for the server
machine. A client can interact with the server and issue a sequence of update
or processing queries (Q1, . . . , Qi). We call such a sequence of queries a trace
T . After executing a query Q, the client Turing Machine either outputs �
or ⊥, indicating whether the client accepts or rejects the server’s response
(denoted as DT ,Q); in the first case, the client believes that the server replied
honestly. We write Cli(T , Q,DT ,Q) ∈ {�,⊥} to denote the output of the
client as a result of the server’s execution of trace T and query Q yielding the
result DT ,Q.

A server’s response D is said to be consistent with both T and Q, if an
honest server, after starting with an empty database and executing trace T
honestly, would reply with D to the query Q. Two traces T and T ′ are called
similar with respect to Q, written as T ≈QT ′, if the query Q yields the same
answer when queried after a trace T or T ′, i.e., DT ,Q = DT ′,Q.

The data server is considered to be un-trusted, potentially malicious, com-
promised or simply faulty. Given the possibility to get away undetected, it
will attempt to compromise data confidentiality, infer data access patterns
and return incorrect query results. In certain cases we will assume reason-
able computational limits such as the inability to factor large numbers or find
cryptographic hash collisions. We will not make any limiting assumptions on
the DBMS. In particular we will accommodate both multi-processor and dis-
tributed query processing DBMS. We will collaborate with other researches
to investigate how to accommodate non-relational data integration [17] but
mention that this does not constitute the subject of this work.

Towards Secure Data Outsourcing 141

The main performance constraint we are interested in is maintaining the
benefits of outsourcing. In particular, for a majority of considered operations,
if they are more efficient (than client processing) in the unsecured data out-
sourcing model – then they should still be more efficient in its secured version.
We believe this constraint is essential, as it is important to identify solutions
that validate in real life.

We note the existence of a large number of apparently more elegant cryp-
tographic primitives that could be deployed that would fail this constraint.
In particular, experimental results indicate that often, individual data-item
operations on the server should not involve any expensive modular arithmetic
such as exponentiation or multiplication. We believe it is imperative to resist
the (largely impractical) trend to use homomorphisms in server side opera-
tions unless absolutely necessary – as this often simplifies protocols in theory
but fails in practice due to extremely poor performance, beyond usability.

Throughout this chapter we reference active secure hardware such as the
IBM 4758 PCI [18] and the newer IBM 4764 PCI-X [19] cryptographic co-
processors [21]. The benefits of deploying such hardware in un-trusted remote
data processing contexts can be substantial, because the server can now run
important parts of the secure client logic. Additionally, the secure hardware’s
proximity to the data will reduce communication overheads. Practical limita-
tions of such devices however, make this a non-trivial task. To explain this,
we briefly survey the processors.

The 4764 is a PowerPC - based board and runs embedded Linux. The 4758
is based on a Intel 486 architecture and is preloaded with a compact runtime
environment that allows the loading of arbitrary external certified code. The
CPUs can be custom programmed. Moreover, they (4758 models 2 and 23 and
4764 model 1) are compatible with the IBM Common Cryptographic Architec-
ture (CCA) API [20]. The CCA implements common cryptographic services
such as random number generation, key management, digital signatures, and
encryption (DES/3DES,RSA). Both processors feature tamper resistant and
responsive designs [56]. In the eventuality of illicit physical handling, the de-
vices will simply destroy their internal state (in a process powered by internal
long-term batteries) and then shutdown. Tamper resistant designs however,
face major challenges in heat dissipation. This is one of the main reasons why
secure coprocessors are significantly constrained in both computation ability
and memory (main heat producer) capacity, often being orders of magnitude
slower that the main CPUs in their host systems. For example, at the higher
end, the 4758s feature 100Mhz CPUs and 8MB+ of RAM.

These constraints require careful consideration in achieving efficient pro-
tocols. Simplistic implementations of query processors inside the SCPU are
bound to fail in practice simply due to lack of performance. The host CPUs
will remain starkly underutilized and the entire cost-proposition of having fast
(unsecured) main CPUs and an expensive and slow secured CPU will be de-
feated. Efficient designs are likely to access the secure hardware just sparsely,
in critical portions, not synchronized with the main data flow. Therefore we

142 Radu Sion

will pursue designs that use such hardware only as a trusted-aide, while con-
sidering its limited I/O and computation throughput. For example, we be-
lieve efficient solutions can be achieved by balancing a storage-computation
trade-off when main un-secured storage capacity is significantly cheaper than
the purchase of additional secure computation elements. In such a model,
additional secure metadata structures are constructed over the outsourced
data, by both clients and SCPUs. These enable the unsecured main CPU to
perform computation-intensive portions of secure queries without requiring
trusted hardware support. The cost of constructing these additional helper
data structures will be amortized over multiple query instances.

We use the term encryption to denote any semantically secure (IND-CPA)
encryption mechanism [65], unless specified otherwise. We note that the mech-
anisms introduced here do not depend on any specific encryption mechanism.
A one-way cryptographic hash H() is a function with two important properties
of interest: (i) it is computationally infeasible, for a given value V′ to find a V
such that H(V) = V′ (one-wayness), and (ii) changing even one bit of the hash
input causes random changes to the output bits (i.e., roughly half of them
change even if one bit of the input is flipped). Examples of potential candi-
dates are the MD5 (fast) or the SHA class of hashes (more secure). Bloom
filters [35] offer a compact statistical representation of a set of data items and
fast set inclusion tests. They are one-way, in that, the “contained” set items
cannot be enumerated easily. For more details see [65,113].

2.2 Query Correctness

Informally, we will call a query mechanism correct if the server is bound
to the sequence of update requests performed by the client. Either the server
responds correctly to a query or its malicious behavior is immediately detected
by the client:

Definition 1. A query protocol is correct, if (except with negligible probability
[65]) for all traces T and T ′ with T ′ �≈QT , any query Q and server response
DT ′,Q, we have Cli(T , Q,DT ′,Q) = ⊥.

In applied settings, correctness in database outsourcing can be often de-
composed into two protocol properties, namely data integrity and query com-
pleteness. Data integrity guarantees that outsourced data sets are not tam-
pered with by the server. Completeness ensures that queries are executed
against their entire target data sets and that query results are not ‘truncated”
by servers.

Existing work focuses mostly on solutions for simple one-dimensional range
queries, and variants thereof. In a publisher-subscriber model, Devanbu et
al. deployed Merkle trees to authenticate data published at a third party’s
site [54], and then explored a general model for authenticating data structures
[97,98]. Hard-to-forge verification objects are provided by publishers to prove
the authenticity and provenance of query results.

Towards Secure Data Outsourcing 143

In [104], mechanisms for efficient integrity and origin authentication for
simple selection predicate query results are introduced. Different signature
schemes (DSA, RSA, Merkle trees [100] and BGLS [37]) are explored as po-
tential alternatives for data authentication primitives. Mykletun et al. [57]
introduce signature immutability for aggregate signature schemes – the diffi-
culty of computing new valid aggregated signatures from an existing set. Such
a property is defeating a frequent querier that could eventually gather enough
signatures data to answer other (un-posed) queries. The authors explore the
applicability of signature-aggregation schemes for efficient data authentica-
tion and integrity of outsourced data. The considered query types are simple
selection queries.

Similarly, in [94], digital signature and aggregation and chaining mech-
anisms are deployed to authenticate simple selection and projection opera-
tors. While these are important to consider, nevertheless, their expressiveness
is limited. A more comprehensive, query-independent approach is desirable.
Moreover, the use of strong cryptography renders this approach less useful.
Often simply transferring the data to the client side will be faster.

In [108] verification objects VO are deployed to authenticate simple data
retrieval in “edge computing” scenarios, where application logic and data is
pushed to the edge of the network, with the aim of improving availability and
scalability. Lack of trust in edge servers mandates validation for their results
– achieved through verification objects.

In [77] Merkle tree and cryptographic hashing constructs are deployed to
authenticate the result of simple range queries in a publishing scenario in
which data owners delegate the role of satisfying user queries to a third-party
un-trusted publisher. Additionally, in [95] virtually identical mechanisms are
deployed in database outsourcing scenarios. [53] proposes an approach for
signing XML documents allowing untrusted servers to answer certain types
of path and selection queries.

Drawbacks of these efforts include the fact that they operate in an unrealis-
tic “semi - honest” adversarial model. As a result, for example, data updates
are not handled properly and the mechanisms are vulnerable to “universe
split” attacks discussed in section 2.2.

Moreover, deploying expensive cryptographic operations (e.g., aggregate
signatures, homomorphisms) has the potential to defeat the very purpose of
outsourcing. Unless the actual query predicates are comparably compute in-
tensive, often simply transferring the entire database and executing the query
on the client will be faster. This is the case simply because securely server -
processing a bit will be more expensive that the bit transfer over a network.
A detailed argument can be found in [118] and in section 2.4. Maybe most im-
portantly, existing solutions operate under un-realistic “cooperating” server
assumptions. For example, they are unable to address data updates. More
specifically, at the time of a client update, the server is assumed to cooperate
in also updating corresponding server-side security checksums and signature
chains. A truly malicious server however, can choose to ignore such requests

144 Radu Sion

and compromise future correctness assurances by omitting the updated data
from the results (causing an “universe split”). This drastically limits the ap-
plicability of these mechanisms.

We started to explore query correctness by first considering the query ex-
pressiveness problem. Thus, in [114] we proposed a novel method for proofs
of actual query execution in an outsourced database framework for arbitrary
queries. The solution prevents a “lazy” or malicious server from incompletely
(or not at all) executing queries submitted by clients. It is based on a mech-
anism of runtime query “proofs” in a challenge - response protocol. For each
batch of client queries, the server is “challenged” to provide a proof of query
execution that offers assurance that the queries were actually executed with
completeness, over their entire target data set. This proof is then checked
at the client site as a prerequisite to accepting the actual query results as
accurate.

The execution proofs are built around an extension to the ringer concept
first introduced in [67]. Its core strength derives from the non-“invertibility”
of cryptographic hash functions. In other words, a successful fake execution
proof requires the “inversion”1 of a cryptographic hash or a lucky guess. The
probability of the lucky guess is known, controllable and can be made arbi-
trary small. If, as part of the response to a query execution batch, the server
includes a correct, verifiable query execution proof, the client is provided with
a (tunable) high level of assurance that the queries in the batch were exe-
cuted correctly. This constitutes a strong counter-incentive to “lazy”, (e.g.,
cost-cutting) behavior.

We implemented a proof of concept and experimentally validated it in
a real-world data mining application, proving its deployment feasibility. We
analyzed the solution and show that its overheads are reasonable and far
outweighed by the added security benefits. For example an assurance level of
over 95% can be achieved with less than 25% execution time overhead.
Future Work: Powerful Adversary. Arbitrary Queries. Data Up-
dates.

As the above query execution proofs only validate server-side processing
but not also actual returned results, handling truly malicious adversaries will
require different mechanisms. Moreover, while compute-intensive query sce-
narios are extremely relevant in data-mining applications, a more general so-
lution should consider general types of queries with less computation load
per data tuple (e.g., aggregates such as SUM, COUNT). Handling these is
especially challenging due to the large size of the query space, the hardness of
building general purpose authenticators and the hardness of predicting future
query loads.

We believe future work should focus on two research directions: (1) the
design of secure query (de)composition techniques coupled with specialized

1 We informally define “inversion” of hash functions as finding at least one input
that hashes to a target output.

Towards Secure Data Outsourcing 145

query - specific metadata that enables correctness assurance protocols for a
set of primitive queries, and (2) mechanisms for trusted hardware.

In (1), additional server-side storage will be traded for efficient correctness
assurances. At outsourcing time, in a pre-processing phase, clients generate
query and predicate - specific metadata that will be stored on the server,
authenticated by minimal state information maintained by clients. For each
considered primitive predicate and type of query (e.g., simple range query),
its corresponding “correctness metadata” will allow the client (or a trusted
proxy such as a secure CPU) to assess the correctness of individual results. We
call such primitive queries for which correctness can be assessed, “correctness-
assured”.

It is important to build on existing work [57, 77, 94, 95, 104], to reduce
the computational footprint on the server, and allow consistent handling of
updates in the presence of a truly malicious server. For example, we believe
incremental hashing paradigms can be deployed to persist client-side authenti-
cation information. This will allow a client to efficiently authenticate returned
signature values, thus detecting any malicious behavior even after updates.

Another future work item will be to design techniques that decompose
or rewrite complex queries into a subset of the primitive queries considered
above. Consider the following simple, yet illustrative query listing all account
holders with account rates less than the Federal Reserve’s base rate on January
1st, 2006:

SELECT accounts.name FROM accounts WHERE accounts.rate <
(SELECT federalreserve.baserate FROM federalreserve
WHERE convert(char(10),federalreserve.date,101)=’01/01/2006’)

Its correctness can be efficiently assessed by requiring the server to prove
correctness for the inner query first, followed by the outer query. Similar de-
compositions can be applied to any correctness-assured nested queries. Never-
theless, often such query decomposition or rewriting cannot be achieved with
efficiency for arbitrary queries in fully unsecured environments. For example,
it is not trivial to extend correctness - assured simple range predicates to even
marginally more complex multi-dimensional range queries such as

SELECT X.a FROM X WHERE X.b > 10 AND X.c > 20

It is important to investigate composition mechanisms that allow the utiliza-
tion of metadata ensuring correctness of either simple range predicate (e.g.,
X.b > 10 or X.c > 20), to guarantee correctness for the composite predicate.

To achieve correctness assurances for a larger class of queries we propose
to consider mechanisms that leverage the presence of active secure hardware
such as secure co-processors (SCPUs). Achieving efficiency however, is an
extremely challenging task. Trivially deploying query processor functionality
inside power - constrained SCPUs is simply not scalable in practice due to
limited communication and computation throughputs. We believe protocols
that combine the query decomposition approach in (1) with SCPU processing

146 Radu Sion

for required, yet unavailable correctness-assured primitive queries constitute
a promising avenue of future research. As a result, SCPU processing will be
minimal and amortized over multiple query instances.

As an example, in the above multi-dimensional range query, a trusted
SCPU hosted by the server will instruct the main server CPU to execute
and prove correctness for the first predicate (X.b > 10) and then evaluate
the second predicate (X.c > 20) securely on the result. Heuristics could be
deployed to evaluate which of the individual predicates would result in a
smaller result set so as to minimize the SCPU computation. Optionally, the
process will also generate associated metadata for the joint predicate and
cache it on the server for future use, effectively amortizing the cost of this
query over multiple instances.

Operating in an unified client model [54, 104] assumes the existence of
a single client accessing the data store at any one time. In multi-threaded
data-intensive application scenarios however, such a model is often of limited
applicability. It is important to allow multiple client instances or even different
parties to simultaneously access outsourced data sets.

This is challenging because allowing different parties to access the same
data store may require the sharing of secrets among them. This is often not
a scalable proposition, in particular considering different administrative do-
mains. Moreover, data updates require special consideration in such a scenario
due to what we call the “universe split” phenomenon. We explain this in the
following.

In single - client settings, to efficiently handle incoming data updates,
update-able metadata structures can be designed, e.g., leveraging such mecha-
nisms as the incremental hashing paradigm of Bellare and Micciancio [26]. Re-
cently we have demonstrated the feasibility of such methods in the framework
of network data storage. In [117] outsourced documents were incrementally
authenticated with efficient checksums allowing updates, document additions
and removals in constant time.

However, when two clients simultaneously access the same data sets, a
malicious server can chose to present to each client a customized version of
the data universe, by keeping the other client’s updates hidden from the cur-
rent view. We believe other authors have encountered this issue in different
settings, e.g., by Li et al. [91] in an un-trusted networked file system setting2.
Naturally, if mutually aware of their accesses, the clients can use an external
authenticated channel to exchange transactional state on each other’s updates.
This can occur either during their access, if simultaneous, or asynchronously
otherwise. Periodically executing such exchanges will significantly decrease the
probability of undetected illicit “universe split” server behavior. Over multiple
transactions, undetected malicious behavior will become unsustainable.

In practice, such awareness and online interaction assumptions are not al-
ways acceptable, and often the only potential point of contact between clients
2 In their work universe splitting would be the inverse of “fetch-consistency”

Towards Secure Data Outsourcing 147

is the database server itself. One solution to this problem is to design alter-
native protocols that leverage the existence of active secure hardware such
as secure co-processors (SCPU). The SCPU will authenticate clients securely
and also persist transactional state, including a minimal amount of checksum
information used to authenticate transaction chains of committed client up-
dates. The unique vendor-provided SCPU public key and its associated trust
chain provide an authenticated communication channel between the SCPU
and database clients. The clients will use this channel to retrieve up to date
transactional state at the initiation of each server interaction. This will defeat
“universe split” attacks. Servers are unable to impersonate SCPUs without
access to the secrets in its tamper-proof storage.

2.3 Data Confidentiality

Confidentiality constitutes another essential security dimension required in
data outsourcing scenarios, especially when considering sensitive information.
Potentially un-trusted servers should be able to process queries on encrypted
data on behalf of clients without compromising confidentiality. To become
practical, any such processing mechanism requires a certain level of query
expressiveness. For example, allowing only simple data retrieval queries will
often not be sufficient to justify the outsourcing of the data – the database
would then be used as a passive data repository. We believe it is important
to efficiently support complex queries such as joins and aggregates with con-
fidentiality and correctness.

Hacigumus et al. [71] propose a method to execute SQL queries over partly
obfuscated outsourced data. The data is divided into secret partitions and
queries over the original data can be rewritten in terms of the resulting parti-
tion identifiers; the server can then partly perform queries directly. The infor-
mation leaked to the server is claimed to be 1-out-of-s where s is the partition
size. This balances a trade-off between client-side and server-side processing,
as a function of the data segment size. At one extreme, privacy is completely
compromised (small segment sizes) but client processing is minimal. At the
other extreme, a high level of privacy can be attained at the expense of the
client processing the queries in their entirety. Moreover, in [76] the authors ex-
plore optimal bucket sizes for certain range queries. Similarly, data partition-
ing is deployed in building “almost”-private indexes on attributes considered
sensitive. An untrusted server is then able to execute “obfuscated range queries
with minimal information leakage”. An associated privacy-utility trade-off for
the index is discussed. As detailed further in section 2.3 the main drawbacks
of these solutions lies in their computational impracticality and inability to
provide strong confidentiality.

One of the main drawbacks of such mechanisms is the fact that they leak
information to the server, at a level corresponding to the granularity of the
partitioning function. For example, if such partitioning is used in a range
query, to execute rewritten queries at the partition level, the server will be

148 Radu Sion

required to precisely know the range of values that each partition contains.
Naturally, increasing partition sizes tends to render this knowledge more fuzzy.
This, however, requires additional client side work in pruning the (now) larger
results (due to the larger partitions). Even if a single data tuple matches the
query, its entire corresponding partition will be transferred to the client. On
the other hand, reducing partition size will immediately reveal more infor-
mation to the server, as the smaller number of items per partition and the
knowledge of the covered range will allow it to determine more accurately what
the likely values are for each tuple. Additionally, for more complex queries,
particularly joins, due to the large segments, such methods can feature an
communication overhead larger than the entire database, hardly a practical
proposition.

Nevertheless, these efforts illustrate a trade-off between confidentiality and
overheads: large partitions reveal less but require more computation on the
client, small partitions reveal more but increase efficiency. Ultimately, how-
ever, unless partitions are very large (in which case the purpose of outsourcing
is likely defeated by the additional overheads) true confidentiality cannot be
achieved by such partitioning schemes. Statistical security needs to be re-
placed by efficient, yet stronger mechanisms. In the following we show how
this can be achieved not only for range queries but also for more complex
joins.

In ongoing work [42] we explore a low-overhead method for executing bi-
nary predicate joins with confidentiality on outsourced data. It handles general
binary join predicates that satisfy certain properties: for any value in the con-
sidered data domain, the number of corresponding “matching” pair values
(for which the predicate holds) is (i) finite, and (ii) the average of its expected
value is upper bound. We call these predicates expected finite match (EFM)
predicates.

Such predicates are extremely common and useful, including discrete data
scenarios, such as ranges, inventory and company asset data-sets, forensics,
genome and DNA data (e.g., fuzzy and exact Hamming distances), and health-
care databases (e.g., bacteria to antibiotics matches). For illustration purposes
let us consider the following discrete time – range join query that joins arrivals
with departures within the same hour (e.g., in a train station):

SELECT * FROM arrivals,departures
WHERE departures.time - arrivals.time < 60

For any finite time granularity (e.g. minutes) the join predicate above is an
EFM predicate (e.g., with an AEMS of 60). Performing such joins at the server
side on encrypted data, is the main functionality desired here.

To analyze the confidentiality assurances of this solution we will consider
here a server that is curious: given the possibility to get away undetected,
it will attempt to compromise data confidentiality (e.g., in the process of
query execution). Naturally, it should not be able to evaluate predicates (i)
without the permission of the client, (ii) on two values of the same attribute,

Towards Secure Data Outsourcing 149

and (iii) on data not specified/allowed by the client – specifically, no inter-
attribute transitivity should be possible. Additionally it should not be able to
(iv) evaluate other predicates on “unlocked” data. This also means that no
additional information should be leaked in the process of predicate evaluation.
For example, allowing the evaluation of p(x, y) := (|x− y| < 100), should not
reveal |x − y|.

One solution relies on the use of predicate-specific metadata that clients
place on the server together with the main data sets. This metadata does
not reveal anything about the main data fields and stays in a “locked” state
until its corresponding data is involved in a join. The client then provides
“unlocking” information for the metadata and the server is able to perform
exactly the considered query, without finding out any additional information.
In the following we briefly outline this. For more details see [42].

Let N be a public security parameter, and K a symmetric (semantically
secure) encryption key. For each column A, let RA

1 �= RA
2 be two random uni-

form values in {0, 1}N . In a client pre-processing phase, for each confidential
data attribute A with elements ai, i = 1..n, the client computes an obfuscation
of ai, O(ai) := H(ai) ⊕ RA

1 . For all values y ∈ P (ai) := {y|p(ai, y) = true},
the client computes H(y) ⊕ RA

2 . and stores it into a Bloom filter specific to
ai, BF (ai). It then outsources {EK(ai), O(ai), BF (ai)} to the server. To al-
low a join of two columns A and B on the predicate p, the client sends the
server the value qAB = RA

2 ⊕ RB
1 . For each element ai in column A and bj in

column B, the server computes Tb→a := O(bj) ⊕ qAB = H(bj) ⊕ RA
2 . It then

outputs all tuples < EK(ai), EK(bj), . . . > for which BF (ai) contains Tb→a.
The following can be shown:

Theorem 1. The server cannot perform join operations on initially stored
data.

Theorem 2. The server cannot perform transitive joins.

Theorem 3. Given a binary EFM predicate p, for any matching pair of values
returned as a result of a join, < x′ = EK(ai), y′ = EK(bj) >, no additional
information about ai and bj or their relationship can be inferred by the server,
other than the fact that p(ai, bj) = true.

The solution handles data updates naturally. For any new incoming data
item, the client pre-processing can be executed per-item and its results simply
forwarded to the server. Additionally, in the case of a multi-threaded server,
multiple clients (sharing secrets and keys) can access the same data store
simultaneously.

We note also that multiple predicate evaluations are also accommodated
naturally. Confidentiality can be provided for the attributes involved in binary
EFM predicates. In the following database schema, the association between
patients and diseases is confidential but any other information is public and
can be used in joins. To return a list of New York City patient names and
their associated antibiotics (but not their disease) the server will access both

150 Radu Sion

confidential (disease) and non-confidential (name,zip-code) values. In the fol-
lowing, only the predicate md() – associating antibiotics with diseases – will
operate on confidential data:

SELECT patients.name,antibiotics.name FROM patients,antibiotics

WHERE md(patients.disease,antibiotics.name)

AND patients.zipcode = 10128

This will be achieved (as discussed above) by encrypting the patients.disease
attribute and generating metadata for the antibiotics relation (which con-
tains a list of diseases that each antibiotic is recommended for).

Additional predicate instances and applications of this solution are ex-
plored in [42], including mechanisms for Hamming distance evaluations and
DNA fuzzy match predicates. Moreover, we show that the computation over-
heads of the solution are small. In initial evaluations, throughputs of well
beyond 0.5 million predicate evaluations per second can be accommodated.
Future Work: Arbitrary Predicates. Policies. Query Composability.

In future work, we believe it is important to pursue arbitrary query types
and multi-assurance compositions. For example we would like to understand
how to endow the above method with correctness assurances and data access
privacy as discussed in sections 2.2, 2.4 respectively.

Moreover, it is important to analyze the applicability of the protocols for
general types of predicates. We believe a recursive decomposition approach
can be applied to handle multiple argument EFM predicates. Transformations
from arbitrary predicates to a canonical EFM form should be explored. In a
first stage this is easy to achieve by simply discretizing queries over continuous
data domains. As this will introduce small errors in results (of a magnitude
inverse proportional to the quantization), this process needs to be designed
such that the errors will result only in the addition of a small, controllable,
number of non-matching tuples. These will then be pruned by the client.

To fully leverage the potential offered by confidentiality assurances, it is
important to investigate an integration with security policy frameworks [60,
111]. This will allow for more complex specifications over the space of data
sets, access rights, confidentiality policies and principals. For example, such
specifications could include relaxation of expensive DBMS - maintained access
control for data sets that are already encrypted.

Exploring novel notions of confidential query “composability” in the pres-
ence of multiple confidential data sources and associated secrets (e.g., cryp-
tographic keys) is another avenue of future research. We believe this can be
achieved by deploying intra-server secure multi-party computation (SMC) pro-
tocols [55,58,59,63,78] mediated by secure hardware. The presence of secure
hardware will result in more efficient, practical SMC. This will ultimately
allow for multi-source confidential data integration.

Towards Secure Data Outsourcing 151

2.4 Data Access Privacy

In existing protocols, even though data sets are stored in encrypted form on
the server, the client query access patterns leak essential information about
the data. A simple attack can correlate known public information with hot
data items (i.e., with high access rates), effectively compromising their confi-
dential nature. In competing business scenarios, such leaks can be extremely
damaging, particularly due to their unpredictable nature.

This is why, to protect confidentiality, it is important to also provide as-
surances of access pattern privacy. No existing work has tackled this problem
yet for relational frameworks. It is thus essential to explore query protocols
that leak minimal information about the currently executing query. Access
patterns to data tuples become less meaningful when access semantics are un-
known to the server. For example the binary predicate join method proposed
above does not require the server to know the actual join predicates. Achieving
such goals for arbitrary relational queries will be a challenging proposition in
today’s query processors, potentially requiring fundamental changes in base
query processing.

To achieve these goals we first turn to existing research. Private Informa-
tion Retrieval (PIR) protocols were first proposed as a theoretical primitive
for accessing individual items of outsourced data, while preventing servers to
learn anything about the client’s access patterns [47]. Chor et al. [48] proved
that in information theoretic settings in which queries do not reveal any infor-
mation about the accessed data items, a solution requires Ω(n) bits of com-
munication. To avoid this overhead, they show that for multiple non-colluding
databases holding replicated copies of the data, PIR schemes exist that re-
quire only sub-linear communication overheads. This multi-server assumption
however, is rarely viable in practice.

In single-server settings, it is known that PIR requires a full transfer of
the database [47, 49] for computationally unbounded servers. For bounded
adversaries however, computational PIR (cPIR) mechanisms have been pro-
posed [40, 41, 45, 86, 87, 93, 96, 122]. In such settings however, it is trivial to
establish an O(n) lower bound on server processing, mandating expensive
trapdoor operations per bit, to achieve access privacy. This creates a signif-
icant privacy - efficiency trade-off between the required server computation
cycles and the time to actually transfer the data and perform the query at
the client site.

We explore this trade-off in [118] where we discuss single-server com-
putational PIR for the purpose of preserving client access patterns leakage.
We show that deployment of non-trivial single server private information re-
trieval protocols on real (Turing) hardware is orders of magnitude more time-
consuming than trivially transferring the entire database to the client. The
deployment of computational PIR in fact increases both overall execution
time, and the probability of forward leakage, when the deployed present trap-

152 Radu Sion

doors become eventually vulnerable – e.g., today’s access patterns will be
revealed once factoring of today’s values will become possible in the future.

We note that these results are beyond existing knowledge of mere “im-
practicality” under unfavorable assumptions. On real hardware, no existing
non-trivial single server PIR protocol could have possibly had outperformed
the trivial client-to-server transfer of records in the past, and is likely not to
do so in the future either. Informally, this is due to the fact that it is more
expensive to PIR-process one bit of information than to transfer it over a
network.

PIR’s aim is to simply transfer one single remote bit with privacy. We
showed above that theoretical lower bounds prevent current cryptography to
offer efficient solutions in practical settings. Arguably, for more complex query
processing this will also be the case. Thus it is important to design practical
solutions that have the potential to break the PIR computation-privacy trade-
off. We believe a very promising avenue for further research relies on deploying
secure hardware hosted by the server, allowing the delegation of client-logic
in closer data proximity.

And because (as discussed above) trivial “run client ”proxy” inside secure
CPU” approaches are likely to be impractical – as typically such hardware
is orders of magnitude slower than main CPUs – any solution needs to de-
ploy SCPUs efficiently, to defeat statistical correlation attacks on data access
patterns.

3 Related Work.

Extensive research has focused on various aspects of DBMS security, including
access control techniques as well as general information security issues [29,31,
51,73,75,80,81,90,106,107,110,112], many of which are discussed elsewhere in
this book. Additionally, increasing awareness of requirements for data storage
security mechanisms and support can be found with DBMS vendors such as
IBM [10] and Oracle [16].

3.1 Database as a Service

The paradigm of providing a database as a service recently emerged [72] as a
viable alternative, likely due in no small part to the dramatically increasing
availability of fast, cheap networks. Given the global, networked, possibly hos-
tile nature of the operation environments, security assurances are paramount.
Data Sharing. Statistical and Hippocratic databases aim to address the
problem of allowing aggregate queries on confidential data (stored on trusted
servers) without additional information leaks [24,25,50,51,89] to the queries.
In [125] Zhang et al. discuss privacy in information sharing scenarios in a
distributed multi-party context, where each party operates a private database.
An leakage measure is defined for information sharing and several privacy
multi-party protocols deploying commutative encryption are defined.

Towards Secure Data Outsourcing 153

3.2 XML Sharing

In [30] Bertino et al. discuss a solution for access control to XML data. They
deploy multi-key encryption such that only the appropriate parts of out-
sourced XML documents can be accessed by principals. In [32] (also in [28]),
they propose a mechanism deploying watermarking [23,69,92,115,116,120] to
protect ownership for outsourced medical data. Similarly, Carminati et al. en-
sure the confidentiality of XML in a distributed peer network by using access
rights and encryption keys associated with XML nodes [43]. They enforce the
authenticity and integrity of query answers using Merkle signatures [100]. This
complicates outsourcing of new documents as new Merkle trees will need to be
generated. To ensure query correctness, the server also stores encrypted query
templates containing the structure of the original documents. This solution is
insecure because it leaks decryption keys and content access patterns.

3.3 Secure Storage

Encrypted Storage. Blaze’s CFS [34], TCFS [44], EFS [101], StegFS [99],
and NCryptfs [124] are file systems that encrypt data before writing to stable
storage. NCryptfs is implemented as a layered file system [74] and is capable of
being used even over network file systems such as NFS. SFS [70] and BestCrypt
[82] are device driver level encryption systems. Encryption file systems and
device drivers protect the confidentiality of data, but do not allow for efficient
queries, search, correctness, or access privacy assurances.
Integrity-Assured Storage. Tripwire [84,85] is a user level tool that verifies
stored file integrity at scheduled intervals of time. File systems such as I3FS
[83], GFS [62], and Checksummed NCryptfs [119] perform online real-time
integrity verification. Venti [109] is an archival storage system that performs
integrity assurance on read-only data. SUNDR [91] is a network file system
designed to store data securely on untrusted servers and allow clients to detect
unauthorized accesses as long as they see each other’s file modifications.

3.4 Searches on Encrypted Data

Song et al. [121] propose a scheme for performing simple keyword search on
encrypted data in a scenario where a mobile, bandwidth-restricted user wishes
to store data on an untrusted server. The scheme requires the user to split the
data into fixed-size words and perform encryption and other transformations.
Drawbacks of this scheme include fixing the size of words, the complexities of
encryption and search, the inability of this approach to support access pat-
tern privacy, or retrieval correctness. Eu-Jin Goh [64] proposes to associate
indexes with documents stored on a server. A document’s index is a Bloom
filter [35] containing a codeword for each unique word in the document. Chang
and Mitzenmacher [46] propose a similar approach, where the index associ-
ated with documents consists of a string of bits of length equal to the total

154 Radu Sion

number of words used (dictionary size). Boneh et al. [36] proposed an alter-
native for senders to encrypt e-mails with recipients’ public keys, and store
this email on untrusted mail servers. They present two search protocols: (1) a
non-interactive search-able encryption scheme based on a variant of the Diffie-
Hellman problem that uses bilinear maps on elliptic curves; and (2) a protocol
using only trapdoor permutations, requiring a large number of public-private
key pairs. Both protocols are computationally expensive. Golle et al. [66]
extend the above idea to conjunctive keyword searches on encrypted data.
They propose two solutions. (1) The server stores capabilities for conjunctive
queries, with sizes linear in the total number of documents. They claim that a
majority of the capabilities can be transferred offline to the server, under the
assumption that the client knows beforehand its future conjunctive queries.
(2) Doubling the size of the data stored by the server, which reduces the com-
munication overheads between clients and servers significantly. The scheme
requires users to specify the exact positions where the search matches have to
occur, and hence is impractical. Brinkman et al. [38] deploy secret splitting
of polynomial expressions to search in encrypted XML.

4 Acknowledgments

The author is supported partly by the NSF through awards CT CNS-0627554,
CT CNS-0716608 and CRI CNS 0708025. The author also wishes to thank
Motorola Labs, IBM Research, CEWIT, and the Stony Brook Office of the
Vice President for Research.

References

1. Activehost.com Internet Services. Online at http://www.activehost.com.
2. Adhost.com MySQL Hosting. Online at http://www.adhost.com.
3. Alentus.com Database Hosting. Online at http://www.alentus.com.
4. Datapipe.com Managed Hosting Services. Online at

http://www.datapipe.com.
5. Discountasp.net Microsoft SQL Hosting. Online at

http://www.discountasp.net.
6. Gate.com Database Hosting Services. Online at http://www.gate.com.
7. Hostchart.com Web Hosting Resource Center. Online at

http://www.hostchart.com.
8. Hostdepartment.com MySQL Database Hosting. Online at

http://www.hostdepartment.com/mysqlwebhosting/.
9. IBM Data Center Outsourcing Services. Online at

http://www-1.ibm.com/services/.
10. IBM Data Encryption for DB2. Online at

http://www.ibm.com/software/data/db2.
11. Inetu.net Managed Database Hosting. Online at http://www.inetu.net.

http://www.activehost.com
http://www.adhost.com
http://www.alentus.com
http://www.datapipe.com
http://www.discountasp.net
http://www.gate.com
http://www.hostchart.com
http://www.hostdepartment.com/mysqlwebhosting/
http://www-1.ibm.com/services/
http://www.ibm.com/software/data/db2
http://www.inetu.net

Towards Secure Data Outsourcing 155

12. Mercurytechnology.com Managed Services for Oracle Systems. Online at
http://www.mercurytechnology.com.

13. Neospire.net Managed Hosting for Corporate E-business. Online at
http://www.neospire.net.

14. Netnation.com Microsoft SQL Hosting. Online at http://www.netnation.com.
15. Opendb.com Web Database Hosting. Online at http://www.opendb.com.
16. Oracle: Database Encryption in Oracle 10g. Online at

http://www.oracle.com/database.
17. The IBM WebSphere Information Integrator. Online at

http://www.ibm.com/software/data/integration.
18. IBM 4758 PCI Cryptographic Coprocessor. Online at

http://www-03.ibm.com/security/cryptocards/pcicc/overview.shtml,
2006.

19. IBM 4764 PCI-X Cryptographic Coprocessor (PCIXCC). Online at
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml,
2006.

20. IBM Common Cryptographic Architecture (CCA) API. Online at
http://www-03.ibm.com/security/cryptocards//pcixcc/overcca.shtml,
2006.

21. IBM Cryptographic Hardware. Online at
http://www-03.ibm.com/security/products/, 2006.

22. Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A
calculus for access control in distributed systems. ACM Trans. Program. Lang.
Syst., 15(4):706–734, 1993.

23. Andre Adelsbach and Ahmad Sadeghi. Advanced techniques for dispute resolv-
ing and authorship proofs on digital works. In Proceedings of SPIE Electronic
Imaging, 2003.

24. Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hip-
pocratic databases. In Proceedings of the International Conference on Very
Large Databases VLDB, pages 143–154, 2002.

25. Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining.
In Proceedings of the ACM SIGMOD, pages 439–450, 2000.

26. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing:
Incrementality at reduced cost. In Proceedings of EuroCrypt, 1997.

27. Steven M. Bellovin. Spamming, phishing, authentication, and privacy. Com-
munications of the ACM, 47(12):144, 2004.

28. E. Bertino. Data hiding and security in an object-oriented database system.
In Proceedings of the 8th IEEE International Conference on Data Engineering,
1992.

29. Elisa Bertino, M. Braun, Silvana Castano, Elena Ferrari, and Marco Mesiti.
Author-X: A Java-Based System for XML Data Protection. In IFIP Workshop
on Database Security, pages 15–26, 2000.

30. Elisa Bertino, Barbara Carminati, and Elena Ferrari. A temporal key manage-
ment scheme for secure broadcasting of xml documents. In Proceedings of the
9th ACM conference on Computer and communications security, pages 31–40,
2002.

31. Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. A flexible authorization
mechanism for relational data management systems. ACM Transactions on
Information Systems, 17(2), 1999.

http://www.mercurytechnology.com
http://www.neospire.net
http://www.netnation.com
http://www.opendb.com
http://www.oracle.com/database
http://www.ibm.com/software/data/integration
http://www-03.ibm.com/security/cryptocards/pcicc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pcixcc/overview.shtml
http://www-03.ibm.com/security/cryptocards//pcixcc/overcca.shtml
http://www-03.ibm.com/security/products/

156 Radu Sion

32. Elisa Bertino, Beng Chin Ooi, Yanjiang Yang, and Robert H. Deng. Privacy
and ownership preserving of outsourced medical data. In Proceedings of the
International Conference on Data Engineering, 2005.

33. Ray Bird, Inder Gopal, Amir Herzberg, Phil Janson, Shay Kutten, Refik Molva,
and Moti Yung. The kryptoknight family of light-weight protocols for authen-
tication and key distribution. IEEE/ACM Trans. Netw., 3(1):31–41, 1995.

34. M. Blaze. A Cryptographic File System for Unix. In Proceedings of the first
ACM Conference on Computer and Communications Security, pages 9–16,
Fairfax, VA, 1993. ACM.

35. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

36. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryp-
tion with keyword search. In Proceedings of Eurocrypt 2004, pages 506–522.
LNCS 3027, 2004.

37. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In EuroCrypt, 2003.

38. R. Brinkman, J. Doumen, and W. Jonker. Using secret sharing for searching
in encrypted data. In Secure Data Management, 2004.

39. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In SOSP
’89: Proceedings of the twelfth ACM symposium on Operating systems princi-
ples, pages 1–13, New York, NY, USA, 1989. ACM Press.

40. C. Cachin, S. Micali, and M. Stadler. Computationally private information
retrieval with polylog communication. In Proceedings of EUROCRYPT, 1999.

41. C. Cachin, S. Micali, and M. Stadler. Private Information Retrieval with
Polylogarithmic Communication. In Proceedings of Eurocrypt, pages 402–414.
Springer-Verlag, 1999.

42. Bogdan Carbunar and Radu Sion. Arbitrary-Predicate Joins for Outsourced
Data with Privacy Assurances, 2006. Stony Brook Network Security and Ap-
plied Cryptography Lab Tech Report 2006-07.

43. B. Carminati, E. Ferrari, and E. Bertino. Assuring security properties in third-
party architectures. In Proceedings of International Conference on Data Engi-
neering (ICDE), 2005.

44. G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The Design and
Implementation of a Transparent Cryptographic Filesystem for UNIX. In Pro-
ceedings of the Annual USENIX Technical Conference, FREENIX Track, pages
245–252, Boston, MA, June 2001.

45. Y. Chang. Single-Database Private Information Retrieval with Logarithmic
Communication. In Proceedings of the 9th Australasian Conference on Infor-
mation Security and Privacy ACISP. Springer-Verlag, 2004.

46. Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on
remote encrypted data. Cryptology ePrint Archive, Report 2004/051, 2004.
http://eprint.iacr.org/.

47. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In IEEE Symposium on Foundations of Computer Science, pages
41–50, 1995.

48. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proceedings of FOCS. IEEE Computer Society, 1995.

49. Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. J. ACM, 45(6):965–981, 1998.

http://eprint.iacr.org/

Towards Secure Data Outsourcing 157

50. Chris Clifton, Murat Kantarcioglu, AnHai Doan, Gunther Schadow, Jaideep
Vaidya, Ahmed Elmagarmid, and Dan Suciu. Privacy-preserving data integra-
tion and sharing. In The 9th ACM SIGMOD workshop on Research issues in
data mining and knowledge discovery, pages 19–26. ACM Press, 2004.

51. Chris Clifton and Don Marks. Security and privacy implications of data min-
ing. In Workshop on Data Mining and Knowledge Discovery, pages 15–19,
Montreal, Canada, 1996. Computer Sciences, University of British Columbia.

52. CNN. Feds seek Google records in porn probe. Online at http://www.cnn.com,
January 2006.

53. Premkumar T. Devanbu, Michael Gertz, April Kwong, Chip Martel, G. Nuck-
olls, and Stuart G. Stubblebine. Flexible authentication of XML documents. In
ACM Conference on Computer and Communications Security, pages 136–145,
2001.

54. Premkumar T. Devanbu, Michael Gertz, Chip Martel, and Stuart G. Stub-
blebine. Authentic third-party data publication. In IFIP Workshop on
Database Security, pages 101–112, 2000.

55. W. Du and M. J. Atallah. Protocols for secure remote database access with
approximate matching. In Proceedings of the 1st ACM Workshop on Security
and Privacy in E-Commerce, 2000.

56. Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van
Doorn, Sean W. Smith, and Steve Weingart. Building the ibm 4758 secure
coprocessor. Computer, 34(10):57–66, 2001.

57. Einar Mykletun and Maithili Narasimha and Gene Tsudik. Signature Bou-
quets: Immutability for Aggregated/Condensed Signatures. In Proceedings of
the European Symposium on Research in Computer Security ESORICS, pages
160–176, 2004.

58. Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin Strauss, and
Rebecca N. Wright. Secure multiparty computation of approximations. In
ICALP ’01: Proceedings of the 28th International Colloquium on Automata,
Languages and Programming,, pages 927–938, 2001.

59. M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In In Advances in Cryptology EUROCRYPT, pages 1–19, 2004.

60. Irini Fundulaki and Maarten Marx. Specifying access control policies for xml
documents with xpath. In The ACM Symposium on Access Control Models
and Technologies, pages 61–69. ACM Press, 2004.

61. Gartner, Inc. Server Storage and RAID Worldwide. Technical report, Gartner
Group/Dataquest, 1999. www.gartner.com.

62. S. Ghemawat, H. Gobioff, and S. T. Leung. The Google File System. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP
’03), pages 29–43, Bolton Landing, NY, October 2003. ACM SIGOPS.

63. Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikinen. On private
scalar product computation for privacy-preserving data mining. In ICISC,
pages 104–120, 2004.

64. E. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003.
http://eprint.iacr.org/2003/216/.

65. O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.
66. P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over

encrypted data. In Proceedings of ACNS, pages 31–45. Springer-Verlag; Lecture
Notes in Computer Science 3089, 2004.

http://www.cnn.com
www.gartner.com
http://eprint.iacr.org/2003/216/

158 Radu Sion

67. Philippe Golle and Ilya Mironov. Uncheatable distributed computations. In
Proceedings of the 2001 Conference on Topics in Cryptology, pages 425–440.
Springer-Verlag, 2001.

68. Li Gong. Efficient network authentication protocols: lower bounds and optimal
implementations. Distrib. Comput., 9(3):131–145, 1995.

69. David Gross-Amblard. Query-preserving watermarking of relational databases
and xml documents. In Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 191–
201, New York, NY, USA, 2003. ACM Press.

70. P. C. Gutmann. Secure filesystem (SFS) for DOS/Windows.
www.cs.auckland.ac.nz/~pgut001/sfs/index.html, 1994.

71. H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted
data in the database-service-provider model. In Proceedings of the ACM SIG-
MOD international conference on Management of data, pages 216–227. ACM
Press, 2002.

72. H. Hacigumus, B. R. Iyer, and S. Mehrotra. Providing database as a service.
In IEEE International Conference on Data Engineering (ICDE), 2002.

73. J. Hale, J. Threet, and S. Shenoi. A framework for high assurance security of
distributed objects, 1997.

74. J. S. Heidemann and G. J. Popek. File system development with stackable
layers. ACM Transactions on Computer Systems, 12(1):58–89, February 1994.

75. E. Hildebrandt and G. Saake. User Authentication in Multidatabase Systems.
In R. R. Wagner, editor, Proceedings of the Ninth International Workshop on
Database and Expert Systems Applications, August 26–28, 1998, Vienna, Aus-
tria, pages 281–286, Los Alamitos, CA, 1998. IEEE Computer Society Press.

76. B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range
queries. In Proceedings of ACM SIGMOD, 2004.

77. HweeHwa Pang and Arpit Jain and Krithi Ramamritham and Kian-Lee Tan.
Verifying Completeness of Relational Query Results in Data Publishing. In
Proceedings of ACM SIGMOD, 2005.

78. Piotr Indyk and David Woodruff. Private polylogarithmic approximations and
efficient matching. In Theory of Cryptography Conference, 2006.

79. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical Language for Ex-
pressing Authorizations. In IEEE Symposium on Security and Privacy, pages
31–42, Oakland, CA, May 04-07 1997. IEEE Press.

80. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for
expressing authorizations. In IEEE Symposium on Security and Privacy. Oak-
land, CA, pages 31–42, 1997.

81. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified frame-
work for enforcing multiple access control policies. In SIGMOD, 1997.

82. Jetico, Inc. BestCrypt software home page. www.jetico.com, 2002.
83. A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An In-Kernel In-

tegrity Checker and Intrusion Detection File System. In Proceedings of the 18th
USENIX Large Installation System Administration Conference (LISA 2004),
pages 69–79, Atlanta, GA, November 2004. USENIX Association.

84. G. Kim and E. Spafford. Experiences with Tripwire: Using Integrity Checkers
for Intrusion Detection. In Proceedings of the Usenix System Administration,
Networking and Security (SANS III), 1994.

www.cs.auckland.ac.nz/~pgut001/sfs/index.html
www.jetico.com

Towards Secure Data Outsourcing 159

85. G. Kim and E. Spafford. The Design and Implementation of Tripwire: A
File System Integrity Checker. In Proceedings of the 2nd ACM Conference on
Computer Commuications and Society (CCS), November 1994.

86. E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In Proceedings of FOCS. IEEE
Computer Society, 1997.

87. E. Kushilevitz and R. Ostrovsky. One-way trapdoor permutations are sufficient
for non-trivial single-server private information retrieval. In Proceedings of
EUROCRYPT, 2000.

88. Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wob-
ber. Authentication in distributed systems: theory and practice. ACM Trans.
Comput. Syst., 10(4):265–310, 1992.

89. Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan,
Yirong Xu, and David J. DeWitt. Limiting disclosure in hippocratic databases.
In Proceedings of the International Conference on Very Large Databases VLDB,
pages 108–119, 2004.

90. Li, Feigenbaum, and Grosof. A logic-based knowledge representation for au-
thorization with delegation. In PCSFW: Proceedings of the 12th Computer
Security Foundations Workshop, 1999.

91. J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure Untrusted Data Repos-
itory (SUNDR). In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI 2004), pages 121–136, San Francisco, CA,
December 2004. ACM SIGOPS.

92. Yingjiu Li, Vipin Swarup, and Sushil Jajodia. A robust watermarking scheme
for relational data. In Proceedings of the Workshop on Information Technology
and Systems (WITS), pages 195–200, 2003.

93. H. Lipmaa. An oblivious transfer protocol with log-squared communication.
Cryptology ePrint Archive, 2004.

94. Maithili Narasimha and Gene Tsudik. DSAC: integrity for outsourced
databases with signature aggregation and chaining. Technical report, 2005.

95. Maithili Narasimha and Gene Tsudik. Authentication of Outsourced Databases
using Signature Aggregation and Chaining. In Proceedings of DASFAA, 2006.

96. E. Mann. Private access to distributed information. Master’s thesis, Technion
- Israel Institute of Technology, 1998.

97. C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. Stubblebine.
A general model for authenticated data structures. Technical report, 2001.

98. Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April
Kwong, and Stuart G. Stubblebine. A general model for authenticated data
structures. Algorithmica, 39(1):21–41, 2004.

99. A. D. McDonald and M. G. Kuhn. StegFS: A Steganographic File System for
Linux. In Information Hiding, pages 462–477, 1999.

100. R. Merkle. Protocols for public key cryptosystems. In IEEE Symposium on
Research in Security and Privacy, 1980.

101. Microsoft Research. Encrypting File System for Windows
2000. Technical report, Microsoft Corporation, July 1999.
www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp.

102. Fabian Monrose and Aviel D. Rubin. Authentication via keystroke dynamics.
In ACM Conference on Computer and Communications Security, pages 48–56,
1997.

www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp

160 Radu Sion

103. Fabian Monrose and Aviel D. Rubin. Keystroke dynamics as a biometric for
authentication. Future Generation Computer Systems, 16(4):351–359, 2000.

104. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity
in outsourced databases. In ISOC Symposium on Network and Distributed
Systems Security NDSS, 2004.

105. Roger M. Needham and Michael D. Schroeder. Using encryption for authenti-
cation in large networks of computers. Commun. ACM, 21(12):993–999, 1978.

106. M. Nyanchama and S. L. Osborn. Access rights administration in role-based
security systems. In Proceedings of the IFIP Workshop on Database Security,
pages 37–56, 1994.

107. Sylvia L. Osborn. Database security integration using role-based access control.
In Proceedings of the IFIP Workshop on Database Security, pages 245–258,
2000.

108. HweeHwa Pang and Kian-Lee Tan. Authenticating query results in edge com-
puting. In ICDE ’04: Proceedings of the 20th International Conference on Data
Engineering, page 560, Washington, DC, USA, 2004. IEEE Computer Society.

109. S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In
Proceedings of the First USENIX Conference on File and Storage Technologies
(FAST 2002), pages 89–101, Monterey, CA, January 2002. USENIX Associa-
tion.

110. David Rasikan, Sang H. Son, and Ravi Mukkamala. Support-
ing security requirements in multilevel real-time databases, cite-
seer.nj.nec.com/david95supporting.html, 1995.

111. Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending
query rewriting techniques for fine-grained access control. In Proceedings of the
2004 ACM SIGMOD international conference on Management of data, pages
551–562. ACM Press, 2004.

112. Ravi S. Sandhu. On five definitions of data integrity. In Proceedings of the
IFIP Workshop on Database Security, pages 257–267, 1993.

113. B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in
C. Wiley & Sons, 1996.

114. Radu Sion. Query execution assurance for outsourced databases. In Proceedings
of the Very Large Databases Conference VLDB, 2005.

115. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Relational data rights pro-
tection through watermarking. IEEE Transactions on Knowledge and Data
Engineering TKDE, 16(6), June 2004.

116. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Ownership proofs for cate-
gorical data. IEEE Transactions on Knowledge and Data Engineering TKDE,
2005.

117. Radu Sion and Bogdan Carbunar. Indexed Keyword Search with Privacy and
Query Completeness, 2005. Stony Brook Network Security and Applied Cryp-
tography Lab Tech Report 2005-07.

118. Radu Sion and Bogdan Carbunar. On the Computational Practicality of Pri-
vate Information Retrieval. In Proceedings of the Network and Distributed Sys-
tems Security Symposium, 2007. Stony Brook Network Security and Applied
Cryptography Lab Tech Report 2006-06.

119. G. Sivathanu, C. P. Wright, and E. Zadok. Enhancing File Sys-
tem Integrity Through Checksums. Technical Report FSL-04-04,
Computer Science Department, Stony Brook University, May 2004.
www.fsl.cs.sunysb.edu/docs/nc-checksum-tr/nc-checksum.pdf.

www.fsl.cs.sunysb.edu/docs/nc-checksum-tr/nc-checksum.pdf

Towards Secure Data Outsourcing 161

120. J. Smith and C. Dodge. Developments in steganography. In A. Pfitzmann,
editor, Proceedings of the third Int. Workshop on Information Hiding, pages
77–87, Dresden, Germany, September 1999. Springer Verlag.

121. D. Xiaodong Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In SP ’00: Proceedings of the 2000 IEEE Symposium on
Security and Privacy (S&P 2000). IEEE Computer Society, 2000.

122. J. Stern. A new and efficient all-or-nothing disclosure of secrets protocol. In
Proceedings of Asia Crypt, pages 357–371, 1998.

123. Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed systems.
Computer, 25(1):39–52, 1992.

124. C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A Secure and Convenient
Cryptographic File System. In Proceedings of the Annual USENIX Technical
Conference, pages 197–210, San Antonio, TX, June 2003. USENIX Association.

125. Nan Zhang and Wei Zhao. Distributed Privacy Preserving Information Sharing.
In Proceedings of the International Conference on Very Large Databases VLDB,
2005.

7

Managing and Querying Encrypted Data

Bijit Hore1, Sharad Mehrotra1, and Hakan Hacıgümüş2

1 Donald Bren School of Computer Science
University of California, Irvine {bhore,sharad}@ics.uci.edu

2 IBM Almaden Research Center hakanh@acm.org

Summary. Encryption is a popular technique for ensuring confidentiality of sensi-
tive data. While data encryption is able to enhance security greatly, it can impose
substantial overhead on the performance of a system in terms of data management.
Management of encrypted data needs to address several new issues like choice of the
appropriate encryption algorithms, deciding the key management architecture and
key distribution protocols, enabling efficient encrypted data storage and retrieval,
developing techniques for querying and searching encrypted data, ensuring integrity
of data etc. In this chapter, we give an overview of the state-of-the-art in some of
these areas using the “Database As a Service” (DAS) as the prototype application.
We especially concentrate on techniques for querying encrypted data and summa-
rize the basic techniques proposed for SQL queries over encrypted relational data,
keyword search over encrypted text data and XPath queries over encrypted XML
data. We also provide brief summaries of works relating to other issues mentioned
above and provide further references to the related literature.

1 Introduction

The proliferation of a new breed of data management applications that store
and process data at remote service-providers’ locations leads to a new con-
cern, that of security. Especially when sensitive information is contained in
the data, ensuring its confidentiality is a key concern in such a model. In a
typical setting of the problem, the confidential portions of the data are stored
at the remote location in an encrypted form at all times. For example, in
a DAS setting data encryption becomes important when the client chooses
to hide away certain contents from server-side entities. Two new challenges
emerge: (i) Efficient encryption algorithms for relational data. (ii) Supporting
queries on the encrypted relational data. While supporting a fully functional
RDBMS over encrypted data is a challenge that remains far from being met,
other specialized application domains fitting this model have emerged over the
past few years. An application that has driven a lot of research in the crypto-
graphic community is that of keyword-matching over encrypted text data. For

164 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

instance, such schemes can be used to build a secure email server where the
server stores emails of account holders in encrypted format and allows users
to search emails based on keywords without having to decrypt the documents
on the server. The returned emails could then be decrypted on the client ma-
chine. Another new breed of applications that have emerged more recently can
be classified as “secure personal storage” applications [33, 35]. These applica-
tions let individuals store a variety of data on remote servers and access them
over the network securely from any place. For instance pVault stores and
manages an individual’s passwords for his online accounts. It also provides
support for high-entropy password generation and mobile access. DataVault
is another application that makes a secure network drive available to individ-
uals. It utilizes standard unsecure storage facilities on the web, for example
Gmail for data storage and provides encryption and navigational support on
them. It provides mobile, seamless access to one’s files and directories from
remote locations. While these specialized classes of applications are far less
complex than supporting entire RDBMS functionalities as envisaged in the
DAS framework, they share many common features with it. Some other pieces
of work exists that have addressed similar issues for XML data [45, 34]. In
case of XML, not only the data but structure is also important, which brings
up new kinds of challenges.

In the remaining part, we will take DAS to be a prototypical application
and present an overview of the various issues involved in managing encrypted
data in its context. Depending on the nature of the underlying data (relational,
text or XML) encryption techniques and query mechanisms vary. We will
highlight these differences and provide short discussions as and when these
issues are discussed in the subsequent sections.

In section 2, we start by describing the architecture of a typical DAS
system and give an overview of the different approaches for querying encrypted
data. Then we summarize the techniques proposed in [26] for query processing
over encrypted relational data. In section 2.4 we outline one of the techniques
proposed for searching encrypted text data and in section 2.5 we present a
brief summary of one technique proposed to handle queries over encrypted
XML data. In section 2.4 we give a brief overview of privacy analysis for
the partitioning/generalization based secure index creation. In section 3 we
describe various other issues that need to be addressed in encrypted data
management, like choice of encryption function, key management, authenticity
and integrity checking etc. Finally, in section 4 we conclude and point out some
of the open problems that need to be addressed.

2 DAS - Storing & Querying Encrypted Data

The DAS model offers a variety of data management functionalities in the form
of service to clients. It is an emerging alternative to in-house data management
that overcomes many of the above listed challenges of traditional architectures.

Managing and Querying Encrypted Data 165

A key concern in such an application is that of confidentiality of the sensitive
information in the database residing on the server. In many cases, some or all
of the data might be considered sensitive and needs to be protected from any
kind of unauthorized access on the server side. “Unauthorized access” could
refer to a break-in by hackers or an access by a legitimate, but malicious
insider, for example a database administrator. A solution is to encrypt the
sensitive portions or data where only the client has the access to the key.
As a result one needs to address a variety of new issues related to encrypted
data management, like support for encryption algorithms, key management,
query execution on encrypted data etc. By far, non-trivial query processing on
the encrypted data is the most challenging new problem that arises in such
applications. A variety of techniques for executing queries over relational,
textual and XML data have been developed in literature. We will summarize
some of these techniques in this section. We start by describing the security
model in a typical DAS application.

2.1 DAS setup & security model

In a typical setting of a DAS application, there is a data-owner, one or more
clients of the data (can be same as the owner) and a server. The owner stores
the data on the server and the clients may query/modify parts of this data
remotely according to their access rights. In a typical setting, some portions
of the data (e.g., some of the attributes of a relational table) are sensitive
and need to be protected from the adversaries. An adversary is some individ-
ual/organization who has malicious intention and particularly the entity from
whom the sensitive information needs to be kept hidden. In DAS applica-
tions, the client/owner side environment is assumed to be secure and trusted
therefore the main threat is from server-side adversaries. In most models the
service provider is assumed to carry out the data processing tasks honestly,
and the main concern is regarding a malicious insider who might get access
to the data (e.g., a malicious database administrator) and use this to harm
the owner or the client. In such a scenario the sensitive portions of the data
must remain encrypted at all times on the server and the secret encryption
key should remain with the client. Data is only decrypted on the client side.
This is called the passive or curious adversary model and is by far the most
widely assumed security model. In another scenario, the server-side might be
completely trustworthy, but in order to protect the data from becoming ac-
cessible to an outside hacker, the minimum requirement might be to keep the
data encrypted on disk (since for the majority of the time, that is where the
data resides).

Protecting against active adversaries is obviously more difficult and re-
quires greater effort on the client’s part to ensure proper functioning of the
system. Authenticity and integrity checking becomes important in this sce-
nario and we will describe some of the work in this area in section 3.

166 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

Now, we look at some of the approaches proposed in literature for querying
encrypted relational data.

2.2 Querying Encrypted Relational Data

Consider a user Alice who outsources the database consisting of the following
two relations:

EMP (eid, ename, salary, addr, did)
DEPARTMENT (did, dname, mgr)

The fields in the EMP table refer to the employee id, name of the employee,
salary, address and the id of the department the employee works for. The fields
in the DEPARTMENT table correspond to the department id, department
name, and name of the manager of the department. In the DAS model, the
above tables will be stored at the service provider. Since the service provider is
untrusted, the relations must be stored in an encrypted form. Unless specified
otherwise, we will assume that data is encrypted at the row level; that is, each
row of each table is encrypted as a single unit. Thus, an encrypted relational
representation consists of a set of encrypted records.

The client3 may wish to execute SQL queries over the database. For in-
stance, Alice may wish to pose following query to evaluate ”total salary for
employees who work for Bob”. Such a query is expressed in SQL as follows:

SELECT SUM(E.salary) FROM EMP as E, DEPARTMENT as D
WHERE E.did = D.did AND D.mgr = "Bob"

An approach Alice could use to evaluate such a query might be to request
the server for the encrypted form of the EMP and DEPARTMENT tables.
The client could then decrypt the tables and execute the query. This however,
would defeat the purpose of database outsourcing, reducing it to essentially
a remote secure storage. Instead, the goal in DAS is to process the queries
directly at the server without the need to decrypt the data. Before we discuss
techniques proposed in the literature we note that processing such queries
requires mechanisms to support the following basic operators over encrypted
data:

• Comparison operators such as =, �=, <,≤,=,≥, > These operators may
compare attribute values of a given record with constants (e.g., DEPART-
MENT.sal > 45000 as in selection queries) or with other attributes (e.g.,
EMP.did = DEPARTMENT.did as in join conditions).

• Arithmetic operators such as addition, multiplication, division that
perform simple arithmetic operations on attribute values associated with
a set of records in one or more relations. Such operators are part of any
SQL query that involves aggregation.

3 Alice in this case since we have assumed that the client and the owner is the same
entity.

Managing and Querying Encrypted Data 167

The example query given above illustrates usage of both classes of oper-
ators. For instance, to execute the query, the mgr field of each record in the
DEPARTMENT table has to be compared with “Bob”. Furthermore, records
in the DEPARTMENT table whose mgr is “Bob” have to be matched with
records in EMP table based on the did attribute. Finally, the salary fields of
the corresponding record that match the query conditions have to be added
to result in the final answer.

The first challenge in supporting SQL queries over encrypted relational
representation is to develop mechanisms to support comparison and arithmetic
operations on encrypted data. The techniques developed in the literature can
be classified into the following two categories.
Approaches based on new encryption techniques: These techniques
can support either arithmetic and/or comparison operators directly on en-
crypted representation. Encryption techniques that support limited compu-
tation without decryption have been explored in cryptographic literature in
the past. Amongst the first such technique is the privacy homomorphism (PH)
developed in [39, 16] that supports basic arithmetic operations. While PH can
be exploited to compute aggregation queries at the remote server (see [27] for
details), it does not allow comparison and, as such, cannot be used as basis for
designing techniques for relational query processing over encrypted data. In
[4], the authors developed a data transformation technique that preserves the
order in the original data. Such a transformation serves as an order-preserving
encryption and can therefore support comparison operators. Techniques to im-
plement relational operators such as selection, joins, sorting, grouping can be
built on top of the order preserving encryption. The encryption mechanism,
however, cannot support aggregation at the server. While new cryptographic
approaches are interesting, one of the limitation of such approaches has been
that they are safe only under limited situations where the adversary’s knowl-
edge is limited to the ciphertext representation of data. These techniques have
either been shown to break under more general attacks (e.g., PH is not secure
under chosen plaintext attack [6, 10]), or the security analysis under diverse
types of attacks has not been performed.
Information-hiding based Approaches: Unlike in encryption based ap-
proaches, such techniques store additional auxiliary information along with
encrypted data to facilitate evaluation of comparison and/or arithmetic oper-
ations at the server. Such auxiliary information, stored in the form of indices
(which we refer to as secure indices) may reveal partial information about the
data to the server. Secure indices are designed carefully exploiting information
hiding mechanisms (developed in the context of statistical disclosure control)
[48, 47, 1] to limit the amount of information disclosure. The basic techniques
used for disclosure control are the following [47, 1]:

1. Perturbation: For a numeric attribute of a record, add a random value
(chosen from some distribution, like normal with mean 0 and standard
deviation σ) to the true value.

168 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

2. Generalization: Replace a numeric or categorical value by a more general
value. For numeric values, it could be a range that covers the original value
and for categorical data, this may be a more generic class, e.g., an ancestor
node in a taxonomy tree.

3. Swapping: Take two different records in the data set and swap the values
of a specific attribute (say, the salary value is swapped between the records
corresponding to two individuals).

Of all the disclosure-control methods, the one that has been primarily uti-
lized to realize DAS functionalities is that of generalization. The nature of
disclosure in information hiding based schemes is different from that in cryp-
tographic schemes. In the latter, the disclosure risk is inversely proportional to
the difficulty of breaking the encryption scheme and if broken, it means there
is complete disclosure of the plaintext values. In contrast, the information
disclosure in information hiding approaches could be partial or probabilistic
in nature. That is, there could be a non-negligible probability of disclosure of
a sensitive value given the transformed data, e.g., the bucket identity might
give a clue regarding the actual value of the sensitive attribute.

In this section, we will primarily concentrate on the information hiding
based approach and show how it has been utilized to support SQL queries. As
will be clear, information hiding approaches can be used to support compari-
son operators on the server and can hence be the basis for implementing SPJ
(select-project-join) queries. They can also support sorting and grouping op-
erators. Such techniques, however, cannot support aggregation at the server.
A few papers [27, 24] have combined an information hiding approach with
PH to support both server-side aggregation as well as SPJ queries. Of course,
with PH being used for aggregation, these techniques become vulnerable to
diverse types of attacks. In the remainder of the section, we will concentrate
on how information hiding techniques are used to support SPJ queries. We
will use the query processing architecture proposed in [22, 26] to explain the
approach.

Query Processing Architecture for DAS [26]

Figure 1 illustrates the control flow for queries in DAS where information
hiding technique is used to represent data at the server. The figure illustrates
the three primary entities of the DAS model: user, client and server. The
client stores the data at the server which is hosted by the service provider and
this is known as the server-side. The data is stored in an encrypted format
at the server-side at all times for security purposes. The encrypted database
is augmented with additional information (secure indexes) that allows certain
amount of query processing to occur at the server without jeopardizing data
privacy. The client also maintains metadata for translating user queries to the
appropriate representation on the server, and performs post-processing on
server-query results. Based on the auxiliary information stored, the original

Managing and Querying Encrypted Data 169

Result
 Filter

Query
Translator

Encrypted
Client

Database

Meta
Data

Temporary
Results

Service Provider

Web Browser
(USER)

Encrypted Results
Server SiteClient Site

Query over Encrypted Data

Original Query

A
ct

u
al

 R
es

u
lt

s

Fig. 1. Query Processing in DAS

query over un-encrypted relations are broken into (1) a server-query over
encrypted relations which run on the server, and (2) a client-query which
runs on the client and post-processes the results returned after executing the
server-query. We achieve this goal by developing an algebraic framework for
query rewriting over encrypted representation.

2.3 Relational Encryption and Storage Model

For each relation
R(A1, A2, . . . , An)

one stores on the server an encrypted relation:

RS(etuple, AS
1 , AS

2 , . . . , AS
n)

where the attribute etuple stores an encrypted string that corresponds to a
tuple in relation R. Each attribute AS

i corresponds to the index for the at-
tribute Ai and is used for query processing at the server. For example, consider
a relation emp below that stores information about employees.

eid ename salary addr did

23 Tom 70K Maple 40

860 Mary 60K Main 80

320 John 50K River 50

875 Jerry 55K Hopewell 110

The emp table is mapped to a corresponding table at the server:

empS(etuple, eidS , enameS , salaryS , addrS , didS)

170 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

It is only necessary to create an index for attributes involved in search and
join predicates. Without loss of generality, one can assume that an index is
created over each attribute of the relation.

Partition Functions: To explain what is stored in attribute AS
i of RS for each

attribute Ai of R the following notations are useful. The domain of values (Di)
of attribute R.Ai are first mapped into partitions {p1, . . . , pk}, such that these
partitions taken together cover the whole domain. The function partition is
defined as follows:

partition(R.Ai) = {p1, p2, . . . , pk}

As an example, consider the attribute eid of the emp table above. Suppose
the values of domain of this attribute lie in the range [0, 1000]. Assume that
the whole range is divided into 5 partitions, represented as:

partition(emp.eid) = {[0, 200], (200, 400], (400, 600], (600, 800], (800, 1000]}

Different attributes may be partitioned using different partition functions,
or they might be partitioned together using a multidimensional model. The
partition of attribute Ai corresponds to a splitting of its domain into a set
of buckets. The strategy used to split the domain into a set of buckets has
profound implications on both the efficiency of the resulting query processing
as well as on the disclosure risk of sensitive information to the server. For
now, to explain the query processing strategy, we will make a simplifying
assumption that the bucketization of the domain is based on the equi-width4

partitioning (though the strategy developed will work for any partitioning of
the domain). We will revisit the efficiency and disclosure risks in the following
subsections.
Identification Functions: An identification function called ident assigns a ran-
dom, unique identifier identR.Ai

(pj) to each partition pj of attribute Ai. Fig-
ure 2 shows the identifiers assigned to the 5 partitions of the attribute emp.eid.
For instance, identemp.eid([0, 200]) = 2, and identemp.eid((800, 1000]) = 4.

� ������� ��� ��� ���

� � � ��

Fig. 2. Partition and identification functions of emp.eid

Mapping Functions: Given the above partition and identification functions, a
mapping function MapR.Ai

maps a value v in the domain of attribute Ai to
the identifier of the partition to which v belongs: MapR.Ai

(v) = identR.Ai
(pj),

where pj is the partition that contains v. Later we describe a more general
approach where a value might be assigned to multiple buckets [30] (probabilis-
tically). This can be shown to achieve a greater degree of security than the

4 where the domain of each bucket has the same width

Managing and Querying Encrypted Data 171

more rigid case where partitions are non-overlapping. We describe the work
in [30] later in this section. The mapping information is stored on the client to
enable query translation (i.e., from plaintext queries to server-side queries).
More details about query translation can be found in [21, 26].
Storing Encrypted Data: For each tuple t = 〈a1, a2, . . . , an〉 in R, the relation
RS stores a tuple:

〈encrypt({a1, a2, . . . , an}),MapR.A1(a1),MapR.A2(a2), . . . , MapR.An
(an)〉

where encrypt is the function used to encrypt a tuple of the relation. For
instance, the following is the encrypted relation empS stored on the server:

etuple eidS enameS salaryS addrS didS

1100110011110010. . . 2 19 81 18 2

1000000000011101. . . 4 31 59 41 4

1111101000010001. . . 7 7 7 22 2

1010101010111110. . . 4 71 49 22 4

The first column etuple contains the string corresponding to the encrypted
tuples in emp. For instance, the first tuple is encrypted to “1100110011110. . . ”
that is equal to encrypt(23, T om, 70K,Maple, 40). The second is encrypted
to “1000000000011101. . . ” equal to encrypt(860,Mary, 60K,Main, 80). The
encryption function is treated as a black box and any block cipher technique
such as AES, Blowfish, DES etc., can be used to encrypt the tuples. We
discuss some of the issues related to choice of encryption function in the next
section. The second column corresponds to the index on the employee ids. For
example, value for attribute eid in the first tuple is 23, and its corresponding
partition is [0, 200]. Since this partition is identified to 2, we store the value
“2” as the identifier of the eid for this tuple.
Decryption Functions: Given the operator E that maps a relation to its en-
crypted representation, its inverse operator D maps the encrypted represen-
tation to its corresponding decrypted representation. That is, D(RS) = R. In
the example above, D(empS) = emp. The D operator may also be applied
on query expressions. A query expression consists of multiple tables related
by arbitrary relational operators (e.g., joins, selections, etc). Decryption will
regenerate the whole record.

Mapping Conditions

To translate specific query conditions in operations (such as selections and
joins) to corresponding conditions over the server-side representation, a trans-
lation function called Mapcond is used. These conditions help translate rela-
tional operators for server-side implementation, and how query trees are trans-
lated. For each relation, the server-side stores the encrypted tuples, along with
the attribute indices determined by their mapping functions. The client stores
the meta data about the specific indices, such as the information about the

172 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

partitioning of attributes, the mapping functions, etc. The client utilizes this
information to translate a given query Q to its server-side representation QS ,
which is then executed by the server. More details can be found in [26].

Translating Relational Operators

Now let us give an idea of how relational operators are implemented in [26].
We illustrate the implementation of the selection and join operators in the
proposed architecture. The strategy is to partition the computation of the
operators across the client and the server such that a superset of answers is
generated by the operator using the attribute indices stored at the server. This
set is then filtered at the client after decryption to generate the true results.
The goal is to minimize the work done at the client (as much as possible).
We use R and T to denote two relations, and use the operator notations in [17].

The Selection Operator (σ): Consider a selection operation σC(R) on a re-
lation R, where C is a condition specified on one or more of the attributes
A1, A2, . . . , An of R. A straightforward implementation of such an operator
is to transmit the relation RS from the server to the client. Then the client
decrypts the result using the D operator, and implements the selection. This
strategy, however, pushes the entire work of implementing the selection to
the client. In addition, the entire encrypted relation needs to be transmitted
from the server to the client. An alternative mechanism is to partially com-
pute the selection operator at the server using the indices associated with the
attributes in C, and push the results to the client. The client decrypts the
results and filters out tuples that do not satisfy C. Specifically, the operator
can be rewritten as follows:

σC(R) = σC

(
D(σS

Mapcond(C)

(
RS)

))

Note that the σ operator that executes at the server is adorned with a
superscript “S”. All non-adorned operators execute at the client. The decryp-
tion operator D will only keep the attribute etuple of RS , and drop all the
other AS

i attributes. We explain the above implementation using an example
σeid<395∧did=140(emp). Based on the definition of Mapcond(C) discussed in
the previous section, the above selection operation will be translated into

σC

(
D(σS

C′
(
empS)

))

where the condition C ′ on the server is:

C ′ = Mapcond(C) =
(
eidS ∈ [2, 7] ∧ didS = 4

)

The Join Operator (�): Consider a join operation R
�
C S. The join condition

C could be either an equality condition (in which case the join corresponds to

Managing and Querying Encrypted Data 173

an equijoin), or could be a more general condition (resulting in theta-joins).
The above join operation can be implemented as follows:

R
�
C T = σC

(
D

(
RS �S

Mapcond(C) TS
))

As before, the S adornment on the join operator denotes the fact that the
join is to be executed at the server. For instance, join operation

emp
�

emp.did=mgr.did mgr

is translated to:
σC

(
D

(
empS �S

C′ mgrS
))

where the condition C ′ on the server is condition C1 defined in Section 2.3.
Now we show how the above operators are used to rewrite SQL queries

for the purpose of splitting the query computation across the client and the
server.

Query Execution

Given a query Q, the goal is to split the computation of Q across the server
and the client. The server will use the implementation of the relational oper-
ators discussed in the previous subsection to compute “as much of the query
as possible”, relegating the remainder of the computation to the client. Query
processing and optimization have been extensively studied in database re-
search [20, 12, 41]. The objective is to come up with the “best” query plan
for Q that minimizes the amount of work to be done at the client site. In this
setting, the cost of a query consists of many components – the I/O and CPU
cost of evaluating the query at the server, the network transmission cost, and
the I/O and CPU cost at the client. As an example, consider the following
query over the emp table than retrieves employees whose salary is greater that
the average salary of employees in the department identified by did = 1.

SELECT emp.name FROM emp
WHERE emp.salary > (SELECT AVG(salary)
FROM emp WHERE did = 1);

The corresponding query tree and some of the evaluation strategies are
illustrated in Figures 3 to 6. The first strategy (Figure 4) is to simply trans-
mit the emp table to the client, which evaluates the query. An alternative
strategy (Figure 5) is to compute part of the inner query at the server, which
selects (as many as possible) tuples corresponding to Mapcond(did = 1). The
server sends to the client the encrypted version of the emp table, i.e., empS ,
along with the encrypted representation of the set of tuples that satisfy the
inner query. The client decrypts the tuples to evaluate the remainder of the
query. Yet another possibility (Figure 6) is to evaluate the inner query at the

174 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

Δ Δ Q
S

Q
C

γ
 AVG

PH
 (salary

h
)→X

h

π
 ename

σ
 did

f
=E(1)

emp
S

emp
S

 salary > X

Fig. 3. Original query tree

σ
 salary > X

ω

Δ

Q
S

Q
C

γ
 AVG

PH
 (salary

h
)→X

h

π
 ename

σ
 did

f
=E(1)

emp
S

emp
S

 Mapcond(salary > X
h

)

Fig. 4. Replacing encrypted rela-
tions

�

����
����������������

����	�

�
�	�
����������

��

������

���������������

����

�

Fig. 5. Doing selection at server

���

������	
�����	

���

������

���������������

���

�

�������	�������	

�

�

�������	
�����	

������

	�

	�

	�

	�

Fig. 6. Multiple interactions between
client and server

server. That is, select the tuples corresponding to the employees that work in
department did = 1. The results are shipped to the client, which decrypts the
tuples and computes average salary. The average salary is encrypted by the
client and shipped back to the server, which then computes the join at the
server. Finally, the results are decrypted at the client.

Supporting Aggregation Operators in Queries: The various query translation
techniques discussed above are designed explicitly for relational operators that

Managing and Querying Encrypted Data 175

perform comparisons. While information hiding techniques work for relational
operators, they do not work for arithmetic operators such as aggregation. No-
tice that in the previous query there is an aggregation but that aggregation is
done at the client side after decryption. If aggregation is to be performed at
the server side, the information hiding approach has to be augmented with an
encryption approach that supports arithmetic operations on encrypted rep-
resentation. [27] illustrates how privacy homomorphisms (PH) [39, 16] can
be combined with the basic approach described above for this purpose. Ad-
ditional complexities arise since the information hiding technique does not
exactly identify the target group to be aggregated (i.e., the server side results
typically contain false positives). The paper develops algebraic manipulation
techniques to separate an aggregation group into two subsets a set that cer-
tainly qualifies the conditions specified in the query, and a set that may or
may not satisfy the selection predicates of the query (i.e., could contain false
positives). The first set can be directly aggregated at the server using PH
while the tuples belonging to the second category will need to be transmitted
to the client side to determine if they indeed satisfy the query conditions.

Query Optimization in DAS: As in traditional relational query evaluation, in
DAS multiple equivalent realizations for a given query are possible. This nat-
urally raises the challenge of query optimization. In [24], query optimization
in DAS is formulated as a cost-based optimization problem by introducing
new query processing functions and defining new query transformation rules.
The intuition is to define transfer of tuples from server to the client and de-
cryption at the client as operators in the query tree. Given different hardware
constraints and software capabilities at the client and the server different cost
measures are applied to the client-side and server-side computations. A novel
query plan enumeration algorithm is developed that identifies the least cost
plan.

Now, having given a summary of the various techniques for handling en-
crypted relational data we move onto encryption of text data.

2.4 Keyword search on encrypted text data

In this section we discuss approaches proposed in the literature to support
keyword based retrieval of text documents. The majority of the techniques
proposed in literature are cryptographic in nature. Let Alice be the data owner
who has a collection of text documents D = {D1, . . . , Dn}. A document Di is
modelled as a set of keywords Di = {WDi

1 , . . . ,WDi
ni

}, each word w ∈ W, and
(W) is the set of all possible keywords. Alice stores her document collection
at a service provider. Since the service provider is not trusted, documents are
stored encrypted. Each document is encrypted at the word level as follows:
Each document is divided up into equal length “words”. Typically each such
word corresponds to an English language word where extra padding (with ‘0’
and ‘1’ bits) are added to make all words equal in length. Periodically Alice

176 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

may pose a query to the server to retrieve a subset of documents. The query
itself is a set of keywords and the answer corresponds to the set of documents
that contain all the keywords in the query. More formally, the answer to a
query q is given by:

Ans(q) = {Di ∈ D|∀kj ∈ q, kj ∈ Di}
The goal is to design techniques to retrieve answers while not revealing any

information beyond the presence (or absence) of the keywords (of the query)
in each document.

A few different variations of the basic keyword-search problem have been
studied over the past years [8, 18, 44, 11, 19, 7, 46]. The authors in [44, 11]
study the basic problem where a private-key based encryption scheme is used
to design a matching technique on encrypted data that can search for any
word in the document. Authors in [8] provide a safe public-key based scheme
to carry out “non-interactive” search on data encrypted using user’s public-
key for a select set of words. [18] proposes a document indexing approach
using bloom filters that speeds up the keyword search algorithm but could
result in some false-positive retrievals. The work in [19, 7] propose secure
schemes for conjunctive keyword search where the search term might contain
the conjunction of two or more keywords. The goal here again is to avoid
any leakage of information over and above the fact that the retrieved set of
documents contain all the words specified in the query.

In this section, we describe a private-key based approach which is moti-
vated by [44] and was amongst the first published solutions to the problem of
searching over encrypted text data. The approach described incurs significant
overhead, requiring O(n) cryptographic operations per document where n is
the number of words in the document.

Private-Key based Search Scheme on Encrypted Text Data

Consider a data owner Alice who wishes to store a collection of documents
with Bob (the service provider). Alice encrypts each document D prior to
storing it with Bob. In addition, Alice creates a secure index, I(D), which is
stored at the service provider that will help her perform keyword search. The
secure index is such that it reveals no information about its content to the
adversary. However, it allows the adversary to test for presence or absence of
keywords using a trapdoor associated with the keyword where a trapdoor is
generated with a secret key that resides with the owner. A user wishing to
search for documents containing word w, generates a trapdoor for w which
can then be used by the adversary to retrieve relevant documents.

The secure index is created over the keywords in D as follows. Let doc-
ument D consist of the sequence of words w1, . . . , wl. The index is created
by computing the bitwise XOR (denoted by the symbol ⊕) of the clear-text
with a sequence of pseudo-random bits that Alice generates using a stream

Managing and Querying Encrypted Data 177

cipher. Alice first generates a sequence of pseudo-random values s1, . . . , sl us-
ing a stream cipher, where each si is n−m bit long. For each pseudo-random
string si, Alice computes a pseudo-random function Fkc

(si) seeded on key kc

which generates a random m-bit sequence5. Using the result of Fkc
(si), Alice

computes a n-bit sequence ti :=< si, Fkc
(si) >, where < a, b > denotes con-

catenation of the string a and b). Now to encrypt the n-bit word wi, Alice
computes the XOR of wi with ti, i.e., ciphertext ci := wi⊕ti. Since, only Alice
generates the pseudo-random stream t1, . . . , tl so no one else can decrypt ci.

Given the above representation of text document, the search mechanism
works as follows. When Alice needs to search for files that contain a word w,
she transmits w and the key kc to the server. The server (Bob) searches for w
in the index files associated with documents by checking whether ci ⊕w is of
the form < s, Fkc

(s) >. The server returns to Alice documents that contain
the keyword w which can then be decrypted by Alice.

The scheme described above provides secrecy if the pseudo-random func-
tion F , the stream cipher used to generate si, and the encryption of the
document D are secure(that is, the value ti are indistinguishable from truly
random bits for any computationally bounded adversary). Essentially, the ad-
versary cannot learn content of the documents simply based on ciphertext
representation.

While the approach described above is secure, it has a fundamental limi-
tation that the adversary learns the keyword wi that the client searches for.
The search strategy allows the adversary to learn which documents contain
which keywords over time using such query logs. Furthermore, the adversary
can launch attacks by searching for words on his own without explicit autho-
rization by the user thereby learning document content.

A simple strategy to prevent server from knowing the exact search word is
to pre-encrypt each word w of the clear text separately using a deterministic
encryption algorithm Ekp

, where the key kp is a private key which is kept
hidden from the adversary. After this pre-encryption phase, the user has a
sequence of E-encrypted words x1, . . . , xl. Now he post-encrypts that sequence
using the stream cipher construction as before to obtain ci := xi ⊕ ti, where
xi = Ekp

(wi) and ti =< si, Fkc
(xi) >. During search, the client, instead of

revealing the keyword to be searched, Computes Ekp
(wi) with the server.

The proposed scheme is secure and ensures that the adversary does not
learn document content from query logs. The scheme is formalized below.
5 Pseudo-random functions: A pseudo-random function denoted as F : KF ×

X → Y , where KF is the set of keys, X denotes the set {0, 1}n and Y denotes
the set {0, 1}m. Intuitively, a pseudo-random function is computationally indistin-
guishable from a random function - given pairs (xi, f(x1, k)), . . . , (xm, f(xm, k)),
an adversary cannot predict f(xm+1, k) for any xm+1. In other words, F takes a
key k ∈ KF the set of keys, a n bit sequence x ∈ X where X is the set {0, 1}n

and returns a m bit sequence y ∈ Y where Y is the set {0, 1}m.

178 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

• kp: Denotes the private-key of the user. kp ∈ {0, 1}s which is kept a secret
by the user.

• kc: Denotes a key called the collection key of the user. kc ∈ {0, 1}s and is
publicly known

• Pseudo-Random Function: F : {0, 1}s × {0, 1}n−m → {0, 1}m, is a
pseudo-random function that takes a n − m bit string, a s-bit key and
maps it to a random m-bit string. F is publicly known.

• Trapdoor function: Let T denote a trapdoor function which takes as
input, a private-key kp and a word w and outputs the trapdoor for the
word w, i.e., T (kp, w) = Ekp

(w) where E is a deterministic encryption
function. For a given document, we denote the trapdoor for the ith word
by ti.

• BuildIndex(D,kp,kc): This function is used to build the index for doc-
ument D. It uses a pseudo-random generator G which outputs random
string of size s. The pseudo-code of the function is given below.

Algorithm 1 : BuildIndex

1: Input: D, kp, kc;
2: Output: ID /* The index for the document*/
3:
4: ID = φ;
5: for all wi ∈ D do
6: Generate a pseudo-random string si using G;
7: Compute trapdoor T (wi) = Ekp(wi);
8: Compute ciphertext ci = T (wi) ⊕ 〈si, Fkc(si)〉;
9: ID = ID ∪ ci;

10: end for
11: Return ID;

• SearchIndex(ID,T(w)): Given the document index and the trapdoor
for the word w being searched, the SearchIndex functionality returns the
document D if the word w is present in it. The pseudo-code is given below.

Algorithm 2 : SearchIndex

1: Input: ID, T (w);
2: Output: D or φ
3:
4: for all ci ∈ ID do
5: if ci ⊕ T (w) is of the form 〈s, Fkc(s)〉 then
6: Return D;
7: end if
8: end for
9: Return φ;

Managing and Querying Encrypted Data 179

Speeding up encrypted keyword data

The approach described above to search over encrypted text has a limita-
tion. Essentially, it requires O(n) comparisons (cryptographic operations) at
the server to test if the document contains a given keyword, where n is the
number of keywords in the document. While such an overhead might be tol-
erable for small documents and small document collections, the approach is
inherently not scalable. Authors in [18] overcome this limitation by exploit-
ing bloom filters for indexing documents. More details about the bloom filter
based approach can be found in [18, 21].

2.5 Search over Encrypted XML Data

While management and querying of XML data have been addressed exten-
sively, there has been relatively little work in the area of encrypted XML
data management [45, 34]. The new angle that becomes important in case of
XML data is the structural information in the data. In [45] the problem of
supporting XPath queries in the DAS model is considered where the under-
lying data is in XML format and propose a Xpath expressions based method
to specify security constraints (SCs). They distinguish between two kinds of
constraints, one where the goal is to hide the values at the tree nodes and
another where one needs to hide the association between different attributes.
For example, in a medical database containing patient data, an user might
want to protect the information of the following nature: The insurance infor-
mation of each patient; which SSN matches which patient’s name; association
between patient and disease etc. Such constraints can be specified in the form
of XPath expressions and may be classified as either node-type constraints or
association-type constraints. SCs can be enforced by hiding away the contents
of some subset of nodes in the XML tree by encrypting their content. When
association between two elements need to be hidden, encrypting any one of
the nodes can enforce the SC. The optimization problem then requires one
to determine a minimal set of nodes that need to be encrypted in order to
satisfy all the SCs. But [45] employs deterministic encryption schemes where
a plaintext value is always mapped to the same ciphertext. Deterministic en-
cryption is not secure due to its vulnerability to statistical attacks. To avoid
this the authors propose using decoy values to hide the true frequencies.

The query processing follows the typical DAS approach we outlined in
the previous sections, wherein some metadata is stored on the server along
with the encrypted data to enable server-side query processing. The authors
propose using two indexes, one is the structural index to enable tree traversal
and the second one is a value index for enabling attribute value based queries
like range queries. The former is called the discontinuous structural interval
(DSI) index, which associates each node of the tree with intervals from a
range of an ordered domain (e.g., from [0, 1]). The interval sizes are chosen in
a random manner so as not to give away any information about the number

180 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

of children of a node. The DSI index is stored using two tables on the server-
side which enables retrieval of subtrees of the XML document tree without
revealing the structure.

For searching on values from an ordered domain (e.g., for range queries),
the authors use an “order-preserving encryption” scheme [4] to transform
the values from their original domain to a new domain. Since the order is
preserved, one can use B-trees on these modified values to implement range-
queries. To prevent against frequency-based attacks, the authors insert some si

(small number) copies of each ciphertext ci corresponding to a value vi. But
this process imposes an overhead due to the increases dataset size and the
corresponding performance degradation has not been sufficiently analyzed.
Also, the proposed scheme seems to be requiring a large number of “keys”
(depending on the frequency range of values), thereby imposing a significant
overhead of key management. Further, this scheme is unsafe under known
plaintext attack (due to the usage of order-preserving encryption scheme [4])
thereby making it vulnerable to many attack scenarios where some plaintext-
ciphertext pairs may be revealed to an adversary.

The query processing on the server is carried out using the structural and
value indices which yields a superset of the true set of nodes satisfying the
query predicates. These encrypted nodes are then returned to the client where
a post-processing step discards the false-positives. Further details and proofs
can be found in [45].

2.6 Privacy Aware Bucketization

In the previous section we discussed how DAS functionality can be realized
when data is represented in the form of buckets. Such a bucketized represen-
tation can result in disclosure of sensitive attributes. For instance, given a
sensitive numeric attribute (e.g., salary) which has been bucketized, assume
that the adversary somehow comes to know the maximum and minimum val-
ues occurring in the bucket B. Then he can be sure that all data elements in
this bucket have a value that falls in the range [minB ,maxB], thereby leading
to partial disclosure of sensitive values for data elements in B. If, the adver-
sary has knowledge of distribution of values in the bucket, he may also be
able to make further inference about the specific records. A natural question
is how much information does the generalized representation of data reveal
that is, given the bucket label, how well can the adversary predict/guess the
value of the sensitive attribute of a given entity? Intuitively, this depends
upon the granularity at which data is generalized. For instance, assigning all
values in the domain to a single bucket will make the bucket-label completely
non-informative. However, such a strategy will require the client to retrieve
every record from the server. On the other extreme, if each possible data value
has a corresponding bucket, the client will get no confidentiality although the
records returned by the server will contain no false positives. There is a natu-
ral trade-off between the performance overhead and the degree of disclosure.

Managing and Querying Encrypted Data 181

Such a tradeoff has been studied in [30] where authors develop a strategy to
minimize the disclosure with constraint on the performance degradation6.

Let us take the case where bucket based generalization is performed over
a single dimensional ordered data set, e.g., a numeric attribute and the query
class is that of 1-dimensional range queries. The authors in [30] propose en-
tropy and variance of the value distributions in the bucket as appropriate
measure of (the inverse) disclosure risk. Entropy captures the notion of uncer-
tainty associated with a random element chosen with a probability that follows
a certain distribution. The higher the value of entropy of a distribution (i.e.,
larger the number of distinct values and more uniform the frequencies, larger
is the value of the entropy), greater is the uncertainty regarding the true value
of the element. For example, given a domain having 5 distinct values and the
data set having 20 data points, the entropy is maximized if all 5 values appear
equal number of time, i.e. each value has a frequency of 4.

In a secure index-based scheme, the adversary only sees the bucket label B
of a data element t. Therefore, if the adversary (somehow) learns the distribu-
tion (frequencies) of values within B, he can guess the true value (say v∗) of
t with a probability equal to the fractional proportion of elements with value
v∗ within the bucket. The notion of uncertainty regarding the true value can
be captured in an aggregate manner by the entropy of the value distribution
within B. Entropy of a discrete random variable X taking values xi = 1, . . . , n
with corresponding probabilities pi, i = 1, . . . , n is given by:

Entropy(X) = H(X) = −
n∑

i=1

pilog2(pi)

If the domain of the attribute has an order defined on it as in the case
of a numeric attribute, the above definition of entropy does not capture the
notion of distance between two values. In the worst case model, since the value
distribution is assumed to be known to the adversary, greater the spread of
each bucket distribution, better is the protection against disclosure. Therefore,
the authors propose variance of the bucket distribution as the second (inverse)
measure of disclosure risk associated with each bucket. That is, higher the
variance of the value distribution, lower is the disclosure risk.

V ariance(X) =
n∑

i=1

pi(xi − E(X))2, where E(X) =
1
n

n∑
i=1

pixi

After specifying these measures of disclosure-risk, [30] propose a 2-phase
algorithm for creating the secure indices. The goal is to provide the data owner
6 Notice the dual of the problem maximize performance with a constraint on

information disclosure would also be addressed once we agree on the metric for
information disclosure. However, such an articulation of the problem has not been
studied in the literature.

182 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

a tunable algorithm that allows him to select a desired degree of tradeoff be-
tween performance and security. In the first phase, the values appearing in the
attribute are divided into an user-specified (say M) number of buckets such
that the average number of false-positives is minimized over all possible range
queries (i.e., queries with range predicates on the specified attribute). The
buckets so created might not meet the required security criteria (i.e., some
minimum level of entropy and variance) and therefore in a second pass, the
values within these optimal buckets are re-distributed in a “controlled man-
ner” into a new set of M buckets so as to increase the value of entropy and
variance of the bucket level distributions while admitting only up to a speci-
fied maximum degree of performance degradation. The tunable (user-chosen)
parameter specifies this maximum allowed degree of quality degradation.

Similar measures of disclosure-risk have been proposed for privacy preserv-
ing data publishing [36]. There too, the key technique for achieving anonymity
is data generalization which is akin to the partitioning approach in [30]. For
more discussion on the choice of the privacy measures and details of the par-
titioning and redistribution algorithms the interested reader can refer to [30].

Discussion

In this section only single dimensional data was considered. Most real data sets
have multiple attributes with various kinds of dependencies and correlations
between the attributes. There may be some kinds of functional dependencies
(exact or partial) and correlations as in multidimensional relational data or
even structural dependencies as in XML data. Therefore, knowledge about
one attribute might disclose the value of another via the knowledge of such
associations. The security-cost analysis for such data becomes significantly
different. Also, in this section, the analysis that was presented, was carried
out for the worst-case scenario where it was assumed that the complete value
distribution of the bucket is known to an adversary. In reality it is unrealistic
to assume that an adversary has exact knowledge of the complete distribution
of a data set. Moreover, to learn the bucket-level joint-distribution of data,
the required size of the training set (in order to approximate the distribu-
tion to a given level of accuracy) grows exponentially with the number of
attributes/dimensions. This makes the assumption of “complete bucket-level”
knowledge of distribution even more unrealistic for multidimensional data. [31]
proposes a new approach to analyze the disclosure risk for multidimensional
data and extends the work in [30] to this case.

3 Trust, Encryption, Key-management, Integrity & Data
Confidentiality

Having discussed the querying aspects of encrypted data , let us look at some
basic security related issues that need to be addressed in a DAS application.

Managing and Querying Encrypted Data 183

There are 3 basic models of trust that are widely studied in literature. The first
model is that of “complete trust” where the server-side is completely trusted
by the client to implement the required functionalities (e.g., query execution)
and has complete faith on its security measures. In this scenario encryption
might not be required at all and therefore, the data management issues are
quite similar to those arising in standard DBMS systems. The second sce-
nario is that of “partial trust”, where though the service-provider is trusted
to implement functionalities correctly, the sensitive information might be ac-
cessible to some adversary in the following two scenarios: (i) Some server-side
entities (e.g., administrators) who may have the authority to access the data,
but cannot be trusted completely to maintain confidentiality. (ii) The security
measures on the server-side (e.g., network security) cannot be guaranteed to
be completely safe from unauthorized access by outside hackers. In both these
scenarios, the goal is to ensure the confidentiality of sensitive data by prevent-
ing its misuse by either legitimate or unauthorized users. The third model of
trust is where the server is not trusted to even implement all functionalities
correctly (truthfully). We refer to this as the “untrusted model”. In this case
additional steps need to be taken by the client to ensure authenticity of data
and correctness of query results.

We start by discussing some of the issues that need to be considered while
selecting the encryption function, especially with respect to relational data.
Then, we summarize the techniques proposed in literature for integrity and
authentication for the untrusted server model.

3.1 Encrypting relational data

The appropriate encryption algorithm to support in a relational database sys-
tem is decided based on its performance characteristics. An important factor
that dictates the performance is the data granularity at which encryption is
supported. In a typical RDBMS, the encryption granularity could be at the
field, the row or the page level. Authors in [22] report that embedding encryp-
tion within relational databases entails a significant startup cost. Row/page
level encryption amortize this cost over larger data and therefore are more
preferable than field-level encryption in general. Another criteria to consider
while choosing the encryption algorithm is software versus hardware level en-
cryption. Whereas software level encryption allows more flexibility in terms
of algorithm selection and granularity control, hardware-based solutions are
much faster, but can support only a small set of algorithms, like DES [15] and
AES [2]. Therefore depending upon the application and trust model, a choice
has to be made whether to use hardware or software level encryption. Au-
thors in [26] experimentally determine that a row-level symmetric key based
encryption scheme offers the best tradeoff between performance and object
granularity. In general, the 3 important issues to keep in mind are (1) How
fast is the encryption function, is it implementable at the hardware level; (2)
how to perform key management; (3) at what granularity to encrypt data.

184 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

The main challenge is to introduce security functionality without incurring
too much of overhead in terms of both performance and storage.
Encryption algorithms: Symmetric key encryption schemes like AES [2],
DES [15] and Blowfish [40] are some of the popular algorithms for encrypting
relational data. Encrypting the same amount of data using fewer large blocks
is more efficient than using several smaller blocks. This is mainly due to the
start-up cost associated with the initialization of the encryption algorithm.
While Blowfish and DES work with 8-byte data blocks, AES works with 16-
bytes blocks. Authors in [32] compare the performance of the above three
algorithms and report that Blowfish is the fastest, but has a large startup
cost. AES has the best average-case performance out of all the 3. We will
discuss the key-management issues later.

Some other schemes in literature propose using public-key encryption al-
gorithms (e.g., RSA) which avoids the problem of secure key distribution that
is faced by symmetric key encryption schemes. Nonetheless symmetric key
schemes are orders of magnitude faster in practice [32], and therefore are
more preferable.
Encryption granularity: In general, finer encryption granularity affords
more flexibility in allowing the server to choose what data to encrypt. The
obvious encryption granularity choices are: (i) Field-level, which is the small-
est achievable granularity; each attribute value of a tuple is encrypted sep-
arately. (ii) Record/row level where each row is encrypted separately. This
allows one to retrieve individual rows without decrypting the whole table.
(iii) Attribute/column level encryption where one chooses to encrypt only cer-
tain sensitive attributes in a table. (iv) Page/block level encryption could also
be used. This is geared towards automating the encryption process. Whenever
a page/block of sensitive data is stored on disk, the entire block is encrypted.
Efficient storage for encrypted data: Authors in [32] investigate the per-
formance issues associated with storage of encrypted data on the disk. They
propose the “Partitioned Plaintext and Ciphertext” (PPC) model for support-
ing storage of encrypted data. The basic idea is to cluster the non-sensitive
and sensitive data separately in order to minimize the number of encryption
operations. The PPC scheme logically breaks each page into two minipages,
based on plaintext and ciphertext attributes. PPC takes advantage of the n-
ary storage model (NSM) while enabling efficient encryption. Therefore imple-
menting PPC on existing DBMS’s that use NSM requires only modifications
to the page layout. Within a page, each record is broken down into two parts,
the plaintext attributes which do not require encryption and the ciphertext
part that requires encryption. Both minipages are organized as NSM pages.
Small changes need to be made to the buffer manager and catalog files in
order to accommodate this change.

Managing and Querying Encrypted Data 185

3.2 Authentication & Integrity issues

When a client queries the data on the server, he expects in return a set of
records satisfying the query predicates. A query on a single relational table
having m rows for instance, may require any one of the possible 2m possible
different subsets to be retrieved. The problem then is that of facilitating secure
and efficient authentication of all possible query replies. Authors in [37] look at
the problem when the server cannot be trusted with the integrity of the data.
In other words, if the malicious server or an adversary inserts fake records
into the database or modifies existing records, the client wants to detect this
efficiently, without spending too much resources. This work concentrates only
on simple query predicates involving relational operators like =, <, ≤, ≥, and
>.

Data integrity and authentication can be provided at different levels of
granularity. In principle, integrity checks can be at the level of a table, a col-
umn, a row (record), or an individual field (attribute) value in a row. Record-
level integrity checking is thought to be the best choice to balance the tradeoff
between flexibility of query answering and overhead of integrity checking. The
authors look at 3 different scenarios: unified client model (where the client and
data owner are one and the same entity), multiple clients-single owner and
multiple clients-multiple owners.

The simplest approach for a client scenario is to store for each record a
message authentication code (MAC) of that record. MAC is a keyed hash of
the record’s content. The secret key is known only to the client and therefore
computable only at the client. The MAC-s tend to be small and of constant
length, therefore making them easier to handle. Then with a query response,
the server inserts a single integrity check computed as a hash (not a keyed
hash) of all record-level MAC-s in the query reply which the client can verify.
With a very high probability such hashes will be collision-free, i.e., distinct
for different sets of records. The advantage of this approach is that bandwidth
overhead is minimal and the computation overhead at the client is low.

The MAC-s are attractive for the unified client model, but in multi owner
and multi querier models, one would require the MAC key to be shared be-
tween all the entities. This means non-repudiation for the queriers cannot be
achieved. Instead of MAC-s, public-key digital signatures can be used for in-
tegrity checking (verification), i.e., the record content is encrypted using the
owner’s private key and verified by the client by decrypting it with the owner’s
public key.

In using public key algorithms for verification, the efficiency issues become
a key concern due to their substantially higher complexity. The proposed so-
lution is to carry out some form of signature aggregation which allows the
client to aggregate multiple individual signatures into one unified signature.
Authors in [37] suggest two aggregation based signature verification schemes,
one uses the RSA encryption algorithm and the other uses elliptic-curve and
bilinear mappings to aggregate multiple signatures into one. The condensed-

186 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

RSA scheme uses the multiplicative homomorphic property of RSA to combine
multiple signatures generated by a single signer into one “condensed” signa-
ture. The result can then be verified quickly by comparing it with the product
of the signatures of each record returned to the client in response to his query.
In case of multiple owners the client has to verify the different sets of records
(i.e., corresponding to the different owners) separately. The second scheme
is similar to the first and we point the the interested reader to [37] for the
technical details. Further work on authentication and query completeness can
be found in [23, 43].

3.3 Key Management in DAS

There have been several proposals for key-management in DAS applications
[28, 29, 14]. We briefly summarize the schemes proposed in [28].

The data owner first decides the key-assignment granularity, as to whether
it will be at the database level, table level or row-level. The first choice gen-
erates a single key for the whole database. In the second case, tables within
the database maybe grouped based on some criteria and one key generated
for each group. In the third option, grouping is carried out at the record level
within tables and each group of records are encrypted with a separate key.
Note that the key assignment granularity is different from the encryption gran-
ularity. For instance, a single key might be used for the whole database, but
encryption may be carried out at the row level. The key generation process
itself is classified into two classes: pre-computation based and re-computation
based approaches. In the first case, all keys are generated ahead of time and
stored in the key registry of the system. In the second case, instead of the key,
the key generating information is stored, e.g., seed for the random key gener-
ating function. In DAS key generation can be carried out at the client-side or
at a third-party trusted server. Key registry is the data structure (table) that
stores the information about the keys, namely the key-Id, key correspondence
information (i.e., the database object to which the key is assigned), key mode
(pre-computation or re-computation) and key-material (the actual key or the
seed with which to compute the key). Besides key generation, the other issue
addressed is that of key updates. The authors investigate the compatibility
of key updates along with other data transactions (read/write/update). The
efficiency issues related to key-updates is tackled separately in [29].

4 Summary & Related Work

In this chapter, we summarized some of the work done in encrypted data
management in the context of database as a service model. Much of the exist-
ing work on querying encrypted data have studied the problem in one of the
three contexts: keyword search over encrypted text documents, SQL search
over encrypted relational data, and XPATH queries over XML data. Since the

Managing and Querying Encrypted Data 187

initial work [44, 26] in these areas, many extensions to the problem have been
considered. We briefly mention these advances that we have not covered so
far to provide interested readers with references.

Besides extending the data model, some researchers have considered relax-
ing assumptions made by the basic DAS model itself. The basic DAS model,
as discussed in this chapter, assumes “curious but honest” adversary, but such
an assumption might not necessarily hold in certain situations. In particular,
the service provider may return erroneous data. An error in the result to a
query may manifest itself in two ways – the returned answers may be tampered
by the service provider, or alternatively, the results returned by the service
provider may not be the complete set of matching records. The problem of in-
tegrity of the returned results was first studied in [26] for the untrusted server
model. Any authentication mechanism adds additional processing cost at the
client, and therefore authentication mechanisms using Merkle Hash trees and
group signatures that attempt to reduce such an overhead have been studied
in [38]. The authors have developed techniques for both the situation where
the client (i.e., the user who poses the query) is the same as well as different
from the data owner.

Another avenue of DAS research has been to exploit secure coprocessor
to maintain confidentiality of outsourced database [5]. Unlike the basic DAS
model in which the client is trusted and the service provider is entirely un-
trusted, in the model enhanced with a secure coprocessor, it is assumed that
the service provider has a tamper proof hardware – a secure coprocessor –
which is attached to the untrusted server and has (limited) amount of storage
and processing capabilities. Data while outside the secure processor must be
in the encrypted form, it could be in plaintext within the coprocessor without
jeopardizing data confidentiality. Exploiting a secure coprocessor significantly
simplifies the DAS model since now intermediate query results do not need
to be transmitted to the clients if further computation requires data to be
in plaintext. Instead, secure coprocessor can perform such a function, there-
fore significantly reducing network overheads and optimizing performance.
Another additional advantage is that such a model can naturally support sit-
uations where the owner of the database is different from the user who poses
the query. Another very similar approach using “smart cards” was proposed
in [9].

There are several interesting proposals for designing systems that support
querying and management of encrypted data [3, 9, 13]. [3] proposes a “two-
server” model where data vertical data partitioning and selective attribute
encryption is used for enabling confidentiality. [9] proposes an architecture
that uses a small trusted hardware (a “smart card”) to carry out computation
over plaintext data while the bulk storage and processing is carried out by the
untrusted server which has only access to the encrypted data. [13] propose
a secure B+-tree based indexing approach to query data kept on a single
untrusted server and analyze the disclosure risk in terms of inference-based
attacks where the adversary has different degrees of background knowledge.

188 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

4.1 Open Issues & Future Trends

While much progress in research has been made over the past few years on
DAS, we believe that many further challenges remain before the vision out-
lined in [26] of a secure data management service that simultaneously meets
the data confidentiality and efficiency requirements. A few of the many prac-
tical challenges that still remain open are the following: (1) techniques to sup-
port dynamic updates – some initial approaches to this problem have been
studied in [25], (2) mechanisms to support stored procedures and function ex-
ecution as part of SQL processing, and (3) support for a more complete SQL -
e.g., pattern matching queries. Furthermore, given multiple competing models
for DAS (e.g., the basic model, the model with secure coprocessor, model with
two servers) there is a need for a detailed comparative study that evaluates
these approaches from different perspectives: feasibility, applicability under
diverse conditions, efficiency, and achievable confidentiality. Furthermore, a
detailed security analysis including the nature of attacks as well as privacy
guarantees supported by different schemes needs to be carried out. Various
other security issues need deeper analysis, like parameter selection for security
(e.g., how much entropy, how much variance) and structural information hid-
ing for XML data. Furthermore, wherever cryptographic primitives are used,
special most of the works do not address issues related algorithm selection,
choice of key-length, key-generation, distribution and revocation. These issues
definitely require greater attention than they have received till this point.

A large number of security breaches in databases happen due to insider
attacks, a fruitful avenue of research in secure data management would be to
enable secure database administration. The goal is to determine what infor-
mation needs to be revealed to administrators that allow them to carry out
their tasks while hiding away as much excess information as possible that may
potentially disclose some sensitive information.

5 Acknowledgements

This work has been possible due to the following NSF grants: 0331707 and
IIS-0220069.

References

1. N.R. Adam, J.C. Worthmann Security-control methods for statistical databases:
a comparative study In ACM Computing Surveys, Vol 21, No. 4, 1989.

2. Advanced Encryption Standard, NIST. FIPS PUB 197. (2001)
3. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, U. Sri-

vastava, D. Thomas, Y. Xu. Two Can Keep a Secret: A Distributed Architecture
for Secure Database Services In Proc. of CIDR 2005.

Managing and Querying Encrypted Data 189

4. R. Agrawal, J. Kiernan, R. Srikant, Y. Xu Order Preserving Encryption for
Numeric Data In Proc. of SIGMOD 2004.

5. R. Agrawal, D. Asonov, M. Kantarcioglu, Y. Li Sovereign Joins In ICDE 2006.
6. N. Ahituv, Y. Lapid, S. Neumann Processing Encrypted Data In Communica-

tions of the ACM, 1987 Vol. 30, 9, pp.777-780
7. L. Ballard, S. Kamara, F. Monrose Achieving Efficient conjunctive keyword

searches over encrypted data. In ICICS 2005.
8. D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano Public Key Encryp-

tion with Keyword Search. In Advances in Cryptology - Eurocrypt 2004 (2004).
volume 3027 of Lecture Notes in Computer Science, pp. 506-522. Springer-
Verlag, 2004.

9. L. Bouganim, and P. Pucheral. Chip-Secured Data Access: Confidential Data
on Untrusted Servers In Proc. of VLDB 2002.

10. E. Brickell, Y. Yacobi On Privacy Homomorphisms In Proc. Adavances in
Cryptology-Eurocrypt’87

11. Y. Chang and M. Mitzenmacher Privacy preserving keyword searches on remote
encrypted data. In Third International Conference on Applied Cryptography and
Network Security (ACNS 2005), volume 3531 of Lecture Notes in Computer
Science, pp. 442-455. Springer-Verlag, 2005.

12. S. Chaudhuri. An overview of query optimization in relational systems. In Proc.
of ACM Symposium on Principles of Database Systems (PODS), 1998.

13. E. Damiani et al. Balancing Confidentiality and Efficiency in Untrusted Rela-
tional DBMSs In CCS, 2003.

14. E. Damiani et al. Key Management for Multi-User Encrypted Databases In
StorageSS, 2005.

15. Data Encryption Standard (DES), NIST. FIPS 46-3. (1993)
16. J. Domingo-Ferrer A New Privacy Homomorphism and Applications In Infor-

mation Processing Letters, 6(5):277-282, 1996.
17. H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete

Book. Prentice Hall, 2002.
18. E-J. Goh Secure Indexes. Technical report 2003/216, In IACR ePrint Cryptog-

raphy Archive, (2003). See http://eprint.iacr.org/2003/216.
19. P. Golle, J. Staddon, B. Waters Secure conjunctive keyword search over en-

crypted data. In Applied Cryptography and Network Security (ACNS 2004),
volume 3089 of Lecture Notes in Computer Science, pp. 31-45. Springer, 2004.

20. G. Graefe. Query eveluation techniques for large databases. ACM Computing
Surveys, 25(2):73–170, 1993.

21. H. Hacıgümüş, B. Hore, B. Iyer, S. Mehrotra Search on Encrypted Data. In
Secure Data Management in Decentralized Systems, Springer US, 2007.

22. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Providing Database as a Service. In
Proc. of ICDE, 2002.

23. H. Hacıgümüş, B. Iyer, and S. Mehrotra. Ensuring the Integrity of Encrypted
Databases in Database as a Service Model. In Proc. of 17th IFIP WG 11.3
Conference on Data and Applications Security, 2003.

24. H. Hacıgümüş, B. Iyer, S. Mehrotra Query Optimization in Encrypted Database
Systems, In DASFAA, 2005.

25. H. Hacıgümüş. Privacy in Database-as-a-Service Model. Ph.D. Thesis, Depart-
ment of Information and Computer Science, University of California, Irvine,
2003.

26. H. Hacıgümüş, B. Iyer, C. Li and S. Mehrotra Executing SQL over encrypted
data in the database-service-provider model. In Proc. SIGMOD, 2002.

190 Bijit Hore, Sharad Mehrotra, and Hakan Hacıgümüş

27. H. Hacıgümüş, B. Iyer, and S. Mehrotra Efficient Execution of Aggregation
Queries over Encrypted Relational Databases. In DASFAA, 2004.

28. H. Hacıgümüş, Sharad Mehrotra Performance concious key management in
Encrypted Databases In DBSec, 2004.

29. H. Hacıgümüş, Sharad Mehrotra Efficient Key Updates in Encrypted Database
Systems In Secure Data Management, 2005.

30. B. Hore, S. Mehrotra, and G. Tsudik. A Privacy-Preserving Index for Range
Queries. In Proc. of VLDB 2004.

31. B. Hore. Storing and Querying Data Securely in Untrusted Environments. Ph.D.
Thesis, Department of Information and Computer Science, University of Cali-
fornia, Irvine, 2007.

32. B. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and Y. Wu A Framework for
Efficient Storage Security in RDBMS In Proc. of EDBT 2004.

33. R. C. Jammalamadaka, S. Mehrotra, and N. Venkatasubramanian PVault: A
Client-Server System Providing Mobile Access to Personal Data In StorageSS,
2005.

34. R. Jammalamadaka, S. Mehrotra Querying Encrypted XML Documents In
IDEAS, 2006.

35. R.C. Jammalamadaka, R. Gamboni, S. Mehrotra, K. Seamons, N. Venkata-
subramanian gVault:A Gmail Based Cryptographic Network File System. In
proceedings of 21st Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, 2007.

36. A. Machanavajjhala, J. E. Gehrke, D. Kifer, M. Venkitasubramaniam l-
Diversity: Privacy Beyond k-Anonymity. In ICDE, 2006.

37. E. Mykletun, M. Narasimhan, G. Tsudik Authentication and Integrity in Out-
sourced Databases In NDSS, 2004.

38. M. Narasimhan, G. Tsudik DSAC: Integrity of Outsourced Databases with
Signature Aggregation and Chaining In CIKM, 2005.

39. R. Rivest, R.L. Adleman and M. Dertouzos. On Data Banks and Privacy Ho-
momorphisms. In Foundations of Secure Computations, 1978.

40. B. Schneier. Description of a New Variable-Length Key, 64-Bit Block Cipher
(Blowfish). Fast software Encryption, Cambridge Security Workshop Proceed-
ings. (1993) 191-204.

41. P. Sellinger, M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access Path Selection in Relational Database Management Systems. In Proc.
of ACM SIGMOD, 1979.

42. E., Shmueli, R. Waisenberg, Y., Elovici, E. Gudes Designing Secure Indexes for
Encrypted Databases Secure Data Management, 2004.

43. R. Sion Query Execution Assurance for Outsourced Databases In VLDB 2005.
44. D. Song and D. Wagner and A. Perrig. Practical Techniques for Search on

Encrypted Data. In Proc. of IEEE SRSP, 2000.
45. H. Wang, L. Lakshmanan Efficient Secure Query Evaluation over Encrypted

XML Databases In VLDB, 2006.
46. B. Waters, D. Balfanz, G. Durfee, and D. Smetters Building and encrypted and

searchable audit log. In NDSS (2004).
47. L. Willenborg, T. De Waal Elements of Statistical Disclosure Control Springer,

2001.
48. L. Willenborg, T. De Waal Statistical Disclosure Control in Practice Springer-

Verlag, 1996.

8

Security in Data Warehouses and OLAP
Systems

Lingyu Wang1 and Sushil Jajodia2

1 Concordia Institute for Information Systems Engineering
Concordia University
Montreal, QC H3G 1M8, Canada
wang@ciise.concordia.ca

2 Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

Summary. Unlike in operational databases, aggregation and derivation play a ma-
jor role in on-line analytical processing (OLAP) systems and data warehouses. Un-
fortunately, the process of aggregation and derivation can also pose challenging
security problems. Aggregated and derived data usually look innocent to traditional
security mechanisms, such as access control, and yet such data may carry enough
sensitive information to cause security breaches. This chapter first demonstrates the
security threat from aggregated and derived data in OLAP systems and warehouses.
The chapter then reviews a series of methods for removing such a threat. Two efforts
in extending existing inference control methods to the special setting of OLAP sys-
tems and warehouses are discussed. Both methods are not fully satisfactory due to
limitations inherited from their counter parts in statistical databases. The chapter
then reviews another solution based on a novel preventing-then-removing approach,
which shows a promising direction towards securing OLAP systems and data ware-
houses.

1 Introduction

With rapid advancements in computer and network technology, it becomes a
common practice for organizations to collect, store, and analyze vast amounts
of data quickly and efficiently. On-line analytical processing (OLAP) systems
and data warehouses of today are used to store and analyze everything – vi-
tal or not – to an organization. The security of data warehouses and OLAP
systems is crucial to the interest of both organizations and individuals. Stolen
organizational secrets may cause serious and immediate damages to an orga-
nization. Indiscriminate collection and retention of data represents an extraor-
dinary intrusion on privacy of individuals. Security breaches in governmental

192 Lingyu Wang and Sushil Jajodia

data warehouses may lead to losses of information that translate into financial
losses or losses whose values are obviously high but difficult to quantify (for
example, national security).

Unlike in traditional databases, information stored in data warehouses is
typically accessed through decision support systems, such as OLAP systems.
OLAP systems help analysts to gain insights to different perspectives of large
amounts of data stored in a data warehouse. Due to the sheer volume of data,
OLAP systems heavily depend on aggregates of data in order to hide in-
significant details and hence to accentuate global patterns and trends. As the
underlying data model, a data cube [15] can nicely organize multi-dimensional
aggregates formulated by dimension hierarchies. Although security breaches
in a data warehouse are possible in many ways, the most challenging threat is
from insiders who have legitimate accesses to data through OLAP queries. Un-
fortunately, most of today’s OLAP systems lack effective security measures to
safeguard the data accessed through them. Existing security mechanisms can
at best alleviate security breaches but cannot completely remove the threat.
Data sanitization has long been recognized as insufficient for protecting sen-
sitive data by itself due to potential linking attacks [24]. Access control tech-
niques, although mature in traditional data management systems, are usually
not directly applicable to OLAP systems and data warehouses due to the
difference in data models.

Moreover, OLAP systems and underlying data warehouses are especially
vulnerable to indirect inferences of protected data. The aggregation process
used by OLAP systems does not completely destroy sensitive information. The
remaining vestiges of sensitive information, together with knowledge obtained
through out of bound channels, can cause disclosures of such information.
Although studied since 1970ś in statistical databases, inference control for
on-line systems is largely regarded as impractical due to its negative-in-tone
complexity results [7]. Most restriction-based inference control methods adopt
a detecting-then-removing approach. The detection of inferences must take
into accounts all combinations of answered queries, which implies complicated
on-line computations and constant bookkeeping of queries. Even at such a
high cost, each method usually applies to only a few unrealistically simplified
cases, such as with only one aggregation type. These facts partially explain
why inference control is absent in most commercial OLAP systems. On the
other hand, off-line inference control methods have long been used in releasing
census tables, which demonstrates that the threat of inferences is real.

This chapter starts by demonstrating the security threat to data ware-
houses caused by inferences using OLAP queries. Various requirements in
designing security measures for such systems are discussed. Armed with this
understanding, the chapter then takes steps to meet the stated requirements.
Two efforts in extending existing inference control methods to the special
setting of OLAP systems are reviewed. The results show that the threat of
unauthorized accesses and indirect inferences known in relational databases
is still possible even when users are restricted to OLAP queries. Although im-

Security in Data Warehouses and OLAP Systems 193

proved performance is obtained by exploring unique characteristics of OLAP
queries, both methods are not fully satisfactory due to limitations inherited
from their counter parts in statistical databases. The chapter then reviews
another solution, which adopts a preventing-then-removing approach. This
latter solution can thwart both unauthorized accesses and indirect inferences
of sensitive data, and the solution can potentially be applied to a broach range
of settings in terms of aggregation types and sensitivity criteria. The solution
thus shows a promising direction towards security OLAP systems and data
warehouses.

The rest of the chapter is organized as follows. Section 2 reviews back-
ground knowledge and related work. Section 3 discusses the threat of infer-
ences and the security requirements. Section 4 outlines a three-tier security
architecture for OLAP systems. Section 5 then reviews methods for controlling
inferences in such systems. Finally, Section 6 concludes the chapter.

2 Background

In this section, we first review background knowledge such as data warehouses
and OLAP systems. We then review other research efforts relevant to our
discussions in this chapter.

2.1 Data Warehouses and OLAP Systems

A centralized data warehouse is usually used to store enterprise data. The
data are organized based on a star schema, which usually has a fact table with
part of the attributes called dimensions and the rest called measures. Each
dimension is associated with a dimension table indicating a dimension hierar-
chy. The dimension tables may contain redundancy, which can be removed by
splitting each dimension table into multiple tables, one per attribute in the
dimension table. The result is called a snowflake schema. A data warehouse
usually stores data collected from multiple data sources, such as transactional
databases throughout an organization. The data are cleaned and transformed
to a common consistent format before they are stored in the data warehouse.
Subsets of the data in a data warehouse can be extracted as data marts to
meet the specific requirements of an organizational division. Unlike in transac-
tional databases where data are constantly updated, typically the data stored
in a data warehouse are refreshed from data sources only periodically.

Coined by Codd et. al in 1993 [9], OLAP stands for On-Line Analyti-
cal Processing. The concept has its root in earlier products such as the IRI
Express, the Comshare system, and the Essbase system [29]. Unlike statis-
tical databases which usually store census data and economic data, OLAP
is mainly used for analyzing business data collected from daily transactions,
such as sales data and health care data [27]. The main purpose of an OLAP
system is to enable analysts to construct a mental image about the underlying

194 Lingyu Wang and Sushil Jajodia

data by exploring it from different perspectives, at different level of generaliza-
tions, and in an interactive manner. Popular architectures of OLAP systems
include ROLAP (relational OLAP) and MOLAP (multidimensional OLAP).
ROLAP provides a front-end tool that translates multidimensional queries
into corresponding SQL queries to be processed by the relational backend.
MOLAP does not rely on the relational model but instead materializes the
multidimensional views. Using MOLAP for dense parts of the data and RO-
LAP for the others leads to a hybrid architecture, namely, the HOLAP or
hybrid OLAP.

As a component of decision support systems, OLAP interacts with other
components, such as data mining, to assist analysts in making business de-
cisions. While data mining algorithms automatically produce knowledge in a
pre-defined form, such as association rule or classification. OLAP does not
directly generate such knowledge, but instead relies on human analysts to ob-
serve it by interpreting the query results. On the other hand, OLAP is more
flexible than data mining in the sense that analysts may obtain all kinds of
patterns and trends rather than only knowledge of fixed forms. OLAP and
data mining can also be combined to enable analysts in obtaining data mining
results from different portion of the data and at different level of generaliza-
tion [17]. The requirements on OLAP systems have been defined differently,
such as the FASMI (Fast Analysis of Shared Multidimensional Information)
test [23] and the Codd rules [9]. Some of the requirements are especially rel-
evant to this chapter. First, to make OLAP analysis an interactive process,
the OLAP system must be highly efficient in answering queries. OLAP sys-
tems usually rely on extensive pre-computations, indexing, and specialized
storage to improve the performance. Second, to allow analysts to explore the
data from different perspectives and at different level of generalization, OLAP
organizes and generalizes data along multiple dimensions and dimension hi-
erarchies. The data cube model we shall address shortly is one of the most
popular abstract models for this purpose.

Data cube was proposed as a SQL operator to support common OLAP
tasks like histograms and sub-totals [15]. Even though such tasks are usually
possible with standard SQL queries, the queries may become very complex.
The number of needed unions is exponential in the number of dimensions of
the base table. Such a complex query may result in many scans of the base
table, leading to poor performance. Because sub-totals are very common in
OLAP queries, it is desired to define a new operator for the collection of such
sub-totals, namely, data cube.

Figure 1 depicts a fictitious data cube. It has two dimensions: time and
organization with three and four attributes, respectively. We regard all as a
special attribute having one attribute value ALL, which depends on all other
attribute values. The attributes of each dimension are partially ordered by
the dependency relation � into a dependency lattice [18], that is, quarter �
year � all and employee � department � branch � all. The product of
the two lattices gives the dependency lattice of cuboids. Each element of

Security in Data Warehouses and OLAP Systems 195

the dependency lattice is a tuple < T,O >, where T is an attribute of the
time dimension and O is an attribute of the organization. Attached to each
such tuple < T,O > is an empty two-dimensional array, namely, a cuboid.
Each cell of the cuboid < T,O > is also a tuple < t, o >, where t and o
are attribute values of the attribute T and O, respectively. The dependency
relation extends to be among cells. For example, a cell < Y 1, Bob > depends
on the cells < Q1, Bob >, < Q2, Bob >, < Q3, Bob >, and < Q4, Bob >.
Hence, all cells also form a dependency lattice.

A base table with the schema (quarter, employee, commission) is used
to populate the data cube with values of a measure attribute commission.
Each record in the base table, a triple (q, e,m), is used to populate a cell
< q, e > of the core cuboid < quarter, employee >, where q, e, and m are
values of the attributes quarter, employee, and commission, respectively.
Some cells of < quarter, employee > remain empty (or having the NULL
value), if corresponding records are absent in the base table. If multiple records
correspond to the same cell, since the two attributes quarter and employee
are not necessarily a key of the base relation, they are aggregated using the
aggregation function SUM. All cuboids are then populated using the same
aggregation function. For example, in the cuboid < year, employee >, a cell
< Y 1, Bob > takes the value 8500, which is the total amount of the four cells
it depends on, < Q1, Bob >, < Q2, Bob >,< Q3, Bob >, and < Q4, Bob >.
An empty cell is deemed as zero (which depends on the aggregation function)
in aggregation.

 Q1 Q2 …
All … … …

 All
Bob …
Alice …
Jim …
Mallory …
…

 Y1 Y2 …
Bob $8500 …
Alice $10000 …
Jim $6100 …
Mallory $12400 …
…

 Q1 Q2 Q3 …
Branch1 … … … ….
 …
… Q1 Q2 Q3 Q4 Q5…

Book $10000 $6000 $11000 $9000 …
CD …
…

<quarter, employee>

<all employee> <year, department>

<all ,department>

<all, branch> <year, all>

<year, branch>

<all, all>

<quarter, branch>

<quarter, all>

 Q1 Q2 Q3 Q4 Q5 …
Bob $1500 $1500 $5500 …
Alice $4500 $5500 …
Jim $3100 $3000 …
Mallory $6400 $6000 …
…

organizationtime

<year, employee> <quarter, department>

SUM

SUM

Fig. 1. An Example of Data Cubes

196 Lingyu Wang and Sushil Jajodia

2.2 Related Work

Although the need for security and privacy in data warehouses and OLAP sys-
tems has long been identified [5, 27, 28], today’s commercial OLAP products
usually provide insufficient security measures [27]. In contrast, access control
is mature in relational databases. In relational databases, accesses to sensitive
data are regulated based on various models. The discretional access control
(DAC) uses owner-specified grants and revokes to achieve an owner-centric
control of objects [16]. The role-based access control (RBAC) simplifies ac-
cess control tasks by introducing an intermediate tier of roles that aggregates
and bridges users and permissions [25]. The flexible access control framework
(FAF) provides a universal solution to handling conflicts in access control poli-
cies through authorization derivation and conflict resolution logic rules [20].

Inference control has been studied in statistical databases and census data
for more than thirty years [1, 12, 35]. The proposed methods can roughly be
classified into restriction-based techniques and perturbation-based techniques.
Restriction-based inference control methods prevent malicious inferences by
denying unsafe queries. Those methods determine the safety of queries based
on the minimal number of values aggregated by a query [12], the maximal num-
ber of common values aggregated by different queries [13], and the maximal
rank of a matrix representing answered queries [8]. The perturbation-based
techniques prevent inference by inserting random noises to sensitive data [30],
to answers of queries [4], or to database structures [26].

Cell suppression and partitioning most closely relate to the methods we
shall introduce. To protect census data released in statistical tables, cells that
contains small COUNT values are suppressed, and possible inferences of the
suppressed cells are then detected and removed using linear programming-
based techniques. The detection method is effective for two-dimensional cases
but becomes intractable for three or more dimensional tables [10, 11]. Par-
titioning defines a partition on sensitive data and restricts queries to aggre-
gate only complete blocks in the partition [7, 37]. Similarly, microaggregation
replaces clusters of sensitive values with their averages [21, 35]. Partitioning
and microaggregation methods usually assume a specific type of aggregations.
Moreover, their partitions are not based on dimension hierarchies inherent to
data and hence may contain many blocks that are meaningless to a user.

Perturbation-based methods have been proposed for preserving privacy
in data mining [2]. Random noises are added to sensitive values to preserve
privacy, while the statistical distribution is approximately reconstructed from
the perturbed data to facilitate data mining tasks. Protecting sensitive data in
OLAP is different from that in data mining. Unlike most data mining results,
such as classifications and association rules, the results of OLAP usually can-
not be obtained from distribution models alone. The methods proposed in [3]
can approximately reconstruct COUNTs from perturbed data with statisti-
cally bound errors, so OLAP tasks like classification can be fulfilled. However,
potential errors in individual values may prevent an OLAP user from gaining

Security in Data Warehouses and OLAP Systems 197

trustful insights into small details of the data, such as outliers. The methods
we shall introduce do not perturb data so any answer will always be precise
and trustful.

Secure multi-party data mining allows multiple distrusted parties to coop-
eratively compute aggregations over each other’s data [31, 14]. Cryptographic
protocols enable each party to obtain the final result with minimal disclosures
of their own data. This problem is different from inference control, because
the threat of inferences comes from what users know, not from the way they
know it. The k-anonymity model enables sensitive values to be released with-
out threatening privacy [24, 36]. Each record is indistinguishable from at least
k − 1 others because they all have exactly the same identifying attribute val-
ues. An adversary can link an individual in the physical world to at least (the
sensitive values of) k records, which is considered a tolerable privacy threat.
Inference control and the k-anonymity model can be considered as dual ap-
proaches. The information theoretic approach in [22] formally characterizes
insecure queries as those that bring a user with more confidence in guessing
possible records [22]. However, such a perfect-secrecy metric will not tolerate
any partial disclosure, such as those caused by aggregations.

3 Security Requirements

In this section, we first demonstrate the threat of indirect inferences in OLAP
systems. We then describe various requirements in designing security measures
for such systems.

3.1 The Threat of Inferences

Unlike in traditional databases where unauthorized accesses are the main
security concern, an adversary using an OLAP system can more easily infer
prohibited data from answers to legitimate queries. Example 1 illustrates an
one dimensional (or 1-d for short) inference where the sensitive cell is inferred
using exactly one of its descendants.

Example 1 (1-d Inference). In Figure 1, suppose an adversary is prohibited
from accessing the cuboid 〈quarter, employee〉 but is allowed to access its
descendant 〈quarter, department〉. Further suppose the empty cells denote
the values that the adversary already knows through outbound channels. The
adversary can then infer 〈Q5, Bob〉 as exactly the same value in 〈Q5, Book〉
(that is, 3500).

A multi-dimensional (or m-d) inference is the complementary case of 1-d
inferences. That is, a cell is inferred using two or more of its descendants, and
neither of those descendants causes 1-d inferences. Example 2 illustrates an
m-d inference in a two-dimensional SUM-only data cube. Example 3 and 4
illustrate m-d inferences with MAX-only, and with SUM, MAX, and MIN.

198 Lingyu Wang and Sushil Jajodia

Example 2 (m-d Inferences with SUM). Suppose now an adversary is prohib-
ited from accessing the core cuboid in Figure 1 but is allowed to access its
descendants 〈quarter, department〉 and 〈year, employee〉. The adversary can
no longer employ any 1-d inference to infer data in the first year, because
each cell in 〈quarter, department〉 and 〈year, employee〉 has at least two an-
cestors in the core cuboid. However, an m-d inference is possible as follows.
the adversary first sums the two cells 〈Y 1, Bob〉 and 〈Y 1, Alice〉 in the cuboid
〈year, employee〉 and then subtracts from the result (that is, 18500) the two
cells 〈Q2, Book〉 and 〈Q3, Book〉 (that is, 11000). The final result yields a
sensitive cell 〈Q1, Bob〉 as 1500.

Example 3 (m-d Inferences with MAX). Suppose now an adversary is pre-
vented from knowing the values in the empty cells. The core cuboid then seems
to the adversary full of unknown values. As we shall show later, such a data
cube will be free of inferences if the aggregation function is SUM. However,
the following m-d inference is possible with MAXs. The MAX values in cells
〈Y 1,Mallory〉 and 〈Q4, Book〉 are 6400 and 6000, respectively. From those
two values the adversary can infer that one of the three cells 〈Q1,Mallory〉,
〈Q2,Mallory〉, and 〈Q3,Mallory〉 must be 6400, because 〈Q4,Mallory〉 must
be no greater than 6000. Similarly, an adversary infers neither 〈Q2,Mallory〉
and 〈Q3,Mallory〉 can be 6400. The sensitive cell 〈Q1,Mallory〉 is then suc-
cessfully inferred as 6400.

Example 4 (Inferences with SUM, MAX and MIN). Now suppose an adversary
can ask queries using SUM, MAX, and MIN on the data cube. Following
Example 3, 〈Q1,Mallory〉 is 6400. The MAX, MIN, and SUM values of the cell
〈Y 1,Mallory〉 are 6400,6000, and 12400, respectively. From those three values
the adversary can infer the following. That is, 〈Q2,Mallory〉,〈Q3,Mallory〉,
and 〈Q4,Mallory〉 must be 6000 and two zeroes, although he/she does not
know exactly which is 6000 and which are zeroes. The MAX,MIN, and SUM
values of 〈Q2, Book〉, 〈Q3, Book〉 and 〈Q4, Book〉 then tell the adversary the
following facts. In 〈quarter, employee〉, two cells in Q2 are 1500 and 4500;
those in Q3 are 5500 and 5500; those in Q4 are 3000 and 6000; and the rest
are all zeroes. The adversary then concludes that 〈Q4,Mallory〉 must be 6000,
because the values in Q3 and Q2 cannot be. Similarly, the adversary can infer
〈Q4, Jim〉 as 3000, and consequently infer all cells in 〈quarter, employee〉.

3.2 The Requirements

As illustrated in above examples, a security solution for OLAP systems must
combine access control and inference control to remove security threats. At
the same time, providing security should not adversely reduce the usefulness
of data warehouses and OLAP systems. A practical solution must achieve a
balance among following objectives.

Security in Data Warehouses and OLAP Systems 199

• Security: Sensitive data stored in underlying data warehouses should be
guarded from both unauthorized accesses and malicious inferences. Such a
definition of security considers not only the information a user can directly
obtain from an OLAP system, but also those that he/she can derive using
answers to seemingly irrelevant queries.

• Applicability: The security provided by a solution should not rely on any
unrealistic assumptions about OLAP systems. In particular, assumptions
made in statistical databases are usually not unacceptable in OLAP appli-
cations. A desired solution should cover a wide range of scenarios without
the need for significant modifications.

• Efficiency: The name of OLAP itself indicates the interactive nature of
such systems. Most queries should be answered in a matter of seconds or
minutes. A significant portion of the OLAP literature has been devoted to
meeting such stringent performance requirements. A desired security must
be computationally efficient, especially with respect to on-line overhead.

• Availability: Data should be readily available to legitimate users who have
sufficient privileges. A solution must place security upon justifiable restric-
tions of accesses in the sense that removing the restrictions will either lead
to security breaches or render the method computationally infeasible.

• Practicality: A practical security solution should not demand significant
modifications to the existing infrastructure of an OLAP system. A solution
should take advantage of any query-processing mechanisms and security
mechanisms that are already in place.

The main challenge, however, lies in the inherent tradeoff between above
objectives. To have provable security and justifiable availability in varying
settings of OLAP systems usually implies complicated on-line computations,
which are expensive and hard to implement. The methods we shall describe
in this chapter represent efforts towards a balance among these objectives.

4 A Three-Tier Security Architecture

Security in statistical databases usually has two tiers, that is, sensitive data
and aggregation queries. Inference control mechanisms check each aggrega-
tion query to decide whether answering the query, in addition to previously
answered queries, may disclose any protected data through inferences. How-
ever, applying such a two-tier architecture to OLAP systems has some inher-
ent drawbacks. First, checking queries for inferences at run time may bring
unacceptable delay to query processing. The complexity of such checking is
usually high due to the fact that m-d inferences must be checked against sets
of queries instead of each individual query. Second, inference control methods
cannot take advantage of the special characteristics of an OLAP application
under the two-tier architecture. For example, OLAP queries are usually an-
swered using materialized views, such as data cubes. As we shall show, the

200 Lingyu Wang and Sushil Jajodia

Data Set
(D)

Pre-defined Aggregations
(A)

User Queries
(Q)

RDA

RAQ

Inference Control

Access Control

Fig. 2. A Three-Tier Inference Control Architecture

on-line overhead of inference control can be dramatically reduced if this fact
can be explored.

The methods we shall review are based on a three-tier security architec-
ture. As illustrated in Figure 2, this architecture introduces an intermediate
aggregation tier between the data tier and the query tier. More specifically,
the architecture has three tiers and three relations, and the aggregation tier
must satisfy three properties. First, inference control is enforced between the
aggregation tier and the data tier such that the former is secure with respect
to the latter. Access control then helps to enforce that only safe aggregations
will be used to compute results to queries. Second, the size of the aggregation
tier must be comparable to the data tier. Third, the problem of inference con-
trol can be partitioned into blocks in the data tier and the aggregation tier
such that security only need to be ensured between each corresponding pair
of blocks in the two tiers.

The three-tier architecture helps to reduce the performance overhead of
inference control in several aspects. The first property of the model implies
that the aggregation tier can be pre-computed such that the computation-
intensive part of inference control can be shifted to off-line processing. The
on-line part is to enforce access control based on whether a query can be
rewritten using the aggregation tier (that is, security through views). Second,
the last two properties both reduce the size of inputs to inference control
algorithms and consequently reduce the complexity. Note that an aggregation
tier can be designed to meet the second property, but the size of the query
tier is inherently exponential in the size of the data tier. The third property
also localizes inference control tasks to each block of the data tier so a failure
in one block will not affect other blocks.

Security in Data Warehouses and OLAP Systems 201

5 Securing OLAP Data Cubes

The data cube is a natural data model for OLAP systems and underlying
data warehouses. This section reviews several methods in safeguarding OLAP
data cubes against both unauthorized accesses and indirect inferences.

5.1 SUM-only Data Cubes

This section describes two efforts inspired by previous inference control meth-
ods in statistical databases. As an inherited limitation, only SUMs are con-
sidered. Moreover, only the core cuboid is considered as sensitive. We show
that improved results can be obtained by exploring the unique structures of
data cubes.

Cardinality-Based Method

The cardinality-based method by Dobkin et. al [13] determines the existence
of inferences based on the number of answered queries. In a data cube, aggre-
gations are pre-defined based on the dimension hierarchy, and what may vary
is the number of empty cells, that is previously known values. Recall that
in Section 3.1, Example 1 illustrated a straightforward connection between
1-d inferences and the number of empty cells in a data cube. That is, an 1-d
inference is present when an adversary can access any cell that has exactly
one ancestor in the core cuboid. A similar but less straightforward connection
also exists between m-d inferences and the number of empty cells, as we shall
show in this here.

The model for inferences in this case is similar to that given by Chin et.
al [8], but the queries are limited to data cube cells. Here we only consider one-
level dimension hierarchy where each dimension can only have two attributes,
that is the attribute in core cuboid and the all. For each attribute of the core
cuboid, we assume an arbitrary but fixed order on its domain. Although an
attribute may have infinitely many values, we shall only consider the values
that appear in at least one non-empty cell in the given data cube instance. The
number of such values is thus fixed. From the point of view of an adversary,
the value in any non-empty cell is unknown, and hence the cell is denoted by
an unknown variable. The central tabulation in Table 1 rephrases part of the
core cuboid in Figure 1.

Table 1 also includes cells in descendants of the core cuboid, namely, the
aggregation cuboids. These are 〈all, employee〉, 〈quarter, all〉, and 〈all, all〉, as
we only consider one-level dimension hierarchy. For SUM-only data cubes, the
dependency relation can be modeled as linear equations. At the left side of
those equations are the unknown variables in the core cuboid, and at the left
side the values in the aggregation cuboids. Table 2 shows a system of nine
equations corresponding to the nine cells in the aggregation cuboids.

Next we obtain the reduced row echelon form (RREF) Mrref of the coeffi-
cients matrix through a sequence of elementary row operations [19], as shown

202 Lingyu Wang and Sushil Jajodia

Table 1. Modeling A Core Cuboid

Q1 Q2 Q3 Q4 ALL

Bob x1 x2 x3 8500
Alice x4 x5 10000
Jim x6 x7 6100
Mallory x8 x9 12400

ALL 10000 6000 11000 9000 36000

Table 2. Modeling the Aggregation Cuboids

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1
1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

x8

x9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8500
10000
6100
12400
10000
6000
11000
9000
36000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in Table 3. From Mrref it can be observed that the system of linear equations
in Table 2 has infinitely many solutions. This means that an adversary cannot
infer the entire core cuboid from the given aggregation cuboids. However, the
first row vector of Mrref being a unit vector (that is, it has a single 1) indi-
cates that the value of x1 must remain the same among all the solutions to the
system of equations. Consequently, the adversary can infer Bob’s commission
in Q1.

Table 3. The Reduced Row Echelon Form Mrref

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The existence of at least one unit row vectors in Mrref is indeed the neces-
sary and sufficient condition for any unknown variable to have the same value

Security in Data Warehouses and OLAP Systems 203

among all the solutions [8]. We shall adopt this notion to model inferences
in SUM-only data cubes. Notice that for the special case of 1-d inferences,
as shown in Example 1, the coefficients matrix itself would have a unit row
vector (which will certainly also appear in Mrref). It is well-known that the
RREF of a m×n matrix can be obtained by a Gauss-Jordan elimination with
complexity O(m2n) [19].

The number of empty cells can only determine the existence of 1-d infer-
ences in two extreme cases. First, if the core cuboid has no empty cell, then
trivially it is free of 1-d inferences as long as all the attributes have more than
one value. The second straightforward result says that any data cube whose
core cuboid has fewer non-empty cells than the given upper bound 2k−1 ·dmax,
where k is the number of dimensions and dmax is the greatest domain size
among all dimensions, will always have 1-d inferences. If the number of empty
cells falls between the two bounds, then the existence of 1-d inferences can no
longer be determined simply based on the number of empty cells.

Although less straightforward, there is only a connection between existence
of m-d inferences and the number of empty cells (a lengthy proof of Theorem 1
can be found in [34]). Similar to the case of 1-d inferences, any data cube with
a core cuboid having no empty cells is free of m-d inferences. To relax this
rigid result, Theorem 1 gives a tight upper bound on the number of empty
cells for a data cube to remain free of m-d inferences. The bound is tight in the
sense that we can no longer tell whether m-d inferences are present from the
number of empty cells, once this number goes beyond the bound. Notice that
the bound only guarantees the absence of m-d inferences, while 1-d inferences
may still be present as long as the core cuboid has empty cells.

Theorem 1 (m-d Inferences). In any k-dimensional data cube with one-
level dimension hierarchy, let Cc be the core cuboid and Call be the collection
of all aggregation cuboids. Suppose the ith attribute of Cc has di values, and
let du and dv be the two smallest among the di’s, then Call does not cause
any m-d inferences to Cc, if the number of empty cells in Cc is less than
2(du − 4) + 2(dv − 4) − 1 and di ≥ 4 for all 1 ≤ i ≤ k; for any integer
w ≥ 2(du − 4) + 2(dv − 4) − 1, there always exists a data cube with w empty
cells that causes m-d inferences.

These connections between inferences and the number of empty cells have
following implications. First, a data cube with no empty cells being free of
inferences means that the threat of inferences is absent if the adversary does
not know any cell from outbound channels. Second, a data cube can still be
free of m-d inferences, if it has fewer empty cells than the given upper bound;
however, the data cube needs to be checked for 1-d inferences. Hence, if an
adversary knows about a few cells in the core cuboid, inferences can still be
easily controlled. Third, a data cube having more empty cells than a given
bound always has inferences. That is, a data cube cannot be protected from
an adversary who already knows most of the cells. Finally, if the number of

204 Lingyu Wang and Sushil Jajodia

empty cells falls between the given bounds, we can no longer tell whether
inferences are possible by only looking at the number of empty cells.

The above results can be used to compute inference-free aggregations based
on the three-tier architecture. The data tier corresponds to the core cuboid;
the aggregation tier corresponds to a collection of cells in aggregation cuboids
that are free of inferences; the query tier includes any query that can be rewrit-
ten using the cells in the aggregation tier. To compute the aggregation tier,
we first partition the core cuboid based on dimension hierarchies. We then
apply the above sufficient conditions to find blocks that are free of inferences.
The union of those blocks then forms the aggregation tier. It is straightfor-
ward that the aggregation tier satisfies the three properties of the three-tier
architecture. Computing the aggregation tier has a linear time complexity in
nature since it only requires counting the number of empty cells in each block.
This is an improvement over previously known methods, such as transforming
a matrix to its RREF [8].

Parity-Based Method

The second method is based on a simple fact that even number is closed under
the operation of addition and subtraction. The nature of an m-d inference is to
keep adding or subtracting (strictly speaking, set union and set difference) sets
of cells until the result yields a single cell. Suppose now all the sets have even
number of cells, then how to add and subtract those sets to obtain one cell
would be significantly more difficult, although still possible as we shall show
shortly. We consider the multi-dimensional range (or MDR for short) query,
which can be regarded as an axis-parallel box. We use the notation q∗(u, v) to
denote an MDR query, where u and v are any two given cells. Table 4 gives
examples of MDR queries and their answers. By restricting MDR queries
to only include even number of cells, it may seem that inferences are hard
to obtain. However, if we add up the answers to the last four queries and
subtract from it the answer to the first query, then dividing the result by two
gives us Bob’s commission in Q2, that is x2 = 500.

Table 4. Examples of Multi-dimensional Range Queries

The Core Cuboid MDR Queries

Q1 Q2 Q3 Q4

Bob x1 x2 x3

Alice x4 x5 x6

MDR Query Answer

q∗(〈Q1, Bob〉, 〈Q4, Alice〉) 6500
q∗(〈Q1, Bob〉, 〈Q2, Bob〉) 1500
q∗(〈Q2, Alice〉, 〈Q3, Alice〉) 2000
q∗(〈Q3, Alice〉, 〈Q4, Alice〉) 1500
q∗(〈Q3, Bob〉, 〈Q3, Alice〉) 2500

The model of inferences in SUM-only data cube needs to be enhanced
with the new concept of derivability and equivalence between sets of queries.

Security in Data Warehouses and OLAP Systems 205

Intuitively, if a set of queries is derivable from another set, then the answers
to the former can be computed using the answers to the latter. By definition,
if a set of queries is derivable from another set of queries, then the former
is free of inferences if the latter is so, while the converse is not necessar-
ily true. To determine whether the collection of even MDR queries, denoted
as Q∗, causes any inferences, we find another collection of queries that are
equivalent to Q∗ and whose inferences are easier to detect. Intuitively, the
collection of even MDR queries contains redundancy that can be removed by
decomposing the queries into the smallest even range queries, that is pairs of
cells. For example, in Table 4 the query q∗(〈Q2, Bob〉, 〈Q3, Alice〉) is deriv-
able from {q∗(〈Q2, Bob〉, 〈Q3, Bob〉), q∗(〈Q2, Alice〉, 〈Q3, Alice〉)}, and hence
is redundant in terms of causing inferences.

It is not always apparent whether we can find an appropriate collection of
pairs equivalent to Q∗. First, the collection of pairs included by Q∗, as shown
in Table 5, is not enough for this purpose. The query q∗(〈Q1, Bob〉, 〈Q4, Alice〉)
is not derivable from the pairs included by Q∗. Second, the collection of all
possible pairs is too much. For example, the pair {〈Q1, Bob〉, 〈Q3, Bob〉} is not
derivable from Q∗. Fortunately, Theorem 2 shows that there always exists a
set of pairs equivalent to the collection of even MDR queries (the proof can be
found in [33]). The proof of the theorem includes an algorithm that constructs
the desired set of pairs Qp for any given data cube.

Table 5. The Collection of Even MDR Queries Q∗ For The Data Cube in Table 4

Pairs q∗(〈Q1, Bob〉, 〈Q2, Bob〉) q∗(〈Q2, Bob〉, 〈Q3, Bob〉)
q∗(〈Q2, Bob〉, 〈Q2, Alice〉) q∗(〈Q2, Alice〉, 〈Q3, Alice〉)
q∗(〈Q3, Alice〉, 〈Q4, Alice〉) q∗(〈Q3, Bob〉, 〈Q3, Alice〉)

Non-pairs q∗(〈Q1, Bob〉, 〈Q4, Alice〉) q∗(〈Q2, Bob〉, 〈Q3, Alice〉)

Theorem 2. Given any data cube, let the core cuboid be Cc and the collection
of even MDR queries be Q∗, then a set of pairs Qp = {{u, v} | u ∈ Cc, v ∈
Cc, u �= v} can always be found in O(| Cc | · | Q∗ |) time, such that Q∗ ≡d Qp

is true.

For example, in Table 5, the algorithm groups cells included by the query
into pairs. For q∗(〈Q1, Bob〉, 〈Q4, Alice〉), it first group cells along one dimen-
sion and have {〈Q1, Bob〉, 〈Q2, Bob〉} and {〈Q2, Alice〉, 〈Q3, Alice〉}. It then
groups the remaining two cells 〈Q3, Bob〉 and 〈Q4, Alice〉 into a third pair.
Similarly, it processes the other queries in Table 5. The final result Qp will
include all the pairs given in Table 5 plus {〈Q3, Bob〉, 〈Q4, Alice〉}, as shown
in Table 6. It can be verified that the Qp in Table 6 is indeed equivalent to the
Q∗ in Table 5. First, any query in Q∗ can be derived by adding up the corre-
sponding pairs in Qp. Second, each pair in Qp can be derived by subtracting
queries in Q∗.

206 Lingyu Wang and Sushil Jajodia

Table 6. A Collection of Pairs Qp Equivalent To The Even MDR Queries in Table 5

In Q∗ {〈Q1, Bob〉, 〈Q2, Bob〉} {〈Q2, Bob〉, 〈Q3, Bob〉}
{〈Q2, Bob〉, 〈Q2, Alice〉} {〈Q2, Alice〉, 〈Q3, Alice〉}
{〈Q3, Alice〉, 〈Q4, Alice〉} {〈Q3, Bob〉, 〈Q3, Alice〉}

Not In Q∗ {〈Q3, Bob〉, 〈Q4, Alice〉}

Knowing that Q∗ is equivalent to Qp, we only need to decide if the lat-
ter causes any inference. We first denote Qp as an undirected simple graph
G(Cc,Qp). That is, the core cuboid is the vertex set and the collection of pairs
Qp is the edge set. We then apply Chin’s result that a collection of pairs is
free of inferences iff the corresponding graph is a bipartite graph (that is, a
graph with no cycle composed of odd number of edges) [37]. The existence
of odd cycles can easily be decided with a breadth-first search, taking time
O(| Cc | + | Qp |). As an example, the graph corresponding to the Qp given in
Table 6 will have an odd cycle of three edges, corresponding to the inference
described earlier.

The parity-based method can be enforced based on the three-tier inference
control architecture described earlier. A partition of the core cuboid based on
dimension hierarchies composes the data tier. We then apply the parity-based
method to each block in the partition to compute the aggregation tier. The
query tier includes any query that is derivable from the aggregation tier.
The relation RAD and RQA between the three tiers are simply the derivable
relation. The first property of the aggregation tier is satisfied because the
number of pairs in Qp must be O(n2), where n is the size of the core cuboid.
The last two conditions are satisfied in a straightforward way.

5.2 Generic Data Cubes

The two methods we just described can only deal with SUM-only data cubes,
which is a limitation inherited from statistical databases. Chin has shown that
even to detect inferences caused by queries involving both MAXs and SUMs is
intractable [6]. This section describes a method that does not directly detect
inferences, but instead first prevents m-d inferences and then removes 1-d
inferences. This approach enables the method to deal with data cubes with
generic aggregation types, and it also significantly reduces the complexity
because 1-d inferences are generally easy to detect by examining each query
separately. In contrast, m-d inferences are hard to detect because they are
caused by combinations of queries instead of each individual query.

Access Control

Limiting access control to the core cuboid is not always appropriate. Values
in aggregation cuboids may also carry sensitive information. For example, in
Figure 1 a user may need to be prohibited from accessing any employee’s yearly

Security in Data Warehouses and OLAP Systems 207

or more detailed commissions. This requirement makes the values in both the
core cuboid 〈quarter, employee〉 and the aggregation cuboid 〈year, employee〉
sensitive. The data cube is thus partitioned along the dependency lattice into
two parts. As another example, the previous requirement may only need to
be applied to the first year data, whereas data in other years can be freely
accessed. That is, the data cube should also be partitioned along the time
dimension.

To meet such security requirements, we describe a framework for speci-
fying authorization objects in data cubes. The function Below() partitions
the data cube along the dependency lattice, and the function Slice() parti-
tions the data cube along dimensions. An object is simply the intersection of
the two. For example, the above security requirements can now be specified as
Object(L, S), where L = {〈year, employee〉} and S includes all the cells in the
first four quarters of the core cuboids. The cells included by object(L, S) must
be included by one of the two cuboids in Below(L), that is 〈year, employee〉
and 〈quarter, employee〉; the cell must also be in the first year, that is their
first attribute must be one of the following values: Q1 through Q4, Y1 , or
ALL.

The object specification satisfies the following desired property. First, for
any cell in an object, the object will also include all the ancestors of that
cell. Intuitively, ancestors of a sensitive cell contain more detailed information
and should also be regarded as sensitive. For example, if an object includes
the cuboid 〈year, employee〉, then it also includes the core cuboid , because
otherwise an adversary may compute the former from the latter. Second,
the definition can be easily extended to objects specified with multiple pairs
O = {Li, Si} due to the fact that Below() is distributive over set union.
That is, Below(L1 ∪L2) = Below(L1)∪Below(L2). The union of the objects
Object(Li, Si) thus composes a new object Object(O).

Lattice-Based Inference Control

We do not assume specific models of inferences. Instead, we consider inferences
that satisfy given algebraic properties. More specifically, given any two set of
cells in a data cube, denoted as S and T , we say a cell c is redundant with
respect to T if S includes both c and all its ancestors in any single cuboid;
a cell c is non-comparable to T , if for every c′ ∈ T , c is neither ancestor nor
descendant of c′. We say a definition of inference is reducible, if for any c ∈ S
that is either redundant or non-comparable (or both) then S causes inferences
to T iff S − {c} does so. That is, reducible inferences can be checked without
considering any redundant or non-comparable cells. For example, the infer-
ence in SUM-only data cubes, as discussed in the previous section, is indeed
reducible. For example, suppose S denotes the union of 〈all, employee〉 and
〈year, employee〉, and suppose T includes the cells of 〈quarter, employee〉〉}
in the first four quarters. Then the cell in 〈all, employee〉 is redundant and
the cell 〈Y2, Bob〉 is non-comparable.

208 Lingyu Wang and Sushil Jajodia

Intuitively, a redundant cell in S can be ignored, because it can be com-
puted from other cells in S. This implies that we only consider distribu-
tive aggregation functions [15], such as SUM, MAX, MIN, COUNT, or non-
distributive functions that can be converted to distributive ones, such as
AVERAGE to a pair (SUM,COUNT). By ignoring non-comparable cells,
we shall only consider the inference caused by descendants. This assump-
tion may not hold if outbound knowledge can correlate cells that do not
depend on each other. To simplify our discussion, we first consider a spe-
cial case where the set S in any Object(L, S) is a complete cuboid. The
object Object(L, S) is thus simply (the union of) the cuboids in Below(L).
For example, in Figure 3 the lower curve in solid line depicts such an object
Below({〈a1, b1, c2, d2〉, 〈a1, b2, c1, d2〉}) in a four-dimensional data cube. Let T
be the object and S be its complement to the data cube. To remove inferences
from S to T , we first find a subset of S that is free of m-d inferences to T and
at the same time is maximal for this purpose. We then remove 1-d inferences
from this subset.

<a1, b1, c1, d1 >

<a1, b1, c1, d2 > <a1, b1, c2, d1 > <a1, b2, c1, d1 > <a2, b1, c1, d1>

<a1, b1, c2, d2 > <a1, b2, c1, d2 > <a1, b2, c2, d1 > <a2, b1, c1, d2 > <a2, b1, c2, d1 > <a2, b2, c1, d1 >

<a1, b2, c2, d2 > <a2, b1, c2, d2 > <a2, b2, c1, d2 > <a2, b2, c2, d1 >

<a2, b2, c2, d2 >
<a3, b2, c2, d1 >

<a3, b2, c2, d2 >

<a1, b2, c2, d3 >

… …

… … … …

… …

Fig. 3. An Example of Preventing m-d Inferences

The definition of reducible inferences can help to find a maximal subset of
S that is free of m-d inferences to T . Roughly speaking, with respect to each
cuboid in T , we can remove all the redundant and non-comparable cuboids
from S such that only a set of minimal descendants need to be considered.
For example, in Figure 3, only the two minimal descendants 〈a2, b1, c1, d1〉 and
〈a1, b2, c2, d1〉 need to be examined for inferences. However, checking whether
the set of minimal descendants cause m-d inferences may still incur high com-
plexity, and we want to avoid such checking. We take a more aggressive ap-
proach by only allowing accesses to one minimal descendant. For example, we
can choose to allow 〈a2, b1, c1, d1〉 and remove 〈a1, b2, c2, d1〉 from S. We also

Security in Data Warehouses and OLAP Systems 209

need to remove other cuboids that are not redundant, such as 〈a1, b2, c2, d2〉
and 〈a1, b2, c2, d3〉. The result is a subset of S that includes all the descen-
dants of 〈a2, b1, c1, d1〉, namely, a descendant closure, as illustrated by the
upper curve in Figure 3.

The descendant closure has only one minimal descendant of the core
cuboid, and hence is free of m-d inferences to the core cuboid. The prop-
erty actually holds for any other cuboid in T . That is, for any c ∈ T , only
one minimal descendant of c appears in this subset of S, and hence m-d infer-
ences to c are no longer possible. On the other hand, it is easy to observe that
the upper curve cannot be modified to include any of the cuboids between the
current two curves in Figure 3 without inducing possible m-d inferences. More
generally, as long as a cuboid cr satisfies that all its ancestors are included by
T , the descendant closure of cr will be the maximal result for preventing m-d
inferences. Moreover, the descendant closure turns out to be the only choice,
if any subset of S is to prevent the need for checking m-d inferences and at
the same time being maximal for that purpose. These results are summarized
in Theorem 3 (the proof can be found in [32]).

Theorem 3. In any data cube, let L be the collection of all cuboids. Given
any L ⊆ L, any C ⊆ L−Below(L) can satisfy both that each cuboid not in C
has exactly one descendant in C that is not redundant, and any superset of C
must include more than one descendant of some cuboid in Below(L), iff C is
the descendant closure of some cuboid cr satisfying that cr is not in Below(L)
but all of its ancestors are in Below(L).

The results in Theorem 3 can be extended to the general case where the
object is specified by a set of cells instead of a set of cuboids. The key issue in
such an extension is that Slice(Si)’s may overlap, and it would be prohibitive
if we need to compute a descendant closure for each of their intersections.
Fortunately, the set intersection of descendant closures is always another de-
scendant closure. This property guarantees that no m-d inferences are possible
to the cells included by multiple slices. However, obtaining the maximal re-
sult in Theorem 3 is intractable in the general case, and is no easier than the
maximum independent set problem.

After m-d inferences are prevented, we still need to remove 1-d inferences.
It may seem to be a viable solution to simply restrict any cell that causes 1-d
inferences. However, the restricted cells themselves then become targets of
inferences. Hence, we must adopt the following iterative procedure to remove
1-d inferences. First, we check each cell and add those that cause 1-d infer-
ences to the object so they will be prohibited by access control. Second, we
control m-d inferences to this new object by applying the results in Theorem 3
again. By repeating the two steps, we gradually remove all 1-d inferences. The
procedure terminates in at most m steps, where m is the number cuboids. The
final result is a set of cells that are guaranteed to be free of inferences to the
object.

210 Lingyu Wang and Sushil Jajodia

The lattice-based inference control method can be implemented based on
the three-tier inference control model given in Section 4. The authorization
object computed through the above iterative process comprises the data tier.
The complement of the object is the aggregation tier since it does not cause
any inferences to the data tier. The first property of the three-tier model is
satisfied because the number of cuboids is constant compared to the number
of cells, and hence the size of the aggregation tier must be polynomial in the
size of the data tier. Because the aggregation tier is a collection of descendant
closures of single cuboids, the aggregation tier naturally forms a partition on
the data tier, satisfying the second property. The aggregation tier apparently
satisfies the last property.

6 Conclusion

This chapter has discussed the security requirements of OLAP systems and
data warehouses. We have argued that the most challenging security threat
lies in that sensitive data stored in a data warehouse may be disclosed through
seemingly innocent OLAP queries. We then described three methods specif-
ically proposed for securing OLAP data cubes. The first two methods have
been inspired by existing inference control methods in statistical databases.
We have shown that better results can be obtained by exploring the unique
structures of data cube queries, although both methods also inherit limita-
tions from their counterparts in statistical databases. Finally, the lattice-based
method aimed to remove many limitations of previous methods. The method
adopted a preventing-then-removing approach to avoid the infeasible task of
detecting m-d inferences. The method also based itself upon algebraic prop-
erties instead of on specific models of inferences, which helped to broaden the
scope of inference control. All the proposed methods could be implemented
on the basis of a three-tier inference control architecture that is especially
suitable for OLAP systems.

Acknowledgements

This material is based upon work supported by National Science Founda-
tion under grants CT-0627493, IIS-0242237, and IIS-0430402; and by Natu-
ral Sciences and Engineering Research Council of Canada under Discovery
Grant N01035. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the sponsoring organizations.

References

1. N.R. Adam and J.C. Wortmann. Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys, 21(4):515–556, 1989.

Security in Data Warehouses and OLAP Systems 211

2. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings
of the Nineteenth ACM SIGMOD Conference on Management of Data (SIG-
MOD’00), pages 439–450, 2000.

3. R. Agrawal, R. Srikant, and D. Thomas. Privacy-preserving olap. In Proceed-
ings of the Twenty-fourth ACM SIGMOD Conference on Management of Data
(SIGMOD’05), pages 251–262, 2005.

4. L.L. Beck. A security mechanism for statistical databases. ACM Trans. on
Database Systems, 5(3):316–338, 1980.

5. B. Bhargava. Security in data warehousing (invited talk). In Proceedings of the
3rd Data Warehousing and Knowledge Discovery (DaWak’00), 2000.

6. F.Y. Chin. Security problems on inference control for sum, max, and min queries.
Journal of the Association for Computing Machinery, 33(3):451–464, 1986.

7. F.Y. Chin and G. Özsoyoglu. Statistical database design. ACM Trans. on
Database Systems, 6(1):113–139, 1981.

8. F.Y. Chin and G. Özsoyoglu. Auditing and inference control in statistical
databases. IEEE Trans. on Software Engineering, 8(6):574–582, 1982.

9. E.F. Codd, S.B. Codd, and C.T. Salley. Providing olap to user-analysts: An IT
mandate. White Paper, 1993. E.F. Codd Associates.

10. L.H. Cox. On properties of multi-dimensional statistical tables. Journal of
Statistical Planning and Inference, 117(2):251–273, 2003.

11. D.E. Denning. Cryptography and data security. Addison-Wesley, Reading, Mas-
sachusetts, 1982.

12. D.E. Denning and J. Schlörer. Inference controls for statistical databases. IEEE
Computer, 16(7):69–82, 1983.

13. D. Dobkin, A.K. Jones, and R.J. Lipton. Secure databases: protection against
user influence. ACM Trans. on Database Systems, 4(1):97–106, 1979.

14. W. Du and Z. Zhan. Building decision tree classifier on private data. In Proceed-
ings of the 2002 IEEE International Conference on Data Mining (ICDM’02),
2002.

15. J. Gray, A. Bosworth, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator gen-
eralizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Dis-
covery, 1(1):29–53, 1997.

16. P. Griffiths and B.W. Wade. An authorization mechanism for a relational
database system. ACM Transactions on Database Systems, 1(3):242–255,
September 1976.

17. J. Han. OLAP mining: Integration of OLAP with data mining. In IFIP Conf.
on Data Semantics, pages 1–11, 1997.

18. V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes effi-
ciently. In Proceedings of the Fifteenth ACM SIGMOD international conference
on Management of data (SIGMOD’96), pages 205–227, 1996.

19. K. Hoffman. Linear Algebra. Prentice-Hall, Englewood Cliffs, New Jersey, 1961.
20. S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible support

for multiple access control policies. ACM Transactions on Database Systems,
26(4):1–57, dec 2001.

21. J.M. Mateo-Sanz and J. Domingo-Ferrer. A method for data-oriented multi-
variate microaggregation. In Proceedings of the Conference on Statistical Data
Protection’98, pages 89–99, 1998.

212 Lingyu Wang and Sushil Jajodia

22. G. Miklau and D. Suciu. A formal analysis of information disclosure in data ex-
change. In Proceedings of the 23th ACM SIGMOD Conference on Management
of Data (SIGMOD’04), 2004.

23. N. Pendse. The olap report - what is olap. OLAP Report Technical Report,
2001. http:// www.olapreport.com / fasmi.htm.

24. P. Samarati. Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering, 13(6):1 010–1027, 2001.

25. R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.

26. J. Schlörer. Security of statistical databases: multidimensional transformation.
ACM Trans. on Database Systems, 6(1):95–112, 1981.

27. A. Shoshani. OLAP and statistical databases: Similarities and differences. In
Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’97), pages 185–196, 1997.

28. G. Pernul T. Priebe. Towards olap security design - survey and research issues.
In Proceedings of 3rd ACM International Workshop on Data Warehousing and
OLAP (DOLAP’00), pages 114–121, 2000.

29. Pedersen T.B. and Jense C.S. Multidimensional database technology. IEEE
Computer, 34(12):40–46, 2001.

30. J.F. Traub, Y. Yemini, and H. Woźniakowski. The statistical security of a
statistical database. ACM Trans. on Database Systems, 9(4):672–679, 1984.

31. J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically
partitioned data. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD’02), pages 639–644,
2002.

32. L. Wang, S. Jajodia, and D. Wijesekera. Securing OLAP data cubes against
privacy breaches. In Proceedings of the 2004 IEEE Symposium on Security and
Privacy (S&P’04), pages 161–175, 2004.

33. L. Wang, Y.J. Li, D. Wijesekera, and S. Jajodia. Precisely answering multi-
dimensional range queries without privacy breaches. In Proceedings of the Eighth
European Symposium on Research in Computer Security (ESORICS’03), pages
100–115, 2003.

34. L. Wang, D. Wijesekera, and S. Jajodia. Cardinality-based inference control in
data cubes. Journal of Computer Security, 12(5):655–692, 2004.

35. L. Willenborg and T. de Walal. Statistical disclosure control in practice. Springer
Verlag, New York, 1996.

36. C. Yao, X. Wang, and S. Jajodia. Checking for k-anonymity violation by
views. In Proceedings of the Thirty-first Conference on Very Large Data Base
(VLDB’05), 2005.

37. C.T. Yu and F.Y. Chin. A study on the protection of statistical data bases. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD’77), pages 169–181, 1977.

9

Security for Workflow Systems

Vijayalakshmi Atluri1 and Janice Warner2

1 Rutgers University, Newark, NJ atluri@cimic.rutgers.edu
2 Rutgers University, Newark, NJ janice@cimic.rutgers.edu

Summary. Workflow technology is often employed by organizations to automate
their day-to-day business processes. The primary advantage of adopting workflow
technology is to separate the business policy from the business applications so that
flexibility and maintainability of business process reengineering can be enhanced.
Today’s workflows are not necessarily bound to a single organization, but may span
multiple organizations where the tasks within a workflow are executed by different
organizations.

In order to execute a workflow in a secure and correct manner, one must ensure
that only authorized users should be able to gain access to the tasks of the workflow
and resources managed by them. This can be accomplished by synchronizing the
access control with the specified control flow dependencies among tasks. Without
such synchronization, a user may still hold privileges to execute a task even after its
completion, which may have adverse effects on security. In addition, the assignment
of authorized users to tasks should respect the separation of duty constraints speci-
fied to limit the fraud. Another challenging issue in dealing with workflows spanning
multiple organizations is to ensure their secure execution while considering conflict-
of-interest among these organizations. Another issue that is of theoretical interest is
the safety analysis of the proposed authorization models and their extension in this
area. In this book chapter, we review all the above security requirements pertaining
to workflow systems, and discuss the proposed solutions to meet these requirements.

1 Introduction

Organizations constantly reengineer and optimize their business processes to
reduce costs, deliver timely services, and enhance their competitive advan-
tage in the market. Reengineering involves assessment, analysis, and redesign
of business processes, including introducing new processes into existing sys-
tems, eliminating redundant processes, reallocating sharable resources, and
optimizing the process. Business processes are supported via information sys-
tems that include databases that create, access, process and manage business
information.

214 Vijayalakshmi Atluri and Janice Warner

As advances in information systems take place to facilitate business trans-
actions, organizations are seeking ways to effectively integrate and automate
their business processes. The advent of database technology has made the
change of data more adaptive by successfully separating the access of data
from the applications. However, any change and enhancement to the business
policies would entail modifying application codes, as the business policy is still
often hard-coded in applications rather than accessible to all systems. Work-
flow systems are a step in the direction of providing both automation and
reengineering functionalities. The fundamental idea of workflow technology is
to separate the business policy from the business applications to enhance flex-
ibility and maintainability of business process reengineering. This separation
facilitates reengineering at the organizational level without delving into the ap-
plication details. Other advantages include supporting resource allocation and
dynamically adapting to workload changes. As a testament to the recognition
of these benefits, workflow systems are today used in numerous business ap-
plication domains including office automation, finance and banking, software
development, healthcare, telecommunications, manufacturing and production,
and scientific research.

Workflow management aims at modeling and controlling the execution of
business processes involving a combination of manual and automated activi-
ties in an organization. A workflow is defined as a set of coordinated activities
that achieves a common business objective [1]. Thus, a workflow separates the
various activities of a given organizational process into a set of well-defined
activities, called tasks. A task is a described piece of work that contributes
toward the accomplishment of a process [23, 15]. Tasks may be carried out
by humans, application programs, or processing entities according to the or-
ganizational rules relevant to the process represented by the workflow. Tasks
that build up the workflow are usually related and dependent upon one an-
other, which in turn are specified by a set of execution constraints called task
dependencies. These task dependencies play a key role in supporting various
workflow specifications such as concurrency, serialization, exclusion, alterna-
tion, compensation and so on. To ensure the correctness of workflow execution,
tasks need to be executed in a coordinated manner based on these dependency
requirements. A workflow management system (WFMS) is a system that sup-
ports process specification, enactment, monitoring, coordination, and admin-
istration of workflow process through the execution of software, whose order
of execution is based on the workflow logic [1]. In the following, we provide
an example workflow to facilitate understanding of tasks and dependencies.

Example 1. Consider a travel reimbursement processing workflow [2] as shown
in Figure 1. This workflow consists of four tasks: preparing a claim (T1),
approving the claim (T2), issuing a check (T3) and notifying the employee in
case the claim is denied (T4).

Coordinating constraints between the tasks are represented by dependen-
cies shown above the arrows connecting the tasks. The task dependency “bs”

Security for Workflow Systems 215

T1: Prepare
Claim

T2: Approve
Claim

T3: Issue
Check

T4: Notify
Employee

bs

bs

bf

Authorized Role:
Employee

Authorized Role:
Supervisor

Authorized Role:
Clerk

Authorized Role:
Clerk

Fig. 1. Example Workflow

means that the next task begins if the previous task successfully completes.
The task dependency “bf” means that the next task begins if the previous task
completes in failure. A check will be issued (T3) if the claim is approved (T2

is completed in success). Otherwise, the employee will be sent a notification
(T4).

Each task is also associated with processing entities who are authorized to
perform the task. Specifically, task T1 can be executed by any employee, task
T2 must be executed by a supervisor, and tasks T3 and T4 are to be executed
by clerks.

Workflow or business process management systems are widely available as
complete systems or software that can be added to other systems in order
to integrate them. Major providers of business process management systems
include SAP NetWeaver, Bea’s WebLogic Integration, Sunguard Carnot, IBM
FlowMark, Intalio BPMS, Lombari TeamWorks, Seagull LegaSuite, Oracle
BPEL, Savvion Business Manager, and Ultimus BPM. Features include design
and lay-out of workflow including creation of rules for task assignment such
as those shown in the example with which assignments of tasks can be made
based on individual authorization, group authorization or role.

2 Security Requirements in Workflow Systems

In addition to the traditional security requirements such as confidentiality,
integrity, availability and authentication, a number of security measures need
to be taken into account while building a secure workflow system. In the
following, we enumerate these and discuss the issues and solutions proposed
by researchers in the following sections.

• Authorization - Refers to enforcing access control to ensure only autho-
rized individuals/roles are allowed to execute tasks within a workflow by
adhering to the workflow dependencies

216 Vijayalakshmi Atluri and Janice Warner

• Separation of Duty - These are additional constraints associated with the
workflow to limit the abilities of agents to reduce the risk of fraud.

• Delegation Refers to the delegation of authority to execute a task.
• Conflict-of-interest - Refers to preventing the flow of sensitive information

flow among competing organizations participating in the workflow.
• Safety analysis - Refers to the analysis of studying the propagation of

authorizations from the current state. This helps in answering questions
such as whether a subject (user) can gain access to execute a task.

3 Workflow Authorization Model

A workflow deals with coordinated execution of tasks that involve processing
of each of the tasks in the workflow by executing agents (humans or programs).
To execute a task, relevant privileges on required objects have to be granted to
appropriate subjects. Agents authorized to execute a task should gain access
on the required objects only when the task is to be executed. Considering
once again example 1, an employee should not be able to change the prepared
claim after it has been approved by his supervisor. Atluri and Huang proposed
a Workflow Authorization Model (WAM) [5] that is capable of specifying
authorizations in such a way that subjects gain access to required objects only
during the execution of the task, thus synchronizing the authorization flow
with the workflow. To achieve this synchronization, WAM uses the notion
of an Authorization Template (AT) that can be associated with each task.
AT is comprised of the static parameters of the authorization that can be
defined during the design of the workflow. A task may have more than one
AT associated with it in the case where there is more than one type of object
to be processed or more than one executing agent needed to perform the task.
WAM dynamically assigns authorizations to support workflow activities in
a way that the time interval associated with the required authorization to
perform a task changes according to the time during which the task actually
executes. When the task starts execution, its AT(s) are used to derive the
actual authorization. When the task finishes, the authorization is revoked.
This is accomplished by placing an object hole in the AT.

A new authorization is granted to an executing agent only when an ob-
ject hole is filled with an appropriate object. Besides specifying authorizations
on tasks to specific individuals, alternatively, one may also specify them in
terms of roles. Roles represent organizational agents who perform certain job
functions. Users, in turn, are assigned to appropriate roles based on their qual-
ifications. Specifying authorizations on roles is not only convenient but reduces
the complexity of access control because the number of roles in an organiza-
tion is significantly smaller than that of users. Moreover, the use of roles as
authorization subjects (instead of users) avoids having to revoke and re-grant
authorizations whenever users change their positions and /or duties within

Security for Workflow Systems 217

the organization. In workflow environments, role-based authorization also fa-
cilitates dynamic load balancing when a task can be performed by several
individuals. Most commercials WFMSs support role-based authorizations.

The synchronization of the workflow and the authorization flow, as accom-
plished by WAM, is illustrated with the following example:

Example 2. Consider the workflow in example 1. Suppose the associated ex-
ecuting agents for performing tasks T1, T2 and T3 are John, Mary, and Ken
respectively. The authorization templates associated with the tasks would
be: AT (T1) = (employee, (claim◦), prepare), AT (T2) = (supervisor, (claim
◦), approve) and AT (T3) = (clerk, (claim ◦), issue). When John initiates a
claim, the hole (i.e., ◦) in AT (T1) will be filled with the object being pro-
cessed by T1. As soon as the object hole in the authorization template is filled
with the claim form, John receives the authorization to prepare it. Assume
he starts this at time 40. At this point, John is granted the authorization
to prepare the claim. Suppose he finishes it and sends it to his supervisor at
time 47. The authorization template then generates the authorization (John,
claim1, prepare, [40,47]), which means the authorization is revoked as soon
as he finishes his task. When he finishes T1, the object was send to T2, i.e.,
for approval. Now the hole in AT (T2) is filled with this object. When the
claim (the instance is claim1) arrives to Mary at 47, an authorization to ap-
prove is given to Mary. However, John no longer holds the authorization on
this instance of the claim any more. When Mary finishes the approval task,
say at 82, her authorization is revoked, thus generating (Mary, claim1, ap-
prove, (47,82)). Finally, when Mary approves the claim, the hole in AT (T2)
and filled in AT (T3), and appropriate authorizations are generated. In this
fashion, WAM synchronizes the authorization flow with the progression of the
workflow.

4 Separation of Duty

By using authorization templates, one can ensure that access to resources to
perform relevant tasks is only given along with the progression of the workflow.
In addition to this simple authorization specification as to who is allowed
to perform a task and when, workflow designers often specify separation of
duty constraints primarily to minimize risk due to fraudulent activities. These
constraints, also know as Separation of Duty (SOD) constraints, are rules
stating that the executing agent for one task is constrained from performing
another task. Considering once again example 1, such a constraint could be
that the tasks “prepare claim” and “issue check” should not be executed by
the same user [24]. Constraints can also be specified to obtain the opposite
effect of separation of duty, that is to specify a binding constraint. An example
of a binding constraint is that the person assigned to one task should also be
assigned to another.

218 Vijayalakshmi Atluri and Janice Warner

While this example is an intra-instance SOD constraint, more complex
constraints specified over multiple workflow instances, called inter-instance
constraints may be necessary. Broadly speaking, SOD constraints can be cat-
egorized as follows.

• Intra-instance constraints [18, 10, 9] are specified on a workflow schema
and therefore apply to a single instance. While some of these constraints
can be enforced at the time of workflow schema specification, others can
only be enforced at run-time. Based on this criteria, these can be catego-
rized as follows.
– Static constraints: These constraints can be evaluated without execut-

ing the workflow. Examples of such constraints include: (i) At least
three roles must be involved in executing the workflow. (ii) The same
role must execute tasks T1 and T2.

– Dynamic constraints: These constraints can be evaluated only during
the execution of a workflow, because they express restrictions based on
the execution history of an instance of the workflow. If John belongs
to role R1 and has performed task T1, then he cannot perform T2.
The constraint mentioned above in the context of claim processing is
a dynamic constraint.

– Hybrid constraints: These are constraints whose satisfiability can be
partially verified without executing the workflow. An example of such
a constraint would be, task T2 must be executed by a role dominating
the role, which executes task T3.

• Inter-instance constraints are specified on instances rather than on the
workflow schema. These can either be specified on
multiple instances of the same workflow that can only be enforced at run-
time, or can be specified on the history of all the workflow instances and
therefore are not necessarily limited to one workflow. Although the moti-
vation to recognize such constraints is to limit fraud, note that they can
also be used for the purpose of workload and resource distribution.

Several researchers have proposed constraint specification languages for
describing these types of constraints [11, 27, 12, 21, 16, 28]. Given a set of
constraints, we now need to ensure that a workflow can be executed. Specif-
ically, one needs to ensure that a workflow specification with constraints is
satisfiable, that the conditions and constraints are actually satisfied during
execution. Finally, one must ensure that given a set of task assignments, the
workflow can complete - that is there are enough users available to complete
the workflow tasks given the constraints.

In [10], Bertino et al. present a language to express different types of intra-
instance authorization constraints as clauses in a logic program, and propose
solutions to verify the consistency of the constraint specification and to assign
users and roles to tasks of the workflow in a such a way that no constraints
are violated.

Security for Workflow Systems 219

Crampton et al. [14, 26] provide a simpler reference model for those cases
where tasks can be partially ordered. They define a workflow reference model
which determines whether a workflow can complete if a particular user is
assigned to a particular task. The reference monitor works by considering
only those tasks that directly flow from the task in question.

Wainer et al. [27] describe a permission system that is used in conjunc-
tion with a workflow management system. When a task is to be executed,
the WFMS queries the permission system as to which users are authorized to
perform the task. The permission system has an organizational model includ-
ing business rules and constraints, organizational assignments (i.e., who is in
what group or department or division) and project assignments. It can be an
Enterprise Resource Planning (ERP) component. Proposals like this one help
to move business policies away, not only from applications, but even from
workflow systems, allowing consistent utilization of business policies across
all applications. This proposed approach can work with any of the constraint
checking models.

Hung and Karlapalam [19] define a multi-level state machine to address
workflow security at three levels: workflow, control and data. At the work-
flow level, the state machine is concerned with task authorization and as-
signment/revocation of needed permissions. The control level is involved with
monitoring events during the execution of a task. Finally, the data level is
concerned with actually information object access. Associated with each task
in a workflow are the data objects needed and the order in which the objects
should be accessed. The data level enforces the rules associated with access
to the data objects.

Atluri and Warner [7] identify the need to further coordinate or check run-
time workflows with other conditions and constraints that might apply on the
people or objects one might want to associate with the workflow instance. In
particular, they describe the need to check task dependencies conditions and
conditional authorization constraints against role activation constraints as in-
troduced by Bertino et al. in [8]. Role activation constraints are constraints
that limit when a role can be activated. Discussed in [8] were temporal con-
straints such that a role could only be activated during certain periods of time.
For example, a consultant role might only be activated during the timeframe
of a contract. Alternatively, role activation constraints might be introduced
based on environmental or variables of the activity being performed. For ex-
ample, one might constrain a user from activating a Area Manager role from
a remote computer for fear of intellectual property leakage over the Internet.

Atluri and Warner [28] further describe the need to be able to constrain
participation in tasks based upon historical participation in tasks. This is
particularly important if a set of users can perform both tasks involving sub-
mitting a request and approving a request. In a single instance of the workflow,
SoD can be accomplished by forbidding the same user form performing both
tasks. However, over several instances, a group of individuals can collude where
they continue to participate in the two tasks but different people perform the

220 Vijayalakshmi Atluri and Janice Warner

submission task and different people perform the approval task. To address
this issue, the authors propose predicates to specify inter-instance workflow
constraints and adapt consistency checking such that a historical record of
task assignments is kept and consulted when making assignment decisions. In
the following, we elaborate the general approach.

4.1 Static User/Role-task Assignment

The approach proposed in [10] uses advance planning of user/role-task as-
signment so that run-time assignments can be performed more quickly. The
planning phase consists of finding all potential assignments given the con-
straints and ensures that assignments can be consistently made such that a
workflow can complete. Example 3 illustrates an example.

Example 3. Figure 2 shows a research paper review process consisting of three
tasks.

T1: Submit
Paper

T2: Review
paper

T3: Issue
Check

Authorized Role:
Researcher

Authorized Role:
Reviewer

Authorized Role:
ReviewerT2: Review

paper

T2: Review
paper

Fig. 2. Example Workflow with Constraints

Task T1 is the paper submission task. Task T2 is the paper review task
which needs to be performed by three separate members of the reviewer role.
Task T3 is the acceptance decision task. It is performed by a member of the
reviewer role but the member can not have performed task T2. Of course,
neither T2 or T3 can be performed by the person who performed task T1.
The approach in [11] assesses whether all tasks can successfully be executed
given various assignment options. Figure 3 shows how assignment of user U1

impacts assignment to an instance of task T2 impacts the workflow.
While in this simple example, it is very easy to see that there must be at

least four members of the review role to successfully accomplish the workflow,
much more complex scenarios with more tasks, user membership in multiple
roles and additional constraints are the norm and the process of planning by

Security for Workflow Systems 221

T1: Submit
Paper

T2: Review
paper

T3: Issue
Check

Authorized Role:
Researcher

Authorized Role:
Reviewer

Authorized Role:
ReviewerT2: Review

paper

T2: User U1

{U1, -}

{U1, -} {U1, -}

Fig. 3. Example of Task Assignment Planning

assessing potential assignments allows the workflow to proceed in run-time at
a quicker pace with a guarantee of the ability to assign all tasks to individuals.

4.2 Constraint Consistency and Enforcement

The workflow authorization model in [11] includes static checking of autho-
rization consistency as a first step. The overall process for checking constraints
across workflow instances and for assigning users to tasks is given as a four
step process [28]:

• Static Enhancement of the Constraint Base when the workflow is defined
- In this phase, constraints that can be derived from other constraints are
created and overlapping conditions are rectified.

• Static Inconsistency Identification and Analysis - In this step, constraints
and conditions are checked to ensure that different rules do not result in
a user or role being authorized and denied from performed a task. This
step is performed both when a workflow is defined and when new rules are
added.

• Run-time Inconsistency Identification and Analysis - This step is per-
formed whenever a task instance is initiated if there are constraint condi-
tions met by the parameters of the instance.

• Run-time updating of the Constraint Base - Performed whenever assign-
ments are made which constrain assignments for future instances of the
workflow.

Step 1 is only performed when a workflow is defined. When a workflow
instance is begun, step 3 is initiated. Steps 2 through 4 are repeated whenever
new rules are added to the constraint base because of what occurred during a
workflow instance. Figure 4 shows a schematic of the process and an example
is given below.

222 Vijayalakshmi Atluri and Janice Warner

Step 1 - Static
Enhancement of CB

when Workflow
Schema

is Defined

Step 2 - Static
Inconsistency

Identification and
Analysis

Step 3 - Run-Time
Inconsistency

Identification and
Analysis

Step 4 - Run-time
Updating of CB if

conditions warrant it

Workflow Schema Defined Task Instance

Fig. 4. Overall Constraint Consistency Checking when Inter-instance Workflow
Constraints Exist

Example 4. Suppose we have a two task workflow where T2 is an approval task
for task T1. Both tasks can generally be done by role RA

consisting of members John, Lisa, Paul, Pam and Sam. When the workflow
concerns a high-valued customer, Starco, someone from role RB must perform
task T2. Role RB’s members are Robert and Jane. Now suppose we have the
following constraints:

C1: Sam and Paul are related (This is not a constraint per se but a fact that
is used by other constraints.)

C2: Pam and Robert are related.
C3: A user can only execute two instances of task T2.
C4: A user cannot execute task T2 when someone who has a relationship with

them has performed task T1 in any other instance for the same customer.
C5: Someone from role RB must perform task T2 when the customer is

“StarCo”.

Once the workflow schema is defined as above, Step 1 is performed and results
in the constraint base being enhanced with the following constraint, which can
be derived from constraints 1 and 2 above.

C6: Sam and Pam are related.

In Step 2, we consider if any conditions overlap. None do, so the set of
permitted roles/users and denied roles/users for tasks T1 and T2. are deter-
mined. Permitted roles and users for task T1 are {RA} and {John, Lisa, Paul,
Pam, Sam}, respectively. Permitted roles and users for task T2 are {RA, RB}
and {John, Lisa, Paul, Pam, Sam, Robert, Jane}, respectively. There are no
denied users or roles.

Now suppose a workflow instance for customer StarCo is begun. Step 3 is
initiated. Pam is assigned to task T1 and Robert to task T2.

Suppose Robert has already performed task T2 for StarCo in another in-
stance of this workflow. Step 4 is initiated and results in a new constraint
specific to Robert:

C7: Robert is restricted from performing task T2 when the customer is StarCo.

Security for Workflow Systems 223

Now suppose a new instance of the workflow is begun with StarCo as
customer again. The process of assignment and consistency checking would
be repeated. Eventually, there may be no one in role RB who can perform
task T2 when the customer is StarCo due to constraint C5. This is called a
depletion anomaly.

5 Delegation of Authority

Delegation is an important concept often applied in workflow systems to en-
sure that work can be completed even if the users/roles to perform a specific
task are not available. It is usually accomplished by a user (delegator) delegat-
ing a task to another user (delegatee). For example, managers may delegate
tasks to their subordinates either because they find themselves short on time,
because they want to give the subordinate more responsibility or want to train
the subordinate to perform the task.

In [3], the model proposed in [10] has been enhanced to allow delegation.
Specifically, the ability to delegate tasks to users, roles to users and roles to
roles were introduced. To handle interactions between delegations and work-
flow authorization constraints, consistency checking and task assignment were
enhanced as follows. First, when a delegation is requested, a static check is
performed to make sure there is no delegation cycle such that task assignment
would return to the delegator because of other delegations previous accepted.
A second static check is made to ensure that the delegation is not inconsis-
tent with authorization constraints when the delegation is to a specific person.
That is, no user obliged to perform a task should be allowed to delegate and
no user who is restricted from doing a task should be the recipient of a del-
egation of that task. At run-time, delegations are further evaluated to make
actual assignments when the delegation is of a role or to a role.

Because there is usually some reason for delegation, it should be possible
to delegate under certain conditions. Specifically, when delegating a task to
a user who is otherwise not authorized to perform the task, the following
conditions would help ensure that the user is only authorized when absolutely
necessary:

• Temporal Delegation Conditions - They allow a user to constraint
delegation of a task to a defined time interval. This allows the delegator
to set up a delegation to apply at some time in the future for some period
of time as specified in the condition. For example, a user might delegate a
task during the two hours when she is going to a meeting. Alternatively, a
user might delegate a task for the week he will be on vacation. The time
interval may also be period, such as every Wednesday.

• Workload Delegation Conditions - They allow a user to constrain
delegation of a task to a workload level. In other words, workload condi-
tions allow the delegator to define a delegation that will only take place

224 Vijayalakshmi Atluri and Janice Warner

if assigned workload exceeds a certain level. For the potential delegatee,
it allows a rejection to be constrained by the workload that the potential
delegatee already has. For example, a user might set up a delegation for
tasks assigned once he already has five tasks in his queue.

• Value Delegation Conditions - They allow a user to constrain delega-
tion of a task depending upon attributes of the task such as the customer
associated with the task or the transaction dollar amount associated with
the task. Therefore, a requirement of the workflow management system
would be that workflow attributes be specified. For example, in processing
an insurance claim, a task associated with Mary Smith’s claim which ordi-
narily might be assigned to any member of the insurance agent role, might
be delegated to Jack Jones, a client representative, because he is currently
addressing issues with other claims from Ms. Smith. As another, example,
a manager might delegate a task to a subordinate with the monetary value
of the associated contract is less than $100,000.

The conditions limit delegation to certain points in time based either on
temporal conditions, workload or value. Similar constraints can be applied
to allow a delegator to revoke a delegation. In either case, if a user is given
permissions due to a delegation, one must be concerned if in the middle of
the workflow, the conditions no longer apply or the delegation is revoked.
If the delegatee has not begun the task and is not yet assigned, no harm is
done. They are just removed from any planning set of authorized personnel
for the delegated task. If the task is already assigned but not completed, the
workflow consistency must be rechecked to see if it can still complete given
that the delegatee is no longer authorized. For example, if the delegator is
constrained from performing a task because of a separation of duty constraint
concerning another task that he has already completed, there may be no one
else to perform the task that was previously delegated. Occurrence of such
cases should be checked, given that the assignment was made based on the
availability of the delegatee. If the task is begun, it should be completed.

Another concern with delegation, is that a delegatee should never be al-
lowed to perform a task that the delegator is not authorized to perform be-
cause of other constraints that apply - whether separation of duty, role ac-
tivation or any other business policy rule. For example, let us say that we
have a two task workflow where T1 is a submission and T2 is an approval
and there is a separation of duty constraint between the two tasks. Suppose
Harry delegates task T2 to Sally. If Harry performs task T1, Sally should not
be allowed to perform task T2 because Harry is constrained from performing
task T2 in this instance and that constraint should be passed to Sally along
with the delegation.

Atluri and Warner [7] introduce the above conditional delegation whereby
task or role delegation may be constrained to particular time periods or when
workflow variables are within a particular range. These conditions must also
be checked against task dependencies and role activation constraints to ensure

Security for Workflow Systems 225

that a workflow instance can complete successfully given availability of human
resources. Similar to [3], the modified workflow authorization consistency pro-
cess, given all the conditions and constraints, consists of a static phase where
temporal and value-based conditions are examined for overlaps. Where there
are overlaps, consistency is checked such that a user is not both in the set of
users who can perform a task and in the set of users restricted from perform-
ing a task. A planning graph is created with all conditions included that need
to be checked at run-time (temporal and value-based conditions). At run-time
users are assigned to tasks who meet the conditions. If they have submitted
delegations, the delegations are evaluated and final assignments are made.

6 Conflict-of-Interest

Execution of inter-organization workflows may raise a number of security is-
sues including conflict of interest among competing organizations, especially
when they are executed by mobile software agents without using a centralized
control flow. In such a decentralized environment, the entire workflow is sent
to the first task execution agent which executes its task and then sends the re-
maining workflow to the next task execution agent. The workflow moves from
agent to agent as the workflow progresses. If the task execution agents belong
the the same conflict of interest group, knowledge may be passed to them
that would give one or more agents an unfair advantage over other agents.
The Chinese wall policy for information flow in a commercial sector, proposed
by Brewer and Nash [13], states that information flow from one company to
another that cause conflict of interest for individuals within these organization
should be prevented. The policy enforced is that people are allowed access to
information not in conflict with any other information that they already pos-
sess. The company information is categorized into mutually disjoint conflict
of interest classes. The following example illustrates the problem.

Example 5. Consider a business travel planning process that makes reserva-
tions for a flight, hotel and rental car. The workflow that depicts the travel
agent process (shown in figure 5 consists of the tasks: T1: Input travel infor-
mation, T2: Reserve a ticket with Continental Airlines, T3: if T2 fails or if the
ticket costs more than $400, reserve a ticket with Delta Airlines, T4: if the
ticket at Continental costs less than $400 or if the reservation at Delta fails,
purchase the ticket at Continental, T5: if Delta has a ticket, purchase it at
Delta, T6: Reserve a room at the Sheraton if there is a flight reservation, and
T7: Rent a car at Hertz. Such a process are not unusual where users can set a
maximum price and preferences for airlines possibly because of frequent flyer
perks.

Assume that each task is executed by the appropriate agent (e.g., T2 by
Continental, T3 by Delta, etc.). Now consider the dependencies between T2

and T3 or between T4. If a mobile agent is used to execute the workflow, after

226 Vijayalakshmi Atluri and Janice Warner

T1: Enter
Travel Data

T2:
Reserve
Ticket

T3:
Reserve
Ticket

T4:
Purchase a

Ticket

bs
bf o

r P
ric

e >

$40
0

bs and Price< $400
Authorized Role:
Clerk

Authorized Role/
Org: Continental

Authorized Role/
Org: Delta

Authorized Role/
Org: Continental

T5:
Purchase a

Ticket

Authorized Role/
Org: Delta

T6:
Reserve a

room

Authorized Role/
Org: Sheraton

bs
bs

bs

Fig. 5. Example Inter-organizational Workflow

the execution of T2, Continental must send the remaining workflow to Delta,
based on the outcome of T2. Continental, however, because it has access to the
workflow logic, has knowledge that if it has no ticket or if the ticket costs more
than $400, Delta Airlines may get the business. Knowing this, Continental has
an unfair advantage and may manipulate the price of the ticket, reducing it
just under $400.

Atluri et al. in [4] proposed a decentralized workflow Chinese Wall secu-
rity model to resolve such problems by portioning the workflow in a restrictive
manner. The model uses the notion of self-describing workflows and WFMS
stubs. Self-describing workflows are partitions of a workflow that carry suffi-
cient information so that they can be managed by a local task execution agent
rather than a central WFMS. A WFMS stub is a light-weight component that
can be attached to a task execution agent, which is responsible for receiving
the self-describing workflow, modifying it and re-sending it to the next task
execution.

Web Services are now being touted as the way to coordinate business enti-
ties in an inter-organizational business process. A Web Service is a collection
of operations that are network-accessible through standardized XML messag-
ing though an interface. In order to created business processes, web services
would need to be combined. However, research on the orchestration of web ser-
vices to form complex business processes is still in its early stages. Research
on determining security policies that should apply to the overall process is
even further behind and is still at the architectural level [22]. Among other
security concerns to address are data privacy, data integrity and audit all of
which become more difficult problems when the organization involved in the
workflow may be unfamiliar to each other, selected by a third party creator
of the overall process. Not only is policy integration needed but languages
and mechanisms for exchanging policy information and information about
those who will participate in the business process still need to be developed.
Kang et al. [20] gave one possible view of how peer-to-peer negotiation of

Security for Workflow Systems 227

workflow could be done. Their solution allow each organization to have their
policies apply to their own tasks. Task access control is thus distributed and
autonomous. In the case where constraints need to be set between tasks ex-
ecuted by different organization, a workflow monitor is defined. The monitor
records workflow-specific events during runtime and responds to queries from
the task-specific access control modules at the various organizations involved
in the distributed inter-organizational workflow.

7 Workflow Safety Analysis

Safety analysis refers to ensuring that rights are not propagated unintention-
ally either directly or indirectly through the granting of permission to some
other resource. The safety problem, first identified by Harrison, Ruzzo and
Ullman [17], can be stated as the following question: “Is there a reachable
state in which a particular subject possesses a particular privilege for a spe-
cific object?”

Atluri and Huang [6] showed how colored Petri nets can be used to analyze
the safety of the WAM. Petri nets provide a combination of specification and
modeling tools to depict the system behavior (thorough its graphical represen-
tation), and formal verification tools (through its rich theoretical foundation).
Thus, using Petri nets allows a smooth transition from the conceptual level
to an implementation of a workflow. In addition, as a graphical tool, Petri
nets have the advantage of visually depicting properties, relationships and
restrictions among tasks of a given work. Analysis of workflows using Petri
nets helps one to understand the implications of the authorization policies.
Although each policy may appear innocent in isolation, their cumulative ef-
fect may lead to an undesirable authorization state. Their process determines
given an initial authorization state and a set of security policies specified by
authorization rules, all the reachable authorization states.

Safety analysis becomes especially important when task authorizations
may be delegated and revoked as discussed by Schaad et al. [25]. To address
the issue, they proposed a model-checking based approach for automated anal-
ysis of delegation and revocation functionalities in the context of a workflow
requiring static and dynamic separation of duty properties. Using finite state
machine to represent the workflow to which they applied a definition of pos-
sible delegation and revocation scenarios. The analysis on the state machine
will determine whether a set of delegations and/or revocations may be safely
accepted.

8 Open Issues

Interoperability and integration are the main research areas of concentra-
tion for workflow security. Workflow management systems are maturing but

228 Vijayalakshmi Atluri and Janice Warner

integration with identity management systems, applications, and enterprise
resource planning systems is still rather ad-hoc. Workflow management sys-
tems separate business process control from applications, making it easier
to reuse applications for various business processes. Similarly, it is desirable
to separate workflow management from overall business policy management
and identity management. However, interactions between security constraints
and business rules need to be considered when user-task assignments are per-
formed. Moreover, control of authorizations and permissions can be set across
the organization and the workflow management system would only need to be
concerned with constraints that apply specifically to the workflow and could
consult the policy management system for general authorization questions.

Even less mature is work on inter-organizational workflows. Existing work-
flow systems do not easily integrate to form allow for formation of a single
business process. Instead, inter-organizational workflows are cobbled together
from separate, disparate business processes within each organization. Trans-
action oriented interfaces exist that use the XML-based ebXML business pro-
cess interface for support of transactions between organizations. This supports
inter-organizational interactions by standardizing interfaces. From a security
perspective, constraints can currently only be applied at the organizational
level. No standard way exists for external organizations to specify constraints
on assignment of individuals. Moreover, adhering to the individual organi-
zation’s business rules and security constraints is essential while composing
inter-organizational workflows. A more challenging issue would be to accom-
plish the composition when individual organizational policies (security as well
as business) are sensitive and therefore cannot be revealed.

When processes are created in an ad-hoc manner, participating organi-
zations need also to be concerned with evaluating the risk of working with
other participating organizations for the successful completion of the work-
flow. Trust management issues include being able to assess the credibility of
the participants as well as the results of their portion of the process. Contrac-
tual obligations must be established, monitored and assessed and audit trails
must be available to all participants. Secure, available and reliable informa-
tion on business process execution has not been deeply addressed in terms of
inter-organizational business processes or workflows.

Finally, many of the research ideas presented in this chapter have not been
implemented and the problems they solve are still not addressed in existing
systems. Specifically, while role based access control and enforcement of the
SOD constraints to a limited extent have been implemented in some commer-
cial systems, much of that has been done as application code. As a result,
their safety is not tractable.

Security for Workflow Systems 229

References

1. Workflow reference model. Technical report, Workflow Management Coalition,
1994.

2. V. Atluri.
Security for workflow systems. Information Security Technical Report, 6(2):705–
716, 2001.

3. V. Atluri, E. Bertino, E. Ferrari, and P. Mazzoleni. Supporting delegation in
secure workflow management systems. IFIP WG 11.3 Conference on Data and
Application Security, August 2003.

4. Vijayalakshmi Atluri, Soon Ae Chun, and Pietro Mazzoleni. A chinese wall
security model for decentralized workflow systems. In CCS ’01: Proceedings of
the 8th ACM conference on Computer and Communications Security, 2001.

5. Vijayalakshmi Atluri and Wei-Kuang Huang. An Authorization Model for
Workflows. In Proceedings of the Fifth European Symposium on Research in
Computer Security, in Lecture Notes in Computer Science, No.1146, Springer-
Verlag, September 1996.

6. Vijayalakshmi Atluri and Wei-Kuang Huang. A Petri Net Based Safety Analysis
of Workflow Authorization Models. Journal of Computer Security, 8(2/3):209–
240, 2000.

7. Vijayalakshmi Atluri and Janice Warner. Supporting conditional delegation in
secure workflow management systems. In SACMAT, 2005.

8. Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A temporal
role-based access control model. ACM Transactions on Information and System
Security (TISSEC), 4(3):191–203, 2001.

9. Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. A Flexible Model Sup-
porting the Specification and Enforcement of Role-based Authorizations in
Workflow Management Systems. In Proc. of the 2nd ACM Workshop on Role-
based Access Control, November 1997.

10. Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. An Approach for the
Specification and Enforcement of Authorization Constraints in Workflow Man-
agement Systems. ACM Transactions on Information Systems Security, 2(1),
February 1999.

11. Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. An Approach for the
Specification and Enforcement of Authorization Constraints in Workflow Man-
agement Systems. ACM Transactions on Information Systems Security, 2(1),
February 1999.

12. R. Botha and J. Eloff. Separation of duties for access control enforcement in
workflow environments. IBM Systems Journal, 40(3), 2001.

13. D.F.C. Brewer and M.J. Nash. The chinese wall security policy. In IEEE
Symposium on Security and Privacy, 1989.

14. J. Crampton. A reference monitor for workflow systems with constrained task
execution. In SACMAT 05, 2005.

15. Dimitrios Georgakopoulos, Mark F. Hornick, and Amit P. Sheth. An overview
of workflow management: From process modeling to workflow automation in-
frastructure. Distributed and Parallel Databases, 3(2):119–153, 1995.

16. V. Gligor, S. Gavrila, and D. Ferraiolo. On the formal definition of separation-of-
duty policies and their composition. IEEE Symposium on Research in Security
and Privacy, 1998.

230 Vijayalakshmi Atluri and Janice Warner

17. Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in
operating systems.
Commun. ACM, 19(8), 1976.

18. Wei-Kuang Huang and Vijayalakshmi Atluri. Analyzing the Safety of Work-
flow Authorization Models. In Proc. of the 12th IFIP WG 11.3 Workshop on
Database Security, July 1998.

19. Patrick C. K. Hung and Kamalakar Karlapalem2. A secure workflow model. In
AISW2003, 2003.

20. Myong H. Kang, Joon S. Park, and Judith N. Froscher. Access control mecha-
nisms for inter-organizational workflows. In SACMAT, 2001.

21. K. Knorr and H. Stormer. Modeling and anlying separation of duties in work-
flow environments. In IFIP TC11 Sixtgeenth Annual Working Conference on
Information Security, 2001.

22. Hristo Koshutanski and Fabio Massacci. Interactive access control for web ser-
vices. SEC, pages 151–166, 2004.

23. Marek Rusinkiewicz and Amit P. Sheth. Transactional workflow management
in distributed systems (invited paper). In Proceedings of the First International
Workshop on Advances in Databases and Information Systems, Moscow, Russia,
May 23 - 26, 1994, pages 18–33, 1994.

24. Ravi S. Sandhu. Transaction Control Expressions for Separation of Duties. In
Fourth Computer Security Applications Conference, pages 282–286, 1988.

25. Andreas Schaad, Volkmar Lotz, and Karsten Sohr. A model-checking approach
to analysing organisational controls in a loan origination process. In SACMAT
’06: Proceedings of the eleventh ACM symposium on Access control models and
technologies, 2006.

26. K. Tan, J. Crampton, and C. Gunter. The consistency of task-based authoriza-
tion constraints in workflow systems. In Proceedings of the 17th IEEE Computer
Security Foundations Workshop (CSFW04, 2004.

27. J. Wainer, P. Barthelmess, and A. Kumar. W-rbac: A workflow security model
incorporating controlled overriding of constraints. In International Journal of
Cooperative Information Systems, volume 12, 2003.

28. Janice Warner and Vijayalakshmi Atluri. Inter-instance authorization con-
straints for secure workflow management. In SACMAT, 2006.

10

Secure Semantic Web Services

Bhavani Thuraisingham

University of Texas at Dallas
bhavani.thuraisingham@utdallas.edu

Summary. Web Services refer to the technologies that allow for making connec-
tions. Semantic web consists of technologies that enable machine understandable
web pages. Web services make use of semantic web technologies to understand the
web pages, conduct reasoning and take actions. Such web services are semantic web
services. For many applications the semantic web services have to be secure. In this
chapter we discuss secure web services, secure semantic web technologies and finally
discuss the integration of secure web services with secure semantic web technologies
to develop secure semantic web services.

1 Introduction

As stated in [1], Web Services refer to the technologies that allow for mak-
ing connections. Services are what you connect together using Web Services.
Examples of web services are query service and directory service. A service
is the endpoint of a connection. Also, a service has some type of underlying
computer system that supports the connection offered. The combination of
services - internal and external to an organization - make up a service-oriented
architecture.

While many developments have been made on web services, there are now
some efforts on securing web services. Access control and security assertion
languages are being developed that are based on XML (eXtensible Markup
Language). However current web services are not capable of understanding
the web pages and taking actions. Therefore, Tim Berners Lee developed the
notion of a semantic web that facilitates machine understandable web pages
[2]. There are now efforts on integrating web services with the semantic web
technologies to produce semantic web services. However these semantic web
services have to be secure.

In this chapter we provide an overview of secure web services, secure se-
mantic web and the application of secure semantic web technologies for secure
web services to develop secure semantic web services. The organization of this
chapter is as follows. Secure web services are discussed in section 2. Secure

232 Bhavani Thuraisingham

semantic web technologies are discussed in section 3. Integrating secure web
services and secure semantic web technologies are discussed in section 4. The
chapter is summarized in section 5. For more details on securing the semantic
web we refer to [3].

2 Web Services Security

2.1 Overview

In this section we will provide an overview of web services security. As stated
in section 1, web services refer to the technologies that allow for making
connections. Web services are being adopted now for numerous applications
on the web. It is through these web services that we can now conduct business
on the web as well as execute transactions. For many of these applications, it
is important that the services be secure.

The organization of this section is as follows. In section 2.2 we provide an
overview of web services. The developments in secure web services is discussed
in section 2.3. Some security assertion languages are discussed in section 2.4.
Shibboleth, which is a distributed web resource access control system that
allows federations to cooperate together to share web based resources is dis-
cussed in section 2.5 [4].

2.2 Web Services

A service-oriented architecture (SOA) is essentially a collection of services [5].
These services communicate with each other. The communication can involve
either simple data passing or it could involve two or more services coordi-
nating some activity such as planning travel. Some means of connecting ser-
vices to each other is needed. Service-oriented architectures are not new. The
first service-oriented architecture can be considered to be DCOM (distributed
component object model) and Object Request Brokers (ORBs) based on the
CORBA (common object request broker architecture) specification [6]. If a
service-oriented architecture is to be effective, we need a clear understanding
of the term service. A service is a function that is well-defined, self-contained,
and does not depend on the context or state of other services.

The technology of web services is the most likely connection technology of
service-oriented architectures. Web services essentially use XML technology
to create a robust connection. A service consumer sends a service request
message to a service provider. The service provider returns a response message
to the service consumer. The request and subsequent response connections are
defined in some way that is understandable to both the service consumer and
service provider. A service provider can also be a service consumer. The Web
Services Description Language (WSDL) forms the basis for Web Services.
WSDL uses XML to define messages. The steps involved in providing and
consuming a service are the following.

Secure Semantic Web Services 233

• A service provider describes its service using WSDL. This definition is
published on a directory of services. The directory could use Universal
Description, Discovery, and Integration (UDDI). Other forms of directories
can also be used.

• A service consumer issues one or more queries to the directory to locate a
service and determines how to communicate with that service.

• Part of the WSDL provided by the service provider is passed to the service
consumer. This tells the service consumer what the requests and responses
are for the service provider.

• The service consumer uses the WSDL to send a request to the service
provider.

• The service provider provides the expected response to the service con-
sumer.

The UDDI registry is intended to eventually serve as a means of “discover-
ing” Web Services described using WSDL . The idea is that the UDDI registry
can be searched in various ways to obtain contact information and the web
services available for various organizations. UDDI registry is a way to keep
up-to-date on the web services your organization currently uses. An alterna-
tive to UDDI is ebXML Directory. All the messages are sent using SOAP.
(SOAP at one time stood for Simple Object Access Protocol; Now, the letters
in the acronym have no particular meaning.) SOAP essentially provides the
envelope for sending the web services messages. SOAP generally uses HTTP,
but other means of connection may be used. Security and authorization is an
important topic with web services.

2.3 Secure Web Services

Security and authorization specifications for web services are based on XML
and can be found in [7, 8, 9]. Various types of control have been proposed
including access control, rights, assertions, and protection [10]. We describe
some of them in the next section. The list of specifications includes the fol-
lowing:

• eXtensible Access Control Markup Language (XACML)
• eXtensible Rights Markup Language (XrML)
• Security Assertion Markup Language (SAML)
• Service Protection Markup Language (SPML)
• Web Services Security (WSS)
• XML Common Biometric Format (XCBF)
• XML Key Management Specification (XKMS)

Organization for the Advancement of Structured Information Standards
(OASIS) is the standards organization promoting security standards for web
services. It is a not-for-profit, global consortium that drives the development,
convergence, and adoption of e-business standards. Two standards provided by

234 Bhavani Thuraisingham

OASIS are XACML and SAML. XACML (eXtensible Access Control Markup
Language) provides fine grained control of authorized activities. SAML (Se-
curity Assertions Markup Language) is an XML framework for exchanging
authentication and authorization information. The next section gives details
of both XACML and SAML.

2.4 XACML and SAML

SAML provides a single point of authorization. It aims to ’solve the web
single sign-on’ problem. One identity provider in the group allows access.
It has Public/Private Key Foundations. Those who are providing SAML in
their products are Microsoft Passport, OpenID (VeriSign) and Global Login
System (Open Source). As stated in the SAML specifications, its three main
components are the following:
Assertions: SAML has three kinds of assertions. Authentication assertions
are those in which the user has proven his identity. Attribute assertions contain
specific information about the user, such as his spending limits. Authorization
decision assertions identify what the user can do, for example, whether he can
buy an item.
Protocol: This defines the way that SAML asks for and gets assertions, for
example, using SOAP over HTTP for now, although using other methods in
the future.
Binding: This details exactly how SAML message exchanges are mapped into
SOAP exchanges.

Outstanding issues for SAML include performance, federations and han-
dling legacy applications. With respect to performance, there is no support
for caching and also it has to be implemented over HTTP protocols using
SOAP. Furthermore, it does not specify encryption and as a result the poli-
cies may be compromised. With respect to federations, SAML does not specify
authentication protocols. Furthermore, multiple domains cannot be handled.
Therefore, OASIS is examining federated identity management. SAML does
not work with legacy applications as it is expensive to retrofit.

XACML combines multiple rules into a single policy. It permits multiple
users to have different roles. It provides separation between policy writing and
application environment. The goal is to standardize access control languages.
Some elements of XACML are the following. Users interact with resources.
Every resource is protected by an entity known as a Policy Enforcement Point
(PEP). This is where the language is actually used and does not actually
determine access. PEP sends its request to a Policy Decision Point (PDP).
Policies may or may not be actually stored here, but PDP has the final say
on access. A decision is relayed to PEP, which then grants or denies access.

Outstanding issues of XACML include distributed responsibility and pol-
icy cross-referencing. With respect to distributed responsibility, what happens
when the PEP is responsible for multiple objects? What happens when we

Secure Semantic Web Services 235

can compromise the PDP or spoof its communication? How do we guaran-
tee that we reference the right object? While the system is distributed, a
policy is still in only one location. With respect to policy cross-referencing,
one policy may access another. Typical issues arise as with inheritance and
unions/intersections of related work. The challenge is to deal with conflicts.

Researchers as well as practitioners are working on exchanging both SAML
and XACML. In the next section we will discuss Shibboleth, which is a dis-
tributed web resource access control system that allows federations to cooper-
ate together to share web based resources. It uses SAML in its implementation.

2.5 Shibboleth

As stated earlier, Shibboleth is a distributed web resource access control sys-
tem that allows federations to cooperate together to share web based resources
[4]. It defines a protocol for carrying authentication information and user at-
tributes from a home to a resource site. The resource site can then use the
attributes to make access control decisions about the user. This web based
middleware layer uses SAML. Access control is carried out in stages. In stage
one the resource site redirects the user to their home site, and obtains a handle
for the user that is authenticated by the home site. In stage two, the resource
site returns the handle to the attribute authority of the home site and is re-
turned a set of attributes of the user, upon which to make an access control
decision.

There are some issues with single sign on with Shibboleth. How does the
resource site know the home site of the user? How does it trust the handle
returned? Answer is, it is handled by the system trust model. The authenti-
cation procedure is as follows: when the resource site asks for the home site
from the user, he/she selects it from the list of trusted sites which are already
authenticated by certificates. Handles are validated by the SAML signature
along with the message. User selects the home site from the list. Home site
authenticates the user if he/she is already registered. After the home server
authentication, it returns a message with SAML sign to the target resource
site. If the sign matches, then the target resource site provides a pseudonym
(handle) for the user, and sends an assertion message to the home page to find
out if the necessary attributes are available with the user. To ensure privacy,
each time the system provides different pseudonyms for the user’s identity, it
needs the release attribute policy from the user attributes each time to provide
control over the authority attributes in the target site. Agreement attribute
release policy is between the user and the administrator.

Trust is at the heart of Shibboleth. It completely trusts the target resource
site and the origin home site registered in the federation. The disadvantage of
the existing trust model is that there is no differentiation between authenti-
cation authorities and attribute authorities. There is scope for allowing more
sophisticated distribution of trust, such as static or dynamic delegation of au-
thority. Another disadvantage in the existing trust model is that it provides

236 Bhavani Thuraisingham

only basic access control capabilities. It lacks the flexibility and sophistication
that many applications need to provide access control decisions based on role
hierarchies or various constraints such as the time of day or separation of
duties.

In the basic Shibboleth, a target site trusts the origin site to authenticate
its users and manages their attributes correctly while the original site trusts
the target site to provide services to its users. Trust is conveyed using digitally
signed SAML messages using target and origin server key pairs. Each site has
only one key pair per Shibboleth system. Thus there is only a single point
of trust per Shibboleth system. Therefore, there is a need for a finer grained
distributed trust model and being able to use multiple origin authorities to
issue and sign the authentication and attribute assertions. Multiple authori-
ties should be able to issue attributes to users and the target site should be
able to verify issuer/user bindings. The target should be able to state, in its
policy, which of the attribute authorities it trusts as well as which attributes
to issue to which groups of users. The target site should be able to decide, in-
dependently of the issuing site which attributes and authorities to trust when
making its access control decisions. Not all attribute issuing authorities need
to be part of the origin site. A target site should be able to allow a user to gain
access to its resources if it has attributes issued by multiple authorities. The
trust infrastructure should support dynamic delegation of authority, so that
a holder of a privilege attribute may delegate (a subset of) this to another
person without having to reconfigure anything in the system. The target site
should be able to decide if it really does trust the origin’s attribute repository,
and if not, be able to demand a stronger proof of attribute entitlement than
that conferred by a SAML signature from the sending web server.

Shibboleth defines various trust models. These models have been imple-
mented using X.509. We can look at trust from two different aspects

• Distribution of trust in attribute issuing authorities.
• Trustworthiness of an origin site’s attribute repository.

Further details of the trust models and their implementations as well as
authorization and privacy issues are discussed in [11].

3 Security and the Semantic Web

3.1 Overview

We first provide an overview of the semantic web and then discuss the secu-
rity issues. This will include a discussion of XML security, RDF (Resource
Description Framework) security and secure information integration, which
are components of the secure semantic web. As more progress is made on
investigating these various issues, we hope that appropriate standards would
be developed for securing the semantic web. Security cannot be considered in

Secure Semantic Web Services 237

isolation. That is, there is no one layer that should focus on security. Security
cuts across all layers and this is a challenge.

The organization of this section is as follows. Semantic web is discussed in
section 3.2. Aspects of securing the semantic web are discussed in section 3.3.
Security issues for XML, RDF and ontologies are discussed in sections 3.4,
3.5 and 3.6 respectively. Security for rules processing is the subject of section
3.7. Privacy and trust issues are discussed in section 3.8.

3.2 Semantic Web

The World Wide Web consortium (W3C) is specifying standards for the se-
mantic web [12]. These standards include specifications for XML, RDF, and
ontologies. Tim Berners Lee proposed a technology stack for the semantic web.
Essentially the semantic web consists of layers where each layer takes advan-
tage of the technologies of the previous layer. The lowest layer is the protocol
layer and this is usually not included in the discussion of the semantic tech-
nologies. The next layer is the XML layer. XML is a document representation
language. While XML is sufficient to specify syntax, the semantics such as
“the creator of document D is John” is hard to specify in XML. Therefore the
W3C developed RDF. RDF uses XML syntax. The semantic web community
then went further and came up with specification of ontologies in languages
such as OWL. Note that OWL addresses the inadequacies of RDF. In order
to reason about various policies, the semantic web community has come up
with web rules language such as SWRL (semantic web rules language) and
Rules ML (rules markup language). For an overview of the semantic we refer
to the book by Antoniou and van Harmelen [13].

Semantic web technologies are being utilized by many applications in-
cluding web services, information integration, and knowledge management,
information sharing and digital libraries. With the use of the semantic web
technologies, the applications can understand the web pages, conduct rea-
soning and make decisions. In this chapter we are interested in one of these
applications and that is web services. In particular, our goal is to integrate
semantic web technologies with web services and security.

3.3 Securing the Semantic Web

For example, consider the lowest layer. One needs secure TCP/IP, secure
sockets, and secure HTTP. There are now security protocols for these various
lower layer protocols. One needs end-to-end security. That is, one cannot
just have secure TCP/IP built on untrusted communication layers. That is,
we need network security. The next layer is XML and XML schemas. One
needs secure XML. That is, access must be controlled to various portions
of the document for reading, browsing and modifications. There is research
on securing XML and XML schemas. The next step is securing RDF. Now
with RDF not only do we need secure XML, we also need security for the

238 Bhavani Thuraisingham

interpretations and semantics. For example, under certain contexts, portions
of the document may be unclassified while under certain other contexts the
document may be classified [14, 15].

Once XML and RDF have been secured the next step is to examine secu-
rity for ontologies and inter-operation. That is, ontologies may have security
levels attached to them. Certain parts of the ontologies could be secret while
certain other parts may be unclassified. The challenge is how does one use
these ontologies for secure information integration? Researchers have done
some work on the secure interoperability of databases. We need to revisit this
research and then determine what else needs to be done so that the informa-
tion on the web can be managed, integrated and exchanged securely. Logic,
proof and trust are at the highest layers of the semantic web. That is, how
can we trust the information that the web gives us?

We also need to examine the inference problem for the semantic web.
Inference is the process of posing queries and deducing new information. It
becomes a problem when the deduced information is something the user is
unauthorized to know. With the semantic web, and especially with data min-
ing tools, one can make all kinds of inferences. Recently there has been some
research on controlling unauthorized inferences on the semantic web. We need
to continue with such research (see, for example, [16, 17]).

Security should not be an afterthought. We have often heard that one
needs to insert security into the system right from the beginning. Similarly
security cannot be an afterthought for the semantic web. However, we cannot
also make the system inefficient if we must guarantee one hundred percent
security at all times. What is needed is a flexible security policy. During some
situations we may need one hundred percent security while during some other
situations say thirty percent security (whatever that means) may be sufficient.

3.4 XML Security

Various research efforts have been reported on XML security (see for example,
[18]). We briefly discuss some of the key points. The main challenge is whether
to give access to entire XML documents or parts of the documents. Bertino et
al. have developed authorization models for XML. They have focused on access
control policies as well as on dissemination policies. They also considered
push and pull architectures. They specified the policies in XML. The policy
specification contains information about which users can access which portions
of the documents. In [18] algorithms for access control as well as computing
views of the results are presented. In addition, architectures for securing XML
documents are also discussed. In [19] the authors go further and describe how
XML documents may be published on the web. The idea is for owners to
publish documents, subjects to request access to the documents and untrusted
publishers to give the subjects the views of the documents they are authorized
to see.

Secure Semantic Web Services 239

W3C (World Wide Web Consortium) is specifying standards for XML
security. The XML security project (see [20]) is focusing on providing the im-
plementation of security standards for XML. The focus is on XML-Signature
Syntax and Processing, XML-Encryption Syntax and Processing, and XML
Key Management. W3C also has a number of working groups including XML
Signature working group (see [21]) and XML encryption working group (see
[22]). While the standards are focusing on what can be implemented in the
near-term, much research is needed on securing XML documents.

3.5 RDF Security

RDF is the foundations of the semantic web. While XML is limited in pro-
viding machine understandable documents, RDF handles this limitation. As
a result, RDF provides better support for interoperability as well as searching
and cataloging. It also describes contents of documents as well as relation-
ships between various entities in the document. While XML provides syntax
and notations, RDF supplements this by providing semantic information in a
standardized way.

The basic RDF model has three types: they are resources, properties and
statements. Resource is anything described by RDF expressions. It could be
a web page or a collection of pages. Property is a specific attribute used to
describe a resource. RDF statements are resources together with a named
property plus the value of the property. Statement components are subject,
predicate and object. So for example, if we have a sentence of the form “John is
the creator of xxx”, then xxx is the subject or resource, property or predicate
is “Creator” and object or literal is “John”. There are RDF diagrams very
much like say ER diagrams or object diagrams to represent statements. It is
important that the intended interpretation be used for RDF sentences. This
is accomplished by RDF schemas. A schema is sort of a dictionary and has
interpretations of various terms used in sentences.

More advanced concepts in RDF include the container model and state-
ments about statements. The container model has three types of container
objects, and they are Bag, Sequence, and Alternative. A bag is an unordered
list of resources or literals. It is used to mean that a property has multiple
values but the order is not important. A sequence is a list of ordered resources.
Here the order is important. Alternative is a list of resources that represent
alternatives for the value of a property. Various tutorials in RDF describe the
syntax of containers in more detail.

RDF also provides support for making statements about other statements.
For example, with this facility one can make statements of the form “The
statement A is false” where A is the statement “John is the creator of X”.
Again one can use object-like diagrams to represent containers and statements
about statements. RDF also has a formal model associated with it. This formal
model has a formal grammar. For further information on RDF, we refer to
the excellent discussion in the book by Antoniou and van Harmelen [13].

240 Bhavani Thuraisingham

Now to make the semantic web secure, we need to ensure that RDF doc-
uments are secure. This would involve securing XML from a syntactic point
of view. However with RDF we also need to ensure that security is preserved
at the semantic level. The issues include the security implications of the con-
cepts resource, properties and statements. That is, how is access control en-
sured? How can statements, properties and statements be protected? How
can one provide access control at a finer grain of granularity? What are the
security properties of the container model? How can bags, lists and alterna-
tives be protected? Can we specify security policies in RDF? How can we
resolve semantic inconsistencies for the policies? How can we express security
constraints in RDF? What are the security implications of statements about
statements? How can we protect RDF schemas? These are difficult questions
and we need to start research to provide answers. XML security is just the
beginning. Securing RDF is much more challenging (see also [23]).

3.6 Security and Ontologies

Ontologies are essentially representations of various concepts in order to avoid
ambiguity. Numerous ontologies have been developed. These ontologies have
been used by agents to understand the web pages and conduct operations such
as the integration of databases. Furthermore ontologies can be represented in
languages such as RDF or special languages such as web ontology language
(OWL).

Now, ontologies have to be secure. That is, accesses to the ontologies have
to be controlled. This means that different users may have access to different
parts of the ontology. On the other hand, ontologies may be used to specify
security policies just as XML and RDF have been used to specify the policies.

3.7 Secure Query and Rules Processing for the Semantic Web

The layer above the Secure RDF layer is the Secure Query and Rules process-
ing layer. While RDF can be used to specify security policies (see, for example,
[23]), the web rules language being developed by W3C is more powerful to
specify complex policies. Furthermore, inference engines are being developed
to process and reason about the rules (e.g., the Pellet engine developed at the
University of Maryland). One could integrate ideas from the database infer-
ence controller that we have developed (see [24]) with web rules processing to
develop an inference or privacy controller for the semantic web.

The query-processing module is responsible for accessing the heteroge-
neous data and information sources on the semantic web. Researchers are
examining ways to integrate techniques from web query processing with se-
mantic web technologies to locate, query and integrate the heterogeneous data
and information sources. We need to examine the security impact of query
processing.

Secure Semantic Web Services 241

3.8 Privacy and Trust for the Semantic Web

Privacy is about protecting information about individuals. Furthermore, an
individual can specify say to a web service provider the information that can
be released about him or her. Privacy has been discussed a great deal in the
past especially when it relates to protecting medical information about pa-
tients. Social scientists as well as technologists have been working on privacy
issues. However, privacy has received enormous attention during the past year.
This is mainly because of the advent of the web, the semantic web, counter-
terrorism and national security. For example, in order to extract information
about various individuals and perhaps prevent and/or detect potential terror-
ist attacks data mining tools are being examined. We have heard much about
national security vs. privacy in the media. This is mainly due to the fact that
people are now realizing that to handle terrorism, the government may need
to collect data about individuals and mine the data to extract information.
Data may be in relational databases or it may be text, video and images.
This is causing a major concern with various civil liberties unions (see [25]).
Closely related to privacy is anonymity. Some argue that it is important to
maintain anonymity.

Recently there has been much work on trust and the semantic web (see
the research by Finin et al. [26, 27]). The challenges include how do you
trust the information on the web? How do you trust the sources? How do
you negotiate between different parties and develop contracts? How do you
incorporate constructs for trust management and negotiation into XML and
RDF? What are the semantics for trust management?

Researchers are working on protocols for trust management. Languages
for specifying trust management constructs are also being developed. Also
there is research on the foundations of trust management. For example, if A
trusts B and B trusts C, then can A trust C? How do you share the data
and information on the semantic web and still maintain autonomy? How do
you propagate trust? For example, if A trusts B at say 50% of the time and
B trusts C 30% of the time, then what value do you assign for A trusting
C? How do you incorporate trust into semantic interoperability? What are
the quality of service primitives for trust and negotiation? That is, for certain
situations one may need 100% trust while for certain other situations 50%
trust may suffice (see also [28]).

Another topic that is being investigated is trust propagation and propa-
gating privileges. For example, if you grant privileges to A, what privileges
can A transfer to B? How can you compose privileges? Is there an algebra
and calculus for the composition of privileges? Much research still needs to be
done here. One of the layers of the semantic web is Logic, Proof and Trust.
Essentially this layer deals with trust management and negotiation between
different agents and examining the foundations and developing logics for trust
management.

242 Bhavani Thuraisingham

4 Integrating Security, Semantic Web and Web Services
Technologies

Integration of the web services and the semantic web results in semantic web
services. That is, web services to the WWW are semantic web services to
the semantic web. Tim Finin and his team have discussed an architecture
for semantic web services [29]. They have describes the inadequacies of web
services and discussed the need for semantic web services. They state that
current technologies allow usage of Web Services. In particular current web
services support syntactic descriptions as well as syntactic support for service
discovery, composition and execution. They argue that we need semantically
marked up content and services, and therefore we need to develop seman-
tic web services. They then define an architecture called the semantic web
service architecture, which consists of a set of architectural and protocol ab-
stractions that serve as a foundation for Semantic Web service technologies.
These technologies support the following:

• Dynamic Service Discovery, Service Engagement, Service process enact-
ment, Community support services and Quality of service.

Service discovery is the process of identifying candidate services by clients.
Matchmakers connect the service requesters to the providers. Ontologies may
be needed to specify the services. Service engagement specifies the agree-
ments between the requestor and the provider. Therefore contract negation
is carried out during this phase. Once the service is ready to be initiated the
service enactment phase begins. As stated in [4] during this phase Requestor
determines the information necessary to request performance of service and
appropriate reaction to service success or failure. This will also include inter-
preting the responses and carrying out transitions; Community management
services support authentication and security management. Aquatic of service
provides support for negotiation as well as tradeoffs say between security and
timely delivery of the data.

Security cuts across all these services. Note that the community man-
agement service specially calls for authentication and security management.
Security services are needed for service discovery, engine segment, and enact-
ment. For example, not all services can be discovered. This will depend on
the sensitivity of the service and the security credentials possessed by the re-
questor. Therefore, security specifications for XML, RDF and OWL have to
be examined for semantic web service descriptions.

One needs to integrate the diverse and disparate data sources on the web
by invoking secure semantic web services. The data may not be in databases.
It could be in files both structured and unstructured. Data could be in the
form of tables or in the form of text, images, audio and video. Semantic web
technologies such as ontologies are becoming critical for information interop-
erability.

Secure Semantic Web Services 243

The challenge for security researchers is how does one integrate the infor-
mation securely? For example, in [30, 31, 32] the schema integration work of
Sheth and Larson was extended for security policies. That is, different sites
have security policies and these policies have to be integrated to provide a
policy for the federated database system. One needs to examine these issues
for the semantic web. Each node on the web may have its own policy. Is it
feasible to have a common policy for a community on the web? Do we need a
tight integration of the policies or do we focus on dynamic policy integration?
How can ontologies play a role in secure information integration? How do we
provide access control for ontologies? Should ontologies specify the security
policies? How do we minimize the trust placed on information integrators on
the web? We have posed several questions. We need a research program to
address many of these challenges.

5 Summary and Directions

This paper has provided an overview of web services security and semantic
web security including a discussion of the various security standards. We first
discussed security issues for web services and then discussed secure semantic
web. Finally, we discussed integrating security, web services and semantic web
technologies to develop secure semantic web services.

Web services are the services that are invoked to carry out activities on
the web. A collection of web services comprise the service oriented architec-
ture. We also discussed aspects of XACML, SAML and Shibboleth, which are
related to secure web services. We argued that security must cut across all
the layers. Next we provided some more details on securing the semantic web
including XML security and RDF security. If the semantic web is to be secure
we need all of its components to be secure. Next we discussed privacy and
trust for the semantic web.

Web services and service oriented architectures are at the heart of the
next generation web. They make use of semantic web technologies to generate
machine understandable web pages. This is one of the major developments
in the late 1990s and early 2000s. While there are numerous developments
on web services, the application of semantic web technologies and securing
the web services are major challenges. Furthermore, major initiatives such as
the global information gird and the network centric enterprise services are
based on web services and service oriented architectures. Therefore securing
these technologies as well as making web services more intelligent by using
the semantic web will be critical for the next generation web.

244 Bhavani Thuraisingham

References

1. OASIS, http://www.oasis-open.org/home/index.php
2. T. Berners Lee and J. Hendler: The Semantic Web, Scientific American, May

2001.
3. B. Thuraisingham: Building Trustworthy Semantic Web, CRC Press, 2007.
4. Shibboleth, http://middleware.internet2.edu/pki05/proceedings/chadwick-

distributed-shibboleth.pdf
5. http://en.wikipedia.org/wiki/Serviceoriented architecture
6. http://www.omg.org
7. E. Bertino, L. Martino: Security in SOA and Web Services. IEEE SCC 2006.
8. SUN XACML Documentation, http://sunxacml.sourceforge.net/guide.html
9. OpenSAML, http://www.opensaml.org

10. R. Bhatti, E. Bertino, and A. Ghafoor: Trust-based Context aware Access Con-
trol Models in Web Services, Proceedings of the Web Services Conference, San
Diego, July 2004.

11. http://www.terena.nl/activities/tf-aace/workshop/presentations/
Distributed trust model1.ppt

12. http://www.w3c.org
13. G. Antoniou and F. van Harmelan: A Semantic Web Primer, MIT Press, 2003.
14. B. Thuraisingham: Security Standards for the Semantic Web, Computer Stan-

dards and Interface Journal, vol. 27, no. 3, 257–268, Mar. 2005.
15. B. Thuraisingham: Database and Applications Security: Integrating Data Man-

agement and Information Security, CRC Press, FL, 2005.
16. C. Farkas, et al.: Inference Problem for the Semantic Web, Proceedings of the

IFIP Conference on Data and Applications Security, Colorado, August 2003
(formal proceedings published by Kluwer, 2004)

17. B. Thuraisingham et al.: Administering the Semantic Web, Confidentiality, Pri-
vacy and Trust, Journal of Information Security and Privacy, 2006.

18. E. Bertino, et al.: Access Control for XML Documents, Data and Knowledge
Engineering, Volume 43, No. 3, 2002.

19. E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, A. Gupta: Selective
and Authentic Third-Party Distribution of XML Documents. IEEE Trans. on
Knowledge and Data Engineering. 16(10): 1263-1278, 2004.

20. http://xml.apache.org/security
21. http://www.w3.org/Signature
22. http://www.w3.org/Encryption/2001
23. B. Carminati, E. Ferrari, B. Thuraisingham: Using RDF for Policy Specifica-

tion and Enforcement, Proceedings of the DEXA Conference Workshop on Web
Semantics, Zaragoza, Spain, 2004.

24. B. Thuraisingham, W. Ford, M. Collins, J. O’Keeffe: Design and Implementation
of a Database Inference Controller, Data and Knowledge Engineering Journal,
Volume 11, No.3, 1993.

25. B. Thuraisingham: Data Mining, National Security, Privacy and Civil Liberties,
ACM SIGKDD 2002.

26. G. Denker, et al.: Security for DAML Web Services: Annotation and Match-
making. International Semantic Web Conference, 2003.

27. L. Kagal, T. W. Finin, A. Joshi: A Policy Based Approach to Security for the
Semantic Web. International Semantic Web Conference 2003, 402–418.

Secure Semantic Web Services 245

28. T. Yu, M. Winslett: A Unified Scheme for Resource Protection in Automated
Trust Negotiation, IEEE Symposium on Security and Privacy, Oakland, CA.,
May 2003.

29. M. Burstein, Ch. Bussler, M. Zaremba, T. Finin, M.N. Huhns, M. Paolucci,
A.P. Sheth, St. Williams: A Semantic Web Services Architecture, IEEE Internet
Computing, September-October, 2005

30. A. Sheth, J. Larson: Federated Database Systems, ACM Computing Surveys,
Volume 22, No.3, 1990.

31. B. Thuraisingham: Security Issues for Federated Database Systems, Computers
and Security, Volume 13, No.6, 1994.

32. B. Thuraisingham: Data Management Systems Evolution and Interoperation,
CRC Press, 1997.

11

Geospatial Database Security

Soon Ae Chun1 and Vijayalakshmi Atluri2

1 College of Staten Island, City University of New York, Staten Island, NY
chun@mail.csi.cuny.edu

2 Rutgers University, Newark, NJ
atluri@cimic.rutgers.edu

Summary. Geospatial data refers to the resources associated with location infor-
mation represented by longitude and latitude. Its increasing availability and the tools
to integrate and visualize the various types of data facilitate conducting sophisticated
analysis and discovering hidden patterns. Therefore, uncontrolled dissemination of
geospatial data may have grave consequences for national security and personal pri-
vacy. Access control for this data is based on its geospatial location, content and
context, the credentials and characteristics of the users requesting access as well as
the time at which the data is captured and requested. In this chapter, we review the
different access control models proposed by researchers for controlled dissemination
of geospatial data. Since geospatial data is increasingly obtained from third party
Web services, we also review the security models presented in the area of geospatial
Web services.

1 Introduction

Geospatial data, which typically includes maps, aerial and satellite images, is
associated with location information represented by longitude and latitude.
These maps and remotely sensed satellite imageries may represent diverse
data, such as rivers, government boundaries, roads, rainfall, vegetation index,
business establishments, monuments, parks, schools, population, etc. The pro-
liferation of the Internet, with the advances in the collection and processing
of the geospatial data, has led to its easy creation and dissemination by fed-
eral, state and local government agencies as well as by private and non-profit
organizations. This geospatial data is often made readily available for public
access, and can be shared through a geospatial data clearinghouse or portal
in a global as well as local level, e.g. [23, 26, 6].

Geospatial data can be collected, analyzed, manipulated, and integrated
and visualized with the help of various Geographic Information Systems (GIS)
such as ESRI ArcView, ArcInfo, ENVI and Internet Map Server. They support
the end users to comprehend the complex nature of data through analysis, in-
tegration and visualization through thematic layers, and can produce more

248 Soon Ae Chun and Vijayalakshmi Atluri

value-added products in diverse formats, e.g. VRML, 3D animations, fly-by
animation, and interactive Internet maps. The geospatial data, coupled with
the GIS and Global Positioning System (GPS), can benefit both businesses
and governments in making decisions such as business facilities and site selec-
tion, demographic analyses, route selection, zoning, planning, conservation,
natural resource extraction, natural and man-made damage assessment, and
national security. Despite these numerous benefits, due to its easy availability
and due to the powerful analysis tools for the geospatial data, it may pose
serious threats to security and privacy. These geospatial data can be sensitive
since objects located in a particular location may be of national importance
that are vulnerable to attacks. These may include, for example, cultural land-
marks or critical infrastructure facilities such as water distribution, telecom-
munication, bridges, tunnels, and nuclear plants, which may cause a large
scale socio-economic impact in case of failure [5].

In addition to the security threats outlined above, availability of geospa-
tial data sometimes may reveal positional information of a person, which may
give rise to privacy threats, as he/she can be easily located and even tracked.
Similarly, any sensitive activities conducted on a certain location may need
to be kept confidential. In addition to protecting single activities, one may
need prevent adversaries to be able to discover patterns and hidden trends
of individuals by combining other publicly available geospatial data with the
activities conducted at those locations. To ensure the above security and pri-
vacy needs, there is a need for specification and enforcement of policies for
controlled dissemination of the geospatial data.

Another challenge pertaining to securing geospatial data is due to the
increasing use of the geospatial Web service technology to easily share and in-
tegrate the geospatial data and applications on demand. Previously, sharing of
geospatial data had been much more difficult due to the heterogeneities among
their format and metrics. These geospatial Web services allow to easily cre-
ate geospatial ”mash-ups” that are nothing but light-weight applications that
help in integrating diverse location based information. Such examples include
(i) Google Maps API’s that facilitate viewing of various types of information
of different locations on Web browsers [15], (ii) Google Earth [14] that pro-
vides more or less the entire world’s geographic information by empowering
its search engine with satellite imagery, maps, terrain and 3D buildings where
one can fly-to and zoom-in a certain address, get 3D view of terrain and build-
ings and search schools, parks, hotels, restaurants and get driving directions,
and (iii) Microsoft Virtual Earth [18] that uses Web services in combination
with a search engine to provide real time business intelligence information,
such as high-resolution bird’s eye imagery, the dynamic, drag-and-drop maps
or highly-visual path maps.

These geospatial Web Services can be invoked using a set of XML-based
standard programs and can be embedded into applications integrating many
other kinds of data. Sharing of these Web services should be done in such a
way that it preserves the security and privacy specifications of their respective

Geospatial Database Security 249

owners. Moreover, these policies for secure sharing should be properly man-
aged so that the right policy can be efficiently located and policy inferences
can be easily performed.

In this chapter, we review the access control models presented in the areas
of geospatial data maintained by stand alone traditional sources as well as
that obtained via geospatial Web services. When making access control deci-
sions, the access control models typically consider the characteristics of the
geospatial data (object) and the location of the user (subject). This is because,
the security and privacy policies are often based on the object’s contents and
the subject’s location. For instance, access control policies may be specified
based on the geospatial object characteristics such as the geographic coverage
(area or extent), the thematic content within the area, the zoom-levels to a
particular location, the temporal nature of the objects or the requesters, as
well as the location of the requester and his/her roles within the area and
temporal period. Specifically, we review the access control models for geospa-
tial data objects such as satellite images and vector data, and a geospatial
role-based access control model for controlling access to resources depending
on the user’s geospatial context as in location-based services, and an access
control model for the semantic geospatial Web services.

This chapter is organized as follows. In section 2, we present the geospatial
object data characteristics and models. In section 3 we discuss different fla-
vors of geospatial access control models. Specifically, in section 3.1, we discuss
the geospatial data authorization model presented in [8, 3, 4] where an access
request for geospatial objects is controlled by both geotemporal characteris-
tics of requested object and the user’s geotemporal context. In section 3.2,
we present the Geo-RBAC model [7, 11], that provides access control based
on the geospatial roles of the user. Similarly, in section 3.3, we review the
location-based conditional access model to control the mobile user’s resource
access, when the user location service is not always precise and sometimes
intermittent. In section 3.4, we discuss the geospatial Web services access
control model. Finally, in section 4, we provide conclusions and an insight
into future research directions in this area.

2 Geospatial Data Models

Geospatial data can be organized in different ways. The vector and raster
models are two principal spatial data organization scheme. The vector model
uses the geometry, such as points, lines, polygons, while the raster model uses
cells or pixels as spatial units.

2.1 Vector data

The vector model represents geospatial data with two components: spatial
attributes and non-spatial attributes. First, the spatial attributes indicate the

250 Soon Ae Chun and Vijayalakshmi Atluri

geometric shape such as points, lines and polygons. Points are represented as
pairs of latitude and longitude coordinates, lines as strings of coordinate pairs,
and polygons as lines that form closed loops or areas. In addition, the vector
model can represent the topological attributes between two geometries, such
as adjacency and containment. For instance, a water body or a zoning area
can be represented with a polygon. Thus the spatial attributes record data
about the location, topology and geometry of geospatial data.

The second component in the vector data is the non-spatial attributes, also
called thematic attributes, that refer to non-spatial properties of geospatial
data, such as annual rainfall, vegetation type, zoning type, land use, states,
census tracts, etc. A thematic layer is a collection of geometries having the
same attribute set. Thus we can have a layer of schools as points, and another
layer describing roads and bridges as lines and points.

2.2 Raster data

Under the raster data model, the spatial data, such as satellite images, eleva-
tion maps, or digitized maps, is represented as a grid of columns and rows, i.e.
as a matrix of cells (called pixels). Each layer of grid cells in a raster model
records a separate attribute. Each cell carries the non-spatial data, such as
rainfall, temperature, vegetation type, etc. Spatial coordinates are not usually
explicitly stored for each cell, but implicitly represented with the ordering of
the pixels. Typically, each layer contains information about the number of
rows and columns and the geographic location of the origin. The spatial reso-
lution of a raster is the size of one the the pixels on the ground. For example, if
one pixel corresponds to 3 meter by 3 meter area on the Earth, the data has 3
meter resolution. Different sensors provide images of different resolution levels
[24]. For instance, the Advanced Very High Resolution Radiometer (AVHRR)
produces images of 1km resolution [20], the Landsat Thematic Mapper (TM)
multi-spectral images of 30 meter resolution, the Radar images of 5 to 10 me-
ter resolution, and the IKONOS satellite images of 1 and 4 meter resolution.
DigitalGlobe’s QuickBird satellite’s panchromatic images of 60 cm resolution
marks the world’s highest resolution commercial satellite imagery.

Satellite images also carry temporal information, designating either the
time when the image data was downloaded from a satellite, or the time of
data creation. The coverage area of images are different from image to image,
depending on the orbits of the polar-orbiting satellites. The satellite images
also require georegistration that registers each image with a known coordi-
nate system (e.g. longitude, latitude) and reference units (e.g. degrees), and
assigns coordinates to the left, right, top and bottom corners of the image.
One satellite may have several sensors capturing information in different fre-
quency bands. The information in these bands can be further processed bands
to produce different layers, such as water, vegetation and the like.

Geospatial Database Security 251

3 Geospatial Access Control Models

3.1 GSAM: Geospatial Data Authorization Model

The geospatial image access model needs to support the following types of
”spatio-temporal policies,” which are specified based on spatio-temporal char-
acteristics of both the subject and object.

• P1: All users can view 10 meter or lower resolution images.
• P2: 1 meter resolution images of the parcel located in ”120 James Street,

Newark, New Jersey” can be accessed only by the current owner of this
parcel.

• P3: Only military personnel positioned in Afghanistan can zoom-in to 1
meter resolution images over Afghanistan captured after September 11,
2001.

• P4: The police officers positioned in Bergen County are allowed to access 1
meter resolution images of the nuclear power plant located at [-81.37227,
28.54623].

The Geospatial Data Access Model (GSAM) [8, 3] presents the formalism
required to specify the authorization policies as above. It employs the notion
of geotemporal roles. The prototype system that implements GSAM has been
presented in [4].

Geotemporal Role

Geotemporal roles are used to specify a set of subjects possessing spatial and
temporal credentials indicating that each role is associated with a certain
valid region and temporal interval. In other words, while a user may assume
a specific role in a traditional RBAC no matter where the user is, a user may
assume different geotemporal roles depending on the user’s location and time.
Thus, roles are also geo-referenced, and users are assigned to a geotemporal
role if they possess the required credentials. For instance, a role “doctor in
New York City” is different from a role “doctor in Los Angeles.” Similarly,
a doctor in the morning shift may be different from a doctor in the evening
shift. Mobile users can also assume these geotemporal roles as the users move
around and satisfy the specified requirements. In other words, geotemporal
roles are assigned to users depending on the context a user is in.

Formally, a geotemporal role in a scene can be represented as a pair 〈r, sc〉,
where r is a traditional role as specified in the RBAC role hierarchy, and sc
is a scene that is associated with geospatial and temporal extents. Each sc
can be organized as a hierarchy in its own domain. For example, an incident
domain may have scenes like fire, flood, earthquake, while a shopping domain
may have scenes of mall, retail-shop, wholesale area, market, etc. Each sc
can be instantiated with a scene expression such as scene name, or a specific

252 Soon Ae Chun and Vijayalakshmi Atluri

geotemporal extent, such as 〈label, lt, lg, h, w, [tb, te]〉 where label is a descrip-
tive scene name, such as ”New York City”, ”mall” or ”fire,” and 〈lt, lg, h, w〉
denotes latitude, longitude, height and width of a bounding box covering a
geographic area of the scene and [tb,te] denotes the temporal period of the
scene. Figure 1 shows the geotemporal role hierarchy that is associated with
a generic scene type or with a scene that is located in a particular location or
an area.

incident

natural
Incident

man-made
incident

fire hurricane
car

accident
Crime

business

store lodging

retail
store

department
store hotel Inn

scene

managerpoliceman

Miami, 8/12/2004

(13.4, 60, 10, 10)
2005

NYC,
Morning GWB, May 2007

Macy’s
20 Elm street
Newark, NJ

200 Main St
Los Angeles, LA

May 12, 2007

Role

law
enforcement

administrator
Role Hierarchy

Scene Hierarchy

Fig. 1. Geotemporal Role hierarchy

Examples of geotemporal roles include: 〈manager, retail store〉 denotes any
manager at a retail store scene regardless of the location of the store, while
〈manager, 200 Main Street, LA, May 12, 2007〉 denotes any manager whose
location is at this particular store located in 200 Main Street in LA on May
12, 2007. Geotemporal roles can be represented as a logical expression, called
geotemporal role expression re.

Geotemporal Object

Each geotemporal object belongs to an object type, which can be organized
into a geotemporal object type hierarchy, as shown in Figure 2. Each geotem-
poral object type is associated with a set of attributes, which include a unique

Geospatial Database Security 253

identifier, the type of geospatial object, the latitude, longitude, height, width,
resolution, timestamp (either image download time or last update time), and
the thematic link to the data set associated with the object. A geotemporal
object is specified with a geotemporal object expression ge that is a logical
expression of object attributes and their values.

Geospatial
objects

Image/Raster Vector

Satellite Aerial Digital
El ti P i t Li A

O th h t

Sate te
Images

e a
photos

Elevation
models

Point Line Area

Raw Processed Hillside Slope St t P kOrthophotos Raw
Images

Processed
Images

Hyper-

Hillside Slope

NOAA Brownfields

Schools

Streets

Rivers

Park

Census
track

Parcels

Hyper
spectral

NOAA

SPOT LANDSAT

NDVI

Impervious

o e ds

Composite

Hospitals track

AISA ASTERIKONOS

Impervious
Surface

Fig. 2. Geospatial Object Type Hierarchy

Geotemporal Permissions

The permissions on the geotemporal objects include viewing, copying and
maintenance modes. The viewing modes include permissions such as view,
view-thumbnail and view annotation, zoom-in, overlay, identify, animate and
fly-by. View allows a user to see an image object covering a certain geographic
area, zoom-in allows a user to view an image covering a certain geographic area
at a specific higher resolution level, overlay allows users to generate composite
images, where a composite image is constructed from multiple images by first
georegistering and then overlaying them one on top of another, identify allows
the user to view the tabular data linked to an image, animate allows a user to
obtain a time series of images and integrate them to show the changes in the
images, and fly-by allows a user to traverse from one location to another

254 Soon Ae Chun and Vijayalakshmi Atluri

a multi-resolution browsing from low resolution images to high resolution
images, or vice versa.

The copying modes, download and download-data, allow source files to be
downloaded. Unlike the text data where the display privilege implies the copy-
ing privilege, the viewing and copying are distinguished as separate privileges
with geospatial data since the objects displayed on the Web browser often
are image gif files, but not the original source files. The maintenance modes
include insert, delete, update and compose. The users with compose privilege
can create and insert value-added images, using images in the database.

Geospatial Authorization

An authorization is represented as a 5-tuple 〈re, ge, privilege, period, sign〉
that specifies whether the set of subjects represented by re has an access
privilege to an object or a set of objects represented by ge during the period.
The sign is indicates allow or deny the privilege.

Access Control Evaluation

The user’s access request can be represented as a tuple r = 〈gtc, gto, p〉 where
gtc is a geotemporal credential expression of the user with the contextual
information such as the current location and time the user is situated in, gto
is a geotemporal object expression that can include a particular image type,
a spatial area with certain temporal footprint, and p is a permission type.

The geotemporal credentials are matched with the geotemporal role ex-
pression in the policy statement, and when the spatial and temporal extents
are included in the geotemporal role extents, the role is activated. Given
the activated roles and its corresponding policies, the requested object gto is
matched with the authorized geotemporal expression in the policy. The match-
ing operations between the requested and policy geotemporal extents include
predicates to check the spatial and temporal relationships such as contain-
ment, total and partial overlap, meet, and no-overlap. When the geotemporal
extent gto is contained, or totally or partially overlapping with the object’s
geotemporal extents ge in the authorization, and the requested permission
matches with the one in the authorization, the authorization is allowed. In
case of partial overlap, only the overlapping area of the object should be deliv-
ered, which requires post-processing of the retrieved objects, such as cropping
of images and mosaicking of multiple cropped objects.

3.2 GEO-RBAC: Geospatial Role-based Access Control

In this section, we present different approaches where location-aware applica-
tions require access control on spatial data. There are many approaches on
context-aware and spatially-aware access control [10, 9, 28, 25, 2]. We present

Geospatial Database Security 255

one approach called Geo-RBAC where the map vector data and user’s posi-
tions are considered to protect resources in location aware applications. Some
examples of access policies that can be supported under this model include:

• P1: Only the environmental scientists currently making observations in
the river within the New Jersey Meadowlands area can enter the observed
fish counts into the database.

• P2: A surveyor working on a street in Newark can change the data on the
illegal waste deposits in the region where he is located.

In Geo-RBAC, the protected resources are mostly vector data that are
modeled with geometric shapes and associated locations.

Geometric Model and Spatially aware Objects

An object on the Earth is represented by a geometric shape, a point, a line or
a polygon. Each geometric object is tied to the Earth coordinates. A point de-
scribes a single location, a line represents an ordered sequence of points, and a
polygon is an ordered sequence of closed lines. GEO is the set of all geometrics
contained in a reference space called Minimum Bounding Box (MBB).

Objects to be protected consists of data about entities of the real world
that may occupy a position. These entities are called features. Features rep-
resent the spatial and non-spatial attributes. Spatial features have name and
location, i.e. geometry, while non-spatial features are not associated with any
location. An example of a feature is Newark which can be associated with a
polygon or point geometry. The features are can have feature types such as
Road, Town, Lake, Car.

Spatial Role

A spatial role is defined as a pair 〈r, e〉 where r is a role name and e is the
spatial extent determined by the boundaries of the space in which the role
can be assumed by the user. Role extent can be a feature. A role surveyor
can be associated to different extents, resulting in different spatial roles, e.g.
〈surveyor, city of Rome〉, and 〈surveyor, city of Newark〉, are two spatial roles.

Positional Model

The actual user position that can change in time is modeled with either a real
position, that is actual geometry such as a point or a polygon, and/or a logical
position, i.e. spatial feature (such as city). There is a one-to-many mapping
function that can map the real position to logical positions.

256 Soon Ae Chun and Vijayalakshmi Atluri

Geo-RBAC Model

The spatially aware role based access control model consists of role schema
and role instance, permissions, users, and sessions.

• Role Schema and Role Instance: A role schema defines the role name for a
set of spatial roles, the spatial constraints where roles can be enabled, and
specifies logical locations and real position for the users who may assume
the role. A role instance is a role fulfilling the constraints defined in the
role schema. Thus the spatial role is the role name in the schema with a
specific spatial feature. The spatial role is represented with 〈r, ext, loc,m〉
where r is a role name, ext is feature type of the role extent, loc a feature
of logical position and m the mapping function relating real positions to
logical positions.
An example of a role schema 〈Surveyor, RoadNetwork, PointonRoad, m〉,
represents a surveyor in a position on a road network. Given a role schema,
a role instance is created when the role extent is assigned with a particular
feature. For instance, a role instance could be a surveyor on a road in
Newark.

• Permissions: These are operations performed on spatial objects, such as
get traffic information over Urban-Road-Network features, notify over ac-
cident features, or find operation over Monument features. Given a set
of operations and a set of objects, permissions are represented as a pair
〈operation, object〉.

Geo-RBAC Access Control

The access control is specified as a set of assignment relations between per-
missions to spatial roles, between users and spatial roles:

• User-to-Spatial Role Assignment: This mapping relationship assigns a set
of users to spatial role instances. Inverse relationship (i.e. Spatial role-to-
User assignment) maps spatial role instances to sets of users.

• Permission to Spatial role assignments: The mappings can be specified
between the permission to spatial role schema and between spatial role
instances to permissions.

Access Request Evaluation

An access request is represented as a tuple 〈s, rp, p, o〉 where the user of session
s located at a real position rp wants to perform operation p on object o.
When permission (p, o) belongs to permission assignment specifications to
the enabled role at the user’s real position, the access request is granted.

This access control evaluation occurs in the following fashion: When a
user starts a new session, a number of roles should be enabled to be included
in the session role set. But in order to enable these session roles, the user’s

Geospatial Database Security 257

logical location should be within the role’s spatial extent. In order to find
out the logical location of the user using user’s real position, the location
mapping function in the role schema is used to identify the logical location of
the user. To determine enabled roles in a session, containment between user’s
logical position and role extent has to be evaluated. For each enabled role, the
set of permissions assigned to the corresponding role schema is determined.
If there are such permission assignment rules for an enabled role, then the
access request is granted.

3.3 LBAC: Location-based Access Control

For secure access to data by mobile users, it is important to consider the
user’s dynamic location to identify the roles allowed and denied. As opposed
to focusing on the spatial data objects such as raster or vector data resources,
the spatially aware or context-aware based access control focuses on the access
to resources based on the physical location of the user. Some of the access
policies include:

• P1: System administrators are authorized to configure the mobile network
if they are in the server farm room, they are alone in such an area, and
move at walking speed at most.

• P2: The CEO is authorized to access mobile network statistics if there is
nobody close by and she is not in a competitor location.

• P3: Guests can read mobile network statistics if there is nobody close by
and they are in a corporate location.

In [2], Location-based Access Control (LBAC) considers the physical lo-
cation and the credentials of the requester in determining to allow or deny
access. The context data about location and timing are made available by
third parties (e.g. mobile phone operators in a mobile network) through ser-
vice interfaces called Location Services. Thus a LBAC system evaluating a
policy sends requests to external services. However, the mobile network tech-
nology does not provide an exact location measure, which a Location Service
performs, and has a degree of uncertainty due to technological limitations and
possible environmental effects.

Location-based Predicates

Location-based predicates are used to describe the locational constraints of
the user, such as position, movement and interaction predicates described
below.

• Position-based conditions on the location of the user are used to evaluate
whether a user is in a certain building or city or in the proximity of other
entities; For instance, inarea(user, area) and disjoint(user,area, min, max)
verify the user is within or outside the area of area, and distance(user,

258 Soon Ae Chun and Vijayalakshmi Atluri

entity, min, max) checks whether the distance between user and entity
lies between min and max).

• Movement-based conditions on the mobility of the users, such as their
velocity, acceleration, or direction.

• Interaction-based conditions relating to multiple users or entities; for in-
stance, the number of users within a given area, i.e. density evaluates if
the number of people in the area is within certain max and min number,
or relative-density predicate evaluates if the number of people surrounding
users are within the maximum and minimum area.

However, the verification of these predicates depends on the accuracy of
the location technology, thus it considers Service Level Agreement (SLA),
such as confidence and timeout. Thus, the locational predicates are evaluated
to either true or false with the confidence value and timeout, 〈 Boolean-value,
confidence, timeout〉. The confidence value expresses the level of reliability of
the Location Service result according to accuracy, and the timeout represents
the time validity of the location values that may change rapidly.

For example, inarea(Alice, Newark) = [True,0.9,2007-11-09 11:10am]
states that the Location Service assesses as true the fact that Alice is lo-
cated in Newark with a confidence of 90%; and that such an assessment is to
be considered valid until 11:10am of November 9, 2007.

Subject

Subjects are represented with subject expression, which is a Boolean condi-
tional predicate to refer to a set of subjects depending on whether they satisfy
certain conditions. The conditions are evaluated with the user’s profile, loca-
tion, the user’s membership in groups or active roles.

Object

Objects are represented with a Boolean object expression, which refers to a set
of objects that satisfy the conditions in the object expression where conditions
evaluate membership of the object in categories, and values of properties on
metadata.

Action

Action is the action (or class of actions) that is allowed or denied.

LBAC Policy Rules

An access control rule is represented with a triple 〈subj expr, obj expr, action〉,
where subj-expr refers to the conditional expression for subjects, obj-expr refers
to the conditional expression for objects, and action refers to a privilege mode.

Geospatial Database Security 259

LBAC Policy Evaluation and Enforcement

A user’s access request is represented with 〈user id, SIM, action, object id〉,
where user id is the optional identifier of the user who makes the request,
SIM is user’s optional SIM card number, action is the action that is being
requested, and object id is the identifier of the object.

In the first phase, the Access Control Engine evaluates the policy P col-
lecting all the rules A in P that are applicable to the request. The set A of
applicable rules contains those rules r ∈ P for which action(r) corresponds to
the action specified in the access request, and object id satisfies the conditions
specified in obj-expr(r).

In order to evaluate the location-based predicates that appear in rules,
the access control engine needs to submit the query to the Location Service
provider for response. The Location Service returns the results in the form
of 〈Boolean value, confidence, timeout〉. Given the response, the access con-
trol engine determines whether or not the value returned by the Location
Service can be considered valid for the purpose of controlling access. Such an
evaluation depends on parameters timeout and confidence returned by the Lo-
cation Service. For responses with expired timeout, it automatically triggers
the re-evaluation of the predicate regardless of the other parameter values.
For unexpired responses, the engine evaluates the responses with respect to
the confidence value. The evaluation maintains the extended truth table that
maintains the acceptable confidence level for each predicate with minimum
and maximum thresholds. If the confidence level in response is greater than
maximum threshold in the truth table, the returned value is confirmed. If the
confidence level is less than the minimum threshold, then the returned value
is evaluated to false. If the returned confidence level falls between the maxi-
mum and minimum thresholds, the engine submits the re-evaluation query to
the Location Service, since it is not clear if the returned results are reliable
enough. The truth table for each predicate also maintains the maximum retry
for the evaluation. Complex predicate expressions are evaluated with each
predicate evaluation results with logical operations.

3.4 Geospatial Web Services Access Control

The geospatial data created by different organizations and individuals be-
ing made available rises the challenges related to sharing and interoperating
the geospatial resources. Towards this end, the efforts on standardization of
metadata [13] have been made, and more recently, the Web services technol-
ogy facilitates an easy access to distributed geospatial data over the Internet.
Web service standards developed by OGC (Open Geospatial Consortium) [22]
allow the Geospatial data interoperability and access via discovery, composi-
tion and invocation of Geospatial Web Services. It provides standards on Web
Feature Service (WFS), Web Map Service (WMS) and Web Coverage Service

260 Soon Ae Chun and Vijayalakshmi Atluri

(WCS) as well as Web Image Classification service and Web Coordinate Trans-
formation Services. These Web services allow the access of OGC compliant
data services around the globe with geographic region, temporal and thematic
specifications. In addition, these Web can be dynamically composed together
to produce value-added data products.

The OpenGIS Catalog Service for Web (CSW) [21] is a standard support-
ing the registry and discovery of geospatial data, where data providers register
their capabilities using metadata that can be used for service discovery by the
users. Some of the catalog services include ”getCapabilities”, ”DescribeRe-
cord”, ”GetDomain”, ”GetRecords”, ”GetRecordbyID”, etc. Web Coverage
Services include ”getCapabilities”, ”describeCoverage” and ”getCoverage”.
For instance, ”describeCoverage” will provide information of an image data
such as bounding box, resolution and spatial reference system. Web Feature
Services support ”getFeatureType”, ”getFeature”, ”getGmlObject” and ”get-
Capabilities” to access and interchange the vector data that is a set of at-
tributes, represented with (name, type and value) tuples where one attribute
has a geometry as its value. Web Map Services include ”getMap”, ”getFea-
tureInfo” or ”getCapabilities”. For instance, ”getMap” service supports the
map as images in PNG, JPG or GIF format, that can be layered.

The following example shows the ”GetGmlObject” request for the name
of a town whose identifier is ”t1” with traversing to the second level of the
nested XLink:

<?xml version="1.0" encoding="UTF-8"?>
<wfs:GetGmlObject

xmlns:wfs="http://www.opengis.net/wfs"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd"
service="WFS"
version="1.1.0"
outputFormat=" text/xml; subtype=gml/3.1.1"
traverseXlinkDepth="*"
traverseXlinkExpiry="2">
<ogc:GmlObjectId gml:id="t1"/>

</wfs:GetGmlObject>

The query response contains one result with the town name ”West Orange”
that is directed to a point feature ”townhall” located in a particular position,
as shown in the following.

<Town gml:id="t1">
<gml:name>West Orange</gml:name>
<gml:directedNode orientation="+"> <!-- xlink:href="#n1" ..

<gml:Node gml:id=n1>
<gml:pointProperty xlink:href="http://www.westorgane.nj.us/

/gps.gml#townHall/">
<gml:Point gml:id="townHall">

<gml:pos>147 234</gml:pos>
</gml:Point>

</gml:pointProperty>
</gml:Node>

</gml:directedNode>
</Town>

Geospatial Database Security 261

Geo-XACML: Geospatial Extensible Access Control Markup
Language

One aspect of the security concern with the digital geographic content (geo-
data) and services that are easily available over the networks is to manage
their Intellectual Property, i.e. managing the rights of data producers and
users who are licensed to use, distribute, copy and alter, etc. The Geospa-
tial Digital Rights Management Reference Model (GeoDRM RM) defines the
framework for web service mechanisms and rights languages to articulate,
manage and protect the rights of all participants in the geographic infor-
mation marketplace, including the owners of intellectual property and the
users who wish to use it [27]. It specifies GeoLicense that contains grant-
related information (Principal, Right, Resource, Condition) as well as license
issuer information langledigital-signature, other-info〉. Thus, a GeoLicense is
the container expressing the rights to use a specified geospatial resource, for a
given geographical space, over a specific period of time, subject to other con-
ditions. For example, a GeoLicense may express the rights to view, print, copy
and update all road maps of Chicago area for 2006. The identity for users,
resources, licenses, rights and processes is often associated with elements in
URL, URI, URN, WSDL, and digital signatures.

For Web services access control management in Service Oriented Archi-
tectures, the OASIS defined standard, the eXtensible Access Control Markup
Language (XACML) [19], defines a core schema and corresponding namespace
for expressing authorization policies in XML for objects that are themselves
identified in XML. However, XACML does not have the capabilities to ex-
press geo-specific constraints on access rights, relevant for access control for
geographic data.

The GeoXACML [17, 16], geospatial extension to the XACML Policy Lan-
guage, has been proposed to allow specifications of geometry attribute val-
ues, condition functions to test topological relationships between geometries,
and OpenGIS Web Service and Coordinate Reference System (CRS) specific
resource attribute designators. The geometry attribute values supported by
geoXACML include {Point, LineString, LinearRing, Polygon, Multipoint}.
The functions for testing topological relations include {disjoint, touches,
crosses, within, contains, overlaps, intersects, equals}.

Since GeoXACML uses the same policy language as XACML with addi-
tional support for geospatial features and and geospatial condition functions,
a policy decision node, supporting GeoXACML policies, is capable of per-
forming authorization decisions on XACML policies as well.

The GeoXACML policy is expressed as a set of rules each of which is ex-
pressed in a tuple (Grant-type, (Subjects, Resources, Actions), Condition). It
specifies that if conditions are satisfied, then a grant type such as ”permit” or
”deny” is given to (Subjects, Resources, Actions), denoting Subjects can per-
form Actions on geospatial Resources. The following GeoXACML illustrates
an example of a geospatial policy statement that grants a field engineer to ac-

262 Soon Ae Chun and Vijayalakshmi Atluri

cess a feature type ”roads” within the area specified in the polygon specified
in the condition.

<Rule Effect="Permit" RuleId="rule-2.2">
<Description>Field-Engineer can request features of type
’tiger:tiger_roads’ </Description>
<Target>

<Subjects>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
Field-Engineer</AttributeValue>

<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:
subject:subject-id" DataType="http://www.w3.org/2001/XMLSchema#string"
SubjectCategory="urn:oasis:names:tc:xacml:1.0:
subject-category:access-subject" /> </SubjectMatch>

</Subject>
</Subjects>
<Resources> <Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:
integer-less-than">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#integer">
0</AttributeValue>

<AttributeSelector DataType="http://www.w3.org/2001/XMLSchema#integer"
RequestContextPath="count(//wfs:Query[@typeName=’tiger:tiger_roads’])"/>

</ResourceMatch>
</Resource> </Resources>

<Actions>
<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GetFeature
</AttributeValue>
<ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:

action:action-id" DataType="http://www.w3.org/2001/XMLSchema#string"/>
</ActionMatch>

</Action>
</Actions>
</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:all-of">

<Function FunctionId="http://www.geoxacml.org/1.0/function#within"/>
<AttributeValue DataType="http://www.opengis.net/gml#polygon">
<gml:Polygon xmlns:gml="http://www.opengis.net/gml" gid="P2" srsName="EPSG:4326">
<gml:exterior> <gml:LinearRing>
<gml:posList dimension=2>-74.28798767828596,40.72400955310945 -74.12552621736093,

40.722605998371435 -74.12552621736093,40.614883172228936 -74.28939123302396,
40.61558494959794 -74.28798767828596,40.72400955310945 -74.28798767828596,
40.72400955310945 -74.28798767828596,40.72400955310945</gml:posList>

</gml:LinearRing> </gml:exterior>
</gml:Polygon>
</AttributeValue>

<AttributeSelector DataType="http://www.opengis.net/gml#box"
MustBePresent="false" RequestContextPath="//ogc:BBOX/gml:Box"/>

</Condition>
</Rule>

Geospatial Semantic Web Services Access Control

In [1], secure access to geospatial resources by clients or other Web services in
the context of dynamic composition is proposed using the Geospatial Seman-
tic Web Services that facilitates reasoning on security enforcement engines. In
contrast to the XML-based standards and first-order logic-based access con-
trols, it defines the axioms in OWL DL (Web Ontology Language-Description

Geospatial Database Security 263

Logics) [12] for policy specification. The policy framework is founded on three
atomic concepts defined in OWL DL.

<owl:Class rdf:about="#Action"/>
<owl:Class rdf:about="#Condition"/>
<owl:Class rdf:about="#Resource"/>

Policy actions are Web Services that make the resources available and per-
form manipulations on the resources. Policy conditions are contextual events
such as road topology or location data, and a resource can refer to the spatial
extents of an object such as ”building” with a polygon with a set of points.
The access policies for a client are defined with OWL geospatial access con-
trol ontology, which enables reasoning engine to carry out conflict checks for
possible loopholes. The spatial resources are organized with different levels
of ontologies. First, it has the domain specific ontology, e.g. county ontology
with spatial resources such as school, municipal building, park, etc., as pri-
mary concepts, and instances of these concepts as West Orange High School,
City Government, etc. In addition, each of these concepts refer to the external
upper ontology on the geospatial ontologies, that shows the geospatial related
concepts and their relationships such as ”features” has spatial extent to con-
cepts such as polygon or line, and each polygon consists of a set of coordinates
that form a closed ring. Figure 3 shows the relationships among different types
of ontologies.

Feature

Polygon

Linear
Ring

String

Coordinates

HasExteriorRing

Has Spatial Extent
Upper

Geospatial
Ontologies yg Stringgg

School Government
Building ParkCounty

Ontology

Essex Branch BrookOntology WO Middle
S h l

West Orange
High School

Court
Branch Brook

Park
gy

Instances
(Ground
Facts)

Newark City
Government

School

Fig. 3. County Ontology Hierarchy

264 Soon Ae Chun and Vijayalakshmi Atluri

This approach is intended to provide the ability to enforce the policy with
semantic reasoning. This semantics-aware security enforcement should be able
to reason and dynamically compose services even though there is no explicit
policy specification. For example, a provider network can provide two geospa-
tial services: movie theater finder Web service and a live traffic Web service.
For a premium subscriber requesting for movie theaters in a particular zip
code area, the provider can choose to overlay traffic information on the dis-
played map even though it was not explicitly requested or the subscriber is
not an explicit client of the traffic service. In addition, the policy on accessing
the location information (or map or building plan) of a Newark City govern-
ment building, and the policy on accessing court buildings can be specified
on the concept level of government building, rather than individually listing
these policy rules separately. Also, the reasoning engine should be able to de-
tect the conflicts among different policies using the concept hierarchies and
relationships.

4 Conclusion and Future Directions

This chapter presents different access control models and approaches for
geospatial data resources, such as GSAM (Geospatio-temporal Authorization
Model) for multi-resolution satellite images, Geo-RBAC for location aware
access to feature and map data, access control for imprecise location-based
services for context aware access and GeoXACML access control approaches
for geospatial Web Services, and Semantics-aware access control for geospa-
tial Semantic Web Services. In addition, it discusses the issues and the current
development in Geospatial Resource Digital Rights Management.

Both GeoXACML and secure Semantic Web Services access control pre-
sented above do not consider the specification of the subject role that is also
spatially referenced, but focus on the specifications of the geospatial resources
and geospatial conditions. An extension of GeoXACML and semantic RDF
version can be made to specify the geospatial roles as presented in the GSAM
and GEO-RBAC models presented in sections 3.1 and 3.2, and the authoriza-
tion engine is needed to verify the spatial roles.

The future approaches should focus on privacy issues that arise due to the
combination of ubiquitous computing devices and location tracking devices,
such as GPS, GPRS, etc. The data generated from these devices, combined
with the geospatial data, give rise to much more serious issues on privacy
infringement, such as the visualization of the locations from different timelines.
The future security research focus should address these location tracking as
well as the activities associated with the locations in the track.

Another direction that the research community should pay attention to
is to verify the policy composability and consistency in the dynamic ad-hoc
geospatial composition that involve multiple coalition organizations. Further-
more, collections of geospatial data from multiple databases within an agency

Geospatial Database Security 265

or from multiple agencies taken together may be sensitive, while individually
they are not necessarily of sensitive nature.

References

1. Ashraful Alam, Ganesh Subbiah, Bhavani Thuraisingam, and Latifur Khan.
Reasoning with semantics-aware access control policies for geospatial web ser-
vices. In SWS ’06: Proceedings of the 3rd ACM workshop on Secure web services,
pages 69–76, New York, NY, USA, 2006. ACM Press.

2. Claudio A. Ardagna, Marco Cremonini, Ernesto Damiani, Sabrina De Capitani
di Vimercati, and Pierangela Samarati. Supporting location-based conditions
in access control policies. In ASIACCS ’06: Proceedings of the 2006 ACM Sym-
posium on Information, computer and communications security, pages 212–222,
New York, NY, USA, 2006. ACM Press.

3. Vijayalakshmi Atluri and Soon Ae Chun. An Authorization Model for Geospa-
tial Data. IEEE Transactions on Dependable and Secure Computing, 1(4):238–
254, 2004.

4. Vijayalakshmi Atluri and Soon Ae Chun. A Geotemporal Role-based Autho-
rization System. International Journal of Information and Computer Security,
1(1/2):143–168, 2007.

5. John C. Baker, Beth E. Lachman, David R. Frelinger, Kevin M. O’Connell,
Alexander C. Hou, Michael S. Tseng, David Orletsky, and Charles Yost. Map-
ping the Risks: Assessing the Homeland Security Implications of Publicly Avail-
able Geospatial Information. Technical report, RAND National Defense Re-
search Institute, RAND Corporation, 2004.

6. Tom Barclay, Jim Gray, and Don Slutz. Microsoft TerraServer: a spatial data
warehouse. In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD interna-
tional conference on Management of data, pages 307–318, New York, NY, USA,
2000. ACM Press.

7. Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo Perlasca.
GEO-RBAC: a spatially aware RBAC. In Proceeding of the 10th ACM Sympo-
sium on Access Control Models and Technologies (SACMAT 2005), pages 29–37,
2005.

8. Soon Ae Chun and Vijayalakshmi Atluri. Protecting Privacy from Continuous
High-resolution Satellite Surveillance. In Data and Application Security, De-
velopment and Directions, IFIP TC11/ WG11.3 Fourteenth Annual Working
Conference on Database Security, pages 233–244, 2000.

9. Michael J. Covington, Prahlad Fogla, Zhiyuan Zhan, and Mustaque Ahamad.
A Context-Aware Security Architecture for Emerging Applications. In Procced-
ings of 18th Annual Computer Security Applications Conference (ACSAC’2002),
pages 249–260, 2002.

10. Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dey, Mus-
taque Ahamad, and Gregory D. Abowd. Securing context-aware applications
using environment roles. In Proceedings of the 6th ACM Symposium on Access
Control Models and Technologies (SACMAT 2001), pages 10–20, 2001.

11. Maria Luisa Damiani, Elisa Bertino, Barbara Catania, and Paolo Perlasca.
GEO-RBAC: A spatially aware RBAC. ACM Transactions of Information Sys-
tems Security, 10(1), 2007.

266 Soon Ae Chun and Vijayalakshmi Atluri

12. Deborah L. McGuinness and Frank van Harmelen. Owl web ontology lan-
guage overview: W3c recommendation 10. Technical report, W3C, 2004.
http://www.w3.org/TR/owl-features/.

13. Federal Geographic Data Committee. Geospatial Metadata Standards.
14. Google . Google Earth, 2007. http://earth.google.com.
15. Google . Google Maps API, 2007.

http://www.google.com/apis/maps/documentation/.
16. Andreas Matheaus. Declaration and enforcement of finegrained access restric-

tions for a service-based geospatial data infrastructure. In Proceedings of tenth
ACM symposium on Access control models and technologies, 2005.

17. Andreas Matheus. Geospatial extensible access control markup lan-
guage (geoxacml). Technical report, Open Geospatial Consortium, Inc.,
2007. http://xml.coverpages.org/OGC-07-026-RFC-Submission-GeoXACML-
ImplementationSpecification.pdf.

18. Microsoft Corporation. Microsoft Virtual Earth, 2007.
http://www.microsoft.com/virtualearth/default.mspx.

19. Tim Moses. eXtensible Acess Control Markup Language (XACML) Version 2.0.
Technical report.

20. National Oceanic and Atmospheric Administration (NOAA). NOAA KLM
User’s Guide, 2000. http://www2.ncdc.noaa.gov/docs/klm/html/c3/sec3-
1.htm.

21. Douglas Nebert, Arliss Whiteside, and Panagiotis Vretanos.
OpenGIS Catalogue Service Implementation Specification Version
2.0.2. Technical report, Open Geospatial Consortium, Inc., 2007.
http://www.opengeospatial.org/standards/cat.

22. Open Geospatial Consortium, Inc. OpenGIS Web Map Service Implementation
Specification, 2006. http://www.opengeospatial.org/standards/wms.

23. UNEP: United Nations Environmental Programme. Geo Data Portal, 2006.
http://geodata.grid.unep.ch/.

24. Satellite Imaging Corporation. Satellite Imaging Sensors, 2001.
http://www.satimagingcorp.com/satellite-sensors.html: Accessed in 2007.

25. Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, and Ora Lassila. A
Semantic Context-Aware Access Control Framework for Secure Collaborations
in Pervasive Computing Environments. In The Semantic Web - Proceedings of
the 5th International Semantic Web Conference (ISWC 2006), pages 473–486,
2006.

26. USDA. USDA Geospatial Data Gateway, 2006.
http://gcmd.nasa.gov/records/USDA Geo Gateway.html.

27. Graham Vowles. Geospatial Digital Rights Management Reference Model (Geo-
DRM RM) Version 1.0.0. Technical report.

28. Guangsen Zhang and Manish Parashar. Dynamic Context-aware Access Control
for Grid Applications. In Proceedings of the 4th International Workshop on Grid
Computing (GRID 2003), pages 101–108, 2003.

12

Security Re-engineering for Databases:
Concepts and Techniques

Michael Gertz1 and Madhavi Gandhi2

1 Department of Computer Science
University of California at Davis, CA
gertz@cs.ucdavis.edu

2 Department of Mathematics and Computer Science
California State University, East Bay, CA
madhavi.gandhi@eastbay.edu

Summary. Despite major advancements in access control models and security
mechanisms, most of today’s databases are still very vulnerable to various secu-
rity threats, as shown by recent incident reports. A reason for this that existing
databases used in e-businesses and government organizations are rarely designed
with much security in mind but rely on security policies and mechansims that are
added over time in an ad-hoc fashion. What is needed in such cases is a coherent
approach for organizations to first evaluate the current secrutiy setup of a database,
i.e., its policies and mechanisms, and then to re-design and improve the mechanisms
in a focused way, that is, to apply an evolutionary rather than a revolutionary ap-
proach to improving database security.

In this book chapter, we present important principles and techniques of such a
security re-engineering approach. Our focus is on the detection and prevention of
insider misuse, which is still the biggest threat to security. We show how techniques
such as focused auditing, and data and user profiling are integrated into a single
methodological framework for database security evaluation. This framework is sup-
ported by an access path model, which provides information about data and user
behavior, access correlations, and potential vulnerabilities. Based on the informa-
tion obtained in this approach, we illustrate how security can be strengthened using
standard database functionality.

1 Introduction

In most of today’s information system infrastructures employed by e-businesses
and government organizations, database management systems (DBMSs) serve
as the back-end for managing and delivering often mission-critical and sensi-
tive data. Although such infrastructures are comprised of many components,
such as networks and application servers, we conjecture that the data man-
aged in databases is often the most valuable asset to an organization. The

268 Michael Gertz and Madhavi Gandhi

data typically have been curated and maintained over many years, and their
loss or corruption would be much more difficult (and costly) to compensate
for than the failure of some other infrastructure components.

Over the past twenty years, there have been significant advancements in
database security (see, e.g., [12, 50, 51]), ranging from sophisticated, expres-
sive access control models to privacy and trust management. Although some
of these concepts have found their way into today’s (primarily commercial)
DBMSs, database systems are still facing numerous security threats aimed at
tampering with the integrity, availability, and confidentiality of the data.

There are several reasons for this situation. First, there is a substantial
time lag between the proposal of a better database security technique and its
realization in a new release of a DBMS. Even then, the new technologies need
to be learned and used appropriately to further secure a database. Second,
and more importantly, the shortcomings of appropriately securing databases
stem from circumstances that are also found all too often in other computer
security settings. These include

• Lack of clearly defined security policies. If security policies are not well
understood or not clearly stated, they cannot be effectively implemented
using database security mechanisms, leaving the database system open to
security threats.

• Poor security design. As with many other types of computing systems, for
databases too security is often an afterthought. Security policies are for-
mulated and implemented in an ad-hoc fashion, leading to an incoherent
overall database security design and thus resulting in potential vulnerabil-
ities that can be exploited by malicious users and intruders.

• Dynamic nature of applications and user tasks/roles. Over time, database
users are added or removed and applications are added, upgraded, or re-
moved, often leaving the implementation of associated security policies at
the database back-end untouched. Outdated and obsolete security policies
and corresponding enforcing security mechanisms pose a critical threat to
database security.

Several other reasons can be given, such as the evolution of database struc-
tures and schemas to accommodate new applications and associated security
requirements or simply the incorrect usage of the database and its (adminis-
trative) tools.

One of the most significant problem contributing to the current situation in
better securing databases is that of insider misuse. That is, legitimate users
of an application or database who (maliciously) tamper with the integrity
and confidentiality of the data. As stated in [26, 48], insider misuse is still
the biggest threat to security not only in database systems. Clearly, if secu-
rity policies are not designed and implemented in a coherent and consistent
fashion, intrusions and insider misuse pose a great threat to database security.

As becomes evident from the above observations, in order for an organi-
zation to strengthen the security of its database (potentially using new secu-

Security Re-engineering for Databases: Concepts and Techniques 269

rity concepts and techniques), first, the status of the security of the existing
“legacy” database needs to be evaluated. This should be done with a partic-
ular focus on potential vulnerabilities that give rise to insider misuse, which
is primarily caused by not adhering to the principle of least privilege [11, 31].

In this book chapter, we present the fundamental concepts and techniques
to support different security re-engineering tasks for relational databases. The
proposed approach is data-driven, meaning that a comprehensive evaluation
of the security of a given database necessitates the evaluation of the quality
of the data to be protected first. Only if it is known that the mission-critical
and sensitive data is of good quality (which is often not the case in practice,
see, e.g., [9, 18]), suitable data and user profiling techniques can be deployed.
Otherwise, statistical models representing the normal behavior of users and
data, which are to be monitored and enforced by respective mechanisms, is
skewed due to poor quality data underlying the model generation. The data
and user profiling techniques we present employ selective database auditing
using standard database functionality and well-known profiling techniques
based on data mining approaches.

We further present a methodological framework, called the access path
model, in which administrators and security personnel can discover, annotate,
and evaluate access paths. An access path represents the current (admissi-
ble) ways in which application users can operate on the data managed in
a database. Correlating data accesses and user accounts (represented in the
form of profiles) at the database layer and application layer is crucial in order
to strengthen or replace current security policies. A feature of the access path
model is that it allows to back-track accesses to and operations on database
relations to application users by correlating user profiles and audit trails man-
aged at the database and application layers. The information extracted from
such access exploration and analysis tasks is then used in the re-design of exist-
ing or the implementation of new security mechanisms. Our primary objective
here is to provide a comprehensive overview of existing and novel techniques
and in particular their integration into a single coherent framework for the
security re-engineering of databases.

The remainder of the chapter is organized as follows. In Section 2, we re-
view some basic concepts underlying the notion of intrusion detection, with a
particular focus on insider misuse. In Section 3, we then present basic princi-
ples of database auditing techniques and discuss the concepts of data and user
profiling in databases. The access path model is discussed in Section 4. Based
on the information obtained through employing the access path model, in
Section 5, we summarize basic database security reconfiguration approaches.
After a review of related work in Section 6, we conclude the chapter with a
summary and outlook in Section 7.

270 Michael Gertz and Madhavi Gandhi

2 Insider Misuse and Anomaly Detection

An overarching theme in computer security, which has been studied for more
than 20 years and also motivates the need for security re-engineering con-
cepts and techniques for databases, is intrusion detection [1, 20, 34, 38, 44].
In general, an intrusion is considered an activity that violates the security
policy of a system. Intrusion detection systems (IDSs) are based on the as-
sumption that the behavior of an intruder is different from that of an au-
thorized user and that respective unauthorized activities can be detected and
reacted upon. One typically distinguishes among host-based IDSs, network-
based IDSs and application-based IDSs. All these systems are based on the
analysis of audit data, which are collected by some audit procedures and de-
scribe events of interest at different levels of granularity, an aspect we will
elaborate on in Section 3.1. A host-based IDS uses audit data produced by
operating system calls on a local host, such as process executions, resource
consumptions, and file accesses. Network-based IDS, on the other hand, are
placed in a network and monitor all network traffic. They analyze packages
for particular signatures and try to detect and prevent inappropriate network
usages. Application-based IDSs can be considered a special class of host-based
IDSs. They collect and analyze audit data specific to a particular application,
application component or function realized on one or more hosts [23, 54].

One could argue that a database management system (DBMS) is a par-
ticular type of such applications. However, as we will discuss in the following
sections, traditional application-based IDS techniques are not sufficient to
realize an effective intrusion detection system for a DBMS. For this, it is im-
portant to understand the methodologies IDSs employ for the detection of
security policy violations. These methods are discussed next.

2.1 Misuse Detection

Misuse detection is one of two classes of intrusion detection approaches. Mis-
use detection is based on signatures that describe the characteristics of known
system attacks and vulnerabilities. The signatures are typically derived from
security policies. Mechanisms implementing a misuse detection approach mon-
itor the system, network, or application for any activities that match the spec-
ified signatures, e.g., a specific sequence of system calls or a particular type
of packet traffic between two hosts.

Although misuse detection approaches work very well for known attacks
and misuse patterns, they fail in dealing with new attacks and security threats.
These misuse detection approaches need to continuously update the signatures
of security threats and vulnerabilities in order to effectively prevent intrusions.

2.2 Anomaly Detection

Most of the approaches to intrusion detection typically combine misuse de-
tection with anomaly detection. Anomaly detection approaches are the most

Security Re-engineering for Databases: Concepts and Techniques 271

popular and effective ones, as they are based on the normal behavior of a
subject, e.g., a user, system component, or application. In anomaly detection,
information about repetitive and usual behavior is collected and suitably rep-
resented as statistical models of normal behavior, e.g., in the form of profiles.
Current user or system activities are then compared to such profiles. If the
activities significantly deviate from the profile, the activities are considered
intrusive [8, 32, 34, 38, 44]. Deviations from the normal behavior indicate po-
tential violations of a security policy or an intrusion and thus might trigger
respective responses.

The advantage of anomaly detection over misuse detection is that pre-
viously unseen attacks and activities have a better chance of being detected.
Clearly, the effectiveness of an anomaly-based IDS depends on how well normal
behavior is modeled and how tight thresholds are set to indicate a deviation
from the normal behavior, aiming to reduce false positives (activities that are
not normal but do not violate a security policy) and avoiding false negatives
(suspicious activities that are considered normal).

It is obviously desirable to adopt techniques suggested for misuse-based
and anomaly-based detection techniques, which almost exclusively have been
realized in the context of host-based and network-based IDSs, for database
management systems and surrounding infrastructure, that is, applications and
the network. A major problem the development of a database intrusion detec-
tion system is facing, however, is that of insider misuse, an aspect we discuss
in more detail next as it drives most of the security re-engineering approach
we present in this paper.

2.3 Insider Misuse

The notion of intrusion intuitively refers to subjects that gain access to a sys-
tem to which they have no legitimate access otherwise. Such intrusions occur
by exploiting system vulnerabilities or by simply cracking or stealing accounts
of legitimate users. Once the subject has access to a system, the subject then
is considered a legitimate user by the system and has all the privileges and
rights associated with that user; the intruder is now considered an insider.
Thus, one objective of a security re-engineering approach to database systems
can be framed as “effectively detecting and preventing insider misuse”.

As several recent reports clearly indicate, traditional intrusion detection
techniques and systems are not sufficient in dealing with insider misuse
[5, 6, 26, 43, 48]. In particular, the CSI/FBI reports state that “The threat
from inside the organization is far greater than the threat from outside the or-
ganization” and “Inside jobs occur about as often as external attacks” [26, 48].
Clearly, the problem of insider misuse is aggravated in the context of database
systems that manage large collections of sensitive and often mission-critical
data. There are many sources for potential insider misuse, ranging from the
frequently mentioned “disgruntled employee” who maliciously tampers with

272 Michael Gertz and Madhavi Gandhi

the integrity of the data, to outside hackers, criminals, and spies that gain
unauthorized access to the data [19, 49].

Some key observations that drive our security re-engineering approach
can be informally stated as follows. First, traditional host-based and network-
based IDSs are ineffective in dealing with insider misuse at the database level.
This is because users typically have legitimate access to the database and
applications, and misuse patterns are not reflected at the network or system
level but at a much finer level of granularity in the database (e.g., deletions
and modifications of tuples). However, it seems reasonable to combine such
IDSs with a database-based anomaly and misuse detection approach. Second,
excessive database and application privileges assigned to legitimate users can
be exploited by the users as well as intruders that gain access to user accounts,
an aspect often mentioned in the above reports. This aspect obviously relates
to the principle of least privilege [11, 31], that is, no subject should be assigned
more privileges than those that are necessary and sufficient to carry out their
tasks.

In the following, we discuss the first steps of a security re-engineering
approach to databases, consisting of the profiling of the data managed in the
database and the users operating on the data. In Section 4, we then discuss
how these steps are embedded in a methodological security re-engineering
framework.

3 Data and User Profiling

The basic technique underlying the detection of intrusions and insider misuse,
and subsequently the re-engineering of security mechanisms, is to monitor
what types of actions users perform on a database system. In the following,
we take a data-centric view on this and detail different profiling approaches. In
Section 3.1, we first elaborate on some standard database auditing techniques
as important prerequisite for profiling. In Sections 3.2 and 3.3, we then discuss
how audit data is used to profile data and users, respectively.

3.1 Auditing

In the context of database systems, auditing is the process of monitoring
and recording selected database event and activities [25, 42]. Auditing is pri-
marily used to provide for accountability, the validation of security policies,
and to capture and review the observed behavior of applications, users and
database objects. Auditing is also often a requirement for organizations that
have to comply with federal laws and regulations such as the Health Insur-
ance Portability and Accountability Act (HIPAA) of 1996, Sarbanes-Oxley
Act of 2002, and the Graham-Leach-Bliley Act (GLBA) of 1999. In the lat-
ter cases, auditing primarily serves the purpose of establishing accountability

Security Re-engineering for Databases: Concepts and Techniques 273

(who performed what operations on what objects at what points in time) and
the reconstruction of events [41].

NIST has established six components of security audit criteria [3], which
can directly be adopted to database systems. The activities are the (1) selec-
tion of security audit events, (2) security audit data generation, (3) security
audit event storage, (4) audit review, (5) security audit analysis, and (6) au-
tomatic response. Figure 1 illustrates the sequence of these criteria as an ap-
proach to using auditing techniques for evaluation activities, which is preceded
by an extra step, the analysis of application specific security requirements.

Analysis of
application-specific

security requirements

Generation of
audit data

Audit event
storage

Review of
audit trail

ResponseAudit analysisSelection of
audit events

Fig. 1. Activities according to the NIST security audit criteria.

Most of today’s commercial and open-source DBMS provide audit mecha-
nisms and architectures that support such activities and which mostly vary in
terms of the granularity of access information that can be recorded in audit
trails. For example, database triggers provide a convenient means to record in-
formation about SQL insert, update, and delete statements against database
relations, including the recording of old and new values of updated tuples.
Activities related to the creation, modification, and deletion of database ob-
jects resulting from SQL data definition language (DDL) statements can be
audited as well, often referred to as the auditing of accesses with respect to
system privileges. Some database systems even offer mechanisms that go be-
yond simple SQL statement level auditing by monitoring data accesses based
on content, such as Fine-Grained Auditing (FGA) introduced with Oracle 9i.
This is in particular useful when access information about SQL select state-
ments needs to be recorded (see, e.g., [30]).

In addition to database triggers and the SQL audit command supported
by many DBMS, another useful technique are stored procedures. Instead of
individual SQL insert, update and delete statements issued from an applica-
tion, stored procedures are called. A stored procedure then executes the data
modification statements and also records (in auxiliary relations) some extra
context information about the modifications such the current user role, other
users currently running database sessions, or the number of records that have
been modified through these statements.

In general, audit mechanisms for the monitoring of SQL statements, access
privileges used, database schema objects and fine-grained access information
can manage audit information in two ways: (1) within the database as a

274 Michael Gertz and Madhavi Gandhi

database audit trail (typically a table in the data dictionary) or (2) in an op-
erating system audit trail, where audit information is written to a file outside
the database, unaccessible to database users. Typical information recorded in
an audit trail includes the database user name, role and object privileges used,
name of the database object accessed, session and transaction id, SQL text of
the statement that triggered the auditing, and type of operation performed.
It should be noted that enabling any type of audit mechanism has an impact
on the performance of the database, no matter whether these are triggers or
audit mechanisms enabled through the SQL audit command. Thus, any au-
dit strategy targeting the security evaluation of a database has to carefully
analyze the various security requirements imposed on the database and the
specific objectives of the strategy. In the following two sections, we first discuss
some basic building blocks for such a strategy: the profiling of data and users.
In Section 4, we then present a methodology that embeds these techniques in
a more comprehensive and strategy-driven framework.

3.2 Data Profiling

Most approaches to misuse detection are user-centric. Their objective is to
determine how users typically behave in terms of operations on the database
and how their current behavior deviates from previous behavior. We con-
jecture that for the security re-engineering of databases, the evaluation and
strengthening of security has to take a data-centric view. That is, first the
behavior of the data being managed in the database needs to be evaluated
before techniques are employed to detect and evaluate the (potentially anoma-
lous) behavior of users. There are several reasons for such an approach. First,
accidental or malicious tampering with the security and integrity of data is
often only detected at the data level, that is, when erroneous, missing, extra,
or anomalous data are discovered. This aspect leads to the second argument,
where one would like to back-trace anomalous data to users who operate on
the data, something that is not trivial in particular in the case of shared
database user accounts, which is common in many application settings and
will be discussed in Section 4. Finally, and most importantly, approaches to
establishing some normal user behavior typically assume that the data users
operate on are normal, i.e., the data are correct and of good quality, some-
thing that is often not the case for production databases where evaluating and
maintaining the quality of data is a major concern [9, 18].

Snapshot Profiles

The first step in security re-engineering for databases is to determine and
evaluate the properties of data that is to be protected from misuse. Given
a database schema consisting of a set of relations R, those relations are in-
vestigated that manage mission-critical or sensitive data. Similar to the ap-
proaches suggested in [25] and [56], for a given relation R ∈ R with attributes

Security Re-engineering for Databases: Concepts and Techniques 275

A1, . . . , An, the values for individual attributes Ai are analyzed. This analysis
includes determining the distribution and frequency of attribute values, e.g.,
in the form of histograms, and the minimum and maximum values and lengths
for numerical and alpha-numerical attributes, respectively.

Such a simple analysis, which can be done using SQL statements at the
relation level, can reveal quite a lot of useful information, for example, outliers
that do not conform to certain properties the data are assumed to have. The
analysis can also be extended to sets of tuples from one or more relations where
now tuples and combinations thereof are analyzed and correlations among at-
tribute values are determined using standard association analysis techniques
(see, e.g., [57]). Assume, for example, two relations R1(A,C) and R2(B,D)
with a foreign key dependency R2.B → R1.A. For any two matching tuples
t1 ∈ R1, t2 ∈ R2, an association can describe that the value of t1.C always
determines the range of the attribute value t2.D. The association rules discov-
ered are then evaluated and compared to what is expected from the data. In
principle, many of the analysis tasks resemble standard actions employed in
the evaluation of the quality of the data [9, 18]. It should also be noted that
in production databases, most of the above information is typically readily
available. This is in particular the case where statistics for relations are pe-
riodically maintained to provide cost-based query optimizer with information
for choosing efficient query evaluation plans. Statistical information about the
relations is then available in the database’s data dictionary.

For data profiling, it is assumed that the above analysis tasks are per-
formed on a snapshot of the database, that is, at a particular point in time.
This can be done in a batch-mode when the workload of the database is low
(e.g., during night), or by using a stand-by or recent backup database. For
large-scale databases with hundreds of relations, clearly not all relations are
analyzed but only those that are relevant to specific security policies or those
that contain sensitive or mission-critical data as indicated in the initial step in
Figure 1. The snapshot profiles for these individual relations or parts thereof
(e.g., sets of tuples that have some specific properties or contain particularly
sensitive information) are managed in separate relations, specifically designed
for access to database security mechanisms (see Section 5). In the most sim-
ple case, a snapshot profile for a relation R ∈ R determined at a particular
point in time t, denoted DataProf(R, t), is a collection of measure-value pairs
that describe properties of attributes of R. The measure is related to the data,
e.g., number or frequencies of different attribute values, and the measure value
denotes what has been computed for a measure.

The above discussion makes one point very clear: developing a misuse de-
tection approach on top of a database for which the quality of the data is
not known or the data is of poor quality is likely to be not practical. That
is, if the normal behavior of users is to be determined, erroneous, missing,
or extra data in the underlying relations can significantly skew the statistical
models describing the normal behavior of users in terms of accesses to the
data. Therefore, it is essential to “clean” the data, i.e., removing (if possi-

276 Michael Gertz and Madhavi Gandhi

ble) all the data that is of poor quality and to set up mechanisms that help
prevent data of poor quality in the future. For this, mechanisms as simple
as integrity constraints that restrict the admissible values of attributes can
be very effective. More complex properties of the data, e.g., admissible rela-
tionships between attribute values of one or more relations can be realized
as well, mostly using database triggers. The discovery of integrity constraints
and their enforcement using standard database functionality thus plays an
important role in the security re-engineering of databases, because they can
effectively detect and prevent potential misuse patterns, no matter whether
these patterns stem from accidental or intentional misuse.

Temporal Profiles and Access Properties

Snapshot profiles describe properties of some relations’ data at a single point
in time, that is, for a given database instance. In order to further evaluate the
security of the database and to develop respective enforcing security mecha-
nisms, however, it is important to get a good understanding of how the data
behave and evolve over time. For this, we distinguish two objectives:

1. determining the behavior of the data over time, and
2. determining the behavior of accesses to the data over time.

The first objective can be realized by periodically taking snapshot profiles
and analyzing sequences of snapshot profiles for certain trends. Key to such
an approach is the appropriate choice of time-granularities, that is, instants in
time when to perform the snapshot profiling, an aspect that heavily depends
on the particular application setting of the database. Assume for a relation
R ∈ R, snapshot profiles DataProf(R, t1), . . . DataProf(R, tk) have been
determined at times t1, . . . , tk. The goal of the analysis of these profiles then
is to discover trends in the behavior of the data. These trends, managed in
temporal profiles with a measure/value pair structure similar to snapshot
profiles, can include coarse grained properties such the increase or decrease
ratio of the number of tuples in R between consecutive timestamps ti and
ti+1 as well as more fine-grained properties such as the significant variations
in the frequency and/or distribution of attribute values. The outcome of this
analysis is again evaluated and verified with respect to the expected behavior
of the data. The purpose of this type of trend analysis is less to derive further
security mechanisms but to gain confidence in individual snapshot profiles and
the properties of relations and data at respective points in time. Again, these
profiling tasks can go hand in hand with the process of managing statistics
for relations for query optimization purposes (here now, such statistics are
maintained over time, again in auxiliary relations).

The task much closer related to misuse and anomaly detection is the man-
agement and profiling of accesses to the relations over time. In the most simple
case, once some anomalous data or data behavior have been discovered, one
might naturally ask “what user is responsible for this behavior of the data?”.

Security Re-engineering for Databases: Concepts and Techniques 277

Of course, such information cannot be obtained from the relations but requires
auditing techniques introduced in Section 3.1.

Assume a relation R ∈ R for which access properties is to be determined.
First, a suitable time-granularity is chosen for the auditing approach, such
as just one hour or a whole week. Next, audit mechanisms are designed and
enabled that record access information about SQL insert, update, delete, and
select statements against R. If only the frequency of such statements over a
period of time is of interest, then normal auditing based on the SQL audit
command is sufficient, and no database triggers are employed. However, if
more fine grained information about the data modification statements is of
interest, triggers have to be employed to record for each such SQL statement
what tuples have been inserted, deleted, or modified, the latter also recording
the old and new values of updated tuples.

Gathering fine-grained information about SQL select statements is much
harder to deal with. To our knowledge, there is no DBMS that provides mech-
anisms to record how many and what tuples have been retrieved by a select
statement, but only the plain, text-based SQL query plus some additional in-
formation such as access time and user account. Thus, excessive and possibly
anomalous reads against a database are hard to capture as part of a misuse
detection strategy. The only viable solution to this problem is to embed some
extra code in application programs (e.g., at the client side) and stored proce-
dures (at the database side) that make use of cursors to retrieve and process
individual result tuples from an SQL select query.

In the following, we denote the access profile for a relation R for a time
interval [ti, tj] by AccessProf(R, ti, tj). The profile manages information (as
measure/value pairs) about the frequencies of all insert, delete, and update
statements, including information about individual tuples, and the frequency
of select statements against R. Note that for each individual statement, all
standard audit information as outlined in Section 3.1 is recorded as well. Fig-
ure 2 illustrates the structure and content of a relation used to manage infor-
mation about accesses to some relation R(A1, A2, A3). Note that in the ideal
case, respective profiles and audit trails are not managed in the production
database but in another database that allows to analyze and evaluate au-
dit and profile information without interfering with the production database.
Oracle’s Audit-vault product is a good example of such an approach [2].

timestamp user operation new tuple old tuple

09-01-07 09:12:14 scott insert (3,8,12) –
09-01-07 09:12:15 scott insert (4,9,7) –
09-01-07 09:13:01 smith update (3,8,12) (3,8,13)
09-01-07 09:13:02 jones delete – (4,9,7)
.

Fig. 2. Snapshot of the basic information recorded for a data access profile for a
given database relation, including old and new values of modified tuples.

278 Michael Gertz and Madhavi Gandhi

Upon the completion of an audit window for a relation R, the relation’s
access profile is analyzed to evaluate access patterns of interest. This can easily
be done using standard SQL statements that involve group by and sorting.
For example, for insert statements, one can determine typical values or value
ranges of inserted attributes. Similarly, for delete statements, one can compute
characteristic properties of the deleted tuples. For update statements, it is
furthermore possible to analyze the modifications at a much more fine-grained
level. For example, one can determine the average, maximum, and minimum
change of an updated attribute. Here again, knowing the security policies and
typical behavior of data in the relation is of much help in designing constraint
mechanisms that prevent accidental or intentional anomalous updates. As an
illustrative example, assume an employee relation with an attribute Salary. If
it is known that salaries can only be increased by no more than 20% and not
decreased by more than 10%, and these properties are also reflected in the
access profile for the relation, then suitable triggers enforcing this property
can be implemented.

In summary, the data profiling approach provides data administrators with
both static (one-time) and temporal properties of relations and accesses to re-
lations. The information obtained during the profiling not only helps in under-
standing the behavior of mission-critical and sensitive data, but it can also be
used to derive semantic integrity constraints, which, if suitably implemented,
further help preventing potentially anomalous data modifications.

3.3 User Profiling

Following the data profiling tasks presented in the previous sections, the next
step is to associate users with the behavior of the data and eventually de-
termine models describing the normal behavior of users. Profiling of users
or, more precisely, their behavior over time, has been the focus of several re-
lated work in the context of relational databases, e.g., [13, 15, 29, 56], fraud
detection, e.g., [21, 22], and intrusion detection, e.g., [33, 36, 53, 60].

In order to suitably approach the user profiling task, it is important to un-
derstand the notion of a user in a database system. Underlying access control
models in databases is the notion of authorization identifier (AuthID), which
is either the identifier of a database user or a database role name. According
to the SQL:1999 standard [39], when an SQL session is initiated (e.g., an ap-
plication connects to the database using a valid database user account), the
authorization identifier is then determined by the DBMS. In the following,
whenever we refer to a user, we mean a valid database user account used by
either a person or an application. There are typically different types of users:

• Database Administrators (DBAs). These types of users possess various
system privileges to manage physical database objects (e.g., the creation
of database files), logical objects (e.g., the creation and deletion of rela-
tions, views, triggers etc.), user accounts, database roles and privileges,
and system parameters and settings.

Security Re-engineering for Databases: Concepts and Techniques 279

• Application Developers. These users are primarily responsible for the de-
sign, implementation, and maintenance of the database schemas (including
structures such as indexes and stored procedures) underlying different ap-
plications.

• Application Users. Unlike the other two classes of users, application users
do not have any system privileges, i.e., they are not allowed to manage
database objects, but are only allowed to operate on the data of an ap-
plication schema using insert, update, delete, and select statements or the
execution of stored procedures.

Although DBAs have the most comprehensive and powerful set of privi-
leges to perform operations on any database structure and object, profiling
their behavior in terms of SQL DML statements against individual relations
is not that meaningful, as they will rarely perform such operations. In general,
profiling the behavior of DBAs is complicated as they are typically respon-
sible for setting up an audit and profiling framework. Also, there is rarely a
fine-grained typical behavior that can be derived from auditing all operations
a DBA issues against a database as operations exclusively should comprise
the management of logical and physical database objects, and not individual
tuples in relations associated with application schemas. We will revisit this as-
pect again in a later section. A similar argument can be made for application
developers. Applications are typically develop not on a production database
serving mission-critical applications, but on a development database where the
security is likely of less concern. Only in rare circumstances, application devel-
opers should perform management related operations on application schemas
hosted at the production database, e.g., when structures are transitioned from
the development database to the production database.

In the following, we are primarily concerned with profiling techniques for
application users with respect to individual relations. Assume a set Udb of
database users and a relation R with data access profile AccessProf(R, ti, tj)
for a time window [ti, tj]. In order to analyze and evaluate what operations
users in Udb performed on R, one can start off with a simple SQL group by
statement to see the types and frequencies of operations each user performed
on R. Clearly, not all users in Udb will have issued operations against R during
the time window, also because they simply do not have any privileges to access
R.

Following this kind of aggregating user-centric access information, one now
focuses on the behavior of a particular user u ∈ Udb who operated on R. There
are basically two meaningful ways by which entries in AccessProf(R, ti, tj)
can be organized for u: by session and/or by database role. Typically, every
operation occurs as part of a user session, which starts when a user connects
to the database and has some kind of id. In a database session, the user can
enable different database roles, depending on whether roles are supported by
the DBMS and, if supported, have been assigned to the user. Both types of
information is recorded in audit trails that keep track of accesses to relations.

280 Michael Gertz and Madhavi Gandhi

Using this information, it is then possible to extract sequences of operations
from Access(R, ti, tj) that are delimited by role changes, that is, in a session,
the user switched roles. For example, the first part of a particular user ses-
sion may contain 10 operations the user executed with role ro1 and then 20
operations with role ro2, all operations against relation R. Extracting all in-
formation relevant to a user u can easily be done using SQL query statements
against AccessProf(R, ti, tj).

Of particular interest in profiling users, of course, is to determine their
typical behavior. So one might ask “what is the typical sequence of opera-
tions, role enablings, and particular modifications a user is performing in a
given session?”. For this, existing data mining techniques can be used, for ex-
ample, temporal sequence learning [33]. User sessions then can be compared
and evaluated in terms of similarity, typical patterns, and anomalous access
patterns. Note, however, that the above profiling tasks all refer to a single
relation R. The construction of more complex profiles and their analysis will
be detailed in the next section.

In general, the above techniques show that it is important to deter-
mine precise metrics of interest for the user profiling approach. That is,
one has to establish clear objectives that can be computed from a data
access profile. For example, if the time window underlying a data access
profile AccessProf(R, ti, tj) covers a whole week from Monday to Sun-
day, then the profile of a user u with respect to the relation R, denoted,
UserProf(R, u, ti, tj) may include information about the following measures:
(1) number and duration of sessions, (2) names of roles that have been en-
abled during a session, including timestamps of when roles where enabled,
(3) number of operations against R per session and role setting, (4) typical
sequence of operations in a session (per role), (5) typical values of attributes
inserted or modified, and typical properties of tuples deleted. As done for
the other types of profiles introduced in the previous sections, a user profile
UserProf(R, u, ti, tj) can be managed as measure-value pairs (in auxiliary
relations) for easy inspection and use by security mechanisms. It should also
be noted that the above tasks can be extended to capture information about
the execution of stored procedures by a user.

The above is not a comprehensive list but shows some important measures
that can easily be computed from access profiles and presented to personnel
conducting the security re-engineering process. The main purpose here is to
provide such personnel with insights into who performs what types of oper-
ations in what settings on a given relation. In particular, these profiles can
serve as a starting point for a more comprehensive user evaluation and pro-
filing approach, as detailed in the next section.

Security Re-engineering for Databases: Concepts and Techniques 281

4 Access Path Model

A typical production-type database setup may contain thousands of database
objects, hundreds of users and roles and, consequently, many complex access
privilege structures. Furthermore, several applications may operate on a sin-
gle database and its objects using different accounts and privileges. In order
to apply a security re-engineering approach to such a complex setting, it is
essential to have a good methodology that helps administrators and security
personnel to suitably approach the tasks of data and user profiling, analysis
and correlation of profiles, and re-design of security policies and mechanisms.

In this section, we present the access path model, which helps accomplish-
ing these tasks in a focused manner. In Section 4.1, we outline the specific
problem setting and the objectives the access path model addresses. In Section
4.2, we introduce the components of the access path model. Section 4.3 then
discusses how the model is used to accomplish different security re-engineering
tasks.

4.1 Problem Setting and Objectives

As discussed in the previous sections, if erroneous or anomalous data have
been discovered, one would like to identify the user(s) who operated on these
data. There are several aspects that make it very difficult to establish such
correlations. First, a complex information system infrastructure can consist
of multiple layers, typically several applications on top of a single database,
with numerous users at both the application and database layer, including
persons, application users, and database users. Most approaches to anomaly
and misuse detection assume that the notion of a user is well-defined, typically
a user directly operating on the data. However, what precisely constitutes a
user in a more complex setting such as outlined above? A person, an applica-
tion account, or a database account (possibly having several database roles)?
What if users and/or applications share accounts? How can accesses to the
data be traced back to users? As accesses to the data occur through several
layers, starting with a person or application, which, in turn, performs opera-
tions on the database, correlating anomalous data and data behavior with a
person is not a trivial task. However, in order to adhere to the principle of
accountability, being able to determine such correlations is a must.

To address these problems, we propose the access path model. The objective
of the access path model is to help administrators and security personnel in a
focused re-engineering approach to database systems. This is accomplished by
a methodology to describe, annotate, explore, and correlate so-called access
paths. An access path, which will be described more formally below, basically
specifies in which way a person operates on the data managed in a DBMS.
Different components of an access path are annotated with data and user
profiles and allow for an easy comparison of access correlations at the different
layers of access. The access path model provides a comprehensive framework

282 Michael Gertz and Madhavi Gandhi

and methodology for a security re-engineering approach to databases, with a
focus on misuse and anomaly detection driven by data and user profiles.

4.2 Model Components

The access path model consists of several components that help describing
correlations between users and accesses at different layers. Figure 3 gives an
overview of the basic components, with applications and a single database as
back-end being the core components.

App
Account

App
Account

App
Account

App
Account

App
Account

Role

Role

Role

Role

Role

Role

Role

Applications
Person DB users

A1

A3

A2

DB Objects

Application Layer Database Layer

Fig. 3. Access Path Model

In this figure, there are three applications and several persons who have
access to the applications based on some application accounts. We assume
that a person does not directly connect to the database (e.g., at the database
server) but through an application once the she has been authenticated at the
application layer. We also make this assumption for DBAs, who operate on
the database only using administrative tools (applications). The connection
to the database occurs through database user accounts, which then, based
on the database privileges assigned to the accounts, are allowed to perform
operations on database objects. For the sake of simplicity, we only consider
operations on database relations, which are shown on the right. One could also
include other types of database objects, such as views or stored procedures,

Security Re-engineering for Databases: Concepts and Techniques 283

which can be queried and executed, respectively, from a database user account.
The figure shows several cases that are typical in real-world settings. We first
discuss these cases in more detail, and then elaborate on how an instance of
the access path model is obtained before we cover some more formal properties
of the model.

Application Layer Figure 3 shows three applications A1, A2, and A3 to
which some persons have access. At application A1, each user has a sepa-
rate application account, and each application account is associated with
a database user account. At application A2, again each user has a separate
application account, but the application uses only one database account.
For application A3, two persons share an application account, and the ap-
plication uses different database accounts. An important observation from
the latter two cases is that accounts are shared, which obviously causes
problems in correlating data accesses to a particular person.

Database Layer With each database user account, one or more database
roles are associated. For application A1, each application user account
corresponds to a database user account, and each database user account
has two roles. For application A2, there is only one (default) role for the
database account through which all accesses to the database occur.

More formally, an instance of the access path model consists of a set of paths
P ⊂ Up × Ua × (Udb ×Rdb) ×DBobj , with the vertices defined as follows.

• Up is a set of persons, typically those who possess a (shared) application
account.

• Ua is a set of application accounts.
• Udb is a set of database user accounts, and Rdb is a set of database roles;

an account/role pair (udb, rdb) ∈ Udb ×Rdb specifies that the account udb

has been assigned the role rdb. Several roles can be associated with one
database account udb.

• DBobj is a set of database objects such as relations, views, and stored
procedures managed in the database.

Role hierarchies [24] are not explicitly represented in the access path model,
because only individual roles are enabled by users.

How are these sets obtained for creating an instance of the access path
model for a particular application and database setting? For this, one has to
recognize that the security re-engineering tasks described thus far not only
concern the database that is eventually to be better secured but the whole
infrastructure on top of the database, in particular all applications. That is,
all applications that operate on the database should be known. Consequently,
for each application, the application accounts Ua should be determined. If a
good security policy enforcement and maintenance strategy is in place at the
organization, then it should also be known what persons Up have what appli-
cation accounts Ua. This is admittedly one of the most complicated tasks in
the security re-design, because the set of applications and their user accounts

284 Michael Gertz and Madhavi Gandhi

as well as persons possessing accounts can be very dynamic. Determining
what application accounts make use of what database account requires an
inspection of the application programs, in case respective information is not
documented somewhere else. This process establishes application related sub-
paths Papp ⊂ Up × Ua.

Information about database user accounts Udb, roles Rdb, and database ob-
jects DBobj can easily be obtained by querying the database’s data dictionary.
If a database account udb ∈ Udb has directly been assigned some privileges on
object odb ∈ DBobj , then sub-paths from udb to odb labeled with these privi-
leges can be determined. Similarly, if udb has been assigned a role rdb ∈ Rdb,
then respective sub-paths are introduced from that role to database objects
the role is allowed to operate on. For the sake of simplicity, we again only
consider privileges with respect to relations and assume that if an account udb

or role rdb has insert, update, delete, or select privileges on a relation, then
there is only one suitably labeled sub-path from udb and rdb to odb, respec-
tively. If the same role rdb has been assigned to several database accounts,
then the sub-paths from rdb to database objects are only given once but there
are individual paths from these database accounts to rdb.

Figure 4 illustrates a case where a person up has an application account ua,
and the application uses the database account udb to connect to the database.
Two roles rdb and r′db are assigned to the account udb, each with privileges on
different database objects o1, . . . , o5.

up ua udb

r’db

rdb

o1
o2
o3

o4

o5

Fig. 4. Instance of some access paths starting from a person up using an application
account ua, which, in turn, has two roles rdb, r

′
db with access privileges to some

database objects o1, . . . , o5.

Gathering information about sub-paths from persons to database user
accounts and roles and representing these access structures and access cor-
relations to administrators can be supported by some kind of security re-
engineering workbench that, among other tasks such as the selective profiling
of data and users, allows to visualize different access paths. This simple rep-
resentation of access information can lead to some interesting insights, all of
which relate to the discovery of potential vulnerabilities in the current security
setup of the applications and the database. These include

Security Re-engineering for Databases: Concepts and Techniques 285

• unused application accounts for which no person exists who makes use of
that account,

• unused database accounts for which no application account exists that uses
the database account, and

• unused database roles that have not been assigned to any user or have no
privileges associated with them.

Unused user accounts or default accounts, which often come with appli-
cations and database servers, always pose a security risk. In particular for
default accounts default passwords are used that can easily be guessed by
an intruder (see, e.g., [30, 42]). Even though the information gathering de-
termines that there is a correlation between accounts, say an application can
use two different database accounts, this does not necessarily mean that these
database accounts are actually all used. A similar argument can be made for
database roles. An instantiation of the access path model and representing
the different access paths from the information available at the application
and database layer resembles more like a static analysis of admissible access
correlations. The instantiation does not reveal any information about the how
access paths and sub-paths are actually used. This is where the data and user
profiling techniques are employed to further evaluate accesses and to detect
potential vulnerabilities, as discussed next.

4.3 Annotating and Exploring Access Paths

Assume a partially instantiated access path model for some applications and
database where no access correlations between database accounts/roles and
database objects have been made yet. In order to focus on evaluating the
security of mission-critical and sensitive database objects and relations in
particular, only respective relations are considered first in exploring access
correlations. Is is assumed that for a given database schema such relations
can be identified based on existing security policies and regulations. In the
following, let DBobj denote only such critical relations.

Now, for each relation R ∈ DBobj , a snapshot profile DataProf(R, ti)
is determined at time ti. This process follows exactly the tasks presented
in Section 3.2. Respective profiles are inspected, evaluated and subsequently
access profiles AccessProf(R, ti, tj) are established for a time window [ti, tj].

The profiles obtained in this way are now used to annotate components of
the access path model instance comprised of vertices (representing accounts,
roles, and objects) and edges (representing access correlations). Each relation
R ∈ DBobj is annotated with its snapshot profile DataProf(R, ti) and access
profile AccessProf(R, ti, tj). It is assumed that a snapshot profile is captured
at the same time ti the collection of access information for R during the time
window [ti, tj] is initiated. From an access profile AccessProf(R, ti, tj) and
its user profiles UserProf(R, udb, ti, tj) then access sub-paths from database
accounts/roles to the relation R are established. Each such sub-path ((udb −→

286 Michael Gertz and Madhavi Gandhi

rdb) −→ R) is annotated with access information specific to the database user
udb and role rdb, respectively. The process is repeated for the other relations in
DBobj until all sub-paths from database accounts/roles to the relations DBobj

have been annotated with respective access information.
After completing instantiating access correlations at the database layer,

i.e., sub-paths of the form ((udb −→ rdb) −→ R), the next step is to obtain
more fine-grained information about access correlations between application
users and database accounts, and to annotate respective paths with this in-
formation. Although some database systems provide information about the
remote database calls in their audit trails, audit trails typically do not provide
sufficient information to exactly associate a particular application account or
even person with an operation against a relation. While a simple access cor-
relation between an application account and a database account can be de-
termined by inspecting database calls in the application programs, more fine
grained information can only be obtained by audit log correlation (see, e.g.,
[4]). A particular case of interest is when accounts are shared, as illustrated
in Figure 3 for applications A2 and A3. For example, in the case of accesses
to the database from application A2, if it is known that the database account
udb has been used to perform some operations on a relation R, one would
like to know what application account (and thus possibly what person) was
responsible for these operations. If the application keeps a log for maintain-
ing logons, authentication events and calls of, e.g., remote procedures, then
such a correlation can be established based on an appropriate comparison of
the timestamps in the application logs and the database audit trail. In the
ideal case, a respective technique would be able to associate an application ac-
count (and application session) with exactly one user session in a user profile.
Such fine-grained information then is used to annotate sub-paths connecting
application accounts with database accounts.

The above annotation techniques for different components of access paths
demonstrate that a focused, data-centric discovery of access correlations in
a complex information system infrastructure is feasible using existing tech-
niques for data and user profiling as well as for log correlation. In particular,
the techniques show the utility of a reverse engineering approach to extract
access information at different components and to present this information to
security personnel for further explorations. Such explorations and subsequent
security re-engineering tasks can take various forms, the most important one
dealing with unused privileges violating the principle of least privilege.

Using access profile information associated with database accounts and
relations, it is now possible to evaluate how a database account udb operates
on a relation R over time. For example, during the instantiation of access
path components using information from the data dictionary, an access cor-
relation udb −→ R is established. Assume this edge represents update and
select permission udb has on R. If the access profile for this path component
only contains information about select statements again R and the time win-
dow has been chosen appropriately, then the account udb likely does not need

Security Re-engineering for Databases: Concepts and Techniques 287

the update privilege on R. Similar scenarios can be devised for the case of
database roles where udb does not use all the privileges associated with a role
rdb. If such a behavior can be found for all other users of that role, then respec-
tive privileges should be revoked from rdb. The access path model provides
a convenient framework to explore such correlations and establish profiles on
demand (though information needs to be collected over a time window) in
order to evaluate known security policies or to get better insights into the
exact user and access behavior.

5 Security Reconfiguration

We now detail and summarize some basic tasks to reconfigure the security
setting and mechanisms of a database system using the information obtained
from data and user profiling and access path correlations presented in the
previous sections. We assume that appropriate (coordinated) authentication
and auditing mechanisms are in place at the application and database layer.

The objective of the reconfiguration of security mechanisms is to con-
strain the behavior of database users and roles such they have exactly those
privileges necessary and sufficient to perform their tasks. In other words, the
mechanisms should realize the principle of least privilege [11, 31]. The problem
with most security mechanisms in database systems in achieving this objec-
tive, however, is that they basically rely solely on the SQL grant statement,
which in general does not allow to specify fine-grained access policies. This
means, for example, that if a user is only allowed to insert tuples that have
some well-defined properties, this admissible behavior cannot be specified us-
ing the grant statement. In general, this leaves plenty of room for malicious
or accidental misuse of privileges by insiders.

Integrity Constraints. As discussed in Section 3.2, semantic integrity con-
straints provide an effective mechanism to constrain attribute values and com-
binations thereof to admissible ones. Most static integrity constraints can be
implemented easily, e.g., through database triggers or check clauses in rela-
tion schemas. These mechanisms can be used to prevent inadmissible attribute
values a user tries to (maliciously) insert or modify. Recall that such mecha-
nisms also have the side-effect of helping maintaining the quality of the data,
an important prerequisite for evaluating the security of a database.

Unused Accounts and Roles. The access path model provides a framework
to detect unused database accounts and roles. In particular unused accounts
are vulnerable to misuse and thus should be locked or simply deleted. Simi-
larly, unused roles should be deleted, because they likely implement obsolete
policies. The deletion of roles can also have implications on the re-design of
role-hierarchies.

Unused Privileges. As indicated at the end of Section 4, unused privileges
can be detected once access sub-paths have been annotated with respective

288 Michael Gertz and Madhavi Gandhi

access profiles. As the content of an access profile clearly depends on the time
window for which information has been collected, care has to be taken to
ensure that the suspected unused privilege is not used only on rare occasions.
In this case, it is likely that this privilege should then be associated with a
separate role and not with a role for which the privilege has been determined
as inactive during the time window. The revocation of unused or obsolete
privileges and roles from users and roles clearly helps a lot in achieving the
goal of least privilege.

Discovery and Re-design of Database Roles. Database roles help in
administering privileges associated with complex tasks [24, 45], i.e., activi-
ties by different types of application users. Assume that for a set of mission-
critical relations data and user access profiles have been determined. Respec-
tive access paths in the access path model can now be analyzed to determine
whether there are similarities among accesses to the relations by these differ-
ent database users. If no roles (or only some default role) have been associated
with these users in the context of respective accesses, database roles (and role
hierarchies) can be introduced to better capture similar privileges used by
these accounts and to ease the management of privileges.

There has recently been a great interest in mining roles from permission
assignments (see, e.g., [52, 58]). Such approaches can be extended to include
more fine-grained access information, such as those represented by access pro-
files. The design and evaluation of roles and role hierarchies as well as a
security analysis focusing just on roles [35] is a topic on its own that can
effectively be integrated in our security re-engineering approach.

Derivation of Database Views. One of the most effective mechanisms to
achieve the principle of least privilege is to have database views, and to give
database users privileges on these views rather than the underlying relations.
The derivation of such views is not an easy task and requires a careful analysis
of access profiles. Assume a database user udb who has been granted select,
insert, and update privileges on a relation R. The access profile for udb might
show that the user only selects certain types of tuples and the tuples she mod-
ifies have similar characteristics. The description of these tuples, represented
in the user profile for udb, then can be used to derive a view V that contains
only tuples the user typically operates on. The privileges udb has on R are
then revoked, and the user is assigned respective privileges on the view V .
More complex views can be derived as well for SQL select statements that
refer to more than one relation.

The idea of view derivation from access profiles is relatively unexplored
as it is a non-trivial task to precisely describe the data (based on user pro-
files) that are necessary and sufficient for the user to perform her legitimate
tasks. A practical problem might be that an access profile does not cover a
large enough time window, and the view derived from the profile then would
prevent the user from performing tasks she only does on rare occasions. Note
that most of today’s DBMSs address the view update problem by providing

Security Re-engineering for Databases: Concepts and Techniques 289

so-called instead-of triggers that can execute some SQL modification state-
ments on base relations whenever a modification statement is issued against
a view. Thus, views can even be used in the context of SQL data modification
statements.

Stored Procedures. A major limitation of discretionary access control mod-
els in relational databases is that SQL grant statements for assigning priv-
ileges to users and roles are often too coarse-grained. Some of these limita-
tions can be circumvented by view privileges instead of privileges on base
relations, as outlined above. However, oftentimes granting access to some re-
lations (and views) depends on context information that cannot easily be
specified in a view definition. Such context information might include con-
current database user sessions, time information, and the origin of database
requests (e.g., application hosts). There has been some substantial work on
more expressive access control models that take such context information into
account and therefore provide more dynamic access control mechanisms (see,
e.g., [10, 16, 17, 27, 28]).

As indicated in Section 3.1, stored procedures provide a powerful means to
collect context information (e.g., for auditing purposes) when the procedures
are called from application programs instead of plain SQL data modification
statements. In the same way, stored procedures can be used to gather context
information about its current execution, and one can use this information
to make fine-grained access control decisions. For example, when a stored
procedure is supposed to perform an update issued by an application, SQL
queries in the procedure’s body then can query data dictionary relations or
call other (remote) procedures, and subsequently make a decision on whether
or not the update operation is admissible. Clearly, using stored procedures
might require modifications to some application code in that procedures are
called instead of plain SQL DML statements. In general, stored procedures
seem to be an effective means that help in dealing with misuse prevention,
rather than just misuse detection (as done by analyzing audit trails after the
fact).

The choice of an appropriate security re-design strategy for a particluar
vulnerability discovered in analyzing access paths depends on several factors.
First and foremost, there is the issue of database performance. Integrity con-
straints, triggers, stored procedures and even auditing occur some overhead
in verifying conditions or executing additional code. Here again it is impor-
tant to balance the efficient and reliable performance of the database and it
applications with the various security requirements. As the access path model
allows to gradually detect and analyze vulnerabilities, driven by specific secu-
rity foci, re-designed security mechanisms can be gradually implemented and
evaluated for performance. In general, the aspect of performance impact se-
curity mechanisms have on a database is rarely discussed in related work but
leaves an interesting area for further investigation and re-design strategies.

290 Michael Gertz and Madhavi Gandhi

6 Related Work

Compared to the numerous research and development activities in the context
of intrusion detection systems for host and network based systems, there is
only little work on misuse and anomaly detection for databases and security
evaluation approaches in particular. Only Castano et al. [12] give a detailed
though idealized description of the steps and approaches in database secu-
rity design. An extension of Entity-Relationship (ER) modeling concepts to
address security and authorization features has been proposed by Oh and
Navathe [46].

Chung et al. [13, 14] proposed a technique specifically designed for detect-
ing anomalies and misuse in database systems. In their approach, typical user
access patterns are discovered from audit data using association rule mining.
It is assumed that users typically access data that is semantically related, an
aspect that can easily be captured and utilized based on relationships (e.g.,
foreign key dependencies) in the underlying database schema. Distances mea-
sures are introduced to determine if an observed user data access is within the
normal, previously observed boundaries, and if not, an alarm is raised indi-
cating a possible misuse. This approach has been extended in [15] to discover
security policies at different levels of granularity and access patterns. In [25],
the aspect of monitoring mission critical data for integrity and availability is
discussed in detail. In particular, different audit approaches are presented.

Some more recent work on anomaly detection are by Spalka and Lehn-
hardt [56] and Kamra et al. [29]. Spalka and Lehnhardt introduce the concept
of delta relations, which are derived from attributes of relations and basically
represent data profiles, to detect anomalies in user operations on the data.
In particular, they provide a prototypical implementation of their system us-
ing the Microsoft SQL Server 2000. In the approach proposed by Kamra et
al., information about user queries to the database system is exploited to
build access profiles, which are then compared to new queries based on some
distance metrics to determine potential anomalies. That is, profiles are built
using the syntactic information from SQL queries rather than from the data
SQL statements operate on. It is an interesting and useful approach to detect-
ing anomalous access pattern, and it would be worthwhile to investigate how
the access patterns can be used to re-design underlying security mechanisms.
Nabar et al. propose a similar approach to query auditing in [40].

Most of the approaches to user and data profiling make extensive use of
data mining techniques (see, e.g., [57]) tailored to audit data collected at
different components of computing system infrastructure. The edited book by
Barbara and Jajodia [8] give an excellent overview of different data mining
techniques with a specific focus on intrusion and anomaly detection, although
primarily for the network and operating system layer and not for databases.
Further data analysis techniques in the context of data and user profiling have
already been discussed in Section 3.3.

Security Re-engineering for Databases: Concepts and Techniques 291

Other related work that proposes specific techniques to detect and prevent
tampering with the integrity and confidentiality of the data managed in a
DBMS include the work by Liu and colleagues [37, 59] in which they describe
the concepts and a prototype for an intrusion tolerant database. An interesting
idea to further protect a database has been proposed by Bai et al. [7], where
they describe the concept of a database firewall that helps continuing some
database services even if the database is under attack. The work by Snodgrass
et al. [47, 55] focuses specifically on the tampering with database audit logs in
the context of forensic analysis, an important aspect relevant to our approach,
because data and profiling techniques heavily rely on correctly recorded audit
data.

Although most of the above work focus on intrusion and anomaly detection
approaches in database system, none of them considers a coherent approach in
which user profiles and access patterns discovered from audit data and queries
are used to re-design security mechanisms in a coherent and methodological
fashion. An interesting and important future research direction thus would be
the investigation on how some of the techniques proposed in these approaches
can be used to further enrich a security re-design technique for databases and
to derive security enforcing mechanisms that go beyond those proposed in this
chapter.

7 Conclusions and Future Directions

As with any complex software system, poor configuration practices cause vul-
nerabilities that can be exploited by intruders and insiders. This is equally
true for DBMSs where the main focus of standard configuration practices is
on the efficient and fault-tolerant operation of the database serving data to
applications. Security policies and mechanisms are often only implemented or
revised in an ad-hoc fashion when responding to changing application and user
requirements, leading to an incoherent and potentially inconsistent database
security maintenance and design approach.

Strengthening the security of a database is a non-trivial task, given that
many of today’s databases used in e-businesses and government organizations
are extremely complex in terms of the amount of data served to a variety of
applications in a networked information system infrastructure. In this chapter,
we presented some fundamental concepts and techniques that help adminis-
trators and security personnel to gradually evaluate and improve the security
of a database. For the evaluation of security policies, we have shown how
data, user, and access profiles obtained from audit trails can effectively be ex-
plored and analyzed using the access path model. In this model, diverse access
correlations between components at the application and database layer can
be investigated and compared to current security requirements and expected
practices.

292 Michael Gertz and Madhavi Gandhi

An important feature of the proposed approach is that it allows a gradual
and focused re-design of security policies and mechanisms. This is achieved by
a data-driven evaluation strategy in which accesses to mission-critical and sen-
sitive data are evaluated first for potential vulnerabilities and insider misuse.
We have shown different security re-design strategies, as simple as integrity
constraints and as complex and powerful as stored procedures or derived views
that precisely contain the data users typically operate on.

The proposed approach motivates several research and development ac-
tivities that concentrate on securing today’s databases in an evolutionary
approach. First and foremost, tools are necessary administrators and security
personnel can employ for a security re-design approach, including tools that
perform most of the data mining tasks on profiles and establish similarity
measures between user profiles, leading to the discovery of roles and role-
hierarchies. Recent research has developed many of such tool components,
which now have to be integrated in a coherent fashion to provide all the func-
tionality for a comprehensive security re-design approach. Second, there is a
great potential in well-founded methods that derive database view specifica-
tions from a collection of user and access profiles. That is, given a collection
of queries (and potentially result tuples) against one or more base relations,
what “minimal” views can be queried that contain the same tuples as the
queries against the base relations. In general, we think that views, especially
those that furthermore include query context information, provide an interest-
ing alternative to implementing expressive access control models using today’s
database technology.

Acknowledgment. This work is in part supported by the NSF award IIS-
0242414.

References

1. Conference series on Recent Advances in Intrusion Detection (RAID),
http://www.raid-symposium.org/.

2. Oracle audit vault.
http://www.oracle.com/technology/products/audit-vault/index.html

3. Common Criteria for Information Technology Security Evaluation (Version 3.1).
Technical report, 2006
http://www.commoncriteriaportal.org/public/expert/index.php?menu=2.

4. Cristina Abad, Jed Taylor, Cigdem Sengul, William Yurcik, Yuanyuan Zhou,
and Kenneth E. Rowe. Log correlation for intrusion detection: A proof of
concept. In 19th Annual Computer Security Applications Conference (ACSAC
2003), pages 255–265, 2003.

5. Ant Allen. Intrusion Detection Systems (IDS): Perspective. Technical report,
Gartner Research Report DPRO-95367, Technical Overview, January 2002.

6. Robert H. Anderson. Research and Development Initiatives Focused on Pre-
venting, Detecting, and Responding to Insider Misuse of Critical Defense In-

Security Re-engineering for Databases: Concepts and Techniques 293

formation Systems. Conference Proceedings CF-151-OSD. RAND Corporation,
1999.

7. Kun Bai, Hai Wang, and Peng Liu. Towards database firewalls. In 9th An-
nual IFIP WG 11.3 Working Conference on Data and Applications Security
(DBSec05), pages 178–192, 2005.

8. Daniel Barbara, Julia Couto, Sushil Jajodia, and Ningning Wu. An architecture
for anomaly detection. In Daniel Barbara and Sushil Jajodia (eds.), Applica-
tions of Data Mining in Computer Security, pages 63–76. Kluwer Academic
Publishers, 2002.

9. Carlo Batini and Monica Scannapieco (eds.). Data Quality: Concepts, Method-
ologies and Techniques (Data-Centric Systems and Applications). Springer,
2006.

10. Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela Samarati. An
access control model supporting periodicity constraints and temporal reasoning.
ACM Transations on Database Systems, 23(3):231–285, 1998.

11. Matt Bishop. Computer Security: Art and Science. Addison-Wesley, 2002.
12. Silvana Castano, Maria Grazia Fugini, , Giancarlo Martella, and Pierangela

Samarati. Database Security. Addison-Wesley Professional, 1994.
13. Christina Yip Chung, Michael Gertz, and Karl N. Levitt. DEMIDS: A mis-

use detection system for database systems. In Third Working Conference on
Integrity and Internal Control in Information Systems, IFIP TC11 Working
Group 11.5, Kluwer, pages 159–178, 1999.

14. Christina Yip Chung, Michael Gertz, and Karl N. Levitt. Misuse detection
in database systems through user profiling. In Recent Advances in Intrusion
Detection (RAID’99), 1999.

15. Christina Yip Chung, Michael Gertz, and Karl N. Levitt. Discovery of multi-
level security policies. In FIP TC11/ WG11.3 Fourteenth Annual Working
Conference on Database Security (DBSec00), Kluwer, pages 173–184, 2000.

16. Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dey, Mus-
taque Ahamad, and Gregory D. Abowd. Securing context-aware applications
using environment roles. In 6th ACM Symposium on Access Control Models and
Technologies (SACMAT 2001), pages 10–20, 2001.

17. Vino Fernando Crescini and Yan Zhang. PolicyUpdater: a system for dynamic
access control. International Journal of Information Security, 5(3):145–165,
2006.

18. Tamraparni Dasu and Theodore Johnson, editors. Exploratory Data Mining and
Data Cleaning. Wiley-Interscience, 2003.

19. Department of Defense. DoD insider threat mitigation, Insider threat integrated
process team, Final report of the insider threat integrated process team. Tech-
nical report, Washington, DC, 2000.

20. Carl Endorf, Gene Schultz, and Jim Mellander. Intrusion Detection and Pre-
vention. McGraw-Hill Osborne Media, 2003.

21. Tom Fawcett and Foster J. Provost. Combining data mining and machine learn-
ing for effective user profiling. In Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining (KDD96), pages 8–13, 1996.

22. Tom E. Fawcett and Foster Provost. Fraud Deection. In Handbook of data
mining and knowledge discovery, pages 726–731. Oxford University Press, Inc.,
2002.

294 Michael Gertz and Madhavi Gandhi

23. Amgad Fayad, Sushil Jajodia, and Catherine D. McCollum. Application-level
isolation using data inconsistency detection. In 15th Annual Computer Security
Applications Conference (ACSAC 1999), page 119, 1999.

24. David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based access con-
trol. ACM Transactions on Information and System Security, 4(3):224–274,
2001.

25. Michael Gertz and George Csaba. Monitoring mission critical data for integrity
and availability. In IFIP TC11/WG11.5 Fifth Working Conference on Integrity
and Internal Control in Information Systems (IICIS02), Kluwer, pages 189–201,
2002.

26. Lawrence A. Gordon, Martin P. Loeb, William Lucyshyn, and Robert Richard-
son. 2005 CSI/FBI computer crime and security survey. Technical report,
Computer Security Institute, 2005.

27. R. J. Hulsebosch, Alfons H. Salden, Mortaza S. Bargh, P. W. G. Ebben, and
J. Reitsma. Context sensitive access control. In 10th ACM Symposium on Access
Control Models and Technologies (SACMAT05), pages 111–119, 2005.

28. James Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A generalized tem-
poral role-based access control model. IEEE Trans. Knowl. Data Eng., 17(1):4–
23, 2005.

29. Ashish Kamra, Evimaria Terzi, and Elisa Bertino. Detecting anomalous access
patterns in relational databases. To appear in The VLDB Journal, 2007.

30. David Knox. Effective Oracle Database 10g Security by Design. McGraw Hill
Professional, 2004.

31. Carl E. Landwehr. Computer security. International Journal of Information
Security, 1(1):3–13, 2001.

32. Terran Lane and Carla E. Brodley. Temporal sequence learning and data re-
duction for anomaly detection. In ACM Conference on Computer and Commu-
nications Security, pages 150–158, 1998.

33. Terran Lane and Carla E. Brodley. Temporal sequence learning and data re-
duction for anomaly detection. ACM Transactions on Information and System
Security, 2(3):295–331, 1999.

34. Wenke Lee and Salvatore J. Stolfo. A framework for constructing features and
models for intrusion detection systems. ACM Transactions on Information and
System Security, 3(4):227–261, 2000.

35. Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access
control. ACM Transactions on Information and System Security, 9(4):391–420,
2006.

36. Yingjiu Li, Ningning Wu, Xiaoyang Sean Wang, and Sushil Jajodia. Enhancing
profiles for anomaly detection using time granularities. Journal of Computer
Security, 10(1/2):137–158, 2002.

37. Peng Liu. Architectures for intrusion tolerant database systems. In 18th An-
nual Computer Security Applications Conference (ACSAC 2002), pages 311–
320, 2002.

38. John McHugh. Intrusion and intrusion detection. International Journal of
Information Security, 1(1):14–35, 2001.

39. Jim Melton and Alan R. Simon. SQL: 1999 - Understanding Relational Lan-
guage Components (The Morgan Kaufmann Series in Data Management Sys-
tems). Morgan Kaufmann, 2001.

Security Re-engineering for Databases: Concepts and Techniques 295

40. Shubha U. Nabar, Bhaskara Marthi, Krishnaram Kenthapadi, Nina Mishra, and
Rajeev Motwani. Towards robustness in query auditing. In Proceedings of the
32nd International Conference on Very Large Data Bases (VLDB06), pages
151–162, 2006.

41. Arup Nanda and Donald K. Burleson. Oracle Privacy Security Auditing. Ram-
pant Techpress, 2003.

42. Ron Ben Natan. Implementing Database Security and Auditing: Includes Exam-
ples for Oracle, SQL Server, DB2 UDB, Sybase. Elsevier Digital Press, 2005.

43. Peter G. Neumann. The challenges of insider misuse, Papers prepared for the
workshop on preventing, detecting, and responding to malicious insider mis-
use, 16-18 August 1999, at RAND, Santa Monica, CA. Technical report, SRI
Computer Science Lab, 1999.

44. Peng Ning and Sushil Jajodia. Intrusion detection systems basics. In Hos-
sein Bidgoli (ed.), Handbook of Information Security, volume 3, pages 685–700.
Wiley, 2006.

45. Sejong Oh, Ravi S. Sandhu, and Xinwen Zhang. An effective role administration
model using organization structure. ACM Transactions on Information and
System Security, 9(2):113–137, 2006.

46. Yong-Chul Oh and Shamkant B. Navathe. Seer: Security enhanced entity-
relationship model for modeling and integrating secure database environments.
In 14th International Conference on Object-Oriented and Entity-Relationship
Modelling (ER95), pages 170–180, 1995.

47. Kyriacos Pavlou and Richard T. Snodgrass. Forensic analysis of database tam-
pering. In Proceedings of the 2006 ACM SIGMOD international conference on
management of data, pages 109–120, 2006.

48. Richard Power. 2002 CSI/FBI computer crime and security survey. Computer
Security Issues & Trends, 8(1), 2002.

49. Marcus K. Rogers. Internal security threats. In Hossein Bidgoli (ed.), Handbook
of Information Security, volume 3, pages 3–17. Wiley, 2006.

50. Arnon Rosenthal and Marianne Winslett. Security of shared data in large sys-
tems: State of the art and research directions. Tutorial at ACM SIGMOD
International Conference on Management of Data, pages 962–964, 2004.

51. Pierangela Samarati and Sabrina De Capitani di Vimercati. Access control:
Policies, models, and mechanisms. Tutorial Lectures in Foundations of Security
Analysis and Design Springer, Springer, LNCS 2171, pages 137–196, 2000.

52. Jürgen Schlegelmilch and Ulrike Steffens. Role mining with ORCA. In 10th
ACM Symposium on Access Control Models and Technologies (SACMAT05),
pages 168–176, 2005.

53. Alexandr Seleznyov and Oleksiy Mazhelis. Learning temporal patterns for
anomaly intrusion detection. In Proceedings of the 2002 ACM symposium on
Applied computing, pages 209–213, 2002.

54. Robert Selby Sielken. Application intrusion detection. Master thesis, Depart-
ment of Computer Science, University of Virginia, May 1999.

55. Richard T. Snodgrass, Shilong (Stanley) Yao, and Christian S. Collberg. Tamper
detection in audit logs. In Proceedings of the 30th International Conference on
Very Large Data Bases, pages 504–515, 2004.

56. Adrian Spalka and Jan Lehnhardt. A comprehensive approach to anomaly detec-
tion in relational databases. In 19th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security (DBSec05), pages 207–221, 2005.

296 Michael Gertz and Madhavi Gandhi

57. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, editors. Introduction to
Data Mining. Addison-Wesley, 2006.

58. Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining problem:
finding a minimal descriptive set of roles. In 12th ACM Symposium on Access
Control Models and Technologies (SACMAT07), pages 175–184, 2007.

59. Hai Wang and Peng Liu. Modeling and evaluating the survivability of an in-
trusion tolerant database system. In 11th European Symposium on Research in
Computer Security (ESORICS06), pages 207–224, 2006.

60. Dit-Yan Yeung and Yuxin Ding. User profiling for intrusion detection using
dynamic and static behavioral models. In Advances in Knowledge Discovery
and Data Mining, 6th Pacific-Asia Conference (PAKDD 2002), pages 494–505,
2002.

13

Database Watermarking for Copyright
Protection

Radu Sion

Network Security and Applied Cryptography Lab
Computer Science, Stony Brook University
sion@cs.stonybrook.edu

Summary. As increasing amounts of data are produced, packaged and delivered in
digital form, in a fast, networked environment, one of its main features threatens to
become its worst enemy: zero-cost verbatim copies. The ability to produce duplicates
of digital Works at almost no cost can now be misused for illicit profit. This mandates
mechanisms for effective rights assessment and protection.

One such mechanism is based on Information Hiding. By concealing a resilient
rights holder identity “signature” (watermark) within the digital Work(s) to be pro-
tected, Information Hiding for Rights Assessment (Watermarking) enables ulterior
court-time proofs associating particular Works with their respective rights holders.

One main challenge is the fact that altering the Work in the process of hid-
ing information could possibly destroy its value. At the same time one has to be
concerned with a malicious adversary, with major incentives to remove or alter the
watermark beyond detection – thus disabling the ability for court-time proofs –
without destroying the value of the Work – to preserve its potential for illicit profit.

In this chapter we explore how Information Hiding can be deployed as an effective
tool for Rights Assessment for discrete digital data. More specifically, we discuss
numeric and categorical relational data.

1 Introduction

Mechanisms for privacy assurances (e.g., queries over encrypted data) are
essential to a viable and secure management solution for outsourced data.
On a somewhat orthogonal dimension but equally important, we find the
requirement to be able to assert and protect rights over such data.

Different avenues are available, each with its advantages and drawbacks.
Enforcement by legal means is usually ineffective, unless augmented by a
digital counterpart such as Information Hiding. Digital Watermarking as a
method of Rights Assessment deploys Information Hiding to conceal an in-
delible “rights witness” (“rights signature”, watermark) within the digital
Work to be protected (see Figure 1). The soundness of such a method relies
on the assumption that altering the Work in the process of hiding the mark

298 Radu Sion

does not destroy the value of the Work, while it is difficult for a malicious
adversary (“Mallory”) to remove or alter the mark beyond detection without
doing so. The ability to resist attacks from such an adversary, mostly aimed
at removing the watermark, is one of the major concerns in the design of a
sound solution.

Watermarking

Key Watermark

Stego Work

Marked Work

Watermark
Extraction Original

Stego Work

Key Watermark

Marked Work

Yes/No
(confidence level)

Fig. 1. Introduction: (a) Digital Watermarking conceals an indelible “rights witness”
(“rights signature”, watermark) within the digital Work to be protected. (b) In
court, a detection process is deployed to prove the existence of this “witness” beyond
reasonable doubt (confidence level) and thus assess ownership.

There exists a multitude of semantic frameworks for discrete information
processing and distribution. Each distinct data domain would benefit from
the availability of a suitable watermarking solution.

Significant research efforts [2] [3] [8] [11] [14] [15] [22] [24] have been in-
vested in the frameworks of signal processing and multimedia Works (e.g.,
images, video and audio).

Here we explore Information Hiding as a rights assessment tool for dis-
crete data types i.e., in a relational database context. We explore existing
watermarking solutions for numeric and categorical data types.

The Chapter is organized as follows. In Section 2 we explore the broader
issues and challenges pertaining to steganography for rights protection. Then,
in Sections 3 and 4 solutions for numeric respectively categorical data types are
introduced. Related work is discussed in Section 5. Section 6 briefly discusses
the current state of the art and Section 7 concludes.

2 Model

Before we proceed however, let us first understand how the ability to prove
rights in court relates to the final desiderata, namely to protect those rights.
After all, doesn’t simply publishing a summary or digest of the Work to be
protected – e.g., in a newspaper, just before releasing the Work – do the job?

Database Watermarking for Copyright Protection 299

It would seem it enables one to prove later in court that (at least a copy of)
the Work was in one’s possession at the time of release. In the following we
address these and other related issues.

2.1 Rights Protection through Assessment

The ability to prove/assess rights convincingly in court constitutes a deterrent
to malicious Mallory. It thus becomes a tool for rights protection if counter-
incentives and legal consequences are set high enough. But because Informa-
tion Hiding does not provide a means of actual access control, the question of
rights protection still remains. How are rights protected here?

It is intuitive that such a method works only if the rightful rights-holder
(Alice) actually knows about Mallory’s misbehavior and is able to prove to
the court that: (i) Mallory possesses a certain Work X and (ii) X contains a
“convincing” (e.g., very rare with respect to the space of all considered similar
Works) and “relevant” watermark (e.g., the string “(c) by Alice”).

What watermarking itself does not offer is a direct deterrent. If Alice does
not have knowledge of Mallory’s illicit possession of the Work and/or if it
is impossible to actually prove this possession in court beyond reasonable
doubt, then watermarking cannot be deployed directly to prevent Mallory. If,
however, Information Hiding is aided by additional access control levels, it
can become very effective.

For example, if in order to derive value from the given Work (e.g., watch a
video tape), Mallory has to deploy a known mechanism (e.g., use video player),
Information Hiding could be deployed to enable such a proof of possession, as
follows: modify the video player so as to detect the existence of a watermark
and match it with a set of purchased credentials and/or “viewing tickets”
associated with the player’s owner. If no match is found, the tape is simply
not played back.

This scenario shows how watermarking can be deployed in conjunction
with other technologies to aid in managing and protecting digital rights. In-
tuitively, a certain cost model is assumed here: the cost of reverse engineering
this process is far higher than the potential derived illicit gain.

This illustrates the game theoretic nature at the heart of the watermarking
proposition and of information security in general. Watermarking is a game
with two adversaries, Mallory and Alice. At stake lies the value inherent in
a certain Work X, over which Alice owns certain rights. When Alice releases
X, to the public or to a licensed but potentially un-trusted party, she deploys
watermarking for the purpose of ensuring that one of the following holds:

• she can always prove rights in court over any copy or valuable derivate of
X (e.g., segment thereof)

• any existing derivate Y of X, for which she cannot prove rights, does not
preserve any significant value (derived from the value in X)

300 Radu Sion

• the cost to produce such an un-watermarked derivate Y of X that is still
valuable (with respect to X) is higher than its value

Newspaper Digests

To achieve the above however, Alice could publish a summary or digest (e.g.,
cryptographic hash) of X in a newspaper, thus being able to claim later on
at least a time-stamp on the possession of X. This could apparently result in
a quite effective, albeit costly, alternative to Watermarking the Work X.

There are many simple reasons why it would not work, including (i) scal-
ability issues associated with the need for a trusted third party (newspaper),
(ii) the cost of publishing a digest for each released Work, (iii) scenarios when
the fact that the Work is watermarked should be kept secret (stealthiness)
etc.

Maybe the most important reason however, is that Mallory can now claim
that his ownership of the Work precedes X’s publication date, and that Alice
simply modified it (i.e., a stolen copy) and published a digest thereof herself.
It would then be up to the court to decide if Mallory is to be believed or
not, hardly an encouraging scenario for Alice. This could work if there existed
a mechanism for the mandatory publication of digests for each and every
valuable Work, again quite likely impractical due to both costs and lack of
scalability to a virtually infinite set of data producers and Works.

Deploying such aids as rights assessment tools makes sense only in the
case of the Work being of value only un-modified. In other words if it does
not tolerate any changes, without losing its value, and Mallory is caught in
possession of an identical copy, Alice can successfully prove in court that she
possessed the original at the time of its publication (but she cannot prove
more). Considering that, in the case of watermarking, the assumption is that,
no matter how small, there are modifications allowed to the Works to be
protected, in some sense the two approaches complement each other. If no
modifications are allowed, then a third-party “newspaper” service might work
for providing a time-stamp type of ownership proof that can be used in court.

Steganography and Watermarking

There exists a fundamental difference between Watermarking and generic In-
formation Hiding (steganography) from an application perspective and asso-
ciated challenges. Information Hiding in general (and covert communication
in particular), aims usually at enabling Alice and Bob to exchange messages
in a manner as resilient and stealthy as possible, through a hostile medium
where Malory could lurk. On the other hand, Digital Watermarking is de-
ployed by Alice as a court proof of rights over a Work, usually in the case
when Mallory benefits from using/selling that very same Work or maliciously
modified versions of it.

Database Watermarking for Copyright Protection 301

In Digital Watermarking, the actual value to be protected lies in the Works
themselves whereas pure steganography usually makes use of them as sim-
ple value “transporters”. In Watermarking, Rights Assessment is achieved by
demonstrating (with the aid of a “secret” known only to Alice – “watermark-
ing key”) that a particular Work exhibits a rare property (“hidden message”
or “watermark”). For purposes of convincing the court, this property needs to
be so rare that if one considers any other random Work “similar enough” to
the one in question, this property is “very improbable” to apply (i.e., bound
false-positives rate). It also has to be relevant, in that it somehow ties to Alice
(e.g., by featuring the bit string “(c) by Alice”).

There is a threshold determining the ability to convince the court, related
to the “very improbable” assessment. This defines a main difference from
steganography: from the court’s perspective, specifics of the property (e.g.,
watermark message) are not important as long as they link to Alice (e.g., by
saying “(c) by Alice”) and, she can prove “convincingly” it is she who induced
it to the (non-watermarked) original.

In watermarking the emphasis is on “detection” rather than “extraction”.
Extraction of a watermark, or bits of it, is usually a part of the detection
process but just complements the process up to the extent of increasing the
ability to convince in court. If recovering the watermark data in itself becomes
more important than detecting the actual existence of it (i.e., “yes/no” an-
swer) then, from an application point of view, this is a drift toward covert
communication and pure Information Hiding (steganography).

2.2 Consumer Driven Watermarking

An important point about watermarking should be noted. By its very nature,
a watermark modifies the item being watermarked: it inserts an indelible mark
in the Work such that (i) the insertion of the mark does not destroy the value of
the Work, i.e., it is still useful for the intended purpose; and (ii) it is difficult for
an adversary to remove or alter the mark beyond detection without destroying
this value. If the Work to be watermarked cannot be modified without losing
its value then a watermark cannot be inserted. The critical issue is not to
avoid alterations, but to limit them to acceptable levels with respect to the
intended use of the Work.

Thus, an important first step in inserting a watermark, i.e., by altering it,
is to identify changes that are acceptable. Naturally, the nature and level of
such change is dependent upon the application for which the data is to be
used. Clearly, the notion of value or utility of the data becomes thus central
to the watermarking process. For example, in the case of software, the value
may be in ensuring equivalent computation, whereas for natural language
text it may be in conveying the same meaning – i.e., synonym substitution
is acceptable. Similarly, for a collection of numbers, the utility of the data
may lie in the actual values, in the relative values of the numbers, or in the
distribution (e.g., normal with a certain mean). At the same time, the concept

302 Radu Sion

of value of watermarked Works is necessarily relative and largely influenced by
each semantic context it appears in. For example, while a statistical analyst
would be satisfied with a set of feature summarizations (e.g., average, higher-
level moments) of a numeric data set, a data mining application may need a
majority of the data items, for example to validate a classification hypothesis.

It is often hard to define the available “bandwidth” for inserting the wa-
termark directly. Instead, allowable distortion bounds for the input data can
be defined in terms of consumer metrics. If the watermarked data satisfies
the metrics, then the alterations induced by the insertion of the watermark
are considered to be acceptable. One such simple yet relevant example for
numeric data, is the case of maximum allowable mean squared error (MSE),
in which the usability metrics are defined in terms of mean squared error
tolerances as (si − vi)2 < ti,∀i = 1, ..., n and

∑
(si − vi)2 < tmax, where

S = {s1, ..., sn} ⊂ R, is the data to be watermarked, V = {v1, ..., vn} is the
result, T = {t1, ..., tn} ⊂ R and tmax ∈ R define the guaranteed error bounds
at data distribution time. In other words T defines the allowable distortions
for individual elements in terms of MSE and tmax its overall permissible value.

Often however, specifying only allowable change limits on individual val-
ues, and possibly an overall limit, fails to capture important semantic features
associated with the data – especially if the data is structured. Consider for
example, age data. While a small change to the age values may be acceptable,
it may be critical that individuals that are younger than 21 remain so even
after watermarking if the data will be used to determine behavior patterns
for under-age drinking. Similarly, if the same data were to be used for identi-
fying legal voters, the cut-off would be 18 years. Further still, for some other
application it may be important that the relative ages, in terms of which one
is younger, not change. Other examples of constraints include: (i) uniqueness
– each value must be unique; (ii) scale – the ratio between any two number
before and after the change must remain the same; and (iii) classification –
the objects must remain in the same class (defined by a range of values) be-
fore and after the watermarking. As is clear from the above examples, simple
bounds on the change of numerical values are often not enough.

Structured collections, present further constraints that must be adhered to
by the watermarking algorithm. Consider a data warehouse organized using
a standard Star schema with a fact table and several dimension tables. It
is important that the key relationships be preserved by the watermarking
algorithm. This is similar to the “Cascade on update” option for foreign keys
in SQL and ensures that tuples that join before watermarking also join after
watermarking. This requires that the new value for any attribute should be
unique after the watermarking process. In other words, we want to preserve
the relationship between the various tables. More generally, the relationship
could be expressed in terms of an arbitrary join condition, not just a natural
join. In addition to relationships between tuples, relational data may have
constraints within tuples. For example, if a relation contains the start and

Database Watermarking for Copyright Protection 303

end times of a web interaction, it is important that each tuple satisfies the
condition that the end time be later than the start time.

There exists a trade-off between the desired level of marking resilience and
resistance to attacks, and the ability to preserve data quality in the result,
with respect to the original. Intuitively, at the one extreme, if the encoded
watermark is to be very “strong” one can simply modify the entire data set
aggressively, but at the same time probably also destroy its actual value. As
data quality requirements become increasingly restrictive, any applied wa-
termark is necessarily more vulnerable. Often we can express the available
bandwidth as an increasing function of allowed alterations. At the other ex-
treme, a disproportionate concern with data quality will hinder most of the
watermarking alterations, resulting in a weak, possibly non-existent encoding.

Naturally, one can always identify some use that is affected by even a
minor change to any portion of the data. It is therefore important that (i) the
main intended purpose and semantics that should be preserved be identified
during watermarking and that (ii) the watermarking process not interfere with
the final data consumer requirements. We call this paradigm consumer driven
watermarking.

A1 A2 A3 A4 A5 A6

Original Data

Data Rights
Holder

data constraints

WM

A1 A2 A3 A4 A5 A6

 Outsourced Data

customer
fingerprint,

rights
holder
mark

"satisfies"

Data Customer

Fig. 2. In consumer-driven watermarking a set of data constraints are continuously
evaluated in the encoding process to ensure quality of the result.

Some of the solutions discussed here are consumer driven enabled through
feedback mechanisms (see Figure 2) that allow the watermarking process to
“rollback” modifications that would violate quality constraints in the result on
a step by step basis. This ensures the preservation of desired quality metrics
with respect to the original un-watermarked input Work.

304 Radu Sion

2.3 Discrete Data vs. Multimedia

An established body of research [2] [3] [8] [11] [14] [15] [22] [24] has resulted
from work on Information Hiding and Watermarking in frameworks such as
signal processing and multimedia (e.g., images, video and audio). Here we
explore Information Hiding as a rights assessment tool for discrete data types.

Let us briefly explore the relationship between the challenges and tech-
niques deployed in both frameworks. Because, while the terms might be iden-
tical, the associated models, challenges and techniques are different, almost
orthogonal. Whereas in the signal processing case there usually exists a large
noise bandwidth, due to the fact that the final data consumer is likely human
– with associated limitations of the sensory system – in the case of discrete
data types this cannot be assumed and data quality assessment needs to be
closely tied with the actual watermarking process (see Section 2.2).

Another important differentiating focus is the emphasis on the actual abil-
ity to convince in court as a success metric, unlike most approaches in the
signal processing realm, centered on bandwidth. While bandwidth is a rele-
vant related metric, it does not consider important additional issues such as
malicious transforms and removal attacks. For rights assertion, the concerns
lie not as much with packing a large amount of information (i.e., watermark
bits) in the Works to be protected, as with being able to both survive removal
attacks and convince in court.

Maybe the most important difference between the two domains is that,
while in a majority of watermarking solutions in the multimedia framework,
the main domain transforms are signal processing primitives (e.g., Works are
mainly considered as being compositions of signals rather than strings of bits),
in our case data types are mostly discrete and are not naturally handled as
continuous signals. Because, while discrete versions of frequency transforms
can be deployed as primitives in information encoding for digital images [8],
the basis for doing so is the fact that, although digitized, images are at the
core defined by a composition of light reflection signals and are consumed
as such by the final human consumer. By contrast, arbitrary discrete data
is naturally discrete 1 and often to be ingested by a highly sensitive seman-
tic processing component, e.g., a computer rather than a perceptual system
tolerant of distortions.

2.4 Relational Data

For completeness let us briefly overview main components of a relational
model [7]. In such a model, relations between information items are explicitly
specified: data is organized as “a number of differently sized tables” [7] com-
posed of “related” rows/columns. A table is a collection of rows or records

1 Unless we consider quantum states and uncertainty arising in the spin of the
electrons flowing through the silicon.

Database Watermarking for Copyright Protection 305

and each row in a table contains the same fields. Certain fields may be des-
ignated as data keys (not to be confused with “cryptographic keys”) when a
functional dependency or key constraint, holds for the table. Often, indexing
is deployed to speed up searches on values of such primary key fields. Data is
structured logically into valued attributes. From this perspective, a table is a
collection of such attributes (the columns of the table) and models a relation
among them. The data rows in the tables are also called tuples. Data in this
model is manipulated using a relational algebra. Main operations in this alge-
bra are set operations (e.g., union, intersection, Cartesian product), selection
(of some tuples in tables) and projection (of some columns/attributes).

Rights protection for such data is important in scenarios where it is sensi-
tive, valuable and about to be outsourced. A good example is a data mining
application, where data is sold in pieces to parties specialized in mining it,
e.g., sales patterns database, oil drilling data, financial data. Other scenar-
ios involve for example online B2B interactions, e.g., airline reservation and
scheduling portals, in which data is made available for direct, interactive use
(see Figure 3). Given the nature of most of the data, it is hard to associate
rights of the originator over it. Watermarking can be used to solve this issue.

Third
Party

STOP

Data
Mining

...
...
...

...

...

...

Data
Rights
Holder

...

...

...

...

...

...

...

outsourcing

Fig. 3. Rights Assessment is important when valuable data is outsourced to a third
party.

306 Radu Sion

2.5 The Adversary

Watermarking is a game between the watermarker and malicious Mallory. In
this game, the watermarker and Mallory play against each other within subtle
trade-off rules aimed at keeping the quality of the result within acceptable
bounds. It is as if there exists an impartial referee (the data itself) moderating
each and every “move”. As discussed above, it is important to make this
“referee” an explicit part of the marking process (consumer-driven paradigm).
It is also important to understand Mallory and the adversarial setting.

Once outsourced, i.e., out of the control of the watermarker, data might
be subjected to a set of attacks or transformations; these may be malicious –
e.g., with the explicit intent of removing the watermark – or simply the result
of normal use of the data. An effective watermarking technique must be able
to survive such use. In a relational data framework important attacks and
transformations are:

A1. Sampling. The attacker (Mallory) can randomly select and use a sub-
set of the watermarked data set that might still provide value for its intended
purpose (“subset selection”). More specifically, here we are concerned with
both (A1.a) horizontal and (A1.b) vertical data partitioning – in which a
valuable subset of the attributes are selected by Mallory.

A2. Data Addition. Mallory adds a set of tuples to the watermarked set.
This addition is not to significantly alter the useful properties of interest to
Mallory.

A3. Alteration. Altering a subset of the items in the watermarked data set
such that there is still value associated with the result. In the case of numeric
data types, a special case needs to be outlined here, namely (A3.a) a linear
transformation performed uniformly to all of the items. This is of particular
interest as it can preserve significant valuable data-mining related properties
of the data.

A4. Ulterior Claims of Rights. Mallory encodes an additional watermark
in the already watermarked data set and claims rights based upon this second
watermark.

A5. Invertibility Attack. Mallory attempts to establish a plausible (wa-
termark,key) pair that matches the data set and then claims rights based on
this found watermark [8, 9].

Given the attacks above, several properties of a successful solution sur-
face. For immunity against A1, the watermark has to be likely encoded in
overall data properties that survive sampling, e.g., confidence intervals, sta-
tistical bias. With respect to (A1.b) special care has to be taken such that the
mark survives this partitioning. The encoding method has to feature a certain
attribute-level property that could be recovered in such a vertical partition of
the data. We believe that while vertical data partitioning attacks are possible
and also very likely in certain scenarios, often value is to be found in the asso-
ciation between a set of relation attributes. These attributes are highly likely
to survive such an attack, as the final goal of the attacker is to produce a

Database Watermarking for Copyright Protection 307

still-valuable result. If the assumption is made that the attack alterations do
not destroy the value of the data, then A3 could be handled by encoding the
primitive mark in resilient global data properties. As a special case, A3.a can
be resisted by a preliminary normalization step in which a common divider
to all the items is first identified and applied.

While powerful, for arbitrary watermarks, the invertibility attack A5 can
be defeated by requiring the encoded string to be relevant (e.g. “(c) by Mal-
lory”) and the encoding to be “convincing” (see Section 2.1). Then the prob-
ability of success of invertibility searches becomes upper bound.

In order to defeat A4, the watermarking method has to provide the ability
to determine encoding precedence, e.g., if it can be proved in court that one
watermark encoding was “overwritten” by a later one. Additionally, in the
case of such a (court time) dispute, the parties could be requested to present
a portion of the original, un-watermarked data. Only the rightful rights holder
would be able to produce such a proof, as Mallory could only have access to
already watermarked data.

It is worth also noting that, intuitively, if, in the process of watermarking,
the data is altered to its usability limits, any further alteration by a water-
marker is likely bound to yield an unusable result. Achieving this might be
often desirable 2 and has been explored by Sion et. al. in a proof of concept
implementation [34] as well as by Li et. al. in [20] (this is discussed in more
detail elsewhere in this book). The challenges of achieving such a desiderata
however, lies in the impossibility to define absolute data quality metrics that
consider all value dimensions of data.

3 Numeric Types

In this section we explore watermarking solutions in the context of relational
data in which one or more of the attributes are of a numeric type. Among
existing solutions we distinguish between single-bit (the watermark is com-
posed of a single bit) and multi-bit (the watermark is a string of bits) types.
Orthogonally, the encoding methods can be categorized into two; we chose to
call them direct-domain and distribution encodings. In a direct-domain encod-
ing, each individual bit alteration in the process of watermarking is directly
correlated to (a part of) the encoded watermark. In distribution encodings,
the encoding channel lies often in higher order moments of the data (e.g.,
running means, hierarchy of value averages). Each individual bit alteration
impacts these moments for the purpose of watermark encoding, but in itself
is not directly correlated to any one portion of the encoded watermark.
2 This is formulated as the “optimality principle” in [26], as well as previous results

such as [28] and [31].

308 Radu Sion

Single Bit Direct Domain Encoding

In [1,16] Kiernan, Agrawal et.al. propose a direct domain encoding of a single
bit watermark in a numeric relational database.
Overview. Its main algorithm proceeds as follows. A subset of tuples are
selected based on a secret criteria; for each tuple, a secret attribute and corre-
sponding least significant (ξ) bit position are chosen. This bit position is then
altered according to yet another secret criteria that is directly correlated to
the watermark bit to be encoded. The main assumption is, that changes can
be made to any attribute in a tuple at any least significant ξ bit positions.
At watermark detection time, the process will re-discover the watermarked
tuples and, for each detected accurate encoding, become more “confident” of
a true-positive detection.

There are a set of important assumptions underlying this method. Maybe
the most important one is that “the relational table being watermarked is such
that if all or a large number of the ξ least significant bits of any attribute are
dropped or perturbed, then the value of the data is significantly reduced.
However, it is possible to change a small number of the bits and not decrease
the value of the data significantly” [16].

The authors make an argument for this being a reasonable assumption as
such techniques have been used by publishers of books of mathematical tables
for a long time – e.g., by introducing small errors in published logarithm
tables and astronomical ephemerides to identify pirated copies [15]. Examples
of real-world data sets that satisfy such an assumption are given, including
tables of parametric specifications (mechanical, electrical, electronic, chemical,
etc.), surveys (geological, climatic, etc.), and life sciences data (e.g., gene
expression).
Solution Details. For consistency, the original notation is used: a database
relation R with the following schema is R(P,A0, . . . , Aν−1), is assumed, with
P the primary key attribute. All ν attributes A0, . . . , Aν−1 are candidates for
marking: the values are assumed such that small changes in the ξ least signifi-
cant bits are imperceptible. γ denotes a control parameter that determines the
average number ω of tuples marked (ω = η

γ), where η is the number of tuples
in the database. r.X is used to denote the value of attribute X in tuple r, α
denotes a “significance level” and τ a “threshold” for the test of “detecting a
watermark”. K is a key known only to the database owner, and there exists G,
a pseudo-random sequence number generator [23] (next(G) denotes the next
generated sequence number).

Note: There are a set of changes between the initial proposed scheme in [16]
and its journal version [1]. Here we discuss the (more robust) journal version.

Watermark insertion is illustrated in Figure 4. The main steps of the al-
gorithm are as follows. Initially (step 2) the random sequence generator is
initialized such that its output is distinct for any given distinct tuple value.
This mechanism is deployed in order to achieve a certain tuple ordering inde-
pendence of the encoding. The output of G is then used to determine: (i) if

Database Watermarking for Copyright Protection 309

1) foreach tuple r ∈ R do
2) seed G with r.P concatenated with K
3) if (next(G) mod γ = 0) then // mark this tuple
4) attribute index i = next(G) mod ν // mark attribute Ai

5) bit index j = next(G) mod η // mark jth bit
6) r.Ai = mark(next(G),r.Ai,j)
7) mark(random number i, value v, bit index j) return value
8) if (i is even) then

9) set the jth least significant bit of v to 0
10) else

11) set the jth least significant bit of v to 1
12) return v

Fig. 4. Watermark insertion for the single-bit encoding of [1, 16].

the current tuple is to be watermarked (step 3), (ii) which attribute value to
mark (step 4), (iii) which bit within that attribute’s value to alter (step 5),
and (iv) what new bit-value to assign to that bit-position in the result (step
6, invocation of mark()). This encoding guarantees that, in order to entirely
remove a watermark, Mallory is put in the position of guessing correctly the
marked tuples, attributes and altered bit positions.

Once R is published, the data owner, Alice, would like to determine
whether the (similar) relation S published by Mallory has been pirated from
R. The sets of tuples and of attributes in S are assumed to be strict subsets
of those in R. Additionally, Mallory is assumed not to drop the primary key
attribute or change the value of primary keys. Then watermark detection is a
direct inverse of insertion. It proceeds as follows (see Figure 5).

Alice starts by identifying the bits that should have been marked by the
insertion algorithm. To do so, it executes the operations described in lines 1
through 5 of the insertion algorithm (steps 3 through 6). The assumption is
that the original database primary key is preserved in S. Each such identified
bit is tested for a match with the value that should have been assigned by the
insertion algorithm. Each match is counted. If the resulting count is either too
small or too large, piracy is suspected. In the case of too small a number, the
method assumes that somehow Mallory has identified the marked bits and
systematically flipped each one.

In other words, the insertion algorithm is modulated on a set of successive
independent coin tosses. A detection algorithm over ω bits will yield a number
of matches with a binomial distribution (ω, 1/2) for the null hypothesis of non-
piracy. Naturally, in the absence of piracy, the expected number of matches is
ω
2 . The paper proposes to suspect piracy if the observed number of matches m
is so large or so small that its probability under the null hypothesis is highly
unlikely.

310 Radu Sion

1) totalcount = matchcount = 0
2) foreach tuple s ∈ S do
3) seed G with s.P concatenated with K
4) if (next(G) mod γ = 0) then // tuple was marked
5) attribute index i = next(G) mod ν // Ai was marked

6) bit index j = next(G) mod η // jth bit was marked
7) totalcount = totalcount + 1
8) matchcount = matchcount + match (next(G,s.Ai,j)
9) τ = threshold(totalcount,α)
10) if ((matchcount < τ) or (matchcount > totalcount - τ)) then
11) suspect piracy
12) match(random number i, value v, bit index j) return integer
13) if (i is even) then

14) return 1 if the jth least significant bit of v is 0 else return 0
15) else

16) return 1 if the jth least significant bit of v is 1 else return 0

Fig. 5. Watermark detection for the single-bit encoding of [1, 16].

This can be modeled by first fixing an acceptable value for the significance
level α ∈ (0, 1) and then computing a threshold τ ∈ (0, ω

2) such that the
probability of m < τ or m > ω − τ under the null hypothesis is less than or
equal to α.

The authors discuss additional extensions and properties of the solution
including the following:

• Incremental Updatability: Updates can be handled independently of the
existing watermark as the selection and marking criteria are self-sufficient
and only depend on the primary key value.

• Blind Watermarking: The method does not require the availability of the
un-watermarked data at detection time.

• Varying Parameters: The assumption that any two attributes are marked
at the same rate can be removed. Different attributes can be marked at
different rates because the attributes may tolerate different error rates
and, if the rate parameters are secret, Mallory’s task become even more
difficult. Additionally, the number of bits available for marking can be
varied from one attribute to another.

• Relations Without Primary Keys: The authors also discuss extensions
aimed at handling the case of relations without primary keys. This is
an important problem as it has the potential to overcome the required
assumption of unchanged primary key values in the watermarked data
at detection time. In the case of no primary key, the authors propose to
designate another attribute, or a number of most significant bit-portions
of the currently considered one, as a primary key. This however presents
a significant vulnerability due to the very likely existence of duplicates

Database Watermarking for Copyright Protection 311

in these values. Mallory could mount a statistical attack by correlating
marked bit values among tuples with the same most significant bits. This
issue has been also considered in [18] where a similar solution has been
adopted. This, is discussed in more detail elsewhere in this book.

3.1 Multi-Bit Watermarks

While there likely exist applications whose requirements are satisfied by single-
bit watermarks, often it is desirable to provide for “relevance”, i.e., linking
the encoding to the rights holder identity. This is especially important if the
watermark aims to defeat against invertibility attacks (A5).

In a single-bit encoding this can not be easily achieved. Additionally, while
the main proposition of watermarking is not covert communication but rather
rights assessment, there could be scenarios where the actual message payload
is of importance.

One apparent direct extension from single-bit watermarks to a multi-bit
version would be to simply deploy a different encoding, with a separate water-
mark key, for each bit of the watermark to be embedded. This however, might
not be possible, as it will raise significant issues of inter-encoding interference:
the encoding of later bits will likely distort previous ones. This will also make
it harder to handle ulterior claim of rights attacks (A4).

In the following we discuss multi-bit watermark encodings. We briefly dis-
cuss a direct-domain encoding [19] that extends the work by Kiernan, Agrawal
et. al. [1, 16] and then explore a distribution-encoding method by Sion et.
al. [27, 29,30,32,33] and [34].

Multi-Bit Direct Domain Encoding

In [19] Li et. al. extend the work by Kiernan, Agrawal et. al. [1,16] to provide
for multi-bit watermarks in a direct domain encoding. This is discussed in
extended detail elsewhere in this book. Here we briefly summarize. The scheme
functions as follows. The database is parsed and, at each bit-encoding step, one
of the watermark bits is randomly chosen for embedding; the solution in [1,16]
is then deployed to encode the selected bit in the data at the “current” point.
The “strength of the robustness” of the scheme is claimed to be increased
with respect to [1, 16] due to the fact that the watermark now possesses an
additional dimension, namely length. This should guarantee a better upper
bound for the probability that a valid watermark is detected from unmarked
data, as well as for the probability that a fictitious secret key is discovered
from pirated data (i.e., invertibility attacks A5). This upper bound is said
to be independent of the size of database relations thus yielding robustness
against attacks that change the size of database relations.

312 Radu Sion

Multi-Bit Distribution Encoding

Encoding watermarking information in resilient numeric distribution proper-
ties of data presents a set of advantages over direct domain encoding, the
most important one being its increased resilience to various types of numeric
attacks. In [27, 29, 30, 32, 33] and [34], Sion et. al. introduce a multi-bit dis-
tribution encoding watermarking scheme for numeric types. The scheme was
designed with both an adversary and a data consumer in mind. More specifi-
cally the main desiderata were: (i) watermarking should be consumer driven
– i.e., desired semantic constraints on the data should be preserved – this
is enforced by a feedback-driven rollback mechanism, and (ii) the encoding
should survive important numeric attacks, such as linear transformation of
the data (A3.a), sampling (A1) and random alterations (A3).
Overview. The solution starts by receiving as user input a reference to the
relational data to be protected, a watermark to be encoded as a copyright
proof, a secret key used to protect the encoding and a set of data quality
constraints to be preserved in the result. It then proceeds to watermark the
data while continuously assessing data quality, potentially backtracking and
rolling back undesirable alterations that do not preserve data quality.

Watermark encoding is composed of two main parts: in the first stage, the
input data set is securely partitioned into (secret) subsets of items; the second
stage then encodes one bit of the watermark into each subset. If more subsets
(than watermark bits) are available, error correction is deployed to result in
an increasingly resilient encoding. Each single bit is encoded/represented by
introducing a slight skew bias in the tails of the numeric distribution of the
corresponding subset. The encoding is proved to be resilient to important
classes of attacks, including subset selection, linear data changes and random
item(s) alterations.
Solution Details. The algorithm proceeds as follows (see Figure 6): (a) User-
defined queries and associated guaranteed query usability metrics and bounds
are specified with respect to the given database (see below). (b) User input
determines a set of attributes in the database considered for watermarking,
possibly all. (c) From the values in each such attribute select a (maximal)
number of (e) unique, non-intersecting, secret subsets. (d) For each consid-
ered subset, (d.1) embed a watermark bit into it using the single-bit encoding
convention described below and then (d.2) check if data constraints are still
satisfied. If data constraints are violated, (d.3) retry different encoding pa-
rameter variations or, if still no success, (d.4) try to mark the subset as invalid
(see single-bit encoding convention below), or if still no success (d.5) ignore
the current set3. Repeat step (d) until no more subsets are available.

Several methods for subset selection (c) are discussed. In one version, it
proceeds as follows. The input data tuples are sorted (lexicographically) on a
3 This leaves an invalid watermark bit encoded in the data that will be corrected

by the deployed error correcting mechanisms (e.g. majority voting) at extraction
time.

Database Watermarking for Copyright Protection 313

wm(attribute, wm key, mark data[],
plugin handler, db primary key, subset size, vfalse, vtrue, c)
sort attribute ← sort on normalized hash(wm key,db primary key,wm key)

for (i=0; i < length(attribute)
subset size

;i++)
subset bin ← next subset size elements from sort attribute
compute rollback data
encode(mark data[i % mark data.length], subset bin, vfalse, vtrue, c)
propagate changes into attribute
if (not goodness plugin handler.isSatisfied(new data,changes)) then

rollback rollback data
continue

else
commit
map[i] = true
subset boundaries[i] = subset bin[0]

return map, subset boundaries

Fig. 6. Watermark Embedding (version using subset markers and detection maps
shown).

secret keyed cryptographic hash H of the primary key attribute (K). Based
on this value, compose a criteria (e.g., H(K, key)) mod e = 0) for selecting a
set of “special” tuples such that they are uniformly distributed and average a
total number of e = length(attribute)/ subset size. These special tuples are
going to be used as subset “markers”. Each subset is defined as the elements
between two adjacent markers, having on average subset size elements. The
detection phase will then rely on this construction criteria to re-discover the
subset markers. This process is illustrated in Figure 6.

Encoding the individual mark bits in different subsets increases the ability
to defeat different types of transformations including sampling (A1) and/or
random data addition (A2), by “dispersing” their effect throughout the data,
as a result of the secret ordering. Thus, if an attack removes 5% of the items,
this will result in each subset Si being roughly 5% smaller. If Si is small
enough and/or if the primitive watermarking method used to encode parts
of the watermark (i.e., 1 bit) in Si is made resilient to these kind of minor
transformations then the probability of survival of most of the embedded
watermarks is accordingly higher. Additionally, in order to provide resilience
to massive “cut” attacks, the subsets are made to be of sizes equal to a given
percent of the overall data set, i.e., not of fixed absolute sizes.

Note: If enough additional storage is available, these subsets can be in fact
constructed differently: given a secretly keyed cryptographic hash function
with discrete output values in the interval [1, e], apply it, for each tuple, to
the primary key attribute value and let its output determine which subset

314 Radu Sion

the tuple belongs to. This would both alleviate the need to deploy subset
markers as well as likely offering more resilience to attacks. This simple and
nice improvement was suggested to one of the authors during a discussion with
a Purdue graduate student (whose identity he cannot remember but whom
he invites forward for credit) attending the 2005 Symposium on Security and
Privacy.

Si

avg(Si)

distribution(S i)

Vc(Si)

c x stdev(Si)

Fig. 7. In the single-bit mark encoding convention, the encoding of the watermark
bit relies on altering the size of the “positive violators” set, vc(Si).

Once constructed, each separate subset Si will be marked separately with
a single bit, in the order it appears in the actual watermark string. The result
will be a e-bit (i.e., i = 1, . . . , e) overall watermark bandwidth in which each
bit is “hidden” in each of the marked Si. If the watermark is of size less than
e, error correction can be deployed to make use of the additional bandwidth
to increase the encoding resilience.

The single-bit distribution encoding proceeds as follows. Let b be a water-
mark bit that is to be encoded into Si and G represent a set of user specified
change tolerance, or usability metrics. The set G will be used to implement
the consumer-driven awareness in the watermark encoding.

Let vfalse, vtrue, c ∈ (0, 1), vfalse < vtrue be real numbers (e.g., c = 90%,
vtrue = 10%, vfalse = 7%). c is called confidence factor and the interval
(vfalse, vtrue) confidence violators hysteresis. These are values to be remem-
bered also for watermark detection time. They can be considered as part of the
encoding key. Let avg(Si) and δ(Si) be the average and standard deviation,
respectively, of Si. Given Si and the real number c ∈ (0, 1) as above, vc(Si) is
defined as the number of items of Si that are greater than avg(Si)+ c× δ(Si).
vc(Si) is called the number of positive “violators” of the c confidence over Si,
see Figure 7.

The single-bit mark encoding convention is then formulated: given Si,
c, vfalse and vtrue as above, mark(Si) ∈ {true, false, invalid} is defined to
be true if vc(Si) > (vtrue × |Si|), false if vc(Si) < vfalse × |Si| and invalid if
vc(Si) ∈ (vfalse × |Si|, vtrue × |Si|).

Database Watermarking for Copyright Protection 315

In other words, the watermark is modeled by the percentage of positive
confidence violators present in Si for a given confidence factor c and confidence
violators hysteresis (vfalse, vtrue). Encoding the single bit (see Figure 8), b,
into Si is therefore achieved by minor alterations to some of the data values
in Si such that the number of positive violators (vc(Si)) is either (a) less than
vfalse × |Si| if b = 0, or (b) more than vtrue × |Si| if b = 1. The alterations
are then checked against the change tolerances, G, specified by the user.

encode(bit, set, vfalse, vtrue, c)
compute avg(set), δ(set)
compute vc(set)
if vc(set) satisfies desired bit value return true
if (bit)

compute v∗ ← vtrue − vc(set)
alter v∗ items close to the stddev boundary so that they become > vtrue

else
(!bit) case is similar

compute vc(set)
if vc(set) satisfies desired bit value return true
else rollback alterations (distribution shifted too much?)
return false

Fig. 8. Single Bit Encoding Algorithm (illustrative overview).

At detection time the secret subsets are reconstructed and the individual
bits are recovered according to the single-bit mark encoding convention. This
yields the original e-bit string. If e is larger than the size of the watermark,
error correction was deployed to increase the encoding resilience. The wa-
termark string can be then recovered by applying error correction decoding
to this string, e.g., majority voting for each watermark bit. This process is
illustrated in Figure 9.

In [27,33] and [34] the authors discuss a proof of concept implementation.
It is worth mentioning here due to its consumer-driven design (see Figure
10). In addition to a watermark to be embedded, a secret key to be used
for embedding, and a set of relations/attributes to watermark, the software
receives as input also a set of external usability plugin modules. The role of
these plugins is to allow user defined query metrics to be deployed and queried
at run-time without recompilation and/or software restart. The software uses
those metrics to re-evaluate data usability after each atomic watermarking
step.

Constraint metrics can be specified either as SQL queries, stored proce-
dures or simple Java code inside the plug-in modules. Constraints that arise
from the schema (e.g., key constraints), can easily be specified in a form sim-

316 Radu Sion

det(attr, wm key, db primary key, subset sz, vfalse, vtrue, c, map[], subset bnds[])
srt attr ← sort on normalized crypto hash(wm key,db primary key,wm key)
read pipe ← null
do { tuple ← next tuple(srt attr) }
until (exists idx such that (subset bnds[idx] == tuple))
curr subset ← idx
while (not(srt attr.empty())) do

do {
tuple ← next tuple(srt attr)
read pipe = read pipe.append(tuple)

} until (exists idx such that (subset bnds[idx] == tuple))
subset bin ← (at most subset sz elements of read pipe, excluding last read)
read pipe.remove all remaining elements but last read()
if (map[curr subset]) then

mark data[curr subset] ← decode (subset bin, vfalse, vtrue, confidence)
if (mark data[curr subset] != DECODING ERROR)

then map[curr subset] ← true
curr subset ← idx

return mark data, map

Fig. 9. Watermark Detection (version using subset markers shown).

ilar to (or derived from) SQL create table statements. In addition, integrity
constraints (e.g., such as end time being greater than begin time) can be
expressed. A tolerance is specified for each constraint. The tolerance is the
amount of change or violation of the constraint that is acceptable. This is an
important parameter since it can be used to tailor the quality of the water-
mark at the expense of greater change in the data. As mentioned earlier, if
the tolerances are too low, it may not be possible to insert a watermark in the
data. Various forms of expression are accommodated, e.g., in terms of arbi-
trary SQL queries over the relations, with associated requirements (usability
metric functions). For example, the requirement that the result of the join
(natural or otherwise) of two relations does not change by more than 3% can
be specified.

Once usability metrics are defined and all other parameters are in place,
the watermarking module (see Figure 10) initiates the process of watermark-
ing. An undo/rollback log is kept for each atomic step performed (i.e., 1-bit
encoding) until data usability is assessed and confirmed by querying the cur-
rently active usability plugins. This allows for rollbacks in the case when data
quality is not preserved by the current atomic operation.

To validate this consumer driven design the authors perform a set of ex-
periments showing how, for example, watermarking with classification preser-
vation can be enforced through the usability metric plugin mechanisms. More-
over, the solution is proved experimentally on real data to be extremely re-

Database Watermarking for Copyright Protection 317

usability
metrics
plugin

handler

usability metric
plugin A

usability metric
plugin B

usability metric
plugin C JDBC

WM

evaluate usermark

key

alteration rollback log

attributes

A1 A2 A3 A4 A5 A6

DBMS

Fig. 10. Overview of the wmdb.* package.

silient to random alterations and uninformed alteration attacks. This is due to
its distribution-based encoding which can naturally survive such alterations.
For example, altering the entire watermarked data set within 1% of its original
values only yields a distortion of less than 5% in the detected watermark.

The authors also propose a set of improvements and discuss several prop-
erties of the solutions.

• Embedding Optimizations: As the encoding resilience is dependent on a
set of parameters (e.g., c, subset size, vfalse, vtrue), an automatic fine-
tuning mechanism for searching a near-optimum in this parameter space
is proposed. Additionally, the watermarking process could be trained to be
resilient to a set of transformations expected from any potential attacker.

• Blind Watermarking: The method does not require the availability of the
un-watermarked data at detection time.

• On-the-Fly Updatability: The authors also discuss mechanisms for han-
dling dynamic data updates. Several scenarios of interest are: (i) updates
that add fresh tuples to the already watermarked data set, (ii) updates
that remove tuples from the already watermarked data and (iii) updates
that alter existing tuples.

4 Categorical Types

So far we have explored the issue of watermarking numeric relational content.
Another important relational data type to be considered is categorical data.
Categorical data is data drawn from a discrete distribution, often with a finite
domain. By definition, it is either non-ordered (nominal) such as gender or
city, or ordered (ordinal) such as high, medium, or low temperatures. There

318 Radu Sion

are a multitude of applications that would benefit from a method of rights
protection for such data. In this section we propose and analyze watermarking
relational data with categorical types.

Additional challenges in this domain derive from the fact that one cannot
rely on arbitrary small (e.g., numeric) alterations to the data in the embedding
process. Any alteration has the potential to be significant, e.g., changing DE-
PARTURE CITY from “Chicago” to “Bucharest” is likely to affect the data
quality of the result more than a simple change in a numeric domain. There
are no “epsilon” changes in this domain. This completely discrete character-
istic of the data requires discovery of fundamentally new bandwidth channels
and associated encoding algorithms.

4.1 The Adversary Revisited

We outlined above a set of generic attacks in a relational data framework.
Here we discuss additional challenges associated with categorical data types.

A3. Alteration. In the categorical data framework, subset alteration is
intuitively quite expensive from a data-value preservation perspective. One has
also to take into account semantic consistency issues that become immediately
visible because of the discrete nature of the data.

A6. Attribute Remapping. If data semantics allow it, re-mapping of rela-
tion attributes can amount to a powerful attack that should be carefully con-
sidered. In other words, if Mallory can find an even partial value-preserving
mapping (the resulting mapped data set is still valuable for illicit purposes)
from the original attribute data domain to a new domain, a watermark should
hopefully survive such a transformation. The difficulty of this challenge is in-
creased by the fact that there likely are many transformations available for a
specific data domain. This is thus a hard task for the generic case. One special
case is primary key re-mapping.

4.2 A Solution

In [25], [36] Sion et. al. introduce a novel method of watermarking relational
data with categorical types, based on a set of new encoding channels and al-
gorithms. More specifically, two domain-specific watermark embedding chan-
nels are used, namely (i) inter-attribute associations and (ii) value occurrence
frequency-transforms of values.
Overview. The solution starts with an initial user-level assessment step in
which a set of attributes to be watermarked are selected. In its basic version,
watermark encoding in the inter-attribute association channel is deployed for
each attribute pair (K,A) in the considered attribute set. A subset of “fit”
tuples is selected, as determined by the association between A and K. These
tuples are then considered for mark encoding. Mark encoding alters the tu-
ple’s value according to secret criteria that induces a statistical bias in the

Database Watermarking for Copyright Protection 319

distribution for that tuple’s altered value. The detection process then relies
on discovering this induced statistical bias.

The authors validate the solution both theoretically and experimentally
on real data (Wal-Mart sales). They demonstrate resilience to both alteration
and data loss attacks, for example being able to recover over 75% of the
watermark from under 20% of the data.
Solution Details. For illustration purposes, let there be a set of discrete at-
tributes {A,B} and a primary data key K, not necessarily discrete. Any
attribute X ∈ {A,B} can yield a value out of nX possibilities (e.g., city
names, airline names). Let the number of tuples in the database be N . Let
b(x) be the number of bits required for the accurate representation of value
x and msb(x, b) its most significant b bits. If b(x) < b, x is left-padded with
(b−b(x)) zeroes to form a b-bit result. Similarly, lsb(x, b) is used to denote the
least significant b bits of x. If by wm denotes a watermark to be embedded,
of length |wm|, wm[i] will then be the i-th bit of wm. Let set bit(d, a, b) be
a function that returns value d with the bit position a set to the truth-value
of b. In any following mathematical expression let the symbol “&” signify a
bit-AND operation. Let Tj(X) be the value of attribute X in tuple j. Let
{a1, ..., anA

} be the discrete potential values of attribute A. These are dis-
tinct and can be sorted (e.g., by ASCII value). Let fA(aj) be the normalized
(to 1.0) occurrence frequency of value aj in attribute A. fA(aj) models the
de-facto occurrence probability of value aj in attribute A.

The encoding algorithm (see Figure 11) starts by discovering a set of “fit”
tuples determined directly by the association between A and the primary
relation key K. These tuples are then considered for mark encoding.

wm embed alt(K,A,wm,k1,e,ECC)
wm data ← ECC.encode(wm, wm.len)
idx ← 0
for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), k1) mod e = 0) then
t ← set bit(H(Tj(K), k1), 0, wm data[idx])
Tj(A) ← at

embedding map[Tj(K)] ← idx
idx ← idx + 1

return embedding map

Fig. 11. Encoding Algorithm (alternative using embedding map shown)

Step One. A tuple Ti is said to be “fit” for encoding iff H(Ti(K), k1) mod e =
0, where e is an adjustable encoding parameter determining the percentage of
considered tuples and k1 is a secret max(b(N), b(A))-bit key. In other words,
a tuple is considered “fit” if its primary key value satisfies a certain secret

320 Radu Sion

criteria (similar criteria are found in various frameworks, e.g., [16]). The fit
tuples set will then contain roughly N

e elements.
The “fitness” selection step provides several advantages. On the one hand

this ensures secrecy and resilience and, on the other hand, it effectively “mod-
ulates” the watermark encoding process to the actual attribute-primary key
association. Additionally, this is the place where the cryptographic safety
of the hash one-wayness is leveraged to defeat invertibility attacks (A5). If

a8n-1

…

AK

…

a7n

af(i)i

a23

a92

a71

a30

Solution: slightly alter A,
modulating some of its
("fit") values according to
a one-way hash of K and
a spread of the values of
the watermark w.

Issue: is the data watermarked ? if yes
then what is the watermark string ?

…bias
false

[1]

…bias
true

[1]

[m][m-1]…[g(i)]…[4][3][2]wm[1]

g(i)=msb(H(i,k
2
),log

2
(m))

f(i)=msb(H(i⊕w[g(i)],k
1
),log

2
(n

A
))

Fig. 12. Overview of multi-bit watermark encoding.

the available embedding bandwidth N
e is greater than the watermark bit-size

|wm|, error correcting codes (ECC) are deployed that take as input a desired
watermark wm and produce as output a string of bits wm data of length
N
e containing a redundant encoding of the watermark, tolerating a certain
amount of bit-loss, wm data = ECC.encode(wm, N

e).
Step Two. For each “fit” tuple Ti, we encode one bit by altering Ti(A) to
become Ti(A) = at where

t = set bit(msb(H(Ti(K), k1), b(nA)), 0, wm data[msb(H(Ti(K), k2), b(
N

e
))])

and k2 is a secret key k2 �= k1. In other words, a secret value of b(nA) bits
is generated – depending on the primary key and k1 – and then its least
significant bit is forced to a value according to a corresponding position in
wm data (random, depending on the primary key and k2). The new attribute

Database Watermarking for Copyright Protection 321

value is thus selected by the secret key k1, the associated relational primary
key value and a corresponding bit from the watermark data wm data.

In the decoding phase (see Figure 13), the first aim is to discover the
embedded wm data bit string. The same criteria for discovering “fit” tuples
is used. For each “fit” tuple Ti, with Ti(A) = at, its corresponding entry in
the result bit string is set to (t&1)

wm data[msb(H(Tj(K), k2), b(
N

e
))] ← (t&1)

Once wm data (possibly altered) is available, the error correcting mechanism
is invoked to generate the “closest”, most likely, corresponding watermark
wm = ECC.decode(wm data, |wm|).

wm dec alt(K,A,k1,e,ECC,embed map)
for (j ← 1; j < N ; j ← j + 1)

if (H(Tj(K), msb(k, b(K))) mod e = 0) then
determine t such that Tj(A) = at

wm data[embed map[Tj(K)]] = t&1
wm ← ECC.decode(wm data, wm.length)
return wm

Fig. 13. Decoding Algorithm (alternative using embedding map shown)

The authors propose a natural extension to the above solution aimed at
defeating vertical partitioning attacks (A1.b). Instead of relying on the as-
sociation between the primary key and A, the extended algorithm considers
all pairs of attributes and embeds a watermark separately in each of these
associations. Additionally, if data constraints allow, the authors propose wa-
termarking each and every attribute pair by first building a closure for the
set of attribute pairs over the entire schema that minimizes the number of
encoding interferences while maximizing the number of pairs watermarked.
To solve the issue of interference, maintaining a mark “interference graph” is
proposed.

The proposed extension features a particular issue of concern in certain
cases of multi-attribute embeddings where two non-key attributes are used
in the encoding, i.e., mark(A,B). Because of the correlation between the wa-
termarking alteration (the newly selected value Ti(B) = bt) and its actual
location (determined by the fitness selection, H(Ti(A), k1) and e), sometimes
Mallory can mount a special attack with the undesirable result of revealing
some of the mark bit embedding locations. This occurs if the fitness criteria
decides that a particular value of A yields a tuple fit and that value of A

322 Radu Sion

appears then in multiple (statistically significant number of) different tuples.
This is possible only if A is not a primary key but rather another categorical
attribute, with repeating duplicate values.

The authors propose a set of solutions to this issue, including composing
the actual watermark encoding out of a combination of several different sub-
encodings, each in turn using a different k1 value. Each such sub-encoding will
ignore all tuples with previously seen values of the attribute A (in the fitness
criteria). While each of these “low impact” encodings would be weaker than
the original solution, their combined “sum” can be made arbitrarily strong,
by increasing their number. At the same time correlation attacks would be
defeated, as each of the encodings would use a different key thus making such
attacks impossible “across” the encodings.

The authors further discuss additional extensions and properties of the
solution, including the following.

• Consumer-Driven Design: The solution features a consumer-driven design.
Each property of the database that needs to be preserved is written as
a constraint on the allowable change to the dataset. The watermarking
algorithm is then applied with these constraints as input and re-evaluates
them continuously for each alteration. A backtrack log is kept to allow
undo operations in case certain constraints are violated by the current
watermarking step.

• Incremental Updatability: The solution supports incremental updates nat-
urally. As updates occur to the data, the resulting tuples can be evaluated
on the fly for “fitness” and watermarked accordingly.

• Blind Watermarking: The method does not require the availability of the
un-watermarked data at detection time.

• Minimizing Alteration Distance: An interesting problem to consider is the
case when, for a given “fit” tuple, certain alterations would be preferred
to others (e.g., changing “Chicago, O’Hare” into “Chicago” is preferred to
“Las Vegas”). The authors propose to handle this scenario by a modified
encoding procedure that naturally accommodates and minimizes such an
“alteration distance” metric.

• Extreme Vertical Partitioning: To counter extreme vertical partitioning
attacks in which only a single attribute A is preserved in the result, the
authors propose to encode a watermark in one of the only remaining char-
acteristic properties, namely the value occurrence frequency distribution
for each possible value of A. To do so a scheme of watermarking for numeric
sets [30] can be applied in this “frequency” domain.

• Multi-Layer Self-Reinforcing Watermarks: To counter the scenario where
Mallory gains knowledge, e.g., during a court hearing, of a multiply-used
encoding key, the authors propose to embed multiple (i) weak watermarks
with different secret keys and reveal in court only a certain subset of these,
or (ii) self-re-enforcing pairs of watermarks (w1, w2)i with different keys

Database Watermarking for Copyright Protection 323

(k1
1, k

1
2, k

2
1, k

2
2)i such that, for example, altering w2 will result in enforcing

w1.
• Multiple Data Sources: The paper also points out that the solution handles

recovering watermarks from data derived from multiple data sources. This
scenario is of particular interest for example in the case of an equiJOIN
performed between two data sets. Because watermarks rely on a bias in
the association between attributes, they can be naturally retrieved from
such JOIN result under certain reasonable assumptions.

• Categorical and Numerical Data Types: Watermarking at the intersection
of categorical and numerical types is also explored. It is of interest to
provide a rights assessment mechanism that could not only prove rights
but also that the associated data sets were actually produced “together”;
this is relevant for example if the intrinsic value of the data lies in the
actual combination of the two data types. The authors introduce initial
ideas.

• Bijective Attribute Re-mapping: To handle a scenario in which categor-
ical attributes are re-mapped through a bijective function to a new data
domain, the authors propose to discover the inverse mapping. This is pos-
sible if the initial data domain features distinguishing properties (e.g.,
value occurrence frequency histogram) that are likely to be preserved in
the mapped result.

5 Related Work

So far we have discussed a set of relational data types and associated wa-
termarking methods enabling future rights assessment proofs. We now sur-
vey a number of related research efforts that explore Information Hiding and
Watermarking for relational data in other security contexts such as privacy
enforcement and license violators tracing.

5.1 Privacy and Rights Protection

In [4] Bertino et. al. explore issues at the intersection of two important di-
mensions in data-centric assurance, namely rights assessment and privacy, in
the broader context of medical data. A unified framework is introduced that
combines binning and watermarking techniques for the purpose of achieving
both data privacy and the ability to assert rights.

The system design borrows components from existing work. More specifi-
cally, the binning method (for k-anonymity) is built upon an earlier approach
of generalization and suppression by allowing a broader concept of gener-
alization. Similar to the consumer-driven paradigm discussed earlier in this
chapter, to ensure data usefulness, binning is constrained by usage metrics
that define maximal allowable information loss. An initial binning stage is
followed then by watermarking. The framework then deploys a version of the

324 Radu Sion

encoding for categorical types [36] by Sion et. al. in a hierarchical fashion,
for the purpose of defeating a data generalization attack of concern in this
framework. The paper then explores whether watermarking can adversely in-
terfere with binning and conclude that the interaction is safe. Experiments
were conducted aimed at validating the robustness of the proposed framework.

5.2 Fingerprinting

Another example application of Resilient Information Hiding as a tool aid-
ing rights management, is its deployment to “track” license violators by hid-
ing a specific mark inside the Work, uniquely identifying the party it was
sold/outsourced to. This application is commonly referred to as fingerprint-
ing. If the Work would then be found in the public domain, that mark could
be used to assess the source of the leak.

One significant matter of concern in fingerprinting are collusion attacks. In
a collusion attack, multiple attackers “collude” by obtaining multiple copies
of the same Work (e.g., by purchasing it separately under different identities)
watermarked with different marks, in the hope of “combining” the different
copies into a single un-watermarked version. Defending against this attack is
not possible in the general case when the number of colluding partners cannot
be upper bounded. If this upper bound can be determined however, several
results provide appropriate coding techniques that allow tracing even in the
case of collusion under minimal assumptions [5] [6] [13].

For relational data, the issue of fingerprinting has been discussed by Li et.
al. in [21] where they propose to deploy their multi-bit watermarking method
[19] for this very purpose. To handle collusion attacks the authors defer to
research in [5] [6] [13]. This work is discussed in more detail elsewhere in this
book.

5.3 Tamper Detection through Fragile Watermarking

In [17] Li et. al. explore the issue of detecting malicious alterations to data
by embedding a “fragile” watermark in the data. While in this chapter we
presented watermarking as a technique deploying Information Hiding for the
purpose of rights assessment, in this context, “watermark” is attached to
a different semantics. Whereas in rights assessment, a watermark features
resilience to value-preserving data alterations, for the purposes of tamper
detection, the “watermark” will be “fragile” so as to become a detector for
exactly such alterations. The authors also propose to allow this watermark to
point at the locations where alterations have occurred in the data.

At an overview level, the method proceeds as follows. The data is parti-
tioned into secret subsets; a keyed cryptographic hash of each such subset (in
effect the traditional message authentication code MAC) is then embedded
in the group by re-ordering its items with respect to a canonical ordering,
based on a cryptographic hash of their primary key attribute. The encoding

Database Watermarking for Copyright Protection 325

is claimed fragile enough to be impacted by even minor alterations to the data
with reasonable probabilities. Additionally, the encoding can pinpoint at the
exact location of the alteration with the granularity of a subset.

Compared with traditional authentication techniques (e.g., appending sig-
natures of MACs) such a technique can become of relevance, e.g., when the
overhead of storing and managing the signatures or MACs for a large number
of entities is not negligible. This is why it is important to further explore and
understand fragile watermarking scenarios. This work is discussed in more
detail elsewhere in this book.

5.4 Query Learnability and Consumer-Driven Watermarking

In [12] Gross-Amblard introduce interesting theoretical results investigating
alterations to relational data (or associated XML) in a consumer-driven frame-
work in which a set of parametric queries are to be preserved up to an accept-
able level of distortion.

The author first shows that the main difficulty preserving such queries
“is linked to the informational complexity of sets defined by queries, rather
than their computational complexity” [12]. Roughly speaking, if the family
of sets defined by the queries is not learnable [37], no query-preserving data
alteration scheme can be designed.

In a second result, the author shows that under certain assumptions (i.e.,
query sets defined by first-order logic and monadic second order logic on
restricted classes of structures – with a bounded degree for the Gaifman graph
or the tree-width of the structure) a query-preserving data alteration scheme
exists.

This research is important as it has the potential to enable a better under-
standing of consumer-driven watermarking designs. For example, as database
instances are often having a bounded degree Gaifman graph (or a bounded
tree-width), these can now be measured and the information capacity of a
query-preserving alteration channel can be computed. This is of interest in
the case of extremely restrictive constraints, e.g., when it is not clear if wa-
termarking can yield enough resilience.

6 State of The Art and the Future

Watermarking in relational frameworks is a relatively young technology that
has begun its maturity cycle towards full deployment in industry-level ap-
plications. Many of the solutions discussed above have been prototyped and
validated on real data. Patents have been filed for several of them, including
Agrawal et.al. [1,16] and Sion et.al. [29,30,32,33] [34] [25,27,36]. In the next
few years we expect these solutions to become available commercially, tightly
integrated within existing DBMS (e.g., DB2 [10]) or as stand-alone packages
that can be deployed simultaneously on top of multiple data types and sources.

326 Radu Sion

Ultimately, we believe the process of resilient information hiding will become
available as a secure mechanism for not only rights protection but also data
tracing and authentication in a multitude of discrete data frameworks.

7 Conclusions

In this chapter we explored how Information Hiding can be successfully de-
ployed as a tool for Rights Assessment for discrete digital Works. We analyzed
solutions for resilient Information Hiding for relational data, including numeric
and categorical types.

A multitude of associated future research avenues present themselves in a
relational framework, including: the design of alternative primary or pseudo-
primary key independent encoding methods, a deeper theoretical understand-
ing of limits of watermarking for a broader class of algorithms, the ability to
better defeat additive watermark attacks, an exploration of zero-knowledge
watermarking etc.

Moreover, while the concept of on-the-fly quality assessment for a consumer-
driven design has the potential to function well, another interesting avenue
for further research would be to augment the encoding method with direct
awareness of semantic consistency (e.g., classification and association rules).
This would likely result in an increase in available encoding bandwidth, thus
in a higher encoding resilience. One idea would be to define a generic language
(possibly subset of SQL) able to naturally express such constraints and their
propagation at embedding time.

Additionally, of particular interest for future research exploration, we en-
vision cross-domain applications of Information Hiding in distributed envi-
ronments such as sensor networks, with applications ranging from resilient
content annotation to runtime authentication and data integrity proofs.

8 Acknowledgments

The author is supported partly by the NSF through awards CT CNS-0627554,
CT CNS-0716608 and CRI CNS 0708025. The author also wishes to thank
Motorola Labs, IBM Research, CEWIT, and the Stony Brook Office of the
Vice President for Research.

References

1. Rakesh Agrawal, Peter J. Haas, and Jerry Kiernan. Watermarking relational
data: framework, algorithms and analysis. The VLDB Journal, 12(2):157–169,
2003.

Database Watermarking for Copyright Protection 327

2. Michael Arnold, Stephen D. Wolthusen, and Martin Schmucker. Techniques and
Applications of Digital Watermarking and Content Protection. Artech House
Publishers, 2003.

3. Mauro Barni and Franco Bartolini. Watermarking Systems Engineering: En-
abling Digital Assets Security and Other Applications. Marcel Dekker, 2004.

4. Elisa Bertino, Beng Chin Ooi, Yanjiang Yang, and Robert H. Deng. Privacy
and ownership preserving of outsourced medical data. In Proceedings of the
International Conference on Data Engineering, pages 521–532, 2005.

5. D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. Lecture
Notes in Computer Science, 963:452–464, 1995.

6. D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE
Transactions on Information Theory, 44(5):1897–1905, 1998.

7. E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, 13(6):377–387, 1970.

8. I. Cox, J. Bloom, and M. Miller. Digital watermarking. In Digital Watermarking.
Morgan Kaufmann, 2001.

9. Scott Craver, Nasir Memon, Boon-Lock Yeo, and Minerva M. Yeung. Resolv-
ing rightful ownerships with invisible watermarking techniques: Limitations, at-
tacks, and implications. IEEE Journal of Selected Areas in Communications,
16(4):573–586, 1998.

10. The IBM DB2 Universal Database. Online at
http://www.ibm.com/software/data/db2.

11. Joachim Eggers and Bernd Girod. Informed Watermarking. Kluwer Academic
Publishers, 2002.

12. David Gross-Amblard. Query-preserving watermarking of relational databases
and xml documents. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 191–201, New
York, NY, USA, 2003. ACM Press.

13. H. Guth and B. Pfitzman. Error and collusion secure fingerprinting for digital
data. In Proceedings of the Information Hiding Workshop, 1999.

14. Neil F. Johnson, Zoran Duric, and Sushil Jajodia. Information Hiding: Steganog-
raphy and Watermarking - Attacks and Countermeasures. Kluwer Academic
Publishers, 2001.

15. S. Katzenbeisser and F. Petitcolas (editors). Information Hiding Techniques for
Steganography and Digital Watermarking. Artech House, 2001.

16. J. Kiernan and R. Agrawal. Watermarking relational databases. In Proceedings
of the 28th International Conference on Very Large Databases VLDB, 2002.

17. Yingjiu Li, Huiping Guo, and Sushil Jajodia. Tamper detection and localization
for categorical data using fragile watermarks. In DRM ’04: Proceedings of the
4th ACM workshop on Digital rights management, pages 73–82, New York, NY,
USA, 2004. ACM Press.

18. Yingjiu Li, Vipin Swarup, and Sushil Jajodia. Constructing a virtual primary
key for fingerprinting relational data. In DRM ’03: Proceedings of the 2003
ACM workshop on Digital rights management, pages 133–141, New York, NY,
USA, 2003. ACM Press.

19. Yingjiu Li, Vipin Swarup, and Sushil Jajodia. A robust watermarking scheme
for relational data. In Proceedings of the Workshop on Information Technology
and Systems (WITS), pages 195–200, 2003.

http://www.ibm.com/software/data/db2

328 Radu Sion

20. Yingjiu Li, Vipin Swarup, and Sushil Jajodia. Defending against additive at-
tacks with maximal errors in watermarking relational databases. In Proceedings
of the IFIP WG 11.3 Working Conference on Data and Application Security,
pages 81–94, 2004.

21. Yingjiu Li, Vipin Swarup, and Sushil Jajodia. Fingerprinting relational
databases: Schemes and specialties. IEEE Transactions on Dependable and Se-
cure Computing, 2(1):34–45, 2005.

22. Chun-Shien Lu. Multimedia Security: Steganography and Digital Watermarking
Techniques for Protection of Intellectual Property. Idea Group Publishing, 2004.

23. Bruce Schneier. Applied Cryptography: Protocols, Algorithms and Source Code
in C. Wiley & Sons, 1996.

24. Husrev T. Sencar, Mahalingam Ramkumar, and Ali N. Akansu. Data Hiding
Fundamentals And Applications: Content Security in Digital Multimedia. EL-
SEVIER science and technology books, 2004.

25. Radu Sion. Proving ownership over categorical data. In Proceedings of the IEEE
International Conference on Data Engineering ICDE, 2004.

26. Radu Sion. Rights Assessment for Discrete Digital Data, Ph.D. dissertation.
Computer Sciences, Purdue University, 2004.

27. Radu Sion. wmdb.*: A suite for database watermarking (demo). In Proceedings
of the IEEE International Conference on Data Engineering ICDE, 2004.

28. Radu Sion and Mikhail Atallah. Attacking digital watermarks. In Proceedings
of the Symposium on Electronic Imaging SPIE, 2004.

29. Radu Sion, Mikhail Atallah, and Sunil Prab-
hakar. On watermarking numeric sets. Online at
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/,
2001.

30. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. On watermarking numeric
sets. In Proceedings of IWDW 2002, Lecture Notes in Computer Science.
Springer-Verlag, 2002.

31. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Power: Metrics for evaluating
watermarking algorithms. In Proceedings of IEEE ITCC 2002. IEEE Computer
Society Press, 2002.

32. Radu Sion, Mikhail Atallah, and Sunil Prab-
hakar. Watermarking databases. Online at
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/,
2002.

33. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Rights protection for rela-
tional data. In Proceedings of the ACM Special Interest Group on Management
of Data Conference SIGMOD, 2003.

34. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Relational data rights pro-
tection through watermarking. IEEE Transactions on Knowledge and Data
Engineering TKDE, 16(6), June 2004.

35. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Resilient rights protection for
sensor streams. In Proceedings of the Very Large Databases Conference VLDB,
2004.

36. Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Ownership proofs for cate-
gorical data. IEEE Transactions on Knowledge and Data Engineering TKDE,
2005.

37. L. G. Valiant. A Theory of the Learnable. In Proceedings of the Symposium on
the Theory of Computing, pages 436–445, 1984.

https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/

14

Database Watermarking: A Systematic View

Yingjiu Li

School of Information Systems, Singapore Management University
80 Stamford Road, Singapore 178902
yjli@smu.edu.sg

Summary. In this chapter, a systematic review of database watermarking is pro-
vided. The existing database watermarking approaches are classified along six di-
mensions: data type, distortion to underlying data, sensitivity to database attacks,
watermark information, verifiability, and data structure. At the end of this chapter,
some open issues are discussed.

1 Introduction

The motivation for database watermarking is to protect databases, especially
those published online (e.g., parametric specifications, surveys, and life sci-
ences data), from tampering and pirated copies. A watermark can be consid-
ered to be some kind of information that is embedded into underlying data
for tamper detection, localization, ownership proof, and/or traitor tracing
purposes. Database watermarking techniques complement the Database Pro-
tection Act [24] and are becoming increasingly important as people realize
that “the law does not now provide sufficient protection to the comprehensive
and commercially and publicly useful databases that are at the heart of the
information economy” [5].

Basic watermarking processes

Database watermarking consists of two basic processes: watermark insertion
and watermark detection, as illustrated in Figure 1. For watermark insertion,
a key is used to embed watermark information into an original database so as
to produce the watermarked database for publication or distribution. Given
appropriate key and watermark information, a watermark detection process
can be applied to any suspicious database so as to determine whether or
not a legitimate watermark can be detected. A suspicious database can be
any watermarked database or innocent database, or a mixture of them under
various database attacks.

330 Yingjiu Li

Original DB

Suspicious DB

Watermark
intersion

Watermark
detection

key

key

Watermark information

Watermark information

Watermarked DB
(publish/distribute)

Watermark detected or not
(low false detection rates)

Watermarked DB

Innocent DB

attacks

Fig. 1. Basic watermarking processes

Difference from multimedia watermarking

While the basic processes in database watermarking are quite similar to those
in watermarking multimedia data (which has long been rigorously studied
[10, 11, 4]), the approaches developed for multimedia watermarking cannot
be directly applied to databases because of the difference in data properties.
In general, database relations differ from multimedia data in significant ways
and hence require a different class of information-hiding mechanisms. Unlike
multimedia data whose components are highly correlated, database relations
consist of independent objects or tuples. The tuples can be added, deleted, or
modified frequently in either benign updates or malicious attacks. No existing
watermarking techniques for multimedia data are designed to accommodate
such tuple operations.

Classification model

The existing database watermarking schemes can be classified along various
dimensions, including:

• Data type: Different schemes are designed for watermarking different types
of data, including numerical data and categorical data.

• Distortion to underlying data: While some watermarking schemes in-
evitably introduce distortions/errors to the underlying data, others are
distortion-free.

• Sensitivity to database attacks: A watermarking scheme can be either ro-
bust or fragile to database attacks. A scheme is robust (fragile, respectively)
if it is difficult to make an embedded watermark undetectable (unchanged,
respectively) in database attacks, provided that the attacks do not degrade
the usefulness of the data significantly.

• Watermark information: The watermark information that is embedded
into a database can be a single-bit watermark, a multiple-bit watermark,
a fingerprint, or multiple watermarks in different watermarking schemes.

Database Watermarking: A Systematic View 331

• Verifiability: A watermark solution is said to be private if the detection of
a watermark can only be performed by someone who owns a secret key
and can only be proven once to the public (e.g., to the court). After this
one-time proof, the secret key is known to the public and the embedded
watermark can be easily destroyed by malicious users. A watermark solu-
tion is said to be public if the detection of a watermark can be publicly
proven by anyone, as many times as necessary.

• Data structure: Different watermarking schemes are designed to accom-
modate different structural information of the underlying data, including
relational databases (with or without primary keys), data cubes, streaming
data, and XML data.

Based on the above classification model, a systematic review of database
watermarking is presented in the rest of this chapter. The review covers typ-
ical watermarking schemes as well as some new results, not intended to be
complete, but rather to present a coherent picture from the author’s point
of view. The reader is referred to another chapter in this book for a comple-
mentary review on database watermarking schemes. For consistency reasons,
the same notation is used as much as possible in this interpretation of differ-
ent schemes (thus the interpretation may not be exactly the same as those
given in the literature). In particular, this interpretation uses a cryptograph-
ically secure pseudo-random sequence generator S seeded with a secret key
K in concatenation with some other input X. Given a sequence of numbers
S1,S2, . . . generated by S, it is computationally infeasible to derive the secret
key nor to predict the next number in the sequence. Alternatively, one can use
a keyed hash message authentication code HMAC to generate the sequence
with different secret keys (i.e., Si = HMAC(Ki,X)).

2 Data Type

2.1 Watermarking Numerical Data

The first well-known database watermarking scheme was proposed by
Agrawal and Kiernan [1] for watermarking numerical values in relational
databases. The fundamental assumption is that the watermarked database
can tolerate a small amount of errors: it is acceptable to change a small num-
ber of ξ least significant bits in some numeric values; however, the value of
data is significantly reduced if a large number of the bits are changed. The ba-
sic idea is to ensure that those bit positions contain specific values determined
by a secret key K. The bit pattern constitutes a watermark.

For watermark insertion, the scheme scans each tuple r in a relation R
and seeds a cryptographically secure pseudo-random sequence generator S
with the secret key K in concatenation with the tuple’s primary key r.P .
Let Si be the i-th number generated by S. If S1 satisfies (S1 mod γ = 0),
then the current tuple r is selected, otherwise the tuple is ignored, where γ

332 Yingjiu Li

is a watermarking parameter used to control the percentage of tuples being
selected. Because S1 is pseudo-random, roughly η/γ tuples are selected, where
η is the total number of tuples in relation R. Then, for each selected tuple, the
scheme selects one attribute with index (S2 mod ν) out of ν watermarkable
numerical attributes indexed from 0 to ν − 1. For the selected attribute of a
selected tuple, the scheme selects one bit with index (S3 mod ξ) out of ξ least
significant bits indexed from 0 to ξ − 1, where ξ is a watermarking parameter
used to control the error that each numerical value can tolerate. The scheme
then assigns the selected bit of the selected attribute in the selected tuple
with a mark value (S4 mod 2). With a probability of 1/2, the underlying
bit value is changed in this process. Due to the use of a cryptographically
secure pseudo-random sequence generator, it is computationally infeasible for
an attacker, without knowing the secret key, to derive where the watermark
bits are embedded, what the mark bits are, and the correlations among the
embedded locations and the embedded values.

For watermark detection, the scheme scans all the tuples in a suspicious
database relation R′, locates the marked bit positions, and computes the mark
values at those bit positions exactly as in watermark insertion. To detect a
watermark, the scheme compares the computed mark values to the corre-
sponding bit values stored in R′. A watermark is detected if the percentage of
matches in such comparison is greater than τ , where τ ≥ 0.5 is a parameter
that is related to the assurance of the detection process.

This scheme is suitable for watermarking some numerical data since the
errors introduced in the watermarking process are under control. Parameter
ξ is used to control the errors introduced to individual values; parameter
γ is used to control the fraction of the numerical values that are modified
in watermark insertion. These two parameters can be adjusted to constrain
watermarking errors within measurement tolerance in many numerical data
sets such as meteorological data, gene expression data, parameter data on
semiconductor parts, and forest cover data [1].

2.2 Watermarking Categorical Data

Since any bit change to a categorical value may render the value meaningless,
Agrawal and Kiernan’s scheme [1] cannot be directly applied to watermarking
categorical data. To solve this problem, Sion [21] proposed to watermark a
categorical attribute by changing some of its values to other values of the
attribute (e.g., “red” is changed to “green”) if such change is tolerable in
certain applications.

Sion’s scheme is equivalent to Agrawal and Kiernan’s scheme in selecting
a number of tuples for watermarking a categorical attribute A. The scheme
scans each tuple r and seeds a pseudo-random sequence generator S with a
secret key K in concatenation with the tuple’s primary key r.P . If S1, the first
number generated by S, satisfies (S1 mod γ = 0), then the current tuple r
is selected, otherwise the tuple is ignored, where γ controls the percentage of

Database Watermarking: A Systematic View 333

tuples selected. Given η tuples in relation R, roughly η/γ values of attribute
A are selected for watermark insertion.

For each selected tuple r, exactly one bit is chosen from watermark infor-
mation wm data and is embedded to r.A, where the watermark information
wm data consists of roughly η/γ bits generated from a shorter watermark wm
using error correcting code (ECC). The bit position that is chosen is deter-
mined by mapping S2 uniformly to the range of wm data indexes (this can
be done by using a pseudo-random number generator or using an embedding
map as stated in [21]). To embed the chosen bit b, the current categorical
value r.A is changed to another valid value of A, which is chosen from a list
LA of all valid values of A. In this process, any value a can be chosen from LA

(to replace r.A) as long as a’s index in LA has the least significant bit b. This
flexibility in value selection can be exploited to maintain certain distribution
properties of A in watermark insertion.

For watermark detection, a number of tuples are selected the same way
as in watermark insertion, based on S1. Then, for each selected tuple r, a bit
position in wm data is located the same way as in watermark insertion, based
on S2. The corresponding bit value in wm data is extracted from the least
significant bit of the index of r.A in the list LA. After all of the tuples are
processed, the ECC takes as input wm data and produces the correspond-
ing wm. The ECC can tolerate certain errors in detecting wm data and still
produce the same wm in watermark detection.

This watermarking scheme has been applied to binned medical data in a
hierachical manner so as to protect copyright in the presence of generalization
attack that is specific to the binned data [2].

3 Distortion

While the watermarking errors introduced to numerical values can be made
small, thus tolerable to certain data applications as illustrated in [1], the
errors introduced to categorical data can be significant, at least to individual
values. In [13], Li, Guo, and Jajodia introduced a distortion-free scheme for
watermarking categorical data (it can also be directly applied to watermarking
numerical data with no errors). In this solution, all η tuples in a database
relation R are first securely divided into g groups according to a secret key K.
A different watermark is embedded and verified in each group independently.
As a result, any modifications to the watermarked data can be detected and
localized to the group level with high probabilities.

3.1 Distortion-Free Watermarking

Algorithms 1 and 2 describe the watermark insertion process. First, a (keyed)
tuple hash and a (keyed) primary key hash are computed for each tuple ri

using a HMAC function. The tuple hash values are computed based on a fixed

334 Yingjiu Li

order of attributes. Based on the primary key hash values, all tuples are se-
curely divided into g groups. The grouping is only a virtual operation, which
means that it does not change the physical position of the tuples. After group-
ing, all tuples in each group are sorted according to their primary key hash.
Like grouping, the sorting operation does not change the physical position of
tuples either. Each group is then watermarked independently.

Algorithm 2 shows the embedding process in each group. A (keyed) group
hash value is computed based on the tuple hash values in a sorted order.
A watermark, the length of which is equal to the number of tuple-pairs in
the current group, is extracted from the group hash value. To embed the
watermark, for each tuple pair, the order of the two tuples are changed or
unchanged (physically in the original database) to represent a corresponding
watermark bit 1 or 0, where 0 is encoded by the ascendant order and 1 by the
descendant order. Since only the order of the tuples is changed, the watermark
insertion does not introduce any error to the underlying data.

Algorithm 1 Watermark embedding
1: For all k = 1, . . . g, qk = 0
2: for i = 1 to η do
3: hi = HMAC(K, ri) // tuple hash
4: hp

i = HMAC(K, ri.P) // primary key hash
5: k = hp

i mod g
6: ri → Gk // Virtual operation: assign tuple ri to group k
7: qk + +
8: end for
9: for k = 1 to g do

10: watermark embedding in Gk // See algorithm 2
11: end for

Algorithms 3 and 4 describe the watermark detection process. As in wa-
termark insertion, the primary key hash is computed for each tuple and all
tuples are divided into groups. Each group is processed independently. In a
group, the tuples are first sorted according to their primary key hash values.
Like watermark insertion, the sorting is a virtual operation and does not in-
volve order change of any tuples. Based on the tuple hash of the sorted tuples,
a group hash value is computed. Then, a watermark W is extracted from the
group hash. The watermark W is the one that is supposed to have been em-
bedded if the underlying data were watermarked. On the other hand, a binary
string W ′ is extracted from the tuples in this group. For every tuple pair, if
their tuple hash values are in ascendant order, the corresponding bit in W ′ is
extracted to be zero; otherwise, it is one. If W ′ matches W , the data in the
group are authentic; otherwise, the data in this group have been modified or
tampered with.

Database Watermarking: A Systematic View 335

Algorithm 2 Watermark embedding in Gk

1: sort tuples in Gk in ascendant order according to their primary key hash values//
Virtual operation

2: H = HMAC(K, h′
1); H = HMAC(K,H|h′

2); . . . H = HMAC(K,H|h′
qk

) //
group hash, where h′

i(i = 1, · · · qk) is the tuple hash of the ith tuple after ordering

3: W = extractBits(H, qk/2) // See lines 10-17
4: for i = 1, i < qk, i = i + 2 do
5: if W [i/2] == 1 then
6: switch the position of ri and ri+1 physically in DB
7: end if
8: end for
9:

10: function extractBits(H, �){
11: if length(H) ≥ � then
12: W = concatenation of first � selected bits from H // in most cases, H is longer

than �
13: else
14: m = � - length(H)
15: W = concatenation of H and extractBits(H, m)
16: end if
17: return W}

Algorithm 3 Watermark detection
1: For all k = 1, . . . g, qk = 0
2: for i = 1 to η do
3: hi = HMAC(K, ri)
4: hp

i = HMAC(K, ri.P)
5: k = hp

i mod g
6: ri → Gk

7: qk + +
8: end for
9: for k = 1 to g do

10: watermark verification in Gk // See algorithm 4
11: end for

In this solution, the number g of groups is used to make a tradeoff between
security and localization. On the one hand, the smaller the value of g, the
larger the probability of detecting modifications in watermark detection, and
the more secure the proposed scheme. On the other hand, this leads to a larger
group size; thus, one can localize modifications less precisely as there are more
tuples in each group.

3.2 Embedding Capacity

Li, Guo, and Jajodia’s scheme embeds one bit for each pair of selected
tuples; thus, qk/2 bits are embedded into each group of qk selected tuples.

336 Yingjiu Li

Algorithm 4 Watermark verification in Gk

1: sort tuples in Gk in ascendant order according to their primary key hash //
Virtual operation

2: H = HMAC(K, h′
1); H = HMAC(K,H|h′

2); . . . H = HMAC(K,H|h′
qk

) //
group hash, where h′

i(i = 1, · · · qk) is the tuple hash of the ith tuple after ordering

3: W = extractBits(H, qk/2) // See lines 10-17 in Algorithm 2
4: for i = 1, i < qk, i = i + 2 do
5: if hi ≤ hi+1 then
6: W ′[i/2] = 0
7: else
8: W ′[i/2] = 1
9: end if

10: end for
11: if W ′ == W then
12: V = TRUE
13: else
14: V = FALSE
15: end if

The embedding capacity can be further increased such that at most ln qk!
bits can be embedded into each group of qk selected tuples. The increase in
embedding capacity is illustrated in Table 1.

Table 1. Embedding capacity

qk 10 20 30 40 50 60 70 80 90 100

qk/2 5 10 15 20 25 30 35 40 45 50

ln qk! 15 42 74 110 148 188 230 273 318 363

Given a group of qk selected tuples, a group hash H is calculated the
same way as in Algorithm 2. Then, a watermark W = extractBits(H, ln qk!)
of length ln qk! is derived from H. The watermark W is embedded into this
group by permuting the order of the tuples. The new order π can be easily cal-
culated using Myrvold and Ruskey’s linear permutation unranking algorithm
[19] based on W :

1. π = (0, . . . , qk − 1)
2. unrank(qk,W, π) // see lines 4-5 below
3. return π

4. function unrank(qk,W, π) // W is in integer form
5. if qk > 0 then swap π[qk−1] and π[W mod qk]; unrank(qk−1, �W/qk�, π)

The tuples in this group are re-arranged such that π indicates the order of
their tuple hash values.

Database Watermarking: A Systematic View 337

In watermark detection, a group of qk tuples are selected and the order π of
their tuple hash values is identified, where π is a permutation of (0, . . . , qk−1).
A watermark W ′ can be derived from π using Myrvold and Ruskey’s linear
permutation ranking algorithm [19]:

1. let π−1 be a binary vector such that π−1[π[i]] = i for i = 0, . . . qk − 1
2. W ′ =rank(qk, π, π−1) // see lines 4-7 below
3. return W ′ in binary form

4. function rank(qk, π, π−1)
5. if qk = 1 then return 0
6. s = π[qk−1]; swap π[qk−1] and π[π−1[qk−1]]; swap π−1[s] and π−1[qk−1]
7. return s + qk∗rank(qk − 1, π, π−1)

Based on the tuple hash of the sorted tuples, a group hash value is computed.
Then, a watermark W is extracted from the group hash. If W matches W ′,
the tuples in this group are authentic; otherwise, the data in this group have
been modified or tampered with.

4 Sensitivity

Watermarking schemes can be classified to be either robust or fragile according
to their sensitivity to typical database attacks. A scheme is robust (fragile,
respectively) if it is difficult to make an embedded watermark undetectable
(unchanged, respectively) in the presence of database attacks, provided that
the attacks do not degrade the usefulness of the data significantly (otherwise,
there is no need to protect the data nor to detect the watermark). Robust
watermarks are usually used for copyright protection, ownership proof, or
traitor tracing, while fragile watermarks can be used for tamper detection
and localization.

Typical database attacks

To confuse watermark detection, various database attacks may be launched
to watermarked databases. Typical database attacks include tuple/ attribute
insertion/ deletion/ reorganization, value modification/ suppression (includ-
ing random/ selective bit-flipping/ value-rounding), invertibility attack (at-
tacker successfully discovers a fictitious watermark which is in fact a random
occurrence from a watermarked database), additive attack (attacker embeds
some additional watermarks into a watermarked database), and the brute-
force attack against the secret key. The brute-force attack can be thwarted by
assuming that the key is long enough (e.g., 160 bits) in watermarking.

338 Yingjiu Li

False detection rates

The sensitivity of a watermarking scheme can be measured by the following
false detection rates in watermark detection.

• For robust watermarking, we have
– False hit: the probability of the original watermark being detected from

unmarked data or a fictitious watermark being detected from water-
marked data (i.e., invertibility attack).

– False miss: the probability of not detecting the original watermark from
watermarked data.

• For fragile watermarking, we have
– False hit: the probability of the original watermark being detected from

unmarked data.
– False miss: the probability of not detecting any change to the embedded

watermark from watermarked data.

The false detection rates in watermark detection must be low enough (e.g.,
10−9) in order for the detection result to be used as proof in court. The
false miss rate should be investigated in the presence of various database
attacks. Since the fragile watermark is not used for copyright protection, the
invertibility attack is not meaningful.

4.1 Robust Watermarking

The robustness of watermarking can be achieved by using majority vote
in watermark detection, as in Agrawal and Kiernan’s scheme, or using ECC
code, as in Sion’s scheme. For simplicity reasons, we focus on Agrawal and
Kiernan’s scheme.

Consider Bernoulli trials with probability p of success and q of failure.
Let b(k;m, p) =

(
m
k

)
pkqm−k be the probability that m Bernoulli trials result

in k successes and m − k failures, where
(
m
k

)
= m!

k!(m−k)! , 0 ≤ k ≤ m. Let
B(k;m, p) =

∑m
i=k+1 b(i;m, p) be the probability of having more than k suc-

cesses in m Bernoulli trials. In Agrawal and Kiernan’s scheme, a watermark
is detected if more than τ in percentage of the embedded bits are detected
correctly. If the watermark detection is applied to unmarked data (or water-
marked data with a different secret key), the detection can be considered as
Bernoulli trials with a probability of 1/2 that a correct value will be found in
a specific bit position. Assuming ω bits are checked in watermark detection,
then the false hit rate is B(�τω�;ω, 0.5). The false hit rate is extremely low if
τ and ω are reasonably large. For example, the false hit rate can be as low as
10−10 for τ ≥ 0.6 and ω ≥ 1000.

The false miss rate can be analyzed under various attack scenarios. A
typical modification attack is that an attacker randomly flips every least sig-
nificant bit with a probability p < 0.5 (if p ≥ 0.5, one can flip every bit back
before watermark detection). For the detection algorithm to fail to recover the

Database Watermarking: A Systematic View 339

correct watermark, at least ω − �τω� embedded bits must be toggled. Thus,
the false miss rate is B(ω−�τω�−1;ω, p). An attacker has to flip a significant
portion of tuples in order to get a high probability of success in this attack.

Agrawal and Kiernan’s scheme relies on the following assumptions to main-
tain its robustness. First, the watermarked relation has a primary key at-
tribute that either does not change or else can be recovered. The rationale
behind this is that a primary key attribute contains essential information and
that modification or deletion of this information will substantially reduce the
value of the data. With this assumption, the watermark detection is robust
against tuple insertion/deletion and it is not affected by tuple reorganization.
Second, the names of some, if not all, of the watermarked attributes either do
not change or else can be recovered in watermark detection. Under the above
two assumptions, the scheme is robust against attribute operations including
insertion, deletion, and reorganization.

4.2 Fragile Watermarking

The purpose of fragile watermarking is not to protect copyright, but to detect
and localize possible attacks that modify a distributed or published database.
Li, Guo, and Jajodia’s scheme [13] is an example of fragile watermarking
scheme. This scheme embeds a watermark by manipulating the order of the
tuples in each group, where the watermark is computed by hashing all tuple
values in a group. Any change to the underlying data can be detected with a
high probability in watermark detection. Assuming that q is the number of tu-
ples in a group, the false hit/miss rate is 1

2
q
2

in Li, Guo, and Jajodia’s scheme,

and 1
2ln q! in its extended version with the maximal embedding capacity.

Li, Guo, and Jajodia’s fragile watermarking scheme can be further ex-
tended to encode watermark information not only to the order of tuples, but
also to the order of attributes. The fundamental assumption is that re-shuffling
rows or columns in relational databases will not degrade the quality of data
due to the essential properties of relational data1. This extension of the scheme
can further increase the precision in tamper localization in the case that the
database relation consists of a large number of attributes (and tuples).

In such an extension, all attributes are securely divided into a number of
groups, just as all tuples are securely divided into a number of groups. The
only difference is that the attribute grouping is based on attribute name hash
(more precisely, hash of a secret key concatenated with attribute name and
relation name), while the tuple grouping is based on primary key hash. For
each block of data that corresponds to a particular group of tuples and a
1 The essential properties that are widely recognized for relational data include:

(i) Entries in columns are single-valued; (ii) Columns values are of the same
type of data; (iii) Each row has a unique primary key; (iv) Each column has a
unique attribute name; (v) The sequence of columns is insignificant; and (vi) The
sequence of rows is insignificant.

340 Yingjiu Li

particular group of attributes, a watermark is calculated by hashing all data
values in this block organized in a fixed order of tuples and attributes (e.g.,
ascending order of primary key hash and attribute name hash) and encoded
into the block by manipulating both the order of tuples and the order of
attributes. As a result, any tampering with the watermarked data can be
localized at the block level. This solution is distortion-free and can be easily
extended to watermarking multi-dimensional data cubes.

Recently, Guo et al. [8] proposed another fragile watermarking scheme that
can further improve the precision in tamper localization, assuming that the
database relation to be watermarked has numerical attributes and that the
errors introduced in two least significant bits of each value can be tolerated.
In this solution, the tuples are first divided into groups, as in Li, Guo, and
Jajodia’s scheme. Within each group, a (keyed) tuple hash is computed for
each tuple (with attributes organized in a fixed order), and a (keyed) attribute
hash for each attribute (with tuples organized in a fixed order). When these
hash values are computed, the two least significant bits of all attribute values
are ignored. Each tuple hash is embedded into the corresponding tuple and
each attribute hash into the corresponding attribute. For any value ri.Aj in
the embedding process, the least significant bit of ri.Aj is set to the i-th bit of
attribute Aj ’s hash, and the next least significant bit of ri.Aj is set to the j-th
bit of tuple ri’s hash. In this way, the embedded hash values actually form
a watermark grid, which helps to detect, localize, and characterize database
attacks.

In watermark detection, as in watermark embedding, all tuples are di-
vided into groups and all tuple/attribute hash values are computed for each
group. Then, each tuple/attribute hash is compared to the related informa-
tion extracted from the data. Different database attacks will show different
mismatch patterns in watermark detection with high probabilities. If a value
is modified in a group, then the corresponding tuple hash and attribute hash
will not match the related extracted information. In such a case, the precision
of tamper localization is down to the element level. If a tuple is deleted, all
attribute hash values in this group will not match the related extracted infor-
mation. If a tuple is inserted into a group, then all attribute hash values in this
group plus the corresponding tuple hash will not match the related extracted
information. If an attribute is deleted, all tuple hashes in all groups will not
match the related extracted information. Finally, if an attribute is inserted,
all tuple hashes in all groups and the corresponding attribute hash in each
group will not match the related extracted information. The false hit and false
miss rates in detection can be made extremely low if there are enough tuples
and attributes in each group.

Database Watermarking: A Systematic View 341

5 Watermark Information

5.1 From One-Bit Watermark to Multiple Bit Watermark

Back to Agrawal and Kiernan’s scheme, the watermark information that
is embedded is one-bit only given a predetermined embedding key. This can
be seen clearly by extending it to embedding a multiple bits watermark W =
(w0, . . . , w�−1), as proposed by Li, Swarup, and Jajodia [15]. To embed W , the
same procedure as in Agrawal and Kiernan’s scheme is used to: (i) select some
tuples; (ii) for each selected tuple r, select one numerical attribute; (iii) for
each selected attribute, select one of ξ least significant bits; and (iv) compute
a mark bit x for each selected bit. Now the difference is that the mark bit x is
not used directly to replace the selected least significant bit; instead, wi XOR
x is used to replace the selected bit, where wi is a watermark bit selected
from W for i = S5 mod 	 (note that the first four random sequence numbers
S1 ∼ S4 generated for each tuple have already been used in Agrawal and
Kiernan’s scheme). Similar to Agrawal and Kiernan’s scheme, each watermark
bit is embedded multiple times and is detected with a majority vote (i.e., the
percentage of correctly detected bits should be greater than threshold τ).
The whole watermark W is correctly detected if every bit in W is correctly
detected. Agrawal and Kiernan’s scheme is a special case of Li, Swarup, and
Jajodia’s scheme where W is 1-bit zero.

Assume ωi bits are extracted from the data for each watermark bit wi in
watermark detection. When Li, Swarup, and Jajodia’s multi-bit watermarking
scheme is applied to unmarked data, the false hit rate is

∏�−1
i=0 B(�τωi�;ωi, 0.5)

≤ 1
2� (i.e., the probability of detecting a particular binary string of length 	

from unmarked data), where τ ≥ 0.5 is the threshold in the majority vote.
This false hit rate is extremely low if the watermark string is long enough,
regardless of the value of τ . When the scheme is applied to watermarked data,
the false hit rate is

∏�−1
i=0 2B(�τωi�;ωi, 0.5) (i.e., the probability of any binary

string of length 	 can be detected from watermarked data). This false hit rate
can be made low by increasing the threshold τ . The false miss rate can be
analyzed under a typical modification attack in which an attacker randomly
flips every least significant bit with a probability p < 0.5. Under this attack,
the false miss rate is 1 −

∏�−1
i=0(1 − B(ωi − �τωi� − 1;ωi, p)).

Another multi-bit watermark scheme was proposed by Sion, Atallah, and
Prabhakar [22]. The scheme is designed primarily for watermarking a set of
real numbers {x1, . . . xn} by manipulating its distributions. The first step
of watermark insertion is to sort the values according to a cryptographically
keyed hash of the set of most significant bits of the normalized values. Then, a
maximum number of non-intersecting subsets of values are formed, where each
subset consists of a certain number of adjacent items after sorting. Embedding
a watermark bit into a subset is achieved by making minor changes to some
of the data values in this subset such that the number of values that are
“outliers” in the distribution is less than a smaller threshold (for watermark

342 Yingjiu Li

bit zero) or greater than a larger threshold (for watermark bit one). Note that
some of the groups may not be watermarkable given user-specified change
tolerance. Also note that some redundant bits must be embedded such that
the original multi-bit watermark can be recovered in watermark detection
even if some of the encoded bits are destroyed in data attacks. Compared
with Li, Swarup, and Jajodia’s multi-bit watermarking scheme, this scheme
is robust against linear transformation and does not depend on the existence
of a primary key. On the other hand, it incurs more watermarking overhead
as it requires ordering, grouping, and distribution-manipulating.

5.2 From Multiple Bit Watermark to Fingerprint

Li, Swarup, and Jajodia’s multi-bit watermarking scheme can be easily ex-
tended to fingerprinting relational databases [17]. Fingerprinting is a different
class of information hiding techniques that insert digital marks into data with
the purpose of identifying the users who have been provided data, as oppose
to watermarking’s purpose of identifying the sources of data. In fingerprinting,
the owner of the data embeds a user-specific mark into a data copy provided
to a user; he can subsequently detect the fingerprint in pirated data and use
it to identify the traitor who distributed the data.

Li, Swarup, and Jajodia’s fingerprinting scheme is the same as their multi-
bit watermarking scheme except that the multi-bit watermark information
W = (w0, . . . , w�−1) is used to encode each user’s identification information,
instead of the owner’s. The watermark information is called fingerprint, as it
is used to distinguish among different users for traitor tracing.

Since different fingerprints are embedded into different data copies, it is
impossible to determine what the correct fingerprint is before fingerprint de-
tection. This is different from watermark detection, where the correct water-
mark is fixed and known. To solve this problem, two counters – one for bit
value zero, and one for bit value one – are maintained for each fingerprint
bit, recording the number of times that the fingerprint bit is recovered from
the data as to be either zero or one. At the end of fingerprint detection, the
fingerprint bit is set to be zero or one if the corresponding counter exceeds
τ (in percentage) of the sum of the two counters for this bit; otherwise, the
fingerprint detection terminates with no traitor detected. If a binary string
is recovered at the end of fingerprint detection, it can be used to identify a
traitor (e.g., via the tracing algorithm proposed in [3]).

Since fingerprinting aims to identify a traitor, it can be subject to attacks
that cause an innocent principal (or no principal) to be identified as a traitor.
As a result, the false hit rate in fingerprinting can be further classified as

• Misdiagnosis false hit: the probability of detecting a valid fingerprint from
data that has not been fingerprinted.

• Misattribution false hit: the probability of detecting an incorrect but valid
fingerprint from fingerprinted data.

Database Watermarking: A Systematic View 343

When fingerprint detection is applied to unmarked data, it may return some
binary string (f0, . . . f�−1) as a potential fingerprint. Let fi be extracted ωi

times from data. Then, fi is detected to be zero or one with the same proba-
bility B(�τωi�;ωi, 0.5). The fingerprint scheme detects a binary string as a po-
tential fingerprint with probability

∏�−1
i=0 2B(�τωi�;ωi, 0.5), where the factor

2 means that each bit could be either zero or one. Let N be the total number
of valid fingerprints. The probability that the binary string is a valid finger-
print is N

2� . The overall misdiagnosis false hit is N
2�

∏�−1
i=0 2B(�τωi�;ωi, 0.5) =

N ·
∏�−1

i=0 B(�τωi�;ωi, 0.5). The misdiagnosis false hit has upper bound N
2� ,

which is tight in the case that all ωi are odd and τ = 0.5. The upper bound
is independent of the size of the database relation being checked.

The misattribution false hit and false miss rates can be analyzed un-
der a typical modification attack in which an attacker randomly flips ev-
ery least significant bit with a probability p < 0.5 in fingerprinted data.
For the detection algorithm to extract a binary bit for fingerprint bit fi,
either at most ωi − �τωi� − 1 of its embedded bits are toggled, or more than
�τωi� of its embedded bits are toggled. If the detection algorithm extracts
a binary string, the probability that the binary string is a valid but “in-
nocent” fingerprint is N−1

2� . Therefore, the false misattribution false hit is
N−1
2� Π�−1

i=0 (1 − B(ωi − �τωi� − 1;ωi, p) + B(�τωi�;ωi, p)) ≤ N−1
2� . The mis-

attribution false hit rate has an upper bound N−1
2� since B(�τωi�;ωi, p) ≤

B(ωi − �τωi� − 1;ωi, p) when τ ≥ 0.5. The upper bound is tight in the case
that all ωi are odd and τ = 0.5. It is straightforward to get the false miss rate

1 − Π�−1
i=0 (1 − B(ωi − �τωi� − 1;ωi, p)) −

N − 1
2�

Π�−1
i=0 (1 − B(ωi − �τωi� − 1;ωi, p) + B(�τωi�;ωi, p)).

where 1−Π�−1
i=0 (1−B(ωi −�τωi�− 1;ωi, p)) is the probability that the entire

fingerprint is detected incorrectly.
Fingerprinting schemes are susceptible to collusion attacks. A collusion at-

tack is launched by a coalition who has access to different fingerprinted copies
of the same data. Members of a coalition can identify the differences in their
fingerprinted copies, change the identified values to damage the correspond-
ing fingerprint bits, and create a useful data copy that does not implicate any
member of the coalition. Note that the collusion attack is specific to finger-
printing and there is no collusion attack in watermarking setting.

To thwart collusion attacks, the fingerprint codes need to be carefully de-
signed so that information that a coalition cannot detect can be used to trace
at least one of the traitors. Such fingerprinting codes have been rigorously
studied in the literature of cryptography. A well-known fingerprinting code,
called BoSh code (Boneh and Shaw [3]), is designed to be c-secure with ε-error,
as it enables the capture of a member of a coalition of at most c members with
probability at least 1− ε, where c and ε are two design parameters (increasing
c or reducing ε will result in longer BoSh codes).

344 Yingjiu Li

BoSh codes can be adapted such that for each user, the owner of a database
can generate a c-secure and ε-error BoSh code using a secret key and the
user’s identification information [17]. If this BoSh code is directly used as a
fingerprint, the misdiagnosis false hit rate will be 100 percent, as the tracing
algorithm proposed in [3] returns exactly one “traitor” no matter what the
input is (the assumed input in [3] is pirated data under collusion attacks). The
solution to reduce the misdiagnosis false hit is to partition each fingerprint F
of 	 bits into two parts. The first part, F1 of 	1 bits, is used as a multi-bit
watermark, while the second part, F2 of 	2 bits, is the adapted BoSh code
generated from a secret key and a user’s identification information. The entire
fingerprint F = F1|F2 of length 	 = 	1 +	2 is embedded into a data copy as in
a multi-bit watermarking scheme. For fingerprint detection, a binary string F
is extracted from a suspicious data copy also as in a multi-bit watermarking
scheme. From the extracted fingerprint template F , its watermark part F1 is
first checked against the codeword used in fingerprint insertion. If there is a
single bit mismatch, the detection procedure returns none suspected. If the
watermark part passes the first phase examination, the fingerprint part F2

will become the input of the tracing algorithm proposed in [3] for identifying
a traitor.

If fingerprint detection is applied to a pirated data copy in the presence
of a collusion attack only, the watermark part can be detected correctly. This
is because the collusion attack can only change the values if the coalition has
data copies that differ in those values. Then, the fingerprint part is fed into
the tracing algorithm proposed by Boneh and Shaw [3]. The tracing algorithm
will return exactly one buyer with a probability that this returned buyer is
indeed a traitor in the coalition being greater than 1 − ε, as proved in [3]. In
such a case, the false miss rate is zero, and misattribution false hit is no larger
than ε.

Now, consider the misdiagnosis false hit when fingerprint detection is ap-
plied to unmarked data. Note that the watermark part is the same for all users
and it is examined first in the detection process. The probability of detect-
ing a binary string for the watermark part is Π�1−1

i=0 2B(�τωi�;ωi, 0.5). Now
there is only one valid watermark codeword. Thus, the probability that the
detected binary string matches the watermark codeword is 1

2�1
. Since when-

ever watermark detection succeeds, fingerprint detection returns exactly one
valid buyer’s identity, the misdiagnosis false hit is 1

2�1
Π�1−1

i=0 2B(�τωi�;ωi, 0.5)
= Π�1−1

i=0 B(�τωi�;ωi, 0.5) ≤ 1
2�1

, which has an upper bound 1
2�1

. The upper
bound is tight in the case that all ωi are odd and τ = 0.5. The misdiagnosis
false hit rate can be reduced exponentially by increasing 	1; it can also be
decreased by increasing τ .

It should be noted that length of a collusion resistant fingerprint is quite
long even for small c and moderate ε. (All collusion resistant fingerprints
are intrinsically long and there is no significant improvement in this regard
to BoSh codes so far.) For example, for c = 2 (where at most two buyers

Database Watermarking: A Systematic View 345

can formulate a coalition), ε = 0.01 and N = 1000, the length of the col-
lusion resistant codeword is 51, 695; when c = 2 increases to c = 3 and 4,
the length increases to 317, 185 and 1, 098, 622, respectively. Such long fin-
gerprints are only suitable for very large databases such as terabyte scientific
databases, surveillance databases, and anti-terror databases [17]. Nonetheless,
the database fingerprinting scheme mitigates the damage of collusion attacks
by embedding multiple copies of each fingerprint bit and recovering it with a
majority vote. As a result, the probability of detecting a traitor in collusion
attacks does not drop dramatically even as the coalition size goes beyond c.
A high detection rate can be obtained by either increasing c or decreasing ε
as shown experimentally in [17].

5.3 From One Watermark to Multiple Watermarks

A major concern in database watermarking is that a pirate may simply
add additional watermarks to watermarked data so as to confuse watermark
detection (i.e., additive attack). Defending against this type of additive attacks
demands an in-depth analysis of multiple watermarks.

When a group of people jointly create a database, the participants may
embed their own watermarks separately into the database, and thus can verify
their ownership independently. Such an application also requires basic research
on multiple watermarks.

We consider to extend Agrawal and Kiernan’s watermarking scheme to
allow for multiple watermarks. Assume that n watermarks W1, . . .Wn are
embedded into database relation R sequentially with different secret keys
K1, . . . ,Kn but with the same parameters γ, ν and ξ. Interference exists among
multiple watermarks, as an embedded bit of one watermark could be flipped
back and forth by some later embedded watermarks. The interference among
multiple watermarks can be quantified as follows. Let pc = 1

γνξ be the proba-
bility that a least significant bit is used in embedding a single watermark. For
any mark bit of watermark Wn1 , the probability that this mark bit is modi-
fied by other watermarks is pn1,n = 1

2 [1 − (1 − pc)n−n1] < 0.5. For any least
significant bit of the original data, the probability that this bit is modified by
all watermarks is p0,n = 1

2 [1 − (1 − pc)n] < 0.5.
If watermark detection is applied to unmarked data using each of n differ-

ent valid secret keys K1, . . . ,Kn, then the probability that at least one valid
watermark is detected, or the false hit rate, is 1 − (1 − B(�τω�;ω, 0.5))n,
assuming that ω bits are detected for each watermark.

The false miss rate can be analyzed under a typical modification attack in
which an attacker randomly toggles each least significant bit with a probability
p < 0.5. Under this attack, the probability that the n1-th watermark cannot
be detected from the modified data, or the false miss rate, is B(ω − �τω� −
1;ω, pn1,n(1 − p) + (1 − pn1,n)p). The reason is that after modification, each
mark bit of the n1-th watermark could be modified either due to watermark

346 Yingjiu Li

interference or by data modification. The probability of it being modified due
to watermark interference is pn1,n, and the probability of it being modified by
a data modification attack is p. Therefore, the probability of it being modified
in any way is pn1,n(1 − p) + (1 − pn1,n)p. The false miss rate in this case is
the probability of at least ω − �τω� embedded bits out of ω bits of the n1-th
watermark being modified.

It can be verified that as n → ∞, the false hit rate approaches 100% and
the false miss rate approaches 50%. The more watermarks embedded into a
data copy, the larger the false detection rates in watermark detection, and the
more errors introduced to the underlying data in watermark insertion.

The watermarking errors should be carefully evaluated so as to preserve
data quality. The errors can be controlled at two different levels. At item
level, the errors introduced to individual values are bounded because no al-
teration is allowed beyond ξ least significant bits. At aggregation level, the
errors introduced to descriptive statistics of attribute values can be quanti-
fied. In particular, one can study the watermarking error introduced to the
mean of an integer-valued attribute with values x1, . . . xη. After embedding n
watermarks, value xi becomes xi + ei(n), where ei(n) is a random variable.
For value xi, if its least significant bit j is modified in watermark insertion,
the modification will cause change +2j or −2j to xi with the same probability
1/2. Knowing that the least significant bit j will be modified in watermark
insertion with a probability p0,n (due to watermark interference), one can de-

rive that the mean of ei(n) is zero and the variance of ei(n) is p0,n(22ξ−1)
3 . Let

μ =
∑ η

i=1 xi

η be the mean of original attribute values and let μe(n) =
∑ η

i=1 ei(n)

η
be the error in computing μ after watermarking. The expected error in com-
puting μ after watermarking is E[μe(n)] = 0 and the variance of the error is
V [μe(n)] = p0,n(22ξ−1)

3η . It can be verified that the variance of watermarking

error is monotonic increasing with n to approach its upper limit 22ξ−1
6η .

An application of multiple watermarks is to defend against additive at-
tacks. In an additive attack, a pirate inserts additional watermarks to water-
marked data so as to confuse ownership proof. A pirate can insert watermarks
to claim ownership of the data or claim that the data were provided to a buyer
legitimately. An additive attack can be thwarted by raising the watermark-
ing error to a predetermined threshold such that any additive attack would
introduce more errors than the limit [16]. In the case of additive attack, the
ownership dispute can be resolved by comparing whose watermarks can be
detected more. To gain advantage in an ownership dispute, a pirate is forced
to embed a large enough number of watermarks. Consequently, the pirated
data is less useful or less competitive compared to the originally-watermarked
data and it is not necessary for the owner to claim ownership over such data.

Multiple watermarks can also be used for proving joint ownership in a
scenario where a database relation is jointly created by n participants. Each
participant can embed a watermark with his own key so that he can prove his

Database Watermarking: A Systematic View 347

ownership independently. The question is whether the underlying data can be
watermarked. Given a certain robustness requirement and error constraint, a
maximum number of watermarks can be determined based on our analysis on
false detection rates and watermarking errors.

6 Verifiability

One common feature of most robust watermarking techniques is that they
are secret key-based, where ownership is proven through the knowledge of a
secret key that is used for both watermark insertion and detection. The secret
key-based approach is not suitable for proving ownership to the public (e.g.,
in a court). To prove ownership of suspicious data, the owner has to reveal his
secret key to the public for watermark detection. After being used one time,
the key is no longer secret. With access to the key, a pirate can invalidate
watermark detection by either removing watermarks from protected data or
adding a false watermark to non-watermarked data.

Li and Deng [12] proposed a unique database watermarking scheme that
can be used for publicly verifiable ownership protection. Given a database
relation to be published or distributed, the owner of the data uses a public
watermark key to generate a public watermark, which is a relation with binary
attributes. Anyone can use the watermark key and the watermark to check
whether a suspicious copy of the data is watermarked, and, if so, prove the
ownership of the data by checking a watermark certificate officially signed by
a trusted certificate authority, DB-CA. The watermark certificate contains
the owner’s ID, the watermark key, the hashes of both the watermark and
DB relation, the first time the relation was certified, the validity period of the
current certificate, and the DB-CA’s signature. The watermark certificate may
be revoked and re-certified in the case of identity change, ownership change,
DB-CA compromise, or data update. Therefore, the revocation status also
needs to be checked in proving the ownership.

Li and Deng’s scheme watermarks a database relation R whose schema
is R(P,A0, . . . , Aν−1), where P is a primary key attribute. There is no con-
straint on the types of attributes used for watermarking; the attributes can be
integer numeric, real numeric, character, Boolean, or any other types. For each
attribute of a tuple, the most significant bit (MSB) of its standard binary rep-
resentation may be used in the generation of a watermark. It is assumed that
any change to an MSB would introduce intolerable error to the underlying
data value.

In this scheme, the watermark key K is public and may take any value (nu-
merical, binary, or categorical) selected by the owner. There is no constraint
on the formation of the key. To reduce unnecessary confusion, the watermark
key should be unique to the owner with respect to the watermarked relation.
The watermark key is used to decide the composition of a public watermark
W . The watermark W is a database relation whose scheme is W (P,W0, . . . ,

348 Yingjiu Li

Algorithm 5 Generating public watermark W for DB relation R

1: for each tuple r in R do
2: construct a tuple t in W with the same primary key t.P = r.P
3: for i=0; i < ϑ; i= i+1 do
4: j = Si mod (the number of attributes in r) // S is seeded with K and

r.P .
5: t.Wi = MSB of the j-th attribute in r
6: delete the j-th attribute from r
7: end for
8: end for
9: return W

Wϑ−1), where W0, . . . ,Wϑ−1 are binary attributes. Compared to DB relation
R, the watermark (relation) W has the same number η of tuples and the same
primary key attribute P . The number ϑ of binary attributes in W , which is
called the watermark generation parameter, determines the number ω of bits
in W , where ω = η · ϑ and ϑ ≤ ν.

The process of generating watermark W is shown in Algorithm 5. The
MSBs of selected values are used for generating the watermark. The whole
process does not introduce any distortions to the original data. The use of
MSBs is for thwarting potential attacks that modify the data. Since the wa-
termark key K, the watermark W , and the watermark generation algorithm
are publicly known, anyone can locate those MSBs in R that are used for
generating W . However, an attacker cannot modify those MSBs without in-
troducing intolerable errors to the data.

In the construction of watermark W , each tuple in relation R contributes
ϑ MSBs from different attributes that are pseudo-randomly selected based
on the watermark key and the primary key of the tuple. It is impossible for
an attacker to remove all of the watermark bits by deleting some but not all
of the tuples and/or attributes from the watermarked data. The larger the
watermark generation parameter ϑ, the more robust the scheme is against
such deletion attacks.

In watermark detection, as in watermark generation, the MSB bits of ϑ val-
ues from each tuple are located based on the watermark key and the primary
key. Based on the primary key values (which are assumed to not change or
else can be recovered), the detected MSBs are compared to the corresponding
bits in the public watermark W . The ownership is claimed if the percentage of
the matches is more than a threshold τ ≥ 0.5, where τ is called the watermark
detection parameter. The watermark detection parameter is used to balance
between false hit and false miss.

It can be assumed that each MSB in W has the same probability of 1/2 to
be 1 or 0. If this is not the case, one can randomize the MSBs in W by XOR’ing
them with pseudo-random mask bits. The mask bits can be computed from
the watermark key together with the primary key for each tuple. With this
assumption, the false hit rate (i.e., the probability of claiming ownership over

Database Watermarking: A Systematic View 349

non-watermarked data) is B(�τηϑ�; ηϑ, 0.5). The false hit is monotonic de-
creasing with both watermark insertion parameter ϑ and detection parameter
τ . On the one hand, the larger the insertion parameter ϑ, the more MSBs are
included in the watermark and the smaller the false hit. On the other hand,
the false hit can be decreased by increasing the detection parameter τ , which
is the least fraction of watermark bits required for ownership assertion.

Since both the watermark key and the watermark are public in our scheme,
an attacker can pinpoint the MSBs of the watermarked values. A simple attack
would be to flip some of those MSBs so that the watermark detection will
detect no match. In the presence of this attack, the false miss rate is 1 if
no less than ϑη − �τϑη� watermarked MSBs are flipped, the false miss rate
is 0 otherwise. To achieve the best robustness, one may choose ϑ = ν and
τ ≈ 0.5. (However, this would increase the false hit rate.) In this extreme case,
approximately 50% of the data values would have to be intolerably modified
so as to defeat the watermark detection.

While watermark detection can be performed by anyone who has access
to the public watermark key, the ownership is proven by further checking the
corresponding watermark certificate. A watermark certificate C of relation R
is a tuple 〈ID,K, HASH(W),HASH(R), T,DB-CA, Sig〉, where ID is the
identity of the owner of R, K is the owner’s watermark key, W is the public
watermark, T is the validity information, DB-CA is the trusted authority who
signs the certificate by generating a signature Sig. The validity information
is a triple T = 〈Torigin, Tstart, Tend〉 indicating the original time Torigin when
the DB relation is first certified, the starting time Tstart, and the ending time
Tend of this certificate in the current binding. When the DB relation is certified
for the first time, Torigin should be the same as Tstart. Compared with the
identity certificate or attribute certificate, the watermark certificate not only
has a validity period defined by Tstart and Tend, but also contains the original
time Torigin.

The original time Torigin can be used to thwart additive attacks. We as-
sume that the owner of the data will not make the data available to potential
attackers unless the data is watermarked and a valid watermark certificate is
obtained. Even if an attacker manages to obtain a valid watermark certificate
with T ′

origin for pirated data, one always has Torigin < T ′
origin by which the

legitimate ownership can be proven in the case of an ownership dispute. The
attacker’s valid certificate should be officially revoked after dispute resolution.

In certain cases such as identity change, ownership change, validity pe-
riod change, DB-CA compromise, and database update, an existing certificate
needs to be renewed, updated, or revoked. In these cases, the original time
Torigin must be kept unchanged in the renewed or updated certificates. To
ensure that a watermark certificate is valid in proving the ownership, the re-
vocation information of watermark certificates must be checked in an effective
and efficient manner (e.g., using certificate revocation status [18]).

350 Yingjiu Li

7 Data Structure

7.1 Virtual Primary Key

The structural information of the underlying data is taken into account in the
design of the various watermarking schemes. The schemes discussed above are
primarily designed for watermarking relational databases with primary keys.
The primary keys are used to seed a pseudo-random sequence generator or
hash function so as to generate non-correlated pseudo-random numbers for
different tuples in a database relation. In watermark insertion and detection,
the non-correlated pseudo-random numbers are used to select tuples and to
locate and determine watermark values. These techniques cannot be directly
applied to database relations without primary keys. Also, these techniques are
vulnerable to simple attacks that alter or delete the primary key attributes.

The previous watermarking techniques can be extended in two different
ways to address the primary key issues [14]. The first extension is to examine
each watermarkable attribute in each tuple independently in watermark in-
sertion and detection. For each attribute r.Ai in each tuple r, the bits of r.Ai

are partitioned into two parts: (i) mb(r.Ai): the ξ least significant bits of r.Ai;
and (ii) vpk(r.Ai): the remaining most significant bits. The most significant
bit part vpk(r.Ai) is used as a virtual primary key to determine whether,
where, and how to embed a watermark bit to r.Ai in a similar way as in the
previous watermarking schemes.

However, vpk(r.Ai) is not a true primary key and may not be unique for
each value r.Ai. With duplicate virtual primary keys, some watermark bits
may be embedded fewer times than others, and some watermark bits may
not be embedded at all. Watermark detection may easily fail in the presence
of attacks if some of the watermark bits are embedded too few times due to
duplicate virtual primary keys.

The duplicate problem can be mitigated by selecting one attribute with
the fewest duplicates to provide the virtual primary keys for all tuples. More
generally, the virtual primary key can be constructed by combining most
significant bits from several attributes so as to minimize duplicates. To thwart
attribute deletion attacks, different attributes may be selected for different
tuples for constructing virtual primary keys. For example, one may choose to
construct a virtual primary key for tuple r by concatenating k (k ≤ ν) hash
values in {HMAC(K, vpk(r.Ai)) : i = 0, . . . , ν − 1} that are closest to zero
(hash values are interpreted as natural numbers when compared to zero).

7.2 Data Cube

Data cube is a common data model that supports exploration of a large
amount of data in multiple dimensions. Conceptually, a cube consists of a
base cuboid, surrounded by a collection of aggregation cuboids that repre-
sent the aggregation of the base cuboid along one or more dimensions. In

Database Watermarking: A Systematic View 351

many applications, valuable data cubes are outsourced to specialized parties
or provided for direct and interactive uses.

Guo et al. [9] proposed a robust watermarking scheme to protect the
owner’s rights in data cube applications. The basic assumption is that all
watermarkable values in a data cube are numeric, and that small changes in a
small portion of these values are acceptable. For each cell in a data cube, the
owner of the data seeds a cryptographically secure pseudo-random sequence
generator S with a secret key K in concatenation with the cell’s feature at-
tributes. If S1 mod γ = 0, then the cell is selected to embed a watermark
bit; otherwise it is ignored. Given η watermarkable cells, roughly η/γ cells are
selected. For each selected cell, a bit position among ξ least significant bits is
selected to embed a mark bit in the same way as in Agrawal and Kiernan’s
scheme.

The most prevalent data cube operations are aggregation queries. To elim-
inate errors introduced by watermark to aggregation queries, a mini-cube is
constructed for each cell that is modified in watermark insertion. Suppose
that the value d(Xi, Yj , Zk) of cell at position (Xi, Yj , Zk) in a 3-dimensional
data cube is decremented by one in watermark insertion. Based on the posi-
tion of d(Xi, Yj , Zk), three other cell values d(Xxc, Yj , Zk), d(Xi, Yyc, Zk), and
d(Xi, Yj , Zzc) are selected. The values of these cells are incremented by one
so as to balance the deviation in any 1-dimensional aggregation (i.e., aggre-
gation along one feature dimension) that involves cell (Xi, Yj , Zk). Similarly,
three more cell values d(Xxc, Yj , Zzc), d(Xi, Yyc, Zzc), and d(Xxc, Yyc, Zk) are
decremented by one, and one last cell value d(Xxc, Yyc, Zzc) is incremented by
one. These seven cells, which are called the balance cells, form a mini-cube to-
gether with the watermarked cell (Xi, Yj , Zk). With a mini-cube constructed,
any data cube aggregation that involves at least two cells in the mini-cube
remains unchanged after watermark insertion.

The mini-cube should be constructed such that: (i) the balance cells should
not be selected from any cell that is used in watermark insertion so as to avoid
interfering with the watermark insertion and detection; (ii) most aggregation
queries would involve at least two cells in the mini-cube; and (iii) the modifi-
cation to the balance cells should be minimal. Guo et al. [9] have shown that
this can be done effectively and efficiently in real world applications even for
very large data cubes.

7.3 Streaming Data

A Robust Watermarking Scheme

Sion, Atallah, and Prabhakar [23] proposed a robust watermarking scheme
for streaming data. The scheme embeds a multi-bit watermark wm to an
infinite sequence of numerical data items x1, x2, . . ., which are normalized
in the interval (−0.5, 0.5). The basic idea is to use some extreme values and
their neighboring values as watermark bit-carriers. An extreme value is a local

352 Yingjiu Li

maximum or local minimum value satisfying the criteria that at least one of its
δ-neighboring values can be found in any uniform random sampling of degree χ
(i.e., randomly selecting one value out of every χ values) of the sequence, where
the δ-neighboring values are defined to be a subset of stream items forming
a complete “chunk”, being immediately adjacent to the extreme value, and
having a Euclid distance to the extreme value smaller than δ. The intuition
of using extreme values as watermark bit-carriers is that the extreme values
are likely to be largely preserved in value-preserving attacks or transforms as
they reflect the fluctuating behavior of the data stream.

Each δ-neighboring value is partitioned into two parts: most significant
part and least significant part, where the most significant part is used to
determine whether, where, and how to embed a watermark bit, and the least
significant part may be used to embed a watermark bit. It is assumed that all
δ-neighboring values of an extreme value share the same most significant part.
It is also assumed that it is tolerable to modify the least significant part but
not the most significant part in both watermark insertion and value-preserving
attacks.

The watermark insertion can be interpreted using a cryptographically se-
cure pseudo-random sequence generator S as follows. For each extreme value,
seed S with the significant part of the extreme value in concatenation with a
secret key. If S1 mod γ = 0, this extreme value is selected; otherwise it is ig-
nored (roughly 1/γ of extreme values are selected). For each selected extreme
value, watermark bit wm[i] is selected, where i = S2 mod the length of the
watermark. Then, bit position j is selected, where j = S3 mod the length
of least significant part of the extreme value. Finally, for each δ-neighboring
value including the extreme value, the bit position j is set to wm[i] and the
adjacent bits are set to zero (to prevent “overflow” in computing average of
some δ-neighboring values). Since the entire set of δ-neighboring values are
modified, any random sampling of degree χ will include some watermarked
values. Also, the average of any combination of some δ-neighboring values
would preserve the embedded bit. In watermark detection, a majority vote is
used for recovering each watermark bit wm[i], as in Agrawal and Kiernan’s
scheme. The analysis on false detection rates can be done similarly as for Li,
Swarup, and Jajodia’s multi-bit watermarking scheme.

It has been shown that this scheme can be further improved to be resilient
to various transform attacks including sampling, averaging, random alteration,
and some combined transforms [23].

A Fragile Watermarking Scheme

Guo, Li, and Jajodia [7] proposed a fragile watermarking scheme for detecting
malicious modifications to streaming data. The scheme partitions a numerical
data stream into groups based on synchronization points. A data element
xi is defined to be a synchronization point if its keyed hash HMAC(K, xi)
mod m = 0, where K is a secret key, and m is a secret parameter. When a

Database Watermarking: A Systematic View 353

keyed hash is computed on any data item xi in this scheme, the last bit of xi

is ignored since it will be replaced with a watermark bit.
In watermark insertion, a group of data items are collected from the data

stream until a synchronization point is met and the number of elements in the
group is greater than L, where L is the lower bound of the group size. A group
hash value is computed by hashing the concatenation of all individual hash
values of data items in the group. The watermark embedder needs two buffers:
buff0 for the current group, and buff1 for the next group. A watermark is
computed based on the current group hash and the group hash of the next
group. The length of the watermark is the same as the number of data items
in the group. The watermark is embedded by replacing the least significant
bits of all data items with the watermark bits, assuming that such change
does not degrade the value of data.

The watermark detection is also performed on two buffers using the same
K, m, and L. As in watermark insertion, a watermark is computed from the
group hash value of the current group and the next group. If the computed
group hash matches the extracted watermark, the current group of data is
authentic. Otherwise, one needs to investigate the integrity of the previous
group before ascertaining the final verification result of the current group.
Since the embedded watermarks are chained, watermark detection can detect
and localize malicious modifications even if some whole groups are deleted
from the stream. The parameters L and m can be used to analyze the tradeoffs
between false detection rates and localization precision (in terms of the average
size of the group) in tamper detection [7]. The greater the L or m, the smaller
the false detection rates, and the lower the localization precision.

7.4 A Note on Watermarking XML Data

Agrawal and Kiernan’s scheme has been extended by Ng and Lau to water-
mark XML data [20]. In this scheme, the owner of the XML data is responsible
for selecting the XML elements that are suitable to be locators, where a loca-
tor is defined to have a unique value that can serve as a primary key in the
watermarking process, as in Agrawal and Kiernan’s scheme. The difference
between this scheme and Agrawal and Kiernan’s scheme is that if a textual
value of an element is selected to embed a mark bit, one of its words is cho-
sen and replaced by a synonym function based on a well-known synonym
database WordNet. This scheme is further extended and deployed on a XML
compression system.

Gross-Amblard considered relational or XML data that are only partially
accessible through a set of parametric queries in his query-preserving water-
marking scheme [6]. The scheme modifies some numerical values in watermark
insertion in a way that the distortions introduced to the results of those para-
metric queries are small and that the watermark can be detected from the
results of those queries.

354 Yingjiu Li

Finally, Zhou, Pang, and Tan [25] proposed creating queries to identify
the data elements in XML data that can be used for embedding watermarks.
The identifying queries are resilient against data reorganization and redun-
dancy removal through query rewriting. If an identified element is a leaf node,
watermark insertion is performed by modifying its value; otherwise, it is per-
formed by adding to or deleting its child nodes. The usability of XML data is
measured by query templates. The results of certain basic queries on the data
remain useful after watermarking or attacks.

8 Open Issues

The current research on database watermarking has been primarily focused
on how to embed and detect a watermark so that the embedded watermark
is robust or fragile against various database attacks. However, the study on
the impact of watermarking to database usability is relatively limited and
preliminary, especially in application contexts. This type of study is important
since one of the greatest concerns in database applications is the usability of
the data, which should not be affected by the watermarking process.

One future research direction is to model common database queries and
minimize the watermarking impact on those queries. It is possible that differ-
ent watermarking schemes should be designed to accommodate different types
of queries. Another future research direction is to model various database at-
tacks that exist in real-world settings. Special attention should be directed to-
ward the impact of those attacks on watermark design and database usability.
Finally, it is meaningful to collect typical real-world data sets, to standardize
database usability measurements and database attack models, and to bench-
mark/ evaluate/ compare various watermarking schemes for typical database
applications.

References

1. R. Agrawal and J. Kiernan. Watermarking relational databases. In Proceedings
of VLDB, pages 155–166, 2002.

2. E. Bertino, B. C. Ooi, Y. Yang, and R. Deng. Privacy and ownership preserving
of outsourced medical data. In Proceedings of IEEE International Conference
on Data Engineering, pages 521–532, 2005.

3. D. Boneh and J. Shaw. Collusion secure fingerprinting for digital data. IEEE
Transactions on Information Theory, 44(5):1897–1905, 1998.

4. I.J. Cox, M.L. Miller, and J.A. Bloom. Digital Watermarking: Principles and
Practice. Morgan Kaufmann, 2001.

5. B. Gray and J. Gorelick. Database piracy plague. The Washington Times,
March 1, 2004. http://www.washingtontimes.com.

6. D. Gross-Amblard. Query-preserving watermarking of relational databases and
xml documents. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 191–201, 2003.

Database Watermarking: A Systematic View 355

7. H. Guo, Y. Li, and S. Jajodia. Chaining watermarks for detecting malicious
modifications to streaming data. Inf. Sci., 177(1):281–298, 2007.

8. H. Guo, Y. Li, A. Liu, and S. Jajodia. A fragile watermarking scheme for
detecting malicious modifications of database relations. Inf. Sci., 176(10):1350–
1378, 2006.

9. J. Guo, Y. Li, R. H. Deng, and K. Chen. Rights protection for data cubes. In
ISC, pages 359–372, 2006.

10. N.F. Johnson, Z. Duric, and S. Jajodia. Information Hiding: Steganography and
Watermarking–Attacks and Countermeasures. Kluwer Publishers, 2000.

11. S. Katzenbeisser and F.A. Petitcolas, editors. Information Hiding Techniques
for Steganography and Digital Watermarking. Artech House, 2000.

12. Y. Li and R. H. Deng. Publicly verifiable ownership protection for relational
databases. In ASIACCS, pages 78–89, 2006.

13. Y. Li, H. Guo, and S. Jajodia. Tamper detection and localization for categorical
data using fragile watermarks. In Digital Rights Management Workshop, pages
73–82, 2004.

14. Y. Li, V. Swarup, and S. Jajodia. Constructing a virtual primary key for fin-
gerprinting relational data. In Digital Rights Management Workshop, pages
133–141, 2003.

15. Y. Li, V. Swarup, and S. Jajodia. A robust watermarking scheme for relational
data. In Proceedings of the 13th Workshop on Information Technology and
Systems (WITS), pages 195–200, December 2003.

16. Y. Li, V. Swarup, and S. Jajodia. Defending against additive attacks with
maximal errors in watermarking relational databases. In Proc. the 18th Annual
IFIP WG 11.3 Working Conference on Data and Applications Security, pages
81–94, 2004.

17. Y. Li, V. Swarup, and S. Jajodia. Fingerprinting relational databases: Schemes
and specialties. IEEE Transactions on Dependable and Secure Computing, 2:34–
45, 2005.

18. S. Micali. Efficient certificate revocation. In Technical Report: TM-542b. Mas-
sachusetts Institute of Technology. Cambridge, MA, USA, 1996.

19. W. J. Myrvold and F. Ruskey. Ranking and unranking permutations in linear
time. Inf. Process. Lett., 79(6):281–284, 2001.

20. W. Ng and H. L. Lau. Effective approaches for watermarking xml data. In
DASFAA, pages 68–80, 2005.

21. R. Sion. Proving ownership over categorical data. In Proceedings of IEEE
International Conference on Data Engineering, pages 584–596, 2004.

22. R. Sion, M. Atallah, and S. Prabhakar. Rights protection for relational data.
In Proceedings of ACM SIGMOD International Conference on Management of
Data, pages 98–108, 2003.

23. R. Sion, M. Atallah, and S. Prabhakar. Resilient rights protection for sensor
streams. In Proceedings of the Very Large Databases Conference, pages 732–743,
2004.

24. L. Vaas. Putting a stop to database piracy. eWEEK, enterprise news and
reviews, September 24, 2003.
http://www.eweek.com/print article/0,3048,a=107965,00.asp.

25. X. Zhou, Pang H. H., and K. L. Tan. Query-based watermarking for xml data.
In ASIACCS, pages 253–264, 2007.

15

Trustworthy Records Retention

Ragib Hasan1, Marianne Winslett1, Soumyadeb Mitra1,Windsor Hsu2, Radu
Sion3

1 Department of Computer Science, University of Illinois at Urbana-Champaign,
(rhasan,winslett,mitra1)@cs.uiuc.edu

2 Data Domain, Inc. windsor.hsu@datadomain.com
3 Network Security and Applied Cryptography Lab, Stony Brook University
sion@cs.stonybrook.edu

Summary. Trustworthy retention of electronic records has become a necessity to
ensure compliance with laws and regulations in business and the public sector.
Among other features, these directives foster accountability by requiring organi-
zations to secure the entire life cycle of their records, so that records are created,
kept accessible for an appropriate period of time, and deleted, without tampering
or interference from organizational insiders or outsiders. In this chapter, we discuss
existing techniques for trustworthy records retention and explore the open problems
in the area.

1 Introduction

Modern enterprises create, process, and store large quantities of records. The
internal operations of an enterprise rely heavily on these records when making
business decisions. Further, public confidence in an enterprise depends on its
ability to maintain the confidentiality, integrity, and authenticity of its records
throughout their life cycle. In response to a number of incidents of corporate
fraud involving inappropriate modification and/or disclosure of financial and
personal records, governments have issued laws and regulations that mandate
organizations to provide trustworthy storage of their records for a guaranteed
retention period, and to completely dispose of the records after their retention
period has passed.

Unfortunately, most traditional security techniques are of little help in
ensuring trustworthy retention of records, because traditional techniques fo-
cus on outsiders as the source of threats to the system. With organizational
fraud, the threat comes from inside the organization, often from highly-placed
employees who can coerce system administrators into aiding their coverup at-
tempts. Trustworthy records retention requires new types of storage servers
and database management systems, along with new techniques for indexing,
record placement, data migration, and deletion.

358 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

This chapter explains the problem of trustworthy retention of records and
outlines proposed solutions and open problems. Section 2 defines the trust-
worthy record retention problem and discusses the laws and regulations that
mandate trustworthy record retention. Section 3 discusses the threats to trust-
worthy record retention. Section 4 presents the current storage and deploy-
ment models for trustworthy storage, and Section 5 discusses ways in which
current records servers could be made more resilient against physical attack.
Sections 6, 7, and 8 discuss techniques used for trustworthy record index-
ing, migration, and deletion, respectively. Finally, we conclude with a general
discussion of open problems and issues in Section 9.

2 Problem Definition

Information subject to compliance regulations includes both structured records,
such as relational database entries; and semi-structured or unstructured
records, such as email, spreadsheets, reports, memos, and instant messages.
We use the terms records and documents interchangeably when referring to
semi-structured or unstructured collections of information.

Definition 1. The goal of trustworthy record retention is to provide long-
term retention and eventual disposal of organizational records in such a man-
ner that no user can delete, hide, or tamper with any record during its reten-
tion period, nor recreate a record’s content once it has been deleted.

Trustworthy records retention has become mandatory with the passing of
regulatory legislation all around the world. In the United States alone, there
are more than 10,000 regulations at the state and federal level that mandate
the secure management of such records. In this section, we briefly discuss these
laws and regulations.

In the United States, the Sarbanes-Oxley Act of 2002 requires public com-
panies to provide disclosure and accountability of their financial reporting,
subject to independent audits [30]. The Health Insurance Portability and Ac-
countability Act (HIPAA) requires trustworthy storage of medical records [3].
The Securities and Exchange Commission (SEC) rule 17a-4 requires traders,
brokers, and financial companies to maintain their business records, transac-
tions, and communications for a number of years [38]. The Gramm-Leach-
Bliley Act of 1999 mandates that financial institutions must have a policy to
protect information from any foreseeable threats in integrity and data secu-
rity [29]. There are also state laws mandating the accountability of financial
institutions when breach of financial records occurs [48].

Other well-known US legislation that mandates trustworthy records reten-
tion includes the Federal Information Security Management Act [31], which
regulates information systems used by the Federal government and affiliated
parties, requiring yearly audits, risk assessments, certification, and continuous

Trustworthy Records Retention 359

monitoring of such systems. The Department of Defense Records Management
Program under directive 5015.2 regulates automated record management sys-
tems used by the Department of Defense [24]. Food and Drug Administra-
tion 21 CFR Part 11 [27] places controls over records of trials of potential
medicines. The Family Educational Rights and Privacy Act [25] requires long-
term trustworthy storage of student records from elementary school through
the university level. The Occupational Safety and Health Administration re-
quires that records on employee exposure to dangerous substances be kept for
30 years [37].

The European Parliament has issued several directives regarding the se-
curity and mandatory retention of electronic records. For example, Directive
2006/24/EC of the European Parliament regulates the retention of data gen-
erated or processed in connection with the provision of publicly available elec-
tronic communications services or public communications networks [33]. The
Markets in Financial Instruments Directive (MiFID) regulates financial mar-
kets across Europe, and introduces strict requirements on electronic record-
keeping [10]. In addition, there are country-specific laws that mandate secure
records retention for businesses. For example, in the United Kingdom, the
Companies (Audit, Investigations and Community Enterprise) Act of 2004
requires companies to adopt strict security measures to ensure the accuracy
and integrity of financial records [28].

In Japan, the Financial Instruments and Exchange Law, nicknamed J-
SOX, was promulgated in 2006 to regulate financial reporting [4]. It requires
companies to automate their financial report audit process, and is applicable
to Japanese companies as well as their foreign subsidiaries.

Many other countries have similar regulations in place. For example, in
Australia, the Corporate Law Economic Reform Program Act of 2004 regu-
lates auditing and corporate financial reporting [39]. In Canada, Bill 198 of
2002 (An Act to Implement Budget Measures and Other Initiatives of the
Government, nicknamed C-SOX) regulates financial reporting [26]. In addi-
tion, the Ontario Securities Commission rule Multilateral Instrument 52-111
mandates management responsibility for reporting on internal control over
financial reporting [40].

While each of the regulations mentioned above is designed for a particu-
lar application area and has its own unique features, a number of assurance
criteria are common to many of the directives:

• Guaranteed retention. Organizations must store records in a manner
that prevents deletion of the records or tampering with their contents,
even by insiders, for a regulation-mandated lifespan.

• Long-term retention. The mandated retention periods are measured
in years or even decades. For example, national intelligence information,
educational records, and certain health records must be retained for over
20 years. Many mandated retention periods exceed the expected lifetime
of today’s storage devices.

360 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

• Efficient access to data. Authorized requests for access to records must
be serviced in a timely manner.

• Data confidentiality. Only authorized parties can access confidential
records.

• Data integrity. Records can only enter the system through authorized
means. Further, there must be procedures in place for correcting errors in
the data, once detected.

• Guaranteed deletion. Some laws require enterprises to properly dispose
of records after a certain point in time (e.g., [24, 3]). In other situations,
deletion may not be required by regulation, but still may be highly desir-
able from the organization’s point of view, as the records may represent
a liability. Once records are deleted, ideally it should be impossible to re-
construct any information about their contents, either directly or through
metadata-based inference. We use the term trustworthy deletion to describe
this combination of features.

• Litigation holds. Electronic information may be used in litigation [18].
If a litigation hold is placed on a record, it must remain accessible until
the hold is lifted, even if it reaches the end of its mandated lifespan.

• Insider adversaries. Much recent high-profile corporate malfeasance has
been at the behest of chief executive officers and chief financial officers
who have the power to order the destruction or alteration of incriminating
records. Thus many compliance regulations target powerful insiders as the
primary adversaries. In effect, these adversaries have superuser powers
coupled with full access to the storage system hardware.

• Auditing. The organization is subject to periodic audits of its records
retention practices.

• High penalties for non-compliance. Non-compliance with the regula-
tions can bring stiff financial and criminal penalties [32].
For example, a chief financial officer can receive a prison sentence for pub-
lishing an incorrect financial report, even if the false information was in-
cluded without his or her knowledge.

Compliance regulations do not specify how these assurances are to be pro-
vided, i.e., what technology should be used to attain compliance. Thus we
expect that the legal interpretation of whether an organization is in compli-
ance will evolve over time, with more stringent measures being required once
the technology is available to support them. This assumption drives much of
the current research on trustworthy records retention, which focuses on cost-
effective means of providing a higher degree of assurance than is available
from current compliance products.

3 Usage Scenario and Threat Model

A records retention system faces all the attacks that any computer system is
vulnerable to (e.g., physical destruction, denial-of-service attacks), plus addi-

Trustworthy Records Retention 361

tional dangers that are unique to the compliance arena. In this section, we
describe those latter dangers. For information on other kinds of threats and
their countermeasures, we refer the reader to the other chapters in this volume
and to any textbook on computer security.

The main focus in trustworthy records retention is on preventing malicious
insiders from tampering with or destroying records. Further, the traditional
notion of an insider attack is refined to assume a very powerful insider who
is capable of gaining physical, root-level access to the storage media. While
outside adversaries may also pose threats, measures that are effective against
superuser insiders will also stymie external attackers.

A second key factor in the threat model for trustworthy records retention
is that the visible alteration or destruction of records is tantamount to an
admission of guilt, in the context of litigation. Thus a successful adversary
must perform their misdeeds undetectably.

The target usage scenario for trustworthy records retention is as follows.
First, a legitimate user Alice creates and stores a record R that is subject to
compliance regulations. Later, a user Mallory starts to regret R’s existence
and will do everything he can to prevent a subsequent user Bob from accessing
R or inferring its existence. For example, Bob may be a regulatory authority
looking for evidence of malfeasance, while Mallory may be the superuser CEO
or Alice herself. The primary goal of trustworthy records retention is to ensure
that Bob can still find and read R until the end of R’s mandated lifespan,
no matter what Mallory does. For some applications, undetectable post hoc
insertion of records is also considered a threat and must be addressed.

Once R reaches the end of its mandated lifespan and is deleted, then
Mallory may wish to determine whether R ever existed or infer information
about the contents of R, based on any traces of information about R that
may remain in the system. A second goal of trustworthy records retention is
to ensure that Mallory cannot make these inferences.

To illustrate some of the implications of the threat model, consider the
following hypothetical scenarios:

Trustworthy retention. Mallory can employ his superuser powers to
attempt to modify or delete R, or to hide R by modifying indexes so that
they no longer lead to R. Mallory can also swap out the disks in the storage
server, replacing them with disks that do not contain any trace of R. We must
make sure that Bob can detect Mallory’s attacks and, where feasible, we must
prevent them.

Trustworthy access and migration. Suppose that Alice’s organization
needs to migrate its compliance records to a new compliance storage server.
Mallory is effectively in charge of the migration, and he wants to omit incrim-
inating record R during the transfer. For trustworthy record retention, Bob
must be able to detect whether any such modifications or omissions occurred
during migration.

Trustworthy deletion. When its mandatory retention period is over
and any litigation holds on R have been lifted, Alice’s organization removes

362 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

R. Mallory subsequently gains access to the storage server and looks for mag-
netic traces of R. He also looks in the current copies of indexes and other
metadata and supporting data structures, to try to glean information about
R. For many applications, trustworthy record retention needs to prevent Mal-
lory from gaining any information about R.

4 Storage Architectures

As explained in detail in other chapters of this book, conventional file/storage
system access control mechanisms and data outsourcing techniques are in-
tended to ensure that records and their metadata are only modified by legit-
imate applications. Under the outsourcing threat model, insiders are trusted
but the storage server is not. The correctness of outsourced query answers can
be guaranteed by the data owner by attaching appropriate signatures to the
data that can be verified by the querier. These signature-based approaches
only detect whether a record has been tampered with; they do not prevent
tampering. The techniques for outsourcing and traditional access control are
powerless against an adversary with superuser powers who can obtain any
secret key and control the behavior of applications. Data owner Alice could
alter the contents of her record R and re-sign it after it has already been
committed to the storage server, or superuser Mallory could obtain access to
Alice’s private key and alter and re-sign R himself. In many applications, a
key requirement for trustworthy retention of records is to prevent deletion and
modification of the records. To thwart these attacks, we need a new kind of
storage architecture [14]:

• Based on the computer security principle of minimizing the trusted com-
puting base, the component for enforcing the storage security
properties should be as small as possible, both to reduce the proba-
bility that something could go wrong or be compromised, and to increase
our ability to verify the correctness of the component. This means that we
cannot rely on having a trusted database management system running on
the storage server, or even a trusted indexing package.

• The cost of any effective attack against the component must be
high, and its results must be conspicuous. For example, perhaps a
simple auditing routine is guaranteed to be able to detect the aftereffects of
the attack; or else many or all records insertions will fail after the attack. A
number of design principles follow from this requirement; for example, the
component should have a simple and well-defined interface, to robustly
restrict traffic into the component to legitimate requests only. Further,
the component must mediate all requests; in other words, the overwrite
protection cannot be circumvented by, for example, directly accessing the
rewritable disk.

• The resulting system must provide end-to-end security guarantees,
not just guarantees for individual components.

Trustworthy Records Retention 363

• The price per byte of storage must be modest, as data volumes are
very high. The conflict between security, cost-effectiveness, and efficiency
makes the design of compliance storage extremely challenging.

To respond to regulations for trustworthy document retention, the stor-
age industry has developed a variety of compliance storage products that
aim to address the requirements outlined in the previous section. Vendors
in this marketplace include IBM [16], HP [13], EMC [7], Hitachi Data Sys-
tems [12], Zantaz [49], StorageTek [44], Network Appliance [23], and Quantum
Inc. [34]. Often their products are referred to simply as WORM (write once,
read many) devices, though of course any product that supports deletion of
expired records is not a true WORM device. In this section, we briefly discuss
a set of representative systems and their security properties.

Tape-based products. Due to the favorable cost-per-MB ratio of tape-
based storage in the past, tape was a natural choice for massive data storage in
commercial enterprise deployments where regulatory compliance is of concern.
Thus storage vendors offered tape-based compliance storage first. The Quan-
tum DLTSage predictive, preventative and diagnostic tools for tape storage
environments [34] are a representative instance. The WORM assurances of
the tape systems are provided under the assumption that only Quantum tape
readers are deployed: “DLTSage WORM provides features to assure compli-
ance, placing an electronic key on each cartridge to ensure WORM integrity.
This unique identifier cannot be altered, providing a tamper-proof archive
cartridge that meets stringent compliance requirements to ensure integrity
protection and full accessibility with reliable duplication” [34]. Such systems,
however, make impractical assumptions. Given the nature of magnetic tape,
an attacker can easily dismantle the plastic tape enclosure and access the
underlying data on a different customized reader, thus compromising its in-
tegrity. Relying on the physical integrity of a “plastic yellow label,” as in one
product, to safeguard essential enterprise information is likely to be unaccept-
able in high-stakes commercial scenarios.

Optical-disk products. Optical disk media (CDs) have been around
experimentally since 1969 and commercially available since 1983. Given the
prohibitive costs of high-powered lasers in small form factors, in the early
days, most CD devices were only capable of reading disk information. As the
technology matured, write-once (and later read-write) media appeared. Opti-
cal WORM-disk solutions rely on irreversible physical write effects to ensure
the inability to alter existing content. However, with ever increasing amounts
of information being produced and requiring constant low-latency accessibil-
ity in commercial scenarios, it is challenging to deploy a scalable optical-only
WORM solution. Moreover, optical WORM disks are plagued with other prac-
tical issues such as the inability to fine-tune WORM and secure deletion gran-
ularity (problems partially shared also by tape-based solutions). Moreover,
due to bulk production requirements, optical disks are vulnerable to simple
data replication attacks, with the end result that they do not provide any

364 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

strong security features. Optical WORM disks also perform relatively poorly
in price-performance measurements, because current technology is somewhat
undersized for the volumes of data associated with compliance regulations.
Sony’s Professional Disk for Data optical disk system, for example, holds only
23 GB per disk side [43]. Nevertheless, because it is faster than tape and
cheaper than hard disks, optical WORM storage technology is often deployed
as a secondary, high-latency storage medium to be used as second-tier storage
in the framework of a hard disk-based solution. In such an environment, care
needs to be taken in establishing points of trust and data integrity when data
leaves the secured hard disk store for the optical media. As we will discuss
below, such integrity assurances can be maintained with the help of additional
secure hardware hosted inside the main store.

Hard disk products. Magnetic disk recording currently offers better
overall cost and performance than optical or tape recording. Moreover, while
immutability is often specified as a requirement for records, what is required
in practice is that they be “term-immutable”, i.e., immutable for a specified
retention period. Thus almost all recently-introduced WORM storage devices
are built atop conventional rewritable magnetic disks, with write-once seman-
tics enforced through software (“soft-WORM”).

EMC Centera. The EMC Centera Compliance Edition [7] is a content
addressed storage (CAS) product that also offers regulatory compliance capa-
bilities. Each data record “has two components: the content and its associated
content descriptor file (CDF) that is directly linked to the stored object (busi-
ness record, e-mail, etc.). A digital fingerprint derived from the content itself
is the content’s locator (content address). The CDF contains metadata record
attributes (e.g., creation date, time, format) and the object’s content address.
The CDF is used for access to and management of the record. Within this
CDF, the application will assign a retention period for each individual business
record. Centera will permit deletion of a pointer to a record upon expiration of
the retention period. Once the last pointer to a record has been so deleted, the
object will be eliminated” [7], and, in the Plus version, also “shredded” from
the media. Given its software-only nature, these mechanisms are vulnerable
to simple software-based attacks and physical attacks. Data integrity can be
easily compromised by a determined insider who replaces a disk by one with
slightly altered content, as described in the next section.

Hitachi Message Archive for Compliance. Hitachi Data Systems provides
the Data Retention Utility [12], a software-based “virtual WORM” mechanism
for mainstream Hitachi storage systems. The system allows customers to “lock
down archived data, making it non-erasable and non-rewritable for prescribed
periods, facilitating compliance with governmental or industry regulations”.
This approach has the same vulnerabilities as do the EMC products.

IBM LockVault compliance software. IBM offers multiple soft-WORM
products. The LockVault compliance software is a layer that operates on top
of IBM System Storage N series [15] to provide “disk-based regulatory com-

Trustworthy Records Retention 365

pliance solutions for unstructured data”. This approach has the same vulner-
abilities as do the EMC products.

IBM System Storage Archive Manager. The IBM Tivoli Storage Manager
[17] is part of the IBM TotalStorage Software [16] and “makes the deletion
of data before its scheduled expiration extremely difficult. Short of physical
destruction to storage media or server, or deliberate corruption of data or
deletion of the Archive Manager database, Archive Manager will not allow
data [...] to be deleted before its scheduled expiration date.” From a security
point of view, it is not desirable for the regulatory compliance mechanism to
depend on the correct behavior of the main system. After all, the compliance
mechanism’s main role is to guarantee exactly such faultless behavior. The
main adversary of concern in regulatory settings is exactly one with incentives
for data corruption and physical attacks.

Network Appliance Snaplock Compliance/Enterprise Software. The Net-
App SnapLock software suite [23] is designed to work on top of NetApp Near-
Store and FAS storage systems. It provides soft-WORM assurances, “prevent-
ing critical files from being altered or deleted until a specified retention date”.
Unlike several other vendors, NetApp SnapLock supports open industry stan-
dard protocols such as NFS and CIFS.

Sun StorageTek Compliance Archiving Software. Sun also offers soft-
WORM assurances through its StorageTek Compliance Archiving Software
[44]. The software runs on top of the Sun StorageTek 5320 NAS Appliance
[45] to “provide compliance-enabling features for authenticity, integrity, ready
access, and security”.

Strong WORM. Today’s compliance storage products do not really
satisfy the criteria for trustworthy record retention. They are fundamentally
vulnerable to faulty behavior or malicious adversaries with incentives to alter
stored data, as they rely on enforcement primitives—such as software and/or
simple hardware device-hosted on/off switches—ill-suited to their target ad-
versarial setting. For sound designs, we believe the following properties are
required:

• To prevent physical attacks such as disk replacement, strong tamper-
resistant and reactive hardware is required to ensure data integrity. As
discussed later, a determined adversary can circumvent today’s physical
protection.

• The requirement for efficient access to compliance records, coupled with
the large volume of such records, indicates that the records will need to
be searched using indexes. These indexes cannot be kept on traditional
storage, as a superuser could hide a record by removing its index entries.
Even with indexes designed to be kept on optical media [1, 6, 19, 35],
an adversary can compromise the search results—even for an approach
as simple as binary search. The design of trustworthy indexes is an open
research area.

366 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

• Current products address the trustworthiness issues that arise during the
backup process. However, they do not ensure that a record is trustworthy
throughout its entire life cycle, from creation, through migration to newer
storage servers, to eventual deletion.

• Current compliance storage products aim to address the problem of doc-
ument retention; no product supports structured data, e.g., provides a
trustworthy relational database management system.

We discuss these open problems and potential solutions in the sections that
follow.

5 Resistance to Physical Attack

Our insider adversary Mallory has physical access to the storage media. To
limit the damage that he can do, one potential approach is to house the storage
in a tamperproof or tamper-evident box. However, such a box would trap heat,
making it necessary to run the storage server at lower speeds and reducing its
cost-effectiveness. Thus this solution is unlikely to be popular with customers
or vendors. Further, disks do fail and require replacement, which is hard to
reconcile with the notion of tamper-evidence.

As one example of vulnerability to physical attack, consider recent US
patent 6879454 for an IBM disk-based WORM system whose drives selectively
and permanently disable their write mode by using programmable read only
memory (PROM) circuitry: “One method of use employs selectively blow-
ing a PROM fuse in the arm electronics of the hard disk drive to prevent
further writing to a corresponding disk surface in the hard disk drive. A
second method of use employs selectively blowing a PROM fuse in processor-
accessible memory, to prevent further writing to a section of logical block
addresses (LBAs) corresponding to a respective set of data sectors in the
hard disk drive”.

Unfortunately, this method does not provide strong WORM guarantees.
Using off-the-shelf resources, an insider can open the storage medium enclo-
sures to gain physical access to the underlying data and to any flash-based
checksum storage. She can then surreptitiously replace a device by copying
an illicitly modified version of the stored data onto a identical replacement
unit. Maintaining integrity-authenticating checksums at device or software
level does not prevent this attack, due to the lack of tamper-resistant storage
for keying material. The adversary can access integrity checksum keys and
construct a new matching checksum for the modified data on the replacement
device, thus remaining undetected. This attack will still be effective if we add
tamper-resistant storage for keying material [11], because a superuser is likely
to have access to keys while they are in active use: achieving reasonable data
throughputs will require integrity keys to be available in main memory for the
main (untrusted) run-time data processing components.

Trustworthy Records Retention 367

A potentially more effective approach is to leverage components that are
both tamper-resistant and active, such as general-purpose secure coproces-
sors (SCPUs). By adding a trusted SCPU inside the storage server, we can
guarantee the trustworthiness of records from that server, even if the records
subsequently pass through untrusted and possibly hostile environments inside
or outside the server. The SCPU can run certified code; its close proximity
to the data storage, coupled with its tamper-resistance guarantees, offers the
possibility of higher security assurances at minimal extra cost.

However, SCPUs are not a panacea. The heat dissipation limits caused
by tamper-resistant enclosures reduce the maximum allowable spatial gate
density in an SCPU. As a result, SCPUs are significantly constrained in both
computation ability and memory capacity, being up to one order of magni-
tude slower than ordinary CPUs. Thus to be competitive in the marketplace,
the SCPU cannot run all of the storage server code—additional ordinary un-
trusted CPUs must shoulder much of the computational burden. Even then,
a straightforward implementation (such as having the SCPU sign each new
record as it arrives) will be too inefficient, leaving the untrusted CPUs under-
utilized and defeating the intended cost advantage of having fast untrusted
main CPUs and expensive slower secured CPUs. A good implementation must
access the secure hardware sparsely, asynchronously from the main data flow
to and from disk, so that document insertions, deletions, and reads proceed
at the throughput rate of the storage server’s ordinary CPUs.

Researchers have proposed such an architecture for compliance storage
and data migration, based on commodity x86 architecture [41]. With a single
SCPU, their approach can support over 2500 record insertions and deletions
per second, using a deferred-signature scheme described below. To minimize
the trusted computing base, their record-level WORM layer identifies records
by monotonically increasing serial numbers and does not support name spaces,
trustworthy indexing or content-based addressing; all of these can be layered
on top of the record-level WORM support.

To achieve such high throughput rates, the SCPU is involved in document
insertions and deletions but not in reads, thus minimizing the overhead if
the workload is dominated by read queries. Clients who perform reads get an
SCPU-certified guarantee that (i) the block was not tampered with, if the read
is successful; and if the read fails, either (ii) the block was deleted according
to its retention policy, or (iii) it never existed on this storage server.

To authenticate the contents of the records on the storage server, one
option is to keep a Merkle tree whose entries are signed by the SCPU. However,
the resulting O(log n) cost to insert or delete a record, where n is the number
of documents, will reduce the throughput of the system, even if the SCPU
updates the Merkle tree in parallel with the activities of the other CPUs. To
address this problem, one can instead label data blocks with monotonically
increasing consecutive serial numbers and then introduce a concept of sliding
“windows” that are authenticated at O(1) cost by only signing the window
boundaries [41].

368 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

33

23 433321 39 47 51 63

33

23 433321 39 47 51 63 4339 45 51 6347

Insert 45

33 47

(a) Write-Once B-Tree

33

23 433321 39 47 51 63

33

23 433321 39 47 51 63 4339 45 6347

Insert 45

33 47

(b) Tampered Write-Once B-Tree

Fig. 1. An example of a write-once B-tree insert operation. (a) Inserting 45 requires
a node split. Two new leaf nodes (shaded) are created and pointers to the new nodes
are placed at the parent node. The parent node now has two pointers associated
with 33. During querying, the latest pointer associated with a value is traversed. (b)
Write-once B-trees are not trustworthy. The adversary can omit entries (e.g., value
51) during the copy operation.

Another trick to increase throughput during periods of high load is to tem-
porarily replace expensive SCPU signature operations (e.g., 1024-bit signa-
tures) with less expensive short-term secure variants (e.g., 512-bit signatures)
[41]. The system can strengthen these weaker constructs when the load slack-
ens, but within their security lifetime (e.g., before enough time has passed for
an adversary to break the 512-bit signature scheme). This adaptivity helps
the system amortize signature costs over time so that it gracefully handles
high-load document insertion bursts.

6 Trustworthy Indexing

Indexing ensures that a target record can be quickly extracted from terabytes
of data. In our discussion, we will assume that each record is assigned an
integer identifier as it arrives at the storage server, and that identifiers are
given out in increasing order. Any indexing approach for trustworthy records
retention must have the following properties:

• The index itself must be trustworthy. As explained below, in practice this
means that the search path to an index entry must be immutable for the
lifetime of the record that it indexes.

• To keep the trusted computing base small, the indexing code should reside
outside the storage server.

• To ensure that a record R is entered and retained in the appropriate in-
dexes before Mallory regrets its existence, the insertion and indexing of R
must be performed atomically.

• All traces of R must be removed from the index when R is deleted.

Trustworthy Records Retention 369

0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(a) GHT Before Insertion

0 1 2 3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

h0 (k) = 1

h1 (k) = 0

h2(k) = 7

h3(k) = 2

(b) GHT After Insertion

Fig. 2. Inserting element k into a generalized hash tree. (a) The GHT before k
is inserted. The shaded nodes are occupied and the white nodes are empty. (b)
h0(k) = 1, but node position 1 in the root node is already occupied. So k must be
hashed again using h1, with the goal of inserting k in the node that is the child
of position 1 in the root node. h1(k) = 0, but the 0th position in the appropriate
subtree of the root is occupied, so k is hashed again using h2. This again results in
a collision. Finally, a new leaf is added and k is inserted at position h3(k) = 2.

The first step in ensuring trustworthy indexing is to store the index on
WORM. The problem of creating an index on write-once media has been
studied before. For example, in write-once B-trees [6] (Figure 1(a)), a node
is split into two new nodes when it overflows. Two pointers are added to the
end of its parent node, superseding the earlier pointer to the old node. If the
parent node overflows, it is split as well and only the most recent pointers are
copied. When the root node splits, a new root is created. Unfortunately, the
use of WORM alone is insufficient to make this or any other index trustworthy.
For example, in a write-once B-tree, an adversary can effectively modify any
record he wishes by creating a new version of the appropriate nodes, as shown
in Figure 1(b). Although every alteration of the nodes is preserved in WORM
storage, it is too expensive to examine each version of the tree on each lookup
to guard against tampering.

Traditional hash-based structures are also not secure against tampering.
For example, in dynamic hashing and its extensions (e.g., [5, 8, 2]), when
the number of records in a hash table exceeds a high water mark, a new
hash table with a larger size is allocated and all the records are rehashed and
moved into the new table. In this way, dynamic data growth can be supported
with good performance. The ability to relocate records, however, provides an
opportunity for an adversary to alter the records during the copying step. A
trie that stores records in its leaf nodes and moves records to new leaf nodes as
the trie grows will also be untrustworthy. All these approaches are vulnerable
because the search path to a particular record is not term-immutable.

To date, researchers have proposed trustworthy versions of hashing and in-
verted indexes, both of which guarantee term-immutable search paths. For ex-
ample, a generalized hash tree (GHT) supports exact-match lookups of records
based on attribute values [50]. One can use such an index, for example, to find
all email sent from a particular address.

370 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

A GHT is a balanced tree-based data structure that does not require
periodic rebalancing. In a GHT, predefined hashes of the record key determine
all its possible lookup or insertion locations. The locations where a record can
be inserted or looked up are therefore immutable. To insert or look up a record
in a GHT, the record key is hashed to obtain a position within the root node
(see Figure 2). If the corresponding node position at the root node is empty,
the record is inserted there. If there is a collision, the key is rehashed (using
a different hash function) and an attempt is made to insert the key in the
appropriate subtree of the root node. This process is repeated until an empty
node position is found. If a record cannot be inserted in any existing node of
the tree, a new leaf node is added.

Full-text search (keyword search) is the most convenient way to query un-
structured records such as email bodies and reports. Search engines typically
use inverted indexes for this purpose [9]. As shown in Figure 3(a), an inverted
index comprises a dictionary of terms (i.e., words that appear in documents)
plus a posting list for each term, containing the identifiers of all records con-
taining that term (with additional metadata such as term frequency within
the record, term type, and term position within the record). Queries are an-
swered by scanning the posting lists of the terms in the query. The records
referenced in the posting lists are assigned scores for the query, based on simi-
larity measures (e.g., cosine, Okapi, pivoted, Dirichlet [47, 36]). The scores are
used to rank the records, producing an ordered list of results. Multi-keyword
conjunctive queries can be answered by intersecting the posting lists of the
query terms. To make the intersection fast, an additional index such as a B+
tree is usually kept for each posting list, and a zigzag join is used to perform
the intersection [46].

Query

Data

Base

Worm

Index

1 3 11 17 36

3 9 31

3 19

7 36

3

(a) Ordinary Inverted Index

Query

Data

Base

Worm

Index

1 3 11 17 36

7 36

3

3#Data 3#Base 9#Data 19#Base 31#Data

(b) Inverted Index After Merging

Fig. 3. Inverted indexes. With each keyword, a posting list of IDs of documents
containing that keyword is stored. Each posting list is stored as a separate file on
WORM. After merging, the keyword (or its hash) must also be stored in the posting
list.

For a trustworthy version of inverted indexes, each posting list can be
stored in a separate append-only file on WORM storage [20]. In a traditional
inverted index, updates are processed in batches that involve sorting all the
entries and regenerating the posting lists in their entirety; of course this is not

Trustworthy Records Retention 371

trustworthy. To be trustworthy, we can append the terms of newly arriving
records to the appropriate posting lists at the time the records arrive. With-
out additional optimizations, however, this approach is too slow to support
real-time insertion of typical business documents: each new posting list entry
requires a file append operation, which in turn requires a random I/O. The
performance can be improved vastly by merging the posting lists for different
terms until the tails of all posting lists fit into the storage server’s cache (see
Figure 3(b)). For example, with a cache of 256 MB (which is less than one
would find in today’s storage servers), one can index 500 new 500-keyword
documents per second. Compared to a traditional unmerged implementation
of an inverted index, query workload performance drops by less than 10%,
which is quite good. Intuitively, merging posting lists has little effect on query
performance because only a small set of terms is widely used in queries. As
long as these “popular” terms are not merged together, performance is little
affected by merging.

2 4 7 11 13 19 23 29 31

7 13

23

31

33

(a) B+ Tree in WORM Storage

2 4 7 11 13 19 23 29 31

7 13

23

31

25

25 26 32

32

33

(b) B+ Tree Manipulated to Hide
Entries

Fig. 4. Why B+ trees are untrustworthy. (a) B+ tree in WORM storage. New
elements are added at the leaf level. When a leaf node fills up, a new leaf is created
and an entry is added to the parent that points to the new leaf. (b) The adversary
can add entry 25 to the root and point it to a spurious subtree. This effectively hides
entry 31 from subsequent queries.

For trustworthy conjunctive keyword search, the auxiliary B+ trees used
in zigzag joins must also be trustworthy. One can create a B+ tree for an
increasing sequence of document IDs without any node splits or merges, by
building the tree from the bottom up, as shown in Figure 4 for the special case
of a 2-3 tree. Unfortunately, such an index structure is also not trustworthy,
even when kept on WORM storage, because the path to each entry is not
immutable. For instance, Figure 4(b) shows that the adversary can hide entry
31 by creating a separate subtree that does not contain 31, and adding an entry
25 at the root to lead to the new subtree. Other techniques like binary search
can also be compromised by the adversary, by appending smaller numbers at
the tail of the sequence. For example, binary search on the leaves of the tree
in Figure 4 would miss 31 because of the malicious entry 30 at the end.

372 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

1

2 5

7

10

0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Jump Pointers

Jump Pointers Jump Pointers

Jump Pointers

Jump Pointers

15
0 1 2 3 4

Jump Pointers

(a) Binary Jump Index

(1
,1

)

(0
,1

)

(2
,1

)

1

Jump Pointers

2 (0
,1

)

(0
,2

)

(1
,1

)

(1
,2

)

(2
,2

)

(3
,1

)

(3
,2

)

(4
,1

)

(4
,2

)

5 7

8 10 (0
,2

)

(1
,2

)

(2
,1

)

(2
,2

)

(3
,1

)

(3
,2

)

(4
,1

)

(4
,2

)

15 19

Jump Pointers

21 22 25

Block 0

Block 1

Block 2

(b) Block-structured Jump Index

Fig. 5. (a) Simple jump index. Shaded pointers that are not filled in are null. Only
the first five pointers in each node are shown. (b) Block-structured jump index. Only
pointers with i ≤ 4 are shown.

To address this problem, researchers have proposed jump indexes [20].
Jump indexes can be used to index monotonic sequences, such as document
IDs in a posting list, as a replacement for the non-trustworthy B+ trees.
Experiments show that overall, jump index lookup performance is within a
factor of 1.4 of the performance of an equivalent B+ tree.

A jump index exploits the fact that to reach a particular number k ≤ N ,
we can jump from 0 to k in powers of 2. For example, let b1, . . . , bp be the
binary representation of k. We can reach k in p steps by starting at zero, then
jumping forward by b1 × 2p−1 integers, then jumping forward by b2 × 2p−2

integers; and so on, until finally a bp × 20 jump brings us to the number
k. In a jump index, of course, not all possible numbers (record IDs) will be
stored in the index. Instead, as shown in Figure 5(a), a jump index node
contains explicit jump pointers that correspond to the sequence of jumps to
take forward. More precisely, the ith jump pointer stored with jump index

Trustworthy Records Retention 373

entry (node) l will point to the smallest jump index entry (node) l′ such that
l + 2i ≤ l′ ≤ l + 2i+1. As a result, lookups can be done in O(log2 N) time,
where N = 2p. The jump index can be kept in WORM storage by storing
each node of the index as a separate file, and appending new jump pointers
to the end of the file.

As with B+ trees, one can tune the fanout of jump tree nodes for better
space and time efficiency. Figure 5(b) shows a block-structured jump index,
in which p posting entries are stored together in blocks of size L. Pointers are
associated with blocks, rather than with every entry. Finally, jump pointers
are calculated using powers of B rather than powers of two, where p ≥ B.
More specifically, (B − 1) logB(N) pointers are stored with every block. Each
pointer is uniquely identified by a pair (i, j), where 0 ≤ i < logB(N) and
1 ≤ j < B. The pointers are set up as follows: let l1 be the largest document
ID stored in block b. The (i, j) pointer in b points to the block containing the
smallest document ID s such that

l1 + jBi ≤ s < l1 + (j + 1)Bi.

In the trustworthy indexing approaches described above, an adversary can
insert malicious entries into the index. For example, Mallory can insert a docu-
ment ID into the posting list for a term that does not appear in the document,
or can append an inappropriate jump pointer to a jump index node. Malicious
entries fall into two categories: those that cause subsequent legitimate inser-
tions to fail, and those that will only be noticed when a lookup operation finds
a dangling pointer or returns a record that does not match the query. Both
events will draw immediate unwanted attention to the attack, and neither
prevents all matching records from being returned in the answer to a query.
Thus these attacks are conspicuous and ineffective at hiding information.

If Mallory gains physical access to storage, he may tamper with the index
contents. If we have trusted hardware that can periodically sign portions of the
index (such as the secure coprocessor discussed in the previous section), then
any discrepancy between the signature and the current index contents can
be detected. Under such circumstances, the indexing system should support
partial recovery and fault isolation [42], as it would be very expensive to
regenerate the entire index from the data.

7 Trustworthy Migration

Storage systems technology evolves rapidly. It is impractical to store records
on a single server for decades, as the server will become obsolete and too
expensive to maintain. Organizations themselves may also evolve, via merg-
ers, spin-offs, and reorganizations that require records to be copied or moved.
When records must be moved, the migration process needs to be trustwor-
thy; that is, it should be possible to verify that the migration was completed
appropriately, even if a superuser adversary performed the migration.

374 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

To date, researchers have developed two schemes for trustworthy migration
of records between compliance storage servers; both of these schemes rely on
secure coprocessors (SCPUs). In the scheme proposed in [41], the SCPU of
the original storage server (SCPU1) should be provided assurances that the
migration target environment (SCPU2) is trustworthy and endorsed by the
relevant regulatory authority (RA).

To achieve this, the migration process is initiated by (i) the system opera-
tor retrieving a migration certificate (MC) from the RA. The MC is in effect
a signature on a message containing the timestamped identities of SCPU1

and SCPU2. Upon migration, (ii) the MC is presented to SCPU1 (and pos-
sibly SCPU2), who authenticates the signature of the RA. If this succeeds,
SCPU1 is ready to (iii) mutually authenticate and perform a key exchange
with SCPU2, using their internally stored key pairs and certificates. SCPU2

will need backwards-compatible authentication capabilities, as the default au-
thentication mechanisms of SCPU2 may be unknown to SCPU1. This back-
wards compatibility is relatively easy to achieve as long as the participating
certificate authorities (i.e., SCPU manufacturer or delegates thereof) still ex-
ist and have not been compromised yet. A cross-certification chain can be set
up between the old and the new certification authority root certificates. Once
(iii) succeeds, SCPU1 will be ready and willing to transfer a description of the
state of the compliance records and index contents on a secure channel pro-
vided by an agreed-upon symmetric key (e.g., using a Diffie-Hellman variant).
After the state information has been migrated, the actual records and index
contents can be transferred by the main CPUs , without SCPU involvement.

The scheme proposed in [22] supports the migration of files through mul-
tiple servers while maintaining integrity guarantees. In this scheme, file and
directories can be rearranged or omitted during the migration, based on cor-
porate policies. The approach relies on the existence of a trusted third party,
such as a storage system vendor, who records the public keys associated with
the sequence of storage servers purchased by an organization.

The migration process is divided into three phases:

• In phase 1, the party in charge of migration prepares a plan for the mi-
grations. The log of this plan includes the policies governing the migration
and, in compact form, a representation of the list of files and directories
to be migrated, the planned file and directory omissions, and the planned
directory restructurings.

• In phase 2, the current storage server generates certificates that attest to
the current state of the directory tree and file contents, and adds them to
the log. The scheme assumes that the server will generate the certificates
correctly, either because it is part of the trusted computing base or be-
cause it contains trusted hardware that is capable of perusing directories
and creating certificates. In either case, these certificates can be generated
reasonably quickly.

Trustworthy Records Retention 375

• Finally, in phase 3, the party in charge of migration moves the files to be
migrated, and also copies the signed log to the new server.

After migration, anyone can look up the public keys used by an organi-
zation’s series of storage servers, and then use validation routines to check
whether the migration took place appropriately. For example, a trusted third-
party auditor can certify the migration immediately after its completion, at
approximately the same rate of speed as it took to generate the certificates
in phase 2. At any point after the migration, a user can also quickly check
whether a particular file was migrated appropriately.

A long-lived record may be migrated several times during its lifetime. If
we migrate all previous logs during each of the component migrations, then
the entire migration chain can be validated at any subsequent point. The
disadvantage of this approach—and a potential concern in even a single-hop
migration—is that a significant amount of information about deleted and/or
omitted files may be present in the log. For example, if a file has been omitted
during a previous migration, enough information must be present in the log
for a verifier to be sure that the omission was appropriate. To address this
problem, more complex schemes can be used to reduce the amount of migrated
information about deleted files, to the point where a deleted file can appear
in the log as just an opaque ID and expiration date.

Migration policies can be very complex. For example consider the policy
Delete all files containing the word Martha. This deletion should preserve
confidentiality: a person reading files and logs on the destination server should
not learn anything other than the fact that the deleted file contained Martha.
One can handle this problem in an elegant manner if the storage server con-
tains a small amount of trusted hardware that can run downloaded query
code and sign the results, to testify that only a certain set of files contained
the word Martha [22]. Then this certificate can be included in the log file and
migrated to the new server along with the appropriate subset of files. Any-
one can verify that exactly the set of files listed in the query certificate was
omitted during the migration.

8 Trustworthy Deletion

Since the primary purpose of WORM devices is to prevent data deletion,
it is not surprising that cost-effective and trustworthy deletion of records is
difficult. WORM devices use physical security measures, such as repeatedly
overwriting the data blocks with certain patterns, to erase records from the
media. However, simple erasure is not enough for trustworthy deletion, as an
erased record can be recreated by reverse-engineering an index. Overall, no
index entry deletion scheme developed so far meets all the requirements for
trustworthy deletion.

For the deletion of document d to be strongly secure, the presence or ab-
sence of any word w in any reconstruction of d should not convey any in-

376 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

formation about its presence in the original document. More formally, let S
be a reconstruction of the set of words in d, generated by the adversary by
scanning directories, indexes, and migration logs. We say that d’s deletion is
strongly secure iff

∀w.P (w ∈ d|w ∈ S) = P (w ∈ d)
∀w.P (w ∈ d|w /∈ S) = P (w ∈ d),

where P (w ∈ d) denotes the probability of the word w belonging to document
d, while P (w ∈ d|w ∈ S) denotes the probability of w being in D given that
w is in S.

Unfortunately, the trustworthy indexing schemes discussed earlier do not
support strongly secure deletion. Generalized hash trees offer weakly secure
deletion, in which Mallory cannot prove that a deleted record contained a
specific set of terms [21]. (We can also define probabilistically secure dele-
tion, in which the probability of the record having a specific reconstruction
is bounded above.) Trustworthy inverted indexes and jump indexes are even
more problematic with respect to deletion.

To see why deletion is difficult, consider an email from Alice to Bob with
the text Please sell 10,000 shares today. An inverted index will contain entries
for the terms in the email, and may also note the position of the words in the
record. If the record containing the email is later deleted, it may be possible
to exactly recreate the email by looking at its index entries. Therefore, the
index entries must also be removed to ensure non-reproducibility of deleted
records. WORM devices do not support erasure of short byte sequences, and
they are unlikely to do so in the future.

Even if the WORM device does allow the corresponding index entries to
be erased, structural properties of the index may allow an adversary to infer
that they existed. For example, if the order of keyword insertion is significant
in determining the current structure of the index (as is true for trustworthy
inverted indexes and jump indexes), then the positions of the erased entries in
the index may allow one to infer that a particular erased document contained
certain keywords [21]. For example, one might be able to infer that Alice sent
an email about shares to Bob on a certain day, without knowing the exact
order of words in the email.

To address this problem, one might imagine dividing expiration times into
epochs, and keeping a separate set of indexes for records expiring in each
epoch. Then one could delete the entire epoch of indexes once the epoch is
over. Unfortunately, litigation holds may require a document to be retained
even after its mandatory retention period is over, making it impractical to
delete large batches of records and index entries based simply on their expi-
ration date. In general, there is a tradeoff between the ease and efficiency of
the deletion approach and the trustworthiness guarantees of the approach to
implementing litigation holds.

Another option is to rebuild the index in a trustworthy manner when
records are deleted. However, the record arrival rate of today will be the

Trustworthy Records Retention 377

00101 d

1101 d

…
…

Tk

T1

Tk+1

….

Tl

Tl+m

01100

0100

r0 =

r1 =

….

…. ….

Encoding Document ID

Random Seq

Fig. 6. Supporting deletions from a trustworthy inverted index. The term encoding
Ei stored in each posting element has been XORed with a random sequence. The
random sequence is stored in a separate file that is discarded when the record expires.
Each posting list entry must also mention which random sequence to use to decrypt
the encrypted term encoding (not shown).

required record deletion rate in the future. Thus this option is too expensive
to be practical.

If document identifiers are encrypted with a per-document secret key be-
fore being stored in the index, one can still perform a join on the encrypted
document identifiers to recover the document contents. Encrypting the docu-
ment identifiers with a single key for each epoch is also problematic; Section
5 of [50] offers some solutions for the case of generalized hash trees.

An alternative for trustworthy inverted indexes is to merge posting lists
together as usual, then encrypt the term encoding associated with each posting
element and store it in the merged posting list entries (see Figure 6). One
possible encryption technique is to replace the keyword encoding E in the
posting element with its XOR with a random secret, which can be stored
with the record and deleted upon its expiration. While the key is present (the
record has not expired), the encoding E can be extracted from the posting
element. Once the secret has been deleted, the keyword encoding E cannot
be retrieved from the stored XOR value. The adversary will not be able to
determine which of the q merged keywords corresponds to the posting element,
after the secret is discarded.

We can generalize this scheme to handle multiple keywords per record,
in such a manner that an adversary cannot determine which of the merged-
together keywords a specific posting element corresponds to. The scheme does
not achieve strongly secure deletion, though it is immune to a variety of pos-
sible attacks. Moreover, the scheme allows compression of posting list entries
and has a modest space overhead. It does not require the records to be dis-
posed of in epochs, and hence it can support litigation holds. However, the

378 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

record anonymity provided by keyword merging critically depends on the set
of keywords that are merged together, and this issue needs further investiga-
tion.

9 Open Problems

In this section, we briefly summarize the biggest open issues and challenges
in trustworthy records retention.

• Corrections. Current models for records retention do not support cor-
rections to record content. However, corrections are often necessary in
practice (for example, when medical information is placed in the wrong
record for a patient with a common name), and are mandated by law in
some domains. An elegant, cost-effective approach is needed for supporting
corrections and providing trustworthy provenance information and audit
trails.

• Deletions. As discussed above, no entirely satisfactory scheme exists for
trustworthy deletion of records. Traces of record metadata may remain in
indexes or migration logs, potentially allowing an adversary to infer the
contents of a deleted record.

• Structured information. This chapter has focused on the trustworthy
retention of unstructured or semistructured data. Database records need a
similar level of protection, but no work to date has addressed this problem.

• Exploiting trusted hardware. In addition to the trusted hardware
based WORM layer, we believe it is important to explore how to deploy
such hardware to achieve increased security and efficiency in the upper
(e.g., indexing) layers. The challenge is to exploit a very small, cheap
piece of trusted hardware along with off-the-shelf regular storage system
components, in an architecture that provides good performance.

In addition to these major problems, many smaller questions remain open.
For example, there are no trustworthy approaches to multidimensional index-
ing.

Acknowledgements

Authors Ragib Hasan, Soumyadeb Mitra, and Marianne Winslett were sup-
ported by NSF awards IIS-0331707, CNS-0331690, and CNS-0524695. Author
Radu Sion was supported in part by the Stony Brook Office of the Vice Pres-
ident for Research and by the NSF award CNS-0627554.

Trustworthy Records Retention 379

References

1. Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter
Widmayer. An asymptotically optimal multiversion b-tree. The VLDB Journal,
5(4):264–275, 1996.

2. Andrei Z. Broder and Anna R. Karlin. Multilevel Adaptive Hashing. In 1st
ACM-SIAM Symposium on Discrete Algorithms, 1990.

3. Centers for Medicare & Medicaid Services. The Health Insurance
Portability and Accountability Act of 1996 (HIPAA). Online at
http://www.cms.hhs.gov/hipaa/, 1996.

4. Protiviti Consulting. Frequently Asked Questions About J-SOX. Online at
http://www.protiviti.jp/downloads/JSOXOverviewfinal_E.pdf, 2006.

5. Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der
Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic Perfect Hashing: Upper
and Lower Bounds. SIAM Journal on Computing, 23(4):738–761, 1994.

6. Malcolm C Easton. Key-sequence data sets on indelible storage. IBM Journal
of Research and Development, 30(3):230–241, 1986.

7. EMC Corp. EMC Centera Content Addressed Storage System. Online at
http://www.emc.com/products/systems/centera_ce.jsp, 2006.

8. R. J. Enbody and H. C. Du. Dynamic Hashing Schemes. ACM Computing
Surveys, 20(2), June 1988.

9. Christos Faloutsos. Access methods for text. ACM Computing Surveys,
17(1):49–74, 1985.

10. Financial Security Authority. Markets in Financial Instruments Directive. On-
line at http://www.fsa.gov.uk/, 2006.

11. Trusted Computing Group. Trusted Platform Module (TPM) Specifications.
Online at https://www.trustedcomputinggroup.org/specs/TPM, 2006.

12. Hitachi Data Systems. Content Archive Platform. Online at
http://www.hds.com/products/storage-systems/content-archive-platform/,
2006.

13. HP. HP Storage Archiving Solutions. Online at
http://h18006.www1.hp.com/storage/archiving/index.html, 2006.

14. Lan Huang, Windsor W. Hsu, and Fengzhou Zheng. CIS: Content Immutable
Storage for Trustworthy Record Keeping. In Proceedings of the Conference on
Mass Storage Systems and Technologies (MSST), 2006.

15. IBM Corp. IBM Storage N Series. Online at
http://www-03.ibm.com/systems/storage/nas/index.html, 2006.

16. IBM Corp. IBM TotalStorage DR550. Online at
http://www-1.ibm.com/servers/storage/disk/dr, 2006.

17. IBM Corp. IBM Tivoli Storage Manager. Online at
www.ibm.com/software/tivoli/products/storage-mgr/, 2007.

18. Judicial Conference of the United States. Fed-
eral Rules of Civil Procedure. Online at
http://judiciary.house.gov/media/pdfs/printers/108th/civil2004.pdf,
2004.

19. T. Krijnen and L. G. L. T. Meertens. Making B-Trees Work for B.IW219/83.
The Mathematical Centre, 1983.

20. Soumyadeb Mitra, Windsor W. Hsu, and Marianne Winslett. Trustworthy key-
word search for regulatory-compliant record retention. In International Confer-
ence on Very Large Data Bases, pages 1001–1012, September 2006.

http://www.cms.hhs.gov/hipaa/
http://www.protiviti.jp/downloads/JSOXOverviewfinal_E.pdf
http://www.emc.com/products/ systems/centera_ce.jsp
http://www.fsa.gov.uk/
https://www.trustedcomputinggroup.org/specs/TPM
http://www.hds.com/products/storage-systems/content-archive-platform/
http://h18006.www1.hp.com/storage/archiving/index.html
http://www-03.ibm.com/systems/storage/nas/index.html
http://www-1.ibm.com/servers/storage/disk/dr
www.ibm.com/software/tivoli/products/storage-mgr/
http://judiciary.house.gov/media/pdfs/printers/108th/civil2004.pdf

380 R. Hasan, M. Winslett, S. Mitra, W. Hsu, R. Sion

21. Soumyadeb Mitra and Marianne Winslett. Secure deletion from inverted indexes
on compliance storage. In StorageSS: ACM Workshop on Storage Security and
Survivability, pages 67–72, 2006.

22. Soumyadeb Mitra, Marianne Winslett, Windsor W. Hsu, and Xiaonan Ma.
Trustworthy Migration and Retrieval of Regulatory Compliant Records. In Pro-
ceedings of the Conference on Mass Storage Systems and Technologies (MSST),
2007.

23. Network Appliance, Inc. SnapLockTM Compliance and SnapLock Enterprise
Software. Online at http://www.netapp.com/products/filer/snaplock.html,
2006.

24. The U.S. Department of Defense. Directive 5015.2:
DOD Records Management Program. Online at
http://www.dtic.mil/whs/directives/corres/pdf/50152std_061902/p50152s.pdf,
2002.

25. The US Department of Education. 20 U.S.C. 1232g; 34 CFR Part 99:
The Family Educational Rights and Privacy Act (FERPA). Online at
http://www.ed.gov/policy/gen/guid/fpco/ferpa, 1974.

26. Janet Ecker (Minister of Finance). Bill 198 2002. An Act to Implement Budget
Measures and Other Initiatives of the Government. Legislative Assembly of
Ontario, 2002.

27. The U.S. Department of Health, Human Services Food, and Drug Administra-
tion. 21 CFR Part 11: Electronic Records and Signature Regulations. Online at
http://www.fda.gov/ora/compliance_ref/part11/FRs/background/pt11finr.pdf,
1997.

28. Acts of the UK Parliament. Companies (Audit, Investi-
gations and Community Enterprise) Act 2004. Online at
http://www.opsi.gov.uk/ACTS/acts2004/20040027.htm, 2004.

29. Congress of the United States. Gramm-Leach-Bliley Financial Services Mod-
ernization Act. Public Law No. 106-102, 113 Stat. 1338, 1999.

30. Congress of the United States. Sarbanes-Oxley Act. Online at
http://thomas.loc.gov, 2002.

31. Congress of the United States. The E-Government Act. U.S. Public Law 107-
347, 2002.

32. Julie Owens. Best practices for emerging compliance chal-
lenges: Electronic messaging and communications. Online at
http://www.facetime.com/pdf/reymann.pdf, 2004.

33. European Parliament. Legislative documents. Online at
http://ec.europa.eu/justice_home/fsj/privacy/law/index_en.htm, 2006.

34. Quantum Inc. DLTSage WORM. Online at
http://www.quantum.com/Products/TapeDrives/Index.aspx, 2006.

35. Peter Rathmann. Dynamic data structures on optical disks. In Proceedings of
the First International Conference on Data Engineering, pages 175–180, Wash-
ington, DC, USA, 1984. IEEE Computer Society.

36. Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Aarron Gull,
and Marianna Lau. Okapi at TREC. In Text REtrieval Conference, pages 21–30,
1992.

37. Occupational Safety and Health Administration. Regulation (Standards
- 29 CFR), Access to employee exposure and medical records, Section
1910.1020(d)(1)(ii). Online at http://www.osha.gov/, 1993.

http://www.netapp.com/products/filer/snaplock.html
http://www.dtic.mil/whs/directives/corres/pdf /50152std_061902/p50152s.pdf
http://www.ed.gov/policy/gen/guid/fpco/ferpa
http://www.fda.gov/ora/compliance_ref /part11/FRs/background/pt11finr.pdf
http://www.opsi.gov.uk/ACTS/acts2004/20040027.htm
http://thomas.loc.gov
http://ec.europa.eu/justice_home/fsj/privacy/law/index_en.htm
http://www.quantum.com/Products/TapeDrives/Index.aspx
http://www.osha.gov/

Trustworthy Records Retention 381

38. Securities and Exchange Commission. Guidance to Broker-Dealers
on the Use of Electronic Storage Media under the National Com-
merce Act of 2000 with Respect to Rule 17a-4(f). Online at
http://www.sec.gov/rules/interp/34-44238.htm, 2001.

39. Australian Securities and Exchange Commission. Clerp 9 corporate reporting
and disclosure laws. Online at http://www.asic.gov.au, 2004.

40. Ontario Securities and Exchange Commission. Multilateral Instrument 52-
111 - Reporting on Internal Control over Financial Reporting. Online at
http://www.osc.gov.on.ca, 2005.

41. Radu Sion and Simona Boboila. Strong WORM, Network Security
and Applied Cryptography Lab Technical Report 02-2007, Online at
http://crypto.cs.stonybrook.edu, 2007.

42. Richard T. Snodgrass, Shilong (Stanley) Yao, and Christian S. Collberg. Tamper
detection in audit logs. In VLDB, pages 504–515, 2004.

43. Sony Corp. Professional Disc for Data. Online at www.sony.net/prodata, 2006.
44. Sun Microsystems. Storagetek Volsafe secure media technology. Online at

http://www.storagetek.com/products/product_page2441.html, 2006.
45. Sun Microsystems. Sun StorageTek 5320 NAS Appliance. Online at

http://www.sun.com/storagetek/nas/5320/, 2006.
46. Jeffrey D. Ullman, Hector Garcia-Molina, and Jennifer Widom. Database Sys-

tems: The Complete Book. Prentice Hall, 2001.
47. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes:

Compressing and Indexing Documents and Images, Second Edition. Morgan
Kaufmann, 1999.

48. William Yurcik and Ragib Hasan. Toward one strong national breach disclosure
law - justification and requirements. In Workshop on the Economics of Securing
the Information Infrastructure, Alexandria, VA, USA, October 2006.

49. Zantaz. Zantaz Digital Safe. Online at
http://www.zantaz.com/digital-safe-product-family/, 2006.

50. Qingbo Zhu and Windsor W. Hsu. Fossilized index: The linchpin of trustworthy
non-alterable electronic records. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 395–406. ACM, June 2005.

http://www.sec.gov/rules/interp/34-44238.htm
http://www.asic.gov.au
http://www.osc.gov.on.ca
http://crypto.cs.stonybrook.edu
www.sony.net/prodata
http://www.storagetek.com/products/product_page2441.html
http://www.sun.com/storagetek/nas/5320/
http://www.zantaz.com/digital-safe-product-family/

16

Damage Quarantine and Recovery in Data
Processing Systems

Peng Liu1, Sushil Jajodia2, and Meng Yu3

1 Pennsylvania State University, University Park, PA 16802, USA
pliu@ist.psu.edu

2 George Mason University, Fairfax, VA 22030, USA
jajodia@gmu.edu

3 Western Illinois University, Macomb, IL 61455, USA
m-yu2@wiu.edu

Summary. In this article, we address transparent Damage Quarantine and Recov-
ery (DQR), a very important problem faced today by a large number of mission,
life, and/or business-critical applications and information systems that must man-
age risk, business continuity, and assurance in the presence of severe cyber attacks.
Today, these critical applications still have a “good” chance to suffer from a big
“hit” from attacks. Due to data sharing, interdependencies, and interoperability,
the hit could greatly “amplify” its damage by causing catastrophic cascading ef-
fects, which may “force” an application to halt for hours or even days before the
application is recovered. In this paper, we first do a thorough discussion on the lim-
itations of traditional fault tolerance and failure recovery techniques in solving the
DQR problem. Then we present a systematic review on how the DQR problem is
being solved. Finally, we point out some remaining research issues in fully solving
the DQR problem.

1 Introduction

In this article, we address transparent Damage Quarantine and Recovery
(DQR), an important problem faced today by a large number of mission/life/
business-critical applications. These applications are the cornerstones of a
variety of crucial information systems that must manage risk, business con-
tinuity, and data assurance in the presence of severe cyber attacks. Today,
many of the nation’s critical infrastructures (e.g., financial services, telecom-
munication infrastructure, transportation control) rely on these information
systems to function.

There are at least two main reasons on why mission/life/business-critical
applications have an urgent need for transparent damage quarantine and re-
covery. Firstly, despite that significant progress has been made in protecting
applications and systems, mission/life/business-critical applications still have

384 Peng Liu, Sushil Jajodia, and Meng Yu

a “good” chance to suffer from a big “hit” from attacks. Due to data sharing,
interdependencies, and interoperability between business processes and appli-
cations, the hit could greatly “amplify” its damage by causing catastrophic
cascading effects, which may “force” an application to shut down itself for
hours or even days before the application is recovered from the hit. (Note
that high speed Internet, e-commerce, and global economy have greatly in-
creased the speed and scale of damage spreading.) The cascading damage and
loss of business continuity (i.e., DoS) may yield too much risk. Because not all
intrusions can be prevented, DQR is an indispensable part of the correspond-
ing security solution, and a quality DQR scheme may generate significant
impact on risk management, business continuity, and assurance.

Secondly, due to several fundamental differences between failure recovery
and attack recovery, the DQR problem cannot be solved by failure recovery
technologies which are very mature in handling random failures. (a) Failure
recovery in general assumes the semantics of fail-stop, while attack recovery
in general cannot assume the semantics of attack-stop, since to achieve the
adversary’s goal, most attacks (except for DoS) do not allow themselves to
simply crash the system; they prefer hidden damage and alive zombies, spy-
ware, bots, etc. Assuming fail-stop, quarantine is not really a problem for
failure recovery; however, intrusion/damage quarantine is a challenging re-
search topic in attack recovery and it can make a big difference. (b) Failure
recovery assumes that all operations (e.g., transactions) have equal rights to
be recovered, while attack recovery can never assume “equal rights” because
neither malicious operations nor corrupted operations should be recovered.

Towards understanding and solving the DQR problem, the rest of the ar-
ticle is organized as follows. In Section 2, we present a comprehensive yet
tangible description of the DQR problem. In Section 3, we do in-depth dis-
cussions on the limitations of traditional fault tolerance and failure recovery
techniques in solving the DQR problem. In Section 4, we present a systematic
review on how the DQR problem is being solved. In Section 5, we propose a set
of remaining research issues in fully solving the DQR problem and conclude
the paper.

2 Overview of the DQR Problem

We are concerned with the DQR needs of mission/life/business-critical infor-
mation systems. Since those information systems have been designed, imple-
mented, deployed, and upgraded over several decades, they run both con-
ventional applications, which typically use proprietary user interfaces and
application-level client-server protocols [1], and modern applications, which
are typically web-bounded running standard Web Services protocols.

Nevertheless, both conventional and modern mission/life/business-critical
applications share some common characteristics: they are typically part of a
large-scale, semantically rich, networked, interoperable information system;

Damage Quarantine and Recovery in Data Processing Systems 385

Users; Physical World Actions & Effects Physical World

Cyber Space

The Transaction Scope of
Applications

Non-transactional Actions

Data Sources
(databases, files,
persistent object

stores, etc.)

Fig. 1. Transaction Level Scope of Applications

Client
App App Server

Data Stores

Transaction
InterfaceWeb

Server

Fig. 2. The Transaction Model in Concern

they are typically stateful and data-intensive; they are typically 24*7 applica-
tions requiring superb business continuity (i.e., availability); and they typically
require guaranteed recoverability (and data integrity).

Although the DQR problem may be addressed at several abstraction lev-
els (e.g., disk level, OS level, DBMS level, transaction level, application level),
solving the DQR problem at the transaction level is particularly appealing due
to the following reasons. The transaction abstraction has revolutionized the
way reliability, including recoverability, is engineered for applications. Through
a simple API interface provided by an easy-to-use transaction (processing)
package which is today an integral part of mainstream application develop-
ment environments such as J2EE and .NET, programmers can make applica-
tions transactional in a rather automatic, effort-free fashion. And the benefits
of making applications transactional are significant: “failure atomicity sim-
plifies the maintenance of invariants on data” [2]; a guaranteed level of data
consistency can be achieved without worrying about say race conditions; dura-
bility makes it much easier for programmers to get the luxury of recoverability.

As a result, the transaction mechanism is embraced by not only database
systems [3], but also a large variety of computer systems and applications [4],
including operating systems (e.g., VINO provides kernel transaction support
[5]), file systems (e.g., Camelot provides transactional access to user-developed
data structures stored in files [2]; and [6] argues that transactional file sys-
tems can be fast), distributed systems (e.g., QuickSilver uses transactions as
a unified failure recovery mechanism [7]), persistent object stores (e.g., Augus
supports transactions on abstract objects [8]), CORBA, and Web Services.

To leverage the strength, recovery facilities, and popularity of the trans-
action mechanism, and more important to make the proposed DQR so-

386 Peng Liu, Sushil Jajodia, and Meng Yu

lutions transparent to existing applications, it is a good idea to develop
DQR theories and mechanisms at the transaction level. Since real world
mission/life/business-critical applications typically deploy the transaction
mechanism, transaction-level DQR solutions will have wide applicability.

2.1 Scope of Transaction Level DQR

In the rest of this paper, we will focus on transaction level DQR problems,
models, and solutions. In particular, the transaction-level scope of an applica-
tion and its environment are shown in Figure 1. In an information system, the
transaction processing components of an application do not form an “isolated”
system. Instead, these components will interact with their environment, which
includes the Physical World, the various non-transactional actions, and the
various types of data sources. Through these interactions, inputs are taken,
physical world effects can be caused, and non-transactional attacking actions
can “poison” the application’s transaction scope. Although we are aware that
the cyberspace damage and cascading effects can certainly cause damage in
the physical world, this paper will focus on the cyberspace DQR solutions
which will help minimize the damage caused in the physical world.

Based on how the transaction abstraction is implemented, different real
world applications may deploy different transaction models. In this paper, we
will focus on the transaction model shown in Figure 2. This model is widely
used by conventional client-server applications and the well-known three-tier
web applications. Applications running Transactional Web Services [1] and
cross-site “business transactions” (a.k.a. workflows) require more advanced
transaction models, which are out of the scope of this paper. As we will men-
tion shortly in Section 5, these advanced transaction models would introduce
additional challenges in solving the DQR problem.

2.2 The Threat Model and Intrusion Detection Assumption

Working at the transaction level does not mean that malicious transactions are
the only threat we can handle. Instead, as shown in Figure 1, we allow threats
to come from either inside or outside of the transaction-level scope of appli-
cations. Nevertheless, to exploit the application’s transaction mechanism to
achieve a malicious goal, both inside and outside threats need to either directly
corrupt certain data objects or get certain malicious transactions launched.
Outside non-transactional attack actions (e.g., Witty worm) may bypass the
transaction interface and corrupt some data objects via low-level (e.g., file or
disk) operations. In addition, non-transactional buffer overflow attacks may
break in certain running program of the application; then the attacker can
manipulate the program to launch certain malicious transactions.

Inside the transaction scope, insider attack [9] is probably the most serious
threat. Since insiders (i.e., disgruntled employees of a bank) are typically
not savvy in hacking, issuing malicious transactions (using a different user

Damage Quarantine and Recovery in Data Processing Systems 387

account) is typically the way they attack. Based on the study by [10], most
(application level) attacks are from insiders. Besides insider attack, (a) identity
theft may literally “transform” an outsider into an insider. (b) SQL injection
attacks, though currently most used to steal sensitive information, has full
capability to maliciously update data objects. (c) Five out of the top six web
application vulnerabilities identified by OWASP [11] may enable the attacker
to launched a malicious transaction. They are unvalidated input, broken access
control, broken authentication and session management, cross site scripting
(which helps the attacker to steal user name and passwords), and injection
flaws. (d) Finally, erroneous transactions caused by user/operator mistakes
instead of attacks are yet another major threat to data integrity.
The intrusion detection assumption: We assume that a set of external
intrusion detection sensors will do their job and tell us which operations (or
transactions) were malicious or which data objects were originally corrupted
by the attack. These sensors may be a network-level (e.g., [12]), host-level
(e.g., [13]), database-level (e.g., [14]) or transaction-level (e.g., [15, 16]) intru-
sion detection sensor. These sensors may enforce misuse detection (e.g., [17]),
anomaly detection (e.g., [18, 19]), or specification-based (e.g., [20, 21]) detec-
tion mechanisms. We assume these sensors are usually associated with false
positives, false negatives, and detection latency. Finally, sensors that detect
data corruption (e.g., [22, 23, 24]) may also be used.

Remark Although some intrusion detection sensors could raise a good
number of false positives or false negatives, the alarms raised by many intru-
sion/error detection sensors can actually be verified before any DQR opera-
tion is performed. (In this way, the negative impact of false positives and false
negatives on the correctness/quality of DQR may be avoided.) For example,
(a) most user/operator mistakes can be easily verified by the operation audit
trails. (b) Many data corruption detectors have 100% accuracy. (c) When a
strong correlation is found between one alert X and some other alerts, alert
X may be verified as a true intrusion.

2.3 The DQR Problem/Solution Space

In our view, the DQR problem is a 6-dimensional problem:

• (1) The damage propagation dimension explains why cascading effects can
be caused and why quarantine is needed. Although some specific types of
damage (e.g., when an individual credit card account is corrupted) could
be self-contained, a variety types of damage are actually very infectious due
to data sharing, interdependencies, and interoperability between business
processes and applications. For example, in a travel assistant Web Service,
if a set of air tickets are reserved due to malicious transactions, some other
travelers may have to change their travel plans in terms of which airlines
to go, which nights to stay in hotel, etc.. Furthermore, the changed travel
plans can cause cascading effects to yet another group of travelers; and
the propagation may go on and on.

388 Peng Liu, Sushil Jajodia, and Meng Yu

• (2) The recovery dimension covers three semantics for recovery: the cold-
start semantics mean that the system is “halted” while damage is being
assessed and repaired. (Damage assessment is to identify the set of cor-
rupted data objects. Damage repairing is to restore the value of each cor-
rupted data object to the latest before-infection version.) To address the
DoS threat, recovery mechanisms with warmstart or hotstart semantics are
needed. Warmstart semantics allow continuous, but degraded, running of
the application while damage is being recovered. Hotstart semantics make
recovery transparent to the users.

• (3) The quarantine dimension covers a spectrum of quarantine strategies:
(a) coldstart recovery without quarantine, (b) warmstart recovery with
conservative, reactive quarantine, (c) warmstart recovery with proactive
or predictive quarantine, (b) hotstart recovery with optimistic quarantine,
to name a few.

• (4) The application dimension covers the various transaction models de-
ployed by conventional and modern applications. The uniqueness of each
model may introduce new challenges for solving the DQR problem.

• (5) The correctness dimension tells whether a DQR scheme is correct in
terms of consistency, recoverability, and quarantinability.

• (6) The quality dimension allows people to measure and compare the qual-
ity levels achieved by a set of correct yet different DQR schemes.

2.4 What Transaction Level DQR Solutions Cannot Do

First, although transaction-level DQR solutions will help minimize the dam-
age caused by cyberspace attacks in the physical world, they cannot repair
physical damage, which is a different field of study. Second, transaction-level
DQR solutions are not designed to patch software which is another critical in-
trusion recovery problem. Nevertheless, transaction-level DQR solutions and
software patching are complementary to each other. Transaction-level DQR
solutions can help quarantine and repair the damage done by unpatched soft-
ware broken-in by the adversary.

3 Traditional Failure Recovery Techniques and
Their Limitations

DQR theories and mechanisms draw on work from several areas of systems
research such as survivable computing, fault-tolerant computing, and trans-
action processing. Among all the relevant areas, the closest one should be
Failure Recovery, which is part of Fault Tolerance [25]. In the literature, fail-
ure recovery has not only been extensively studied in data processing systems
[3, 26, 4], but also been thoroughly studied in other types of computing sys-
tems. In [27] and [28], operating systems failure recovery is investigated. In

Damage Quarantine and Recovery in Data Processing Systems 389

[7], recovery management in distributed system is investigated. In [29], roll-
back recovery techniques for long-run applications are thoroughly discussed.
In [30, 31, 32, 33], checkpoint-based rollback recovery is discussed. In [34],
reliability modeling and evaluation criteria are thoroughly discussed. More
recently, (a) David Patterson et al. have proposed the concept of ROC (Re-
covery -Oriented Computing) [35] in which recovery is used as a general tech-
nique for dealing with failure in complex systems. For example, in [36] a model
of “recursive recovery” is proposed in which a complex software system is de-
composed into a multi-layer modular self-recovering implementation. (b) The
Nooks approach [37] makes device driver failures transparent to operating
systems.

Unfortunately, due to the fundamental differences mentioned in Section 1
between failure recovery and attack recovery, existing failure recovery tech-
niques cannot effectively deal with malicious attacks. For example, (a) rolling
back the application’s state to a previous corruption-free checkpoint will lose
all the good work done after the checkpoint. (b) Maintaining frequent check-
points [38, 39, 40] may not work since no checkpoint taken between the time
of attack and the time of recovery can be used. (c) Standy replica systems
will not only replicate good work, but also replicate infection!

With DQR in data processing systems as the theme of this paper, this
section will focus on failure recovery technologies for data processing sys-
tems and their limitations in solving the DQR problem. In the following, we
classify failure recovery technologies for data processing systems into three
categories: transactional undo/redo, replication-based recovery, and storage
media backup-restore, and discuss them in three subsections, respectively.

3.1 Transactional Undo/Redo

The crux of transactional undo/redo techniques is correcting the application
states that are corrupted due to failures. For data-processing systems or data-
oriented applications in which doing read and write operations on various data
objects (managed by a set of databases) represents the main activities, failure
recovery is rooted in the transaction concept [41] which has been around for
a long time. This concept encapsulates the ACID (Atomicity, Consistency,
Isolation, and Durability) properties [3, 41]. Data-oriented applications are
not limited to the database area [42, 43, 44, 7, 45, 46]. The basic recovery
procedure is almost the same for all applications: when a failure happens, a
set of undo operations will be performed to rollback the application’s state to
the most recent checkpoint, which is maintained through logging, then a set
of redo operations will be performed to restore the state to exactly the failing
point. Nevertheless, the concrete recovery algorithms depend heavily upon
how changes are logged. WAL (Write Ahead Logging) is today the standard
approach widely accepted by the database industry. Some of the commercial
systems and prototypes based on WAL are ARIES [26], IBM’s AS/400 [47],

390 Peng Liu, Sushil Jajodia, and Meng Yu

IBM’s DB2 [48], Microsoft’s SQL Server [49], and Oracle’s Oracle Database
[50].

Besides the basic idea of WAL, a set of important enhancements such as (a)
using log sequence number (LSN) to correlate the state of a page with respect
to logged updates of that page and (b) fuzzy checkpoints are proposed by
ARIES [26], the de facto (industry) standard for transaction recovery models.

Finally, in addition to such standard recovery techniques as WAL, the
database industry has developed various proprietary recovery tools. For ex-
ample, DB2 Log Analysis Tool [51] allows you to monitor data changes; DB2
Recovery Expert [52] analyzes and provides diagnostics of altered database
assets, and can roll data changes backward or forward; Oracle Recovery
Manager [53] manages the database backup and restore process; and Oracle
Data Guard creates, maintains, manages and monitors one or more standby
databases.

Limitations in Solving the DQR Problem: Although existing
transaction recovery methods are matured in handling failures, they are not
designed to deal with malicious attacks. In particular, first, the durability
property ensures that traditional recovery mechanisms never undo committed
transactions. However, the fact that a transaction commits does not guarantee
that its effects are desirable. Specifically, a committed transaction may reflect
inappropriate and/or malicious activity.

Second, although attack recovery is related to the notion of cascading abort
[3], cascading aborts only capture the read-from relation between active trans-
actions, and in standard recovery approaches cascading aborts are avoided by
requiring transactions to read only committed data [54].

Third, there are two common approaches to handling the problem of un-
doing committed transactions: rollback and compensation. (3a) The rollback
approach is simply to roll back all activity – desirable as well as undesirable –
to a checkpoint believed to be free of damage. The rollback approach is effec-
tive, but expensive, in that all of the desirable work between the time of the
checkpoint and the time of recovery is lost. Although there are algorithms for
efficiently establishing snapshots on-the-fly [38, 39, 40], maintaining frequent
checkpoints may not work since no checkpoint taken between the time of at-
tack and the time of recovery can be used. (3b) The compensation approach
[55, 56] seeks to undo either committed transactions or committed steps in
long-duration or nested transactions [54] without necessarily restoring the
data state to appear as if the malicious transactions or steps had never been
executed. There are two kinds of compensation: action-oriented and effect-
oriented [54, 57, 58, 59]. Action-oriented compensation for a transaction or
step Ti compensates only the actions of Ti. Effect-oriented compensation for
a transaction or step Ti compensates not only the actions of Ti, but also the
actions that are affected by Ti. Although various types of compensation are
possible, all of them require semantic knowledge of the application, and none
of them is adopted by mainstream commercial systems.

Damage Quarantine and Recovery in Data Processing Systems 391

Fourth, classic redo operations cannot repair damage because they do not
reexecute affected transactions.

3.2 Replication-based Recovery

The crux of the replication based recovery is using redundancy to mask/tolerate
failures. Replication-based recovery does not undo erroneous operations. In
data-oriented applications, the replication idea is embodied through the
widely adopted practice of data replication [60, 3] and standby databases [53].
In such replicated systems, each request (or transaction) will be processed by
all the replicas in which each data object is replicated. When a failure happens
to the primary database, the responses (or outputs) generated by a standby
(or replicated) database can be returned to the client as if the failure had
never happened. (In distributed computing, the replication idea is embod-
ied through such techniques as RAPS (reliable array-structured partitioned
service), the state-machine approach [61], and virtual synchrony [62].)

Limitations in Solving the DQR Problem: Both data replication
and standy databases will not only replicate good work, but also replicate
infection!

3.3 Storage Media Backup-Restore

The idea of storage media backup-restore is proven very practical and valuable.
It is fully embraced by the IT industry: Computer Associates large enterprise
backup solutions [63], Symantec LiveState recovery products [64], the Sonasoft
Solution [65], just to name a few. This idea is complementary to the recovery
idea and the replication idea, but in many cases it cannot achieve fine-grained
data consistency, while the two other ideas can.

Limitations in Solving the DQR Problem: Among the data
objects included in a backup, storage media backup-restore techniques cannot
distinguish clean data objects from dirty, corrupted ones.

4 Solving the DQR Problem

In this section, we present a systematic review on how the DQR problem is be-
ing solved in the literature. Although self repairable file systems are proposed
[66, 67], most DQR mechanisms proposed in the literature are transaction-
level solutions. So here we concentrate on transaction-level DQR solutions.

4.1 The Model

In our model, a transaction is a set of read and write operations that either
commits or aborts. For clarity, we assume there are no blind writes, although

392 Peng Liu, Sushil Jajodia, and Meng Yu

the theory can certainly be extended to handle blind writes. At the transac-
tion level, an application (e.g., the application types shown in Figure 2) is a
transaction execution history. Since recovery of uncommitted transactions is
addressed by standard mechanisms [3], we can safely ignore aborted transac-
tions and only consider the committed projection C(H) of every history H.
We define <H to be the usual partial order on C(H), namely, Ti <H Tj if <H

orders operations of Ti before conflicting operations of Tj (Note that in H
the operations of different transactions are often interleaved). Two operations
conflict if they are on the same data object and one is write.

In principle, the correctness of a DQR scheme (or solution) can be
“checked” either by the operations performed by the scheme or by the re-
sulted effects. Here, we use the resulted history of a DQR scheme to study
its correctness. In our model, the DQR histories resulted from a DQR scheme
may contain the following information:

• A DQR history may contain two types of malicious transactions, four
types of legitimate transactions, and one type of cleaning transactions:
Type 1 malicious transactions are issued by attackers or malicious code;
more broadly, transactions executed by mistake can be viewed as a Type
2 malicious transaction A legitimate transaction may be either a regular
transaction or a reexecuted transaction; and both regular and reexecuted
transactions may be affected or damaged if they read any corrupted data
object. Finally, cleaning transactions only contain backward or forward
overwrite operations, depending upon how the recovery is performed.

• A classic history consists of only operations, while a DQR history is an
interleaved sequence of operations and data store states. The data store
contains all the data objects that a transaction may access. The state of
the data store at time t is determined by the latest committed values of
every data object in the store.

• A data store state (e.g., a database state) contains three types of cor-
rupted data objects and two types of clean data objects. Type 1 corrupted
data objects are originally generated by the writes of malicious transac-
tions. Type 2 are originally generated by affected transactions. Type 3 are
originally generated by non-transactional attacking actions outside of the
application’s transaction scope. Note that a corrupted data object may be
read or updated several times before it is repaired (a.k.a. cleaned). Type
1 clean data objects are never corrupted. Type 2 clean data objects are
once corrupted, but they are repaired.

Damage Propagation

Based on the threat model, we know where malicious transactions come from.
To see how affected transactions are generated and how the damage spreads,
we should do dependency (or causality) analysis.

Definition 4.1 (dependency graph) As stated in [68], transaction Tj

is dependent upon Ti in a history if there exists a data object o such that Tj

Damage Quarantine and Recovery in Data Processing Systems 393

B 1

B 2
G1

G2G4

Fig. 3. Dependency Graph for History H1

reads o after Ti has updated o; Ti does not abort before Tj reads o; and every
transaction (if any) that updates o between the time Ti updates o and Tj reads
o is aborted before Tj reads x. In a history, T1 affects T2 if the ordered pair
(T1, T2) is in the transitive closure of the dependent upon relation. Finally, we
define the dependency graph for a (any) set of transactions S in a history as
DG(S) = (V,E) in which V is the union of S and the set of transactions that
are affected by S. There is an edge, Ti → Tj , in E if Ti ∈ V , Tj ∈ (V − S),
and Tj is dependent upon Ti. �

Example Consider the following history over (B1, B2, G1, G2, G3, G4):

H1 : rB1 [x]wB1 [x]cB1rG1 [x]wG1 [x]rG3 [z]wG3 [z]cG3rG1 [y]wG1 [y]cG1

rG2 [y]wG2 [y]rB2 [z]wB2 [z]cB2rG2 [v]wG2 [v]cG2rG4 [z]wG4 [z]rG4 [y]wG4 [y]cG4

In H1, B1 and B2 are malicious transactions while the other three are
legitimate transactions; rT [x] (wT [x]) is a read (write) operation by transac-
tion T on data object x; cT is the commit operation of T . Let B = {B1, B2},
DG(B) is shown in Figure 3.

Lemma 4.1 In a DQR history, a legitimate transaction is affected
if and only if it is in dependency graph DG(all malicious transactions plus
all the legitimate transactions that read the original version of any Type 3
corrupted data object). Being conservative, we assume all updates done by
affected transactions may spread the damage. �

Do We Have to Sacrifice Durability?

A main concern people may have on DQR solutions is whether they will
compromise Durability, a fundamental property of transaction processing and
transactional failure recovery mechanisms. In other words, do we have to sac-
rifice Durability in doing DQR? Fortunately, the answer is NO. To keep dura-
bility, DQR schemes never really need to undo a malicious or affected trans-
action; instead, they can execute cleaning transactions to semantically revoke
the effect of a committed transaction. By semantically revoking the effect of a
committed transaction, we can achieve the following: (a) The effect of a com-
mitted transaction will always be kept durable; we never revoke or reverse
any physical effect of a committed transaction on the persistent storage. (b)
A cleaning transaction will change the data store state in exactly the same

394 Peng Liu, Sushil Jajodia, and Meng Yu

way as a regular transaction performing a set of updates. Because execut-
ing regular transactions will never compromise Durability, executing cleaning
transactions (to do damage recovery) will never compromise Durability.

The Spectrum of DQR Schemes

The concept of DQR histories allows us to see the differences between the
ones on the “spectrum” of DQR schemes. (a) On one end of the spectrum,
a static DQR scheme will stop processing new transactions until every cor-
rupted data object is repaired or cleaned. (A corrupted data object is repaired
if its value is restored to the latest clean version before corruption.) So since
the time of detection, which is also the time when the recovery starts, the
corresponding DQR history will proceed with only cleaning transactions until
the repair is completed. In addition, affected transactions should be reexe-
cuted; otherwise, DoS is caused. (b) On the other end, an optimistic, dynamic
DQR scheme may do dependency analysis (a.k.a. damage assessment), exe-
cute cleaning transactions, execute to-be-reexecuted transactions, and execute
new transactions concurrently. (c) Semi-dynamic DQR schemes may certainly
stay on the spectrum between the two ends. For example, in [69, 70], there is
a dedicated scan phase during which dependency analysis is performed, but
no new transactions can be executed.
Section organization In the rest of this section, without losing generality,
we will focus on the two “ends” of the spectrum of DQR schemes, that is, we
will review static DQR solutions and dynamic DQR solutions in Section 4.2
and Section 4.3, respectively.

4.2 Static DQR Solutions

Static DQR solutions “halt” the database (service) before the repair is com-
pleted. Since no new transactions can be executed during static DQR, the
damage will not spread unless there are incorrect repair operations. Hence,
damage quarantine is not an issue in static DQR. As a result, static DQR has
two aspects: damage assessment, which identifies every corrupted data object,
and damage repair, which restores the value of each corrupted data object to
its pre-corruption version.

In terms of how damage assessment and repair can be done, existing
static DQR methods are either data-oriented [71] or transaction-oriented [68].
Transaction-oriented methods assess and repair the damage by identifying and
backing out affected transactions. In particular, they work as follows.

• Damage Assessment Build the dependency graph defined in Definition
4.1 for the set of malicious transactions detected. Based on Lemma 4.1, the
dependency graph consists of all and only the affected transactions that
have “contributed” to damage propagation. Assuming that read opera-
tions are logged together with write operations, it is not difficult to build

Damage Quarantine and Recovery in Data Processing Systems 395

the dependency graph. It is shown in [68] that the log can be scanned
forward only once (i.e., one-pass) from the entry where the first malicious
transaction starts to locate every affected transaction.

• Repair When the damage assessment part is done, scan backward from
the end of the log to semantically revoke (or undo) the effects of all the
malicious transactions and the transactions included in the dependency
graph. Note that here the undoes should be performed in the reverse com-
mit order.

In contrast, data-oriented methods use the read and write operations of
transactions to trace the damage spreading from one data object to another,
and compose a specific piece of code to repair each damaged data object. In
particular, data-oriented methods work as follows.

• Damage Assessment Construct a specific damage propagation graph in
which each node is a (corrupted) data object while each directed edge
from node x to y is a transaction T such that T reads x and writes y. The
damage propagation graph can be built by one-pass scanning of the log.

• Repair Once the damage propagation graph is constructed, for each data
object x contained in the graph, search through the log to find the latest
pre-corruption version of x. Then repair x by overwriting the value of x
with the searched version.

Comparison Data-oriented methods are more flexible and better at han-
dling blind writes, however, composing cleaning code for each data object can
be time consuming and prone to errors. Transaction-oriented methods use a
cleaning transaction, which can be easily composed, to repair multiple data
objects at the same time, thus they are more robust and efficient.

Maintaining Read Information

Both data-oriented methods and transaction-oriented methods rely on the
read-from relationships between transactions. (Transaction T1 reads from T2

if there is a data object x such that T1 reads x after T2 updates x, and
no other transaction updates x between these two operations.) However, the
read-from information is not maintained by commercial DBMSes, since such
information is not necessary for failure recovery. As a result, the transaction
log maintained by a commercial DBMS actually does not contain sufficient
information for the aforementioned DQR mechanisms to succeed. Therefore,
maintaining the read-from information is an important task in engineering
practical DQR systems.

In the literature, several representative techniques are proposed to main-
tain the read-from information. In [72], read operations are extracted from
SQL statement texts. In particular, [72] assumes that each transaction belongs
to a transaction type, and the profile (or source code) for each transaction type
is known. For each transaction type tyi, [72] extracts a read set template from

396 Peng Liu, Sushil Jajodia, and Meng Yu

tyi’s profile. The template specifies the kind of objects that transactions of
type tyi could read. Later on when a transaction Ti is executed, the template
for type(Ti) will be materialized to produce the read set of Ti using the input
arguments of Ti (Note that these input arguments are embedded in Ti’s SQL
statements). This method is transparent to the DBMS kernel, however, in
some scenarios it can only obtain approximate read sets.

In [73], the DBMS is extended to provide support for read triggers. In con-
trast, commercial DBMSes only support insert/update triggers. This method
can obtain the exact read sets and it has reasonable run-time overhead, but
it requires a major extension to the kernel.

In [70], a more aggressive approach is taken to maintain the read-from
information. In this approach, Recovery Manager, the “core” of commercial
transaction management systems, is modified to log reads. In particular, when
the system commits a transaction, all the read information about the trans-
action will be consolidated into a single log record; then this special reads-
keeping log record will be forced onto the disk together with other writes-
keeping log records. This approach has minimal run-time overhead, but it
requires the largest amount of changes to the DBMS kernel.

Static Repair via History Rewriting

From the correctness point of view, both data-oriented methods and transaction-
oriented methods would result in a history that is conflict equivalent to the
serial history composed of only the legitimate, unaffected transactions. (C(H1)
is conflict equivalent to C(H2) if they contain the same set of operations and
they order every pair of conflicting operations in the same way.) Nevertheless,
the history rewriting framework proposed in [74] shows that if we relax the
correctness requirement from conflict equivalence to view equivalence, we may
even save the work of affected transactions.

In particular, by exploiting two new semantic relationships between trans-
actions, denoted can-follow and can-precede, respectively, the history rewrit-
ing framework can rewrite every “infected” history, which always starts with
a malicious transaction, to a ready-to-repair history in which every legiti-
mate, unaffected transaction precedes all the malicious transactions. Such a
rewritten history typically looks like the following. Here, Gi is a legitimate,
unaffected transaction and AGi is an affected transaction. In addition, Fi is
called a fix. A fix for a transaction like B1 is a set of variables read by the
transaction given values as in the original position of the transaction before
the history is rewritten.

Gi1...AGj1...Gin...AGjm BF1
1 AGFk1

k1 ...BFl

l ...AG
Fkp

kp

The study in [74] shows that (a) each rewritten history and the original
history will result in the same final database state, and (b) the work of all the
legitimate transactions preceding BF1

1 in the rewritten history can be saved
by executing a specific compensating transaction for each of the transactions

Damage Quarantine and Recovery in Data Processing Systems 397

Repair
Manager

user transactions

undo transactions
Scheduler

Log
Manager
Recovery

Cache

Fig. 4. Architecture of an On-the-fly Repair System

in the suffix of the rewritten history. The suffix starts with BF1
1 . Note that the

last transaction in the rewritten history should be the first one to compensate,
and BF1

1 should be the last one. Since every legitimate, unaffected transaction
will precede BF1

1 , the work of all unaffected transactions will be kept. More-
over, since affected transactions may precede BF1

1 , the work of many affected
transactions may be saved as well.

4.3 Dynamic DQR Solutions

In static DQR, new transactions are blocked during the repair process. This
prevents static DQR mechanisms from being deployed by 24*7 database appli-
cations. As 24*7 database applications are becoming more and more common,
dynamic DQR solutions that can do non-stop, zero down-time attack recovery
are in demand.

Dynamic DQR Solutions with Reactive Quarantine

To have zero down-time, neither damage assessment nor repair can block the
execution of new transactions. This means that dependency analysis, execu-
tion of new transactions, execution of cleaning transactions, and reexecution of
affected transactions need to be done in parallel. To meet this challenge, peo-
ple may wonder if the traditional transaction management architecture needs
to be rebuilt. Fortunately, Figure 4 shows that the traditional transaction
management architecture [3] is adequate to accommodate on-the-fly repair.
The Repair Manager is applied to the growing logs of on-the-fly histories to
mark any bad as well as affected transactions. For every bad or affected trans-
action, the Repair Manager builds a cleaning transaction and submits it to
the Scheduler. The cleaning transaction is only composed of write operations.
The Scheduler schedules the operations submitted either by user transactions
or by cleaning transactions to generate a correct on-the-fly history. Affected
transactions that are semantically revoked (or undone) can be resubmitted to
the Scheduler either by users or by the Repair Manager. Finally, the Recovery
Manager executes the operations submitted by the Scheduler and logs them.

398 Peng Liu, Sushil Jajodia, and Meng Yu

On-the-fly attack recovery faces several unique challenges. First, since new
transactions may first read corrupted data objects then update clean data ob-
jects, the damage may continuously spread, and the attack recovery process
may never terminate. Accordingly, we face two critical questions. (a) Will the
attack recovery process terminate? (b) If the attack recovery process termi-
nates, can we detect the termination? Second, we need to do repair forwardly
since the assessment process may never stop. The assessment process may
never stop since the damage may continuously spread. Third, cleaned data
objects could be re-damaged during attack recovery.

To tackle challenge 2, we must ensure that a later on cleaning transac-
tion will not accidentally damage an object cleaned by a previous cleaning
transaction. For this purpose, the system should “remember” the data ob-
jects that are already repaired and not yet re-damaged. To tackle challenge 3,
we must not mistake a cleaned object as damaged, and we must not mistake a
re-damaged object as already cleaned. To tackle challenge 1, the study in [68]
shows that when the damage spreading speed is quicker than the repair speed,
the repair may never terminate. Otherwise, the repair process will terminate,
and under the following three conditions we can ensure that the repair termi-
nates: (1) every malicious transaction is cleaned; (2) every identified damaged
object is cleaned; (3) further damage assessment scans will not identify any
new damage (if no new attack comes).

From a state-transition angle, the job of attack recovery is to get a state
of the database, which is determined by the values of the data objects, where
(a) no effects of the malicious transactions are there and (b) the work of good
transactions should be retained as much as possible. In particular, transactions
transform the database from one state to another. Good transactions trans-
form a good database state to another good state, but malicious transactions
can transform a good state to a damaged one. Moreover, both malicious and
affected (good) transactions can make an already damaged state even worse.
We say a database state S1 is better than another one S2 if S1 has fewer
corrupted objects. The goal of on-the-fly attack recovery is to get the state
better and better, although during the repair process new attacks and damage
spreading could (temporarily) make the state even worse. (A state-oriented
object-by-object attack recovery scheme is proposed in [71].)

Finally, it should be noticed that from the transaction scheduling view-
point, on-the-fly repair introduces new scheduling constraints. For example,
(a) when a read operation rT [x] is scheduled, x must be clean. (b) Conflicting
cleaning transactions should be scheduled in the same order in which they are
submitted by the Repair Manager. The order is critical to the correctness of
repair. (c) When a cleaning operation wU [x] is scheduled, x must be dirty.

Dynamic DQR Solutions with Proactive Quarantine

From the viewpoint of on-the-fly non-stop recovery, fault/damage quarantine
can be viewed as part of recovery. The goal of damage quarantine is to prevent

Damage Quarantine and Recovery in Data Processing Systems 399

transaction
type & inputs

Malicious and Legitimate Transactions

Mediator

database

Intrusion Detector

Containment
Executor

Repair
Manager

Damage
Container

Uncontainer
DBMS

history
logs

alarms

Fig. 5. Proactive Damage Quarantine

the damage from spreading out during recovery. One problem of the solution
shown in Figure 4 is that its damage quarantine may not be effective, since
it contains the damage by disallowing transactions to read the set of data
objects that are identified (by the Damage Assessor) as corrupted. This reac-
tive one-phase damage containment approach has a serious drawback, that is,
it cannot prevent the damage caused on the objects that are corrupted but
not yet located from spreading. Assessing the damage caused by a malicious
transaction B can take a substantial amount of time, especially when there
are a lot of transactions executed during the detection latency of B. During
the assessment latency, the damage caused during the detection latency can
spread to many other objects before being contained.

The approach shown in Figure 5 integrates a novel multi-phase damage
containment technique to tackle this problem. In particular, the damage con-
tainment process has one containing phase, which instantly contains the dam-
age that might have been caused (or spread) by the intrusion as soon as the
intrusion is detected, and one or more later on uncontaining phases to uncon-
tain the objects that are mistakenly contained during the containing phase,
and the objects that are cleaned. In this approach, the Damage Container will
enforce the containing phase (as soon as a malicious transaction is reported)
by sending some containing instructions to the Containment Executor. The
Uncontainer, with the help from the Damage Assessor, will enforce the uncon-
taining phases by sending some uncontaining instructions to the Containment
Executor. The Containment Executor controls the access of the user transac-
tions to the database according to these instructions.

When a malicious transaction B is detected, the containing phase must
ensure that the damage caused directly or indirectly by B will be contained. In
addition, the containing phase must be quick enough because otherwise either
a lot of damage can leak out during the phase, or substantial availability can

400 Peng Liu, Sushil Jajodia, and Meng Yu

be lost. Time stamps can be exploited to achieve this goal. The containing
phase can be done by just adding an access control rule to the Containment
Executor, which denies access to the set of objects updated during the period
of time from the time B commits to the time the containing phase starts.
This period of time is called the containing-time-window. When the containing
phase starts, every active transaction should be aborted because they could
spread damage. New transactions can be executed only after the containing
phase ends.

It is clear that the containing phase overcontains the damage in most cases.
Many objects updated within the containing time window can be undamaged.
And we must uncontain them as soon as possible to reduce the corresponding
availability loss. Accurate uncontainment can be done based on the reports
from the Damage Assessor, which could be too slow due to the assessment
latency. [75] shows that transaction types can be exploited to do much quicker
uncontainment. In particular, assuming that (a) each transaction Ti belongs
to a transaction type type(Ti) and (b) the profile for type(Ti) is known, the
read set template and write set template can be extracted from type(Ti)’s
profile. The templates specify the kind of objects that transactions of type(Ti)
can read or write. As a result, the approximate read-from dependency among
a history of transactions can be quickly captured by identifying the read-
from dependency among the types of these transactions. Moreover, the type-
based approach can be made more accurate by materializing the templates
of transactions using their inputs before analyzing the read-from dependency
among the types.
Other damage quarantine methods (a) In [76], a color scheme for
marking and containing damage is used to develop a mechanism by which
databases under attack could still be safely used. This scheme assumes that
each data record has an (accurate) initial damage mark or color (note that
such marks may be generated by the damage assessment process), then specific
color-based access controls are enforced to make sure that the damage will not
spread from corrupted data objects to clean ones.

(b) Attack Isolation The idea is to isolate likely suspicious transactions
before a definite determination of intrusion is reported. In particular, when
a suspicious session B is discovered, isolating B and the associated transac-
tions transparently into a separate environment that still appears to B to be
the actual system allows B’s activities to be kept under surveillance without
risking further harm to the system. An isolation strategy that has been used
in such instances is known as fishbowling. Fishbowling involves setting up a
separate look-alike host or file system and transparently redirecting the sus-
picious entity’s requests to it. This approach allows the incident to be further
studied to determine the real source, nature, and goal of the activity, but it
has some limitations, particularly when considered at the application level.
First, the substitute host or file system is essentially sacrificed during the
suspected attack to monitor B, consuming significant resources that may be
scarce. Second, since B is cut off from the real system, if B proves innocent,

Damage Quarantine and Recovery in Data Processing Systems 401

denial of service could still be a problem. While some types of service B re-
ceives from the substitute, fishbowl system may be adequate, in other cases
the lack of interaction with the real system’s resources may prevent B from
continuing to produce valid results. On the other hand, if the semantics of
the application are such that B can continue producing valid work, this work
will be lost when the incident concludes even if B is deemed innocent and re-
connected to the real system. The fishbowling mechanism makes no provision
for re-merging updates from the substitute, fishbowl system back into the real
system.

In [77, 78], these limitations are overcome by taking advantage of ac-
tion semantics and the dependency relationships between transactions. In this
method, as in the case of fishbowling, when B comes under suspicion, B is
allowed to continue working while the security officer attempts to determine
whether there is anything to worry about. At the same time, the system is iso-
lated from any further damage B might have in mind. However, this method
provides the isolation without consuming duplicate resources to construct an
entirely separate environment, allows options for partial interaction across the
boundary, and provides data-consistency-preserving algorithms for smoothly
merging B’s work back into the real system should B prove innocent. Among
the partial interaction options, the one-way isolation concept is particularly
interesting. One-way isolation allows being-isolated transactions to read the
newest updates done by (trusted) transactions running on the main database,
but forbids trusted transactions from reading any updates done by being-
isolated transactions.

4.4 Quality Evaluation

Correctness does not always imply high quality. Two correct DQR schemes
may yield very different quality levels in the DQR services they provide. In
failure recovery, the MTTF-MTTR model (Mean Time To Failure - Mean
Time To Recovery model) provides a neat yet precise way to gain con-
crete understanding of the quality of a recovery service which is measured
by MTTF/(MTTF+MTTR), and this quality model has played a crucial role
in advancing the theories and technologies of failure recovery. Unfortunately,
due to the reasons mentioned in Section 1, the MTTF-MTTR model is no
longer sufficient for defining the quality of DQR services.

In principle, the quality of DQR services can be evaluated by a vector
composed of three criteria regarding data integrity and two criteria regarding
availability:

• C1: Dirtiness depends on the percentage of corrupted data objects in each
data store state.

• C2: Data Freshness When a clean yet older version of a corrupted data
object o is made accessible during recovery, freshness depends on whether
a fresher version of o is used by new transactions. Note that one clean

402 Peng Liu, Sushil Jajodia, and Meng Yu

Good Corrupted Detected

Marked

Quaran-
tined

Repaired

Fig. 6. DQR System State Transition

version can be much fresher than another clean version of the same data
object.

• C3: Data Consistency Violation of serializability can compromise data
consistency no matter the history is multi-versioned or not.

• C4: Rewarding Availability The more clean or cleaned data objects are
made accessible to new transactions, the more rewarding availability (or
business continuity) is achieved. The more rewarding availability, the less
denial-of-service will be caused.

• C5: Hurting Availability The more corrupted data objects are made
accessible to new transactions, the more hurting availability is yielded.
Because hurting availability will hurt data integrity and spread the dam-
age, hurting availability is worse than letting the corrupted objects be
quarantined.

An important finding gained in reliability evaluation research (e.g., [34,
79]) is that state transition models may play a big role in quality evaluation.
A state transition model specific for DQR systems can be the model shown
in Figure 6, where in terms of any portion of the application (e.g., a set of
data objects), the system has 6 basic states: they are self explanatory except
that the ‘M’ state means that the portion is Marked as damaged. Ignoring the
‘Q’ state, we could measure Dirtiness by (MTTC+MTTM+MTTR)/(MTTC+

MTTD+MTTM+MTTR); and Rewarding Availability by (MTTC+MTTR)/

(MTTC+MTTD+MTTM+MTTR). In [80], this idea is well justified in the con-
text of intrusion tolerant database systems through Continuous Time Markov
Chain based state transition model analysis and prototype experiments based
validation.

5 Remaining Research Issues and Concluding Remarks

Although DQR is not a new concept, existing attack (or intrusion) recovery
research activities (see Section 4) are still quite limited in satisfying the DQR
needs of real world applications, for the following reasons: (1) A theoretic
understanding of the correctness and quality of DQR schemes is still missing in
the literature. Since classic failure recovery theories cannot handle quarantine

Damage Quarantine and Recovery in Data Processing Systems 403

or on-the-fly recovery, new DQR theories are necessary to understand the
strength and weakness of existing DQR schemes, inspire the development of
novel DQR schemes, and make DQR a rigor field of study, for example. (2)
There is still a big gap in engineering practical DQR capabilities for real
world applications. For one example, Web Services (WS) and service-oriented
architectures have significantly changed the way applications are developed,
but no WS aware techniques have yet been developed to do transparent DQR
for WS-based applications. For another example, existing transaction-level
DQR mechanisms either require major changes in system design or suffer
from significant DoS or performance overhead.

Therefore, to fully solve the DQR problem, a holistic approach should be
taken to make an integrated set of innovative contributions on four funda-
mental aspects of DQR: theories, mechanisms, applications, and systems.

• New DQR theories should be developed to (a) address quarantine and
transparency, (b) define quality of DQR services, and (c) integrate recov-
erability and quarantinability.

• New DQR schemes should be developed to advance the state-of-the-art
DQR techniques from the paradigm of read-write-dependency analysis to
the new paradigm of mark-based causality tracing, which will significantly
improve transparency and efficiency.

• Non-blocking repair schemes should be developed to advance the state-
of-the-art DQR techniques, from the paradigm of “clean-then-reexecute”
recovery to the new paradigm of “cleaning-free” recovery, which avoids the
overhead introduced by cleaning transactions.

• New DQR schemes should be developed to advance the state-of-the-art
from the paradigm of “lock-competing reexecution” to the new paradigm
of “non-blocking repair”.

• New DQR schemes should be developed to advance the state-of-the-
art from the paradigm of “pre-programmed DQR” to ”adaptive or self-
reconfigurable DQR”.

• DQR theories and mechanisms should handle both conventional appli-
cations (which require ACID properties) and modern applications which
adopt a weaker consistency model to make distributed “business transac-
tion” processing (on top of Web Services) practical, scalable, and efficient.

• From the perspective of system building, complete open-source DQR tools
and systems should be prototyped and evaluated using the appropriate
benchmarks.

Acknowledgement

Peng Liu was supported in part by NSF CCR-TC-0233324 and NSF/DHS
0335241.

404 Peng Liu, Sushil Jajodia, and Meng Yu

References

1. Birman, K.P.: Reliable Distributed Systems: Technologies, Web Services, and
Applications. Springer (2005)

2. Spector, A.Z., Daniels, D., Duchamp, D.: Distributed Transactions for Reliable
Systems. In: ACM SOSP. (1985)

3. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, Reading, MA (1987)

4. Gray, J., ed.: The Benchmark Handbook for Database and Transaction Pro-
cessing Systems. 2 edn. Morgan Kaufmann Publishers, Inc. (1993)

5. Seltzer, M.I., Endo, Y., Small, C., Smith, K.A.: Dealing With Disaster: Surviv-
ing Misbehaved Kernel Extensions. In: OSDI. (1996)

6. Liskov, B., Rodrigues, R.: Transactional File Systems Can Be Fast. In: 11th
ACM SIGOPS European Workshop. (2004)

7. Haskin, R., Malachi, Y., Sawdon, W., Chan, G.: Recovery management in
Quick-Silver. ACM Transactions on Computer Systems 6(1) (1988)

8. Liskov, B., Curtis, D., Johnson, P., Scheifler, R.: Implementation of Argus . In:
ACM SOSP. (1987) 111–122

9. Schneier, B.: Attack trends 2004 and 2005. ACM Queue 3(5) (June 2005)
10. Carter, D.L., Katz, A.J.: Computer Crime: An Emerging Challenge for Law

Enforcement. FBI Law Enforcement Bulletin 1(8) (December 1996)
11. OWASP: Owasp top ten most critical web application security vulnerabilities.

http://www.owasp.org/documentation/topten.html (January, 27 2004)
12. Paxson, V.: Bro: a system for detecting network intruders in real-time. Com-

puter Networks (1999) 2435–2463
13. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for

Unix Processes. In: Proceedings of 1996 IEEE Symposium on Computer Security
and Privacy. (1996)

14. Chung, C.Y., Gertz, M., Levitt, K.: Demids: A misuse detection system for
database systems. In: 14th IFIP WG11.3 Working Conference on Database and
Application Security. (2000)

15. Stolfo, S., Fan, D., Lee, W.: Credit card fraud detection using meta-learning:
Issues and initial results. In: AAAI Workshop on AI Approaches to Fraud
Detection and Risk Management. (1997)

16. Bertino, E., Kamra, A., Terzi, E., Vakali, A.: Intrusion Detection in RBAC-
administered Databases. In: Proceedings of the 21st Annual Computer Security
Applications Conference. (2005)

17. Ilgun, K.: Ustat: A real-time intrusion detection system for unix. In: the IEEE
Symposium on Security and Privacy, Oakland, CA (May 1993)

18. Javitz, H.S., Valdes, A.: The sri ides statistical anomaly detector. In: Proceed-
ings IEEE Computer Society Symposium on Security and Privacy, Oakland, CA
(May 1991)

19. Lee, W., Xiang, D.: Information-theoretic measures for anomaly detection. In:
2001 IEEE Symposium on Security and Privacy, Oakland, CA (May 2001)

20. Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical pro-
grams in distributed systems: a Specification-based approach. In: Proceedings
of the 1997 IEEE Symposium on Security and Privacy. (1997)

21. Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., Zhou,
S.: Implementation of Argus Specification-based anomaly detection: a new ap-
proach for detecting network intrusions. In: ACM CCS. (2002)

Damage Quarantine and Recovery in Data Processing Systems 405

22. McDermott, J., Goldschlag, D.: Towards a model of storage jamming. In: the
IEEE Computer Security Foundations Workshop, Kenmare, Ireland (June 1996)
176–185

23. Barbara, D., Goel, R., Jajodia, S.: “Using Checksums to Detect Data Corrup-
tion”. In: Int’l Conf. on Extending Data Base Technology. (Mar 2000)

24. Maheshwari, U., Vingralek, R., Shapiro, W.: How to build a trusted database
system on untrusted storage. In: 4th Symposium on Operating System Design
and Implementation, San Diego, CA (October 2000)

25. Lee, P., Anderson, T.: Fault Tolerance: Principles and Practice. 2nd edn.
Springer-Verlag (1990)

26. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: Aries: A trans-
action recovery method supporting fine-granularity locking. ACM Trans. on
Database Systems 17(1) (1992) 94–162

27. Borg, A., Blau, W., Graetsch, W., Herrmann, F., Oberle, W.: Fault Tolerance
Under UNIX. ACM Transactions on Computer Systems 7(1) (1989) 1–24

28. Muller, G., Banatre, M., Peyrouze, N., Rochat, R.: Lessons from FTM: An Ex-
periment in the Design & Implementation of a Low-Cost Fault-Tolerant System.
IEEE Transactions on Reliability 45(2) (1996) 332–340

29. Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys 34(3)
(September 2002) 375–408

30. Lin, J.L., Dunham, M.H.: A survey of distributed database checkpointing. Dis-
tributed and Parallel Databases 5(3) (1997) 289–319

31. Lin, J.L., Dunham, M.H.: A low-cost checkpointing technique for distributed
databases. Distributed and Parallel Databases 10(3) (2001) 241–268

32. Jefferson, D.R.: Virtual time. ACM Transaction on Programming Languages
and Systems 7(3) (July 1985) 404–425

33. Lin, Y., Lazowska, E.D.: A study of time warp rollback machanisms. ACM
Transactions on Modeling and Computer Simulations 1(1) (January 1991) 51–
72

34. Siewiorek, D.P., Swarz, R.S.: Reliable Computer Systems: Design and Evalua-
tion. 3rd edn. A K Peters (1998)

35. Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J.,
Enriquez, P., Fox, A., Kycyman, E., Merzbacher, M., Oppenheimer, D., Sastry,
N., Tetzlaff, W., Traupman, J., Treuhaft, N.: Recovery-oriented computing
(roc): Motivation, definition, techniques, and case studies. Technical report,
UC Berkeley Computer Science (2002) CSD-02-1175.

36. Candea, G., Fox, A.: Recursive restartability: Turning the reboot sledgehammer
into a scalpel. In: Proceedings of the Eighth IEEE HOTOS. (2001)

37. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the Reliability of Commod-
ity Operating Systems. In: ACM SOSP. (2003)

38. Ammann, P., Jajodia, S., Mavuluri, P.: On the fly reading of entire databases.
IEEE Trans. on Knowledge and Data Engineering 7(5) (October 1995) 834–838

39. Mohan, C., Pirahesh, H., Lorie, R.: Efficient and flexible methods for transient
versioning of records to avoid locking by read-only trans. In: ACM SIGMOD
International Conference on Management of Data, San Diego, CA (June 1992)
124–133

40. Pu, C.: On-the-fly, incremental, consistent reading of entire databases. Algo-
rithmica 1(3) (October 1986) 271–287

406 Peng Liu, Sushil Jajodia, and Meng Yu

41. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, Inc. (1993)

42. Dasgupta, P., Leblanc, R., Appelbe, W.: The Clouds distributed operating
system. In: Proceedings 8th International Conference on Distributed Computing
Systems, San Jose, Calif. (2002)

43. Dixon, G.N., Barrington, G.D., Shrivastava, S., Wheater, S.M.: The treatment
of persistent objects in Arjuna. Comput. J. 32(4) (1989)

44. Gheith, A., Schwan, K.: CHAOS: Support for real-time atomic transactions.
In: Proc. 19th International Symposium on Fault-Tolerant Computing, Chicago
(1989)

45. Liskov, B., Scheifler, R.: Guardians and actions: Linguistic support for robust,
distributed programs. ACM Transactions on Program. Lang. Syst. 5(3) (1983)

46. Nett, E., Kaiser, J., Kroger, R.: Providing recoverability in a transaction ori-
ented distributed operating system. In: Proc. 6th International Symposium on
Fault-Tolerant Computing, Cambridge (May 1986)

47. Clark, B.E., Corrtgan, M.J.: Application System/400 performance characteris-
tics. IBM Syst. J. 28(3) (1989)

48. Crus, R.: Data recovery in IBM Database 2. IBM Syst. J. 23(2) (1984)
49. Sql server. http://www.microsoft.com/sql/default.mspx
50. Oracle database. http://www.oracle.com/database/index.html
51. Db2 log analysis tool for z/os.

http://www-306.ibm.com/software/data/db2imstools/db2tools/db2lat.html
52. Db2 recovery expert for multiplatforms.

http://www-306.ibm.com/software/data/db2imstools/db2tools/db2re/
53. Oracle data protection and disaster recovery solutions.

http://www.oracle.com/technology/deploy/availability/htdocs/OracleDR
Solutions.html

54. Korth, H., Levy, E., Silberschatz, A.: A formal approach to recovery by com-
pensating trans. In: the International Conference on Very Large Databases,
Brisbane, Australia (1990) 95–106

55. Garcia-Molina, H.: Using semantic knowledge for transaction processing in a
distributed database. ACM Trans. on Database Systems 8(2) (June 1983) 186–
213

56. Garcia-Molina, H., Salem, K.: Sagas. In: ACM-SIGMOD International Confer-
ence on Management of Data, San Francisco, CA (1987) 249–259

57. Lomet, D.: MLR: A recovery method for multi-level systems. In: ACM-SIGMOD
International Conference on Management of Data, San Diego, CA (June 1992)
185–194

58. Weikum, G., Hasse, C., Broessler, P., Muth, P.: Multi-level recovery. In: the
Ninth ACM SIGACT-SIGMOD-SIGART Symposium of Principles of Database
Systems, Nashville, Tenn (April 1990) 109–123

59. Weikum, G., Schek, H.J.: Concepts and applications of multilevel trans. and
open nested trans. In Elmagarmid, A.K., ed.: Database Transaction Models for
Advanced Applications. Morgan Kaufmann Publishers, Inc. (1992)

60. Gray, J., Helland, P., O’Neil, P., Shasha, S.: The dangers of replication and a
solution. In: ACM SIGMOD. (1996)

61. Schneider, F.B.: Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Computing Surveys 22(4) (December 1990) 299–319

62. Berman, K., Cooper, R.: The ISIS Project: Real Experience with a Fault Tol-
erant Programming System. Operating Systems Review (1991) 103–107

Damage Quarantine and Recovery in Data Processing Systems 407

63. CA data availability solutions.
http://www3.ca.com/solutions/SubSolution.aspx?ID=312

64. Symantec livestate recovery products provide fast, reliable and cost-effective sys-
tem and data recovery. http://www.symantec.com/press/2004/n041005.html

65. Sonasoft disaster recovery solutions.
http://www.sonasoft.com/solutions/disaster.asp

66. Zhu, N., Chiueh, T.C.: Design, implementation, and evaluation of repairable
file service. In: Proceedings of the IEEE Dependable Systems and Networks.
(2003)

67. Goel, A., Po, K., Farhadi, K., Li, Z., Lara, E.D.: The Taser Intrusion Recovery
System. In: ACM SOSP. (2005)

68. Ammann, P., Jajodia, S., Liu, P.: Recovery from malicious trans. IEEE Trans.
on Knowledge and Data Engineering 15(5) (2002) 1167–1185

69. Yu, M., Liu, P., Zang, W.: “Self Healing Workflow Systems under Attacks”. In:
24th IEEE Int’l Conf. on Distributed Computing Systems. (2004)

70. Lomet, D., Vagena, Z., Barga, R.: Recovery from Bad User Transactions. In:
ACM SIGMOD. (2006)

71. Panda, B., Giordano, J.: Reconstructing the database after electronic attacks.
In: the 12th IFIP 11.3 Working Conference on Database Security, Greece, Italy
(July 1998)

72. Liu, P., Jing, J., Luenam, P., Wang, Y., Li, L., Ingsriswang, S.: “The Design
and Implementation of a Self-Healing Database System”. J. of Intelligent Infor-
mation Systems (JIIS) 23(3) (2004) 247–269

73. Pilania, D., Chiueh, T.: Design, Implementation, and Evaluation of an Intru-
sion Resilient Database System. In: Proc. International Conference on Data
Engineering. (2005)

74. Liu, P., Ammann, P., Jajodia, S.: Rewriting histories: Recovery from malicious
trans. Distributed and Parallel Databases 8(1) (2000) 7–40

75. Liu, P., Jajodia, S.: Multi-phase damage confinement in database systems for
intrusion tolerance. In: 14th IEEE Computer Security Foundations Workshop,
Nova Scotia, Canada (June 2001)

76. Ammann, P., Jajodia, S., McCollum, C., Blaustein, B.: Surviving information
warfare attacks on databases. In: the IEEE Symposium on Security and Privacy,
Oakland, CA (May 1997) 164–174

77. Liu, P., Jajodia, S., McCollum, C.: Intrusion confinement by isolation in infor-
mation systems. J. of Computer Security 8(4) (2000) 243–279

78. Liu, P., Wang, H., Li, L.: Real-time Data Attack Isolation for Commercial
Database Applications. Elsevier Journal of Network and Computer Applications
29(4) (2006) 294–320

79. Trivedi, K.S.: “Probability and statistics with reliability, queuing and computer
science applications”. John Wiley and Sons (2002)

80. Wang, H., Liu, P.: Modeling and Evaluating the Survivability of an Intrusion
Tolerant Database System. In: Proc. ESORICS (European Symposium on Re-
search in Computer Security). (2006)

17

Hippocratic Databases: Current Capabilities
and Future Trends

Tyrone Grandison1, Christopher Johnson2�, and Jerry Kiernan1

1 IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120
{tyroneg,jkiernan}@us.ibm.com

2 chrisjohnson@alum.berkeley.edu

Summary. Hippocratic databases (HDBs) are a class of database systems that ac-
cept responsibility for the privacy and security of information they manage without
impeding legitimate use and disclosure. HDBs ensure that only authorized individ-
uals have access to sensitive information and that any disclosure of this information
is for proper purposes. They empower individuals to consent to specific uses and
disclosures of their information and to verify the enterprise’s compliance with its
privacy policies. HDBs also employ technical safeguards to ensure the security of
the information they manage. Further, they use advanced information sharing and
analytics to enable enterprises to gain maximum value from information without
compromising security or individual privacy. In this chapter, we outline the found-
ing principles of a Hippocratic database, describe several technologies that advance
these principles, evaluate the state of the art in HDB-enabling technologies, and
suggest opportunities for future research.

1 Introduction

The Hippocratic database vision was developed at IBM’s Almaden Research
Center in response to significant privacy threats posed by the increasing avail-
ability of personal information in the modern technological environment. This
vision was intended to provide guidance for the development of future infor-
mation systems. Thus, HDB technology is not a fixed group of technologies,
but rather an evolving set of capabilities that enable the responsible manage-
ment of sensitive information. HDBs are inspired by the privacy provision of
the Hippocratic Oath, which states that:

. . . about whatever I may see or hear in treatment, or even without
treatment, in the life of human beings - things that should not ever
be blurted outside - I will remain silent, holding such things to be
unutterable [1].

� This work was done while the author was at IBM.

410 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

Hippocratic databases should be architected to regulate use and disclo-
sure of personal information in strict accordance with privacy and security
laws, enterprise policies, and individual choices. They should be designed to
safeguard this information and protect individual privacy without impeding
legitimate and beneficial uses of information. HDBs are founded upon a set
of ten data protection principles and require a diverse set of technologies to
realize these principles. In the following sections, we outline these founding
principles, describe several technologies that advance these principles, evaluate
the state of the art in HDB-enabling technologies, and suggest opportunities
for future research.

2 Founding Principles of a Hippocratic Database

The founding principles of a Hippocratic database are based on concepts of
information privacy drawn from international data protection laws and guide-
lines [2].

1. Purpose Specification. The purposes for which personal information
has been collected shall be associated with that information in the
database.

2. Consent. The purposes associated with personal information shall have
the consent of the individual who is the subject of the information.

3. Limited Collection. The personal information collected shall be limited
to the minimum necessary for accomplishing the specified purposes.

4. Limited Use. The database shall run only those queries and operations
that are consistent with the purposes for which the information has been
collected.

5. Limited Disclosure. Personal information stored in the database shall
not be communicated outside of the database for purposes other than
those to which the individual consented.

6. Limited Retention. Personal information shall be retained only as long
as necessary to fulfill the purposes for which it was collected.

7. Accuracy. All personal information in the database shall be accurate and
current.

8. Safety. Personal information shall be protected by security safeguards
against theft and other misappropriation.

9. Openness. An individual shall be able to access all information about
him or her stored in the database.

10. Compliance. An individual shall be able to verify compliance with the
above principles, and the database capable of responding to these chal-
lenges.

Hippocratic Databases: Current Capabilities and Future Trends 411

3 Hippocratic Database Technologies

In the sections that follow, we describe a number of technologies that advance
the principles of a Hippocratic database. These technologies are at various
stages of development, but demonstrate the potential for future information
systems to comply with the HDB vision.

3.1 Active Enforcement

One enabling technology of a Hippocratic database is an active enforcement
system that limits access to and disclosure of personal information in accor-
dance with fine-grained privacy policies, applicable laws, and individual opt-in
and opt-out choices [3]. HDB active enforcement stores enterprise privacy poli-
cies and individual choices in database tables. It intercepts user queries at the
database level and transforms these queries to comply with privacy policies
and choices, ensuring that only authorized individuals have access to permit-
ted information for proper purposes. Therefore, active enforcement satisfies
the HDB principles of purpose specification, consent, limited use, and limited
disclosure. Because it operates at the database level, HDB active enforcement
enables enterprises to comply with detailed policies without modifying their
applications or otherwise negatively impacting existing systems. In the cur-
rent implementation (Figure 1), HDB active enforcement is executed in three
stages: (1) policy creation, (2) preference negotiation, and (3) application data
retrieval [4].

In the policy creation stage, an enterprise that safeguards personal
information specifies its privacy policies. These policies govern access and dis-
closure of information in accordance with user authorization privileges, the
purpose of the query, and the intended recipient of the query results, if differ-
ent from the user issuing the query. The policies may also provide individuals
with an opportunity to opt-in or opt-out of certain disclosures of their infor-
mation. For example, an individual may opt to share his medical records with
universities for research purposes, but opt not to disclose these records to drug
companies for marketing purposes. The enterprise expresses these policies in a
privacy language through a policy specification interface. The active enforce-
ment component then parses the policies and installs them in the database
as metadata. Subsequently, the enterprise may update or replace its policies
through this one-step process without recoding any of its applications. The
database stores all policy versions to allow accurate compliance verification.

In the preference negotiation stage, the active enforcement component
notifies the individual of the enterprise’s privacy policies. The individual for-
mulates his or her own privacy preferences and expresses them in a preference
language though a dedicated plug-in on the client side [5]. Prior to disclos-
ing any personal information, the system matches these preferences with the
enterprise’s policies and informs the individual of any conflicts. The parties
may either resolve these conflicts or terminate the process. If they proceed,

412 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

Database Interface

Installed Policies
and Preferences

Policy
Creator

GUI

Enterprise
Applications

HDB Active Enforcement Engine

Database

User
Preference

GUI

Policy
Translator

Preference
Parser

Policy-Preference
Negotiator

Data Collection
Servlet

User Data
Collection

User Data

Fig. 1. HDB Active Enforcement Architecture

the system may then provide the individual with opt-in or opt-out choices
concerning use and disclosure of their information. These choices are recorded
in the database and enforced at the time of query processing. Successful pref-
erence negotiation confirms the terms of agreement between the parties.

In the application data retrieval stage, the active enforcement compo-
nent intercepts and transforms an incoming query to comply with applicable
privacy policies. The database runs the transformed query and retrieves only
policy-compliant information. In this way, the system transparently enforces
cell-level disclosure controls based upon the requestor’s authorization, the
purpose of access, the intended recipient, and individual opt-in and opt-out
choices. Purpose and recipient information can either be inferred from the ap-
plication or directly specified by the requestor issuing the query. This ensures
that applications retrieve all information that a requestor is entitled to access
for a particular purpose and intended recipient,

The current implementation of HDB active enforcement operates in an
agnostic middleware layer above a relational database using any SQL compli-
ant interface. Figure 2 shows the HDB Active Enforcement implementation
as a Java Database Connectivity (JDBC) driver, which is a wrapper over a
native JDBC driver (e.g., DB2’s native JDBC driver). The JDBC application,
shown at the top of the figure, connects to the HDB driver instead of the native
driver and thereafter submits queries and commands as it would have done
using the native driver. Using JDBC, queries are submitted with the execute-
Query method, which accepts the query string as its argument. The submitted

Hippocratic Databases: Current Capabilities and Future Trends 413

query is parsed and analyzed by the HDB driver for the purposes of policy
enforcement. The query is converted into an internal representation called
Query Graph Model (QGM), which is a convenient structure for semantic
analysis and query transformation. Given the tables and columns referenced
in a query, and contextual information, such as the business purpose for the
query, the relevant policy metadata is extracted from the database and inte-
grated into the model for the query. The original query is then transformed
to integrate policy restrictions. The resulting model is converted back into an
SQL string which is submitted to the database for execution. The submitted
query implements policy restrictions as additional query predicates.

Database

Patient

Treatment

Policy

DataMetadata

Native JDBC Driver

HDB JDBC Wrapper

JDBC Application

jdbc: executeQuery(“select …”) jdbc: resultSet()

SQL Parser

Query Graph Model

Query Transformation

Query Generation

SQL QuerySelective Policy Retrieval

Fig. 2. HDB Active Enforcement JDBC Driver

Figure 3 is an example used to illustrate HDB query transformation for
policy enforcement. An application submits a query for the purpose of med-
ical research over the Patient and Treatment tables and selects diagnosis for
patients in California. The query is parsed and a QGM representation is built
for the query. Boxes represent operators such as select and tables. The exam-
ple has a single select operator, which is a join of the two tables. HDB policy
enforcement searches for policy metadata on these tables for the purpose of
medical research and modifies the query by introducing additional restric-
tions between tables and query operators ranging over them. These newly
introduced operators appear in the figure as boxes labeled AE. Further trans-
formations and simplifications may be applied to the query before translating
the query graph into a SQL query string. However, such transformations are

414 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

not shown in the figure. Finally, a new SQL query is generated by HDB Ac-
tive Enforcement component and submitted to the database using the native
JDBC driver interfaces. In the figure, the generated query shows that patients
can opt-in or out of having their information used for research purposes. A
sub-query is used to verify the choices of individual patients in order to comply
with the policy.

select: x.name, y.diagnosis
where: x.pid=y.pid and

x.state=‘CA’

Patient Treatment

x y

Application Query:
select x.name, y.diagnosis
from Patient x, Treatment y
where x.pid=y.pid and x.state=‘CA’

select: x.name, y.diagnosis
where: x.pid=y.pid and

x.state=‘CA’

Patient Treatment

x y

AE AE
Query

Transformation

Parse and
build QGM

Generate
SQL

Generated Query:
select x.name, y.diagnosis
from Patient x,Treatment y
where x.pid=y.pid and x.state=‘CA’ and

exists (select * from Patient_choice c
where x.pid=c.pid and
c.choice=‘research’ and c.value=‘opt-in’)

Fig. 3. Query Transformation for Policy Enforcement

HDB active enforcement can also be implemented within the database
system to eliminate potential concerns about circumventing the enforcement
component [6]. With the organization shown in Figure 2, policies are enforced
provided that applications use JDBC to access the database and load the HDB
JDBC driver rather than, say, a native JDBC driver. If database interfaces
other than JDBC are used or the HDB driver is not loaded, policy enforce-
ment is bypassed altogether. Nevertheless, there are application environments
in which users only have database access through, say, a web portal supported
by a restricted set of applications all using HDB to access the database. In
such application environments, the configuration presented in Figure 2 can be
used to protect sensitive data for large classes of users. In other environments,
where all interfaces to the database must be policy-enabled to safeguard the
sensitive data, policy enforcement must be pushed down into the database

Hippocratic Databases: Current Capabilities and Future Trends 415

layer so that it takes place regardless of the external interface used to access
the database. Within the database engine, SQL parsing and QGM transfor-
mation are the initial steps of query processing as described in Figure 2. Policy
enforcement would be performed at this point in query processing, directly on
the QGM representation of the database system. Thereafter, further database
query processing occurs on the modified QGM graph implementing policy en-
forcement. Nevertheless, integrating enforcement within the database layer
implies access to and knowledge of specific database product implementations
and eliminates the database agnostic benefit of the middleware approach.

In addition, others have developed a system for enforcing fine-grained ac-
cess control policies over XML data [7]. XML extends the flat tabular struc-
ture of relational tables with hierarchical structures used to model complex
objects. XML represents complex objects as trees in which element nodes are
root, intermediate or leaf nodes of the tree and other node types, such as text
strings or attributes, are leaf nodes. Policy enforcement rules can target any
part of the XML tree; not only the leaves. XML privacy/security policies are
specified as individual positive or negative rules that grant or deny access to
information represented as XML. A rule describes the users governed by the
rule, the documents over which authority is granted or denied, the portion of
the document governed by the rule (the portion is rooted at a sub-tree of the
document), whether access is for the full sub-tree or only for root nodes of
the sub-tree and the type of operation allowed or denied (access or update).

While these policy semantics are different than those defined for active
enforcement for relational databases, a similar policy language for XML could
be created to conform to HDB policy semantics. For example, HDB has only
positive authorizations and access is denied in absence of any authorization;
therefore, negative authorizations would not be used in the specification.

3.2 Compliance Auditing

A second enabling technology of a Hippocratic database is compliance audit-
ing, which tracks past disclosures of information to support investigations of
suspicious disclosures [8]. This HDB auditing component allows enterprises
to ascertain the identities of those who have accessed a particular item of
information in the database, the date and time of each query, the purpose of
access, the final recipient, and the exact information disclosed. This capability
greatly enhances the accountability of database systems and deters wrongful
access and disclosure. By allowing enterprises to verify compliance with pri-
vacy policies and respond to individual challenges, this auditing component
supports the HDB compliance principle.

HDB compliance auditing is a significant innovation over conventional au-
diting systems that log the results of every query. Enterprises often turn off
these result logging systems because they consume considerable storage and
computational resources [9]. HDB addresses this problem by logging only the

416 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

queries and database updates. It records the query string and relevant contex-
tual information (identity, time, purpose, and recipient) in a query log. It then
records all updates, inserts, and deletions over source tables by insertions into
backlog tables, which can be populated using database triggers or existing
replication features. The query log and backlog tables are sufficient to track
past disclosures by reconstructing any previous database state. Because HDB
auditing does not incur additional cost for read queries, it requires much lower
storage overhead than result logging systems.

HDB allows enterprises to formulate declarative “audit expressions,” us-
ing a flexible query-like audit language, to specify the information they would
like to audit. At the time of audit, HDB performs a static analysis of logged
queries to generate a subset of candidate queries for further analysis. Candi-
date queries are identified as suspicious if they share an “indispensable tuple”
with the audit expression. The system combines and transforms these queries
into a single SQL audit query, which it runs against the backlog tables to deter-
mine the queries that accessed the data specified by the audit expression. For
each suspicious query, the audit results reveal the requestor’s identity, time,
purpose, recipient, and actual information disclosed (Figure 4). This powerful
and efficient auditing capability allows enterprises to investigate and account
for past disclosures of information and verify compliance with policies, even
if the information is updated over time.

Database Layer

Data
Tables Backlog

Audit Interface

Database Layer

DB triggers or
replication

Updates, inserts, deletes

Query with purpose
Audit query

Generate audit record for
each query Query Audit Log

2006-02…

2006-02…

Timestamp

TreatmentDr. RobertsSelect …2

TreatmentDr. JonesSelect …1

PurposeUserQueryID

Dr. Roberts

Dr. Jones

Recipient

Fig. 4. Generic HDB Compliance Auditing Architecture

Hippocratic Databases: Current Capabilities and Future Trends 417

Audit Scenario. Suppose patient Adam complains to his primary care
provider that his diabetes condition has been disclosed without his consent.
A hospital auditor then initiates an audit by formulating an audit expression
that declaratively specifies the information to be tracked, i.e. Adam’s diag-
nosis. An audit expression is syntactically identical to an SQL query except
that the SELECT clause is replaced by an audit clause of the form “audit
audit-list from audited-tables where conditions” where audit-list is a list of
column names, audited-tables are the tables containing the data which is the
source of the audit and conditions identify the subset of the data that is the
target of the audit. The auditor specifies the following audit expression to
determine whether Adam’s diagnosis information was improperly accessed.

audit y.diagnosis
from Patient x, Treatment y
where x.pid=y.pcid and x.name = ’Adam’

After receiving the audit expression, the HDB auditing system performs
a static analysis of the query log to isolate a set of candidate queries, which
consists of all queries that accessed all columns specified in the audit-list. The
system then combines the candidate queries with the audit expression to de-
termine the suspicious queries that may have accessed Adam’s information.
A suspicious query is defined as a logged query that shares an indispensable
tuple with the audit expression. A tuple t in T is indispensable in the com-
putation of a SELECT-PROJECT-JOIN query Q over a database D if the
result of the execution of Q over D is not identical to the result obtained from
executing Q over D after deleting t from T.

The audit system then combines the suspicious queries into a single audit
query and runs this query against the backlog tables to determine the exact
information accessed by the query at the time it was issued. Finally, the results
of the audit reveal those queries that accessed Adam’s diagnosis information,
including the identity of each query issuer, the date and time of the query,
the purpose of the query (if available), and the state of the database at the
time of the query.

Figure 5 illustrates audit query generation for the example audit given
above. The figure shows the audit expression on the right and the logged query
number 11 on the left. Query number 11 is a sample query that ran at time
T15. After identifying query 11 as a candidate query, the audit component
builds a QGM graph for this query and also builds a query model for the audit
expression. The tables referenced by the query are substituted by their backlog
tables. A temporal predicate is added over each backlog table to recover the
snapshots of the source table at time T15, the time that query 11 ran. The
audit expression is added over the logged query, thus creating a conjunction
of its predicates with those of the logged query to determine if they share an
indispensable tuple. If so, the resulting audit query produces an output tuple
identifying query 11 as suspicious.

418 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

Application Query #11 @ T15:
select x.name, y.diagnosis
from Patient x, Treatment y
where x.pid=y.pid and x.state=‘CA’

Audit Expression:
audit y.diagnosis
from Patient x, Treatment y
where x.pid=y.pid and x.name = ‘Adam’

select: x.name, y.diagnosis
where: x.pid=y.pid and

x.state=‘CA’

Patient Treatment

x y

Parse and
build QGM

select: y.diagnosis
where: x.pid=y.pid and

x.name=‘Adam’

Patient Treatment

x y

Parse and
build QGM

select: x.name, y.diagnosis
where: x.pid=y.pid and

x.state=‘CA’

@ T15 @ T15

x y

Patient
backlog

Treatment
backlog

select: ‘#11’
where: name=‘Adam’

Generate
Audit
Query

Fig. 5. Audit Query Generation

In addition to the flexibility and efficiency benefits, HDB auditing has
an additional advantage over existing auditing approaches in that it captures
information revealed by a query that may not be reflected in the query results.
For example, the query “Select ’yes’ if employee ’Adam’ has a diagnosis =
diabetes” would output only the word “yes” in the result, but actually reveal
information about Adam’s diagnosis to the user. The same is true for queries
that aggregate values from the records accessed. In contrast, an HDB audit
would reveal all information accessed by the query.

Additional research has explored auditing batches of SQL queries to de-
termine whether the queries are suspicious with regard to unauthorized views
of the data [10]. Beyond the notions of suspiciousness discussed above, this
work also considers database instance independent notions of syntactic sus-
piciousness wherein the suspiciousness of the batch of queries is determined
without the underlying database.

Auditing Disclosure by Relevance Ranking. Query ranking is an
extension of HDB auditing that assists in tracking the origin of information
after it has been leaked or misappropriated from a database. This auditing
system ranks queries that accessed the data in accordance with the relevance
of each query as the source of the improper disclosure [11]. The system uses a

Hippocratic Databases: Current Capabilities and Future Trends 419

copy of the sensitive data that is the target of leakage, referred to as table S,
to compute a ranking of queries in the query log over the database suspected
of being the source of leakage. We refer to the output of each query in the
query log as query table Qi. The ranking system ranks each Qi with respect
to its similarity to S.

To perform the ranking, we use one of three measures of proximity be-
tween the sensitive table and the query table. The first, based on informa-
tion retrieval’s document frequency similarity measure, computes proximity
by considering partial tuple matches between two tables, while factoring in
the likelihood of the match. Partial tuples are formed by matching a tuple
in Qi with a tuple in S and forming a partial tuple based upon matching at-
tribute pairs. Document frequency is computed as the number of query tables
having the partial tuple. The ranking method favors Qi’s having partial tuples
with low document frequency. This method has high sensitivity to even single
partial tuple matches occurring in few query results.

The second, based on record linkage and expectation maximization, mea-
sures proximity by aggregating scores of individual tuple matches. This
method was originally devised to match individuals appearing in different
census records in the absence of surrogate keys uniquely identifying these in-
dividuals in each list such as social security number. The method is adaptive
and estimates the number of record pairs that are true matches and non-
matches based upon attributes that are common to both lists and the likeli-
hood of a random match. It is applied to our information leakage problem by
matching each query table Qi with S. This method has lower sensitivity than
the previous one to unique combinations of matching attributes appearing in
few Qi’s.

The third is based on the minimum description length principle and mea-
sures proximity by computing the minimum length (maximum probability)
derivation of the sensitive table from the query result. In contrast with the pre-
vious two methods, this method also examines the similarity of tuples within
S when measuring the similarity of tuples in Qi with tuples in S. This method
is therefore better at differentiating Qi’s having multiple matches with near
duplicates in S with Qi’s having multiple matches with distinct information
in S.

The following scenario describes a practical application of query ranking.
Suppose that a major credit card company sells copies of its customer database
to its business affiliates under a very strict confidentiality agreement. The af-
filiates are allowed to analyze the database for their own business intelligence
purposes, but may not disclose any of the customer information to a third
party. Several months later, a copy of this database is released into the public
domain. The credit card company would like to determine the source of the
disclosure so that it may terminate its business relationship with this affiliate.
Using the HDB query ranking system, the company could evaluate the prox-
imity of the leaked database to the queries that accessed the database by using
the appropriate proximity measure algorithm, and rank the relative likelihood

420 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

that each query resulted in the leaked data. The query that accessed the state
of the database that is most similar to the leaked database should be examined
first by the auditor. While this technique helps prioritize the leads, establish-
ing the source of disclosure with certainty still requires forensic investigation.
We assume that individual business affiliates are loaned separate copies of the
database generated from queries that were run at different times. Since the
company can identify the queries that disclosed information to specific third
parties, this ranking method may help isolate the source of disclosure. Thus,
query ranking enables the company to track the release of its data without
perturbing the released data.

Auditing Curation. Another important feature of a Hippocratic database
is the ability to audit modifications of information and policies. Suppose that
NetCare Hospital is the subject of a malpractice investigation, in which plain-
tiff Betsy alleges that her husband Charles’s death was due to an improper
drug prescription and dosage. She claims that the doctor ignored her hus-
band’s reported allergy to the drug and that administration of this drug was
inappropriate given the results of his most recent blood tests. His physician,
Dr. Roberts, contends that there is no record of the patient’s allergy to this
drug and that the prescribed dosage was appropriate given the results of
the patient’s blood work. In the course of its internal investigation, NetCare
would like to determine whether any potentially inculpating information in
the patient’s medical record was deleted or modified.

To address this problem, we proposed an auditing system called curation
auditing, which tracks the history of modifications to sensitive information
and the policies that govern such information, using logs of database updates
[12]. By allowing entities to investigate the source of improprieties, such as
improper data or policy modifications, curation auditing helps to address the
HDB compliance principle more completely. The audit system maintains logs
of all database operations in addition to the backlog structure used for au-
diting database access. The audit expression language discussed above with
regard to compliance auditing is extended to declaratively specify the curation
information to be audited. Because curation auditing tracks general updates,
this language includes the before and after values of update operations. The
following is an informal example of an audit expression that NetCare would
issue to determine whether patient Charles’s allergy information was updated
or deleted subsequent to his death six months ago.

Who updated or deleted patient Charles allergy to penicillin within
the past six months?

During current date - 6 months to current date
Audit-curation Patient-Allergies s
Where s.patient-name=”Charles” and before s.allergy=”penicillin”

The during clause of the audit expression specifies a time period for the
audit, the audit-curation clause stipulates that the patient-allergies table is

Hippocratic Databases: Current Capabilities and Future Trends 421

to be audited, and the where clause examines updates (or deletes) of the al-
lergy information in patient Charles’s medical record. The before and after
images of updated tuples can be accessed using special before and after key-
words. The audit returns the identities of logged commands having performed
modifications that qualify the audit expression. The command log records all
queries and commands submitted to the database along with annotations
such as the identity of the user submitting the query, the time the query was
submitted, and the purpose of the query (if available). Upon receiving the
audit expression above, the system reveals that Dr. Roberts deleted Charles’s
allergy information in September, shortly after the patient’s death. The hos-
pital can then initiate similar audits to determine whether any information
was modified regarding the patient’s test results and to determine whether
Dr. Roberts improperly deleted or modified information in any other patient
records.

Currently, only the high-level design of HDB curation auditing has been
articulated. Deeper technical and implementation issues are topics for further
research.

3.3 Sovereign Information Integration

Another enabling technology of a Hippocratic database, called Sovereign In-
formation Integration (SII), allows secure information sharing among multiple
autonomous databases without using a trusted third party [13].

SII Platform

SII Client

Application

User

Application
Developer

Client
Metadata

Application
Metadata

Application
MetadataDP DB DP DB

. . .

SII Server 1 SII Server n

Data
Provider (DP)

Data
Provider (DP)

Fig. 6. Sovereign Information Integration Architecture

422 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

SII enables two or more enterprises to run queries across their databases
that do not reveal any information among the databases apart from the re-
sults of the query. This technology is designed to foster beneficial uses of
information without violating any of the HDB principles. Figure 6 shows the
architecture of an arbitrary SII application. The SII data provider enables
sovereign information sharing for its data. The SII server maintains the meta-
data needed to retrieve information from the data providers’ databases. The
SII client provides the necessary functionality to map the application schema
to the data providers’ schemas, construct and invoke query requests against
multiple data providers, and receive query responses. The application is a thin
layer on top of the SII client, which invokes the required SII operations. For ex-
ample, suppose that a commercial airline and a government agency would like
to compare a passenger manifest and a suspicious traveler database to identify
any common names, without revealing any names that are not in common.
SII processes such secure information sharing operations by applying a set of
commutative encryption functions to data in different orders and at different
locations. Only encrypted information is exchanged between participants and
both data providers must participate in order to encrypt values and identify
the values that are in common to both providers. SII compares the multiply-
encrypted values and provides the query results without compromising the
security or privacy of either data set. This technology is also useful in the
clinical genomics arena, allowing enterprises to conduct secure join operations
among sovereign databases to discover and investigate correlations between
genetic sequences and phenotypic data.

Unlike other data integration approaches, such as centralized data ware-
houses and mediator-based data federations, which reveal all data among the
databases, SII only reveals query results. SII is a software solution that can be
integrated seamlessly into existing data environments without the need for any
perturbation or anonymization of the original data. It enables multiple parties
to conduct a range of useful operations over autonomous databases. SII has
been implemented on a web services infrastructure to process sovereign join
operations [14]. Recent research has also explored game theoretic approaches
to assure that a dishonest SII participant cannot gain more information that
an honest participant by providing false input data [15].

3.4 Encryption

An essential feature of a Hippocratic database is safety, which involves se-
curing sensitive data against theft or misappropriation. Encryption prevents
unauthorized users from circumventing database security by directly access-
ing the database files without using the database software. However, most
encryption techniques significantly degrade system performance because they
do not preserve the order of encrypted values and therefore, do not allow
the use of indexes to compute range queries. To address this problem, an
order preserving encryption scheme (OPES) was proposed for numeric data

Hippocratic Databases: Current Capabilities and Future Trends 423

that processes range queries and MIN, MAX, and COUNT queries on the
server without decrypting the data [16]. The OPES algorithm uses as input
the source (or plaintext) distribution of a column’s values and a target dis-
tribution for ciphertext column values and then transforms plaintext values,
preserving their order, into ciphertext. The resulting ciphertext column values
conform to the target distribution. With the two input distributions used for
encryption, OPES decryption maps a target value to its plaintext value.

Revealing the order of plaintext values may not always be acceptable.
Furthermore, column-level order preserving encryption as well as standard
encryption reveals duplicate values which may not provide enough security
for all application environments. Iyer, et al. address the problem of efficiency
and duplicates by introducing a completely new storage model called the Par-
tition Plaintext Ciphertext (PPC) model [17]. PPC pushes encryption to the
lower levels of the database system, maintaining in-memory pages as plaintext
in the buffer pool and writing encrypted pages to the disk. The upper levels
of the database system software therefore remain unaffected and continue to
operate on plaintext data. This protects data at rest by preventing users from
circumventing database security. PPC reduces computation and storage costs
by partitioning data into plaintext and ciphertext mini-pages. All sensitive
values are stored as ciphertext on the mini-page. Only one encryption opera-
tion is needed when a page is written to disk and one decryption is required
when ciphertext page is brought into memory. This PPC storage model uses
standard and efficient cryptographic algorithms to encrypt personal informa-
tion.

4 Future Work

Improved Policy Specification. For HDB controls to be completely effec-
tive, policies must accurately capture the data usage practices of enterprises
and the preference and choices of individuals concerning the use and disclo-
sure of their personal information. The policy language must be fine grained
to allow enterprises to collect, use, and disclose the minimum necessary infor-
mation to accomplish their intended purposes. It must also be simple enough
that technically unsophisticated individuals can understand the consequences
of their decisions to provide personal information.

Policy languages such as P3P [18] are machine interpretable and enable
automated policy enforcement. Thus, they offer significant improvement over
the complex and ambiguous legal language of written policies. While these
machine interpretable languages allow enterprises to define policies that offer
some individual choices regarding the usage of personal information, they
currently do not allow the data subject to individually tailor her own rules
regarding usage of her private information. Rather, the individual subscribes
(or not) to a policy and make choices within the boundaries of the stated
policy.

424 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

Further, the automated negotiation of an enterprise’s policy with the pref-
erences, choices and requirements of an individual remains an important chal-
lenge. Such automated mediation would relieve the individual from having to
review each enterprise’s policy and allow enterprises to gain the maximum
usage of personal information while fully complying with and individual pref-
erences. Also, given the current investment in information systems and their
data disclosure mechanisms, HDB should allow refinement of policies based
on actual information usage, such that the policy is a representation of a
company’s intent and practice. Future policy languages and systems must
reconcile these requirements with the need for efficient computation, which is
a difficult technical challenge [19].

Enforcement After Extraction. HDB active enforcement is currently
adept at limiting disclosure of information contained within the database,
but does not exert any control or safeguards over information that is legit-
imately extracted and transferred outside of the database. Enterprises that
transfer private information to other entities must rely on those entities to
enforce the appropriate disclosure policies. Their only means of assurance is
to impose disclosure obligations on the transferee by written contract. Future
HDBs should address this issue by extending active enforcement to distributed
data environments having no central point of control and providing guaran-
tees on the external systems with regards to policy compliance. When indi-
viduals disclose personal information to an enterprise under specific policies
and conditions, they should know that these policies and conditions will be
enforced after legitimate transfers of the information to other entities. Thus,
HDBs should be able to attach policy annotations to each item of information
that is transferred from the database to ensure that the transferee complies
with the original disclosure policies. They should also be capable of applying
source disclosure policies to any information received from another entity and
resolving any policy conflicts. Compliance with attached policies should be
reviewable by audit.

Filter and Deny Semantics. The HDB active enforcement solution de-
scribed above uses query predicates to filter results in compliance with the
applicable policy rules. The system transforms the query so that the database
only returns information that is compliant with the database user’s authoriza-
tion, the enterprise’s privacy policy, and any individual choices. Prohibited
values that are sought by the query are returned as null values. However, in
some circumstances, this type of filtering may not be desirable because it may
mislead the user into thinking that the prohibited values do not actually exist.

For example, suppose that a military officer would like to know whether
there are any friendly forces within a particular building before authorizing a
missile strike. There are friendly intelligence operatives in the building, but the
existence and locations of these operatives exceeds the security clearance of
the officer. In this case, filtering the prohibited results would not be desirable

Hippocratic Databases: Current Capabilities and Future Trends 425

because it would wrongly suggest to the officer that there are no friendly forces
in the building. Rather, it would be preferable to deny the officer’s query by
suggesting that he is not authorized to view the results. This would prevent
the officer from accessing prohibited information without returning inaccurate
or incomplete results.

In other situations, filtering is more appropriate than denial. Suppose that
a military officer would like to determine the safest path into a particular
town, so he would like to know the current locations of all friendly and enemy
forces within a ten mile radius of the town. Within this radius are covert
friendly operatives that exceed the officer’s clearance level. In this situation,
the system should not broadly deny the officer’s query, rather it should filter
the results to remove the locations of the covert operatives, but return the
locations of all other forces. Here, filtering is preferable because it would not
mislead the officer into taking inappropriate action due to incomplete query
results. To handle these types of situations, database access controls should
support both filter and deny semantics depending on the context of the query.
Rosenthal and Winslett originally highlighted this problem [20]. Ager, et al.
proposed an initial solution to integrate filter and deny semantics involving
policy scoping rules [21]. Miklau and Suciu have proposed a database instance
independent approach to prevent disclosure on the basis of the query and
the policies, regardless of the information that exists in the database [22].
However, Miklau and Suciu determined that discerning whether a particular
query violates a policy rule for all possible database instances is an intractable
problem [22].

Future HDB systems should seamlessly support both filter and deny se-
mantics in an efficient manner.

Limited Retention. Another key principle of a Hippocratic database
is that personal information should be kept for only as long as necessary to
accomplish its intended purpose. Enterprises should comply with their own
privacy policies, applicable legal regulations, and individual consents regard-
ing the purposes for which they may use information and the duration for
which they may keep information. Ananthanarayanan, et al. have explored
how to automatically enforce policies related to handling personal informa-
tion, and resolve conflicts among different policy obligations applicable to the
same information [23]. However, in certain instances, an individual may want
his or her information removed from a database after the enterprise has ac-
complished the purpose for which the information was collected. At the same
time, there may be regulatory mandates that state that particular classes
of documents must be retained for specific periods of time. Both (seemingly
conflicting) requirements must be met by future systems. Obviously, there
remains a significant research challenge in designing database systems that
can entirely remove information, even beyond the point of recovery, without
affecting their ability to recover non-expired information [2].

426 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

Limited Collection. The limited collection principle of a Hippocratic
database is also not completely addressed by currently available technologies.
This principle states that the information collected shall be limited to the
minimum necessary to accomplish the specified purposes. In practice, know-
ing the minimal set of data elements needed for a particular purpose is difficult
because systems do not distinguish between minimum necessary to complete
a task and necessary to complete a task. Future HDB systems should be able
to provide insight on this minimum necessary data set by analyzing the in-
formation that was collected for given purposes, but not used.

Intrusion Detection. Hippocratic databases in the future should also
be able to detect illegitimate access by comparing a query access pattern to
the usual and expected access pattern for that particular user and purpose.
This capability advances the HDB safety principle by preventing inappropriate
access through legitimate channels. Bertino, et al. have proposed an approach
to intrusion detection in databases with role-based access control [24]. Their
intrusion detection system uses a Nave Bayes Classifier to mine database logs
formulate user profiles for particular roles within the organization. It then
evaluates each query against the expected behavior for that particular role
to identify intruders. However, the performance and false positive/negative
ratio for similarly styled approaches must still be addressed. Additionally,
constructing various optimization techniques and enforcement models for real-
time database intrusion detection with minimal system impact is a higher level
goal that the research community should target.

Data Integrity. HDB systems should provide guarantees on the sound-
ness of the data that it contains. Individuals should have access to view and
verify the accuracy of their information. Data cleansing [25] can be used to
identify and correct erroneous data. Maintaining the provenance [26] of infor-
mation can also provide an indication of the reliability of the information.

Openness. Hippocratic databases should support the principle of open-
ness, which states that individuals should be able to access all information
stored about them in the database. This allows individuals to know the ex-
tent of the information about them maintained by the data collector. It also
ensures that the individual will be able to review this information, correct any
inaccuracies, and request the deletion of certain information. There are two
significant problems to supporting openness. First, before providing access
to the individual’s private information, the database must be able to verify
the identity of the user [2]. Potential solutions include biometric identifiers,
smart cards, speech recognition, or authentication mechanisms for anonymous
entities [27]. Second, individuals should be able to anonymously determine
whether a particular database contains any information about them [2].

Hippocratic Databases: Current Capabilities and Future Trends 427

5 Conclusion

Since the initial articulation of the Hippocratic Database vision in 2002, sig-
nificant strides have been taken in developing technologies that adhere to the
founding principles. Active enforcement technology supports the principles of
purpose specification, consent, limited use and limited disclosure for relational
database and XML-based systems. Compliance auditing, query ranking, and
curation auditing technologies support the compliance principle. Sovereign In-
formation Integration enables limited use and limited disclosure in distributed
environments with no trusted third parties, while order-preserving encryption
and the Partition Plaintext Ciphertext storage model promote the safety prin-
ciple. Nevertheless, there are many interesting HDB technologies that require
further research, such as improved policy specification, enforcement after data
retrieval, support for filter and deny semantics, limited retention, limited col-
lection, intrusion detection, data integrity, and openness. The growth of elec-
tronic medical and financial records accompanied by many highly publicized
privacy breaches in recent years underscore the importance of continuing re-
search in HDB technology.

References

1. H. Von Staden, translator, “In a Pure and Holy Way: Personal and Professional
Conduct in the Hippocratic Oath,” Journal of the History of Medicine and
Applied Sciences 51, 406–408, 1966.

2. R. Agrawal, J. Kiernan, R. Srikant, Y. Xu., “Hippocratic Databases,” Proceed-
ings of the 28th International Conference on Very Large Databases, Hong Kong,
China, August 2002.

3. K. LeFevre, R. Agrawal, R. Ercegovac, R. Ramakrishnan, Y. Xu, D. DeWitt,
“Limiting Disclosure in Hippocratic Databases,” In Proceedings of the 30th
International Conference on Very Large Databases, Toronto, Canada, August
2004.

4. IBM Hippocratic Database Active Enforcement User Guide,
http://www.almaden.ibm.com/software/projects/iis/hdb/Publications/papers/
HDBEnforcementUserGuide.pdf.

5. R. Agrawal, J. Kiernan, R. Srikant, Y. Xu, “An XPath-based Preference Lan-
guage for P3P,” In Proceedings of the 12th International World Wide Web Con-
ference, Budapest, Hungary, May 2003.

6. R. Agrawal, P. Bird, T. Grandison, J. Kieman, S. Logan, W. Rjaibi, “Extending
Relational Database Systems to Automatically Enforce Privacy Policies,” In
Proceedings of the 21st Int’l Conf. on Data Engineering (ICDE 2005), Tokyo,
Japan, April 2005.

7. E. Bertino, S. Castano, E. Ferrari, “On Specifying Security Policies for Web Doc-
uments with an XML-based Language,” In ACM Symposium on Access Control
Models and Technologies, Chantilly, Virginia, United States, May, 2001.

8. R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, R. Srikant,
“Auditing Compliance with a Hippocratic Database,” In Proceedings of the 30th

428 Tyrone Grandison, Christopher Johnson, and Jerry Kiernan

International Conference on Very Large Databases, Toronto, Canada, August
2004.

9. President’s Information Technology Advisory Committee, Revolutionizing
Health Care through Information Technology, Report to the President of the
United States, June 2004.

10. R.. Motwani, S. Nabar, D, Thomas, “Auditing SQL Queries,” Third Interna-
tional Workshop on Privacy Data Management, in conjunction with the 23rd
International Conference on Data Engineering (ICDE 2007), April, 2007, Istan-
bul, Turkey.

11. R. Agrawal, A. Evfimievski, J. Kiernan, R. Velu, “Auditing Disclosure by Rel-
evance Ranking,” to appear in Proceedings of the 26th ACM SIGMOD Intl
Conference on Management of Data, Beijing, China, June 2007.

12. T. Ager, C. Johnson, J. Kiernan, “Policy-Based Management and Sharing of
Sensitive Information among Government Agencies,” Proceedings of the 25th
IEEE Military Communications Conference (MILCOM), Washington DC, USA,
October 2006.

13. R. Agrawal, A. Evfimievski, R. Srikant. “Information Sharing across Private
Databases,” Proceedings of the ACM SIGMOD Conference on Management of
Data, San Diego, California. June 2003.

14. R. Agrawal, D. Asonov, M. Kantarcioglu, Y. Li, “Sovereign Joins,” Proceedings
of the 22nd International Conference on Data Engineering, Atlanta, Georgia,
USA, April 2006.

15. R. Agrawal, E. Terzi, “On Honesty in Sovereign Information Sharing,” Proceed-
ings of the 10th International Conference on Extending Database Technology,
Munich, Germany, March 2006.

16. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order-Preserving Encryption
for Numeric Data,” Proceedings of the ACM SIGMOD Conference on Manage-
ment of Data, Paris, France, June 2004.

17. B. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, Y. Wu, “A Framework for Ef-
ficient Storage Security in RDBMS,” In Proceedings of the 9th International
Conference on Extending DataBase Technology (EDBT 2004), Heraklion, Crete,
Greece, March 2004.

18. L. Cranor, M. Langheinrich, M. Manchiori, M. Presler-Marshall, J. Reagle, Plat-
form for Privacy Preferences 1.0 (P3P1.0) Specification, W3C Recommendation,
2002.

19. R. Agrawal, C. Johnson, “Securing Electronic Health Records without Impeding
the Flow of Information,” International Journal of Medical Informatics, Vol. 76,
Nos. 5-6, May-June 2007.

20. A. Rosenthal, M. Winslett, “Security of Shared Data in Large Systems: State of
the Art and Research Directions”. Proc. of the 30th Int’l Conf. on Very Large
Databases, Toronto, Canada, August 2004.

21. T. Ager, C. Johnson, J. Kiernan, “Policy-Based Management and Sharing of
Sensitive Information among Government Agencies,” Proceedings of the 25th
IEEE Military Communications Conference (MILCOM), Washington DC, USA,
October 2006.

22. G. Miklau and D. Suciu, “A Formal Analysis of Information Disclosure in Data
Exchange,” Proceedings. of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 2004.

Hippocratic Databases: Current Capabilities and Future Trends 429

23. R. Ananthanarayanan, M. Mohania, A. Gupta, “Management of Conflicting
Obligations in Self-Protecting, Policy-Based Systems,” Second IEEE Interna-
tional Conference on Autonomic Computing, Seattle, Washington, USA, June
2005.

24. E. Bertino, A. Kamra, E. Terzi, A. Vakali, “Intrusion Detection in RBAC-
administered Databases,” Proceedings of the 21st Annual IEEE Computer Se-
curity Applications Conference, Tucson, Arizona, USA, December 2005.

25. H Galhardas, D Florescu, D Shasha, E Simon, “An Extensible Framework for
Data Cleaning.”, Proceedings of the Inter. Conference on Data Engineering, San
Diego, March, 2000.

26. J. Widom. “Trio: A System for Integrated Management of Data, Accuracy, and
Lineage,” Proceedings of the Second Biennial Conference on Innovative Data
Systems Research (CIDR ’05), Pacific Grove, California, January 2005.

27. President’s Information Technology Advisory Committee, “Revolutionizing
Health Care Through Information Technology”. Report to the President of the
United States, June 2004.

18

Privacy-Preserving Data Mining: A Survey

Charu C. Aggarwal and Philip S. Yu

IBM T. J. Watson Research Center
19 Skyline Drive
Hawthorne, NY 10532
{charu,psyu}@us.ibm.com

Summary. In recent years, privacy-preserving data mining has been studied ex-
tensively, because of the wide proliferation of sensitive information on the internet.
A number of algorithmic techniques have been designed for privacy-preserving data
mining. In this paper, we provide a review of the state-of-the-art methods for privacy.
We discuss methods for randomization, k-anonymization, and distributed privacy-
preserving data mining. We also discuss cases in which the output of data mining
applications needs to be sanitized for privacy-preservation purposes. We discuss the
computational and theoretical limits associated with privacy-preservation over high
dimensional data sets.

1 Introduction

In recent years, data mining has been viewed as a threat to privacy because
of the widespread proliferation of electronic data maintained by corporations.
This has lead to increased concerns about the privacy of the underlying data.
In recent years, a number of techniques have been proposed for modifying or
transforming the data in such a way so as to preserve privacy. A survey on
some of the techniques used for privacy-preserving data mining may be found
in [105]. In this chapter, we will study an overview of the state-of-the-art in
privacy-preserving data mining.

Most methods for privacy computations use some form of transformation
on the data in order to perform the privacy preservation. Typically, such
methods reduce the granularity of representation in order to reduce the pri-
vacy. This reduction in granularity results in some loss of effectiveness of data
management or mining algorithms. This is the natural trade-off between in-
formation loss and privacy. Some examples of such techniques are as follows:

• The randomization method: The randomization method is a technique for
privacy-preserving data mining in which noise is added to the data in order
to mask the attribute values of records [2, 5]. The noise added is sufficiently

432 Charu C. Aggarwal and Philip S. Yu

large so that individual record values cannot be recovered. Therefore, tech-
niques are designed to derive aggregate distributions from the perturbed
records. Subsequently, data mining techniques can be developed in order
to work with these aggregate distributions. We will describe the random-
ization technique in greater detail in a later section.

• The k-anonymity model and l-diversity: The k-anonymity model was de-
veloped because of the possibility of indirect identification of records from
public databases. This is because combinations of record attributes can be
used to exactly identify individual records. In the k-anonymity method, we
reduce the granularity of data representation with the use of techniques
such as generalization and suppression. This granularity is reduced suf-
ficiently that any given record maps onto at least k other records in the
data. The l-diversity model was designed to handle some weaknesses in the
k-anonymity model since protecting identities to the level of k-individuals
is not the same as protecting the corresponding sensitive values, especially
when there is homogeneity of sensitive values within a group. To do so,
the concept of intra-group diversity of sensitive values is promoted within
the anonymization scheme [77].

• Distributed privacy preservation: In many cases, individual entities may
wish to derive aggregate results from data sets which are partitioned across
these entities. Such partitioning may be horizontal (when the records are
distributed across multiple entities) or vertical (when the attributes are
distributed across multiple entities). While the individual entities may
not desire to share their entire data sets, they may consent to limited
information sharing with the use of a variety of protocols. The overall
effect of such methods is to maintain privacy for each individual entity,
while deriving aggregate results over the entire data.

• Downgrading Application Effectiveness: In many cases, even though the
data may not be available, the output of applications such as association
rule mining, classification or query processing may result in violations of
privacy. This has lead to research in downgrading the effectiveness of ap-
plications by either data or application modifications. Some examples of
such techniques include association rule hiding [106], classifier downgrad-
ing [83], and query auditing [1].

In this paper, we will provide a broad overview of the different techniques
for privacy-preserving data mining. We will provide a review of the major
algorithms available for each method, and the variations on the different tech-
niques. We will also discuss a number of combinations of different concepts
such as k-anonymous mining over vertically- or horizontally-partitioned data.
We will also discuss a number of unique challenges associated with privacy-
preserving data mining in the high dimensional case.

This paper is organized as follows. In section 2, we will introduce the ran-
domization method for privacy preserving data mining. In section 3, we will
discuss the k-anonymization method along with its different variations. In sec-

Privacy-Preserving Data Mining: A Survey 433

tion 4, we will discuss issues in distributed privacy-preserving data mining. In
section 5, we will discuss a number of techniques for privacy which arise in the
context of sensitive output of a variety of data mining and data management
applications. In section 6, we will discuss some unique challenges associated
with privacy in the high dimensional case. Section 7 contains the conclusions
and discussions.

2 The Randomization Method

In this section, we will discuss the randomization method for privacy-preserving
data mining. The randomization method has been traditionally used in the
context of distorting data by probability distribution for methods such as sur-
veys which have an evasive answer bias because of privacy concerns [69, 111].
This technique has also been extended to the problem of privacy-preserving
data mining [2].

The method of randomization can be described as follows. Consider a set
of data records denoted by X = {x1 . . . xN}. For record xi ∈ X, we add
a noise component which is drawn from the probability distribution fY (y).
These noise components are drawn independently, and are denoted y1 . . . yN .
Thus, the new set of distorted records are denoted by x1 + y1 . . . xN + yN .
We denote this new set of records by z1 . . . zN . In general, it is assumed that
the variance of the added noise is large enough, so that the original record
values cannot be easily guessed from the distorted data. Thus, the original
records cannot be recovered, but the distribution of the original records can
be recovered.

Thus, if X be the random variable denoting the data distribution for the
original record, Y be the random variable describing the noise distribution,
and Z be the random variable denoting the final record, we have:

Z = X + Y

X = Z − Y

Now, we note that N instantiations of the probability distribution Z are
known, whereas the distribution Y is known publicly. For a large enough
number of values of N , the distribution Z can be approximated closely by
using a variety of methods such as kernel density estimation. By subtracting
Y from the approximated distribution of Z, it is possible to approximate the
original probability distribution X. In practice, one can combine the process
of approximation of Z with subtraction of the distribution Y from Z by using
a variety of iterative methods such as those discussed in [2, 5]. Such itera-
tive methods typically have a higher accuracy than the sequential solution of
first approximating Z and then subtracting Y from it. In particular, the EM
method proposed in [5] shows a number of optimal properties in approximat-
ing the distribution of X.

434 Charu C. Aggarwal and Philip S. Yu

We note that at the end of the process, we only have a distribution con-
taining the behavior of X. Individual records are not available. Furthermore,
the distributions are available only along individual dimensions. Therefore,
new data mining algorithms need to be designed to work with the uni-variate
distributions rather than the individual records. This can sometimes be a
challenge, since many data mining algorithms are inherently dependent on
statistics which can only be extracted from either the individual records or
the multi-variate probability distributions associated with the records. While
the approach can certainly be extended to multi-variate distributions, density
estimation becomes inherently more challenging [100] with increasing dimen-
sionalities. For even modest dimensionalities such as 7 to 10, the process of
density estimation becomes increasingly inaccurate, and falls prey to the curse
of dimensionality.

One key advantage of the randomization method is that it is relatively
simple, and does not require knowledge of the distribution of other records
in the data. This is not true of other methods such as k-anonymity which
require the knowledge of other records in the data. Therefore, the randomiza-
tion method can be implemented at data collection time, and does not require
the use of a trusted server containing all the original records in order to per-
form the anonymization process. While this is a strength of the randomization
method, it also leads to some weaknesses, since it treats all records equally
irrespective of their local density. Therefore, outlier records are more suscep-
tible to adversarial attacks as compared to records in more dense regions in
the data [10]. In order to guard against this, one may need to be needlessly
more aggressive in adding noise to all the records in the data. This reduces
the utility of the data for mining purposes.

The randomization method has been extended to a variety of data min-
ing problems. In [2], it was discussed how to use the approach for classifica-
tion. A number of other techniques [124, 126] have also been proposed which
seem to work well over a variety of different classifiers. Techniques have also
been proposed for privacy-preserving methods of improving the effectiveness
of classifiers. For example, the work in [47] proposes methods for privacy-
preserving boosting of classifiers. Methods for privacy-preserving mining of
association rules have been proposed in [44, 95]. The problem of association
rules is especially challenging because of the discrete nature of the attributes
corresponding to presence or absence of items. In order to deal with this issue,
the randomization technique needs to be modified slightly. Instead of adding
quantitative noise, random items are dropped or included with a certain prob-
ability. The perturbed transactions are then used for aggregate association
rule mining. This technique has shown to be extremely effective in [44]. The
randomization approach has also been extended to other applications such as
OLAP [3], and SVD based collaborative filtering [91].

Privacy-Preserving Data Mining: A Survey 435

2.1 Privacy Quantification

The quantity used to measure privacy should indicate how closely the original
value of an attribute can be estimated. The work in [2] uses a measure that
defines privacy as follows: If the original value can be estimated with c% con-
fidence to lie in the interval [α1, α2], then the interval width (α2 −α1) defines
the amount of privacy at c% confidence level. For example, if the perturbing
additive is uniformly distributed in an interval of width 2α, then α is the
amount of privacy at confidence level 50% and 2α is the amount of privacy at
confidence level 100%. However, this simple method of determining privacy
can be subtly incomplete in some situations. This can be best explained by
the following example.

Example 1. Consider an attribute X with the density function fX(x) given
by:

fX(x) = 0.5 0 ≤ x ≤ 1
0.5 4 ≤ x ≤ 5
0 otherwise

Assume that the perturbing additive Y is distributed uniformly between
[−1, 1]. Then according to the measure proposed in [2], the amount of privacy
is 2 at confidence level 100%.

However, after performing the perturbation and subsequent reconstruc-
tion, the density function fX(x) will be approximately revealed. Let us assume
for a moment that a large amount of data is available, so that the distribution
function is revealed to a high degree of accuracy. Since the (distribution of
the) perturbing additive is publically known, the two pieces of information
can be combined to determine that if Z ∈ [−1, 2], then X ∈ [0, 1]; whereas if
Z ∈ [3, 6] then X ∈ [4, 5].

Thus, in each case, the value of X can be localized to an interval of length
1. This means that the actual amount of privacy offered by the perturbing
additive Y is at most 1 at confidence level 100%. We use the qualifier ‘at
most’ since X can often be localized to an interval of length less than one.
For example, if the value of Z happens to be −0.5, then the value of X can
be localized to an even smaller interval of [0, 0.5]. ��

This example illustrates that the method suggested in [2] does not take
into account the distribution of original data. In other words, the (aggregate)
reconstruction of the attribute value also provides a certain level of knowledge
which can be used to guess a data value to a higher level of accuracy. To accu-
rately quantify privacy, we need a method which takes such side-information
into account.

A key privacy measure [5] is based on the differential entropy of a random
variable. The differential entropy h(A) of a random variable A is defined as
follows:

436 Charu C. Aggarwal and Philip S. Yu

h(A) = −
∫

ΩA

fA(a) log2 fA(a) da (1)

where ΩA is the domain of A. It is well-known that h(A) is a measure of
uncertainty inherent in the value of A [99]. It can be easily seen that for a
random variable U distributed uniformly between 0 and a, h(U) = log2(a).
For a = 1, h(U) = 0.

In [5], it was proposed that 2h(A) is a measure of privacy inherent in the
random variable A. This value is denoted by Π(A). Thus, a random variable
U distributed uniformly between 0 and a has privacy Π(U) = 2log2(a) = a.
For a general random variable A, Π(A) denote the length of the interval, over
which a uniformly distributed random variable has the same uncertainty as
A.

Given a random variable B, the conditional differential entropy of A is
defined as follows:

h(A|B) = −
∫

ΩA,B

fA,B(a, b) log2 fA|B=b(a) da db (2)

Thus, the average conditional privacy of A given B is Π(A|B) = 2h(A|B). This
motivates the following metric P(A|B) for the conditional privacy loss of A,
given B:

P(A|B) = 1 − Π(A|B)/Π(A) = 1 − 2h(A|B)/2h(A) = 1 − 2−I(A;B). (3)

where I(A;B) = h(A) − h(A|B) = h(B) − h(B|A). I(A;B) is also known
as the mutual information between the random variables A and B. Clearly,
P(A|B) is the fraction of privacy of A which is lost by revealing B.

As an illustration, let us reconsider Example 1 given above. In this case,
the differential entropy of X is given by:

h(X) = −
∫

ΩX

fX(x) log2 fX(x) dx = 1 (4)

Thus the privacy of X, Π(X) = 21 = 2. In other words, X has as much
privacy as a random variable distributed uniformly in an interval of length
2. The density function of the perturbed value Z is given by fZ(z) =∫ ∞
−∞ fX(ν)fY (z − ν) dν.

Using fZ(z), we can compute the differential entropy h(Z) of Z. It turns
out that h(Z) = 9/4. Therefore, we have:

I(X;Z) = h(Z) − h(Z|X) = 9/4 − h(Y) = 9/4 − 1 = 5/4 (5)

Here, the second equality h(Z|X) = h(Y) follows from the fact that X and
Y are independent and Z = X + Y . Thus, the fraction of privacy loss in this
case is P(X|Z) = 1 − 2−5/4 = 0.5796. Therefore, after revealing Z, X has
privacy Π(X|Z) = Π(X)× (1−P(X|Z)) = 2× (1.0− 0.5796) = 0.8408. This
value is less than 1, since X can be localized to an interval of length less than
one for many values of Z.

Privacy-Preserving Data Mining: A Survey 437

2.2 Adversarial Attacks on Randomization

In the earlier section on privacy quantification, we illustrated an example in
which the reconstructed distribution on the data can be used in order to reduce
the privacy of the underlying data record. In general, a systematic approach
can be used to do this in multi-dimensional data sets with the use of spectral
filtering or PCA based techniques [50, 62]. The broad idea in techniques such
as PCA [50] is that the correlation structure in the original data can be
estimated fairly accurately (in larger data sets) even after noise addition. Once
the broad correlation structure in the data has been determined, one can then
try to remove the noise in the data in such a way that it fits the aggregate
correlation structure of the data. It has been shown that such techniques can
reduce the privacy of the perturbation process significantly since the noise
removal results in values which are fairly close to their original values [50, 62].
Some other discussions on limiting breaches of privacy in the randomization
method may be found in [43].

A second kind of adversarial attack is with the use of public information.
Consider a record X = (x1 . . . xd), which is perturbed to Z = (z1 . . . zd).
Then, since the distribution of the perturbations is known, we can try to use
a maximum likelihood fit of the potential perturbation of Z to a public record.
Consider the publicly public record W = (w1 . . . wd). Then, the potential per-
turbation of Z with respect to W is given by (Z −W) = (z1 −w1 . . . zd −wd).
Each of these values (zi − wi) should fit the distribution fY (y). The corre-
sponding log-likelihood fit is given by −

∑d
i=1 log(fy(zi−wi)). The higher the

log-likelihood fit, the greater the probability that the record W corresponds
to X. If it is known that the public data set always includes X, then the
maximum likelihood fit can provide a high degree of certainty in identifying
the correct record, especially in cases where d is large. We will discuss this
issue in greater detail in a later section.

2.3 Randomization Methods for Data Streams

The randomization approach is particularly well suited to privacy-preserving
data mining of streams, since the noise added to a given record is indepen-
dent of the rest of the data. However, streams provide a particularly vul-
nerable target for adversarial attacks with the use of PCA based techniques
[50] because of the large volume of the data available for analysis. In [73],
an interesting technique for randomization has been proposed which uses the
auto-correlations in different time series while deciding the noise to be added
to any particular value. It has been shown in [73] that such an approach
is more robust since the noise correlates with the stream behavior, and it is
more difficult to create effective adversarial attacks with the use of correlation
analysis techniques.

438 Charu C. Aggarwal and Philip S. Yu

2.4 Multiplicative Perturbations

The most common method of randomization is that of additive perturba-
tions. However, multiplicative perturbations can also be used to good effect
for privacy-preserving data mining. Many of these techniques derive their roots
in the work of [57] which shows how to use multi-dimensional projections in
order to reduce the dimensionality of the data. This technique preserves the
inter-record distances approximately, and therefore the transformed records
can be used in conjunction with a variety of data mining applications. In par-
ticular, the approach is discussed in detail in [87, 88], in which it is shown how
to use the method for privacy-preserving clustering. The technique can also
be applied to the problem of classification as discussed in [25]. Multiplicative
perturbations can also be used for distributed privacy-preserving data mining.
Details can be found in [75]. A number of techniques for multiplicative pertur-
bation in the context of masking census data may be found in [66]. A variation
on this theme may be implemented with the use of distance preserving Fourier
transforms, which work effectively for a variety of cases [82].

As in the case of additive perturbations, multiplicative perturbations are
not entirely safe from adversarial attacks. In general, if the attacker has no
prior knowledge of the data, then it is relatively difficult to attack the privacy
of the transformation. However, with some prior knowledge, two kinds of
attacks are possible [76]:

• Known Input-Output Attack: In this case, the attacker knows some
linearly independent collection of records, and their corresponding per-
turbed version. In such cases, linear algebra techniques can be used to
reverse-engineer the nature of the privacy preserving transformation.

• Known Sample Attack: In this case, the attacker has a collection of in-
dependent data samples from the same distribution from which the original
data was drawn. In such cases, principal component analysis techniques
can be used in order to reconstruct the behavior of the original data.

2.5 Data Swapping

We note that noise addition or multiplication is not the only technique which
can be used to perturb the data. A related method is that of data swapping,
in which the values across different records are swapped in order to perform
the privacy-preservation [45]. One advantage of this technique is that the
lower order marginal totals of the data are completely preserved and are not
perturbed at all. Therefore certain kinds of aggregate computations can be
exactly performed without violating the privacy of the data. We note that this
technique does not follow the general principle in randomization which allows
the value of a record to be perturbed independent;y of the other records.
Therefore, this technique can be used in combination with other frameworks
such as k-anonymity, as long as the swapping process is designed to preserve
the definitions of privacy for that model.

Privacy-Preserving Data Mining: A Survey 439

3 The k-Anonymity Framework

The randomization method is a simple technique which can be easily imple-
mented at data collection time, because the noise added to a given record is
independent of the behavior of other data records. This is also a weakness be-
cause outlier records can often be difficult to mask. Clearly, in cases in which
the privacy-preservation does not need to be performed at data-collection
time, it is desirable to have a technique in which the level of inaccuracy de-
pends upon the behavior of the locality of that given record. Another key
weakness of the randomization framework is that it does not consider the
possibility that publicly available records can be used to identify the identity
of the owners of that record. In [10], it has been shown that the use of pub-
licly available records can lead to the privacy getting heavily compromised in
high-dimensional cases. This is especially true of outlier records which can be
easily distinguished from other records in their locality.

In many applications, the data records are made available by simply remov-
ing key identifiers such as the name and social-security numbers from personal
records. However, other kinds of attributes (known as pseudo-identifiers) can
be used in order to accurately identify the records. Foe example, attributes
such as age, zip-code and sex are available in public records such as census
rolls. When these attributes are also available in a given data set, they can be
used to infer the identity of the corresponding individual. A combination of
these attributes can be very powerful, since they can be used to narrow down
the possibilities to a small number of individuals.

In k-anonymity techniques [98], we reduce the granularity of representation
of these pseudo-identifiers with the use of techniques such as generalization
and suppression. In the method of generalization, the attribute values are
generalized to a range in order to reduce the granularity of representation.
For example, the date of birth could be generalized to a range such as year of
birth, so as to reduce the risk of identification. In the method of suppression,
the value of the attribute is removed completely. It is clear that such methods
reduce the risk of identification with the use of public records, while reducing
the accuracy of applications on the transformed data.

In order to reduce the risk of identification, the k-anonymity approach
requires that every tuple in the table be indistinguishability related to no
fewer than k respondents. This can be formalized as follows:

Definition 1. Each release of the data must be such that every combination
of values of quasi-identifiers can be indistinguishably matched to at least k
respondents.

The first algorithm for k-anonymity was proposed in [98]. The approach uses
domain generalization hierarchies of the quasi-identifiers in order to build k-
anonymous tables. The concept of k-minimal generalization has been proposed
in [98] in order to limit the level of generalization for maintaining as much data
precision as possible for a given level of anonymity. Subsequently, the topic of

440 Charu C. Aggarwal and Philip S. Yu

k-anonymity has been widely researched. A good overview and survey of the
corresponding algorithms may be found in [28].

We note that the problem of optimal anonymization is inherently a difficult
one. In [80], it has been shown that the problem of optimal k-anonymization
is NP-hard. Nevertheless, the problem can be solved quite effectively by the
use of a number of heuristic methods. A method proposed by Bayardo and
Agrawal [16] is the k-Optimize algorithm which can often obtain effective
solutions.

The approach assumes an ordering among the quasi-identifier attributes.
The values of the attributes are discretized into intervals (quantitative at-
tributes) or grouped into different sets of values (categorical attributes). Each
such grouping is an item. For a given attribute, the corresponding items are
also ordered. An index is created using these attribute-interval pairs (or items)
and a set enumeration tree is constructed on these attribute-interval pairs.
This set enumeration tree is a systematic enumeration of all possible general-
izations with the use of these groupings. The root of the node is the null node,
and every successive level of the tree is constructed by appending one item
which is lexicographically larger than all the items at that node of the tree.
We note that the number of possible nodes in the tree increases exponentially
with the data dimensionality. Therefore, it is not possible to build the entire
tree even for modest values of n. However, the k-Optimize algorithm can use
a number of pruning strategies to good effect. In particular, a node of the
tree can be pruned when it is determined that no descendent of it could be
optimal. This can be done by computing a bound on the quality of all descen-
dents of that node, and comparing it to the quality of the current best solution
obtained during the traversal process. A branch and bound technique can be
used to successively improve the quality of the solution during the traversal
process. Eventually, it is possible to terminate the algorithm at a maximum
computational time, and use the current solution at that point, which is often
quite good, but may not be optimal.

In [70], the Incognito method has been proposed for computing a k-minimal
generalization with the use of bottom-up aggregation along domain generaliza-
tion hierarchies. The Incognito method uses a bottom-up breadth-first search
of the domain generalization hierarchy, in which it generates all the possi-
ble minimal k-anonymous tables for a given private table. First, it checks
k-anonymity for each single attribute, and removes all those generalizations
which do not satisfy k-anonymity. Then, it computes generalizations in pairs,
again pruning those pairs which do not satisfy the k-anonymity constraints.
In general, the Incognito algorithm computes (i + 1)-dimensional generaliza-
tion candidates from the i-dimensional generalizations, and removes all those
those generalizations which do not satisfy the k-anonymity constraint. This
approach is continued until, no further candidates can be constructed, or all
possible dimensions have been exhausted. We note that the methods in [71, 70]
use a more general model for k-anonymity than that in [98]. This is because

Privacy-Preserving Data Mining: A Survey 441

the method in [98] assumes that the value generalization hierarchy is a tree,
whereas that in [71, 70] assumes that it is a graph.

Two interesting methods for top-down specialization and bottom-up gener-
alization for k-anonymity have been proposed in [46, 107]. In [46], a top-down
heuristic is designed, which starts with a general solution, and then specializes
some attributes of the current solution so as to increase the information, but
reduce the anonymity. The reduction in anonymity is always controlled, so
that k-anonymity is never violated. At the same time each step of the spe-
cialization is controlled by a goodness metric which takes into account both
the gain in information and the loss in anonymity. A complementary method
to top down specialization is that of bottom up generalization, for which an
interesting method is proposed in [107].

We note that generalization and suppression are not the only transfor-
mation techniques for implementing k-anonymity. For example in [35] it is
discussed how to use micro-aggregation in which clusters of records are con-
structed. For each cluster, its representative value is the average value along
each dimension in the cluster. A similar method for achieving anonymity via
clustering is proposed in [13]. The work in [13] also provides constant factor
approximation algorithms to design the clustering. In [8], a related method
has been independently proposed for condensation based privacy-preserving
data mining. This technique generates pseudo-data from clustered groups of
k-records. The process of pseudo-data generation uses principal component
analysis of the behavior of the records within a group. It has been shown in
[8], that the approach can be effectively used for the problem of classification.
We note that the use of pseudo-data provides an additional layer of protec-
tion, since it is difficult to perform adversarial attacks on synthetic data. At
the same time, the aggregate behavior of the data is preserved, and this can
be useful for a variety of data mining problems.

Since the problem of k-anonymization is essentially a search over a space
of possible multi-dimensional solutions, standard heuristic search techniques
such as genetic algorithms or simulated annealing can be effectively used.
Such a technique has been proposed in [112] in which a simulated annealing
algorithm is used in order to generate k-anonymous representations of the
data. Another technique proposed in [55] uses genetic algorithms in order to
construct k-anonymous representations of the data. Both of these techniques
require high computational times, and provide no guarantees on the quality
of the solutions found.

The only known techniques which provide guarantees on the quality of the
solution are approximation algorithms [11, 12, 80], in which the solution found
is guaranteed to be within a certain factor of the cost of the optimal solution.
An approximation algorithm for k-anonymity was proposed in [80], and it
provides an O(k · logk) optimal solution. A number of techniques have also
been proposed in [11, 12], which provide O(k)-approximations to the optimal
cost k-anonymous solutions.

442 Charu C. Aggarwal and Philip S. Yu

In many cases, associations between pseudo-identifiers and sensitive at-
tributes can be protected by using multiple views, such that the pseudo-
identifiers and sensitive attributes occur in different views of the table. Thus,
only a small subset of the selected views may be made available. It may be
possible to achieve k-anonymity because of the lossy nature of the join across
the two views. In the event that the join is not lossy enough, it may result in
a violation of k-anonymity. In [121], the problem of violation of k-anonymity
using multiple views has been studied. It has been shown that the problem
is NP-hard in general. It has been shown in [121] that a polynomial time
algorithm is possible if functional dependencies exist between the different
views.

An interesting analysis of the safety of k-anonymization methods has been
discussed in [68]. It tries to model the effectiveness of a k-anonymous represen-
tation, given that the attacker has some prior knowledge about the data such
as a sample of the original data. Clearly, the more similar the sample data is
to the true data, the greater the risk. The technique in [68] uses this fact to
construct a model in which it calculates the expected number of items iden-
tified. This kind of technique can be useful in situations where it is desirable
to determine whether or not anonymization should be used as the technique
of choice for a particular situation.

3.1 Personalized Privacy Preservation

Not all individuals or entities are equally concerned about their privacy. For
example, a corporation may have very different constraints on the privacy of
its records as compared to an individual. This leads to the natural problem
that we may wish to treat the records in a given data set very differently
for anonymization purposes. From a technical point of view, this means that
the value of k for anonymization is not fixed but may vary with the record.
A condensation-based approach [9] has been proposed for privacy-preserving
data mining in the presence of variable constraints on the privacy of the data
records. This technique constructs groups of non-homogeneous size from the
data, such that it is guaranteed that each record lies in a group whose size is
at least equal to its anonymity level. Subsequently, pseudo-data is generated
from each group so as to create a synthetic data set with the same aggregate
distribution as the original data.

Another interesting model of personalized anonymity is discussed in [114]
in which a person can specify the level of privacy for his or her sensitive
values. This technique assumes that an individual can specify a node of the
domain generalization hierarchy in order to decide the level of anonymity that
he can work with. This approach has the advantage that it allows for direct
protection of the sensitive values of individuals than a vanilla k-anonymity
method which is susceptible to different kinds of attacks.

Privacy-Preserving Data Mining: A Survey 443

3.2 Utility Based Privacy Preservation

The process of privacy-preservation leads to loss of information for data min-
ing purposes. This loss of information can also be considered a loss of utility
for data mining purposes. Since some negative results [7] on the curse of
dimensionality suggest that a lot of attributes may need to be suppressed
in order to preserve anonymity, it is extremely important to do this care-
fully in order to preserve utility. We note that many anonymization methods
[16, 46, 77, 108] use cost measures in order to measure the information loss
from the anonymization process. examples of such utility measures include
generalization height [16], size of anonymized group [77], discernability mea-
sures of attribute values [16], and privacy information loss ratio[108]. In ad-
dition, a number of metrics such as the classification metric [55] explicitly try
to perform the privacy-preservation in such a way so as to tailor the results
with use for specific applications such as classification.

The problem of utility-based privacy-preserving data mining was first stud-
ied formally in [65]. The broad idea in [65] is to ameliorate the curse of dimen-
sionality by separately publishing marginal tables containing attributes which
have utility, but are also problematic for privacy-preservation purposes. The
generalizations performed on the marginal tables and the original tables in
fact do not need to be the same. It has been shown that this broad approach
can preserve considerable utility of the data set without violating privacy.

A method for utility-based data mining using local recoding was proposed
in [116]. The approach is based on the fact that different attributes have dif-
ferent utility from an application point of view. Most anonymization methods
are global, in which a particular tuple value is mapped to the same generalized
value globally. In local recoding, the data space is partitioned into a number
of regions, and the mapping of the tuple to the generalizes value is local to
that region. Clearly, this kind of approach has greater flexibility, since it can
tailor the generalization process to a particular region of the data set. In [116],
it has been shown that this method can perform quite effectively because of
its local recoding strategy.

Another indirect approach to utility based anonymization is to make the
privacy-preservation algorithms more aware of the workload [72]. Typically,
data recipients may request only a subset of the data in many cases, and the
union of these different requested parts of the data set is referred to as the
workload. Clearly, a workload in which some records are used more frequently
than others tends to suggest a different anonymization than one which is based
on the entire data set. In [72], an effective and efficient algorithm has been
proposed for workload aware anonymization.

3.3 Sequential Releases

Privacy-preserving data mining poses unique problems for dynamic applica-
tions such as data streams because in such cases, the data is released sequen-
tially. In other cases, different views of the table may be released sequentially.

444 Charu C. Aggarwal and Philip S. Yu

Once a data block is released, it is no longer possible to go back and increase
the level of generalization. On the other hand, new releases may sharpen an
attacker’s view of the data and may make the overall data set more suscep-
tible to attack. For example, when different views of the data are released
sequentially, then one may use a join on the two releases [109] in order to
sharpen the ability to distinguish particular records in the data. A technique
discussed in [109] relies on lossy joins in order to cripple an attack based on
global quasi-identifiers. The intuition behind this approach is that if the join
is lossy enough, it will reduce the confidence of the attacker in relating the
release from previous views to the current release. Thus, the inability to link
successive releases is key in preventing further discovery of the identity of
records.

3.4 The l-diversity Method

The k-anonymity is an attractive technique because of the simplicity of the
definition and the numerous algorithms available to perform the anonymiza-
tion. Nevertheless the technique is susceptible to many kinds of attacks espe-
cially when background knowledge is available to the attacker. Some kinds of
such attacks are as follows:

• Homogeneity Attack: In this attack, all the values for a sensitive at-
tribute within a group of k records are the same. Therefore, even though
the data is k-anonymized, the value of the sensitive attribute for that group
of k records can be predicted exactly.

• Background Knowledge Attack: In this attack, the adversary can use
an association between one or more quasi-identifier attributes with the
sensitive attribute in order to narrow down possible values of the sensitive
field further. An example given in [77] is one in which background knowl-
edge of low incidence of heart attacks among Japanese could be used to
narrow down information for the sensitive field of what disease a patient
might have.

Clearly, while k-anonymity is effective in preventing identification of a record,
it may not always be effective in preventing inference of the sensitive values
of the attributes of that record. Therefore, the technique of l-diversity was
proposed which not only maintains the minimum group size of k, but also
focuses on maintaining the diversity of the sensitive attributes. Therefore, the
l-diversity model [77] for privacy is defined as follows:

Definition 2. Let a q∗-block be a set of tuples such that its non-sensitive val-
ues generalize to q∗. A q∗-block is l-diverse if it contains l ”well represented”
values for the sensitive attribute S. A table is l-diverse, if every q∗-block in it
is l-diverse.

A number of different instantiations for the l-diversity definition are discussed
in [77]. We note that when there are multiple sensitive attributes, then the

Privacy-Preserving Data Mining: A Survey 445

l-diversity problem because especially challenging. Methods have been pro-
posed in [77] for constructing l-diverse tables from the data set, though the
technique remains susceptible to the curse of dimensionality [7]. Other meth-
ods for creating l-diverse tables are discussed in [115], in which a simple and
efficient method for constructing the l-diverse representation is proposed.

4 Distributed Privacy-Preserving Data Mining

The key goal in most distributed methods for privacy-preserving data min-
ing is to allow computation of useful aggregate statistics over the entire data
set without compromising the privacy of the individual data sets within the
different participants. Thus, the participants may wish to collaborate in ob-
taining aggregate results, but may not fully trust each other in terms of the
distribution of their own data sets. For this purpose, the data sets may either
be horizontally partitioned or be vertically partitioned. In horizontally parti-
tioned data sets, the individual records are spread out across multiple entities,
each of which have the same set of attributes. In vertical partitioning, the in-
dividual entities may have different attributes (or views) of the same set of
records. Both kinds of partitioning pose different challenges to the problem of
distributed privacy-preserving data mining.

The problem of distributed privacy-preserving data mining overlaps closely
with a field in cryptography for determining secure multi-party computations.
A broad overview of the intersection between the fields of cryptography and
privacy-preserving data mining may be found in [90]. The broad approach
to cryptographic methods tends to compute functions over inputs provided
by multiple recipients without actually sharing the inputs with one another.
For example, in a 2-party setting, Alice and Bob may have two inputs x and
y respectively, and may wish to both compute the function f(x, y) without
revealing x or y to each other. This problem can also be generalized across k
parties by designing the k argument function h(x1 . . . xk). Many data mining
algorithms may be viewed in the context of repetitive computations of many
such primitive functions such as the scalar dot product, secure sum etc. In
order to compute the function f(x, y) or h(x1 . . . , xk), a protocol will have
to designed for exchanging information in such a way that the function is
computed without compromising privacy. We note that the robustness of the
protocol depends upon the level of trust one is willing to place on the two
participants Alice and Bob. This is because the protocol may be subjected to
various kinds of adversarial behavior:

• Semi-honest Adversaries: In this case, the participants Alice and Bob
are curious and attempt to learn from the information received by them
during the protocol, but do not deviate from the protocol themselves. In
many situations, this may be considered a realistic model of adversarial
behavior.

446 Charu C. Aggarwal and Philip S. Yu

• Malicious Adversaries: In this case, Alice and Bob may vary from the
protocol, and may send sophisticated inputs to one another to learn from
the information received from each other.

A key building-block for many kinds of secure function evaluations is the
1 out of 2 oblivious-transfer protocol. This protocol was proposed in [42, 93]
and involves two parties: a sender, and a receiver. The sender’s input is a pair
(x0, x1), and the receiver’s input is a bit value σ ∈ {0, 1}. At the end of the
process, the receiver learns xσ only, and the sender learns nothing. A number
of simple solutions can be designed for this task. In one solution [42, 49], the
receiver generates two random public keys, K0 and K1, but the receiver knows
only the decryption key for Kσ. The receiver sends these keys to the sender,
who encrypts x0 with K0, x1 with K1, and sends the encrypted data back
to the receiver. At this point, the receiver can only decrypt xσ, since this is
the only input for which they have the decryption key. We note that this is
a semi-honest solution, since the intermediate steps require an assumption of
trust. For example, it is assumed that when the receiver sends two keys to the
sender, they indeed know the decryption key to only one of them. In order to
deal with the case of malicious adversaries, one must ensure that the sender
chooses the public keys according to the protocol. An efficient method for
doing so is described in [85]. In [85], generalizations of the 1 out of 2 oblivious
transfer protocol to the 1 out N case and k out of N case are described.

Since the oblivious transfer protocol is used as a building block for secure
multi-party computation, it may be repeated many times over a given func-
tion evaluation. Therefore, the computational effectiveness of the approach is
important. Efficient methods for both semi-honest and malicious adversaries
are discussed in [85]. More complex problems in this domain include the com-
putation of probabilistic functions over a number of multi-party inputs [118].
Such powerful techniques can be used in order to abstract out the primitives
from a number of computationally intensive data mining problems. Many of
the above techniques have been described for the 2-party case, though generic
solutions also exist for the multiparty case. Some important solutions for the
multiparty case may be found in [22].

The oblivious transfer protocol can be used in order to compute several
data mining primitives related to vector distances in multi-dimensional space.
A classic problem which is often used as a primitive for many other prob-
lems is that of computing the scalar dot-product in a distributed environment
[54]. A fairly general set of methods in this direction are described in [36].
Many of these techniques work by sending changed or encrypted versions of
the inputs to one another in order to compute the function with the differ-
ent alternative versions followed by an oblivious transfer protocol to retrieve
the correct value of the final output. A systematic framework is described in
[36] to transform normal data mining problems to secure multi-party compu-
tation problems. The problems discussed in [36] include those of clustering,
classification, association rule mining, data summarization, and generaliza-

Privacy-Preserving Data Mining: A Survey 447

tion. A second set of methods for distributed privacy-preserving data mining
is discussed in [29] in which the secure multi-party computation of a number
of important data mining primitives is discussed. These methods include the
secure sum, the secure set union, the secure size of set intersection and the
scalar product. These techniques can be used as data mining primitives for
secure multi-party computation over a variety of horizontally and vertically
partitioned data sets. Next, we will discuss algorithms for secure multi-party
computation over horizontally partitioned data sets.

4.1 Distributed Algorithms over Horizontally Partitioned Data
Sets

In horizontally partitioned data sets, different sites contain different sets of
records with the same (or highly overlapping) set of attributes which are
used for mining purposes. Many of these techniques use specialized versions
of the general methods discussed in [29, 36] for various problems. The work
in [74] discusses the construction of a popular decision tree induction method
called ID3 with the use of approximations of the best splitting attributes.
Subsequently, a variety of classifiers have been generalized to the problem of
horizontally-partitioned privacy preserving mining including the Naive Bayes
Classifier [61], and the SVM Classifier with nonlinear kernels [122]. An ex-
treme solution for the horizontally partitioned case is discussed in [120], in
which privacy-preserving classification is performed in a fully distributed set-
ting, where each customer has private access to only their own record. A host
of other data mining applications have been generalized to the problem of hor-
izontally partitioned data sets. These include the applications of association
rule mining [60], clustering [53, 58, 59] and collaborative filtering [92]. Meth-
ods for cooperative statistical analysis using secure multi-party computation
methods are discussed in [37, 38].

A related problem is that of information retrieval and document index-
ing in a network of content providers. This problem arises in the context of
multiple providers which may need to cooperate with one another in sharing
their content, but may essentially be business competitors. In [15], it has been
discussed how an adversary may use the output of search engines and con-
tent providers in order to reconstruct the documents. Therefore, the level of
trust required grows with the number of content providers. A solution to this
problem [15] constructs a centralized privacy-preserving index in conjunction
with a distributed access control mechanism. The privacy-preserving index
maintains strong privacy guarantees even in the face of colluding adversaries,
and even if the entire index is made public.

4.2 Distributed Algorithms over Vertically Partitioned Data

For the vertically partitioned case, many primitive operations such as com-
puting the scalar product or the secure set size intersection can be useful in

448 Charu C. Aggarwal and Philip S. Yu

computing the results of data mining algorithms. For example, the methods in
[54] discuss how to use to scalar dot product computation for frequent itemset
counting. The process of counting can also be achieved by using the secure
size of set intersection as described in [29]. Another method for association
rule mining discussed in [101] uses the secure scalar product over the vertical
bit representation of itemset inclusion in transactions, in order to compute the
frequency of the corresponding itemsets. This key step is applied repeatedly
within the framework of a roll up procedure of itemset counting. It has been
shown in [101] that this approach is quite effective in practice.

The approach of vertically partitioned mining has been extended to a vari-
ety of data mining applications such as decision trees [104], SVM Classification
[123], Naive Bayes Classifier [103], and k-means clustering [102]. A number
of theoretical results on the ability to learn different kinds of functions in
vertically partitioned databases with the use of cryptographic approaches are
discussed in [39].

4.3 Distributed Algorithms for k-Anonymity

In many cases, it is important to maintain k-anonymity across different dis-
tributed parties. In [56], a k-anonymous protocol for data which is vertically
partitioned across two parties is described. The broad idea is for the two
parties to agree on the quasi-identifier to generalize to the same value before
release. A similar approach is discussed in [110], in which the two parties agree
on how the generalization is to be performed before release.

In [125], an approach has been discussed for the case of horizontally par-
titioned data. The work in [125] discusses an extreme case in which each site
is a customer which owns exactly one tuple from the data. It is assumed that
the data record has both sensitive attributes and quasi-identifier attributes.
The solution uses encryption on the sensitive attributes. The sensitive values
can be decrypted only if therefore are at least k records with the same values
on the quasi-identifiers. Thus, k-anonymity is maintained.

The issue of k-anonymity is also important in the context of hiding iden-
tification in the context of distributed location based services [17, 48]. In this
case, k-anonymity of the user-identity is maintained even when the location
information is released. Such location information is often released when a
user may send a message at any point from a given location.

A similar issue arises in the context of communication protocols in which
the anonymity of senders (or receivers) may need to be protected. A message is
said to be sender k-anonymous, if it is guaranteed that an attacker can at most
narrow down the identity of the sender to k individuals. Similarly, a message
is said to be receiver k-anonymous, if it is guaranteed that an attacker can at
most narrow down the identity of the receiver to k individuals. A number of
such techniques have been discussed in [52, 116, 119].

Privacy-Preserving Data Mining: A Survey 449

5 Privacy-Preservation of Application Results

In many cases, the output of applications can be used by an adversary in order
to make significant inferences about the behavior of the underlying data. In
this section, we will discuss a number of miscellaneous methods for privacy-
preserving data mining which tend to preserve the privacy of the end results of
applications such as association rule mining and query processing. This prob-
lem is related to that of disclosure control [1] in statistical databases, though
advances in data mining methods provide increasingly sophisticated meth-
ods for adversaries to make inferences about the behavior of the underlying
data. In cases, where the commercial data needs to be shared, the associa-
tion rules may represent sensitive information for target-marketing purposes,
which needs to be protected from inference.

In this section, we will discuss the issue of disclosure control for a num-
ber of applications such as association rule mining, classification, and query
processing. The key goal here is to prevent adversaries from making infer-
ences from the end results of data mining and management applications. A
broad discussion of the security and privacy implications of data mining are
presented in [30]. We will discuss each of the applications below:

5.1 Association Rule Hiding

Recent years have seen tremendous advances in the ability to perform as-
sociation rule mining effectively. Such rules often encode important target
marketing information about a business. Some of the earliest work on the
challenges of association rule mining for database security may be found in
[14]. Two broad approaches are used for association rule hiding:

• Distortion: In distortion [89], the entry for a given transaction is modified
to a different value. Since, we are typically dealing with binary transac-
tional data sets, the entry value is flipped.

• Blocking: In blocking [96], the entry is not modified, but is left incom-
plete. Thus, unknown entry values are used to prevent discovery of asso-
ciation rules.

We note that both the distortion and blocking processes have a number of side
effects on the non-sensitive rules in the data. Some of the non-sensitive rules
may be lost along with sensitive rules, and new ghost rules may be created
because of the distortion or blocking process. Such side effects are undesirable
since they reduce the utility of the data for mining purposes.

A formal proof of the NP-hardness of the distortion method for hiding
association rule mining may be found in [14]. In [14], techniques are proposed
for changing some of the 1-values to 0-values so that the support of the corre-
sponding sensitive rules is appropriately lowered. The utility of the approach
was defined by the number of non-sensitive rules whose support was also low-
ered by using such an approach. This approach was extended in [31] in which

450 Charu C. Aggarwal and Philip S. Yu

both support and confidence of the appropriate rules could be lowered. In this
case, 0-values in the transactional database could also change to 1-values. In
many cases, this resulted in spurious association rules (or ghost rules) which
was an undesirable side effect of the process. A complete description of the
various methods for data distortion for association rule hiding may be found in
[106]. Another interesting piece of work which balances privacy and disclosure
concerns of sanitized rules may be found in [89].

The broad idea of blocking was proposed in [20]. The attractiveness of the
blocking approach is that it maintains the truthfulness of the underlying data,
since it replaces a value with an unknown (often represented by ’?’) rather
than a false value. Some interesting algorithms for using blocking for associa-
tion rule hiding are presented in [97]. The work has been further extended in
[96] with a discussion of the effectiveness of reconstructing the hidden rules.
Another interesting set of techniques for association rule hiding with limited
side effects is discussed in [113]. The objective of this method is to reduce the
loss of non-sensitive rules, or the creation of ghost rules during the rule hiding
process.

In [6], it has been discussed how blocking techniques for hiding association
rules can be used to prevent discovery of sensitive entries in the data set by an
adversary. In this case, certain entries in the data are classified as sensitive,
and only rules which disclose such entries are hidden. An efficient depth-first
association mining algorithm is proposed for this task [6]. It has been shown
that the methods can effectively reduce the disclosure of sensitive entries with
the use of such a hiding process.

5.2 Downgrading Classifier Effectiveness

An important privacy-sensitive application is that of classification, in which
the results of a classification application may be sensitive information for the
owner of a data set. Therefore the issue is to modify the data in such a way
that the accuracy of the classification process is reduced, while retaining the
utility of the data for other kinds of applications. A number of techniques have
been discussed in [21, 83] in reducing the classifier effectiveness in context of
classification rule and decision tree applications. The notion of parsimonious
downgrading is proposed [21] in the context of blocking out inference channels
for classification purposes while mining the effect to the overall utility. A
system called Rational Downgrader [83] was designed with the use of these
principles.

The methods for association rule hiding can also be generalized to rule
based classifiers. This is because rule based classifiers often use association rule
mining methods as subroutines, so that the rules with the class labels in their
consequent are used for classification purposes. For a classifier downgrading
approach, such rules are sensitive rules, whereas all other rules (with non-class
attributes in the consequent) are non-sensitive rules. An example of a method

Privacy-Preserving Data Mining: A Survey 451

for rule based classifier downgradation is discussed in [86] in which it has been
shown how to effectively hide classification rules for a data set.

5.3 Query Auditing and Inference Control

Many sensitive databases are not available for public access, but may have
a public interface through which aggregate querying is allowed. This leads to
the natural danger that a smart adversary may pose a sequence of queries
through which he or she may infer sensitive facts about the data. The nature
of this inference may correspond to full disclosure, in which an adversary may
determine the exact values of the data attributes. A second notion is that
of partial disclosure in which the adversary may be able to narrow down the
values to a range, but may not be able to guess the exact value. Most work
on query auditing generally concentrates on the full disclosure setting.

Two broad approaches are designed in order to reduce the likelihood of
sensitive data discovery:

• Query Auditing: In query auditing, we deny one or more queries from
a sequence of queries. The queries to be denied are chosen such that the
sensitivity of the underlying data is preserved. Some examples of query
auditing methods include [34, 64, 84, 94].

• Query Inference Control: In this case, we perturb the underlying data
or the query result itself. The perturbation is engineered in such a way, so
as to preserve the privacy of the underlying data. Examples of methods
which use perturbation of the underlying data include [3, 23, 81]. Examples
of methods which perturb the query result include [19, 33, 39, 40, 41].

An overview of classical methods for query auditing may be found in [1].
The query auditing problem has an online version, in which we do not know
the sequence of queries in advance, and an offline version, in which we do
know this sequence in advance. Clearly, the offline version is open to better
optimization from an auditing point of view.

The problem of query auditing was first studied in [34, 94]. This approach
works for the online version of the query auditing problem. In these works,
the sum query is studied, and privacy is protected by using restrictions on
sizes and pairwise overlaps of the allowable queries. Let us assume that the
query size is restricted to be at most k, and the number of common elements
in pairwise query sets is at most m. Then, if q be the number of elements that
the attacker already knows from background knowledge, it was shown that
[34, 94] that the maximum number of queries allowed is (2 · k − (q + 1))/m.
We note that if N be the total number of data elements, the above expression
is always bounded above by 2 · N . If for some constant c, we choose k = N/c
and m = 1, the approach can only support a constant number of queries,
after which all queries would have to be denied by the auditor. Clearly, this
is undesirable from an application point of view. Therefore, a considerable

452 Charu C. Aggarwal and Philip S. Yu

amount of research has been devoted to increasing the number of queries
which can be answered by the auditor without compromising privacy.

In [63], the problem of sum auditing on sub-cubes of the data cube are
studied, where a query expression is constructed using a string of 0, 1, and
*. The elements to be summed up are determined by using matches to the
query string pattern. In [67], the problem of auditing a database of boolean
values is studied for the case of sum and max queries. In [18], and approach for
query auditing is discussed which is actually a combination of the approach
of denying some queries and modifying queries in order to achieve privacy.

In [64], the authors show that denials to queries depending upon the answer
to the current query can leak information. The authors introduce the notion
of simulatable auditing for auditing sum and max queries. In [84], the authors
devise methods for auditing max queries and bags of max and min queries
under the partial and full disclosure settings. The authors also examine the
notion of utility in the context of auditing, and obtain results for sum queries
in the full disclosure setting.

A number of techniques have also been proposed for the offline version of
the auditing problem. In [26], a number of variations of the offline auditing
problem have been studied. In the offline auditing problem, we are given a
sequence of queries which have been truthfully answered, and we need to deter-
mine if privacy has been breached. In [26], effective algorithms were proposed
for the sum, max, and max and min versions of the problems. On the other
hand, the sum and max version of the problem was shown to be NP-hard.
In [4], an offline auditing framework was proposed for determining whether
a database adheres to its disclosure properties. The key idea is to create an
audit expression which specifies sensitive table entries.

A number of techniques have also been proposed for sanitizing or random-
izing the data for query auditing purposes. These are fairly general models
of privacy, since they preserve the privacy of the data even when the en-
tire database is available. The standard methods for perturbation [2, 5] or
k-anonymity [98] can always be used, and it is always guaranteed that an
adversary may not derive anything more from the queries than they can from
the base data. Thus, since a k-anonymity model guarantees a certain level of
privacy even when the entire database is made available, it will continue to
do so under any sequence of queries. In [23], a number of interesting methods
are discussed for measuring the effectiveness of sanitization schemes in terms
of balancing privacy and utility.

Instead of sanitizing the base data, it is possible to use summary constructs
on the data, and respond to queries using only the information encoded in
the summary constructs. Such an approach preserves privacy, as long as the
summary constructs do not reveal sensitive information about the underly-
ing records. A histogram based approach to data sanitization has been dis-
cussed in [23, 24]. In this technique the data is recursively partitioned into
multi-dimensional cells. The final output is the exact description of the cuts
along with the population of each cell. Clearly, this kind of description can

Privacy-Preserving Data Mining: A Survey 453

be used for approximate query answering with the use of standard histogram
query processing methods. In [51], a method has been proposed for privacy-
preserving indexing of multi-dimensional data by using bucketizing of the
underlying attribute values in conjunction with encryption of identification
keys. We note that a choice of larger bucket sizes provides greater privacy but
less accuracy. Similarly, optimizing the bucket sizes for accuracy can lead to
reductions in privacy. This tradeoff has been studied in [51], and it has been
shown that reasonable query precision can be maintained at the expense of
partial disclosure.

In the class of methods which use summarization structures for inference
control, an interesting method was proposed by Mishra and Sandler in [81],
which uses pseudo-random sketches for privacy-preservation. In this technique
sketches are constructed from the data, and the sketch representations are
used to respond to user queries. In [81], it has been shown that the scheme
preserves privacy effectively, while continuing to be useful from a utility point
of view.

Finally, an important class of query inference control methods changes the
results of queries in order to preserve privacy. A classical method for aggregate
queries such as the sum or relative frequency is that of random sampling [32].
In this technique, a random sample of the data is used to compute such
aggregate functions. The random sampling approach makes it impossible for
the questioner to precisely control the formation of query sets. The advantage
of using a random sample is that the results of large queries are quite robust
(in terms of relative error), but the privacy of individual records are preserved
because of high absolute error.

Another method for query inference control is by adding noise to the results
of queries. Clearly, the noise should be sufficient that an adversary cannot use
small changes in the query arguments in order to infer facts about the base
data. In [41], an interesting technique has been presented in which the result
of a query is perturbed by an amount which depends upon the underlying
sensitivity of the query function. This sensitivity of the query function is
defined approximately by the change in the response to the query by changing
one argument to the function. An important theoretical result [19, 33, 39, 40]
shows that a surprisingly small amount of noise needs to be added to the result
of a query, provided that the number of queries is sublinear in the number of
database rows. With increasing sizes of databases today, this result provides
fairly strong guarantees on privacy. Such queries together with their slightly
noisy responses are referred to as the SuLQ primitive.

6 Limitations of Privacy: The Curse of Dimensionality

Many privacy-preserving data-mining methods are inherently limited by the
curse of dimensionality in the presence of public information. For example, the

454 Charu C. Aggarwal and Philip S. Yu

technique in [7] analyzes the k-anonymity method in the presence of increas-
ing dimensionality. The curse of dimensionality becomes especially important
when adversaries may have considerable background information, as a result
of which the boundary between pseudo-identifiers and sensitive attributes may
become blurred. This is generally true, since adversaries may be familiar with
the subject of interest and may have greater information about them than
what is publicly available. This is also the motivation for techniques such as
l-diversity [77] in which background knowledge can be used to make further
privacy attacks. The work in [7] concludes that in order to maintain privacy,
a large number of the attributes may need to be suppressed. Thus, the data
loses its utility for the purpose of data mining algorithms. The broad in-
tuition behind the result in [7] is that when attributes are generalized into
wide ranges, the combination of a large number of generalized attributes is so
sparsely populated, that even two anonymity becomes increasingly unlikely.
While the method of l-diversity has not been formally analyzed, some obser-
vations made in [77] seem to suggest that the method becomes increasingly
infeasible to implement effectively with increasing dimensionality.

The method of randomization has also been analyzed in [10]. This pa-
per makes a first analysis of the ability to re-identify data records with
the use of maximum likelihood estimates. Consider a d-dimensional record
X = (x1 . . . xd), which is perturbed to Z = (z1 . . . zd). For a given public
record W = (w1 . . . wd), we would like to find the probability that it could
have been perturbed to Z using the perturbing distribution fY (y). If this were
true, then the set of values given by (Z−W) = (z1−w1 . . . zd−wd) should be
all drawn from the distribution fY (y). The corresponding log-likelihood fit is
given by −

∑d
i=1 log(fy(zi−wi)). The higher the log-likelihood fit, the greater

the probability that the record W corresponds to X. In order to achieve
greater anonymity, we would like the perturbations to be large enough, so
that some of the spurious records in the data have greater log-likelihood fit to
Z than the true record X. It has been shown in [10], that this probability re-
duces rapidly with increasing dimensionality for different kinds of perturbing
distributions. Thus, the randomization technique also seems to be susceptible
to the curse of high dimensionality.

We note that the problem of high dimensionality seems to be a fundamen-
tal one for privacy preservation, and it is unlikely that more effective methods
can be found in order to preserve privacy when background information about
a large number of features is available to even a subset of selected individuals.
Indirect examples of such violations occur with the use of trail identifications
[78, 79], where information from multiple sources can be compiled to create a
high dimensional feature representation which violates privacy.

Privacy-Preserving Data Mining: A Survey 455

7 Summary

In this paper, we presented a survey of the broad areas of privacy-preserving
data mining and the underlying algorithms. We discussed a variety of data
modification techniques such as randomization and k-anonymity based tech-
niques. We discussed methods for distributed privacy-preserving mining, and
the methods for handling horizontally and vertically partitioned data. We
discussed the issue of downgrading the effectiveness of data mining and data
management applications such as association rule mining, classification, and
query processing. Finally, we discussed some fundamental limitations of the
problem of privacy-preservation in the presence of increased amounts of public
information and background knowledge.

References

1. Adam N., Wortmann J. C.: Security-Control Methods for Statistical Databases:
A Comparison Study. ACM Computing Surveys, 21(4), 1989.

2. Agrawal R., Srikant R. Privacy-Preserving Data Mining. Proceedings of the
ACM SIGMOD Conference, 2000.

3. Agrawal R., Srikant R., Thomas D. Privacy-Preserving OLAP. Proceedings of
the ACM SIGMOD Conference, 2005.

4. Agrawal R., Bayardo R., Faloutsos C., Kiernan J., Rantzau R., Srikant R.:
Auditing Compliance via a hippocratic database. VLDB Conference, 2004.

5. Agrawal D. Aggarwal C. C. On the Design and Quantification of Privacy-
Preserving Data Mining Algorithms. ACM PODS Conference, 2002.

6. Aggarwal C., Pei J., Zhang B. A Framework for Privacy Preservation against
Adversarial Data Mining. ACM KDD Conference, 2006.

7. Aggarwal C. C. On k-anonymity and the curse of dimensionality. VLDB Con-
ference, 2005.

8. Aggarwal C. C., Yu P. S.: A Condensation approach to privacy preserving data
mining. EDBT Conference, 2004.

9. Aggarwal C. C., Yu P. S.: On Variable Constraints in Privacy-Preserving Data
Mining. SIAM Conference, 2005.

10. Aggarwal C. C.: On Randomization, Public Information and the Curse of Di-
mensionality. ICDE Conference, 2007.

11. Aggarwal G., Feder T., Kenthapadi K., Motwani R., Panigrahy R., Thomas
D., Zhu A.: Anonymizing Tables. ICDT Conference, 2005.

12. Aggarwal G., Feder T., Kenthapadi K., Motwani R., Panigrahy R., Thomas
D., Zhu A.: Approximation Algorithms for k-anonymity. Journal of Privacy
Technology, paper 20051120001, 2005.

13. Aggarwal G., Feder T., Kenthapadi K., Khuller S., Motwani R., Panigrahy
R., Thomas D., Zhu A.: Achieving Anonymity via Clustering. ACM PODS
Conference, 2006.

14. Atallah, M., Elmagarmid, A., Ibrahim, M., Bertino, E., Verykios, V.: Disclosure
limitation of sensitive rules, Workshop on Knowledge and Data Engineering
Exchange, 1999.

456 Charu C. Aggarwal and Philip S. Yu

15. Bawa M., Bayardo R. J., Agrawal R.: Privacy-Preserving Indexing of Docu-
ments on the Network. VLDB Conference, 2003.

16. Bayardo R. J., Agrawal R.: Data Privacy through Optimal k-Anonymization.
Proceedings of the ICDE Conference, pp. 217–228, 2005.

17. Bettini C., Wang X. S., Jajodia S.: Protecting Privacy against Location Based
Personal Identification. Proc. of Secure Data Management Workshop, Trond-
heim, Norway, 2005.

18. Biskup J., Bonatti P.: Controlled Query Evaluation for Known Policies by Com-
bining Lying and Refusal. Annals of Mathematics and Artificial Intelligence,
40(1-2), 2004.

19. Blum A., Dwork C., McSherry F., Nissim K.: Practical Privacy: The SuLQ
Framework. ACM PODS Conference, 2005.

20. Chang L., Moskowitz I.: An integrated framwork for database inference and
privacy protection. Data and Applications Security. Kluwer, 2000.

21. Chang L., Moskowitz I.: Parsimonious downgrading and decision trees applied
to the inference problem. New Security Paradigms Workshop, 1998.

22. Chaum D., Crepeau C., Damgard I.: Multiparty unconditionally secure proto-
cols. ACM STOC Conference, 1988.

23. Chawla S., Dwork C., McSherry F., Smith A., Wee H.: Towards Privacy in
Public Databases, TCC, 2005.

24. Chawla S., Dwork C., McSherry F., Talwar K.: On the Utility of Privacy-
Preserving Histograms, UAI, 2005.

25. Chen K., Liu L.: Privacy-preserving data classification with rotation perturba-
tion. ICDM Conference, 2005.

26. Chin F.: Security Problems on Inference Control for SUM, MAX, and MIN
Queries. J. of the ACM, 33(3), 1986.

27. Chin F., Ozsoyoglu G.: Auditing for Secure Statistical Databases. Proceedings
of the ACM’81 Conference, 1981.

28. Ciriani V., De Capitiani di Vimercati S., Foresti S., Samarati P.: k-Anonymity.
Security in Decentralized Data Management, ed. Jajodia S., Yu T., Springer,
2006.

29. Clifton C., Kantarcioglou M., Lin X., Zhu M.: Tools for privacy-preserving
distributed data mining. ACM SIGKDD Explorations, 4(2), 2002.

30. Clifton C., Marks D.: Security and Privacy Implications of Data Mining., Work-
shop on Data Mining and Knowledge Discovery, 1996.

31. Dasseni E., Verykios V., Elmagarmid A., Bertino E.: Hiding Association Rules
using Confidence and Support, 4th Information Hiding Workshop, 2001.

32. Denning D.: Secure Statostical Databases with Random Sample Queries. ACM
TODS Journal, 5(3), 1980.

33. Dinur I., Nissim K.: Revealing Information while preserving privacy. ACM
PODS Conference, 2003.

34. Dobkin D., Jones A., Lipton R.: Secure Databases: Protection against User
Influence. ACM Transactions on Databases Systems, 4(1), 1979.

35. Domingo-Ferrer J,, Mateo-Sanz J.: Practical data-oriented micro-aggregation
for statistical disclosure control. IEEE TKDE, 14(1), 2002.

36. Du W., Atallah M.: Secure Multi-party Computation: A Review and Open
Problems.CERIAS Tech. Report 2001-51, Purdue University, 2001.

37. Du W., Han Y. S., Chen S.: Privacy-Preserving Multivariate Statistical Anal-
ysis: Linear Regression and Classification, Proc. SIAM Conf. Data Mining,
2004.

Privacy-Preserving Data Mining: A Survey 457

38. Du W., Atallah M.: Privacy-Preserving Cooperative Statistical Analysis, 17th
Annual Computer Security Applications Conference, 2001.

39. Dwork C., Nissim K.: Privacy-Preserving Data Mining on Vertically Parti-
tioned Databases, CRYPTO, 2004.

40. Dwork C., Kenthapadi K., McSherry F., Mironov I., Naor M.: Our Data, Our-
selves: Privacy via Distributed Noise Generation. EUROCRYPT, 2006.

41. Dwork C., McSherry F., Nissim K., Smith A.: Calibrating Noise to Sensitivity
in Private Data Analysis, TCC, 2006.

42. Even S., Goldreich O., Lempel A.: A Randomized Protocol for Signing Con-
tracts. Communications of the ACM, vol 28, 1985.

43. Evfimievski A., Gehrke J., Srikant R. Limiting Privacy Breaches in Privacy
Preserving Data Mining. ACM PODS Conference, 2003.

44. Evfimievski A., Srikant R., Agrawal R., Gehrke J.: Privacy-Preserving Mining
of Association Rules. ACM KDD Conference, 2002.

45. Fienberg S., McIntyre J.: Data Swapping: Variations on a Theme by Dalenius
and Reiss. Technical Report, National Institute of Statistical Sciences, 2003.

46. Fung B., Wang K., Yu P.: Top-Down Specialization for Information and Privacy
Preservation. ICDE Conference, 2005.

47. Gambs S., Kegl B., Aimeur E.: Privacy-Preserving Boosting. Knowledge Dis-
covery and Data Mining Journal, to appear.

48. Gedik B., Liu L.: A customizable k-anonymity model for protecting location
privacy, ICDCS Conference, 2005.

49. Goldreich O.: Secure Multi-Party Computation, Unpublished Manuscript,
2002.

50. Huang Z., Du W., Chen B.: Deriving Private Information from Randomized
Data. pp. 37–48, ACM SIGMOD Conference, 2005.

51. Hore B., Mehrotra S., Tsudik B.: A Privacy-Preserving Index for Range
Queries. VLDB Conference, 2004.

52. Hughes D, Shmatikov V.: Information Hiding, Anonymity, and Privacy: A
modular Approach. Journal of Computer Security, 12(1), 3–36, 2004.

53. Inan A., Saygin Y., Savas E., Hintoglu A., Levi A.: Privacy-Preserving Clus-
tering on Horizontally Partitioned Data. Data Engineering Workshops, 2006.

54. Ioannidis I., Grama A., Atallah M.: A secure protocol for computing dot prod-
ucts in clustered and distributed environments, International Conference on
Parallel Processing, 2002.

55. Iyengar V. S.: Transforming Data to Satisfy Privacy Constraints. KDD Con-
ference, 2002.

56. Jiang W., Clifton C.: Privacy-preserving distributed k-Anonymity. Proceedings
of the IFIP 11.3 Working Conference on Data and Applications Security, 2005.

57. Johnson W., Lindenstrauss J.: Extensions of Lipshitz Mapping into Hilbert
Space, Contemporary Math. vol. 26, pp. 189-206, 1984.

58. Jagannathan G., Wright R.: Privacy-Preserving Distributed k-means clustering
over arbitrarily partitioned data. ACM KDD Conference, 2005.

59. Jagannathan G., Pillaipakkamnatt K., Wright R.: A New Privacy-Preserving
Distributed k-Clustering Algorithm. SIAM Conference on Data Mining, 2006.

60. Kantarcioglu M., Clifton C.: Privacy-Preserving Distributed Mining of Asso-
ciation Rules on Horizontally Partitioned Data. IEEE TKDE Journal, 16(9),
2004.

458 Charu C. Aggarwal and Philip S. Yu

61. Kantarcioglu M., Vaidya J.: Privacy-Preserving Naive Bayes Classifier for Hor-
izontally Partitioned Data. IEEE Workshop on Privacy-Preserving Data Min-
ing, 2003.

62. Kargupta H., Datta S., Wang Q., Sivakumar K.: On the Privacy Preserving
Properties of Random Data Perturbation Techniques. ICDM Conference, pp.
99-106, 2003.

63. Karn J., Ullman J.: A model of statistical databases and their security. ACM
Transactions on Database Systems, 2(1):1–10, 1977.

64. Kenthapadi K.,Mishra N., Nissim K.: Simulatable Auditing, ACM PODS Con-
ference, 2005.

65. Kifer D., Gehrke J.: Injecting utility into anonymized datasets. SIGMOD Con-
ference, pp. 217-228, 2006.

66. Kim J., Winkler W.: Multiplicative Noise for Masking Continuous Data, Tech-
nical Report Statistics 2003-01, Statistical Research Division, US Bureau of the
Census, Washington D.C., Apr. 2003.

67. Kleinberg J., Papadimitriou C., Raghavan P.: Auditing Boolean Attributes.
Journal of Computer and System Sciences, 6, 2003.

68. Lakshmanan L., Ng R., Ramesh G. To Do or Not To Do: The Dilemma of
Disclosing Anonymized Data. ACM SIGMOD Conference, 2005.

69. Liew C. K., Choi U. J., Liew C. J. A data distortion by probability distribution.
ACM TODS, 10(3):395-411, 1985.

70. LeFevre K., DeWitt D., Ramakrishnan R.: Incognito: Full Domain K-
Anonymity. ACM SIGMOD Conference, 2005.

71. LeFevre K., DeWitt D., Ramakrishnan R.: Mondrian Multidimensional K-
Anonymity. ICDE Conference, 25, 2006.

72. LeFevre K., DeWitt D., Ramakrishnan R.: Workload Aware Anonymization.
KDD Conference, 2006.

73. Li F., Sun J., Papadimitriou S. Mihaila G., Stanoi I.: Hiding in the Crowd:
Privacy Preservation on Evolving Streams through Correlation Tracking. ICDE
Conference, 2007.

74. Lindell Y., Pinkas B.: Privacy-Preserving Data Mining. CRYPTO, 2000.
75. Liu K., Kargupta H., Ryan J.: Random Projection Based Multiplicative Data

Perturbation for Privacy Preserving Distributed Data Mining. IEEE Transac-
tions on Knowledge and Data Engineering, 18(1), 2006.

76. Liu K., Giannella C. Kargupta H.: An Attacker’s View of Distance Preserving
Maps for Privacy-Preserving Data Mining. PKDD Conference, 2006.

77. Machanavajjhala A., Gehrke J., Kifer D., and Venkitasubramaniam M.: l-
Diversity: Privacy Beyond k-Anonymity. ICDE, 2006.

78. Malin B, Sweeney L. Re-identification of DNA through an automated linkage
process. American Medical Informatics Association, 423–427, 2001.

79. Malin B. Why methods for genomic data privacy fail and what we can do to
fix it, AAAS Annual Meeting, Seattle, WA, 2004.

80. Meyerson A., Williams R. On the complexity of optimal k-anonymity. ACM
PODS Conference, 2004.

81. Mishra N., Sandler M.: Privacy vis Pseudorandom Sketches. ACM PODS Con-
ference, 2006.

82. Mukherjee S., Chen Z., Gangopadhyay S.: A privacy-preserving technique for
Euclidean distance-based mining algorithms using Fourier based transforms,
VLDB Journal, 2006.

Privacy-Preserving Data Mining: A Survey 459

83. Moskowitz I., Chang L.: A decision theoretic system for information downgrad-
ing. Joint Conference on Information Sciences, 2000.

84. Nabar S., Marthi B., Kenthapadi K., Mishra N., Motwani R.: Towards Robust-
ness in Query Auditing. VLDB Conference, 2006.

85. Naor M., Pinkas B.: Efficient Oblivious Transfer Protocols, SODA Conference,
2001.

86. Natwichai J., Li X., Orlowska M.: A Reconstruction-based Algorithm for Clas-
sification Rules Hiding. Australasian Database Conference, 2006.

87. Oliveira S. R. M., Zaane O.: Privacy Preserving Clustering by Data Transfor-
mation, Proc. 18th Brazilian Symp. Databases, pp. 304-318, Oct. 2003.

88. Oliveira S. R. M., Zaiane O.: Data Perturbation by Rotation for Privacy-
Preserving Clustering, Technical Report TR04-17, Department of Computing
Science, University of Alberta, Edmonton, AB, Canada, August 2004.

89. Oliveira S. R. M., Zaiane O., Saygin Y.: Secure Association-Rule Sharing.
PAKDD Conference, 2004.

90. Pinkas B.: Cryptographic Techniques for Privacy-Preserving Data Mining.
ACM SIGKDD Explorations, 4(2), 2002.

91. Polat H., Du W.: SVD-based collaborative filtering with privacy. ACM SAC
Symposium, 2005.

92. Polat H., Du W.: Privacy-Preserving Top-N Recommendations on Horizontally
Partitioned Data. Web Intelligence, 2005.

93. Rabin M. O.: How to exchange secrets by oblivious transfer, Technical Report
TR-81, Aiken Corporation Laboratory, 1981.

94. Reiss S.: Security in Databases: A combinatorial Study, Journal of ACM, 26(1),
1979.

95. Rizvi S., Haritsa J.: Maintaining Data Privacy in Association Rule Mining.
VLDB Conference, 2002.

96. Saygin Y., Verykios V., Clifton C.: Using Unknowns to prevent discovery of
Association Rules, ACM SIGMOD Record, 30(4), 2001.

97. Saygin Y., Verykios V., Elmagarmid A.: Privacy-Preserving Association Rule
Mining, 12th International Workshop on Research Issues in Data Engineering,
2002.

98. Samarati P.: Protecting Respondents’ Identities in Microdata Release. IEEE
Trans. Knowl. Data Eng. 13(6): 1010-1027 (2001).

99. Shannon C. E.: The Mathematical Theory of Communication, University of
Illinois Press, 1949.

100. Silverman B. W.: Density Estimation for Statistics and Data Analysis. Chap-
man and Hall, 1986.

101. Vaidya J., Clifton C.: Privacy-Preserving Association Rule Mining in Vertically
Partitioned Databases. ACM KDD Conference, 2002.

102. Vaidya J., Clifton C.: Privacy-Preserving k-means clustering over vertically
partitioned Data. ACM KDD Conference, 2003.

103. Vaidya J., Clifton C.: Privacy-Preserving Naive Bayes Classifier over vertically
partitioned data. SIAM Conference, 2004.

104. Vaidya J., Clifton C.: Privacy-Preserving Decision Trees over vertically parti-
tioned data. Lecture Notes in Computer Science, Vol 3654, 2005.

105. Verykios V. S., Bertino E., Fovino I. N., Provenza L. P., Saygin Y., Theodoridis
Y.: State-of-the-art in privacy preserving data mining. ACM SIGMOD Record,
v.33 n.1, 2004.

460 Charu C. Aggarwal and Philip S. Yu

106. Verykios V. S., Elmagarmid A., Bertino E., Saygin Y.,, Dasseni E.: Association
Rule Hiding. IEEE Transactions on Knowledge and Data Engineering, 16(4),
2004.

107. Wang K., Yu P., Chakraborty S.: Bottom-Up Generalization: A Data Mining
Solution to Privacy Protection. ICDM Conference, 2004.

108. Wang K., Fung B. C. M., Yu P. Template based Privacy -Preservation in
classification problems. ICDM Conference, 2005.

109. Wang K., Fung B. C. M.: Anonymization for Sequential Releases. ACM KDD
Conference, 2006.

110. Wang K., Fung B. C. M., Dong G.: Integarting Private Databases for Data
Analysis. Lecture Notes in Computer Science, 3495, 2005.

111. Warner S. L. Randomized Response: A survey technique for eliminating evasive
answer bias. Journal of American Statistical Association, 60(309):63–69, March
1965.

112. Winkler W.: Using simulated annealing for k-anonymity. Technical Report 7,
US Census Bureau.

113. Wu Y.-H., Chiang C.-M., Chen A. L. P.: Hiding Sensitive Association Rules
with Limited Side Effects. IEEE Transactions on Knowledge and Data Engi-
neering, 19(1), 2007.

114. Xiao X., Tao Y.. Personalized Privacy Preservation. ACM SIGMOD Confer-
ence, 2006.

115. Xiao X., Tao Y. Anatomy: Simple and Effective Privacy Preservation. VLDB
Conference, pp. 139-150, 2006.

116. Xu J., Wang W., Pei J., Wang X., Shi B., Fu A. W. C.: Utility Based
Anonymization using Local Recoding. ACM KDD Conference, 2006.

117. Xu S., Yung M.: k-anonymous secret handshakes with reusable credentials.
ACM Conference on Computer and Communications Security, 2004.

118. Yao A. C.: How to Generate and Exchange Secrets. FOCS Conferemce, 1986.
119. Yao G., Feng D.: A new k-anonymous message transmission protocol. Interna-

tional Workshop on Information Security Applications, 2004.
120. Yang Z., Zhong S., Wright R.: Privacy-Preserving Classification of Customer

Data without Loss of Accuracy. SDM Conference, 2006.
121. Yao C., Wang S., Jajodia S.: Checking for k-Anonymity Violation by views.

ACM Conference on Computer and Communication Security, 2004.
122. Yu H., Jiang X., Vaidya J.: Privacy-Preserving SVM using nonlinear Kernels

on Horizontally Partitioned Data. SAC Conference, 2006.
123. Yu H., Vaidya J., Jiang X.: Privacy-Preserving SVM Classification on Vertically

Partitioned Data. PAKDD Conference, 2006.
124. Zhang P., Tong Y., Tang S., Yang D.: Privacy-Preserving Naive Bayes Classi-

fier. Lecture Notes in Computer Science, Vol 3584, 2005.
125. Zhong S., Yang Z., Wright R.: Privacy-enhancing k-anonymization of customer

data, In Proceedings of the ACM SIGMOD-SIGACT-SIGART Principles of
Database Systems, Baltimore, MD. 2005.

126. Zhu Y., Liu L. Optimal Randomization for Privacy- Preserving Data Mining.
ACM KDD Conference, 2004.

19

Privacy in Database Publishing: A Bayesian
Perspective

Alin Deutsch�

Department of Computer Science and Engineering
University of California San Diego
9500 Gilman Dr., La Jolla, CA, 92093-0404, USA
deutsch@cs.ucsd.edu

Summary. We present a unifying perspective of privacy guarantees in view-based
and generalization-based publishing. This perspective uses a generic Bayesian pri-
vacy model which generalizes both types of publishing scenarios and allows us to
relate seemingly disparate privacy guarantees found in the literature.

1 Introduction

Database publishing systems export parts of a proprietary database for con-
sumption by client applications. The design of a publishing system is subject
to two conflicting requirements. On one hand, the data owner needs to publish
appropriate parts of the proprietary data to support various interactions with
her clients. On the other hand she must protect certain sensitive data from
being disclosed to clients.

In this chapter, we discuss data privacy which pertains to defense against
attackers who access the data legally. These attackers are regular clients who
inspect the published data and potentially combine it with external knowledge
to infer information about the secret data. Note that privacy is orthogonal
to data security, whose goal is defense against unauthorized access to the
database using access control mechanisms.

We focus on two classes of publishing systems. In view-based publishing,
the owner specifies the data to be released by means of views defined in
some standard query language. In generalization-based publishing, the released
data is specified using a formalism of incomparable expressive power, namely
anonymization using generalization functions. Examples of anonymization via
generalization include replacing a person’s actual age by an age range, remov-
ing the least significant digits of the zip code, etc.
� Funded by an Alfred P. Sloan fellowship and by NSF CAREER award IIS-

0347968.

462 Alin Deutsch

The two corresponding lines of privacy research have evolved indepen-
dently, yielding different formalisms for stating privacy guarantees. In this
chapter, we show that privacy guarantees in view-based and generalization-
based publishing are related, being both particular cases of guarantees in
a general privacy model. We call this model the Generic Bayesian Privacy
(GBP) model as it offers guarantees based on the revision of the attacker’s
belief about the secret between the state before and after seeing the published
data.

We start by developing in Section 2 a generic model for attacks attempt-
ing to glean knowledge about the sensitive part of the database starting from
the published part thereof, also exploiting external knowledge. In Section 3,
we show how privacy guarantees developed for view-based publishing systems
can be cast as particular cases in the GBP model. Then in Section 4 we
connect generalization-based publishing to the GBP model. Exploiting the
uniform formalization using the GBP model, Section 5 compares various pri-
vacy guarantees from both view-based and generalization-based publishing.
Finally, Section 6 shows how the GBP model can be applied to formulate
and check meaningful privacy guarantees for publishing in open-world infor-
mation integration systems.

2 GBP: A Generic Bayesian Privacy Model

The published data. The data owner publishes part of the database D,
possibly after some processing such as filtering, aggregation, anonymization,
etc. For the purpose of our discussion, this processing can be modeled as a
function V, whose result V(D) is being released.

The secret. The owner wishes to keep sensitive data secret. Since sen-
sitivity depends on the application and is best judged by the data owner,
she must be provided with the possibility to declare which data is to be kept
secret. The secret may be a subset of the database, possibly altered by pro-
cessing, which we shall model as another function S, whose result S(D) is the
secret.

We note that in the generic model, V and S are arbitrary functions from
databases to databases. However, in the running example of this section, we
shall express such functions by queries. We shall see in Section 4 examples of
functions expressed differently, as anonymization functions.

Example 1. Consider a database whose only relation contains tuples associat-
ing the patient with the ailment he suffered from and the doctor who treated
him:

PDA(patient,doctor,ailment).

The secret S is the association between patients and their ailment, specifiable
by the owner for instance using query S(p, a) :− PDA(p, d, a).

Privacy in Database Publishing: A Bayesian Perspective 463

2.1 Attacks

In this model we only consider attackers who access the data legally by in-
specting the published data V(D), using it together with external knowledge
to infer information about the secret S(D). The defense against unauthorized
access to the database is beyond the scope of this model.

Possible databases. Ideally, the attacker would like to reverse-engineer
D starting from the observed published data V(D). This would immediately
lead to the full disclosure of the secret: the attacker could compute the secret
by directly running S over D. Of course, V is likely to be a lossy data transfor-
mation, thus precluding the unequivocal identification of its arguments from
its output. In general there may be (potentially infinitely) many databases
which have the same image as D under V. The attacker cannot distinguish
among them solely by observing the published data V(D), regardless of the
computational resources at his disposal. Therefore, in the absence of exter-
nal knowledge about D, all databases with the same image are possible from
the attacker’s point of view (we will shortly introduce the attacker’s external
knowledge into the model). We therefore refer to the set [D]V of databases as
the possible databases given V(D):

[D]V := {D′ | V(D′) = V(D)}.

Example 2. Continuing Example 1, assume that the owner publishes a view
listing all the patients Vp(p) :− PDA(p, d, a) and one listing all ailments
treated by the hospital: Va(a) :− PDA(p, d, a). Assume that on the actual
database D, Vp(D) yields {John, Jane} and Va(D) yields {flu, pneumonia}.
Then some of the possible databases corresponding to the observed views are
D1 = { (John, doc1, flu), (Jane, doc2, pneumonia) }, D2 = { (John, doc3, flu),
(John, doc3, pneumonia), (Jane, doc4, flu) }, etc., where doci are unknown
doctor names.

Clearly the set of possible databases may be very large. For example, con-
sider the case when the published data is a projection of a table. By observing
the published table (and using no external knowledge about the data), an at-
tacker must assume any possible completion for the missing columns. This is
the case in Example 2 if the attacker does not know the set of all possible
doctors.

It is therefore not a priori given that the attacker is even able to enumerate
all possible databases. In the following, we assume the worst-case scenario for
the owner, namely that the attacker comes up with some finite representation
of the set of possible databases which he uses for reasoning about the secret.
Note that the more advantage we assume for the attacker, the stronger any
privacy guarantees based on these assumptions.

Possible secrets. Since the owner cares about guarding only the secret
(rather than the non-sensitive parts of the database), the privacy model fo-
cuses on possible secrets. From a reasonable attacker’s point of view, a secret

464 Alin Deutsch

s is possible only if it is witnessed by some possible database i.e. if there exists
D′ ∈ [D]V such that s = S(D′). Without worrying yet whether the attacker
can even compute all possible secrets, note that they provide an upper bound
on the set of candidates for the secret which an attacker needs to consider.
Let us denote the set of possible secrets with S([D]V):

S([D]V) := {S(D′) | D′ ∈ [D]V}.
In particular, the actual secret S(D) is a possible secret: S(D) ∈ S([D]V).

Example 3. Continuing Example 2, the possible secrets are obtained by run-
ning the S over each possible database. We obtain s1 = S(D1) = {(John, flu),
(Jane, pneumonia)}, s2 = S(D2) = { (John, flu), (John, pneumonia), (Jane,
flu) }, etc.

The optimal attack: compute possible secrets and use external
knowledge. In the absence of external knowledge, possible secrets are indis-
tinguishable with respect to the published data V(D) and even with unlim-
ited computational resources the best an attacker can hope for is to reverse-
engineer S([D]V). Towards a conservative privacy guarantee, let’s assume that
the attacker is successful at this task, handling the case of infinitely many pos-
sible secrets by coming up with a finite representation thereof.2 If there is only
one possible secret, then the actual secret is exposed and the attacker’s task
accomplished. In the (likely) case of several possible secrets, a sophisticated
attacker improves his chances of singling out the actual secret by whittling
down S([D]V) using external knowledge. If several possible secrets remain
even now, the attacker is forced to guess the actual secret among them. How-
ever, the guess does not have to be uneducated: while the attacker’s external
knowledge may be insufficient to further rule out any possible secrets, it could
still influence the attacker’s beliefs about the relative likelihood of the possible
secrets. This would enable the attacker to pick the secret he believes likeli-
est. Finally, if the attacker deemed several possible secrets equally likely but
likelier than all others, he would be forced to guess at random among them.

Modeling attacker’s belief. The attacker’s external knowledge can per-
tain to the possible databases or exclusively to the possible secrets. Note that
any attacker who forms an opinion on how to rank possible databases can infer
the ranking of the corresponding secrets and is therefore at least as knowl-
edgeable (and dangerous) as an attacker who does not understand or care
about the underlying database, focusing solely on the secret.

To defend against the more dangerous class of attackers, we model the
attacker’s a priori belief (i.e. before observing V(D)) as a probability distri-
bution δ on all databases. This induces a belief (probability distribution) Pδ

on all secrets as follows: given candidate secret s, the probability Pδ[s] that s
is the actual secret is the sum of probabilities of all databases witnessing s:
2 We know such representations exist: (an admittedly crude) one is given by the

definition of V together with V(D).

Privacy in Database Publishing: A Bayesian Perspective 465

Pδ[s] :=
∑

s=S(D′)

δ(D′). (1)

δ also induces the probability Pδ[V(D)] that the published data is V(D):

Pδ[V(D)] :=
∑

D′∈[D]V

δ(D′).

The actual release of the published data causes a revision of the attacker’s
belief about the probability of s being the actual secret. We call this the a
posteriori probability, and it is the conditional probability Pδ[s|V(D)]:

Pδ[s|V(D)] =
Pδ[s ∧ V(D)]

Pδ[V(D)]
=

∑
D′∈[D]V ,S(D′)=s δ(D′)∑

D′∈[D]V
δ(D′)

. (2)

Classes of attackers. For all privacy guarantees we consider next, we
conservatively assume that the attacker is able to reverse-engineer the pos-
sible databases and secrets from the published data. Attackers are therefore
distinguished from each other exclusively by their belief about the likelihood of
databases, as induced by the external knowledge they possess. Consequently,
in the following we characterize an attacker by the probability distribution δ
he associates on all databases. A class of attackers we wish to defend against
is then described by a family P of probability distributions.

2.2 Privacy Guarantees

Privacy guarantees rule out privacy breaches. We list below several alternative
guarantees that generalize guarantees considered in the literature. Each one
is determined by the definition of what constitutes a “breach”.

Extent-Dependent Guarantees. We start with a class of guarantees
which depend on the extent of actual database D. Each of them take as
argument a publishing function V and hold if and only if publishing V(D)
does not breach privacy.

No complete database exposure (NDED). The worst case of breach
consists in complete exposure of the actual database D. That is, the breach is
defined as the case when the only possible database is D: [D]V = {D}. In this
case, an attacker who successfully reverse-engineers the possible databases
retrieves the actual database and can then compute any secret function S on
it. The guarantee of no database exposure, denoted NDED(V), requires at
least two possible databases:

NDED(V) := |[D]V | ≥ 2.

Example 4. Assume that in the setting of Example 1, the hospital publishes
a view revealing which doctors every patient sees: VPD(p, d) :− PDA(p, d, a).
An additional view is published as well, listing which ailments every doctor is

466 Alin Deutsch

treating: VDA :− PDA(p, d, a). If for some database D the view extents are
VPD(D) = { (John, Dr. MacDonald) } and VDA(D) = { (Dr. MacDonald,
pneumonia) }, then D is exposed since [D]VP D,VDA

is the PDA table with the
single tuple { (John, Dr. MacDonald, pneumonia) }. If on the other hand the
attacker observes VPD(D) = { (John, Dr. MacDonald), (Jane, Dr. MacDon-
ald) } and VDA(D) = { (Dr. MacDonald, flu), (Dr. MacDonald, pneumonia)
}, then D is not exposed since there are several possible databases. One in
which John has flu and Jane pneumonia, on in which John has both diseases
and Jane has flu, etc.

No complete secret exposure (NSED
S). Even if the actual database

is not exposed, it may be that all possible databases have the same image
under S, thus completely exposing the secret. To guard against this case,
we define the breach as having a single possible secret: S([D]V) = {S(D)}.
Non-exposure of the secret requires at least two possible secrets:

NSED
S (V) := |S([D]V)| ≥ 2.

Example 5. For the schema of Example 1, assume that the hospital publishes
the view VP from Example 1 and view VDA from Example 4. If the attacker
observes VP (D) = { (John), (Jane) } and VDA(D) = { (Dr. MacDonald,
pneumonia), (Dr. Zhivago, pneumonia) }, then D is not exposed since there
are several possible databases: one in which John sees Dr. MacDonald and
Jane Dr. Zhivago, one in which they swap doctors, one in which John sees
both doctors and Jane only one of them, etc. And yet, the secret is exposed,
since both doctors treat the same disease so no matter whom they see, both
John and Jane must suffer from pneumonia.

No belief revision (NBRD
P,S). The non-exposure guarantees fulfill only

the very basic owner expectations. They do not suffice to put her mind at
ease since attackers can “learn” something about some candidate secret, thus
improving their odds of guessing the actual secret.

For a given attacker described by probability distribution δ, we define
“learning something about candidate secret s” in the strongest, information-
theoretic sense, as revision of attacker’s belief about the secret. The belief
revision is the change between the δ-induced a priori and a posteriori be-
liefs that s is the secret. Formally, a belief revision occurs precisely when
Pδ[s|V(D)] �= Pδ[s]. The guarantee that no attacker from a class P revises
his belief amounts to

NBRD
P,S(V) := ∀s ∀(δ ∈ P) Pδ[s|V(D)] = Pδ[s].

This guarantee is preferred by the owner because it makes no assumptions
on the attacker’s computational resources. When the guarantee holds, the
owner can rest assured that nothing can be learned about the secret. The
following example however shows that such a guarantee is often unreasonably
strong and is violated by most publishing functions, which is why we need to
set our sights on more relaxed guarantees.

Privacy in Database Publishing: A Bayesian Perspective 467

Example 6. Consider the database from Example 1. Suppose that the owner
exports the projection of the PDA relation on its doctor attribute:
V (d) :− PDA(p, d, a). Since neither patients nor ailments are exported, this
publishing is seemingly safe. However, an attacker can still learn from it some
(small amount of) information about the secret. Indeed, if the published list
of doctors is empty, then the actual database relation must be empty as well,
so no patient can suffer from any ailment. An attacker whose belief assigns
non-zero probability to a possible secret containing at least one ailing patient
will therefore revise this belief a posteriori. If however there is even one doctor
in the published list, then there is a non-zero probability of a certain patient
suffering from some disease. An attacker who is a priori certain that there
are no ailing patients must revise his belief as well. Clearly, at least these two
attackers have learned something about the secret upon observing the list of
doctors, and the idealized guarantee NBRD

P,S is violated. At the same time,
ruling out this publishing amounts to asking the owner to release no data
whatsoever, even if she avoids the attributes involved in the secret.

No further belief revision (NFBRD
P,S). Since the guarantees NDE

and NSES are too weak, and the ideal guarantee NBRP,S is too strong, we
consider a more pragmatic guarantee: it assumes that the owner is willing
to live with the current level in attacker’s belief as induced by the already
published data V(D), but wants to make sure that publishing any further
data will not lead to further belief revision. Formally, denoting with N the
new publishing function which the owner contemplates, a breach occurs when
Pδ[s|V(D)] �= Pδ[s|V(D) ∧ N (D)]. Here, Pδ[s|V(D) ∧ N (D)] is the belief of
the attacker described by distribution δ that s is the secret, provided that
both V(D) and N (D) are published:

Pδ[s|V(D) ∧N (D)] =
Pδ[s ∧ V(D) ∧N (D)]

Pδ[V(D) ∧N (D)]
=

∑
D′∈[D]V∩[D]N ,S(D′)=s

δ(D′)∑
D′∈[D]V∩[D]N

δ(D′)
. (3)

The associated guarantee is the following:

NFBRD
P,S(N ,V) := ∀s∀(δ ∈ P) Pδ[s|V(D)] = Pδ[s|V(D) ∧N (D)].

Example 7. Assume that on the schema from Example 1, the owner has
already published V = (Vp, Va) where Vp, Va are the views from Exam-
ple 2. The owner is currently contemplating the publishing of the two
new views N = (VPD, VDA) from Example 4. Suppose that Vp(D) =
{(John),(Jane),(Jack)}, and Va(D) ={(pneumonia),(flu),(cold)}. From this
observation, any attacker can reverse-engineer the set of possible databases.
This includes, among others, the database D1 = {(John,doc1,pneumonia),
(Jane,doc2,flu), (Jack,doc3,cold)}, yielding the secret s1 = S(D1) = {(John,
pneumonia), (Jane,flu), (Jack,cold)}. Given an attacker described by some
distribution δ, assume that his a priori belief that s1 is the secret is non-zero

468 Alin Deutsch

Pδ[s1|V(D)] > 0. Now assume that the attacker were to observe the extents
of the new views, which are VPD = { (John, Dr. MacDonald), (Jane,Dr.
Zhivago), (Jack,Dr. Zhivago) } and VDA = { (Dr. MacDonald, flu), (Dr.
Zhivago, pneumonia), (Dr. Zhivago, cold) } The attacker must now revise
to 0 his a posteriori belief that s1 is the secret. Indeed, only Dr. Zhivago
treats pneumonia, but John sees Dr. MacDonald, therefore John cannot have
pneumonia: Pδ[s1|V(D) ∧N (D)] = 0.

An alternative intuition for the no-further-belief-revision guarantee is the
following. After observing V(D), the attacker reverse-engineers the possible
databases [D]V and uses his background knowledge to assign a likelihood to
each of them. After subsequently observing N (D), the attacker rules out all
databases which are possible for V(D) but not for N (D), being left with only
those in [D]V∩[D]N . Ruling out even one database results in re-distributing its
probability over the remaining ones, thus potentially modifying the attacker’s
a posteriori belief about the secret. For instance, in an extreme case, the
possible databases in [D]V may witness two secrets s1 and s2. If [D]V ∩ [D]N
rules out all witnesses of s2 (and maybe also some but not all witnesses of
s1), then by (3) the attacker’s belief about the secret being s2 drops to 0 and
the belief of s1 becomes 1, i.e. certainty.

This intuition is formalized by the following result.

Theorem 1 ([8]). Let P contain all possible distributions, thus modeling all
attackers. Then for every database D and secret S no attacker’s belief is re-
vised upon observing N (D) if and only if the possible databases do not change:

∀D ∀S NFBRD
P,S(N ,V) ⇔ [D]V = [D]V ∩ [D]N

Note that despite being defined in probabilistic fashion, the no-further-belief-
revision guarantee remarkably reduces by Theorem 1 to a purely model-
theoretic problem involving reasoning solely about possible databases.

Bounded belief revision (BBRD
P,S). It is often useful to consider relax-

ing privacy guarantees to allow desirable publishing functions. We next con-
sider a natural relaxation of the NBRD

P,S guarantee of no belief revision, which
offers the owner more control over the trade-off between privacy and utility
of publishing functions. The idea is to allow revision, but only if bounded
by an owner-defined threshold. In this case, a breach is formally defined as
|Pδ[s|V(D)] − Pδ[s]| > ε, where ε ∈ [0, 1] is the threshold. This definition of
breach induces a family of privacy guarantees, parameterized by the threshold:

BBRD
P,S(V, ε) := ∀s∀(δ ∈ P) |Pδ[s|V(D)] − Pδ[s]| ≤ ε.

Bounded further belief revision (BFBRD
P,S). The same idea of allow-

ing bounded belief revision yields a natural relaxation of guarantee NFBRD
P,S :

BFBRD
P,S(N ,V, ε) := ∀s∀(δ ∈ P) |Pδ[s|V(D)] − Pδ[s|V(D) ∧N (D)]| ≤ ε.

Privacy in Database Publishing: A Bayesian Perspective 469

Extent-Independent Guarantees. The privacy guarantees we’ve con-
sidered so far depend on the extent of the actual database D. The owner is thus
faced with the following dilemma. Checking the guarantee on a given extent D
avoids being overly conservative and rejecting those publishing functions that
preserve privacy on the actual database but breach it on some other database
extent D′. On the other hand, this means re-checking the privacy guarantees
upon each update to D. Alternatively, we consider strengthening the above
guarantees to hold over all database extents. We obtain the following list of
extent-independent privacy guarantees:

NDE(V) := ∀D NDED(V)
NSES(V) := ∀D NSED

S (V)
NBRP,S(V) := ∀D NBRD

P,S(V)

NFBRP,S(N ,V) := ∀D NFBRD
P,S(N ,V)

BBRP,S(V, ε) := ∀D BBRD
P,S(V, ε)

BFBRP,S(N ,V, ε) := ∀D BFBRD
P,S(N ,V, ε)

As before, it makes sense to carefully consider the trade-off between
strength of the guarantee and utility of the publishing functions it allows.
In many situations, the proprietary database is known to satisfy a set of in-
tegrity constraints C. By imposing the unrestricted extent-independent guar-
antees above, the owner risks excluding a perfectly safe publishing function
because it breaks the guarantees on some database that will never occur in
practice since it violates the constraints. Clearly, the owner does not need the
privacy guarantees to hold on all imaginable databases, but only on a subclass
thereof: all databases D satisfying the constraints in C (denoted D |= C). This
natural relaxation yields guarantees that are extent-independent as long as
the extents satisfy the constraints:

NDEC(V) := ∀(D |= C) NDED(V)
NSEC

S(V) := ∀(D |= C) NSED
S (V)

NBRC
P,S(V) := ∀(D |= C) NBRD

P,S(V)

NFBRC
P,S(N ,V) := ∀(D |= C) NFBRD

P,S(N ,V)

BBRC
P,S(V, ε) := ∀(D |= C) BBRD

P,S(V, ε)

BFBRC
P,S(N ,V, ε) := ∀(D |= C) BFBRD

P,S(N ,V, ε)

A Similar Privacy Model. [5, 6] propose a similar privacy model for re-
lational databases, based on Bayesian belief revision. However the authors do
not address the equivalent of the NFBRP,S , BBRP,S , and BFBRP,S guaran-
tees, nor do they consider guarantees parameterized by classes of probability
distributions, or integrity constraints.

470 Alin Deutsch

3 View-Based Publishing

3.1 Independent-Tuple Attackers

The application of the privacy model from [5] to view-based publishing was
pioneered in seminal work by Miklau and Suciu [19, 20].

In the setting of [19, 20], the publishing function V is given by a list
of views. Both V and the secret S are specified by conjunctive queries with
inequalities.

As in Section 2, an attacker is described by a probability distribution δ on
the set of all databases. However, only attackers described by independent-
tuple distributions are considered. These distributions treat the occurrences
of any two tuples t1, t2 in a given database as independent events. Formally,
given a domain Dom, denote the set of all tuples over Dom by tuples(Dom).
Any D ⊆ tuples(Dom) is a database over domain Dom. δ is an independent-
tuple distribution on the databases over Dom if it is induced by a distribution
p on tuples(Dom). That is, for any database D over Dom we have (by the
independent-tuple assumption)

δ(D) :=
∏
t∈D

p(t) ×
∏

t∈tuples(Dom)−D

(1 − p(t)).

The attacker’s a priori and a posteriori beliefs about the secret S(R) are then
induced by p via δ as in (1), respectively (2).

Perfect privacy. Given secret S(D), the views V are considered to pre-
serve privacy against an attacker described by distribution δ if there is no
change between the attacker’s a posteriori belief (after seeing V(R)) and his a
priori belief (before seeing V(R)) about secret s = S(D): Pδ[s] = Pδ[s|V(D)].

Given a domain Dom, denote with PDom the set of all independent-
tuple distributions on databases over Dom induced by distributions over
tuples(Dom).

Then V is said to maintain perfect privacy for secret S, denoted PerfPS(V)
if for every domain Dom, every database D over Dom, every secret value s
and every distribution δ ∈ PDom, upon observing V(D) the attacker does not
revise his belief that s is the secret:

PerfPS(V) := ∀Dom ∀(D ⊆ tuples(Dom)) ∀s ∀(δ ∈ PDom)
Pδ[s] = Pδ[s|V(D)],

or, equivalently in the notation of the GBP model (Section 2.2),

PerfPS(V) := ∀Dom ∀(D ⊆ tuples(Dom)) NBRD
PDom,S(V). (4)

Note that perfect privacy is an extent-independent guarantee. Therefore it
need not be re-checked upon every update to the database.

Privacy in Database Publishing: A Bayesian Perspective 471

[19] shows that perfect privacy is decidable in Πp
2 in the combined size of

the queries defining V,S. The result follows from a key lemma showing that
privacy holds for all domains if it holds for some domain of size polynomial
in the number of variables and constants appearing in the view and secret
queries. Essentially, to check the guarantee on such a domain Dom, one simply
needs to enumerate the databases over Dom. There are only finitely many of
them (though their number is exponential in the domain size). In a follow-up
paper, Machanavajjhala et al. [15] provide an alternative decision procedure
which reduces perfect privacy to checking a number of containments between
queries constructed from the views and secret definitions. This allows them
to leverage well-known results on the complexity of query containment to
identify restrictions leading to a PTIME-checkability of the perfect privacy
guarantee.

In addition to a decision procedure for perfect privacy, [19] introduce also
a notion equivalent to the bounded belief revision guarantee BBRP,S from
Section 2.2 (again considering only independent-tuple distributions). Further-
more, Miklau and Suciu consider a limited flavor of the “no further belief
revision” guarantee NFBRP,S , in which the already published views are de-
fined by boolean queries.

As recognized in [19, 20], the fact that perfect privacy only defends against
attackers described by independent-tuple distributions is a limitation because
it ignores attackers whose background knowledge gives them correlations be-
tween tuples. For instance, the attacker’s background knowledge that review-
ers r1 and r2 have similar research expertize and taste can be modeled by a
distribution in which the probability that r1 bids for a paper is similar to the
probability that r2 does. In an additional example, the attacker may know
that if a patient has a highly contagious disease, then her spouse likely has it,
too. Such background information cannot be modeled by independent-tuple
distributions.

However, limiting attackers to those characterized by independent-tuple
distributions strikes a good balance in the trade-off between guarantee strength
and feasibility of checking the guarantee. This conclusion is reinforced by a
study (discussed next) of what happens if the limitation is removed.

3.2 More General Classes of Attackers

[8] explores an alternate way to balance the tension between the strength of
the guarantee and the feasibility of checking it.

The study starts from the thesis that data owners cannot presume that at-
tacker’s beliefs are induced exclusively by the independent-tuple distributions
of [19, 20]. However, strengthening the guarantees to consider more general
classes of attackers carries the potential danger of rendering them too rigid,
i.e. violated by too many desirable publishing scenarios. Therefore, [8] simul-
taneously considers a relaxation along a different dimension: data owners are
assumed willing to accept the privacy breach caused by an already published

472 Alin Deutsch

set of views V, but want to ensure that a new view N will cause no further
breach. “Breach” is defined as a revision of belief from the a priori of having
observed V(D) to the a posteriori of having also observed N (D).

In the terminology of Section 2.2, [8] introduces and studies precisely the
various flavors of the NFBRP,S guarantee: extent-dependent (NFBRD

P,S), and
also extent-independent. Moreover, [8] argues that a privacy guarantee that
holds for given D, V, S, and N may be violated if it is also known that D
satisfies a set C of integrity constraints.

Example 8. Assume a hospital database consisting of four tables:

• PW associates patients with the ward they are in;
• WD associates doctors with the wards they are responsible for (several

doctors may share responsibility for the same ward, and the same doctor
may share responsibility for several wards);

• DA associates doctors with the ailments they treat;
• PA associates patients with the ailments they suffer from.

Assume that PW, WD, DA are published and PA is the secret. If the owner
also discloses (or common sense leads the attacker to assume) the following
integrity constraints, the attacker’s belief can be affected.

• Patients can be treated only by doctors responsible for their ward.
• If a patient p suffers from an ailment a then some doctor treats p for a.

If these constraints do not hold, an attacker may consider a possible database
associating a patient p with a doctor d who does not cover p’s ward and hold a
non-zero belief that p suffers from some ailment a treated only by d. However,
under the constraints the secret patient-ailment association PA is a subset of
ΠPA(PW �� WD �� DA), to which (p, a) does not belong. This forces the
attacker to revise to 0 his belief about any possible database witnessing (p, a).

[8] takes into account such semantic and integrity constraints when checking
privacy.

Maybe the most interesting dimension of the study in [8] stems from
proposing a natural way to classify attackers, yielding two groups.

First, we have the class of all attackers, described by set Pa of unrestricted
distributions. Ideally, this is whom the owner wishes to defend against. Pa cap-
tures attackers who exploit correlations between tuples, and strictly includes
attackers who don’t (the ones described by the independent-tuple distribu-
tions of [19, 20]).

Second, [8] observes that the attacker is often unaware of (or uninterested
in) the details of the possible database D witnessing a secret S(D), as D may
also involve data that are tangential or irrelevant to the secret. For example,
the attacker trying to link patients to their ailment does not care about the
patient’s insurance provider or the hospital’s parking facilities, all of which
could be also stored in the database.

Privacy in Database Publishing: A Bayesian Perspective 473

[8] therefore considers attackers whose background knowledge enables
them to form an opinion that discriminates among possible secrets, but who
cannot (or do not care to) distinguish among the possible databases witness-
ing any given secret. In this survey we call such attackers secret-focused, and,
given a secret S, we denote with PS the set of distributions describing secret-
focused attackers with respect to S.

PS is defined as follows. Given a distribution δS on possible secrets, we
say that δS induces a distribution δ on possible databases if δ satisfies both
of the following conditions:

• for every s and every D such that s = S(D), we have∑
s=S(D′) δ(D′) = δS(s);

• all witnesses of the secret are equi-probable according to δ:
∀D1,D2 S(D1) = S(D2) ⇒ δ(D1) = δ(D2).

Observing that δ is uniquely determined by δS , we have that PS is the set of
distributions on databases induced by all unrestricted distributions on secrets.
Note that PS still allows for attackers with arbitrary capacity to discriminate
among the secrets, as we start from arbitrary distributions on secrets.

[8] studies the setting in which the already published views V, the secret
S, and the new view N are specified by unions of conjunctive queries with
inequalities UCQ�=. The constraints in C are equivalent to containment state-
ments between UCQ �= queries. Such constraints extend classical embedded
dependencies [1] with disjunction and inequalities, and can express such com-
mon integrity constraints as keys and foreign keys, functional, inclusion and
join dependencies [1], cardinality constraints, and beyond.

For the extent-dependent guarantees, [8] shows that NFBRD
Pa,S(V,N)

is Πp
2 -complete in the combined size of the queries and database, while

NFBRD
PS ,S(V,N) is in PSPACE. These results hold even when the attacker

knows that D satisfies a set C of constraints, as long as C is weakly acyclic [9,
10]. In addition, both extent-independent guarantees NFBRPa,S(V,N) and
NFBRPS ,S(V,N) are undecidable [8], even in the absence of constraints
(C = ∅).

These results should be viewed in light of the fact that in generalization-
based publishing (discussed in Section 4), deciding whether an anonymization
is optimal is NP-complete in the size of the database.

While the above results render the proposed privacy guarantees impracti-
cal in the current form, the study in [8] is a first step toward identifying restric-
tions leading to tractability on the views, secret and constraints. Moreover, the
study proves that changing the class of attacker distributions yields a novel
privacy guarantee, which is qualitatively different from the version in [19, 20],
as witnessed by the different complexity and decidability bounds. Finally, the
contrast between the various classes of attackers considered in [19, 20] and [8]
shows the difficulty of striking the right balance between the strength of the
guarantee and the feasibility of checking it.

474 Alin Deutsch

4 Generalization-Based Publishing

The concept of anonymization by generalization [23, 24] was introduced to
enable the publishing of data about individuals for the purpose of studies
(e.g. computing statistics and data mining), while making it hard to pinpoint
the exact individual associated with each data value. A canonical example
pertains to a hospital that publishes seemingly anonymized data by releasing
the age, gender and zip code of its patients together with the disease, in the
hope that by leaving out the name and social security number attackers cannot
infer who suffers from what disease.

Sweeney shows that this hope is unfounded [24], as over 85% of the US
population is identified by the combination of age, gender and zip. This data
is accessible to attackers either because they know the person, or simply from
publicly available databases such as voter registration lists. In a notorious
illustration of her point, Sweeney uncovered the medical history of a former
governor of Massachusetts by combining the medical data with the registration
list.

The attacks based on combining the anonymized data with external public
databases are called linking attacks. Sweeney argues that in order to defend
against linking attacks, the data owner must conservatively assume that the
attacker has access to the public database, and that the information in this
database uniquely identifies the individual. The upshot of this assumption is
that the attacker has access to the identity of each individual, as if the owner
had published it. Therefore, the best a defense against linking attacks can
accomplish is to hide the association between the individual’s identity and
the sensitive data (such as her disease, salary, etc.).

In detail, work on anonymization by generalization considers a database
containing a single relation R(ID,QI, S), where

• the list of attributes ID comprises the person’s identifier
(e.g. (ssn) or (first name, middle name, last name)),

• the list of attributes QI gives the person’s quasi-identifier
(e.g. (age,gender,zip)) which can be used to look up the actual identifier
in some public database of schema ID,QI, and

• S is the list of sensitive attributes (e.g. disease, salary, etc.).

Association between identity and sensitive attributes. We say that
identity id is associated in R to sensitive attribute value s if there exists some
tuple r ∈ R with r[ID] = id and r[S] = s.

Generalization function. To keep associations private, the owner anon-
ymizes the QI attributes using a generalization function g. g hides the actual
values of the QI attributes, replacing them with more general values. For
instance, an age value is replaced by an age interval, a zip code changed by
dropping some of its least significant digits. In the extreme, the generalization
function can hide the attribute value completely by replacing it with the wild
card “*”. This is called attribute suppression.

Privacy in Database Publishing: A Bayesian Perspective 475

Proprietary data Anonymized data
Name Age Gender Zip Ailment

John 20 M 92122 flu

Jane 22 F 92121 pneumonia

Jack 26 M 92093 cold

Jill 29 F 92094 bronchitis

Age Gender Zip Ailment

[20-25) * 9212* flu

[20-25) * 9212* pneumonia

[25-30) * 9209* cold

[25-30) * 9209* bronchitis

Fig. 1. Anonymization in Example 9

Anonymization. The generalization function g defines an anonymizing
function Ag on R, which drops the ID attributes of each R-tuple, keeps the
sensitive attributes unchanged, and substitutes the QI attributes with the
result of g. If duplicates are created in this process, then they are all preserved.
We have

Ag(R) := {{t : QI, S| r ∈ R, t[QI] = g(r[QI]) ∧ t[S] = r[S]}},

where t[X] denotes the projection of tuple t on attribute list X, and where
{{}} denote multi-set comprehensions (which preserve duplicates, as opposed
to the set comprehensions denoted with {}).

Example 9. In Figure 1, the proprietary table R on the left has ID attribute
Name, QI attributes Age, Gender, Zip, and S attribute Ailment. The table
on the right is its anonymization Ag(R) where g replaces age with the 5-year
interval it falls in, suppresses gender and hides the least significant digit of
the zip code.

Given a tuple r ∈ R, the owner wishes to preserve the privacy of the
association between the identifier r[ID] and the sensitive attribute values
r[S]. Since the sensitive attributes are published in clear, the attacker needs
to guess only r[ID]. Intuitively, the anonymization Ag “hides the identity
r[ID] in a crowd” of possible identities, forcing the attacker to guess among
them. The larger the crowd, the lower the chance of guessing right.

Equivalence under generalization. This crowd comprises the identities
of all tuples whose projection on the quasi-identifiers generalizes under g to
the same value. It is easy to see that the property of two tuples having the
same image of their QI projection under g is an equivalence relation. Denoting
with [r]Rg the equivalence class of r, we have

[r]Rg := {r′ ∈ R | g(r′[QI]) = g(r[QI])}.

In Example 9, the tuples of table R are partitioned by g into two equiv-
alence classes, one comprising the tuples for John and Jane, the other the
tuples for Jack and Jill.

Now consider a tuple t ∈ Ag(R) which is the image under Ag of some
tuple r ∈ R. When the attacker observes the occurrence of sensitive attribute

476 Alin Deutsch

value s in t (t[S] = s), the identities which could be associated with t[S]
in the actual database R are those of the tuples in r’s equivalence class:
{c : ID | r ∈ [r]Rg , c[ID] = r[ID]}. In Example 9, the attacker concludes that
either Jack or Jill can have bronchitis.

Assumptions on the attacker’s knowledge. As introduced in [23, 24],
the defense against linking attacks relies on a few implicit assumptions, also
adopted by follow-up work. We explicitly list them below:

A1 For every r ∈ R, the attacker knows that r[ID] occurs in the database (e.g.
because r[ID] identifies an acquaintance or celebrity whose hospitalization
the attacker is aware of).

A2 For every r ∈ R, the attacker knows the value of the quasi-identifier
attributes r[QI] (e.g. due to access to some external public database).

A3 The attacker has no additional external knowledge to discriminate among
the possible identities, thus treating them as equi-probable.

Util The owner is willing to live with the privacy breach caused by publish-
ing the projection of R on S in the clear, since this is a minimal utility
requirement for statistical and data mining computations performed by
consumers of the released data.

Note that assumptions A1 and A2 are conservative, and any guaran-
tee holding under them also defends against less informed attackers. In con-
trast, assumption A3 is optimistic and weakens any guarantee, as it ig-
nores attackers who improve their guessing odds by exploiting background
knowledge to discriminate among alternatives. We address below versions of
anonymity which relax this assumption. Finally, regarding assumption Util,
note that [23] and most of its follow-up work concerns itself with choosing
generalizations of the quasi-identifier attributes so as to minimize information
loss, with the understanding that the sensitive data is released in the clear.

Relationship to GBP Model. We show the connection between the
GBP model and the privacy guarantees offered by an arbitrary anonymization
of a table via generalization. This will enable a comparison to the privacy
guarantees described in Section 3. Moreover, it will allow us to contrast various
anonymization guarantees found in the literature using a uniform framework.

• In typical studies of generalization, the proprietary database D consists of
a single relation R of schema (ID,QI, S).

• Assumptions A1 and A2 can be modeled by just as well assuming that
the owner (or some other authority) has already published the projection
of R on ID,QI:

Vid(R) := ΠID,QI(R).

• In our modeling, we separate the owner’s concerns on releasing the sen-
sitive data (none according to assumption Util) and the quasi-identifier
data (serious concerns, calling for generalization). To this end, we consider
the projection of R on the sensitive attributes S as good as published, by
a view

Privacy in Database Publishing: A Bayesian Perspective 477

Vs(R) := {{t : S | r ∈ R, t[S] = r[S]}}.
Note that Vs is defined under multi-set semantics (it preserves duplicates),
thus revealing the distribution of sensitive values in the underlying popu-
lation for the benefit of statistical studies.
In addition, the owner contemplates a new data release: the table R
anonymized using publishing function Ag which associates anonymized
quasi-identifiers with clear sensitive values. 3

Under assumption Util, the owner is not concerned about the attacker’s
belief revision caused by seeing the sensitive values. The only revision she
wishes to bound is caused by considering Ag(R) on top of Vs(R). To this
end, we adopt the following convention: a priori every attacker has access
to views Vid(R) and Vs(R). We denote with V the publishing function
given by the pair of views Vid, Vs. A posteriori refers to having released
Ag(R) on top of V(R).

• For each proprietary tuple r ∈ R, both the identity value r[ID] and the
sensitive value r[S] are known a priori to the attacker via views Vid, re-
spectively Vs. The attacker is uncertain only about whether the two are
associated in R. To hide this association from the attacker, the owner de-
clares as secret the boolean query that checks the existence of some tuple
r′ ∈ R which witnesses the association:

Sr := ∃(r′ ∈ R) r′[ID] = r[ID] ∧ r′[S] = r[S].

Note that the secret does not include the quasi-identifier attributes, as by
assumption A2, these are known for every identifier anyway (via Vid).

• Under assumption A3, the owner guards only against a single type of at-
tackers, namely those who for lack of additional external knowledge deem
all possible databases equally likely. We model these attackers by the uni-
form probability distribution u on possible databases.

Denote the multiplicity of sensitive value s in table X with mult(s,X).
Then it is easy to verify that, under assumptions A1,A2, and A3, the prob-
ability that id = r[ID] is associated to s = r[S] in R (i.e. that secret Sr

holds) is a priori (i.e. after seeing V(R)) given by mult(s,R)
|R| . The a posteriori

probability (after seeing Ag(R)) equals mult(s,[rR
g)

|[r]Rg | . It follows that g offers the
following guarantee of bounded belief revision for secret Sr:

BFBRR
{u},Sr

(V,Ag, |
mult(r[S], [r]Rg)

|[r]Rg |
− mult(r[S], R)

|R| |).

This immediately yields that the anonymization of R via g satisfies the fol-
lowing privacy guarantee:
3 In practice, view Vs(R) is released simultaneously with anonymized table Ag(R)

(as its projection on S), not prior to it. Our modeling is merely a means to capture
assumption Util.

478 Alin Deutsch

∧
r∈R

BFBRR
{u},Sr

(V,Ag, |
mult(r[S], [r]Rg)

|[r]Rg |
− mult(r[S], R)

|R| |). (5)

Note that the frequency of a sensitive value s in the entire table R can diverge
widely from the frequency of s in the equivalence class of some r ∈ R. In a
worst-case scenario when s is predominant in R (its frequency in R is close
to 1) but very infrequent in r’s equivalence class, the belief revision for secret
Sr is considerably close to 1, which is the maximum possible.

4.1 K-Anonymity

In this section, we expose the connection between the original work on k-
anonymity and the attacker’s Bayesian belief revision. Casting the terminology
of [23, 24] in terms of the GBP model, we find that [23, 24] bounds the
attacker’s belief revision by requiring the generalization function g to induce
only equivalence classes of cardinality at least k. In that case, g is called
k-anonymous, which we shall denote anonR

k (g):

anonR
k (g) := ∀(r ∈ R) |[r]Rg | ≥ k.

For instance, function g in Example 9 is 2-anonymous.
By the above discussion, k-anonymity immediately implies that for a given

occurrence of sensitive attribute value s in some tuple t of the anonymized
data, there are at least k distinct identities which could be associated with s
in the actual database R. Under assumptions A1,A2, and A3, the attacker’s
odds of guessing that indeed r[ID] is the correct identity are at most 1/k.

Previous work has interpreted this fact as implying that the probability
of correctly guessing that identity id is associated in R to sensitive data value
s is at most 1/k. As pointed out in [16] and detailed below, this conclusion
is unjustified: it is caused by the confusion between the value of the sensitive
attributes and their occurrence. Specifically, if sensitive value s occurs l times
in r’s equivalence class, then the probability that r[ID] is associated with
value s is the sum over all occurrences of s of the probability that r[ID] is as-
sociated with that occurrence, yielding l

|[r]Rg | . This quantity can be arbitrarily

larger than 1
k , reaching 1 in the extreme case when all tuples in r’s equiva-

lence class have the same sensitive value. This observation gives an alternative
explanation why k-anonymity provides no meaningful privacy guarantees in
general.

Before discussing in the following sections refinements of k-anonymity
which address this problem, we first articulate an implicit assumption un-
der which k-anonymity does bound by 1

k the probability of guessing secret
Sr.

A4 For every r ∈ R, sensitive value r[S] occurs only once in [r]Rg .

Privacy in Database Publishing: A Bayesian Perspective 479

We are now ready to relate the definition of k-anonymity with the GBP
model. Under additional assumption A4, if g yields a k-anonymization of R
then the a priori probability of Sr is 1

|R| and the a posteriori probability is
1

|[r]Rg | ≤
1
k :

(anonR
k (g) ∧ A4) ⇔

∧
r∈R

BFBRR
{u},Sr

(V,Ag,
1
k
− 1

|R|) (6)

⇒
∧
r∈R

BFBRR
{u},Sr

(V,Ag,
1
k

). (7)

(7) states that under assumption A4 the amount of belief revision for each
secret Sr is bounded by a constant rather than the size of the database.

We discuss next a widely applicable guarantee that lifts restriction A4,
relaxes restriction A3, and still bounds the amount of belief revision by an
owner-defined constant.

4.2 L-Diversity

Machanavajjhala et al. [16] point out two key deficiencies of the k-anonymity
guarantee: it does not withstand so-called homogeneity and background at-
tacks.

In the general case when sensitive attribute values may occur more than
once in R, vulnerability to homogeneity attacks arises whenever few sensitive
values occur with high multiplicity in an equivalence class. In particular, when
all tuples in r’s equivalence class share the same sensitive value s, any attacker
can infer with certainty that r[ID] is associated with s. In this case, the
attacker learns the maximum possible amount of information about the secret
Sr since its a posteriori probability is 1.

In background attacks, the attacker exploits external background informa-
tion to rule out a number of sensitive values as being definitely not associated
to r[ID]. The remaining alternatives are considered equi-probable. This class
of attackers is not covered by k-anonymity, which considers the single attacker
who a priori deems all associations equi-probable.

[16] proposes the concept of l-diversity to remedy these deficiencies of k-
anonymity. The intuition behind this concept is to defend against attackers
who are able to rule out at most l − 1 sensitive values from the equivalence
class of each r ∈ R, by ensuring that the frequency of each sensitive value in
the remaining set of tuples is upper bounded by an owner-defined threshold.
[16] introduces the notion of recursive (c, l)-diversity as a sufficient condition
for l-diversity.

For every r ∈ R, let o be the number of distinct sensitive values occurring in
r’s equivalence class. Let their list be s1, . . . , so, and let mi be the multiplicity
of si in r’s equivalence class. Assuming w.l.o.g. that m1 ≥ m2 ≥ . . . ≥ mo, we
say that the equivalence class of r satisfies recursive (c, l)-diversity if

480 Alin Deutsch

m1 ≤ c(ml + ml+1 + . . . + mo)

for some constant c. We say that g satisfies recursive (c, l)-diversity for R,
denoted r-divc,l(g,R), if for every r ∈ R, r’s equivalence class satisfies recursive
(c, l)-diversity.

Example 10. The anonymized table in Fig. 1 satisfies recursive (1,2)-diversity.

Recursive (c, l)-diversity has two immediate implications.
First, it enables owners to drop assumption A4, thus extending applica-

bility of the guarantee to tables with duplicate sensitive values. Indeed, it is
easy to check that under assumptions A1, A2 and A3, (c, l)-diversity im-
poses an upper bound of c

1+c on the attacker’s a posteriori and a priori belief,
and hence on the belief revision that Sr holds. Recursive (c, l)-diversity thus
provides defense even when assumption A4 is violated.

Second, recursive (c, l)-diversity allows to relax assumption A3 to accom-
modate defense against background attacks. [16] shows that this guarantee
implies that regardless of which (at most) l − 1 sensitive values are pruned
from r’s equivalence class as being unassociated to r[ID] (according to back-
ground information), the frequency of each remaining sensitive value in the
pruned equivalence class is at most c

1+c . This is the upper bound on the a
posteriori belief about secret Sr.

[17] discusses additional refinements of (c, l)-diversity, relaxing the defini-
tion to allow for the disclosure of attributes for certain individuals with less
stringent privacy concerns. The authors also show that l-diversity is a prac-
tical notion, not only because it defends against more realistic attacks than
k-anonymity, but also because finding an optimal l-diverse generalization of a
table can be done no less efficiently than finding an optimal k-anonymization.
Machanavajjhala et al. show how to exploit the structural similarity of the two
privacy notions to easily adapt to l-diversity the state-of-the-art techniques
developed for k-anonymity, such as the Incognito algorithm [12].

In the remainder of this section, we connect l-diversity to the GBP model.
Relationship to the GBP Model. The insight that when assumption A4
does not hold K-anonymity provides no guarantees, is also reflected in the
GBP model. Specifically, in the pathological case when all tuples in r’s equiv-
alence class share the same sensitive value, the posterior probability of Sr is
given by

Pu[Sr|V(R) ∧ Ag(R)] =
mult(r[S], [r]Rg)

|[r]Rg |
= 1

so from (5) we obtain that the only guarantee possible for Sr is

BFBRR
{u},Sr

(V,Ag, 1 − mult(r[S], R)
|R|).

This is a trivial guarantee, satisfied by any anonymization, including those in
which the secret Sr is completely exposed.

Privacy in Database Publishing: A Bayesian Perspective 481

In contrast, it is easily verified that, even after dropping assumption A4,
recursive (c, l)-diversity guarantees that

mult(r[S], R)
|R| ≤

mult(r[S], [r]Rg)
|[r]Rg |

≤ c

1 + c

which implies that the further belief revision is bounded by c
1+c . Plugging this

bound into (5), we obtain

r-divR
c,l(g) ⇒

∧
r∈R

BFBRR
{u},Sr

(V,Ag,
c

1 + c
).

A remarkable fact about recursive (c, l)-diversity is that it represents the
first anonymity flavor that looks beyond the uninformed attacker described
by the uniform probability distribution. The class of attackers it considers can
be described by the following family of probability distributions. We say that
a probability distribution δ is l-pruning if it satisfies both conditions below:

• for every r ∈ R, there is a set Vr of sensitive values occurring in [r]Rg , such
that
– |Vr| < l and
– for every database R′, δ(R′) = 0 if and only if there are r′ ∈ R and

v ∈ Vr′ such that R′ contains the association of r′[ID] with v;
• all databases with non-zero probability are equi-probable.

Intuitively, Vr is the set of alternatives which the attacker rules out as unas-
sociated to r[ID]. Denoting with LP all l-pruning distributions given by R
and g, we have

r-divR
c,l(g) ⇒

∧
r∈R

BFBRR
LP,Sr

(V,Ag,
c

1 + c
).

Since LP is generated by all possible choices of Vr, the guarantee defends
against all attackers able to rule out at most l−1 alternatives, no matter which
these alternatives are, as dictated by the various attackers’ backgrounds.

We conclude this section with a few remarks.

4.3 Additional Remarks on Anonymization Techniques

Complexity of Finding Optimal Anonymizations. Clearly one extreme
way to ensure k-anonymity is to generalize tuples into a single equivalence
class. This would of course minimize the utility of the released data. [18]
studies the problem of finding the k-anonymization which incurs the least
amount of data loss due to generalization (for various metric for data loss),
showing that the problem of optimal k-anonymization is NP-complete. Sev-
eral follow-up papers propose practical k-anonymization algorithms based on
approximations and heuristics [12, 3, 7, 4]. While Machanavajjhala et al. do

482 Alin Deutsch

not provide a lower bound for finding optimal l-diverse anonymizations, they
conjecture NP-hardness as well, and show how to adapt the Incognito Algo-
rithm [12].

Sensitive Data Generalization. There are slight exceptions from as-
sumption Util: an example occurs in [22]. In this work, sensitive data is not
published in the clear, but generalized itself using a function f . The gener-
alization function f exploits a hierarchy among concepts in the sensitive do-
main, treating ancestor concepts as more general than descendant concepts.
For instance, instead of displaying “pneumonia”, the owner may release a
more general concept such as “respiratory tract problems” which in turn is
generalized by “antibiotic-curable ailment”. Evidently the objective in [22] is
to minimize the information loss resulting from generalization of both quasi-
identifiers and sensitive attributes. We can capture this scenario as well in the
GBP model, by simply adjusting assumption Util to state that the owner is
willing to live with the attacker’s belief after seeing the generalized sensitive
values described by view Vs(R) := f(ΠS(R)).

T-Closeness. One paper that explicitly states and exploits assumption
Util is [14]. It considers the probability distribution p on the secrets {Sr}r∈R

after seeing the entire anonymized table Ag(R), and the probability distri-
bution q of the sensitive values in R, i.e. in Vs(R). The authors introduce
the privacy guarantee of t-closeness, which holds if the distribution distance
between p and q is smaller than a parameter threshold t. The authors show
shortcomings of standard metrics for comparing distributions and propose
their own. They also show that the search for a t-close anonymization that
maximizes utility (under a standard measure) can be performed by adapt-
ing efficient algorithms developed for k-anonymity. However, t-closeness does
not subsume k-anonymity and the authors suggest combining the two before
releasing an anonymized table.

An Alternative Bayesian Modeling. [17] compares the notion of l-
diversity to a model called Bayesian Optimal Privacy (BOP) model. Just like
the GBP model, the BOP model is based on belief revision. However, the
authors conclude a mismatch between l-diversity and the BOP model. As
demonstrated in this section, the reason is not due to any fundamental mis-
match between Bayesian privacy models and l-diversity. Rather, it stems from
the particular modeling choice in [17] which ignores assumption Util: [17] con-
siders that a priori the attacker sees Vid(R) but not Vs(R). The difficulty with
this modeling (identified in [17] as well) is that to estimate the attacker’s a
priori belief revision about Sr, we require knowledge of the attacker’s proba-
bility distribution on the domain of all sensitive values, which is an unrealistic
expectation. The modeling we describe in this section surmounts this obstacle,
as under assumption Util, it needn’t care about this distribution; it only con-
siders belief revision starting from the attacker’s adjusted belief after seeing
Vs(R). We can estimate this belief (as in (5)), regardless of the belief before
seeing Vs(R).

Privacy in Database Publishing: A Bayesian Perspective 483

work attacker classes considered

[8] all Pa;
secret-focused PS

[19, 20] independent-tuple Pit

[16, 17] l-pruning LP
[23, 24] uniform distribution Pu = {u}

Pu ⊂ LP ⊂ PS
Pit

⊂ Pa

Fig. 2. Classes of attackers considered by privacy guarantees in various works

k-Anonymous Views. An intriguing idea introduced by Jajodia et al
in [25] is to apply the notion of k-anonymity to view-based publishing. The
setting is similar to generalization-based publishing: we have a single table R
with identity attributes ID and sensitive attributes S. The owner publishes
data from R via views expressed as conjunctive queries. It is assumed that re-
leasing all identifiers ΠID(R) and all sensitive attributes ΠS(R) is acceptable
to the owner, but releasing the association between them is not.

A view V is said to satisfy k-anonymity if for every identifier id ∈ ΠID(R),
there are k distinct possible databases {R1, . . . , Rk} ⊆ [R]V , each associating
id with a distinct sensitive value s1, . . . , sk.

This guarantee can be connected to the GBP model as follows. Say that
an attacker is uniform secret-focused if he is described by a distribution on
databases which is generated by a uniform distribution on secrets. Given secret
S, there is only one such uniform secret-focused distribution, δS . Then view
V ’s k-anonymity implies

∧
r∈R

BFBRR
{δSr},Sr

(V, V,
1
k

).

where V are the views (considered a priori known to the attacker) ΠID(R) and
ΠS(R), and Sr is the secret association for tuple r, as defined in Section 4.1.

5 View-Based Versus Generalization-Based Publishing

The formalization of various privacy guarantees in terms of the GBP model
allows us to qualitatively compare view-based and generalization-based pri-
vacy guarantees.

Abstracting from the different expressive powers of the publishing func-
tions V and N (views versus generalizations), the fundamental difference be-
tween these guarantees remains the class of probability distributions used to
model attackers.

The guarantee in [8] is the most conservative one, considering all types
of attackers (with the drawback of high complexity for deciding the extent-
dependent guarantees, and undecidability in the extent-independent case).

484 Alin Deutsch

Miklau and Suciu’s guarantee of perfect privacy considers a subclass of at-
tackers described by independent-tuple distributions, with the benefit of fea-
turing better decision complexity. Recursive (c, l)-diversity requires l-pruning
distributions, which are a subclass of the distributions of [8]. L-pruning distri-
butions are also particular cases of independent-tuple distributions. Finally,
the uniform distribution u implicitly used to model attackers in k-anonymity
is a particular case of l-pruning distributions (for l = 1). Figure 2 summarizes
the relationship between the various classes of attackers.

Note that the classes Pa,PS ,Pit were introduced for view-based privacy,
while LP and Pu for generalization-based privacy. There is no reason why the
various classes of attackers should not be considered uniformly, across both
publishing paradigms.

6 Privacy in Open-World Integration

So far we have only considered publishing settings in which V is a function.
However, this modeling leaves out an important publishing paradigm, namely
open-world integration [11, 13].

In open-world integration, a collection L of data sources (also known as
local databases) is registered into an integrated database G (also known as
the global database). Each data source is registered by stating the inclusion of
a publishable data subset into G. The publishable subset is typically specified
by a query against the local database, and the global dataset containing it is
specified by a query against the global database. This allows for instance a
Toyota car dealer to register the classified deals in her database as a subset of
the Toyota deals from the global database of a portal covering many dealer-
ships. If the portal offers several brands, specifying its Toyota deals requires
a selection query.

Such inclusion statements do not uniquely determine the global database,
since whenever a global database G satisfies them, so does any other database
strictly containing the tuples in G. Consequently, the relation V between local
(proprietary) and global (public) database is not functional: V associates any
extent of local databases L to an infinite family of global databases. Towards
a well-defined semantics of answering application queries Q against the global
schema, the notion of certain answers was introduced [11, 13]. Given a set L
of local databases, the certain answer of Q against the global schema is the
set of all tuples appearing in the answer of Q on all global databases G related
to L: certQ(L) = ∩(L,G)∈VQ(G).

Clients (and therefore attackers) can interact with the integration system
only by posing queries against the global schema and receiving their certain
answer. In such a setting, it still makes sense to allow the owner of an indi-
vidual local database to specify the sensitive data using a query S against
the local database. Privacy of the secret can still be defined in terms of no

Privacy in Database Publishing: A Bayesian Perspective 485

(or bounded) belief revision, which depends on the possible local databases,
analogous to the GBP model.

However, the possible local databases now represent precisely those which
are indistinguishable from the actual local database by an arbitrary interaction
with the integration system. That is, they cannot be distinguished by posing
arbitrary-length sequences of arbitrary queries against the global schema and
observing their certain answer.

The problem is that the space of possible interactions between attacker
and integration system is infinite, so this definition does not immediately lead
to an algorithm for identifying the set of possible local databases, which in
turn hinders the development of an algorithm for checking privacy guarantees.

[21] solves the problem in a setting where V is given by containment
statements between a union of conjunctive queries with inequalities (UCQ�=)
against the local data and a UCQ�= query against the global data (such state-
ments are also known as GLAV [11, 13] or source-target constraints [10]). The
secret S is also given by a UCQ�= query against the local database. [21] shows
that, instead of considering the infinitely many possible interactions of an at-
tacker with the integration system, it suffices to focus on a single, canonically
built interaction. This canonical interaction is optimal in the sense that it
poses a finite set of queries against the integration system, such that no fur-
ther queries an attacker could conceive give additional information. More pre-
cisely, the certain answers of the canonical queries suffice to reverse-engineer
precisely the set of possible local databases. This in turn enables formulating
and checking all extent-dependent GBP privacy guarantees (Section 2).

7 Conclusions

In this chapter, we reduced various instantiations of the view-based and
generalization-based publishing to the GBP model, also showing how to ap-
ply it to publishing in open-world integration. This reduction offers a unifying
perspective on various seemingly disparate privacy guarantees developed in-
dependently for the various publishing paradigms.

We have applied the GBP model to settings in which the publishing trans-
formation is deterministically defined as either a function or a relation. This
assumption leaves out the mature line of research on preserving privacy by
randomizing the data (see for instance [2] and references within).

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

2. Charu C. Aggarwal. On randomization, public information and the curse of
dimensionality. In International Conference on Data Engineering (ICDE), pages
136–145, 2007.

486 Alin Deutsch

3. G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas,
and A. Zhu. Anonymizing tables. In International Conference on Database
Theory (ICDT), pages 246–258, 2005.

4. C. C. Aggrawal. On k-anonymity and the curse of dimensionality. In Interna-
tional Conference on Very Large Data Bases (VLDB), pages 901–909, 2005.

5. Francois Bancilhon and Nicolas Spyratos. Protection of information in relational
data bases. In International Conference on Very Large Data Bases (VLDB),
pages 494–500, 1977.

6. Francois Bancilhon and Nicolas Spyratos. Algebraic versus probabilistic inde-
pendence in data bases. In ACM Symposium on Principles of Database Systems
(PODS), pages 149–153, 1985.

7. R. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization.
In International Conference on Data Engineering (ICDE), pages 217–228, 2005.

8. Alin Deutsch and Yannis Papakonstantinou. Privacy in database publishing. In
International Conference on Database Theory (ICDT), pages 230–245, 2005.

9. Alin Deutsch and Val Tannen. Reformulation of XML queries and constraints.
In International Conference on Database Theory (ICDT), 2003.

10. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data exchange: Semantics and
query answering. In International Conference on Database Theory (ICDT),
2003.

11. Alon Halevy. Answering queries using views: A survey. VLDB Journal,
10(4):270–294, 2001.

12. K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-
domain k-anonymity. In ACM Conference on Management of Data (SIGMOD),
pages 49–60, 2005.

13. Maurizio Lenzerini. Data integration: A theoretical perspective. In ACM Sym-
posium on Principles of Database Systems (PODS), 2002.

14. Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Pri-
vacy beyond k-anonymity and l-diversity. In International Conference on Data
Engineering (ICDE), 2007.

15. Ashwin Machanavajjhala and Johannes Gehrke. On the efficiency of checking
perfect privacy. In ACM Symposium on Principles of Database Systems (PODS),
pages 163–172, 2006.

16. Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakr-
ishnan Venkatasubramaniam. l-diversity: Privacy beyond k-anonymity. In In-
ternational Conference on Data Engineering (ICDE), page 24, 2006.

17. Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrish-
nan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. To appear
in IEEE Transactions on Knowledge and Data Engineering (TKDE).

18. A. Meyerson and R.Williams. On the complexity of optimal k-anonymity. In
ACM Symposium on Principles of Database Systems (PODS), pages 223–228,
2004.

19. Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in
data exchange. In ACM Conference on Management of Data (SIGMOD), pages
575–586, 2004.

20. Gerome Miklau and Dan Suciu. A formal analysis of information disclosure
in data exchange. Journal of Computer and Systems Sciences, 73(3):507–534,
2007.

21. Alan Nash and Alin Deutsch. Privacy in GLAV information integration. In
International Conference on Database Theory (ICDT), pages 89–103, 2007.

Privacy in Database Publishing: A Bayesian Perspective 487

22. Pierangela Samarati. Protecting respondents’ identities in microdata release.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 13(6):1010–
1027, 2001.

23. Pierangela Samarati and Latanya Sweeney. Generalizing data to provide
anonymity when disclosing information. In ACM Symposium on Principles of
Database Systems (PODS), page 188, 1998.

24. Latanya Sweeney. k-anonymity: a model for protecting privacy. International
Journal on Uncertainty, Fuzziness, and Knowlege-Based Systems, 10(5):557–
570, 2002.

25. Chao Yao, Xiaoyang Sean Wang, and Sushil Jajodia. Checking for k-anonymity
violation by views. In International Conference on Very Large Data Bases
(VLDB), pages 910–921, 2005.

20

Privacy Preserving Publication:
Anonymization Frameworks and Principles

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Sha Tin, New Territories, Hong Kong
taoyf@cse.cuhk.edu.hk

Summary. Given a microdata table T , the objective of privacy preserving pub-
lication is to release a distorted version T ′ of T such that T ′ does not allow an
adversary to confidently derive the sensitive data of any individual, and yet, T ′ can
be used to analyze the statistical patterns significant in T . The existing methods
of privacy preserving publication is essentially the integration of an anonymiza-
tion framework and an anonymization principle. Specifically, a framework describes
how anonymization is performed, whereas a principle measures whether a sufficient
amount of anonymization has been applied. In this chapter, we will discuss the char-
acteristics of two existing frameworks: generalization and anatomy, and of two most
popular principles: k-anonymity and l-diversity.

1 Introduction

This chapter will discuss an important problem, known as privacy preserving
publication, in the literature of data privacy protection. Formally, we have a
trustable publisher that has a microdata table T , where each tuple describes
the information of an individual. For our discussion, assume that T has d non-
sensitive attributes Aq

1, Aq
2, ..., Aq

d and a sensitive attribute As. The objective
is to publish an anonymized version T ′ of T such that T ′ does not allow an
adversary to confidently derive the sensitive data of any individual, and yet,
T ′ can be used to analyze the statistical patterns significant in T .

As a concrete application example, consider that the publisher is a hospital,
and T is given in Table 1a. Here, T has three non-sensitive attributes Aq

1 =
Age, Aq

2 = Sex, Aq
3 = Zipcode, and a sensitive attribute As = Disease. The

column Name specifies the owners of the tuples, e.g., Tuple 1 indicates that
Andy, aged 5, lives in a neighborhood with Zipcode 12000, and he contracted
gastric-ulcer. Obviously, Name should not be published along with T , since it
explicitly reveals the identities of all individuals.

Let T ′ be the resulting table after removing Name from T . At first glance,
it appears that we can simply release T ′, which, by itself, does not contain any

490 Yufei Tao

(a) Microdata (b) A voter registration list

Table 1. Illustration of linking attacks for privacy inferencing

hint about who is the owner of each tuple. This naive approach fails, because
an adversary may combine T ′ with certain additional information, to recover
the owner of a tuple. For instance, imagine that a neighbor of Sarah knows
the age 28 of Sarah, and that Sarah has been hospitalized before, and thus,
must have a record in T ′. Since this neighbor has all the non-sensitive values of
Sarah, s/he easily finds out that the last-but-one tuple in T ′ belongs to Sarah.
In this way, the neighbor has successfully “linked” Sarah to her sensitive value
pneumonia.

The above process exemplifies a type of privacy inferences called linking
attacks, where an adversary accurately infers the sensitive value of a victim,
via the victim’s non-sensitive values. Since the non-sensitive attributes may be
utilized to pinpoint the tuple owned by a person, they are commonly referred
to as the quasi-identifier (QI) attributes. Linking attacks were first identified
as a real threat by Sweeney [15]. In particular, she shows that when the QI
attributes are date-of-birth, gender, and Zipcode, 87% of the Americans have a
unique combination of the values on those attributes. Furthermore, leveraging
a dataset released by a real publisher (the publication was done in the same
way as described earlier for Table 1a), Sweeney convinces the community
about the seriousness of linking attacks, by correctly extracting the medical
history of an ex-governor of Massachusetts.

In reality, the QI-values of an individual may be acquired by an adversary
through several channels. Knowing the victim is an obvious channel, as in our
earlier example where the adversary is the neighbor of Sarah. Alternatively,
an adversary may also obtain the QI-values from an external database, which
can be completely separate from T , and its accessibility to the public cannot
be controlled by the publisher of T . For instance, a worker in the government
may have access to the voter registration list in Table 1b, which includes all
the QI-attributes in the microdata of Table 1a, together with peoples’ names.
Note that an external database, most likely, does not include exactly the same

Privacy Preserving Publication 491

set of individuals as in the microdata. For instance, Mike in the list of Table 1b
is absent from Table 1a. Nevertheless, by performing an equi-join between the
two tables, an adversary easily recovers the identities of all the patients in the
microdata.

Prevention of linking attacks is important, because they strongly dis-
courage a publisher (e.g., a hospital, a census bureau, etc.) from sharing
its data with researchers, who rely on such data to verify their hypotheses
from laboratories. Several methods have been developed in the database com-
munity to counter such attacks, by computing an adequately anonymized
version T ′ of the microdata T . Each method is essentially the integration
of an anonymization framework and an anonymization principle. Specifically,
a framework describes how anonymization is performed, whereas a principle
measures whether a sufficient amount of anonymization has been applied.
In the sequel, we will discuss the characteristics of two existing frameworks:
generalization and anatomy, and those of two most popular principles: k-
anonymity and l-diversity.

The rest of this chapter is organized as follows. Section 2 introduces the
concept of k-anonymous generalization, and points out its vulnerabilities to
linking attacks. Section 3 clarifies l-diversity and how it remedies the defects
of k-anonymity, again assuming generalization is the underlying anonymiza-
tion framework. Section 4 explains how l-diversity can be implemented with
anatomy, and compares the two anonymization frameworks. Section 5 identi-
fies several limitations of l-diversity. Finally, Section 6 provides a summary of
the chapter.

2 k-anonymous Generalization

Given a microdata table T , the generalization [13, 15] anonymization frame-
work replaces each QI-value with a less specific form, such that the QI-values
of a tuple become indistinguishable from those of some other tuples. Table 2
demonstrates a generalized version of the microdata in Table 1a. For example,
the age 5 of Tuple 1 in Table 1a has been generalized to an interval [1, 10] in
Table 2. Semantically, the interval indicates that the original age of Tuple 1
may be any value in the range of [1, 10].

Notice that Tuples 1 and 2 have exactly the same generalized value on
every QI attribute, and therefore, constitute a “QI-group”. Formally, a QI-
group is a group resulting from grouping the tuples in a relation by all the QI
attributes. Clearly, Table 2 involves 4 QI-groups: {1, 2} (indicated by tuple
IDs), {3, 4}, {5, 6}, and {7, 8, 9, 10}. It is worth mentioning that the notion of
“QI-group” is also known by several other names, such as “equivalent class”
[9], “q-block” [11], and so on.

Assume that the publisher releases Table 2. Consider the linking attack
launched by the neighbor of Sarah who, as mentioned in Section 1, possesses
the QI values {28, F, 37000} of Sarah. To guess which tuples may belong to

492 Yufei Tao

Table 2. A 2-anonymous version of Table 1a

Sarah, the neighbor examines the generalized QI-values in Table 2. Obviously,
Tuple 1 cannot be owned by Sarah, since it Age-value [1, 10] does not cover 28.
By this reasoning, Tuples 7-10 (in the last QI-group) are the only candidates
for the tuple of Sarah. Unable to make additional inferences from here, the
adversary settles on a fuzzy fact: Sarah may have got flu, pneumonia, or
Alzeimer’s.

Unlike Table 1a which allows the adversary to exactly derive the private
value of Sarah, Table 2 offers stronger protection. Evidently, protection is
made possible by the fact that generalization prevents the unique association
of a tuple to its owner. Specifically, since Tuples 7-10 share the same QI
formats, with a random guess, an adversary has only a 1/4 chance of correctly
identifying Tuple 9 as the real tuple owned by Sarah.

Based on the above idea, Sweeney and Samarati [14] propose k-anonymity
as an anonymization principle to measure the degree of generalization. For-
mally, a generalized table is k-anonymous if each QI-group contains at least
k-tuples. Table 2 is 2-anonymous, since the smallest QI-group (involving the
first two rows) has a size 2. In general, a higher k provides stronger protection
because, in general, k-anonymity guarantees that an adversary has at most
1/k probability of finding out the actual tuple owned by the victim individ-
ual. As a tradeoff, however, increasing k also brings down the utility of the
generalized table, since more information must be lost in generalization. This
can be easily understood through an extreme example: k = |T |. In that case,
all the tuples in the microdata T must be included in a single QI-group. As a
result, each generalized value must be a (very!) long interval encompassing all
the values in T on the corresponding QI-attribute. For instance, if k equals
10 and T is Table 1a, after generalization each Age-value becomes an interval
that covers the range [5, 56]. Releasing such an excessively generalized table
is hardly more useful than publishing only the Disease-column of T .

A large bulk of research has been devoted to developing algorithms
[3, 6, 7, 8, 9, 13, 15, 17, 19] for computing a k-anonymous version of T ,

Privacy Preserving Publication 493

which minimizes the amount of information loss gauged by an appropriate
metric. Although different metrics exist, all of them capture the loss amount
as a monotone function of the lengths of the generalized intervals (i.e., the
longer the interval, the higher the loss). We do not discuss the details of those
algorithms, most of which can be found in a nice survey [4]. For the subsequent
discussion, however, we need to make two notes.

• NP-Hardness. Finding the optimal k-anonymity generalization (with
the smallest information loss) is NP-hard [2, 5, 12], even for simple
information-loss metrics. This fact forces a practitioner to accept an
approximate algorithm. However, the existing solutions [2, 5, 12] can-
not ensure a small approximation ratio (which varies according to the
information-loss norm). In particular, the best known ratio is O(k), which
implies that the output of an algorithm may considerably deviate from the
optimal quality, when strong privacy protection is required (e.g., k = 20).

• Curse of Dimensionality. Second, it is known [1] that, when the number
of QI attributes is large, k-anonymous generalization inevitably lose a huge
amount of information, even for k = 2.

Machanavajjhala et al. [11] observe two crucial defects of k-anonymity in
guarding against linking attacks. They actually define two types of attacks
that leverage these defects to breach the privacy of individuals. Next, we
will illustrate them using the 2-anonymous generalization in Table 2 of the
microdata Table 1a.

• Homogeneity Attack. Assume that an adversary knows the QI-values
{19, M, 24000} of Sam. After inspecting the published Table 2, s/he re-
alizes that the tuple of Sam must fall in the third QI-group consisting of
Tuples 5 and 6. Since both tuples carry the sensitive value pneumonia, the
adversary becomes affirmative that Sam must have contracted that dis-
ease. In other words, the 2-anonymity in Table 2 provides no protection to
the privacy of Sam at all. Note that this observation does not contradict
our earlier conclusion that, k-anonymity ensures that an adversary has
only 1/k probability to correctly identify the real tuple of a victim. In our
case here, the adversary is equally uncertain about whether Tuple 5 or 6
belongs to Sam. However, it does not matter, since, either way, Sam must
have got the same disease.

• Background Attack. Now let us consider, once again, the neighbor of
Sarah. As explained before, from Table 2, the neighbor can only figure out
that Sarah may have had flu, Alzeimer’s, or pneumonia. This conjecture,
however, may be further improved, if the neighbor utilizes her/his “back-
ground knowledge”. For example, s/he may know that a flu-vaccine shot
had been offered to all the residents in the neighborhood a month before
Sarah was hospitalized. Hence, it is rather unlikely that the hospitalization
was caused by flu. Furthermore, obviously, Sarah is too young to get in-

494 Yufei Tao

fected with Alzeimer’s disease. Thus, the adversary becomes (almost fully)
confident that Sarah contracted pneumonia.

The above drawbacks lead to the development of another anonymization
principle as discussed in the next section.

3 l-diverse Generalization

Both homogeneity and background attacks are caused by the fact that there
is not sufficient diversity in the set of sensitive values present in a QI-group.
For example, in Figure 2, there is only one Disease-value pneumonia in the
QI-group containing tuples 5-6, which is the reasoning behind the homogene-
ity attack illustrated in the previous section. Although more diversity exists
in the last QI-group involving tuples 7-10 (where there are 3 sensitive val-
ues flu, Alzeimer, pneumonia), the degree of diversity is still not enough for
preventing the background attack launched by the adversary (the neighbor of
Sarah mentioned in Section 2) that can exclude 2 diseases flu and Alzeimer
from being the real disease of Sarah.

Evidently, in the worst case, no matter how diverse the sensitive values
are in a QI-group, a highly-knowledgable adversary can still precisely derive
the privacy of the victim individual o. Specifically, assume that the QI-group
accommodating the record of o has x different sensitive values, whereas the
adversary can correctly assert that o cannot be associated with x−1 of them;
in this case, the adversary uniquely identifies the true sensitive value of o.
Fortunately, the realistic situation is much more optimistic, since it is rare for
an adversary to be able to exclude too many sensitive values with respect to
o. For instance, among the vast number of possible diseases, the neighbor of
Sarah most likely can exclude only a very small percentage as the real disease
of Sarah.

l-diversity [11] was exactly motivated by this observation. It requires
that, after generalization, every QI-group should contain at least l “well-
represented” sensitive values. Intuitively, this requirement does not allow an
adversary to accurately recover the sensitive value of any individual o, pro-
vided that the adversary can exclude up to l−2 values (i.e., leaving at least 2
possibilities for o). Thus, with a sufficiently large l, l-diversity can effectively
prevent privacy breaches.

There are multiple ways to interpret the meaning of “well-represented”.
The simplest one is

Definition 1. A QI-group fulfills distinctness l-diversity, if it contains at
least l different sensitive values.

Although this interpretation can be easily understood, it does not offer strong
privacy guarantees from a probabilistic point of view. For example, imagine a
QI-group with 1000 tuples, 900 of which carry the same sensitive value HIV,

Privacy Preserving Publication 495

and the remaining 100 tuples have distinct values different from HIV. Clearly,
the QI-group satisfies distinctness 101-diversity. Nevertheless, the privacy of
HIV patients is poorly preserved. Specifically, consider an adversary who aims
at inferring the disease of such a patient o, and has no background knowledge,
i.e., s/he cannot exclude any disease before studying the published table. With
a random guess, the adversary concludes that o had HIV with probability
900/1000 = 90%. Notice that this process of privacy inference essentially
captures homogeneity attacks as a special case; hence, we refer to the process
as a probabilistic homogeneity attack.

This phenomenon leads to an improved version of l-diversity:

Definition 2. A table fulfills frequency l-diversity if, in each QI-group, at
most 1/l of the tuples carry the sensitive value.

By this reasoning, the last QI-group of Table 2 satisfies frequency 2-diversity,
as the most frequent Disease-value flu is possessed by half of the tuples in
the group. This definition has an important property: if, before consulting the
published table, an adversary cannot preclude any sensitive value as belonging
to the victim individual o, with a probabilistic homogeneity attack, s/he can
correctly reconstruct the real disease of o with at most 1/l probability.

Frequency l-diversity does not provide adequate protection to background
attacks. To understand this, consider a QI-group with 1000 tuples, 500 of
which have the sensitive value HIV, 499 tuples have pneumonia, and the
remaining tuple carries flu. This QI-group qualifies frequency 2-diversity, since
the most frequent value HIV belongs to 50% of the tuples. Let o be an HIV-
patient. Now, imagine an adversary who knows that this group contains the
record of o, and that o does not have pneumonia. As a result, the record
of o must be one of the 500 HIV-tuples, or the flu-tuple. At this point, the
adversary cannot exclude any other disease; hence, taking a random guess,
s/he conjectures that o contracted HIV with an exceedingly high probability
500/501 > 99.8%.

The cause of the above problem is as follows: after removing the 2nd fre-
quent sensitive value (i.e., pneumonia) in a QI-group, the most frequent sensi-
tive (HIV) value accounts for an excessively high proportion of the remaining
tuples in the group. The implication is that, it is not enough to limit the fre-
quency of the most popular sensitive value with respect to the QI-group size
(as is the case in frequency l-diversity). Instead, we should limit the frequency
according to the number of remaining tuples, after eliminating those having
the 2nd frequent sensitive value. Remember that, we arrived at this conclusion
by assuming that an adversary can preclude a single sensitive value as owned
by the victim. Carrying the reasoning to the general scenario, if an adversary
can exclude at most l − 2 values, we ought to constrain the frequency of the
most sensitive value, with respect to the remaining tuples, after discarding
the 2nd, 3rd, ..., (l − 1)-th most frequent sensitive values. This leads to the
next version of l-diversity.

496 Yufei Tao

Definition 3 ([11]). Given a QI-group, use n1, n2, ..., nm to denote the num-
ber of tuples having the most, 2nd most, ..., the least frequent sensitive values
in the group, respectively. The QI-group obeys recursive (c, l)-diversity, if
the next inequality holds1:

n1 ≤ c · (nl + nl+1 + ... + nm), (1)

where c is a certain constant, and l is an integer at most m.

For instance, the last QI-group in Figure 2 satisfies recursive (2, 3)-diversity.
Specifically, for that QI-group, n1 = 2, and n2 = n3 = 1. Setting c to 2 and l
to 3, Inequality 1 becomes 2 ≤ 2 · 1.

It is not hard to observe an interesting connection between Definitions 2
and 3. A QI-group obeys (c, l)-diversity, if and only if, after eliminating the
tuples with any l different sensitive values, the remaining set of tuples still
obeys frequency c

c+1 -diversity. This connection leads to a crucial property
of Definition 3: if all the QI-groups in a generalized table satisfy recursive
(c, l)-diversity, an adversary can correctly discover the sensitive value of an
individual with probability at most c/(c+1), provided that the adversary can
preclude at most l − 2 values as belonging to the victim individual.

We have discussed three different versions of l-diversity. Machanavajjhala
et al. formulate several other versions, as can be found in [11], which also
explains the computation of generalized tables conforming to this principle.
Currently, we are not aware of any published work on the hardness of finding
the optimal l-diverse table that minimizes a certain information-loss metric.
Nevertheless, it appears that the problem should be NP-hard for most metrics.
In any case, l-diverse generalization also inherits the defect of k-anonymity
that the amount of information loss will be inevitably large, when the number
of QI-attributes is high. This defect can have rather negative influences on the
utility of the published table, as discussed in the next section.

4 Anatomy

So far our discussion has employed generalization as the underlying
anonymization framework. In this section, we proceed to introduce another
framework: anatomy. As with generalization, anatomy can be combined with
k-anonymity and l-diversity. The following analysis focuses on l-diversity, due
to its obvious advantages over k-anonymity. In particular, we adopt frequency
l-diversity (Definition 2), to avoid the complication of recursive (c, l)-diversity.
Accordingly, we will assume that probabilistic homogeneity attacks are the ob-
jective of privacy protection. The discussion in this section, however, can be
extended to k-anonymity and other versions of l-diversity in a straightforward
manner.
1 In the original proposition of [11], the “≤” in Inequality 1 is “<”. We adopt “≤”

here to simplify discussion, but the rationale extends naturally to “<” as well.

Privacy Preserving Publication 497

tuple ID Age Sex Zipcode Disease

1 (Bob) 23 M 11000 pneumonia
2 27 M 13000 dyspepsia
3 35 M 59000 dyspepsia
4 59 M 12000 pneumonia
5 61 F 54000 flu
6 65 F 25000 gastritis

7 (Alice) 65 F 25000 flu
8 70 F 30000 bronchitis

(a) The microdata

tuple ID Age Sex Zipcode Disease

1 [21, 60] M [10001, 60000] pneumonia
2 [21, 60] M [10001, 60000] dyspepsia
3 [21, 60] M [10001, 60000] dyspepsia
4 [21, 60] M [10001, 60000] pneumonia
5 [61, 70] F [10001, 60000] flu
6 [61, 70] F [10001, 60000] gastritis
7 [61, 70] F [10001, 60000] flu
8 [61, 70] F [10001, 60000] bronchitis

(b) A 2-diverse table

Table 3. Another generalization example

4.1 Motivation

Although generalization preserves privacy, it often loses considerable infor-
mation in the microdata, which severely compromises the accuracy of data
analysis. We illustrate this by using the microdata in Table 3a and the 2-
diverse generalization in Table 3b. Assume that a researcher wants to derive
from this table an estimate for the following query:

A: SELECT COUNT(*) FROM Unknown-Microdata
WHERE Disease = ‘pneumonia’ AND Age <= 30

AND Zipcode IN [10001, 20000]

To illustrate how to process the query, Figure 1 shows a 2D space, where
the x-, y-dimensions are Age and Zipcode, respectively. Each point denotes
a tuple in the microdata of Table 3a. For example, the x-, y-coordinates of
point 1 equal the age and zipcode of tuple 1, respectively. Rectangle R1 (or
R2) is obtained from the generalized values in the first (or second) QI-group
in Table 3b. For instance, the x- (y-) projection of R1 is the generalized age
[20, 60] (zipcode [10001, 60000]) of tuples 1-4. Query A is represented as the
shaded rectangle Q, whose projection on the x- (y-) dimension is decided by
the range condition Age ≤ 30 (10001 ≤ Zipcode ≤ 20000).

Since the researcher sees only R1 and R2 (but not the points), s/he an-
swers query A in a way similar to selectivity estimation on a multidimensional

498 Yufei Tao

20

10k

7060504030

60k
50k
40k
30k
20k

x (Age)

y
(Z

ip
co

de
)

1 2

3

4

5

6 and 7

8

Q

R1 R2

Fig. 1. The original and generalized data in the Age-Zipcode plane

histogram [16], as suggested in [9]. Clearly, as R2 is disjoint with Q, no tuple
in the second QI-group can satisfy the query. R1, however, intersects Q, and
hence, is examined as follows.

From the Disease-values in Table 3b, the researcher knows that 2 tuples in
the first QI-group are associated with pneumonia. It remains to calculate the
probability p that a tuple in the QI-group qualifies the range predicates of A,
or equivalently, the tuple’s point representation falls in Q (Figure 1). Once p is
available, the query answer can be estimated as 2p. Without additional knowl-
edge, the researcher assumes uniform data distribution in R1, and computes
p as Area(R1 ∩ RQ)/Area(R1) = 0.05. This value leads to an approximate
answer 0.1, which, however, is ten times smaller than actual query result 1
(see Table 3a).

The gross error is caused by the fact that the data distribution in R1

significantly deviates from uniformity. Nevertheless, given only the generalized
table, we cannot justify any other distribution assumption. This is an inherent
problem of generalization: it prevents an analyst from correctly understanding
the data distribution inside each QI-group.

4.2 Rationale of Anatomy

Anatomy overcomes the above defect of generalization, by releasing the ex-
act QI-distribution without compromising the quality of privacy preservation.
Specifically, anatomy releases a quasi-identifier table (QIT) and a sensitive
table (ST), which separate QI-values from sensitive values. For example, Ta-
bles 4a and 4b demonstrate the QIT and ST obtained from the microdata
Table 3a, respectively.

Construction of the anatomized tables can be (informally) understood as
follows. First, we partition the tuples of the microdata into several QI-groups,
based on a certain strategy. Here, following the grouping in Table 3b, let us
place tuples 1-4 (or 5-8) of Table 3a into QI-group 1 (or 2).

Then, we create the QIT. Specifically, for each tuple in Table 3a, the QIT
(Table 4a) includes all its exact QI-values, together with its group membership

Privacy Preserving Publication 499

row # Age Sex Zipcode Group-ID

1 23 M 11000 1
2 27 M 13000 1
3 35 M 59000 1
4 59 M 12000 1
5 61 F 54000 2
6 65 F 25000 2
7 65 F 25000 2
8 70 F 30000 2

(a) The quasi-identifier table (QIT)

Group-ID Disease Count

1 dyspepsia 2

1 pneumonia 2

2 bronchitis 1

2 flu 2

2 gastritis 1

(b) The sensitive table (ST)

Table 4. The anatomized tables

in a new column Group-ID. However, QIT does not store any Disease value.
Finally, we produce the ST (Table 4b), which retains the Disease statistics
of each QI-group. For instance, the first two records of the ST (to avoid
confusion, we use ‘record’, instead of ‘tuple’, for the data of an ST) indicate
that, two tuples of the first QI-group are associated with dyspepsia, and two
with pneumonia. Similarly, the next three records imply that, the second
QI-group has a tuple associated with bronchitis, two with flu, and one with
gastritis.

Anatomy preserves privacy because the QIT does not indicate the sensi-
tive value of any tuple, which must be randomly guessed from the ST. To
explain this, consider again the adversary who has the age 23 and zipcode
11000 of Bob. Hence, from the QIT (Table 4a), the adversary knows that tu-
ple 1 belongs to Bob, but does not obtain any information about his disease
so far. Instead, s/he gets the id 1 of the QI-group containing tuple 1. Judging
from the ST (Table 4b), the adversary realizes that, among the 4 tuples in
QI-group 1, 50% of them are associated with dyspepsia (or pneumonia) in the
microdata. Note that s/he does not gain any additional hints, regarding the
exact diseases carried by these tuples. Hence, s/he arrives at the conclusion
that Bob could have contracted dyspepsia (or pneumonia) with 50% proba-
bility. This is the same conjecture obtainable from the generalized Table 3b,
as mentioned earlier.

By announcing the QI values directly, anatomy permits more effective
analysis than generalization. Given query A in Section 4.1, we know, from the
ST (Table 4b), that 2 tuples carry pneumonia in the microdata, and they are

500 Yufei Tao

both in QI-group 1. Hence, we proceed to calculate the probability p that a
tuple in the QI-group falls in Q (Figure 1). This calculation does not need
any assumption about the data distribution in the Age-Zipcode plane, because
the distribution is precisely released. Specifically, the QIT (Table 4a) shows
that tuples 1 and 2 in QI-group 1 appear in Q, leading to the exact p = 50%.
Thus, we obtain an answer 2p = 1, which is also the actual query result.

4.3 Formalization of Anatomy

As with generalization, Anatomy requires partitioning the microdata T .

Definition 4. A partition consists of several subsets of T , such that each
tuple in T belongs to exactly one subset. We refer to these subsets as QI-
groups, and denote them as QI1, QI2, ..., QIm. Namely,

⋃m
j=1 QIj = T

and, for any 1 ≤ j1 �= j2 ≤ m, QIj1 ∩ QIj2 = ∅.

We are interested only in l-diverse partitions that can lead to provably good
privacy guarantees. Specifically, a partition with m QI-groups is l-diverse, if
each QI-group QIj (1 ≤ j ≤ m) satisfies the following condition. Let v be the
most frequent As value in QIj , and cj(v) the number of tuples t ∈ QIj with
t[d + 1] = v; then

cj(v)/|QIj | ≤ 1/l (2)

where |QIj | is the size (the number of tuples) of QIj . Table 3a shows a
partition with two QI-groups, where QI1 contains tuples 1-4, and QI2 in-
cludes tuples 5-8. In QI1, dyspepsia and pneumonia are equally frequent, i.e.,
c1(dyspepsia) = c1(pneumonia) = 2. In QI2, the most frequent As value is
flu, i.e., c2(flu) = 2. Since |QI1| = |QI2| = 4, according to Inequality 2, we
know that QI1 and QI2 constitute a 2-diverse partition.

We are ready to formulate the QIT and ST tables published by anatomy.

Definition 5 ([18]). Given an l-diverse partition with m QI-groups,
anatomy produces a quasi-identifier table (QIT) and a sensitive table
(ST) as follows. The QIT has schema

(Aqi
1 , Aqi

2 , ..., Aqi
d ,Group-ID). (3)

For each QI-group QIj (1 ≤ j ≤ m) and each tuple t ∈ QIj, QIT has a tuple
of the form:

(t[1], t[2], ..., t[d], j). (4)

The ST has schema
(Group-ID, As,Count). (5)

For each QI-group QIj (1 ≤ j ≤ m) and each distinct As value v in QIj, the
ST has a record of the form:

(j, v, cj(v)) (6)

Privacy Preserving Publication 501

where cj(v) is the number of tuples t ∈ QIj with t[d + 1] = v. Apart from
the tuples (or records) defined earlier, the QIT (or ST) does not contain any
other data.

For instance, based on the 2-diverse partition suggested in Table 3b, anatomy
produces the QIT and ST in Tables 4a and 4b respectively, as explained in
Section 4.2.

When there is no ambiguity, we refer to a pair of QIT and ST collectively
as the anatomized tables. In Section 4.6, we will show that anatomized tables
capture the correlation in T more accurately than generalized tables. For this
purpose, we also need to formalize generalization.

Definition 6. (Generalization) Given a partition of T with m QI-groups,
for any tuple t ∈ T , a generalized table of T contains a tuple of the form

(QIj [1], QIj [2], ..., QIj [d], t[d + 1]) (7)

where QIj (1 ≤ j ≤ m) is the unique QI-group including t, and QIj [i] (1 ≤ i ≤
d) is an interval2 covering t[i]. Furthermore, QIj [i] is identical for all tuples
t ∈ QIj. Apart from the tuples defined earlier, the table does not contain any
other data.

For instance, let t be tuple 1 in the microdata Table 3a. We have j = 1,
namely, t is contained in the first QI-group. In the generalized Table 3b,
QI1[1] = [21, 60] (the generalized age of tuple 1), QI1[2] = M, and QI1[3] =
[100001, 60000], which, together with t[4] = pneumonia, form the first tuple.

We would like to point out that, although Definition 5 is based on an l-
diverse partition, in general, anatomy produces a pair of QIT and ST from
any partition (Definition 4) in exactly the same way. In particular, any k-
anonymous or l-diverse table has an anatomized counterpart. We concentrate
on l-diverse partitions to achieve strong privacy preservation. Several algo-
rithms have been developed [18] to compute anatomized tables that minimize
certain metrics of information loss. Interestingly, unlike optimal generalization
that is NP-hard, optimal anatomy can be achieved in polynomial time.

4.4 Privacy Preservation

A pair of anatomized tables provide a convenient way for the data publisher to
find out, for each tuple t ∈ T , all the As values that an adversary can associate
t with, and the probability of each association. This is formally explained in
the next lemma.

Lemma 1 ([18]). If we perform a natural join QIT �� ST, the join result is
a table with d + 3 attributes, containing records of the form

2 If Aqi
i is categorical, following a common assumption in the literature, we consider

that there is a total ordering on Aqi
i .

502 Yufei Tao

(t[1], t[2], ..., t[d], j, v, cj(v)) (8)

where j is the ID of the QI-group including t (i.e., t ∈ QIj), v an As value, and
cj(v) the number of tuples in QIj with As value v. Then, from an adversary’s
perspective,

Pr{t[d + 1] = v} = cj(v)/|QIj | (9)

where |QIj | denotes the size of QIj.

Corollary 1 ([18]). Given a pair of QIT and ST, an adversary can correctly
re-construct any tuple t ∈ T with a probability at most 1/l.

Corollary 1 gives the privacy protection guarantee at the tuple level. It
is also necessary to discuss the corresponding guarantee at the individual
level, since in practice multiple individuals may have the same QI-values, thus
complicating the privacy-attack process performed by an adversary.

To explain this, consider that an adversary has the age 65 and zipcode
25000 of Alice (the “owner” of tuple 7 in Table 3a), and wants to infer the
medical record of Alice from the QIT and ST in Tables 4a and 4b, respec-
tively. S/he consults the QIT, and sees that, in QI-group 2 (denoted as QI2),
both tuples 6 and 7 match the QI-values of Alice. Hence, s/he examines two
scenarios.

First, assuming that tuple 6 belongs to Alice, the adversary uses Lemma 1
to derive the probability distribution for the tuple’s disease value. According
to Equation 9, tuple 6 has probability c2(flu)/|QI2| = 2/4 = 50% to carry
flu. Notice that, in the microdata, tuple 6 does not really belong to Alice.
However, it does not matter — the adversary may “happen to” use a wrong
tuple to infer the correct sensitive value of Alice! From tuple 6, the adversary
actually has 50% probability to figure out that Alice contracted flu.

In the second scenario, the adversary assumes that tuple 7 belongs to Alice,
through which (similar to tuple 6) s/he also has 50% probability to obtain
the real disease of Alice. Finally, (without further knowledge) the adversary
assumes that the two scenarios occur with the same likelihood 1

2 . Therefore,
the overall breach probability should be calculated as 1

2 ·50%+ 1
2 ·50%, where

1
2 and 50% have the same semantics as in the above discussion.

In fact, Lemma 1 shows that tuple 7 (the real tuple of Alice) can be
re-constructed with 50% likelihood. Namely, the breach probability at the
individual level coincides with that at the tuple level. This happens because
tuples 6 and 7 appear in the same QI-group. In general, as long as tuples
with identical QI-values always end up in the same QI-group (as is true for
“global-recoding” generalization [8]), the probabilities of the two levels are
always equivalent. In this case, it suffices to discuss only the (simpler) tuple
level; as a result, the individual level has not been addressed before (all the
existing generalization schemes adopt global recoding).

Anatomy, however, allows high flexibility in forming QI-groups such that
tuples with the same QI-values do not always belong to the same QI-group.

Privacy Preserving Publication 503

Therefore, we must provide a formal result regarding the individual-level
breach probability.

Theorem 1 ([18]). Given a pair of QIT and ST, an adversary can correctly
infer the sensitive value of any individual with probability at most 1/l.

4.5 Comparison with Generalization

Intuitively, by releasing the QI-values directly, anatomy may allow a higher
breach probability than generalization. Nevertheless, such probability is al-
ways bounded by 1/l, as long as the background knowledge of an adversary
is not stronger than the level allowed by the l-diversity model. Next, we will
explain these observations in detail.

The derivation in Section 4.4 implicitly makes two assumptions:

• A1: the adversary has the QI-values of the target individual (i.e., Alice);
• A2: the adversary also knows that the individual is definitely involved in

the microdata.

In fact, usually both assumptions are satisfied in practical privacy-
attacking processes. For example, in her pioneering paper [15], Sweeney shows
how to reveal the medical record of the governor of Massachusetts from
the data released by the Group Insurance Commission, after obtaining the
governor’s QI-values from public sources. The revelation is possible because
Sweeney knew in advance that the record of the governor must be present in
the microdata. Otherwise, no inference could be drawn against the governor
because the “privacy-leaking” record could as well just belong to a person
who happens to share the same QI-values as the governor.

In general, if both Assumptions A1 and A2 are true, anatomy provides
as much privacy control as generalization, that is, the privacy of a person is
breached with a probability at most 1/l. For instance, if an adversary is sure
that Alice has been hospitalized before, from Alice’s QI-values, s/he can assert
that Alice must be described by one of tuples 5-8 in the generalized Table 3a.
Then, s/he carries out the rest of her/his probabilistic conjecture (about the
disease of Alice) in the same way as s/he would do after identifying Alice to
be in Group 2 of the anatomized Table 4a.

Now, consider the case where A1 holds, but A2 does not. Accordingly, the
overall breach probability of Alice has a Bayes form:

PrA2(Aliceqi) · Prbreach(Alices|A2) (10)

where PrA2(Aliceqi) is the chance for Alice to be involved in the microdata,
and Prbreach(Alices|A2) the likelihood for the adversary to correctly guess the
disease of Alice on condition that Alice appears in the microdata. As analyzed
earlier, anatomy and generalization give the same Prbreach(Alices|A2), which
is simply the preach probability when both A1 and A2 are valid.

504 Yufei Tao

Name Age Sex Zipcode

Ada 61 F 54000

Alice 65 F 25000

Bella 65 F 25000

Emily 67 F 33000

Stephanie 70 F 30000

...

Table 5. The voter registration list (publicly accessible)

To compute PrA2(Aliceqi), an adversary typically needs to consult another
external database [19], which relates QI-values to concrete personal identities
for all the persons in the microdata, perhaps together with some other people.
An example of such an external source is a voter registration list, partially
demonstrated in Table 5, where the record of Emily is italicized to indicate
that she is not involved in the microdata of Table 3a. In this scenario, gen-
eralization and anatomy make a difference. Specifically, judging from (the
QI-values of tuples 5-8 in) the generalized Table 3a, the adversary sees that
each person shown in Table 5 could be involved in the microdata with equal
likelihood, and hence, calculates PrA2(Aliceqi) as 4/5. On the other hand,
given the anatomized Table 4, the adversary concludes that PrA2(Aliceqi) =
1 (here s/he can figure out that Emily is definitely absent from the microdata).
As a result, generalization provides a stronger overall privacy-preserving guar-
antee. Nevertheless, since anatomy ensures Prbreach(Alices|A2) ≤ 1/l, it also
secures the same upper bound 1/l for Formula 10.

Although generalization has the above advantage over anatomy, the ad-
vantage cannot be leveraged in computing the published data. This is because
the publisher cannot predict or control the external database to be utilized by
an adversary, and therefore, must guard against an “accurate” external source
that does not involve any person absent in the microdata. For instance, if Ta-
ble 5 did not contain Emily, the voter list would produce PrA2(Aliceqi) = 1
in attacking the privacy of Alice from Table 3a (instead of 4/5 as discussed
earlier). In other words, to ensure a maximum breach probability p using
generalization, we must still set l to �1/p�, i.e., same as in applying anatomy.

Finally, if neither assumption A1 nor A2 is satisfied, the breach probability
of Alice becomes

∑
∀x

PrA1(x) · PrA2(x|A1) · Prbreach(Alices|A1, A2) (11)

where x is a vector representing a possible set of QI-values of Alice, and
PrA1(x) equals the probability that x captures Alice’s real QI-values, whereas
PrA2 and Prbreach follow the same semantics as in Formula 10, but on condi-
tion that x is real. The comparison results between anatomy and generaliza-

Privacy Preserving Publication 505

20 60504030
Age

dy
spe

psi
a

pn
eu

mon
ia

Dise
ase

0.2

1
0.8
0.6
0.4

0

(a) Original

20 60504030
Age

0.2

1
0.8
0.6
0.4

0

dy
spe

psi
a

pn
eu

mon
ia

Dise
ase

20 60504030
Age

dy
spe

psi
a

pn
eu

mon
ia

Dise
ase

0.2

1
0.8
0.6
0.4

0

(b) Approximated from generalization (c) Approximated from anatomy

Fig. 2. Original/re-constructed pdf of tuple 1 in Table 3a

tion are analogous to those discussed for the previous case where A1 is true
and A2 is not.

4.6 Correlation Preservation

A good publication method should preserve both privacy and data correlation
(between QI- and sensitive attributes). Using a concrete query, we have shown
in Section 4.2 that anatomy allows more effective aggregate analysis than
generalization. Next, we provide the underlying theoretical rationale.

Obviously, for any tuple t ∈ T , every publication method will lose certain
information of t (if not, it is equivalent to disclosing t directly, contradicting
the goal of privacy). On the other hand, the method should permit devel-
opment of an approximate modeling of t (otherwise, the published table is
useless for research). Hence, the quality of correlation preservation depends
on how accurate the re-constructed modeling is.

Let us first examine the correlation between Age and Disease in the micro-
data of Table 3a. The two attributes define a 2D space DSA,D. Every tuple in
the table can be mapped to a point in DSA,D. For example, tuple 1, denoted
as t1, corresponds to point (t1[A], t1[D]), where t1[A] is the age 23 of t1, and
t1[D] its disease ‘pneumonia’.

506 Yufei Tao

We can model t1 using a probability density function (pdf) Gt1 : DSA,D →
[0, 1]. Specifically:

Gt1(x) =
{

1 if x = (t1[A], t1[D])
0 otherwise (12)

where x is a 2D random variable in DSA,D. Figure 2a demonstrates the pdf.
Assume that a researcher wants to re-construct an approximate pdf G̃gen

t1
of t1 from the generalized Table 3b. From her/his perspective, t1[A] can be
any value in the interval [21, 60] with equality probability 1/40, but t1[D]
must be pneumonia. Hence,

G̃gen
t1 (x) =

⎧⎨
⎩

1/40 if x[A] ∈ [21, 60] and
x[D] =pneumonia

0 otherwise
(13)

which is illustrated in Figure 2b.
Instead, suppose that the researcher re-constructs a pdf G̃ana

t1 from the
QIT and ST in Tables 4a and 4b. This time, s/he knows that t1[A] must be
23 (since age is published directly), but t1[D] can be pneumonia or dyspepsia
with 50% probability (the ST shows that half of the tuples in QI-group 1 are
associated with these two diseases, respectively). Therefore,

G̃ana
t1 (x) =

⎧⎨
⎩

1/2 if x = (23, pneumonia) or
x = (23, dyspepsia)

0 otherwise
(14)

as shown in Figure 2c. Obviously, the pdf approximated from the anatomized
tables is more accurate than that (Figure 2b) from the generalized table.

Towards a more rigorous comparison, given an approximate pdf G̃t1 (Equa-
tion 13 or 14), a natural way of quantifying its approximation quality is to
calculate its “L2 distance” from the actual pdf Gt1 (Equation 12):

∑
x∈DSA,D

(
G̃t1(x) − Gt1(x)

)2

. (15)

The distance of G̃ana
t1 is 0.5, indeed significantly lower than the distance 22.5

of G̃gen
t1 . Although we focused on t1, in the same way, it is easy to verify that

the anatomized tables permit better re-construction of the pdfs of all tuples
in Table 3a.

5 Summary

In this chapter, we studied two anonymization frameworks for privacy pre-
serving data publication: generalization and anatomy. Generally speaking,

Privacy Preserving Publication 507

anatomy publishes anonymized tables with higher utility (e.g., allowing more
accurate aggregate analysis), by releasing the QI-values directly. However,
there are applications where precise publication of QI-values is inappropriate.
For instance, if the presence of an individual in the microdata is also con-
sidered sensitive, then anatomy should not be deployed since, as explained
in Section 4.5, it may allow an adversary to assert that an individual defi-
nitely exists in the microdata (even though the adversary is not able to derive
the individual’s sensitive information confidently). In that case, generalization
should be applied instead.

We also reviewed two most popular anonymization principles: k-anonymity
and l-diversity. Due to its pioneering role in the literature, k-anonymity has
several serious shortcomings, and does not provide good privacy guarantees.
l-diversity offers much stronger protection, as mathematically elaborated in
Section 3. Nevertheless, l-diversity also has some weaknesses, which have moti-
vated the development of several other generalization principles. For example,
a weakness of l-diversity is that it is not suitable for handling numeric sensitive
attributes, as explained in [10], which alleviates the problem with an alterna-
tive principle called t-closeness. Another weakness of l-diversity is that it does
not take into account the discrepancies of the privacy requirements from var-
ious data owners. A personalized approach [19] has been proposed to address
this issue.

References

1. C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In Proc. of
Very Large Data Bases (VLDB), pages 901–909, 2005.

2. G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas,
and A. Zhu. Anonymizing tables. In Proc. of International Conference on
Database Theory (ICDT), pages 246–258, 2005.

3. R. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In
Proc. of International Conference on Data Engineering (ICDE), pages 217–228,
2005.

4. V. Ciriani, D. C. di Vimercati, S. Foresti, and P. Samarati. k-anonymity.
Springer, 2006.

5. Y. Du, T. Xia, Y. Tao, D. Zhang, and F. Zhu. On multidimensional k-anonymity
with local recoding generalization. In Proc. of International Conference on Data
Engineering (ICDE), 2007.

6. B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for informa-
tion and privacy preservation. In Proc. of International Conference on Data
Engineering (ICDE), pages 205–216, 2005.

7. V. Iyengar. Transforming data to satisfy privacy constraints. In Proc. of ACM
Knowledge Discovery and Data Mining (SIGKDD), pages 279–288, 2002.

8. K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-
domain k-anonymity. In Proc. of ACM Management of Data (SIGMOD), pages
49–60, 2005.

508 Yufei Tao

9. K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-
anonymity. In Proc. of International Conference on Data Engineering (ICDE),
2006.

10. N. Li and T. Li. t-closeness: Privacy beyond k-anonymity and l-diversity. In
Proc. of International Conference on Data Engineering (ICDE), 2007.

11. A. Machanavajjhala, J. Gehrke, and D. Kifer. l-diversity: Privacy beyond k-
anonymity. In Proc. of International Conference on Data Engineering (ICDE),
2006.

12. A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In
Proc. of ACM Symposium on Principles of Database Systems (PODS), pages
223–228, 2004.

13. P. Samarati. Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 13(6):1010–1027,
2001.

14. P. Samarati and L. Sweeney. Generalizing data to provide anonymity when
disclosing information. In Proc. of ACM Symposium on Principles of Database
Systems (PODS), page 188, 1998.

15. L. Sweeney. k-anonymity: a model for protecting privacy. International Journal
on Uncertainty, Fuzziness, and Knowlege-Based Systems, 10(5):557–570, 2002.

16. N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional
histograms. In Proc. of ACM Management of Data (SIGMOD), pages 428–439,
2002.

17. K. Wang, P. S. Yu, and S. Chakraborty. Bottom-up generalization: A data
mining solution to privacy protection. In Proc. of International Conference on
Management of Data (ICDM), pages 249–256, 2004.

18. X. Xiao and Y. Tao. Anatomy: Simple and effective privacy preservation. In
Proc. of Very Large Data Bases (VLDB), pages 139–150, 2006.

19. X. Xiao and Y. Tao. Personalized privacy preservation. In Proc. of ACM
Management of Data (SIGMOD), pages 229–240, 2006.

21

Privacy Protection through Anonymity in
Location-based Services�

Claudio Bettini1, Sergio Mascetti1, and X. Sean Wang2

1 DICo, University of Milan, Italy
bettini@dico.unimi.it, mascetti@dico.unimi.it

2 Department of Computer Science, University of Vermont, VT
xywang@emba.uvm.edu

Summary. The adoption of location-based services (LBS) brings new privacy
threats to users. The user location information revealed in LBS requests may be
used by attackers to associate sensitive information of the user with her identity.
This contribution focuses on privacy protection through anonymity, i.e., keeping
individual users indistinguishable in a large group of people that may have issued
the same request. The contribution identifies different privacy threats to LBS users,
discusses techniques for protecting user privacy under different threats, and gives a
performance evaluation of the mentioned protection methods.

1 Introduction

Location-based services (LBS) have recently attracted much interest from
both industry and research. Currently, the most popular commercial service
is probably car navigation, but many other services are being offered and more
are being experimented, as less expensive location aware devices are reaching
the market. Consciously or unconsciously, many users are ready to give up one
more piece of their private information in order to access the new services.
Many other users, however, are concerned with releasing their exact location
as part of the service request or with releasing the information of having used
a particular service. To safeguard user privacy while rendering useful services
is a critical issue on the growth path of the emerging LBS.

An obvious defense against privacy threats is to eliminate from the re-
quest any data that can directly reveal the issuer’s identity, possibly using a
pseudonym whenever this is required (e.g., for billing through a third party).

Unfortunately, simply dropping the issuer’s personal identification data
may not be sufficient to anonymize the request. For example, the location
and time information in the request may be used, with the help of external
� The work was partially supported by the Italian MIUR InterLink project

N.II04C0EC1D, and the US NSF grants IIS-0430402 & IIS-0430165.

510 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

knowledge, to restrict the possible user to a small group issuers. This problem
is well-known for the release of data in databases tables [17]. In that case, the
problem is to protect the association between the identity of an individual
and a tuple containing her sensitive data; the attributes whose values could
possibly be used to restrict the candidate identities for a given tuple are called
quasi-identifiers [7, 5].

This contribution contains a classification of different privacy threats in-
volved in LBS, and a discussion of different protection techniques based on
user anonymity. More specifically, in Section 2, we first provide a general
overview of the general LBS privacy problem, and a classification of different
privacy threats. We then formalize the anonymity approach for privacy pro-
tection in Section 3, and detail a number of protection techniques for different
threats in Section 4, also identifying some interesting research directions. In
Section 5, we report an experimental evaluation of the presented techniques,
and finally conclude with a brief summary and possible future works in Sec-
tion 6.

2 Privacy threats with LBS

In general, there is a privacy threat when an attacker is able to associate the
identity of a user to information that the user considers private. In the case of
LBS, this sensitive association can be possibly derived from requests issued to
service providers. More precisely, the identity and the private information of
a single user can be derived from requests issued by a group of users. Figure 1
shows a graphical representation of this general view of privacy threats in
LBS.

In order to infer the sensitive association, the attacker can exploit some
external knowledge that is not transmitted with the requests. This informa-
tion can be used, for example, to discover the identity of the issuer even if
this information is not explicitly provided in the request or to derive private
information associated with a particular location.

The assumption about the external knowledge that is available to the at-
tacker strongly affects the defense techniques used to protect user’s privacy.
More generally, a privacy preserving technique can be provided once the con-
text assumption is fixed. This assumption includes the external knowledge
that is possibly available to the attacker and his reasoning abilities.

2.1 The reference scenario

Figure 2 shows our reference scenario that involves three entities:

• The User invokes or subscribes to location-based remote services that are
going to be provided to her mobile device.

Privacy Protection through Anonymity in Location-based Services 511

��������

������

��������

������

��������

������

	��	
����
	
��
���

����	��
�
����	���

����
���
����

�	�
�	�

��
������
	���
�	���

�����
	�
�
�������

Fig. 1. General privacy threat in LBS

• The Location-aware Trusted Server (LTS) stores precise location
data of all its users, using data directly provided by users’ devices and/or
acquired from the infrastructure. It also has the ability to efficiently per-
form spatio-temporal queries to determine, for example, which or how
many users are in a certain region.

• The Service Provider (SP) fulfills user requests and communicates with
the user through the LTS. Both pull and push communication service
models are possible; We concentrate on the former but the framework we
present can be easily extended to deal with the latter too.

In our model each request r is processed by the LTS into a request r′

with the same logical components but appropriately generalized. Under the
condition that user’s privacy is guaranteed, this generalization should be as
little as possible to ensure the best service quality for the user. Requests, once
forwarded by the LTS, may be acquired by potential attackers in different
ways: they may be stolen from SP storage, voluntarily published by the trusted
parties, or may be acquired by eavesdropping on the communication lines. On
the contrary, the communication between the user and the LTS is considered
as trusted, and the data stored at the LTS is not considered accessible by the
attacker.

Most of the approaches proposed in the literature [8, 9, 11, 16] to protect
LBS privacy consider scenarios that can be easily mapped to the one depicted
in Figure 2. Actually, scenarios where no location-aware intermediate entity is
present have also been considered. For example, in [12] a direct communication
between the user and the service provider is assumed, and the defense function
is computed on the client system. Clearly in this model it is not possible to
assume that the client has any awareness of the exact location of other clients;
hence the generalization techniques proposed in this and in other papers would
not be applicable. We believe that the current business models of mobile
operators naturally support the existence and functionality of an entity like
the LTS. Indeed, mobile users implicitly trust the operator infrastructure even

512 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

if they know that very accurate information about their location and service
requests is stored. Moreover, in most countries each operator has a very large
number of customers, and hence a collection of data that may be more than
sufficient to implement some of the defense techniques we are proposing.

Fig. 2. A general reference scenario

The format of a request is represented by the following triple:

〈IdData, STData, SSData〉

• IdData contains the exact user identity in the original request; when the
request is generalized it is either empty or it contains a pseudo-id.

• STData contains spatio-temporal information about the location of the
user performing the requests, and the time the request was issued. For
the sake of simplicity, we assume that this information is a point in 3-
dimensional space (with time being the third dimension) for the original
request, and a region in the same space for the generalized request.

• SSData contains parameters characterizing the required service and ser-
vice provider.

2.2 Static case

Most of the approaches presented so far in the literature [9, 16, 11, 3] have
proposed techniques to ensure a user’s privacy in the case in which the at-
tacker can acquire a single request issued by that user. More specifically, these
approaches assume that:

• the attacker is not able to link a set of requests i.e., to understand that
the requests have been issued by the same (anonymous) user;

• the attacker is not able to derive private information about the issuer of a
request from the requests issued by other users.

In general, we can distinguish privacy threats according to two orthogonal
dimensions: a) threats in static versus dynamic cases, b) threats involving re-
quests from a single user (single-issuer case) versus threats involving requests
from different users (multiple-issuer case).

Privacy Protection through Anonymity in Location-based Services 513

Figure 3 shows a graphical representation of the privacy threat in the
static, single-issuer case. In this case, in order to prevent the disclosure of
the sensible association, it is sufficient to prevent the attacker from inferring
either user’s identity or user’s sensitive information. The ongoing research in
this field is tackling these two subproblems: prevent the attacker from inferring
the user’s identity and prevent the attacker from inferring the user’s private
information. Despite the solution of one of the two subproblems is sufficient to
guarantee user’s privacy, we argue that the solution of both subproblems could
enhance better techniques for privacy protection. Indeed, the obfuscation of
requests parameters usually involved in privacy protection techniques implies
a degradation of the quality of service. A location based privacy preserving
system that implements solutions for both the subproblems can combine them
in order to to optimize quality of service while preserving privacy.

�������������

	��	
���

	
��
���

����
���
����

	��	
���

	
��
���

�	�
�	�

����	��
�
����	���

��
������
	���
�	���

�����
	�
�
�������

Fig. 3. The static, single-issuer case

Example 1 shows that, in the multiple-issuer case, an attacker can infer the
sensitive association for a user even if the identity of that user is not revealed
to the attacker.

Example 1. Suppose a user u issues a request generalized into r′ by the LTS.
Assume that, considering r′, an attacker can only understand that the issuer
of r′ is one of the users in the set S of potential issuers. However, if all of the
users in S issue requests from which the attacker can infer the same sensitive
information inferred from r′, then the attacker can associate that sensitive
information to u.

In the area of privacy in databases, this kind of attack is known as homo-
geneity attack [14]. The problem in the area of LBS is depicted in Figure 4.
Note that, differently from the general case (Figure 1), in the static, multiple-
issuer case, a single request for each user is considered.

514 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

�������

������

�������

������

�������

������

	��	
����
	
��
���

����	��
�
����	���

����
���
����

�	�
�	�

��
������
	���
�	���

�����
	�
�
�������

Fig. 4. The static, multiple-issuer case

2.3 The dynamic case

In contrast with the static case, in the dynamic case it is assumed that the
attacker is able to recognize that a set of requests has been issued by the same
user. Researchers [1, 10] have considered such a possibility. We call this linking.
Several techniques exist to link different requests to the same user, with the
most trivial ones being the observation of the same identity or pseudo-id in
the requests. We call request trace a set of requests that the attacker can
correctly associate to a single user.

Figure 5 shows a graphical representation of the dynamic case. The corre-
sponding techniques to preserve privacy are facing two problems. First, pre-
venting the attacker from linking the requests (called linking problem); In-
deed, the longer is a trace, the higher the probability of the issuer to loose
her privacy. Second, preventing the attacker from understanding the sensitive
association from a request trace.

�������

������

	��	
���

	
��
���

����
���
����

	��	
���

	
��
���

�	�
�	�

�������

��
�

�������

��
�

�������
��	
�

������

������

����	��
�
����	���

��
������
	���
�	���

����

�����
	�
�
�������

Fig. 5. The dynamic case

Privacy Protection through Anonymity in Location-based Services 515

3 Privacy protection through anonymity

As we illustrated in Section 2, a privacy threat occurs when an attacker is able
to obtain a user’s sensitive association. When a LBS requires each request to
contain explicit full identification of the user, the sensitive association can
only be protected by avoiding the explicit and implicit release of the second
component of the association: private information. However, most LBS either
do not require full identification or they admit the use of pseudonyms for
billing and/or personalization. In these cases, preserving the anonymity of
the issuer is a successful technique to avoid releasing a sensitive association,
while still providing precise service invocation parameters.

Note that the anonymity problem in LBS has at least two distinguishing
aspects with respect to the analogous problem in the release of data from
databases [17]. First, the fact that each request contains data about the lo-
cation of the user at the time of request, introduces spatio-temporal data as
a new kind of potential quasi-identifier, and it is well known that the effec-
tive management of this kind of data requires specific techniques. Second,
anonymity in databases has been studied considering a one-time publication
of a given set of records, while the problem in LBS is inherently dynamic: the
position of users is continuously changing and this has to be taken into ac-
count each time a request has to be anonymized. Moreover, inferencing based
on previously anonymized requests can be used by the attacker.

Anonymity as a LBS privacy protection technique has been only recently
investigated. Several research contributions (among which [9, 16, 11, 3]) have
proposed techniques that aim at enforcing the issuer of a request to be anony-
mous, in the sense that an attacker, that can acquire the requests, must not
be able to associate each request to its issuer with likelihood greater than a
threshold value. Unfortunately, a clear understanding of which techniques can
be proved to be safe under which conditions is still missing, mostly because
of the lack of an underlying formal model.

3.1 A formal model for anonymity in LBS

In this section we provide a formal model to define attack and defense tech-
niques. The set R contains all the possible original requests issued by the
users to the LTS and all the possible generalized requests that the LTS would
forward to the SP. We also indicate with I the set of all users’ identities and
with issuer(r) the identity of the user that issued the request r. A general-
ization function is used by the LTS to transform an original request into a
generalized one to be forwarded to the SP.

Definition 1. Given a set R of requests, we say that g : R → R is a general-
ization function.

The purpose of a generalization function is to render requests safe from
privacy threats. We claim that the safety of a generalization function can only

516 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

be formally evaluated if it is clearly identified which part of a request can act as
a so-called quasi-identifier. A quasi-identifier [17] is data that can be used by
an attacker to identify the actual issuer of the request, through some external
knowledge that we call context and that is assumed to be possibly reachable by
the attacker. Clearly, what is a quasi-identifier in requests changes depending
on the applicative context C.

A typical context assumed in almost all LBS privacy research, exemplified
by [9, 8], is given in Example 2 below.

Example 2. Consider a location based yellow pages service and the following
context Cst, in which the attacker can obtain at most the following knowledge:

1. the location of each user;
2. the fact that the STData field of the requests forwarded by the LTS always

contains the location of the issuer of the original request.

Suppose that Alice issues a request asking for the closest shop where she
can find some specialty items. Assume LTS wants to protect Alice’s privacy
by not revealing that the request issuer is Alice. The LTS now receives the
request and deletes the information that could directly lead to Alice’s identity
(her name, for example). Moreover, the exact location of Alice is generalized
into an area. Then, the resulting generalized request r′ is forwarded to the
SP.

If an attacker obtains r′, he first uses the location knowledge (assumption
1) to restrict the set of possible issuers to the users whose location is in the
region specified in r′. Suppose this set has only one person, who must be Alice
due to assumption 2. In this case, the LTS has failed to provide privacy under
this context. The LTS obviously has to enlarge the area a bit further to obtain
r′′ so the area of r′′ covers the locations of three users: Alice, Bob and Carl. In
this case, r′′ provides 3-anonymity. Further enlarging the area in the requests
generally provides k-anonymity with a greater k value.

Context Cst may seem too excessive because it assumes that an attacker
knows the location of all users. However, if an attacker can possibly know
the location of one user (not too outrageous an assumption), we are forced
to assume the worst case, namely he knows the location of all users. This
assumption may be relaxed by saying that the attacker can only know the
locations of some users in some particular areas. But this is outside the scope
of this paper.

Given a context C, the attacker aims to infer, from a generalized request,
the identity of the user that issued it. We model a specific attack as the
likelihood of associating a specific identity to a generalized request.

Definition 2. An attack exploiting context C is a function AttC : R × I →
R

+.

A special case of Definition 2 is the one in which the attacker can identify,
from the generalized request, a set of candidate issuers, each one having the

Privacy Protection through Anonymity in Location-based Services 517

same probability of being the real issuer. This is the situation described in
Example 2, in which the three users Alice, Bob, and Carl are the candidate
issuers identified from the generalized request r′′. In this case, for each gener-
alized request r′, we call anonymity set in context C, denoted AnonC(r′), the
set of candidate issuers of r′ obtained exploiting context C.

Once the anonymity set is specified, it is possible to derive the correspond-
ing uniform attack :

Definition 3. Given a context C and the complete function AnonC : R → 2I ,
we say that UAttC is the uniform attack based on anonymity set AnonC if,
for each generalized request r′ ∈ R and for each i ∈ I:

UAttC(r′, i) =
{

0 if i �∈ AnonC(r′)
1

|AnonC(r′)| otherwise

The above definition formalizes the idea that each user in the candidate
set AnonC(r′) has the same probability to be the actual issuer. The question
is when such an attack actually breaches the privacy of the issuer. We formally
define this in Definition 4.

The idea of Definition 4 is that a generalized request is safe if the (nor-
malization of the) attack associates it to the correct issuer with a likelihood
smaller than a threshold value h. Formally,

Definition 4. Let AttC be an attack, h a value in [0, 1) and r′ a generalized
request. Moreover, let Att be the function

AttC(r′, i) =

{
1
|I| if ∀i′ ∈ I : AttC(r′, i′) = 0

AttC(r′,i)∑
i′∈I AttC(r′,i′) otherwise

We say that r′ is a safe request against AttC with threshold h if, given i =
issuer(r′), AttC(r′, i) ≤ h.

If a request is not safe, we say that it is unsafe.

For the uniform attack, the above safety definition is equivalent to asking
if UAttC(r′, i) ≤ h. Therefore, if h = 1/3, then the request r′′ in Example 2
is safe for Alice, while request r′ in the same example is not.

The task of the LTS is to avoid to forward to a SP a unsafe request. We
call defense function a generalization function that generates only requests
that are safe against a given attack.

Definition 5. Let AttC be an attack and h a value in [0, 1). A generalization
function g : R → R is a defense function against AttC with threshold h if
for each original request r ∈ R such that g(r) is defined, g(r) is a safe request
against AttC with threshold h.

For the context Cst in Example 2, a generalization function is a defense
function against UAttCst

with threshold 1/3 if the generalized request r′ pro-
duced by the generalization function always has its area containing at least

518 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

three users, including the actually issuer. A non-trivial question is to effi-
ciently generalize a given request so that the generalized request is safe, while
keeping the area in the request as small as possible. Interesting algorithms
have appeared in the literature, e.g., [9, 8, 16].

Another interesting context consists of, in addition to the assumptions
in Example 2, the assumption that the attacker knows the generalization
function itself [11, 3]. We call it the “inversion assumption”:

inver. The attacker knows the generalization algorithm.

The context with assumptions 1, 2 (in Example 2) and inver is denoted by
Cist.

The inversion assumption brings in an interesting twist on defense func-
tions against Cist in comparison to against Cst. Indeed, a typical defense
against Cst for a request r is to start with the area in r and systematically
expand this area until it includes k − 1 other users. This approach may not
be safe against Cist [11]. This is because the attacker can use the knowledge
of the algorithm to rule out candidate issuers from the anonymity set whose
location would have been generalized differently by the algorithm.

An intuitive defense against attack UAttCist
is to divide the users into

regions without consulting the location of the given request r. Once each
region contains at least k users, then pick up the region that contains r as its
generalized area. It can be shown that the knowledge of this defense function
is useless to an attacker. Kalnis et al. [11] and Bettini et al. [3] studied such
defenses.

4 Techniques to enforce anonymity

In this section we present the main techniques proposed so far to enforce
anonymity for LBS privacy preservation. We first address in detail techniques
that consider the static single-issuer case, the only one extensively studied up
to now, while we discuss open issues related to techniques for other cases in
Subsection 4.3.

The presentation of the anonymization algorithms proposed for the static
single-issuer case distinguishes CI -safe from CI -unsafe algorithms, depending
on the fact that the knowledge of the specific generalization algorithm can be
obtained by a potential attacker or not, respectively. More formally, we call
CI -safe the algorithms that achieve anonymity even in the case the current
context includes the inver assumption, and CI -unsafe those that consider a
context without this assumption.

4.1 CI-unsafe algorithms

The first generalization algorithm that appeared in the literature was named
IntervalCloaking [9]. The idea of the algorithm is to iteratively divide the

Privacy Protection through Anonymity in Location-based Services 519

total region monitored by the LTS. At each iteration the current area qprev

is partitioned into quadrants of equal size. If less than k users are located
in the quadrant q where the issuer of the request is located, then qprev is
returned. Otherwise, iteration continues considering q as the next area. In
order to evaluate the time complexity of the algorithm it is necessary to make
some assumptions about the data structures. In our implementation of the
algorithm, we used a data structure consisting of a quadTree in which each
leaf has a pointer to a user, and each internal node n stores the number of
users “contained” in n i.e., the number of users stored in the subtree that
has n as root. The generalization algorithm traverses the quadTree from the
root to the first internal node that contains at least k users. Each iteration is
constant time and the number of iterations is bounded by the height of the
quadTree. In the worst case, the height of the tree is linear in the cardinality
of the set I of users. However, if users are uniformly distributed (as in the case
of the experimental results that we present in Section 5) the height of the tree
is logarithmic in the number of users hence the algorithm has a worst-case
time complexity of O(log(|I|)).

Mokbel et al. [16] propose Casper, a framework for privacy protection that
includes a generalization algorithm. In this paper we consider the “basic” data
structure3 used by Casper i.e., a balanced quadTree in which each node has
a pointer to its parent, and users are stored in leaf nodes only. Moreover,
the data structure consists of a table in which each user i is associated with
the leaf node that contains i. The generalization algorithm starts from the
leaf node that contains the issuer of the request, and iteratively traverses the
tree towards the root until an area that contains at least k users is found. At
each iteration, the algorithm considers the union of the area covered by the
current node n and the horizontally (vertically, resp.) contiguous area covered
by its sibling node. If only one of these two joined areas contains more than
k users, that area is returned; if both of them contain more than k users, the
one containing the minimum number is returned; otherwise, the algorithm
proceeds with the next iteration. Similarly to IntervalCloaking, the worst case
time complexity of Casper is linear in the height of the quadTree. However,
in this case, this height is bounded by the logarithm of the number of leaf
nodes if users are uniformly distributed, and it is at most linear in the same
number, otherwise.

Conceptually, one of the simplest ways to generalize a request is to compute
the k Nearest Neighbor query among the users and return the MBR of the
result. We call nnALG this generalization algorithm. The problem of this
approach is that in most cases the issuer of the request is located close to
the center of the resulting area; hence, he can be easily discovered by the
attacker [11]. To partially overcome this problem, Kalnis et al. [11] propose
the nnASR generalization algorithm that picks a random user i in the set of
3 For the purpose of this paper, there is no need to consider the “adaptive” data

structure proposed in the paper.

520 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

the k−1 users that are the closest to the issuer, and returns the MBR of the set
containing i, the issuer, and the k−1 users closest to i. In our implementation
of the nnASR algorithm we used a kd-Tree to store users’ locations, making
possible to compute k Nearest Neighbor queries in logarithmic expected time
with respect to the number of users.

4.2 CI-safe algorithms

To the best of our knowledge, the first CI -safe generalization algorithm was
proposed by Kalnis et al. [11], and it was called hilbASR. The idea of hilbASR
is to exploit the Hilbert space filling curve to define a total order among users’
locations. A data structure is then used to store users in the order defined
through the Hilbert space filling curve. Intuitively, the hilbASR generalization
algorithm partitions the data structure into blocks of k users: the first block
from the user in position 0 to the user in position k − 1 and so on (note that
the last block can contain up to 2 · k − 1 users). The algorithm then returns
the MBR computed considering the position of the users that are in the same
block as the issuer. The worst case time complexity of hilbASR is O(log(|I|)).

A different CI -safe algorithm was proposed by Mascetti et al [15] and was
called dichotomicArea. Starting from the total area monitored by the LTS,
the dichotomicArea algorithm (Algorithm 1) iteratively partitions the area
into two adjacent rectangles of equal size. The partitioning is done along the
horizontal and vertical axis, altenatively in each iteration. The input of the
algorithm consists of the degree of anonymity k and the issuer i. The output
is null if less than k users are located in the total area monitored by the LTS,
otherwise the algorithm returns an area in which at least k users are located.
The algorithm terminates when at least 1 and at most k−1 users are located in
any of the two sub-areas. Algorithm dichotomicArea is an instance of a class of
algorithms presented in [3]; in that paper it is proved that any generalization
algorithm that iteratively partitions the set of users, and that terminates when
any block contains less then k users, is a CI -safe algorithm. At each iteration,
dichotomicArea partitions the set of users according to their location with
respect to the sub-areas. If no user is located in a sub-area, then the set of
users is not partitioned and iteration continues. On the contrary, if one of the
sub-areas contains more than one user but less than k, execution terminates.
The data structure that we used in the implementation of the algorithm is
similar to the one we used for the implementation of IntervalCloaking. The
only difference is that each internal node has two children instead of four.
Consequently, the time complexity of the algorithm is the same as the one for
IntervalCloaking.

A second generalization algorithm belonging to the class presented in [3]
is called dichotomicPoints. The idea is to use a different partitioning func-
tion, named partitionPoints. The users are totally ordered according to their
locations considering first one axis, then the other, and if necessary even the

Privacy Protection through Anonymity in Location-based Services 521

Algorithm 1 dichotomicArea
1: orient := HOR
2: area := the total area
3: if (|usersIn(area)| < k) then return null;
4: while true do
5: subAreas := partitionArea(area, orient)
6: if ∃a ∈ subAreas s.t. 0 < |usersIn(a)| < k then
7: return area
8: else
9: area := aj ∈ subAreas s.t. i ∈ usersIn(aj)

10: if orient = HOR then orient := V ER
11: else orient := HOR
12: end if
13: end while

user identifier; Then, considering the user u in the middle4, it partitions the
users into two blocks: the ones before u, and the remaining ones. In order to
choose the first axis used to order the users, dichotomicPoints computes, for
each axis, the difference between the maximum and minimum value of users’s
locations projected on that axis and then choose the one having the higher
difference5.

Similarly to dichotomicArea, computation terminates when any of the two
blocks of the partition contain less than k users; Then it returns the MBR
of all the users’ locations in those two blocks. This algorithm has some sim-
ilarities with the Anonymize algorithm presented in [13] despite they have
been independently designed. The data structure used in the implementation
of dichotomicPoints consists of two arrays, orderx and ordery, containing the
users ordered according to the horizontal and vertical axis, respectively. At
each iteration, the user locations that are not in the same block as the issuer
are removed from the two arrays. So, at each iteration it is necessary to find
the user location in the middle of the correct array, to count how many users
will be in each block and to remove the users that are not in the same block as
the issuer. The first two operations can be performed in constant time, while
the last one requires a time linear in the size of the two arrays. Since the
number of iterations is logarithmic in the number of users and each iteration
requires time linear in the number of the users, the worst case time complexity
of the algorithm is O(|I| · log(|I|)).
4 When there is an even number r of users, user u is the one in position r/2 +1.
5 A slightly different version of dichotomicPoints was presented in [15]; The only

difference is the way the first axis used to order users is chosen.

522 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

4.3 Open problems

The techniques presented in Section 3 can guarantee anonymity in the static,
single-issuer case. In this section we discuss three relevant open problems that
are mostly related to the extension of these techniques to different cases.

Homogeneity attack.

Example 1 in Section 2 shows that, in the multiple-issuer case, a homogeneity
attack is possible in LBS, and hence anonymity can be insufficient to guarantee
user privacy. A technical solution proposed to contrast the homogeneity attack
in the area of DB is called l-diversity [14]. Intuitively, a set of tuples in a DB
table is l-diverse if the tuples contain at least l different values of private
information.

A preliminary investigation on the extension of the l-diversity concept in
the area of LBS has appeared [2]. Intuitively, the l-diversity property holds for
a generalized request r′ if the attacker can infer at least l different values of
private information from the requests issued by the users in the anonymity set
of r′. Further research is needed, for example, to formally characterize a) how
the parameters k and l affect the probability distribution in the anonymity
set, b) under which conditions close values in private information can really be
considered different (e.g., location areas), and c) how the homogeneity attack
changes in the dynamic case.

Personalization of the degree of anonymity.

In our discussion we never considered issues related to the personalization of
defense parameters, as for example, the degree of anonymity k to be enforced
by the LTS. Some approaches (e.g. [16]) actually explicitly allow different
users to specify different values of k. A natural question is if the proposed
techniques can be applied and can be considered safe even in this case. Once
again, to answer this question it is essential to consider which knowledge an
attacker may obtain. The degree of anonymity k desired by each user at the
time of a request is not assumed to be known by the attacker in contexts Cst

and Cist, hence algorithms that are safe for these contexts remain safe even
when the LTS admits different values of k.

However, it may be reasonable to consider contexts in which the attacker
may obtain information about k. In the multiple-issuer case, the attacker
may use, for example, data mining techniques. Example 3 shows that, in
these contexts, CI -safe algorithms need to be extended in order to provide an
effective defense.

Example 3. User i1 issues a request r asking the LTS a degree of anonymity
k = 2. Using a CI -safe algorithm, the LTS generalizes r to the request r′

that has a spatio-temporal region containing only users i1 and i2. Since the
generalization algorithm is CI -safe, if r were issued by i2 with k = 2, then

Privacy Protection through Anonymity in Location-based Services 523

it would be generalized to r′. However, if the attacker knows that i2 always
issues requests with k ≥ 3, then he knows that if the issuer of r were i2, the
request would have been generalized to a request r′′ different from r′, because
the spatio-temporal region of r′′ should include at least 3 users. Hence the
attacker would identify i1 as the issuer of r′.

A straightforward solution to extend CI -safe algorithms to these cases
is the following: when a request r needs to be generalized with degree of
anonymity k, the anonymity set is computed considering only the users that
can possibly issue a request requiring that degree of anonymity. Clearly, the
solution is viable only if a limited set of k values is available and a large number
of users using each value exists. If this is not the case, more sophisticated
strategies need to be devised to obtain CI -safe generalization algorithms, and,
to our knowledge, this is still an open research issue.

Anonymity in the dynamic case

The techniques presented in Section 3 to provide anonymity in the static,
single-issuer case do not guarantee user’s privacy in the dynamic, single-issuer
case. Example 4 shows that the generalization of each request in a trace, using
a CI -safe algorithm, is not sufficient to guarantee user’s anonymity.

Example 4. User i1 issues a request r with k = 3. The LTS uses a CI -safe
algorithm to generalize r into a request r′ whose spatio-temporal region in-
cludes only users i1, i2 and i3. Afterwards, i1 issues a new request r1 with
k = 3. The LTS generalizes it into a request r′1 whose spatio-temporal region
includes only users i1, i4 and i5. Suppose the attacker is able to link requests
r′ and r′1, i.e. he is able to understand that the two requests have been issued
by the same user. The attacker can observe that neither i2 nor i3 can be the
issuer of r′1, because they are not in the spatio-temporal region of r′1; Conse-
quently, they cannot be the issuers of r′ either. Analogously, considering the
spatio-temporal region in r′, he can derive that i4 and i5 cannot be the issuers
of the two request. Therefore, the attacker can identify i1 as the issuer of r′

and r′1.

The problem of anonymity in the dynamic, single-issuer case has been
investigated in [4]. The notion of k-anonymity along a trace of requests is
called historical k-anonymity. Some preliminary definitions are necessary to
formally define it. It is reasonable to assume that the LTS not only stores in
its database the set of requests issued by each user, but also stores for each
user the sequence of her location updates. This sequence is called Personal
History of Locations (PHL). More formally, the PHL of user u is a sequence
of 3D points (〈x1, y1, t1〉, . . . , 〈xm, ym, tm〉), where 〈xi, yi〉, for i = 1, . . . ,m,
represents the position of u (in two-dimensional space) at the time instant ti.

A PHL (〈x1, y1, t1〉, . . . , 〈xm, ym, tm〉) is defined to be LT-consistent with
a set of requests r1, . . . , rn issued to a SP if for each request ri there exists an

524 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

element 〈xj , yj , tj〉 in the PHL such that the area of ri contains the location
identified by the point xj , yj and the time interval of ri contains the instant
tj .

Then, given the set R̄ of all requests issued to a certain SP, a subset
of requests R̄′ = {r1, . . . , rm} issued by the same user u is said to satisfy
Historical k-Anonymity if there exist k − 1 PHLs P1, . . . , Pk−1 for k − 1 users
different from u, such that each Pj , j = 1, . . . , k− 1, is LT-consistent with R′.

The open problem in this case is how to generalize each request in order to
obtain traces that are historical k-anonymous. One problem is that the LTS
has to generalize each request when it is issued, without having the knowledge
of the future users’ locations nor the future requests that are to be issued. A
separate problem is to avoid long traces; indeed, the longer is a trace, the
more each request needs to be generalized in order to guarantee historical
k-anonymity.

5 Experimental results

This section presents an extensive experimental evaluation of the algorithms
in Section 4. Tests were performed using artificial data with uniform as well
as non-uniform distribution of users in the considered area.6 Users’ locations
were generated by the moving object generator developed by Brinkhoff [6]
that was set to create 100, 000 user locations in the metropolitan area of San
Francisco. The total area of the map is about 25, 000 km2 while the total
perimeter is about 630 km. The resulting average density of users for km2 is
4.067. Two main parameters have been considered for each test: the value k,
representing the degree of anonymity, and the total number p of users in the
test. We are interested in three output values from the tests: a) the perimeter
of the output region, b) the area of that region, and c) the computation time.
We implemented the algorithms using Java, and performed our tests on a
Linux machine with two 2,4Ghz Pentium Xeon processors and 4GB of shared
RAM. All the output values presented in this section are obtained by running
1, 000 tests and taking the average or maximum value, as indicated in the
specific experiment.

To compare the perimeter of the regions returned by the generalization
algorithms with the one having the smallest perimeter, we implemented the
optimalUnsafe algorithm. This algorithm computes the set of k−1 users such
that the perimeter of the MBR including these users and the issuer is minimal.
The idea of optimalUnsafe is to search the best perimeter of the MBRs for
each set containing the issuer and other k− 1 users. Hence, the complexity of
the algorithm is exponential in p; However, we developed several optimization
techniques that make the algorithm in most cases computable in time linear
6 The experimental results summarized in the figures of this section are obtained

on non-uniform distributions, if not explicitly said otherwise in the captions.

Privacy Protection through Anonymity in Location-based Services 525

in the size of p, and exponential in the size of k. This makes it possible to
compute the optimal perimeter, as a reference value for the evaluation of ΓI -
unsafe algorithms, for quite large values of p and practically relevant values
of k.

 0

 0.5

 1

 1.5

 2

 2.5

 4 6 8 10 12 14

av
er

ag
e

ar
ea

 (
km

^2
)

k

intervalCloaking
casper
nnASR

optimalUnsafe

(a) Area.

 0

 1

 2

 3

 4

 5

 4 6 8 10 12 14

av
er

ag
e

pe
rim

et
er

 (
km

)

k

intervalCloaking
casper
nnASR

optimalUnsafe

(b) Perimeter.

Fig. 6. Area and perimeter as computed by CI -unsafe algorithms with p = 100, 000
and k ≤ 14.

Figures 6(a) and 6(b) show the average area and perimeter, respectively, of
four CI -unsafe algorithms. Since the experimental results for the nnALG and
nnASR algorithms are almost identical, in this section we report the results
of the nnASR algorithm only. The principle behind the nnASR algorithm
may induce the reader to think that the resulting region is minimal. Our
empirical results show that that this is not the case. On average, nnASR
returns regions having a perimeter 30% larger than the one of the region
returned by optimalUnsafe. We also computed the average number of times
in which nnASR returns the same result as optimalUnsafe. We noticed that
this value rapidly decreases with the growing of k. For example, with k = 4
and p = 100, 000, nnASR returns the region with the minimal perimeter in
about 13% of the cases, while the percentage drops below 1% for k = 14 and

526 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

the same number of users. Unfortunately, the high computational complexity
of optimalUnsafe makes it impossible to evaluate this algorithm for values of k
larger than 14. For this reason, in the remaining of this section, this algorithm
is ignored.

Figures 7(a) and 7(b) show the average area of the region returned by CI -
unsafe and CI -safe algorithms, respectively, with values of k higher than in
the previous test (up to k = 180). Similar results have been obtained consid-
ering the average perimeter. It can be noticed that dichotomicPoints returns
smaller regions with respect to hilbASR, dichotomicArea and intervalCloak-
ing. Figure 7(b) shows that the curve referring to dichotomicPoints does not
grow regularly but has some “steps”. This is due to the fact that the algo-
rithm partitions the number of points until it finds a set containing less than
k users. The number of iterations is given by:

⌈
log(p

k)
⌉
. Therefore, there are

executions of the algorithm with different values of k that iterate the same
number of times, hence computing, at the last iteration, the same number of
users. Consequently, these executions return regions with similar area. Pre-
dictably, the CI -unsafe algorithms generally return smaller regions than the
CI -safe ones as, intuitively, the CI -safe algorithms have more constraints on
the output regions.

 0

 20

 40

 60

 80

 100

 20 60 100 140 180

av
er

ag
e

ar
ea

 (
km

^2
)

k

intervalCloaking
casper
nnASR

(a) CI -unsafe algorithms.

 0

 20

 40

 60

 80

 100

 20 60 100 140 180

av
er

ag
e

ar
ea

 (
km

^2
)

k

hilbASR
dichotomicArea

dichotomicPoints

(b) CI -safe algorithms.

Fig. 7. Average area with p = 100, 000 and k ≤ 180.

Privacy Protection through Anonymity in Location-based Services 527

Figures 8(a) and 8(b) show the average area of the regions returned by
the CI -unsafe and CI -safe algorithms when users’ locations are uniformly
distributed in the map. We can notice that the three algorithms of Figure 8(b)
return regions with almost the same average area. Analogous results have been
obtained considering the perimeter. Comparing Figure 7(b) and Figure 8(b),
we can notice that the performance of hilbASR does not significantly differ
with the two distributions. On the other hand, dichotomicArea has by far
the worst performance in the non-uniform case. This is due to the fact that,
with a non-uniform distribution, there are regions with few users that lead
the dichotomicArea algorithm to terminate the execution after few iterations.
On the contrary, dichotomicPoints has significantly better performance in the
non-uniform distribution. This is due to the fact that the issuer of the request
is randomly chosen among the users, and in the non-uniform distribution,
users’ density is much higher in some parts of the general area than in others;
Hence, on average, we have many requests from densely populated regions.

Unlike in Figures 7(a) and 7(b), with the uniform data set, the CI -unsafe
algorithms generally perform similarly to the CI -safe ones, with the exception
of intervalCloaking. The poor performance of intervalCloaking, is mainly due
to the fact that, by dividing at each step the area in 4 quadrants, it may hap-
pen to return areas that double those returned by the other algorithms. The
similar performance of the other algorithms can be intuitively understood
since, with uniform locations, i) it does not matter if we divide the region
based on number of users or based on the area (that is the main difference
between dicothomicPoints and dicothomicArea), and ii) the termination con-
dition of CI -unsafe and CI -safe algorithms is satisfied in a similar number of
steps. Indeed, the termination condition of CI -safe algorithms imposes that
at least k users are included in each block of the partition, and this usually
causes less iterations (and larger output regions); however with a uniform dis-
tribution this condition is likely to be satisfied whenever the one for CI -unsafe
algorithms is satisfied, leading to similar dimensions of the resulting areas.

Figure 9 shows the average computation time of the algorithms dichotomic-
Points for different values of p. The average computation time of Algorithms
nnASR, dichotomicArea and hilbASR is less than 5 ms in each experiment
and we did not observe significant changes in the computation time for values
of p between 10, 000 and 200, 000. This is due to the fact that i) the time
complexity of the algorithms depends logarithmically in the size of p and ii)
the computation time of the algorithms is dominated by startup time. On
the contrary, the computation time of dichotomicPoints grows linearly with
p. This result is consistent with the theoretical complexity analysis of the al-
gorithm. We also evaluated the time complexity of the algorithms for a fixed
p and different values of k and we observed that the execution time of the
algorithms is almost not affected by the value of the parameter k.

528 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

 0

 20

 40

 60

 80

 100

 20 60 100 140 180

av
er

ag
e

ar
ea

 (
km

^2
)

k

intervalCloaking
casper
nnASR

(a) CI -unsafe algorithms.

 0

 20

 40

 60

 80

 100

 20 60 100 140 180

av
er

ag
e

ar
ea

 (
km

^2
)

k

hilbASR
dichotomicArea

dichotomicPoints

(b) CI -safe algorithms.

Fig. 8. Average area with p = 100, 000, uniform distribution of users.

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

tim
e

in
 m

ill
is

ec
on

ds

p (x1000)

dichotomicPoints

Fig. 9. Computation time of dichotomicPoints algorithm with k = 80.

6 Conclusion

In this contribution, we identified different privacy threats to users when
location-based services are involved. We then discussed the use of anonymity
for protection, and detailed different techniques for different threats. We also
provided a performance evaluation of the different techniques.

Privacy Protection through Anonymity in Location-based Services 529

In terms of future work, we pointed out a number of open problems in
Section 4.3. More general future work should include studies of actual LBS
users and their requests. In addition, usability studies of different protection
techniques are also necessary and interesting.

References

1. Alastair R. Beresford and Frank Stajano. Mix zones: User privacy in location-
aware services. In PERCOMW ’04: Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications Workshops, page 127,
2004.

2. Claudio Bettini, Sushil Jajodia, and Linda Pareschi. Anonymity and diversity in
LBS: a preliminary investigation. In Proc. of the 5th International Conference
on Pervasive Computing and Communication (PerCom), 2007.

3. Claudio Bettini, Sergio Mascetti, X. Sean Wang, and Sushil Jajodia. Anonymity
in location-based services: towards a general framework. In Proc. of the 8th In-
ternational Conference on Mobile Data Management (MDM). IEEE Computer
Society, 2007.

4. Claudio Bettini, X. Sean Wang, and Sushil Jajodia. Protecting privacy against
location-based personal identification. In Proc. of the 2nd workshop on Se-
cure Data Management (SDM), volume 3674 of LNCS, pages 185–199. Springer,
2005.

5. Claudio Bettini, X. Sean Wang, and Sushil Jajodia. The role of quasi-identifiers
in k-anonymity revisited. Technical Report RT-11-06, DICo, University of Mi-
lan, 2006.

6. Thomas Brinkhoff. A framework for generating network-based moving objects.
GeoInformatica, 6(2):153–180, 2002.

7. Tore Dalenius. Finding a needle in a haystack - or identifying anonymous census
record. Journal of Official Statistics, 2(3):329–336, 1986.

8. Bugra Gedik and Ling Liu. Location privacy in mobile systems: A personalized
anonymization model. In Proc. of the 25th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 620–629. IEEE Computer Society,
2005.

9. Marco Gruteser and Dirk Grunwald. Anonymous usage of location-based ser-
vices through spatial and temporal cloaking. In Proc. of the 1st Interna-
tional Conference on Mobile Systems, Applications and Services (MobiSys). The
USENIX Association, 2003.

10. Baik Hoh and Marco Gruteser. Protecting location privacy through path con-
fusion. In Proc. of the 1st International Conference on Security and Privacy for
Emerging Areas in Communications Networks (SecureComm), pages 194–205.
IEEE Computer Society, 2005.

11. Panos Kalnis, Gabriel Ghinta, Kyriakos Mouratidis, and Dimitri Papadias. Pre-
serving anonymity in location based services. Technical Report B6/06, National
University of Singapore, 2006.

12. Hidetoshi Kido, Yutaka Yanagisawa, and Tetsuji Satoh. An anonymous com-
munication technique using dummies for location-based services. In Proc. of
the International Conference on Pervasive Services (ICPS), pages 88–97. IEEE
Computer Society, 2005.

530 Claudio Bettini, Sergio Mascetti, and X. Sean Wang

13. Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Mondrian mul-
tidimensional k-anonymity. In Proc. of the 22nd International Conference on
Data Engineering (ICDE). IEEE Computer Society, 2006.

14. Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakr-
ishnan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In Proc.
of the 22nd International Conference on Data Engineering (ICDE). IEEE Com-
puter Society, 2006.

15. Sergio Mascetti and Claudio Bettini. A comparison of spatial generalization al-
gorithms for LBS privacy preservation. In Proc. of the 1st International Work-
shop on Privacy-Aware Location-based Mobile Services (PALMS), 2007.

16. Mohamed F. Mokbel, Chi-Yin Chow, and Walid G. Aref. The new casper:
query processing for location services without compromising privacy. In Proc.
of the 32nd International Conference on Very Large Data Bases (VLDB), pages
763–774. VLDB Endowment, 2006.

17. P. Samarati. Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

22

Privacy-enhanced Location-based Access
Control

C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano
26013 Crema, Italy
{ardagna,cremonini,decapita,samarati}@dti.unimi.it

Summary. Advancements in location technologies reliability and precision are fos-
tering the development of location-based services that make use of the location
information of users. An increasingly important category of such services is repre-
sented by Location-based Access Control (LBAC) systems that integrate traditional
access control mechanisms with access conditions based on the physical position of
users and other attributes related to the users location. Since privacy is extremely
important for users, protection of their location information is paramount to the
success of such emerging location-based services.

In this chapter, we first present an overview of Location-based Access Control
systems and then characterize the location privacy protection problem. We then
discuss the main techniques that have been proposed to protect location information,
focusing on the obfuscation-based techniques. We conclude the chapter by showing a
privacy-aware LBAC architecture and describing how a location-based access control
policy can be evaluated.

1 Introduction

The widespread diffusion of pervasive technologies, as well as of mobile devices
relying on them, makes available a great amount of high-sensitive location in-
formation that can be used for a variety of purposes. Customer-oriented appli-
cations, social networks and monitoring services can be functionally enriched
with data reporting where people are, how they are moving or whether they
are close by specific locations. To this end, several commercial and enterprise-
oriented location-based services are already available and have gained popu-
larity. Location-based services are supported by modern location technologies
that have reached good precision and reliability at costs that most people
(e.g., the cost of mobile devices) and companies (e.g., the cost of integrating
location technologies in existing telecommunication infrastructures) can eco-
nomically sustain. Since these location-based services are very complex and

532 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

may use the location information for different purposes, gathering and manag-
ing such information is a challenging aspect. Among the different issues that
need to be addressed in the development of such services, location privacy
is becoming increasingly important. Location privacy can be defined as the
right of individuals to decide how, when, and for which purposes their location
information could be released to other parties. The lack of location privacy
protection could result in severe consequences that make users the target of
fraudulent attacks such as [1]: i) unsolicited advertising, meaning that the
location of the user could be exploited, without her consent, to provide ad-
vertisements of products and services available nearby the user position; ii)
physical attacks or harassment, meaning that the location of the user could
be used to carry physical assaults to individuals; iii) users profiling, meaning
that the location of the user, which intrinsically carries personal information,
could be used to infer other sensitive information such as state of health, per-
sonal habits, and professional duties; iv) denial of services, meaning that the
location of the user could be used to deny accesses to services under some
circumstances. In addition, location information can expose users to dangers
such as stalking or physical harassment [2, 3].

Although location privacy is the subject of growing research efforts, there
are no comprehensive solutions for location privacy protection in pervasive
systems. The main branch of current research on location privacy focuses
on users anonymity and on supporting online and mobile services that do
not require the personal identification of a user for their provision [4, 5, 6].
When identification of users is required and, consequently, anonymity is not
suitable, a viable solution to protect users privacy is to decrease the precision
of personal information (including location) bound to identities [7, 8, 9]. For
several online services personal information associated with identities does not
need to be as accurate as possible to guarantee a certain service quality.

In this chapter, the issue of protecting location privacy is analyzed in
the context of Location-based Access Control (LBAC) systems [10]. The re-
mainder of this chapter is organized as follows. Section 2 presents basic con-
cepts behind location-based access control systems. Section 3 provides a brief
overview of different types of location privacy that must be preserved depend-
ing on the scenarios and on the requirements together with a description of
the techniques that can be used to protect location privacy. Section 4 de-
scribes some obfuscation-based techniques aimed at privacy protection. Sec-
tion 5 presents a privacy-aware LBAC architecture and discusses how the
evaluation of location-based predicates can be performed. Finally, Section 6
gives our conclusions.

2 Location-based Access Control Systems

Novel access control mechanisms are based on the assumption that properties
characterizing a requester, which are usually provided through digital cre-

Privacy-enhanced Location-based Access Control 533

dentials, are sufficient to decide which actions the requester is authorized to
perform on resources [11]. However, requester’s credentials are not the only
information that should be considered in access control decisions. The rapid
development in the field of wireless and mobile networking fostered a new gen-
eration of devices suitable for being used as sensors by location technologies,
which are able to compute the relative position and movement of users in their
environment. Therefore, the location of users, potentially available to access
control modules, may also play an important role in determining access rights
and allows the definition of a new class of location-based policies regulating
access to and fruition of resources. When evaluating location-based access
control policies, however, we need to consider that location-based informa-
tion presents some peculiarities: location information is both approximate (all
location system have a margin of error) and time-variant (the user position
changes over time due to the on-going motion of requesters).

Location-based Access Control (LBAC) systems provide the infrastructure
for managing and evaluating access control policies that include predicates and
conditions based on the location information of users. LBAC systems should
be designed to tolerate rapid context changes, because users are no longer
forced to be at pre-defined fixed positions but they can freely access services
through their mobile devices (e.g., mobile phones).

2.1 Location-based Conditions and Predicates

The first step towards the development of a LBAC system consists in the defi-
nition of location-based conditions. We identify three main classes of location-
based conditions, which might be useful to include in access control policies
and whose evaluation is possible with today’s technology [10]:

• position-based conditions on the location of the user (e.g., to evaluate
whether a user is in a certain building or city or in the proximity of other
entities);

• movement-based conditions on the mobility of the users (e.g., velocity,
acceleration, or direction where users are headed);

• interaction-based conditions relating multiple users or entities (e.g., the
number of users within a given area).

The language presented in [10] supports such conditions and is based on
the assumption that each user, who is unknown to the service responsible
for location measurements, is univocally identified via a user identifier (UID).
A unique identifier is also associated with physical and/or moving entities
that may need to be located (e.g., a vehicle with an on-board GPRS card).
A typical UID for location-based applications is the SIM number linking the
user’s identity to a mobile terminal. Moreover, the language is also based
on the assumption that there is a set of map regions identified either via
a geometric model (i.e., a range in a n-dimensional coordinate space) or a

534 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

Table 1. Examples of location-based predicates

Type Predicate Description

Position inarea(user, area) Evaluate whether user is located within area.
disjoint(user , area) Evaluate whether user is outside area.
distance(user , entity ,
min dist , max dist)

Evaluate whether distance between user and
entity is within interval [min dist , max dist].

Movement velocity(user , min vel ,
max vel)

Evaluate whether user ’s speed falls within
range [min vel , max vel].

Interaction density(area, min num,
max num)

Evaluate whether the number of users cur-
rently in area falls within interval [min num,
max num].

local density(user , area,
min num, max num)

Evaluate the density within a ‘relative’ area
surrounding user .

symbolic model (i.e., with reference to entities of the real world such as, for
example, cells, streets, cities, zip code or buildings) [12].

Predicates are expressed as boolean queries of the form predi-
cate(parameters, value). Table 1 illustrates some examples of location predi-
cates.

Example 1. Let alice be a user identifier, and Milan and Director Office
be two map regions. Three simple examples of location-based conditions are
the following.

• inarea(alice,Milan): request alice to be located in Milan.
• velocity(alice,70,90): request alice to travel at a speed included in the

interval [70,90].
• density(Director Office,0,1): request at most one person in the

Director Office.

2.2 Location-based Access Control Policies

Location-based access control policies can be considered as a means for en-
riching the expressive power of existing access control languages (e.g., [11, 13,
14, 15]) by introducing location-based predicates. We assume access control
rules to be triples whose elements are generic boolean formula over the sub-
ject, object, and action domains. Formally, an access control rule is defined
as follows.

Definition 1 (Access control rule). An access control rule is a triple of
the form 〈subj expr, obj expr, action〉, where:

• subj expr is a boolean formula of terms referring to a set of subjects de-
pending on whether they satisfy or not certain conditions that can evaluate
the user’s profile/information, location predicates, or the user’s member-
ship in groups, active roles, and so on;

Privacy-enhanced Location-based Access Control 535

Table 2. Examples of access control rules regulating access to the Mobile Network
Console and databases

subject action object
generic conditions location-based conditions

1 user.role=admin ∧ inarea(user.sim, Server Room) ∧ execute object.name=MNC
valid(user.username, density(Server Room, 1, 1) ∧
user.password) velocity(user.sim, 0, 3)

2 user.role=admin ∧ inarea(user.sim, Inf. System Dept.) ∧ read object.category=
valid(user.username, local density(user.sim, Close By, 1, 1) ∧ Log&Bill
user.password) velocity(user.sim, 0, 3)

3 user.role=CEO ∧ local density(user.sim, Close By, 1, 1) ∧ read object.category=
valid(user.username, inarea(user.sim, Corp. Main Office) ∧ customer
user.password) velocity(user.sim, 0, 3)

4 user.role=CEO ∧ local density(user.sim, Close By, 1, 1) ∧ read object.category=
valid(user.username,
user.password)

disjoint(user.sim, Competitor Location) StatData

5 user.role=guest ∧ local density(user.sim, Close By, 1, 1) ∧ read object.category=
valid(user.username,
user.password)

inarea(user.sim, Corporate Location) StatData

• obj expr is a boolean formula of terms referring to a set of objects depend-
ing on whether they satisfy or not certain conditions that can evaluate
membership of the object in categories, values of properties on metadata,
and so on;

• action is the action (or class of actions) to which the rule refers.

Each profile is referenced with the identity of the corresponding
user/object. Single properties within users and objects profiles are referenced
with the traditional dot notation. For instance, alice.address indicates the
address of user alice. Here, alice is the identity of the user (and therefore
the identifier for the corresponding profile), and address is the name of the
property. To refer to the user and the object involved in a request without
introducing variables in the language, we use two keywords: user indicates
the identifier of the person making the request; object indicates the identifier
of the object to which access is requested.

Example 2. Consider a company responsible for the management of a mobile
network that needs both strong authentication methods and expressive ac-
cess control policies. Suppose that the Mobile Network Console (MNC) is the
software that permits to reconfigure the mobile network. Managing a nation-
wide mobile network is an extremely critical activity because reconfiguration
privileges must be granted to strictly selected personnel only and must be per-
formed according to high security standards (rule 1 in Table 2). In addition to
reconfiguration privileges, also the access to mobile network’s databases must
be managed carefully and according to different security standards depending
on the level of risk of the data to be accessed. In particular, access to log-
ging and billing data is critical, because they include information about the
position and movements of mobile operator’s customers (rule 2 in Table 2).
Access to customer-related information is usually less critical but still to be

536 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

handled in a highly secured environment and to be granted only to selected
personnel, according to the laws and regulations in force (rule 3 in Table 2).
Finally, access to statistical data about the network’s operation is at a lower
criticality level, whereas they are still private information to be protected, for
example, from disclosure to competitors (rules 4 and 5 in Table 2).

In the following, we discuss location privacy issues and present a location
privacy solution suitable for location-based services along with a privacy-aware
LBAC architecture.

3 Location Privacy

Although location information can be exploited for providing enhanced ser-
vices, the high sensitivity of such an information increases concerns of users
about their privacy. Location privacy can assume several meanings and pursue
different objectives, depending on the services the users are interacting with.
The following categories of location privacy have been identified.

• Identity privacy. The main goal is to protect users’ identities that could
be directly or indirectly inferred from location information [4, 5, 6, 16].
To this purpose, protection techniques aim at minimizing the disclosure
of the data that can let an attacker infer a user identity, such as home
and work addresses. This type of location privacy is suitable in application
contexts that do not require the identification of the users as a fundamental
information for service provisioning. For instance, many online services
provide a person with the ability to establish a relationship with some other
entities (e.g., anonymous chats) or with some applications (e.g., allergy
warning) without her personal identity being disclosed to that entity. In
this case, the best possible location measurement can be provided to the
others entities but the actual user’s identity must be preserved.

• Position privacy. The main goal is to protect the position information of
individual users, by perturbing corresponding information and decreasing
the accuracy of location information [7, 8, 9]. Position privacy is suitable
for environments where users’ identities are required for a successful ser-
vice provisioning, and less accurate location information does not severely
affect the service quality (e.g., access to services inside a production plant
or friends finder services). A technique that most solutions exploit, either
explicitly or implicitly, consists in reducing the accuracy by scaling a lo-
cation to a coarser granularity (e.g., from meters to hundreds of meters,
from a city block to the whole town).

• Path privacy. The main goal is to protect the privacy of information as-
sociated with users motion, such as the path followed while traveling or
walking in a urban area [17, 18, 19]. There are several location-based ser-
vices (e.g., personal navigation systems) that could be exploited to subvert
path privacy or to illicitly track users. Path privacy is the most complex

Privacy-enhanced Location-based Access Control 537

class of location privacy problem and can refer to identity privacy and/or
position privacy.

The above three privacy categories pose different requirements that are
fulfilled by different techniques. The heterogeneity of location privacy prob-
lems results then in a lack of a general solution able to satisfy all the privacy
requirements. In the following, different classes of techniques are discussed
and analyzed.

3.1 Location Privacy Techniques

Location privacy techniques can be partitioned into three main classes
that correspond to the different types of location privacy above-mentioned:
anonymity-based, policy-based, and obfuscation-based. These classes are par-
tially overlapped in scope and could be potentially suitable to cover re-
quirements coming from one or more of the categories of location privacy.
Anonymity-based and obfuscation-based techniques can be usually regarded
as dual categories. While anonymity-based techniques have been primarily
defined to protect identity privacy and are less suitable for protecting posi-
tion privacy, obfuscation-based techniques are well suited for position pro-
tection and less appropriate for identity protection. Anonymity-based and
obfuscation-based techniques are well-suited for protecting path privacy. Nev-
ertheless, more studies and proposals have been focused on anonymity-based
rather than on obfuscation-based techniques. Policy-based techniques are in
general suitable for all the location privacy categories; however, they can be
difficult to understand and manage for end users.

Anonymity-based techniques

This class of techniques focus both on identity privacy and path privacy pro-
tection [4, 5, 6, 20]. Beresford and Stajano [4, 21] propose a mix zone model
and employs an anonymity service based on an infrastructure that delays and
reorders messages from subscribers within pre-defined zones. The mix zone
model is based on a trusted middleware positioned between location systems
and third party applications, which is responsible for limiting the information
collected by applications. An application selects a set of application zones rep-
resenting application interests in specific geographic areas, such as hospital,
supermarket, and so on. Users register interest in a specific set of applications
and the middleware limits the location information that such applications
can receive to the locations inside the application zones. Each user has one or
more unregistered geographical regions, called mix zones, where users cannot
be tracked, that is, when a user enters a mix zone her identity is mixed with
all other users in the same mix zone. The mix zones model is then aimed
at protecting long-term user movements still allowing the interaction with
many location-based services. However, the effectiveness of such a solution is

538 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

strongly dependent on the number of users joining the anonymity service and,
in particular, on the number of users physically co-located in the same mix
zone at the same time.

Bettini et. al. [5] propose a framework able to evaluate the risk of sensitive
location-based information dissemination and introduce a technique aimed at
supporting k-anonymity [8, 9]. The concept of k -anonymity captures a tradi-
tional requirement of statistical agencies stating that released data must be
indistinguishably related to no less than a certain number (k) of users. Tradi-
tionally, k -anonymity is based on the definition of a quasi-identifier that is a
set of attributes exploitable for linking data to identifiers. The k -anonymity
requirement states that each release of data must guarantee that every com-
bination of values of quasi-identifiers can be indistinctly linkable to at least k
individuals. The proposal in [5] puts forward the idea that the geo-localized
history of the requests submitted by a user can be considered as a quasi-
identifier that can be used to discover sensitive information about that user.
For instance, a user tracked during working days is likely to commute from her
house to the workplace in a specific time frame in the morning and to come
back in another specific time frame in the evening. This information could be
used to identify the user. Consequently, the service provider gathering both
user requests for services and personal history of locations (i.e., a sequence of
user location updates) should never be able to link a subset of requests to a
single user. To make this possible, there must exist k users having a personal
history of locations consistent with the set of requests that have been issued.
This solution is highly dependent on the availability of k indistinguishable
histories of locations: the worst case happens when a given user has a unique
history, which make her always identifiable.

Also other proposals [6, 20] rely on the concept of k-anonymity by re-
quiring that a user should be indistinguishable from other k − 1 users in a
given spatial area or temporal interval. Gruteser and Grunwald [6] propose a
middleware architecture and an adaptive algorithm to adjust location infor-
mation resolution, in spatial or temporal dimensions, to comply with specified
anonymity requirements. To this purpose, the authors introduce the concepts
of spatial and temporal cloaking used to transform the location of a user to a
different location that satisfies the required level of anonymity. Spatial cloak-
ing guarantees k -anonymity by applying an adaptive quad-tree algorithm that
decreases the spatial resolution to an area that contains k indistinguishable
users. Temporal cloaking, which is orthogonal to the spatial cloaking, pro-
vides spatial coordinates with higher accuracy but it reduces the accuracy in
time. The key feature of the adaptive cloaking algorithm is that the required
level of anonymity can be achieved for any location. Mokbel et al. [20] present
a framework, named Casper, that changes traditional location-based servers
and query processors to provide the users with anonymous services. Users can
define their privacy preferences through two parameters: k, meaning that the
user wants to be indistinguishable among other k entities; and Amin repre-
senting the minimal area that the user is willing to release. The core of the

Privacy-enhanced Location-based Access Control 539

Casper framework is composed by two components: a location anonymizer,
which is responsible for perturbing the user location until user’s privacy pref-
erences are satisfied, and a privacy-aware query processor, which is responsible
for the management of anonymous queries and cloaked spatial areas.

Anonymity-based techniques have also been exploited to guarantee path
privacy protection [17, 18, 19]. In particular, path privacy involves the pro-
tection of users that are in motion and are continuously monitored during a
time interval. This research field is particularly relevant for location track-
ing applications designed and developed for devices with limited capabilities
(e.g., cellular phones), where data about users moving in a particular area are
collected by external services. Gruteser et al. [17] propose a solution to path
privacy protection by means of path anonymization functions. The authors
argue that the association of a single or multiple pseudonyms, which change
over time, with a user is not sufficient to provide path privacy protection.
Privacy provided by pseudonyms can be actually subverted by applying an
inference process that gathers path information, such as the place a user stays
during the night. Therefore, since it is difficult to provide strong anonymity
for path protection because it would require the existence of several users
traveling along the same path at the same time, Gruteser et al. provide two
techniques that guarantee a “weaker anonymity”, meaning that users could
potentially be linked to their identities but at price of huge computational
efforts. The first technique relies on path segmentation, which partitions a
user’s path in a set of smaller paths changing, at the same time, the associ-
ated pseudonym. The second technique relies on minutiae suppression that
suppresses those parts of a path that are more distinctive and could bring to
an easy association between a path and an identity. The suitability of these
techniques is highly dependent on the density of users in the area in which
the adversary collects location samples. In areas with low density of users,
an adversary has a good likelihood of tracking individuals, whereas in areas
with many overlapping paths, linking segments to identities can be extremely
difficult.

Other proposals consider path protection as a process whose outcome must
be managed by a service provider and consequently privacy techniques have
to preserve a given level of accuracy to permit a good quality of service pro-
visioning. Gruteser and Liu [18] present a solution based on the definition
of a sensitivity map composed by sensitive and insensitive zones. Sensitive
zones are those area where the users prefer to hide their visits. The work de-
fines three algorithms aimed at path privacy protection: base, bounded-rate,
and k -area. Among the three, the k -area algorithm stands out, giving the
best performance in terms of privacy, and minimizing the number of loca-
tion updates suppression. In particular, the k -area algorithm is built on top
of sensitivity maps that are composed of areas containing k sensitive zones.
Location updates of a user entering a region with k sensitive areas are tem-
porarily stored and not released. If a user leaving that region has visited at
least one of the k sensitive areas, location updates are suppressed; they are

540 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

released, otherwise. Finally, Ho and Gruteser [19] propose a path confusion
algorithm. This algorithm introduces a level of uncertainty by creating cross
paths between at least two users. In this case, the attacker observing different
paths is not able to recognize which path has followed one specific user.

Policy-based techniques

Another class of location privacy techniques relies on the definition of privacy
policies. Privacy policies define restrictions that regulate the release of the
location of a user to third parties. Hauser and Kabatnik [22] address the
location privacy problem in a privacy-aware architecture for a global location
service, which allows users to define rules that will be evaluated to regulate
access to location information. The IETF Geopriv working group addresses
privacy and security issues related to the disclosure of location information
over the Internet [23]. The main goal of the Geopriv working group is to define
an environment (i.e., architecture, protocols, and policies) supporting both
location information and policy data. Others works [24, 25] used the Platform
for Privacy Preferences (P3P) [26] to encode users privacy preferences.

In summary, policy-based techniques allow a flexible definition of poli-
cies that fit the user needs of privacy by restricting the ability to manage
locations and disclosing information. However, although policies-based solu-
tions are suitable for privacy protection, users are often not willing to directly
manage complex policies and, hence, may refuse participation in pervasive
environments.

Obfuscation-based techniques

Obfuscation-based techniques are aimed at protecting location privacy by de-
grading the accuracy of the location information still maintaining an explicit
association with the real user identity.

Duckham and Kulik [7] define a framework that provides a mechanism for
balancing individual needs for high-quality information services and location
privacy. The proposed solution is based on the concept of imprecision, which
indicates the lack of specificity of location information. The authors suggest
to degrade location information quality and to provide obfuscation features
by adding n points with same probability of being the real user position. The
algorithm assumes a graph-based representation of the environment. Also, the
authors propose a validation and evaluation of their methods through a set of
simulations [27]. The results show that obfuscation can provide at the same
time a high service quality and a high privacy level.

Other proposals relies on a trusted middleware, which lies between loca-
tion providers and location-based applications, responsible for enforcing users
privacy preferences before releasing location information. Openwave [28], for
example, includes a location gateway that obtains users location information

Privacy-enhanced Location-based Access Control 541

from multiple sources and delivers them, possibly modified according to pri-
vacy requirements, to other parties. Users define their privacy preferences in
terms of a minimum distance representing the maximum location accuracy
they are willing to accept. Bellavista et al. [29] present a solution based on
a middleware that balances the level of privacy requested by users and the
need of service precision. Location information is perturbed depending on pri-
vacy/efficiency requirements negotiated by the parties and it is returned with
lower precision and lower geographical granularity.

In summary, although obfuscation-based techniques are compatible with
users specifying their privacy preferences in a common and intuitive manner
(usually as a minimum distance), they do not provide a quantitative esti-
mation of the provided privacy level, and they usually implement a single
obfuscation technique, which provide an obfuscation effect by scaling up the
extent of the location area.

4 Obfuscation Techniques for Location Privacy
Protection

An interesting research direction is to use obfuscation-based techniques for lo-
cation privacy protection in LBAC systems [30, 31, 32]. These recent propos-
als provide privacy by degrading the location accuracy of each measurement
while offering a measurable accuracy to service providers and are based on
two working assumptions that simplify the analysis with no loss of generality:
i) the area returned by a location measurement is planar and circular, which
is the actual shape resulting from many location technologies; ii) the distri-
bution of measurement errors within a returned area is uniform. The first
assumption derives from the fact that user location information is affected by
an intrinsic measurement error introduced by sensing technologies, resulting
in spatial areas rather than geographical points. This assumption represents
a particular case of the general requirement of considering convex areas and a
good approximation for actual shapes resulting from many location technolo-
gies (e.g., cellular phones location). A location measurement is then defined
as follows.

Definition 2 (Location measurement). A location measurement of a user
u is a circular area Area(r, xc, yc), centered on the geographical coordinates
(xc, yc) and with radius r, which includes the real user’s position (xu, yu) with
probability P ((xu, yu) ∈ Area(r, xc, yc)) = 1.

Definition 2 comes from observing that sensing technologies based on cel-
lular phones usually guarantee that the real user’s position falls within the
returned area.

The second assumption is introduced to discuss the effects of obfusca-
tion techniques. Consider a random location within a location measurement

542 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

Area(r, xc, yc), where a “random location” is a neighborhood of random point
(x̂, ŷ) ∈ Area(r, xc, yc). The probability that the real user’s position (xu, yu)
belongs to a neighborhood of a random point (x̂, ŷ) is uniformly distributed
over the whole location measurement. Accordingly, the joint probability den-
sity function (pdf) of the real user’s position can be defined as follows.

Definition 3 (Uniform joint pdf). Given a location measurement
Area(r, xc, yc), the joint probability density function (joint pdf) fr(x, y) of
real user’s position (xu, yu) to be in the neighborhood of point (x, y) is:

fr(x, y) =

{
1

πr2 if (x, y) ∈ Area(r, xc, yc)

0 otherwise.

Before analyzing the obfuscation techniques in details, we first describe
how users can express their privacy preferences. Despite its importance for
the effectiveness of a privacy solution, this issue has received little attention in
previous works on location privacy. We then describe how the level of privacy
can be quantitatively expressed as a functional term independently from any
physical scale or specific technology.

4.1 User Preferences and Relevance Metric

Several works in location privacy field are based on the definition of users
privacy preferences by means of a minimum distance [7, 28]. This choice is
dictated by the fact that usually the users tend to adopt simple and intuitive
way for expressing their privacy preference and tend to be averse to complex
configurations. A user can define as her privacy preference a minimum dis-
tance, which results in a location area achieved by increasing the granularity
of the actual location measurement. In particular, assuming location measure-
ments as circular areas, the minimum distance privacy preference represents
the minimum radius of the area that a user is willing to release to other parties.
However, the definition of the minimum distance as user privacy preference
exhibits some shortcomings: i) it is highly dependent on the adopted privacy
solution; ii) it is suitable for only obfuscation techniques that increase the
granularity of the measurement; iii) it is difficult to integrate in a full-fledged
location-based application scenario [10, 33]; iv) it is not suitable for solutions
using different obfuscation techniques.

To overcome these issues, others proposals [30, 31, 32] suggest a different
way to manage users privacy preferences. In these works, users specify their
privacy requirements through the definition of a relative degradation of the
location accuracy with respect to the location measurement, which is mod-
eled through an index λ ∈ [0,∞), where λ = 0 corresponds to no degradation,
λ → ∞ to maximum degradation, and intermediate values correspond to dif-
ferent degrees of degradation. For instance, λ=0.5 means 50% of degradation,

Privacy-enhanced Location-based Access Control 543

λ=1 means 100% of degradation and any value λ >1 corresponds to a degra-
dation greater than 100%. Although both minimum distance d and index λ
are easy to specify for users, λ is a more general solution because independent
from a specific location measurement and obfuscation technique. However,
the definition of λ is not sufficient, especially when we need to balance the
users needs of privacy and the LBSs needs of location accuracy to maintain
an acceptable quality of the online service.

To accommodate the peculiar characteristics of the above scenario, the
concept of relevance is introduced as the adimensional metric of both the
accuracy and the privacy of a location information, abstracting from any
physical attribute of sensing technology. A relevance R is a value in (0,1]
associated with each location information, which depends on measurement
errors and privacy preferences of users. In particular, R tends to 0 when the
location information is considered unreliable for service provision; R=1 when
the location information is equal to the original location measurement; R ∈
(0,1) when the location information has various degrees of accurateness. The
location privacy associated with an obfuscated location is evaluated by (1-R).

Applying the concept of relevance to a LBAC scenario, an LBAC service
has to manage the following different relevances:

• Technological relevance (RTech) is the metric for the accuracy of the loca-
tion measurement provided by a location service given a mobile technology
and its technical quality.

• Privacy relevance (RPriv) is the metric for the accuracy of an obfuscated
location and therefore the level of privacy provided to the users.

• LBAC relevance (RLBAC) is the metric for the lowest accuracy of the
location information that an LBAC service is willing to accept. It is re-
quired by the business application for a location measurement or for a
location-based predicate evaluation.

• Evaluation relevance (REval) is the metric for the accuracy of a LBAC
predicate evaluation.

Among these relevances, RLBAC and RTech are assumed to be known.
RPriv is derived from the privacy preferences expressed by users, while REval

is calculated by the system (see Sect. 5). In other words, RPriv represents
the relevance of the final obfuscated area that is calculated starting from the
location measurement with relevance RTech and by degrading its accuracy
according to the value of λ. Formally, RPriv is calculated as:

RPriv = (λ + 1)−1RTech (1)

If a privacy preference is expressed through a minimum distance r, it is
straightforward to derive λ from r. The obfuscated area is then calculated
by scaling up the radius of the location measurement until the user privacy
preference λ is satisfied.

544 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

Fig. 1. Enlarging (a), shifting (b), and reducing (c)

4.2 Obfuscation Techniques

We present some obfuscation techniques that reduce the location accuracy of a
location measurement until the privacy preferences are achieved. In particular,
each technique takes λ as input and computes RPriv and the obfuscated area.

Enlarging the Radius

Enlarging the radius of a location measurement represents the traditional
solution adopted in the context of location privacy protection. Given a location
measurement Area(r, xc, yc), an obfuscated area Area(r′, xc, yc) is generated,
where r′ > r (see Fig. 1(a)). The obfuscation effect directly derives from the
fact that the joint pdf associated with the obfuscated area decreases, that
is, ∀r, r′ ∈ IR+ : r < r′ ⇒ fr(x, y) > fr′(x, y). The relevance RPriv of the
location information after spatial obfuscation can be derived from RTech by
considering the ratio of the two pdf as a scalar factor:

RPriv =
fr′(x, y)

fr(x, y)
· RTech =

r2

r′2
· RTech, with r < r′ (2)

Given a privacy preference λ ≥ 0, the radius of the obfuscated area r′ is
calculated from (1) and (2) as follows:

r′ = r
√

λ + 1

This relation permits to generate the obfuscated area by enlarging radius
r to radius r′, which satisfies, according to our semantics, the user privacy
preference λ. Note that, if the privacy preference of the user is provided by
means of a minimum distance (i.e., radius r′) relevance RPriv of the obfuscated
area is always calculated by equation (2).

Privacy-enhanced Location-based Access Control 545

Shifting the Center

Shifting the center of the area returned by a sensing technology is another
way of obfuscating a location measurement. The obfuscated area is derived
from the original area by calculating the distance d between the two centers
and the shifting angle θ. Let Area(r, xc + Δx, yc + Δy) be the obfuscated
area. Note that, since LBAC applications cannot deal with false information
to provide a service, obfuscated areas with no intersection with the original
location measurement are considered not acceptable. The reason is that, since
location measurements contain users positions with probability 1, all the areas
disjoint with a location measurement have probability 0 of including the real
user location, and then are indiscernible using the relevance metric. Therefore,
these areas must be simply considered as false location information.

The privacy gain can be measured by considering the intersection of the
original and obfuscated areas, denoted AreaTech∩Priv. Intuitively, the degree
of privacy is inversely proportional to the intersection of the two areas and
therefore it is directly proportional to the distance d ∈ [0, 2r] between the
two centers. In particular, if d = 0, there is no privacy gain and P ((xu, yu) ∈
Area(r, xc + Δx, yc + Δy)) = P ((xu, yu) ∈ Area(r, xc, yc)) = 1. If d = 2r,
there is maximum privacy and P ((xu, yu) ∈ Area(r, xc + Δx, yc + Δy)) tends
to 0; and if 0 < d < 2r, there is an increment of privacy and 0 < P ((xu, yu) ∈
Area(r, xc + Δx, yc + Δy)) < 1.

Angle θ (see Fig. 1(b)) is assumed to be randomly chosen, since all values
of θ are equivalent with respect to the privacy preferences of users.

To measure the obfuscation effect and define the relation between rele-
vances, two probabilities must be composed: i) the probability that the real
user’s position belongs to the intersection AreaTech∩Priv, and ii) the proba-
bility that a random point selected from the whole obfuscated area belongs
to the intersection. Then, the relation between relevances RTech and RPriv is
represented by:

RP riv = P ((xu, yu) ∈ AreaT ech∩P riv) · P ((x, y) ∈ AreaT ech∩P riv) · RT ech =

AreaT ech∩P riv

Area(r, xc, yc)
·

AreaT ech∩P riv

Area(r, xc + Δx, yc + Δy)
· RT ech =

Area2
T ech∩P riv

Area(r, xc, yc)2
· RT ech (3)

Given the privacy preference expressed by λ ≥ 0, the distance d between
the centers of the original and obfuscated area is calculated from (1) and (3)
as follows:

(λ + 1)−1 =
Area2

Tech∩Priv

Area(r, xc, yc)2
(4)

The distance d between the centers is the unknown variable to be derived
to obtain the obfuscated area. It can be calculated by expanding the term
AreaTech∩Priv as a function of d and by solving the following system of equa-
tions, whose variables are d, σ and γ. σ and γ are the central angles of circular

546 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

sectors identified by the two radii connecting the centers of the areas with the
intersection points of original and obfuscated areas.1

⎧⎪⎪⎨
⎪⎪⎩

[σ

2
r
2 −

r2

2
sin σ

]
+

[γ

2
R

2 −
R2

2
sin γ

]
=

√
δπr · R

d = r cos σ
2 + R cos γ

2
r sin σ

2 = R sin γ
2

(5)

Solutions of this system can be obtained numerically.

Reducing the Radius

The third obfuscation technique consists in reducing the radius of a location
measurement from r to r′, as showed in Fig. 1(c). The obfuscation effect is
produced by a correspondent reduction of the probability to find the real user
location within the returned area, whereas the joint pdf is fixed.

Let (xu, yu) be the real user position coordinates, By assumption, the prob-
ability that the real user position falls in the location measurement of radius r
is P ((xu, yu) ∈ Area(r, x, y)) = 1. When we obfuscate by reducing the radius,
an area of radius r′ < r is returned, where P ((xu, yu) ∈ Area(r′, x, y)) <
P ((xu, yu) ∈ Area(r, x, y)), since a circular ring having pdf greater than zero
has been excluded.

With regard to relevances RTech and RPriv, their relation can be defined
as:

RPriv =
P ((xu, yu) ∈ Area(r′, x, y))

P ((xu, yu) ∈ Area(r, x, y))
· RTech =

r′2

r2
· RTech, with r′ < r (6)

Given a privacy preference λ ≥ 0, the radius of the obfuscated area r′ is
calculated from (1) and (6) as follows:

r′ =
r√

λ + 1

This relation permits to generate the obfuscated area by reducing radius
r to radius r′, which satisfies, according to our semantics, the user privacy
preference λ.

5 Integrating Obfuscation Techniques with LBAC
Systems

The definition of LBAC systems poses some architectural and functional is-
sues that were never studied before in the context of traditional access control
1 The system of equation (5) is presented in the most general form of two areas

with different radii (i.e., r and R).

Privacy-enhanced Location-based Access Control 547

Fig. 2. A privacy-Aware LBAC Architecture

systems. A privacy-aware LBAC architecture must be developed integrating
components logically tied with the applications that need location-based ac-
cess control enforcement and components providing privacy-aware location
services. One typical approach in the design of LBAC architectures is to pro-
vide a location middleware acting as a trusted gateway between the LBAC
system and the location services. Such a component is in charge of managing
all interactions with sensing technologies and enforce users privacy prefer-
ences. In [30, 31, 32] the authors present a privacy-aware LBAC architecture
(see Fig. 2) whose logical components can be summarized as follows.

• User. It is the subject to be located through her mobile device during
the interaction with the Business Application. The user first defines her
privacy preferences at the Location Middleware and then interacts with
the Access Control Engine to gain the access to the Business Application.

• Business application. It represents a service provider that offers resources
protected by LBAC policies. It relies on the Access Control Engine for
evaluating policies based on users location.

• Access Control Engine (ACE). It is the component responsible for the
evaluation and enforcement of LBAC policies. It relies on functionalities
provided by a specialized privacy-aware Location Middleware to collect
information about the positions of the User involved in the access control
decision process.

• Location Middleware (LM). It represents the core component of the ar-
chitecture. It manages the low-level communications with the Location
Provider and enforces both the privacy preferences of the User and the
need of location accuracy requested by the Access Control Engine.

• Location Provider (LP). It is the component that manages sensing tech-
nologies to provide location measurement of the User to the Location Mid-
dleware.

548 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

Fig. 3. Location Middleware

The location middleware, whose logical schema is depicted in Fig. 3, in-
cludes the following components.

• Communication Layer. It manages the communication process with Loca-
tion Providers by hiding low-level communication details to other compo-
nents.

• Negotiation Manager. It acts as an interface with the Access Control En-
gine to provide negotiation functionalities regarding service quality and
availability based on specific negotiation protocols [34].

• Access Control Preference Manager. It manages location service attributes
and quality parameters by interacting with the Location Obfuscation com-
ponent.

• Location Obfuscation. It applies obfuscation techniques to location mea-
surements for protecting location privacy of users.

• Privacy Manager. It manages privacy preferences expressed by users and
supports the privacy-aware location-based predicate evaluation.

A key aspect of such a privacy-aware LBAC architecture is the choice of
the component in charge of evaluating LBAC predicates. Although LBAC
policy evaluation and enforcement are logically provided by the ACE (i.e.,
the LBAC system), the LBAC predicates evaluation could take place in two
different ways:

• ACE Evaluation: the ACE requests to the LM location information rel-
evant to the access decision, without communicating the actual LBAC
predicate to be evaluated. The returned response from the LM to the
ACE is an obfuscated location measurement with associated a relevance
value RPriv that characterizes its accuracy. Given the relevance RLBAC ,
the ACE evaluates the LBAC predicate. Since RLBAC represents the min-
imum accuracy level that the ACE is willing to accept for a certain service
provisioning, RLBAC≤REval must hold or the evaluation of the location
predicate is rejected.

• LM Evaluation: the ACE communicates to the LM the actual LBAC predi-
cate and requests its evaluation based on location information managed by

Privacy-enhanced Location-based Access Control 549

the LM. The returned response from the LM to the ACE is assumed to be
a boolean value with associated a relevance value REval that characterizes
the accuracy. REval is derived from RPriv by considering the obfuscated
area generated by the LM and the LBAC predicate. The meaning of REval

is the reliability of the predicate evaluation, which depends on the accuracy
RPriv of the obfuscated location information. The LM calculates REval

as follows:

REval =
AreaPriv∩LBAC

AreaPriv
· RPriv (7)

where the scalar factor AreaP riv∩LBAC

AreaP riv
depends on the degree of overlap-

ping between the areas resulting by the application of the obfuscation tech-
niques to the location measurement of the user and the area specified by
the LBAC predicate (i.e., AreaPriv∩LBAC). Again, RLBAC≤REval must
hold.

Both solutions are viable, although well-suited for different sets of require-
ments. On the one side, the ACE Evaluation provides a clear separation be-
tween business-oriented components (i.e., ACE and Business Application) and
location services (i.e., LM and LP). In addition, ACE Evaluation assures that
the LM never deals with application-dependent predicates and the ACE never
releases information about its access control policies. On the other side, LM
Evaluation avoids releasing location information to the ACE. In this setting,
location information is always managed by LM that becomes the only trusted
component of the architecture with regard to location privacy.

6 Conclusions

Information regarding physical locations of users is rapidly becoming easily
available for processing by online and mobile location-based services. Com-
bined with novel application opportunities, however, threats to personal pri-
vacy are gaining special prominence, as witnessed by recent security incidents
targeting privacy of individuals. This chapter has presented the main tech-
niques aimed at protecting location privacy. The chapter has also described
a privacy-aware LBAC architecture that integrates users privacy preferences,
obfuscation techniques for location privacy protection, and privacy-enhanced
location-based access control.

Acknowledgments

This work was partially supported by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591, by the
Italian Ministry of Research Fund for Basic Research (FIRB) under project
RBNE05FKZ2 and by the Italian MIUR under project MAPS.

550 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

References

1. Duckham, M., Kulik, L.: Location privacy and location-aware computing. In:
Dynamic & Mobile GIS: Investigating Change in Space and Time. Taylor &
Francis (2006) 34–51

2. Lee, J.W.: Location-tracing sparks privacy concerns. Korea Times.
http://times.hankooki.com, 16 November 2004. Accessed 22 December 2006

3. Foxs News: Man Accused of Stalking Ex-Girlfriend With GPS.
http://www.foxnews.com/story/0,2933,131487,00.html, 04 September 2004. Ac-
cessed 22 March 2007

4. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE
Pervasive Computing 2(1) (2003) 46–55

5. Bettini, C., Wang, X., Jajodia, S.: Protecting privacy against location-based
personal identification. In: Proc. of the 2nd VLDB Workshop on Secure Data
Management, LNCS 3674, Springer-Verlag (2005)

6. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services
through spatial and temporal cloaking. In: Proc. of the 1st International Con-
ference on Mobile Systems, Applications, and Services. (May 2003)

7. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for
location privacy. In: Proc. of the 3rd International Conference PERVASIVE
2005, Munich, Germany (May 2005)

8. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P.: K-Anonymity.
In: Security in Decentralized Data Management. Springer (2007)

9. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering 13(6) (2001) 1010–1027

10. Ardagna, C., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Sama-
rati, P.: Supporting location-based conditions in access control policies. In:
Proc. of the ACM Symposium on Information, Computer and Communications
Security (ASIACCS’06), Taipei, Taiwan (March 2006)

11. Bonatti, P., Samarati, P.: A unified framework for regulating access and infor-
mation release on the web. Journal of Computer Security 10(3) (2002) 241–272

12. Marsit, N., Hameurlain, A., Mammeri, Z., Morvan, F.: Query processing in
mobile environments: a survey and open problems. In: Proc. of the 1st In-
ternational Conference on Distributed Framework for Multimedia Applications
(DFMA’05), Besancon, France (February 2005)

13. Jajodia, S., Samarati, P., Sapino, M., Subrahmanian, V.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems 26(2)
(June 2001) 214–260

14. OASIS: eXtensible Access Control Markup Language (XACML) Version 1.0.
http://www.oasis-open.org/committees/xacml. (2003)

15. van der Horst, T., Sundelin, T., Seamons, K., Knutson, C.: Mobile trust negoti-
ation: Authentication and authorization in dynamic mobile networks. In: Proc.
of the 8th IFIP Conference on Communications and Multimedia Security, Lake
Windermere, England (September 2004)

16. Gedik, B., Liu, L.: Location privacy in mobile systems: A personalized
anonymization model. In: Proc. of the 25th International Conference on Dis-
tributed Computing Systems (IEEE ICDCS 2005), Columbus, Ohio (June 2005)

17. Gruteser, M., Bredin, J., Grunwald, D.: Path privacy in location-aware com-
puting. In: Proc. of the Second International Conference on Mobile Systems,

Privacy-enhanced Location-based Access Control 551

Application and Services (MobiSys2004), Boston, Massachussetts, USA (June
2004)

18. Gruteser, M., Liu, X.: Protecting privacy in continuous location-tracking appli-
cations. IEEE Security & Privacy Magazine 2(2) (March-April 2004) 28–34

19. Ho, B., Gruteser, M.: Protecting location privacy through path confusion. In:
Proc. of IEEE/CreateNet International Conference on Security and Privacy for
Emerging Areas in Communication Networks (SecureComm), Athens, Greece
(September 2005)

20. Mokbel, M., Chow, C.Y., Aref, W.: The new casper: Query processing for
location services without compromising privacy. In: Proceedings of the 32nd
International Conference on Very Large Data Bases, Korea (September 2006)
763–774

21. Beresford, A.R., Stajano, F.: Mix zones: User privacy in location-aware services.
In: Proc. of the 2nd IEEE Annual Conference on Pervasive Computing and
Communications Workshops (PERCOMW04). (2004)

22. Hauser, C., Kabatnik, M.: Towards Privacy Support in a Global Location Ser-
vice. In: Proc. of the IFIP Workshop on IP and ATM Traffic Management
(WATM/EUNICE 2001), Paris, France (March 2001)

23. Geopriv: Geographic Location/Privacy.
http://www.ietf.org/html.charters/geopriv-charter.html. (September 2006)

24. Hong, D., Yuan, M., Shen, V.Y.: Dynamic privacy management: a plug-in service
for the middleware in pervasive computing. In: Proc. of the 7th International
Conference on Human Computer Interaction with Mobile Devices & Services
(MobileHCI’05), Salzburg, Austria (2005)

25. Langheinrich, M.: A privacy awareness system for ubiquitous computing envi-
ronments. In Borriello, G., Holmquist, L.E., eds.: Proc. of the 4th International
Conference on Ubiquitous Computing (Ubicomp 2002). (September 2002) 237–
245

26. W3C: Platform for privacy preferences (p3p) project.
http://www.w3.org/TR/P3P/. (April 2002)

27. Duckham, M., Kulik, L.: Simulation of obfuscation and negotiation for location
privacy. In: Proc. of Conference On Spatial Information Theory (COSIT 2005).
(September 2005) 31–48

28. Openwave: Openwave Location Manager. http://www.openwave.com/. (2006)
29. Bellavista, P., Corradi, A., Giannelli, C.: Efficiently managing location infor-

mation with privacy requirements in wi-fi networks: a middleware approach.
In: Proc. of the International Symposium on Wireless Communication Systems
(ISWCS’05), Siena, Italy (September 2005)

30. Ardagna, C., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Sama-
rati, P.: Managing privacy in LBAC systems. In: Proc. of the Second IEEE
International Symposium on Pervasive Computing and Ad Hoc Communica-
tions (PCAC-07), Niagara Falls, Canada (May 2007)

31. Ardagna, C., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Sama-
rati, P.: A middleware architecture for integrating privacy preferences and lo-
cation accuracy. In: Proc. of the 22nd IFIP TC-11 International Information
Security Conference (SEC 2007), Sandton, South Africa (May 2007)

32. Ardagna, C., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Sama-
rati, S.: Location privacy protection through obfuscation-based techniques. In:
Proc. of the 21st Annual IFIP WG 11.3 Working Conference on Data and Ap-
plications Security, Redondo Beach, CA, USA (July 2007)

552 C.A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, P. Samarati

33. Atluri, V., Shin, H.: Efficient enforcement of security policies based on tracking
of mobile users. In: Proc. of the 20th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security, Sophia Antipolis, France (July-August 2006)
237–251

34. Ardagna, C., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Sama-
rati, P.: Location-based metadata and negotiation protocols for LBAC in a one-
to-many scenario. In: Proc. of the Workshop on Security and Privacy in Mobile
and Wireless Networking (SecPri MobiWi 2006), Coimbra, Portugal (May 2006)

23

Efficiently Enforcing the Security and Privacy
Policies in a Mobile Environment

Vijayalakshmi Atluri1 and Heechang Shin2

1 Rutgers University, Newark, NJ atluri@cimic.rutgers.edu
2 Rutgers University, Newark, NJ hshin@cimic.rutgers.edu

Summary. Effective delivery of location-based services (LBS) requires efficient pro-
cessing of access requests to find the past, present and future location of the mobile
customers (or moving objects) that match a certain profile. However, this gives rise
to a number of security and privacy concerns because LBS may need to locate and
track a mobile customer, and gain access to his/her profile. Location information
has the potential to allow an adversary to physically locate a person, and user profile
information may include sensitive attributes such as name, address, linguistic pref-
erence, age group, income level, marital status, education level, etc. As such, mobile
customers have legitimate concerns about their personal safety, if such information
should fall into the wrong hands. One way to take these concerns into account is
by establishing security policies and enforcing them for every access. A comprehen-
sive security policy can encode spatiotemporal restrictions on access to location and
profile. To incorporate security, an appropriate access control mechanism must be
in place to enforce the authorization specifications reflecting the above security and
privacy policies. Serving an access request requires to search for the desired moving
objects that satisfy the query, as well as identify and enforce the relevant security
policies.

While this solves the security problem, it creates a performance problem. Often,
enforcing security incurs overhead, and as a result may degrade the performance
of a system. Thus, one way to alleviate this problem and to effectively serve access
requests, is to efficiently organize the mobile objects, authorizations as well as mobile
customers’ profiles. The key insight is to realize that a lot of duplicate work is
performed while searching for the relevant authorizations and mobile objects. In
this book chapter, we present the different solutions proposed by researchers in a
response to address the above issue. The solutions specifically propose unified index
schemes for organizing moving object data, authorizations and profiles of users.

1 Introduction

In recent years, mobile phones and wireless PDAs have evolved into wireless
terminals that are Global Positioning System (GPS) enabled. The market
for location-aware mobile applications, often known as location-based services

554 Efficient Mobile Security Policy Enforcement

(LBS), is very promising. LBS is to request usable, personalized information
delivered at the point of need, which includes information about new or inter-
esting products and services, promotions, and targeting of customers based on
more advanced knowledge of customer profiles and preferences, automatic up-
dates of travel reservations, etc. For example, a LBS provider can be designed
to present users with targeted content such as clothing items on sale, based
on prior knowledge of their profile, preferences and/or knowledge of their cur-
rent location, such as proximity to a shopping mall [13]. Additionally, LBS
can provide nearby points of interests based on the real-time location of the
mobile customer, advising of current conditions such as traffic and weather,
deliver personalized, location-aware, and context-sensitive advertising, again
based on the mobile customer profiles and preferences.

Whether such LBS is delivered in a “push” or “pull” fashion, customization
and personalization based on the location information, customer profiles and
preferences, and vendor offerings are required. This is because, to be effective,
targeted advertising should not overwhelm the mobile consumers and must
push information only to a certain segment of mobile consumers based on their
preferences and profiles, and based on certain marketing criteria. Obviously,
these consumers should be targeted only if they are in the location where the
advertisement is applicable at the time of the offer. As such, service providers
require access to customers’ preference profiles either through a proprietary
database or use an arrangement with an LBS provider, who matches customer
profiles to vendor offerings [2].

By definition, delivery of LBS requires knowledge of a mobile customer’s
location. Along with the location information, their preference profiles must
also be maintained. Effective delivery requires efficient processing of access
requests on this data to find the past, present and future status of the mobile
customers (or moving objects) that match a certain profile.

However, this creates significant challenges. Since effective delivery of LBS
may need to locate and track a mobile customer, and gain access to his/her
profile, a number of security and privacy concerns are raised. Location infor-
mation has the potential to allow an adversary to physically locate a person.
As such, wireless subscribers carrying mobile devices have legitimate concerns
about their personal safety, if such information should fall into the wrong
hands.

Services such as targeted advertising may deliver the service based on
the mobile customers’ profile and preferences. It is important to note here
that user profile information may include both sensitive and non-sensitive at-
tributes such as name, address, linguistic preference, age group, income level,
marital status, education level, etc. However, certain segment of mobile con-
sumers are willing to trade-off privacy by sharing such sensitive data with
selective merchants, either to benefit from personalization or to receive in-
centives offered by the merchants. For example, a security policy may specify
that a customer is willing to reveal his age in order to enjoy a 20% discount
coupon offered on sports clothing. But he is willing to do this only during

Efficient Enforcement of Mobile Security and Privacy 555

the evening hours and while close to the store. As such, privacy of mobile
users can be compromised if the sensitive profile information of the mobile
users is revealed to unintended users. Therefore, it is important that the sen-
sitive profile information is revealed to the respective merchants only on a
need-to-know basis, when allowed. As a result, the security policies in such
an environment are characterized by spatial and temporal attributes of the
mobile customers (location and time), as well as their profile attributes.

In addition to the privacy concerns mentioned above, there are a number
of applications that call for securing resources based on the criteria of mo-
bile objects. These include context (location)-sensitive access control, and the
ubiquitous computing environment, where access is permitted based on the
location of the subjects/objects during a specific time.

In summary, in a mobile environment, there are a number of applications
that require controlled access to the mobile user profiles, to their current lo-
cation and movement trajectories, to mobile resources, stationary resources
based on the user’s spatiotemporal information. To incorporate security, an
appropriate access control mechanism must be in place to enforce the au-
thorization specifications reflecting the above security and privacy needs. One
way to take these concerns into account is by establishing security policies and
enforcing them for every access. A comprehensive security policy can encode
spatio-temporal restrictions on access to location, profile, etc.

Traditionally, access policies are specified as a set of authorizations, where
each authorization states if a given subject possesses privileges to access an
object. Considering the basic authorization specification 〈subject, object, priv-
ilege〉, in a mobile environment, a moving object can be a subject, an object,
or both. Access requests in such an environment can typically be on past,
present and future status of the moving objects [15, 9]. Serving an access re-
quest requires to search for the desired moving objects that satisfy the query,
as well as identify and enforce the relevant security policies.

While this solves the security problem, it creates a performance problem.
Often, enforcing security incurs overhead, and as a result may degrade the
performance of a system. However, the key insight is to realize that a lot of
duplicate work is performed for both accesses. Thus, one way to alleviate this
problem and to effectively serve access requests, is to efficiently organize the
mobile objects, authorizations as well as mobile customers’ profiles.

In this book chapter, we present the different solutions proposed by re-
searchers in a response to address the above issue. The solutions specifically
propose unified index schemes for organizing moving object data, authoriza-
tions and profiles of users.

556 Efficient Mobile Security Policy Enforcement

2 System Architecture for a Mobile Application
Environment

We assume the system in a location service environment comprises of the
following components.

Static Requestors Mobile Requestors

Location Service

MO Data Processing Module

Access Control Evaluation module

41
Acc

ess
 R

equest

Resu
lts

Authorization DB Moving Object DB

Query

Retrieve3

2

Unified Index

Server Process

Access Request

Results

4

1

Fig. 1. System Architecture for Mobile Applications

Location Service (LS): We assume that there exists a location service that
maintains the mobile customers’ location and profile information, and LS is
a trusted third party as in [16]. The current location of moving objects are
stored and updated accordingly in order to provide most up-to-date location
information to a requester. In this architecture, we assume that the moving ob-
ject data is represented using the Moving Objects Spatio-Temporal (MOST)
model [12] due to its simplicity and popularity in the literature. The contin-
uous movement of mobile objects makes maintenance of location information
extremely challenging. In the MOST, location information is treated as a
dynamic attribute and is represented as a linear function of time [16]. This
approach reduces the update frequency because the location information is
updated only if the predicted location deviates from the actual location more
than a certain threshold. Location information can be directly provided by
users’ mobile devices using wireless communication periodically, or acquired

Efficient Enforcement of Mobile Security and Privacy 557

from the installed sensors. For example, the Active Badge [14] detects the lo-
cation of each user in a building. Each individual carries a device called, badge,
which is associated with the identifier of the user. A building is equipped with
sensors detecting positions of badges. A person’s location is determined by us-
ing an active badge which emits a signal every 15 seconds. A master station,
which works as LS, collects the location information, and makes it available
to users.
Requester: A requester is a subscriber to a service in order to gain access to
the resources that LS offers. In a mobile environment, there are two types of
resources that a requester can gain access to: static resources (e.g. repository
room or printer) and mobile resources (location of vehicles). For example,
consider a work environment where all the documents can only be accessed
by employees only while they are physically located in the office. When a
mobile requester submits an access request to the documents in the repository,
LS checks the physical location of the requester, and only if the requester is
within premises of the office, he is given access. ABng book library [1] is one
such example to protect the books in the library. An Active Badge is used to
authenticate the user and subsequently open the library door lock [1]. In this
case, the requesters are obviously mobile.

We assume that the location information as well as the security policies
are maintained by the LS. Under our framework, LS is also responsible for
enforcing the specified security policies. Therefore, to efficiently enforce the
access requests, LS maintains the proposed unified index, as shown in figure
1. The access requests are processed by the LS, which searches the index for
the authorized data that adheres to the specified security policies. Specifically,
when a user (mobile or stationary) sends an access request (1), access control
evaluation module searches relevant authorizations that are applicable to the
submitted access request. The query sent to the mobile object and autho-
rization database essentially searches the unified index to identify the mobile
objects that satisfy the query and the security policies of the user that are
relevant to the query (2). The retrieved data from the unified index (3) is
the identifiers of moving object data which satisfies the existing security poli-
cies as well as the user access request. If a user wants to access the location
or trajectory information, moving object processing module associates the re-
quired information such as location or trajectory with the retrieved identifiers.
Finally, the resultant mobile objects are sent to the requester (4).

The plausibility of considering LS as a trusted party is discussed in [16]:
(1) enforcing spatiotemporal policies requires spatiotemporal processing which
LS is normally capable of; (2) a LS is seen to be implemented as a globally
distributed service which reduces the system susceptibility to the two major
vulnerabilities: being a single point of failure, and being attractive to hacking
attacks.

558 Efficient Mobile Security Policy Enforcement

3 Authorization Model in a Mobile Environment

Specification of a security or privacy policy can be expressed as an autho-
rization, α = 〈se, ge, p, τ〉 [3][4][5]. se, the subject expression specifies a set of
auth-subjects such that they are associated with (1) a set of spatiotemporal
and/or other traditional attributes, (2) a set of auth-subject identifiers, or (3)
a combination of both. se, the object expression is used to specify a set of
auth-objects such that they (1) are associated with a set of spatiotemporal
and/or other types of attributes, (2) a set of auth-object identifiers, or (3) a
combination of both. p, the privilege specifies the set of allowed actions by
the auth-subjects specified by se on the auth-objects specified by ge. The sup-
ported privileges are not only traditional read, write, and execute privileges,
but also include view that allows an auth-subject to access a mobile resource(s)
within a spatiotemporal region, locate that allows auth-subjects to read the
location information of mobile resources in the authorized spatiotemporal re-
gion, track that allows auth-subjects to read the trajectory information of
mobile resources in the authorized spatiotemporal region, and Compose that
allows auth-subjects to write information on the auth-objects. Finally, τ , the
temporal expression is used to denote the basic temporal element in an ex-
pression. For example, τ can be a time point (e.g., Apr9:2007:17:12:39), a
time interval (e.g., [Apr9:2007:17:12:39, Apr9:2007:19:12:39]), or a set of time
intervals.

In a mobile environment, an authorization would be associated with spa-
tiotemporal extents. In other words, for a given authorization α, α.se or α.ge
would involve the spatiotemporal specifications for specifying auth-subjects or
auth-objects respectively. There exist three different request scenarios based
on the mobility of requesters and resources, and the corresponding authoriza-
tions in order to protect the resources.

• Mobile Requesters upon Static Resources (MSR): (e.g, an employee (mobile
requester) tries to use the printer in the office (static resource).) In this
scenario, the access control decision for the requester is dependent on the
current location of the requester. To protect static resources from mobile
requesters, a Moving Auth-Subject upon Static Auth-Object Authorization
(αMS) can be specified. Here, α.se is associated with the spatiotemporal
extent. Examples of such security policies are as follows.
Policy 1: Any employee can send a print job if she is currently located at
the office during the office hours.
Policy 2: A human resource employee is allowed to access performance
records of employees only during office hours and while he is physically in
his office.

• Static Requesters upon Mobile Resources (SMR): (e.g., a merchant (static
requester) tries to send promotion deals to near-by mobile customers (mo-
bile resources).) In this scenario, the location of mobile resources such as
mobile customers plays an important role for evaluating the access con-
trol decision for the static requesters. Generally, mobile users have their

Efficient Enforcement of Mobile Security and Privacy 559

own privacy/security policies which are dependent on the locations and
profiles. To protect mobile resources from static requesters, a Static Auth-
Subject upon Moving Auth-Object Authorization (αSM) can be specified.
Here, α.se is associated with the spatiotemporal extent. An example of
such a security policy is as follows.
Policy 3: In order to get a personalized promotion deal, a mobile customer
is willing to reveal her age and salary information to a merchant, provided
she is within 10 miles from the shopping mall during evening hours.

• Mobile Requesters upon Mobile Resources (MMR): (e.g., a boss (mobile re-
quester) tries to access the locations of her employees (mobile resource).) In
this scenario, locations of both entities (requesters and resources) are im-
portant. Mobile resources (employees) do not want their boss to know their
current locations after the work hours, and these sensitive information
must be available only for the work purposes. To protect mobile resources
from mobile requesters, a Moving Auth-Subject upon Moving Auth-Object
Authorization (αMM) can be specified. Here, both of α.se and α.ge are
associated with the spatiotemporal extents. An example of such a security
policy is as follows.
Policy 4: A manager can access the location of his employee (John) infor-
mation between “9am and 5pm” and while the manager is “in the office.”
Note that both the requester (manager in this case) and the resource (his
employee) are mobile.

Observe that we do not include the case of ”Static Requesters upon Static
Resources” because this falls into the traditional static environment.

4 Unified Index for Authorizations and Profiles

The ASM-Trie model [16] considers static requesters (merchants) upon mobile
resources (mobile users’ profile and location information), and therefore can
support example policies such as Policy 3 presented in section 3. The result of
an access request by a merchant is a set of pseudonyms of the mobile customers
that satisfy the authorizations and profiles, so that the merchant can “push”
mass advertising to the mobile customers. In a pull scenario, non-expiring
offers are stored at LS until the customer fetches them [16].

The basic idea in the proposed ASM-Trie model is to represent autho-
rizations in the form of alphabetical strings. This is accomplished by first
organizing that requesters (auth-subjects), resources (auth-objects), location
and time interval as hierarchies. For example: (1) Because the model con-
siders the mobile advertisement environment, auth-subjects are merchants.
Therefore, the Auth-Subject Hierarchy comprises of all merchants, which may
include hotels, retail businesses, etc., where the leaf nodes represent the indi-
vidual merchants. (2) The Auth-Object Hierarchy is composed of two levels:
the root node is {l + p} and the leaves are {l} and {p} where l is the location

560 Efficient Mobile Security Policy Enforcement

information and p is the customer profile. (3) Similar to the auth-subject hi-
erarchy, in the Location Hierarchy the root node represents all members, and
the leaf node represents the members of the most specific representation. (4)
Finally, the Time Interval Hierarchy in which an interval is represented by a
node and all its component time intervals are represented as the children of it.
One example would be the case where the root node represents the 24 hours
in a day, and its children nodes could be ”During Working Hours” and ”After
Working Hours.” Observe that in case of the time interval hierarchy, children
nodes are the exact decomposition of its parent node.

Each alphabetical string consists of five substrings that represent the ID,
the object, the subject, the location, and the time. These substrings are drawn
from preprocessed tables where the substrings are unique in each table. The
path from the root to any node in a hierarchy is embedded in the substring
of that node. For instance, the substring ’bcdbf’ from the table 1 includes the
letter ’b’ for the USA, letter ’c’ for Mid-Atlantic, letter ’d’ for New Jersey
and the two letters ’bf’ for Essex County. Also, all the substrings are made
equal length by adding a padding of letter ’a’. The ASM-trie allows search on
the encoded strings. In the ASM-Trie, the path from the root to a leaf is an
authorization rule.

Location Code without padding Code with padding
All USA b baaaa
New England bb bbaaa
Mid-Atlantic bc bcaaa
... bc bcaaa
New Jersey bcd bcdaa
New York bce bceaa
...
Essex County bcdbe bcdbe
Hudson County bcdbf bcdbf

Table 1. A Sample from location encoding

Because authorizations are based on this hierarchy, evaluation of a user
request may need to search different places in the hierarchy. Evaluation of
user request is done by first creating a set of search keys. The search process
extracts a letter from the search key and finds its order. This search operation
is recursively performed until the end of the string is reached and an access
control decision is returned if there exists a match.

For example, consider a query submitted by the Hilton for all customers in
Essex County (which is the part of the state of NJ, USA) for a time interval
4:45 to 5:15 PM (which intersects with both time interval leaf nodes ”During
Working Hours” and ”After Working Hours”). Assume that all customers

Efficient Enforcement of Mobile Security and Privacy 561

who satisfy the query will be moving inside Essex County during the time
interval. The evaluation proceeds as follows: In this case, for each customer
and for each spatiotemporal window that the customer passes through, a set
of search keys are created. Two spatiotemporal windows are possible: (Essex
County, During Working Hours) and (Essex County, After Working Hours).
Thus, the search key includes object {l}, the requester ID of Hilton, and a
spatiotemporal window for each customer. The search operation is done in the
order of the auth-object, the auth-subject, the location, and the time interval
hierarchies since this same order is used in the authorization specification.

The approach using the ASM-Trie is not capable of providing unified index
for authorizations and mobile objects. Moreover it considers the case where the
auth-subjects are only static but cannot handle the cases when both subjects
and objects are moving.

5 Unified Index for Authorizations and Moving Objects

The following two approaches have been proposed in the literature of unified
index scheme for authorizations and moving objects.

• STPR-Tree: Unified index for present and anticipated future locations of
moving objects and authorizations.

• SPPF -Tree: Unified index for past, present, and anticipated future loca-
tions of moving objects and authorizations.

Both of unified index schemes consider the cases of mobile requesters upon
static resources and static requesters upon mobile resources, but not mobile
requesters upon mobile resources.

5.1 sTPR-Tree

STPR-tree is constructed by appropriately overlaying authorization on the
TPR-tree [11], which in turn is a variant of the R-tree. Because the locations of
moving objects are constantly updated, the main challenge for moving object
database is to minimize the updating cost. For this purpose, in the TPR-tree,
the moving object is represented as its initial location and its velocity vector;
thus, a moving object is updated only if it deviates more than the specified
tolerance level. This will reduce the necessity for frequent updating. Moreover,
since the velocity of moving objects is also maintained, it can estimate their
anticipated future locations.

Unlike the traditional Minimum Bounding Rectangle (MBR) in R-trees
[8], a Time-Parameterized bounding Rectangle (TPR) is used to index velocity
vectors as well as location information. However, given a moving object, it is
unrealistic to assume that its velocity remains constant. The predicted future
location of a object specified as a linear function of time becomes less and
less accurate as time elapses [11]. To address this issue, the TPR-tree defines

562 Efficient Mobile Security Policy Enforcement

a time horizon, H, representing the time interval during which the velocities
of the moving objects hold good. It assumes that the tree is constructed by
bulkloading the moving objects at some point in time (say t0) and reconstructs
the tree after H. In essence, the tree is good during [t0, t0 + H] interval and
all predictions made within this interval are acceptable in terms of the degree
of accuracy. The TPRs, organized as a hierarchical structure forms the TPR-
tree. At the bottom-most level of the hierarchy, a set of moving objects could
be grouped to form TPRs. Each TPR of the next higher level is the bounding
TPR of the set of TPRs of all of its children. The root of the hierarchy is thus
the bounding TPR covering all its lower level TPRs in a recursive manner.

The STPR-Tree constructed by overlaying authorizations over the nodes
of the TPR-tree. For a given authorization α, we denote the spatiotemporal
extent of the authorization as α� if the type of the authorization is αMS

or αSM . In case of αMM , we denote the spatiotemporal extent associated
with α.se as α�S and α.ge as α�O because we need to differentiate the spa-
tiotemporal extents because it could be from se or ge. Also, we denote the
spatiotemporal extent (TPR) of a node N as N�.

Overlaying is done by traversing the tree recursively starting from the
root node to the leaf level and for each node N in the traversal path, α� is
compared with N�. We encounter the following possible cases:

• Case 1: The spatiotemporal extent of α fully encloses that of the node
N . In this case the tree traversal will be stopped and α is overlaid on N .
This is because, if a subject is allowed to access objects within a certain
spatiotemporal region, it is allowed to access objects in the subregion of
that [4]. After overlaying an authorization on a node, it is not necessary
to overlay the same authorization on any of its descendants.

• Case 2: The spatiotemporal extent of α overlaps with that of the node
N . If N is a non-leaf node, for each of N ’s children a comparison between
α� and child� is done. The goal here is to check if there exists a child
of N whose spatiotemporal extent is enclosed by that of α. On the other
hand, if N is a leaf node, α is overlaid on N . This is because, when the
spatiotemporal extent of the authorization α� does not enclose, but over-
laps with that of the leaf node N�, we need to ensure that no relevant
authorizations are discarded. Also, note that only part of the spatiotem-
poral extent of N� is in the authorized region. The moving objects from
the remaining unauthorized spatiotemporal region must be removed from
the user’s output, if the user request includes this region.

• Case 3: If neither of the above is true, α� is disjoint with that of N�.
Then the overlaying process is stopped. This is because, if α.se does not
have a privilege to the region covered by N�, then α is not applicable
to that region. Also, since N� includes spatiotemporal extent of all of its
children nodes, α� is disjoint with the spatiotemporal extent of each child.
Thus, there is no need to traverse further down the tree.

Efficient Enforcement of Mobile Security and Privacy 563

For all three different user request scenarios presented in section 3, the
user access request evaluation is based on the overlaying procedure described
above. In [4], only the situation of MSR is considered, and the SMR type of
requests are supported in [5]. sTPR-tree only supports authorizations of type
αSM and αMS , and they are not able to support MMR. The support of MMR
is addressed in [7].

Static Requesters upon Mobile Resources (SMR): For a given user
request SMR, the procedure traverses the subtree under the root node r until
it reaches the leaf level. During this traversal, it compares the spatiotemporal
extent of a user request with that of each node N in the traversal path. One
would encounter three different cases:

• enclosing: If there exists any overlaid authorizations in N such that the
set of auth-subjects evaluated by ge contains the requester of SMR, then
all the moving objects that are located within the intersection area of N�

and α� are returned.
• overlapping: If there exists any overlaid authorization in N such that the

set of auth-subjects evaluated by se contains the requester of SMR, only
the objects overlapping with SMR� are returned. However, one still needs
to check authorizations overlaid on the descendants of N . This is because,
those overlaid on the descendents of N may include another spatiotemporal
region that α� does not cover. If N is a leaf node, all the moving objects
that are overlapped with the intersection area of N� and α� and SMR�

are returned.
• disjoint: The evaluation process is stopped because none of the moving

objects that are stored at the subtree rooted at N are within SMR�.

Moving Requesters upon Static Resources (MSR): The evaluation
starts by traversing the tree from the root node until it reaches the leaf level.
During the traversal, it checks if the spatiotemporal extent of each node in the
traversal path includes the current location of the requester of MSR. If so, all
the auth-objects contained in the spatiotemporal region covered by ge such
that the requester of MSR is in the set of subjects evaluated by se are col-
lected. If the requested resources are among this auth-objects set, the traversal
is stopped and a true is returned meaning that the requester is allowed to gain
access to the requested resource. Otherwise, traversal is continued. In case N
is a leaf node, for each authorization N in αMS , the auth-objects of αMS are
included, if the intersection area of N� and α� encloses the location of the
requester.

Moving Requesters upon Moving Resources (MMR): Two traversals
of the tree can process MMR. The first traversal is to evaluate if the requester
is located in the authorized spatiotemporal region in order to access the mov-
ing resources. If this is true, another traversal can be performed to retrieve
the moving resources that authorize the requester to access their resources.

564 Efficient Mobile Security Policy Enforcement

The first operation can be performed using the steps used for MSR, and the
second operation can be performed using the steps for SMR.

One main limitation of STPR-tree is that it can only support the se-
curity/privacy policies based on the current and future locations of moving
objects, but not on the past locations. As a result, it cannot support the
security/privacy policies based on track privilege because the past status of
moving objects is not being stored. The SPPF -tree, presented next, eliminates
this limitation using the concept of partial persistence.

5.2 SP P F -Tree

The previously introduced STPR-tree cannot support the security/privacy
policies based on tracking of mobile users. It is important to note that tracking
information could also be sensitive and therefore security policies are often
specified to reflect this. To efficiently enforce these policies, the tree must
support this functionality in the sense that all the location history of moving
objects are preserved. SPPF -tree, an extension of STPR-tree, can maintain
past, present and future positions of moving objects along with authorizations,
by employing partial persistent storage. SPPF is a variant of RPPF -tree [10],
which applies the concept of the partial persistence to the TPR-tree in order
to preserve the past locations of moving objects, as well. Partial persistence
is based on the following important concepts.

• Evolution of Index Nodes and Data Entry: In order to be trans-
formed to a partially persistent structure, each index (leaf or non-leaf)
node and data entry (moving objects) include two additional fields for
maintaining the evolution of the index records: insertion time and dele-
tion time. These are denoted as N.insertionT ime and N.deletionT ime for
node N . If a new moving object is available and captured at time t0, its
insertion time is set to t0 and deletion time is set to ∞. When the object
is logically deleted from the index at time td, its deletion time is changed
from ∞ to td. The same rule applies to index nodes. A node or a data
entry is said to be dead if its deletion time is less than ∞, otherwise it is
said to be alive.

• Time Split: When an update (insertion or deletion) occurs at a node N ,
it may result in structural changes if it becomes underfull or overfull. If
this is the case, a time-split occurs to N . The time-split on a leaf node
N at time t is performed by copying all alive entries in N at t to a new
leaf node L and timestamp of both L and those copied entries are set to
[t, ∞). In addition, the deletion time of N is set to t and N is considered
dead. Then, the new node L is investigated further in order to incorporate
it into the tree. Essentially, three different cases may arise: (1) split: If L
is overfull, split it into two nodes and then insert these two nodes into
the tree. (2) merge: If L is underfull, accommodate by merging it with
another node. (3) no change: If L is neither overfull nor underfull, insert it

Efficient Enforcement of Mobile Security and Privacy 565

directly into the tree. After the structural change, the TPR of the parent
node may need to be updated accordingly and the described process may
be repeated up to the root node. If the root node is time-split at time t, a
pointer to the new alive node together with timestamp [t, ∞) is added to
a special root array that is stored in the main memory [10].
Note that if the tree is constructed at t0 and time split for the alive root
element of the root array occurs at {t1, t2, . . . , tn}, each root element in
the root array is associated with time interval [t0, t1), [t1, t2), . . . , [tn−1, tn),
and [tn,∞). The associated time interval for each root element represents
the ephemeral structure of the tree during those time intervals. Thus, if
we want to know the status of the tree at time t, we simply need to find
a root element r from the root array R such that the time interval of r
includes t.

Observe that there are two kinds of moving objects: one is currently mov-
ing objects so that their ending location is predicted but not decided (called
alive moving objects), and another type is the objects that already stopped
moving, or changes its velocity or anticipated future location above the prede-
fined deviation level (called dead moving objects). During update (insertion or
deletion) of moving objects in the tree, the leaf node where the update occurs
are evaluated to see if there still exists a pre-specified range of alive moving
objects. If the number is out of this specified range, alive objects in the node
are copied into a new node (called time split). The original node is used for
evaluating the past positions of moving objects; the newly created node is for
the present and future positions of moving objects such as STPR-tree. The
similar process is applied to index nodes: in this case, the number of alive
children nodes is checked if it is within the predefined range.

Because SPPF -tree maintains past positions of moving objects as well, the
overlaying process is more complicated than that of the STPR-tree because
authorizations are required to be maintained properly not only for present
and future positions but also past positions: in case of STPR-tree, the tree is
re-constructed after some reasonable duration of time, and authorizations are
batch-overlaid on the tree. Thus, there is no need to deal with maintenance
of authorizations during the tree’s life time. Since the SPPF -tree handles all
the history information as well, it is necessary to maintain the overlaid au-
thorizations more carefully in order not to violate the overlaying strategy. An
authorization log is introduced to handle this situation: whenever an autho-
rization is applicable to the tree, the authorization log overlays the newly
applicable authorization on the alive nodes, and relocate the authorizations
from the alive nodes to the dead nodes if they are only applicable to the dead
nodes. An authorization log is a data structure constructed by spreading all
the authorizations on the time line. As time elapses, a new authorization
becomes applicable to the tree when the valid time duration of the authoriza-
tions is overlapped with the tree’s valid time duration, i.e. between current
time and the time horizon. Then, the authorization log triggers an auth begin

566 Efficient Mobile Security Policy Enforcement

SPPF-Tree Authorization Log

update
method

find-auth
method

auth_end
event

Authorizations

argument (t0, t1)

relevant
authorizations

removes and
re-overlay

authorizations

auth_begin
event

overlays
newly applicable
authorizations

Fig. 2. Relationship of Authorization Log and SPPF -Tree

event, which will overlay the authorization on the tree. On the other hand,
certain overlaid authorizations become invalid when the valid time duration
of the authorization is not applicable to the overlaid nodes. In this case, the
authorization log triggers an auth end event, which will remove the invalid
authorizations from the overlaid nodes and re-overlay on the tree because
the removed ones may satisfy the overlaying conditions of other nodes in the
tree. Also, update must take care of the cases when the time-split occurs.
Time-split creates a new node where some authorizations may be eligible to
be overlaid on it. The authorization log supports a method, called find-auth,
which computes all the authorizations overlapping with the valid interval of
the newly created node. Then, the authorizations as a result of find-auth, will
be overlaid on the new node if it meets the overlaying condition.

User request evaluation is similar to that of STPR-tree except that it can
now evaluate a user request that includes the tracking of moving objects as
well due to the functionality of holding all the updates history. In this case,
only the nodes of which initial creation time and the time when time-split
occurs, if time-splitted (otherwise, this time can be considered as current
time) are overlapped with the time interval of the user request are evaluated.

Efficient Enforcement of Mobile Security and Privacy 567

6 Unified Index for Authorizations, Moving Objects and
Profiles

In this section, we present SSTP -tree [6] that supports efficient enforcement of
security/privacy policies based on the user locations as well as profiles. Each
node in the SSTP -tree comprises of the spatiotemporal attributes as well as a
profile bounding vector, denoted as PV B (explained later), in order to support
the profile conditions. The role of profile bounding vector is to filter profile
conditions that do not satisfy the designated profile query conditions.

One can assume that user profile as a set of attributes associated with a
mobile customer that characterizes the user. These attributes may include (1)
demographic information (e.g. country, race, age, gender, etc.), (2) contact
information (e.g., name, address, zip code, telephone number, e-mail, etc.),
(3) personal preferences (e.g., hobbies, favorite activities, favorite magazines,
etc.), and (4) behavioral profile (e.g., level of activity, type of activity, etc.)3

Discretization is used to represent user profiles. All the possible discrete
values for the profile attributes are represented simply use as many bits as the
number of different discrete values. If the attribute is numerical data type, the
continuous data space is partitioned into disjoint mutually-exclusive intervals,
as shown for attribute age in figure 3.

Department

Salary

Home Town

<$ 52,000 ≥ 52,000, <$ 62,000

Newark, NJ Chicago, IL

Human Resource Other Departments

≥ $ 62,000

Fig. 3. Profile Attribute Discretization

For example, if Salary < $52,000, we represent it with ’100’, and ’001’
if Salary ≥ $62,000. Table 2 shows the examples of user profile vectors. For
example, profile representation of the user, Doe, is 〈10, 001, 10〉 because his
department ’Human Resource’, is represented as ’10’, salary, $63,000, as 001,
and home town, ’Newark, NJ’ as ’10’.
3 The behavioral profile is created by observing activities and habits of a user

continuously. For example, Sony TiVo box records frequently-watched television
shows and generates a behavioral profile based on the past patterns. In order to
do so, information such as what kind of activity has been done by a user at what
intensity needs to be captured. In case of TiVo, type of activity can be ’watching
drama’ and level of activity can be ’2 hours.’

568 Efficient Mobile Security Policy Enforcement

Name Department Salary Home Town Profile Vector
Doe Human Resource $63,000 Newark, NJ 〈10, 001, 10〉

James Other Departments $45,000 Chicago, IL 〈01, 100, 01〉
Robert Human Resource $53,000 Chicago, IL 〈01, 010, 01〉

Table 2. User Profile Information

All the different profile attribute representations are concatenated to form
a profile vector, which is used to represent the profile of a mobile user. Because
the same discretization is applied to all the mobile users, the length of profile
vector is the same for all mobile users.

The idea of profile bounding vector, PV B , is to represent a set of users’
profiles by applying bitwise ’OR’ operations of the profile vectors. For example,
suppose that the set of profile attributes is department, salary, and home town.
Consider three profile vectors, pvDoe = 〈10, 001, 10〉, pvJames = 〈01, 100, 01〉,
and pvRobert = 〈01, 010, 01〉. Then, PV B of two users, Doe and James is
〈11, 101, 11〉, and PV B of all three users is 〈11, 111, 11〉.

Given a set of PV Bs, hierarchical structure can be formed, also. Suppose
we have three PV Bs.

PV B
1 = 〈11, 011, 10〉

PV B
2 = 〈10, 010, 10〉

PV B
3 = 〈01, 001, 10〉

These PV Bs can be organized in a hierarchical structure with PV B
2 and PV B

3

as the children of PV B
1 . Each PV B bounds PV Bs of all of its children. There-

fore, the root of the hierarchy covers the set of PV Bs of all of its descendants.
The SSTP -tree is constructed similar to that of sTPR-tree, but PV B is also

updated accordingly during the insertion of new objects. Each moving object
is represented with its spatiotemporal and profile attributes. Thus, each node
in the SSTP -tree includes a TPR and a PV B for specifying the spatiotemporal
and profile conditions, respectively. When a new moving object is inserted into
SSTP -tree, the first operation is to find a leaf node that enlarges the TPR of
the node smallest among all the other leaf nodes. After inserting the object
into the target leaf node, the TPR and PV B of the target leaf node are
updated if necessary. If TPR or PV B of the parent node does not enclose
all of its children as a result of inserting a new object into the leaf node,
the parent node is updated accordingly. The same operation is applied to its
parent node until the root node is reached recursively.

Given an authorization α and a node N , the following different cases of
spatiotemporal and PV B relationships between α and N arise. The PV B of
an authorization and a node are denoted as α→ and N→, respectively.

• Spatiotemporal Relationship
– α� ⊃st N�: Spatiotemporal extent of α encloses that of N .

Efficient Enforcement of Mobile Security and Privacy 569

– α� ∩st N�: Spatiotemporal extent of α overlaps with that of N .
– α� ⊗st N�: Spatiotemporal extent of α is disjoint with that of N

• Profile Bounding Vector Relationship
– α→ ⊃p N→: α→ encloses N→ if for each non-zero profile attribute

vector 4 of α→ and N→, bitwise ’OR’ operation of α→ and N→ results
in α→.

– α→∩p N→: α→ overlaps with N→ if for each non-zero profile attribute
of α→ and N→, their bitwise ’AND’ operation results in a non-zero
profile attribute vector.

– α→⊗pN→: α→ is disjoint with N→ if for each non-zero profile attribute
of α→ and N→, their bitwise ’XOR’ operation results in all “1”s in the
resultant vector.

The spatiotemporal relationships are handled similar to that in earlier
sections. Profile bounding vector relationships between an authorization and
a node are handled as follows. First, in case of enclosing relationship, observe
that for every bit value of ’0’ of α→, the corresponding bit value of N→

must be ’0’ because there must not exist any profile attribute value that
only N→ includes but α→ does not. Therefore, bitwise ’OR’ operation would
generate the same value with α→. Also, in case of overlapping relationship,
one need to see if there exists any common profile attribute value between α
and N→. Therefore, if bitwise ’AND’ operation results in a non-zero profile
vector, we know that there exists common value set. Finally, in case of disjoint
relationship, it is obvious that α and N→ should not share any profile attribute
value that is common to each other. The bitwise ’XOR’ operation is used for
checking this condition, and the result of ’XOR’ must include all ’1’s in the
resultant N→.

α→ N→ AND OR XOR Relationship
110 011 010 111 101 α→ ∩p N→

110 010 010 110 100 α→ ∩p N→, α→ ⊃p N→

110 001 000 111 111 α→ ⊗p N→

Table 3. Bitwise Operation Results

The authorizations overlaying procedure traverses the SSTP -tree from the
root node to leaf level by recursively comparing both the spatiotemporal ex-
tents and PV Bs of the overlaying authorization and each node in the traversal
path. The following possible cases are encountered.

• Case 1: If (α� encloses N�) ∧ (α→ encloses N→) is true, traversal is
stopped and α is overlaid on N .

4 A non-zero profile attribute vector refers to a binary vector that includes the
value “1” in at least one bit

570 Efficient Mobile Security Policy Enforcement

• Case 2: Else if (α� is disjoint with N�) ∨ (α→ is disjoint with N→) is
true, overlaying process is stopped.

• Case 3: Else if (α� overlaps N�) ∨ (α→ overlaps N→) is true, the over-
laying strategy is different depending on the level of N . If N is a non-leaf
node, traversal to each of N ’s children node C is done, and the same com-
parison between α and C is performed. If N is a leaf node, α is overlaid
on N .

α1 ⊃st

N1

N2
N3

N1 ,N2 ,N3α1

α1 α1V2 V3

V2 V3V1
V2 V3V1 V2 V3V1

V2 V3V1

V2 V3

α1
→ ∩p

α1
→⊃p

α1
→ⓧp

N1

N2

N3

→

→

→

V2 V3V1

V1 V1

Fig. 4. Authorization Overlaying Process in SSTP -tree

Figure 4 presents the overlaying process in the SSTP -tree. It shows that a
node N1 is a root node of the tree, and N2, N3 are the children nodes of N1.
Consider an authorization α1 to be overlaid on the SSTP -tree. α1 cannot be
overlaid on the node N1 since α→

1 ∩p N→
1 , which belongs to the case 3 above.

Therefore, we need to traverse down to N1’s children nodes N2 and N3. The
first traversal path is to N2, and α1 can actually be overlaid on N2 because
α�

1 ⊃st N�
2 and α→

1 ⊃p N→
2 , which is case 1 above. Another traversal path to

N3 is stopped because α→
1 ⊗p N→

3 , which belongs to the case 2 above.
The user access request evaluation process is very similar to that of sTPR-

tree. A user request typically is of the form of requesting objects in the area
of interest that satisfy a certain profile criteria. For example, a merchant
is interested in sending promotion deals to mobile customers who are near
a mall and whose salary is greater than $52,000. However, such promotion
deals should be reached to only to the customers who are willing to reveal their
salary information to that merchant (specified in the authorization) to receive
the promotion deal. In the following, how such a request can be processed is
discussed while enforcing the specified authorizations.

We discuss the request type of SMR only because the application of PV B

to the request type of MSR is straightforward. Observe that SMR includes
spatiotemporal extent condition as well as profile condition. The profile con-
dition of SMR is represented as PV B and denoted as SMR→. The evaluation
process starts with the root node by comparing the spatiotemporal extents

Efficient Enforcement of Mobile Security and Privacy 571

and the profile vectors of the user request and the corresponding counterparts
of each node N involved in the top-down traversal recursively. The comparison
between N and SMR during the traversal results in the following cases.

• If (SMR� is disjoint with N�) ∨ (U→ is disjoint with N→): The dis-
joint relationship implies that all the moving objects stored at the subtree
rooted at N are not within the spatiotemporal region or do not meet the
profile condition for the user request SMR. Regardless of the existence of
authorizations for the requester at N , the moving objects stored at the
subtree rooted at N are not within the user’s interests. Therefore, the
traversal stops regardless of the existence of overlaid authorizations.

• Else if (SMR� overlaps with N�) ∨ (SMR→ overlaps with N→)): If there
is no authorization for the requester which is overlaid on N , the level of
node decides the evaluation result. If N is a non-leaf node, access control
decision cannot be made at the node N because there is a possibility that
a relevant authorization may be overlaid on a descendent node of N . Thus,
the evaluation process will be performed for all the children nodes of N .
If N is a leaf node, we reject the access request because there exists no
relevant authorization during the traversal.
If there exist an authorization for the requester among the overlaid au-
thorizations in N , the node level also decides the decision as well. If N
is a non-leaf node, although all the moving objects stored at the subtree
rooted at N are authorized, the user wants to retrieve a subset of moving
objects whose locations are within SMR� and whose profiles are enclosed
by SMR→. Therefore, for the subtree rooted at N , we retrieve moving
objects whose location overlaps with SMR� and whose profile condition
overlaps with SMR→. Thus, evaluation is delayed to each child node of
N , and the same comparison will occur recursively. If N is a leaf node,
because we overlay authorizations on a leaf-node in an enclosing case as
well as overlapping case, not all of the moving objects in N are autho-
rized. Thus, for all the authorizations overlaid on N , return the moving
objects that are located within the intersection area between α� and U�

and whose profiles are overlapped with the bitwise AND operation of α→

and U→.
• Else, implying the case of (SMR� encloses N�) ∧ (SMR→ encloses N→):

If there exists at least one relevant authorization for the requester on N ,
the node level of N decides the access control decision. If N is a non-leaf
node, because the spatiotemporal extents and profiles stored at the subtree
rooted at N are authorized, all the moving objects stored at leaf nodes
of the subtree rooted at N are allowed to be accessed by the requester.
Therefore, there is no need to evaluate authorizations on the subtree rooted
at N . In addition, spatiotemporal and profile vector comparisons would not
be required because all the moving objects stored at the subtree rooted
at N are within the user’s interests. If N is a leaf node, some of the
moving objects in N may not be authorized if the overlaid authorizations

572 Efficient Mobile Security Policy Enforcement

does not fully enclose the node. Thus, for all α issued for the requester,
only the moving objects that are located within α� and whose profiles are
overlapped with those of α→ are returned.
If there exists no authorization overlaid on N , although all the moving
objects stored at the subtree rooted at non-leaf node N meet the spa-
tiotemporal and profile conditions of SMR, access control decision cannot
be made because there is a possibility that a relevant authorization may be
overlaid on a descendent node of N . Thus, the evaluation process is recur-
sively performed in the children nodes of N . If N is a leaf node, we simply
reject the access request because there exists no relevant authorization for
the requester.

7 Open Issues

All the above proposed unified index trees except the ASM-Trie Model do
not support negative authorizations. Providing such support is not trivial
since they give rise to conflicts among the authorizations. Moreover, it may
require changes to the fundamental assumptions used in the construction and
access request evaluation. The overlaying strategy assumes only the positive
authorizations. Thus, an authorization is overlaid as high level as possible
in the tree because as long as there exists an authorization that allows the
user to access the given region, there will not exist any conflicting negative
authorization that will not allow the user to access some parts of the allowed
region. Based on this assumption, authorization evaluation halts whenever
a relevant authorization is located during the traversal from the root node
towards the leaf level. However, if negative authorizations are supported, all
the authorizations overlaid on traversal path need to be evaluated due to the
possibility of conflicts among the authorizations: although an authorization
that allows a user to access a region is overlaid in an index node, it is possible
that another negative authorization that prohibits the user to access a part
of the region may exist in the leaf node.

Also, formal analysis of the proposed approaches are necessary to be de-
veloped in order to show that unified index schemes actually perform better
than separate index schemes. Development of cost models for proposed uni-
fied index schemes can actually determine how well the models perform com-
pared to the optimal performance achievable by any other security enforce-
ment method. If there is any room for improvement of performance, more
refined model of unified index schemes can be developed so that the perfor-
mance of the new model would be similar to that of the optimal solution.

References

1. Active Badge Next Generation Applications.
http://www.cs.agh.edu.pl/ABng/applications.html

Efficient Enforcement of Mobile Security and Privacy 573

2. V. Atluri, Mobile Commerce, in The Handbook of Computer Networks, Vol-
ume III Distributed Networks, Network Planning, Control, Management and
Applications, Part 3: Computer Network Popular Applications, John Wiley &
Sons, to appear.

3. V. Atluri and S. Chun. An authorization model for geospatial data. IEEE Trans.
Dependable Sec. Comput., 1(4):238-254, 2004.

4. V. Atluri and Q. Guo. Unified index for mobile object data and authorizations.
In ESORICS, pages 80-97, 2005.

5. V. Atluri and H. Shin. Efficient Enforcement of Security Policies based on
Tracking of Mobile Users. In DBSec, pages 237-251, 2006.

6. V. Atluri and H. Shin. Efficient Security Policy Enforcement in a Location
Based Service Environment. In DBSec, 2007.

7. V. Atluri, H. Shin, and J. Vaidya. Efficient Security Policy Enforcement for the
Mobile Environment. Journal of Computer Security. Submitted under review.

8. A. Guttman. R-trees: a dynamic index structure for spatial searching. Pro-
ceedings of the 1984 ACM SIGMOD international conference on Management
of data, June 18-21, 1984, Boston, MA.

9. J. Moreira, C. Ribeiro, and T. Abdessalem. Query operations for moving objects
database systems. In proceedings of the eighth ACM international symposium
on Advances in geographic information systems, ACM Press, pages 108-114,
2000.

10. M. Pelanis, S. Saltenis, and C.S. Jensen. Indexing the past, present and an-
ticipated future positions of moving objects. TIMECENTER Technical Report
TR-78, 2004.

11. S. Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez. Indexing the posi-
tions of continuously moving objects. In SIGMOD Conference, pages 331-342,
2000.

12. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying
Moving Objects. In Proceedings of the Thirteenth international Conference on
Data Engineering, pages 422-432, 1997.

13. V. Venkatesh, V. Ramesh, Anne P. Massey, Understanding usability in mobile
commerce, Communications of the ACM, Volume 46, Issue 12, December 2003.

14. R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge location
system. ACM Trans. Inf. Syst. 10, 1, pages 91-102, 1992.

15. O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang. Moving objects databases:
Issues and solutions. In Rafanelli, M., Jarke, M., eds. 10th International Con-
ference on Scientic and Statistical Database Management, Proceedings, Capri,
Italy, July 1-3, 1998, IEEE Computer Society, pages 111-122, 1998.

16. M. Youssef, V. Atluri and N. R. Adam . Preserving Mobile Customer Pri-
vacy: An Access Control System for Moving Objects and Customer Profiles, In
Proceedings of the 6th International Conference on Mobile Data Management
(MDM) 2005.

Index

access control, 33, 206, 251
models, 3, 37, 251
enforcement, 40
policy, 57, 534

access path model, 281
adversarial attack, 437
adversary, 306, 144

semi-honest, 445
malicious, 446

anatomy, 496
anomaly detection, 270
anonymity, 515, 537
anonymization, 475
application layer, 283
ASM-trie, 559
association rule hiding, 449
attacker, 471
attack, 437, 463, 493

optimal, 464
audit query, 418
auditing, 272
auditing curation, 420
authenticated index structure, 119

selection queries, 119
dynamic settings, 130

authentication, 185
authorization, 35, 559
authorization model, 216, 558

Bayesian privacy model, 462
background knowledge attack, 444
belief revision, 466
bucketization, 180

Cassandra, 86
collision resistant hash function, 117
compliance auditing, 415

confidentiality, 147
conflict of interest, 225
correlation preservation, 505
credential-based access control, 9
credential, 93

damage propagation, 393
damage quarantine, 383
damage recovery, 383
data access privacy, 151
data confidentiality, 147
data cube, 194, 350
data mining, 431
data outsourcing, 137
data profiling, 274
data streams, 437
data swapping, 438
data warehouse, 191
database attacks, 337
database outsourcing, 18, 115
database service provider, 140
database views, 288
delegation of authority, 223
differential entropy, 435
digital credentials, 76
direct domain encoding, 308
discretionary access control (DAC), 3
distortion, 333
distributed credentials, 96
document type definition (DTD), 29
durability, 393

encrypted data, 153, 164
encrypted data storage, 164
encrypted relational data, 166
encrypted XML data, 179
encryption, 17, 179, 423

575

576 Index

granularity, 184
relational data, 166
text data, 175
XML data, 179

encryption granularity, 184
exceptions, 37

failure recovery, 388
fingerprints, 324
finite state automaton, 44
FLOWR expression, 33
fragile watermarking, 325, 339

GEO-RBAC, 255
GEO-XACML, 261
geospatial access control, 251
geospatial data, 248
geospatial Web, 248
geotemporal permission, 253
geotemporal role, 251

HIPAA, 272, 358
hippocratic database, 409
history rewriting, 396
homogeneity attack, 444, 493, 522

incognito method, 440
inference, 192, 197

control, 200, 207, 451
threat, 197

information hiding, 167
information integration, 421
information leakage, 102
insider misuse, 268, 271
integrity, 185
integrity constraints, 287
interval cloaking, 518
intrusion detection, 270, 386, 426

k-anonymity, 439, 478
k-anonymous generalization, 491
key management, 186
KeyNote, 9, 80
keyword search, 175

l-diverse generalization, 494
l-diversity, 444, 479
least privilege, 272
location-based access control, 257, 531
location-based conditions, 532
location-based services, 553
location privacy, 509, 536

m-d inference, 203

mandatory access control (MAC), 6
Merkle B-tree, 123
Merkle hash tree, 118
misuse detection, 270
mobile application, 556
mobile environment, 553
mobile resources, 563
moving objects, 561
multi-bit watermark, 311

need-to-know attack, 103

OASIS, 86
obfuscation, 541
online-analytical processing (OLAP), 191
ontology, 240
outsourcing, 22, 115, 137

parity-based method, 204
partitioned data sets, 447
perturbation, 167, 438
physical attack, 366
policy, 56, 534

composition, 13
creation, 411
decision point, 234
enforcement point, 234
engineering, 107
evaluation, 259
generation, 68
modeling, 67
specification language, 56

PolicyMaker, 9, 80
privacy, 241, 536, 431, 461

anonymity, 515
attacks, 463
guarantees, 465
preservation, 442, 489, 501
protection, 515
quantification, 435
threats, 510

proactive quarantine, 398
profile, 567
proof carrying authorization (PCA), 87
propagation policy, 36
pseudo-random function, 177
public key, 117

quarantine, 397
Query Certificate Manager (QCM), 82
quasi-identifier, 515, 538
query authentication, 115
query auditing, 451
query correctness, 142

Index 577

query freshness, 133
query learnability, 325
query processing architecture, 168
query transformation, 414

randomization method, 433
raster data, 250
RDF security, 239
records retention, 357

limited, 425
recovery, 384

replication-based, 391
relevance metric, 542
replication-based recovery, 391
rights protection, 299
robust watermarking, 338
role, 251
role-based access control, 8
role-based trust management, 83
role-task assignment, 220

safety analysis, 227
SAML, 234
Sarbanes-Oxley Act, 272, 358
SD3, 82
secret exposure, 466
security architecture, 199
security level, 6
security model, 165
security policy, 76
security re-engineering, 267
security requirements, 215
semantic Web, 237
sensitivity, 337
separation of duty, 217
service-oriented architecture (SOA), 232
Shibboleth, 235
signature aggregation, 117
snowflake schema, 193
SOAP, 233
spatial role, 255
SPKI/SDSI, 81
static analysis, 44
steganography, 300
storage architectures, 362
stored procedures, 289
streaming data, 351, 437
strong WORM, 365

threat model, 360, 386
trust, 241

management, 73
model, 235
negotiation, 10, 99
policy language, 88

trusted server, 511
trustworthy access, 361
trustworthy deletion, 361, 375
trustworthy indexing, 368
trustworthy migration, 361, 373
trustworthy record retention, 358

unused privileges, 287
user-based hierarchy, 19
user preferences, 542
user profiling, 278

vector data, 249
verifiability, 347
verification object, 143
view-based publishing, 471
virtual primary key, 350

watermarking, 297, 329
consumer driven, 301
categorical data, 317, 332
fragile, 324, 339
numerical data, 307, 331
robust, 339
XML data, 353

Web services, 242, 259
Web services description language (WSDL),

232
WS-policy framework, 64
workflows, 213

XACML, 60, 234
XML Access Control Language (XACL), 58
XML, 27, 55, 231

access request, 64
security, 27, 55, 238
Schema, 30
sharing, 153
storage, 153

XPath, 31

	Binder2.pdf
	Springer.IP.Networking.over.Next.Generation.Satellite.Systems.Dec.2007.pdf
	Springer.OpenGL.Graphics.Through.Applications.Jan.2008.pdf
	Springer.Python.Scripting.for.Computational.Science.3rd.Edition.Jan.2008.pdf
	Springer.Wireless.Network.Security.Jun.2007.pdf

