Copyrighted Material

SECURE
COMMUNICATING
SYSTEMS

Design, Analysis, and Implementation

MICHAEL R A HUTH

Secure Communicating Systems

More and more working computer professionals are actively confronted with
the use, maintenance, or customization of cryptographic components and
program certification mechanisms for local or remote (mobile) code. This
text, meant for advanced undergraduate and beginning graduate students,
tells what every computer scientist ought to know about cryptographic sys-
tems, security protocols, and secure information flow in programs. In addi-
tion to the standard material on public-key cryptosystems, stream and block
ciphers, and certain secure communication protocols, the author presents
several important topics not treated in most other texts:

« a detailed description of the new advanced encryption standard (AES) of
NIST, the cipher Rijndael, announced as winner of the AES design com-
petition on October 2, 2000;

* a complete description of an optimal public-key encryption using RSA
that turns “textbook RSA” into a practical implementation whose seman-
tic security is supported by a theoretical analysis conducted in the random
oracle model;

* a current, formal discussion of standard security models for information
flow in computer programs or human organizations;

* a presentation of a formal method for specifying and debugging security
protocols; and

« a current discussion of the moral, legal, and political ramifications of
cryptology and an overview of recent legislative efforts.

In addition, the text has WWW support and contains numerous implementa-
tion projects, a rigorous analysis of the Miller—Rabin algorithm, and a proof
of the existence of primitive roots for prime powers.

Michael Huth is a Senior Lecturer in the Department of Computing at the
Imperial College of Science, Technology and Medicine (London). He has
also held positions at Kansas State University (Manhattan), the Technical
University of Darmstadt, and the University of Birmingham. He has given
numerous invited lectures and seminars and is the author of more than twenty
papers on computer science and mathematics in international journals and
conference proceedings. Together with Mark Ryan he wrote the textbook
Logic in Computer Science: Reasoning and Modelling about Systems, re-
cently published by Cambridge University Press.

Secure
Communicating
Systems

Design, Analysis, and
Implementation

Michael R A Huth

Imperial College of Science, Technology and Medicine

2% CAMBRIDGE
%}% UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge , United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA

10 Stamford Road, Oakleigh, VIC 3166, Australia

Ruiz de Alarcén 13, 28014 Madrid. Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge org
© Michael R A Huth 2001

This book is in copyright. Subject to statutory exception and
to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2001

Printed in the United States of America

Typeface Times 10.5/13 pt. Svstem AMS-TEX [FH]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Huth, Michael, 1962—

Secure communicating systems : design, analysis, and implementation / Michael R A Huth.
p. cm.

Includes bibliographical references and index.

ISBN 0-521-80731-X

1. Telecommunication — Security measures.

TK5102.85.H88 2001
005.8 —de21 2001025484

ISBN 0 521 80731 X hardback

Contents

Preface

Acknowledgments

1

Secure Communication in Modern Information Societies
1.1 Electronic Commerce: The Mantra of Y2K+

1.2 Cryptographic Systems

1.3 Legislating Electronic Authentication

1.4 The Mathematical Judge

1.5 Encryption Policies

1.6 Trust and Communities

1.7 Bibliographic Notes

Public-Key Cryptography

2.1 Specification of RSA

2.2 A Realization of PKCs: RSA

2.3 Generating Large Primes

24 Correctness of RSA

2.5 Security of RSA

2.6 Integer Factorization

2.7 Other Key-Exchange Realizations Based on Discrete Logarithms
2.8 Bibliographic Notes

Symmetric-Key Cryptography
3.1 Stream Ciphers

3.2 Block Ciphers

3.3 Bibliographic Notes

Security Protocol Design and Analysis
4.1 Digital Signatures

4.2 Secure Log-In Protocols

4.3 Authentication Revisited

44 Secret-Sharing Protocols

4.5 Model Checking Security Protocol Designs
4.6 Bibliographic Notes

Optimal Public-Key Encryption with RSA
5.1 A Simple Semantically Secure Encryption
5.2 A Plain-Text—Aware Encryption

page vii

xi

1
1
3

=)

11
13

15
17
23
27
59
64
73
76
79

81
81
05
130

131
131
142
149
153
156
178

179
180
182

vi

Contents

5.3 The Random Oracle Methodology

5.4 Exact Security for the Simple Encryption

5.5 Exact Security for the Plain-Text—Aware Encryption
5.6 Bibliographic Notes

Analysis of Secure Information Flow

6.1 Motivation

6.2 A Type System for Analysis of Secure Information Flow

6.3 A Semantic Approach to Analysis of Secure Information Flow
6.4 Program Certification

6.5 Covert Channels

6.6 Bibliographic Notes

Appendix Primitive Roots

A.1 Existence of Primitive Roots
A.2 Computing Primitive Roots

Bibliography
Index

186
189
199
203

204
204
207
227
255
256
257

259
259
269
271
275

Preface

In the past ten years, the dramatic growth of the Internet has had a profound and last-
ing impact on the way in which organizations and individuals communicate and conduct
their public and private affairs. Tax forms are available online, students may submit their
exams electronically to a (possibly remote) campus network, and companies may use
the Internet as a public channel for linking up internal computing facilities or processes.
For example, an employee may dial into a company’s intranet from a hotel room or her
home via a public Internet service provider. Since the Internet protocol does not provide
sufficient mechanisms for ensuring the privacy, authenticity, integrity, and (if desired)
anonymity of data that are processed through a usually dynamically determined chain of
computers, there is a need for tools that guarantee the confidentiality and authenticity of
data and of their communication sources and targets. Cautious consumers of mobile or
foreign code prefer to verify that downloaded programs (e.g., Java applets) abide by a for-
mal set of safety rules, possibly defined by the individual consumer. These needs appear
to be even more pressing in the recent evolution of electronic commerce, where the act
of selecting and purchasing a product occurs online. Although online companies are still
waiting to reap their first real profits, it is evident that companies in general need to offer
this mode of business in order to survive in a new economy that is global and at the same
time strengthens regional identity.

The design and analysis of cryptographic systems, security protocols, and programs that
process secret or confidential information — together with the safety analysis of (possibly
foreign) code — are important tools for establishing a sufficient level of security and con-
fidentiality between human agents, social groups, and machines that communicate over
a public, and therefore untrusted, medium. Alas, current computer science and informa-
tion technology degree programs typically only touch upon these topics in a course on
operation systems or telecommunication systems within the larger context of “computer
security”. As more and more working computer professionals are actively confronted
with the use, maintenance, or customization of cryptographic components and program
certification mechanisms, I see a pressing need for a textbook, aimed at the advanced
undergraduate and beginning graduate level, that teaches “what every computer scientist
ought to know about cryptographic systems, security protocols, and secure information
flow in programs”. This book presents public-key cryptosystems, stream and block ci-
phers, certain secure communication protocols, and so forth that are usually covered in
similar texts. However, this text distinguishes itself, and goes beyond most existing books,
in several important ways.

viii Preface

1. It contains several topics that are quite novel and mostly absent from current textbooks:
* a detailed description of the new advanced encryption standard (AES) of NIST, the
cipher Rijndael, announced as the winner of the AES design competition on 2 Octo-

ber 2000;

« a complete description of an optimal public-key encryption system using RSA that
turns “textbook RSA” into a practical implementation whose semantic security is
supported by a theoretical analysis conducted in the random oracle model;

* a current and formal discussion of standard security models for information flow in
computer programs or human organizations;

* the presentation of a formal method for specifying and debugging security protocols;

¢ log-in protocols based on zero-knowledge proofs;

* the basics of elliptic curve public-key and signature systems;

* the subtleties in meaning of terms used in the informal or formal specification of se-
curity protocols, exemplified by the term “authentication™; and

+ adiscussion of the moral, legal, and political ramifications of cryptology and an over-
view of recent legislative efforts.

2. It provides a cohesive text with a vast number of carefully designed and stated exer-
cises, many of which explore variations or extensions of material covered in this text
at multiple levels of difficulty.

3. It features small programming projects that help clarify the nature and potential com-
plexity of the number-theoretic concepts used in this text (e.g., how decryption and
encryption work for RSA).

4. It animates each topic with substantial implementation exercises that are ideally as-
signed to feams of students.

5. It proves in full detail the correctness of the Miller—Rabin algorithm for primality test-
ing, thereby making an important educational contribution to the analysis and design
of (probabilistic) algorithms.

6. It includes a mathematically rigorous appendix on primitive roots, which allows for
additional reading and course work by mathematics majors and makes this book appro-
priate and useful for a mathematics course in applied number theory.

7. It is supported by a website that contains ancillary material, such as Java source code
for some of the programs featured in this text. This website features links to all the
sites mentioned in the book as well as links to online papers and tutorials that comple-
ment or deepen the presented topics.

The cipher Rijndael will certainly become a global standard for symmetric encryption
software and hardware, and it will be found in a full range of computational objects — from
smartcards to mainframes. At the time of publication, this text is likely among the first to
include a full exposition of this cipher.

The inclusion of an optimal public-key cryptosystem using RSA transforms RSA from
its textbook version to a practical implementation that is rigorous and secure. To my
knowledge, the discussion of such an important practical realization of RSA is absent
from other textbooks on this subject.! This practical discussion is complemented by a
proof of exact security results in the random oracle model.

! T acknowledge an anonymous reviewer who brought this to my attention and suggested that I include this material.

Preface ix

Another principal contribution that sets this text apart from existing ones is its ele-
mentary description and well-motivated design of tools built for formally reasoning about
security protocols. As their analysis component, most texts consider mathematical and
often sophisticated techniques for assessing the strength of, say, a particular block cipher
encryption algorithm. Although these techniques are important, they are meant for the
specialist whose task it is to design new — and attack existing — cryptographic algorithms.
This text therefore delegates such specialized topics to the references, but it emphasizes
the analysis of specified security protocols as a major task in avoiding the corruption of
secrecy, integrity, and anonymity in a communication network. I base this choice on the
fact that inherent design flaws in protocols are, next to implementation flaws and com-
promises, the most likely cause for a cryptographic system to be broken. Moreover, the
detection of such design errors is typically as difficult as the discovery of bugs in ordi-
nary synchronous or asynchronous concurrent systems. For the latter, automated (e.g., the
model checker SMV) and semi-automated (e.g., the theorem prover PVS) tools and spec-
ification frameworks have been developed and are already being embraced by research
and development labs. The tool I feature is a model checker combined with a natural de-
duction engine modeling an attacker, due to W. Marrero, E. Clarke, and S. Jha.

As another applied component, I discuss D. Denning’s (1976, 1977) classical work on
program certification for secure information flow but present it in a contemporary and rig-
orous framework of a type inference system. This treatment allows for a formal proof that
this analysis of secure information flow in programs satisfies a noninterference property
that can be used to guarantee secrecy or integrity of information flow. I then present a se-
mantic approach to secure information flow in programs, due to R. Joshi and K. R. M.
Leino, that uses weakest predicate transformers and partial correctness proofs for its refu-
tation and validation of program security. This material, as well as the analysis part of the
optimal RSA encryption, constitutes the more advanced part of this text and is likely to
be covered in a graduate course or presented by talented undergraduate students in class.

Formal methods for the analysis of cryptographic systems and the secure flow of in-
formation in programs, or their secure execution, are currently a vibrant research area,
and their fruitful development should be a vital step toward the establishment of sound
methodologies for “cryptographic engineering”, just as such working standards have al-
ready emerged in conventional software engineering. The education of future security
engineers in such tools may also help to address the next set of challenges in security
engineering on the Internet. For example: How can one establish and reason about a dy-
namically evolving “network of trusted nodes”? What are sound methodologies for the
verification of complex specifications within multiparty protocols (electronic cash flow
between consumers, merchants, and banks; broadcasting and multicasting communica-
tion sessions; etc.)? How can we realize efficient but reliable platforms for the definition,
verification, and certification of safety policies for mobile code?

Cryptography and the certification of (mobile) code are certainly only two require-
ments for the establishment and maintenance of a reliably functioning digital society.
Yet, considering that an alarming percentage of the current cryptographic products make
poor or even unprofessional design decisions (choice of algorithm, key length, protocol,
etc.), it seems evident that students ought to know the “dos and don’ts” of this area. Al-
though this text is not meant to become a standard monograph or a standard reference
text, I believe that it can well become the preferred choice of instructors who — while

X Preface

not necessarily being experts in this field themselves — mean to effectively teach students
whose backgrounds necessitate a delicate and careful presentation and development of
nontrivial mathematical concepts and who need to see these concepts applied in a con-
crete context they can relate to; this I hope to accomplish through the inclusion of small
programming exercises and larger implementation projects. Although competing texts
present more cryptographic topics and at a more advanced level, instructors may decide
to use this text because it reasons also about the secure behavior of programs, noting that
a framework for trusted (mobile) code cannot be implemented with cryptographic tech-
niques alone: We can use cryptography to authenticate the origin of mobile code or to
ensure that this code has not been tampered with in transit; but even establishing all of
that tells us nothing about the actual behavior of the program when it is executed locally.

This text contains more material than one could cover in a 12-15-week course. Be-
yond a common backbone of fundamentally important sections, instructors should feel
free to omit or emphasize certain topics as they see fit for their individual course objec-
tives. I took great care in presenting almost all the key issues, even though some may be
condensed or confined to the exercises. At the same time, I strove for the creation of a
relatively compact text that is highly interconnected and reasonably self-contained. The
provided links to online research papers, tutorials, and cited references should enable in-
structors and students alike to extend appropriately the breadth and depth of the material
presented here.

I have taken care to write this text without creating deep dependencies between any of
its chapters. It is possible to read any of these chapters in isolation, as long as one has a
“black-box understanding™ of the concepts discussed in each chapter. Some dependen-
cies, however, are inescapable. In particular, most topics discussed in Chapter 4 rely on
material from the first three chapters.

So far, I have taught two interdisciplinary courses based on a draft of this text in three
phases. The first phase was conducted in a “traditional” lecture style, where I made heavy
use of this text in discussing the basics of symmetric and public cryptosystems and secu-
rity protocols. During that time, I assigned additional reading and exercises from drafts of
this book. In the second phase, I let student teams “implement” various standards (e.g.,
SHS, DSS, and triple DES) in a programming language of their choice. In the third phase,
students made use of the more advanced part of this text or consulted online resources
in order to identify papers and/or tools they chose to present in class. Feedback regard-
ing these three phases, their mode, and their contents was extremely positive. Generally,
students felt that the implementation work helped them solidify the mathematical under-
pinnings of the utilized techniques.

The supplementary material of this text is collected on the website

www.doc.ic.ac.uk /~mrh/scs

and includes the Java source code of some of the featured programs. Also included are
links to research papers, repositories, tutorials, public and private standards, articles,
and companies that promote their security products. The site features a current list of
errata for this book; readers are kindly asked to report errors not found in that list to
m.huth@doc.ic.ac.uk.

Acknowledgments

Many people have, directly or indirectly, assisted in writing and certainly improving this
book. K. Rustan M. Leino made several critical suggestions on how to improve Sec-
tion 6.3. Jason Lamm, Corina Pasareanu, Guillaume Ravanas, and Matthew Zimmer
pointed out several embarrassing typographical and conceptual errors. Wendy Bohnen-
kamp kept me informed on the current popular pulse in cryptography. Mark Ryan has pro-
vided substantial IXTEX support through consulting and the writing of style files. I made
use of Paul Taylor’s IXTEX style file for proof trees. The search engine www.google.com
has been an effective tool that facilitated the writing of this text. I held illuminating con-
versations with David Schmidt on abstraction and weakest precondition semantics. I thank
the numerous anonymous reviewers of various drafts of this text for their constructive and
most helpful criticism; in fact, one of them encouraged me to write the chapter on opti-
mal public-key encryption with RSA. My editor Lauren Cowles helped shape the vision
of this text. I am also grateful for the enthusiasm and support of students at Kansas State
University who made it challenging and rewarding to teach this material. Notwithstand-
ing all this kind support, I am expressly and solely responsible for all errors of fact or
presentation that this text may well include.

CHAPTER 1

Secure Communication in
Modern Information Societies

11 ELECTRONIC COMMERCE: THE MANTRA OF Y2K+

We are presently witnessing mergers and takeovers of unprecedented speed and extent be-
tween companies once thought to have national identities, or at least clearly identifiable
lines of products or services. On the day this paragraph was written, the British Vodaphone
AirTouch announced an Internet alliance with the French conglomerate Vivendi. The deal
was conditional on Vodaphone’s hostile takeover of Germany’s Mannesmann and, in the
end, did establish a branded multi-access portal in Europe. About a week later, the takeover
of Mannesmann was official — the biggest ever, and friendly. MCI’s attempted takeover
of Sprint is another example of a strategically advantageous combination of different in-
formation technologies. January 2000 saw CNN, NTV, and the Deutsche Handelsblart (a
direct competitor to the Financial Times) launch a multimedia product for stock market
news that is accessible via television, printed newspapers, and the World Wide Web. And
so it goes. Although many differing views are held regarding the causes and consequences
of these phenomena, we would probably all agree that they reflect a certain shift of em-
phasis from production-based economics to one grounded in the processing, marketing,
and access of information. Whether the products themselves are merely “information” or
systems for managing and processing vast amounts of data, information systems are seen
as a crucial strategic means for organizing, improving. and maintaining more traditional
production cycles.

Such a shift could not have been achieved without the creation of reliable, dense, and
global electronic information networks that offer the full spectrum of accessibility modes
that conventional information carriers allow. This spectrum ranges from being open to
the general public (e.g., a public library) to being open only to members of a very well-
defined community (e.g., the NASA engineers who develop the next generation of shuttle
thrusters). The Internet and the World Wide Web have become a key medium for the
storage, transmission, transformation, and analysis of information of any kind: textual,
visual, or auditory. Recently, we even witnessed the release of a device that “interprets”
olfactory information transmitted over the Internet! Apparently, we increasingly partici-
pate in — and depend on — electronically networked communities. This raises societal and
managerial questions pertaining to the rights and responsibilities of network participants.
However, it is not clear a priori whether standard practices from offline communities ade-
quately transfer to so-called virtual communities and electronic communication networks.
For example, children’s bookstores and pornographic shops are typically found at disjoint
locations in real cities, whereas such an exclusion principle is hardly implementable on
the Internet; this renders online protection and guidance of minors an unresolved issue.

2 Chapter 1. Secure Communication in Modern Information Societies

Regulatory efforts, which are mostly confined to sovereign states and trade unions, have
little hope of success in a truly global environment unless their legal and moral force is
recognized, and enforced, worldwide.

Today’s digital networks are adopting an abundance of newly developed informa-
tion technology tools that facilitate the gathering and creation of meaningful informa-
tion needed for successful business ventures; yet these tools also provide a platform for
conducting business. The fashionable term “electronic commerce™ denotes any kind of
commercial activity that occurs over the World Wide Web, the Internet, intranets, facsim-
ile, telephone, and so forth. Electronic commerce is believed to have the greatest growth
rates in any economic sector. E-commerce start-ups are enthusiastically received, and al-
most indiscriminately so, by investors. As aresult, individuals who can install or maintain
information systems for e-commerce are much in demand. However, the promises of elec-
tronic commerce must be weighed against their possible dangers and inherent challenges.

1. The locality and authenticity of electronically communicating agents is dubious at best;
electronic business interactions make it harder to guarantee that potential business part-
ners are honest about who and where they are.

2. Sensitive information or other private data may be transmitted through unreliable or
otherwise unsecure communication channels. Not only does this pose a threat in that
competitors may be able to access and use confidential strategic or technical informa-
tion, it also raises grave concerns about the privacy of individuals who use those very
channels for noncommercial (yet still nonpublic) communications.

3. Even if electronic transactions came equipped with a mechanism of authenticating
agents, one needs to ensure that agents cannot subsequently deny any of their prop-
erly authenticated actions. We speak of nonrepudiation if an authentication scheme
has this desirable property.

4. The right to anonymous actions has held an important role in securing free speech and
unhindered political discourse. Although mechanisms that implement anonymous in-
teraction may also be subject to serious abuse, they are an important component of
democratic processes. Most patents on digital cash realize such electronic cash in an
anonymous way. However, the financial services sector (including tax agencies) are
quite interested in removing this anonymity feature of such cash, at which point the
issue becomes not merely technical but also one of politics, policies, and laws.

5. “Thedevilis in the implementation” — this means that a secure specification of a crypto-
graphic system (or security-handling computer program) is still a long way from its
actual secure implementation.

6. Mobile code, active networks, and extensible operation system kernels require: novel
methodologies for specifying safety rules for executing programs that are foreign to
the local system; provably correct algorithms for verifying that programs meet such
safety specifications; and mechanisms that attach certificates to mobile code so that
these certificates can quickly be evaluated locally.

These are only a few (and by no means the most critical) problems that electronic com-
merce faces. Even if all had acceptable solutions, a host of other pressing questions would
remain unanswered. For example, how should businesses protect the integrity, existence,
and control of their information systems? — given that they may be distributed globally
and have plenty of interfaces to publicly accessible resources. There is also the daunting

1.2. Cryptographic Systems 3

task of designing working frameworks for the taxation of Internet sales, given the con-
flicting interests of stakeholders: local counties, states in a federation, sovereign states,
e-commerce companies, and consumers. Guaranteeing privacy of communication and
authenticity of agents may be of little use if unauthorized and presumably hostile net-
work agents are able to penetrate the heart of a company’s information system. Federal
agents recently managed to enter, without proper authorization, sites that are vital to the
security of U.S. national infrastructures. We all have read stories of the so-called hackers
who gained access to computers of the U.S. Department of Defense and thereby down-
loaded huge amounts of sensitive data during the initial phase of Operation Desert Storm.
Computer security cases in the military sector are not out of place in this section, for de-
fense agencies rely on electronic purchasing and ordering procedures that are increasingly
required to interface with the nonmilitary commercial world. At present, it is unclear
what the psychological and sociological effects and implications will be of making elec-
tronic commerce a main mode of entrepreneurial activity, but the events of May 2000
have already demonstrated the threat that e-mail viruses and worms pose to an economy
that depends more and more on the Internet and the World Wide Web. It is not the objec-
tive of this text to address these pressing issues; rather, it focuses solely on the six points
previously listed. Specifically, we give an introduction to secure communicating systems
by studying the design, analysis, and implementation of systems that are built to provide
solutions to the practical problems of (a) certifying the safety rules of programs, (b) real-
izing the authentication of secure and perhaps anonymous communication along an open
channel, and (¢) the nonrepudiation of committed (trans)actions.

1.2 CRYPTOGRAPHIC SYSTEMS

Although cryptology has a rather long history and is a thriving field of sophisticated re-
search, in this text we give only a selective overview by choosing representative designs
of cryptographic systems and some forms of their analysis that are accessible to senior
undergraduate and beginning graduate students. To be up-front about it, there is an in-
herent and deplorable tradeoff between the degree to which cryptographic systems realize
their stated security goals and the computational overhead they impose on information
networks.! More often than not, such security goals are left implicit or are formulated
with insufficient precision, as the discussion of authentication in Section 4.3 illustrates.
Perfectly secure mechanisms for ensuring private communication along a channel are pos-
sible; the one-time pad (see page 86), while being perfectly secure, requires an encryption
key that is as long as the actual message to be communicated. This burden hardly justi-
fies its use unless perfect security is a minimum requirement, as for the “hotline” between
the White House and the Kremlin. More efficient systems don’t have such perfect secu-
rity, so one needs to assess just how secure they are. In concrete terms, such security
is often measured in how much money, or time, one would have to spend in order to
“break”? a cryptographic system; unfortunately, such estimates may only be meaningful

! There is an even more disconcerting tradeoff between the security of a communicating system and the convenience
of its user-level functionality.

z Breaking a system can mean a variety of things: obtaining access to a single message (or fragment thereof) with or
without control over which message that should be; corrupting the entire security of the system for an extended pe-
riod of time, with or without its legal users noticing the break-in; being able to assume someone else’s identity: etc.

4 Chapter 1. Secure Communication in Modern Information Societies

for a specific method of breaking a system. A useful measure should thus provide cost
predictions for all possible attacks, independent of whether they are known to the ana-
lyst. Evidently, this can only be realized in a very limited manner. This also entails a
reasonably clear understanding of how secure the respective communication and authen-
tication components must be. Such a quantitative requirement analysis is usually quite
difficult; for example, the monetary value of a company’s customer database is typically
hard to assess and may be a function of who would gain access to it. And how would
vou quantify the loss of privacy if your medical records were to be posted on the World
Wide Web?

We mention these issues in passing but more often assess the computational effort
needed to break certain cryptographic systems. A fundamental difficulty with such analy-
ses is that they must consider some (mathematical) model of the cryptographic system
under consideration, or even a specific implementation thereof. Any positive security
results drawn from such an analysis are therefore only valid within the given model or
implementation. Alas, this does not rule out an attack outside the given model; the well-
publicized attack of RSA encryption implemented on a smartcard is one such alarming
example (see pages 68 and 204). In an extreme view, one may even consider such results
as helping potential attackers by pointing out to them what sorts of things won't succeed;
it is wise to assume that attackers read the relevant technical literature.

You may be surprised to hear that the bulk of cryptographic systems make use of rather
astonishing facts about natural numbers and some of their computational problems. Thus
we need to study a certain amount of number theory and get to know a few important
number-theoretic algorithms that form fundamental components of real cryptographic
systems. We hasten to point out that we aim to develop such material at a graceful pace
and at an accessible level.? In this chapter, we mention the role of number theory in cryp-
tography because all the cryptographic systems that use certain “hard” number-theoretical
problems — for realizing secure communication, authentication, or nonrepudiation — rest
their security on the premise that such hard problems don’t have easy solutions. The point
is that this premise’s validity is still an open (and most difficult) research problem and
moreover that even its validity would usually not ensure security.

Because this text will not develop the rather advanced concepts required for a precise
definition of what “hard™ and “easy’” problems are, we mean to illustrate this via example.
Integer factorization is believed to be a hard problem, and the security of the RSA crypto-
system relies on this belief (see Section 2.5). More specifically, it is believed to be com-
putationally infeasible to find a factor of an integer with 1024 binary digits if that number
is the product of two randomly generated primes of about equal size. (Improvements in
processor speed and cheaper computer parts, such as memory, may require a future in-
crease in the number of bits needed.) Yet to this day, nobody has put forward any proof of
this belief. It is conceivable that somebody will eventually devise an efficient procedure
for factoring such large numbers. Similar concerns (and lack of proof) prevail for other
“hard™ problems used in building cryptographic systems, whether they are grounded in
number theory or some other computational structures.

3 Appendix A may be skipped entirely without compromising the appreciation of our cryptographic designs, but it
does fill the explanatory gap of proving the correctness of the Miller—Rabin algorithm for primality testing. one of
the “workhorses” in our cryptographic toolbox.

1.2. Cryptographic Systems 5

Even if such (unlikely) proofs were to be found, they could only be carried out rel-
ative to a computational model, such as a conventional personal computer. This means
that their resulting safeguards would only apply to that very same computational model.
However, various computing paradigms may be vastly different in nature from each other.
Some, admittedly small, instances of certain “hard” problems have been solved using
chemical reactions based on the processing of DNA. We already have seen computers
with up to four states, where computation is driven by the laws of quantum mechanics.
If — and that is a big “if 7 — the development of such machines is scalable in the number
of states, then this will provide an efficient engine for factoring large integers. It is debat-
able whether any of these approaches might pose a real threat to existing cryptographic
systems, but only time can tell. In June 2000, a Swiss research team used entanglement
of photons* to transport an encrypted message from one town to another through ordinary
fiber-optic lines. A U.S. team is currently investigating how one can make it harder for
eavesdroppers to alter the properties of photons. A German—Austrian team has used such
techniques to encrypt an image. This news is exciting, but it also suggests that new tech-
nology may only provide new instantiations for familiar players, such as eavesdroppers.
It is also unclear whether such technology can be used on large networks that intend to
reach ordinary households. It seems rather disturbing (perhaps pleasing, to some) that the
realization of electronic commerce and the protection of vital national infrastructures —
which rely on secured information systems — may depend on facts about number theory,
microbiology, and quantum physics.

Cryptographic components, even if assumed to be perfectly secure as isolated compo-
nents, raise novel security questions if placed within the context of interacting networks.
For example, can a security protocol be successfully attacked even though none of its cryp-
tographic primitives can be broken in isolation? Indeed, quite a few published protocols
were found to have undergone such attacks. Such insights gave rise to research activity
similar to that in the design and analysis of concurrency protocols. We therefore present
a customized framework for “debugging” security protocols in Section 4.5. Again, such
tools are certainly needed by implementors and designers of security protocols; if they
don’t do their homework then attackers will do it for them — and let them know by attack-
ing weaknesses discovered with the aid of those tools.

This point illustrates another peculiarity in the study of cryptographic systems. Histor-
ically, such designs (say, a particular encryption algorithm) were kept secret, and knowing
the design was often coextensive to knowing how to break it. All such early systems were
broken eventually. A conceptual breakthrough was the idea of key-dependent cryptosys-
fems. Ideally, such systems are secure even if one knows all the intricate details of their
design — as long as one does not know the concrete key with which the system was instan-
tiated. This idea made it possible to publish designs so that the entire scientific community
could study and attack them. Although this development can only improve the strength of
emerging designs, it takes time for such studies to be of any substantial value. It is fair to

4 Quantum computing rests on three principles: (i) superposition of quantum bits allows for an exponential speed-
up factor for certain computations (including the factorization of integers); (ii) quantum entanglement enables a
reliable and instantaneous communication of quantum bits over arbitrarily long distances: and (iii) quantum inter-
Jference poses the challenge of engineering a system of quantum bits that does not interfere with its environment
{decoherence).

6 Chapter 1. Secure Communication in Modern Information Societies

say that the Data Encryption Algorithm (featured in Section 3.2.1) and the RSA encryption
system (presented in Section 2.2) underwent more than twenty years of public analysis
and scrutiny without revealing any fundamental design weaknesses. More recent crypto-
systems and cryptographic algorithms, such as the new Advanced Encryption Standard
Rijndael, may well be far superior to the previous ones, but again only time can tell because
we have no single sound and coherent mathematical theory or methodology for reasoning
about the strength of such systems. This places consumers and standards committees alike
in an awkward position. When and why should one abandon a given cryptographic system
in favor of another? If a cryptographic standard is fully implemented and integrated into
other network standards, what can be done if the cryptographic design turns out to have se-
rious flaws? Note that this is not just an engineering problem of replacing one system with
a different (and, it is hoped, more secure) one, since sensitive data will have been stored
in an unsecure manner. This raises several thorny issues, not the least of which is liability.

At the time of this writing, it is anticipated that the Data Encryption Standard (DES)
will be replaced by the Advanced Encryption Standard (AES), the cipher Rijndael, which
is featured in Section 3.2.2. On 2 October 2000, the U.S. Department of Commerce an-
nounced Rijndael as the winner of a worldwide design contest. Pending a period of public
comment and final approval, this cipher will become a standard of the U.S. National In-
stitute of Standards and Technology. That the submissions came from all over the world
already suggests that national standards and their overseeing national agencies may need
to rethink their roles and begin to interface with similar bodies of other nations. It may
well be that global economic conglomerates will put pressure on governments to stream-
line regulation and licensing activities toward standard business practices and to offer
approaches that are fairly uniform on a global scale. Indeed, recent policy changes at the
White House regarding the export control of U.S. encryption products indicate that gov-
ernments have already begun to think along those lines. These changes worry national
agencies that deal with issues of defense and the protection of vital national infrastruc-
tures. We return to the dilemma of encryption policies in Section 1.5.

1.3 LEGISLATING ELECTRONIC AUTHENTICATION

More and more, the Internet and other electronic media provide a platform for ordering
products, negotiating contracts, and paying for rendered or anticipated services. Thus con-
sumers, government agencies, and commercial sectors wonder whether there is a need for
new legislation that elaborates in which cases, and to what extent, electronic signatures are
legally valid. Unfortunately, technical terminology is often misunderstood by legislative
bodies, and technicians who consult in a legislative effort find it equally hard to appreci-
ate the legal language. Needless to say, it is crucial that these communities work together
in realizing a maximum of clarity in the legislative process. For example, there seems to
be some confusion between the concepts of an electronic signature and a digital signa-
fure. The former can be thought of as any technical replacement of the usual handwritten
signature functionality in an electronic system: digital pens, PIN numbers, and scanned
hand-written signatures are a few examples. In some sense, digital signatures are a spe-
cial case of electronic signatures in that they use public-key cryptosystems (the topic of
Chapter 2) as a mechanism for ensuring the integrity and origin of digital messages; Sec-
tion 4.1 discusses digital signatures in detail. In another sense, digital signatures are more

1.3. Legislating Electronic Authentication 7

appropriately thought of as digital envelopes, for the signer may not know, or endorse, the
signed message. Upon closer inspection, digital signatures have a much broader range
of applications than (electronic) signatures in the narrow sense. Digital signatures can be
used to authenticate servers in a computing network, web pages, software, or any data
that is stored digitally.

Legislators may take a rechnical approach — declaring, for example, a specific digi-
tal signature system as a (possibly required) standard for implementing certain electronic
authentication functions. This view generally provides no insights into the legal conse-
quences of using, or misusing, such systems. One of the first laws on digital signatures,
the German Digital Signature Law, used a legal instrument to set a technical standard:
specifically, for the required security of the public-key infrastructures. The law does not
explicitly state any legal consequences that would result from using digital signature sys-
tems that are compliant with the standard prescribed by the law.

A legal approach, on the other hand, attempts to equate handwritten and electronic sig-
natures and may not impose any restrictions as to which technology may realize electronic
signature systems. The Utah Digital Signature Act of 1995 regulates digital signatures
based on public-key cryptosystems and legally equates such digital signatures with hand-
written ones, provided that the corresponding cryptosystem meets all the requirements
described in the Act.> The State of Utah has a common law system that often allows a
more liberal interpretation of the use of signatures; expressing one’s intentions explicitly,
for example, may be considered “signing”. Unfortunately, the Utah Digital Signature Act
does not adequately reflect the different functions of signatures. This kind of law could
threaten the development and growth of electronic commerce in that it also identifies func-
tions of handwritten signatures with novel digital functions, such as certifying a web server.

In practice, most (draft) law and directives present a mixture of these approaches,
thereby creating both legal uncertainty and possible impediments to the evolution of
electronic commerce. The United Nations Commission on International Trade Law
(UNCITRAL) crafted Draft Uniform Rules on Electronic Signatures; these rules would be
nonbinding and technologically nonspecific, but they would provide guidance to legisla-
tive authorities during their own process of designing legislation for electronic authenti-
cation. These rules distinguish between “electronic signatures™ and “enhanced electronic
signatures™; the latter must meet a higher standard of security with regard to the signing
and signature verification process. Itis assumed that data signed with enhanced electronic
signatures are legally signed. The EU Directive of the European Parliament and of the
Council on a Common Framework for Electronic Signatures gives similar open-ended def-
initions for an “electronic signature” and for what is now called an “advanced electronic
signature”; however, the Directive focuses on digital signatures and does not provide legal
recognition of electronic signatures pertaining to the validity of contracts requiring signa-
tures. The CA Working Group of the Electronic Commerce Promotion Council of Japan
issued guidelines for the operation and management of certification authorities (CAs), an
infrastructure used to establish a notion of trust in the authenticity of public keys. This is
an example of a self-regulated effort, where one hopes that industry will establish com-
mon practice in accord with such guidelines.

5 At the time of this writing, nobody has come forward to register a public-key cryptosystem under this Act.

8 Chapter 1. Secure Communication in Modern Information Societies

In the past, one could observe a preference for technology-specific legislation that most
often dealt with digital signature systems. The Italian Digital Document Regulations of
10 November 1997 state that, under certain conditions, digital signatures can be legally
equated with handwritten signatures. At the same time, these regulations are restricted to
public-key cryptosystems with public-key infrastructures used for digital signature sys-
tems. The prevalence of a mixed approach is largely due to the fact that digital signature
systems are the basis of important tools for electronic commerce: Pretty Good Privacy
(PGP), Secure Electronic Transactions (SET), and Secure Socket Layer (SSL) all make
crucial use of such technology.

Policymakers often think that the success of electronic commerce depends on having a
well-specified technical signature system with well-understood legal consequences. This
wishful thinking stands in direct opposition to new technological developments and the
need for novel signature roles that electronic commerce is likely to bring about. A variety
of alternative approaches to electronic signatures exist already. Virtual Credit Card (VCC),
used by the Brazilian bank Unibanco, electronically authorizes credit-card purchases with-
out using the public-key infrastructures (PKIs) upon which digital signature systems rely.
Another example is iPIN, an Internet-based payment system for small amounts that can
be managed by Internet service providers.

On 30 June 2000, President Clinton signed the Electronic Signatures in Global and
National Commerce Act, a bill that recognizes and clarifies the legal status of electronic
signatures. This bill requires consumers to agree to electronically signed contracts; they
also must consent to receiving records over the Internet. Companies, on the other hand,
must verify that customers have a viable e-mail address and the necessary equipment to
receive electronic information.

There are a number of biometric approaches to electronic authentication. The idea is
to authenticate individuals by means — it is hoped — of dependably unique biological data.
For example, fingerprint readers on small chips can be integrated into keyboards, and one
may scan a person’s iris or palm at an automatic teller machine. It is unclear whether bio-
metrics can replace, or even supplement, cheaper authentication mechanisms that don’t
rely on biological data. Because useful biometric data ought to remain fixed during a per-
son’s lifetime, such information may have to be considered as personal property in the
legal sense. At any rate, the handling of such data requires reliable legal frameworks that
protect the privacy and identity of individuals.

The examples just given show that regulatory efforts need to reflect the possibility of
swift and dramatic technological changes. The downside of technology-neutral legislation
is that courts may have to develop case law when such legislation cannot achieve a precise
definition of legal concepts. Another source of tension is that one country’s national law
often conflicts with other national (or international) law. The UNCITRAL Model Law on
Electronic Commerce was drafted within the larger context of achieving a more uniform
and cohesive international trade law; it is technologically nonspecific, thus allowing and
anticipating fast and dramatic technological changes. International legislation must also
make room for flexible interpretations of legal requirements of form; for example, com-
mon law and civic law systems typically offer different interpretations of “legally binding
signatures”.

Since electronic commerce is, by its very nature, an international phenomenon, we need
drafts and guidelines for digital law at an international level. The pressing need for legal

1.4. The Mathematical Judge 9

clarity, however, requires national legislation, as this can be enacted much sooner. Addi-
tionally, nations may have an inherent cultural and historical outlook on legal concepts.
Laws about handwritten signatures, for instance, may emphasize the signer’s intention to
be legally bound by his or her signature (often the case in common law, as in the United
States), or it may stress the security of the actual signing process (often occurring in civic
law, as in Germany). When nations draft new digital law, they may also have to “clean up”
and streamline some of their existing law. At the time of this writing, a handwritten sig-
nature on a document transmitted via facsimile (fax) is legally binding in the Netherlands
but not so in Germany. Nations and unions may also have a different view of privacy and
civil rights and of their implementation in systems that support electronic commerce.

In the meantime, it appears that legislation should largely be nonspecific about tech-
nological details of electronic authentication. It should pay considerable attention to the
various functions and features of handwritten and electronic signatures, making clear if
and how such functional roles allow for a match between electronic and nonelectronic
signatures. This legislative process needs to be internationally oriented but must also
reflect the specific intent and nature of national law. Clearly, these objectives have inher-
ent conflicts. It is hoped that a more mature electronic commerce will also see a slower
technological change of authentication mechanisms in order for technology-specific leg-
islation to be effective. Whether one believes that legislation (hard law) is necessary or
that self-regulation (soft law) — or some combination of both — is needed to aid and over-
see the development of electronic commerce, it is evident that these problems require an
unprecedented degree of cooperation among technicians, government and nongovernment
organizations, industry executives, and legislative bodies. This provides one of the many
reasons why computer science professionals and students ought to be informed about
the basic concepts, designs, modes of analysis, and implementations of cryptographic
systems.

1.4 THE MATHEMATICAL JUDGE

Regardless of whether a security protocol or its cryptographic primitives are secure or
not, they will typically be sold and used as a commercial product. So far, software ven-
dors have generally not been liable for flawed software, provided that they could show
that they followed established “software engineering practice”. However, it is not clear
whether such a line of argument will continue to be successful if software erroneously
confirms or denies the authenticity of a contract signature, or if it exposes confidential
information resulting in physical, monetary, or psychological harm to the sender or re-
ceiver. For example, what about cases in which agents sign data electronically and later
claim that the signature has been forged? Even if the signature system had a built-in non-
repudiation mechanism, the agent could still claim that its implementation was somehow
flawed. Using a digital signature scheme, the agent could also claim that somebody ob-
tained her private signature key — say, by corrupting the public-key infrastructure or some
certification authority. Even if the protocol adds more and more protective layers against
such possibilities, the agent could always contest the functioning of the lowest or at least
some level. This is in striking contrast to the traditional practice of using pens and hand-
written signatures. We can hardly blame the company that manufactured a pen used by
someone else to forge our signature! Likewise, we cannot sensibly assert that somebody

10 Chapter 1. Secure Communication in Modern Information Societies

acquired the knowledge and skill of reproducing our original signature perfectly. Conse-
quently, the question of establishing the circumstances under which electronically signed
documents will be recognized in court as legally binding is more delicate than one may
initially suppose.

In the technical part of this text, we see that basically all practical cryptographic systems
come with an inherent degree of unsecurity, even if we were to assume a flawless imple-
mentation process. Admittedly, the likelihood of a security violation occurring in a perfect
implementation may be extremely small, but can we establish a definite threshold saying
that a digital signature scheme is legally binding if the probability for the claimed signer
not to have signed a document using this scheme is smaller than some £ > 07 Who will
come up with such a value? Who will assess a given implementation of a cryptographic
system to estimate that threshold? Who will certify that the concrete implementations of
such abstract digital signature cryptosystems meet all the relevant security specifications?
If, say, RSA were used for such a certified signature generation scheme, then how would
a jury react to defense lawyers exposing jurors to popular-science and technical articles
that describe the occasional success story of ““breaking” a large RSA key? Would the jury
not feel uneasy about resting their judgment on conflicting presentations on the security
of key lengths? And would a substantial number of future court cases require a mathe-
matical judge?

Although it may be somewhat of a stretch, electronic signatures could conceivably be-
come key evidence in first-degree murder cases. One may recall that prosecutors have a
hard time convincing juries when their only hard piece of evidence is a sample of nonmito-
chondrial DNA , found at a crime scene, with a “close” match to the DNA of a defendant.
Jurors find it difficult to relate sophisticated scientific facts to the concept of “beyond rea-
sonable doubt™.

To play devil’s advocate, suppose one has legislation that endorses a specific technol-
ogy and a specific implementation for a digital signature scheme and also states explicitly
the legal consequences of electronic signatures produced with the system it describes.
Suppose further that, after some time, this implementation turns out to have serious flaws.
Who would deal with the long case list of past system users who now contest having
signed their mortgages and car loans? It seems that one might have to rely on higher im-
plementation standards than those for software used on commercial aircraft — but meeting
such standards is expensive and time-consuming. A more sensible approach may be to
make the implementation and verification effort a function of the importance of the data
that the tool is intended to sign. Clearly, a system that handles only small-scale transac-
tions requires less effort than one that deals with major stock trading. Even so, the former
could see class-action lawsuits by consumer groups and the like. Perhaps car loans and
other big-ticket items will still rely, at least partially, on traditional signing methods and
evidence provided by the particular (nonelectronic) business context. At the risk of re-
peating ourselves, only time can tell how people and other agents will sign what — and
how successful courts will be in using electronic signatures as hard evidence.

1.5 ENCRYPTION POLICIES

The economic promises of global electronic commerce and its need for uniform interfaces
suggest that support for reliable and secure cryptographic components should be available

1.6. Trust and Communities 1

worldwide; nonetheless, some governments impose restrictions on the use, import, or ex-
port of such products. This largely occurs in the context of cryptographic systems used
to render text unintelligible to everybody except the sender and receiver of the message.
Obviously, such capabilities pose threats to national interests; they can make it hard or
impossible for law-enforcement agencies to conduct investigations or to gain convictions;
and they can affect national security if used to cover up terrorist activity. They also can fa-
cilitate extortion schemes: former or current employees of some company or agency may
encrypt important data and then demand money from their employer for making the data
legible again. But let us not forget that the same tools that aid terrorists are also instru-
mental in protecting the privacy and confidentiality of people’s speech and their lawful
participation in democracies — not to mention the protection this technology offers to pro-
democracy activists in certain parts of the world. This is clearly a political point of friction
that will not go away, but the interests of democratic movements and existing democracies
must not be taken lightly.

The reference to the Crypto Law Survey (given in the bibliographical notes to this
chapter, Section 1.7), provides an excellent resource for finding out what nations apply
what sorts of encryption control at present. The current U.S. government went through
an interesting learning process that caused it to change its encryption export policies. In-
terestingly enough, digital signature systems were never controlled in this manner in the
United States. Encryption systems for functions other than signing, formerly classified
as ammunition, can now be exported (after a technical review) to commercial firms and
other nongovernment end users unless they reside in states named on the U.S. State De-
partment’s evolving list of supporters of terrorism. If the key-length of the cryptosystem
is longer than 64 bits — which is true of the new AES Rijndael — then the vendor may be
required to submit a post-export report that is facilitated by reflecting standard industrial
practice. Foreign nationals no longer need a license if they want to work for U.S. firms on
the development and maintenance of cryptosystems. Fortunately, the idea of mandatory
recovery keys (which would have allowed the authorized decryption of text even if the
kevholder refuses to hand over the key) seems to have been abandoned, much to the dis-
may of U.S. agencies concerned with national security. For details, see the press release
of the U.S. Department of Commerce dated 12 January 2000.° Encryption policies have
their own dilemmas. They must be strong enough to adequately protect law enforcement
and national security but at the same time liberal enough to maintain or improve a nation’s
political structures and processes — as well as its competitiveness in the lucrative global
market of electronic security products and resulting e-commerce. This may well be the
principal reason why the U.S. government solicits public comments on these regulations
for 120 days before final revised policy rules are implemented.

1.6 TRUST AND COMMUNITIES

Today, we witness a fierce global economy with large multinational conglomerates that
encourage governments to provide incentives for setting up shop within their territory.
For example, the German car manufacturer BMW let European states “bid” for hosting

5 http: //www.bxa.doc.gov/ Encryption/regs.htm

12 Chapter 1. Secure Communication in Modern Information Societies

their new production facility. AOL Europe asked the German government to enact policies
that would lower the base access rate to the Internet within Germany, identifying current
rates as a major obstacle to the growth of German e-commerce. Major companies ner-
vously try to find strategic partners that complement and strengthen their competitiveness
worldwide. The World Trade Organization (WTQO) may see China as a future member,
and worldwide free trade and mobility seem within reach. At the same time, however, in-
ternational, national, and regional interest groups actively campaign against the possibly
harmful sociological, environmental, and economic implications of increasingly global
production and management structures. The riots at the WTO meeting in Seattle (United
States) and the voices of protest at the last World Economic Forum in Davos (Switzer-
land) are indicative of such concerns. Through meetings such as the Davos forum, top
executives are beginning to appreciate that the concerns of communities are a serious com-
ponent of their managerial decision processes. The customer boycott of Shell in Europe,
triggered by Shell’s plan to dump a polluted oil rig in the North Sea, suggests that con-
sumer values can affect company policies.” The Internet and other digital communication
technologies give traditional and emerging communities a powerful tool for reaching their
constituency and other affected groups they mean to impact; these technologies also en-
able the creation of novel interest groups and communities at a speed and to an extent that
were previously impossible.

All these communities, even the ones based on business relationships, critically depend
on working notions of frust. This may seem ironic, considering that the current economic
climate conjures up images of Manchester Capitalism. However, even the most aggres-
sive and hostile parties depend on some form of trust if they want to communicate at all.
Vodaphone AirTouch placed considerable trust in the publicly available reports issued by
Mannesmann regarding its financial performance and marketing goals. If you were to ap-
ply for admission into the graduate school at Tulane University and then received mail —
on 100% cotton paper emblazoned with the crest of Tulane University of Louisiana — in-
forming you of your acceptance or rejection, you would trust that this mail is coming from
that university, all things being equal.

Such trust has practical advantages; it would simply be impossible to be “perfectly
paranoid” and still maintain a productive and meaningful life. We tend to question trust
when all things are not equal! — as when your bank inspects your signature more closely
on a check for $10,000 than on one for $10. In the rapidly evolving realm of electronic
commerce, we have seen attempts to provide business websites with stamps of approval
given by some generally trusted certification or accreditation company. TRUSTe? is one
such (nonprofit) service provider; its certification vouches for certain privacy policies that
consumers can expect to be met. However, companies are often hesitant to attain such a
certification; among other things, clearly stated privacy policies open the door to lawsuits
if the company violates those policies. In July 2000, there were alleged cases of failed
e-commerce businesses that — in order to appease creditors — sold private consumer data
in violation of company policy.

The need for trust evidently poses a dilemma for implementing systems that hold any
value at all, be they production facilities, information systems, or strategic centers such as

T www.ens Jycos.com/ens /nov98/1998L-11-27-03 html
8 www.truste.org/

1.7. Bibliographic Notes 13

the NATO headquarters. The widespread use of mobile code (e.g., by accessing active web
pages) also implies trusting that the evaluation of foreign code on a local system does not
compromise the security or safety rules of that local system. Even if such code is authen-
ticated prior to its execution, we still have to trust its execution behavior. Proof-carrying
code — though for now a mere research topic — has the potential to provide a platform for
the specification of local safety rules, the verification that programs meet these rules, a
means of communicating this fact by attaching a certificate to code, and an efficient way
of checking such certificates. One may then confine the need of trust to those aspects that
are not expressed or implied by the formally specified safety policy.

The design and use of cryptographic systems does not dispense with such security-
threatening needs. Digital signature systems were invented to eliminate the need to trust
a third party with the job of delivering a secret key from one agent to another. Ironically,
and not surprisingly, this solution created a new need for trust. Such systems have no
mechanism for certifying that the public key, which an agent advertises as belonging to
him, actually is associated with that agent. The protocol attack described on page 22 il-
lustrates the need for third parties that vouch for such correct matchings of agents and
their keys. Commercial products realize this through certification authorities, a “web of
trust”, or other public-key infrastructures. In that sense, cryptographic systems render
the same dilemma of possibly extreme needs for protection and security and a concurrent
need for trust. We believe that this dilemma cannot be entirely resolved qualitatively, but
only to certain degrees. As D. Denning put it so aptly in her statement before the Subcom-
mittee on Courts and Intellectual Property (Committee on the Judiciary, U.S. House of
Representatives) regarding the Security and Freedom Through Encryption Act: “In short,
encryption is no silver bullet.” The reader of this text will be well advised to keep this
in mind.

1.7 BIBLIOGRAPHIC NOTES

A good descriptive account of the shift from production-based to access-based economies
has been given by Rifkin (2000). Denning (1999) discusses information systems in gen-
eral, provides a systematic exposition of their threats, and competently presents possible
strategies (and their tradeoffs) for countering a possible corruption of their security. Her
website “The Cryptography Project”.” contains well-organized and topical material on
national and international encryption policies. Schneier (2000) gives an entertaining and
revealing analysis of information security in the networked world. Also recommended
is B.-J. Koops’ Crypto Law Survey,'” an up-to-date discussion of legislation pertaining
to cryptographic systems that protect information against unauthorized access. The de-
tails on U.S. encryption policy given in Section 1.5 of this chapter reflect the Fact Sheet
issued on 16 September 1999 by the Office of the Press Secretary of The White House
and the press release of the U.S. Department of Commerce from 12 January 2000.'' B. P.
Aalberts and S. van der Hof have conducted an analysis of legislative approaches to elec-
tronic authentication, providing evidence that the emphasis on digital signature schemes

¥ www.cosc georgetown.edu/~denning /crypto/index . html
10 ttp: /fewis kubnl/~frw/people /koops/ lawsurvy.htm
" hitp: /fwww.bxa.doc.gov/ Encryption /regs.htm

14 Chapter 1. Secure Communication in Modern Information Societies

may impede the growth and progress of electronic commerce and increase legal uncer-
tainty;'? Section 1.3 largely draws from that work. The books by Negroponte (1995) and
Roszak (1994) represent two rather extreme — and opposing — positions regarding the role
of information technology in modern societies. Denning and Lin (1994) present a com-
pact but rich overview of the moral and legal challenges that come with the participation
and management of (electronically) networked communities. For a discussion of the se-
curity features of the Java programming language, see McGraw and Felten (1997). Last,
but not least, M. Curtin’s website!* contains a nice survey on “Snake oil warning sign:
Encryption software to avoid™.

12 ttp: /fewis.kub nl/~frw/people/hof/ds-fr.htm
B ttp: /i www.interhack net/people /cmeurtin/snake-oil-fag.html

CHAPTER 2

Public-Key Cryptography

The chief objective of cryptography is the design and analysis of systems that ensure se-
cure communication along an otherwise untrusted channel of communication. Given a
set P of plain-texts — ordinary text in a natural language, or any original and presumably
sensitive or secret information — one seeks a set C of cipher-texts as well as encryption
functions Ex(-): P — C that have a key K € K (where K is a key space) as a para-
meter and that produce the cipher-text Eg (M) of a plain-text M. In order to recover the
plain-text, we require a key-dependent family of decryption functions Dg (-) : € — P such
that

Dk (Ex (M) =M (2.1)

forall M € P and all keys K from a key space K. The objectives in securely realizing and
efficiently implementing such a mathematical model are manifold and often conflicting.

Convention 2.1
We write Ex and Dk for the keys and possibly for all other implicit information needed in
instantiating the encryption function Eg (-) and decryption function Dg (-), respectively.

Clearly, we require key-dependent algorithms that implement Ex () and Dg (-) efficiently.
Such efficiency demands may constrain the security of the cryptographic system. The
most relevant notions of security may be listed as follows.

1. Unconditional security, which requires that it be impossible to recover a key K even
if attackers have plenty of matching plain-text/cipher-text pairs and unlimited compu-
tational resources.

2. Semantic security, meaning that we cannot make any inferences as to the nature of M
given Eg (M); thus, if M is a bit string then we cannot predict even a single bit of M.

3. Proven security, which provides a formal proof that breaking a cryptographic system
is equivalent to solving a well-defined and presumably well-understood mathematical
problem, such as factoring large integers.

4. Computational security, which refers to guarantees that a cryptographic system cannot
be broken within certain specified computational limitations.

In practice, the concrete use of such systems may determine what notion of security is
appropriate. For example, unconditional security of encryption on a smartcard may not be
attainable owing to product constraints such as limited power consumption, ease of use,
and so forth. In order to realize cryptographic systems in practice, one requires that:

16 Chapter 2. Public-Key Cryptography

* for each K in the key space K, one can efficiently create a pair of keys {(Eg, Dy) that
satisfies (2.1); and

* for each key pair (Eg. Dg), it should be easy to derive the algorithms for decrypting
and encryption with the keys Ex and Dg, respectively.!

Secret-key cryptography (SKC) schemes all rest on the principle that the key for the en-
cryption and decryption of messages is, essentially, the same. This is why such schemes
are also referred to as symmetric cryptography. An example of a symmetric scheme is the
Data Encryption Standard (DES), developed by IBM in the 1970s for unclassified gov-
ernment applications and adopted by what is now the National Institute for Standards and
Technology (NIST). Like most symmetric schemes, DES was designed to have very ef-
ficient hardware implementations; we discuss it in detail in Chapter 3. Because of their
great efficiency, symmetric schemes are the method of preferred choice if the plain-text
to be communicated is rather long, or if lots of data need to be communicated over a
given time period. A fundamental problem with such schemes is that all “friendly” agents
who want to use a secret symmetric key for successful communication need to share the
same secret key; the problem then becomes the secure distribution of this key. This is
particularly problematic when there is a need to generate such keys dynamically for each
communication session. Another crucial obstacle for using such schemes in a communi-
cation network is that, for n network users, we require a total of

n n-(n—1)
(-4

many different keys to ensure that all users can communicate securely with each other. In
practice, one may use a trusted third authority who acts as a key server and who shares a
key with each network agent. If two agents want to communicate, the authority can as-
sign a session key to the two agents in question. We study the use of trusted authorities
in the context of identification protocols in Section 4.2. This approach is problematic,
however, on large and dynamically evolving networks. Public-key cryptography (PKC)
was invented by M. Hellman and W. Diffie specifically to avoid the intrinsic problems
with key exchanges for symmetric schemes, bringing the number of required keys in (2.2)
down to the linear 2 - n. It is an asymmetric scheme because the keys for decryption and
encryption are different. Thus it becomes possible to place encryption keys into (certi-
fied) public directories, where all network users may retrieve them. In the first part of this
chapter, we sketch the idea of public-key cryptography and demonstrate that it can fulfill
functions that go beyond the mere encryption and decryption of messages — for example,
it can provide digital signatures.

The basic design proposal of PKC systems can be seen as a specification of a crypto-
graphic scheme, but its elegance and simplicity are no guarantee that it can be realized
algorithmically. Inthe second part of this chapter, we describe the RS A public-key encryp-
tion scheme (named after its inventors R. Rivest, A. Shamir, and L. Adleman). Security
products that make use of RSA — notably RSA SecurID® strong two-factor authentication
solutions and RSA BSAFE® encryption technology — are widely used in U.S. government

! This is why we often identify such keys with the corresponding algorithms.

2.1. Specification of RSA 17

institutions (e.g., the Office of the President of the United States, all U.S. Cabinet depart-
ments, the U.S. Congress, and various federal courts). This technology is also used by
financial institutions worldwide and the emerging networked electronic health-care infra-
structure to ensure authentication and encryption of online transactions and privacy. These
security components can be found in web servers and browsers, in electronic mailers, and
in some log-in protocols and electronic payment systems. These products animate Hell-
man’s and Diffie’s ideas algorithmically by making heavy and ingenious use of nontrivial
number theory. Therefore, parts of this chapter give an introduction to basic concepts of
number theory and develop the insights necessary to prove that the RSA encryption can
be realized and that its realization is a correct implementation of the public-key cryptog-
raphy scheme; we will also see why this implementation has a feasible running time. We
conclude with a general discussion on the degree of security that RSA public-key encryp-
tion may be able to offer.

2.1 SPECIFICATION OF RSA

The general idea behind public-key cryptosystems is that each participant A in a commu-
nication network with unsecure communication channels has two keys: one public key
P4 and one private key S4.> Agent A’s public key P, is freely available or may be ob-
tained from a certifying and trusted authority on demand. The agent’s private key Sj is
meant to be secret: only A knows this key, and letting others know this key will allow
them to assume A’s identity as well as decrypt all messages (if intercepted) that were ad-
dressed to A. Thus it is of paramount importance that A keep this key secret. Needless to
say, P4 and S, are different keys, so this is an example of an asymmetric scheme. These
keys transform messages, which we may think of as strings of characters over some al-
phabet (Unicode, ASCII, etc.), into cipher-text; hence they specify functions Py: P — C
and S4: C — P, representing the encryption and decryption tasks, respectively. Equa-
tion (2.1) now reads as

Sa(Pa(M)) =M (2.3)

for all messages M € P. If any agent on the network would like to send a message M
to agent A, he uses A’s public key Py to encrypt M — that is, to produce the cipher-text
P4(M) — and sends this off to agent A, who can then decrypt P4(M) by applying her pri-
vate key S, to the received cipher-text to recover the original message M. Note that this
equation also allows an intruder [to recover the original message if [manages to inter-
cept P4(M) and if I knows the private key S4. It goes without saying that the cipher-text
P4(M) should provide little insight into the nature of the original message M or the pri-
vate key S,4. Also, knowledge of the public key P4 should not allow an attacker to gain
any conclusive knowledge about the nature of agent A’s private key S4. In principle, at-
tacks based on such potential weaknesses of cryptographic systems are always possible,
so one often needs to know how much effort must be put into such attacks in order to
assess adequately the amount of protection provided by a given cryptography system.

2 We won't make explicit the dependency of Py and 8, on an actual key but emphasize instead the agent’s name: it
is understood that an agent could have different keys for different purposes or at different times.

18 Chapter 2. Public-Key Cryptography

Remark 2.2 (PKCs as Digital Signature Schemes)
If we mean to use PKCs for digital signatures, then we also may want P to equal C and

Pa(Ba(C)) =C 24

to hold for all messages C € C. The cipher-text S4(C) then can be seen as A’s signature
of C. Agent A can send S4(C) to some agent B, along with C, and B can make use of
A’s public key to verify that signature based on (2.4).

Since we mean to discuss public-key cryptography with both functionalities in mind
(i.e., secure data exchange and digital signatures), we will insist on both equations (2.3)
and (2.4). Cryptographic systems that use PKCs for both functional roles typically use
different PKCs or keys for each of these tasks. To have any hope of legally enforcing dig-
ital signatures, they must allow time-stamps, enable the exposure of fraudulent signing,
and be undeniable.

Remark 2.3 (Security Requirement for Public-Key Cryptography)
For public-key cryptographic systems we demand, for almost all choices of key pairs?
(P4, S4), that it be computationally infeasible to derive (from the public knowledge of P4)
an algorithm that is equivalent to the decryption algorithm based on Sy.

Remark 2.4 (Chosen Plain-Text Attack)
Public-key cryptography is different from symmetric-key cryptography, discussed in
Chapter 3, in two crucial ways.

1. If agent B encrypts a plain-text M with agent A’s public key P4 and afterwards “loses™
the original message M, then agent B has no means of recovering M other than asking
agent A to decrypt P4(M) for him.

2. Since public keys are public, an attacker can freely choose a plain-text M and produce
the resulting cipher-text P4(M). Thus, public-key cryptography systems are subject to
a chosen plain-text attack .

Some possible security concerns with this basic encryption scheme remain:

* one may be able to attack the cipher-text S4(M) or P4(M) in order to obtain partial
information about the private key S4 or M, respectively;

* an intruder / may gain access to A’s private key S4 by other means (e.g. blackmail);

¢ there may be a design flaw in a communication protocol that regulates and arbitrates
the secure exchange of messages on the network.

These concerns are actually shared by all cryptographic systems, not just the ones based
on public keys. We won’t say much about the first two here. The third concern we study
in detail later on, for it is mostly an issue of protocols — and their proper design and analy-
sis — and not of cryptographic schemes as such. The requirement that the secret key Su
cannot be computed from the public key P, constitutes the principal challenge that is in-
digenous to a public-key cryptography system; if this challenge is not met, then system
security will be undermined completely.

* The scheme may have some keys that are unsecure and, it is hoped. publicly known to be such.

2.1. Specification of RSA 19

Equation (2.3) prescribes that S, be a left inverse of P4. Thus the challenge lies in
finding a concrete mathematical function f that (a) implements P4, (b) can be computed
efficiently, and (c¢) has a left inverse g that implements 5S4 but cannot be computed in any
feasible amount of time, even if the function f and its implementation are fully known.
However, g should be easy to compute provided one owns secret information: the secret
key S4. In the theory of computational complexity, researchers have collected strong evi-
dence suggesting that such a computational asymmetry does indeed exist. In fact, the
RSA encryption scheme that we will discuss incorporates such a “solution™ grounded in
insights that combine classical number theory with modern complexity theory.

EXERCISES 2.1

1. LetEg(:): P — Cand Dg(-): C — P satisfy (2.1).
(a) Show that the function Ex (-): P — C is injective; that is, show for all M, M" €
‘P that the equation Eg (M) = Ex (M) implies M = M".
(b) Explain why and under which circumstances an encryption function should be
injective.
(c) Assume that P equals C and is finite. Show that Ex (Dg (C)) = C holds for all
C e (. Thus, if Dg(-) cannot be computed from Eg (-), such a scheme could be
used for digital signatures.
2. Types ofattacks Consider the following types of attacks on a key-dependent crypto-
system. The attacker attempts to recover the key. She
« possesses a sample of cipher-text (cipher-text-only attack);
* has (temporary) access to the decryption function and so can choose cipher-texts
and compute matching plain-texts (chosen cipher-text attack);
* somehow obtained a plain-text sample with a matching cipher-text (known plain-
text attack);
* has (temporary) access to the decryption function and so can choose plain-texts
and compute matching cipher-texts (chosen plain-text attack).
Which of these attacks are always possible for public-key cryptosystems? Which
ones are conceivable?

2.1.01 Digital Signatures

Most of us have to sign checks, many sign leases, and some choose to sign prenuptial
agreements. Signing a document attests at least that the signer agrees to the terms of the
contract and that the signer is identical to the person that (usually) produces this signa-
ture. The latter is often corroborated by means of additional signatures by witnesses or a
notary public. For the purpose of a contract, these additional signatures function as cer-
tificates issued by trusted authorities. With the advent of electronic commerce, electronic
cash, electronic mail, and secure transfer of network routing information, there is a press-
ing need to implement procedures that allow one to sign a document digitally. This is
quite easy to do with a PKC system satisfying (2.4). If agent A, let’s call her Alice, wants
to send a signed message M to agent B, let’s call him Bob, then she may send the pair
(M, S4(M)), encrypted with Bob’s public key, to Bob. How can Bob make sure that M
could only have been signed by Alice? He first uses his secret key to recover the pair

20 Chapter 2. Public-Key Cryptography

(M, S4(M)); then he applies Alice’s public key P, to the cipher-text S, (M), which he re-
trieves from the second component of the pair he just computed, and checks whether the
result equals the first component M of that pair. Only in that case does he accept Alice’s
signature. Otherwise, the message M was corrupted, or some key other than Alice’s pri-
vate one was used to produce the signature. Of course, this scheme works only on the
assumption that Alice’s private key S,4 is known only to Alice; it also assumes that Bob
knows that Alice sent a pair and not just one atomic message. The latter can be mod-
eled by thinking of messages as sequences of atomic messages with separators that are
discernible by Alice, Bob, and anybody else who listens to the network traffic. In prac-
tice such aspects are taken care of by communication protocols, and one uses different
schemes for the activities of signing and encryption.

EXERCISES 2.2

1. Describe how Bob can send a signed and secure message N to Alice.

2. Think of some possible scenarios in which Alice may successfully dispute that she
actually signed a message according to the protocol just discussed. What changes to
this protocol can you suggest that will make it more difficult for Alice to deny the
authenticity of her digital signature?

3. The boolean function & computes the exclusive-or of two boolean values: for v, w €
{0, 1}, we have v @ w «' 1 if and only if v £ w; otherwise, v @ w = 0.

(a) Show that (x @ v) @ v = x for all x, v € {0, 1}.

(b) Let M be astring of length n over the alphabet {0, 1}, and let K be another string
of the same length over the same alphabet. Let M @& K be the string obtained by
applying @ one character or bit at a time to M and K.

(i) Compute M @ K where M = 010001100011100 and K = 100110111101100.
(ii) Explain in what sense we may think of K as a key for encrypting messages.
(iii) How can you decrypt encrypted messages?
(iv) Could this idea be used for public-key encryption?
(v) What is your intuition about the “quality” of such a cryptographic scheme?

(c) (i) Discuss in what sense the public-key approach discussed here assumes that

agents on a network frust each other. For example, think about the link
between physical identities and their (alleged) public keys. Do your as-
sumptions depend on the agent’s being human?

(ii) Can one eliminate entirely the need for trust in public-key cryptography
schemes?

(ii1) What infrastructures can you imagine that would manage and support trust
of public keys on the Internet?

2.1.0.2 A Protocol for Secure Communication

Hash functions are, after symmetric and asymmetric encryption schemes, a third tech-
nique used in commercial encryption tools. We will describe the secure hash standard in
Chapter 3. Such functions should:

2.1. Specification of RSA 21

H1 efficiently map messages M to a “digital fingerprint™ A (M), typically much shorter
than M and of some standard length;

H2 make it impossible to use the hash 2(M) to make valid inferences about the length or
contents of the message M

H3 make it computationally infeasible, given a hash value 7 (M) but not knowing M, to
produce a message M’ with h(M") = h(M); and

H4 make it computationally infeasible to construct two messages M and M’ such that
h(M) = h(M").

Note the difference between H3 and H4. For the former, the attacker must match a
value over which she has no control, whereas in the latter case she may freely choose mes-
sages to get the desired effect. The technique of using such functions £ in applications is
often referred to as one-way encryption, since it is basically impossible to recover any in-
formation about M from the hash value (M. Two main applications of such functions
are digital fingerprints of a file's contents (to detect unauthorized modifications — e.g.,
those carried out by a malicious computer virus) and the encryption of passwords (e.g.,
the Unix operating system does not store actual passwords but rather their hash values as
computed by the crypt(-) function). It is also common to hash documents prior to signing
them, as most signing schemes require relatively short input for reasons of efficiency.

All three encryption techniques play an important role in setting up a secure communi-
cation network. One uses public-key encryption to communicate the keys for symmetric,
secret-key encryption; hash functions are used as a more efficient way of signing that mes-
sage digitally.

Protocol 2.5 (A Public-Key Communication Protocol)

Suppose that Alice wants to send a signed message m securely to Bob. If she wants to use
a more efficient symmetric key for m’s encryption, she may choose the following com-
munication protocol.

1. Alice and Bob agree on which symmetric encryption algorithm(s) and hash function
they want to use for the exchange of messages. They may also negotiate and specify
circumstances and time frames for using particular such algorithms. These activities
will be guided by additional protocols.

2. Alice generates a random symmetric key K to be used for an agreed-upon symmetric
cryptographic algorithm (e.g. Rijndael); in Chapter 3, we discuss how such a random
generation of keys can be done (you can already see such a generator in Exercise 2.7-6,
p. 33).

3. Alice encrypts m using K. We write cryptg (m) to denote the message obtained by
applying a cryptographic algorithm with the symmetric key K to message m.

4. Alice encrypts the symmetric key K using Bob’s public key Pp to obtain Pg(K).

5. As for the digital signature, Alice produces a hash /(m) of her message m and then
signs that hash value with her secret ke:y4 S, to obtain Sy(h(m)).

6. Alice sends Bob the triple

(Sa(h(m)), cryptg(m), Pg(K)).

4 In practice., agents would have a separate key pair for signing.

22 Chapter 2. Public-Key Cryptography

Alice’s beliefs: Bob’s bheliefs:
Py =Py Py =Py
(Sym = Sp) Su = 8a

Figure 2.1. Beliefs of Alice and Bob during the attack.

7. Upon receipt, Bob recovers the secret session key K by applying his private key Sp to
the third component of the received packet.

8. Using the key K’ computed in the previous step and the agreed-upon symmetric cryp-
tographic algorithm, Bob can decrypt the second component of the packet to recover
the putative original message; let us denote this result by m’. If K’ is different from K
(there may have been a transmission error, or the packet may have come from an at-
tacker who pretends to be Alice), m” will likely be gibberish and Bob may then want
to abort the protocol. Otherwise, he goes to step 9.

9. Bob uses Alice’s public key P4 torecover i(m) from the first component of the packet.
He uses the same hash function on m’ and compares i (m) with i(m"). If they coincide,
then he can be sure that this packet has been signed by Alice, that she sent message m
to him, and that the package has not been altered in transit. Otherwise, the packet was
corrupted in some way.

This protocol is already pretty complicated, and more realistic protocols are much more
complex. It is then important to analyze such protocols formally to gain a better under-
standing of the possible attacks an intruder may launch by exploiting potential weaknesses
in a protocol’s design.

Attack 2.6 (Man-in-the-Middle Attack)
For example, this protocol can be corrupted by the man-in-the-middle attack. Assume
that:

1. Mallory is another agent who can intercept and temporarily halt all communication
between Bob and Alice (we will model such capabilities formally in Section 4.5);

2. Mallory somehow manages to convince Bob that her public key, Py, is Alice’s public
key Py;

3. she also persuades Alice into thinking that Py, is really Bob’s public key Pg; and

4. she knows for which symmetric encryption algorithm Alice and Bob are exchanging
the symmetric key K. and she knows which hash function (%) Alice and Bob are using.’

See Figure 2.1 for the resulting beliefs of Alice and Bob. If Mallory succeeds in doing
and knowing all of the above, then she can launch an attack as follows:

1. The protocol proceeds as before. Alice computes and sends the same package, but now
with all occurrences of Py replaced by Py;:

(Su(h(m)). crypt g (m). Py (K)).

5 Kerckhaff's principle states that one should assume that attackers know which cryptographic systems their targets
use. It is generally wise to work under those assumptions.

2.2. A Realization of PKCs: RSA 23

2. Mallory intercepts that triple and uses her secret key S, to recover the symmetric key
K from Py (K'). Since she knows which public-domain encryption algorithm Bob and
Alice are using, she can enter the key K into this algorithm and recover the message
m from cryptg (m).

3. Mallory now uses Alice’s public key P4 to compute h(m) from S4(h(m)).

4. Since Mallory already knows m, K, and h(m), she can use Bob’s public key Py to
compute the triple

(Su(h(m)), cryptg (m), Pp(K)),

which she now sends to Bob.

5. Upon receipt, Bob proceeds with the protocol as before (after all, he is unaware of any
changes of procedure). He dutifully uses his secret key Sg to recover K and then re-
covers h(m) using what he thinks is Alice’s public key Py after computing m’ from
K and cryptg(m). he computes h(m') and compares it with i#(m). If they coincide,
then he is sure that this packet has been signed by Alice and that Alice sent the pack-
age containing message m to him. Too bad that Bob is wrong about all this, but he has
no way of realizing it!

We will return in Chapter 4 to the important topic of analyzing and verifying security pro-
tocols. By the way, itis generally not advisable to implement a digital signature scheme by
(1) hashing the message and then (ii) signing the hash value with a secret key. The prop-
erties of hash functions H1-H4 are not sufficient to provide rigorous security of signing
schemes designed in this way. We address this issue in detail in Chapter 5 in the context
of the random oracle methodology.

EXERCISE 2.3

1. (a) Discuss how realistic or unrealistic the assumptions are concerning the attacker’s
capabilities and knowledge in Attack 2.6.
(b) (i) Modify Attack 2.6 so that Mallory replaces Alice’s message with one of her
own choosing.
(ii) Explain why Bob will be unaware of this replacement.
(iii) Is Mallory capable of doing this even if Alice is offline?
(iv) If Alice signs a document for Mallory and sends it to her, can Mallory then
forward that document to Bob and say that this is a signed document from
Alice to Bob?
(c) Suppose that Alice does not sign A(m) in Protocol 2.5, so that A(m) is only used
to check that the message m has not been altered in transit. Describe the revised
protocol and sketch how Attack 2.6 changes.

2.2 A REALIZATION OF PKCs: RSA

In describing the RSA public-key encryption system, we present only how the public
and private keys of agents A are generated and how encryption and decryption works

24 Chapter 2. Public-Key Cryptography

for such keys. One may then use implementations of these tasks, along with imple-
mentations of random secret-key generation and their corresponding symmetric crypto-
graphic algorithms, to implement the communication protocols sketched here. We refer
to Chapter 5 for a practical realization of RSA. Before we present the RSA encryp-
tion scheme at a technical level, we need to discuss some elementary number-theoretic
concepts.

Definition 2.7 (Divisor)
The collection of natural numbers

1,2,3,4, ...

is denoted by N. We write Z for the set of integers:

ZE (—n,n | neNyUio).
For a, b € Z, we call a a divisor of b if and only if there is some k € Z such that b =
k - a; we write a | b in that case.

For example, 7 is a divisor of 21 (choose k to be 3), and any «a is a divisor of 0 (choose k
to be 0). Clearly, 1 and b are always divisors of b.

Definition 2.8 (Primes and Factors)
A number p € N is prime if and only if 1 and p are the only divisorsof pinN. If a e N is
a divisor of b other than 1 or b, then we call a a factor of b.

For example, the numbers 3, 17, and 1729 are prime, but 21 is not since it has 7 and 13
as factors (91 = 7 - 13). Thus, prime numbers are those natural numbers that don’t have
factors.

Definition 2.9 (Dividend and Remainder)
Givena € Z and b € N, let @ mod b, pronounced “a modulo 57, be the unique number r
that satisfies
a=r+k-b,
O=r<b
forsome k € Z; we call @ mod b the remainder for the division of a by b. We write a div b

for the unique number & satisfying a = (a mod b) + k - b and call it the dividend for the
division of a by b.

In particular, we have
a = (a mod b) + (adivb) - b.

As examples, we deduce 157 mod 23 = 19 since 157 =194+ 6-23 and 0 < 19 < 23.
Therefore, 157 div 23 = 6 because 157 = (157 mod 23) + 6 - 23. The operator mod n
has lower binding priority than arithmetic operations, so (¢ mod k) + b mod n means
((a mod k) + b) mod n.

2.2. A Realization of PKCs: RSA 25

EXERCISES 2.4

1. Explain: A number n € N is not prime if and only if it has a factor a € I such that
2<a<+n+1

2. Show that @ mod b and a div b are well-defined. That is, show that if r, " are two
numbersin {0, 1,2, ..., b—1}and k, k' € Zsuchthata = r+k-banda =r'+k'-b,
thenr = r’'and k = k' follow. (Hint: Use O = (r —r'Y+ (k= k") - b))

3. Describe and implement an algorithm that uses only addition and subtraction and
takes integers a, & in decimal representation as input and computes ¢ mod b. You
may first address this for a, b = 0.

4. Repeat the previous exercise for computing a div b.

Prove: If m|x andm |y, thenm |(r-x + 5 -y) forall r, s € Z.

6. For integers k and [such that k |/ and [| k, what can you say about the relationship

i

between k and [?

After this brief excursion into elementary number theory, we have established all the nec-
essary terminology for specifying the RSA cryptographic public-key scheme. In that PKC,
each agent A creates a public and a private key with the following protocol.

Protocol 2.10 (RSA Key Generation)

1. Agent A generates two “very large” prime numbers p and ¢; they may typically have
512 (or even more) binary digits each.

2. She computes the product n £ p - g of these two primes.

. She selects an (odd) integer e that has no common factor with p —1and g — 1.

4. She computes a number d such that 4 - e equals 1 plus an integral multiple of (p — 1) -
(g — 1.

5. She computes the pair

ld

Py = (e.n), (2.5)

Sa ¥ (d, n) (2.6)

as her public and secret RSA keys, respectively.

The RSA scheme assumes that the domain of plain-texts 7 is finite and equals the domain
of cipher-texts C. From Exercise 2.1-1(c), we therefore know that all encryption and de-
cryption functions are mathematical inverses in both directions. The domain of messages
can be identified with a subset of {0,1,2,...,n —1}. If kisin {0, 1,2, ..., n — 1} and if
[= 0, then we can compute the power k' “modulo n” by first computing k' and then re-
peatedly subtracting n from the result until we reach a number in {0, 1,2, ..., n — 1}. For
example,if n = 48, k = 3, and] = 7, thenk'requalsi%-3-3-3-3-3-3: 2187 and
the repeated subtraction of 48 results in 27. Shortly, we will learn a much more efficient
algorithm for computing k' mod n.

Definition 2.11 (RSA Encryption and Decryption)
Because a message M is an element of {0, 1, 2, ..., n — 1}, we may encrypt M by com-
puting P4(M), the result of applying A’s public key to M, as

26 Chapter 2. Public-Key Cryptography

PA(M) & M* mod n. (2.7
Similarly, agent A is able to decrypt any M, assuming that it has been encrypted with A’s
public key, through the application of A’s secret key as

Sa(M) % M7 mod n. (2.8)

This proposal may seem rather obscure. For example, it is not immediately clear whether
it guarantees that P4 and Sy satisfy equations (2.3) and (2.4). Moreover, it is not at all
clear whether large primes (and plenty of them) can be found on demand or whether the
required arithmetic can be carried out in feasible time, given the constraints on power con-
sumption and memory requirements (think smartcard) and noting the size of these prime
numbers. Finally, there is the important question about potential weaknesses of this pro-
posal — that is, whether one may launch an attack to decrypt messages, or even to retrieve
a private key. Although most of these issues can be resolved with nontrivial results from
number theory, it remains an open question whether powerful attacks on this scheme might
work for any possible implementation.

Example 2.12 (RSA Encryption at Work)

Let us examine RSA encryption and decryption at work on an unrealistically small ex-
ample. Suppose that p is 1367 and ¢ is 1999. Then the modulus n equals 2732633 and
(p—1)-(g—1)is 2729268. We choose the public key exponent e to be 1111 and compute
2206015 as the number d for which d - e equals 1 modulo (p —1) - (g — 1). The secret-key
exponent d is therefore 2206015. Let the message M be 2749352179431168947825. Since
M 1is larger than the modulus n, we may encrypt this message but we are not guaranteed
that decryption recovers the original. (Why?) Thus we divide M into blocks of numbers
that are less than n and encrypt them individually. For example, we may write

M = 2749 352179 431168 947825: (2.9)
encrypting each block separately results in the cipher-text
C = 917617 354949 613690 2318407. (2.10)

For example, 431168!"! mod 2732633 = 613690.

EXERCISES 2.5

1. RSA example lLetp=7andg = 17.
(a) Compute .
(b) Lete = 5. Compute d.
(c) Encrypt 49 and 12. Verify that the decryption of those resulting numbers recov-
ers the original ones.
(d) Decrypt 49 and 12. Verify that the encryption of those resulting numbers recov-
ers the original ones.
2. We said that the set of plain-texts equals the set of cipher-texts for the RSA cryp-
tosystem. However, can you think of some values in the message space that are
undesirable?

2.3. Generating Large Primes 27

3. Consider the RSA cryptosystem, where

p & 25525635435900842730349748303929424117,

q & 959965242284515788826732110240207250949.

(a) Compute the modulus n.
(b) Compute (p — 1) - (g — 1).
(c) Which of the two possible public-key exponents ¢ is legitimate, 3 or 317
(d) Take the one legitimate e from the previous item and compute the secret-key ex-
ponent d. If need be, use the extended Euclid algorithm of Exercise 2.19-1.
(e) Encrypt the message 19857367.
(f) Decrypt the message 27.
4. Discuss the difference between attacks that are dependent on a specific implementa-
tion of a cryptosystem and attacks that would work for all implementations.

2.3 GENERATING LARGE PRIMES

We now develop concepts and insights into the theory of numbers step by step as they are
needed for realizing and reasoning about the RSA public-key encryption scheme. First,
we demonstrate that one can efficiently generate large prime numbers.

Definition 2.13 {Complexity Bounds)

Given a real number x, we write | x] for the unique integer a satisfyinga < x < a + 1.
Let [x] be the unique integer b satisfying b — 1 < x < b. For a function f: N — N, we
define ®(f) to be a set of functions of type N — N; we have g € ®(f) if and only if
there exist positive real constants 0 < ¢; < ¢» and some ny € N suchthat0 < ¢ - f(n) <
g(n) < ¢y - f(n) holds for all n = ny,.

For example, we have [| = 3 and [7] = 4. For the function f: N — N with f(n) =
n® we have g € O(f), where g(n) = 3.75-n* + 0.56 - n> — 134.23.

Given a natural number n, we can turn the definition of prime numbers into a straight-
forward algorithm that tests whether n is prime: the only possible factors of n are in the
set {2,3.4, ..., [/n]}. so we “merely” have to see whether n has any of these numbers
as a factor. A simple test for primality of n, therefore, computes

nmod 2, nmod 3, n mod 4, ..., n mod |/

until either (a) one of these numbers is 0, in which case n has a factor and so it is not a
prime number, or (b) all numbers n mod 2 up to n mod |/n] turn out to be different from
0, in which case we know that n has no factors and so # is prime. This test is simple and
returns a definite factor of n if one exists, but its computational complexity does not scale
up to the size of numbers that are required for secure cryptographic schemes.

EXERCISES 2.6

1. (a) Show: n € N is prime if and only if all numbers

nmod 2, nmod3, ..., n mod [/n)

28 Chapter 2. Public-Key Cryptography

are different from 0. Show that if the computation of n mod k takes constant
time, then this primality test is in O (/n).

(b) Show: If n has a binary representation with f bits, then 8 equals [In(r + 1)].

(c) Show: For B and n as in (b), we have \/n € @(2#/?). Conclude that the primality
test in (a) has an exponential running time in the number of bits of n.

(d) Implement the test of part (a) and run it on small inputs of n — say, fewer than
20 digits. If your programming language has a large integer type, make use of
it and run the program with inputs of increasing numbers of digits; observe the
dramatic increase of its running time.

In the exercises, we saw that our simple primality test is correct and works well for small
numbers 5, but its running time grows exponentially with the number of bits needed
for representing n. This means that we can hardly make use of this test if n has more
than, say, 60 decimal digits. Although this test is not applicable to very large numbers,
it manages to find out whether n is prime for reasonably small values of n and it also
computes a factor of n in case that n is not prime. The question of whether there exists
an efficient algorithm of this kind that works for arbitrarily large values of n is an im-
portant open problem in computer science. There is evidence suggesting that such an
algorithm is unlikely to exist. Thus, our desire to generate large prime numbers meets
a first significant obstacle. Surprisingly, one can test for primality by (i) replacing the
trial test

n mod k = 0,

which may render an actual factor k of n, with a deeper number-theoretic test that gives
no insights into possible factors of n and then (ii) choosing a limited set of candidates &k €
{2,3,4,...,n—1} at random. Such a randomized algorithm (due to Miller and Rabin), is
developed next and presents a nice example of the computational power of randomization.
In general, randomized algorithms have many applications, ranging from combinatorics
to network algorithms for switchboards. Randomized algorithms are also an important
tool in analyzing and attacking cryptographic systems.

The algorithm Miller-Rabin(n,s) has two parameters as input: n, the number to
be tested for primality, and s, the number of tests we want to perform on n. In our simple
primality test based on “n mod k = LQ» ,this 5 is of the order | /n], so it depends exponen-
tially on the number of bits of n. This dependence is removed in the algorithm of Miller
and Rabin. The pseudo-code for the algorithm is given in Figure 2.2. The algorithm de-
pends on the following two additional programs.

* The procedure invocation Random(a , b) calls a pseudo-random generator that returns
a random integer in the interval [a, b]. We assume the existence of a “good™ random
number generator and present criteria for evaluating the quality of such generators in
Chapter 3.

* The program Witness(a,n) returns the boolean value true if a provides conclusive
evidence that n is not prime; it replaces the test “n mod a = L 0 of the naive “sieve” al-
gorithm. If one of the calls Witness (a,n) returns true,thenMiller-Rabin(n,s)

2.3. Generating Large Primes 29

Miller-Rabin(BigInteger n, int s) { // returns ‘‘true’’ or ‘‘false’’
// tests whether n is prime;
// if it returns ‘‘false’’, then n is not prime;
// if it returns ‘‘true’’, then n is prime
// with probability at least 1 - 2 #* (-s).
BigInteger a;
for (int i = 1; i <= g; ++i) {
a = Random(2,n-1);
if Witness(a,n) return false;

¥

return true,

}
Figure 2.2. Pseudo-code for the primality testing algorithm of Miller and Rabin.

terminates by replying with false, saying that n is definitely not prime. Otherwise,
the for-statement performs all s tests and all these tests are negative. The call Miller-
Rabin(n,s) then concludes with true, “guessing” that n is prime.

In designing the program Witness(n, s),it will became apparent that its true replies
are always correct. Thus, if the Miller—Rabin algorithm replies with false, then n is in-
deed not a prime number. Hence, the tricky question is whether this algorithm might
return true even though n is not prime. This is indeed possible, but we will prove a re-
assuring upper bound on the probability of such a flawed reply.

The pseudo-code for the program Witness(a,n) is given in Figure 2.3. This code
bears little resemblance to the code one would write based on the test “n mod a s 0,
which decides whether a is a factor of n. The correctness of the program Witness(a,n)
relies on nontrivial number theory. Our first goal is to show that n is not a prime number
whenever a call Witness(a,n) returns true. Yet this will not imply that a is a factor
of n. Such a positive reply puts us in the strange position of knowing for certain that n is
not prime but not knowing any of its factors. Inspecting the control flow of the program
Witness(a,n),we see only two program points where a return with value true occurs.

11: Within the for-statement: if t = 1, x # 1, and x # rn — 1 hold, then this results in an
immediate return to Miller-Rabin(n,s) with value true.

12: The for-statement terminates without a premature internal return, reaches location
12, and t does then not equal 1, causing a return of the call Miller-Rabin(n,s)
with value true as well.

Therefore, it suffices to show that n is not prime whenever the control flow of the pro-
gram Witness(a,n) reaches one of these two locations and their respective conditions
are true. The correctness proof of this claim can thus be given by:

(cl) noting thatt = x2 mod n at location 11;

(c2) proving that if x> mod n = 1 for x # l and x % n — 1, then n cannot be prime;

(c3) showing that the value of t at location 12 is a"~' mod n; and

(c4) demonstrating that n cannot be prime if @" ! mod n # 1foranya e Nwith2 < a <
n—1.

30 Chapter 2. Public-Key Cryptography

Witness(BigInteger a, Biglnteger n) {
// returns ‘‘true’’ if a is a witness for n not being prime;
// otherwise, it returns ‘‘false’’;
// the array b stores the binary representation of n - 1;
// and b[k] is the most significant bit,
// k being a global variable determined by n
int[] b;
Biglnteger x;
Biglnteger t = 1; // test value
for (int i = k; i >= 0; ——1i) {
x=t;
t = (t * t) mod n;

11: if (t == 1 &k x '= 1 & x '= n - 1) return true;
if (b[i] == 1) t = (t #* a) mod n;
}
12: if (t !'= 1) { return true; } else { return false; }
}

Figure 2.3. Pseudo-code for the witness function used in the Miller—Rabin
algorithm. If Witness(a,n) returns true, then a is conclusive evidence
that n is not prime.

This proof strategy mirrors the intent of the algorithm Witness(a,n): its global con-
cern is to compute a"~! mod n and then check whether this equals 1, but on the fly it
keeps track of potential nontrivial “square roots of 17 modulo n, which provide another
means of proving the nonprimeness of 7. We begin with showing (cl) and (c3), which
are merely claims about the program’s control flow. For (c1), note that the two statements
immediately preceding location 11 are two assignment statements: first, x is assigned
the current value of t, then t is assigned the value > mod n. Since there are no other
jumps to 11, x = ¢*> mod n holds at location 11. As for (c3), this is a bit harder to
realize.

2.3.1 Iterative Squaring

Our claim in (c3) is that f = a”"~! mod n holds at location 12. Because we assume that
we’ll reach that location, we may ignore the if-statement at location 11. Similarly, we
may ignore the assignment x = f; since a and n are never modified therein and since
t does not depend on x. Thus for the purpose of reasoning about (c3), we may “slice”
Witness(a,n) to obtain the more compact program given in Figure 2.4. To see that
this sliced program works as expected, we need to understand the essence of its for-
statement. This can be done by finding a suitable invariant, a property that (i) depends
on the number of iterations, (ii) holds before and after each iteration, and (iii) implies
the property we are interested in after (and if) the loop terminates. A candidate invari-
ant is that the value of 7 is @* mod n, where s is the natural number corresponding to
the binary representation b[k]b[k — 1] ... b[i]. If this is true, then the value of r at loca-
tion 12 is a"~! mod n, since then the value of i is 0 and so s is the number represented
by b[k1b[k — 1]... b[0], which is n — 1. To study this claim, it is useful to enrich our
code with computation over an ancillary variable s, although s does not contribute to

2.3. Generating Large Primes 31

Witness(BigInteger a, Biglnteger n) { // sliced
int[] b;
BigInteger t = 1; // test value
for (int i = k; i >= 0; --1) {
t = (t * t) mod n;
if (b[i] == 1) { £t = (t * a) mod n; }
}
}

Figure 2.4. Pseudo-code of the witness function, “sliced™ with
respect to the behavior of the variable r.

Witness(BigInteger a, Biglnteger n) { // sliced, plus ancillary variable s
int[] b;
int s = 0; // variable for invariant behavior
Biglnteger t = 1; // test value
for (int i = k; i »>= 0; --1) {
s =2 % 35;
t = (t * t) mod n;
if (b[i] == 1) { s =8 + 1;
t = (t * a) mod n;
}
}
}

Figure 2.5. The sliced version of the witness function with an ancillary variable that aids in
illustrating an invariant.

computing the value of ¢ at all. This pseudo-code is depicted in Figure 2.5. The candi-
date invariant can now be stated as: *“The value of 5 equals the decimal value of the binary
representation

blklblk — 1] ... b[i],

and the value of ¢ equals a® mod n after each iteration of the for-statement™.
After careful inspection of the body of the for-statement, we conclude that each itera-
tion of the for-statement transforms ¢ according to the identities

2 mod n = (+*)? mod n, 21
t2* " mod n = (¢*)* - @ mod n. @

The program Witness(a,n) simply turns these equations into iterative computations.
If b[i] has value O (i.e., if s is even), then there is only one assignment to t — namely,
t = (t * t) mod n; —having the effect of the first equation. If s is odd then there is
a subsequent assignment t = (t * a) mod n; — so its net effect reflects the second
equation. In the exercises, you are asked to prove that our candidate invariant is indeed
an invariant and that the equations in (2.11) are valid.

The technique employed in computing @"~' mod n is called iterative squaring, mo-
tivated by the equations in (2.11), and is often used to make iterative computation over

32

Chapter 2. Public-Key Cryptography

integers (or exponentiation in any mathematical group; see Definition 2.18, p. 36) more

efficient.

Example 2.14
To compute 3% mod 23, note that the binary representation of 22 is 10110. Hence 3?2 mod
23 may be written as

(1% -3)H%-3)2-3)%

Observe that this expression suggests the manner in which the program execution of

Witness(a,n) will compute this. From Exercise 2.7-2, we infer that

32

2= ((((17 - 3)»?%-3)>- 3)> mod 23

= (((3%H%-3)%-3)2 mod 23
= ((81-3)% - 3)2 mod 23

= ((12-3)*- 3)®> mod 23

= (362 - 3)” mod 23

= (132 -3)? mod 23

= (169 - 3)> mod 23

= (8 -3)? mod 23

= 24% mod 23

=12 mod 23

= 1 mod 23. (2.12)

This computation is an instance of a’ ' mod p, where p is prime and a # 0 mod p.
Later on, we see that all such expressions evaluate to 1.

EXERCISES 2.7

1.

Prove formally that our candidate invariant is an actual invariant for the for-statement
in the sliced program Witness(a,n) in Figure 2.5. If you know about program
logics, you may use one; otherwise, use a proof by mathematical induction on the
value of 1.

. Letn e Mand x, y € Z. Prove:

(a) (x + y) mod n = (x mod n) + (y mod 1) mod n;

(b) (x-y)modn = (x mod n) - (y mod n) mod n; and

(c) x' mod n = (x mod n)" mod n for all r € .

Prove the two equations in (2.11), using the facts of the previous exercise.

. Implement the algorithm Miller-Rabin(n,s) in a programming language of your

choice. Why did we not write a = Random(1,n-1) in Figure 2.27

. Generating primes with specific properties Often, one wants to generate primes

with some specific properties. For example, you are asked to generate two large
primes p and ¢ such that:

2.3. Generating Large Primes 33

(a) the primes p and ¢ differ in length by only a few binary digits;

(b) the numbers p — 1 and ¢ — 1 contain large prime factors; and

(c) the greatest common divisor (see Definition 2.22) of p — 1 and g — 1 is small.
Add another layer to your implementation of generating p and g that realizes these
three conditions (the first and third conditions are easily checked). For the second
condition, generate a large prime p' and then test the numbers p’ + 1, 2 - p" + 1,
3. p'+1, ...in sequence for primality. Choose p as the first one that Miller-Rabin
classifies as a prime number. Do the same for ¢.

6. Pseudo-random numbers Use an implementation of the Miller—Rabin algorithm
and the technique of iterative squaring to implement the pseudo-random number gen-
erator due to M. Blum and S. Micali. (Note that the Miller—Rabin algorithm already
relies on some pseudo-random number generator.) The algorithm of Blum and Mi-
cali outputs a sequence bob, b, ... of pseudo-random bits. Let g be a prime number:
it may be even,orsmall (e.g.2). Use Miller-Rabin(n,s) to generate a large prime
p, large and “secure” enough so that computing x; from x;,; in (2.13) is computa-
tionally hard; for example, p could be of the form 2- ¢ + 1, where ¢ is prime as well.
(How can you ensure that p has such a form?) The algorithm takes as further input
akey xp € Nsuch that | < xy < p. Compute

X

mod p (2.13)

Xitl o 8
foralli =0, 1,2, ... up to some implementation-specific bound, or implement this
program with a “button™ such that each mouse click on that button produces the next
pseudo-random bit in the sequence. Let b; be 1 if x; < (p — 1)/2; otherwise, set
b 0.

7. Primality testing Consider the infinite list of natural numbers, where the first ele-
ment of that list is 12 and the next list element, as a string, is the concatenation of the
previous number-string with a digit &, where d is e + 1 mod 10 and e is the rightmost
digit of the previous number. Thus the list begins as

[12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789,
1234567890, 12345678901, 123456789012, ...].

(a) How many probable primes can you find in this list?

(b) For which numbers in that list can you say, with absolute certainty, that they are
not prime?

(c) For which numbers in that list can you find actual factors?

(d) What is the largest number in that list for which you can find all of its factors?®

8. Pseudo-random numbers L.Blum, M. Blum, and M. Shub designed a more effi-

cient pseudo-random number generator with the additional property that the ith bit

b; can be computed “directly” from i and the seed x;. Use Miller-Rabin(n,s) to

implement it as follows.

(a) Generate two large prime numbers, p and ¢, such that p = 3 mod 4 and ¢ =
3 mod 4. (Which is more efficient to perform first: the test of whether p is prime,
or the test of whether p and ¢ both equal 3 mod 47)

% You may want to make use of the fact that some of these numbers are defined “recursively” in terms of smaller
numbers in that list.

34 Chapter 2. Public-Key Cryptography

(b) Compute n ef p - q; such an n, with p and ¢ as in (a), is called a Blum integer.

(c) Choose a random integer x € Z such that x has no common factor with n; note
that this choice also depends on a pseudo-random generator — say, the one that
Miller-Rabin(n,s) uses.

(d) Compute the seed xg = x? mod n for the pseudo-random number generator to
be constructed.

(e) The ith bit b; of the new pseudo-random output sequence is the least significant
bit of x;, where

X; & x,—2_1 mod n (2.14)

forall i e M.

(f) Assume that

X, = x{l;'m"d(P_;)'(q_l) mod n 215
for all i € M. (The mathematics required for showing this will be addressed in
Exercise 2.11-12, p. 42.) The user of your algorithm should be able to choose
whether the sequence is generated based on definition (2.14) or (2.15). Compare
the efficiency of these versions.

Not only is this generator useful — since it allows us to compute the ith bit without
having computed the previous bits of the sequence — it also has the pleasant property
that the generated sequence is unpredictable to the left and right: one cannot predict
the bit to the left (or right) of a given bit in the sequence.

9. Blum—Goldwasser PKC We refer to the notation and concepts of the previous ex-
ercise to implement a public-key cryptosystem (due to M. Blum and S. Goldwasser)
which requires computational resources comparable to those of RSA” but which, un-
like RSA | has the security feature that the encryption algorithm is not deterministic ®
For two large Blum integers p and g (see the previous exercise), we let their product
n = p - g be the public key. Messages are bit strings M of length / € M. Your im-
plementation should allow for changing the parameters p, ¢, and /. Please reuse (or
adapt) software that you have written for earlier exercises as you see fit.

(a) Implement the encryption of /-bit messages M, given a public keyn = p - g:
(i) randomly select a nonzero x € Z,,;
(ii) compute the x; fori = 0,1, ...,! + | as in the previous exercise, where b;
is the least significant bit of x;;
(iii) let the encrypted text be the pair (x;,,, C), where C is the bitwise exclu-
sive-or of M and the string by b, ... b;.
(b) Implement the decryption component as follows.
(i) Compute the *“private” key

d =27 mod (p—1) - (g — 1).

(ii) Given a cipher-text {x’, C}), where x" € Z,, and C is a binary word of length
I, we think of x" as the seed and compute the sequence

7 However. it uses the RSA encryption function more than once for a single encryption operation.
¥ That is to say, if we encrypt the same message twice, the results will differ.

2.3. Generating Large Primes 35

def
Xy = (x4 mod n,

Xiy1 - (x/)* mod n
accordingly fori =0, 1, ...,/ —1. Letting b; be the least significant bit of x/,
the decrypted text is the bitwise exclusive-or of C and the string b b5 ... b;.

(c) Prove that this scheme is sound using equation (2.15), and explain why all its
components have efficient implementations.

(d) Do you have to recompute ¢ for handling a new message?

(e) Does the security of this public-key cryptosystem depend on the size of [or n?

(f) Experiment with various choices of [and study the performance of this crypto-
system as a function of /.

(g) What does or should your implementation do if x" = 0 mod n?

(h) Suppose that we change all preceding occurrences of [+ 1 to [. Could you still
prove soundness? Could you still guarantee the security of the cryptosystem?

(i) Can an attacker launch a chosen plain-text attack if she knows only the public
key?

(j) How often does a single encryption or decryption operation require a call to the
underlying RSA function for modular exponentiation? Thinking of this opera-
tion as the performance bottleneck, what do your findings say about the efficiency
of this PKC?

2.3.2 Cormrectness of Witness(a,n)

2.3.21 Fermat'sTheorem

In demonstrating the correctness of Witness(a,n), it remains to prove (c2) and (c4)
from page 29. We consider (c4) first. Since the value of @ is chosen at random from
{2,3,...,n — 1}, it could be any one of them, so we need to show that a" 'modn =1
for all such a if n is prime. This is known as Fermat’s theorem.

Theorem 215 (Fermat'sTheorem)
Let p € N be a prime number. Then a? ' mod p =1 forallac{1,2,..., p —1}.

Itis advantageous to couch this proof — sketched in Exercise 2.11-10 (p. 42) — in the general
framework of basic group theory. That way we may also apply group-theoretic techniques
for subsequent correctness arguments. Before we define groups in full generality, let us
introduce an important example of a group.

Definition 2.16 {Congruence Modulo n)
For n € N, we define a binary relation =, over the domain of integers. For x, y € Z, the
relation x =, y holds if and only if

x—ymodn =0.

In that case, we say that x and y are congruent modulo n. Moreover, define [x], to be the
set of all y € Z with x =, y.

36 Chapter 2. Public-Key Cryptography

For example, 13 =4 21 and 5 =5 2 hold, but 7 =5 16 does not because 7 — 16 mod 5 =
4. The class [—2]s equals {..., —12, -7, =2,3,8.13, ...}

EXERCISES 2.8

1. Show that =, is an equivalence relation for each n € M. That is, show that =, is
(a) reflexive: x =, x forall x € Z;
(b) symmetric: x =, y implies y =, x forall x, y € Z; and
(c) transitive: x =, yand y =, zimply x =, z forall x, y,z € Z.
2. (a) Show that Z is the disjoint union of sets [x],,, where x ranges over Z. Thus you
need to show that Z is the union of such sets and that [x],, and [x"], are either
the same or have empty intersection for any x, x" € Z.
(b) Show that there are exactly n different such classes [x],.

Definition 2.17 (Z, as a Group)
Let Z, be the set {[x],, | x € Z}. We define addition and multiplication on Z,, by

[xTn +a Y] =[x 4 ¥ (2.16)
[T 0[]0 = [x %], (2.17)

By the previous exercise, the set Z,, has n elements. For example, we have [5]747[2]7 =
[5+4+2]7 =[0]7 and [5]7 %7 [2]7 = [5-2]7 = [3]5, since 5-2 = 3 mod 7.

EXERCISES 2.9

1. Show that the operation +,,: Z, x %, — Z, is well-defined. That is, show that if
x" =, x and y' =, vy then the classes [x + v], and [x" + y'], are the same.

2. Show that the operation *,,: Z, x Z, — Z, is well-defined. That is, if x" =, x and
v’ =, v, then the classes [x - y],, and [x"- y'], are the same.

3. Is 3 a member of [12];5 +3 [17]13?

4. Is 5 a member of [41]7 %+ [6]77

The addition operation +, on Z, makes this set a finite, commutative group.

Definition 2.18 (Groups)
A group is atriple (G, o, e}, where G isaset,eisanelementof G,ando: G X G — G
is a function that satisfies the following.

1. ois associative: x o (yoz) = (xoy)ozforallx,y.zeG.?
2. eis a two-sided identity for o, sox ce = ecox = x forall x € G.

¥ Asis customary, we write o in infix notation: x = y instead of =(x, v}.

2.3. Generating Large Primes 37

3. Each element has an inverse: forany x € G, thereisa ysuchthatx oy = yox = ¢;
we call such a y an inverse of x.

We call a group finite if and only if the set G is finite. We call a group commutative if
andonlyifxcy=yoxforallx,yegG.

There is an abundance of groups that are used in mathematics, physics, and even com-
puter science. Our main interest lies in two families of finite, commutative groups based
on the operations +,, and *, on Z, (respectively) ranging over n € M. The proof of Fer-
mat’s theorem makes instrumental use of a group structure on those elements of Z,, that
have a multiplicative inverse.

Definition 2.19 (Units)
Letn € M. An element [a], € Z,, is called a unit if there exists some x € Z such that

[al, *, [x], = [1],.

Let Z7 be the set of all units in Z,,.

Note that [0],, is not in Z,, but [1], is in Z}, for any n € N. More concretely, [3]7 is a unit
because [3]7 %7 [5]7 =[3-5]7 = [1]7 since 3-5 = 1 mod 7. However, [2]; 1s nof a unit,
as [2]g *6 [x]6 = [1]¢ implies 2 - x = 1 mod 6, which is impossible for any x € Z.

Proposition 2.20

Letn € N. Then (Z,, +,. [0],) and (Z7, *,, [1],) are finite, commutative groups.
Proof We relegate the proof for (Z,,. +,. [0],) to Exercise 2.10-4(b). As for (Z%, *,,
[1],), the class [1], is in Z% and serves as a two-sided identity with respect to #,,. Also, Z7
1s finite because it is contained in the finite set 7Z,. Observe that *, is an associative and
commutative operation on the entire set Z,,. Next we argue that Z is closed under the op-
eration x, of type Z, x Z,, — Z,. Thatis, if [a], and [b], are in Z} , we need to show that
[al, *, [b], 18 in Z as well. By definition, there exist x, y € Z such that [a], *, [x], =
[x], %, (@], = [1], and [B], *, [¥]n = [¥]n #, [B], = [1],, fOr *, is commutative. Using
these equations, along with the fact that #,, is associative and commutative on Z,,, we con-
clude that ([a],, *, [b],) *, ([¥]a %, [x]4) = [1], and ([¥], *, [x],) %, ([al, *, [D]0) =
[1],. Thus, if we restrict the associative and commutative operation *, to the set Z7 of
units, then that operation is certainly still associative and commutative, but all units also
have an inverse with respect to the two-sided identity [1],,. In summary, (Z7, *,, [1],) 18

a finite, commutative group. O

Proposition 2.21 (Unique Inverses)
In any group (G, o, e), the inverses of group elements x € G are unigue, so we may denote
the unique inverse of x as x~'. Moreover, for all x, y € G, we have

(xoy) =y lox L (2.18)

38 Chapter 2. Public-Key Cryptography

Proof This is the content of Exercise 2.10-5. O

Note in particular that the inverses of units in Z7, are unique, since this is the case in any
group. For example, the inverse of [3]; in Z% is [5]7, as 3-5 = 1 mod 7.

EXERCISES 2.10

1. Explain in detail why [2]g is not a unit.
2. Recall the definition of x @y, the exclusive-or of x and y, from Exercise 2.2-3 (p. 20).
Show that

x®dy=x+ymod?2

forall x, y € {0, 1}.

3. Show that [160]g4; is a unitin Z},, by computing an x € Z with 160 -x = 1 mod 841.
(Hint: Use the algorithm Extended_Euclid from Exercise 2.19-1, p. 60.)

4. Show that the following are groups.

(a) (S,, D, 6) , where S, is the set of binary strings of length n, & is the exclusive-or
operation applied bitwise on such words, and 0 is the string of 0s of length n.
Can you use the fact of Exercise 2 for a quick argument that the operation ¢ must
be associative?

(6) (Zoy, +n, [01).

(c) (Z, +,0). For which value of n does this “follow™ from the previous item?

(d) (G, o, e), where
* G is the set of functions f: § — §, over some set S, that have a mathematical

inverse f': § — S,
* f o g is the function that maps all s € § to f(g(s)), and
* ¢ is the function that leaves all s € § fixed.

(e) Which of the groups in (a)—(d) are finite? Which ones are commutative?

5. (a) Show that inverses in groups are unique. Thatis,if xocy = yox = eandxoy’ =
v'ox = e, then y = y'. Make sure that you indicate clearly which properties of
groups your argument uses and at which points.

(b) Use the previous item to show (2.18).

6. Show that e is the only two-sided identity in a group {G, o,).

7. Explain why the following data are not sufficient for obtaining a group and explain in
which cases you may complete the given data to obtain a group; otherwise, explain
why no group could result from the given data.

(a) Consider the set of finite binary strings with the operation x o y .

(b) Consider the set of injective functions f: N — N, that is, functions satisfying

f(x) = f(y)implies x = y forall x, y € ¥,

Let e be the function e(rn) “ forall n € M. Define [o g to be the function that
maps i to f(g(n)) forall n € N.

(c) Consider the set of finite binary strings, let e be the empty string of length (1, and
define x oy to be the bitwise merge of x and y. Forexample, ayarazaqascob bobs
equals abiarb-asbiagas.

2.3. Generating Large Primes 39

2.3.2.2 Greatest Common Divisor

In order to prove Fermat’s theorem, we need to know the size of the group Z7, for prime
numbers p. The greatest common divisor of two integers is a tool that allows us to deter-
mine that Zj; has p — 1 elements.

Definition 2.22 (Greatest Common Divisor)

Let x, y € Z. The greatest common divisor of x and y, written gcd(x, y), is the greatest
integer that is a divisor of both x and y — unless x or y is 0, in which case ged(x, y) is
defined as the maximum of the absolute values of x and y.

It is intuitively clear that we have defined a function
ged: Z x Z — NU{0}.

For example, ged(770, —42) = 14 and gcd(—3, 0) = 3. The greatest common divisor has
the following important characterization.

Proposition 2.23 (Linear Representation of the gcd)
Let x, y € Z\ {0}.1° Then gcd(x, y) is the smallest positive element of the set

{r-x+s5s-y|rseZ}

of integral linear combinations of x and .

Proof 1tis clear that there exists a smallest positive element m of the formr - x + 5 -y
forsome r, s € Z, since every nonempty subset of I has a smallest element. We compute

xmod m=x—m-(xdivm)
=x—(r-x+s5-vy) (xdivm)
=(1—(xdivmm)-r)-x+ ((xdivin) - (—5)) - ¥ (2.19)

and so realize x mod m as a linear combination of x and y. But then 0 < x mod m <
m, together with the fact that m is the minimal positive such linear combination, implies
x mod m = 0. Therefore m | x, and we can argue similarly that m | y. Since ged(x, y)
is the greatest common divisor of x and y, we obtain m < gcd(x, v). For the reverse in-
equality note that ged(x, y) |m, since ged(x, y) is adivisor of x and y and since m is an
integral linear combination of these two natural numbers (see Exercise 2.4-5, p. 25). But
then ged(x, ¥) < m is clear, as ged(x, y) and m are nonnegative. O

For example, gcd (60, 21) = 3 and 3 = (—1) - 60 + 3 - 21. Any other such integral combi-
nation of 60 and 21 is either bigger than 3 or nonpositive.

Definition 2.24 (Euler's Totient Function)
Let ¢p(n) be the number of elements of the finite group (Z7, *,, [1],).

10 Bor sets § and T, we write §\ T for the set that contains all elements of S that are not in T'.

40 Chapter 2. Public-Key Cryptography

Example 2.25
For n = 12, we find that [1]12, [5]i2, [7]i2, and [11];2 are the only units. Therefore,
¢(12) = 4.

Proposition 2.26 (Characterization of Units)
Letn e Nanda € Z. Then [a], € Z7, if and only if ged(a, n) = 1.

Proof

1. Let [a], € Z7. Then there exists some x € Z such that [a], *, [x], = [1],, mean-
ing that @ - x = 1 mod n. Hence there exists a k € Z withx - @ + (—=k) - n = 1. By
Proposition 2.23, we infer that ged(a, n) = 1, for 1 is the smallest positive integer.

2. Conversely, let ged(a’, n) = 1. By Proposition 2.23, there exist integers r, s € Z such
thatr -a’+s-n = 1. Butthen [a'], *, [r], = [a@' - r + 5 - n], = [1], implies that
[a']l, € Z;,. O

With this result, we may list the elements of Z7, for “small” values of n. For example, if
n = 8 then Z§ is {[1]s. [3]s, [5]s. [7]s}, since 1, 3, 5, and 7 are the only numbers a in
{L.2,..., 7} with gcd(a. 8) = 1. Thus ¢ (8) = 4. With some computational effort, we can
conclude that

¢ (394856) = 153600.

Corollary 2.27
If nis prime, then ¢(n) =n — 1.

Proof This follows from the previous proposition, because each a from the set {1, 2, .. .,
p — 1} satisfies ged(a, p) = 1 since p is prime.]

Proposition 2.28
Let p and g be primes greater than 1. Then

¢p(p-q)=(p—D-(@—1D.
Proof This is to be shown in Exercise 2.11-12(a) (p. 42). O

Note that the last proposition does not generalize in this manner to more than two prime
factors, but one can still compute ¢ () if one knows all prime factors of n and how often
they occur therein. See Exercise 2.21-5 (p. 68). Observe further that ¢(p - g) is used in
the computation of the RSA secret key.

Subgroups of a group are essentially subsets that are closed under all group operations.
The group structure puts severe limitations on the size of subgroups, for they must be di-
visors of the group’s size.

Definition 2.29 (Subgroups)
A subgroup of a group (G, o, e} is a subset S of G such that:

2.3. Generating Large Primes 41

l.ecs§;
2. {sot|s,teS}C S and
3. {s7!|seS}Cs.

Thus, subgroups are subsets of groups which contain the group’s two-sided identity ele-
ment and which are closed under group multiplication and the computation of inverses.
This allows us to refer to subgroups as mere sets, provided that they actually are sub-
groups! For example, the nonzero rational numbers form a subgroup of the nonzero real
numbers, where group multiplication is the usual multiplication of real numbers and where
the two-sided identity is 1. The set of even integers forms a subgroup of the group of inte-
gers, where group multiplication is the usual addition of numbers and where the two-sided
identity is 0.

Theorem 2.30 (Lagrange’s Theorem)
Let H be a subgroup of G. Then |H|, the size of H, is a divisor of |G|, the size of G.

Proof See Exercise 2.11-4. O

We prove Fermat’s theorem by applying Lagrange’s theorem to the group (Z;, *p, [1]n),
noting that subsets of groups generate subgroups in a unique manner.

Definition 2.31 (Generated Subgroup)
Let T be a subset of a group (G, o, e). We write (T') for the smallest subgroup of G that
contains T. If T = {g} for some g € G, we write (g} instead of ({g}).

For example, {2} generates the subgroup of even numbers in {Z, +, 0}, and [3]7 generates
the entire group Z% in (Z%, *7, [1]7): please verify this.

EXERCISES 2.11

1. Write a program that uses Proposition 2.26 to compute ¢ (n) for “small” values of n.
2. Prove:
(a) If A is a subset of S, then |A| < |5].
(b) For any subset A of §, we have |§| = |A| +|S\ A|, where § \ A is the set of all
elements of S that are not in A.
(c) For any subsets A and B of §, let A N B be their intersection and A U B their
union; then

|A| +|B| =|AN B| +|AU B|. (2.20)

3. Let (G, o, e) be a group and let H be a nonempty subset of G. Show that H is a sub-
group of G ifand only ifa o ™' € H foralla, be H.
4. Lagrange’s theorem Prove Lagrange’s theorem. For each ¢ € G, define the set

aH ¥ {aoh | heH).

Show the following.

42

Chapter 2. Public-Key Cryptography

(a) The set G is the union of all sets aH, where a ranges over G.

(b) Fora, b e G, if the sets aH and bH have a nonempty intersection then they are
equal.

(c¢) Fora,b € G, the sets aH and bH are of the same size. (Hint: Consider the
function f: aH — bH with f(a o h) ' pohand argue that f has an inverse.)

(d) Use (a)—(c) to prove Lagrange’s theorem.

(e) What is the equivalence relation R that corresponds to this partition? That is, can
you define when aff = bH holds based on an equation in the group in terms of
a and b?

. Prime factorization Prove that every n € ¥ has a unique factorization

n=py-ps-pt (2.21)

where the p; are prime numbers in increasing order and o; € . (Hint: Use mathe-
matical induction on n. In the inductive step, argue by cases: what if n + 1 is prime;
what if it 1sn’t?)

. Infinitely many prime numbers Prove: There are infinitely many prime numbers.

(Hint: Show that, for any n € N, there is a prime number p such thatn < p <1-2-
3o--(n=1D-n+1)

. Let H; be a subgroup of G for all i € I. Show that the intersection of all these sub-

groups, [),., H;, is also a subgroup of G.

. Show: For g € G, the subgroup (g} of a group (G, o, ¢} is commutative. (Is it always

10.

11.

12.

finite?)

Let T be a subset of a group {G, <, ¢). Show that (T} equals the intersection of all
subgroups of G that contain 7. Thus, (7'} in Definition 2.31 is indeed well-defined.
Fermat’s theorem Prove Fermat’s theorem (Theorem 2.15). Consider the group
(Z*, s [1]).-

(a) Show that

([aEn) = {[IEH}U {[amEn | m e N}

for any [a], € Z7.

(b) For a € Z with gcd(a, n) = 1, argue that there must exist a smallest number / in
{0} U N such that [a'], = [1],.

(c) Use Lagrange’s theorem to conclude that there exists some k € I such that

k-l =¢(n)

for the minimal [of part (b).

(d) Use Corollary 2.27 and the equation k - [= ¢ (p) to show that [a*’"llp = [1],.
Explain why this proves Fermat’s theorem.

Euler’s theorem Generalize the proof of Fermat’s theorem appropriately to prove

Euler’s theorem: For any n > 1, the number @' mod n equals 1 for all @ such that

lal, € Z},.

Let p and g be prime numbers.

(a) Prove thatp(p-q)=(p—1)-(g — 1).

(b) Letn o p-g and x € Z. Define x, ' 2 mod n and Xi+1 = x; mod n for all
i =0.

2.3. Generating Large Primes 43

(1) Use mathematical induction on i to show that x; = x(";j mod .

(11) Use the facts from Exercises 11 and 12(a) to show that xﬁi mod n = xﬁ” mod

n, where
o;=2"mod (p—1) (g —1).

(i11) Conclude that x; = xf,” mod n forall i = 0.

2.3.2.3 Sqguare Roots of 1

In Exercise 2.11-10 we were able to prove Fermat’s theorem, which addresses the correct-
ness criterion (c4) for Witness(a,n) to our complete satisfaction. Thus we have only
to deal with (c2) to guarantee that all true replies of Witness (a,n) are correct. Recall
what (c2) claims: “If x 2 mod n = 1for x different from 1 and n — 1 modulo n, then n cannot
be prime.” This is what we now prove. Again, we prove the contrapositive of this claim.

Theorem 2.32 (Square Roots of 1)
Let p > | be a prime number and let x € {1,2, ..., p — 1} be such that x> mod p = 1.
Then x equals 1 or p — 1.

Evidently, a proof of this theorem requires that we be able to compute “square roots mod-
ulo n”. This can be done quite easily when the group (Z7, %, [1],) is generated by a
single element.

Definition 2.33 (Primitive Roots)
Letn € N. An element g € Z is a primitive root for Z;, if and only if

* [gl, € Z} and
* the subgroup generated by [g], in Z} equals Z7 .

se, gi X]y i , iSts a minimé i
In that case, given an in Z7, we know that there exists a minimal number ¢ in

N U {0} such that [x], = [g"].. by the definition of s,. We call ¢ the logarithm of x in
Z,, with respect to the primitive root g as a base, and we denote 7 as log,, ,,(x).

For example, 2 is a primitive root for Zj,. To compute the logarithm of [3];;, you may
verify that [3]; = [28]4; and [3]1; # [2¢]y for any 0 = d < 8. Therefore,log{u_m(E) =
8. The presence of a primitive root in Z7 allows us to “take logarithms”. More precisely,
we may switch from reasoning within the multiplicative group (Z7 , *,, [1],) to reasoning
within the additive group (Zg), *¢n), [0]gn))-

EXERCISES 2.12

1. Verify that 2 is a primitive root for Z7,.

2. Compute all primitive roots g for Z]; with0 < g < 11.

3. Determine the smallest positive primitive root g for Z7; and compute log 5 ,(x) for
allx e{1,2,3,...,12}.

44 Chapter 2. Public-Key Cryptography

4. Find the smallest value of n = 2 such that Z* has no primitive root.

5. Computing primitive roots In this problem you may use two mathematical facts
that are demonstrated in the Appendix of this text. First, the proof of Theorem A .20
(p. 268) reveals that if g is a primitive root for Z;z then it is also a primitive root for
Z‘;k, where k is any natural number greater than 2. Second, Theorem A .16 (p. 267)
says that if g is a primitive root for Z, then g or g+ p is a primitive root for Z‘;E M Use
these facts to compute a primitive root for Z7, where n equals 31920079960009999.

6. (a) Give an upper bound on how many operations i — g’ mod n one must perform

in order to verify (or refute) that an invertible element g is a primitive root for
Z.

(b) Assume that you have a complete prime factorization of ¢ (1). Using Lagrange’s
theorem, how many operations g’ mod n do you now require, and for which
values of i ?

7. Nontrivial square roots of 1
(a) Count the number of r between 1 and 1000 such that there are exactly 14 non-

trivial square roots of | modulo n (the trivial ones are 1 and n — 1).

(b) Repeat part (a) with 4 in place of 14. How many n do you count now?

Definition 2.34 (Isomorphic Groups)
We say that two groups {G, og, eg) and (H, oy, ey) are isomorphic if and only if there
exist functions p: G — H and v : H — G such that

n(¥(hy)) = hy,
V(n(g2)) = g2,
nieg) = ey,
Ulen) = eq,

n(gi oc g2) = n(g1) ow n(g2).
Y(hy o ho) = Y(hy) og Yha)

forall g, g€ Gand hy, h» € H.

Thus isomorphic groups are structurally identical, since the mediating maps 5 and 1 re-
spect the size of the underlying set as well as all the group structure: two-sided identities
and multiplication. In Exercise 2.13-3, we see that such maps must also preserve inverses.

For example, consider the commutative group {{odd,even}, 4+, even) given by odd +
odd = even, odd + even = odd. and even + even = even. This group is isomorphic to
the group (Z,, +,, [0],). Please specify the maps n and .

Theorem 2.35 (Discrete Logarithm Theorem)
Let g be a primitive root for Z; (n € N). Then the groups (Z,, *,,, [11,,) and (Z 4,y * () »

n
[0]4n)) are isomorphic. The isomorphism is given by the maps

1 That is to say, at least one of these two numbers is a primitive root.

2.3. Generating Large Primes 45

def
n:Z, —> Ly, nlxl, = [log{n:g}(xnmn);

def
‘lb: Zﬁf’(ﬂ'} — Zz’ u’([ﬂgb{n) = [g!]n-

The proof of this proposition is relegated to the exercises. It is important to stress that, al-
though we have an explicit isomorphism between these groups in the mathematical sense,
there is no known efficient way of computing this isomorphism. One the one hand, there
is the problem of knowing ¢ (n); on the other hand, even with the knowledge of ¢ (n) it
can be computationally difficult to find n[x],. This problem is so important that it has its
own name.

Definition 2.36 (Discrete Logarithm Problem)
Let p be prime, g a primitive root for Z7, and § any element of Z,. Compute log, , ..(8).

EXERCISES 2.13

1. Show that {Zg, +q, [0]g) is isomorphic to {Z, +, 0}.

2. Find a simply described group that is isomorphic to {Z;, +, [0];}.

3. Show that,if n: G — H and : H — G are isomorphisms between two groups,
then they preserve inverses: 1n(g~") = n(g) " and w(h™) = w(h) ' forallg € G
and h € H.

4. Prove Theorem 2.35 as follows.

(a) Show that n and v are well-defined.

(b) Show that n preserves two-sided identities, that is, n[1], = [0]g(s).
(c) Show that 1 preserves two-sided identities, that is, Y [0]5(,y = [1],.
(d) Show that n preserves group multiplication, that is,

f}([x]” #p [yln) = ?}[I]H +¢u(n] T.I'[}"En-

What equation must you show for the logarithm?
(e) Show that v preserves group multiplication, that is,

Y I oo [2)em) = W lem *a ¥lt2lem-

(f) Show that n(v[t]p(m) = [1p0n) for all [#]gm € Zgm)-
(g} Show that ‘,ff(??[xlu) = [x]a for all [x], € Z,.

Before we can show Theorem 2.32, we need to understand how many solutions linear
equations in Z, have. Concretely, we are interested in the equation x> mod p = 1, which
isn’tlinear atall. Yetif Z7, has a primitive root, then we may apply Theorem 2.35 and trans-
late this equation into a linear one in Zg . Thus we obtain log, , ,(x) +log,, (x) =
0 mod ¢ (p), which is equivalent to

2-log, »(x) =0mod ¢(p). (2.22)

p.g

Thinking of log“,:g){x) as an unknown x’ and of ¢ (p) as some natural number n’, we
need to know how many solutions to equations of the form

a-x'"=bmodn’ (2.23)

46 Chapter 2. Public-Key Cryptography

we have in x’, where n’ € N and @, b € Z. We may rewrite this equation in Z7, as

[alnr #n [x 10 = [B]ar. (2.24)

Definition 2.37 (Order of Group Element)
Let (G, o, e) be a finite group and let g € G. We define

o def
§ =e

1 def

g:<+t def go gk
for all k € M. The order of g in G, denoted by ordG(g}, is the least number ¢ € M such
that g' = e. We write ord(g) if the group G is determined by the context.

Note that the order is well-defined, as the set {m € N | g™ = ¢} is nonempty. For exam-
ple, we always have g" = e, where m is the size of G; why? More concretely: in the
group Z7%, the element [3]7 has order 6 since [31% = [1]7 and [3]‘7“ Z[l];foralll <d <
6. The next two lemmas are proven in the exercises.

Lemma 2.38
Let g be an element in a finite group (G, o.). Then ord®(g) equals the size of the sub-
group that g generates in G.

Lemma 2.39
Letn € N and [a],, # [0],. Then ord®"([a],) is equal to nfged(a, n).

EXERCISES 2.14

1. Determine the order of the element [2]7 in the group (ZZ, %7, [1]7).
2. Prove Lemma 2.38.

(a) Let ¢ be ord%(g). Show that {g) equals {g', g, ..., g'}.

(b) Conclude that the size of {g) is less than or equal to 1.

(c) Show that the set {g', g%, ..., ¢'} has exactly r many elements.
3. Prove Lemma 2.39.

Lemma 2.40
Let [a], # [0],. The equation [a], #, [x], = [b], has either exactly ged(a, n) many
distinct solutions in {0, 1, ..., n — 1} or none at all.

Proof Let us assume that this equation has a solution. We need only argue that there
are exactly ged(a, n) many distinct solutions to this equation in Z,,. By Lemma 2.39, we
have that ord®~([a],,) equals n/ged(a, n). The sequence ([a],, *, [x] n);;é repeatedly lists
all elements of {[a],) in ged(a, n) many blocks. If the equation in Lemma 2.40 has a
solution, then [b],, € {[a],) must hold. In that case, [b], shows up exactly once in each

of the ged(a, n) blocks of the sequence ([a], %, [x],)"Z¢. .

x=0

2.3. Generating Large Primes 47

For example, ged(16,8) = 8, but 16 - x = —3 mod 8 has no solutions since 16 - x =
0 %= —3 mod 8. However, the equation 16 - x = 0 mod 8 has exactly eight solutions in
{0,1,....7}.

2.3.2.4 Proof of Theorem 2.32

We are now in a position to prove Theorem 2.32. Recall that we need to solve 2 - x" =
0 mod ¢ (p), where x' = log,, ,(x) and p > 1is prime. Since x" =0 is obviously a so-
lution to this equation, we invoke Lemma 2.40 and conclude that the equation 2 - x" =
0 mod ¢ (p) has exactly ged(2, ¢ (p)) many solutions. If p = 2, then ged(2, ¢(p)) =
ged(2.1) =1, so x" = 0 is the only solution. If p > 2 then we have that ¢(p) = p — 1
is even, so ged(2, ¢ (p)) = 2 follows. If Z}‘, has a primitive root, then Theorem 2.35 en-
sures that the groups {Z;, #p, [p)and (Zgpy, ®#¢(py- [0]p(p)) are isomorphic. Moreover,
the isomorphisms translate the equation 2 - x" = 0 mod ¢(p) into x? =1 mod p, so the
latter has exactly as many solutions as the former, but 1 and p — I are two such solutions
(well, one if p = 2) for the latter. Note that this argument depends on the existence of a
primitive root for Z7,.

Theorem 2.41
If a call Witness (a,n) refurns true, then n is not prime.

Proof We have only to prove that Z7, has a primitive root, where p > 2 is prime. This
is done in Section A1 of the Appendix. O

EXERCISES 2.15

1. ged recursion theorem Prove the gcd recursion theorem: For any a € N U {0} and
b e N, we have

ged(a, b) = ged(b, a mod b). (2.25)

(Hint: Show that both expressions are divisors of each other. Why does this guaran-
tee their equality?)

2. Euclid’s algorithm Use the ged recursion theorem to prove that Euclid’s algo-
rithm, written as a recursive program in pseudo-code below, computes ged(a, &):

Euclid(BigInteger a, BigInteger b) {
if (b == Q) return a;
else return Euclid(b,a mod b);

+
3. The Fibonacci numbers F,, (n € N) are defined by
F ¥,
F, ¥,

Fo & F+F,

for all n € M.

48 Chapter 2. Public-Key Cryptography

(a) Compute F.

(b) Prove: If a = b = 0 are integers such that the program Euclid(a,b) makes
k € M recursive calls, thena = Fy - and b = F;, hold. (Hint: Use mathemat-
ical induction on k.)

(c) Prove: The program Euclid (F [k+1],F[k]) makes exactly k — | recursive
calls for all £ € . (Hint: Use mathematical induction on & and the recursive
definition of the Fibonacci numbers F [k].) Use part (b) to conclude that con-
secutive Fibonacci numbers are a worst-case input for Euclid’s algorithm with
respect to the number of recursive calls.

4. Specify a computation trace for execution of the function call Euclid (6563, 134).
5. Compute ged (2354, 456).
6. Implement Euclid’s algorithm in a programming language of your choice.

2.3.3 When Witness(a,n) Fails

We have established that Witness(a,n) correctly identifies that » is not prime if it re-
turns with value true. But what can we say about its returns of type false? Within the
context of Miller-Rabin(n,s), such replies stand for: “According to a, the number n
is prime”. The program Miller-Rabin(n,s) then decides that n is prime if it so hap-
pens that s random choices of a result in such a reply. Unfortunately, there are numbers »
which are not prime but which Miller -Rabin(n,s) classifies as being prime for some
value of s and some random program execution. Therefore, this algorithm is not correct
for all its inputs in the strict, gualitative, sense of the word. However, it is still extremely
usefiel in practice for several reasons.

* It can only make one kind of error: all its negative decisions, “n is not a prime num-
ber”, have been proved to be correct. Probabilistic algorithms with this property are
called no-biased Monte Carlo algorithms.

¢ We shortly prove that a failure of this algorithm is very unlikely by giving an upper
bound on the probability of such failures that depends only on s, not on n. Thus we
arrive at a proved guantitative notion of program correctness.

* Even if the algorithm fails in that it incorrectly advertises p or g to be prime, we can
implement a little test encryption—decryption for the RSA encryption scheme based on
p and g to see if the scheme works for the message we mean to send securely. (This is
for the truly paranoid among us.)

Definition 2.42

A yes-biased Monte Carlo algorithm is a randomized algorithm that returns an answer of
type boolean such that all true replies are correct. A randomized algorithm of the same
output type is no-biased if all false replies are correct.

A no-biased Monte Carlo algorithm may compute incorrect true replies, so one is inter-
ested in upper bounds on the probability of this happening. We established such an upper
bound for the no-biased Monte Carlo algorithm of Miller and Rabin. The call Miller-
Rabin(n,s) would certainly fail if n € N had the peculiar properties that n was not
prime,a”" =lmodnforalll <a <n—1, and n had only 1 and n — 1 as square roots

2.3. Generating Large Primes 49

of 1 modulo . For such an n the algorithm would reply “n is prime” no matter what value
of s we choose. Fortunately, we see shortly that such numbers cannot exist.

Definition 2.43 (Carmichael Numbers and Witness Set)
A number n € N is a Carmichael number if it is not prime and satisfies "' = 1 mod n
for all [a], € Z,. For any odd number n € N that is not prime, we define

W) E (@eN|2<a<n-1 Witness(a,n)=true), (2.26)

the set of test numbers a that make the witness program realize that n is not prime.

For example, 561, 1105, and 1729 are the three smallest Carmichael numbers. Amaz-
ingly, one can show that there are infinitely many Carmichael numbers. Clearly, W(n) is
nonempty if n is not a Carmichael number. Since Miller-Rabin(n,s) makes s ran-
dom choices of a to find some element of W(n), we require that a random pick of a €
{2,3,...,n — 1} have a probability of at least 1/2 that a € W(n), whether or not 1 is a
Carmichael number. Assuming that the s choices are made independently, we then have
an upper bound of 27 for the probability of not finding a witness during the execution of
Miller-Rabin(n,s). Therefore, it suffices to show that

W(n)| = (n—1)/2 (2.27)

for all numbers n that are odd and not prime. Since Witness(a,n) has two criteria for
detecting a witness a, our analysis splits into two corresponding cases. Its second (more
difficult) case makes vital use of the existence of a primitive root in Z‘;k, where p is an
odd prime and £ > 1, a fact that we secure in Theorem A.20. Further, we must be able
to solve simultaneously linear equations modulo different values n;, where the n; have no
factors in common. This technique rests on the Chinese remainder theorem, whose proof
we relegate to the exercises.

Definition 2.44 (Product Group)

Foreachi = 1,2,....k, let (G;. o, ¢) be a group. We define the product ([T:_, G,

% o1, TTE,) of these groups as follows:

1.]_[f.‘:I G; is the set of all k-tuples (g1, ..., g) with g; € G; fori = 1,2, ..., k;
2. TT*., o isamap of type [T, Gi x [1., G: = [1*_, G: and defined by coordinate-
wise multiplication,

def
(@i v g [[erthun o i) = (gror by ge o hu: (2.28)

3. the element [T5_, ¢; is (ey, ..., €;)-

For example, ([1]2. [2]3) and ([3]2, [5]a) are elements of Z» x Z3, and their addition ren-
ders the pair ([1+ 3]3.[2 + 5]3) = ([0]2. [1]3).

Lemma 2.45
The triple (le Gy, {leo;, H‘;‘zl e,-) is a finite commutative group if all the groups
(Gi,op e, i =1,2, ..., k, are finite and commutative.

50 Chapter 2. Public-Key Cryptography

Proof This is to be shown in Exercise 2.16-7 (p. 52). O

Theorem 2.46 (Chinese RemainderTheorem)
Letn =ny-ny---npinNwithk = 2 such that gcd(n;, nj) = 1fori # j. Then the group
(Zy, +u, [0],) is isomorphic to

k k k
(szﬂﬁmﬂmﬁ. (2.29)
i=l i=1

i=1
The pair of isomorphisms is given by

0 Zy — 1, Zo, nlal, < ([al,,. ... [al,,):

def
",b: l_[ilczizﬂj — ZH: W([HE]H., s [ak]nk) é [al it az-cxA - tag - Ck]n:
where ¢; {ii-fm; - (m!-_1 mod n;) and m; S n/n;.
Proof This proof is relegated to Exercise 2.16-8 (p. 52). O

Corollary 2.47
Letn =n;-ny---nyin Nwithk = 2 such that ged(n;, nj) = 1for i # j. Then, for any
{ay,....ap) €]_Ifle Z, the equations

x=a;modn;, (i=12,...k) (2.30)

have a unique solution x mod n.
Proof This proof is relegated to Exercise 2.16-9 (p. 52). O

Corollary 2.48
Letn =ny-ny---npin Nwithk = 2 such that gcd(n;, n;) =1 fori # j. Then, for any
a € Z., we have

x=amodn; (i=12,...k) (2.31)

if and only if x = a mod n.

Proof See Exercise 2.16-10 (p. 52). O
Example 2.49
Let us solve the system of equations
x = 3 mod 13, 53
x =7 mod 9. (2.32)

In this case,n; = 13, n» = 9, a; = 3, and a» = 7. Note that k = 2 and ged(ny, n2) =
1, as 13 is prime. Since n = n; - np = 117, we compute n/n; = 117/13 = 9 and
n/ny = 117/9 = 13. The required inverses are (z/n;) " mod n; = 97! mod 13 = 3 and

2.3. Generating Large Primes 51

(n/n>)"'mod ny = 13"mod 9 = 7. Now ¢; = (n/n;) - ((n/n;) ' mod ny) =9-3 =27
and c2 = (n/ny) - ((.f::/'ﬂ".'g)_I modny)=13-7=91. Thusx =a,-c1+a>-comodn =
3.27+7-91 mod 117 implies that x = 16. Please verify that 16 is indeed a solution to
the equations in (2.32).

The Chinese remainder theorem is a vital reasoning tool in number theory. For example,
we use it for proving probabilistic lower bounds on the correctness of the Miller—Rabin
algorithm. However, it also has practical impact because it often allows one to conduct
computation with respect to each factor n; as opposed to the entire product thereof. This
may gain efficiency in that the n; may have significantly fewer bits than n itself and may
well allow an effective use of parallel processing. Such implementation changes typically
require a reevaluation of a cryptographic system’s security.

EXERCISES 2.16

1. Use the Chinese remainder theorem to compute the unique solution of

x = 2mod 3,
x =3 mod 5, (2.33)
x=2mod7,

where 0 < x = 105.

2. Consider the Carmichael number 561.
(a) Compute the set W(561). Is |W(561)| < (561 — 1)/2?
(b) How many nontrivial square roots of 1 modulo 561 are there?

3. Carmichael numbers n are defined via conditions on units modulo n. This makes
sense. Show: If @ is not a unit modulo n, then a”~' mod n # 1.

4. Compute all the Carmichael numbers that are less than one million. The three small-
est Carmichael numbers are listed immediately after Definition 2.43 (p. 49); there are
few such numbers below one million. The crucial part of this exercise is the program

you write.
5. Letn = pf' . piz e pi‘;" be the unique prime factorization of n. Define A(n) as the
least common multiple (see p. 259) of all gﬁ(pr'.k"), wherei =1, 2, ..., m. Prove:

(@) A(n)[p(n);

(b) @*™ =1 mod n for all [a], € Z*;

(c) if n 1s a Carmichael number, then k; = lforalli = 1,2, ..., m;

(d) if n is a Carmichael number, then n is the product of at least three different
primes.

(e) 1s 27935017 a Carmichael number?

6. (a) Write a program that takes a “small” integer n as input and returns the smallest

Carmichael number that is greater or equal to n.'?

(b) Test your program with the inputs 323, 645, 1521, and 1999; compare your first

three outputs to the three Carmichael numbers listed after Definition 2.43.

12 Since there are infinitely many Carmichael numbers, this output is always well-defined, but your program will take
too long for integers that are not “small

1}

52 Chapter 2. Public-Key Cryptography

7. Prove Lemma 2.45.
8. Prove Theorem 2.46 as follows.
(a) Show that the map n: Z,, — nf.‘zl Z,, with
def
?}'[ﬂ]” = {[alnl: sy [aEnk) {234)
is well-defined.
(b) For m; défn/nh show that there exists some ﬂ't!-_1 € Z such that [mr._af,,[. is an

inverse of [m;],, in Z; .
del

(¢) For¢; = m; - (m7' mod n;) € Z, consider the map v of type [[*_, Z,, — Z,
with
':!'f([ﬁ'l IFH% Y [a.k]nk) ﬁi:Ll [al S + az -2 + e aj - ck]n- (235)

Show that 4y is well-defined.
(d) Prove that n preserves the two-sided identity and group multiplication.
(e) Prove that 1 preserves the two-sided identity and group multiplication.
(f) Prove that n and 1 are mutually inverse functions.
9. Prove Corollary 2.47.

10. Prove Corollary 2.48.

11. Can you apply the Chinese remainder theorem to obtain a more efficient algorithm
for the decryption in (2.8) of the RSA PKC system? Could this be done for the en-
cryption operation in (2.7)?

Theorem 2.50
Let n € M be an odd number that is not prime. Then the size of W(n) is at least (n —1)/2.

Proof LetW(n)®be the set Z, \ W(n), that is, the set of nonwiinesses. Thus [a], € W(n)®
if and only if the program call Witness(a,n) returns with false. Therefore, any [a], €
W(n)© satisfies a"! = 1 mod n, so W(n)¢ is contained in the set Z7 . Our strategy is to
show that W(n)® is contained in G, some proper subgroup of the group Z7 (i.e., G # Z7).
In that case, Lagrange’s theorem implies that |G| is a divisor of ¢(n), but since G # Z7,
we have

W(n)°| < |G| = ¢(n)/2 < (n—1)/2.
Thus
W(n)| = |Z, \Wn)*|zn—-(n—=1/2=n+1)/2=(n-1)/2

finishes the proof. The construction of the subgroup G and the argument that it is smaller
than Z7, are split into two cases, depending on whether n is a Carmichael number.

Case 1: Assume that n is not a Carmichael number. By definition of that concept, there
exists some [x], € Z} such that X! # 1 mod n. Define

G € ([a], €Z* | a"' = 1 mod n}. (2.36)

2.3. Generating Large Primes 53

As discussed before, W(n)¢ is a subset of G. Since 1"~! = 1 mod n, G contains the two-
sided identity, [1],, of Z7. Given [a], and [b], in G, we easily see that (a - pyr-1 =
I mod n, so [a], *, [b], = [a - b], € G. As for inverses, let [a], € G € Z} . Then there
exists some [y], with [a], #, [v], = [1],. But then

[, = (113"
= ([al, *a [¥])"""
= [al} " =, [y1)7
= [y}, (2.37)

as [a],, € G. Thus the inverse [y], of [a], is in G as well and so G is a subgroup of
(Z%, %y, [1]4). By assumption, [x], € Z] \ G, so G is proper.

Case 2: Assume that n is a Carmichael number: a"~' = 1 mod n for all a € Z*. Then let
n—1=2" uwithuodd. Foranya €{l,2,...,n — 1}, consider
a¥ (" mod n,a*" mod n. ...,a>" " mod n). (2.38)

Since n — 1 = 2% . u with u being odd, the binary representation of n — 1 has exactly o
many 0-bits on its least significant end. Thus the values in a are the last & + 1 values of ¢
in the computation of Witness(a,n): all last @ operations are squarings. Define

JE(jez|0sj<a v

“ = —1 mod n for some [v], € Z] }. (2.39)
Since u is odd, it follows that J is nonempty; for example, for j = 0 we have v = —1,
ensuring that (—1)20'” = -1 rr_md n and so 0 € J. Let j,, be the largest element in J and
let [v,,], € Z¥ be such that v2"* = —1 mod n. Our candidate for a subgroup is

m

G = ([al, € Z* | a** mod n equals 1 or — 1. (2.40)

Since 12”* mod n equals 1, we have [1], € G. Since {x, y} € {1, —1} implies x - y €
{1, —1}, it is easily seen that [a],, [P], € G imply [a], *, [P], € G. For the same reason,
one can see that [a], € G implies that its inverse is also in G (indeed, this is similar to
how we reasoned in Case 1). Thus G is a subgroup of Z} . It remains to show that G is a
proper subgroup of Z) and that W(n)® is contained in G.

We begin by constructing some [x], € Z} \ G. This is where the division of n into rel-
atively prime factors n; and n, is instrumental. For that we need to argue that n cannot
be the power of an odd prime number. Otherwise, n = p* for p > 2 prime and k > 1.
In that case, Z?, has a primitive root g by Theorem A .20. But then Theorem 2.35 implies
that the equation "' =1 mod nis equivalentton — 1 = 0 mod ¢(n). By Lemma A 15,

p(m)y=p"-(p—1

and son — 1 = 0 mod ¢ (n) entails

pr o (p=D|pF -1

54 Chapter 2. Public-Key Cryptography

Since k > 1, we have

plp* - (p—1)

but then pt p* — 1 (by Exercise 2.17-1, p. 55) contradicts p*~!- (p —1)| p* — 1. Therefore,
n is not such a prime power. Since n is an odd integer that is not a prime power, its prime
factorization

ki ka2 k
n=p pPa- P

must satisfy m > 1, since the case m = 1 has already been ruled out. Thus we may split
n into two factors n; > 2 and n» > 2 that are relatively prime:

n=mny-ny, ged(ng,ny) =1 (2.41)
Because
v — 1 mod n,

the Chinese remainder theorem implies that

i .
2" = —1 mod n,.

Moreover, it guarantees the existence of a unique solution x, modulo n, of the equations

x = v mod ny,

242
x = 1 mod n». ()
But then
2" mod ny = v2™ " mod n; = —1 mod ny,
2dm 2.fm (243)
x " modn, =17 " mod na = 1 mod n,

24 mod n cannot be 1 or —1. Hence [x], ¢ G. By the Chinese remain-

follow. Thus, x
der theorem, [v], € Z; implies [v],, € Z:‘”, 80 [x],, € Z’;] follows. But x = 1 mod n»
renders [x],, € Zf}g. Thus [x],, € Zj‘” and [x],, € Z:; imply [x], € Z7, again by the
Chinese remainder theorem. Thus [x], € Z}, \ G as desired.

Finally, let [a], € W(n)°. We are done if [a], € G. We show the process of this argu-

ment in Figure 2.6. O

Corollary 2.51 (Probabilistic Correctness of Miller-Rabin)
Let n € N be any odd number, and let s be any natural number.

1. If the execution of program Miller-Rabin(n,s) returns with false, this answer
is always correct.

2. If nis not prime, then the probability that this execution replies (correctly) with false
is at least 1 — 27,

One can show that if a prime candidate n is chosen randomly, then Rabin-Miller(n,s)
is unlikely to fail for small values of 5, even smaller than 10. A more sophisticated

2.3. Generating Large Primes

55

i

J'lm j:m -+ | e o —1 o

a¥¥*modn| lor —1 I 1 1

as o is not a witness, this
number must equal —1 or
1, since a did not find a

nontrivial square root of 1

n is a Carmichael number

this number must equal 1 since a
is not a witness, so this number
can only be 1 or —1 as the
program would otherwise detect
a nontrivial square root; however,
this value cannot be —1 owing

to the maximality of j,

this number must equal 1 since

Figure 2.6. A schematic showing the argument that [a], € G. finishing the proof of Theorem 2.50.
Please read this from the right to the left.

analysis can improve the bound in Theorem 2.50 so that |W(n)¢| < (n — 1)/4: however,
this bound is tight, for there are n € N where |W(n)¢| equals (n — 1)/4.

EXERCISES 2.17

1.
2.
3.

Let p > 1 be prime. Prove: ptp* —1forall k e N.
Prove Corollary 2.51.
Compute an n € N such that |W(n)¢| = (n — 1)/4.

4. Factoring with square roots Letx €{2,3,..., n — 2} be a nontrivial square root

of 1 modulo n. Show that ged(x — 1, n) is a factor of n. Can you even show
n=gced(x —1,n)-ged(x +1,n)?

Explain how knowledge of such an x allows one to factor n efficiently.

. Design a randomized algorithm that takes as input a Carmichael number or a prime,

n, and whose output is either a factorization of n or a message saying that n is a prob-
able prime. What obstacles are there if you want to extend this algorithm to apply to
all natural numbers?
Prove or disprove: If W(n) is empty for an odd number n € N, then n is prime.
Quadratic nonresidues modulon The set Q,, of gquadratic residues modulo n con-
sists of those [a],, € Z, for which we can solve x 2 = 4 mod n for some x with [x], €
Z:.
(a) Let p be an odd prime and g a primitive root for Z,.

(i) Show that [a], is a quadratic residue modulo p if and only if

a=g* mod p

for some i € ¥,
(ii) Conclude that Q, has exactly (p — 1)/2 many elements.

56 Chapter 2. Public-Key Cryptography

(iii) Show: If a € Q. then there are exactly two elements in {0, 1,..., p — 1}
that solve x? = a mod p.

(b) Compute the set Q3.

(c) Letn = p - g for odd prime numbers p and ¢. Show that [a], € Q,, if and only
if [a], €Q, and [a], €Q,.

8. Primality test based on quadratic residues Assume that there is an efficient algo-

rithm Jacobi (a,n) that outputs

* 0if ged(a, n) = 1,

* lifaeQ,, and

* —1 otherwise

(such an algorithm does exist). Assume further that the output of Jacobi(a,n) is

equal to a1/ mod n whenever ged(a, n) = 1 and n is an odd prime (this is indeed

the case and is known as Euder’s criterion).

(a) Design a probabilistic algorithm for primality testing based on the test function
Jacobif(a,n).

(b) Use the fact from Exercise 7(a)(ii) to specify a lower bound for false positives
(i.e., program executions that falsely classify n as being prime).

2.3.4 Efficiency of Finding Large Primes

A second obstacle to generating large prime numbers is that the algorithm of Miller and
Rabin decides correctly (with high probability) that a given number n is prime, yet it does
not generate such a number. If its reply is negative, which we then know to be correct, we
must look for some other number n’, roughly the same size as n, and repeat Miller and
Rabin’s algorithm with n’. The question, therefore, is how often we may need to repeat
this algorithm; that is, how “dense” are prime numbers in N7

Definition 2.52 (Number of Primes below n + 1)
Let n € M. We set

7(n) = |{peN| p < nand pis prime}]. (2.44)

Thus s (n) is the number of primes that are strictly below n + 1. The function w: N — N
serves as a measure of how often prime numbers occur in M. This function has been stud-
ied for quite some time. In 1896, J. Hadamard and Ch. de la Vallée-Poussin proved the
first approximation of n +— m(n).

Theorem 2.53

lim (m(n) -lnn)/n = 1. (2.45)

Equation (2.45) tells us that, for large values of n, we may approximate r(n) withn/Inn.
For example, 7(10°) equals 78498 and 10%1In10® ~ 72382 (a difference of less than
8%); m(10%) equals 50847478 and 10%/1n 10 = 48254942 (about 6%). Assuming that the
prime numbers in {1, 2, ..., n} are distributed with a Laplace distribution (all have equal

2.3. Generating Large Primes 57

Number of Bits Trials
10 77
20 17
30 915
40 268
50 294
&0 86
70 67
80 1355
90 254
100 569
110 5343
120 886
130 405
140 80
150 51
160 776
170 1292
180 752
190 377
200 | {how about that?;-)
512 1329
1024 1804

Figure 2.7. Sample execution of prime generation: number of
trials running the method i sProbablePrime of Java 2 on a Sun
UltraSparc 1.

probability of being prime), this gives us a probability of 1/Inn that n is prime. We may
also use this approximation to estimate the region of the nth prime number. One can prove
that (2.45) implies that the nth prime number is approximately [#n-1n n. In this fashion we
may obtain probabilistic estimates that are practical enough to be implemented. For exam-
ple,if n is a number with 200 decimal digits, then it is prime with probability 1/1n 102 ~
1/461. The probability of not finding a prime is therefore about 460 /461. The probability
of not finding a prime in ten trials is then estimated as

460" (2.46)
(461) ' '

Thus we can expect to find such primes rather sooner than later. If n has 400 decimal
digits, the probability of failure in & trials is (%)k, and so on. In Figure 2.7, we list the

number of trials and the size of primes generated for one execution of the program listed
in Figure 2.8."3

'3SMWmmmgmwﬂmmmehwmmmmmmﬂ@@mmmhmthm”mgmmmmnwEHMMmdmdMEs
on a class KeyboardReader java, which you may find at the book’s website.

58 Chapter 2. Public-Key Cryptography

import jawva.math.*;
import jawva.util.x*;
public class Prime_Count {
private static KeyboardReader keyboard = new KeyboardReader();
public static veoid main(String([] args) {
Random seed;
Biglnteger p;

int 1 = keyboard.readInt("number of bits of prime: ");
int counter = 0;
do {

seed = new Random();
p = new BigInteger(l, seed);
counter++;
} while (!p.isProbablePrime(50));
System.out.println(counter + " trials to find prime " + p);
}
}

Figure 2.8. A Java program that generates a prime and counts the number of
trials.

EXERCISES 2.18

1. Use your implementation of Miller-Rabin(n,s) to build a user interface that takes
as input two natural numbers d,; and d, with d; < d,, and produces as very likely out-
put a prime number n whose number d of decimal digits satisfies d; = d < d,.

2. Show that 2°? + 1 is not a prime number. (Hint: Since the algorithm Miller-
Rabin(n,s) is correct for negative replies, you could use that algorithm for such a
“proot™.)

3. RunMiller-Rabin(2**16+1,s) for a number of different s. Although it is known
that 2'® 4 1 is prime, what is the best probabilistic bound you have for that fact based
On your program executions?

4. For a sequence (x,),en of real numbers, lim,_. o, x,, exists and equals the real num-
ber x if and only if, for all real positive numbers &, there exists some n(e) € N such
that the absolute value of x — x,, is less than € for all n = n(e).

(a) Prove that lim,_... 1/n = 0.

(b) Prove that limits are unique, provided that they exist.

5. (a) Use Theorem 2.53 to approximate the number of primes whose binary represen-

tation has between 512 and 1024 bits.

(b) Assume that there are about 1077 atoms in our universe and that this universe is
about 10'Y years old. Assume also that, from the beginning of time, every atom
in the universe requires, each second, 10° many primes with b bits (where 512 <
b = 1024) for its own mysterious cryptographic purposes. Assuming that these
atoms never use a prime that they (or some other atom) have used before, would
there still be such primes available today? If so, for how long?

6. Sophie Germaine primes A prime number p > 2 is called a Sophie Germaine
prime if 2+ p+11is also prime. A 32-bit Sophie Germaine prime is p = 2008465313
with prime 2 - p + 1 = 4016930627 (found after 644 trials). It took 2253 trials to

2.4. Correctness of RSA 59

generate a 64-bit Sophie Germaine prime p = 10155921358726090901 with prime

2. p+1=20311842717452181803.

(a) Compute another 32-bit Sophie Germaine prime p.

(b) Compute another 64-bit Sophie Germaine prime p.

(c) What is the largest Sophie Germaine prime you can generate (without upsetting
your systems administrator)?

(d) A natural number is a palindrome in decimal representation if its string of deci-
mal digits is symmetric with respect to reading it from the left or the right. For
example, 131 and 314413 are each palindromes. Find a Sophie Germaine prime
that is a palindrome in decimal representation.

2.4 CORRECTNESS OF RSA

We have already established an efficient framework for generating very large prime num-
bers. The algorithm that generates such primes has a very small probability of failing:
with a sufficiently large choice of 5, you are much more likely to win all state lotteries of
the next year than to ever observe a failure of this algorithm. Paranoid people may even
implement a double check that spots such a rare cosmic fluke; see Exercise 2.19-3 (p. 60).

Protocol 2.54 (RSA Key Generation)
Let us revisit Protocol 2.10 (p. 25) for producing an RSA public and private key for Alice.

1.

2.

Alice now knows how to generate two very large prime numbers p and g; for added
security, they should be about the same size.

Alice already has efficient algorithms for computing the product n £ p - g of two large
integers.

. Alice needs to compute an odd integer e such that

ged(e, (p—1-(g—1) =1 247

A naive algorithm would try e = 3, 5,7, ..., using Euclid’s algorithm to compute
gcd(e, (p — 1) - (g — 1)), and then stop the iteration with the current ¢ as output if that
ged equals 1.1 In Exercise 2.15-3 (p. 48), we saw that there exists a reassuring upper
bound on the number of iterations of Euclid’s algorithm. That same analysis applies
to the extended Euclid algorithm that we need for computing the inverse of ¢ modulo
¢(n). Hence these tasks have efficient computational solutions.> A more sophisti-
cated version would generate e at random until a solution is found. For example, one
could randomly generate numbers e with max(p, g) < e and test them for primality.
If such an e is prime, then it is clearly relatively prime to p — land g — 1.

. Alice solves the equation ¢ - x = 1 mod (p — 1) - (g — 1) for x. By Proposition 2.26

(p. 40), there exists a unique solution, d, with 1 < d < ¢(n). In the exercises, we
extend Fuclid’s algorithm to provide an efficient procedure for computing such a d.

14 This is potentially problematic, as attacks for small values of e are conceivable; see Exercise 2.21-13 (p. 72).

15

If n has k bits, then modular multiplication is in (k?) and modular exponentiation with iterative squaring is in

O,

60 Chapter 2. Public-Key Cryptography

5. Alice computes

Py (en), S, (d.e)

as her RSA public and private keys, respectively.

EXERCISES 2.19

1. Extended Euclid algorithm Consider the following pseudo-code for the extended
algorithm of Euclid.

Extended_Euclid(BigInteger x, BigInteger y) {
Biglnteger d, d’, r, r’, s, s8’;
if (y == 0) return (x,1,0);
else {
(a’,r’,s’) Extended_Euclid(y,x mod y);
(d4,r,s) = (d’,s’,r’ - floorint(x/y) * s’);
return (d,r,s);

¥

The function floorint (x) computes | x| from Definition 2.13 (p. 27). Prove: For
all x, y € Z, the program call Extended_Euclid(x,y) terminates and its result
(d,r,s) satisfies

ged{x,y)=d=r-x+s5-y. (2.48)
2. Consider the following pseudo-code for a program Linear (a,b,n):

Linear(BigInteger a, BigInteger b, BigInteger n) {
Biglnteger d, x’, y’, x0;
(d,x’,y’) = Extended_Euclid(a,n)
if (b mod d == 0) {
x0 = x” * (b / d) mod n;
for (int 1 = 0; 1 <= d-1; ++i) {
printout x0 + i * (n / d) mod n;
} else
printout

}

‘‘no solutions’’;

¥

For any a, b € Z and n € N\ {1}, show that this program terminates and prints out all
solutions to

a-x =bmodn, (2.49)

assuming this equation has any solutions. Show also that the program behaves cor-
rectly if no solutions exist.

3. After Alice has generated two large “prime numbers” — according to the algorithm
based on Miller-Rabin(n, s) — what precaution could she take to ensure that the
numbers p and ¢ work as expected, at the very least for a specific message (e.g.. a
secret key she wants to share with Bob)?

2.4. Correctness of RSA

61

4.

For the RSA encryption system:
(a) What is the smallest possible value you could choose for e?
(b) If e wfyle + 1, how many multiplications modulo n does the computation of a

cipher-text P4 (M) require?

5. The RSA cryptosystem is based on the fact that n is the product of two very large

prime numbers. Discuss to what extent you could redefine such systems if n were to

be the product of more than two very large prime numbers —say, n = p - g - r. Your

discussion should include aspects of definition, correctness, efficiency, and possible

attacks.

Consider the RSA keys Py = {e,n) and Sy = {d, n), where n = p - g for primes

p and g. It is possible that the encryption of the plain-text fragment M € Z,, re-

sults in M again. For example, for p = 11, ¢ = 5, and ¢ = 3, we have Py(M) =

M? mod 55 = M for nine numbers between 0 and 54, namely 0, 1, 10, 11, 21, 34,

44,45, 54.

(a) Can you find an expression in terms of e, p, and ¢ that computes the number
of M € Z,, for which M* mod n = M?

(b) Can you say why, for realistic sizes of the parameters p and g, the answer to (a)
is not more of a security concern to RSA than, say, the assumption that a ran-
dom number r € Z is a unit modulo n?

. Complete your implementation of the RSA public-key encryption such that your

program allows a user to re-generate a pair of RSA public and private keys on
demand.

Suppose that Alice uses the prime numbers p = 1699 and ¢ = 1999 for generating
RSA private and public keys.

(a) Compute an RSA public key (e, n) for Alice such that e = 3.

(b) For your choice of e, compute the resulting private key {d, n).

(c) Encrypt the message M = 3297415 and verify that S,(P.(M)) equals M.

(d) What suggestion do you have for handling messages that are bigger than n?

9. RSA-based pseudo-random number generator One may design (slow) pseudo-

random number generators whose security is based on that of the RSA encryption
scheme. Assume that Alice has already generated two large primes p, g and that her
corresponding RSA public key is P4 def {e, n). If a trusting Bob wants to generate a
pseudo-random sequence of bits by, by, ba, ... from Alice’s public key, he chooses
a random seed xy € M with 1 < xy < n. He computes b; as the least significant bit
of the binary representation of

def
Xip1 = Pa(x;). (2.50)
(a) Use your implementation of RSA encryption along with the technique of itera-
tive squaring to implement a pseudo-random number generator based on (2.50).
(b) What is the longest possible initial sequence of the bit sequence by, by, b2, ...
that does not show any periodic output, and why is this number of interest?

10. RSA-based hash function One may use RSA public-key encryption to build a

(slow) one-way hash function. Alice generates a pair of RSA keys as before: Let p
and g be large primes and P4 & {e,n}, wheren = p-gand gedie, (p—1)-(g—1)) =
1. If M is a message, then the hash of M is defined as

hM) < M¢ mod n: (2.51)

62

Chapter 2. Public-Key Cryptography

11.

12.

that is, h (M) is simply the cipher-text P4(M). If Alice “throws away™ p, ¢, and her

private key S, & {d, n), or if she never computes S, in the first place, then breaking

the hash means breaking the RSA encryption system. Unfortunately, this method is
rather slow compared to others.

(a) Nonetheless, you are asked to implement it. The algorithm should have a mes-
sage M as its only input and the hash value, A{ M), as its only output.

(b) Hash functions have important characteristics, listed as HI-H4 in Section2.1.0.2
(p. 21). Discuss to what extent your implementation satisfies these criteria.
Suppose that an operating system stores passwords PW as hashed values h(PW).
During log-in, the user enters a message M as the password, which should verify
his identity and authority of access. The system then computes £(M) and allows

access if and only if i(M) equals h(PW).

(a) Assume that the user has access to the hashed values of user passwords as well
as knowledge of (and access to) the hash function being used. Which proper-
ties of HI-H4 (p. 21) are required to ensure that a user could not launch a log-in
attack?

(b) Discuss what security measures are required for handling the storage of hashed
passwords.

Knapsack problems and PKCs A knapsack problem is a pair (s, (i}, ..., [,)}),

where s and i; are in N. We call s the sum of the problem. A solution to this problem

is a bit vector b1 b, ... b, such that

S=I}!'i|+b2‘i2+“‘+bn‘in- (252)

We call such a problem super-increasing it iy + - -+ i < g forallk =1,2,...,
n — 1, that is, if each item i; is greater than the sum of all previous items.
(a) Verify or refute that 1011001011 is a solution to the knapsack problem

(1864, (21, 56, 7, 1234, 345, 3, 456, 935, 35, 111)).
(b) Show that the super-increasing knapsack problem
(341864, (2,11, 23, 65,123, 4567, 65432))

has a solution.
(c) Does the super-increasing knapsack problem

(341864, (3, 11, 23, 65, 123, 4567, 65432))

have a solution?

(d) Design and implement an algorithm that (i) decides whether a super-increasing
knapsack problem has a solution and (ii) returns a solution if there is one.

(e) One can use knapsack problems for an implementation of the public-key crypto-
graphic scheme. (This proposal to PKC has been broken, though, and is com-
pletely unsecure, but it’s educational to see that the idea of PKC has other
mathematical realizations.) Let {iy, ..., i,,) be a super-increasing sequence that
functions as the private key S4. Choose n at random but bigger than the sum
of all i;, and choose a random k such that gcd(k, n) = 1. The public key P4 is

L r

then the sequence (i}, ..., i), where

' m

i’ i -k mod n. (253)

2.4. Correctness of RSA 63

Given a message M as a bit vector, partition M into blocks of m bits, padding
the final block with random bits if necessary. Each block determines a sum s
according to the sequence (i}, ..., i,). The encrypted message Ps(M) is de-
fined as the concatenation of all these sums. For decryption, Alice computes
k~!, the multiplicative inverse of k modulo n, and multiplies each segment of
the encrypted message with £~ mod n.

(i) Consider the super-increasing sequence

(2. 11,34, 37, 43, 56, 61. 67. 78, 123),

where n equals 1999 and k is 239. Encrypt the message 1011011011011000),
11110100111001 and verify that its decryption recovers the original message.

(ii) Explain why this scheme works correctly. Explain which parts of this
scheme are secret. What implicit assumptions do we make if we deem this
scheme to be secure?

Our discussion of the RSA encryption scheme leaves two concerns open. We still need
to show that RSA encryption and decryption are mutually inverse, and we must address
possible security concerns about this scheme.

Proposition 2.55 (Correctness of RSA)

The encryption and decryption algorithms determined by the RSA kevs Py &ef {e.n) and

def
Si = {d, n) result in mutually inverse transformations of the finite set {0, 1,2, ..., n — 1},

the domain of messages.

Proof Given a message M €{0.1,2, ..., n — 1}, recall that

PA(Sa(M)) = Pa(M“ mod n)
= (M? mod n)¢ mod n
= M** mod n. (2.54)

Similarly,
S4(Py(M)) = M€ mod n.

Thus it suffices to show that M4¢ = M mod n, which is clearly the case if M = 0.
Otherwise, sinced - e = 1 mod (p — 1) - (g — 1), we have some k € Z with

Md-e — Ml-i—f(-{p—l) — MI . (Mk)p—l — Ml 1= M mod p
by Fermat’s theorem. Similarly, we have
M*¢ = M mod g.

By the Chinese remainder theorem, we obtain M4 = M modn asn = p - g and
ged(p,g) = 1. O

64 Chapter 2. Public-Key Cryptography

EXERCISES 2.20

1. Consider the parameters from Example 2.12 (p. 26).
(a) Verity that the decryption of each block of C in (2.10) recovers the corresponding
block in (2.9).
(b) Encrypt the entire message M, viewed as an integer, and check whether you re-
cover M after decrypting the resulting number.
2. Prove that the RSA encryption scheme is still correct if the private key d is computed
such that

d-e=1modlecm(p — 1,9 — 1),

using the generalized version of Euler's theorem that was proved in Exercise 2.16-5(b)
(p.51).1®

2.5 SECURITY OF RSA

The question of how secure is the RSA public-key encryption scheme presumes that we
already have a clear concept of what we mean by “RSA” and “security”. Are we consid-
ering an entire RSA cryptosystem (with a network of agents and keys to be managed), or
an implementation of the RSA decryption and encryption tasks, or are we merely study-
ing the security of the mathematical RSA encryption function based on an agent’s public
key? Clearly, what we mean by “RSA” affects — but does not completely determine —
what we mean by “security”. For example, if we study the RSA encryption function

f:{2.3.....n—=1} = {2.3,....,n—1}, f(x)=x"modn, (2.55)

associated with a public key, we could call this function secure if M cannot be recovered
from the resulting cipher-text (M) alone, even if one could produce and study a large
collection of cipher-texts. Note that this property implies that the secret key cannot be re-
covered from the repeated use of f, for we have an efficient way of computing the left
inverse of f given the secret key d. Semantic security, on the other hand, is much more
demanding in that it should be impossible to compute any information about M. In partic-
ular, one should not even be able to compute a single bit of M. We hasten to point out that
RSA encryption as such is not semantically secure. Given f (M), one may compute some
information about M —namely, Jacobi (M,n) (see Exercise 2.17-8, p. 56). Random pad-
ding of messages can often achieve semantic security, but such padding must be done with
care. Randomized PKCs, such as the one in Exercise 2.7-9 (p. 34), are much closer to
realizing semantic security. For a realistic and efficient implementation, see Chapter 5.
The security of RSA may also depend on whether it is used for encryption or as a digital
signature scheme, and we will see attacks for each of these tasks.

In summary, a sensible security analysis and its quantitative and qualitative assess-
ments ought to be relative to our understanding of “RSA” and “security”. In this section,
we mainly study RSA as the RSA encryption function (2.55) without knowledge of the

16 The definition of lem{a. b) can be found in the appendix (Definition A 1, p. 259).

2.5. Security of RSA 65

corresponding private key. To this day, none of the publicly known attacks present a fatal
blow to RSA in that sense; rather, they suggest proper use of the RSA scheme and provide
strong evidence that achieving its secure implementation is far from trivial, as demon-
strated in Chapter 5.

One popular way of assessing security is to say that something is at least as secure as
something else. This can be done for RSA encryption and relates it to other, well-studied
computational problems.

Proposition 2.56 (Factoring Attack)
If there is an efficient algorithm that factors all nonprime numbers, then there is an effi-
cient algorithm that invariably breaks the RSA public-key encryption scheme.

Proof Let Factor(n) be an efficient program that returns a factor k of n in case n is
not prime. We sketch informally how to use Factor (n) to design an efficient program
Breaking_ RSA(e,n) thattakes as input an agent’s RSA public key pair (e, n) and com-
putes her private key pair {d, n); of course, the program only needs to return the value of
d. The algorithm initially calls Factor (n) to get a factor k of n. But then

(p—D-(g—D=(k-D-n/k)—-1) (2.56)

and we can compute the right-hand side. Since the agent’s public key (e, n) is known, we
may compute the unique solutionof e -d =1mod (p — 1) - (g — 1), for we know e and
{(p—1)-(g — 1), the latter from (2.56). Thus we know the private key (d. n}. O

This result — saying that breaking the RS A encryption cannot be harder than factoring very
large integers — is useful because it provides some insight into the difficulty of the prob-
lem, but it is hardly the sort of thing that reassures CEOs of financial institutions whose
sensitive transactions depend on RS A public-key cryptography. “If one can break X, then
one can also break Y is a far cry from the desired “nobody can break Y7, especially if
it is open whether X can be broken at all. The problem of factoring large integers has
been studied intensely. The recent and steady improvement of computing power, com-
bined with the refinement of existing factorization techniques and the invention of novel
ones, has resulted in tremendous progress. At the time of this writing, it seems possible
to factor an RSA modulus of about 400 to 600 binary digits, although with quite some
computational effort.!” But at present, it is also not known to what extent the difficulty of
factoring implies security of the RSA cryptosystem. The particular challenge of factor-
ing large integers was addressed in March 1991 by RSA Data Security, Inc.'® to monitor
the state of the art in factoring large integers. There are variations of the RSA PKC that
are proven secure, meaning that one can show the converse of Proposition 2.56; if such a
system is broken, then one can factor its modulus. Although this allows us to measure the
mathematical security of such systems against the factoring problem, if leaves aside se-
curity concerns of concrete implementations and compares a system’s security to that of
an open problem.

17 See Attack 2.60 in Section 2.6 (p. 73).
¥ www.rsa.com/rsalabs /html/factoring.html

66 Chapter 2. Public-Key Cryptography

Even though p and g may be large enough to suggest security, care must be taken. For
example, if p — 1 has no prime factor larger than r, then n can be factored in time less
than r*. The good news, as far as integer factorization is concerned, is that we seem to
be able to manage the improvement of factorization methods and computing power by in-
creasing the key size appropriately (e.g., by letting p - ¢ have about 1024 binary digits).
For general RSA PKCs, the converse of Proposition 2.56 is an open question: Assuming
that one can efficiently break the RSA function f in (2.55), can one derive from this an
efficient algorithm for factoring its parameter n? What is known is that the computation
of the private key and the factoring of n are equivalent problems. This is significant be-
cause it means the exposure of a secret key necessitates the re-instantiation of the entire
RSA system with new parameters.

However, the success of an attack may come not from solving hard computational prob-
lems but rather from exploiting a poor choice of RSA parameters or by allowing a certain
behavior when implementing the RSA cryptosystem. Blinding is an example of the latter.

Attack 2.57 (Blinding)

Consider an RSA digital signature key pair S4 = (n,d) and P4 = (n, ¢) for Alice, and
assume that Marvin wants to make Alice sign an unfavorable prenuptial contract M € Z,,.
Marvin is wise enough not to present the plain contract M to Alice, so he cunningly picks
arandom r € Z, and computes

def
M' = r¢. M mod n

using Alice’s public signature key. He then asks Alice to sign the random-looking M'. If
Alice is naive enough to do so, then Marvin obtains

"€ M) mod n

and can compute

def _
S= S8 -r "' modn.

He may then claim that § is Alice’s digital signature of M, for

§e=(8V-r) = MY .)Y =G M) - (rY)" = M mod n. (2.57)

Is is somewhat misleading to describe blinding as an attack. If agents don’t sign random
messages, this attack can be avoided. Signing random messages actually turns into a use-
ful technique — for example, to ensure anonymity of signatures that are used for electronic
cash transactions.

Another attack, due to M. Wiener, can be mounted if the private-key exponent d is
small rather than randomly large. This is unfortunate because decryption based on itera-
tive squaring takes time linear in logd, so the smaller the d, the faster we can decrypt a
message. In smartcards with power constraints, this creates a genuine tradeoff between
security and realizability.

Attack 2.58 (Low Private-Key Exponent)
Letn = p-q withg < p < 2gandd < % -n"*. Given the key pair S4 = (n.d) and
P4 = {(n, e}, one can recover d efficiently from the public key Py = (n, e).

2.5. Security of RSA 67

Proof We sketch the argument and leave some of the details to Exercise 2.21-14. An
attacker knows n and e but does not know ¢(n), which equals (p — 1) - (g — 1). The
sought-after secret key d is known to satisfy e - d = 1 mod ¢ (n). Therefore, there exists
some k € Z with e - d — k - ¢(n) = 1. Using division over the reals, we obtain

L_EI_ I
o(n) d| d-¢n)’

with k, d, and ¢ (n) as unknowns. The idea is now to approximate ¢ (n) with n and to
turn (2.58) into a continued fraction expansion of the approximation e /n. Clearly,

(2.58)

¢pn)=n—(p+q—1.

By our previous assumptions, we can show
p+qg—1<3.n. (2.59)

Combining these two facts yields |n — ¢(n)| < 3 - /n. Approximating ¢(n) with n
in (2.58), we obtain

e-d—k-¢pn)—k-n+k-¢(n) - 3-k
n-d _d-ﬁ'

Sincek-¢p(n)=e-d—1<e-dande < ¢p(n), we infer k < d, but d is assumed to be
less than £ - n'/*. Thus

n d

(2.60)

€ k‘_

e k
- — | =
n d| —

1
2.d*

(2.61)

The number of fractions k/d satisfying (2.61) with d < % -n' is bounded by logn.
Indeed, one need only compute that number of expansions of the continued fraction for
e/nuntil k /d, and therefore d, is recovered. O

One may avert this attack by replacing e with ¢ + [- ¢(n) for some large integer /. This
does not alter encryption as such but does, unfortunately, increase encryption time. In
Exercise 2.21-14 (p. 72), we indicate how one may circumvent such an attack without giv-
ing up small values of d. In Exercise 2.21-7 (p. 70), you are asked to demonstrate the
following.

Attack 2.59 (Nontrivial Square-Root Attack)
If one can find a nontrivial square root of a modulus n that is used for a pair of RSA keys
P4 = {ea,n) and S4 = (da, n}, then one can efficiently compute the secret key S,.

The most serious (and successful) attacks are those that exploit implementation aspects of
the RSA encryption scheme. For example, one may use the Chinese remainder theorem to
reduce the generation of an RSA digital signature by a factor of 4. Given the private-key
exponent d, let

d, = dmod p — 1,

d, € dmod g — 1.

68 Chapter 2. Public-Key Cryptography

To sign a message M € Z,, compute

C, = M mod p.
C, = M% mod q.
By the Chinese remainder theorem, the signature C = M“ mod n equals
t,-Cp+1,-Cy modn, (2.62)
where

t,=1mod p, 1, =0modgq,

ty =0mod p, t, =1modgq.

q

Given a single random fault — caused, for instance, by a hardware flaw or some electromag-
netic interference — one of the two “signatures”™, say C,, will be incorrectly computed as
C;,. An attacker who knows M may realize that (C")° # M mod n, where C'is computed
according to (2.62) but with the flawed signature C !’J instead of C,,. Using (2.62), we see that
(C")* # M mod p and (C’)* = M mod ¢g. Thus the computation of ged((C")* — M, n)
reveals a factor of n. Note that this attack can be averted by randomly padding the mes-
sage prior to signing it.

A class of very disturbing attacks are those that measure physical quantities of an en-
cryption device and manage to observe statistical correlations (or their absence) that reveal
information about the parameters of the underlying cryptosystem. P. Kocher used such an
approach to expose the private key of a smartcard used for RSA signatures, exploiting the
knowledge that the card used iterative squaring. Thus the program flow at the ith iteration
depends on the value of the ith bit of d. He managed to find two families of timing vari-
ables, each ranging over the same family of random messages that were supplied to the
card to be signed. These attacks are so disturbing because they can hardly be ruled out,
or predicted, by mathematical models or even by a flow analysis of their implementation
programs. We return to this important topic in Chapter 6.

EXERCISES 2.21

1. Justify all equations in (2.57).

2. Discuss to what extent the RSA cryptosystem satisfies the criteria of the two bullets
on page 16 and the requirement expressed in Remark 2.3.

3. In Attack 2.57:
(a) Explain why Marvin must compute »~! mod n.
(b) How could Marvin compute Alice’s secret key if r were not a unit in Z7 7

4. Devise an algorithm that can compute an RSA private key from its public key, as-
suming that there exists an efficient program Euler (n) that computes Euler’s totient
function 1 +— ¢(n): N — N.

5. Totient of prime factorization Exercise 4 is a direct consequence of a more general
fact and Proposition 2.56. Follow the outline presented next as (a)—(e) to show that
one can construct an efficient algorithm for computing n — ¢ (n): N — N if there

2.5. Security of RSA

exists an efficient algorithm PrimeFactorization(n) that computes the unique
prime factorization of all natural numbers n. Let n € N. Recall that ¢ (n) equals the
sizeof theset{aeZ |1 <=a <=n —1, gcd(a, n) = 1}. Lemma A .15 (p. 266) shows
that

p(pH=p""(p-1 (2.63)
for all prime numbers p and k € I,
(a) Letn = p{'-p5*--- p2 be the unique prime factorization of n. Use the Chinese
remainder theorem to prove that

$(n) = ¢(pi") ¢(p3") - p(py). (2.64)
(b) Explain how you could obtain an efficient algorithm for complete prime factor-
ization, PrimeFactorization(n), given an efficient algorithm Factor(n)

for factoring n.
(c) Use equations (2.64) and (2.63) to show that

pm)=n-[Ja-1/p). (2.65)
pln
(d) Explain how you can use an efficient algorithm for complete prime factoriza-
tion, PrimeFactorization(n), to derive an efficient program Euler (n) that
computes ¢ (n).
(e) Use equation (2.65) to compute ¢(2176893).
6. For an RSA system, anybody who knows n and ¢ (r) can factor n and thus expose

the system.
(a) Show: Sincen = p-gand¢p(n) = (p —1)- (g — 1), we can replace g with n/p
and obtain
pP=(n—¢m+1)-p+n=0, (2.66)

a quadratic equation in p.
(b) Use a programming language with a Biglnteger package to compute p when (i) n
equals!®

525542535815092596650492913013091564491702892920909473368684\,
417666299909549461224832778595240530820838658768752225396375\\
36483967344942733883517870059273483149902899956823437646104\

038481577001082264967391767649257245154453958484447830590754\,

229670469025294710276750925220051868931966651146099712686764\\

6392121651,

concatenated from top to bottom, and (ii) ¢ (n) equals

525542535815092596650492913013091564491702892920909473368684\,
417666299909549461224832778595240530820838658768752225396375\\
364839673449427338835178700592734664074013094212627914979100\
898858343170775699513567324425646874587865393807783028813781\),
206918268633307839255378750518800396327650531901594811874527\\
67331400.

¥ You may copy these numbers from the book’s website.

70 Chapter 2. Public-Key Cryptography

7. Prove the statement in Attack 2.59. (Hint: Look at Exercise 2.17-4, p. 55.)
8. Using ¢(n) to compute inverses in 77
(a) Show that a®™~! mod n is a solution to a - x = 1 mod n whenever [a], € Z%.
(b) Compute ¢(73562181).
(c) Design and implement an efficient algorithm that takes as input n € N, ¢(n),
and a € Z. First, the program checks whether [a], € Z7. In that case, it com-
putes an inverse of [a], in Z% | based on the insight of Exercise 8(a). Otherwise,
it reports that no such inverse exists. Compare the running time of your pro-
gram to that of the algorithm Extended_Euclid.
(d) Run your algorithm for n = 73562181 and a = 1939.
(e) Run your algorithm for n = 73562181 and a = 1999.

9. Let the RSA modulus be 333603832036. The public key is 2345. The cipher-text,
03423448013, represents a 4-digit plain-text, the PIN number for the author’s British
bank account.” Compute that PIN number by (i) factoring n, (ii) computing ¢ (n),
(ii1) computing the secret key d, and (iv) decrypting 93423448013.

10. Common modulus attack One may attack the RS A encryption scheme if all agents
A on a network share the same value n (i.e., they share p and ¢) but each has differ-
ent key values e4 and d 4. The attacker, Mallory, knows the public exponents ¢4 and
ep of agents A and B and somehow intercepted two encryptions Pa(M) and Pg(M)
for a message M; Mallory is aware of their actual format and the fact that the two
original messages are identical.

(a) Prove: If gcd(eq, eg) = 1, then Mallory has an efficient attack that recovers
M. (Hint: The call Extended_Euclid(e_A,e_B) computes numbers r, s €
Zsuchthatr-es +5-eg = 1. Argue that either r or s must be negative. Assume
without loss of generality that r is negative. Show that

(Pa(M)Y™ ™" -Pg(M)* = M mod n

and explain why Mallory may compute (P4(M)~")™" - Pg(M)* mod n effi-
ciently.)

(b) Regardless of the value of gcd(es, eg), can agent A compute agent B’s secret
key?

(c) Apply this attack when
* the common modulus is

T665448606666073317684148965146276834900571307109519352921\
6182848689439209823;

* the public-key exponent of Alice, ¢4, is 5;

the public-key exponent of Bob, eg, is 17;
e the cipher-text P4 (M) equals 323604428863968; and
¢ the cipher-text Pg(M) equals

21579886340652724851999486951346436243226204438528.

Compute M.

el . . . - -
20 Relax — the most you will ever et out of this exercise is credit for your homework!

2.5. Security of RSA

11. Signing unknown messages Blinding already suggests that one should be care-
ful about signing random messages. Blinding, and a slight variation of this attack,
rest on the fact that RSA encryption and decryption are multiplicative.

(a) Let Py def {e,n) and S, det (d,n). Prove: Forall m,m> e {0,1,...,n — 1} we
have
(my-my)* = m§ - m5 mod n,

(m - mo)¥ = m‘f m-, mod n.

(2.67)
(b) Use the fact that RSA encryption is multiplicative to prove the possibility of
an attack — provided that Alice is willing to sign, using her private key S; =
{d, n), a message that she has never seen before. The attacker, Mallory, listens
to the network traffic and manages to hear C def Si(M). She would like to re-
cover M. (This is different from blinding, where M is known to Mallory and
she seeks to obtain C.) Because Alice’s modulus n is public, as part of Alice’s
public key Py = (e, n), Mallory may then choose a random number r such that
r < nand ged(r, n) = 1.
(i) Explain why Mallory may compute
dc.f

X = r‘ mod n,
Yy ¥ X . € mod n, (2.68)
T dif ! mod n

efficiently.

(i1) Assume that Alice is somehow willing to sign a random-looking message
from Mallory with her private key and return it to Mallory. Then Mallory
sends Alice the message ¥, and so Alice dutifully returns

U= det Y4 mod n

to Mallory. Use the fact that RSA encryption is multiplicative to prove that
Mallory may now quickly recover M.
12. Forgery by change of public key Let p and g be two large and different primes.

Let M be some integer; think of M as being a legitimate message.

(a) Prove: If Mallory knows M, p, and g, then she can choose any forged mes-
sage M' € Z and will be able to compute some x € I such that (M")* =
M mod p - ¢. (Hint: Use the Chinese remainder theorem to rewrite this equa-
tion in x as a system of two equations. Use Theorem 2.35 to rewrite these two
equations as linear ones.)

(b) Protocols based on RSA encryption may need to regulate when (and how often)
agents may choose, or change their RSA keys. Fm' example, assume that Bob
initially has the RSA keys Py o (eg, ng) and SB = (dg, ng) and that he is able
to publish a new public key (ep, ng) later on. Assume further that Alice en-
crypts a message M using Bob's initial public key and that she then signs the
result with her private key and sends the result to Bob. Using part (a), explain in
detail how Bob can. for a fixed message M', compute a new public key e with
respect to which he can prove that Alice sent and signed message M’ and not
M. Would the use of hash functions prevent such an attack? Would Bob still be
able to launch this attack if Alice first signed and then encrypted the message?

Chapter 2. Public-Key Cryptography

13. Broadcast attack Using a low public-key exponent can also be a cause for con-
cern. Consider a network with k 4+ 1 agents, one of whom is Alice and with the other
k agents having public keys

P; = (3, m;)

fori = 1,2, ..., k, respectively. Alice would like to broadcast a message M, as-
sumed to be less than any of the n;, to all network participants. According to the
RSA scheme, Alice may encrypt M as

def
C; = M° mod n;

for each agent i and broadcast these k cipher-texts across the network . Mallory then
manages to intercept all these cipher-texts; her goal is to recover M. (These attacks
remain valid if messages are padded with a fixed polynomial transformation; only
randomized pads can shield against this threat.)
(a) How can Mallory achieve her goal if gcd(n;, n;) # 1 for some i # j?
(b) By part (a), we may assume that n; and n; have no common factor whenever
i#J.
(i) Explain how Mallory can compute some C' € Z,,,.n,..,, such that
C'=M>modn, ny---ny.

(i) Explain why C’ equals M~ as an integer and why this allows Mallory to
recover M.

(iii) Could Mallory recover M if she intercepted only three different cipher-
texts?

(c) If the public keys are generally ¢; for each agent i, how many cipher-texts would
Mallory have to intercept for this attack? Would this attack still be feasible for
some large ¢;?

14. Low private-key exponent
(a) For the proof of Attack 2.58, explain in detail why (2.59), (2.60), and (2.61)

hold.

(b) If n is 1024 bits long, what is the minimum number of bits that & must have in
order to avoid Attack 2.587

(c) One may avert this attack by replacing e with ¢ +1[- ¢ (n) for some large integer
[. This does not alter encryption, but alas it increases encryption time. Show:
If e + 1 - ¢(n) is larger than n*'* then the attack cannot be carried out.

(d) Could one use the Chinese remainder theorem to allow for a large d yet still
guarantee fast decryption based on small private exponents?

15. Partial key-exposure attack Letn = p - ¢ have | € N bits with [= 0 mod 4,
where (e, n) and (d, n) are the public and private RSA key, respectively. Show: If
Mallory knows the least [/4 bits of the private-key exponent ¢, then she can effi-
ciently factor n. Use a theorem (due to D. Coppersmith) stating that one can factor
n efficiently given the / /4 least significant bits of p.

(a) Conclude that there exists some k € Z with

ed—k-(n—p—gq+1)=1 (2.69)

(b) Argue that k£ must satisfy 0 < k£ < e, noting thatd < ¢ (n).
(¢) Show that

(e-dy-p—k-p-(n—p+D+k-n=p. (2.70)

2.6. Integer Factorization 73

(d) Explain why Mallory knows the value of ¢ -d mod 2'/* and why this transforms
(2.70) into a quadratic equation in p for “fixed” k modulo 2//*. (One can now
solve for p mod 2!/* for each k < e and test whether Coppersmith’s procedure
returns a factor of n.)

(e) Can you give an upper bound on the number of possible candidates for p mod
21749

2.6 INTEGER FACTORIZATION

We saw that RSA encryption is breakable if large integers can be factored efficiently. The
converse — whether RSA public-key encryption is unbreakable if there is no efficient al-
gorithm for factoring all large integers — is an open problem in computer science. This
is one reason why security managers of financial institutions may be nervous about using
the RSA scheme. The second reason is that it remains an open problem whether there
is an efficient algorithm for factoring all integers. If security managers had their way, it
is clear how they would like to see these problems resolved (if they ever will be!): there
“ought™ not exist an efficient algorithm for factoring all integers, and RSA encryption
“ought™ only be breakable if integers can be factored. A careful implementation of RSA
encryption would then be unbreakable in principle. However, the nonexistence of an al-
gorithm that efficiently factors all integers by no means rules out the existence of efficient
algorithms that fail to factor many numbers but manage to “get lucky™ with some others
(e.g., the ones used during a particular RSA encryption session). Such algorithms exist,
and we present one approach as a representative example. The power of these algorithms
is illustrated by the following attack.

Attack 2.60 (Factorization of RSA-155)

There exist factorization algorithms that allow formidable attacks carried out by networks
of PCs and workstations. Individual machines access a central database that stores test
relations used for determining a factor of an RSA modulus. If any machine tests a re-
lation that reveals a factor, then the attack succeeds. Tests that don’t succeed will never
again be processed by another machine. The fact that these tests can be done concurrently
poses a serious threat to the secure use of RSA. Such an attack broke the RSA modulus
of the 155-digit RSA Challenge in August 1999 2! This number has 512 bits, suggesting
that implementors of RSA choose a significantly larger modulus. The factoring algorithm
used in the attack was the general number field sieve. The sieving took 35.7 CPU-years
in total on:

¢ one hundred sixty 175-400-MHz SGI and Sun workstations,
¢ cight 250-MHz SGI Origin 2000 processors,

* one hundred twenty 300-450-MHz Pentium II PCs, and

» four 500-MHz Digital/Compaq boxes.*?

The entire effort of breaking this number required 3.7 months (of regular calendar time).

2 http: /fwww.rsasecurity.com/rsalabs/challenges/factoring /rsal55 .html
n http:// www.rsasecurity.com /rsalabs/challenges/factoring /rsal55 .html

74 Chapter 2. Public-Key Cryptography

The development of factorization algorithms that allow networked attacks needs to be
watched and taken into account when assessing the security of cryptographic systems that
depend on factorization being a hard problem.

2.6.1 Pollard’s Rho Heuristic

Recall that the Miller—Rabin algorithm is provably correct if it classifies a number n as
being composite. In that case, n has a nontrivial factor k; thatis,n = k- for k,] €
Mand 1 < k& < n. This algorithm is of little use, however, if we need to know such a
nontrivial factor — for example, if we mean to compute Alice’s secret RSA key S4 from
her public key P4 by trying to factor the modulus n. Pollard’s rho heuristic is an algo-
rithm that takes n as input and either replies with a (small) factor k of n or does not
terminate; it is because of this latter possibility that we speak of a heuristic. Since this
algorithm works only for small factors, it cannot be used for attacking realistic instances
of RSA.

The algorithm uses randomization in that, given n, it will create a “random seed” which
in turn creates a deterministic run of the algorithm with n as input. Even if the algorithm
terminates, it may run too long to be practical, but experience has shown that it can be used
quite successfully to find “small” prime factors and to completely factor “small” values of
n. Whereas the naive sieve algorithm discussed earlier can factor numbers only up to m?
(provided that the sieve values range up to m), Pollard’s rho heuristic can improve this
bound to m*. The existence of algorithms like Pollard’s is the reason why many crypto-
graphic methods prescribe that certain prime numbers used in a scheme not be permitted
to feature “small” prime factors. For example, it may be desirable to generate very large
primes p and g such that p — 1 and g — I contain at least one prime factor larger than some
specified threshold B = 0. To make matters worse (from the standpoint of cryptosystem
security), one can use elliptic curve methods to improve the performance of Pollard’s tho
heuristic.

We won’t discuss these more sophisticated algorithms; we focus instead on the spec-
ification of Pollard’s algorithm (see Figure 2.9) and describe it informally. For a more
technical discussion, see the references listed at the end of this chapter. The pseudo-code
in Figure 2.9 seems somewhat enigmatic but is really not that difficult to understand. The
integer variable i serves as a counter of the number of iterations (minus 1) that the while-
statement has already performed. Note that the boolean guard to this while-statement is
true, so this program can terminate only if it reaches stop —that is, if the computed value
of d differs from 1 and n. But since the value of d is always of the form gcd(y-x,n),
where gcd computes the greatest common divisor of its input, the program terminates
only if the value of d is a factor of n. The remaining variables of the algorithm are
x and k.

* The variable x plays the role of a random seed, randomly assigned in its initialization;
during each iteration of the while-statement, the value of x is updated to x? — 1 mod
n. It is helpful to think of

x> x> —1modn

as a pseudo-random number generator.

2.6. Integer Factorization 75

Pollard-Rho(BigInteger n) {

// tries to compute a non-trivial factor of n

// by placing a random seed x with 2 <= x <=n - 1
// and then running a deterministic algorithm with
// % and n as parameters

int 1 = 1;

BigInteger d;

BigInteger x = Random(2, n - 1);

Biglnteger y = x;

int k = 2;
while true {
++1;
x = (x * x - 1) mod n;
d = ged(y - x, n);
if (d '= 1 && d !'= n) { printout ‘‘one factor is: ’7 d;
stop;
¥
else {
if (k=1) {y = x;
k=2 % k:}
¥
}
}

Figure 2.9. Pseudo-code for Pollard’s rho heuristic, which may find a
“small” prime factor of n or may fail to terminate.

* The variable k only takes on values that are powers of 2; if this value is 2/ and if 2/ — 1
iterations of the while-statement have been performed (that is to say, if 1 and k hold the
same value), then the current value of x is saved in y as the new basis for computing
ged (y-x,n).

Pollard’s algorithm has a special-purpose version, the “n — 17 variant, that computes a
prime factor p of a composite number n provided that n — 1 is “smooth”. For details we
refer to the bibliographic notes at the end of this chapter. We give a simplified introduction
to elliptic curves and their associated commutative group structure in Section 4.1.2; one
can use such curves to improve Pollard s rho heuristic. In this text, we use them only for
a variant of the Digital Signature Standard of Section 4.1.1.

EXERCISES 2.22

1. Implement Pollard’s rho heuristic in a programming language of your choice.

2. Is it safe to terminate the Pollard algorithm and report “failure™ if the gcd expression
computes to n? That is to say, can we then rule out that the program run ever reaches
stop?

3. Implement an improved Pollard heuristic that asks the user which constant @ € Z to
use for the *“pseudo-random” function x +— x° 4+ a mod n. Run some inputs with
this version and verify that, in general, the success of the algorithm — as well as the
computed factor — depend on the choice of a.

76 Chapter 2. Public-Key Cryptography

4. Run Pollard’s heuristic on some “small” integers (between 20 and 60 digits; use only
numbers for which the Miller—Rabin algorithm has replied that they are definitely
not prime). Here are some possible numbers to try (from a certain number onward,
Pollard’s method may take a long time, or fail):*

(a) 7928360769247;

(b) 229458832697429029;

(c) 133466331868482001;

(d) 152657547690783791;

(e) 2064298239197436113;

(f) 788098043379362100145753;

(2) 4458768158210990847362498729;

(h) 287611983724618008231029395911280447;

(1) 11177376311809398334052717561034686850418514897741;
(j) the number

392112852685039434278461344768208172965440213485338997210750\\,
8298663541659589829967

(this number has 82 digits).

2.7 OTHER KEY-EXCHANGE REALIZATIONS BASED ON
DISCRETE LOGARITHMS

The key-exchange mechanisms described in this section are the basis for methods used
in several commercial products, such as Pretty Good Privacy (PGP) for electronic mail,
the AT&T 3600 Telephone Security Device, and certain cryptographic cards. In Defini-
tion 2.33 we called r a logarithm of x in Zy , with respect to a primitive root g as a base, if

t is the minimal value in N U {0} that satisfies x = g’ mod n; we denoted ¢ as log,, »(x).

2.71 Diffie-Hellman Key-Exchange System

We now describe the original Diffie—Hellman key-exchange system.

Protocol 2.61 (Diffie-Hellman Key Exchange)

Let g be a big and somehow “secure”?* prime. Alice and Bob want to agree on a shared
key; for example, they may plan to use this key for initializing a symmetric encryption al-
gorithm for the secure exchange of large amounts of data along an unsecure channel. The
key they generate is a “random” element of Z7:

1. Alice generates a random number a with 2 < a < g — 1, which she keeps secret;

2. Alice computes g“ mod g and publishes this result, where g is a known primitive root
of Zj,;

3. Bob generates a random number b with 2 < b < g — 1, which he keeps secret;

B You may copy these numbers from the book’s website.
2 In all these protocols, such a prime number should make it difficult for existing heuristic algorithms that attempt
to compute discrete logarithms to be successful in Z7.

2.7. Other Key-Exchange Realizations Based on Discrete Logarithms 77

4. Bob computes g mod ¢ and publishes that result;
5. Bob and Alice agree on sharing the key g“? mod q.

It should be intuitively clear that the security of schemes based on discrete logarithms in
finite groups rests on the choice of system parameters. In this case, we have to choose
“good™ g and g. Minimal requirements for such choices are that [g], generate a “large™
subgroup of Z . ideally the entire group. This can be achieved if we are somehow able
to compute a primitive root for Z7 . In any event, these choices must be informed by the
state-of-the-art algorithms that attempt to compute discrete logarithms over finite groups.
This protocol is also subject to a man-in-the-middle attack , whose description is relegated

to the next exercise.

EXERCISE 2.23

1. If Mallory succeeds in convincing Bob that Alice published g% mod ¢ and also per-
suades Alice to believe that Bob published g” mod ¢, then Mallory could end up
establishing the key g*" mod p with Alice and the key g% * with Bob. Mallory is
thus positioned for a man-in-the-middle attack. Explain how that attack works and
what it can accomplish for Mallory.

2.7.2 Station-to-Station Protocol

We can avert the attack of Exercise 2.23-1 by assuming that Alice and Bob have digital
signing schemes and certificates Cert(A) and Cert(B) from a trusted authority.

Protocol 2.62 (Station-to-Station Protocol)

1. Alice generates a random number ¢ with 2 < a < g — 1, computes g“ mod ¢, and
sends the result to Bob.

2. Bob chooses a random number b with 2 < b < g — 1, signs (b, g“ mod g} with Sg,
and uses his certificate Cert(B) to send the triple

(Cert(B). ¢” mod ¢. Sz((b, g° mod ¢)))
to Alice.

3. Alice verifies Bob’s signature using Bob’s public key Pg and then verifies his certificate
through the trusted authority. In turn, she signs (g mod ¢, g” mod ¢) with her secret
key S, and uses her certificate to send the pair (Cert(A). S,({(g® mod ¢, g” mod g)))
to Bob.

4. Bob can now verify Alice’s certificate and her signature in a similar way.

2.7.3 Massey-Omura Cryptosystem

Protocol 2.63 (Massey—-Omura Cryptosystem)

This protocol presumes that all users of a network have previously agreed on using a very
large “secure™ prime number g. Each agent A secretly selects a random integer e4 with
1 < eq4 < g — 1 such that

78 Chapter 2. Public-Key Cryptography

ged(eq. g — 1) =1

and then uses the algorithm Extended_Euclid to compute a multiplicative inverse d
of ¢4 mod g — 1. Messages are viewed as elements of Z,. If Alice wants to send a mes-
sage M to Bob, then:

1. she computes M mod ¢ and sends this to Bob;

2. since Bob knows neither d4 nor ey, he cannot recover M, but he takes M“* mod g and
raises it to the egth power and passes the resulting M “"“* mod g on to Alice;

3. Alice takes M*“+“# mod g, raises it to the d 4th power, and returns the resulting number
to Bob;

4. Bob receives this number and raises it to the dgth power to retrieve M.

In Exercise 2.24-3 (p. 79), you are asked to discuss why this protocol works as advertised.

2.7.4 ElGamal Cryptosystem

Protocol 2.64 (ElIGamal Cryptosystem)

The setup for this cryptosystem is similar to the one of Massey—Omura. Each agent on
the network shares a large, “secure” prime number g and an element g mod g that gen-
erates a large and “secure” subgroup in Z; . Messages are again simply elements of Z,.
Each agent A generates a key pair by (i) picking

def
SA =y,

where a4 is a random number between 2 and g — 1 that A keeps secret, and (ii) setting
P4 == g mod ¢
as the public key. If Bob wants to send Alice a message M, then:

1. he chooses an integer k at random, and

2. he sends Alice the pair (g* mod g, M - g+* mod g);

3. since Alice knows a4, she can efficiently raise the first component, g* mod g. of that
message to the a4th power. Then she can take the resulting number d and divide the
second component, M - g9'* mod ¢, of Bob’s message by d to recover M.

At the time of this writing, there are no known efficient algorithms for computing x from a
constant fraction of its bits and the value g* mod n. Thus — unlike the RSA cryptosystem —
these schemes are not (yet) subject to partial-key exposure attacks; see Exercise 2.21-15
(p. 72) for details.

EXERCISES 2.24

1. In the Diffie—Hellman key-exchange protocol:
(a) Explain how Alice and Bob manage to compute the shared key in step 5 of the
protocol. based on their knowledge after completion of step 4.

2.8. Bibliographic Notes 79

(b) Explain how an eavesdropper (Mallory) can compute the key that Bob and Alice
share in the end, provided that Mallory (i) can listen to the communication traffic
between Alice and Bob and (ii) has a feasible algorithm for computing discrete
logarithms in Z. In particular, Mallory knows which g and ¢ Bob and Alice
have agreed to use.

2. Make changes to the station-to-station protocol so that it includes key confirmation.
This means not only that Alice and Bob securely exchanged some key but also that
they know for certain that both obtained the same key.

3. In the Massey—Omura cryptosystem:

(a) Explain the mathematics behind this protocol. That is, what mathematical prop-
erties guarantee that Bob actually recovers M in the end?

(b) Instep 2. why do you think it’s important that Bob does not know e4 or d,, given
that Bob and Alice communicate all this information over a public and unsecure
channel?

(c) Explain how Mallory, who has the same capabilities as in Exercise 1, can defeat
this protocol. (Hint: You may need to rely on Theorem 2.35, p. 44.)

4. In the ElGamal cryptosystem:

(a) Keeping in mind that Bob does not know Alice’s secret key e4., explain why he
can nonetheless generate the message pair (g mod g, M - g“** mod g).

(b) Explain how an eagerly listening Mallory with the same capabilities as in Exer-
cise 1 can defeat this protocol and compute Alice’s and Bob’s shared secret key.

2.8 BIBLIOGRAPHIC NOTES

Diffie and Hellman (1976) put forward the idea of public-key cryptography; in response
to that work, Rivest, Shamir and Adleman (1978) proposed the RSA encryption scheme
as an actual and feasible realization of these ideas. At the time, it was not publicly known
that J. Ellis from the Communications-Electronic Security Group (a British government
agency) had already described very similar ideas in internal reports in 1974 and 1976, be-
cause these documents were classified until December 1997. Shortly after the work of
Ellis, C. Cocks and M. Williamson found practical implementations. For details on that
story, we highly recommend Singh (2000). The public-key system of ElGamal, along with
a scheme for digital signatures, is described in ElGamal (1985). A more detailed account
of the Miller—Rabin algorithm and other randomized algorithms for primality testing can
be found in Motvani and Raghavan (1995). A good general source for computational num-
ber theory is Bach and Shallit (1996). An online source of basic explanations of integer
factorization algorithms (e.g., quadratic sieve algorithms) and additional scientific refer-
ences is Eric’s Treasure Troves of Science.” The textbook of Cormen, Leiserson, and
Rivest (1990) also serves as a reference for a host of important algorithms and their analy-
sis. For a comprehensive textbook on modern computational methods in algebra, see
von zur Gathen and Gerhard (1999). The section in this chapter on the security of RSA is
largely inspired by the survey paper of Boneh (1999). The original paper on the random

% ttp:/f www.treasure-troves.com/

80 Chapter 2. Public-Key Cryptography

number generator described in Exercise 2.7-8 is Blum, Blum, and Shub (1986). A sur-
vey article on discrete logarithms in finite fields and their significance in cryptography is
Oldyzko (1994). The World Wide Web site*® maintained by R. Hofer discusses encryp-
tion systems based on elliptic curves. E. W. Weisstein has collected a nice tutorial on such
issues.’ For a thorough mathematical presentation of elliptic curves in cryptography. see
Blake, Seroussi, and Smart (1999).

26
27

www.shox tu-graz.ac.at/home /j/jonny/projects/crypto/asymmetr/ecdlp/ecdlp.htm
www.treasure-troves.com,/math / LenstraEllipticCurveMethod . html

CHAPTER 3

Symmetric-Key Cryptography

3.1 STREAM CIPHERS

Symmetric cryptographic algorithms are often classified and divided into stream ciphers
and block ciphers. In a stream cipher, the atomic computation step is the encryption of a
single symbol. For example, if the input is a plain-text bit stream

Mg, By, Mo, ...,

then a stream cipher will first encrypt mg, then m,, and so forth. That way, one obtains a
cipher-text bit stream

cp, €1, €3y ..

Fa

Note that the encryption of m; may depend on any of the symbols m; (0 < i < j), for
the computational state of the algorithm may be a function of the symbols it has “seen”
so far. The encryption of m; is most often achieved by

C; dch s bm;,
where sq. 51. ... 18 the key stream, typically generated by a deterministic algorithm run
with a random seed: see Figure 3.1. The stream ciphers of that figure are synchronous, since
their key bit stream is completely determined by the random seed (the key). (More general
designs could make s;, | a function of the message stream and the entire cipher-text com-
puted so far.) In a block cipher, one encrypts an entire block of input symbols (say, 64 bits)
atatime, and the “key stream” is constant. Later on, we see that this division is not as crisp
and dramatic as it may sound here. For example, one can run a block cipher algorithm in a
“stream mode”, and this division further depends on what we mean by an “atomic’ symbol.

Stream ciphers are still the workhorse of many cryptographic applications, and they
possess features that sometimes make them the preferred method of choice. Stream ci-
phers can often be analyzed mathematically, allowing for a formal assessment of system
security parameters. Block ciphers, on the other hand, rarely offer such an analysis —
apart from showing that they are immune to known attacks and meet certain desirable
design criteria. Stream ciphers also offer an advantage in that their encryption speed is
typically higher than that of block ciphers. In our discussion of feedback shift registers, it
becomes apparent that stream ciphers are not self-synchronizing. If an attacker manipu-
lates (or deletes) at least one symbol of the encrypted stream before it reaches its intended
destination, then the decryption operation will not recover from the point of the alteration

82 Chapter 3. Symmetric-Key Cryptography

stream-generating pseudo-random bit s; pseudo-random bit s; stream-generating

algorithm Ay algorithm Ay
& 4"{ p =2
() encrypted cipher-text bit ¢;)

cipher-text bit ¢;

plain-text bit m; decrypted plain-text bit m;

)) axis of symmetry))
encryption of a bit stream decryption of a bit stream

Figure 3.1. A schematic for the design of stream ciphers. Encryption and decryption are achieved by
forming the bitwise exclusive-or of the input sequence with a pseudo-random sequence that is the stream
output of a key-dependent generating algorithm A ;.

onward, thereby detecting a fraudulent intrusion or a hardware failure, as the case may
be. Block ciphers usually have much better error propagation properties, and it depends
on the system’s overall objectives and concerns to determine which of these properties,
and to what degree, are actually desirable.

Stream ciphers can also be used as generators of random bit strings needed for other
cryptographic purposes. The majority of cryptographic systems requires random bit strings
of fixed length. For example, in the key-exchange protocols of Section 2.7, Alice and Bob
must be able to generate “good” random keys a and b, respectively. Public-key and digital
signature schemes often generate random strings to mask the plain-text before encryption.
We see this at work in Chapter 5.

3.11 Some History

The history of cryptography dates back at least a few thousand years. The human need for
ensuring the secure communication of sensitive information (¢.g., the positions of troops
for an upcoming battle, or the location of a fraternity’s beer keg) across a public communi-
cation channel (e.g., a messenger who is subject to capture by its enemies) is presumably
as old as the ability to communicate, whether in oral or written form. In this section, we
only take a peek at some of the cryptographic systems that people have used before the
advent of the digital computer age. We engage in this discussion not merely out of histor-
ical interest: these examples help us identify basic principles on which modern symmetric
encryption algorithms rest, as modern designs are improvements and complex combina-
tions of earlier, unsecure, approaches.

In Chapter 2 we saw that it is convenient to view our domain of messages to be Z,, for
a suitable value of n. We identify [i],, with i whenever 0 < i < n. For example, to repre-
sent the characters of the English alphabet in Z,,, we may take n = 26 and identify 0 with
the letter a, 6 with the letter g, and so on.

3.1. Stream Ciphers 83

Definition 3.1 (Symmetric Cryptographic System)
A cryptographic algorithm dependent on akey K is symmetric if Dg (-) and Ex () from (2.1)
(p. 15) are essentially the same operations or algorithms.

This definition is deliberately somewhat vague. Symmetric cryptographic algorithms al-
low us to derive Dg(-) from Eg (-) in a clearly defined and quickly computed manner.
For example, DES generates 16 subkeys from a key K. The corresponding encryption
and decryption operations are almost identical, expect that Dg (-) processes these 16 keys
in reverse order from the one used in Ex(-). The new advanced encryption standard
Rijndael also possesses a high degree of similarity between its encryption and decryp-
tion functions, as demonstrated in Section 3.2.2.' Notice also the distinction between a
specification of a cryptographic algorithm and its actual realization or implementation.
Apart from Chapter 6, this text (like most others) predominantly concentrates on rea-
soning about the security of the algorithm’s specification, its “computational essence”.
It is hoped that such analyses will prevent us from using algorithms whose very design
makes them inherently unsecure. Unfortunately, the vast majority of successful attacks of
cryptographic algorithms exploit weaknesses in their implementation. For example, even
the strongest possible algorithm is of little use if its run-time encryption key K and its
source code are stored on a medium — such as a regular hard drive — that can easily be read
by competent users. Believe it or not, this is more or less what happened with the dig-
ital encryption standard commissioned by the music industry for DVD! Incidentally, the
history of cryptography has shown overwhelming empirical evidence that only publicly
available cryptographic algorithms have a chance of being strong and reliable. Naturally,
the security of public, key-dependent algorithms depends upon the secrecy and protection
of their keys.

There are two important techniques for designing cryptographic algorithms over Z,,.
In ancient Rome, Caesar used a cipher in which he and his generals shifted each letter of
the alphabet a fixed number of positions to the right. To achieve this for the English alpha-
bet, we think of the character a as being the right-hand neighbor of the letter z, and of a
key as being a number between 0 and 25. This view results in the following cryptosystem
forn = 26.

Definition 3.2 (Caesar Cipher)
The Caesar cipher Caesar, over Z,, is defined by the key space

Keys(Caesar,) def {0, 1,...,n—1}

and the encryption operation

Ex (M) M + K mod n. G3.0)

For example, a Roman diplomat who wanted to send Caesar the highly classified message
“cleopatradesirestoseeyousoon”™ may have used the key “C”, corresponding to 2, encrypt-
ing this message as “engqrevtefguktguvquggagwuqgp™.

! Incidentally, don’t trust any algorithm that is supposed to be secure without keys simply because its code is “se-
cret”. However, the mere fact that an algorithm depends on some key does not make it a secure cryptographic
component. See the discussion that follows for some examples.

84 Chapter 3. Symmetric-Key Cryptography

Obviously, this cryptosystem is completely unsecure, assuming Kerckhoff s principle
that an opponent knows that Caesar’s cipher is being used. For example, note the high
frequency of occurrences of g in the cipher-text, suggesting that this letter represents e.

EXERCISES 3.1

1. (a) Write a simple program that inputs a plain-text string s and a key K ¢
Keys(Caesarsg) and outputs the cipher-text string s” obtained by applying Ex (-,
as specified in (3.1), to s at each character, identifying the English alphabet
with Z .

(b) Modify the program in part (a) so that you can specify whether it should encrypt
or decrypt a message. For that, you need to specify Dg (-).

(c) Use your program to write a simple interface that takes as input a cipher-text s
computed by a Caesar cipher and outputs all 26 possible plain-texts. Test it with
several previously generated cipher-texts.

2. Repeat the previous exercise, but now with the 256-letter alphabet of the ASCII code.

3. Affine ciphers Affine ciphers are generalizations of Caesar’s cipher. Over Zog,

the key space is given by all pairs {a, b) of numbers in {0, 1, ..., 25} such that

gcd(a, 26) = 1. Encryption works as
E (M) £ a- M+ b mod 26.
(a) Describe the decryption operation.
(b) Can you specify how many different affine ciphers there are over Za4?

Caesar’s cipher is easily broken because of its very small key space. But even for large val-
ues of n, this cipher is totally unsecure if all letters of the alphabet are mapped to elements
of Z,, (no matter what the order) and if the plain-text is intelligible English. This is because
each letter in any given natural language, such as English, has a well-understood frequency
of occurring in any text. To make matters worse, we even know well the transition prob-
abilities between two, three, ... letters in any given natural language. For example, if you
observe an a in an English text, then your best predictions for the next letter (without any
further “inside” knowledge of the plain-text) are 1, n, r, or t. Such linguistic insight,
combined with a probabilistic analysis, makes substitution ciphers totally unsecure.

Definition 3.3 (Substitution Cipher)
The substitution cipher Subst,, is defined by the key space Keys(Subst,) of all permu-
tations o : Z,, — Z,, which are functions of type Z,, — Z, that have an inverse o lof
the same type. The encryption and decryption operations are given by

def

E.(M) = o(M),

def (3‘2)
D,(M) = o~ '(M),

respectively.

3.1. Stream Ciphers 85

Example 3.4
1. Let n = 2. There are only two functions of type Z, — Z, that have an inverse:
id(0) =0, id(l) = 1;
swap(0) =1, swap(l) =0.

The first one is the identity function id, and the second swaps the values 0 and 1.
2. Let n = 8. Then there are 8! = 40320 many keys in Keys(Substg). Let o be given
by
(4,7.2,3,0,1,5,6),

meaning that o(0) = 4, o(1) = 7, and so on. The message 074635261 is encrypted
via o into 460531257. Note that this key always leaves two symbols unchanged. Iden-
tifying 0..7 with a..g, the word “aged™ would be mapped to “dfac”.

Observe that the Caesar cipher is just a subset of the substitution cipher: the key space for
Caesar, is contained in the key space for Subst,, and the encryption and decryption
operations in (3.1) and (3.2) are the same for that subset.

EXERCISE 3.2

1. Consider the following string.
zjlnpre hozqnoylnzjlnhra lyleeonqzuygnranzjlnbr plqzfnvunhozgk

This is a cipher-text produced with a key from Subst,g; the numbers 0 to 25 repre-
sent the letters a to z, respectively. The number 26 represents the “space”™ character,
27 encodes the exclamation mark !, and 28 stands for the period.> The plain-text is
about the astonishing improvement of a certain American College football team; the
plain-text is known to contain the fragments “Cinderella™ and “cats”, the latter occur-
ring twice in the text. Assume further that the plain text does not distinguish between
lowercase and uppercase characters. Note that you can hardly solve this problem by an
exhaustive key search, since Substog has 29! elements. (How big is 29!, anyway?)>

The substitution cipher demonstrates that a very big key space does not in itself guar-
antee a secure cryptographic algorithm. One can strengthen this cipher by building a
cryptosystem that encrypts a stream mig, my, ma, ... of elements in Z,, by means of p sub-
stitutions o; (1 = j < p), each of them applied in that order periodically.

Definition 3.5 (Polyalphabetic Substitution Cipher)
Letn and p be natural numbers. The polyalphabetic substitution cipher Polysubst{p, n)
has as key space Keys(Polysubst(p, n}), the set of ordered p-tuples

I It may be good advice to delete all special symbols from a text before encrypting it. Of course, this can result in
undesired ambiguity.

3 Recall that 0! £ lLand (n + 1}! det (n+1-(nh)forallp = 0.

86 Chapter 3. Symmetric-Key Cryptography

{01, ...,op}

of elements in Keys(Subst,). Any sequence mg, my, ms, ... of plain-text elements over
Z, is encrypted into the sequence ¢y, ¢y, ¢2, ..., where

Cj .El“_tf O'jmodp(mj)- (3.3)

Note that 004, denotes the substitution with index j mod p.

Example 3.6

Let n = 29 as in Exercise 3.2-1 and let p = 7. The seven chosen substitutions are all in
Keys(Caesariy). We represent each of these as the letter that represents the key. Thus,
the key is completely determined by a word of length seven — say, “junkets”. If we encrypt
the string

hillary clinton
with that key under the polyalphabetic substitution cipher, we obtain

q.yvehnhwysrjdw

This example may look impressive, but such encryptions are totally unsecure. Also ob-
serve that this cryptographic algorithm is simply the substitution cipher where the period
p equals 1. More generally, if we fix any &k withO < k& < p and focus on the subsequence

-’nksmp+k:m2p+k: LEEE |

then this cryptosystem is a substitution cipher with key oy . Since substitution ciphers
are unsecure, the security of this system resides only in the secrecy — and possibly the
size — of the period p. A probabilistic method called the index of coincidences, in conjunc-
tion with a test proposed by the Prussian officer F. Kasiski, make it possible to compute
that very period.

The Vigenére cryptographic algorithm is the special case of a polyalphabetic substi-
tution cipher where the substitutions are all Caesar ciphers (as in the previous example).
This system is even easier to break. However, if the period p is as long as the message it-
self, and if the key is chosen truly at random, then we obtain the one-time pad (due to an
AT&T employee named G. Vernam). C. E. Shannon later proved that this cryptographic
algorithm has perfect security from the mathematical point of view. The hotline between
Moscow and Washington makes use of this system. Unfortunately, most practical situa-
tions make it hard (or impossible) to use a key that is as long as the message itself. Much
research has therefore gone into the design and analysis of cryptographic systems that can
encrypt a stream of values mq, my, ma. ... over Z, with a key of fixed and manageable
length. This research has established some results and methods for building and reasoning
about such systems, but to this day the topic lacks an embracing foundational and unify-
ing theory. Our discussion of stream ciphers focuses on the (unsecure) linear feedback
shift registers for two principal reasons. First, we have tools for designing linear systems
and assessing their relative cryptographic strengths. Second, linear components form the

3.1. Stream Ciphers 87

main building blocks of many nonlinear encryption algorithms — such as the data encryp-
tion standard (DES) and the Rijndael standard studied later on in this chapter — and we can
sometimes perform an analysis of the nonlinear composition of these linear components.

3.1.2 Notions of Randomness

“Random™ events are often puzzling, as they seem to conflict with “ordinary™ experiences
and our desire to predict and compartmentalize the world we live in. At the same time, we
cannot manage to describe fundamental processes without the language of probabilities.
Quantum physics, risk management in a company’s expansion policy, the management of
retirement funds, and the assessment of safety-critical systems such as a commercial air-
craft all necessarily use notions that reason about random events. Although the established
probability theory, based on Kolmogorov’s axioms, has a long-standing history (European
nobility needed decision models for their casino trips) and a very impressive track record,
it also comes with its inherent paradoxes and offers only one way of modeling “true” ran-
domness. Given a finite set

X = {xﬂ:IE: "'axir—l}

of elementary events, a probability distribution over X is a function

7: X — [0,1]
such that
n—1
D wx) =1, (3.4)

Example 3.7 (Probability Distribution)
Consider the set {xg, x1, x2} with m(xg) = 0.25, w(x;) = 0.5, and 7 (x2) = 0.25, where
i € N is the number of heads seen after having tossed a fair coin twice.

C.E. Shannon studied probability distributions that aren’t perfectly random by developing
an information theory in which a message is perfectly random if its information content
has no redundancy at all. He proposed the following measure of information content, a
kind of information-theoretic entropy:

def

in—1
HX) = =) m(x) - Inx(x). (3.5)

i=0

Example 3.8 (Entropy)
For the distribution of Example 3.7, we have

H(X) =-(0.25-1n0.25+0.5-1n0.5 4+ 0.25 - In 0.25)
= —(0.25-(=2)4+0.5- (1) +0.25-(-2))
= 1.5,

88 Chapter 3. Symmetric-Key Cryptography

suggesting that we require 1.5 bits on average to encode X. Let x; be encoded by 0, x
by 10, and x» by 11. Then we may compute the expected value of the bit length of the
encoding for x € X:

05-140.25-240.25-2=15.

This framework allowed Shannon to prove that the one-time pad is unconditionally se-
cure. However, the main drawback of this theory is that it cannot generate perfectly
random strings from shorter perfectly random strings, for redundancy would contradict
perfect randomness. In practice, this means that the one-time pad needs a key that is
as long as the message itself. Clearly, this can only work for a very limited number of
applications.

Another approach to defining perfect randomness is due to Kolmogorov. His descrip-
tive complexity theory measures the complexity of objects by the shortest program that can
generate a complete description of that object. Such a program can successfully say why
the string 100101001001011 is more complex or random than the string 101010101010101.
Note that this is a computational approach to randomness, based on a fixed notion of com-
putability — say, Java programs. Perfect randomness is again defined as an extreme case
but now applies to single objects, not to collections thereof. Unfortunately, one cannot in
general decide (i.e. compute) the Kolmogorov complexity of objects, so there is no hope
of generating perfect random strings from shorter perfect random strings in this frame-
work either.

A promising and fruitful approach to randomness in the context of crytographic sys-
tems is due to M. Blum, S. Goldwasser, S. Micali, and A. Yao. Their work 1s rooted in
conventional complexity theory, which groups computational problems into complexity
classes that measure how many resources are needed for their solutions in terms of time
or memory. Their point is rather philosophical in nature but potentially has far-reaching
practical consequences. To these authors, randomness is not an intrinsic property of a
computational object but instead depends upon the computational power of an observer.
To put it simply, it is possible to generate random strings from much shorter random
strings efficiently such that the longer string appears perfectly random to an observer
whose computational powers are insufficient for observing the nonrandom features of that
string. This is no modest goal, but it is essentially what practitioners are looking for as
well: a short random seed that efficiently generates a long random string, accompanied
with well-understood quantitative or qualitative security guarantees, such that an attacker
could not observe any nonrandom features of the longer sequence.

Definition 3.9
For! € M, we write E"E for the set of bit strings of length . A (k, [)-pseudo-random bit gen-
erator is an algorithm, efficient as a function of k, that computes a function f: Z% — Z.

From our discussion so far, it should be apparent that pseudo-random bit generators should
make it computationally hard to distinguish the output sequence f(sys; ... s;), abit string
of length /, from a perfectly random one of the same length. At the same time, the algo-
rithm should be efficient, / should be a “large™ polynomial function of k, and the algorithm
should have easy implementations in hardware. We now discuss linear feedback shift reg-
isters in light of these criteria.

3.1. Stream Ciphers 89

3.1.3 Linear Feedback Shift Registers

Our discussion of modern stream ciphers focuses on the alphabet Z,, although the pre-
sented designs and analyses can (for the most part) be extended to any finite field. Our
systems will take a (possibly infinite) sequence myg, niy, m», . .. of plain-text bits as input
and produce a sequence cg, ¢y, €2, ... of cipher-text bits such that ¢; is the encryption of
the plain-text bit m;. We assume that this encryption is achieved by means of

def

cj =mj+s; mod 2, (3.6)
where
50,851, 82, ... (3.7)

is a sequence of bits as long as the plain-text sequence. If this sequence were truly random,
equation (3.6) would render a totally secure one-time pad. Owing to practical consider-
ations, however, we construct this possibly infinite sequence of s; bits from a finite key
K and an algorithm A, taking K as its input such that Ag(-) is a (k, /)-pseudo-random
bit generator for some suitable value of I. Recall that @ 4+ b mod 2 is just another way of
writing a @ b (see Exercise 2.2-3, p. 20). Since (m @ 5) @ 5 = m, it is apparent that the
decryption of the cipher-text sequence cp, ¢y, €2, ... 1s carried out in the very same man-
ner as the encryption of the input sequence. Such stream ciphers are absolutely symmetric
in their encryption and decryption mode. See Figure 3.1 for a schematic of such stream
ciphers.

For a finite key K and an algorithm A with only finitely many states, any infinite execu-
tion trace of A (-) must enter a cycle that repeats the same sequence of states periodically
from a certain point onward. Naturally, this means that its output sequence in (3.7) reaches
a point 53 with & = 0 such that there exists a period p € N with

Skrj = Siqjanp (M=1) (3.8)
forall j, n € N. In this text, we assume that the initial nonperiodic segment sq, 5q, ..., $;_1
is of length zero, in which case the entire sequence in (3.8) is an infinite concatenation of
the initial block so. s1, ..., 5,1 with itself, for k then equals 0.

3.1.31 Feedback Shift Registers

A commonly used and studied architecture that realizes the stream ciphers of Figure 3.1
very efficiently in hardware is the feedback register system; see Figure 3.2. Such systems
are built from n registers

Ro, Ry, ...,R,_

that can store binary values. The contents of these registers serve as the input to a boolean
function f in n variables, as indicated in Figure 3.2. A state o of such a system is deter-
mined by the contents of all registers. A state therefore determines a unique value

vE f(@Ry, @R,...., @R,_,),

90 Chapter 3. Symmetric-Key Cryptography

v dér Jf-(@jRo. @"‘R]. ey @Rrr l)

P 1 f ’?

R{}i Rl I RZI |Rn2 |Rnl

output bit @ R,

Figure 3.2. Architecture of a feedback shift register with n registers and a boolean function f inn
variables. The current register values determine the next value of register R,_; the current value
of Ry is the new output bit, and the next values of R; are those of R, foreach0 <i{ <n — 2.

where @ R is the value currently stored in register R. The successor state of g is then ob-
tained by shifting the register contents one to the left, loading register R,_; with v, and
making @ Ry the output bit of this iteration. See Figure 3.2 for a pictorial representation
of this process.

It is intuitively clear that the strength and security of stream ciphers rest on the qual-
ity of the pseudo-random sequence (3.7) generated by A (-). If the latter is realized by a
feedback register system, then the choice of the number of registers and the choice of the
boolean function f may well be motivated by implementation constraints. Such a stream
cipher design therefore strives for a maximal security within a given parameter space for
nand f.

There are inherent tradeoffs between the analysis and the design of feedback shift regis-
ters. The less secure the boolean function, the easier one can analyze the resulting cipher.
However, an extremely complicated boolean function may be impossible to analyze, yet
its complexity alone is no guarantee of cryptographic security. A currently dominant ap-
proach in the design of stream ciphers thus aims at systems whose components are easily
analyzed and unsecure in isolation but whose composition (a) provides sufficient crypto-
graphic security and (b) enables an analysis of the entire system based on the analysis of
its components. We illustrate this approach with linear feedback shift registers, simple
building blocks whose theory is well understood.

31.3.2 Linear Boolean Functions

Definition 3.10 (Linear Function and Linear Feedback Shift Register)
Let f be aboolean function in n variables xg, xy, ..., x,—1. We call f linear if and only
if there exist values ¢g, ¢y, ..., ¢,—1 in {0, 1} such that

fxo, x1, ... xp1) =co-Xp+c1-X14 -+ 1+ Xp—; mod 2 (3.9)

holds for all argument values of f. A linear feedback shift register (LFSR) is a feedback
shift register (as in Figure 3.2) such that the boolean function f is linear. If ¢g = 1, then
f and its LFSR have degree n.

Example 3.11
The boolean function

def
fi(xo, x1, x2) = x1 + x2 mod 2

1s linear, and so is

3.1. Stream Ciphers 91

o

AN

I
R R R
output bit @ Ry, | : ’

Figure 3.3. Example of alinear feedback shift register, based on the

. f - . def
architecture in Figure 3.2, for the boolean function f(xy, x5, x2) =
X1+ x> mod 2.

def
fa(xg, X1, X2, X3, X4, X5) = x| + X3 + x5 mod 2.
However, the function

def
f3(xg, xq, x2) = xp - X1+ X2

is not linear. The linear feedback shift register for f; is depicted in Figure 3.3. If it has
initial state 010 — meaning that @ Ry = 0, @ R| = 1, and @ R, = 0 —then this LFSR goes
through the following sequence of computational states:

010, 101, 011, 110, 101,

at which point it will repeat the last three states periodically.

Remark 3.12 (LFSR as Boolean Function)

Any linear feedback shift register is completely determined by its number of registers n
and its boolean function f. Since this function has n variables, the entire LFSR is deter-
mined by its function f, although an execution trace also depends on the respective initial
state. Thus we identify an LFSR with its boolean function whenever this is appropriate.

Example 3.13
Given an LFSR of degree 4 with boolean function

def
f(xo, x1, x2, x3) = x9 + x; mod 2,

we consider the key stream seed s5q5,5, 55 to be 1000. The first 45 bits of the resulting key
stream are

100110101111000 100110101111000 100110101111000. (3.10)

Note that this key stream has period 16. The same period will result for any other 4-bit
key seed different from 0000.

EXERCISES 3.3

1. Is the boolean function

def
Flxo, x1, o xp—1) =1

92 Chapter 3. Symmetric-Key Cryptography

linear? What about
def .,
8(X0, X1, .. Xyo1) = 072
(Explain your answer.)

2. In Example 3.11, we claimed that the boolean function f3 is not linear. Although its
*formula” does not have the form required of a linear function, it is still possible that
this form is equivalent to one, as in (3.9). Show that f5 cannot satisfy (3.9) for any
choices of ¢y, ¢1, or ¢;.

3. Consider the LFSR given by the linear function

. del’
F(xp, x5, %2, x3) = xg + x2 mod 2.

Let 1011 be the initial state of this LFSR. Compute the execution trace of this LFSR
beginning in this initial state and determine the period of the resulting trace.

4. What can you say about the behavior of an LFSR in the initial state where all registers
are loaded with 0?

5. One-time pad Let C be a 128-bit string that resulted from forming the bitwise
exclusive-or of a 128-bit plain-text M and a 128-bit, randomly generated key K. If
the leftmost bit of K is 0 then what can you conclude about the plain-text M? (As-
sume that you know the cipher-text C in its entirety.) Is there anything else you can
infer about M?

The pseudo-random bit stream produced by an LFSR is determined not only by the boolean
function f of that LFSR (which we may identify with a bit string cgc; ... c,—1)* but also
by the initial state of that entire system — that is, the initial contents of its registers. Again,
we may think of that state as a bit string ror ... r,—;. Note that this string should contain
at least one 1-bit, for otherwise the LFSR outputs only 0-bits forever. (Why?) Observe
that we would get into the same kind of trouble if the zero vector occurred as a register
state at a later point in our key stream.

Linear feedback shift registers always produce key streams that are periodic (this ap-
plies to all synchronous stream ciphers whose key stream is generated by some finite-state
program). There are only 2" different states possible, and we have already seen why we
need to rule out the one in which each register is loaded with “07. Thus 2" — I is an upper
bound on the period of the key stream. There is a beautiful algebraic theory that relates
certain properties of LFSRs to properties of polynomials. In particular, one can construct
many(!) LESRs in n variables such that each initial state other than 00 . .. 0 generates a key
stream of period 2" — 1. Moreover, no such execution will ever generate the zero vector.
The example in Exercise 3.3-3 featured this pleasant property.

Unfortunately, even LFSRs with period 2" — 1 can be easily broken with a chosen plain-
text attack. If an attacker has access to the stream cipher that uses an LFSR to generate
its key stream sg, 51, ..., then he can choose any message stream mig, my, ... to generate
the corresponding cipher-stream ¢y, ¢y, Since

ci =5; Dmy;,

4 Note that we assume ¢ = 1, for otherwise f has degree less than n.

3.1. Stream Ciphers 93

he can compute the stream sy, 51, ... Via
§; = c; D m;,

for he knows ¢; and m;. Given this key stream and knowing that the system used an LFSR,,
we also assume that he knows the degree n of the LFSR. Otherwise, he could launch the
same attack for smaller values of n and increase n until the attack turns out to be success-
ful. The attack is based on a simple recurrence law on the computation of the next bit in
the key stream. Let us assume that the initial state of the LFSR is the vector sg5 ... 5,_1.
By definition, we have

def
8 = f(sﬂasfs e Si]’—l}!
def
Sl'f-l-f = f(SI! ‘5‘2: === Sil’)!
3.11)
def
Sptn—1 = f(sn—ls Sy oees Sir—Hi—'_).):

which is a system of n linear equations in n unknowns ¢y, ¢y, ..., ¢,—1, the coefficients of
J. One can show that this system has a unique solution; in fact, this remains true even if
we replace the fragment of the key stream s5¢51 ... $y85,+1 - - Sptn—1 Used in (3.11) with any
consecutive fragment 5;5¢41 ... Sk+2.—1 Of length 2 - . Such systems can be efficiently
solved with standard software packages, so an attacker need only:

¢ have access to the cipher system;

know that the stream cipher is generated by an LFSR of degree n;

* generate a piece of cipher-text corresponding to a chosen plain-text of length 2n,
thereby obtaining a consecutive piece of the key stream with the same length in the
manner just described; and

¢ solve the resulting system of linear equations to expose the LFSR completely.

EXERCISES 3.4
1. Implement a program that — given

n
c[0]c[1]...c[n-1]
s[0]s[1]...s[n-1]

as input — generates a key stream of an LFSR whose boolean function is represented
by c[0]c[1]...c[n-1] and whose seed is given by the bit string s[0]s[1]. ..
s[n-1].

2. You are asked to break an LFSR of degree 10, given 20 consecutive bits of plain-text
10101110101010011110 and their corresponding cipher-text 11011010100111000010.

3. Repeat Exercise 2 with an LFSR of degree 20, 40 consecutive bits of plain-text

0100111111010110001100011011100001001000,

94 Chapter 3. Symmetric-Key Cryptography

and cipher-text?®

0011101111011001001101110101010101111100.

3.1.4 Nonlinearity

We saw that LFSRs are amenable to a rigid analysis. Unfortunately, we also realized that
they are completely unsecure in isolation. Strong cryptographic systems therefore require
nonlinear features, although most of their components may themselves be linear. Yet non-
linearity in itself is no guarantee of strong cryptographic properties. The §-boxes in the
block cipher DES (see Section 3.2.1) are nonlinear. Presumably, a lot of insider expertise
and experience went into their design; the National Security Agency helped out on some
details. However, it would be poor advice — to anyone “re-inventing” these boxes — to
emphasize solely their nonlinearity. The S-boxes seem to be optimal against attempts to
approximate S-boxes with linear functions, an attack known as linear cryptanalysis, but
they are not optimal against differential crypranalysis. For DES, this attack systematically
looks at plain-text with minor differences and investigates how those differences propa-
gate through the execution of DES. This can be used as a means of adjusting the uniform
probability distribution on the unknown encryption key. Because DES uses 16 encryption
rounds, it is immune against both attacks, given past hardware constraints. Today, triple
DES is believed to be secure for the foreseeable future; see Section 3.2.1.3 for details.

Various methods for the construction of nonlinear stream ciphers from LFSRs have
been proposed.

* Nonlinear filtering combines the stages of these LFSRs in a nonlinear manner. Often,
one can predict certain parameters — for example, the linear complexity — of the result-
ing system from the corresponding parameters of the LFSRs.

* Nonlinear composition may take the output streams of several LFSRs as input streams
to a nonlinear function. Such systems can gain strength through the judicious use of a
bit of memory in the composition process.

* Control LFSRs use one or several LESRSs to control the “clock™ of another LFSR. Again,
one can sometimes predict some crucial system parameters from those of the system’s
components.

We refer to the bibliographic notes for references on these advanced topics.

Our discussion of nonlinear pseudo-random bit generators concludes with that devised
by L. Blum, M. Blum, and M. Shub (see Exercise 2.7-8, p. 33). If we randomly choose
512-bit primes p and g as®

90479698178067010089668073047774339348821088014175702785848641661105'\,
31135223941103858654884250667490711208745422062359254797315471579706\\
414516095544069107

and

5 These bit strings can be found on the book's website.
% These numbers can be found on the book’s web site.

3.2. Block Ciphers 95

602972511359655696754128881712207338618499354580160178199540870599311
7964769899342661615505322576548358295450713841452274045660964104529\\
4306053550234921131

(respectively) and the random seed x¢ as

0823375193197418938732293419495504839666239884039534413438047638995}
5663329907446673584240285239013481349913004851837880433803639484221\\
1873425638556467580038816828378191623902066880368528798137081446575\\
547121114303539082532620208638698510742456127707843343954423524 4206\
195971224279368075748436845823963100224,

then the first 490 bits of the pseudo-random sequence are given by

00000011010001011111110101111001111010000000101100010011010000011100010111},

1000000110100111100010011001110001010010000000010110100001101 1011011000111\,
0011001001000101111111111100101110110000100110101101101000101000 1001 1100017\,

11101000001101001010010001101101011100010001110000111100010011101110000007\\

1001100101101011000010010101111001001101010100000010010011001000111101001Y,

0100100010111100111010101011101001000010001001010100100010110100101 111000\

100101001011000111101110000110011111010011100110010.

As pointed out earlier, one way to assess the strength of a pseudo-random bit generator
[1is to distinguish the uniform probability distribution over Z‘; from the one induced by
J using a small threshold value ¢ > 0. A theoretical result (due to A. Yao) states that if
such a distinguishing algorithm exists then there is also a next-bit predictor for f with a
threshold of ¢/I; that is, such a predictor correctly guesses the next bit of the output se-
quence with probability 0.5 + ¢/I. What makes this insight interesting in the context of
the Blum-Blum-Shub generator is that one can prove its relative security in the follow-
ing sense. If there is an &/[-next-bit predictor for this generator then one can derive, for
any positive error probability, a Monte Carlo algorithm that computes quadratic residues
over p - g; see Exercise 2.17-7 (p. 55) for a definition of this concept. Since nobody can
say at present how to construct such an algorithm without knowing the factorization of n,
this generator is believed to be secure.

3.2 BLOCK CIPHERS

3.21 Data Encryption Standard: DES

In the early 1970s, the Data Encryption Standard (DES) emerged as the first standardized
symmetric encryption algorithm, approved by what is now the American National Insti-
tute of Standards and Technology (NIST). The development of the DES algorithm was
largely carried out by a team at IBM. The U.S. National Security Agency (NSA) was ac-
tively involved in reviewing and assessing the IBM design. Interestingly enough, the NSA
proposed some changes to the design, causing public concern about an “NSA trapdoor™
in the modified version of DES. In the end, the suggestions of the NSA were incorporated

96 Chapter 3. Symmetric-Key Cryptography

into the standard. Although DES is no longer recommended for U.S. government agen-
cies for encrypting sensitive (but unclassified) data, we feature it as our first example of
a block-cipher algorithm for a number of reasons:

* it has successfully withstood attacks for more than 20 years, and the only known way
of breaking the algorithm is by a more or less brute-force, exhaustive search of the key;

¢ the design principles of its components are typical of many block-cipher algorithms;

* the same algorithm can be used both to encrypt and decrypt messages;

* new standards for block-cipher algorithms — such as the new advanced encryption stan-
dard Rijndael — will be evaluated in terms of comparisons with the security and speed
of DES;

* DES can be used, or is prescribed, in various standards (e.g., for passwords, random
seeds for digital fingerprints or signatures, and message authentication codes);

¢ DES gives rise to a more powerful standard, called triple DES, since its key space is
not a group; triple DES currently provides adequate protection while being backwards-
compatible with DES for a given key option.

3.211 The Electronic Codebook Mode

In its simplest mode of operation, the electronic codebook (ECB) mode, the DES algo-
rithm takes a block B of 64 bits as input and encrypts it into another block of 64 bits by
means of a 64-bit key K. Actually, eight bits of the key K are reserved for parity checks,
so the key is effectively only 56 = 64 — 8 bits long. Thus the entire key space has only
size 2% instead of 2°¢. More precisely, bits 8, 16, ..., 64 of K are used to guarantee that
each byte of K has odd parity. In the sequel, we write any 64-bit block B as a concatena-
tion LR of its left half L and right half R, where each half is 32 bits long. Conceptually,
the DES algorithm operates in three phases; see Figure 3 4. First, the input block B is per-
muted with a fixed and key-independent permutation, the initial permutation IP given in
Figure 3.5; for example, the permuted block IP(B) has the 58th bit of B as its first bit, the
52nd bit of B as its 10th bit, and so forth. The resulting permuted block IP(B) is divided
into the leftmost 32-bit block Ly and the rightmost 32-bit block Ry:

LoRo ¥ IP(B). (3.12)
In the second phase, DES conducts 16 rounds of computing subsequent blocks L; and R;
with 1 =i < 16, each 32 bits long. These blocks are defined as

L =R, 3.13)

Rt S Li @ f(Ri. Kig1) (3.14)
forall0 < i < 15. However, L5 and R — once computed as in (3.13) and (3.14) — are
swapped, as indicated in Figure 3.4. We will see in the exercises that this allows us to
use the same algorithm for decrypting a block. In (3.14), we still need to explain the na-
ture of the function f and the entities K; with 1 < i < 16. Each K; is a 48-bit block
computed from the original 64-bit key K by the key scheduler, depicted in Figure 3.6.
The input to this key scheduler is the original 64-bit key K, which undergoes a first per-
muted choice PC1 resulting in two blocks Cy and Dy of 28 bits each. See Figure 3.7 for

3.2. Block Ciphers

97

ﬂ 64-bit input block B
@ initial permutation

Lo Ry

Li= Ry Ri=Ly&® f(Ro. Ky)
Ly =R, Ry=L® f(R., Ky)
Lis=Ryy | Ris=Lua @ (R4, Kis) ‘

;

Ris = L1s @ f(Rs, Kis)

Lig = Ris

resulting block partitioned into two 32-bit halves

round 1: requires a 48-bit key K, determined by the key K

round 2: requires a 48-bit key K, determined by the key K

round I5: requires a 48-bit key K5 determined by the key K

round 16: requires a 48-bit key Ki¢ determined by the key K';
notice that the resulting halves are swapped as indicated

o inverse of the initial permutation

encrypted output block Ex(B)

Figure 3.4. Coarse structure of the DES algorithm in its encryption state, operating on a 64-bit input
block B in the electronic codebook (ECB) mode.

58 50 42
60 52 44
62 54 46
64 56 48
57 49 41
59 51 43
61 53 45
63 55 47

34 26 18 10
36 28 20 12
38 30 22 14
40 32 24 16
33 25 17 9
35 27 19 11
37 29 21 13
39 31 23 15

[= < = N S o

Figure 3.5. The initial permutation IP of the 64-bit input
block B. The 50th bit of B renders the second bit of TP(B),
the 52nd bit of B will be the 10th bit of IP(B), etc.

the details of constructing Cy and Dy. The first table lists Cy: the 57th bit of K is the
first bit of Cy, the 58th bit of X is the 9th bit of Cy, ...: the second table specifies D, in
the same manner. Notice that the numbers 8, 16, ..., 64 are all absent from these tables,
since they are merely parity bits and not part of the actual 56-bit key. Before comput-
ing K;, we compute blocks C; and D; as circular left shifts of their previous version C;_;

98 Chapter 3. Symmetric-Key Cryptography

Co Dy E f@ Ky

hift#] C is obtained from Cyp by a circular left shift of 1
s Dy is obtained from Do by a circular left shift of |

L (oc2)
ol D, E @ K
. . C; is obtained from C| by a circular left shift of 1
shift#2 Shlf@ D, is obtained from D) by a circular left shift of 1

x|

most of the intermediate left shifts are by 2 positions:
see Figure 3.8 for details

\Y
F
@
L]
]

s

Figure 3.6. Schematic for computation of the 16 48-bit subkeys K;, 1 =i =
16, from the original 64-bit key K. The shifts are circular left shifts and are
performed on C; and D; separately.

PCQ Kig

and D;_,, respectively. The number of left shifts is round-dependent, as specified in Fig-
ure 3.8; it is the same for the C-blocks and D-blocks. For example, C, is obtained from
Cy by one left shift, whereas D5 is obtained from D, by two left shifts, and so on. We
then define

K, € pcoc,D;) (3.15)

for each i with 1 =i < 16, where PC2 maps the 56-bit block C;D; to a 48-bit block K;,
as specified in Figure 3.9. For example, the 14th bit of C; D; is the first bit of K;, whereas
the 28th bit of C;D; is the 8th bit of K;, et cetera.

It remains to describe the cipher function f, which must provide all the strength of the
algorithm, for all other components are linear in the sense of Definition 3.10 and can be
analyzed easily. In general, the cipher function

3.2. Block Ciphers 99

Co

57 49 41 33 25 17 9
1 58 50 42 34 26 I8

=
I

59 51 43 35 27

Dy

63 55 47 39 31 23 15

14 6 61 53 45 37 29 Figure 3.7. The permuted choice PC1, which maps the 56
actual key bits of K onto two 28-bit blocks Cy and Dy. The

2l 13 > 28 20 1z 4 first table constructs Cy; the second, Dy.

round number ‘l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

numbcrof]eftshifts‘l 1 2222221 2 2 2 2 2 2 1

Figure 3.8, Number of left shifts required to compute C; and Dy from Ce—y and Dy,
respectively, where k is the round number.

6
23 19 12 4 26 8
16 7027 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48

Figure 3.9. Table for the permuted choice PC2, which maps a 56-bit
46 42 50 36 29 32 block onto a 48-bit block.

(R,K)— f(R.K)

takes two arguments, a 32-bit block R and a 48-bit block K, to produce a 32-bit block
S(R, K) as output. This output is computed in four phases, as depicted in Figure 3.11.
First, the block R is expanded into a 48-bit block E(R), where the mapping E is given
by the table shown in Figure 3.10. For example, the 32nd bit of R renders the first bit of
E(R). the 5th bit of R yields the 8th bit of E(R), and so forth. Note that this is not an in-
vertible process, since some bits are copied more than once — for example, the 32nd bit
of R also renders the 47th bit of E(R). Second, we compute the 48-bit block E(R) & K,
which we write as a concatenation of eight 6-bit blocks as in

M My MyMy MsMgMaMy < E(R) & K. (3.16)

100 Chapter 3. Symmetric-Key Cryptography

L
]
[
1%}
Y
wn

§ 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21

27 28 2
4 2 2627 28 29 Figure 3.10. The expansion mapping £, which turns a 32-bit block into

28 29 30 31 32 I a48-bit block.

E(R) K

(o)

KIf

M MMMy MsMMo Mg = E(R) @ K

’ ! ' ' v r v p def -
M MMM, MM MM, = Si(M)S2(M3) ... Sg(Mg)

Figure 3.11. The four phases of computing the cipher
function f(R, K) needed in (3.14).

Third, foreachi with1 <1 < 8, we feed M; into an S-box §; to produce a 4-bit output
M. The outputs of the eight S-boxes are then concatenated, as shown in Figure 3.11, re-
sulting in the 32-bit output M{Mi MM M:M; M, M. Fourth, this output is subjected to
a permutation P, as specified in Figure 3.12, to compute the final result of f(R, K'):

FR,K) S P(M{M,M M, M.M,M,M)). (3.17)

3.2. Block Ciphers 101

16 7020 21
29 12 28 17
1 I5 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30

Figure 3.12. The final permutation P performed during the last phase of comput-
22 11 4 25 ing f(R.K).

xfyp 0 1 23 4 5 6 7 8 9 10 11 12 13 14 15
0 4 4 131 2 15 11 8 3 10 6 12 5 9 0 7
1 015 74 14 213 1 10 61211 9 5 3 8
2 4 1 14 8 13 6 2 11 1512 9 7 3 10 5 0
3 1512 82 4 9 1 7 5 11 3 14 10 0 6 I3

Figure 3.13. Specification of the §-box §).

In order to complete the description of how to compute f{R, K), we must specify the
S-boxes ;. where 1 <7 < 8. These boxes are the only nonlinear components of the DES
algorithm, and this is where the NSA suggested some changes. We specify Sy in the table
of Figure 3.13, which is interpreted as follows. Any 6-bit input block M; determines a
pair of coordinates {x, y) with0 < x < 3and0 < y < 15: we let x be the number whose
binary representation equals b bg, where M; equals byb2b3byabsbg (ie., by and bg are the
first and last bit, respectively, of M;). Similarly, y is the number whose binary represen-
tation equals b2b3bybs. For any input pair (x, y}, the output §,(M;) is defined to be the
number in row x and column y of the table in Figure 3.13. It should be apparent that this
table completely specifies the function

M; — §(M,;).

For example: If M, equals 010011, then x equals 1 and y equals 9, so the output is 0110 —
the binary representation of 6, the entry in row | and column 9. In Figure 3.14, we list in
this manner all seven remaining S-boxes and their behavior.

Returning to the DES algorithm itself, the overall encryption of the DES input block
B concludes with applying the inverse permutation of the one in Figure 3.5 to the 64-bit
block R¢L ¢, as indicated in Figure 3 4.

EXERCISES 3.5

1. Draw a table for the inverse permutation of the initial permutation in Figure 3.5.
2. Inverse of DES Prove that the same DES algorithm can be applied to decrypt the
encrypted block with the only change being that the subkeys K; are supplied to the

102 Chapter 3. Symmetric-Key Cryptography

S0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
0O |15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3013 04 715 2 8 1412 0 1 10 6 911 5
2 0 14 7 11 10 413 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 211 6 7 12 0 5 14 9

O |10 0 9 14 6 1Is 5 1 13 12 7 11 4 2 8
1 13 7 0 9 3 4 100 2 8 5 14 12 11 15 1
2 |13 6 4 9 815 3 011 1 2 12 5 10 14 7
3 I w13 0o 6 9 8 4 I5 14 3 11 5 2 12

0 7 1314 3 0 6 910 1 2 8 5 11 12 4 15
1 13 I 5 615 0 3 4 7 2 12 1 10 14 9
2 110 6 9 0 12 11 7 1315 1 3 14 5 2 8 4
3 3 15 6 10 1 13 8 9 4 5 11 12 7 2 14

Ss,0 1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15

0 212 4 1 1w 1 6 8 3 0I5 13 0 14 9
1 14 11 2 12 713 1 5 I> 10 3 9 8 6
2 4 1 11 1w 13 7 8 15 12 6 3 14
3o 8 12 7 114 213 615 0 9 10 4 5 3

S| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0o {12 1 10 15 9 2 6 13 3 4 14 7 11
1 10 15 4 2 7 12 9 1 13 14 0 11

2 14 15 5 2 8 12 0 4 10 1 13 11

3 4 3 212 9 515101 14 1 7 6 0 8 13
S0 1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15
0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 13 o 11 7 4 9 1 10 14 3 5 12 2 15 8

2 I 4 11 13 12 3 7 14 10 15 6 &8 0O 9 2
3 6 11 I3 8 1 4 10 7 9 5 0 15 14 3 12

S/ 0 1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15

O |13 2 8 4 6 1511 1 10 9 3 14 5 0 12
1 I 1513 8 10 3 7 412 5 6 11 0 14 9
2 711 4 1 9 1214 2 0 6 10 I3 15 3 5 8
3 2 1 14 7 4 10 8 131512 9 0 3 5 611

Figure 3.14. Specification of the remaining 5-boxes 52 to Ss.

3.2. Block Ciphers 103

cipher function f in reverse order; that is, we replace K;., in equation (3.14) with
Ki5—;. Does your argument depend on the nature of the cipher function f?

3. We noted that the cipher function f is the only nonlinear component of the DES al-
gorithm. Recalling the definition of a linear function (Definition 3.10, p. 90), explain
why permutations, permuted choices, and expansion mappings (such as IP,PC1, and
E) are linear.

4. Implementing DES Implement the DES algorithm as described here in a program-
ming language of your choice. Your program’s interface should expect a 64-bit block
B, a 64-bit key K, and a boolean b as input. If b is false then the algorithm will
encrypt B; otherwise, it will decrypt B. Although this is not really necessary for im-
plementing DES, can you think of a way of computing the K; directly in reverse order
in case b is true?

5. Design criteria for S-boxes
(a) Prove that the S-box §) is nonlinear. That is, prove there is no linear function

S(xy, X2, x3, X4, X5, X¢) =€y - Xy + €2 - X2+ -+ - + ¢ - Xg mod 2

with fixed values ¢; € {0, 1} for | < i < 6 that exactly captures the input—output
behavior of this S-box.

(b) Can you find some linear function that “models” the §-box S, for a reasonably
high percentage of input—output pairs? (Such an approach leads to a technique
called linear cryptanalysis.)

(c) Verify: Each row of §;’s specification lists a permutation.

(d) For §,: Show that, for all 6-bit inputs, the change of exactly one input bit results
in the change of at least two output bits of the 4-bit output. (This property guar-
antees that small changes in the original text make the two resulting cipher-texts
appear to be “unrelated”.)

(e) Verify: For all 6-bit inputs x, the outputs §;(x) and §;(x @ 001100) differ in at
least two bit positions.

6. DES: complementation property Consider the encryption of a block B with re-
spect to a key K in the ECB mode of DES. Prove that the resulting cipher-block
is the bitwise complement of the cipher-block computed by encrypting the bitwise
complement of B with the bitwise complement of the key K. How do you structure
your argument? Does your argument extend to some other modes of executing DES
(discussed in the next section)?

7. Security of software implementations Discuss general security concerns of soft-
ware implementations of the DES algorithm. Are these issues dependent on your
choice of programming language? Are they dependent on your choice of hardware
or operating system?

3.21.2 DES Modes of Operations

The DES algorithm in the ECB encryption mode transforms a 64-bit plain-text B into a
64-bit cipher-text Ex (B), depending on a 56-bit key K. Therefore, we can apply this al-
gorithm to an arbitrary message M by dividing M into 64-bit blocks — padding the final
block if need be — and then processing each block in isolation. This mode of operation

104 Chapter 3. Symmetric-Key Cryptography

is called the electronic codebook (ECB) mode, since each plain-text produces the same
cipher-text, given a fixed key K. In principle, one could thus compile a big codebook that
lists pairs of plain-texts and cipher-texts for each possible key. This is a security con-
cern. One can use the ECB mode of DES as an interface to build more secure modes of
operation. Here we outline only the cipher-block chaining (CBC) mode and refer to the
bibliographic notes and exercises for references on other modes of operation. In the CBC
mode, we:

* operate on a sequence By B, ... B, of n 64-bit blocks B;;
* require a key K; and
* use a 64-bit initialization vector IV generated by a pseudo-random source.

To compute the cipher-blocks C; of B;, we define the first cipher-block as the result of
(a) forming the bitwise exclusive-or of B and the initialization vector IV and (b) encrypt-
ing the resulting block with the key K:

C Y Ep(B @ IV). (3.18)

Forall i with2 < < n, we set

C, CE4(B; @ Ci_y) (3.19)

and obtain the encryption C1C> ...C, of B1B> ... B,. Notice how, in (3.19), the previ-
ously computed cipher block plays the role of the random initialization vector in (3.18).

EXERCISES 3.6

1. Multiple encryption of identical messages Suppose that you plan to encrypt the
same message repeatedly in the CBC mode with the same key. What guarantees that
the resulting cipher-text will always be different from the previously computed ones?

2. Inverse of DES in CBC mode Writing Dg (C') for decrypting C with key K, explain
in detail how one can decrypt the message C,C, ... C, obtained from BB ... B, in
CBC mode. Prove that this indeed recovers the original message.

3. Error propagation of CBC mode Suppose that the transmission of the cipher-text
CyC» ... C, contains an error in block C; but is aotherwise error-free. Argue that de-
cryption of the flawed cipher-text will recover all original blocks except B; and B; ;.
Can you say something about the (expected) number of bits that will have changed
n B,‘ and B,‘+|?

4. Use your implementation of the DES algorithm to write a program that can encrypt
and decrypt messages of bit length 64 - n (n = 1) in the CBC mode.

5. CFB mode Read about the DES cipher-feedback (CFB) mode in the FIPS 81 doc-
ument;’ then explain why both decryption and encryption in this mode use the basic
DES algorithm in its encryption state.

6. Message authentication code A message authentication code (MAC) is a sequence
of bits appended to a message in order to ensure the inregrity of the message, not its

7 http: //www.itlnist. gov/fipspubs/fip81.htm

3.2. Block Ciphers 105

secrecy. Any alteration of the original message should result in a different MAC. Dis-
cuss how and why DES in the CBC and CFB modes can be used to generate MACs
for messages.

7. OFB mode Telephone communications are often encrypted by using DES to build
a stream cipher; recall the design idea of Figure 3.1 (p. 82). In DES output-feedback
mode, one encrypts the first 64-bit block of a message and takes the resulting output
as the first 64 bits of the key stream. This output block is then re-encrypted to pro-
duce the next 64 bits of the key stream and so forth, until the key stream is as long as
the original message.

(a) Implement a key-stream generator that has a 64-bit input block and outputs the
resulting key stream as just described.

(b) Implement DES in OFB mode for messages of bit length 64 - n (n = 1). (How
does decryption work?)

(c) Suppose you know that a cipher-text was encrypted in the manner described in
part {(b). Why and how can this cipher-text be attacked when the message is
known to have a fixed header?

3.21.3 Triple DES

The key space for DES in the ECB mode is 2°°, minus a handful of weak keys that should
not be used in practice. A randomly generated key has a very small probability of being
weak , and a cautious implementation would check for such keys (since they are known
explicitly); see the FIPS 46-2 document® for details. Recent advances in hardware and
reductions in memory and processor costs have made it possible to launch brute-force at-
tacks — slight variations of an exhaustive key search — against DES. A possible way to
defend against such exhaustive key searches is to encrypt a message multiple times with
different keys. Since each Eg(-) has Dg(-) as its inverse function over the set of 64-bit
blocks, multiple encryptions would not result in any additional power if the key space
were closed, meaning that for all keys K; and K, there would be some key K3 such that

Ex(Ex,(B)) = Ek;(B) (3.20)

for all 64-bit blocks B. Fortunately, it is known that the key space for DES is not closed.
The standard FIPS 43° specifies triple DES to operate on a 64-bit input block B to produce
a 64-bit output block C using three DES keys K|, K2, K3. Encryption and decryption are
given (respectively) by

B > Eg,(Dx,(Ek,(B))). (321
B > Dg;(E,(Dk,(B))). (3.22)
The standard specifies three alternative key options. In the first option, all three keys

K|, K>, Ky are independently chosen. In the second option, K; equals K3 but is indepen-
dent of K>. Finally, all three keys are equal in the third option.

¥ http: //www.itl.nist.gov/fipspubs/fip46-2.htm
? http: //esre.nist.gov/eryptval /des /fr990115.htm

106 Chapter 3. Symmetric-Key Cryptography

EXERCISES 3.7

1. Backwards compatibility of triple DES Which key option of triple DES produces
backwards compatibility with the (single) DES algorithm? Is this option also com-
patible with the CBC mode of operation?

2. Key space as a group Let K range over some key space K, and let Ex () and D (-)
be defined as mutually inverse functions of type 7 — D, where D is some domain
of messages. Suppose that equation (3.20) holds for all keys in the key space.

(a) We define K =~ K' for K, K'€ K if and only if E(-) equals the function E g (-).
Show that #= is an equivalence relation on K.

(b) Let [K]~ be the equivalence class of K with respect to = in K. We define
[Ki]x o [K3]s to be [K3].., where K3 is as in (3.20). We let ¢ be a two-sided
identity for o. Show that the operation < is well-defined and gives rise to a group
structure on the key space.

3. How many possible invertible functions are there of type P — P if the message
space is the one of all possible 64-bit blocks?

4. Implementing triple DES Program an interface that asks for one of the three key
options of triple DES, generates three random keys based on the specified option, and
runs triple DES with those keys. Verify that one of these options produces the same
results as single DES.

5. Compression and encryption Discuss how the use of compression algorithms can
potentially strengthen the security of a given cryptosystem.

3.2.2 Advanced Encryption Standard: Rijndael

One can show that the group for single DES, generated as in Exercise 3.7-2 via (3.20),
has at least 102" many elements. This is a reassuring lower bound that indicates triple
DES may be secure for some time to come.'” Although NIST delegates DES to legacy
systems and will continue to approve triple DES, the agency solicited proposals for a new
Advanced Encryption Standard (AES). Fifteen initial submissions were narrowed down
to five finalists after a demanding worldwide review by leading experts in the field. The
submitted designs varied in:

¢ their high-level structure (similar to DES versus a novel structure);

¢ the instructions used (S-boxes, shifts, exclusive-or, etc.);

+ specific techniques (e.g., using other algorithms as components); and

¢ the choice of platform for which to optimize the design (smartcards, popular proces-
sors for PCs, etc.).

The candidate algorithms differed in terms of performance, although the five finalists all
provided for a high level of security.

On 2 October 2000, NIST announced the winner of this global competition: the AES
proposal Rijndael, designed by J. Daemen and V. Rijmen from Belgium. Their design is
quite simple and elegant, and it is not based on the architecture of DES. In the end, Rijndael

10 Note that DES and triple DES are widely used in the financial service industries.

3.2. Block Ciphers 107

was chosen since it had the best combination of security, performance, efficiency, flexi-
bility, and implementability. The proposed AES standard is currently subject to a period
of public comment. Sometime between April and June 2001, it is expected that Rijndael
will be approved as the official AES Standard by the U.S. Department of Commerce. The
selection process was unique in encouraging the international cryptology community to
advance the state of the art in cipher design. Commercial products based on the new stan-
dard will be available by the time this book is in print. It is believed that this algorithm
may be secure for well beyond twenty years. This belief is based on Rijndael’s very large
key space and its shields against “all known™ attacks. Only time will tell!

In November 1999, NIST issued a *“white paper™ for the second round of the AES com-
petition, posing to the general public issues pertaining to a prospective standard. A key
point of debate was whether one should choose a single or rather several algorithms as a
standard. The latter would have provided:

(a) resilience —in case one algorithm were broken, there would still be secure algorithms
available in an implementation;

(b) more “protection” against claims on intellectual property rights — were some party to
claim such rights on a chosen single standard after its adoption;

(¢) flexibility — in that several algorithms offer a combination of features (e.g., high secu-
rity and high efficiency) to a degree that may be unattainable in a single algorithm;

(d) interoperability problems and inflated costs due to multiple implementations; and

(e) an increased target — attackers would be happy just to break one of the algorithms in
the standard, and a successful attack would critically decrease public confidence in
the remaining algorithms.

The stakeholders in this standard faced a dilemma: there was evidently no optimal so-
lution. The decision was made in favor of a single design. No matter which way the
decision went, there would have been a problem of perception management. When is
an algorithm considered to be broken? A purely theoretical attack may create devastat-
ing damage through incompetently written press releases, causing a dramatic decline of
companies’ stock value. How important are software implementation characteristics com-
pared with the performance of hardware implementations of AES candidates? Rijndael
was impressive in both areas. How important is the realizability of implementations on
low-end smartcards and future low-end environments? Rijndael’s encryption mode per-
forms well on 8-bit processors — its decryption mode, less so. How can one defend against
well-known attacks that are specific to smartcards (see Chapter 6)? Rijndael can address
this. What modes of operation are appropriate for the new AES standard? This is cur-
rently under investigation. We now describe the specification of Rijndael.

3.2.21 Bytes as Polynomials

The symmetric cryptographic algorithm Rijndael operates on bytes, strings of eight bits
babsbs ... biby,

as well as on words, 32-bit strings that can be thought of as strings of four bytes. The
set B of all bytes contains 2* elements. Before we can explain the algorithm, we need to
give B the structure of a finite field. For that, we need an addition on B that gives it the

108 Chapter 3. Symmetric-Key Cryptography

structure of a commutative group with a two-sided identity 00000000. Then we require a
commutative multiplication such that all elements of 5 other than 00000000 have a mul-
tiplicative inverse. It is a mathematical fact that there is exactly one finite field for each
prime power, up to isomorphism.!! Thus there is essentially only one such field for 3!
However, in terms of implementation efficiency, the representation of the elements and
operations makes all the difference. We already encountered this phenomenon, in terms
of security, in the discussion of a mathematical isomorphism between Zj, and Z4(,,, when
i has a primitive root (see Theorem 2.35, p. 44) — we had no effective means of computing
this isomorphism.

Definition 3.14 (Representations of Bytes)
Given a byte b7bg ... by, we will represent it in three ways and switch freely between
those representations:

* abyte is a bit string of length eight, such as 10111011;

* abyte can be written as two hex digits.'? such as BB;

* abyte can be written as a polynomial modulo 2 of degree < 7, such as x” + x° + x* +
x? + x + 1 (also representing the bit string 10111011)."

Note that the examples in these three versions represent the same byte.

Definition 3.15
We use a to denote a byte that is independent of its representation. Addition of two bytes,
a @ b, is achieved by adding their polynomials modulo 2.

Example 3.16

The byte 01000101 can be represented as the hexadecimal 45 and as the polynomial
x® 4+ x? + 1. The byte 01111000 has the representations 78 and x® + x° + x* + x°.
The element 45 @ 78 is therefore

{16+x2+1)+(x6—i—x5—i—x4+13}zx5—i—x4+13—1—x2+1m0d2,

resulting in the hexadecimal 3D.

Remark 3.17

The operation & makes B into a commutative finite group with two-sided identity 00. This
operation corresponds to the bitwise exclusive-or on bit strings and constitutes its own
inverse operation.

The nonlinear element of the Rijndael cipher originates from the multiplication on B. This
is where the representation of bytes as polynomials is instrumental, as there will be no
obvious way of defining this operation in the other two representations.

1T Note that this fact conveys two things: (i) that finite fields of such a size indeed exist. and (ii) that all such fields,
for a fixed size, are basically the same one.

12 1t is standard practice to think of 4-bit strings as hexadecimal digits 0.1, ..., 9, A, B, C, D. E. F: where A corre-
sponds to 1010 (decimal 10), B corresponds to 1011 (decimal 11), ete.

15 The degree of a polynomial a, x" +a,_ X"V ayx +ap mod k is the largest! {0, 1, ..., n) such thata; #
0 mod k.

3.2. Block Ciphers 109

Definition 3.18
Given two bytes a and b, we define their product, a b, as the multiplication of their
polynomial representations modulo the polynomial

fﬁz(x}gxs-f—xq—i—xj-f—x—i—l. (3.23)

Example 3.19
If a and b are x® + x% + 1 and x* + x (respectively), then their product is

{xg—l—xs —}—13}—]— (x?+x3 + x) =174+ x" +x° +x mod 2,

since a +a = 0 mod 2. We can now divide this polynomial by mi(x) — using an algorithm
you probably remember from your high-school days — to obtain

4+ +x= (x-’r+x4 +12) + x-m(x).

Because we consider this expression modulo m(x), our result is x4+ x* + x2: in hexa-
decimal, this reads

45 o 0A = 94.

The operation
(a,b)—~aeb: BxB— B (3.24)

has no intuitive interpretation on bytes represented as bit strings.

Proposition 3.20
The set B is a finite field, where @ is addition with 00 as its two-sided identity and where
e is multiplication with 01 as its two-sided identity.

Proof

1. We already saw that (B, @, 00) is a finite commutative group.

2. Note that 01 represents the polynomial 1, which is clearly a two-sided identity for mul-
tiplication of polynomials modulo m (x). The operation in (3.24) is clearly associative
and commutative, as the multiplication of polynomials modulo a fixed polynomial is.

3. We also need to show that every byte a (other than 00) has a multiplicative inverse. Let
p(x) be the polynomial corresponding to a; although we have not explicitly presented
all the necessary background, we have implicitly enabled this assignment as follows.
One can (a) generalize the definition of the greatest common divisor (Definition 2.22,
p- 39) to polynomials modulo a fixed polynomial, (b) prove that this is a linear com-
bination of its two arguments (cf. Proposition 2.23, p. 39), and (c) adapt the extended
Euclid algorithm (see Exercise 2.19-1, p. 60) to polynomials. One can then effectively
compute polynomials r(x) and s(x). which again represent bytes,'* such that

r(x)- p(x)+s(x) -m(x) =1mod 2. (3.25)

14 gince their degree is < 7.

110 Chapter 3. Symmetric-Key Cryptography

The right-hand side of (3.25) equals 1 because m(x) is irreducible. Reading (3.25)
modulo m(x), we infer that »(x) is an inverse of p(x) modulo m(x). Thus

aeb=bea =01,

where b is the representation of r(x).
4. Finally, multiplication and addition obey the required distributivity law:

ad(bec)=(aeb)d (aec), (3.26)
which follows readily from the corresponding distributivity law of the operations - and
-+ on polynomials. 0

Fortunately, an implementation of (3.24) can be achieved, and very efficiently so, without
relying on the pedestrian algorithm from high school. If we can implement (3.24), where
b is the polynomial x (written 02 in hexadecimal), then we can use the operation

xtime: B — B,
(3.27)
xtime(a) o ae(2

to realize (3.24): first for any powers x" (n < 7) by the repeated application of xtime;
second for general polynomials, making use of the distributivity law (3.26).

Definition 3.21 (The Operation xtime)
Given a general polynomial

bax” 4+ bex® + -+ bix + by

representing the byte b &« b1bg ... b1bg, multiplication by x results in
b-,:xg —}—bﬁx? —+ —f—bp‘(g + bpx.
This is understood to be modulo m(x), so there are two cases.

(1) If b7 equals O, then
b',.rxg +b5x?—i—---—i—b1x3+b0x = bﬁx? —f—beﬁ—i— s bax + box
is already the result of computing xtime(b).
(ii) Otherwise, b7 equals 1,50 we must subtractm (x) from box® +bgx’ 4 - -4-by x> +bgx.

But since m(x) is 1B in hexadecimal, this amounts to computing b @ 1B, recalling
that subtraction in B is the same as addition.

We see that xtime can be implemented as a leff shift followed by a conditional bitwise
exclusive-or with 1B.

Example 3.22
Here we rework the previous example. The byte a is x® 4+ x% + 1 or 45 in hexadecimal.
The byte b is x* + x or OA in hexadecimal. We compute

xtime(a) = 8A (no exclusive-or),
xtime(xtime(a)) = 8A ¢ 02 = 0D (exclusive-or),

xtime(xtime(xtime(a))) = 0D ¢ 02 =96 (no exclusive-or).

3.2. Block Ciphers m

EXERCISES 3.8

1. Verify that 1B is a representation of m(x).
2. Compute the following bytes in hexadecimal:
(a) 1B @ 01;
(b) xtime(9C);
(c) xtime(7F);
(d) CD o 10:
(e) AD @ (02 » 01).
3. For CD, find the unique byte b such that b « CD = 01.
4. What is the multiplicative inverse of 027

The cipher Rijndael arranges plain-text and round keys in two-dimensional arrays of bytes
(see Figure 3.15). While these arrays vary in their number of columns, they always have
four rows. Thus, each column represents a 32-bit word. The cipher also performs oper-
ations on columns, so we need to record some operations on such words. Since a 32-bit
word can be represented as a string of four bytes

azazaay,
we may think of such words as polynomials of degree < 4:

p(x) = azx’ +axx? + ajx + ay.

; 5 (3.28)
q(x) = bzx” + bax” + bix + by;

here the coefficients a; and b; are elements of 5. Since @ operates on such coefficients,
we can lift this operation to polynomials as follows:

P(x) @ g(x) = (a3 ®b3)x’ + (az ® b2)x? + (ag ® by)x + (ap @ by). (3.29)

Similarly, we may lift the operation e of B to polynomials, as in (3.28). Using (3.26), we
have

p(x)eg(x) = CﬁX6 —f—CsxS +C4I4 +Csx3 +sz2 + €1x + €y,
(3.30)

where

Cco =ag e by,
cg=a;eb;dageby,
c;=a,ebyda;eb;dageb,,
cy=azebgda,eb; dagebs,
cy=azebydazehdasebs,
cs=azeb,®asebs,

¢g =azebs.

If we reduce the polynomial in (3.30) by a polynomial of degree 4, then we arrive at a
polynomial of degree 3 that therefore represents a 32-bit word.

12 Chapter 3. Symmetric-Key Cryptography

Definition 3.23
Let

P(@) ® q(x) E p(x) e g(x) mod M(x), (3.31)
where M (x) R

In the exercises, we find that

x' mod x* 41 = x'med (3.32)
for all i € M. Therefore, setting

P(@) @ q(x) = d3x” + dax? +dyx + dy,
we may compute the d; from the ¢; listed previously as:

do=apebyPbazeb;Parzeb; S a;eb;,
di=a;ebyFageb;Pazeb,Paeb;,
d; =a,ebydajeb;PagebPazeb;,
di;=azebyPaseb;PajebsPagebs.

(3.33)

Thus, for a given g (x), the function
p(x) = p(x) @ g(x)

is linear and is given by the matrix multiplication in (3.33). As in the case of e, we can re-
duce the general operation @ to additions and applications of x ® ¢ (x). We merely have
to specialize (3.33) to p(x) = x and so obtain

dop=00ebyH00eb; &00ebsFH01ebs,
d;=0leb;@00eb; 00e b, H00eb;,
d; =00ebyP0leb; H00eb;PH00ebs,
d3=00eby&00eb; &0l ebsH00ebs.

(3.34)

This linear operation is obviously a cyclic shift of the bytes of the input word.

EXERCISES 3.9

1. Prove equation (3.32).
2. The polynomial M(x) = x* + 1 is not irreducible; it has a polynomial other than 1
or itself as a factor.
(a) Prove this claim; that is, find such a nontrivial factor.
(b) Use part (a) to argue that p(x) +> p(x) & ¢(x) does not have an inverse for all
choices of g (x).
3. Compute x ® p(x), where p(x) equals 2Bx> + 94x? 4+ FFx + 8D.

3.2. Block Ciphers 113

Ap0 [@0,1 | A0z | 03 koo |ko1 |koz | ko3 | Koa| kos
A0 [(2| 413 kio |Kia |kiz2 | kis | Kig| Kis
) |az | A2 | 233 kyg |k |kyz | kas| kag| ks
Az |4z | A32 | A33 ks:u k3:1 ks.__z ki3 k3:4 k3:5

Figure 3.15. The State and the cipher key for Nb = 4 and Nk = 6.

3.2.2.2 Rijndael’s Encryption Mode

Rijndael is a block cipher, encrypting and decrypting one block of bits at a time. The
length of a block and the length of the initial key may be 128, 192, or 256 bits. This ci-
pher allows you to choose different numbers for the length of the block and the key. For
example, you could use Rijndael on 128-bit blocks with a 256-bit key. The design allows
even more flexibility in choosing these numbers, but the three listed values were part of
the AES design requirements.

Definition 3.24

We write Nb for the block length divided by 32 and Nk for the key length divided by 32.
The plain-text and (intermediate) cipher-text are called the Srate and are represented by
a two-dimensional array of bytes with four rows and Nb columns. Similarly, the key is
represented as a two-dimensional array of bytes with four rows and Nk columns.

From this definition we may infer that
(Nb. Nk) € {4, 6, 8} x {4. 6, 8},

giving us nine possible parameter scenarios.

Example 3.25
For Nb = 4 and Nk = 6, we obtain the representations shown in Figure 3.15.

Definition 3.26

1. The input and output blocks for Rijndael are one-dimensional arrays of 8-bit bytes, in-
dexed from O to 4Nb — 1. Similarly, the cipher key is a one-dimensional array of 8-bit
bytes, indexed from 0 to 4Nk — 1.

2. The bytes of the input block are mapped onto the State in the order agg, 21,0, 22,0,
a39.497, 4y, Thus we fill the columns of the State from the top to the bottom,
filling columns from the left to the right. Thus the byte with input index 0 is placed
within ag g, the one with index 9 is placed in a; 3, The two-dimensional key array
in Figure 3.15 is filled in the same manner. For example, the key byte with index 2 is
placed in k3 ¢, the one with index 5 is placed in Ky 1, and so on.

Since Nb and Nk are in {4, 6, 8}, the index range of these arrays is

0..15, 0..23, or 0..31,

114 Chapter 3. Symmetric-Key Cryptography

Nr Wy Nb=4 Nb=6 Nb =8

Nk =4 10 12 14
Nk=6 | 12 12 14
Nk — 8 14 14 14 Figure 3.16. The number of rounds, Nr, as a function

of Nb and Nk.

respectively. (The top-level architecture of Rijndael’s encryption mode is given in Fig-
ure 3.17.) Ignoring the indices in the array ExtendedKey for now, encryption consists of:

* an initial step in which we add the key to the State;

* Nr — 1 rounds with a round key, ExtendedKey [Nb*1], for round i derived from the
CipherKey; and

¢ a final round.

Thus Nr is the number of total rounds and is a function of Nb and Nk; see Figure 3.16.

Compare this design to the top-level structure of DES. For DES, there is an initial per-
mutation, which is useless in terms of security. As we will see, this is now strengthened
to a bitwise exclusive-or operation. For DES, there are fifteen identical rounds, with a
round-dependent key derived from the 56-bit cipher key. In Rijndael this is replaced by
Nr — | identical rounds that — although having a round-dependent key derived from the
cipher key — do not use the Feistel architecture of Figure 3.4. In DES, the last round does
not permute the left and right halves, making decryption with the same algorithm pos-
sible. The last round in Rijndael serves a similar role, but it is less trivial to show that the
same design may be used for successful decryption. We shall return to our discussion of
the top-level view of Rijndael’s decryption mode, but for now we describe how the Nr — 1
encryption rounds work .

Each round has the current State and a RoundKey as parameters. The call
Round (State,RoundKey) updates the State according to the supplied RoundKey. The
pseudo code for these rounds is given in Figure 3.17. We see that each round, except the
final one, applies four transformations to the State in sequence. Only the last transforma-
tion makes use of the RoundKey.

1. The call
ByteSub(State)

performs a byte substitution such that each byte of the State is transformed determin-

istically and independently of any other bytes in the State. This allows for parallel

computations, and this independence is also instrumental in realizing decryption with

the same design. Specifically, each byte of the State is transformed, in place, via two

operations:

(a) first, the byte a; j is transformed into its inverse with respect to the operation e of
(3.24) — the byte 00 is left unchanged;

3.2. Block Ciphers 115

RijndaelEncryption(State,CipherKey) {
KeyExpansion(CipherKey, ExpandedKey) ;
AddRoundKey (State,ExpandedKey) ;
for (i =1; i < Nr; i++) { Round(State,ExpandedKey[Nb*i-1]); }
FinalRound (State,ExpandedKey [Nb#Nr-1]);

}

Round (State,Roundkey) {

ByteSub(State);
ShiftRow(State);
MixColumn(State) ;
AddRoundKey (State,RoundKey) ;

}

FinalRound(State,RoundKey) {
ByteSub(State);

ShiftRow(State);
AddRoundKey(State,RoundKey) ;
}

Figure 3.17. Pseudo-code for the top-level structure of encryption with Rijndael.

(b) second, the resulting byte is transformed by means of the affine map

Th,7 1 0 0 0 1 1 1 17 [be] [17
b| 110001 1 1 by 1
A 1110001 1 bs 0
Pilaw |1 1 1 100 0 1 by . 0 | (335)
b, 1 1 1 1 100 O by 0
b 01 111100 bs 1
b, 00111110 be 1
by loo o 1111 1] k] Lo

which is invertible. The resulting byte is the new value of location a; ; in State.
The inverse operation InvByteSub (State) first applies the inverse of the affine map-
ping in (3.35) and then computes the inverse of the resulting byte with respect to e of
(3.24) —again mapping 00 onto itself. Thus the second phase of InvByteSub(State)
is identical to the first phase of ByteSub(State).
2. The call

ShiftRow(State)

performs transformations on the rows of State. The first row (ag . ag 1. ...) is left un-
changed. All other rows are subject to a cyclic left shift of bytes. The second row
(a9, a1, ...) is shifted C1 bytes, the third row C2 bytes, and the fourth row C3 bytes.
The shift parameters C1,C2,C3 are a function of Nb, the block length in bytes di-
vided by 32. In Figure 3.18, this dependency is listed in tabular form. Notice that C2
refers to row three, not two. The call InvShiftRow(State) operates in the same
way as ShiftRow(State) except that C1, C2, and C3 are replaced by Nb — C1,
Nb — C2, and Nb — C3, respectively. Obviously, row shifts may be carried out in
parallel.

116 Chapter 3. Symmetric-Key Cryptography

Nb | C1 | C2 | C3
4 1 2 3
6 I 2 3
i :] * Figure 3.18. The number of bytes shifted as a function of the row and Nb.
40,0 | Q0,1 | @02 | Q0,3 Koo | Ko | Koz | Ko
ayg |ay; | a2 | a3 Kio kg | kiz ki3
azo [az1 | az2| a3 kzo |kzi1 | K2z | Kas
azo |43 | a3z | a33 kao |ksi1 | kiz| kas
Figure 3.19. Adding the RoundKey to
aij B ki the State for Nb = 4.
3. The call
MixColumn(State)

transforms each column of State independently of any other column. The (i 4 1)th col-

umn determines a polynomial p;(x) o a3:ix3 - az‘ix2 +agix+ag;. 15 We update that
(i + 1)th column with the coefficients of p;(x) @ ¢(x) in the same order as defined by
pi(x), where

(x) £ 03x” + 01x2 + 01x + 02. (3.36)
The latter polynomial is invertible modulo x* + 1; the inverse is
d(x) = 0Bx? + 0Dx* + 09x + OE. (3.37)

Thus the program InvMixColumn(State) operates in the same manner as the pro-
gram MixColumn (State) — only with d(x) instead of ¢(x).
4. Finally, the call

AddRoundKey (State,RoundKey)

has an array RoundKey of the same dimensions as State (see Figure 3.19), and the
State is updated according to

al; < ay; ok, (3.38)

where K; j is the matching byte of the RoundKey. Since & is its own inverse opera-
tion, we conclude that AddRoundKey (State,Roundkey) may be used “as is” as the
inverse transformation InvAddRoundKey (State,RoundKey).

The code for the final round (as depicted in Figure 3.17) looks similar to the one written
for Round (State,RoundKey) , except that it drops the operation MixColumn(State)

15 Note that we number columns as 0... 3 from left to right.

3.2. Block Ciphers 17

KeyExpansion(byte[] Key, word[] Exp) {
// input: an 8-bit byte array Key with index range 0..4x*Nk-1
// output: a 32-bit word array Exp with index range O..Nb*(Nr+1)-1
// precondition: Nk <= 6
for (i =0; i < Nk; i++) {
Expli] = (Key[4%i], Key[4*i+1], Key[4xi+2], Key[4#i+3]);
}
for (1 = Nk; i < Nb*(Nr+1); i++) {
temp = Exp[i-1];
if (i % Nk == 0) { temp = SubByte(RotByte(temp)) XOR Rcon[i/Nk]; }
Expli] = Exp[i-Nk] XOR temp;
}
}

Figure 3.20. Pseudo-code for key expansion of the cipher key Key into the expanded
key Exp. where Nk < 6.

and performs the remaining three operations in the same relative order as for the previous
rounds.

EXERCISES 3.10

1. Show that the affine map in (3.35) is invertible. Since we can always undo the effect
of adding a constant vector, it suffices to show that the matrix in that equation has an
inverse.

2. Given ¢(x) = 03x” 4+ 01x? 4+ 01x + 02 and d(x) = 0Bx” + 0Dx? + 09x + OE, show
that

c(x) @ d(x) =0L:

that is, show that d(x) is the multiplicative inverse of ¢(x) modulo x* 4 1.

It remains to explain the nature of the code for
KeyExpansion(CipherKey,ExpandedKey) (3.39)

and the key scheduling for each round. As for DES, the round keys for Rijndael are deter-
ministically derived from the CipherKey. From Figure 3.19, we infer that each round key
consists of Nb words. These round keys are computed and stored in a one-dimensional
array of 32-bit words, ExtendedKey, such that ExtendedKey [0. .Nb-1] contains the
key for the first round, ExtendedKey [Nb. . 2%Nb-1] holds the key for the second round,
and so forth. The pseudo-code in Figure 3.17 lists such round keys through their first index
in the expanded key array. Note that the index for the final round points to the rightmost
location of that array. The reasons for that will become apparent when we describe the
Rijndael cipher in its decryption mode.

The pseudo-code for the key expansion phase depends on the value of Nk. For Nk <
6, it is given in Figure 3.20. The operation XOR is the bitwise exclusive-or. We write
(a, ¢, b, d) for the ordered bytes within a word. Then RotByte transforms (a, b, ¢, d)

118 Chapter 3. Symmetric-Key Cryptography

KeyExpansion(byte[] Key, word[] Exp) {

// input: an 8-bit byte array Key with index range 0..4*Nk-1

// output: a 32-bit word array Exp with index range O..Nb*(Nr+1)-1

// precondition: Nk = 8

for (i =0; i < Nk; i++) {
Expli] = (Key[4%i], Key[4*i+1], Key[4xi+2], Key[4#i+3]);

}

for (1 = Nk; i < Nb*(Nr+1); i++) {
temp = Exp[i-1];
if (i % Nk == 0) { temp = SubByte(RotByte(temp)) XOR Rcon[i/Nk];
} else { if (1 % Nk = 4) { temp = SubByte(temp); }
}
Expl[i] = Exp[i-Nk] XOR temp;

}

}

Figure 3.21. Pseudo-code for key expansion of the cipher key Key into the expanded
key Exp, where Nk = 8.

into the word (b, ¢, d, a). The operation SubByte (W) transforms a word W by applying
the SubByte transformation to all its four bytes in place. For the remaining value of Nk =
8, the pseudo-code for the key expansion is depicted in Figure 3.21. It remains to define
the constants Rcon[1], which are independent of Nk.

Definition 3.27 (Round Keys and Constants)
* We set Recon[1] to be 01. All remaining constants are defined recursively:
Reon[i] € 02eRconl[i-1] (i > 2). (3.40)

Note that 02 is the representation of x.
¢ After the call in (3.39), the key for round i is given by the words

ExpandedKey [Nb*(i-1)..Nb*i-1],

in that order.

This completes our description of the encryption mode of Rijndael.

EXERCISES 3.1

1. Inspecting the code for the key expansion, what is the required range of the array
Rcon?

2. EachRcon[1i] stores abyte corresponding to a polynomial modulo 2. Find out which
polynomial that is.

3.2.2.3 Rijndael’s Decryption Mode

For the DES cipher, decryption is achieved with the same algorithm; the only difference
resides in the order in which the round keys are supplied. Encryption works with round

3.2. Block Ciphers 119

InvRound(State,RoundKey) {
AddRoundKey (State ,RoundKey); // is its own inverse
InvMixColumn(State); // like MixColumn but based on d{x)
InvShiftRow(State); // like ShiftRow but with Nb-Ci
InvByteSub(State); // 1st: undo affine map; 2nd: inverse
}
InvFinalRound(State,Roundkey) {
AddRoundKey (State,RoundKey) ;
InvShiftRow(State);
InvByteSub(State);
}

Figure 3.22. Final and nonfinal inverse (decryption) rounds.

keys Ky, K>, ..., Kjg in that order, whereas decryption requires K¢ as key for round one,
K5 as key for round two, et cetera. With Rijndael, it takes more work to realize decryption
with essentially the same design. Although the actual components of the decryption de-
sign may turn out not to be identical to the respective components of the encryption design,
they are quite similar and often share common functionality — an important consideration
in hardware implementations.

The order of the four basic operations within an encryption round may seem somewhat
arbitrary. However, a table-lookup implementation (which we won’t describe here) re-
quires that the first operation be the nonlinear SubByte (State) and that rows be shifted
with ShiftRow(State) before MixColumn(State) is applied. If we want to undo the
effect of such a round then clearly we must process these operations in the reverse order.
The inverses of the final and nonfinal rounds are listed in Figure 3.22.

Notice that the final decryption round looks like a regular decryption round except that
the operation InvMixColumn (State) has been omitted. Since encryption began with a
call AddRoundKey (State,ExpandedKey[0]) (see Figure 3.17), we can describe the
sequence of basic calls for the decryption of a two-round'® Rijndael as follows:

AddRoundKey (State,ExpandedKey [2%Nb-1]) ;
InvShiftRow(State);

InvByteSub(State);

AddRoundKey (State,ExpandedKey [1*Nb-1]) ;
InvMixColumn(State) ;
InvShiftRow(State);

InvByteSub(State);

AddRoundKey (State,ExpandedKey [0]) ;

The corresponding two-round encryption activity is:

AddRoundKey (State,ExpandedKey [0]) ;
ByteSub(State);

ShiftRow(State);

MixColumn(State);

1 The AES requires more than two rounds, but this simplification makes our presentation more transparent.

120 Chapter 3. Symmetric-Key Cryptography

AddRoundKey (State,ExpandedKey [1*Nb-1]) ;
ByteSub(State);
ShiftRow(State);
AddRoundKey (State,ExpandedKey [2%Nb-1]) ;

We now transform the former code into a sequence of activities that looks like the
latter code except for some different parameters. For example, the order in which we
process InvShiftRow(State) and InvByteSub(State) does not matter as far as the
net effect on the State is concerned; this is so because InvByteSub operates on individ-
ual bytes independent of their position within the two-dimensional array of bytes. Thus
we can reverse this order in two locations of our code and obtain:

AddRoundKey (State,ExpandedKey [2*Nb-1]) ;
InvByteSub(State);

InvShiftRow(State);

AddRoundKey (State,ExpandedKey [1*Nb-1]) ;
InvMixColumn(State);

InvByteSub(State);

InvShiftRow(State);

AddRoundKey (State,ExpandedKey [0]) ;

Next, we transform the segment

AddRoundKey (State,ExpandedKey [1*Nb-1]) ;
InvMixColumn(State);

mto

InvMixColumn(State);
AddRoundKey (State, InvExpandedKey [1*Nb-1]) ;

where InvExpandedKey [1*Nb-1] is understood to mean:

 represent the key for round one as in Figure 3.19; and then
+ perform MixColumns on the array of that round key to obtain the “inverse” round key
InvExpandedKey [1*Nb-1].

This transformation is justified because the effect of MixColumns is described by a linear
map A, the effect of AddRoundKey is addition &, and linear maps A satisfy

Alv @ w) = A(v) & A(w).
Our two-round decryption code now reads as:

AddRoundKey (State,ExpandedKey [2%Nb-1]) ;
InvByteSub(State);

InvShiftRow(State);

InvMixColumn(State);
AddRoundKey (State, InvExpandedKey [1*Nb-1]) ;

3.2. Block Ciphers 121

RijndaelDecryption(State,CipherKey) {
InvKeyExpansion(CipherKey, InvExpandedKey);
AddRoundKey (State, InvExpandedKey [Nb*Nrl) ;
for (i =Nr-1;1i>0; i--) {

Round (State, InvExpandedKey [Nb*i]) ;

}
FinalRound(State, InvExpandedKey[0]) ;

¥

InvRound(State, InvRoundKey) {
InvByteSub(State);
InvShiftRow(State);
InvMixColumn(State);
AddRoundKey (State, InvRoundKey) ;

}
InvFinalRound(State,InvRoundKey) {

InvByteSub(State);
InvShiftRow(State);
AddRoundKey (State, InvRoundKey) ;

}

Figure 3.23. Pseudo-code for the top-level structure
of decryption with Rijndael.

InvByteSub(State);
InvShiftRow(State);
AddRoundKey (State,ExpandedKey [0]) ;

The two-round decryption just described recovers the structure of the encryption activity
for two rounds! The only differences are that:

* ByteSub,ShiftRow, and MixColumns run in their “inverse mode”, possibly sharing
functional components of their original counterparts;

* the array ExpandedKey is processed from right to left (i.e., in reverse order); and

* some of these round keys have to be transformed with InvMixColumns before use.

The code for rounds and final rounds is therefore as given in Figure 3.23. The top-level
structure of Rijndael’s decryption mode is also listed in Figure 3.23. Finally, we need to
make precise how InvExpandedKey is computed:

InvKeyExpansion(CipherKey, InvExpandedKey) {
KeyExpansion(CipherKey, InvExpandedKey) ;
for (i =1; 1 < Nr; i++) {

InvMixColumn (InvExpandedKey [Nb*i]) ;
}
Iy

We see that all but the first and last round key are transformed by means of MixColumns.

EXERCISES 3.12

1. Write a program that, given a representation of a byte a, returns 00 if a equals 00 and
otherwise computes the multiplicative inverse of a with respect to e of (3.24).

122 Chapter 3. Symmetric-Key Cryptography

2. Use the data obtained from the program of Exercise | to create a software imple-
mentation of Rijndael in the electronic codebook mode. Your implementation should
allow for all combinations of block and key lengths as required by the AES. Your
program should simply ask for an input block and a cipher key and then check that
their lengths meet the standard. If so, your program should ask whether you want to
run the decryption or encryption mode and should then execute the specified mode,
providing the resulting final State as output.

3.2.2.4 Rijndael's Design Criteria

The design criteria of Rijndael, listed in its AES proposal, are:

* resistance against all known attacks;
* speed and code compactness on a wide range of platforms; and
¢ design simplicity.

Each round contains three uniform layers of transformations. The linear mixing layer
(the transformations MixRows and MixColumns) provides high diffusion over multiple
rounds, shielding against attempts of linear and differential cryptanalysis. The nonlinear
layer (the transformation ByteSub) consists of a parallel application of “$-boxes™ that
are designed to have optimal worst-case nonlinear behavior. The key-addition layer per-
forms a simple exclusive-or of the round key and the present State. Since this operation is
also applied before the first and after the last round, it guarantees that the layers of the last
round cannot be “peeled off”. In contrast, with DES we could easily peel off the initial
and final permutation.

Speed and code compactness of Rijndael are quite impressive, but the cipher does
not perform equally well for all platforms. The choice of the coefficients of ¢(x) for
MixColumns was based on optimal performance of multiplication with ¢(x) on 8-bit pro-
cessors. Its inverse d(x) has coefficients 09, OE, 0B, and 0D. In an 8-bit implementation,
the multiplication with d(x) therefore takes considerably more time. That degradation in
performance was anticipated in the design. Many applications of a block cipher either do
not use its decryption mode or make encryption the bottleneck operation.

The key expansion can also begin with the last Nk words of the round key information
and “roll back™ to the original CipherKey. That way, we may compute round keys for
the decryption phase “on the fly”. However, the key expansion for the decryption mode
is slower, since all but two of the round keys require an application of InvMixColumns.

We hope that our presentation has convinced the reader of Rijndael’s simplicity and
elegance. More motivation for its design choices can be found in the Rijndael AES pro-
posal, available at NIST s AES home page; see the bibliographic notes for a reference.

EXERCISES 3.13

1. Recall the various applications of block ciphers: MACs and the CFB, OFB, ECB, and
CBC modes of operation. Which of these applications do not require the block cipher
in its decryption mode? (In those cases, the performance degradation of Rijndael is
irrelevant.)

3.2. Block Ciphers 123

2. Use Rijndael operating on a 256-bit block and a 256-bit key to implement a hash
function: the first message block is the “cipher key”, and a chaining variable is the
“input” block. The new chaining variable is the exclusive-or of the previous chain-
ing variable and the cipher output. The new message block is the next block of the
message to be hashed. (See Section 3.2.3 for an example of such a design that does
not use Rijndael.)

3. Inspecting the coefficients of ¢(x) and d{x), explain why multiplication with d(x) is
more expensive than multiplication with ¢(x), given an 8-bit processor.

4. Implement a self-synchronizing stream cipher based on Rijndael in the CFB mode of
operation.

3.2.3 Secure Hash Standard: SHA

We have already encountered hash functions as a component of a communication pro-
tocol based on public-key encryption (see Protocol 2.5, p. 21). Using RSA secret keys,
we were able to define a (slow) hash function in Exercise 2.19-10 (p. 61). In this section,
we discuss the secure hash standard (SHS), a hashing algorithm specifically designed
with security, speed, and memory constraints in mind. The algorithm is published in the
FIPS 180-1 document'” and is based on the design principles for MD4, a hash algorithm
due to R. L. Rivest; SHS improves on an older standard published in FIPS 180. For sake
of brevity, we write

hash(M)

for the result of applying the secure hash algorithm to a message M (in FIPS 180-1, this
is written as SHA-1(M)). Hash algorithms have plenty of applications.

* They are commonly used to encrypt passwords for log-in protocols (see Section 4.2).

¢ One can use hash functions for cryptographic check-sums of files and application pro-
grams to ensure that they have not been infested with (or altered by) a computer virus.

* Hash functions also play a prominent role in protocols for digital signatures. Indeed, the
secure hash algorithm is a crucial component of the digital signature standard (DSS),
featured in Section 4.1.1.

We discussed the properties HI to H4 of hash functions in Section 2.1.0.2 (p. 21). For ex-
ample, in the context of digital signatures, we need to ensure that the change of even a
single bit in a message M results in a different hash value; otherwise, one could launch at-
tacks by altering (say) details of a contract while maintaining the original digital signature.

3.2.31 UsefulTerminology

In computer science, one often uses the alphabet of hexadecimal digits 0,1,...,9,A,B, C,
D, E, F to represent any 4-bit string. (We write hex digit subsequently as an abbreviation.)
For example, 1001 is represented by 9 and 1100 is represented by C, denoting the decimal

“12”. We already encountered this notation in the specification of Rijndael. Unlike the

17 http://www.itL.nist.gov/fipspubs/fipl 80-1.htm

124 Chapter 3. Symmetric-Key Cryptography

case for natural languages, a word in computer science is a 32-bit string that we may thus
represent as a sequence of eight hex digits. For example, the word

00110111 1010 1001 1100 1100 0111 1100
can be represented as
37A9CCTC.

We may think of any word, a 32-bit string X, as the unique number x with 0 < x < 2%
whose binary representation equals X. Similarly, given any number z with 0 < z < 2%,
we may uniquely identify it with a pair of words (X, Y) such that

32
z=x-27"4y,

where X and Y are the binary representations of x and y, respectively. Finally, a 512-bit
block is a 512-bit string that we may represent as a sequence of sixteen words, since 512 =
16 - 32.

Definition 3.28 (Operations on 32-Bit Words)
We define a number of operations on words X, ¥, Z, ... as follows:

X AND Y — the bitwise logical “and™ of X and Y

X OR Y — the bitwise logical “or” of X and ¥;

X XOR Y — the bitwise “exclusive-or” of X and Y;

NOT X — the bitwise logical “negation” of X;

X + Y — the binary representation of x + y mod 2%, where X and Y are the binary
representations of x and y, respectively;

Shift(n, X) — the circular shift of X by n positions to the left.

EXERCISES 3.14

1. Consider the 32-bit words

X & 00110111 1010 1001 1100 1100 0111 1100,

Y & 10010001 0010 1101 0010 1011 1101 0100.

Compute:
(a) XANDY,
(b) XORY:
(¢) XXORY:
(d) (NOTY)XOR X:
(e) X +7Y;
(f) Shift(2, X);
(g) Shift(32, V).
2. What bit string is represented by the hex-digit sequence A5C82B05 ?
3. Consider the words X and Y represented as hex-digit sequences A5C82B05 and
37A9CCT7C, respectively. Compute X + Y and represent it as a sequence of hex
digits.

3.2. Block Ciphers 125

3.2.3.2 The Algorithm

The algorithm for computing hash(M) has as a precondition that M be a message of bit
length 512 - n for some 1 < n such that

5120 < 2%,

We next describe the padding provided by the standard for messages that are shorter than
2% bits — in case this precondition is not met. Thus we may assume that

M=MM,.. M, (n=1), (3.41)

where each M, is a 512-bit block. The output of hash(M) is a 160-bit string, a sequence
of five words

hash(M) def the final value of the word sequence HoHyH>H3Hy. (3.42)

After initializing these words Hy to Hy, the algorithm processes each block M; in sequence
to alter the words H;. As indicated in (3.42), the final value of the sequence HyH, H, H3: H,
is the hash value of the message M. Each block M; is processed in 80 rounds, and each
round ¢ requires a function f; and a constant word K, for its computations. Fortunately,
these parameters can be divided into four phases such that the constants and functions are
the same in each phase.

Definition 3.29 (Functions and Constants for SHS)

((X AND Y) OR ((NOT X) AND Z) 0=r=19),
df | X XOR ¥ XOR Z (20 =t < 39),
f(X, Y, Z) =
(X AND Y) OR (X AND Z) OR (Y AND Z) (40 <t <159),
X XOR Y XOR Z (60 <t <79);

(3.43)
(5A827999 (0 <t < 19),

& 6ED9EBA1 (20 <t < 39).
"7 | 8F1IBBCDC (40 <t < 59),
CA62CID6 (60 <t < 79).

The functions f; take three words as input and produce one word as output. Notice that
the second and fourth phase use the same function f; and that ¢ is the round number for
processing each block M;. The constants K, are 32-bit words represented as hex-digit
sequences. The pseudo-code for computing hash(M) is given in Figure 3.24. An imple-
mentation of this pseudo-code requires:

* an implementation of words and the operations on words from Definition 3.28;

* an implementation of the functions f [t] and constants K[t] as defined in (3.43);
¢ ¢cleven buffers for words H1 to H4, A to E, and TEMP;

* a buffer for 80 words W[0] to W[79].

126 Chapter 3. Symmetric-Key Cryptography

Secure_Hash_Standard(Block[] M, int n) {

// input: a nonempty array of 512-bit blocks

// MIO], M[1], ..., M[n-1] such that 512 * n < 2%*64

// output: a 160-bit hash value represented by the concatenation

// HOH1H2H3H4 of the final values of the five 32-bit words HO to H4
// the pseudo-code assumes the functions f[t] and constants K[t] for
// 0 <=t <= 79 as defined in the text

// initialization of each Hi as a sequence of eight hex digits

Word HO = 67452301;
Word H1 = EFCDAB89;
Word H2 = 98BADCFE;
Word H3 = 10325476;
Word H4 = C3D2E1F0;

Word A,B,C,D,E;
Word TEMF;
// an array that holds 80 words W[0], ..., W[79]
Word[] = W;
for (int i = 0; i < n; ++i) {
assign to W[0] the left-most 32 bits of M[i];
assign to W[1] the next 32 left-most bits of M[i];

assign to W[15] the 32 right-most bits of M[i];
// at this point, the concatenation W[OJW[1]...W[15] equals M[i]
for (int j = 16; j < 80; ++j) {
// Shift(n,W) computes a circular shift of W by n positions to the left
W[j] = Shift(1,W[j-3] XOR W[j-8] XOR W[j-14] XOR W[j-16]);
}
A =HO; B=H1l; C=H2; D =H3; E = H4;
for (int t = 0; t < 80; ++t) {
// + is the operation on words as defined in the text
TEMP = Shift(5,A) + f[t](B,C,D) + E + W[t] + K[t];
E=D; D=C; C=Shift(30,B); B = A4; A = TEMP;

}
HO = HO + A;
H1 = H1 + B;
H2 = H2 + C;
H3 = H3 + D;
H4 = H4 + E;
}
return the concatenation HOH1H2H3H4;

}

Figure 3.24. Pseudo-code for the secure hash standard: computing a 160-bit string,
hash(M), for any message M of bit length 512 . n, where 512 < 512 - n < 2%,

Observe that the program Secure_Hash_Standard(M,n) in Figure 3.24 iterates
over all blocks from the leftmost block M[0] to the rightmost block M[n-1] in the out-
ermost for-statement. For each block M[i], we first load M[i] into the words W[0]
to W[15], thinking of a block as a sequence of sixteen words. The for-statement with
increment variable j then computes the remaining buffer values W[16] to W[79] as a de-
terministic function of previous buffer values. Then, the word group A to E gets the current
value of the word group HO to H4. Next, the 80 rounds for this block M[1] are performed.
Each round modifies the word group A to E deterministically, using the functions f [t]

3.2. Block Ciphers 127

Alternate_Secure_Hash_Standard(Block[] M, int n) {
// requires only W[0] to W[15] and a mask Mask
// instead of the entire array W[0] to W[79]

// the initial part up to the for-statement below is as before
Word Mask = 0000000F; // implements ‘‘W[0] == W[16]*’
for (int i = 0; 1 < n; ++i} {
compute W[0] to W[15] as before;
A =HO; B=Hl; C=H2; D =H3; E = H4; // as before
int s;
for (int t = 0;: t < 80; ++t) {
// in the next two statements, we identify integers with 32-bit words
s = t AND MASK;
if (¢t >= 16) {
Wls] = Shift(1,W[(s+13) AND Mask] XOR W[(s+8) AND Mask] XOR
W[(s+2) AND Mask] XOR W[s]);
}
TEMP = Shift(5,A) + f[t](B,C,D) + E + W[s] + K[t];
// W[t] from previous version changes to W[s]
E=D; D=2C; C=58hift(30,B); B = A; A = TEMP; // as before
}
// as before

}

Figure 3.25. Pseudo-code for the alternate method of computing the secure hash of a
message; it requires 63 fewer words for storage but more computation time and computes
the same hash value as the program Secure_Hash_Standard(M,n).

and constants K[t] as defined in (3.43). After these 80 rounds, each block determines
new values of the word group HO to H4 by “adding” the current values of word A to E to
the current value of the word HO to H4, respectively.

The pseudo-code in Figure 3.25 was written with a minimization of execution time in
mind. It may well be the case that physical specifications of a system put much higher
demands on memory constraints. In this case, one may implement the sequence W[0] to
W[15] in a circular way, using a masking variable Mask of type Word with the immutable
value 0000000F. The only changes in the code are done in the for-statement with the in-
crement variable t and in the computation of the group HO to H4 immediately after that
for-statement. These changes are indicated in Figure 3.25.

3.2.3.3 Message Padding

In applications, messages might not be exact sequences of 512-bit blocks. In general,
we may think of a message M as in (3.41), where M, to M, _; all are 512 bits long but
where now the length of M, is between 1 and 511 bits. So all we have to do is pad the
final block M, to a 512-bit block M, : then we can call the secure hash standard with
MM>...M,_ 1M, and n as arguments. The FIPS 180-1 document does indeed outline
the way in which such padding should be performed, although it is somewhat vague about
a certain case that we now attempt to make more precise.

128 Chapter 3. Symmetric-Key Cryptography

Definition 3.30 (Representation of Message Length)

Let ! be the bit length of the original message M M> ... M,_ M, and let (X, Y) be the
pair of words such that XY, as a binary string, is the binary representation of / (possibly
with leading zeros). For example, if I < 2°? then X contains only 0-bits.

Note that the pair (X, Y} is well-defined, as the original message has a bit length that is
strictly less than 2%, Before processing M, we change it to M/; their formats are shown
in (3.44) and (3 45), respectively. The leftmost bit of Z is always a 1 and the remaining
bits of Z are all 0. Thus, Z is determined by its bit length m. The computation of m in-
volves two cases.'®

1. If the bit length of M, is not more than 447, then we compute the 512-bit block M, as

def
M = M,ZXY; (3.44)

that is, we append the word Z and the 32-bit words X and Y to M, as indicated. As
pointed out earlier, XY is just the binary representation of the bit length [of the origi-
nal message. The word Z has length

m =512 - 641,
where /" is the bit length of the block M,,; Z always has a leading 1-bit followed by
m — 1 0-bits. Since 1 < I' < 447. we conclude that Z has at least one bit.
2. If the bit length of M, exceeds 447, then we don’t have sufficient space for append-

ing 65 bits (one 1-bit and 64 bits for /) within the same block. Thus the length of Z

must be

m 1024 — 64 —1'

instead of the 512 — 64 — I’ of the first case. Hence, the resulting message is of the
form M\M> ... M,_ 1M, M, _,, where

n

MM/, € M,ZXY (3.45)

n

and with X, ¥, Z as in (3.44).

Example 3.31
In the FIPS 180-1 document, padding is illustrated by this example. Suppose that the mes-
sage M is

01100001 01100010 01100011 01100100 01100101. (3.46)

First, we append a 1-bit to this message and obtain

01100001 01100010 01100011 01100100 01100101 1. (3.47)
Since the original message has length I’ = 40, we have

m =512 — 64 — 40 = 408

' Oddly enough, this case analysis is absent from the standard.

3.2. Block Ciphers 129

and so Z is a 1-bit followed by 407 0-bits. The string MZ, in hex digits, is then

61626364 65800000 00000000 00000000 00000000 00000000 000000D0ONY
00000000 00000000 00000000 00000000 00000000 00000000 0000000O.

Finally, we append to MZ the pair of words XY such that XY is the two-word represen-
tation of the length / of the original message M. Since I’ = 40, we have that XY equals
00000000 00000028 in hex digits. Thus the complete padded message MZXY, in hex dig-
its, equals

61626364 65800000 00000000 00000000 00000000 00000000 00000000 00000000,
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000028.

The security of the secure hash standard is not based on the difficulty of well-understood
computational problems, such as the discrete logarithm problem (Definition 2.36, p. 45).
Its security can therefore be adequately assessed only over time. At least, it seems for now
to be immune to the birthday attack, which attempts to find collisions — messages M and
M’ whose hash values coincide. A probabilistic analysis arrives at the estimate

k=~ 1.17 - +/n, (3.48)

where n is the number of possible hash values and k is the number of random hashed mes-
sages needed in order to have a 50% chance of such a collision. For n = 365, a guide at a
Club Med Resort requires a group of only k &= 23 people to have a 50% chance that two
of them would share a birthday. For a 160-bit hash value, an attacker would require more
than 2% random hashes for a 50% probability of a collision pair.

EXERCISES 3.15

1. Maximal length of message to be hashed Considering that the secure hash stan-
dard works only on messages of bit length [= 512 - n such that 1 <[< 2%, what is
the maximal number of 512-bit blocks you can hash as a single message?

2. Equivalence of two hash methods Consider the pseudo-code for computing
hash(M) in Figure 3.24 and Figure 3.25.

(a) Prove that the alternate method of computing hash(M) actually yields the same
results.

(b) For both versions, explain why the value of the word group HO to H4 after the
processing of block M[1i] is a function of all blocks M[1’] with i’ < i.

3. Implementing SHS Implement the secure hash standard in a programming lan-
guage of your choice. Note that the interface requires that the bit length of the input
message be an integral multiple of 512. Consult the appendix of the FIPS 180-1 doc-
ument for example messages and message digests, and run your implementation with
these examples to “validate” it.

4. Suppose that your message is less than 512 bits long and is given in hex digits as
3ABC251B. Perform message padding to this block and write the resulting block(s)
as sequences of hex digits, grouped in sixteen words.

130 Chapter 3. Symmetric-Key Cryptography

5. Suppose that your message is less than 512 bits long and is given in hex digits as

3A8CD51B 01A4C7B2 378C251B 01A8CT7C2 3ABC251B 01A4CTB2\\
3A8CES1B 01C4C7F2 3A8CL71B 0194C5B2 3A8C241B 01A4CT762\)
0A8C251B 01A4C7B2.

Perform message padding to this block and write the resulting block(s) as sequences
of hex digits, grouped in sixteen words.

6. Write a program that computes the value hash(M), where M is the contents of a file
of bit length between 1 and 2% — 1. Note that you must check whether you need to
do message padding before processing the final block. You may want to adapt the
given pseudo-code so that you can read such files blockwise.

3.3 BIBLIOGRAPHIC NOTES

The book by Kahn (1967) is still a worthwhile read on the history of cryptographic systems
and their (mostly successful) attacks. A more recent and compelling read on this fasci-
nating history is Singh (2000). The monograph by Rueppel (1986) provides a much more
advanced discussion of the design and analysis of stream ciphers. Section 3.1.2 is drawn
from an article by Goldreich (1997). Information is available on the Internet regarding the
current U.S. standards in data encryption,' secure hash functions,” and digital signature
standards.?! Also available is a publication®? describing in detail the modes of operation
of DES, as well as information on how to break DES with an exhaustive key search.?3 For
information on error propagation and synchronization issues of the DES modes of opera-
tions, consult the document FIPS 81. A document®* announcing FIPS 46-3 outlines triple
DES and its key options; it also requests comments on candidate algorithms for the AES.
There is a site > for current information on the AES adoption process; we also recommend
the NIST White Paper.® E. Biham offers a succinct survey>’ on the AES finalists and their
tradeoffs. The NIST maintains a website *® with information about the new advanced en-
cryption standard. Rijndael, too, has a home page.”® Another NIST site® contains links
to the AES winner Rijndael, its specifications, a workshop on its modes of operations, an
AES fact sheet, and recent news and developments.

19
20
21
22
23
24
25
26
27
28
29
30

www.itl.nist.gov/fipspubs/fip46-2.html
www.itl.nist.gov/fipspubs/fip180-1.html
www.csre.nist.gov/fipspubs /fips1861.pdf
www.itl.nist.gov/fipspubs/fip81.html

http: // www.eff.org /descracker/

http:/fesre mist. gov/eryptval /des/fr990115 .html

http://csre nist.gov/encryption/aes

http:/fcsre mist gov/encryption/aes/round2/ Round 2WhitePaper . htm
http://www.cs technion.ac.il /~biham/Reports /aes-comparing.ps.gz
www.nist.gov/aes

http: // www.esat kuleuven.ac.be/~rijmen /rijndael/

http://csre nist.gov/encryption/aes/

CHAPTER 4

Security Protocol Design
and Analysis

41 DIGITAL SIGNATURES

In Protocol 2.5 (p. 21) we saw the twofold use of public-key cryptography (PKC) as a
means for

¢ making messages unintelligible before they are transmitted on an untrusted communi-
cation line; and

* ensuring the authenticity of messages, or digital documents in general, by digitally
signing them.

Protocol 2.5 exemplifies the dual role of private keys. They may be used to decipher a
message that was encrypted with an agent’s public key; on the other hand, they may be
used to sign messages, and the signature can then be verified with the corresponding public
key. Implementations usually employ different PKCs, or at least different parameters, for
cach of these functional roles of private keys. (See the exercises that follow for possible
reasons.) It is beyond the scope of this text to discuss more advanced types of realizable
digital signature systems, but we mention them in passing.

Protocol 4.1 (Fail-Stop Digital Signature)
A digital signature system has this property if a signer can prove that a message that was
signed with her key, based on a fraudulent attack, is a fake.

Protocol 4.2 (Proxy Digital Signature)
A digital signature system has this property if a signer can give his authority to sign a
message to someone else without revealing his secret signature key.

Protocol 4.3 (Designated-Confirmer Digital Signatures)

These are protocols that allow a signer to designate a confirmer, possibly herself, whose
cooperation is necessary for the verification of digital signatures. This prevents the exact
copying of digital signatures.

Public-key cryptosystems are by no means the only systems that can realize digital signa-
ture schemes.

Definition 4.4 (Digital Signature Scheme)
A digital signature scheme consists of a finite set P of plain-texts, a finite set S of signa-
tures, and a finite key-space K such that, for each K € I, we have a signing algorithm

132 Chapter 4. Security Protocol Design and Analysis

Signg(): P —= S
and a verification algorithm
Verifyg(-,-): P x § — boolean

such that, for all M € P and all § € &, we have Verifyg (M, §) = true if and only if
S = Signg(M).

The algorithms Signg(-) and Verifyg (-, -) should be efficiently derivable, given K, and
should have reasonable performance. Needless to say, given M and Verifyg(-, -), an
opponent should have no chance of producing some S with § = Signg (M) unless the
opponent knows the key K.

EXERCISES 4.1

1. Discuss why PKCs can be seen as digital signature schemes in the sense of Defini-
tion 4 4.

2. Functions of signatures Handwritten signatures on paper documents fulfill for-
mal requirements to serve specific functions, or roles. Some of these requirements
and functions may have an explicit and precise legal meaning in a given legal sys-
tem. Please discuss the suitability of digital signatures (e.g., as used in Protocol 2.5 or
embedded in web browsers) with respect to the following functions of (handwritten)
signatures.

(a) Identification — the receiver of the signed document can verify the signer’s
identity.

(b) Authentication — the signature authenticates the content of the signed document ,
unless contrary evidence is produced.

(c) Declaration of will — the signer declares, through his signing, his will and his
agreement to be legally bound to the possible intentions stated in the signed
document.

(d) Authorization — the signer authorizes the receiver to perform a legal act (e.g.,
power of attorney).

(e) Safeguard against undue haste — before signing the document, the signer is
notified of possible legal consequences; in case of a sales contract, certain coun-
tries may require sufficient time for deliberating the purchase.

(f) Notice of contents — the signer implicitly indicates that she knows the contents
of the signed document.

(g) Originality — signing the document allows one to distinguish the original from
a copy.

3. Features of signatures Discuss to what extent the following features of handwrit-
ten signatures transfer to the realm of digital signatures: Handwritten signatures are
(a) easy to use and generate,

(b) durable,

(c) directly discernible, and

(d) individual.

4.1. Digital Signatures 133

4. Key recovery Study the consequences of a lost private key:
(a) if it is used for decryption of messages;
(b) if it is used for the generation of digital signatures.
What does this entail for the requirements of, and constraints on, key-recovery infra-
structures?

411 Digital Signature Standard: DSS

The U.S. Digital Signature Standard is a government technical standard used by federal
departments and agencies in the design and implementation of public-key—based digital
signature systems; its adoption by the private and commercial sector is encouraged but not
legally prescribed. In the digital signature standard (DSS), a prover (see Definition 4.5)
takes a message M, produces a digital fingerprint hash(M) of M using the secure hash
function described in Section 3.2.3, and signs the hash value hash(M) with her secret
digital signature key x; this produces two large integer values r and s:

Sign,(M) £ (r,s). 4.1

A verifier will receive the putative original message M’ and the putative signature pair
{r',s"). The verifier then can compute a value v, using the signer’s public key y, where
vequals r'if M'= M, r =r', ands = s

Verify,(M', (r.s) £ (v =1r"). (4.2)

Let us now examine this procedure in more detail.

4111 Protocol Parameters
The digital signature algorithm (DSA) requires:
* a prime number p with L significant bits, where L is any multiple of 64 in the range

512 = L = 1024,

* a prime number g with 160 significant bits such that ¢ divides p — 1;
* numbers g and A such that

g & hr4 mod p,

where2 <h<=p—-2andg = 2;
* randomly generated numbers x and & satisfyingl =x <g—1landl <k <g —1; and
¢ a public key

y ‘gg"' mod p.

We will return to the issue of how to compute such parameters in Section 4.1.1.5 (p. 136).

134 Chapter 4. Security Protocol Design and Analysis

411.2 Generating a Digital Signature

Definition 4.5 (Provers and Verifiers)
An agent that claims he or she signed a certain message digitally is called a prover. A
verifier is an agent that checks whether such a claim is valid.

Both prover and verifier must follow precise protocols for these activities, as we shall out-
line. The parameters p, g, g. h should be considered public and may be used by several
users. The prover’s secret signature key is x; her public signature key is y. The prover
uses this key pair for a period of time that is determined by a security analysis of the im-
plemented DSS system and other factors. The random parameter k is used only once, so
it has to be regenerated (or precomputed) for each signature. See Exercise 4.2-7 (p. 138)
for what may happen otherwise.

Protocol 4.6 (Generation of Digital Signature)
Given a message M and a random k, the prover computes the pair of numbers (r, 5} as a
digital signature of M:

r < (g* mod p) mod g, (4.3)

s & (k. (hash(M) + x - r)) mod g. (4.4)

Recall that hash(M) produces a 160-bit string, so in our present context hash(M) de-
notes the integer whose binary representation equals that 160-bit string. Note that an
implementation may need to conduct such a conversion before computing s.

41.1.3 Digital Signature Verification

A verifier is well advised to obtain all the public information — the two primes p and ¢,
the base g, and the prover’s public signature key y — in an authenticated manner. There-
after, assume that the verifier received M” and the pair (', s'), the putative signature of
the original M. If r" and s’ are positive and less than ¢, the verification algorithm is in-
voked. Otherwise, the signature is rejected immediately.

Protocol 4.7 (Digital Signature Verification)
For the actual verification, the verifier computes

w= (s "mod g, (4.5)
uy = hash(M') - w mod g. (4.6)
us = 1w mod g, (4.7)
v (g™ . y"2 mod p) mod g. (4.8)

If v = r’, then the verifier accepts that message M was signed by the prover. Otherwise,
the signature is rejected.

4.1. Digital Signatures 135

41.1.4 Correctness of Protocol

At the very least, we need to guarantee that the verifier accepts a signature if it was gen-
erated in the prescribed manner by the prover, using the secret information k and x. For
that, we need a little lemma whose proof is delegated to Exercise 4.2-1 (p. 138).

Lemma 4.8
Let p, q, g, and h be as in the digital signature standard. Then:

1. g9 =1 mod p; and
2. foralla,beZ, a =bmod q implies g* = ¢ mod p.

To prove that the verifier accepts a properly signed digital signature, it suffices to show
that v = r' if the verifier receives the original message as well as the proper signature.

Theorem 4.9 (Correctness of Digital Signature Verification)
IfM'=M,r"=r, ands' = s, then v = r' holds for the value v computed in (4.8).

Proof We repeatedly use Lemma 4.8 to compute

v=1(g" - y"“ mod p) mod ¢ (by (4.8))
= (gheshMw .y mod pymod g (by (4.6))
= (gPsM vy mod p) mod g (since M = M")
_ (ghash(M)-w *42 mod p) mod g (since y = g* mod p)

‘8
= (g™ g mod p) mod g (by (4.7))
= (ghestM)Iw o mod p) mod ¢ (since 1’ = r)

= (gPashM+e0 mod p) mod g. (4.9
By (4.5) and (4.4), we have
w= (k" (hash(M) + x - 7)) mod q.

Recalling that (goh) ™' =h'og'and (g~")~' = g hold in any group (G, o, €}, we infer
that

(hash(M) +x -r) - w = (hash(M) + x - r) - (hash(M) +x -)" - (kK H !
= k mod g.

Using Lemma 4.8 and (4.9), we obtain
v = (g" mod p) mod g;

the right-hand side is the value defined to be r, which equals r’ by assumption. O

136 Chapter 4. Security Protocol Design and Analysis

4.1.1.5 Verifiable Generation of Public Protocol Parameters

The digital signature standard insists on using established algorithms for generating the
secret x and k and the public p, ¢, and g. The generation of x, k, and g rely on random
or pseudo-random number generators; for g, one generates a random /i until g > 1. As
for the prime numbers p and g, the standard proposes a deterministic algorithm for their
computation that takes the number of bits of p and the number of bits of a random seed
as input; it then uses the secure hash algorithm from Section 3.2.3 to compute p and g.
Along with p and g, the successful seed seed becomes public information as well. Hence
this algorithm provides a means for verifying that the parameters p and g were gener-
ated in the prescribed manner: take the seed to simulate the generation algorithm; check
whether p and g are being generated. This also makes it next to impossible to set up a
DSS system with “unsafe” primes p and g, for it is hard to conceive of how an attacker
could program any computation that would yield “weak” numbers that would nonetheless
pass that check.

See Figure 4.1 for the pseudo-code of the prescribed generation of p and ¢, and note
how the algorithm operates. After some preprocessing, it enters a while-statement whose
sole purpose is to generate a 160-bit prime number g. Each iteration of the while-statement
corresponds to an attempt of finding a ¢ based on a randomly generated seed value seed.
This code uses Miller-Rabin as a primality test with 80 calls to the function Witness.
The call to Miller-Rabin gives us a probability of at most 2730 of generating a ¢ that is
not prime. The DSS standard requires this threshold. Note that the assignment-statement
for g forces ¢ to be odd and to have 160 significant bits.

As soon as a suitable g has been found, the algorithm executes a second while-statement
whose task it is to find an L-bit prime p such that g divides p — 1. The variable counter
keeps track of how many attempts of generating p have failed so far. If this value ex-
ceeds 4096, the program goes back to the first while-statement and generates a new g
from which it hopes to compute a suitable p. The value offset also changes with each
attempt of computing p. The value for x is computed based on the seed and a number of
applications of the hash function, using an array v [] of length n + 1. Observe that p =
1 mod 2 - ¢ holds.!

The DSS is based on the ElGamal digital signature scheme, but it is designed so
that it signs a 160-bit message fingerprint (sometimes called a message digest) to pro-
duce a 320-bit signature (although all computations are done with a modulus, p, that
is at least 512 bits long). This is achieved by generating a subgroup of size 2'® in
Z,. Note also that DSS is nondeterministic: the same message can have many valid
signatures, owing to the random k. As for implementations, DSS is rather fast in its
signature generation but rather slow in signature verification — the reverse of a typical
digital signature scheme based on RSA. This creates tradeoffs, and often there are no
optimal solutions. For example, smartcards may have to perform both decryption and
encryption.

! In practice, the same robustness of Miller-Rabin can be achieved for testing ¢ and p if we reduce the number of
tests from 80 to 18 and 5, respectively: but we won’t discuss the mathematics that establishes this.

4.1. Digital Signatures 137

DSS_Prime_Generation(int 1,int lseed) {
// generates two prime numbers p and q for the DSS

// input: * an integer 1 between 0 and 8

/7 * an integer lseed, the length of the seed

// output: # a 160-bit prime q and a prime p with 512 + 64%1 bits
1 such that q divides p - 1

1 * the value of an internal counter

/ * the value of the successful seed

int L = 512 + 64 % 1;
int n =L - 1 div 160;
int b =L - 1 mod 160;
bool g_neot_prime = true;
loc: while g_not_Prime {
BigInteger seed = Random(1,2*+lseed - 1) XOR 2**(lseed - 1);
BigInteger u = hash(seed) XOR hash(seed + 1 mod 2#*lseed);
Biglnteger q = u OR 2%*159 OR 1;
g_not_prime = Miller-Rabin(g,80);
}
int counter = 0;
int offset = 2;
while counter <= 4096 {
for (int k = 0; k <= n; ++k) {
v[k] = hash(seed + offset + k mod 2#*lseed);
}
BigInteger w = v[0];
for (int k = 1; k < n; ++k) { w = w + v[k] * 2%x(k*160); }
w=w+ (vin] mod 2*x*b) * 2#x(2%160);
Biglnteger x = w + 2%+(L - 1);
Biglnteper ¢ = x mod 2xq;
Biglnteger p = x - (c - 1);
if (p »>= 2#*#(L-1) &% Miller-Rabin(p,80)) {
return (q,p,counter,seed);
}
counter = counter + 1;
offset = offset + n + 1;

¥

goto loc;

}

Figure 4.1. Pseudo-code for the generation of two primes p and ¢ as required by the
digital signature standard.

411.6 Security of DSS

Implementation constraints aside, it seems wise to choose 1024 bits for p. If one can devi-
ate from the standard without compromising acceptable performance, one may choose an
even larger number of bits for p. There are two principal security concerns: the logarithm
in Z,. where powerful techniques (index-calculus methods) exist; and the computation
of logarithms in the subgroup of order g, generated by g. For the latter, methods that
run in the order of /g are known. The Digital Signature Standard is also subject to
implementation flaws that corrupt its security. For example, one may attack this system

138 Chapter 4. Security Protocol Design and Analysis

if k is the same random number for each issued signature. See the following exercises for
more on that.

EXERCISES 4.2

1. Prove Lemma 4.8. (Hint: Use Fermat’s theorem for p.)

2. Let p, g, g. h be parameters of the DSS protocol. Show that [g], generates a sub-
group of order g in Z,.

3. Let n,m € N and x € Z. What can you say, in general, about how the values
(x mod n) mod m and (x mod m) mod n compare? Specify under which circum-
stances they compute the same results.

4. Implementing DSS prime generation Implement, in a programming language of
your choice, the algorithm DSS_Prime_Generation(1l,lseed).

5. Implementing DSS signature verification Write and implement an algorithm
DSS_Proper_Primes?(q,p,counter,seed) which returns a boolean. This sim-
ulates the computation that occurs in the call DSS_Prime_Generation(l,lseed)
but here for the length 1seed of the given value of the seed seed; it returns true if
and only if the simulation computes the same values as the input values for counter,
p.and seed.

6. Why would it be difficult to compute *weak™ prime numbers p and g that would pass
the test call DSS_Proper_Primes?(q,p,counter,seed) of Exercise 57 Give an
intuitive explanation.

7. Attack on repeated use of signature Explain how you could compute the secret
digital signature key x if you could observe the communication of two runs of the
DSS protocol, provided that the prover used the same random number &k for sign-
ing two different messages M, and M». Let ry, r,, 51, and s, be defined as in (4.3)
and (4.4) for messages M, and M, respectively.

(a) Argue that ry equals r;.
(b) Show: If 5; — 52 % 0 mod ¢, then

k = (s, —s2)"" (hash(M;) — hash(M>)) mod q. (4.10)
(c) Prove that, in the DSS protocol, we have
x = (5 -k —hash(M)) - r ! mod q (4.11)

in general.

(d) Use parts (a)—(c) to explain your attack. Detail what you know and compute and
in which order such knowledge arises.

(e) What property of hash functions makes it unlikely that s; — s, = 0 mod ¢?

(f) Does this attack work if the two messages are identical?

8. Consider the program DSS_Prime_Generation(l,lseed) from Figure 4.1. Ex-

plain why:

(a) 27! < x < 2F holds right after the assignment-statement for x;

(b) p =1mod 2 - g holds right after the assignment-statement for p; and

(c) p has L significant bits upon program termination.

4.1. Digital Signatures 139

9. Time-stamping digital signatures Suppose that Alice wants to sign a message M
with her secret digital signature key Signa(-). At the same time, she wants to be
able to prove that she signed M on a specific day. She is allowed to use publicly
available (but not predictable) information from that day and to publish her signa-
ture in a national newspaper the following day. Propose how she should proceed.

10. (a) Generalize the definition of a digital signature scheme by including a third pa-
rameter .4, an efficient probabilistic algorithm such that a call .A(n) generates
a digital signature scheme
Signg(-): P = §,
Verifyg(:,-): P xS — boolean,

where the length of elements in 7 and & is a function of n € I¥.
(b) Express the Digital Signature Standard as such a system. In particular, what are
the lengths of elements in P and §?

41.2 Elliptic Curve Digital Signature Algorithm

The digital signature in the DSS consists of the pair (r, s}, which requires 320 bits for its
representation. As discussed already, the security of DSS rests on the fact that the com-
putation of logarithms in Z7 1s hard and that it is likewise hard to compute the logarithm
in the subgroup of order g generated by g. However, one may read the DSS protocol at
a more abstract level, taking note that most of its basic steps still make sense when inter-
preted to apply in any finite field (F, 4,0, -, 1). In a field, all nonzero elements have a
multiplicative inverse and the operations + and - satisfy laws that we intuitively apply in
the field Z,, where p is prime. Recall that the AES cipher Rijndael made use of a finite
field whose elements are all 8-bit bytes.

41.21 Elliptic Curves

Often one can build a group from geometric data. This is done in cryptographic tech-
niques that rely on the quite difficult but most intriguing mathematics of elliptic curves.
Although such curves can be defined in great generality, we simplify our presentation to
a special class of elliptic curves that illustrate well their application to cryptology.

Definition 4.10 (Elliptic Curve)
Let p > 3 be aprime and leta, b (1,2, ..., p — 1} be such that

4-a°+27-b*#0mod p. (4.12)

An elliptic curve E(Z,,) over Z, has the numbers a and b as implicit parameters; the set
E(Z,) consists of all pairs {x, y} that satisfy

yzzx3—i—a-x+bm0dp O=x.y=p-1) (4.13)

together with an additional element O, the “point at infinity”.

140 Chapter 4. Security Protocol Design and Analysis

Example 4.11
Let p = 13, a = 4, and b = 12. Then equation (4.12) is satisfied, and the set E(Z3)
(without Q) consists of the pairs

(0,5), (0,8), (1,2), (1,11), (3.5), (3,8), (4, 1), (4,12), (5. 1),
(5.12), (8,6), (8,7), (9,6), (9.7), (10.5), (10, 8), (11, 3), (11, 10).

Note that the set E(Z3) has 19 elements in all.

From (4.13) it follows that
(I, J”) € E(Z’p} = (xs _)’) € E{Z‘ﬂ}

If such curves are defined over the real numbers instead of Z,, then two points on that
curve determine a third one: the “addition” of the former two. This geometric operation
can be transferred to the case Z,, in which case the operation can be expressed in a com-
pletely algebraic fashion. It then forms the basis for the derivation of a group operation.

Definition 4.12 (Group Structure on Elliptic Curve)
1. Let E(Z,) be an elliptic curve. We define an operation
+: E(Zp) x E(Zy) — E(Z)) (4.14)
as follows:
«c O+ 0 def (@R
def def
* () +FO =0+ (x,y) = (x,y)
def
o (x,y)+ {x, —y) = O;
¢ if {x1. y1) and {x., y2) are in E(Z,) with y; # y, mod p, then define (x{, y;} +
{x2, ¥2) to be (x3, y3), where

5, def { (ya—=y1)- (o —xp)" mod pif (x1, x2) # (y1, y2), 4.15)
(B-xi+a)-(2-y)~ mod p if (x1, x2) = (y1, y2); ‘
def . 2
X3 = A" —x;—x2mod p,
Jdef 1 2 It (4.16)
ya=4-(x;—x3) —y; mod p.
2. If P = (x,y) € E(Z,), then we write — P for the pair (x, —y) € E(Z,,).
3. Generally, for r € N we define
ol y) = Y (). @17)
i=1

Example 4.13

For p=123,a =1, and b = 1, we have points P & (3, 10) and Q = {9, 7). We compute

P + O as follows:
A=(7-10)-(9—3)"= —3.6"' = 11 mod 23;
x3=1%"-3-9=6-3—-9=—6=13mod 23;
yvi=11-(3—-(=6)) —10=11-9 — 10 = 89 = 20 mod 23.

4.1. Digital Signatures 141

Thus
P+ Q = (17, 20).

As for scalar multiplication, let R & (3,10). Then2 - R LR + R. The latter computes to:

=03-324+1-207"=5.20 = 6 mod 23;

x3=6>—6=7mod 23;

yi=6-(3—7) —10= —24 — 10 = 12 mod 23.
Hence,

2-R=1(7,12).

EXERCISES 4.3

1. (a) Let p > 3 be prime. Show that {x, y) € E(Z,) implies (x, —y) € E(Z).
(b) Explain why the definition of (4.14) is complete in the sense that we did not for-
get to add some combination of elements in E(Z).
(c) Explain what implicit assumption was made in the definition of A in (4.15).
(d) Prove that + is commutative.
(e) Prove that + is associative. (This may be harder than you think!)
(f) Conclude that (E(Z,), +. O) is a finite commutative group.
2. Consider the elliptic curve where « = b =l and p = 11.
(a) Compute the set E(Zy;). (Hint: Without O, it has 13 elements.)
(b) Use the definition in (4.16) to compute {1, 5} + (8, 2} in E(Z).
(c) Use the definition in (4.17) to compute 2 - {1, 5), 3 - (1, 5}, and 4 - (1, 5).
3. Let p = 1999 and @« = b = 1. How many elements does E(Z 999} have? (More than
2000, so you may want to write a program for this.)

Definition 4.14 (ECDSA)
In the elliptic curve digital signature algorithm (ECDSA), we modify the DSS at some
key places.

1. We replace Z, with some elliptic curve E(Z) over Z,, such that the order of the group
E(Z,) has a “large” prime factor g (say, 160 bits long).

2. We find a point G € E(Z,) whose order is ¢ (G was called g in the DSS).

3. The public signature x is computed (as in DSS) as a random value between | and g — 1,
but now the secret signature ¥, called y in the DSS, is defined as the scalar multiplica-
tion of the point G with the scalar x:

y ¥y . 6.

4. The computation of r is entirely different now, for r was computed in Z, before.
(a) Compute the random k in the same manner as for the DSS.
(b) Let {xy, y;} be the point on E(Z) obtained by computing k - G. If x; mod ¢ =0,
use part (a) to re-compute k. Otherwise,

def
r=x;modgq.

142 Chapter 4. Security Protocol Design and Analysis

5. The computation of 5 now proceeds exactly as for the DSS.

6. To verify a digital signature, the computations of w, u;, and u» are as in (4.5)—(4.7),
but we replace the exponentials in (4.8) with scalar multiplications in the elliptic curve
E(Z,):

(x0, yo) Z uy - G +uz-, (4.18)

v < xg mod g. (4.19)

Note that + in this equation refers to the addition of points in the elliptic curve.
The “scalar multiplication”
(k,G) = k-G: N xE(Z,) — E(Z))

is, of course, simply the exponentiation operation in the group E(Z). The security of the
ECDSA thus relies, at the very least, on the fact that it is hard to compute logarithms in
this group. With a 160-bit ¢, this algorithm may provide similar security as the DSS. The
apparent advantage is that one can often choose a much smaller p than with the DSS when
generating a subgroup of order g. Also, scalar multiplication may be easier to implement
than exponentiation in Z7 if p is chosen appropriately. Note, however, that the first two
items of the ECDSA require efficient algorithms for generating p and G with these re-
quirements. Such algorithms exist, but we will not discuss them in this text. Finally, it
is not clear whether the elliptic curve PKC has an inherent advantage over PKCs that are
based on Z}‘,. Although elliptic curves have been studied by many excellent mathemati-
cians for about 150 years, their security analysis in PKCs is a fairly recent endeavor; it is
simply too early to make a conclusive judgment in this matter. In particular, one can show
that certain kinds of curves are always “weak”, so algorithms that generate elliptic curves
for cryptographic applications must detect (and weed out) such undesirable curves.

EXERCISES 4.4

1. Prove the correctness of the ECDSA: It M' = M, r'" =r,ands" = s, then v = r’
holds for the value v computed in (4.19).

2. What nice aspect about the generation of the DSS parameters is absent from the
ECDSA. . at least as far as we have described it?

4.2 SECURE LOG-IN PROTOCOLS

We have seen in this chapter how hash functions, together with public-key cryptography,
can be used to obtain protocols for the secure exchange of digitally signed messages. In
this section, we demonstrate another useful application of hash functions in the domain of
authentication. In particular, we describe a protocol that can realize one-time — or token-
based — password management and verification for log-in procedures. Citibank already
uses such tools to protect certain accounts, and this approach is increasingly pursued by
industry.

4.2. Secure Log-In Protocols 143

Users of computer networks must typically prove their identity before using a computer
terminal or gaining access to other network services.

Protocol 4.15 (Traditional Log-Ins)
On Unix and Windows operating systems, one usually obtains access to the system by a
simple password protocol:

* you enter your log-in name;

* if the network knows a user with that name, you are asked to provide a “password”
associated with that name;

¢ the system then compares this password with the actual password that is stored on the
system;

¢ if the entered and stored passwords match, network access is granted.

This approach to controlling network access comes with a host of security problems. For
example, passwords may be sent “in the clear” across communication lines in order to
verify whether they match their stored versions. This is why Unix, for example, uses a
hash function to encrypt passwords. Passwords are stored in their encrypted form; en-
tered passwords are encrypted and then compared to the stored hash value. But even this
usage of hash functions does not address all major security concerns. The system must
store the hash values of all user passwords in some file; in Unix this may be found in
/etc/password. Thus the system needs to ensure that this file can be neither copied by
legitimate users nor modified by intruding ones. Anyone who manages to read this file can
engage in a chosen plain-text attack. Since the hash function used by the system is pub-
licly known, one can guess passwords, encrypt them with the hash function, and compare
them for a match in the file. For a complete password file, such attacks are quite practical
and can easily expose a significant portion of all passwords.

The problem is simply that the system must store a secret that identifies a user, and so
the system must also properly protect this secret from others. The user, too, must store
this secret. The way our brains work, we prefer to invent passwords that we can memo-
rize easily (actual English words, or words in other languages reflecting the user’s cultural
background or interest — e.g., Chinese words written in alphanumeric characters). This
is what makes chosen plain-text attacks so successful: they need only go through a user-
customized dictionary of plausible passwords. To shield against such attacks, the system
may analyze any new password proposed by a legitimate user and reject passwords that
are deemed to be “too obvious”. Clearly, such measures mitigate the threat of dictionary
attacks, but they also make it more likely for people to forget their passwords or to write
them down on the inside of their desk drawer.

Definition 4.16 (Provers and Verifiers)

A network user who wishes to log-in to a network is called a prover. The part of the sys-
tem that runs the log-in protocol and decides whether to grant access to provers is called
the verifier. More generally, any program or system resource that can be requested by a
client (a user, some other program, etc.) is seen as a verifier; all clients are called provers.

We present a suite of protocols for log-in, or general server access, that meet the following
set of criteria:

144 Chapter 4. Security Protocol Design and Analysis

* no secret information is transmitted across the network;

* no secret has to be stored by the verifier;

* ideally, the verifier should not know the user’s secret (to avoid impersonation);

* upon demand, a server should have a means of proving that a client used that server;
¢ mutual authentication should be possible;

¢ the protocols should not put severe constraints on computational resources.

Criteria H1 and H3 (p. 21) state that a hash function x — h(x) should have an effi-
cient way of computing /i(x) but that it should be computationally infeasible to find any
x such that i(x) equals a given y. Our log-in protocols assume the existence of such a
hash function. Our draft scheme requires a trusted authority that initializes the system:

* it equips a prover with a pair (xg, k), where xg is a secret value (in essence, a random
value that the prover needs to remember) and k € [N specifies an implementation-specific
number determining how often that prover can present the password to the verifier;

¢ the authority also provides the verifier with a pair {x;, k), where x; = h*(xg). as the
identity information of the prover.

Note that x; is obtained by & many applications of /1 to xq:

Yoot = h(x,) (n = 0). (4.20)

Protocol 4.17 (Verification of Prover’s Identity)
The (successful) verification of a prover’s identity consists of a successful run of the fol-
lowing protocol.

1. The prover sends the verifier her personal identity information xy.

2. The verifier matches that information with his stored value x; this corresponds to ask-
ing for a log-in name (and a mismatch results in a failed log-in attempt).

3. The verifier asks for a password, which is any value x’ such that #(x") = x;: since
the prover knows x, she can use /1 to compute x;_; as such an x’ and send this to the
verifier.

4. The verifier can compute /i(x;_;) and match it with x;.

5. After a successful match, the verifier grants access to the prover and then stores x;_
as the current identity information of that user; the next authentication round will be
done with x;_; and x;_» instead of x; and x;_,.

This scheme does not transmit secret information across the network. The verifier nei-
ther stores nor even knows the secret value x, provided he has no trapdoor for the hash
function: an efficient algorithm for solving & (x) = y for x, where y = h(x") for some
x'. The authority provides all provers with their initial parameters {xg, k) and the verifier
with the initial access pair (x;, k). However, the authority ought to possess a trapdoor
for the hash function — thus allowing it to function as an agency that can settle disputes
between provers and verifiers.

The shortcomings of this scheme are that passwords can only be used once, that they
must be shown before the service, and that they may be used in a replay attack . For exam-
ple, if the verifying server crashes right after the prover supplied x;_; along an unsecure

4.2. Secure Log-In Protocols 145

channel, then another “prover” could (upon recovery of the verifier) replay x;, — pro-
vided the verifier would “remember™ x; as current personal identity information of the
alleged user.

EXERCISE 4.5

1. Describe in detail a man-in-the-middle attack for Protocol 4.17, where Mallory con-
vinces the prover that Mallory is the verifier.

4.2.0.2 The Guillou-Quisquater Protocol

Zero-knowledge proofs are protocols in which a prover can successfully demonstrate to
the verifier that the prover knows a secret without revealing any information whatsoever
about that secret to the verifier. This sounds like a paradox, but it can be realized in num-
ber theory. Using such a protocol in combination with our previous scheme, we obtain
a new log-in protocol that does not expose the current user identity information x;. This
improved protocol may therefore be reused until the server requests it as an access ticket
or proof of usage of the provided service.

In order to state the protocol, we must work with an explicit hash function 4. Assume
that n = p - g, where p and g are two primes of about 512 bits in length such that

p=2-p'+1,
g=2-q'+1

for prime numbers p’ and ¢’. Fix any ¢ € N with ged(e. (p — 1) - (¢ — 1)) = 1. Then the
function

) S v modn (O<x<n—1) (421

is essentially the RSA-based hash function discussed in Exercise 2.19-10 (p. 61). The
authority is responsible for computing p and ¢ and keeps those parameters secret. The
provers and verifiers obtain n and e so that they are able to compute /1. Since the author-
ity knows the factorization of n, it can easily derive an efficient algorithm for computing
inverses of 1. Indeed, it need only compute the RSA private key {d, n) for decryption, as
outlined in Section 2.2. That way, the authority is able to investigate and rule on disputes
between provers and verifiers.

Protocol 4.18 {Guillou—Quisquater)
In the Guillou—Quisquater protocol:

1. the prover generates a random number r between 0 and n — 1 and sends the verifier her

commitment

C duijh(r}

and her current personal identity information xy;
2. the verifier sends a challenge s between 0 and e to the prover;

146 Chapter 4. Security Protocol Design and Analysis

3. the prover computes some b with
b-x,_y1=1modn

using the algorithm Extended_Euclid, computes

def)
¢ =r b*modn,

and sends ¢’ to the verifier;
4. the verifier now computes
x; - ("¢ mod n,

which should equal the prover’s commitment c.

To see that a prover, who knows x;_;, will be granted access under this protocol, we com-
pute

xp () modn=x-(r b") modn
=x; - (") -r° mod n
= h(xi—1)" - h(b*) - h(r) mod n
=h(x;_;-b)"-cmod n
=1"-cmodn

=c; (4.22)
this follows because (a) h is multiplicative,
hx'y =h(x)) modn (x€Z,leN),

(b) (1) =1, and (¢) b - x3—1 = 1 mod n. Any “prover” has a chance of 1 in ¢ of guess-
ing the challenge value s needed to construct a valid access pair {c, ¢'). Thus, for large
enough values of e, we have a reassuring level of security that the prover is indeed the one
who knows x;_;. The protocol just described contains a challenge-and-response compo-
nent, as the verifier challenges the prover with some random 5. Notice that this protocol
“consumes” neither the password (x;_;) nor the personal identity information (x;), since
they are never revealed in any communication. Thus, a prover may reuse the same pass-
word until some verifier insists on receiving x;_; as a proof-of-usage — after the service
has been granted to the prover’s satisfaction. In that case, x;_; would be the next valid
personal identity information and x;_» the next valid password for the prover, as in the
previous protocol.

EXERCISE 4.6

1. In the Guillou—Quisquater protocol, prover and verifier send various numbers to each
other over (presumably) untrusted channels. The claim of this protocol is that no
information about the secret password is being revealed during protocol execution.
Does this mean that both parties could send their data along an open channel for any-
one to observe?

4.2. Secure Log-In Protocols 147

4.2.0.3 Combining Identity- andTicket-Based Log-Ins

The trusted authority can also sign the identities of users. Given another hash function
J that maps text strings to values between 0 and n — 1, the signed identity certificate for
user [is S4(f (1)), where S is the authority’s secret or signature key that inverts the hash
function h from (4.21), the corresponding public key. If 7 and f are public information
and are known to be used by all clients and servers, then it is possible to verify identities
and tickets within the same protocol. The digital signature, along with xg and k, may be
stored on a smartcard and rendered to the user. Indeed, once the authority has distributed
the smartcards, made n and e public, and issued the pairs (xq, k) and (xg, k) to all provers
and verifiers (respectively), the system may be sealed in that the authority is no longer
needed unless a dispute arises.

Protocol 4.19 {ldentity- and Ticket-Based Log-Ins)
In this protocol:

1. the prover with personal identity information [solves
by -Sx(f)) modn =1,

4.23
b2 s Xp—1 modn =1 ()

for by and b using the algorithm Extended_Euclid;
2. the prover picks random numbers ry. rp in Z} and computes corresponding commit-
ments

¢ = r{ mod n,
; (4.24)
¢ = r;, mod n;

3. the prover sends the verifier her identity information I and x; as well as her commit-
ment

c ¥ el comod n: (4.25)

4. the verifier sends a random challenge s between O and e — I;
5. the prover computes

ci =ry-b} mod n,

¢y =ry - b5 mod n (4.26)
and sends
¢’ qgc; -c; mod n
to the verifier;
6. the verifier checks that
fUY - xp (¢ modn =c. (4.27)

1f (4.27) holds, then the verifier knows

* that the prover knows the digital signature computed by the authority for user / and
+ that the prover also knows the current access ticket xj_;.

Note that this protocol retains all advantages of the previous one, since it also does not
reveal any information about the digital signature.

148 Chapter 4. Security Protocol Design and Analysis

Protocol 4.20 (Using Separate Keys for Signatures andTickets)
One may use separate public keys for digital signatures and tickets. Let ¢; and e> be the
public key for the ticket and signature (respectively), and set e to be e, - ;.

1. The prover solves
b-xp_1-Sa(f(I)) =1modn
and sends
¢ ¥ mod n

to the verifier as her commitment, where r > 0 is randomly chosen by the prover;
2. the verifier sends a challenge s between 0 and ¢ — 1 to the prover;
3. the prover computes

def)
¢ =r-b*modn

and sends it to the verifier;
4. the verifier checks that

FUY - x* - (¢") = ¢ mod n. (4.28)
This protocol may also be used to establish the ownership of two independent tickets.
Naturally, the security of such access protocols depends upon the security provided by

the hash functions. One possible weakness of & in (4.21) is that it is periodic: there exist
ly, p € N such that

X =Xi+p forall I = [,.

This is a concern because x;., may function as x;, the current public user identity in-
formation, and then x;_; = x;_1., becomes a future password. Hence one could deduce
such passwords by computing

xk!xk+|axk+2:

for the current user ID x; until a period is found. However, in Exercise 4.7-8 we ensure
that this period is “large enough”.

EXERCISES 4.7

1. In the Guillou—Quisquater protocol, the prover computes a value b. Explain under
what circumstances this b could not be computed. In that case, would there be a way
to compute the trapdoor of the hash function?

2. (a) Explain how the knowledge of the factors of n for the A in (4.21) allows one to

compute, for any i(x), some x' such that h(x) = h(x").
(b) What property of A in (4.21) guarantees that /1(x) = h(x") implies x = x’ mod
n?

3. (a) Prove: In a legitimate run of Protocol 4.19, equation (4.27) holds.

(b) Explain why the verifier, after checking equation (4.27), can be sure that the
prover knows the signature and ticket of the client she claims to be.

4.3. Authentication Revisited 149

4. Mutual authentication Adapt Protocol 4.19 to include muruial authentication.

5. Authentication shell Using the ideas of Protocols 4.18-4.20, sketch a protocol that
authenticates all commands sent by a user to a server.

6. Anonymous log-in Discuss to what extent the protocols of this section (or slight
modifications thereof) allow for a notion of “anonymous log-in” in the sense that
only the trusted authority knows the real identities of users.

7. (a) Prove: In alegitimate run of Protocol 4.20, equation (4.28) holds.

(b) Assume that network #1 has modulus n, = p, - ¢, and network #2 has modulus
n2 = p2 - ¢>. Suppose that user / of network #1 has an initial access pair {xg, k)
for a server on network #2.
(1) Why is it “safe” to assume that n; and nj satisfy gcd(n, ny) = 1?7 What
could a hostile agent do otherwise?
(ii) Adapt Protocol 4.20 to enable the server on network #2 to verify that: user
I owns a valid signature from the authority for network #1; and this user
has a valid access ticket for network #2.
(iii) Can the Chinese remainder theorem be used to perform the computations
in Z g, .y if s0, would this be faster?

8. Lower bound on period In this exercise, we prove a lower bound on the period of
the hash function x + A(x) from (4.21).

(a) Leta € Z and n € N be given with gcd(a, n) = 1. (Note that any such a has a
multiplicative inverse modulo n.) Prove: For all i, j € M, we have

a'=a’ modn <= i = jmod ord%i(a)

(recall that ord“(g) is described in Definition 2.37, p. 46).

(b) Let (x;);=¢ be the sequence of tickets generated according to (4.20). This se-
quence “loops” if and only if we have x; = x; fori # j; so let us assume that
this is the case for such values of i and j.

(1) Conclude that i = j mod ord?™(x).
(ii) Use Lagrange’s theorem to infer that ord®""(x) divides ¢ (n).

(iii) Forn = p - ¢, assume that p = 2-p'+land g = 2 - ¢' + 1 for prime
numbers p’ and ¢’ and that ged(e, (p — 1) - (¢ — 1)) = 1. Conclude that
ord“n(xg) is either p’ or ¢’. How large would you choose p’ and ¢’ to have
sufficient security against a forward computation of tickets, and how would
you justify this security?

(iv) Show that | is not an element of the sequence (x;);=¢ if ged(e, (p — 1) -
(g — 1)) = 1. Could you break the entire authentication system otherwise?

4.3 AUTHENTICATION REVISITED

The traditional role of signatures is to authenticate the person, agency, or device who
signed the document in question. In the digital signature standard (DSS), we use a digi-
tal signature so that the recipient/verifier V of a message M could be certain that (a) M
originated from the signing agent/prover P and (b) the message had not been altered in
transit.

150 Chapter 4. Security Protocol Design and Analysis

It is less clear, however, what else we may assume about the relationship between P,
V., and messages that are apparently signed by P. Protocols that use DSS as a component
may vary in their interpretation of these relationships.

* Forexample, if the digital signature is being used to sign a legally binding contract, then
authentication ought to entail blameworthiness in the sense that the prover P should
be liable for violations of contracts that bear her signature.

* However, if the protocol administers the authenticated receipt of software engineering
projects in a correspondence course, then authentication should entail that P can obtain
credit for this course.

Although these two aspects of authentication seem quite related (a failing grade may
be viewed as “blaming” the prover P with violating the course requirements for a pass-
ing grade), they may influence the correctness of a protocol design in a crucial way. That
is, the design and analysis of security protocols may have to be more specific in clarify-
ing the functional role and intent of various security mechanisms before a sound design
analysis can proceed. We illustrate this matter via the two facets of credit and blamewor-
thiness for authentication protocols. The overall lesson of this section is that designers
may want to ask specific questions about the more subtle aspects of intended behavior in
security protocols.

Blameworthiness may also be called responsibility. For example, if the verifier V is a
file server, the prover P a user, and the message M a request to delete a file, then V may
use P’s signature as justification for P’s being responsible for the removal of the file. It
seems prudent that authentication protocols be clear on whether authenticity entails re-
sponsibility, credit, or both. Since responsibility and credit may be delegated to other
agents — just as this can be done in offline financial transactions — these notions cannot
be established merely by means of the nonrepudiation of message origin. For the sake of
simplicity, we assume that all subsequent protocols function without a trusted third party;
the agents themselves assign responsibility and credit as they deem fit.

4.3.0.4 Signatures May Not Lead to Credit

We assume that each agent A has a long-ferm pair of keys, Sy (secret) and P4 (public).

Protocol 4.21 (A Simple Protocol)
Consider a simple two-step protocol:

1. the prover P creates a short-term key pair (Sp., Ppr) and sends the message
(P, V,8p(Ppr, PV, N))

to the verifier V, where N is a nonce — a randomly generated number that should en-
sure the uniqueness of that message;
2. the prover P then sends to V the message

(P, V,Py(Sp(M))):

thus, P signs message M with her short-term secret key Spr and V's public key and
then sends the resulting message to V.

4.3. Authentication Revisited 151

If we adopt the view that authentication entails responsibility, then V could blame P for
any message that is signed with Sp:.

Attack 4.22 (Authenticity as Credit)
On the other hand, if V gave P credit for any message signed with Sp/, then this protocol
could be attacked as follows:

1. the first message sent in step 1 of Protocol 4 .21 is intercepted by a malicious agent A
with public and secret keys P4 and Sy, respectively;

2. agent A can now compute the message (A, V.Sa(Ppr, A, V, N)) and sends it to the
verifier V;

3. the second message sent from P to V (step 2 of Protocol 4.21) is also intercepted by A;

4. agent A alters that message to (A, V, Py (Sp/(M))) and sends it to V.

It is clear that this attack results in A receiving credit for a message that actually came
from P. See Exercise 4.8-1 for how this protocol could be improved.

4.3.0.5 Encryption May Not Lead to Responsibility

Protocol 4.23 (A Basic Protocol)

Consider a basic protocol in which the prover P initially sends the verifier V' the mes-
sage Py (P, K), where K is (say) a key for the AES cipher Rijndael. Then P sends V the
encrypted messages cryptx (M) and cryptg(M') in sequence.

We assume that P and V have reliable mechanisms for recognizing and ignoring their own
messages, if replayed to them. This simple protocol is adequate for applications that re-
quire responsibility for V, and it may be adequate for applications that require credit for P.
You should discuss such issues in the exercises that follow. There seems to be no possible
general consensus on what, precisely, authentication should achieve. Moreover, system
analysis is often unclear on the exact nature of the guarantees that authentication provides
to the protocols in which authentication mechanisms are embedded. It is curious to note
that responsibility and credit may be dual notions. Responsibility sometimes comes with
signatures; credit sometimes comes with encryption. Developing a better understanding
of this duality should aid the design and analysis of protocols that rely on authentication
mechanisms.

EXERCISES 4.8

1. For Attack 4.22:
(a) How can agent A compute the messages he sends to V?
(b) How can the attack result in an erroneous blame of agent A?
(c) Modity the protocol so that agent P now signs (parts of) the message with her
short-term secret key. Explain why your modification prevents Attack 4.22.
2. In Protocol 4.23:
(a) Explain in detail why P, if she received a message encrypted with key K, can
blame agent V for this message.

152 Chapter 4. Security Protocol Design and Analysis

(b) Can V be sure that nobody other than V and P know the key K? Should V use
K to encrypt and send secrets?

(c) Can V hold P responsible for any received messages that are encrypted with K?

(d) In what limited sense can P claim credit for messages encrypted under K and
sent to V'?

(e) Adapt this protocol so that P and V each provide half of the key (Np and Ny,
respectively); then K is the secure hash of the string obtained by concatenating
Np, Ny, and the user identities of P and V.

(f) Discuss whether the protocol from part (e) establishes exclisive credit to P or V.

3. Dining Cryptographers Authentication can also be done anonymously. ** The Din-
ing Cryptographers”, a protocol due to D. Chaum, is described as follows.” Alice,
Bob, and Mallory have become friendly network agents and celebrate their friend-
ship at the local hamburger grill. Mike, the proprietor, informs them that their bill
has already been paid anonymously, either by one of them or by the NSA. Since at
least one of the friends won’t accept funding from the NSA , they wonder how they
could determine whether the NSA paid, without exposing the payer in case it was
Alice, Bob, or Mallory who picked up the bill. They establish a protocol that does just
that. Since Alice, Bob, and Mallory sit at a round table, each has exactly one right
neighbor. They each pick a fair coin and toss it; only the tosser and the tosser’s right
neighbor can see the outcome. Thus, each agent is able to observe two coin tosses: its
own one and the one of its left neighbor. Each agent must then make only one of two
statements: (i) “the two coin tosses that I see have different outcomes™; or (ii) “the
two coin tosses that [see have the same outcome”. All agents speak truthfully except
for the agent (if any) who paid the bill, who will not speak truthfully. (In particular,
all agents speak the truth if the NSA paid the bill.) Let n be the number of agents
who reply with (1).

(a) Show that any value 0, 1, 2, or 3 is possible for n.

(b) Show that the NSA is paying if n is even.

(c) Show that the NSA is not paying if n is odd.

(d) When n is odd. assume (without loss of generality) that Mallory is paying. Argue
that — after a full run of the described protocol — Bob and Alice have no informa-
tion that would suggest it is most likely that Mallory has paid.

4. Electronic voting Discuss the potential benefits and dangers of using authenticated
electronic voting schemes in promoting and maintaining democracies. Your analy-
sis should include technical threats as well as concerns in the realm of public policy
(e.g., questions of equal access).

5. In light of events following the 2000 U.S. presidential elections, discuss the design
of software products that could aid in attaining a minumum number of rejected bal-
lots. Explore offline and online systems, systems with printouts as receipts, and so
forth. Analyze potential security threats that such designs might pose to the faithful
expression of the “will of the people™.

T We have given the cryptographers real names and changed the setting somewhat.

4.4. Secret-Sharing Protocols 153

4.4 SECRET-SHARING PROTOCOLS

In some applications it is desirable not to associate an entire secret to an agent but instead
to have some trusted authority distribute the secret across n agents so that the secret can
be computed only if all n agents collaborate (assuming the authority is not corrupt). For
example, such a scheme would result from giving each board member of Coca Cola only
part of the top-secret recipe for their soft drink; hence no executive could sell the entire
recipe to a competing brand. Conceptually, one may think of such schemes as provid-
ing distributed data structures, where algorithms for manipulation and retrieval need to
follow a precise security protocol.

In Section 3.2.2 on the AES cipher Rijndael, we used polynomials modulo 2. We now
generalize this notion from 2 to n; see Definition A.9 (p. 263) for a formal definition of
the general concept. We design a shared-secret protocol consisting of two parts: the dis-
tribution of the secret and its recovery.

Protocol 4.24 (Secret-Sharing Protocol)
We have n agents Ay, Az, ..., A,. as well as a trusted authority who knows the entire se-
cret 5 € N.

In the secret distribution phase:

1. the authority chooses a random prime p with s € Z, such that n is “much smaller”

than ,/p;

2. the authority then chooses 2n — 1 random elements in Z ,,
day az --- dy—,
Vg Uy Uz --- Up—1,
where all the v; are nonzero and pairwise distinct;
3. next, the authority defines the polynomial
f(x) def ap 1 x" " va, »-x"r 4+ +a - x +s mod p (4.29)

over Z,, where s € ZL, is the secret;,
4. each agent A; obtains from the authority the pair

(t}j, f{'t}})) = ZP ¥ Z‘,,

as his or her portion of the secret.

In the secret recovery phase: All n agents can share their individual information to con-
struct the polynomial

g E Y fwp- [@)™ (x—v) mod p: (4.30)

0= j=n O=i<n, is#j

the secret s is then recovered by computing g(0).

Example 4.25
Let us consider three agents Ay, As, and As.

154 Chapter 4. Security Protocol Design and Analysis

* For an unrealistically small prime number p = 1999, the authority randomly chooses

evaluation point v[0]: 626
evaluation point v[1]: 674
evaluation point vw[2]: 93
coefficient a[l]: 334
coefficient a[2]: 223

and then computes the shares f(v;), given the secret s = 472, as

share f(v[0]): 1724
share f(v[1]): 1925
share f(v[2]): 1241

If all three agents mean to recover s then they can exploit the fact that they need only
evaluate (4.30) at zero, so this specializes to

s= Y f(v) b mod p, (431
0= j=n
where
b= T v — v~ mod p. (4.32)
O<i<i, isj

The agents may therefore compute

weight b[0]: 1847
weight b[1]: 793
weight b[2]: 1359

and thus recover the secret 472 via (4.31).
* For a randomly generated 50-bit prime p = 342853815608923, we obtain:

evaluation point v[0]: 111350135012507
evaluation point w[1]: 207244959855305
evaluation point w[2]: 20545949133543
coefficient a[1]: 53958111706386
coefficient al[2]: 151595058245452
secret s: 151595058245452

share f(v[0]): 109351520587519

share f(v[1]): 1746757015312186

share f(v[2]): 117471713218253

weight b[0]: 266921901220910

weight b[1]: 129147516050688

weight b[2]: 289638213946249

recovered secret: 151595058245452

Theorem 4.26 (Correctness of Shared-Secret Protocol)
The n agents of the shared-secret protocol can efficiently compute g(0), and this number
equals s.

Proof Observe that g, a Lagrange interpolation of f, is a polynomial with degree less
than n and that g satisfies

4.4. Secret-Sharing Protocols 155

g(v) = f(v;) O =j<n). (4.33)

Thus f — g is a polynomial over Z, of degree less than n, but it has at least n different
roots: numbers r with f(r) — g(r) = 0. It follows that f(a) = g(a) foralla € Z . In par-
ticular, g(0) = f(0), but the latter evaluates to s. O

One can design a variation of this shared-secret protocol, called verifiable shared-secret
protocol, where each shareholder can verify that they hold a valid part of the secret with-
out having to discover anything about the secret parts of the other shareholders. The idea
of verifiable secret-sharing can be used in the design of RSA cryptosystems, where each
user’s private key is split among a number of trustees.

Moreover, there exist secure and efficient schemes that realize secret sharing in any
monotone access structure. Given a finite set / of individuals, an access structure .4 over
I is a set of nonempty subsets of { such that

AceAdA & Ac A = A'eA.

A secret-sharing scheme for A should allow the efficient recovery of the secret for any
group of individuals A if and only if A € A. The monotonicity requirement makes sense
because then more individuals inherit the capabilities of their proper subgroups. For de-
tails on such schemes, see the bibliographic notes (Section 4.6).

EXERCISES 4.9

1. Equation (4.30) features inverses (v; — v;)~' mod p. Explain what properties in the
protocol guarantee their existence.

2. Security of shared-secret protocol Suppose that &k players of Protocol 4.24 col-
laborate to gain unauthorized access to the secret s, assuming that & < n. Since the
collaboration of more agents can only mean more of a threat, we may assume that
k = n — 1. The protocol treats each agent the same, so we may assume that the k
agents are actually Ay, Az, ..., A, .

(a) How many polynomials h over Z , exist that satisfy

h(vp)= fvj)) O=j<n-1 (4.34)

for the f from (4.29)? Note that any such & could represent the collected knowl-
edge of the k agents about the secret s.

(b) Forafixed number ¢ € Z,, how many of the h satisfying (4.34) have the property
that ~A(0) = ¢?

(c) Why, and to what extent, does the correct answer for part (b) suggest that the
shared-secret protocol is perfectly secure against fraudulent collaborations?

(d) Returning to Protocol 4.24, what potential security concerns could you raise re-
garding the implementation of this protocol? Discuss separately the distribution
and the recovery phase.

3. Generalized shared-secret protocol We adapt Protocol 4.24 by making it depend
on two parameters {k, n) with 1 < k& < n such that any k players can collaborate
to reconstruct the secret; the protocol is secure against attacks in which fewer than
k players collaborate. The modified protocol uses the same number of values v; but

156 Chapter 4. Security Protocol Design and Analysis

only k values ay, az, ..., ax—;. The polynomial f over Z, is defined as a truncated
version of the original one:

f(x) ﬂak_i a4 4 a-x+ s mod p. (4.35)

(a) Explain how any group of k& agents can collaborate to recover the secret s.

(b) Explain in what sense this modified protocol is secure against an attack of any
group of fewer than k collaborating agents.

(c¢) Describe this protocol when £ equals 1. What do we obtain if k£ equals n?

4. Implementing the distribution of the secret Use a pseudo-random number gener-
ator and a prime generator to implement the component used by the trusted authority
for the general shared-secret protocol from Exercise 3. More specifically, the author-
ity’'s program should take the parameter (k, n) as input, generate a suitable prime p,
and generate a secret s.” The output should be the n pairs {v;, f(v;)).

5. Implementing the reconstruction of the secret Implement the component that the
group of k agents may use for the reconstruction of secret s. More specifically, the
group’s program should take the prime p and the k pairs (v;,, f(v;,)) as input, where
the group of k agents is A;, A;,. ..., A;.; the output should be the claimed secret s'.

6. Suppose that you and your two companions have obtained your secret shares listed
below. Recover the secret s, given that

prime p: 386635119272011

evaluation point v[0]: 289606484363304
evaluation point v[1]: 228145533986232
evaluation point v[2]: 330844624449199
share value f(v[0]): 249291108939758
share value f(wv[1]): 197249960673620
share value f(v[2]): 250460653862862

7. The correctness of the secret-recovery protocol depends on the fact that f — g al-
ways computes 0 for all values of x. Read Proposition A .11 and its proof (p. 264) and
explain how this is related to the claim about f — g.

4.5 MODEL CHECKING SECURITY PROTOCOL DESIGNS

The public-key encryption schemes, block ciphers, pseudo-random number generators,
and other stream ciphers presented in this text are often used as components in larger sys-
tems, such as communication protocols, electronic fund transfer protocols, application
programs for electronic mail, et cetera. Clearly, the security of such systems will depend
on the security of each cryptographic component in isolation. We have tried to assess RSA ,
DES, and a variety of other cryptographic systems from such an isolated point of view,
studying a mathematical idealization rather than actual implementations. Even though all
cryptographic components of a complex system may attain a certain acceptable level of
security, this by no means guarantees that the potential behavior of the overall, composed

* We assume that the secret, presumably some text, has been mapped into Z,.

4.5. Model Checking Security Protocol Designs 157

system is secure. Compare this to having a correct (here, meaning “secure”) implementa-
tion of division for floating-point arithmetic in an untyped programming language, where
some program may call this implementation with ill-typed input — for example, a string
“divided” by an integer. The task set out for this section is to describe in some detail a
framework (due to W. Marrero, E. Clarke, and S. Jha) in which we can:

+ formally specify the possible /allowed behavior of communication protocols that may
make use of cryptographic primitives;

* model malicious intruders, with well-understood capabilities, as well as unreliable
communication channels;

¢ abstract the preceding into a finite-state transition system; and

¢ exhaustively check that transition system to see whether it violates any security prop-
erty — possibly written in some specification logic with a formal (and hence executable)
semantics.

We stress that such a framework should be seen merely as a debugger, not as a verifier.
Even if the model of a protocol does not violate its formalized security specification, this
does not mean that the protocol is (say) computationally secure. Indeed, in this section
we make the assumption that all cryptographic components — in isolation — are perfectly
secure! Although this may fly in the face of concerns expressed in previous chapters, it
merely reflects a shift of perspective in that we now study more complex systems and
attempt to rule out security violations that are possible even if all cryptographic com-
ponents are assumed to be secure. This kind of security violation is a major concern in
realistic protocols for electronic commerce, or more generally in any security protocol
that involves several agents communicating concurrently. The verification of concurrent
systems — even without the consideration of security issues — is a difficult subject, and de-
sign errors (e.g. deadlocks) can be quite subtle and hard to find. Thus, it is of paramount
importance to have a tool that can find these kinds of security flaws. Such a tool naturally
functions as a debugger, since any attack (an execution trace violating the security speci-
fication) found in the protocol’s idealized model is likely also to be an attack in the actual
system that uses the real — and perhaps not perfectly secure — cryptographic primitives.

Definition 4.27 (Perfect Encryption Assumption)
In this section, we assume the following perfect encryption properties for all cryptographic
components used in protocols.

1. A cipher-text cannot be decrypted into its corresponding plain-text unless one (pos-
sesses and) uses the corresponding encryption key and decryption algorithm. Con-
versely, a plain-text cannot be encrypted into its corresponding cipher-text unless one
uses the corresponding encryption key and encryption algorithm.

2. A cipher-text can be generated only if one (possesses and) uses its corresponding plain-
textencryption algorithm and key. A plain-text with unknown contents can be recovered
from its corresponding cipher-text only with knowledge of the decryption algorithm
and key. In particular, all encryption and decryption algorithms are collision-free.

The second item of this definition rules out the possibility of generating sensitive data via
the composition of public data with public composition operators. For example, the bits

158 Chapter 4. Security Protocol Design and Analysis

“0" and “1” and the concatenation operation are public, but it should still be impossible to
generate a 160-bit string hash(M) unless one knows the particular message M.

451 Modeling Network Messages

Let us begin by explaining the kind of messages that agents are allowed to exchange in
any protocol modeled within this framework .

Definition 4.28 (Grammar for Atomic Messages)
We require five sorts of atomic messages, A, generated according to the grammar

a::=E;|Di|P|n|d, (4.36)

where k ranges over some implicit key space, P over a set of principal agents, and n over
a set of nonces; d is an abstraction of any data — whose contents or format are irrelevant
to how the protocol works — that are meant to be communicated between agents.

Note that keys, if sent as atomic messages, are equipped with a mode: E; suggests a con-
crete encryption algorithm with its corresponding key, whereas Dy stands for its inverse
decryption procedure and key. Recall from Definition 3.1 (p. 83) that knowledge of E;
won’t generally entail any knowledge about D; unless the underlying cryptographic sys-
temis symmetric. Nonces n denote randomly generated numbers that, among other things,
can prevent “replay” attacks. For example, the random k from Protocol 4.6 (p. 134) en-
sures that the same message, if signed more than once according to the Digital Signature
Standard, “never” produces the same signature. With this view of atomic messages, we
can define the set of all messages that may be communicated in protocols.

Definition 4.29 (Grammar for Messages)
Given the set .4 of atomic messages generated by the grammar in (4.36), we define the set
M of all messages by the grammar

mao=a|m-m)|E;(m)|D,(m). 4.37)

Thus, a message is either atomic (a), a pair of two messages (m - m2). the encryption of
a message m with key &k (E;(m)), or the decryption of message m with key k (Dy(m)).
Note that this framework identifies all known cryptosystems and their inherent system
parameters, whether based on public or symmetric keys. We can now make precise the
meaning of the perfect encryption assumptions: There are no messages a. m, m, mo and
keys k such that

Exim)=a or Dip(m)=a;
(4.38)
Ek(m}zml-mg or Dg(m}zml-mg.

Moreover, for all n, n’, m, m’ € M:

* D,(m) =D,/ (m') implies n = n" and m = m’; and
* E,(m)=E,(m") impliesn =n"and m = m’".

4.5. Model Checking Security Protocol Designs 159

We enforce these assumptions by considering (4.37) as a free grammar; the only valid
equations of terms are trivial ones (e.g. m = m). Even though we “abstract away™ the par-
ticular cryptosystems, we still need to ensure that they are correct — in other words, that
we have the equations

Di(Ep(m)) =m (4.39)

for all keys k and messages m. Although we allow only trivial equations, we enforce (4.39)
operationally when agents infer knowledge from other messages. The knowledge infer-
ence algorithm is discussed in Section 4.5.3.

Consider a run of some protocol, where an agent/principal A has seen the set 5 € M
of messages up to a certain execution point of that particular run. We must be able to
model what other messages A can infer from this set 5 by means of cryptographic primi-
tives and manipulations of pairs.

Definition 4.30 (Closure of Message Set)

Let B be a nonempty subset of M. The closure of B, denoted by B, is obtained as fol-
lows: m € M is an element of B if and only if this can be derived by means of a finite
application of any of these six knowledge inference rules.

If m € B, then m € B.

If m, € Band my € B, thenm, - m, € B.
If my - m, € B, then m, € B and m-» € .
If m € Band E; € B, then E;(m) € B.
If m € B and Dy € BB, then Dy (m) € B.

If Ex(m) € B and Dy € B, then m € B.

G e

Rule 1 simply states that each message in B is in the closure of B; it is already known
to the agent/principal in question. Rules 2 and 3 state (respectively) that a principal can
construct a pair of two messages provided she already knows the two messages and that
she is able to extract and add the components of a pair she already knows to her stock of
known messages. Rule 4 (resp., rule 5) states that a principal can encrypt (resp., decrypt)
a message with a key, provided she knows the message and the key.* By rule 6. a prin-
cipal can successfully decipher a given cipher-text of the type E;(m) if she knows that
cipher-text and the corresponding key D.

Example 4.31 (Computation of Closure)
Let

def

B = {my - (Ex(m) - Dp)}
be a singleton set. We claim that m is in the closure of B: by rule 3, we can access the sec-
ond component of the pair m - (Ex(m) - D;) to retrieve the message E;(m) - Dy. The same
rule allows us to compute the messages Dy and E(m); but then rule 6 gives us access to

4 Observe that these rules are split into two modes, but in terms of knowledge we may identify E; and D, with k —
provided that only symmetric-key cryptosystems are being used.

160 Chapter 4. Security Protocol Design and Analysis

the message m. Similarly, we can deduce that m, € B. To see that B is an infinite set, note
that we can apply our rules “forever” and so conclude that m - m; and m - (m - m;) and so
forth are all in B.

A computationally problematic fact is that closures B are generally infinite. Fortunately,
our verification framework requires only that we determine whether a certain message m
(or some finite set of messages) is contained in the closure of some (finite) set of messages
B — and possibly that we add m to B otherwise. In Section 4.5.3, we derive an efficient
algorithm for deciding such questions.

EXERCISES 4.10

1. (a) Refine the grammar in (4.37) into a rype inference system, where judgments have
the form F m : M (with intuitive meaning “m is a message™) and - &k : JC (“k is
a key”). For example, we have the rule
Fmyg: M FEma M
Fmyomat M
for pairing two messages and the axiom

Pairing

———— Atomic

Fa: M
for atomic messages. Design these rules such that the encryption and decryption
of messages is done only with messages of type K. (See Figure 6.2, p. 208, for
an example of a simple type inference system.)

(b) Adapt your system, if need be, so that you can prove
F Ekl(kg) . Ekj(kl) . JM

from the assumptions - k; : K fori =1, 2, 3.
2. (a) Write the rules of Definition 4.30 as a type inference system, where judgments
are of the form b m : B, “message m is in B”, and - m : closure B, “message
m is in the closure of B”. For example, the first rule is written as
Fm:B

—————— Subset.
= m : closure B Hbse

(b) Argue that we have m € B if and only if - m : closure B can be shown using
only assumptions of the form - m’ : B, where m' € 5.
(c) We define a function

Q2: P(M) = P(M),

where P(M) is the power set of M. For any subset 5 of M, we have m € Q ()
if and only if m € B can be proved. For all such subsets 3 and B’, show that:
(1) B is asubset of Q(B);
(ii) B € B’ implies 2(B) € Q(B');
(i) Q(R(B)) = Q(B);
(iv) £(B) is the smallest set of messages containing 15 and closed under all the
rules in Definition 4.30.
Which of these arguments depend on the actual nature of the rules in Defini-
tion 4.307

4.5. Model Checking Security Protocol Designs 161

3. (a) Use the rules of Definition 4.30 (or your type inference system from Exercise 2)
to show:
(i) k €B, where B < Dy, Dy, Eg,(Ex, (k) - m)};
(ii) Eg,(m - k) € B, where
ef
B = (D, Exy(Diy), Bty (B (B (K - m)))).
(iii) Explain why you can (or cannot) show &k - m € B for the set B described in
part (ii).
(b) Explain why one cannot use the rules of Definition 4.30 to prove that a message
m is not in the closure of some set B.

45.2 Modeling Network Agents

The agents that participate in a protocol have local state and do their local computations
asynchronously. For example, agent A may compute m from E; (m) and D; while agent B
waits (= does nothing) for a response from A. In the global system, computation traces
are interleavings of:

* local internal actions, such as the generation of a nonce; and
* actions in which two agents communicate — such communication happens synchro-
nously via a handshake of specific actions.

We model the local state of a friendly agent as a four-tuple

(A! P—A: IA': pﬂ)"
where

¢ Ais the agent’s unigue name;
¢ p_A is the description of the agent’s allowed behavior given in a programming lan-
guage, process algebra, or some other suitable formalism — we write p_A as

a; p_A’

to denote that agent A may only perform action a at the current state and must then
behave according to p_A°;

* I, isa subset of M, representing those messages (including decryption or encryption
keys) that agent A knows at that computational state;

¢ pa: Var(p_A) — I, is a partial function that binds messages to some of the (free)
variables of p_A; in particular, such messages are used to denote communication chan-
nels, keys, or names of agents.

In the sequel, we are somewhat informal in our description of an agent’s allowed be-
havior p_A. Our model assumes that all agents are logically omniscient as far as their
knowledge about messages is concerned. This idealization is easily modeled by insisting
that the set I4 of locally known messages be deductively closed:

162 Chapter 4. Security Protocol Design and Analysis

For example, if agent A knows E; (m) and D;, then she also knows message /i at that same
computational state. Our operational execution model of protocols needs to ensure that
the dynamic set I4 remains closed under such knowledge.

45.21 Communication between Agents

Communication between two agents is modeled by a handshake established through send
and matching receive actions along a variable/channel x. We write send m along x for
sending message m across the variable/channel x and write receive m along x for the
corresponding receive action across that same channel. For example, let

{A, (send m along x); p_A’. I, pa).

(B, (receive m along x); p_B’, Iz, pg)

be the local states of two agents A and B, respectively. Then a message send m along
x from agent A matches the corresponding message receive m along x of agent B if
and only if there is a binding

p': Var(p_B) — Ig,

extending the current binding pp, such that p'(receive m along x) equals the corre-
sponding binding of agent A, namely ps(send m along x). In this case, communication
can occur, so each agent changes his local state according to

(A, (send m along x); p_A’, Is. pa) ~ (A, p_A’, I4, pa) (4.40)
(B, (receive m along x); p_B’, I, pg) ~ (B.p_B’, I}, p'). (4.41)

Here each agent’s process description drops the synchronizing action and then lets her be-
have as specified after the ; keyword. Note, however, that additional state changes occur
with the agent B who receives a message. First, she must respect the matching binding p’
as its new binding information. Second, since she now is in possession of the received mes-
sage p'(receive m along x). she updates her internal knowledge database to include
anything that can be inferred from her previous knowledge, Iz, and this new message:

1 &I U {p/(receive m along x)}. (4.42)

45.2.2 Creation of Nonces and Temporary Secrets

Agents need the capability of creating fresh nonces and temporary secrets. “Freshness”
here means that such data have not been generated before and that their uniqueness is
guaranteed as new data are being generated.

Definition 4.32 (Secret Messages)

1. We write S, for the subset of safe secrets of M. This set needs to be well-defined
at the beginning of a protocol’s execution and should remain fixed during any of its
executions. Agents” long-term public keys, digital-signature keys, and any otherwise
classified messages are typical examples of such secrets.

4.5. Model Checking Security Protocol Designs 163

2. Similarly, we write Sy, for the subset of M consisting of temporary secrets. Exam-
ples are short-term session keys or other negotiation results for parameters of crypto-
graphic systems that are redefined after each single use. Usually, the set Semp evolves
during the execution of a protocol.

It should be intuitively clear that Sguf and S temp are part of a model’s global state. Whereas
a malicious agent should never be able to deduce a safe secret, temporary secrets may be
exposed to an intruder. We allow the assumption of such exposure because it enables us
to analyze whether it can entail the corruption of supposedly safe secrets. Syntactically,
we may express the creation of nonces and secrets in the description language of agents’
permitted behavior as

nonce(y); p_A’ and secret(y); p_A’,

respectively. Operationally, such process descriptions give rise to the following internal
state changes:

!

(A, nonce(y); p_A’. I, pa) ~ (A, p_A°.I,. p}). (4.43)

(A, secret(y); p_A’, Ia, pa) ~ (A, p_A°. T, p)). (4.44)
The message m, representing the temporary (nonce (y)) or permanent (secret (y)) se-
cret, needs to be “fresh” — newly generated. If we write p4[y +— m] for the binding that
binds like p4 (except for v, where it assigns m as a value), we have p_A,

pL = paly > m], and I, £ I,U(m) (4.45)
as the only components of the local state that change in (4.43) and (4.44), respectively.
Note that the semantics of new nonces is the same as that for new secrets. However, they
differ in their frype, the functional role they are meant to play in a protocol. This dif-
ference is also reflected in the capabilities of the malicious intruder Z, as discussed in
Section 4.5.2.3. Note that (4.43) and (4 .44) don’t update local states of any other friendly
agents, for the generation of the nonce or secret is internal to the agent who generates

it and can only reach other agents through subsequent communication through the chan-
nel y.

45.2.3 Intruders and Untrusted Channels

Our framework models any untrusted communication channels or malicious agents as
a single intruder/adversary, the principal Z. The justification for such a radical design
choice is that the intruder:

* intercepts all communication occurring in the protocol, thereby modeling any set of
attackers or untrusted channels; and

* can send a message to any agent at any time, provided that the intruder is capable of
generating that message at the given moment in time; thus, the intruder Z is a conser-
vative abstraction of a group of adversaries and untrusted channels, as it models their
full collaboration.

164 Chapter 4. Security Protocol Design and Analysis

In this approach, all communication lines lead through the intruder’'s server before they
reach intended receiving agents. The intruder may also impersonate friendly network
agents. The intruder’s knowledge inference engine also makes crucial use of deciding in-
stances of “m € B?”, where B is its knowledge base. But since the intruder receives all
network traffic, we need to develop a technique for a compact representation of the in-
truder’s growing knowledge — the topic of Section 4.5.3. Let us now model the corruption
of a temporary secret.

Definition 4.33 (Corruption of Temporary Secrets)
If the intruder’s current local state is {Z, getsecret; p_Z’, Iz, pz),5 then he may
change his local state to

(£, getsecret; p_Z2°, Iz, pz) =~ {(Z,p_Z°, I’z, 0z, (4.46)

where for some m € Siepmp We have

1, 9T,00m) and Sy = Seemp \ (m). (4.47)

Note that S, in (4.47) denotes the set of temporary secrets resulting from the state
change in (4.46); after the exposure of m to the intruder Z, message m is no longer a
temporary secret. The latter state change could occur for any temporary secret; thus, our
verification tool needs to model this quantification over m as an exhaustively searched non-
deterministic choice. In (4.47), the intruder dutifully recomputes his knowledge gained
from the corruption of the temporary secret m. Since the intruder models all malicious
agents, no other principal is allowed to have the action getsecret as part of their process
description. Also observe that the intruder may corrupt a temporary secret (e.g., through
the compromise of a session key) only if that secret has already been used or established
in the given protocol. This is what Sy models.

In our conservative overestimation of the intruder’s capabilities, we assume that he is
basically able to perform any action at any time, including getsecret. Hence there is no
need for specifying the allowed behavior p_Z or bindings pz. However, we may put some
realistic constraints on his omnipotence. For example, he may send a message through
send m along x only if the message and its format are expected by agent B at channel
receive m along x and are also in the closure of his current knowledge base Iz.

45.2.4 Specifications

For now, we are interested in two kinds of properties that protocols should enjoy. First,
we establish a secrecy property by verifying that ne computation trace of a protocol al-
lows the intruder to infer some m € Sg,.. This is easily checked as soon as we have an
efficient decision procedure for deciding “m € T7?”. Second, we check certain tempo-
ral correspondence properties. An example would be to ask whether agent B has actually
begun a protocol run with agent A if agent A believes that he has finished a run of that

5 We see shortly that the local state of the intruder can be modeled in a much simpler fashion, but for now we denote
his state in the manner done for friendly agents.

4.5. Model Checking Security Protocol Designs 165

protocol with agent B. Generally, such properties have the form: “If event a occurs, then
event b must have occurred in the past.”

However, such correspondences must be one-to-one: if we abstract a computation trace
to these two events only and omit states where none of these two events occur, then such
traces should be generated by the grammar

S = SasSb | e, (4.48)

where ¢ is the empty string and S the only nonterminal symbol. Examples of such traces
are ab, abaabb, and aaaabbbabb. The trace abaababab, however, it not generated
by (4.48). More specifically, we require four action types —begin_init, stop_init,
begin_resp,and stop_resp — that take a principal’s name as argument. For a princi-
pal A, the meaning of:

1. begin_init B is that agent A begins some protocol activity with agent B;

2. stop_init B is that agent A ends some protocol activity with agent B

3. begin_resp Bisthat agent A begins to participate in (respond to) some protocol that
was initiated by agent B

4. stop_resp B is that agent A ends her participation in some protocol that was initi-
ated by agent B.

The operational semantics of these actions, parametric in A and B, is given by

(A, begin_init B; p_A’. Ia, pa) ~ (A, p_A’, I4. pa), (4.49)
(B, stop_resp A; p_B’. Ip, pg) ~ (B,p_B’, Is, ps); (4.50)
(A, stop_init B; p_A’, Ia, pa) ~ (A.p_A’,I4, pa), 4.5

(B, begin_resp A; p_B’. Iy, pp} ~ (B,p_B’, Iy.pp}. (4.52)

This is similar to the semantics we have seen for other actions, but now the only change
of local state occurs in the description of allowed behavior. These rules do, however,
change global state. For each pair of agents A and B, the model’s global state has coun-
ters Ci(A, B) and C,(A, B) for the initiation and response (respectively) of these agents’
interaction. These counters are initially set to 0. The local state change in (4.49) is ac-
companied by the global state change

Ci(A, B) :=Ci(A, B) + 1. (4.53)
Similarly, the local state change in (4.50) results in the global state change

Ci(A, B) :=Ci(A. B) — 1. (4.54)
The local state change in (4.52) is accompanied by the global state change

Ci(A,B):=CHA,B)+1. (4.55)
Finally, the local state change in (4.51) results in the global state change

Ci(A,B):=C(A.B) -1 (4.56)

166 Chapter 4. Security Protocol Design and Analysis

EXERCISE 4.1

1. Let s be any finite string over the alphabet {a, b}.
(a) Show that s is generated according to (4.48) if and only if C(s) = 0, where

del

C(e) = 0, (4.57)
Cis-a) 2 Cis)—1, (4.58)
Cls-b) E sy +1. (4.59)

(b) Which of the actions begin_init, stop_init,begin_resp,and stop_resp
play the roles of a and b (and for which parameters) in the counters in part (a)?

45.25 Searching the Global State Space

As discussed previously, each friendly agent A has local state (A, p_A. I4, pa). The be-
havior of A is dictated by the description p_A, which specifies the permitted sequences of
actions that A may engage in.

The intruder Z, however, has no such restrictions. He may communicate with any
agent at any given time, he may impersonate other friendly agents, and so on. Yet our
model does place one restriction on the intruder’s capabilities: he may send a message m
to some agent B only if m is in the set of messages I; known to the intruder at the time
and if m matches what agent B expects at the channel advertised by Z. Although Z may
generate infinitely many messages in Iz, the number of such messages that match the in-
put format for some agent’s channel is finite at any given point in a protocol. If the sets
of safe and temporary secrets are also finite, then each global state can have only finitely
many immediate successor states. Thus we can implement a depth-first search over the
choice of these messages and the choice of asynchronous compositions of local actions.
We shall develop an efficient algorithm for deciding

melag? (4.60)

for any agent A, including Z. It therefore suffices to model the state of the intruder by
what he knows: the set Iz.

A global state is the product of all local states of friendly agents with the set Iz and
all counter pairs C;(A, B) and C,(A, B). where A and B range over all (not necessarily
friendly) agents; additionally, the global state incorporates the sets Siemp and Sgare. We
have just mentioned that the resulting state transition system is finitely-branching: each
state has only finitely many next states. Since each friendly agent A can engage in only
a finite sequence of actions described in p_A, the asynchronous interleaving of such ac-
tions and those of Z can produce traces of only finite length. But then the entire system
can have only finitely many states and contains no cycles, for agents never return to some
previous local state.

In Figure 4.2, we list pseudo-code for the resulting search. The main program initial-
izes s to the protocol’s initial global state and returns false only if no compromises of
temporary or permanent secrets and no violations of correspondence properties are found.
The recursive procedure found_a_bug? (s) returns true only if, at state s, we find that

4.5. Model Checking Security Protocol Designs 167

main(Protocol p) {
s := initial global state of p;
return found_a_bug?(s);
}
found_a_bug?(GlobalState s) {
for all agents A and B {
if (C_i(A,B) < 0 || C_r(A,B) < 0) return true;
}

for all m in S_temp or m in S_safe {
if m in I_Z return true;

}
if (nextstate_of s) {
return disjunction of all found_a_bug?(s’),
s’ any next state of s
} else { return false; }

}

Figure 4.2, Pseudo-code for a depth-first exhaustive search of the
global state space. The main program evaluates to true if there is
a security flaw in the protocol. The call (nextstate_of s) re-
turns true if and only if there is at least one next global state of its
input state s.

* some correspondence property is violated (the statement for all agents ...),or

* some secret is compromised to the intruder (the statement for all m...),or

* some next state s’ of s returns true on a recursive call of the same procedure (the
statement return disjunction of ...).

So far, we have described in almost complete detail how to compute the next possi-
ble global states for a given global state s. We basically took care of changes in the local
states of agents and changes in the counters of correspondence properties, but we still
owe an account of how to represent the knowledge of each agent and its possible update
with messages that agents receive. Note that this is required for a complete description of
local changes to friendly agents and the intruder alike; see for example (4.45) and (4.47).
Incidentally, the action taken in (4.46) does not immediately or necessarily result in the
detection of a flaw, for (4.47) guarantees that the compromised temporary secret is no
longer a secret in any next global state.

45.3 Representing and Deducing Knowledge

Definition 4.34
Let K be a nonempty subset of our message space M such that K is deductively closed:
K =K. Any B € K with B = K is called a knowledge base of K.

Note that K is always a knowledge base of KC. A knowledge base B of K is useful because
it represents KC via the closure operator. In particular, if 55 is finite and has a compact rep-
resentation, then we can implement tests

melk? (4.61)

efficiently by checking whether m is contained in the closure of the finite knowledge base
B. Careful inspection of all the operational rules for manipulating I, and Iz reveals that

168 Chapter 4. Security Protocol Design and Analysis

Introduction Elimination

my; M iy - Hig Hty - Mo

—— con; —— oMl COns

iy - mso iy s

m E; E (m) D
Eg enc; — enc,

Ei(m) m

m Do Figure 4.3. The six knowledge inference
Dy Dem) dec rules from Definition 4.30 (p. 159) written

k .
as deductions.

each of these possibly infinite sets always has a finite knowledge base. Thus, local states
need only represent and update their respective finite bases. In that case, the computa-
tion of next states involves only tests of type (4.61), so it suffices to implement these tests
efficiently.

The knowledge-inference rules from Definition 4.30 can be expressed as formal infer-
ence rules, as shown in Figure 4.3. Note that these rules come in pairs of infroduction
and elimination rules. For example, con; introduces the concatenation of two messages,
whereas con.; and con., eliminate such concatenations to access their respective compo-
nents. Similarly, enc; models the introduction of cipher-text; enc. models its elimination,
an activity that is usually called “decryption”. The rule dec; has no corresponding elimi-
nation rule unless we assume that the underlying cryptographic system is symmetric. We
will not make this assumption and hence omit the rule dec. from consideration entirely.

Example 4.35 (A Valid Derivation)
We may use these inference rules to derive some message m from a knowledge base B.
Given

def
B é {E'."q("!Ic * m}s Ekzs Dk[s Dkg}s

we may derive m from B as follows:

Dy, Ei,
—= eng,
Ekg{Dkl) Dkg
ence
Ey (k-m) Dy,
k-m

Hl.

ence

COng (4.62)

EXERCISES 4.12

1. Assuming that the cryptographic system for E; and Dy, is symmetric, formulate the
inference rule dec,. In reasoning about knowledge of messages, is there then still a
need to differentiate between decryption and encryption operations among these in-
ference rules?

2. Assuming that the cryptographic system for E; and Dy is asymmetric (= public-key
cryptography), explain why the rule dec; may not be needed for modeling the infer-
ence of knowledge.

4.5. Model Checking Security Protocol Designs 169

Definition 4.36 (Derivations and Sequents)

1. A derivation is any finite tree that can be built by the application of the knowledge
inference rules of Figure 4.3.

2. If D is a derivation with root m and leaves that are contained in B € M., then we call
B+ m avalid sequent; D is the witness of this validity.

For example, we have just shown that the sequent
{Eg(k-m), Et,, D . Dy, } Em

is valid and has the derivation in (4.62) as witness. Recall that we mean to decide (4.61),
where /C has a finite knowledge base B. Thus, given m € M. it suffices to efficiently de-
cide whether B - m is valid. In general, there are infinitely many derivations of a valid
sequent, so we must somehow compute canonical derivations that are sound (if we can
compute such a derivation for B m, then that sequent is valid) and complete (if Btm
is valid, then we can compute such a derivation as a witness of its validity). In the end,
our knowledge inference algorithm won’t require the notion of a derivation at all, but it
is needed to arrive at the design of an efficient algorithm and to prove its correctness. We
shall demonstrate that any derivation tree for B - m can be replaced by one that uses no
elimination rules below introduction rules.

Example 4.37 (Normal Derivation)
In (4.62) the elimination rule enc. is used twice below the introduction rule enc;. This
derivation contains redundancy in that we could replace it with the much simpler

EK,'“C . m} D;(I

k-m

enc,

CONea (4.63)

n,

since Dy, is already in B.

In general, we may perform the following reductions or simplifications on any subtree of
a derivation:

Dy D,
mi_ma
—_— i
my -y Dy
— s cOong = —
n mi
Dy D,
nt ns
—L "2 con; (4.64)
my -y D,
— . CONg = —
ns s
Dy Dy
m E; Dy
—%enc; —
E;(m) Dy Dy
enc, — —.

170 Chapter 4. Security Protocol Design and Analysis

Definition 4.38 (Normal Derivation)
We call a derivation normal if none of the reduction rules in (4.64) can be applied to it.

Lemma 4.39

Let B = m be a valid sequent with a derivation D as witness. Then we can compute a
normal derivation D' from D such that D' is a witness for B &= m as well.

Proof By assumption, the derivation D has root m and all its leaves are contained in B.
We may now apply the reduction rules in (4.64) to D in any order until we have reached
a derivation for which no further reductions can be made. Notice that this computation
must eventually terminate, for each reduction step reduces the height of the derivation tree
that is being reduced. Itis also quite clear that each reduction rule has “the current deriva-
tion has root m and all its leaves are contained in 57" as an invariant. O

The existence of normal derivations for valid sequents is not, in itself, sufficient for ar-
riving at an efficient algorithm for knowledge inference. Fortunately, normal derivations
satisfy a surprising and useful property: All introduction rules occur below elimination
rules. Note that this property is violated by the derivation in (4.62), since we have the
application of enc; followed by enc. further down that tree (where “down” means look-
ing down the page). Yet this desirable property is satisfied by the tree in (4.63) — simply
because that tree contains no introduction rules whatsoever.

Theorem 4.40
Let D be a normal derivation. Then there is no application of an introduction rule in D
such that it is followed by the use of an elimination rule further down the tree D.

Proof LetD be anormal derivation that does not satisfy this property. Then it must con-
tain the application of some introduction rule that is immediately followed (downward) by
the use of some elimination rule. We establish a contradiction by a case analysis ranging
over all possible introduction rules.

1. Suppose that the introduction rule is con;:

D, D,

I nt

———2 con; (4.65)

my - ms.

In Figure 4.3, we have three elimination rules: con.), cong, and enc.. Since m; - m
cannot be of the form E;(m) or Dy, we conclude that the elimination rule that immedi-
ately follows (4.65) cannot be enc.. But any of the other two rules triggers a reduction.
For example, if con.» is used, we have

Dy D
ny %)
— Ccon;
Hly - Hl2

COnNgs
T

as a subtree of D, contradicting the fact that D is normal. (Why?)

4.5. Model Checking Security Protocol Designs 171

function member?(m,B) {

*/m = a | ml*m2 | E k(m) | D_k(m) */
*/ B is a finite, nonredundant set of messages to which */
*/ ne elimination rules apply */

if ((m == a) | (m == D_k(m’))) { return element_of(m,B);

} elseif (m == ml * m2) { return (member?(mi,B) && member?(m2,B));
} elseif (m == E_k(m’)) { return (member?(E_k,B) && member?(m’,B));
} else { raise exception; }

}

Figure 4.4, Pseudo-code for the algorithm that decides whether m is already known
or implied by a set B of basic facts. The call mnember? (m,B) returns true if m can be
generated from messages in B. The call element_of (m,B) returns true if and only
if m is already explicitly present in the list B.

. Suppose that the introduction rule is enc;:

D, D,
M Eb one (4.66)
Er(m).

Among our elimination rules con.;, cones, and enc,, the first two cannot immediately
follow (4.66) because E (m) does not have the required form mi - m,. Thus only enc,
could be used, resulting in

Dy D
m E;
Ecm) D
n
L £ enc,
m
as a subtree of D, contradicting the fact that D is normal. O

Notice that this proof crucially depends upon the perfect encryption properties postulated
in Definition 4.27, which we secured by allowing only trivial equations on the message
space M. Given m and 55, Theorem 4.40 suggests that we divide the problem of deciding
whether m is contained in B into two phases:

(i) apply all possible elimination rules to elements of 3, collecting all known basic facts;
(ii) do a backward search guided by the structure of m to decide whether m is implied by

these basic facts.

We implement our knowledge bases as conventional lists. The resulting search algorithm
is given in Figure 4.4, it performs a case analysis based on the grammar in (4.37).

If m is atomic or a cipher-text (in which case no elimination rules can apply), then the
function returns the boolean value of element_of (m,B) — this returns true if and
only if m occurs in the list of basic facts B.

Otherwise, if m is the concatenation of two messages, then the function returns true
if and only if both function calls to its submessages return true.

Similarly, we handle messages m of the form E; (m”): we check whether E; and m' are
known to B; only then does the function call return true.

All other cases raise an exception, as m is then not generated by the required grammar.

172 Chapter 4. Security Protocol Design and Analysis

function update(m,B) {

*/m = a | ml*m2 | E k(m) | D_k(m) */
*/ B is a finite, nonredundant set of messages to which */
*/ ne elimination rules apply */

if member?(m,B) { return B; }
if (m == D_k) { // check whether B contains a matching cipher-text
L := B;
n := head(L);
while (L '= [1) {
if (n == E_k(m’) {

return update(m’,B); // ... 1if so, update accordingly

}

L := tail(L);

n := head(L);

}

}
// at this point, m is not a member of B
if (m == a) { return (m :: B); }

if (m == ml * m2) { return update(m2,update(mi,B)); }
if (m = E_k(m’) && element_of(D_k,B)) {
// know key for cipher-text
if (element_of(E_k,B)) {
return update(m’,B);
// no need to store m, storing m’ suffices

} else { return update(m’,m :: B); } // need m and possibly m’
}
return m :: B; // at this point, m is not implicitly known
}

Figure 4.5, Pseudo-code for the algorithm that uses m to update the knowledge base
B, if necessary.

We write [] for the empty listand writem :: 1 for the list whose head is m and whose
tail is 1. Furthermore, head (1) and tail (1) are the respective operations on lists such
that 1 equals the result of computing head (1) :: tail(1) for lists of length > 2. The
boolean expression (x !'= []) evaluates to true if and only if variable x represents a
list of length = 1. With this notation, we can formulate the knowledge update algorithm
of Figure 4.5. Observe that its strategy may be broken down as follows.

1. If m is already implied by B then we return B immediately, since no new implicit knowl-
edge arises.

2. Otherwise, if m is a decryption key D; then we scan all elements of B and “decrypt™ all
those of the form E; (m") — that is, we recursively call our knowledge update algorithm
on m' and B.

3. Otherwise, if m is atomic, we add it to B and return. (By item 1, we know that m is not
implied by B.)

4. Otherwise, if m equals m - ma, we recursively update B with m and mo.

5. Otherwise, if m is of the form® E; (m’) and Dy is already in B, we can recover m' through
decryption:

5 Note thatm == D_k means m is of the form D_k for some key k. In particular, the expression (n == E_k(m’))
refers to such a matching k.

4.5. Model Checking Security Protocol Designs 173

Figure 4.6. Schematic description of the simplified Needham—

1. A --> B : A.B.{n_a.A}E_B Schroeder protocol. We write {m}E_k for E;(m); A -==> B :
2. B--> A : B.A.{n_a.n b}E_A m denotes that agent A sends message m to agent B; and m.n
3. A -——>B : A.B.{n_b}E_B denotes m - n.

« if E; is already in B then there is no need to update B with E;(m’), as long as we
update B with m";
* otherwise, we recursively update B with m and m'.
6. If no return occurs, we add m explicitly to B.

Theorem 4.41 (Soundness and Completeness)
For all finite sets

B ={m,my,my}

of messages, we have Brm if and only if member? (m,B) returns true, where B is the
list obtained from

update(m, update(ms, ..., update(m;, [])...)). (4.67)

Proof The proof of this theorem is relegated to the exercises. O

EXERCISES 4.13

1. Show that there are infinitely many derivations for B - m, where 1 and m are as in
Example 4.35.
2. Prove Theorem 4 .41.

454 Two Example Refutations

We now present the specification of two well-known security protocols; describe how they
are modeled in our model-checking framework; feature attacks of these protocols; and
discuss fixes for, or problematic aspects of, these security protocol flaws.

4.5.41 Needham-Schroeder Protocol

Protocol 4.42 (Simplified Needham-Schroeder Protocol)
In this simplified” version of the protocol, we have two principal agents, A and B. A
schematic of the protocol is given in Figure 4.6.

In this protocol,

1. Agent A creates a new nonce n,,, concatenates that nonce with her unique name, and
uses B’s public key (Ep) to encrypt the message n, - A, resulting in the message
Egp(n, - A). which she sends to agent B along with the names of agent A and 5.

7 The full protocol contains three more steps in which both agents request and receive each other’s public keys through
an authenticating and trusted server.

174 Chapter 4. Security Protocol Design and Analysis

2. Agent B, upon receiving a message of the form A"- B -Eg(n/ - A"), uses her secret key
Dp to compute n) - A", extracts the nonce n), fromn/ - A’, creates a new nonce n, con-
structs the pair n; -np, and uses A’s public key E 4 to produce the message Ei,a‘(n:I 1),
which she sends off to A with both agents’ names attached.

3. Agent A, upon receiving a message of the form B” - A” - E4(n - n}), uses her se-
cret key Dy to recover n| - ny, extracts the nonce n,, uses B’s public key to compute
EB(n;,), which she ships off to B as indicated.

Presumably, agent A is sure after step 2 that she is talking to B. and after step 3 agent
B can be certain that she is talking to A. In the scientific literature, one even finds a
“proof™ that this authentication property is guaranteed by this protocol. But seventeen
years after the protocol was published, it was broken by G. Lowe using the tool FDR!
The attack is described shortly and can be reproduced with the framework we presented
here.

Often, specifications of security protocols are not stated in such detail, leaving more
freedom in the actual implementation. Although such freedom is often desirable in prac-
tice, there is a danger that security violations of the implementation cannot be detected
at the specification level. This is an inherent tradeoff. More seriously, common frame-
works for stating security protocols in a seemingly formal way may lack a formal se-
mantics or may contain ambiguity of meaning; we have seen the problematic nature
of such ambiguity at work in Section 4.3. Even our description here is ambiguous
and incomplete. For example, what if the “second™ n_a turns out to be different; and
what about additional checks that agents A and B would conduct during any execu-
tion of the protocol? Figure 4.6 illustrates a popular manner of stating protocols, and
it is understandable that we prefer to use these more compact ways of specifying secu-
rity protocols. However, this compactness comes at the price of introducing ambigui-
ties or flawed specifications; see Exercises 4.14 (p. 176) for some concerns along these
lines.

Here we model only the allowed behavior of agent A, as described previously:®

begin_init x;

nonce (y) ;

compute nonce(y) .A;

compute P_x(nonce(y).A);

send (P_x(nonce(y).A)) along x;

receive P_A(nonce(y).nonce(z)) along x;
compute nonce(z);

compute P_x(nonce(z));

send P_x(nonce(z)) along X;

end_init x;

In the exercises, you are asked to model the allowed behavior of agent B. The initial local
state for A, B, and Z is that each agent knows

® Channel names now refer to agents.

4.5. Model Checking Security Protocol Designs 175

1. A -—->B : A.B.{n_a.A }E_B
2. B-—>4A: B.A.{n_a.n_b.B}E_A Figure 4.7. A modified Needham-Schroeder protocol that
3. A -->B : A.B.{n b}EB averts Attack 4.43.

¢ the unique name of each agent,
* the public key associated to each unique name, and
¢ his or her own corresponding secret key.

Attack 4.43 (Needham-Schroeder Protocol)

We now describe an attack of the simplified Needham—Schroeder protocol that is made
possible by the lack of a correspondence property. We write Z4 to denote that the mali-
cious intruder Z impersonates agent A, either as the sender of messages to agent B or as
someone who intercepts a message that agent A intends to receive; similarly, we write Zg
if the intruder impersonates agent B in this manner. A tool-based analysis of the proto-
col finds an attack that involves two runs (execution traces) of that protocol.” Steps of the
second run are annotated with single primes. In the first run, agent A initiates the proto-
col with the intruder Z, who then initiates a second run with agent B, impersonating A
and replaying A’s nonce from the first run:

1. A -->ZB : A.Z.{n_a.A}E_Z
1>, Z_A --> B : A.B.{n_a.A}E_B
2. B -->Z_A : B.A.{n_a.n_b}E_A
2, ZB-->A : Z.A.{n_a.n_b}E_A
3. A -->ZB: A.Z.{n b}E_Z

3’. Z_A --> B : A.B.{n_b}E_B

Observe that each of the six steps corresponds to allowed behavior, as specified in the
protocol. Agent A initiates a protocol run with the intruder who, from the point of view
of A, impersonates as B. Then the intruder initiates a protocol run with B, impersonat-
ing A. After B’s response to the intruder, the intruder simply passes that message on to
A. Agent A then dutifully computes the message {n_b}E_Z and sends it to the intruder,
who is then able to decrypt it; finally, Z re-encrypts n_b with B’s public key and sends
this cipher-text to B to complete the attack. The attack exploits the fact that the intruder
plays the role of A in the single-primed steps whereas, in the unprimed steps, the intruder
copies the role of B in the single-primed steps. Notice the lack of correspondence: after
successful execution of step 37, agent B believes that she has ended a protocol run with
agent A, although agent A has no belief that she initiated a protocol run with agent B.

Lowe suggested the following fix to this attack. He changed the second step from the
specification of Figure 4.6 to obtain the one in Figure 4.7. Observe how agent B now also
includes her unique name in the message she sends to agent A. Lowe then proved that
this protocol, in isolation, is correct. By hand, he could then prove that this protocol is
also correct when embedded in a larger system.

¥ Note that we allow several instantiations of the same protocol within one run of the global state space. If the same
agent instantiates the same protocol more than once, then our model would require session identity numbers.

176 Chapter 4. Security Protocol Design and Analysis

EXERCISES 4.14

1. For the simplified Needham-Schroeder protocol:

(a) What is its overall objective?

(b) We notice that it has no description of the circumstances in which agent A or B
decide to abort the execution of a protocol run. Suggest such circumstances for
agents A and B, respectively.

(c) Discuss what plausible actions agents would engage in if they detect an inconsis-
tency between advertised agent names and corresponding keys or between other
information (e.g. nonces) matched to specific agents.

2. Discuss to what extent the steps of the execution sequence in Protocol 4.42 can be
performed in a different order. (Such independence can be exploited in reducing the
state space of the global state transition system.)

3. (a) Relate each step of Protocol 4 .42 to the more compact presentation in Figure 4.6.
(b) What implicit assumptions are made in the presentation in Figure 4.67

4. As we did in the text for agent A, model the allowed behavior of agent B.

5. Explain why Attack 4.43 fails for the fixed protocol from Figure 4.7.

6. Let m be a safe secret and assume that agent A means to send m to agent B via an
unsecure communication channel, using Protocol 2.61 (p. 76). Model, in the style of
Attack 4.43, an attack that corrupts the safe secret m.

7. Wide-mouthed frog protocol Consider a protocol used to establish a shared session
encryption key k_ab between agents A and B, assuming that § is a trusted server
with whom A and B already share keys k_as and k_bs, respectively:

1. A ——> S : A.{t_a.B.k_ab}k_as
2. 8 -->B : {t_s.A.k_ab}k_bs

The terms t_a and t_s are time stamps generated by A and S, respectively.
(a) Consider two runs of this protocol:

1. A --> 8 : A.{t_a.B.k_abl}lk_as
2. 8§ -—->B : {t_s.A.k_ab}k_bs
2. Z.8 —-> B : {t_s.A.k_ab}k_bs

(1) Describe in detail what happens and what the state of belief is for A, B, §,
and Z after these runs.
(i1) Are all of these beliefs true? If not, in what sense does this constitute an
attack of the protocol?
(iii) Consider the modified protocol

1. A --=> S : A.{t_a.B.k_abl}k_as
2. 8 -->B : {t_s.A.k_ab}k_bs
3. B-->A: {n_b}k_ab

4, A --> B : {n_b+1}k_ab

Explain why the attack just described is no longer possible.
(b) Make use of the fact that both messages in the two-step protocol are of the same
form. As an intruder, replay messages to the server so that time stamps are con-
tinually updated. Can you use this to launch an attack on the protocol?

4.5. Model Checking Security Protocol Designs 177

1. A-->B : A

2. B-—>A:nb

3. A—>B : {n_blk_as

4. B -—> 8 : {A.{n_bYk_as}k_bs Figure 4.8. An authentication protocol based on a server, S,
5. 8 -==> B : {A.n_b}k_bs that shares a public-key pair with network participants.

45.4.2 Woo-Lam Protocol

Protocol 4.44 (Woo-Lam Protocol)

In this protocol we have three friendly agents A, B, and §. Agent S is a server with whom
network participants A and B share a secret key k_as and k_bs, respectively. The ob-
jective of the protocol’s execution is to establish the authenticity of the fact that agent A
is communicating with agent B. The informal specification is given in Figure 4.8.

Attack 4.45 (Woo-Lam Protocol)

One attack of Protocol 4.44 that can be re-discovered by our analysis framework portrays
a very active malicious intruder Z; he impersonates not only the friendly agent A but also
the server S. The attack then reads as

1. Z_A --> B A

2. B --> Z_A : n_b

3. Z_A --> B :n_b

4. B -->7Z_5 : {A.n_b}tk_bs
5. 2.8 --> B {A.n_b}k_bs

Notice the ingenious twist in the third step. The intruder, impersonating the server, sim-
ply sends the nonce n_b to agent B, who is expecting a message of the form {n_b}k_as.
However, agent B has no way of detecting that something went wrong because a mes-
sage of that form is cipher-text and hence is indistinguishable from a nonce, unless
implementations provide different data types for cipher-text and nonce — for example,
if the nonce has an agreed-upon length that likely is different from the length of the
cipher-text.

EXERCISES 4.15

1. Recalling Definition 4.16 (p. 143) and the objective of Protocol 4.44, explain which
of the agents A, B, or S play the role of the prover and verifier, respectively.

2. As done in Protocol 4.42, provide a detailed, step-by-step account of the activities
expressed in Figure 4.8. In particular, explain why agents can compute the messages
that they send to other agents.

3. Explain in detail why Attack 4.45 is successful. In particular, what capabilities of the
intruder do we assume when he transforms the message {A.{n_b}k_as}k_bs from
step 4 to the message {A.n_b}k_bs in step 57

4. Suggest a change in Protocol 4.44 that averts the replay attack of Attack 4.45.

178 Chapter 4. Security Protocol Design and Analysis

4.6 BIBLIOGRAPHIC NOTES

The discussion of authentication in Section 4.3 i3 based on Abadi’s (1998) paper. The
threshold secret-sharing schemes of Section 4.4 were pioneered by Blakley (1979) and
Shamir (1979); for more information on efficient secret-sharing schemes, refer to the
textbook of Stinson (1995). Our presentation of model-checking security protocols is a
customized account of the papers by Clark, Jha, and Marrero (1988, 1998) and Marrero,
Clark, and Jha (1997); see also Marrero’s abstract.!” This platform is by no means the
first (or only) one that allows for modeling and analyzing security protocols. It was Lowe
(1996) who used the tool FDR (Failures Divergences Refinement checker) — a model
checker for the process algebra CSP — to find the attack and the fix of the simplified
Needham—Schroeder public-key protocol described in Section 4.5.4.1. A whole family of
attacks upon authentication protocols can be found in Lowe (1997); the wide-mouthed
frog protocol and its attack (Exercise 4.14-7, p. 176) are drawn from that paper. Paul-
son (1998) uses inductive methods to validate security protocols, circumventing the need
to model beliefs or knowledge and allowing the consideration of infinite-state systems:
protocols and their specifications are defined inductively as sets of traces, and a theorem
prover then tries to show that the set of traces of the protocol is contained in the set of
traces of its specification. Another approach — similar to the one based on FDR but with
a description language (D. L. Dill’s Murphi'') whose features are familiar from conven-
tional programming languages — was developed by Mitchell, Mitchell, and Stern (1997).
This methodology has been applied to the Secure Socket Layer 3.0 (Mitchell, Shmatikov,
and Stern 1998). Meadows (1996) built a special-purpose verification tool — the NRL
protocol analyzer — that is based on a logic programming language with constraints and
can validate or invalidate security protocols; for an application of this tool to the Internet
key-exchange protocol, see Meadows (1999). The BAN logic, a logic of authentication,
was one of the first attempts to arrive at formalisms that can be used to analyze the vio-
lation of formally stated security properties of protocols (Burrows, Abadi, and Needham
1989). Example 4.13 is from R. Hofer’s website!? on elliptic curves. For a discussion of
the “Dining Cryptographers” we refer to Chaum’s (1988) original article. DigiCash has
online demonstrations'* that suggest how to put these ideas into practice.

10 http: // www.cs.cmu.edu /~marrero/abstract . html
1 http: // verify.stanford .edu /dill /murphi. html
2 ttp: /i www.shox tu-graz .ac.at/home/ j/jonny/ projects/crypto /asymmetr/ecdlp.htm

13 www.digicash.com/demo/

CHAPTER 5

Optimal Public-Key Encryption
with RSA

So far, we have encountered various building blocks of cryptographic systems. These
include:

* pseudo-random nuniber generators — fundamental for the generation of random seeds
and used in probabilistic algorithms that decide primality, generate a session key, out-
put a stream cipher, et cetera;

* hash functions — used for digital fingerprints of passwords, messages, and so forth; and

¢ public-key cryptosystems — used in most modern cryptographic systems as an infra-
structure for authentication or key exchange between participants of a local or global
network .

We discussed RSA as an example of public-key cryptography in great detail in Chapter 1.
Our exposition of RSA , however, focused solely on how to implement the mathematical
backbone of RSA . the functions'

() Y x¢ mod n, (5.1)
0 % 9 mod n (5.2)

in a correct and efficient manner. Yet we reasoned about the security of these functions in
isolation only.

In this chapter, we use a design and theoretical results (due to M. Bellare and P. Roga-
way) to demonstrate that pseudo-random number generators, hash functions, and RSA
can be skillfully combined to obtain a realistic and efficient implementation of RSA. This
implementation is proven secure with exact security parameters; it is bit-optimal for this
level of security, in that the length of the plain-text is as close to the length of cipher-text
as possible without corrupting security; and it rivals heuristic methods that lack security
assurance in its efficiency. However, the proven security results apply to the random or-
acle model of the cryptographic system, an idealization of the concrete hash functions it
uses. The conversion of such ideal functions to implementable cryptographic functions is
a heuristic leap; great care must be taken when making this step and interpreting the secu-
rity results for the implemented system. We discuss the random oracle methodology and
these concerns in Section 5.3.

A practitioner whose task it is to implement RSA will come up with a list that certainly
contains the following demands:

! Of course, we assume as before that n is the product of large primes p and g and that ¢ - d = 1 mod ¢ (n).

180 Chapter 5. Optimal Public-Key Encryption with RSA

* encryption of messages should require only one application of f;

* decryption of cipher-text should require only one application of f ! (note that f and
f ! are performance bottlenecks);

¢ the length of the cipher-text f(x) should be exactly k, the number of bits of n; and

¢ the length of the plain-text that can be encrypted should be as close as possible to k
bits.

Heuristic schemes with these properties exist and operate by embedding a message x
into some string r, in a probabilistic and invertible way; the encryption of x is then de-
fined as f(r,). Thus, proven secure systems need to accommodate these requirements if
practitioners are to choose them for actual implementation. The goal of this section is
therefore to provide an RSA implementation that is based on such a simple embedding
scheme but is also proven secure. In fact, we present two versions, both of which can be
shown to be semantically secure. The second one is even proven to be plain-text aware,
a technical concept that implies the system is secure against chosen cipher-text attacks
and malleability — assuming the random oracle model. Nonmalleability means that wit-
nessing the encryption of a plain-text x is not enough for producing the encryption of a
“related” plain-text x’. Examples of related plain-texts include those that differ in only
one bit from x and the bitwise complement of x.

51 A SIMPLE SEMANTICALLY SECURE ENCRYPTION

Let & be the number of bits of the RSA modulus r. The function f in (5.1) realizes a per-
mutation on the set of k-bit strings with inverse f ' in (5.2).> Clearly, k is the security
parameter (k = 1024 is advised).

Definition 5.1 (Attacker’s Running Time and Length of Plain-Text)

1. An attacker’s computational resources are modeled by k(€ N such that the attacker’s
running time is significantly smaller than 2%°. We assume that all queries to random
oracles receive their answers in unit time.

2. We define

100 Mk — kg (5.3)

as the bit length of individual messages that can be encrypted at one time (shorter mes-
sages will have to be padded to reach this length).

Our implementation utilizes two functions that are randomly generated but deterministic:
a generator

G: {0, 1}* — {0, 1}*0); (54)
and a hash function

H: {0, 1}*® = {0, 1}*o. (5.5)

2 This is not literally true: see Exercise 5.1-2.

5.1. A Simple Semantically Secure Encryption 181

Definition 5.2 (Simple Encryption/Decryption)

1. Given a plain-text x € {0, 1}*'*), choose a random kg-bit string r and define the encryp-
tion of x as

ECH)Y rx @G |r @ Hix ® Gr)), (5.6)

where @ is the bitwise exclusive-or, | is the concatenation of bit strings, and f is the
RSA function in (5.1).

2. Given a cipher-text y of bit length k, set s to be the first 1(k) bits of the output of
£X(v) and let be the last kg bits of £~!(y). We then define

DM () s @ Gt @ H(s)). (5.7)

The random oracles G, H and the function &% #)(.) are meant to be public, but the func-
tion D% #)(.) should be known only to the owner of this public-key cryptosystem.

EXERCISES 5.1

1. Prove that D' H)(£9H)(y)) = x for all 1(k)-bit strings x.

2. We have identified k-bit strings with the numbers they denote in binary notation.
Which numbers in {0, 1, ..., n — 1} would be unwisely included as legitimate mes-
sages to be encrypted, and why?

3. In a real implementation, we require an encoding that codes source text — given in
whatever format — as bit strings of the required length, and vice versa. Suppose you
already have an encoding that works for the encryption function f. How can you use
it to obtain an encoding for the scheme of (5.6)7

4. Implement the public-key encryption system of Definition 5.2 with some & = 1024

and kg = 320.

(a) Choose G and H from appropriate calls to the secure hash function SHS, as
in (5.18).

(b) Permit only messages in {2, 3, ..., n — 1} that do not have a common factor with

n. Notice that this rules out (at the very least) all k-bit strings w, where l = n
for the number [that the string w represents in binary.

Evidently, (5.6) and (5.7) render a correct specification of a public-key cryptosystem that
uses the RSA encryption and decryption functions only once per encryption or decryption
task. Incidentally, in Exercise 2.7-9 (p. 34), the Blum—Goldwasser public-key crypto-
system — while also rendering a nondeterministic encryption — uses the RSA encryption
function more than once.

Since computing with the generator G and the hash function H is presumably much
more efficient than computing values of f and f ~! the first three demands (p. 180) of
our hypothetical practitioner are met. The last concern, that the size 1(k) = k — k be as
close to k as possible, will be addressed in our formal analysis of this specification. We
then also prove semantic security of this encryption system. An informal, “hand-waving”
manner of arguing semantic security proceeds as follows, where s and t have the same
meaning as in the definition of (5.7).

182 Chapter 5. Optimal Public-Key Encryption with RSA

+ Ifthe attacker cannot recover all first 1 (k) bits (the) of the string computed by 4y,
then she should have no knowledge whatsoever about the nature of the hash value H(s).

* Without any such knowledge, she should be unable to make any conclusions about the
value of t @ H(s), which equals r.

¢ Not knowing anything about r, the attacker knows nothing about G (r).

¢ Therefore, she could not possibly know anything about s & G(r), which is uniformly
distributed as a random variable in r and is equal to x.

It is obvious that this *“argument™ needs to be fleshed out in a formal proof. Such a
proof, given in Section 5.4, is interesting not only in that it provides desired rigor but also
because its structure reveals exact security parameters that can be used to assess the se-
curity of an implementation .

EXERCISE 5.2

1. Critically assess what assumptions are needed to establish our claim that s & G (r) is
wniformly distributed as a random variable in r.

5.2 A PLAIN-TEXT-AWARE ENCRYPTION

We slightly modify the first scheme. We retain k, the bit size of the RSA modulus, and
ky, the parameter that measures the attacker’s running-time constraints, but now we set
the plain-text bit length to

1(k) < k — ko — ki, (5.8)

where k| € N is another security parameter. The generator G and the hash function H
change their “types” accordingly:

G: {0, 1}* — {0, 1}FFo, (5.9)
H: {0, 1}*% — {0, 1}%0. (5.10)

For the plain-text—aware implementation, we define encryption as
ECM(x) E f((x10M) @ G | r & H(x10") ® G(r))). (5.11)

Notice that this encryption operation works as for the previous scheme except that here
the message x is padded with k; zeros, requiring G and H to operate over different string
sizes as previously specified. In particular, the random string r is still kg bits long.

EXERCISES 5.3

1. Formally define the decryption operation D¢ #}(y) for the plain-text—aware encryp-
tion system of (5.11), and prove that it recovers encrypted messages. This function
should return a special value *failed” if the putative cipher-text y cannot be decrypted
to a legitimate plain-text message.

5.2. A Plain-Text-Aware Encryption 183

2. Verify that the computation in (5.11) is “well-typed” — that is, show that all arguments
have the correct number of required bits for their respective operations.

3. Consider the encryption operations

def

Ef) € f) G @ x. (5.12)
EZ) E f(0 160 @ x| Hr |), 13
ESx) £ f() (G @ (x| H))). (5.14)

where r is a randomly generated bit string for which f(r) is defined.

(a) Describe the corresponding decryption operations and specify the input—output
types of G and H. How do these types compare to the scheme of (5.6) with re-
spect to total encryption size as a measure of efficiency?

(b) Give an intuitive assessment of the security of these encryption functions —
they all satisfy weaker proven security concepts than the ones presented in this
chapter.

In Sections 5.4 and 5.5, we formally analyze the schemes of (5.6) and (5.11) and prove
their semantic security. We also show that the second system is indeed **plain-text aware”,?
assuming ideal functions G and H; ideal functions and the random oracle methodology
are discussed in Section 5.3. Under these assumptions, plain-text awareness implies non-
malleability and also resistance against known cipher-text attacks. Although an actual
implementation makes use of nonideal hash functions (e.g. SHS), this result suggests that

such implementations are superior to ad hoc choices of RSA implementations.

5.21 Implementation of Plain-Text-Aware Encryption

A concrete instantiation of the plain-text-aware public-key encryption scheme makes use
of the hash function SHS, as described in Section 3.2.3. We require a minimum size of
k = 512 bits for the modulus n. The maximum bit length of messages that can be en-
crypted is set to

1(k) =k — 320, (5.15)

that is, ko + ki equals 320. Thus 1(k) is at least 192 bits — one of the possible key sizes
for the advanced encryption standard Rijndael. The message space

MELeN|1<i<n, gedl,n) =1, ged(£(i), n) = 1) (5.16)

is identified with the corresponding subset of {0, 1}*, its representation in binary. Overall,
this scheme depends on the following parameters:

¢ the bit length < k — 320 for the message message to be encrypted;
* arandom string random_coins of arbitrary length;
¢ the security parameter k;

* We define this concept formally in Section 5.5.

184 Chapter 5. Optimal Public-Key Encryption with RSA

* the encryption function f and its inverse, the “trapdoor™ f~';

* an implementation of the predicate inMessageSpace (x), which returns true if x is
in the message space M and returns false otherwise;

* a 32-bit string key_data, which we leave unspecified;

¢ astring desc, containing a complete description of the function f (e.g., saying some-
thing like “we use RSA encryption with modulus 7 and public key ¢™); and

+ a fixed but randomly chosen 160-bit string, str, used to make the functions G and H
dependent on the instantiation of this scheme.

Inspecting the pseudo-code of SHS in Figure 3.24, we recall that the secure hash func-
tion depends on the initial values of the 160-bit value

AlB|C|DJE. (5.17)

the concatenation of the words A to E. Given any 160-bit string o, we can partition o as
in (5.17), thereby loading A to £ with these respective words. We write hash,(M) for
the result of running SHS on M with the initial values of A to E determined by o in this
way. This parametric version of the secure hash function can then be used to build the
functions H and G.

Definition 5.3

1. For0 <i < 2%, we write (i} for the 32-bit binary representation of i € N.
2. For any binary string x and any 160-bit string &, we define the binary string *

hash? ((0) | x) | hashi({1) | x) | hash¥'(2) | x) || - - -, (5.18)
where hash¥’(M) denotes the leftmost 80 bits of the 160-bit string hash ,(M).

Of course, we cannot compute the entire infinite string; our implementation requires the
computation and extraction of only an implementation-dependent number of leftmost
bits. The pseudo-code for the instantiation of the plain-text—aware encryption with RSA
is given in Figure 5.1, In that code, we write

HASH(sigma,1l,x)

for the [leftmost bits of (5.18). Calls hash,(M) are denoted by hash_sigma (M) . The
simple probabilistic embedding is achieved by: augmenting the message with the string
key_data, a word indicating the length of the message; padded zeros that turn x into a
(k — 128)-bit string; and the redundancy supplied by the 128 bits of r.

The implementation uses various useful heuristics. Inclusion of the string key_data
helps shield against attacks that could be launched if the same key were to be used with
different algorithms that interact somehow. For similar reasons, it uses variants of sigma.
The motivation for extracting only the leftmost 80 bits of the output of our parametric
secure hash function is given in the more general discussion of the random oracle method-
ology in Section 5.3.

We require only the leftmost k or k — 128 bits of that sequence. Also, keep in mind that the secure hash standard
puts a limit on the length of the message to be hashed.

5.2. A Plain-Text-Aware Encryption 185

function Plain_text_auare_encryption(bitstring message,

bitstring random_coins) {
// encrypts message of less than k - 319 bits with RSA function f
// in a plain-text-aware manner
// zeros: a bit string of zeros of

/ bit length k - 192 - length_of (message)
// input: * a bit string, message, of bit length less than k - 319
/ * a bit string, random_coins, of arbitrary length

// output: * the k bit encryption of message with function £
sigma = hash_str(desc);
// desc is the string describing function f
sigmal = hash_sigma(<1>);
// <1> is the 32-bit binary of the number 1
sigma2 = hash_sigma(<2>);
sigma3 = hash_sigma(<3>);

i=20;
do {
r = HASH(sigmal, 128, <i> || random_coins);
// |l is concatenation
x = key_data || < length_of(message) > || zeros || message;

x1 = x XOR HASH(sigma2, length_of(x), r);
rl = r XOR HASH(signa3, 128, x1);

r.x =x1 || ri;

++1i;
} while (!inMessageSpace(r_x));
return f(r_x);

}

Figure 5.1. Instantiation of the plain-text-aware encryption scheme using an encryption
function f.

EXERCISES 5.4

1. The pseudo-code from Figure 5.1 manipulates various strings. Make certain that all
the operations “type-check”. In particular, explain why
(a) r is 128 bits long;
(b) xis (k — 128) bits long;
(c) x and x1 have the same length;
(d) r and r1 have the same length;
(e) r_xisk bits long.
2. The implementation in Figure 5.1 does not match directly the format of the functions
G and H in (5.9) and (5.10).
(a) Determine the values of k and &, .
(b) Identify those portions of the pseudo-code that compute G and H, respectively.
3. (a) Determine how decryption works for the implementation of encryption in Fig-
ure 5.1.
(b) Write pseudo-code for the decryption operation of the code in Figure 5.1. How
do you handle messages that don’t “decrypt™ to something in the message space?
(c) Suppose that f is a symmetric encryption function (f “equals™). Does your
implementation still render a public-key cryptosystem?

186 Chapter 5. Optimal Public-Key Encryption with RSA

4. Does the implementation in Figure 5.1 rely on that fact that f is an RSA encryption
function?

5. Implement the plain-text—aware encryption system in Figure 5.1. Derive and imple-
ment its corresponding decryption scheme as well.

5.3 THE RANDOM ORACLE METHODOLOGY

Before we prove the exact security parameters of our encryption systems, we need to gain
a sufficient understanding of the underlying methodology — its promises and benefits, as
well as its dangers and limitations. The two encryption systems presented in this section
are designed and analyzed using the random oracle methodology of Bellare and Rogaway.
This methodology proposes to design and assess security protocols by

+ formally specifying an ideal computational model for the protocol, where all agents —
including any malicious attackers — have equal access to perfectly random functions
(random oracles);

* designing a protocol within this idealized computational model;

* proving exact security results (thereby avoiding complexity theory or asymptotic analy-
sis) about this ideal protocol — assuming the idealized model; and

* heuristically replacing the idealized random oracle functions with implementable and
efficient cryptographic functions.

This approach has various benefits: it

* builds on and expands previous work (of O. Goldreich, S. Goldwasser, and S. Micali)
into an actual paradigm;

¢ makes strong assumptions about the capabilities of attackers — they have the same op-
portunities of access to the random oracle;

* can prove exact security results for given security parameters of a protocol instantiation;

+ certainly improves on methods that are purely ad hoc; and

* can come up with informal justifications for the use of several heuristics that convert
random oracles into practical cryptographic functions.

Example 5.4 (Heuristic Leap)
The plain-text—aware encryption system uses functions G and H that are “ideal” in the
sense that they are randomly chosen from the set of all functions of type

{0, 1}* - {0, 1}** and
(0, 17" — {o. 1y,
respectively. These ideal random oracles G and H are then replaced with cryptographic

functions (as done, e.g., in Figure 5.1).

Despite the benefits and gains just described, this approach has its downsides as well. Its
most serious drawback is that there is no formal connection between the exact security
results proven in the ideal model and the actual security of the protocol, which depends

5.3. The Random Oracle Methodology 187

on the heuristically chosen cryptographic functions. Empirical evidence exists suggesting
that there is a close match between proven and actual security if care is taken in the design
of a protocol and the conversion of its random oracles into practical realizations. Essen-
tially, the heuristic step involves trust, based on past experience. One certainly wants to
avoid cryptographic functions that are subject to known cryptanalytic attacks. But one
must also ensure that these functions do not expose any “relevant structure™ that may be
detectable as a result of their being built from lower-level cryptographic functions.

The random oracle methodology implies the thesis that it renders secure and efficient
protocols, if carried out “properly™; the novelty is that and . Practitioners usually find effi-
cient implementations of protocols by ad hoc methods, making a formal security analysis
impossible. Conversely, theoreticians formally analyze the security of ideal protocols
whose primitives are unrealistic and inefficient — for example, they would typically not
be willing to consider the input—output functionality of Rijndael in the ECB mode as a
cryptographic primitive. The random oracle methodology is an urgently needed bridge
between the gap of theory and practice.

Alas (as R. Canetti, O. Goldreich, and S. Halevi have pointed out), the universal claim
of its thesis — that the formal security results derived for an ideal protocol remain valid to
a significant degree in an implementation — has been refuted. Stated informally: “There
exists a digital signature scheme that is proven secure in the random oracle model yet all
of its implementations result in unsecure cryptographic systems.”

We now sketch how this limitation of the approach is demonstrated. A random oracle
is a single function O, uniformly selected from a set of possible functions of a specified
type. All agents, including all attackers, access that same function whenever they query
the random oracle. An attacker of the implementation may simulate the behavior of the
attacker in the random oracle model, but she is not restricted to such behavior. She may,
indeed, gain global insight into the structure of the concrete cryptographic function £ that
realizes O and then use that to her advantage.

A more sophisticated version of the random oracle methodology is for the concrete
function h; to be selected at random from a collection of possible cryptographic functions
{hs | s € 2}, where €2 is a finite probability space. Real implementations first select such
a function /i, and then instantiate the system with that very function: all queries to the ran-
dom oracle are implemented as calls to i;. Hence, the negative result quoted previously
can be shown also for this more general interpretation of the methodology.

We now state a necessary condition for i, to be a “good™ implementation of a random
oracle O. Given a relation between inputs and outputs of O, assume that it is infeasible
to compute — given an “output” y — a matching input x (i.e., O(x) = y) such that the
pair (x, y) is in the relation. In that case, a good implementation /1, of O should certainly
satisfy the requirement that it be infeasible to compute such a pair, where now h,(x) = y.

Definition 5.5 (Evasive Relation)

1. Let O be arandom oracle. We call a relation between elements of input and output
type of O evasive for O if it is infeasible to compute some input x such that the pair
(x, O(x)) is in the relation.

2. Given a collection of concrete cryptographic functions

HE (h, | 5eQ) (5.19)

188 Chapter 5. Optimal Public-Key Encryption with RSA

with the same input and output type as O, we say H is correlation intractable for O
if, for every evasive relation for @, it is infeasible to compute an input x such that
(x, he(x)) is in the relation — given a random choice s and a description of the func-
tion h;.

The first negative result can now be (informally) restated as: “There does not exist a
correlation-intractable collection of cryptographic functions H.”

This result can be used to show that the implicit belief in the random oracle method-
ology — that validated ideal protocols can be attacked only by exposing flaws of the im-
plementations of random oracles and not by exposing “structural flaws™ of the protocol
design — is false. One can show this by:

* proving that, for each collection H = {h, | s € 2}, there exists a digital signature
scheme that is secure in the random oracle model but is not secure when implemented
via ‘H: and

* using a diagonalization argument to demonstrate the existence of a digital signature
scheme that is proven secure in the random oracle model even though ail of its imple-
mentations are unsecure .’

Although these results limit the scope and validity of the random oracle approach to
designing and “validating” security protocols, we should emphasize that these negative
witness protocols are completely “unnatural” — far from anything anyone would ever
implement as a security protocol. It is unclear whether such negative results can be es-
tablished for security protocol designs that occur in practice. Hence, this negative result
does not invalidate the random oracle methodology per se but instead limits its scope of
applicability and calls for a prudent evaluation of design instances.

A common way of instantiating random oracles is by means of cryptographic hash func-
tions. The choice of such concrete functions should be guided by (a) how many queries
to the random oracle are being made and (b) what the input and output lengths of these
queries are. A heuristic claim is that this choice need not be concerned with the structural
properties of the protocol design. However, care must be taken in following these guide-
lines. For example, the hash function MD5 has the curious property that, for any x, there
is a ¥ such that for any z the hash

MD5(x ||y [2)

can be computed from the length of x, the hash of x, and z alone. Bellare and Rogaway
proposed minor transformations of such hash functions to avoid such “structural” proper-
ties. Among those, we list:

¢ truncating a hash function’s output to the [leftmost bits for an appropriate choice of [;
+ finding a suitable restriction on the input length of the hash function; and
* using the hash function in a “nonstandard”™ way.

For an example of such heuristics at work, consider (5.18) in Definition 5.3(2).

5 The technical work involves an additional step of reducing super-polynomial time algorithms to polynomial time
ones, relying on CS proofs.

5.4. Exact Security for the Simple Encryption 189

5.4 EXACT SECURITY FOR THE SIMPLE ENCRYPTION

For our security analysis, we assume that the functions G and H are chosen randomly
among all possible functions of their type. These two choices are done independently. We
use these random oracles to assess the security of the encryption schemes in Sections 5.1
and 5.2 in an exact manner.

Definition 5.6 (Capabilities of Attacker)
We model the capabilities of an attacker as a probabilistic algorithm A% (-,) and assess
it in terms of its

* running time ¢ — significantly less than 2*°;

¢ the number q of queries it makes to the random oracle G;

¢ the number q i of queries it makes to the random oracle H; and

* the “advantage” ¢ > 0 she has in breaking the encryption £ @ #)(.),

Our analysis then converts A% f(-, .) into an algorithm U[A%-#(- .)] and determines num-
bers t' and £’ > 0 such that U[A% #(-, .)] inverts the trapdoor permutation f in time ¢’
with probability £". The explanatory force of this analysis comes from the explicit de-
pendency of ¢ and &’ on the underlying security parameters t, q g, qu, &, k, and kg; this
means that " and &’ are functions in these parameters. As designers, we can then assess
the strength of the underlying encryption function f, enabling us to arrive at formal es-
timates of the resources and capabilities an attacker would need to break the encryption
function &9 () used in our implementation.

We need to formalize public-key encryption systems as mathematical systems that can
be analyzed rigorously in the random oracle model.

Definition 5.7 (Public-Key Encryption and Random Oracles)
An ideal public-key encryption system in the random oracle model is formally specified
by a probabilistic generator S, probabilistically mapping a natural number £ to:

* two random oracles G and H — specified, for example, as in (5.4) and (5.5);

o apair (£© 1), DC)y where £C () is a probabilistic encryption function and
DGy its corresponding decryption function — specified, for example, as in (5.6)
and (5.7), respeclively;é and

* a plain-text length function 1(-) such that 1(k) is the bit length of plain-text that is to
be encrypted.’

We insist on
D((;:H)(E{G:H}(X)) = x
forall 1(k)-bit strings x in the message space M and demand further that ple.a '(v) return

the exception value “failed” if there is no x in the message space such that £¢#)(x) = y.

Y These functions can access G and H as random oracles.
7 For our purposes, think of 1{k) as k — kg or k — kg — ki, depending on which of the two encryption systems we
study.

190 Chapter 5. Optimal Public-Key Encryption with RSA

We write T(k) for the time it takes to encrypt messages of bit length k with the under-
lying encryption function f.?

We formulate a notion of semantic security for algorithms that make use of random ora-
cles. An attacker of our ideal public-key encryption system is modeled as a randomized
algorithm AG-H(. .y that has access to the random oracles G and H. We may assume that
the attacker records all results of calls to the random oracles G and H during a run. Thus
we may assume that the attacker never makes more than one particular query to G and H,
respectively. To simplify the discussion and analysis, we further assume that the number
of these queries depends only on the length of A% #(-, .)’s input, not on its internal coin
tosses.

The attacker A F(.,) operates in an environment where it communicates with another
agent, the “system” S. Both parties engage in a computation that is being conducted in
two stages.

1. In the first phase, the find-stage, the call A® 7 (£ H)(.), find) — with a description
of the encryption algorithm £ ¢ #)(.) as input — outputs a triple (xo, x.), where
* xp and x; are plain-text messages, and
* ¢ is a string that could record AGH(g input, execution history, and so on.
The system § now picks xg or xy; this choice is determined by a bit value b that is
known only to § and is randomly chosen. That is, § picks x;, and encrypts x; with
£G-H)(), resulting in cipher-text y.

2. In the second phase of the run, the guess-stage, AGH(guess) receives the triple
(xp0. x1, €) back from S and also receives the cipher-text y. In turn,

ASH((xo, x),c.y), guess)

outputs a “guess” as to which of messages x(and x; was encrypted with £¢#)(.). We
assume that the name of that encryption algorithmis contained in ¢. Thus A% H((x@, X1,
c.y), guess) returns a bit that is, in effect, its “guess” of the value of the bit b that
was previously chosen by the system §.

For the analysis that follows, we assume a basic understanding of probability theory and
probability spaces.

Definition 5.8 (Random samples)
Given a probability space €2 of elementary events, we write x < € for the random sam-
ple x from €2.

We will not formally define the probability spaces used in the analysis; we focus instead
on the analysis of probabilistic events. The reader may want to review basic probability
theory before reading the remainder of this section. We are now positioned to formally
define what it means to break our encryption schemes.

8 Note that T(k) is made to depend only on & and thus not on the instance of f: that is, T(k) does not depend on the
random choice of n and e.

5.4. Exact Security for the Simple Encryption 191

Definition 5.9 (Breaking &(k))
An attacking algorithm AG-H(.) manages to (¥, qg, qu. €)-break the ideal public-key
encryption system S(k) if and only if

e+1
er <. (5.20)

where p is the probability that the call AG‘H((x@, X1, ¢, y). guess) returns b — correctly
guesses the bit b — given that (i) the probabilistic events

e G «— 2,

o H «— 2,

o (G, DCH(Y) « S(k),

o (x0.x1,¢) < AGHEGHI () £ind),*
o b« {0,1},

oy EGH) ()10

occurred in that order and (ii) A% 7(., -), in its total two phases, runs for at most ¢ steps
and makes at most qg and q g queries to the random oracles G and H, respectively.

Observe that % = p (i.e. e = 0) is easily realized by an attacker who always replies with
a guess that was determined by the toss of a fair random coin. Thus the ¢ = 0 in (5.20)
is a good measure of the advantage an attacker has over this unbiased and uninformed
attack. Our goal is to assess encryption systems by a method for converting A% #(., .) into
an algorithm that can break the underlying encryption function f.

Definition 5.10 (Breaking the Encryption Function f)

The scheme & contains a subsystem JF, where J (k) probabilistically generates the pair
(f, f74 for S(k).!'" Let M(-, -) be an algorithm that, given a description of f and a f-
cipher-text y for a f-plain-text w, returns a putative decryption of y.'> We say that M(-, -)
is a (t, e)-inverse of F (k) if and only if M(f, ¥) has a probability of at least £ of recover-
ing the f-plain-text w within t computation steps whenever the probabilistic events

s (f D <« Fh).

o w « {0, 1}

occur in that order.

EXERCISES 5.5

1. The attacker A% #(.,.) can certainly remember the plain-texts x, and x, as well as
the encryption function £'¢#)(.) from its find-stage by coding it up in the string c.
Later on, the system supplies the attacker with that string, among other things. What

¥ Since AGH(., Jisa probabilistic algorithm, its output is a random sample.

10 Note that £91(.) is a probabilistic algorithm.

"' In Chapter 1 we saw how this can be done efficiently.

12 Recall that the encryption with f, unlike the one with £'“ HY(.) is deterministic.

192 Chapter 5. Optimal Public-Key Encryption with RSA

prevents the attacker from re-encrypting x, and x; and comparing it to v, thereby
determining the correct bit value b?

2. Considering (5.20), what is the possible range of the advantage £?

3. Semantic security Discuss how the interaction of the system § and the attacker
AC-H(. .y inthe two stages captures semantic security as a game in which the attacker
is trying to deduce any information about a matching plain-text for a cipher-text.

4. Discuss to what extent T(k) is rruly independent from the choice of the modulus n
and the public key e.

Theorem 5.11 (Exact Semantic Security)

For the ideal public-key encryption scheme S as in (5.0), there exists an oracle machine
Ul-] and a constant A such that, for each k € W: If AGH(s (1, qg.qH, £)-breaking
S(k) then UTAS (.,) isa (t', ¢')-inverse of F(k). where

' Lt +q6 - qu- (TR + A k), (5.21)

o e (1 qg -27% —qpu - 27% ") —qg - 27H (5-22)

This theorem suggests that, given an attack of &(k) based on AGH(.), we can convert
this into an attack of F(k); the conversion is

AG‘H('.,) — U[AG‘H(-,)]

We think of U[-] as a “universal oracle machine” that can implement UIAG-H(.)] and
has oracle access to G and H. The proof of this theorem reveals the importance of the
“description” of U[-] being “small”. The constant A depends on the underlying computa-
tional model (Turing machines, RAM machines, Java programs, etc.).

From Attack 2.60 (p. 73) we recall that it is advisable to choose k larger than 512. For
such values, we may ignore the terms ¢ -2 and qz - 27%7*°) in (5.22) and so obtain

' x=e-(1—qg-27"). (5.23)
Two things can be learned from this estimate.

1. The success probability or advantage &' for inverting F (k) is only slightly less than the
success probability for breaking S(k) and is close to its optimal value. Thus we obtain
a tight correspondence between the security parameters of f and £ H)(.).

2. The dominant factor in the running time t is the computation of q - q y many encryp-
tions with f.

EXERCISES 5.6

1. Recall that a logical implication “p implies ¢ is equivalent to the implication “not
g implies not p”. Use this to reflect on the practical significance of Theorem 5.11.

2. Inspecting (5.23), which is more advantageous for A% (., .): asking more queries to
Gorto H?

5.4. Exact Security for the Simple Encryption 193

3. Although (5.22) suggests similar success probabilities for breaking F(k) and S(k),
discuss why this still means a huge win for the security of S(k).

5.41 Proof of Exact Semantic Security

Let AC-H(.) be (¢, q:.qu, €)-breaking S(k). We begin with a description of a proba-
bilistic algorithm, M(-,) and then show thatitisa (t', £’)-inverse of F(k), where t" and &’
are chosen according to (5.21) and (5.22). The input (f, ¥) to M(:, -) is randomly chosen
in the order

s (f f7H < Flh,
oy <« {0, 1}~

For all such random samples, the run M(f, ¥) terminates; it outputs either some w* €
{0, 1}*—*0 or “failed” — reporting a failed attempt at breaking f(w).

Definition 5.12 (Execution of M(f, y))

1.

2.

Using the description of f, the run M(f, y) constructs a description of EGH() that
is parametric in the random oracles G and H.

M(f. ¥) maintains two lists [; and [, initially empty, in which it stores queries that
are asked by a simulation of A%#(-, -) that M(f, y) realizes as follows.

. M(f, y) picks a bit value b at random:

b < {0,1}.

. Then M(f, y) simulates the find stage of A% #(£@ ()) by: (a) first provid-

ing A #(., find) with the description of £'“#)(.) and fair random coins for its

internal probabilistic choices; and (b) then simulating random oracles G and H for

AGH(gGH)(y find):

(1) if a query g to G is made, the run M(f, y) provides a random (k — kg)-bit string
G, as answer and adds g to its list [

(ii) if a query h to H is made, the run M(f, ¥) produces a random k-bit string H;, as
answer and adds h to its list [;.

Let {xg, x, ¢) be the output of A% #(£G-H)(.) find)’s simulation.

. M(f, ¥) now simulates the guess-stage by: (a) running A% #((xg, x, ¢, ¥), guess);

and (b) simulating the queries to G and H of that simulation run as follows.
(i) Whenever A% H({xq. x1, ¢, y). guess) makes a query & to H, then:
A. M(f, ¥) computes a random (k — kg)-bit string Hj, as answer and adds /1 to
the list I
B. next, for each g that is currently on the list /5, the run M(f, ¥) computes
wie S g ® Hy, (5.24)

def
Yig = fwpg). (5.25)
C. If there is some g onlg with y, , = y, then M(f, y) assigns

4 def
= Wy, g.

194

Chapter 5. Optimal Public-Key Encryption with RSA

(ii) Whenever A% f((x;, x, ¢, y), guess) makes a query g to G, then:

A. foreach / that is currently on the list /i, the run M(f, y) computes

def
whe = hl g & H, (5.26)
def
Vg = f(wpg). (5.27)
B. If there is some i on [y with y;, , = v, then M(f, y):
* assigns
5 def
w = wh=g:
def
G, = h @ xp; (5.28)

* adds g to l5; and
* returns G, as the answer to query g.

C. Ifthereisno i only with y, , = y, then M(f, y) generates arandom (k — kg)-

bit string G, as answer and adds g to [g.

If an assignment

w*

is ever executed, then w* is the output of M(£, ¥). Otherwise, the attempt to break f(w)

= Wiy

has failed and a “failed” is reported.

We emphasize that the lists /; and [y maintain queries that AGH(.) asks during the
find-stage and the guess-stage.

EXERCISES 5.7

1.

2.

3.
4.

o

Given the description of a run M(f, v) in Definition 5.12, prove that its running time
1’ 1s as claimed in (5.21).

For the simple encryption scheme and the plain-text—aware encryption scheme, which
of the functions £C-#)(.), D@ H)(.y are deterministic and which are probabilistic?
Explain how M(-, -) can be expressed as a universal oracle machine U[A%-H(.,)].
Prove: Whenever a run M(f, v) executes a statement of the form w* def Wy, ¢, then
Fw*) equals y.

. . def
. The run M(f, y) may never execute any statement of the form w* = wy, .. However,

its control flow does not rule out the possibility that more than one of these state-
ments is executed. Considering that any assigned value to w™ is a putative decrypted
cipher-text, why are such multiple assignments unproblematic?

Inspecting the find-stage and guess-stage of the run M(f,), the same query to a
random oracle evidently is likely to get a different random answer if asked more than
once. What assumption about the attacker guarantees that this is not a problem?

The astute reader will have noticed that M(f, v) could halt execution whenever an as-

. def . .
signment of the form w* = w, , occurs. After the execution of such assignments, the

5.4. Exact Security for the Simple Encryption 195

algorithm continues executing and some variables — such as the bit value b — are only be-
ing used thereafter; see for example (5.28) in Definition 5.12. This activity does not alter
the probability of a successful break of f(w), but it does serve to provide AGH Yy with
a view that is as close as possible to what it would see under a run in which it is trying to
break S(k) — by trying to guess the bit value b.

Definition 5.13 (Game 1)
We consider the probabilistic game consisting of the random sampling

s (f. fH « F(k)and
oy« {0, 1}

occurring in that order, followed by the execution of M(f, y}.” We call this experiment
game I and write Pr|[E'] for the probability of an event E in that game.

The f-plain-text

def

w= f(y)
is k bits long, so we can write is as

st S w, (5.29)
where s and t are (k — ko)-bit and k-bit strings, respectively. We consider

r <@ H(s) (5.30)
as arandom variable (in the random choice of f and y). Consider two probabilistic events:

* findbad is defined to be true if and only if » was asked as a query to G in the find-
stage of the run M(f, y) and the oracle’s answer G, is not in the set {s @ xq. 5§ © x1};

¢ guessbad is defined to be true if and only if » was asked as a query to G in the guess-
stage of the run M(f, v), at which time the query s to H was not in the list [, and the
oracle’s answer (, is not in the set {s & xg. 5 B x1}.

Definition 5.14 (Game 2)
We define the event

good & findbad A —guessbad.

We define game 2 as game | conditioned on good to be true at all times:
Prs[E] o Pri[E | good] (E any event). (5.31)
We now present games that are played not by M(-, -) but rather by the attacker AC-f(-, .).

We will then relate the former games to the latter ones, giving us the promised exact se-
curity parameters.

B3 This isa probabilistic algorithm.

196 Chapter 5. Optimal Public-Key Encryption with RSA

Definition 5.15 (Game 1%)
In game I*, we assume that the probabilistic events

e G, «— 2,

s H, «— Q.

¢ (EGHI0), DO S(k),

o (x5, X7, %) < AG=Hi(£GLHI() £ind),
b* « {01},

o) E(G"‘H*}{x;,a.)

occurred in that order. We assume also that A%+ %+ (-, .)_ in its total two phases, runs for

at most ¢ steps and makes at most q; and g queries to the random oracles G, and H.,,
respectively. Let Pri«[E'] be the corresponding probability of an event E.

Game 1* is, of course, just the interaction of the attacker AC+ f+(.,) with the system §
that defines its success probability or advantage.

Definition 5.16 (Game 2¥)
Game 27 is played in the same way as game 17, except that its first probabilistic event is
the random choice

Ve G HI(x, (5.32)

all other events that define game 1* are then chosen according to the probability distri-
bution that makes the outcome of game 1* and game 2* the same. Let Pro-[E] be the
corresponding probability of an event E.

Since the underlying probability space is finite, we know that the probability distribu-
tion needed in Definition 5.16 exists — noting that the choice in (5.32) is made uniformly.
The event good has been chosen such that the views held by the attacker in game 2 and
game 2" are identical. We won’t formally justify this claim, but we give an example for
sake of illustration.

Example 5.17

To simplify the example, suppose the find-stage of the attacker is constant in that it al-
ways outputs the same triple (x., x|, ¢*). Once y* is chosen and fixed, the distributions on
G, and H, — conditioned on the event good in game 2 — have the following descriptions:

* choose H, at random;

* whenever g is not equal to t @ H.(s), choose the answer G.(g) at random;

* the value G, (t @ H.(s)) can only be s @ xj or s @ x{, and that choice is randomly
determined.

EXERCISE 5.8

1. Verify that the probability distributions of G, and H. in games 2 and 2* are equal
and as claimed in Example 5.17.

5.4. Exact Security for the Simple Encryption 197

For the analysis of game 1, it is useful to consider the following events:

* findask_s is true if and only if the query s to H was made in the find-stage;
* ask_r is true if and only if r is in the list /; at the end of the guess-stage;
¢ ask_s istrue if and only if 5 is on the list [y at the end of the guess-stage; and

. def
* win = ask_r » ask_s.

We use these events to prove that the probability of the desired event good nor occur-
ring is low.

Lemma 5.18
The probability of —good has a low upper bound:

Pri[—good] < qg - 270 4+ qp - 25710, (5.33)

Proof We compute

Pri[—good] = Pri[—good | findask_s] - Prj[findask_s]
+ Pri[—good | —mfindask_s] - Prj[—~findask_s]
< Pri[findask_s] + Pri[—good | —~findask_s]
< Pri[findask_s] + Pri[ask_r | —~findask_s]. (5.34)

The validity of the first equation and first inequality follows from the definition of
conditional probability and the axioms of probability. The last inequality is valid since
Pri[—good | =findask_s] < Pri[ask_r | =findask_s], which we can justify as fol-
lows. Whenever a query g is submitted to G, the run M(£, y) adds g to the list /5. Thus
the event —good = findbad v guessbad implies that is being added to [;, since both
findbad and guessbad submit the query to G and the run M(f, y) never removes
entries from the lists [and /5. But then —good implies ask_r, whence the inequality.

We establish the upper bound of (5.33) by providing upper bounds for the summands
Pri[findask_s] and Pri[ask_r | =findask_s].

* Pri[findask_s] < qu . 2k=k0 holds because (a) the probability of asking s among all
possible (k — kg)-bit string queries to H during the £ ind-stage is 2k=k0 and (BYM(f, v)
is allowed to provide at most q ; many answers to queries of H.

¢ Prifask_r | —findask_s] < qg . 27%0 holds since Pri[ask_r | =findask_s] is
the probability that r is on the list [at the end of the guess-stage, provided that the
query s is not in the list /g at the end of the guess-stage. But then the query r was sub-
mitted to G and s was never submitted to i during the find-stage. The probability of
this event has q¢ - 20 as an upper bound, since the kg-bit string 7 must be guessed at
random and only q; many queries can be made to G. O

Lemma 5.19
Event win is true if and only if the run M(f, y) succeeds in computing w = f ().

Proof You are asked to show this in Exercise 5.9-2. O

Next, we analyze the probability of recovering the plain-text w in game 2.

198 Chapter 5. Optimal Public-Key Encryption with RSA

Lemma 5.20
Let Ep, be the event that the attacker is successful in predicting the bit value b. Then the
probability of win in game 2 has an informative lower bound:

Prayfwin] = 2 -Pry[Ep] — 1 — M (5.35)
Pri[good]
Proof We compute an upper bound for Pra[E}]:
Pry[E,] = Pry[E)y | win] - Pry[win]
+ Pra[Ep | —mask_r] - Pra[—-ask_r]
+ Pra[Ep | ask_r A —ask_s] - Pralask_r A —ask_s] (5.36)
< Pra[win]
+ Pr»[Ep | mask_r] - Pra[—ask_r]
+ Pra[ask_r A —ask_s] (5.37)
= Pro[win]

+ Pra[Ep | mask_r] - (1 — PraJwin] — Pra[ask_r A —ask_s]). (5.38)

The equality in (5.36) is justified since the events win = ask_r A ask_s, —ask_r,
and ask_r A —ask_s are mutually disjoint and since their union event, “true”, satisfies
Prao[“true”] = 1. The inequality in (5.37) then follows from the monotonicity of probabil-
ities applied to each of the three summands. Equation (5.38) follows from the axioms of
probability.

Now if —ask_r holds, then r is not in the list /5 at the end of the guess-stage. But
this gives the attacker no advantage whatsoever in predicting the correct value b. Thus

Pry[E), | mask_r] < 1. (5.39)

To compute an upper bound for Pra[ask_r A —ask_s], let r_before_s be the event
that » is on the list /5 such that s was not on the list /g at the time that » was placed on [;.
We can then compute:

Pri[ask_r A —ask_s A good]
= Pri[r_before_s A G, €{s & xg, 5§ B x1}]
= Pri[r_before_s] - Pri[G, € {s ® xg, s P x1}] | r_before_s]
< (qg-27") - (228)
=2-q¢-27% (5.40)
From (5.40), we have

Pri[ask_r A —ask_s A good]
Prylask_r A —ask_s] =
Pri[good]

2.qg-27*
= —
— Pri[good]

(541)

Given the inequalities from (5.39) and (5.41), we use them in (5.38) to obtain

5.5. Exact Security for the Plain-Text-Aware Encryption 199

1 , 1 qg-27*
Pry[Ep] = 5 -Prao[win] + = + (5.42)

2 Pri[good]’

which renders the claimed upper bound. But (5.42) can easily be converted into (5.35).
O

We have remarked that game 2 and game 2* are equivalent from the point of view of the
attacker. Thus

g+1

Pry[Ep] =
follows from (5.20). Using this in the inequality of Lemma 5.20 yields
Pri[win | good] = Pra[win]

2.q6 -2
:_,g.prz[gb]_l_qc—

=F - ———— (5.43)
Pri[good]

We then use (5.43) and Lemma 5.18 to obtain

Pri[win] = Pri[win | good] - Pri[good]
2.q6-27F
> (5 _ 246) - Pri[good]
Pri[good]
= ¢ - Pri[good] — 2 - qg 27k
>e-(1—qg-27% —qy-2Fry—2.q4-27% (5.44)

r

By Lemma 5.19, we must have ¢’ > Pri[win], giving us the desired

g >e-(1—qg-27% —qpy-2Fk)—-2.q5-27% (5.45)

EXERCISES 5.9

1. In the proof of Lemma 5.18, explain in detail why all equations and inequalities hold:
make use of the definition of conditional probabilities and the axioms of probability.

2. Prove Lemma 5.19.

Explain in detail why (5.39) holds.

4. Justify all equations and inequalities in (5.40).

bl

5.5 EXACT SECURITY FOR THE PLAIN-TEXT-AWARE ENCRYPTION

In formalizing our notion of a “plain-text—aware” encryption system, we assume an ad-
versary B(-) who takes an encryption algorithm &£ #)(.) as input and outputs a string y —
a putative cipher-text. We rely on an algorithm K(-, -, -, -), which (all things being equal)
can decrypt cipher-texts that B(-) may output simply by observing B(-)’s interaction with
the random oracles G and H.

200 Chapter 5. Optimal Public-Key Encryption with RSA

Definition 5.21 (Plain-Text Extractor)
1. We write
(v.1g.1y) < runBE () (5.46)

to denote that:

* the run B(£C-)(.)) outputs the string y; and

¢ a record of this run’s interaction with its random oracles G and H has been made,
where G(g) (resp., H(h)) is the reply of the random oracle G (H) to query g (h)."4
The record is

lG déf [(gle G(gf))s qus G(g?,))e R {gQ(;! G{gQG}>]! (54?)

Ly [(hy. H(h)). thy, H(h)). .. (hyy. H(hg,)]: (5.48)

2. A (t, g)-plain-text extractor for B(-) and 5(k) is an algorithm K(-, -, -, -) such that the
probability of

K(ECH), v, 16.15) # D (y)

is less than or equal to &, provided that the algorithm ran in at most ¢ steps and that the
probabilistic events

* G« Q(k),

* H « Q(k),

« (£19M(), D)) « S(k), and

* (v.1.1u) < unB(E@())

occurred in that order.

Notice the kind of information that is being supplied to the plain-text extractor. It obtains
only the encryption algorithm £WG MY the output of run B(£C- 1)), and the list of in-
teractions that this run had with the random oracles G and H. The plain-text extractor has
no access to the random oracles themselves, only to their *view” as determined by this
single run. In particular, the plain-text extractor has no access to the random coin tosses of
the run B(£'%#)(.)). As mentioned earlier, one can prove — in the random oracle model —
that the plain-text-aware encryption scheme is nonmalleable and secure against chosen
cipher-text attacks. The latter is intuitively clear: if an attacker has temporary access to
the decryption function D¢ #)(.) then no additional power is gained because the knowl-
edge extractor can typically decrypt cipher-text based on (y, 1. 1) < runB(£@ ().

We reuse Theorem 5.11 to prove the semantic security of the plain-text-aware encryp-
tion scheme.

Theorem 5.22 (Exact Semantic Security)

Each plain-text—aware public-key encryption scheme 8" has an oracle machine U|[-] and
a constant A such that, for each k € N: If ACH(.) is (¢, q:, qu. €)-breaking S'(k) then
UIAGH(,)]isa (t', e")-inverse of F(k), where

¢+ q6 - qu - (TG 4 1K), (5.49)

14 Note that G(g) is different from (. the “answer” provided by M(f. v).

5.5. Exact Security for the Plain-Text-Aware Encryption 201

Proof Let & be the simple encryption scheme of (5.6) with subsystem F and se-
curity parameter k + k;. We define an adversary A% #(.,) from A% (.,) as follows:
first, it simulates the find-stage of AGH(1y, thereby obtaining (xg, x;, ¢}, and outputs
(xg0%1, x;0%, ¢). Second, it receives cipher-text y from the system S', removes the padded
ky rightmost zeros from xy0* and x;0%, and simulates the guess-stage of A% (-,) with
input {xg. x1. ¢, y). The rest follows immediately from Theorem 5.11. O

An intuitive account of this semantic security for plain-text—aware encryption may be sum-
marized as follows.

Let y be the output of B(£'¢1)(.)).

* If r has not been submitted to G, then — with very high probability — the first k — ko +
k, bits of w = f~!(y) won’t end in 0% for its k, rightmost bits.

e If 5 has not been submitted to H, then the attacker cannot know r.

¢ However, if the attacker knows s, then she evidently knows its k — kg leftmost bits

(which constitute w).

Finally, we address the exact security of the plain-text—aware encryption scheme.

Definition 5.23

Let S be the plain-text—-aware encryption scheme. We call B(-) a (¢, qg, qu)-adversary
for an instance S(k) if and only if, for all k € N and all £¢)(.) « S(k), we have that
B(E(G.H}{_)):

* runs in at most ¢ time steps;
* makes at most g queries to G; and
¢ makes at most q queries to H.

Theorem 5.24 (Exact Plain-Text—-Aware Security)

Let 8§ be the plain-text—aware encryption scheme with subsystem F and with parameters
ko and ky. Then there exists an oracle machine K|[-] and a constant 2 such that, for each
kel If B(:)isa (t,qc. qu)-adversary for S(k) then K[B(-)] is a (t', e")-plain-text
extractor for B(-) and S(k), where

' St 4q6qu- (T + A k), (5.51)

e g 27% 270, (5.52)

5.5.1 Proof of Exact Security for Plain-Text-Aware Encryption

First, we define the behavior of the plain-text extractor K. Suppose that F(k) chooses
(f. f7H, €@y is the corresponding plain-text-aware encryption system, and

lo < [{g1. G(g1). (g2. G(g2)). ... (2q0. G(gau))].

Iy E [(hy, H(h)), thy, H(hy)). ... (hy,,. H(hy,))]

are the interactions of the run B(£ ‘% #)(.)) with the random oracles G and H, respectively.
We record the queries into separate lists

202 Chapter 5. Optimal Public-Key Encryption with RSA

def
EG é [gl? gQ: LR gqﬁ]a

def
ly = [hy, hy. oo by,).

The algorithm K receives input (EGI(Y, v, 16, 1y). The algorithm has variables x; ;,
vij,andz; ;foreachl =i <= qgand1 = j < qg.

1. For each combination of i and j, the run K(£“W- (), v, 15.14):
(a) assigns to x; ; the leftmost m bits of h; @ G(g;):
(b) assigns to z; ; the (remaining) rightmost k; bits of ; @& G(g;);
(c) assigns

def
wi =l gi ®© H(h;);

and
(d) computes

Vi e flw; ;).

2. If there is a choice of i and j such that
vij=y and z;;=0", (5.53)
then the run K(£C- (), v, 15, 1y4) outputs x; ;: otherwise, it returns ““failed” — indi-
cating failure.
As for the analysis part, we define
wE f7(y) and
def
st = w,
where 5 and ¢ are (k — ko + k)-bit and k-bit strings, respectively. Next, we define three
random variables r, x, z by
r <@ H(s),
x|z @G,

where x is kK — kg bits long and y is a k;-bit string. Consider three probabilistic events:

* failure is true if and only if the output of the run K(EWH)() vy 16, 1y) is different
from D H)(y);

¢ ask_ristrue if and only if r is in the list I;

¢ ask_s istrue if and only if 5 is on the list [y.

Given these events, we manage to prove a firstupper bound for the probability of failure:

Pr[failure] = Pr[failure | —ask_r] - Pr[—ask_r]
+ Pr[{failure | ask_r A ask_s] - Prlask_r A ask_s]
+ Pr[failure | ask_r A —ask_s] - Prlask_r A —ask_s]
< Pr[failure | —mask_r]
+ Pr[failure | ask_r A ask_s]

+ Prlask_r A —ask_s]. (5.54)

5.6. Bibliographic Notes 203

1. If r is not on the list /;, then the probability that z equals 0% is at most 27%1, If z does
not equal 0%, then the run reports “failed” — which in this case is not representing the
event failure. Therefore, we conclude that

Pr[failure | —mask_r] =< 22—k (5.55)

2. If r is on the list / and s is on the list /5, then there exist i and j such that w = w; ;.
Thus K will decrypt y correctly, whence Pr(failure | ask_r A ask_s] = 0.

3. Finally, if 5 is not on the list /;, then the answer H(s) is uniformly distributed and thus
r is uniformly distributed as an exclusive-or of r and H(s). But then we have

Prlask_r n —ask_s] < Prlask_r | —ask_s] < qg - 2~k

These three items and the upper bound of (5.54) establish the upper bound of Theo-
rem 5.24.

EXERCISES 5.10

1. Explain why (5.55) holds.

2. For item 2 (following (5.55)), explain in detail why K will succeed in decrypting y
correctly.

3. Justify the reasoning involved in (5.54).

5.6 BIBLIOGRAPHIC NOTES

The core of this chapter presents work done by Bellare and Rogaway (1995); our descrip-
tion of the random oracle methodology is based on Bellare and Rogaway (1993). The
ideas that underlie this approach go back to work done by Goldreich, Goldwasser, and
Micali (1984,1986). A general website!> on the random oracle methodology is maintained
by the MIT Cryptography and Information Security Group Research Project. For a paper
on the use of the random oracle methodology for deriving perfectly one-way probabilis-
tic hash functions, see Canetti, Micciancio, and Reingold (1998). The sketch that shows
the limitation of the random oracle methodology is from Canetti, Goldreich, and Halevi
(1998), which contains a more detailed and technical treatment. A representative text on
elementary probability theory is Feller (1968).

13 http://theory.les. mit .edu/~cis/rom /rom.html

CHAPTER 6

Analysis of Secure
Information Flow

6.1 MOTIVATION

Information is meaningful only if it flows from one location to another. Such flow can
take on many forms. Information may flow from a filing cabinet into somebody’s brain;
it may pass through various departments of a commercial or military organization; it may
be input into — and transformed by — computer programs. In any event, it is of paramount
importance that sensitive information not be leaked to unauthorized agents during its flow
through a network or program that processes information.

In Chapter 1, we encountered public-key cryptography as a technique for guaranteeing
secure flow of confidential messages (e.g., a key for the Rijndael cipher) from one agent
to another through an unsecure communication channel. However, such secure informa-
tion flow may be corrupted when implementing cryptographic algorithms — for example,
the RSA and DES encryption modules shown in Figure 6.1 and Figure 3.4 (respectively).
Clearly, itis quite straightforward and reasonably simple to write programs that provide the
specified input—output functionality. Yet program variables, other programs, or other users
of the operating system in which these programs run may be able to deduce information
about the secret key for those public-key or symmetric cryptographic systems, either by ob-
serving run-time behavior of these implementations or by analyzing their concrete syntax.

For example, putting the RSA encryption algorithm from Figure 6.1 onto a smartcard
as is may allow a timing attack, noting that the for-statement may take less time to exe-
cute whenever the 7th bit of the secret key is 0. We may think of this program as a covert
timing channel. Similarly, a program that assigns secret information to identifiers can-
not be considered secure if those identifiers can be read by unauthorized processes: if you
need to enter your Rijndael key with a secure smartcard into an encryption module, then
this security measure is of no use if that module not only encrypts messages with that key
but also copies your key and passes it on to some unauthorized process.

Access control mechanisms are a more abstract but equally important application of
reasoning about information flow. Historically, such systems were designed to control
the immediate physical access to information, and little (if any) attention was paid to the
implicit or implied information flow made possible by a particular access policy. Our
approach assumes that each object or agent is bound to a security class (e.g., a security
clearing) statically, meaning that its class won’t change dynamically during the flow of in-
formation through some access structure. Dynamic bindings are inherently problematic.
The dynamic increase of an object’s security class may “remove” that object from the view
of some agent whose security clearance is not sufficient for accessing data of that higher
class. Nonetheless, this change of an agent’s capability may be used as a covert channel

6.1. Motivation 205

RSA_encryption(BigInteger m, BigInteger n) {
// returns m ** d mod n, where d is the secret RSA key and
// n is the RSA modulus
// the array b stores the binary representation of d
// and has been ‘‘entered’’ into the program via a
// ffsecure’’ mechanism;
// blk] is the most significant bit of d
int[] b;
BigInteger ¢ = 1; // identifier for cipher-text
for (int i = k; i >= 0; --i) {
c = (¢ * ¢) mod n;
if (b[i] == 1) ¢ = (¢ * m) mod n;
}
return c;

}

Figure 6.1. RSA encryption with iterative squaring.

of communication. An agent with top security clearance can send a secret message to an
agent with lower security class by increasing and decreasing two object’s security status
(the two objects representing the bits 0 and 1, respectively) in a certain pattern to generate
a desired bit string — assuming both agents agree that these actions have those meanings.
However, we can sometimes model such dynamic capabilities by creating state variables
that record and monitor system parameters such as “disk space full”, “number of files in
a folder”, and so forth. Naturally, such parameters are a potential security concern, for if
d is a secret “small” natural number then we may leak the value of d by creating d many
files in a certain folder or by creating a file of length d. If an agent knows what and where
to look for, and if that agent has access to this kind of information, then the secret is be-
ing exposed through what is generally called a covert storage channel. Such channels can
be subsumed by our analysis only to the extent that we may be able to adequately model
them with informative state variables. This may be difficult if not impossible for some
channels. Moreover, there is an infinity of possible covert channels out there yet we can
(attempt to) model only a bounded number of them.

Before we formalize the notion of secure information flow and its analyses, let us
begin with an overview of principal ways in which secure information flow is violated in
programs.

1. A direct violation of secure information flow occurs in an assignment
X = V;
where y stores secret information and x can be read by someone who is not authorized
to know the secret stored in y.
2. More subtly, secret information may flow to unsecure program variables in an indirect

way. This is achieved by contrel sfructures of programming languages. For example,
we may use an if-statement as in

if ((y % 2) ==0) {x=0; }else { x=1; }
to leak the least significant bit of the secret y into x. This example also illustrates that

information flow is unsecure already even if only a small part (here: a single bit) of
secret information is being exposed.

206 Chapter 6. Analysis of Secure Information Flow

3. One may use the termination behavior of a program as a covert channel for leaking
secret information. The program
X = y;
while (x !'= 0) {
X = X % X;

}

terminates only when the value stored in y is 0. Otherwise, the program “loops™, mean-
ing in practical terms that some overflow exception will occur at run time. An observer
can simply run the program and deduce whether y equals 0.

4. If a program contains probabilistic choice, then one may sometimes succeed in a prob-
abilistic analysis of the program’s behavior that reveals sensitive information. Let us
assume that we have a programming language construct

(com_1 por com_2)

whose effect is the execution of com_1 or com_2 (resp.) with probability 0.5; see Ex-
ercise 6.1-1 for how to implement such a construct. Consider the program

¥y = vy mod 2;

(x=ypor (x =0por x =1));
It should be apparent that the final value of x reveals the least significant bit of y with
probability

05+0.5-05=0.75.

Such examples are disturbing, since we are unable to detect this kind of violation if we
reason only about the possible behavior of programs; a probabilistic analysis may then
be called for.

5. Assume that our programming language has a real-time construct

sleep n;
with the effect of making the program be idle for n milliseconds. The program
if (y = 1) { sleep 1000; } else { sleep 1; }

allows an external observer to infer information about y by measuring the program’s
timing behavior. Such a timing analysis is also possible in a nondeterministic setting.
Assume that we have a construct

(com_1 ++ com_2)

whose effect is to execute com_1 or com_2, where the choice is resolved by some (not
necessarily deterministic) scheduler. In the program

({if (y = 1) { sleep 1000
} else { sleep 1;

}
x = 1;
+
or
x = 0;

6.2. AType System for Analysis of Secure Information Flow 207

the nature of timing leaks naturally depends on the specific scheduler of nondetermin-
istic choices, but for this program many schedulers determine a distribution of final
values of x. Note that this example combines timing aspects with potentially proba-
bilistic flows.

6. Nondeterminism may also expose secret flow information without timing aspects. The
program

(x=y-3; ++x=y+5;)
has the effect that the final value x stored in x is one of the numbers ¥y — 3 or y + §,

where v is the initial value stored in y. In particular, y — 3 < x < y — 5. In most
circumstances, such a proximity of values is considered to be unsecure.

Obviously, one analysis alone cannot certify realistic mobile code, such as multi-
threaded Java programs, but each analysis ought to rule out certain kinds of violations
of secure information flow. In this chapter, we set out the limited tasks of:

* providing formal criteria that rule out a certain kind of leakage of any secret infor-
mation (no “write down” and no “read up”), thus giving a sound definition of secure
information flow;

* coming up with fully automatic (or semi-automatic but efficient) analyses that investi-
gate whether programs allow only secure information flow; and

* proving that these analyzes are sound — that programs certified to be secure by an analy-
sis actually satisfy the formal definition of security.

EXERCISES 6.1

1. Given a programming language that has if-statements and a “good” pseudo-random
number generator, show how you can implement the program construct com_1 por
com_2.

2. (a) Reevaluate the examples of unsecure programs listed in the text with respect to
the following notion of security: x is considered a low-security variable and y a
high-security variable. We call a program “secure” if the outcomes of any ob-
servations that can be made about final values of low-level security variables are
independent from the initial values of any high-security variables.

(b) For this notion of security, explain to what extent program nontermination may
affect the security of programs.

6.2 ATYPE SYSTEM FOR ANALYSIS OF SECURE INFORMATION FLOW

In our first approach, we use the notion of types and type systems to define and certify se-
cure information flow in programs. Types are a mechanism for guaranteeing a minimal
form of security for the execution of program expressions. For example, if an expression
has type

int * int --> bool

then it “assumes” two inputs of type int before its execution and “guarantees” to return
some output of type bool; this promise is conditional on the inputs having the advertised

208 Chapter 6. Analysis of Secure Information Flow
x:1el
— Id e It
Fresx:r I' > true : bool
I'>El:bool, I [>E2:bool

P n
k>n:int I'>E1l && E2:bool
FDE:boolN '>El:int, I'[>E2:int
—_—— Ne
[> IE:bool © [> EL < E2 - bool
I'>El:int, ['[>E2:int I'>E:int

> [}, Add [>—1.n Min

'k>El + E2:int '>-E:int

Figure 6.2. A type system for the expressions defined in (6.1).

types at run time. Program expressions are typed in this manner within, for example, Java
(an object-oriented programming language) and Standard ML of New Jersey (a functional
language).

Definition 6.1 (Type System)

1. A set of rules for inferring rypes of program expressions from types of subexpressions
or other program expressions is called a type system.

2. Type inference is the activity of computing a type, if possible, for a given program ex-
pression.

3. Type checking is the task of verifying that, given an expression and a type, the expres-
sion actually has that type — according to a given set of type inference rules.

6.21 Type System for Boolean and Integer Expressions

Definition 6.2 (Context and Typing Rules)

1. Consider the syntactic category E of expressions defined by the grammar
Ei=true | n | x| E& E | 'E| E<XE| E+E | -E (6.1)

where n and x are metavariables ranging over integer literals (5, 127, =53, etc.) and
identifiers (e.g., x1, y_init, average), respectively. We choose two types, int and
bool, and design a type system for proving judgments of the form

FeE:r, (6.2)

where 1 is either int or bool and I" is a context that binds identifiers to types. Con-
texts are generated by
I'i=empty |, x:1; (6.3)

here empty is the context with no bindings, and I', x : 7 binds x to t and honors all
bindings of I' as well. We restrict contexts in (6.3) to those I that list identifiers x at
most once. We also identify contexts that merely permute pairs x : t and write

x:1tel

to say that the pair x : T occurs in I'. In that case, we often write I'(x) for this 1.
2. The type system is given in Figure 6.2. We call a judgment valid if it can be proved by
means of the system’s inference rules.

6.2. AType System for Analysis of Secure Information Flow 209

————F X Lit
¥ :int [> 53: int : n Id

T x:int [> -53:int x:int [> x:int Add 1
¥ :int [> true : bool x:int [> (-53) + x:int x:int [x:int

N LT
¥ :int [> !true: beol 8 x:int [> (=53) + x < x:bool

x:int [> ('true) && ((-53) + x < x) : boel

And

Figure 6.3. Certificate for x : bool > !true && (((-53) + x) < x) : bool (complete proof).

The rule And states: in order to prove that E1 && E2 has type bool in context I', we
must prove that E1 and E2 both have type bool in that same context. The rule LT
means that we can prove E1 < E2 to have type bool in context I' if E1 and E2 both
can be proven to have type int in that context, and so forth. A complete proof for the
judgment

X :bool > true && (((-53) + x) < x) :bool

1s given in Figure 6.3. Not every judgment I = E : has a proof. For any context I, the
judgment

Fe 1((-x) < true) : 1

cannot be proven for t being int or bool. Obviously, a type system should allow us to
prove judgments only if they imply safe program executions.

The verification task of type checking is quite simple if the verifier receives not only
the expression and type but also the details of a type inference proof demonstrating that
some expression E has type 1. It is easier to check the correctness of the proof in Fig-
ure 6.3 than it is to produce it in the first place. This discrepancy of difficulty is generally
more pronounced the more expressive the type system is. But even for the most complex
type systems, one need merely verify that all the inference rules of the proof have been
used correctly. However, we need both — type inference and type checking — for a viable
framework for validating secure information flow in mobile code.

¢ Type inference is used to prove that a program is secure in this sense. This can be a
complex and time-consuming task, and clearly it is not a due burden on all users of
mobile code to perform this analysis prior to the local execution of a program.

* Rather, the verification (i.e. type inference) is done centrally, presumably by the pro-
ducer of that code, and this mobile code together with its certificate (the type inference
proof) is shipped to a remote code consumer who can instantly verify the certificate,
through type checking, before she uses that code as often as she wishes.

It is worth stressing that such a framework for trusted mobile code cannot be imple-
mented with cryptographic technigues alone. We can use cryptography to authenticate
the origin of mobile code, or to ensure the fact that this code has not been tampered with
in transit. But even if all of that has been established, we know nothing about the actual
behavior of the program when it is being executed locally, although there do exist circum-
stances under which we may decide to trust mobile code that comes from certain sources
(e.g., your IT contractor — just kidding!).

210 Chapter 6. Analysis of Secure Information Flow

EXERCISES 6.2

1. Explain in detail why there cannot exist proofs for the judgments
' 1((-x) < true) :int and T = !'((-x) < true) : bool.
2. Show that the judgment
x:int, y:int = ' (('true) && ((-12) + (x + (-y))) < y) :bool.

is valid.

3. The advantage of program certification is that a user need only verify that the certifi-
cate of a program is valid. Investigate in detail what kind of trust or knowledge of
the user is implied by this.

6.2.2 Specifying Secure Information Flow

Any analysis of secure information flow has to be carried out against a specification that
states which kind of information flow is considered to be secure. We express such speci-
fications as extensions of the classical Bell and La Padula model of security classes.

Definition 6.3 (Information Flow Policy)

1. An information flow policy is a finite set SCLs, whose members are security classes,
together with <, a subset of SCLs x SCLs.
2. We call < a permissible flow relation, where T < t' means that information of security
class t is permitted to flow to security class t’.
3. We further demand that < be
* reflexive (t < 1 for all r € SCLs),
* transitive (forall 7,0, v: 7 <o and o < vimply T < v), and
« antisymmetric (foralltand o: 7 < o and o < 7 imply T = 0).
4. Moreover, for each 7 and 7' in SCLs, there exist elements T A 7" and T v " in SCLs
that satisfy:
(inf) » T AT =7,
s AT <71/, and
» forall o € SCLs that satisfyo < rando < t/, wehave o <17 AT/,
(sup) * T =T VT,
e ' =7wvT and
* forall 0 € SCLs thatsatisfyt <o andt’ <o, wehavet v 1’ < 0.

The structure
(SCLs, =, A, V)

is an example of a finite lattice. We call T A " and t v 1’ the infimum and supremum of
t and t’, respectively.

Remark 6.4

In a finite lattice, we always have a least and a largest element L and H, respectively. The
element L is the infimum of all lattice elements, whereas H is the supremum of all lattice
elements.

6.2. AType System for Analysis of Secure Information Flow 21

Observe the operational meaning of infima: checking whether the flows 1 < o and 7’ <
o both are permissible amounts to verifying whether the single flow 7 v 1’ < o iss0. Du-
ally, checking whether both flows o < t and o < 1’ are permissible reduces to verifying
the permissibility of the single flow o < 7 A T".

Proposition 6.5 (Justification of Lattice Structure)
The assumption that (SCLs, <, A, Vv, L, H) is a finite lattice with least (L) and largest (H)
element is justified.

Proof

1. SCLs finite: Clearly, we have no need for modeling infinitely many security classes.

2. < reflexive: The relation r < v must hold for all T € SCLs to ensure consistency; in-
formation that one process or agent of class 7 is permitted to access should be allowed
to flow to some process or agent of that same security class.

3. < transitive: If t < o and o < v in SCLs then we argue that information can flow
from t to v, since it is first permitted to flow to o (via T < ¢) and then to v (viao <
v). Thus, T < v should hold as well.

4. < antisymmetric: If t < o and o < 1 hold, then any information is allowed to flow
between the security classes T and o in any direction. Thus there is no need to differ-
entiate between these security classes; that is, T should be equal to o.

5. Existence of L: Programming constants and any publicly available data should be able
to flow into any security class. Since a least element L of SCLs satisfies L < 7 for all
T € SCLs, the class L is an ideal model for the security class of such data.

6. Existence of H: This follows from the existence of L; see Exercise 6.3-2(b).

7. < has suprema: Let v be a security class such that information can flow to v from 1
and o; for example, v could be H. It is generally more efficient to assume the existence
of some t v g, for then we can express the former two permissible flows via a single
permissible flow T v o < v.

8. = hasinfima: This follows from the existence of suprema; see Exercise 6.3-2(a). O

Example 6.6 (Information Flow Policies)

1. There may be no other security classes except L and H. The only permissible nontrivial
information flow is given by

L <H.

All our program examples will be considered with respect to this simple information
flow policy.
2. We may represent a strictly hierarchical system of information flow as a linear chain
(wewritet <t'fort <t'andt # 1)
Lt <T2<---<71, <H,
where information can flow (if at all) from z; to 7; through only one path. What are
7; A T; and 1; V 1; in this case? One such example is the chain

unclassified < confidential < secret < top secret. (6.4)

3. Monotone access structures can also be modeled in this way. Given a set A of access
privileges or agents, a monotone access structure is a family 4 of sets such that A € A

212 Chapter 6. Analysis of Secure Information Flow

and A € B imply B € A. The information flow policy is modeled by subset inclu-
sion: information may flow from A to B in A if and only if A € B. For example, if B
equals

{sac.sec.nr, medical_record, financial_record, criminal_record} (6.5)

for Bob, then Alice has access to Bob’s medical record only if Alice’s security class A
contains B. Note that this structure does not model implicit or implied flow. For ex-
ample, any one with access to Bob’s medical record presumably has access also to his
social security number.

EXERCISES 6.3

1. We extend the definition of infima and suprema to finite subsets of SCLs. For
{t1. T2, ..., T}, we define the supremum of that set recursively as the supremum
of 7, and the supremum of the smaller set {1, ..., T,}. Infima are defined in a simi-
lar way. Argue that these definitions are independent of the order in which we listed
these elements, so these notions are well-defined.

2. (a) Prove: If suprema t v 7’ exist for all T and t’ in SCLs, then their infima 7 A 7'

exist as well. (Hint: Call v € SCLs a lower bound of T and " if and only if v <
T and v < 1" hold; consider the supremum of all these lower bounds.)

(b) Use part (a) (for the general versions of suprema and infima from Exercise 1) to
show that the existence of L implies the existence of H.

3. Let SCLs be a finite set of security classes with a flow relation < that is reflexive,
transitive, and antisymmetric. Although SCLs may not have suprema, infima, L, or
H, we can always embed SCLs into a finite lattice such that the given flow relation <
is preserved. Let £ be the set of subsets L of SCLs that are downwards closed:

o<t & el — oclL.

The information flow relation on £ is given by subset inclusion: information may
flowfrom L, e Lto L, Lifandonlyif L) € L.
(a) Show that the map f: SCLs — L, specified by
() ¥ (6 eSCLs | o < 1), (6.6)
is well-defined (i.e., /(1) is downwards closed for all T € SCLs).
(b) Show that T < ' holds if and only if f(t) is a subset of f(t’).
(c) Show that f(t) = f(r') implies T = v’ (i.e., [is injective).
(d) Show that (£, €, N, U) is a finite lattice.
(e) Which subsets function as L and H, respectively?

6.2.3 A Core Programming Language

We study a core imperative programming language with simple block structures but with-
out procedures, records, arrays, or other data structures. Our analysis of secure informa-
tion flow must therefore be adapted to each additional language construct that is added to
this core. Some of these language extensions (e.g. arrays) result in rather straightforward

6.2. AType System for Analysis of Secure Information Flow 213

adaptations of our secure information flow analysis and are included as exercises. Other
additions, such as nondeterminism or parallelism, make our analysis more difficult and
will not be discussed in this section.

Definition 6.7 (Core Programming Language)
We specify our core programming language by the grammar

pi=e | c (6.7)
e'=n | x| true | e+ e | e - e | e == | le | e < e, (6.8)
ci=e =¢e | ¢;c | if (e) {c} else {c}

while e {c} | letvar x = e in {c}.

The syntactic category p of program phrases consists of expressions € and commands c.
The syntactic category e of expressions ranges over metavariables denoting integer literals
(n) and identifiers (x). Further, expressions formed via addition, subtraction, and boolean
expressions are formed through the constant true, negation (!e), equality (el == e2),
and the strictly-less-than relation (el < e2) on integer expressions. Finally, commands ¢
are built from assignments

X = e;
by means of sequencing
cl ; c2
the if-statements
if (e) {cl} else {c2}
and while-statements
while e {c}
and a local declaration
letvar x = e in {c}

whose intuitive meaning is that expression e is evaluated, its value bound to x, and then
command c executed with that binding. Moreover, this binding is ineffective outside of
command c or within those portions of ¢ that may rebind x.

You may have noticed that this grammar allows for the formation of phrases that won’t
execute safely. For example,

x =15+ 3

makes no sense because addition expects two integer expressions but !5 is a boolean ex-
pression. This is precisely where the conventional application of types and type systems,
such as the toy example from Figure 6.2, steps in. A language designer encodes such

214 Chapter 6. Analysis of Secure Information Flow

constraints as typing rules, which may be explicit or implicit in the syntax of a program-
ming language, and a compiler then performs type inference based on that type system.
In Exercise 6.4-1, you are asked to design such a type system. Our analysis of secure in-
formation flow already assumes that language expressions are analyzed only if they have
been proven to be well-typed in the conventional sense. Thus we design a separate type
system that merely reasons about information flow.

A realistic core language would also include the boolean constant false, numerical
constants such as 0, as well as multiplication, division, and modulo operations on integer
expressions. In example programs, we feel free to write code that is not strictly contained
in the core as defined in (6.7); our analysis easily extends to such a larger core language.
Note that the absence of input—output facilities is not a real restriction, since this can easily
be modeled by identifiers (x): input is “read” by accessing designated “input” identifiers;
output is “written” by assigning it to designated “output” identifiers.

EXERCISE 6.4

1. We sketch a conventional type system for the core programming language of (6.7).
Contexts I" are generated by

i=empty| [, x: 1, (6.9

where T is int or bool. We have two kinds of judgments!

'>p:1, (6.10)

I > p: comm, (6.11)
where p is a program phrase of our core language. We give four typing rules as
examples:

x:tel

- |d

ex:1,

lex:t, 're:7T
Ass

'>x = e: comn,
Ne=e:boel, Il c:comm
I' > while e {c} : comm,

Wh

F'e>x =e:comm, I'[>c:comm

- Let
I letvar x = e in {c}: comm.

(a) Complete this type system for the entire core language of (6.7).

(b) Explain how and why the typing rule Let is intuitively “correct™.

(c) Prove that your type system is “sound” with respect to the grammar (6.7):
(i) if (6.10) holds, then p is an expression e;
(ii) if (6.11) holds, then p is a command c.

(d) In the previous item, are the converses valid as well?

! Recall that we write 7 for int or bool.

6.2. AType System for Analysis of Secure Information Flow 215

6.2.4 Formal Semantics of Core Language

Before we design a type system for reasoning about information flow in programs, we
need a precise operational model of program executions. Such a formal semantics not
only clarifies the meaning of programs written in the core language, it also provides the
designer of the type system for secure information flow with a rigorous framework against
which it is then possible to verify that the designed type system is sound — in other words,
that programs it certifies as being secure are secure with respect to their formal execution
semantics.

Definition 6.8 (Model of Stores)

We formalize the evaluation of program phrases as judgments, one for each kind of pro-
gram phrase: expressions e and commands ¢. These judgments are all relative to a model
p of the store, or memory, that program phrases operate on. A simple but sufficiently ex-
pressive model of stores are functions p that associate integer values n to finitely many
identifiers x. We write p[x > n] for the store that behaves like p except that it maps x
ton.

An example store is a function p that maps x1 to —7, maps x2 to 3456, and is undefined
for all other identifiers.

Definition 6.9 (Judgments for Evaluation)

1. The judgments for the evaluation of expressions e have the form
phe=v, (6.12)

meaning that expression e evaluates to integer or boolean value v in store p.
2. Similarly, the judgment for the evaluation of a command is

pFc=p, (6.13)

meaning that the execution of command c transforms the store p into the store p’
(provided that this execution terminates).

The inference system for these judgments is given in Figure 6.4. The rules Lit and Tr
say that literals and true are already values. The rule Id allows us to inspect the con-
tents of stores. The typing rules Sub, Add, Eq, Neg, and LT all follow the same pattern:
first compute the values for all arguments, then use these to compute the composed value.
For example, plus(4, —7) denotes the literal —3 and equal?(frue, false) denotes false. The
rules Seq, IfT, and IfF encode the familiar semantics of these constructs. Note, how-
ever, that we reduced the evaluation of while-statements to the repeated evaluation of an
if-statement in Wh. This is justified because while e {c} is operationally equivalent
to if (e) {c; while e {c}} else {}. The rule Let is the most complex one, but it
matches exactly the intuitive meaning of letvar x = e in {c}: we evaluate the expres-
sion e in the current store p to some value n; then we evaluate the command ¢ in the
updated store p[x +— n], in which x is now bound to the current value of e, to obtain a
resulting store p' that is the net effect of letvar x = e in {c}.

216 Chapter 6. Analysis of Secure Information Flow
Lit p(x) defined 1
pHEn=n pEx= plx)

—_—Tr
p F true = mrue

pel=mn, pke2=n;
p el - e2 = subtrin, na)

el = n, Fe2=
P n. P nzAdd

pHel + e2 = plus(n], nz)

pel=b, pke2= b

p el == e2 = equal?(bh), b2)

phe=b N pkel=n, pke2=n:
e Wt
o le = not(bh) g p el € e2 = less_than?(ny, n2)

pre=n prhcl=p', p'rFec2=p"
Ass Seq

pHx =e= plx—n] phHcl; c2= p"

pre=true, pkcl=p 1T plhe=false, pFc2=p IE
pHif (e) {ci1} else {c2} = p' pHif (e) {ci1} else {c2} = p’
pHif (e) {c; while e {c}} else {} = p’ Wh phe=n plxrnlkFc=p Let

pFwhile e {c} = p' pHletvar x = e in {c} = p’

Figure 6.4. An inference system for the evaluation of